MIPS16: Handle non-extensible instructions correctly
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
CommitLineData
252b5132 1/* tc-mips.c -- assemble code for a MIPS chip.
6f2750fe 2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
ec2655a6 12 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
252b5132
RH
24
25#include "as.h"
26#include "config.h"
27#include "subsegs.h"
3882b010 28#include "safe-ctype.h"
252b5132 29
252b5132
RH
30#include "opcode/mips.h"
31#include "itbl-ops.h"
c5dd6aab 32#include "dwarf2dbg.h"
5862107c 33#include "dw2gencfi.h"
252b5132 34
42429eac
RS
35/* Check assumptions made in this file. */
36typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
252b5132
RH
39#ifdef DEBUG
40#define DBG(x) printf x
41#else
42#define DBG(x)
43#endif
44
263b2574 45#define streq(a, b) (strcmp (a, b) == 0)
46
9e12b7a2
RS
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
252b5132 50/* Clean up namespace so we can include obj-elf.h too. */
17a2f251
TS
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
252b5132
RH
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
252b5132
RH
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
252b5132 70
252b5132 71#include "elf/mips.h"
252b5132
RH
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
ecb4347a
DJ
78int mips_flag_mdebug = -1;
79
dcd410fe
RO
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
84int mips_flag_pdr = FALSE;
85#else
86int mips_flag_pdr = TRUE;
87#endif
88
252b5132
RH
89#include "ecoff.h"
90
252b5132 91static char *mips_regmask_frag;
351cdf24 92static char *mips_flags_frag;
252b5132 93
85b51719 94#define ZERO 0
741fe287 95#define ATREG 1
df58fc94
RS
96#define S0 16
97#define S7 23
252b5132
RH
98#define TREG 24
99#define PIC_CALL_REG 25
100#define KT0 26
101#define KT1 27
102#define GP 28
103#define SP 29
104#define FP 30
105#define RA 31
106
107#define ILLEGAL_REG (32)
108
741fe287
MR
109#define AT mips_opts.at
110
252b5132
RH
111extern int target_big_endian;
112
252b5132 113/* The name of the readonly data section. */
e8044f35 114#define RDATA_SECTION_NAME ".rodata"
252b5132 115
a4e06468
RS
116/* Ways in which an instruction can be "appended" to the output. */
117enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129};
130
47e39b9d
RS
131/* Information about an instruction, including its format, operands
132 and fixups. */
133struct mips_cl_insn
134{
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
47e39b9d 138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
5c04167a
RS
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
47e39b9d
RS
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
a38419a5
RS
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
47e39b9d 155
708587a4 156 /* True if this instruction occurred in a .set noreorder block. */
47e39b9d
RS
157 unsigned int noreorder_p : 1;
158
2fa15973
RS
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
15be625d
CM
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
e407c74b
NC
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
47e39b9d
RS
168};
169
a325df1d
TS
170/* The ABI to use. */
171enum mips_abi_level
172{
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179};
180
181/* MIPS ABI we are using for this output file. */
316f5878 182static enum mips_abi_level mips_abi = NO_ABI;
a325df1d 183
143d77c5
EC
184/* Whether or not we have code that can call pic code. */
185int mips_abicalls = FALSE;
186
aa6975fb
ILT
187/* Whether or not we have code which can be put into a shared
188 library. */
189static bfd_boolean mips_in_shared = TRUE;
190
252b5132
RH
191/* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
e972090a
NC
195struct mips_set_options
196{
252b5132
RH
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
846ef2d0
RS
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
252b5132
RH
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
df58fc94
RS
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
252b5132
RH
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
741fe287
MR
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
252b5132
RH
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
833794fc
MR
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
a325df1d
TS
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
bad1aba3 245 int gp;
0b35dfee 246 int fp;
fef14a42
TS
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
aed1a261
RS
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
037b32b9
AN
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
351cdf24
MF
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
252b5132
RH
265};
266
919731af 267/* Specifies whether module level options have been checked yet. */
268static bfd_boolean file_mips_opts_checked = FALSE;
269
7361da2c
AB
270/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274static int mips_nan2008 = -1;
a325df1d 275
0b35dfee 276/* This is the struct we use to hold the module level set of options.
bad1aba3 277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
0b35dfee 278 fp fields to -1 to indicate that they have not been initialized. */
037b32b9 279
0b35dfee 280static struct mips_set_options file_mips_opts =
281{
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
0b35dfee 287};
252b5132 288
0b35dfee 289/* This is similar to file_mips_opts, but for the current set of options. */
ba92f887 290
e972090a
NC
291static struct mips_set_options mips_opts =
292{
846ef2d0 293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
b015e599 294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
833794fc 295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
e7af610e 298};
252b5132 299
846ef2d0
RS
300/* Which bits of file_ase were explicitly set or cleared by ASE options. */
301static unsigned int file_ase_explicit;
302
252b5132
RH
303/* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306unsigned long mips_gprmask;
307unsigned long mips_cprmask[4];
308
738f4d98 309/* True if any MIPS16 code was produced. */
a4672219
TS
310static int file_ase_mips16;
311
3994f87e
TS
312#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
3994f87e 316 || mips_opts.isa == ISA_MIPS64 \
ae52f483
AB
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
3994f87e 320
df58fc94
RS
321/* True if any microMIPS code was produced. */
322static int file_ase_micromips;
323
b12dd2e4
CF
324/* True if we want to create R_MIPS_JALR for jalr $25. */
325#ifdef TE_IRIX
1180b5a4 326#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
b12dd2e4 327#else
1180b5a4
RS
328/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331#define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
b12dd2e4
CF
334#endif
335
ec68c924 336/* The argument of the -march= flag. The architecture we are assembling. */
316f5878 337static const char *mips_arch_string;
ec68c924
EC
338
339/* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341static int mips_tune = CPU_UNKNOWN;
316f5878 342static const char *mips_tune_string;
ec68c924 343
316f5878 344/* True when generating 32-bit code for a 64-bit processor. */
252b5132
RH
345static int mips_32bitmode = 0;
346
316f5878
RS
347/* True if the given ABI requires 32-bit registers. */
348#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350/* Likewise 64-bit registers. */
707bfff6 351#define ABI_NEEDS_64BIT_REGS(ABI) \
134c0c8b 352 ((ABI) == N32_ABI \
707bfff6 353 || (ABI) == N64_ABI \
316f5878
RS
354 || (ABI) == O64_ABI)
355
7361da2c
AB
356#define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
ad3fea08 360/* Return true if ISA supports 64 bit wide gp registers. */
707bfff6
TS
361#define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
ae52f483
AB
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
9ce8a5dd 370
ad3fea08
TS
371/* Return true if ISA supports 64 bit wide float registers. */
372#define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
ae52f483
AB
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
7361da2c 379 || (ISA) == ISA_MIPS32R6 \
ad3fea08 380 || (ISA) == ISA_MIPS64 \
ae52f483
AB
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
ad3fea08 385
af7ee8bf
CD
386/* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
707bfff6 388#define ISA_HAS_DROR(ISA) \
df58fc94 389 ((ISA) == ISA_MIPS64R2 \
ae52f483
AB
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
7361da2c 392 || (ISA) == ISA_MIPS64R6 \
df58fc94
RS
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
af7ee8bf
CD
396
397/* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
707bfff6
TS
399#define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
7361da2c 403 || (ISA) == ISA_MIPS32R6 \
707bfff6 404 || (ISA) == ISA_MIPS64R2 \
ae52f483
AB
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
7361da2c 407 || (ISA) == ISA_MIPS64R6 \
846ef2d0 408 || (mips_opts.ase & ASE_SMARTMIPS) \
df58fc94
RS
409 || mips_opts.micromips \
410 )
707bfff6 411
7455baf8 412/* Return true if ISA supports single-precision floats in odd registers. */
351cdf24
MF
413#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
7361da2c 418 || (ISA) == ISA_MIPS32R6 \
351cdf24
MF
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
7361da2c 423 || (ISA) == ISA_MIPS64R6 \
351cdf24
MF
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
af7ee8bf 426
ad3fea08
TS
427/* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429#define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
7361da2c
AB
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439/* Return true if ISA supports legacy NAN. */
440#define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
ae52f483
AB
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
ad3fea08 454
bad1aba3 455#define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
ca4e0257 459
bad1aba3 460#define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
ca4e0257 464
316f5878 465#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
e013f690 466
316f5878 467#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
e013f690 468
3b91255e
RS
469/* True if relocations are stored in-place. */
470#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
aed1a261
RS
472/* The ABI-derived address size. */
473#define HAVE_64BIT_ADDRESSES \
bad1aba3 474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
aed1a261 475#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
e013f690 476
aed1a261
RS
477/* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479#define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
ca4e0257 482
b7c7d6c1
TS
483/* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
f899b4b8 486#define ADDRESS_ADD_INSN \
b7c7d6c1 487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
f899b4b8
TS
488
489#define ADDRESS_ADDI_INSN \
b7c7d6c1 490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
f899b4b8
TS
491
492#define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495#define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
a4672219 498/* Return true if the given CPU supports the MIPS16 ASE. */
3396de36
TS
499#define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
a4672219 502
2309ddf2 503/* Return true if the given CPU supports the microMIPS ASE. */
df58fc94
RS
504#define CPU_HAS_MICROMIPS(cpu) 0
505
60b63b72
RS
506/* True if CPU has a dror instruction. */
507#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509/* True if CPU has a ror instruction. */
510#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
dd6a37e7 512/* True if CPU is in the Octeon family */
2c629856
N
513#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
dd6a37e7 515
dd3cbb7e 516/* True if CPU has seq/sne and seqi/snei instructions. */
dd6a37e7 517#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
dd3cbb7e 518
0aa27725
RS
519/* True, if CPU has support for ldc1 and sdc1. */
520#define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
c8978940
CD
523/* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535#define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
7361da2c 540 || mips_opts.isa == ISA_MIPS32R6 \
c8978940
CD
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
ae52f483
AB
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
7361da2c 545 || mips_opts.isa == ISA_MIPS64R6 \
c8978940 546 || mips_opts.arch == CPU_R4010 \
e407c74b 547 || mips_opts.arch == CPU_R5900 \
c8978940
CD
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
3aa3176b
TS
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
c8978940 552 || mips_opts.arch == CPU_RM7000 \
c8978940 553 || mips_opts.arch == CPU_VR5500 \
df58fc94 554 || mips_opts.micromips \
c8978940 555 )
252b5132
RH
556
557/* Whether the processor uses hardware interlocks to protect reads
81912461
ILT
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
67dc82bc 560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
df58fc94
RS
561 level I and microMIPS mode instructions are always interlocked. */
562#define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
e407c74b 565 || mips_opts.arch == CPU_R5900 \
df58fc94
RS
566 || mips_opts.micromips \
567 )
252b5132 568
81912461
ILT
569/* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
43885403
MF
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
81912461 574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
df58fc94
RS
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
bdaaa2e1 577/* Itbl support may require additional care here. */
81912461
ILT
578#define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
df58fc94 583 || mips_opts.micromips \
81912461
ILT
584 )
585
586/* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
df58fc94
RS
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592#define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
252b5132 596
6b76fefe
CM
597/* Is this a mfhi or mflo instruction? */
598#define MF_HILO_INSN(PINFO) \
b19e8a9b
AN
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
df58fc94
RS
601/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604#define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
42429eac 607/* The minimum and maximum signed values that can be stored in a GPR. */
bad1aba3 608#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
42429eac
RS
609#define GPR_SMIN (-GPR_SMAX - 1)
610
252b5132
RH
611/* MIPS PIC level. */
612
a161fe53 613enum mips_pic_level mips_pic;
252b5132 614
c9914766 615/* 1 if we should generate 32 bit offsets from the $gp register in
252b5132 616 SVR4_PIC mode. Currently has no meaning in other modes. */
c9914766 617static int mips_big_got = 0;
252b5132
RH
618
619/* 1 if trap instructions should used for overflow rather than break
620 instructions. */
c9914766 621static int mips_trap = 0;
252b5132 622
119d663a 623/* 1 if double width floating point constants should not be constructed
b6ff326e 624 by assembling two single width halves into two single width floating
119d663a
NC
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
d547a75e 627 in the status register, and the setting of this bit cannot be determined
119d663a
NC
628 automatically at assemble time. */
629static int mips_disable_float_construction;
630
252b5132
RH
631/* Non-zero if any .set noreorder directives were used. */
632
633static int mips_any_noreorder;
634
6b76fefe
CM
635/* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637static int mips_7000_hilo_fix;
638
02ffd3e4 639/* The size of objects in the small data section. */
156c2f8b 640static unsigned int g_switch_value = 8;
252b5132
RH
641/* Whether the -G option was used. */
642static int g_switch_seen = 0;
643
644#define N_RMASK 0xc4
645#define N_VFP 0xd4
646
647/* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
fba2b7f9
GK
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
252b5132
RH
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
17a2f251 659static int nopic_need_relax (symbolS *, int);
252b5132
RH
660
661/* handle of the OPCODE hash table */
662static struct hash_control *op_hash = NULL;
663
664/* The opcode hash table we use for the mips16. */
665static struct hash_control *mips16_op_hash = NULL;
666
df58fc94
RS
667/* The opcode hash table we use for the microMIPS ASE. */
668static struct hash_control *micromips_op_hash = NULL;
669
252b5132
RH
670/* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672const char comment_chars[] = "#";
673
674/* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677/* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
bdaaa2e1 679 #NO_APP at the beginning of its output. */
252b5132
RH
680/* Also note that C style comments are always supported. */
681const char line_comment_chars[] = "#";
682
bdaaa2e1 683/* This array holds machine specific line separator characters. */
63a0b638 684const char line_separator_chars[] = ";";
252b5132
RH
685
686/* Chars that can be used to separate mant from exp in floating point nums */
687const char EXP_CHARS[] = "eE";
688
689/* Chars that mean this number is a floating point constant */
690/* As in 0f12.456 */
691/* or 0d1.2345e12 */
692const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
e3de51ce
RS
699/* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705};
706
707/* Information about an error that was found while assembling the current
708 instruction. */
709struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732};
733
734/* The error that should be reported for the current instruction. */
735static struct mips_insn_error insn_error;
252b5132
RH
736
737static int auto_align = 1;
738
739/* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743static offsetT mips_cprestore_offset = -1;
744
67c1ffbe 745/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
6478892d 746 more optimizations, it can use a register value instead of a memory-saved
956cd1d6 747 offset and even an other register than $gp as global pointer. */
6478892d
TS
748static offsetT mips_cpreturn_offset = -1;
749static int mips_cpreturn_register = -1;
750static int mips_gp_register = GP;
def2e0dd 751static int mips_gprel_offset = 0;
6478892d 752
7a621144
DJ
753/* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755static int mips_cprestore_valid = 0;
756
252b5132
RH
757/* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759static int mips_frame_reg = SP;
760
7a621144
DJ
761/* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763static int mips_frame_reg_valid = 0;
764
252b5132
RH
765/* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768/* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772static int mips_optimize = 2;
773
774/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776static int mips_debug = 0;
777
7d8e00cf
RS
778/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779#define MAX_VR4130_NOPS 4
780
781/* The maximum number of NOPs needed to fill delay slots. */
782#define MAX_DELAY_NOPS 2
783
784/* The maximum number of NOPs needed for any purpose. */
785#define MAX_NOPS 4
71400594
RS
786
787/* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792static struct mips_cl_insn history[1 + MAX_NOPS];
252b5132 793
fc76e730 794/* Arrays of operands for each instruction. */
14daeee3 795#define MAX_OPERANDS 6
fc76e730
RS
796struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798};
799static struct mips_operand_array *mips_operands;
800static struct mips_operand_array *mips16_operands;
801static struct mips_operand_array *micromips_operands;
802
1e915849 803/* Nop instructions used by emit_nop. */
df58fc94
RS
804static struct mips_cl_insn nop_insn;
805static struct mips_cl_insn mips16_nop_insn;
806static struct mips_cl_insn micromips_nop16_insn;
807static struct mips_cl_insn micromips_nop32_insn;
1e915849
RS
808
809/* The appropriate nop for the current mode. */
833794fc
MR
810#define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
df58fc94
RS
817
818/* The size of NOP_INSN in bytes. */
833794fc
MR
819#define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
252b5132 822
252b5132
RH
823/* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827static fragS *prev_nop_frag;
828
829/* The number of nop instructions we created in prev_nop_frag. */
830static int prev_nop_frag_holds;
831
832/* The number of nop instructions that we know we need in
bdaaa2e1 833 prev_nop_frag. */
252b5132
RH
834static int prev_nop_frag_required;
835
836/* The number of instructions we've seen since prev_nop_frag. */
837static int prev_nop_frag_since;
838
e8044f35
RS
839/* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
252b5132
RH
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
bdaaa2e1 848 corresponding LO relocation. */
252b5132 849
e972090a
NC
850struct mips_hi_fixup
851{
252b5132
RH
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858};
859
860/* The list of unmatched HI relocs. */
861
862static struct mips_hi_fixup *mips_hi_fixup_list;
863
64bdfcaf
RS
864/* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867static fragS *prev_reloc_op_frag;
868
252b5132
RH
869/* Map mips16 register numbers to normal MIPS register numbers. */
870
e972090a
NC
871static const unsigned int mips16_to_32_reg_map[] =
872{
252b5132
RH
873 16, 17, 2, 3, 4, 5, 6, 7
874};
60b63b72 875
df58fc94
RS
876/* Map microMIPS register numbers to normal MIPS register numbers. */
877
df58fc94 878#define micromips_to_32_reg_d_map mips16_to_32_reg_map
df58fc94
RS
879
880/* The microMIPS registers with type h. */
e76ff5ab 881static const unsigned int micromips_to_32_reg_h_map1[] =
df58fc94
RS
882{
883 5, 5, 6, 4, 4, 4, 4, 4
884};
e76ff5ab 885static const unsigned int micromips_to_32_reg_h_map2[] =
df58fc94
RS
886{
887 6, 7, 7, 21, 22, 5, 6, 7
888};
889
df58fc94
RS
890/* The microMIPS registers with type m. */
891static const unsigned int micromips_to_32_reg_m_map[] =
892{
893 0, 17, 2, 3, 16, 18, 19, 20
894};
895
896#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
71400594
RS
898/* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
c67a084a
NC
900enum fix_vr4120_class
901{
71400594
RS
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909};
910
c67a084a
NC
911/* ...likewise -mfix-loongson2f-jump. */
912static bfd_boolean mips_fix_loongson2f_jump;
913
914/* ...likewise -mfix-loongson2f-nop. */
915static bfd_boolean mips_fix_loongson2f_nop;
916
917/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918static bfd_boolean mips_fix_loongson2f;
919
71400594
RS
920/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925/* True if -mfix-vr4120 is in force. */
d766e8ec 926static int mips_fix_vr4120;
4a6a3df4 927
7d8e00cf
RS
928/* ...likewise -mfix-vr4130. */
929static int mips_fix_vr4130;
930
6a32d874
CM
931/* ...likewise -mfix-24k. */
932static int mips_fix_24k;
933
a8d14a88
CM
934/* ...likewise -mfix-rm7000 */
935static int mips_fix_rm7000;
936
d954098f
DD
937/* ...likewise -mfix-cn63xxp1 */
938static bfd_boolean mips_fix_cn63xxp1;
939
4a6a3df4
AO
940/* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945static int mips_relax_branch;
252b5132 946\f
4d7206a2
RS
947/* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
584892a6
RS
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
4d7206a2 964
584892a6
RS
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
4d7206a2 981
df58fc94
RS
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
4d7206a2
RS
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
584892a6 1006#define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
4d7206a2 1007
584892a6
RS
1008#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009#define RELAX_SECOND(X) ((X) & 0xff)
1010#define RELAX_USE_SECOND 0x10000
1011#define RELAX_SECOND_LONGER 0x20000
1012#define RELAX_NOMACRO 0x40000
1013#define RELAX_DELAY_SLOT 0x80000
df58fc94
RS
1014#define RELAX_DELAY_SLOT_16BIT 0x100000
1015#define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016#define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
252b5132 1017
4a6a3df4
AO
1018/* Branch without likely bit. If label is out of range, we turn:
1019
134c0c8b 1020 beq reg1, reg2, label
4a6a3df4
AO
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
b34976b6 1064
4a6a3df4
AO
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
66b3e8da
MR
1085#define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
4a6a3df4 1093#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
66b3e8da
MR
1094#define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095#define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096#define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
4a6a3df4 1099
252b5132
RH
1100/* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120#define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
4a6a3df4 1127#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
252b5132
RH
1128#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131#define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136#define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137#define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138#define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
885add95 1139
df58fc94
RS
1140/* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
8484fb75
MR
1154 selected as the assembler temporary, whether in the 32-bit
1155 instruction mode, whether the branch is unconditional, whether it is
7bd374a4
MR
1156 compact, whether there is no delay-slot instruction available to fill
1157 in, whether it stores the link address implicitly in $ra, whether
1158 relaxation of out-of-range 32-bit branches to a sequence of
8484fb75
MR
1159 instructions is enabled, and whether the displacement of a branch is
1160 too large to fit as an immediate argument of a 16-bit and a 32-bit
1161 branch, respectively. */
1162#define RELAX_MICROMIPS_ENCODE(type, at, insn32, \
7bd374a4 1163 uncond, compact, link, nods, \
40209cad
MR
1164 relax32, toofar16, toofar32) \
1165 (0x40000000 \
1166 | ((type) & 0xff) \
1167 | (((at) & 0x1f) << 8) \
8484fb75
MR
1168 | ((insn32) ? 0x2000 : 0) \
1169 | ((uncond) ? 0x4000 : 0) \
1170 | ((compact) ? 0x8000 : 0) \
1171 | ((link) ? 0x10000 : 0) \
7bd374a4
MR
1172 | ((nods) ? 0x20000 : 0) \
1173 | ((relax32) ? 0x40000 : 0) \
1174 | ((toofar16) ? 0x80000 : 0) \
1175 | ((toofar32) ? 0x100000 : 0))
df58fc94
RS
1176#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1177#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1178#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
8484fb75
MR
1179#define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1180#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x4000) != 0)
1181#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x8000) != 0)
1182#define RELAX_MICROMIPS_LINK(i) (((i) & 0x10000) != 0)
7bd374a4
MR
1183#define RELAX_MICROMIPS_NODS(i) (((i) & 0x20000) != 0)
1184#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x40000) != 0)
8484fb75 1185
7bd374a4
MR
1186#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x80000) != 0)
1187#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x80000)
1188#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x80000)
1189#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x100000) != 0)
1190#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x100000)
1191#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x100000)
df58fc94 1192
43c0598f
RS
1193/* Sign-extend 16-bit value X. */
1194#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1195
885add95
CD
1196/* Is the given value a sign-extended 32-bit value? */
1197#define IS_SEXT_32BIT_NUM(x) \
1198 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1199 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1200
1201/* Is the given value a sign-extended 16-bit value? */
1202#define IS_SEXT_16BIT_NUM(x) \
1203 (((x) &~ (offsetT) 0x7fff) == 0 \
1204 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1205
df58fc94
RS
1206/* Is the given value a sign-extended 12-bit value? */
1207#define IS_SEXT_12BIT_NUM(x) \
1208 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1209
7f3c4072
CM
1210/* Is the given value a sign-extended 9-bit value? */
1211#define IS_SEXT_9BIT_NUM(x) \
1212 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1213
2051e8c4
MR
1214/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1215#define IS_ZEXT_32BIT_NUM(x) \
1216 (((x) &~ (offsetT) 0xffffffff) == 0 \
1217 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1218
bf12938e
RS
1219/* Extract bits MASK << SHIFT from STRUCT and shift them right
1220 SHIFT places. */
1221#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1222 (((STRUCT) >> (SHIFT)) & (MASK))
1223
bf12938e 1224/* Extract the operand given by FIELD from mips_cl_insn INSN. */
df58fc94
RS
1225#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1226 (!(MICROMIPS) \
1227 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1228 : EXTRACT_BITS ((INSN).insn_opcode, \
1229 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
bf12938e
RS
1230#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1231 EXTRACT_BITS ((INSN).insn_opcode, \
1232 MIPS16OP_MASK_##FIELD, \
1233 MIPS16OP_SH_##FIELD)
5c04167a
RS
1234
1235/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1236#define MIPS16_EXTEND (0xf000U << 16)
4d7206a2 1237\f
df58fc94
RS
1238/* Whether or not we are emitting a branch-likely macro. */
1239static bfd_boolean emit_branch_likely_macro = FALSE;
1240
4d7206a2
RS
1241/* Global variables used when generating relaxable macros. See the
1242 comment above RELAX_ENCODE for more details about how relaxation
1243 is used. */
1244static struct {
1245 /* 0 if we're not emitting a relaxable macro.
1246 1 if we're emitting the first of the two relaxation alternatives.
1247 2 if we're emitting the second alternative. */
1248 int sequence;
1249
1250 /* The first relaxable fixup in the current frag. (In other words,
1251 the first fixup that refers to relaxable code.) */
1252 fixS *first_fixup;
1253
1254 /* sizes[0] says how many bytes of the first alternative are stored in
1255 the current frag. Likewise sizes[1] for the second alternative. */
1256 unsigned int sizes[2];
1257
1258 /* The symbol on which the choice of sequence depends. */
1259 symbolS *symbol;
1260} mips_relax;
252b5132 1261\f
584892a6
RS
1262/* Global variables used to decide whether a macro needs a warning. */
1263static struct {
1264 /* True if the macro is in a branch delay slot. */
1265 bfd_boolean delay_slot_p;
1266
df58fc94
RS
1267 /* Set to the length in bytes required if the macro is in a delay slot
1268 that requires a specific length of instruction, otherwise zero. */
1269 unsigned int delay_slot_length;
1270
584892a6
RS
1271 /* For relaxable macros, sizes[0] is the length of the first alternative
1272 in bytes and sizes[1] is the length of the second alternative.
1273 For non-relaxable macros, both elements give the length of the
1274 macro in bytes. */
1275 unsigned int sizes[2];
1276
df58fc94
RS
1277 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1278 instruction of the first alternative in bytes and first_insn_sizes[1]
1279 is the length of the first instruction of the second alternative.
1280 For non-relaxable macros, both elements give the length of the first
1281 instruction in bytes.
1282
1283 Set to zero if we haven't yet seen the first instruction. */
1284 unsigned int first_insn_sizes[2];
1285
1286 /* For relaxable macros, insns[0] is the number of instructions for the
1287 first alternative and insns[1] is the number of instructions for the
1288 second alternative.
1289
1290 For non-relaxable macros, both elements give the number of
1291 instructions for the macro. */
1292 unsigned int insns[2];
1293
584892a6
RS
1294 /* The first variant frag for this macro. */
1295 fragS *first_frag;
1296} mips_macro_warning;
1297\f
252b5132
RH
1298/* Prototypes for static functions. */
1299
252b5132
RH
1300enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1301
b34976b6 1302static void append_insn
df58fc94
RS
1303 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1304 bfd_boolean expansionp);
7d10b47d 1305static void mips_no_prev_insn (void);
c67a084a 1306static void macro_build (expressionS *, const char *, const char *, ...);
b34976b6 1307static void mips16_macro_build
03ea81db 1308 (expressionS *, const char *, const char *, va_list *);
67c0d1eb 1309static void load_register (int, expressionS *, int);
584892a6
RS
1310static void macro_start (void);
1311static void macro_end (void);
833794fc 1312static void macro (struct mips_cl_insn *ip, char *str);
17a2f251 1313static void mips16_macro (struct mips_cl_insn * ip);
17a2f251
TS
1314static void mips_ip (char *str, struct mips_cl_insn * ip);
1315static void mips16_ip (char *str, struct mips_cl_insn * ip);
b34976b6 1316static void mips16_immed
3b4dbbbf 1317 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
43c0598f 1318 unsigned int, unsigned long *);
5e0116d5 1319static size_t my_getSmallExpression
17a2f251
TS
1320 (expressionS *, bfd_reloc_code_real_type *, char *);
1321static void my_getExpression (expressionS *, char *);
1322static void s_align (int);
1323static void s_change_sec (int);
1324static void s_change_section (int);
1325static void s_cons (int);
1326static void s_float_cons (int);
1327static void s_mips_globl (int);
1328static void s_option (int);
1329static void s_mipsset (int);
1330static void s_abicalls (int);
1331static void s_cpload (int);
1332static void s_cpsetup (int);
1333static void s_cplocal (int);
1334static void s_cprestore (int);
1335static void s_cpreturn (int);
741d6ea8
JM
1336static void s_dtprelword (int);
1337static void s_dtpreldword (int);
d0f13682
CLT
1338static void s_tprelword (int);
1339static void s_tpreldword (int);
17a2f251
TS
1340static void s_gpvalue (int);
1341static void s_gpword (int);
1342static void s_gpdword (int);
a3f278e2 1343static void s_ehword (int);
17a2f251
TS
1344static void s_cpadd (int);
1345static void s_insn (int);
ba92f887 1346static void s_nan (int);
919731af 1347static void s_module (int);
17a2f251
TS
1348static void s_mips_ent (int);
1349static void s_mips_end (int);
1350static void s_mips_frame (int);
1351static void s_mips_mask (int reg_type);
1352static void s_mips_stab (int);
1353static void s_mips_weakext (int);
1354static void s_mips_file (int);
1355static void s_mips_loc (int);
1356static bfd_boolean pic_need_relax (symbolS *, asection *);
4a6a3df4 1357static int relaxed_branch_length (fragS *, asection *, int);
df58fc94
RS
1358static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1359static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
919731af 1360static void file_mips_check_options (void);
e7af610e
NC
1361
1362/* Table and functions used to map between CPU/ISA names, and
1363 ISA levels, and CPU numbers. */
1364
e972090a
NC
1365struct mips_cpu_info
1366{
e7af610e 1367 const char *name; /* CPU or ISA name. */
d16afab6
RS
1368 int flags; /* MIPS_CPU_* flags. */
1369 int ase; /* Set of ASEs implemented by the CPU. */
e7af610e
NC
1370 int isa; /* ISA level. */
1371 int cpu; /* CPU number (default CPU if ISA). */
1372};
1373
ad3fea08 1374#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
ad3fea08 1375
17a2f251
TS
1376static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1377static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1378static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
252b5132 1379\f
c31f3936
RS
1380/* Command-line options. */
1381const char *md_shortopts = "O::g::G:";
1382
1383enum options
1384 {
1385 OPTION_MARCH = OPTION_MD_BASE,
1386 OPTION_MTUNE,
1387 OPTION_MIPS1,
1388 OPTION_MIPS2,
1389 OPTION_MIPS3,
1390 OPTION_MIPS4,
1391 OPTION_MIPS5,
1392 OPTION_MIPS32,
1393 OPTION_MIPS64,
1394 OPTION_MIPS32R2,
ae52f483
AB
1395 OPTION_MIPS32R3,
1396 OPTION_MIPS32R5,
7361da2c 1397 OPTION_MIPS32R6,
c31f3936 1398 OPTION_MIPS64R2,
ae52f483
AB
1399 OPTION_MIPS64R3,
1400 OPTION_MIPS64R5,
7361da2c 1401 OPTION_MIPS64R6,
c31f3936
RS
1402 OPTION_MIPS16,
1403 OPTION_NO_MIPS16,
1404 OPTION_MIPS3D,
1405 OPTION_NO_MIPS3D,
1406 OPTION_MDMX,
1407 OPTION_NO_MDMX,
1408 OPTION_DSP,
1409 OPTION_NO_DSP,
1410 OPTION_MT,
1411 OPTION_NO_MT,
1412 OPTION_VIRT,
1413 OPTION_NO_VIRT,
56d438b1
CF
1414 OPTION_MSA,
1415 OPTION_NO_MSA,
c31f3936
RS
1416 OPTION_SMARTMIPS,
1417 OPTION_NO_SMARTMIPS,
1418 OPTION_DSPR2,
1419 OPTION_NO_DSPR2,
8f4f9071
MF
1420 OPTION_DSPR3,
1421 OPTION_NO_DSPR3,
c31f3936
RS
1422 OPTION_EVA,
1423 OPTION_NO_EVA,
7d64c587
AB
1424 OPTION_XPA,
1425 OPTION_NO_XPA,
c31f3936
RS
1426 OPTION_MICROMIPS,
1427 OPTION_NO_MICROMIPS,
1428 OPTION_MCU,
1429 OPTION_NO_MCU,
1430 OPTION_COMPAT_ARCH_BASE,
1431 OPTION_M4650,
1432 OPTION_NO_M4650,
1433 OPTION_M4010,
1434 OPTION_NO_M4010,
1435 OPTION_M4100,
1436 OPTION_NO_M4100,
1437 OPTION_M3900,
1438 OPTION_NO_M3900,
1439 OPTION_M7000_HILO_FIX,
1440 OPTION_MNO_7000_HILO_FIX,
1441 OPTION_FIX_24K,
1442 OPTION_NO_FIX_24K,
a8d14a88
CM
1443 OPTION_FIX_RM7000,
1444 OPTION_NO_FIX_RM7000,
c31f3936
RS
1445 OPTION_FIX_LOONGSON2F_JUMP,
1446 OPTION_NO_FIX_LOONGSON2F_JUMP,
1447 OPTION_FIX_LOONGSON2F_NOP,
1448 OPTION_NO_FIX_LOONGSON2F_NOP,
1449 OPTION_FIX_VR4120,
1450 OPTION_NO_FIX_VR4120,
1451 OPTION_FIX_VR4130,
1452 OPTION_NO_FIX_VR4130,
1453 OPTION_FIX_CN63XXP1,
1454 OPTION_NO_FIX_CN63XXP1,
1455 OPTION_TRAP,
1456 OPTION_BREAK,
1457 OPTION_EB,
1458 OPTION_EL,
1459 OPTION_FP32,
1460 OPTION_GP32,
1461 OPTION_CONSTRUCT_FLOATS,
1462 OPTION_NO_CONSTRUCT_FLOATS,
1463 OPTION_FP64,
351cdf24 1464 OPTION_FPXX,
c31f3936
RS
1465 OPTION_GP64,
1466 OPTION_RELAX_BRANCH,
1467 OPTION_NO_RELAX_BRANCH,
833794fc
MR
1468 OPTION_INSN32,
1469 OPTION_NO_INSN32,
c31f3936
RS
1470 OPTION_MSHARED,
1471 OPTION_MNO_SHARED,
1472 OPTION_MSYM32,
1473 OPTION_MNO_SYM32,
1474 OPTION_SOFT_FLOAT,
1475 OPTION_HARD_FLOAT,
1476 OPTION_SINGLE_FLOAT,
1477 OPTION_DOUBLE_FLOAT,
1478 OPTION_32,
c31f3936
RS
1479 OPTION_CALL_SHARED,
1480 OPTION_CALL_NONPIC,
1481 OPTION_NON_SHARED,
1482 OPTION_XGOT,
1483 OPTION_MABI,
1484 OPTION_N32,
1485 OPTION_64,
1486 OPTION_MDEBUG,
1487 OPTION_NO_MDEBUG,
1488 OPTION_PDR,
1489 OPTION_NO_PDR,
1490 OPTION_MVXWORKS_PIC,
ba92f887 1491 OPTION_NAN,
351cdf24
MF
1492 OPTION_ODD_SPREG,
1493 OPTION_NO_ODD_SPREG,
c31f3936
RS
1494 OPTION_END_OF_ENUM
1495 };
1496
1497struct option md_longopts[] =
1498{
1499 /* Options which specify architecture. */
1500 {"march", required_argument, NULL, OPTION_MARCH},
1501 {"mtune", required_argument, NULL, OPTION_MTUNE},
1502 {"mips0", no_argument, NULL, OPTION_MIPS1},
1503 {"mips1", no_argument, NULL, OPTION_MIPS1},
1504 {"mips2", no_argument, NULL, OPTION_MIPS2},
1505 {"mips3", no_argument, NULL, OPTION_MIPS3},
1506 {"mips4", no_argument, NULL, OPTION_MIPS4},
1507 {"mips5", no_argument, NULL, OPTION_MIPS5},
1508 {"mips32", no_argument, NULL, OPTION_MIPS32},
1509 {"mips64", no_argument, NULL, OPTION_MIPS64},
1510 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
ae52f483
AB
1511 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1512 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
7361da2c 1513 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
c31f3936 1514 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
ae52f483
AB
1515 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1516 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
7361da2c 1517 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
c31f3936
RS
1518
1519 /* Options which specify Application Specific Extensions (ASEs). */
1520 {"mips16", no_argument, NULL, OPTION_MIPS16},
1521 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1522 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1523 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1524 {"mdmx", no_argument, NULL, OPTION_MDMX},
1525 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1526 {"mdsp", no_argument, NULL, OPTION_DSP},
1527 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1528 {"mmt", no_argument, NULL, OPTION_MT},
1529 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1530 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1531 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1532 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1533 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
8f4f9071
MF
1534 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1535 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
c31f3936
RS
1536 {"meva", no_argument, NULL, OPTION_EVA},
1537 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1538 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1539 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1540 {"mmcu", no_argument, NULL, OPTION_MCU},
1541 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1542 {"mvirt", no_argument, NULL, OPTION_VIRT},
1543 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
56d438b1
CF
1544 {"mmsa", no_argument, NULL, OPTION_MSA},
1545 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
7d64c587
AB
1546 {"mxpa", no_argument, NULL, OPTION_XPA},
1547 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
c31f3936
RS
1548
1549 /* Old-style architecture options. Don't add more of these. */
1550 {"m4650", no_argument, NULL, OPTION_M4650},
1551 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1552 {"m4010", no_argument, NULL, OPTION_M4010},
1553 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1554 {"m4100", no_argument, NULL, OPTION_M4100},
1555 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1556 {"m3900", no_argument, NULL, OPTION_M3900},
1557 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1558
1559 /* Options which enable bug fixes. */
1560 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1561 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1562 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1563 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1564 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1565 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1566 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1567 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1568 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1569 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1570 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1571 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1572 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
a8d14a88
CM
1573 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1574 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
c31f3936
RS
1575 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1576 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1577
1578 /* Miscellaneous options. */
1579 {"trap", no_argument, NULL, OPTION_TRAP},
1580 {"no-break", no_argument, NULL, OPTION_TRAP},
1581 {"break", no_argument, NULL, OPTION_BREAK},
1582 {"no-trap", no_argument, NULL, OPTION_BREAK},
1583 {"EB", no_argument, NULL, OPTION_EB},
1584 {"EL", no_argument, NULL, OPTION_EL},
1585 {"mfp32", no_argument, NULL, OPTION_FP32},
1586 {"mgp32", no_argument, NULL, OPTION_GP32},
1587 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1588 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1589 {"mfp64", no_argument, NULL, OPTION_FP64},
351cdf24 1590 {"mfpxx", no_argument, NULL, OPTION_FPXX},
c31f3936
RS
1591 {"mgp64", no_argument, NULL, OPTION_GP64},
1592 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1593 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
833794fc
MR
1594 {"minsn32", no_argument, NULL, OPTION_INSN32},
1595 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
c31f3936
RS
1596 {"mshared", no_argument, NULL, OPTION_MSHARED},
1597 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1598 {"msym32", no_argument, NULL, OPTION_MSYM32},
1599 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1600 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1601 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1602 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1603 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
351cdf24
MF
1604 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1605 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
c31f3936
RS
1606
1607 /* Strictly speaking this next option is ELF specific,
1608 but we allow it for other ports as well in order to
1609 make testing easier. */
1610 {"32", no_argument, NULL, OPTION_32},
1611
1612 /* ELF-specific options. */
c31f3936
RS
1613 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1614 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1615 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1616 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1617 {"xgot", no_argument, NULL, OPTION_XGOT},
1618 {"mabi", required_argument, NULL, OPTION_MABI},
1619 {"n32", no_argument, NULL, OPTION_N32},
1620 {"64", no_argument, NULL, OPTION_64},
1621 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1622 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1623 {"mpdr", no_argument, NULL, OPTION_PDR},
1624 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1625 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
ba92f887 1626 {"mnan", required_argument, NULL, OPTION_NAN},
c31f3936
RS
1627
1628 {NULL, no_argument, NULL, 0}
1629};
1630size_t md_longopts_size = sizeof (md_longopts);
1631\f
c6278170
RS
1632/* Information about either an Application Specific Extension or an
1633 optional architecture feature that, for simplicity, we treat in the
1634 same way as an ASE. */
1635struct mips_ase
1636{
1637 /* The name of the ASE, used in both the command-line and .set options. */
1638 const char *name;
1639
1640 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1641 and 64-bit architectures, the flags here refer to the subset that
1642 is available on both. */
1643 unsigned int flags;
1644
1645 /* The ASE_* flag used for instructions that are available on 64-bit
1646 architectures but that are not included in FLAGS. */
1647 unsigned int flags64;
1648
1649 /* The command-line options that turn the ASE on and off. */
1650 int option_on;
1651 int option_off;
1652
1653 /* The minimum required architecture revisions for MIPS32, MIPS64,
1654 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1655 int mips32_rev;
1656 int mips64_rev;
1657 int micromips32_rev;
1658 int micromips64_rev;
7361da2c
AB
1659
1660 /* The architecture where the ASE was removed or -1 if the extension has not
1661 been removed. */
1662 int rem_rev;
c6278170
RS
1663};
1664
1665/* A table of all supported ASEs. */
1666static const struct mips_ase mips_ases[] = {
1667 { "dsp", ASE_DSP, ASE_DSP64,
1668 OPTION_DSP, OPTION_NO_DSP,
7361da2c
AB
1669 2, 2, 2, 2,
1670 -1 },
c6278170
RS
1671
1672 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1673 OPTION_DSPR2, OPTION_NO_DSPR2,
7361da2c
AB
1674 2, 2, 2, 2,
1675 -1 },
c6278170 1676
8f4f9071
MF
1677 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1678 OPTION_DSPR3, OPTION_NO_DSPR3,
1679 6, 6, -1, -1,
1680 -1 },
1681
c6278170
RS
1682 { "eva", ASE_EVA, 0,
1683 OPTION_EVA, OPTION_NO_EVA,
7361da2c
AB
1684 2, 2, 2, 2,
1685 -1 },
c6278170
RS
1686
1687 { "mcu", ASE_MCU, 0,
1688 OPTION_MCU, OPTION_NO_MCU,
7361da2c
AB
1689 2, 2, 2, 2,
1690 -1 },
c6278170
RS
1691
1692 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1693 { "mdmx", ASE_MDMX, 0,
1694 OPTION_MDMX, OPTION_NO_MDMX,
7361da2c
AB
1695 -1, 1, -1, -1,
1696 6 },
c6278170
RS
1697
1698 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1699 { "mips3d", ASE_MIPS3D, 0,
1700 OPTION_MIPS3D, OPTION_NO_MIPS3D,
7361da2c
AB
1701 2, 1, -1, -1,
1702 6 },
c6278170
RS
1703
1704 { "mt", ASE_MT, 0,
1705 OPTION_MT, OPTION_NO_MT,
7361da2c
AB
1706 2, 2, -1, -1,
1707 -1 },
c6278170
RS
1708
1709 { "smartmips", ASE_SMARTMIPS, 0,
1710 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
7361da2c
AB
1711 1, -1, -1, -1,
1712 6 },
c6278170
RS
1713
1714 { "virt", ASE_VIRT, ASE_VIRT64,
1715 OPTION_VIRT, OPTION_NO_VIRT,
7361da2c
AB
1716 2, 2, 2, 2,
1717 -1 },
56d438b1
CF
1718
1719 { "msa", ASE_MSA, ASE_MSA64,
1720 OPTION_MSA, OPTION_NO_MSA,
7361da2c
AB
1721 2, 2, 2, 2,
1722 -1 },
7d64c587
AB
1723
1724 { "xpa", ASE_XPA, 0,
1725 OPTION_XPA, OPTION_NO_XPA,
7361da2c
AB
1726 2, 2, -1, -1,
1727 -1 },
c6278170
RS
1728};
1729
1730/* The set of ASEs that require -mfp64. */
82bda27b 1731#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
c6278170
RS
1732
1733/* Groups of ASE_* flags that represent different revisions of an ASE. */
1734static const unsigned int mips_ase_groups[] = {
8f4f9071 1735 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
c6278170
RS
1736};
1737\f
252b5132
RH
1738/* Pseudo-op table.
1739
1740 The following pseudo-ops from the Kane and Heinrich MIPS book
1741 should be defined here, but are currently unsupported: .alias,
1742 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1743
1744 The following pseudo-ops from the Kane and Heinrich MIPS book are
1745 specific to the type of debugging information being generated, and
1746 should be defined by the object format: .aent, .begin, .bend,
1747 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1748 .vreg.
1749
1750 The following pseudo-ops from the Kane and Heinrich MIPS book are
1751 not MIPS CPU specific, but are also not specific to the object file
1752 format. This file is probably the best place to define them, but
d84bcf09 1753 they are not currently supported: .asm0, .endr, .lab, .struct. */
252b5132 1754
e972090a
NC
1755static const pseudo_typeS mips_pseudo_table[] =
1756{
beae10d5 1757 /* MIPS specific pseudo-ops. */
252b5132
RH
1758 {"option", s_option, 0},
1759 {"set", s_mipsset, 0},
1760 {"rdata", s_change_sec, 'r'},
1761 {"sdata", s_change_sec, 's'},
1762 {"livereg", s_ignore, 0},
1763 {"abicalls", s_abicalls, 0},
1764 {"cpload", s_cpload, 0},
6478892d
TS
1765 {"cpsetup", s_cpsetup, 0},
1766 {"cplocal", s_cplocal, 0},
252b5132 1767 {"cprestore", s_cprestore, 0},
6478892d 1768 {"cpreturn", s_cpreturn, 0},
741d6ea8
JM
1769 {"dtprelword", s_dtprelword, 0},
1770 {"dtpreldword", s_dtpreldword, 0},
d0f13682
CLT
1771 {"tprelword", s_tprelword, 0},
1772 {"tpreldword", s_tpreldword, 0},
6478892d 1773 {"gpvalue", s_gpvalue, 0},
252b5132 1774 {"gpword", s_gpword, 0},
10181a0d 1775 {"gpdword", s_gpdword, 0},
a3f278e2 1776 {"ehword", s_ehword, 0},
252b5132
RH
1777 {"cpadd", s_cpadd, 0},
1778 {"insn", s_insn, 0},
ba92f887 1779 {"nan", s_nan, 0},
919731af 1780 {"module", s_module, 0},
252b5132 1781
beae10d5 1782 /* Relatively generic pseudo-ops that happen to be used on MIPS
252b5132 1783 chips. */
38a57ae7 1784 {"asciiz", stringer, 8 + 1},
252b5132
RH
1785 {"bss", s_change_sec, 'b'},
1786 {"err", s_err, 0},
1787 {"half", s_cons, 1},
1788 {"dword", s_cons, 3},
1789 {"weakext", s_mips_weakext, 0},
7c752c2a
TS
1790 {"origin", s_org, 0},
1791 {"repeat", s_rept, 0},
252b5132 1792
998b3c36
MR
1793 /* For MIPS this is non-standard, but we define it for consistency. */
1794 {"sbss", s_change_sec, 'B'},
1795
beae10d5 1796 /* These pseudo-ops are defined in read.c, but must be overridden
252b5132
RH
1797 here for one reason or another. */
1798 {"align", s_align, 0},
1799 {"byte", s_cons, 0},
1800 {"data", s_change_sec, 'd'},
1801 {"double", s_float_cons, 'd'},
1802 {"float", s_float_cons, 'f'},
1803 {"globl", s_mips_globl, 0},
1804 {"global", s_mips_globl, 0},
1805 {"hword", s_cons, 1},
1806 {"int", s_cons, 2},
1807 {"long", s_cons, 2},
1808 {"octa", s_cons, 4},
1809 {"quad", s_cons, 3},
cca86cc8 1810 {"section", s_change_section, 0},
252b5132
RH
1811 {"short", s_cons, 1},
1812 {"single", s_float_cons, 'f'},
754e2bb9 1813 {"stabd", s_mips_stab, 'd'},
252b5132 1814 {"stabn", s_mips_stab, 'n'},
754e2bb9 1815 {"stabs", s_mips_stab, 's'},
252b5132
RH
1816 {"text", s_change_sec, 't'},
1817 {"word", s_cons, 2},
add56521 1818
add56521 1819 { "extern", ecoff_directive_extern, 0},
add56521 1820
43841e91 1821 { NULL, NULL, 0 },
252b5132
RH
1822};
1823
e972090a
NC
1824static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1825{
beae10d5
KH
1826 /* These pseudo-ops should be defined by the object file format.
1827 However, a.out doesn't support them, so we have versions here. */
252b5132
RH
1828 {"aent", s_mips_ent, 1},
1829 {"bgnb", s_ignore, 0},
1830 {"end", s_mips_end, 0},
1831 {"endb", s_ignore, 0},
1832 {"ent", s_mips_ent, 0},
c5dd6aab 1833 {"file", s_mips_file, 0},
252b5132
RH
1834 {"fmask", s_mips_mask, 'F'},
1835 {"frame", s_mips_frame, 0},
c5dd6aab 1836 {"loc", s_mips_loc, 0},
252b5132
RH
1837 {"mask", s_mips_mask, 'R'},
1838 {"verstamp", s_ignore, 0},
43841e91 1839 { NULL, NULL, 0 },
252b5132
RH
1840};
1841
3ae8dd8d
MR
1842/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1843 purpose of the `.dc.a' internal pseudo-op. */
1844
1845int
1846mips_address_bytes (void)
1847{
919731af 1848 file_mips_check_options ();
3ae8dd8d
MR
1849 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1850}
1851
17a2f251 1852extern void pop_insert (const pseudo_typeS *);
252b5132
RH
1853
1854void
17a2f251 1855mips_pop_insert (void)
252b5132
RH
1856{
1857 pop_insert (mips_pseudo_table);
1858 if (! ECOFF_DEBUGGING)
1859 pop_insert (mips_nonecoff_pseudo_table);
1860}
1861\f
1862/* Symbols labelling the current insn. */
1863
e972090a
NC
1864struct insn_label_list
1865{
252b5132
RH
1866 struct insn_label_list *next;
1867 symbolS *label;
1868};
1869
252b5132 1870static struct insn_label_list *free_insn_labels;
742a56fe 1871#define label_list tc_segment_info_data.labels
252b5132 1872
17a2f251 1873static void mips_clear_insn_labels (void);
df58fc94
RS
1874static void mips_mark_labels (void);
1875static void mips_compressed_mark_labels (void);
252b5132
RH
1876
1877static inline void
17a2f251 1878mips_clear_insn_labels (void)
252b5132 1879{
ed9e98c2 1880 struct insn_label_list **pl;
a8dbcb85 1881 segment_info_type *si;
252b5132 1882
a8dbcb85
TS
1883 if (now_seg)
1884 {
1885 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1886 ;
3739860c 1887
a8dbcb85
TS
1888 si = seg_info (now_seg);
1889 *pl = si->label_list;
1890 si->label_list = NULL;
1891 }
252b5132 1892}
a8dbcb85 1893
df58fc94
RS
1894/* Mark instruction labels in MIPS16/microMIPS mode. */
1895
1896static inline void
1897mips_mark_labels (void)
1898{
1899 if (HAVE_CODE_COMPRESSION)
1900 mips_compressed_mark_labels ();
1901}
252b5132
RH
1902\f
1903static char *expr_end;
1904
e423441d 1905/* An expression in a macro instruction. This is set by mips_ip and
b0e6f033 1906 mips16_ip and when populated is always an O_constant. */
252b5132
RH
1907
1908static expressionS imm_expr;
252b5132 1909
77bd4346
RS
1910/* The relocatable field in an instruction and the relocs associated
1911 with it. These variables are used for instructions like LUI and
1912 JAL as well as true offsets. They are also used for address
1913 operands in macros. */
252b5132 1914
77bd4346 1915static expressionS offset_expr;
f6688943
TS
1916static bfd_reloc_code_real_type offset_reloc[3]
1917 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 1918
df58fc94
RS
1919/* This is set to the resulting size of the instruction to be produced
1920 by mips16_ip if an explicit extension is used or by mips_ip if an
1921 explicit size is supplied. */
252b5132 1922
df58fc94 1923static unsigned int forced_insn_length;
252b5132 1924
e1b47bd5
RS
1925/* True if we are assembling an instruction. All dot symbols defined during
1926 this time should be treated as code labels. */
1927
1928static bfd_boolean mips_assembling_insn;
1929
ecb4347a
DJ
1930/* The pdr segment for per procedure frame/regmask info. Not used for
1931 ECOFF debugging. */
252b5132
RH
1932
1933static segT pdr_seg;
252b5132 1934
e013f690
TS
1935/* The default target format to use. */
1936
aeffff67
RS
1937#if defined (TE_FreeBSD)
1938#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1939#elif defined (TE_TMIPS)
1940#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1941#else
1942#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1943#endif
1944
e013f690 1945const char *
17a2f251 1946mips_target_format (void)
e013f690
TS
1947{
1948 switch (OUTPUT_FLAVOR)
1949 {
e013f690 1950 case bfd_target_elf_flavour:
0a44bf69
RS
1951#ifdef TE_VXWORKS
1952 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1953 return (target_big_endian
1954 ? "elf32-bigmips-vxworks"
1955 : "elf32-littlemips-vxworks");
1956#endif
e013f690 1957 return (target_big_endian
cfe86eaa 1958 ? (HAVE_64BIT_OBJECTS
aeffff67 1959 ? ELF_TARGET ("elf64-", "big")
cfe86eaa 1960 : (HAVE_NEWABI
aeffff67
RS
1961 ? ELF_TARGET ("elf32-n", "big")
1962 : ELF_TARGET ("elf32-", "big")))
cfe86eaa 1963 : (HAVE_64BIT_OBJECTS
aeffff67 1964 ? ELF_TARGET ("elf64-", "little")
cfe86eaa 1965 : (HAVE_NEWABI
aeffff67
RS
1966 ? ELF_TARGET ("elf32-n", "little")
1967 : ELF_TARGET ("elf32-", "little"))));
e013f690
TS
1968 default:
1969 abort ();
1970 return NULL;
1971 }
1972}
1973
c6278170
RS
1974/* Return the ISA revision that is currently in use, or 0 if we are
1975 generating code for MIPS V or below. */
1976
1977static int
1978mips_isa_rev (void)
1979{
1980 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1981 return 2;
1982
ae52f483
AB
1983 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1984 return 3;
1985
1986 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1987 return 5;
1988
7361da2c
AB
1989 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1990 return 6;
1991
c6278170
RS
1992 /* microMIPS implies revision 2 or above. */
1993 if (mips_opts.micromips)
1994 return 2;
1995
1996 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1997 return 1;
1998
1999 return 0;
2000}
2001
2002/* Return the mask of all ASEs that are revisions of those in FLAGS. */
2003
2004static unsigned int
2005mips_ase_mask (unsigned int flags)
2006{
2007 unsigned int i;
2008
2009 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2010 if (flags & mips_ase_groups[i])
2011 flags |= mips_ase_groups[i];
2012 return flags;
2013}
2014
2015/* Check whether the current ISA supports ASE. Issue a warning if
2016 appropriate. */
2017
2018static void
2019mips_check_isa_supports_ase (const struct mips_ase *ase)
2020{
2021 const char *base;
2022 int min_rev, size;
2023 static unsigned int warned_isa;
2024 static unsigned int warned_fp32;
2025
2026 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2027 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2028 else
2029 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2030 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2031 && (warned_isa & ase->flags) != ase->flags)
2032 {
2033 warned_isa |= ase->flags;
2034 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2035 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2036 if (min_rev < 0)
1661c76c 2037 as_warn (_("the %d-bit %s architecture does not support the"
c6278170
RS
2038 " `%s' extension"), size, base, ase->name);
2039 else
1661c76c 2040 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
c6278170
RS
2041 ase->name, base, size, min_rev);
2042 }
7361da2c
AB
2043 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2044 && (warned_isa & ase->flags) != ase->flags)
2045 {
2046 warned_isa |= ase->flags;
2047 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2048 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2049 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2050 ase->name, base, size, ase->rem_rev);
2051 }
2052
c6278170 2053 if ((ase->flags & FP64_ASES)
0b35dfee 2054 && mips_opts.fp != 64
c6278170
RS
2055 && (warned_fp32 & ase->flags) != ase->flags)
2056 {
2057 warned_fp32 |= ase->flags;
1661c76c 2058 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
c6278170
RS
2059 }
2060}
2061
2062/* Check all enabled ASEs to see whether they are supported by the
2063 chosen architecture. */
2064
2065static void
2066mips_check_isa_supports_ases (void)
2067{
2068 unsigned int i, mask;
2069
2070 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2071 {
2072 mask = mips_ase_mask (mips_ases[i].flags);
2073 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2074 mips_check_isa_supports_ase (&mips_ases[i]);
2075 }
2076}
2077
2078/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2079 that were affected. */
2080
2081static unsigned int
919731af 2082mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2083 bfd_boolean enabled_p)
c6278170
RS
2084{
2085 unsigned int mask;
2086
2087 mask = mips_ase_mask (ase->flags);
919731af 2088 opts->ase &= ~mask;
c6278170 2089 if (enabled_p)
919731af 2090 opts->ase |= ase->flags;
c6278170
RS
2091 return mask;
2092}
2093
2094/* Return the ASE called NAME, or null if none. */
2095
2096static const struct mips_ase *
2097mips_lookup_ase (const char *name)
2098{
2099 unsigned int i;
2100
2101 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2102 if (strcmp (name, mips_ases[i].name) == 0)
2103 return &mips_ases[i];
2104 return NULL;
2105}
2106
df58fc94 2107/* Return the length of a microMIPS instruction in bytes. If bits of
100b4f2e
MR
2108 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2109 otherwise it is a 32-bit instruction. */
df58fc94
RS
2110
2111static inline unsigned int
2112micromips_insn_length (const struct mips_opcode *mo)
2113{
7fd53920 2114 return mips_opcode_32bit_p (mo) ? 4 : 2;
df58fc94
RS
2115}
2116
5c04167a
RS
2117/* Return the length of MIPS16 instruction OPCODE. */
2118
2119static inline unsigned int
2120mips16_opcode_length (unsigned long opcode)
2121{
2122 return (opcode >> 16) == 0 ? 2 : 4;
2123}
2124
1e915849
RS
2125/* Return the length of instruction INSN. */
2126
2127static inline unsigned int
2128insn_length (const struct mips_cl_insn *insn)
2129{
df58fc94
RS
2130 if (mips_opts.micromips)
2131 return micromips_insn_length (insn->insn_mo);
2132 else if (mips_opts.mips16)
5c04167a 2133 return mips16_opcode_length (insn->insn_opcode);
df58fc94 2134 else
1e915849 2135 return 4;
1e915849
RS
2136}
2137
2138/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2139
2140static void
2141create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2142{
2143 size_t i;
2144
2145 insn->insn_mo = mo;
1e915849
RS
2146 insn->insn_opcode = mo->match;
2147 insn->frag = NULL;
2148 insn->where = 0;
2149 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2150 insn->fixp[i] = NULL;
2151 insn->fixed_p = (mips_opts.noreorder > 0);
2152 insn->noreorder_p = (mips_opts.noreorder > 0);
2153 insn->mips16_absolute_jump_p = 0;
15be625d 2154 insn->complete_p = 0;
e407c74b 2155 insn->cleared_p = 0;
1e915849
RS
2156}
2157
fc76e730
RS
2158/* Get a list of all the operands in INSN. */
2159
2160static const struct mips_operand_array *
2161insn_operands (const struct mips_cl_insn *insn)
2162{
2163 if (insn->insn_mo >= &mips_opcodes[0]
2164 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2165 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2166
2167 if (insn->insn_mo >= &mips16_opcodes[0]
2168 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2169 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2170
2171 if (insn->insn_mo >= &micromips_opcodes[0]
2172 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2173 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2174
2175 abort ();
2176}
2177
2178/* Get a description of operand OPNO of INSN. */
2179
2180static const struct mips_operand *
2181insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2182{
2183 const struct mips_operand_array *operands;
2184
2185 operands = insn_operands (insn);
2186 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2187 abort ();
2188 return operands->operand[opno];
2189}
2190
e077a1c8
RS
2191/* Install UVAL as the value of OPERAND in INSN. */
2192
2193static inline void
2194insn_insert_operand (struct mips_cl_insn *insn,
2195 const struct mips_operand *operand, unsigned int uval)
2196{
2197 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2198}
2199
fc76e730
RS
2200/* Extract the value of OPERAND from INSN. */
2201
2202static inline unsigned
2203insn_extract_operand (const struct mips_cl_insn *insn,
2204 const struct mips_operand *operand)
2205{
2206 return mips_extract_operand (operand, insn->insn_opcode);
2207}
2208
df58fc94 2209/* Record the current MIPS16/microMIPS mode in now_seg. */
742a56fe
RS
2210
2211static void
df58fc94 2212mips_record_compressed_mode (void)
742a56fe
RS
2213{
2214 segment_info_type *si;
2215
2216 si = seg_info (now_seg);
2217 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2218 si->tc_segment_info_data.mips16 = mips_opts.mips16;
df58fc94
RS
2219 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2220 si->tc_segment_info_data.micromips = mips_opts.micromips;
742a56fe
RS
2221}
2222
4d68580a
RS
2223/* Read a standard MIPS instruction from BUF. */
2224
2225static unsigned long
2226read_insn (char *buf)
2227{
2228 if (target_big_endian)
2229 return bfd_getb32 ((bfd_byte *) buf);
2230 else
2231 return bfd_getl32 ((bfd_byte *) buf);
2232}
2233
2234/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2235 the next byte. */
2236
2237static char *
2238write_insn (char *buf, unsigned int insn)
2239{
2240 md_number_to_chars (buf, insn, 4);
2241 return buf + 4;
2242}
2243
2244/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2245 has length LENGTH. */
2246
2247static unsigned long
2248read_compressed_insn (char *buf, unsigned int length)
2249{
2250 unsigned long insn;
2251 unsigned int i;
2252
2253 insn = 0;
2254 for (i = 0; i < length; i += 2)
2255 {
2256 insn <<= 16;
2257 if (target_big_endian)
2258 insn |= bfd_getb16 ((char *) buf);
2259 else
2260 insn |= bfd_getl16 ((char *) buf);
2261 buf += 2;
2262 }
2263 return insn;
2264}
2265
5c04167a
RS
2266/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2267 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2268
2269static char *
2270write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2271{
2272 unsigned int i;
2273
2274 for (i = 0; i < length; i += 2)
2275 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2276 return buf + length;
2277}
2278
1e915849
RS
2279/* Install INSN at the location specified by its "frag" and "where" fields. */
2280
2281static void
2282install_insn (const struct mips_cl_insn *insn)
2283{
2284 char *f = insn->frag->fr_literal + insn->where;
5c04167a
RS
2285 if (HAVE_CODE_COMPRESSION)
2286 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1e915849 2287 else
4d68580a 2288 write_insn (f, insn->insn_opcode);
df58fc94 2289 mips_record_compressed_mode ();
1e915849
RS
2290}
2291
2292/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2293 and install the opcode in the new location. */
2294
2295static void
2296move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2297{
2298 size_t i;
2299
2300 insn->frag = frag;
2301 insn->where = where;
2302 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2303 if (insn->fixp[i] != NULL)
2304 {
2305 insn->fixp[i]->fx_frag = frag;
2306 insn->fixp[i]->fx_where = where;
2307 }
2308 install_insn (insn);
2309}
2310
2311/* Add INSN to the end of the output. */
2312
2313static void
2314add_fixed_insn (struct mips_cl_insn *insn)
2315{
2316 char *f = frag_more (insn_length (insn));
2317 move_insn (insn, frag_now, f - frag_now->fr_literal);
2318}
2319
2320/* Start a variant frag and move INSN to the start of the variant part,
2321 marking it as fixed. The other arguments are as for frag_var. */
2322
2323static void
2324add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2325 relax_substateT subtype, symbolS *symbol, offsetT offset)
2326{
2327 frag_grow (max_chars);
2328 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2329 insn->fixed_p = 1;
2330 frag_var (rs_machine_dependent, max_chars, var,
2331 subtype, symbol, offset, NULL);
2332}
2333
2334/* Insert N copies of INSN into the history buffer, starting at
2335 position FIRST. Neither FIRST nor N need to be clipped. */
2336
2337static void
2338insert_into_history (unsigned int first, unsigned int n,
2339 const struct mips_cl_insn *insn)
2340{
2341 if (mips_relax.sequence != 2)
2342 {
2343 unsigned int i;
2344
2345 for (i = ARRAY_SIZE (history); i-- > first;)
2346 if (i >= first + n)
2347 history[i] = history[i - n];
2348 else
2349 history[i] = *insn;
2350 }
2351}
2352
e3de51ce
RS
2353/* Clear the error in insn_error. */
2354
2355static void
2356clear_insn_error (void)
2357{
2358 memset (&insn_error, 0, sizeof (insn_error));
2359}
2360
2361/* Possibly record error message MSG for the current instruction.
2362 If the error is about a particular argument, ARGNUM is the 1-based
2363 number of that argument, otherwise it is 0. FORMAT is the format
2364 of MSG. Return true if MSG was used, false if the current message
2365 was kept. */
2366
2367static bfd_boolean
2368set_insn_error_format (int argnum, enum mips_insn_error_format format,
2369 const char *msg)
2370{
2371 if (argnum == 0)
2372 {
2373 /* Give priority to errors against specific arguments, and to
2374 the first whole-instruction message. */
2375 if (insn_error.msg)
2376 return FALSE;
2377 }
2378 else
2379 {
2380 /* Keep insn_error if it is against a later argument. */
2381 if (argnum < insn_error.min_argnum)
2382 return FALSE;
2383
2384 /* If both errors are against the same argument but are different,
2385 give up on reporting a specific error for this argument.
2386 See the comment about mips_insn_error for details. */
2387 if (argnum == insn_error.min_argnum
2388 && insn_error.msg
2389 && strcmp (insn_error.msg, msg) != 0)
2390 {
2391 insn_error.msg = 0;
2392 insn_error.min_argnum += 1;
2393 return FALSE;
2394 }
2395 }
2396 insn_error.min_argnum = argnum;
2397 insn_error.format = format;
2398 insn_error.msg = msg;
2399 return TRUE;
2400}
2401
2402/* Record an instruction error with no % format fields. ARGNUM and MSG are
2403 as for set_insn_error_format. */
2404
2405static void
2406set_insn_error (int argnum, const char *msg)
2407{
2408 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2409}
2410
2411/* Record an instruction error with one %d field I. ARGNUM and MSG are
2412 as for set_insn_error_format. */
2413
2414static void
2415set_insn_error_i (int argnum, const char *msg, int i)
2416{
2417 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2418 insn_error.u.i = i;
2419}
2420
2421/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2422 are as for set_insn_error_format. */
2423
2424static void
2425set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2426{
2427 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2428 {
2429 insn_error.u.ss[0] = s1;
2430 insn_error.u.ss[1] = s2;
2431 }
2432}
2433
2434/* Report the error in insn_error, which is against assembly code STR. */
2435
2436static void
2437report_insn_error (const char *str)
2438{
e1fa0163 2439 const char *msg = concat (insn_error.msg, " `%s'", NULL);
e3de51ce 2440
e3de51ce
RS
2441 switch (insn_error.format)
2442 {
2443 case ERR_FMT_PLAIN:
2444 as_bad (msg, str);
2445 break;
2446
2447 case ERR_FMT_I:
2448 as_bad (msg, insn_error.u.i, str);
2449 break;
2450
2451 case ERR_FMT_SS:
2452 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2453 break;
2454 }
e1fa0163
NC
2455
2456 free ((char *) msg);
e3de51ce
RS
2457}
2458
71400594
RS
2459/* Initialize vr4120_conflicts. There is a bit of duplication here:
2460 the idea is to make it obvious at a glance that each errata is
2461 included. */
2462
2463static void
2464init_vr4120_conflicts (void)
2465{
2466#define CONFLICT(FIRST, SECOND) \
2467 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2468
2469 /* Errata 21 - [D]DIV[U] after [D]MACC */
2470 CONFLICT (MACC, DIV);
2471 CONFLICT (DMACC, DIV);
2472
2473 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2474 CONFLICT (DMULT, DMULT);
2475 CONFLICT (DMULT, DMACC);
2476 CONFLICT (DMACC, DMULT);
2477 CONFLICT (DMACC, DMACC);
2478
2479 /* Errata 24 - MT{LO,HI} after [D]MACC */
2480 CONFLICT (MACC, MTHILO);
2481 CONFLICT (DMACC, MTHILO);
2482
2483 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2484 instruction is executed immediately after a MACC or DMACC
2485 instruction, the result of [either instruction] is incorrect." */
2486 CONFLICT (MACC, MULT);
2487 CONFLICT (MACC, DMULT);
2488 CONFLICT (DMACC, MULT);
2489 CONFLICT (DMACC, DMULT);
2490
2491 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2492 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2493 DDIV or DDIVU instruction, the result of the MACC or
2494 DMACC instruction is incorrect.". */
2495 CONFLICT (DMULT, MACC);
2496 CONFLICT (DMULT, DMACC);
2497 CONFLICT (DIV, MACC);
2498 CONFLICT (DIV, DMACC);
2499
2500#undef CONFLICT
2501}
2502
707bfff6
TS
2503struct regname {
2504 const char *name;
2505 unsigned int num;
2506};
2507
14daeee3 2508#define RNUM_MASK 0x00000ff
56d438b1 2509#define RTYPE_MASK 0x0ffff00
14daeee3
RS
2510#define RTYPE_NUM 0x0000100
2511#define RTYPE_FPU 0x0000200
2512#define RTYPE_FCC 0x0000400
2513#define RTYPE_VEC 0x0000800
2514#define RTYPE_GP 0x0001000
2515#define RTYPE_CP0 0x0002000
2516#define RTYPE_PC 0x0004000
2517#define RTYPE_ACC 0x0008000
2518#define RTYPE_CCC 0x0010000
2519#define RTYPE_VI 0x0020000
2520#define RTYPE_VF 0x0040000
2521#define RTYPE_R5900_I 0x0080000
2522#define RTYPE_R5900_Q 0x0100000
2523#define RTYPE_R5900_R 0x0200000
2524#define RTYPE_R5900_ACC 0x0400000
56d438b1 2525#define RTYPE_MSA 0x0800000
14daeee3 2526#define RWARN 0x8000000
707bfff6
TS
2527
2528#define GENERIC_REGISTER_NUMBERS \
2529 {"$0", RTYPE_NUM | 0}, \
2530 {"$1", RTYPE_NUM | 1}, \
2531 {"$2", RTYPE_NUM | 2}, \
2532 {"$3", RTYPE_NUM | 3}, \
2533 {"$4", RTYPE_NUM | 4}, \
2534 {"$5", RTYPE_NUM | 5}, \
2535 {"$6", RTYPE_NUM | 6}, \
2536 {"$7", RTYPE_NUM | 7}, \
2537 {"$8", RTYPE_NUM | 8}, \
2538 {"$9", RTYPE_NUM | 9}, \
2539 {"$10", RTYPE_NUM | 10}, \
2540 {"$11", RTYPE_NUM | 11}, \
2541 {"$12", RTYPE_NUM | 12}, \
2542 {"$13", RTYPE_NUM | 13}, \
2543 {"$14", RTYPE_NUM | 14}, \
2544 {"$15", RTYPE_NUM | 15}, \
2545 {"$16", RTYPE_NUM | 16}, \
2546 {"$17", RTYPE_NUM | 17}, \
2547 {"$18", RTYPE_NUM | 18}, \
2548 {"$19", RTYPE_NUM | 19}, \
2549 {"$20", RTYPE_NUM | 20}, \
2550 {"$21", RTYPE_NUM | 21}, \
2551 {"$22", RTYPE_NUM | 22}, \
2552 {"$23", RTYPE_NUM | 23}, \
2553 {"$24", RTYPE_NUM | 24}, \
2554 {"$25", RTYPE_NUM | 25}, \
2555 {"$26", RTYPE_NUM | 26}, \
2556 {"$27", RTYPE_NUM | 27}, \
2557 {"$28", RTYPE_NUM | 28}, \
2558 {"$29", RTYPE_NUM | 29}, \
2559 {"$30", RTYPE_NUM | 30}, \
3739860c 2560 {"$31", RTYPE_NUM | 31}
707bfff6
TS
2561
2562#define FPU_REGISTER_NAMES \
2563 {"$f0", RTYPE_FPU | 0}, \
2564 {"$f1", RTYPE_FPU | 1}, \
2565 {"$f2", RTYPE_FPU | 2}, \
2566 {"$f3", RTYPE_FPU | 3}, \
2567 {"$f4", RTYPE_FPU | 4}, \
2568 {"$f5", RTYPE_FPU | 5}, \
2569 {"$f6", RTYPE_FPU | 6}, \
2570 {"$f7", RTYPE_FPU | 7}, \
2571 {"$f8", RTYPE_FPU | 8}, \
2572 {"$f9", RTYPE_FPU | 9}, \
2573 {"$f10", RTYPE_FPU | 10}, \
2574 {"$f11", RTYPE_FPU | 11}, \
2575 {"$f12", RTYPE_FPU | 12}, \
2576 {"$f13", RTYPE_FPU | 13}, \
2577 {"$f14", RTYPE_FPU | 14}, \
2578 {"$f15", RTYPE_FPU | 15}, \
2579 {"$f16", RTYPE_FPU | 16}, \
2580 {"$f17", RTYPE_FPU | 17}, \
2581 {"$f18", RTYPE_FPU | 18}, \
2582 {"$f19", RTYPE_FPU | 19}, \
2583 {"$f20", RTYPE_FPU | 20}, \
2584 {"$f21", RTYPE_FPU | 21}, \
2585 {"$f22", RTYPE_FPU | 22}, \
2586 {"$f23", RTYPE_FPU | 23}, \
2587 {"$f24", RTYPE_FPU | 24}, \
2588 {"$f25", RTYPE_FPU | 25}, \
2589 {"$f26", RTYPE_FPU | 26}, \
2590 {"$f27", RTYPE_FPU | 27}, \
2591 {"$f28", RTYPE_FPU | 28}, \
2592 {"$f29", RTYPE_FPU | 29}, \
2593 {"$f30", RTYPE_FPU | 30}, \
2594 {"$f31", RTYPE_FPU | 31}
2595
2596#define FPU_CONDITION_CODE_NAMES \
2597 {"$fcc0", RTYPE_FCC | 0}, \
2598 {"$fcc1", RTYPE_FCC | 1}, \
2599 {"$fcc2", RTYPE_FCC | 2}, \
2600 {"$fcc3", RTYPE_FCC | 3}, \
2601 {"$fcc4", RTYPE_FCC | 4}, \
2602 {"$fcc5", RTYPE_FCC | 5}, \
2603 {"$fcc6", RTYPE_FCC | 6}, \
2604 {"$fcc7", RTYPE_FCC | 7}
2605
2606#define COPROC_CONDITION_CODE_NAMES \
2607 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2608 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2609 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2610 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2611 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2612 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2613 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2614 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2615
2616#define N32N64_SYMBOLIC_REGISTER_NAMES \
2617 {"$a4", RTYPE_GP | 8}, \
2618 {"$a5", RTYPE_GP | 9}, \
2619 {"$a6", RTYPE_GP | 10}, \
2620 {"$a7", RTYPE_GP | 11}, \
2621 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2622 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2623 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2624 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2625 {"$t0", RTYPE_GP | 12}, \
2626 {"$t1", RTYPE_GP | 13}, \
2627 {"$t2", RTYPE_GP | 14}, \
2628 {"$t3", RTYPE_GP | 15}
2629
2630#define O32_SYMBOLIC_REGISTER_NAMES \
2631 {"$t0", RTYPE_GP | 8}, \
2632 {"$t1", RTYPE_GP | 9}, \
2633 {"$t2", RTYPE_GP | 10}, \
2634 {"$t3", RTYPE_GP | 11}, \
2635 {"$t4", RTYPE_GP | 12}, \
2636 {"$t5", RTYPE_GP | 13}, \
2637 {"$t6", RTYPE_GP | 14}, \
2638 {"$t7", RTYPE_GP | 15}, \
2639 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2640 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2641 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
3739860c 2642 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
707bfff6
TS
2643
2644/* Remaining symbolic register names */
2645#define SYMBOLIC_REGISTER_NAMES \
2646 {"$zero", RTYPE_GP | 0}, \
2647 {"$at", RTYPE_GP | 1}, \
2648 {"$AT", RTYPE_GP | 1}, \
2649 {"$v0", RTYPE_GP | 2}, \
2650 {"$v1", RTYPE_GP | 3}, \
2651 {"$a0", RTYPE_GP | 4}, \
2652 {"$a1", RTYPE_GP | 5}, \
2653 {"$a2", RTYPE_GP | 6}, \
2654 {"$a3", RTYPE_GP | 7}, \
2655 {"$s0", RTYPE_GP | 16}, \
2656 {"$s1", RTYPE_GP | 17}, \
2657 {"$s2", RTYPE_GP | 18}, \
2658 {"$s3", RTYPE_GP | 19}, \
2659 {"$s4", RTYPE_GP | 20}, \
2660 {"$s5", RTYPE_GP | 21}, \
2661 {"$s6", RTYPE_GP | 22}, \
2662 {"$s7", RTYPE_GP | 23}, \
2663 {"$t8", RTYPE_GP | 24}, \
2664 {"$t9", RTYPE_GP | 25}, \
2665 {"$k0", RTYPE_GP | 26}, \
2666 {"$kt0", RTYPE_GP | 26}, \
2667 {"$k1", RTYPE_GP | 27}, \
2668 {"$kt1", RTYPE_GP | 27}, \
2669 {"$gp", RTYPE_GP | 28}, \
2670 {"$sp", RTYPE_GP | 29}, \
2671 {"$s8", RTYPE_GP | 30}, \
2672 {"$fp", RTYPE_GP | 30}, \
2673 {"$ra", RTYPE_GP | 31}
2674
2675#define MIPS16_SPECIAL_REGISTER_NAMES \
2676 {"$pc", RTYPE_PC | 0}
2677
2678#define MDMX_VECTOR_REGISTER_NAMES \
2679 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2680 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2681 {"$v2", RTYPE_VEC | 2}, \
2682 {"$v3", RTYPE_VEC | 3}, \
2683 {"$v4", RTYPE_VEC | 4}, \
2684 {"$v5", RTYPE_VEC | 5}, \
2685 {"$v6", RTYPE_VEC | 6}, \
2686 {"$v7", RTYPE_VEC | 7}, \
2687 {"$v8", RTYPE_VEC | 8}, \
2688 {"$v9", RTYPE_VEC | 9}, \
2689 {"$v10", RTYPE_VEC | 10}, \
2690 {"$v11", RTYPE_VEC | 11}, \
2691 {"$v12", RTYPE_VEC | 12}, \
2692 {"$v13", RTYPE_VEC | 13}, \
2693 {"$v14", RTYPE_VEC | 14}, \
2694 {"$v15", RTYPE_VEC | 15}, \
2695 {"$v16", RTYPE_VEC | 16}, \
2696 {"$v17", RTYPE_VEC | 17}, \
2697 {"$v18", RTYPE_VEC | 18}, \
2698 {"$v19", RTYPE_VEC | 19}, \
2699 {"$v20", RTYPE_VEC | 20}, \
2700 {"$v21", RTYPE_VEC | 21}, \
2701 {"$v22", RTYPE_VEC | 22}, \
2702 {"$v23", RTYPE_VEC | 23}, \
2703 {"$v24", RTYPE_VEC | 24}, \
2704 {"$v25", RTYPE_VEC | 25}, \
2705 {"$v26", RTYPE_VEC | 26}, \
2706 {"$v27", RTYPE_VEC | 27}, \
2707 {"$v28", RTYPE_VEC | 28}, \
2708 {"$v29", RTYPE_VEC | 29}, \
2709 {"$v30", RTYPE_VEC | 30}, \
2710 {"$v31", RTYPE_VEC | 31}
2711
14daeee3
RS
2712#define R5900_I_NAMES \
2713 {"$I", RTYPE_R5900_I | 0}
2714
2715#define R5900_Q_NAMES \
2716 {"$Q", RTYPE_R5900_Q | 0}
2717
2718#define R5900_R_NAMES \
2719 {"$R", RTYPE_R5900_R | 0}
2720
2721#define R5900_ACC_NAMES \
2722 {"$ACC", RTYPE_R5900_ACC | 0 }
2723
707bfff6
TS
2724#define MIPS_DSP_ACCUMULATOR_NAMES \
2725 {"$ac0", RTYPE_ACC | 0}, \
2726 {"$ac1", RTYPE_ACC | 1}, \
2727 {"$ac2", RTYPE_ACC | 2}, \
2728 {"$ac3", RTYPE_ACC | 3}
2729
2730static const struct regname reg_names[] = {
2731 GENERIC_REGISTER_NUMBERS,
2732 FPU_REGISTER_NAMES,
2733 FPU_CONDITION_CODE_NAMES,
2734 COPROC_CONDITION_CODE_NAMES,
2735
2736 /* The $txx registers depends on the abi,
2737 these will be added later into the symbol table from
3739860c 2738 one of the tables below once mips_abi is set after
707bfff6
TS
2739 parsing of arguments from the command line. */
2740 SYMBOLIC_REGISTER_NAMES,
2741
2742 MIPS16_SPECIAL_REGISTER_NAMES,
2743 MDMX_VECTOR_REGISTER_NAMES,
14daeee3
RS
2744 R5900_I_NAMES,
2745 R5900_Q_NAMES,
2746 R5900_R_NAMES,
2747 R5900_ACC_NAMES,
707bfff6
TS
2748 MIPS_DSP_ACCUMULATOR_NAMES,
2749 {0, 0}
2750};
2751
2752static const struct regname reg_names_o32[] = {
2753 O32_SYMBOLIC_REGISTER_NAMES,
2754 {0, 0}
2755};
2756
2757static const struct regname reg_names_n32n64[] = {
2758 N32N64_SYMBOLIC_REGISTER_NAMES,
2759 {0, 0}
2760};
2761
a92713e6
RS
2762/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2763 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2764 of these register symbols, return the associated vector register,
2765 otherwise return SYMVAL itself. */
df58fc94 2766
a92713e6
RS
2767static unsigned int
2768mips_prefer_vec_regno (unsigned int symval)
707bfff6 2769{
a92713e6
RS
2770 if ((symval & -2) == (RTYPE_GP | 2))
2771 return RTYPE_VEC | (symval & 1);
2772 return symval;
2773}
2774
14daeee3
RS
2775/* Return true if string [S, E) is a valid register name, storing its
2776 symbol value in *SYMVAL_PTR if so. */
a92713e6
RS
2777
2778static bfd_boolean
14daeee3 2779mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
a92713e6 2780{
707bfff6 2781 char save_c;
14daeee3 2782 symbolS *symbol;
707bfff6
TS
2783
2784 /* Terminate name. */
2785 save_c = *e;
2786 *e = '\0';
2787
a92713e6
RS
2788 /* Look up the name. */
2789 symbol = symbol_find (s);
2790 *e = save_c;
2791
2792 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2793 return FALSE;
2794
14daeee3
RS
2795 *symval_ptr = S_GET_VALUE (symbol);
2796 return TRUE;
2797}
2798
2799/* Return true if the string at *SPTR is a valid register name. Allow it
2800 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2801 is nonnull.
2802
2803 When returning true, move *SPTR past the register, store the
2804 register's symbol value in *SYMVAL_PTR and the channel mask in
2805 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2806 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2807 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2808
2809static bfd_boolean
2810mips_parse_register (char **sptr, unsigned int *symval_ptr,
2811 unsigned int *channels_ptr)
2812{
2813 char *s, *e, *m;
2814 const char *q;
2815 unsigned int channels, symval, bit;
2816
2817 /* Find end of name. */
2818 s = e = *sptr;
2819 if (is_name_beginner (*e))
2820 ++e;
2821 while (is_part_of_name (*e))
2822 ++e;
2823
2824 channels = 0;
2825 if (!mips_parse_register_1 (s, e, &symval))
2826 {
2827 if (!channels_ptr)
2828 return FALSE;
2829
2830 /* Eat characters from the end of the string that are valid
2831 channel suffixes. The preceding register must be $ACC or
2832 end with a digit, so there is no ambiguity. */
2833 bit = 1;
2834 m = e;
2835 for (q = "wzyx"; *q; q++, bit <<= 1)
2836 if (m > s && m[-1] == *q)
2837 {
2838 --m;
2839 channels |= bit;
2840 }
2841
2842 if (channels == 0
2843 || !mips_parse_register_1 (s, m, &symval)
2844 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2845 return FALSE;
2846 }
2847
a92713e6 2848 *sptr = e;
14daeee3
RS
2849 *symval_ptr = symval;
2850 if (channels_ptr)
2851 *channels_ptr = channels;
a92713e6
RS
2852 return TRUE;
2853}
2854
2855/* Check if SPTR points at a valid register specifier according to TYPES.
2856 If so, then return 1, advance S to consume the specifier and store
2857 the register's number in REGNOP, otherwise return 0. */
2858
2859static int
2860reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2861{
2862 unsigned int regno;
2863
14daeee3 2864 if (mips_parse_register (s, &regno, NULL))
707bfff6 2865 {
a92713e6
RS
2866 if (types & RTYPE_VEC)
2867 regno = mips_prefer_vec_regno (regno);
2868 if (regno & types)
2869 regno &= RNUM_MASK;
2870 else
2871 regno = ~0;
707bfff6 2872 }
a92713e6 2873 else
707bfff6 2874 {
a92713e6 2875 if (types & RWARN)
1661c76c 2876 as_warn (_("unrecognized register name `%s'"), *s);
a92713e6 2877 regno = ~0;
707bfff6 2878 }
707bfff6 2879 if (regnop)
a92713e6
RS
2880 *regnop = regno;
2881 return regno <= RNUM_MASK;
707bfff6
TS
2882}
2883
14daeee3
RS
2884/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2885 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2886
2887static char *
2888mips_parse_vu0_channels (char *s, unsigned int *channels)
2889{
2890 unsigned int i;
2891
2892 *channels = 0;
2893 for (i = 0; i < 4; i++)
2894 if (*s == "xyzw"[i])
2895 {
2896 *channels |= 1 << (3 - i);
2897 ++s;
2898 }
2899 return s;
2900}
2901
a92713e6
RS
2902/* Token types for parsed operand lists. */
2903enum mips_operand_token_type {
2904 /* A plain register, e.g. $f2. */
2905 OT_REG,
df58fc94 2906
14daeee3
RS
2907 /* A 4-bit XYZW channel mask. */
2908 OT_CHANNELS,
2909
56d438b1
CF
2910 /* A constant vector index, e.g. [1]. */
2911 OT_INTEGER_INDEX,
2912
2913 /* A register vector index, e.g. [$2]. */
2914 OT_REG_INDEX,
df58fc94 2915
a92713e6
RS
2916 /* A continuous range of registers, e.g. $s0-$s4. */
2917 OT_REG_RANGE,
2918
2919 /* A (possibly relocated) expression. */
2920 OT_INTEGER,
2921
2922 /* A floating-point value. */
2923 OT_FLOAT,
2924
2925 /* A single character. This can be '(', ')' or ',', but '(' only appears
2926 before OT_REGs. */
2927 OT_CHAR,
2928
14daeee3
RS
2929 /* A doubled character, either "--" or "++". */
2930 OT_DOUBLE_CHAR,
2931
a92713e6
RS
2932 /* The end of the operand list. */
2933 OT_END
2934};
2935
2936/* A parsed operand token. */
2937struct mips_operand_token
2938{
2939 /* The type of token. */
2940 enum mips_operand_token_type type;
2941 union
2942 {
56d438b1 2943 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
a92713e6
RS
2944 unsigned int regno;
2945
14daeee3
RS
2946 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2947 unsigned int channels;
2948
56d438b1
CF
2949 /* The integer value of an OT_INTEGER_INDEX. */
2950 addressT index;
a92713e6
RS
2951
2952 /* The two register symbol values involved in an OT_REG_RANGE. */
2953 struct {
2954 unsigned int regno1;
2955 unsigned int regno2;
2956 } reg_range;
2957
2958 /* The value of an OT_INTEGER. The value is represented as an
2959 expression and the relocation operators that were applied to
2960 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2961 relocation operators were used. */
2962 struct {
2963 expressionS value;
2964 bfd_reloc_code_real_type relocs[3];
2965 } integer;
2966
2967 /* The binary data for an OT_FLOAT constant, and the number of bytes
2968 in the constant. */
2969 struct {
2970 unsigned char data[8];
2971 int length;
2972 } flt;
2973
14daeee3 2974 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
a92713e6
RS
2975 char ch;
2976 } u;
2977};
2978
2979/* An obstack used to construct lists of mips_operand_tokens. */
2980static struct obstack mips_operand_tokens;
2981
2982/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2983
2984static void
2985mips_add_token (struct mips_operand_token *token,
2986 enum mips_operand_token_type type)
2987{
2988 token->type = type;
2989 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2990}
2991
2992/* Check whether S is '(' followed by a register name. Add OT_CHAR
2993 and OT_REG tokens for them if so, and return a pointer to the first
2994 unconsumed character. Return null otherwise. */
2995
2996static char *
2997mips_parse_base_start (char *s)
2998{
2999 struct mips_operand_token token;
14daeee3
RS
3000 unsigned int regno, channels;
3001 bfd_boolean decrement_p;
df58fc94 3002
a92713e6
RS
3003 if (*s != '(')
3004 return 0;
3005
3006 ++s;
3007 SKIP_SPACE_TABS (s);
14daeee3
RS
3008
3009 /* Only match "--" as part of a base expression. In other contexts "--X"
3010 is a double negative. */
3011 decrement_p = (s[0] == '-' && s[1] == '-');
3012 if (decrement_p)
3013 {
3014 s += 2;
3015 SKIP_SPACE_TABS (s);
3016 }
3017
3018 /* Allow a channel specifier because that leads to better error messages
3019 than treating something like "$vf0x++" as an expression. */
3020 if (!mips_parse_register (&s, &regno, &channels))
a92713e6
RS
3021 return 0;
3022
3023 token.u.ch = '(';
3024 mips_add_token (&token, OT_CHAR);
3025
14daeee3
RS
3026 if (decrement_p)
3027 {
3028 token.u.ch = '-';
3029 mips_add_token (&token, OT_DOUBLE_CHAR);
3030 }
3031
a92713e6
RS
3032 token.u.regno = regno;
3033 mips_add_token (&token, OT_REG);
3034
14daeee3
RS
3035 if (channels)
3036 {
3037 token.u.channels = channels;
3038 mips_add_token (&token, OT_CHANNELS);
3039 }
3040
3041 /* For consistency, only match "++" as part of base expressions too. */
3042 SKIP_SPACE_TABS (s);
3043 if (s[0] == '+' && s[1] == '+')
3044 {
3045 s += 2;
3046 token.u.ch = '+';
3047 mips_add_token (&token, OT_DOUBLE_CHAR);
3048 }
3049
a92713e6
RS
3050 return s;
3051}
3052
3053/* Parse one or more tokens from S. Return a pointer to the first
3054 unconsumed character on success. Return null if an error was found
3055 and store the error text in insn_error. FLOAT_FORMAT is as for
3056 mips_parse_arguments. */
3057
3058static char *
3059mips_parse_argument_token (char *s, char float_format)
3060{
6d4af3c2
AM
3061 char *end, *save_in;
3062 const char *err;
14daeee3 3063 unsigned int regno1, regno2, channels;
a92713e6
RS
3064 struct mips_operand_token token;
3065
3066 /* First look for "($reg", since we want to treat that as an
3067 OT_CHAR and OT_REG rather than an expression. */
3068 end = mips_parse_base_start (s);
3069 if (end)
3070 return end;
3071
3072 /* Handle other characters that end up as OT_CHARs. */
3073 if (*s == ')' || *s == ',')
3074 {
3075 token.u.ch = *s;
3076 mips_add_token (&token, OT_CHAR);
3077 ++s;
3078 return s;
3079 }
3080
3081 /* Handle tokens that start with a register. */
14daeee3 3082 if (mips_parse_register (&s, &regno1, &channels))
df58fc94 3083 {
14daeee3
RS
3084 if (channels)
3085 {
3086 /* A register and a VU0 channel suffix. */
3087 token.u.regno = regno1;
3088 mips_add_token (&token, OT_REG);
3089
3090 token.u.channels = channels;
3091 mips_add_token (&token, OT_CHANNELS);
3092 return s;
3093 }
3094
a92713e6
RS
3095 SKIP_SPACE_TABS (s);
3096 if (*s == '-')
df58fc94 3097 {
a92713e6
RS
3098 /* A register range. */
3099 ++s;
3100 SKIP_SPACE_TABS (s);
14daeee3 3101 if (!mips_parse_register (&s, &regno2, NULL))
a92713e6 3102 {
1661c76c 3103 set_insn_error (0, _("invalid register range"));
a92713e6
RS
3104 return 0;
3105 }
df58fc94 3106
a92713e6
RS
3107 token.u.reg_range.regno1 = regno1;
3108 token.u.reg_range.regno2 = regno2;
3109 mips_add_token (&token, OT_REG_RANGE);
3110 return s;
3111 }
a92713e6 3112
56d438b1
CF
3113 /* Add the register itself. */
3114 token.u.regno = regno1;
3115 mips_add_token (&token, OT_REG);
3116
3117 /* Check for a vector index. */
3118 if (*s == '[')
3119 {
a92713e6
RS
3120 ++s;
3121 SKIP_SPACE_TABS (s);
56d438b1
CF
3122 if (mips_parse_register (&s, &token.u.regno, NULL))
3123 mips_add_token (&token, OT_REG_INDEX);
3124 else
a92713e6 3125 {
56d438b1
CF
3126 expressionS element;
3127
3128 my_getExpression (&element, s);
3129 if (element.X_op != O_constant)
3130 {
3131 set_insn_error (0, _("vector element must be constant"));
3132 return 0;
3133 }
3134 s = expr_end;
3135 token.u.index = element.X_add_number;
3136 mips_add_token (&token, OT_INTEGER_INDEX);
a92713e6 3137 }
a92713e6
RS
3138 SKIP_SPACE_TABS (s);
3139 if (*s != ']')
3140 {
1661c76c 3141 set_insn_error (0, _("missing `]'"));
a92713e6
RS
3142 return 0;
3143 }
3144 ++s;
df58fc94 3145 }
a92713e6 3146 return s;
df58fc94
RS
3147 }
3148
a92713e6
RS
3149 if (float_format)
3150 {
3151 /* First try to treat expressions as floats. */
3152 save_in = input_line_pointer;
3153 input_line_pointer = s;
3154 err = md_atof (float_format, (char *) token.u.flt.data,
3155 &token.u.flt.length);
3156 end = input_line_pointer;
3157 input_line_pointer = save_in;
3158 if (err && *err)
3159 {
e3de51ce 3160 set_insn_error (0, err);
a92713e6
RS
3161 return 0;
3162 }
3163 if (s != end)
3164 {
3165 mips_add_token (&token, OT_FLOAT);
3166 return end;
3167 }
3168 }
3169
3170 /* Treat everything else as an integer expression. */
3171 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3172 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3173 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3174 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3175 s = expr_end;
3176 mips_add_token (&token, OT_INTEGER);
3177 return s;
3178}
3179
3180/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3181 if expressions should be treated as 32-bit floating-point constants,
3182 'd' if they should be treated as 64-bit floating-point constants,
3183 or 0 if they should be treated as integer expressions (the usual case).
3184
3185 Return a list of tokens on success, otherwise return 0. The caller
3186 must obstack_free the list after use. */
3187
3188static struct mips_operand_token *
3189mips_parse_arguments (char *s, char float_format)
3190{
3191 struct mips_operand_token token;
3192
3193 SKIP_SPACE_TABS (s);
3194 while (*s)
3195 {
3196 s = mips_parse_argument_token (s, float_format);
3197 if (!s)
3198 {
3199 obstack_free (&mips_operand_tokens,
3200 obstack_finish (&mips_operand_tokens));
3201 return 0;
3202 }
3203 SKIP_SPACE_TABS (s);
3204 }
3205 mips_add_token (&token, OT_END);
3206 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
df58fc94
RS
3207}
3208
d301a56b
RS
3209/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3210 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
037b32b9
AN
3211
3212static bfd_boolean
f79e2745 3213is_opcode_valid (const struct mips_opcode *mo)
037b32b9
AN
3214{
3215 int isa = mips_opts.isa;
846ef2d0 3216 int ase = mips_opts.ase;
037b32b9 3217 int fp_s, fp_d;
c6278170 3218 unsigned int i;
037b32b9 3219
be0fcbee 3220 if (ISA_HAS_64BIT_REGS (isa))
c6278170
RS
3221 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3222 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3223 ase |= mips_ases[i].flags64;
037b32b9 3224
d301a56b 3225 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
037b32b9
AN
3226 return FALSE;
3227
3228 /* Check whether the instruction or macro requires single-precision or
3229 double-precision floating-point support. Note that this information is
3230 stored differently in the opcode table for insns and macros. */
3231 if (mo->pinfo == INSN_MACRO)
3232 {
3233 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3234 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3235 }
3236 else
3237 {
3238 fp_s = mo->pinfo & FP_S;
3239 fp_d = mo->pinfo & FP_D;
3240 }
3241
3242 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3243 return FALSE;
3244
3245 if (fp_s && mips_opts.soft_float)
3246 return FALSE;
3247
3248 return TRUE;
3249}
3250
3251/* Return TRUE if the MIPS16 opcode MO is valid on the currently
3252 selected ISA and architecture. */
3253
3254static bfd_boolean
3255is_opcode_valid_16 (const struct mips_opcode *mo)
3256{
d301a56b 3257 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
037b32b9
AN
3258}
3259
df58fc94 3260/* Return TRUE if the size of the microMIPS opcode MO matches one
7fd53920
MR
3261 explicitly requested. Always TRUE in the standard MIPS mode.
3262 Use is_size_valid_16 for MIPS16 opcodes. */
df58fc94
RS
3263
3264static bfd_boolean
3265is_size_valid (const struct mips_opcode *mo)
3266{
3267 if (!mips_opts.micromips)
3268 return TRUE;
3269
833794fc
MR
3270 if (mips_opts.insn32)
3271 {
3272 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3273 return FALSE;
3274 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3275 return FALSE;
3276 }
df58fc94
RS
3277 if (!forced_insn_length)
3278 return TRUE;
3279 if (mo->pinfo == INSN_MACRO)
3280 return FALSE;
3281 return forced_insn_length == micromips_insn_length (mo);
3282}
3283
7fd53920
MR
3284/* Return TRUE if the size of the MIPS16 opcode MO matches one
3285 explicitly requested. */
3286
3287static bfd_boolean
3288is_size_valid_16 (const struct mips_opcode *mo)
3289{
3290 if (!forced_insn_length)
3291 return TRUE;
3292 if (mo->pinfo == INSN_MACRO)
3293 return FALSE;
3294 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3295 return FALSE;
0674ee5d
MR
3296 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3297 return FALSE;
7fd53920
MR
3298 return TRUE;
3299}
3300
df58fc94 3301/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
e64af278
MR
3302 of the preceding instruction. Always TRUE in the standard MIPS mode.
3303
3304 We don't accept macros in 16-bit delay slots to avoid a case where
3305 a macro expansion fails because it relies on a preceding 32-bit real
3306 instruction to have matched and does not handle the operands correctly.
3307 The only macros that may expand to 16-bit instructions are JAL that
3308 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3309 and BGT (that likewise cannot be placed in a delay slot) that decay to
3310 a NOP. In all these cases the macros precede any corresponding real
3311 instruction definitions in the opcode table, so they will match in the
3312 second pass where the size of the delay slot is ignored and therefore
3313 produce correct code. */
df58fc94
RS
3314
3315static bfd_boolean
3316is_delay_slot_valid (const struct mips_opcode *mo)
3317{
3318 if (!mips_opts.micromips)
3319 return TRUE;
3320
3321 if (mo->pinfo == INSN_MACRO)
c06dec14 3322 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
df58fc94
RS
3323 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3324 && micromips_insn_length (mo) != 4)
3325 return FALSE;
3326 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3327 && micromips_insn_length (mo) != 2)
3328 return FALSE;
3329
3330 return TRUE;
3331}
3332
fc76e730
RS
3333/* For consistency checking, verify that all bits of OPCODE are specified
3334 either by the match/mask part of the instruction definition, or by the
3335 operand list. Also build up a list of operands in OPERANDS.
3336
3337 INSN_BITS says which bits of the instruction are significant.
3338 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3339 provides the mips_operand description of each operand. DECODE_OPERAND
3340 is null for MIPS16 instructions. */
ab902481
RS
3341
3342static int
3343validate_mips_insn (const struct mips_opcode *opcode,
3344 unsigned long insn_bits,
fc76e730
RS
3345 const struct mips_operand *(*decode_operand) (const char *),
3346 struct mips_operand_array *operands)
ab902481
RS
3347{
3348 const char *s;
fc76e730 3349 unsigned long used_bits, doubled, undefined, opno, mask;
ab902481
RS
3350 const struct mips_operand *operand;
3351
fc76e730
RS
3352 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3353 if ((mask & opcode->match) != opcode->match)
ab902481
RS
3354 {
3355 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3356 opcode->name, opcode->args);
3357 return 0;
3358 }
3359 used_bits = 0;
fc76e730 3360 opno = 0;
14daeee3
RS
3361 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3362 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
ab902481
RS
3363 for (s = opcode->args; *s; ++s)
3364 switch (*s)
3365 {
3366 case ',':
3367 case '(':
3368 case ')':
3369 break;
3370
14daeee3
RS
3371 case '#':
3372 s++;
3373 break;
3374
ab902481 3375 default:
fc76e730 3376 if (!decode_operand)
7fd53920 3377 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
fc76e730
RS
3378 else
3379 operand = decode_operand (s);
3380 if (!operand && opcode->pinfo != INSN_MACRO)
ab902481
RS
3381 {
3382 as_bad (_("internal: unknown operand type: %s %s"),
3383 opcode->name, opcode->args);
3384 return 0;
3385 }
fc76e730
RS
3386 gas_assert (opno < MAX_OPERANDS);
3387 operands->operand[opno] = operand;
14daeee3 3388 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
fc76e730 3389 {
14daeee3 3390 used_bits = mips_insert_operand (operand, used_bits, -1);
fc76e730
RS
3391 if (operand->type == OP_MDMX_IMM_REG)
3392 /* Bit 5 is the format selector (OB vs QH). The opcode table
3393 has separate entries for each format. */
3394 used_bits &= ~(1 << (operand->lsb + 5));
3395 if (operand->type == OP_ENTRY_EXIT_LIST)
3396 used_bits &= ~(mask & 0x700);
3397 }
ab902481 3398 /* Skip prefix characters. */
7361da2c 3399 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
ab902481 3400 ++s;
fc76e730 3401 opno += 1;
ab902481
RS
3402 break;
3403 }
fc76e730 3404 doubled = used_bits & mask & insn_bits;
ab902481
RS
3405 if (doubled)
3406 {
3407 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3408 " %s %s"), doubled, opcode->name, opcode->args);
3409 return 0;
3410 }
fc76e730 3411 used_bits |= mask;
ab902481 3412 undefined = ~used_bits & insn_bits;
fc76e730 3413 if (opcode->pinfo != INSN_MACRO && undefined)
ab902481
RS
3414 {
3415 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3416 undefined, opcode->name, opcode->args);
3417 return 0;
3418 }
3419 used_bits &= ~insn_bits;
3420 if (used_bits)
3421 {
3422 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3423 used_bits, opcode->name, opcode->args);
3424 return 0;
3425 }
3426 return 1;
3427}
3428
fc76e730
RS
3429/* The MIPS16 version of validate_mips_insn. */
3430
3431static int
3432validate_mips16_insn (const struct mips_opcode *opcode,
3433 struct mips_operand_array *operands)
3434{
7fd53920 3435 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
fc76e730 3436
7fd53920 3437 return validate_mips_insn (opcode, insn_bits, 0, operands);
fc76e730
RS
3438}
3439
ab902481
RS
3440/* The microMIPS version of validate_mips_insn. */
3441
3442static int
fc76e730
RS
3443validate_micromips_insn (const struct mips_opcode *opc,
3444 struct mips_operand_array *operands)
ab902481
RS
3445{
3446 unsigned long insn_bits;
3447 unsigned long major;
3448 unsigned int length;
3449
fc76e730
RS
3450 if (opc->pinfo == INSN_MACRO)
3451 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3452 operands);
3453
ab902481
RS
3454 length = micromips_insn_length (opc);
3455 if (length != 2 && length != 4)
3456 {
1661c76c 3457 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
ab902481
RS
3458 "%s %s"), length, opc->name, opc->args);
3459 return 0;
3460 }
3461 major = opc->match >> (10 + 8 * (length - 2));
3462 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3463 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3464 {
1661c76c 3465 as_bad (_("internal error: bad microMIPS opcode "
ab902481
RS
3466 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3467 return 0;
3468 }
3469
3470 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3471 insn_bits = 1 << 4 * length;
3472 insn_bits <<= 4 * length;
3473 insn_bits -= 1;
fc76e730
RS
3474 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3475 operands);
ab902481
RS
3476}
3477
707bfff6
TS
3478/* This function is called once, at assembler startup time. It should set up
3479 all the tables, etc. that the MD part of the assembler will need. */
156c2f8b 3480
252b5132 3481void
17a2f251 3482md_begin (void)
252b5132 3483{
3994f87e 3484 const char *retval = NULL;
156c2f8b 3485 int i = 0;
252b5132 3486 int broken = 0;
1f25f5d3 3487
0a44bf69
RS
3488 if (mips_pic != NO_PIC)
3489 {
3490 if (g_switch_seen && g_switch_value != 0)
3491 as_bad (_("-G may not be used in position-independent code"));
3492 g_switch_value = 0;
3493 }
00acd688
CM
3494 else if (mips_abicalls)
3495 {
3496 if (g_switch_seen && g_switch_value != 0)
3497 as_bad (_("-G may not be used with abicalls"));
3498 g_switch_value = 0;
3499 }
0a44bf69 3500
0b35dfee 3501 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
1661c76c 3502 as_warn (_("could not set architecture and machine"));
252b5132 3503
252b5132
RH
3504 op_hash = hash_new ();
3505
fc76e730 3506 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
252b5132
RH
3507 for (i = 0; i < NUMOPCODES;)
3508 {
3509 const char *name = mips_opcodes[i].name;
3510
17a2f251 3511 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
252b5132
RH
3512 if (retval != NULL)
3513 {
3514 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3515 mips_opcodes[i].name, retval);
3516 /* Probably a memory allocation problem? Give up now. */
1661c76c 3517 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3518 }
3519 do
3520 {
fc76e730
RS
3521 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3522 decode_mips_operand, &mips_operands[i]))
3523 broken = 1;
3524 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
252b5132 3525 {
fc76e730
RS
3526 create_insn (&nop_insn, mips_opcodes + i);
3527 if (mips_fix_loongson2f_nop)
3528 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3529 nop_insn.fixed_p = 1;
252b5132
RH
3530 }
3531 ++i;
3532 }
3533 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3534 }
3535
3536 mips16_op_hash = hash_new ();
fc76e730
RS
3537 mips16_operands = XCNEWVEC (struct mips_operand_array,
3538 bfd_mips16_num_opcodes);
252b5132
RH
3539
3540 i = 0;
3541 while (i < bfd_mips16_num_opcodes)
3542 {
3543 const char *name = mips16_opcodes[i].name;
3544
17a2f251 3545 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
252b5132
RH
3546 if (retval != NULL)
3547 as_fatal (_("internal: can't hash `%s': %s"),
3548 mips16_opcodes[i].name, retval);
3549 do
3550 {
fc76e730
RS
3551 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3552 broken = 1;
1e915849
RS
3553 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3554 {
3555 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3556 mips16_nop_insn.fixed_p = 1;
3557 }
252b5132
RH
3558 ++i;
3559 }
3560 while (i < bfd_mips16_num_opcodes
3561 && strcmp (mips16_opcodes[i].name, name) == 0);
3562 }
3563
df58fc94 3564 micromips_op_hash = hash_new ();
fc76e730
RS
3565 micromips_operands = XCNEWVEC (struct mips_operand_array,
3566 bfd_micromips_num_opcodes);
df58fc94
RS
3567
3568 i = 0;
3569 while (i < bfd_micromips_num_opcodes)
3570 {
3571 const char *name = micromips_opcodes[i].name;
3572
3573 retval = hash_insert (micromips_op_hash, name,
3574 (void *) &micromips_opcodes[i]);
3575 if (retval != NULL)
3576 as_fatal (_("internal: can't hash `%s': %s"),
3577 micromips_opcodes[i].name, retval);
3578 do
fc76e730
RS
3579 {
3580 struct mips_cl_insn *micromips_nop_insn;
3581
3582 if (!validate_micromips_insn (&micromips_opcodes[i],
3583 &micromips_operands[i]))
3584 broken = 1;
3585
3586 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3587 {
3588 if (micromips_insn_length (micromips_opcodes + i) == 2)
3589 micromips_nop_insn = &micromips_nop16_insn;
3590 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3591 micromips_nop_insn = &micromips_nop32_insn;
3592 else
3593 continue;
3594
3595 if (micromips_nop_insn->insn_mo == NULL
3596 && strcmp (name, "nop") == 0)
3597 {
3598 create_insn (micromips_nop_insn, micromips_opcodes + i);
3599 micromips_nop_insn->fixed_p = 1;
3600 }
3601 }
3602 }
df58fc94
RS
3603 while (++i < bfd_micromips_num_opcodes
3604 && strcmp (micromips_opcodes[i].name, name) == 0);
3605 }
3606
252b5132 3607 if (broken)
1661c76c 3608 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3609
3610 /* We add all the general register names to the symbol table. This
3611 helps us detect invalid uses of them. */
3739860c 3612 for (i = 0; reg_names[i].name; i++)
707bfff6 3613 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
8fc4ee9b 3614 reg_names[i].num, /* & RNUM_MASK, */
707bfff6
TS
3615 &zero_address_frag));
3616 if (HAVE_NEWABI)
3739860c 3617 for (i = 0; reg_names_n32n64[i].name; i++)
707bfff6 3618 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
8fc4ee9b 3619 reg_names_n32n64[i].num, /* & RNUM_MASK, */
252b5132 3620 &zero_address_frag));
707bfff6 3621 else
3739860c 3622 for (i = 0; reg_names_o32[i].name; i++)
707bfff6 3623 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
8fc4ee9b 3624 reg_names_o32[i].num, /* & RNUM_MASK, */
6047c971 3625 &zero_address_frag));
6047c971 3626
14daeee3
RS
3627 for (i = 0; i < 32; i++)
3628 {
92fce9bd 3629 char regname[6];
14daeee3
RS
3630
3631 /* R5900 VU0 floating-point register. */
92fce9bd 3632 sprintf (regname, "$vf%d", i);
14daeee3
RS
3633 symbol_table_insert (symbol_new (regname, reg_section,
3634 RTYPE_VF | i, &zero_address_frag));
3635
3636 /* R5900 VU0 integer register. */
92fce9bd 3637 sprintf (regname, "$vi%d", i);
14daeee3
RS
3638 symbol_table_insert (symbol_new (regname, reg_section,
3639 RTYPE_VI | i, &zero_address_frag));
3640
56d438b1 3641 /* MSA register. */
92fce9bd 3642 sprintf (regname, "$w%d", i);
56d438b1
CF
3643 symbol_table_insert (symbol_new (regname, reg_section,
3644 RTYPE_MSA | i, &zero_address_frag));
14daeee3
RS
3645 }
3646
a92713e6
RS
3647 obstack_init (&mips_operand_tokens);
3648
7d10b47d 3649 mips_no_prev_insn ();
252b5132
RH
3650
3651 mips_gprmask = 0;
3652 mips_cprmask[0] = 0;
3653 mips_cprmask[1] = 0;
3654 mips_cprmask[2] = 0;
3655 mips_cprmask[3] = 0;
3656
3657 /* set the default alignment for the text section (2**2) */
3658 record_alignment (text_section, 2);
3659
4d0d148d 3660 bfd_set_gp_size (stdoutput, g_switch_value);
252b5132 3661
f3ded42a
RS
3662 /* On a native system other than VxWorks, sections must be aligned
3663 to 16 byte boundaries. When configured for an embedded ELF
3664 target, we don't bother. */
3665 if (strncmp (TARGET_OS, "elf", 3) != 0
3666 && strncmp (TARGET_OS, "vxworks", 7) != 0)
252b5132 3667 {
f3ded42a
RS
3668 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3669 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3670 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3671 }
252b5132 3672
f3ded42a
RS
3673 /* Create a .reginfo section for register masks and a .mdebug
3674 section for debugging information. */
3675 {
3676 segT seg;
3677 subsegT subseg;
3678 flagword flags;
3679 segT sec;
3680
3681 seg = now_seg;
3682 subseg = now_subseg;
3683
3684 /* The ABI says this section should be loaded so that the
3685 running program can access it. However, we don't load it
3686 if we are configured for an embedded target */
3687 flags = SEC_READONLY | SEC_DATA;
3688 if (strncmp (TARGET_OS, "elf", 3) != 0)
3689 flags |= SEC_ALLOC | SEC_LOAD;
3690
3691 if (mips_abi != N64_ABI)
252b5132 3692 {
f3ded42a 3693 sec = subseg_new (".reginfo", (subsegT) 0);
bdaaa2e1 3694
f3ded42a
RS
3695 bfd_set_section_flags (stdoutput, sec, flags);
3696 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
252b5132 3697
f3ded42a
RS
3698 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3699 }
3700 else
3701 {
3702 /* The 64-bit ABI uses a .MIPS.options section rather than
3703 .reginfo section. */
3704 sec = subseg_new (".MIPS.options", (subsegT) 0);
3705 bfd_set_section_flags (stdoutput, sec, flags);
3706 bfd_set_section_alignment (stdoutput, sec, 3);
252b5132 3707
f3ded42a
RS
3708 /* Set up the option header. */
3709 {
3710 Elf_Internal_Options opthdr;
3711 char *f;
3712
3713 opthdr.kind = ODK_REGINFO;
3714 opthdr.size = (sizeof (Elf_External_Options)
3715 + sizeof (Elf64_External_RegInfo));
3716 opthdr.section = 0;
3717 opthdr.info = 0;
3718 f = frag_more (sizeof (Elf_External_Options));
3719 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3720 (Elf_External_Options *) f);
3721
3722 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3723 }
3724 }
252b5132 3725
351cdf24
MF
3726 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3727 bfd_set_section_flags (stdoutput, sec,
3728 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3729 bfd_set_section_alignment (stdoutput, sec, 3);
3730 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3731
f3ded42a
RS
3732 if (ECOFF_DEBUGGING)
3733 {
3734 sec = subseg_new (".mdebug", (subsegT) 0);
3735 (void) bfd_set_section_flags (stdoutput, sec,
3736 SEC_HAS_CONTENTS | SEC_READONLY);
3737 (void) bfd_set_section_alignment (stdoutput, sec, 2);
252b5132 3738 }
f3ded42a
RS
3739 else if (mips_flag_pdr)
3740 {
3741 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3742 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3743 SEC_READONLY | SEC_RELOC
3744 | SEC_DEBUGGING);
3745 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3746 }
3747
3748 subseg_set (seg, subseg);
3749 }
252b5132 3750
71400594
RS
3751 if (mips_fix_vr4120)
3752 init_vr4120_conflicts ();
252b5132
RH
3753}
3754
351cdf24
MF
3755static inline void
3756fpabi_incompatible_with (int fpabi, const char *what)
3757{
3758 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3759 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3760}
3761
3762static inline void
3763fpabi_requires (int fpabi, const char *what)
3764{
3765 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3766 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3767}
3768
3769/* Check -mabi and register sizes against the specified FP ABI. */
3770static void
3771check_fpabi (int fpabi)
3772{
351cdf24
MF
3773 switch (fpabi)
3774 {
3775 case Val_GNU_MIPS_ABI_FP_DOUBLE:
ea79f94a
MF
3776 if (file_mips_opts.soft_float)
3777 fpabi_incompatible_with (fpabi, "softfloat");
3778 else if (file_mips_opts.single_float)
3779 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3780 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3781 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3782 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3783 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
351cdf24
MF
3784 break;
3785
3786 case Val_GNU_MIPS_ABI_FP_XX:
3787 if (mips_abi != O32_ABI)
3788 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3789 else if (file_mips_opts.soft_float)
3790 fpabi_incompatible_with (fpabi, "softfloat");
3791 else if (file_mips_opts.single_float)
3792 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3793 else if (file_mips_opts.fp != 0)
3794 fpabi_requires (fpabi, "fp=xx");
351cdf24
MF
3795 break;
3796
3797 case Val_GNU_MIPS_ABI_FP_64A:
3798 case Val_GNU_MIPS_ABI_FP_64:
3799 if (mips_abi != O32_ABI)
3800 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3801 else if (file_mips_opts.soft_float)
3802 fpabi_incompatible_with (fpabi, "softfloat");
3803 else if (file_mips_opts.single_float)
3804 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3805 else if (file_mips_opts.fp != 64)
3806 fpabi_requires (fpabi, "fp=64");
3807 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3808 fpabi_incompatible_with (fpabi, "nooddspreg");
3809 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3810 fpabi_requires (fpabi, "nooddspreg");
351cdf24
MF
3811 break;
3812
3813 case Val_GNU_MIPS_ABI_FP_SINGLE:
3814 if (file_mips_opts.soft_float)
3815 fpabi_incompatible_with (fpabi, "softfloat");
3816 else if (!file_mips_opts.single_float)
3817 fpabi_requires (fpabi, "singlefloat");
3818 break;
3819
3820 case Val_GNU_MIPS_ABI_FP_SOFT:
3821 if (!file_mips_opts.soft_float)
3822 fpabi_requires (fpabi, "softfloat");
3823 break;
3824
3825 case Val_GNU_MIPS_ABI_FP_OLD_64:
3826 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3827 Tag_GNU_MIPS_ABI_FP, fpabi);
3828 break;
3829
3350cc01
CM
3830 case Val_GNU_MIPS_ABI_FP_NAN2008:
3831 /* Silently ignore compatibility value. */
3832 break;
3833
351cdf24
MF
3834 default:
3835 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3836 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3837 break;
3838 }
351cdf24
MF
3839}
3840
919731af 3841/* Perform consistency checks on the current options. */
3842
3843static void
3844mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3845{
3846 /* Check the size of integer registers agrees with the ABI and ISA. */
3847 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3848 as_bad (_("`gp=64' used with a 32-bit processor"));
3849 else if (abi_checks
3850 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3851 as_bad (_("`gp=32' used with a 64-bit ABI"));
3852 else if (abi_checks
3853 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3854 as_bad (_("`gp=64' used with a 32-bit ABI"));
3855
3856 /* Check the size of the float registers agrees with the ABI and ISA. */
3857 switch (opts->fp)
3858 {
351cdf24
MF
3859 case 0:
3860 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3861 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3862 else if (opts->single_float == 1)
3863 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3864 break;
919731af 3865 case 64:
3866 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3867 as_bad (_("`fp=64' used with a 32-bit fpu"));
3868 else if (abi_checks
3869 && ABI_NEEDS_32BIT_REGS (mips_abi)
3870 && !ISA_HAS_MXHC1 (opts->isa))
3871 as_warn (_("`fp=64' used with a 32-bit ABI"));
3872 break;
3873 case 32:
3874 if (abi_checks
3875 && ABI_NEEDS_64BIT_REGS (mips_abi))
3876 as_warn (_("`fp=32' used with a 64-bit ABI"));
5f4678bb 3877 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
7361da2c 3878 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
919731af 3879 break;
3880 default:
3881 as_bad (_("Unknown size of floating point registers"));
3882 break;
3883 }
3884
351cdf24
MF
3885 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3886 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3887
919731af 3888 if (opts->micromips == 1 && opts->mips16 == 1)
1357373c 3889 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
5f4678bb 3890 else if (ISA_IS_R6 (opts->isa)
7361da2c
AB
3891 && (opts->micromips == 1
3892 || opts->mips16 == 1))
1357373c 3893 as_fatal (_("`%s' cannot be used with `%s'"),
7361da2c 3894 opts->micromips ? "micromips" : "mips16",
5f4678bb 3895 mips_cpu_info_from_isa (opts->isa)->name);
7361da2c
AB
3896
3897 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3898 as_fatal (_("branch relaxation is not supported in `%s'"),
3899 mips_cpu_info_from_isa (opts->isa)->name);
919731af 3900}
3901
3902/* Perform consistency checks on the module level options exactly once.
3903 This is a deferred check that happens:
3904 at the first .set directive
3905 or, at the first pseudo op that generates code (inc .dc.a)
3906 or, at the first instruction
3907 or, at the end. */
3908
3909static void
3910file_mips_check_options (void)
3911{
3912 const struct mips_cpu_info *arch_info = 0;
3913
3914 if (file_mips_opts_checked)
3915 return;
3916
3917 /* The following code determines the register size.
3918 Similar code was added to GCC 3.3 (see override_options() in
3919 config/mips/mips.c). The GAS and GCC code should be kept in sync
3920 as much as possible. */
3921
3922 if (file_mips_opts.gp < 0)
3923 {
3924 /* Infer the integer register size from the ABI and processor.
3925 Restrict ourselves to 32-bit registers if that's all the
3926 processor has, or if the ABI cannot handle 64-bit registers. */
3927 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3928 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3929 ? 32 : 64;
3930 }
3931
3932 if (file_mips_opts.fp < 0)
3933 {
3934 /* No user specified float register size.
3935 ??? GAS treats single-float processors as though they had 64-bit
3936 float registers (although it complains when double-precision
3937 instructions are used). As things stand, saying they have 32-bit
3938 registers would lead to spurious "register must be even" messages.
3939 So here we assume float registers are never smaller than the
3940 integer ones. */
3941 if (file_mips_opts.gp == 64)
3942 /* 64-bit integer registers implies 64-bit float registers. */
3943 file_mips_opts.fp = 64;
3944 else if ((file_mips_opts.ase & FP64_ASES)
3945 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3946 /* Handle ASEs that require 64-bit float registers, if possible. */
3947 file_mips_opts.fp = 64;
7361da2c
AB
3948 else if (ISA_IS_R6 (mips_opts.isa))
3949 /* R6 implies 64-bit float registers. */
3950 file_mips_opts.fp = 64;
919731af 3951 else
3952 /* 32-bit float registers. */
3953 file_mips_opts.fp = 32;
3954 }
3955
3956 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3957
351cdf24
MF
3958 /* Disable operations on odd-numbered floating-point registers by default
3959 when using the FPXX ABI. */
3960 if (file_mips_opts.oddspreg < 0)
3961 {
3962 if (file_mips_opts.fp == 0)
3963 file_mips_opts.oddspreg = 0;
3964 else
3965 file_mips_opts.oddspreg = 1;
3966 }
3967
919731af 3968 /* End of GCC-shared inference code. */
3969
3970 /* This flag is set when we have a 64-bit capable CPU but use only
3971 32-bit wide registers. Note that EABI does not use it. */
3972 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3973 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3974 || mips_abi == O32_ABI))
3975 mips_32bitmode = 1;
3976
3977 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3978 as_bad (_("trap exception not supported at ISA 1"));
3979
3980 /* If the selected architecture includes support for ASEs, enable
3981 generation of code for them. */
3982 if (file_mips_opts.mips16 == -1)
3983 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3984 if (file_mips_opts.micromips == -1)
3985 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3986 ? 1 : 0;
3987
7361da2c
AB
3988 if (mips_nan2008 == -1)
3989 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3990 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3991 as_fatal (_("`%s' does not support legacy NaN"),
3992 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3993
919731af 3994 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3995 being selected implicitly. */
3996 if (file_mips_opts.fp != 64)
3997 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3998
3999 /* If the user didn't explicitly select or deselect a particular ASE,
4000 use the default setting for the CPU. */
4001 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4002
4003 /* Set up the current options. These may change throughout assembly. */
4004 mips_opts = file_mips_opts;
4005
4006 mips_check_isa_supports_ases ();
4007 mips_check_options (&file_mips_opts, TRUE);
4008 file_mips_opts_checked = TRUE;
4009
4010 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4011 as_warn (_("could not set architecture and machine"));
4012}
4013
252b5132 4014void
17a2f251 4015md_assemble (char *str)
252b5132
RH
4016{
4017 struct mips_cl_insn insn;
f6688943
TS
4018 bfd_reloc_code_real_type unused_reloc[3]
4019 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 4020
919731af 4021 file_mips_check_options ();
4022
252b5132 4023 imm_expr.X_op = O_absent;
252b5132 4024 offset_expr.X_op = O_absent;
f6688943
TS
4025 offset_reloc[0] = BFD_RELOC_UNUSED;
4026 offset_reloc[1] = BFD_RELOC_UNUSED;
4027 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132 4028
e1b47bd5
RS
4029 mips_mark_labels ();
4030 mips_assembling_insn = TRUE;
e3de51ce 4031 clear_insn_error ();
e1b47bd5 4032
252b5132
RH
4033 if (mips_opts.mips16)
4034 mips16_ip (str, &insn);
4035 else
4036 {
4037 mips_ip (str, &insn);
beae10d5
KH
4038 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4039 str, insn.insn_opcode));
252b5132
RH
4040 }
4041
e3de51ce
RS
4042 if (insn_error.msg)
4043 report_insn_error (str);
e1b47bd5 4044 else if (insn.insn_mo->pinfo == INSN_MACRO)
252b5132 4045 {
584892a6 4046 macro_start ();
252b5132
RH
4047 if (mips_opts.mips16)
4048 mips16_macro (&insn);
4049 else
833794fc 4050 macro (&insn, str);
584892a6 4051 macro_end ();
252b5132
RH
4052 }
4053 else
4054 {
77bd4346 4055 if (offset_expr.X_op != O_absent)
df58fc94 4056 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
252b5132 4057 else
df58fc94 4058 append_insn (&insn, NULL, unused_reloc, FALSE);
252b5132 4059 }
e1b47bd5
RS
4060
4061 mips_assembling_insn = FALSE;
252b5132
RH
4062}
4063
738e5348
RS
4064/* Convenience functions for abstracting away the differences between
4065 MIPS16 and non-MIPS16 relocations. */
4066
4067static inline bfd_boolean
4068mips16_reloc_p (bfd_reloc_code_real_type reloc)
4069{
4070 switch (reloc)
4071 {
4072 case BFD_RELOC_MIPS16_JMP:
4073 case BFD_RELOC_MIPS16_GPREL:
4074 case BFD_RELOC_MIPS16_GOT16:
4075 case BFD_RELOC_MIPS16_CALL16:
4076 case BFD_RELOC_MIPS16_HI16_S:
4077 case BFD_RELOC_MIPS16_HI16:
4078 case BFD_RELOC_MIPS16_LO16:
c9775dde 4079 case BFD_RELOC_MIPS16_16_PCREL_S1:
738e5348
RS
4080 return TRUE;
4081
4082 default:
4083 return FALSE;
4084 }
4085}
4086
df58fc94
RS
4087static inline bfd_boolean
4088micromips_reloc_p (bfd_reloc_code_real_type reloc)
4089{
4090 switch (reloc)
4091 {
4092 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4093 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4094 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4095 case BFD_RELOC_MICROMIPS_GPREL16:
4096 case BFD_RELOC_MICROMIPS_JMP:
4097 case BFD_RELOC_MICROMIPS_HI16:
4098 case BFD_RELOC_MICROMIPS_HI16_S:
4099 case BFD_RELOC_MICROMIPS_LO16:
4100 case BFD_RELOC_MICROMIPS_LITERAL:
4101 case BFD_RELOC_MICROMIPS_GOT16:
4102 case BFD_RELOC_MICROMIPS_CALL16:
4103 case BFD_RELOC_MICROMIPS_GOT_HI16:
4104 case BFD_RELOC_MICROMIPS_GOT_LO16:
4105 case BFD_RELOC_MICROMIPS_CALL_HI16:
4106 case BFD_RELOC_MICROMIPS_CALL_LO16:
4107 case BFD_RELOC_MICROMIPS_SUB:
4108 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4109 case BFD_RELOC_MICROMIPS_GOT_OFST:
4110 case BFD_RELOC_MICROMIPS_GOT_DISP:
4111 case BFD_RELOC_MICROMIPS_HIGHEST:
4112 case BFD_RELOC_MICROMIPS_HIGHER:
4113 case BFD_RELOC_MICROMIPS_SCN_DISP:
4114 case BFD_RELOC_MICROMIPS_JALR:
4115 return TRUE;
4116
4117 default:
4118 return FALSE;
4119 }
4120}
4121
2309ddf2
MR
4122static inline bfd_boolean
4123jmp_reloc_p (bfd_reloc_code_real_type reloc)
4124{
4125 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4126}
4127
0e9c5a5c
MR
4128static inline bfd_boolean
4129b_reloc_p (bfd_reloc_code_real_type reloc)
4130{
4131 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4132 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4133 || reloc == BFD_RELOC_16_PCREL_S2
c9775dde 4134 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
0e9c5a5c
MR
4135 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4136 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4137 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4138}
4139
738e5348
RS
4140static inline bfd_boolean
4141got16_reloc_p (bfd_reloc_code_real_type reloc)
4142{
2309ddf2 4143 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
df58fc94 4144 || reloc == BFD_RELOC_MICROMIPS_GOT16);
738e5348
RS
4145}
4146
4147static inline bfd_boolean
4148hi16_reloc_p (bfd_reloc_code_real_type reloc)
4149{
2309ddf2 4150 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
df58fc94 4151 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
738e5348
RS
4152}
4153
4154static inline bfd_boolean
4155lo16_reloc_p (bfd_reloc_code_real_type reloc)
4156{
2309ddf2 4157 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
df58fc94
RS
4158 || reloc == BFD_RELOC_MICROMIPS_LO16);
4159}
4160
df58fc94
RS
4161static inline bfd_boolean
4162jalr_reloc_p (bfd_reloc_code_real_type reloc)
4163{
2309ddf2 4164 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
738e5348
RS
4165}
4166
f2ae14a1
RS
4167static inline bfd_boolean
4168gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4169{
4170 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4171 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4172}
4173
2de39019
CM
4174/* Return true if RELOC is a PC-relative relocation that does not have
4175 full address range. */
4176
4177static inline bfd_boolean
4178limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4179{
4180 switch (reloc)
4181 {
4182 case BFD_RELOC_16_PCREL_S2:
c9775dde 4183 case BFD_RELOC_MIPS16_16_PCREL_S1:
2de39019
CM
4184 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4185 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4186 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
7361da2c
AB
4187 case BFD_RELOC_MIPS_21_PCREL_S2:
4188 case BFD_RELOC_MIPS_26_PCREL_S2:
4189 case BFD_RELOC_MIPS_18_PCREL_S3:
4190 case BFD_RELOC_MIPS_19_PCREL_S2:
2de39019
CM
4191 return TRUE;
4192
b47468a6 4193 case BFD_RELOC_32_PCREL:
7361da2c
AB
4194 case BFD_RELOC_HI16_S_PCREL:
4195 case BFD_RELOC_LO16_PCREL:
b47468a6
CM
4196 return HAVE_64BIT_ADDRESSES;
4197
2de39019
CM
4198 default:
4199 return FALSE;
4200 }
4201}
b47468a6 4202
5919d012 4203/* Return true if the given relocation might need a matching %lo().
0a44bf69
RS
4204 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4205 need a matching %lo() when applied to local symbols. */
5919d012
RS
4206
4207static inline bfd_boolean
17a2f251 4208reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
5919d012 4209{
3b91255e 4210 return (HAVE_IN_PLACE_ADDENDS
738e5348 4211 && (hi16_reloc_p (reloc)
0a44bf69
RS
4212 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4213 all GOT16 relocations evaluate to "G". */
738e5348
RS
4214 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4215}
4216
4217/* Return the type of %lo() reloc needed by RELOC, given that
4218 reloc_needs_lo_p. */
4219
4220static inline bfd_reloc_code_real_type
4221matching_lo_reloc (bfd_reloc_code_real_type reloc)
4222{
df58fc94
RS
4223 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4224 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4225 : BFD_RELOC_LO16));
5919d012
RS
4226}
4227
4228/* Return true if the given fixup is followed by a matching R_MIPS_LO16
4229 relocation. */
4230
4231static inline bfd_boolean
17a2f251 4232fixup_has_matching_lo_p (fixS *fixp)
5919d012
RS
4233{
4234 return (fixp->fx_next != NULL
738e5348 4235 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
5919d012
RS
4236 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4237 && fixp->fx_offset == fixp->fx_next->fx_offset);
4238}
4239
462427c4
RS
4240/* Move all labels in LABELS to the current insertion point. TEXT_P
4241 says whether the labels refer to text or data. */
404a8071
RS
4242
4243static void
462427c4 4244mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
404a8071
RS
4245{
4246 struct insn_label_list *l;
4247 valueT val;
4248
462427c4 4249 for (l = labels; l != NULL; l = l->next)
404a8071 4250 {
9c2799c2 4251 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
404a8071
RS
4252 symbol_set_frag (l->label, frag_now);
4253 val = (valueT) frag_now_fix ();
df58fc94 4254 /* MIPS16/microMIPS text labels are stored as odd. */
462427c4 4255 if (text_p && HAVE_CODE_COMPRESSION)
404a8071
RS
4256 ++val;
4257 S_SET_VALUE (l->label, val);
4258 }
4259}
4260
462427c4
RS
4261/* Move all labels in insn_labels to the current insertion point
4262 and treat them as text labels. */
4263
4264static void
4265mips_move_text_labels (void)
4266{
4267 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4268}
4269
5f0fe04b
TS
4270static bfd_boolean
4271s_is_linkonce (symbolS *sym, segT from_seg)
4272{
4273 bfd_boolean linkonce = FALSE;
4274 segT symseg = S_GET_SEGMENT (sym);
4275
4276 if (symseg != from_seg && !S_IS_LOCAL (sym))
4277 {
4278 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4279 linkonce = TRUE;
5f0fe04b
TS
4280 /* The GNU toolchain uses an extension for ELF: a section
4281 beginning with the magic string .gnu.linkonce is a
4282 linkonce section. */
4283 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4284 sizeof ".gnu.linkonce" - 1) == 0)
4285 linkonce = TRUE;
5f0fe04b
TS
4286 }
4287 return linkonce;
4288}
4289
e1b47bd5 4290/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
df58fc94
RS
4291 linker to handle them specially, such as generating jalx instructions
4292 when needed. We also make them odd for the duration of the assembly,
4293 in order to generate the right sort of code. We will make them even
252b5132
RH
4294 in the adjust_symtab routine, while leaving them marked. This is
4295 convenient for the debugger and the disassembler. The linker knows
4296 to make them odd again. */
4297
4298static void
e1b47bd5 4299mips_compressed_mark_label (symbolS *label)
252b5132 4300{
df58fc94 4301 gas_assert (HAVE_CODE_COMPRESSION);
a8dbcb85 4302
f3ded42a
RS
4303 if (mips_opts.mips16)
4304 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4305 else
4306 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
e1b47bd5
RS
4307 if ((S_GET_VALUE (label) & 1) == 0
4308 /* Don't adjust the address if the label is global or weak, or
4309 in a link-once section, since we'll be emitting symbol reloc
4310 references to it which will be patched up by the linker, and
4311 the final value of the symbol may or may not be MIPS16/microMIPS. */
4312 && !S_IS_WEAK (label)
4313 && !S_IS_EXTERNAL (label)
4314 && !s_is_linkonce (label, now_seg))
4315 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4316}
4317
4318/* Mark preceding MIPS16 or microMIPS instruction labels. */
4319
4320static void
4321mips_compressed_mark_labels (void)
4322{
4323 struct insn_label_list *l;
4324
4325 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4326 mips_compressed_mark_label (l->label);
252b5132
RH
4327}
4328
4d7206a2
RS
4329/* End the current frag. Make it a variant frag and record the
4330 relaxation info. */
4331
4332static void
4333relax_close_frag (void)
4334{
584892a6 4335 mips_macro_warning.first_frag = frag_now;
4d7206a2 4336 frag_var (rs_machine_dependent, 0, 0,
584892a6 4337 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4d7206a2
RS
4338 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4339
4340 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4341 mips_relax.first_fixup = 0;
4342}
4343
4344/* Start a new relaxation sequence whose expansion depends on SYMBOL.
4345 See the comment above RELAX_ENCODE for more details. */
4346
4347static void
4348relax_start (symbolS *symbol)
4349{
9c2799c2 4350 gas_assert (mips_relax.sequence == 0);
4d7206a2
RS
4351 mips_relax.sequence = 1;
4352 mips_relax.symbol = symbol;
4353}
4354
4355/* Start generating the second version of a relaxable sequence.
4356 See the comment above RELAX_ENCODE for more details. */
252b5132
RH
4357
4358static void
4d7206a2
RS
4359relax_switch (void)
4360{
9c2799c2 4361 gas_assert (mips_relax.sequence == 1);
4d7206a2
RS
4362 mips_relax.sequence = 2;
4363}
4364
4365/* End the current relaxable sequence. */
4366
4367static void
4368relax_end (void)
4369{
9c2799c2 4370 gas_assert (mips_relax.sequence == 2);
4d7206a2
RS
4371 relax_close_frag ();
4372 mips_relax.sequence = 0;
4373}
4374
11625dd8
RS
4375/* Return true if IP is a delayed branch or jump. */
4376
4377static inline bfd_boolean
4378delayed_branch_p (const struct mips_cl_insn *ip)
4379{
4380 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4381 | INSN_COND_BRANCH_DELAY
4382 | INSN_COND_BRANCH_LIKELY)) != 0;
4383}
4384
4385/* Return true if IP is a compact branch or jump. */
4386
4387static inline bfd_boolean
4388compact_branch_p (const struct mips_cl_insn *ip)
4389{
26545944
RS
4390 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4391 | INSN2_COND_BRANCH)) != 0;
11625dd8
RS
4392}
4393
4394/* Return true if IP is an unconditional branch or jump. */
4395
4396static inline bfd_boolean
4397uncond_branch_p (const struct mips_cl_insn *ip)
4398{
4399 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
26545944 4400 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
11625dd8
RS
4401}
4402
4403/* Return true if IP is a branch-likely instruction. */
4404
4405static inline bfd_boolean
4406branch_likely_p (const struct mips_cl_insn *ip)
4407{
4408 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4409}
4410
14fe068b
RS
4411/* Return the type of nop that should be used to fill the delay slot
4412 of delayed branch IP. */
4413
4414static struct mips_cl_insn *
4415get_delay_slot_nop (const struct mips_cl_insn *ip)
4416{
4417 if (mips_opts.micromips
4418 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4419 return &micromips_nop32_insn;
4420 return NOP_INSN;
4421}
4422
fc76e730
RS
4423/* Return a mask that has bit N set if OPCODE reads the register(s)
4424 in operand N. */
df58fc94
RS
4425
4426static unsigned int
fc76e730 4427insn_read_mask (const struct mips_opcode *opcode)
df58fc94 4428{
fc76e730
RS
4429 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4430}
df58fc94 4431
fc76e730
RS
4432/* Return a mask that has bit N set if OPCODE writes to the register(s)
4433 in operand N. */
4434
4435static unsigned int
4436insn_write_mask (const struct mips_opcode *opcode)
4437{
4438 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4439}
4440
4441/* Return a mask of the registers specified by operand OPERAND of INSN.
4442 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4443 is set. */
4444
4445static unsigned int
4446operand_reg_mask (const struct mips_cl_insn *insn,
4447 const struct mips_operand *operand,
4448 unsigned int type_mask)
4449{
4450 unsigned int uval, vsel;
4451
4452 switch (operand->type)
df58fc94 4453 {
fc76e730
RS
4454 case OP_INT:
4455 case OP_MAPPED_INT:
4456 case OP_MSB:
4457 case OP_PCREL:
4458 case OP_PERF_REG:
4459 case OP_ADDIUSP_INT:
4460 case OP_ENTRY_EXIT_LIST:
4461 case OP_REPEAT_DEST_REG:
4462 case OP_REPEAT_PREV_REG:
4463 case OP_PC:
14daeee3
RS
4464 case OP_VU0_SUFFIX:
4465 case OP_VU0_MATCH_SUFFIX:
56d438b1 4466 case OP_IMM_INDEX:
fc76e730
RS
4467 abort ();
4468
4469 case OP_REG:
0f35dbc4 4470 case OP_OPTIONAL_REG:
fc76e730
RS
4471 {
4472 const struct mips_reg_operand *reg_op;
4473
4474 reg_op = (const struct mips_reg_operand *) operand;
4475 if (!(type_mask & (1 << reg_op->reg_type)))
4476 return 0;
4477 uval = insn_extract_operand (insn, operand);
4478 return 1 << mips_decode_reg_operand (reg_op, uval);
4479 }
4480
4481 case OP_REG_PAIR:
4482 {
4483 const struct mips_reg_pair_operand *pair_op;
4484
4485 pair_op = (const struct mips_reg_pair_operand *) operand;
4486 if (!(type_mask & (1 << pair_op->reg_type)))
4487 return 0;
4488 uval = insn_extract_operand (insn, operand);
4489 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4490 }
4491
4492 case OP_CLO_CLZ_DEST:
4493 if (!(type_mask & (1 << OP_REG_GP)))
4494 return 0;
4495 uval = insn_extract_operand (insn, operand);
4496 return (1 << (uval & 31)) | (1 << (uval >> 5));
4497
7361da2c
AB
4498 case OP_SAME_RS_RT:
4499 if (!(type_mask & (1 << OP_REG_GP)))
4500 return 0;
4501 uval = insn_extract_operand (insn, operand);
4502 gas_assert ((uval & 31) == (uval >> 5));
4503 return 1 << (uval & 31);
4504
4505 case OP_CHECK_PREV:
4506 case OP_NON_ZERO_REG:
4507 if (!(type_mask & (1 << OP_REG_GP)))
4508 return 0;
4509 uval = insn_extract_operand (insn, operand);
4510 return 1 << (uval & 31);
4511
fc76e730
RS
4512 case OP_LWM_SWM_LIST:
4513 abort ();
4514
4515 case OP_SAVE_RESTORE_LIST:
4516 abort ();
4517
4518 case OP_MDMX_IMM_REG:
4519 if (!(type_mask & (1 << OP_REG_VEC)))
4520 return 0;
4521 uval = insn_extract_operand (insn, operand);
4522 vsel = uval >> 5;
4523 if ((vsel & 0x18) == 0x18)
4524 return 0;
4525 return 1 << (uval & 31);
56d438b1
CF
4526
4527 case OP_REG_INDEX:
4528 if (!(type_mask & (1 << OP_REG_GP)))
4529 return 0;
4530 return 1 << insn_extract_operand (insn, operand);
df58fc94 4531 }
fc76e730
RS
4532 abort ();
4533}
4534
4535/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4536 where bit N of OPNO_MASK is set if operand N should be included.
4537 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4538 is set. */
4539
4540static unsigned int
4541insn_reg_mask (const struct mips_cl_insn *insn,
4542 unsigned int type_mask, unsigned int opno_mask)
4543{
4544 unsigned int opno, reg_mask;
4545
4546 opno = 0;
4547 reg_mask = 0;
4548 while (opno_mask != 0)
4549 {
4550 if (opno_mask & 1)
4551 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4552 opno_mask >>= 1;
4553 opno += 1;
4554 }
4555 return reg_mask;
df58fc94
RS
4556}
4557
4c260379
RS
4558/* Return the mask of core registers that IP reads. */
4559
4560static unsigned int
4561gpr_read_mask (const struct mips_cl_insn *ip)
4562{
4563 unsigned long pinfo, pinfo2;
4564 unsigned int mask;
4565
fc76e730 4566 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4c260379
RS
4567 pinfo = ip->insn_mo->pinfo;
4568 pinfo2 = ip->insn_mo->pinfo2;
fc76e730 4569 if (pinfo & INSN_UDI)
4c260379 4570 {
fc76e730
RS
4571 /* UDI instructions have traditionally been assumed to read RS
4572 and RT. */
4573 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4574 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4c260379 4575 }
fc76e730
RS
4576 if (pinfo & INSN_READ_GPR_24)
4577 mask |= 1 << 24;
4578 if (pinfo2 & INSN2_READ_GPR_16)
4579 mask |= 1 << 16;
4580 if (pinfo2 & INSN2_READ_SP)
4581 mask |= 1 << SP;
26545944 4582 if (pinfo2 & INSN2_READ_GPR_31)
fc76e730 4583 mask |= 1 << 31;
fe35f09f
RS
4584 /* Don't include register 0. */
4585 return mask & ~1;
4c260379
RS
4586}
4587
4588/* Return the mask of core registers that IP writes. */
4589
4590static unsigned int
4591gpr_write_mask (const struct mips_cl_insn *ip)
4592{
4593 unsigned long pinfo, pinfo2;
4594 unsigned int mask;
4595
fc76e730 4596 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4c260379
RS
4597 pinfo = ip->insn_mo->pinfo;
4598 pinfo2 = ip->insn_mo->pinfo2;
fc76e730
RS
4599 if (pinfo & INSN_WRITE_GPR_24)
4600 mask |= 1 << 24;
4601 if (pinfo & INSN_WRITE_GPR_31)
4602 mask |= 1 << 31;
4603 if (pinfo & INSN_UDI)
4604 /* UDI instructions have traditionally been assumed to write to RD. */
4605 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4606 if (pinfo2 & INSN2_WRITE_SP)
4607 mask |= 1 << SP;
fe35f09f
RS
4608 /* Don't include register 0. */
4609 return mask & ~1;
4c260379
RS
4610}
4611
4612/* Return the mask of floating-point registers that IP reads. */
4613
4614static unsigned int
4615fpr_read_mask (const struct mips_cl_insn *ip)
4616{
fc76e730 4617 unsigned long pinfo;
4c260379
RS
4618 unsigned int mask;
4619
9d5de888
CF
4620 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4621 | (1 << OP_REG_MSA)),
fc76e730 4622 insn_read_mask (ip->insn_mo));
4c260379 4623 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4624 /* Conservatively treat all operands to an FP_D instruction are doubles.
4625 (This is overly pessimistic for things like cvt.d.s.) */
bad1aba3 4626 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4627 mask |= mask << 1;
4628 return mask;
4629}
4630
4631/* Return the mask of floating-point registers that IP writes. */
4632
4633static unsigned int
4634fpr_write_mask (const struct mips_cl_insn *ip)
4635{
fc76e730 4636 unsigned long pinfo;
4c260379
RS
4637 unsigned int mask;
4638
9d5de888
CF
4639 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4640 | (1 << OP_REG_MSA)),
fc76e730 4641 insn_write_mask (ip->insn_mo));
4c260379 4642 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4643 /* Conservatively treat all operands to an FP_D instruction are doubles.
4644 (This is overly pessimistic for things like cvt.s.d.) */
bad1aba3 4645 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4646 mask |= mask << 1;
4647 return mask;
4648}
4649
a1d78564
RS
4650/* Operand OPNUM of INSN is an odd-numbered floating-point register.
4651 Check whether that is allowed. */
4652
4653static bfd_boolean
4654mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4655{
4656 const char *s = insn->name;
351cdf24
MF
4657 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4658 || FPR_SIZE == 64)
4659 && mips_opts.oddspreg;
a1d78564
RS
4660
4661 if (insn->pinfo == INSN_MACRO)
4662 /* Let a macro pass, we'll catch it later when it is expanded. */
4663 return TRUE;
4664
351cdf24
MF
4665 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4666 otherwise it depends on oddspreg. */
4667 if ((insn->pinfo & FP_S)
4668 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
43885403 4669 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
351cdf24 4670 return FPR_SIZE == 32 || oddspreg;
a1d78564 4671
351cdf24
MF
4672 /* Allow odd registers for single-precision ops and double-precision if the
4673 floating-point registers are 64-bit wide. */
4674 switch (insn->pinfo & (FP_S | FP_D))
4675 {
4676 case FP_S:
4677 case 0:
4678 return oddspreg;
4679 case FP_D:
4680 return FPR_SIZE == 64;
4681 default:
4682 break;
a1d78564
RS
4683 }
4684
351cdf24
MF
4685 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4686 s = strchr (insn->name, '.');
4687 if (s != NULL && opnum == 2)
4688 s = strchr (s + 1, '.');
4689 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4690 return oddspreg;
a1d78564 4691
351cdf24 4692 return FPR_SIZE == 64;
a1d78564
RS
4693}
4694
a1d78564
RS
4695/* Information about an instruction argument that we're trying to match. */
4696struct mips_arg_info
4697{
4698 /* The instruction so far. */
4699 struct mips_cl_insn *insn;
4700
a92713e6
RS
4701 /* The first unconsumed operand token. */
4702 struct mips_operand_token *token;
4703
a1d78564
RS
4704 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4705 int opnum;
4706
4707 /* The 1-based argument number, for error reporting. This does not
4708 count elided optional registers, etc.. */
4709 int argnum;
4710
4711 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4712 unsigned int last_regno;
4713
4714 /* If the first operand was an OP_REG, this is the register that it
4715 specified, otherwise it is ILLEGAL_REG. */
4716 unsigned int dest_regno;
4717
4718 /* The value of the last OP_INT operand. Only used for OP_MSB,
4719 where it gives the lsb position. */
4720 unsigned int last_op_int;
4721
60f20e8b 4722 /* If true, match routines should assume that no later instruction
2b0f3761 4723 alternative matches and should therefore be as accommodating as
60f20e8b
RS
4724 possible. Match routines should not report errors if something
4725 is only invalid for !LAX_MATCH. */
4726 bfd_boolean lax_match;
a1d78564 4727
a1d78564
RS
4728 /* True if a reference to the current AT register was seen. */
4729 bfd_boolean seen_at;
4730};
4731
1a00e612
RS
4732/* Record that the argument is out of range. */
4733
4734static void
4735match_out_of_range (struct mips_arg_info *arg)
4736{
4737 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4738}
4739
4740/* Record that the argument isn't constant but needs to be. */
4741
4742static void
4743match_not_constant (struct mips_arg_info *arg)
4744{
4745 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4746 arg->argnum);
4747}
4748
a92713e6
RS
4749/* Try to match an OT_CHAR token for character CH. Consume the token
4750 and return true on success, otherwise return false. */
a1d78564 4751
a92713e6
RS
4752static bfd_boolean
4753match_char (struct mips_arg_info *arg, char ch)
a1d78564 4754{
a92713e6
RS
4755 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4756 {
4757 ++arg->token;
4758 if (ch == ',')
4759 arg->argnum += 1;
4760 return TRUE;
4761 }
4762 return FALSE;
4763}
a1d78564 4764
a92713e6
RS
4765/* Try to get an expression from the next tokens in ARG. Consume the
4766 tokens and return true on success, storing the expression value in
4767 VALUE and relocation types in R. */
4768
4769static bfd_boolean
4770match_expression (struct mips_arg_info *arg, expressionS *value,
4771 bfd_reloc_code_real_type *r)
4772{
d436c1c2
RS
4773 /* If the next token is a '(' that was parsed as being part of a base
4774 expression, assume we have an elided offset. The later match will fail
4775 if this turns out to be wrong. */
4776 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
a1d78564 4777 {
d436c1c2
RS
4778 value->X_op = O_constant;
4779 value->X_add_number = 0;
4780 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
a92713e6
RS
4781 return TRUE;
4782 }
4783
d436c1c2
RS
4784 /* Reject register-based expressions such as "0+$2" and "(($2))".
4785 For plain registers the default error seems more appropriate. */
4786 if (arg->token->type == OT_INTEGER
4787 && arg->token->u.integer.value.X_op == O_register)
a92713e6 4788 {
d436c1c2
RS
4789 set_insn_error (arg->argnum, _("register value used as expression"));
4790 return FALSE;
a1d78564 4791 }
d436c1c2
RS
4792
4793 if (arg->token->type == OT_INTEGER)
a92713e6 4794 {
d436c1c2
RS
4795 *value = arg->token->u.integer.value;
4796 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4797 ++arg->token;
4798 return TRUE;
a92713e6 4799 }
a92713e6 4800
d436c1c2
RS
4801 set_insn_error_i
4802 (arg->argnum, _("operand %d must be an immediate expression"),
4803 arg->argnum);
4804 return FALSE;
a92713e6
RS
4805}
4806
4807/* Try to get a constant expression from the next tokens in ARG. Consume
4808 the tokens and return return true on success, storing the constant value
4809 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4810 error. */
4811
4812static bfd_boolean
1a00e612 4813match_const_int (struct mips_arg_info *arg, offsetT *value)
a92713e6
RS
4814{
4815 expressionS ex;
4816 bfd_reloc_code_real_type r[3];
a1d78564 4817
a92713e6
RS
4818 if (!match_expression (arg, &ex, r))
4819 return FALSE;
4820
4821 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
a1d78564
RS
4822 *value = ex.X_add_number;
4823 else
4824 {
1a00e612
RS
4825 match_not_constant (arg);
4826 return FALSE;
a1d78564 4827 }
a92713e6 4828 return TRUE;
a1d78564
RS
4829}
4830
4831/* Return the RTYPE_* flags for a register operand of type TYPE that
4832 appears in instruction OPCODE. */
4833
4834static unsigned int
4835convert_reg_type (const struct mips_opcode *opcode,
4836 enum mips_reg_operand_type type)
4837{
4838 switch (type)
4839 {
4840 case OP_REG_GP:
4841 return RTYPE_NUM | RTYPE_GP;
4842
4843 case OP_REG_FP:
4844 /* Allow vector register names for MDMX if the instruction is a 64-bit
4845 FPR load, store or move (including moves to and from GPRs). */
4846 if ((mips_opts.ase & ASE_MDMX)
4847 && (opcode->pinfo & FP_D)
43885403 4848 && (opcode->pinfo & (INSN_COPROC_MOVE
a1d78564 4849 | INSN_COPROC_MEMORY_DELAY
43885403 4850 | INSN_LOAD_COPROC
67dc82bc 4851 | INSN_LOAD_MEMORY
a1d78564
RS
4852 | INSN_STORE_MEMORY)))
4853 return RTYPE_FPU | RTYPE_VEC;
4854 return RTYPE_FPU;
4855
4856 case OP_REG_CCC:
4857 if (opcode->pinfo & (FP_D | FP_S))
4858 return RTYPE_CCC | RTYPE_FCC;
4859 return RTYPE_CCC;
4860
4861 case OP_REG_VEC:
4862 if (opcode->membership & INSN_5400)
4863 return RTYPE_FPU;
4864 return RTYPE_FPU | RTYPE_VEC;
4865
4866 case OP_REG_ACC:
4867 return RTYPE_ACC;
4868
4869 case OP_REG_COPRO:
4870 if (opcode->name[strlen (opcode->name) - 1] == '0')
4871 return RTYPE_NUM | RTYPE_CP0;
4872 return RTYPE_NUM;
4873
4874 case OP_REG_HW:
4875 return RTYPE_NUM;
14daeee3
RS
4876
4877 case OP_REG_VI:
4878 return RTYPE_NUM | RTYPE_VI;
4879
4880 case OP_REG_VF:
4881 return RTYPE_NUM | RTYPE_VF;
4882
4883 case OP_REG_R5900_I:
4884 return RTYPE_R5900_I;
4885
4886 case OP_REG_R5900_Q:
4887 return RTYPE_R5900_Q;
4888
4889 case OP_REG_R5900_R:
4890 return RTYPE_R5900_R;
4891
4892 case OP_REG_R5900_ACC:
4893 return RTYPE_R5900_ACC;
56d438b1
CF
4894
4895 case OP_REG_MSA:
4896 return RTYPE_MSA;
4897
4898 case OP_REG_MSA_CTRL:
4899 return RTYPE_NUM;
a1d78564
RS
4900 }
4901 abort ();
4902}
4903
4904/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4905
4906static void
4907check_regno (struct mips_arg_info *arg,
4908 enum mips_reg_operand_type type, unsigned int regno)
4909{
4910 if (AT && type == OP_REG_GP && regno == AT)
4911 arg->seen_at = TRUE;
4912
4913 if (type == OP_REG_FP
4914 && (regno & 1) != 0
a1d78564 4915 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
351cdf24
MF
4916 {
4917 /* This was a warning prior to introducing O32 FPXX and FP64 support
4918 so maintain a warning for FP32 but raise an error for the new
4919 cases. */
4920 if (FPR_SIZE == 32)
4921 as_warn (_("float register should be even, was %d"), regno);
4922 else
4923 as_bad (_("float register should be even, was %d"), regno);
4924 }
a1d78564
RS
4925
4926 if (type == OP_REG_CCC)
4927 {
4928 const char *name;
4929 size_t length;
4930
4931 name = arg->insn->insn_mo->name;
4932 length = strlen (name);
4933 if ((regno & 1) != 0
4934 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4935 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
1661c76c 4936 as_warn (_("condition code register should be even for %s, was %d"),
a1d78564
RS
4937 name, regno);
4938
4939 if ((regno & 3) != 0
4940 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
1661c76c 4941 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
a1d78564
RS
4942 name, regno);
4943 }
4944}
4945
a92713e6
RS
4946/* ARG is a register with symbol value SYMVAL. Try to interpret it as
4947 a register of type TYPE. Return true on success, storing the register
4948 number in *REGNO and warning about any dubious uses. */
4949
4950static bfd_boolean
4951match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4952 unsigned int symval, unsigned int *regno)
4953{
4954 if (type == OP_REG_VEC)
4955 symval = mips_prefer_vec_regno (symval);
4956 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4957 return FALSE;
4958
4959 *regno = symval & RNUM_MASK;
4960 check_regno (arg, type, *regno);
4961 return TRUE;
4962}
4963
4964/* Try to interpret the next token in ARG as a register of type TYPE.
4965 Consume the token and return true on success, storing the register
4966 number in *REGNO. Return false on failure. */
4967
4968static bfd_boolean
4969match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4970 unsigned int *regno)
4971{
4972 if (arg->token->type == OT_REG
4973 && match_regno (arg, type, arg->token->u.regno, regno))
4974 {
4975 ++arg->token;
4976 return TRUE;
4977 }
4978 return FALSE;
4979}
4980
4981/* Try to interpret the next token in ARG as a range of registers of type TYPE.
4982 Consume the token and return true on success, storing the register numbers
4983 in *REGNO1 and *REGNO2. Return false on failure. */
4984
4985static bfd_boolean
4986match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4987 unsigned int *regno1, unsigned int *regno2)
4988{
4989 if (match_reg (arg, type, regno1))
4990 {
4991 *regno2 = *regno1;
4992 return TRUE;
4993 }
4994 if (arg->token->type == OT_REG_RANGE
4995 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4996 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4997 && *regno1 <= *regno2)
4998 {
4999 ++arg->token;
5000 return TRUE;
5001 }
5002 return FALSE;
5003}
5004
a1d78564
RS
5005/* OP_INT matcher. */
5006
a92713e6 5007static bfd_boolean
a1d78564 5008match_int_operand (struct mips_arg_info *arg,
a92713e6 5009 const struct mips_operand *operand_base)
a1d78564
RS
5010{
5011 const struct mips_int_operand *operand;
3ccad066 5012 unsigned int uval;
a1d78564
RS
5013 int min_val, max_val, factor;
5014 offsetT sval;
a1d78564
RS
5015
5016 operand = (const struct mips_int_operand *) operand_base;
5017 factor = 1 << operand->shift;
3ccad066
RS
5018 min_val = mips_int_operand_min (operand);
5019 max_val = mips_int_operand_max (operand);
a1d78564 5020
d436c1c2
RS
5021 if (operand_base->lsb == 0
5022 && operand_base->size == 16
5023 && operand->shift == 0
5024 && operand->bias == 0
5025 && (operand->max_val == 32767 || operand->max_val == 65535))
a1d78564
RS
5026 {
5027 /* The operand can be relocated. */
a92713e6
RS
5028 if (!match_expression (arg, &offset_expr, offset_reloc))
5029 return FALSE;
5030
5031 if (offset_reloc[0] != BFD_RELOC_UNUSED)
a1d78564
RS
5032 /* Relocation operators were used. Accept the arguent and
5033 leave the relocation value in offset_expr and offset_relocs
5034 for the caller to process. */
a92713e6
RS
5035 return TRUE;
5036
5037 if (offset_expr.X_op != O_constant)
a1d78564 5038 {
60f20e8b
RS
5039 /* Accept non-constant operands if no later alternative matches,
5040 leaving it for the caller to process. */
5041 if (!arg->lax_match)
5042 return FALSE;
a92713e6
RS
5043 offset_reloc[0] = BFD_RELOC_LO16;
5044 return TRUE;
a1d78564 5045 }
a92713e6 5046
a1d78564
RS
5047 /* Clear the global state; we're going to install the operand
5048 ourselves. */
a92713e6 5049 sval = offset_expr.X_add_number;
a1d78564 5050 offset_expr.X_op = O_absent;
60f20e8b
RS
5051
5052 /* For compatibility with older assemblers, we accept
5053 0x8000-0xffff as signed 16-bit numbers when only
5054 signed numbers are allowed. */
5055 if (sval > max_val)
5056 {
5057 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5058 if (!arg->lax_match && sval <= max_val)
5059 return FALSE;
5060 }
a1d78564
RS
5061 }
5062 else
5063 {
1a00e612 5064 if (!match_const_int (arg, &sval))
a92713e6 5065 return FALSE;
a1d78564
RS
5066 }
5067
5068 arg->last_op_int = sval;
5069
1a00e612 5070 if (sval < min_val || sval > max_val || sval % factor)
a1d78564 5071 {
1a00e612
RS
5072 match_out_of_range (arg);
5073 return FALSE;
a1d78564
RS
5074 }
5075
5076 uval = (unsigned int) sval >> operand->shift;
5077 uval -= operand->bias;
5078
5079 /* Handle -mfix-cn63xxp1. */
5080 if (arg->opnum == 1
5081 && mips_fix_cn63xxp1
5082 && !mips_opts.micromips
5083 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5084 switch (uval)
5085 {
5086 case 5:
5087 case 25:
5088 case 26:
5089 case 27:
5090 case 28:
5091 case 29:
5092 case 30:
5093 case 31:
5094 /* These are ok. */
5095 break;
5096
5097 default:
5098 /* The rest must be changed to 28. */
5099 uval = 28;
5100 break;
5101 }
5102
5103 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5104 return TRUE;
a1d78564
RS
5105}
5106
5107/* OP_MAPPED_INT matcher. */
5108
a92713e6 5109static bfd_boolean
a1d78564 5110match_mapped_int_operand (struct mips_arg_info *arg,
a92713e6 5111 const struct mips_operand *operand_base)
a1d78564
RS
5112{
5113 const struct mips_mapped_int_operand *operand;
5114 unsigned int uval, num_vals;
5115 offsetT sval;
5116
5117 operand = (const struct mips_mapped_int_operand *) operand_base;
1a00e612 5118 if (!match_const_int (arg, &sval))
a92713e6 5119 return FALSE;
a1d78564
RS
5120
5121 num_vals = 1 << operand_base->size;
5122 for (uval = 0; uval < num_vals; uval++)
5123 if (operand->int_map[uval] == sval)
5124 break;
5125 if (uval == num_vals)
1a00e612
RS
5126 {
5127 match_out_of_range (arg);
5128 return FALSE;
5129 }
a1d78564
RS
5130
5131 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5132 return TRUE;
a1d78564
RS
5133}
5134
5135/* OP_MSB matcher. */
5136
a92713e6 5137static bfd_boolean
a1d78564 5138match_msb_operand (struct mips_arg_info *arg,
a92713e6 5139 const struct mips_operand *operand_base)
a1d78564
RS
5140{
5141 const struct mips_msb_operand *operand;
5142 int min_val, max_val, max_high;
5143 offsetT size, sval, high;
5144
5145 operand = (const struct mips_msb_operand *) operand_base;
5146 min_val = operand->bias;
5147 max_val = min_val + (1 << operand_base->size) - 1;
5148 max_high = operand->opsize;
5149
1a00e612 5150 if (!match_const_int (arg, &size))
a92713e6 5151 return FALSE;
a1d78564
RS
5152
5153 high = size + arg->last_op_int;
5154 sval = operand->add_lsb ? high : size;
5155
5156 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5157 {
1a00e612
RS
5158 match_out_of_range (arg);
5159 return FALSE;
a1d78564
RS
5160 }
5161 insn_insert_operand (arg->insn, operand_base, sval - min_val);
a92713e6 5162 return TRUE;
a1d78564
RS
5163}
5164
5165/* OP_REG matcher. */
5166
a92713e6 5167static bfd_boolean
a1d78564 5168match_reg_operand (struct mips_arg_info *arg,
a92713e6 5169 const struct mips_operand *operand_base)
a1d78564
RS
5170{
5171 const struct mips_reg_operand *operand;
a92713e6 5172 unsigned int regno, uval, num_vals;
a1d78564
RS
5173
5174 operand = (const struct mips_reg_operand *) operand_base;
a92713e6
RS
5175 if (!match_reg (arg, operand->reg_type, &regno))
5176 return FALSE;
a1d78564
RS
5177
5178 if (operand->reg_map)
5179 {
5180 num_vals = 1 << operand->root.size;
5181 for (uval = 0; uval < num_vals; uval++)
5182 if (operand->reg_map[uval] == regno)
5183 break;
5184 if (num_vals == uval)
a92713e6 5185 return FALSE;
a1d78564
RS
5186 }
5187 else
5188 uval = regno;
5189
a1d78564
RS
5190 arg->last_regno = regno;
5191 if (arg->opnum == 1)
5192 arg->dest_regno = regno;
5193 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5194 return TRUE;
a1d78564
RS
5195}
5196
5197/* OP_REG_PAIR matcher. */
5198
a92713e6 5199static bfd_boolean
a1d78564 5200match_reg_pair_operand (struct mips_arg_info *arg,
a92713e6 5201 const struct mips_operand *operand_base)
a1d78564
RS
5202{
5203 const struct mips_reg_pair_operand *operand;
a92713e6 5204 unsigned int regno1, regno2, uval, num_vals;
a1d78564
RS
5205
5206 operand = (const struct mips_reg_pair_operand *) operand_base;
a92713e6
RS
5207 if (!match_reg (arg, operand->reg_type, &regno1)
5208 || !match_char (arg, ',')
5209 || !match_reg (arg, operand->reg_type, &regno2))
5210 return FALSE;
a1d78564
RS
5211
5212 num_vals = 1 << operand_base->size;
5213 for (uval = 0; uval < num_vals; uval++)
5214 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5215 break;
5216 if (uval == num_vals)
a92713e6 5217 return FALSE;
a1d78564 5218
a1d78564 5219 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5220 return TRUE;
a1d78564
RS
5221}
5222
5223/* OP_PCREL matcher. The caller chooses the relocation type. */
5224
a92713e6
RS
5225static bfd_boolean
5226match_pcrel_operand (struct mips_arg_info *arg)
a1d78564 5227{
a92713e6
RS
5228 bfd_reloc_code_real_type r[3];
5229
5230 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
a1d78564
RS
5231}
5232
5233/* OP_PERF_REG matcher. */
5234
a92713e6 5235static bfd_boolean
a1d78564 5236match_perf_reg_operand (struct mips_arg_info *arg,
a92713e6 5237 const struct mips_operand *operand)
a1d78564
RS
5238{
5239 offsetT sval;
5240
1a00e612 5241 if (!match_const_int (arg, &sval))
a92713e6 5242 return FALSE;
a1d78564
RS
5243
5244 if (sval != 0
5245 && (sval != 1
5246 || (mips_opts.arch == CPU_R5900
5247 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5248 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5249 {
1a00e612
RS
5250 set_insn_error (arg->argnum, _("invalid performance register"));
5251 return FALSE;
a1d78564
RS
5252 }
5253
5254 insn_insert_operand (arg->insn, operand, sval);
a92713e6 5255 return TRUE;
a1d78564
RS
5256}
5257
5258/* OP_ADDIUSP matcher. */
5259
a92713e6 5260static bfd_boolean
a1d78564 5261match_addiusp_operand (struct mips_arg_info *arg,
a92713e6 5262 const struct mips_operand *operand)
a1d78564
RS
5263{
5264 offsetT sval;
5265 unsigned int uval;
5266
1a00e612 5267 if (!match_const_int (arg, &sval))
a92713e6 5268 return FALSE;
a1d78564
RS
5269
5270 if (sval % 4)
1a00e612
RS
5271 {
5272 match_out_of_range (arg);
5273 return FALSE;
5274 }
a1d78564
RS
5275
5276 sval /= 4;
5277 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
1a00e612
RS
5278 {
5279 match_out_of_range (arg);
5280 return FALSE;
5281 }
a1d78564
RS
5282
5283 uval = (unsigned int) sval;
5284 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5285 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5286 return TRUE;
a1d78564
RS
5287}
5288
5289/* OP_CLO_CLZ_DEST matcher. */
5290
a92713e6 5291static bfd_boolean
a1d78564 5292match_clo_clz_dest_operand (struct mips_arg_info *arg,
a92713e6 5293 const struct mips_operand *operand)
a1d78564
RS
5294{
5295 unsigned int regno;
5296
a92713e6
RS
5297 if (!match_reg (arg, OP_REG_GP, &regno))
5298 return FALSE;
a1d78564 5299
a1d78564 5300 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
a92713e6 5301 return TRUE;
a1d78564
RS
5302}
5303
7361da2c
AB
5304/* OP_CHECK_PREV matcher. */
5305
5306static bfd_boolean
5307match_check_prev_operand (struct mips_arg_info *arg,
5308 const struct mips_operand *operand_base)
5309{
5310 const struct mips_check_prev_operand *operand;
5311 unsigned int regno;
5312
5313 operand = (const struct mips_check_prev_operand *) operand_base;
5314
5315 if (!match_reg (arg, OP_REG_GP, &regno))
5316 return FALSE;
5317
5318 if (!operand->zero_ok && regno == 0)
5319 return FALSE;
5320
5321 if ((operand->less_than_ok && regno < arg->last_regno)
5322 || (operand->greater_than_ok && regno > arg->last_regno)
5323 || (operand->equal_ok && regno == arg->last_regno))
5324 {
5325 arg->last_regno = regno;
5326 insn_insert_operand (arg->insn, operand_base, regno);
5327 return TRUE;
5328 }
5329
5330 return FALSE;
5331}
5332
5333/* OP_SAME_RS_RT matcher. */
5334
5335static bfd_boolean
5336match_same_rs_rt_operand (struct mips_arg_info *arg,
5337 const struct mips_operand *operand)
5338{
5339 unsigned int regno;
5340
5341 if (!match_reg (arg, OP_REG_GP, &regno))
5342 return FALSE;
5343
5344 if (regno == 0)
5345 {
5346 set_insn_error (arg->argnum, _("the source register must not be $0"));
5347 return FALSE;
5348 }
5349
5350 arg->last_regno = regno;
5351
5352 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5353 return TRUE;
5354}
5355
a1d78564
RS
5356/* OP_LWM_SWM_LIST matcher. */
5357
a92713e6 5358static bfd_boolean
a1d78564 5359match_lwm_swm_list_operand (struct mips_arg_info *arg,
a92713e6 5360 const struct mips_operand *operand)
a1d78564 5361{
a92713e6
RS
5362 unsigned int reglist, sregs, ra, regno1, regno2;
5363 struct mips_arg_info reset;
a1d78564 5364
a92713e6
RS
5365 reglist = 0;
5366 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5367 return FALSE;
5368 do
5369 {
5370 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5371 {
5372 reglist |= 1 << FP;
5373 regno2 = S7;
5374 }
5375 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5376 reset = *arg;
5377 }
5378 while (match_char (arg, ',')
5379 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5380 *arg = reset;
a1d78564
RS
5381
5382 if (operand->size == 2)
5383 {
5384 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5385
5386 s0, ra
5387 s0, s1, ra, s2, s3
5388 s0-s2, ra
5389
5390 and any permutations of these. */
5391 if ((reglist & 0xfff1ffff) != 0x80010000)
a92713e6 5392 return FALSE;
a1d78564
RS
5393
5394 sregs = (reglist >> 17) & 7;
5395 ra = 0;
5396 }
5397 else
5398 {
5399 /* The list must include at least one of ra and s0-sN,
5400 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5401 which are $23 and $30 respectively.) E.g.:
5402
5403 ra
5404 s0
5405 ra, s0, s1, s2
5406 s0-s8
5407 s0-s5, ra
5408
5409 and any permutations of these. */
5410 if ((reglist & 0x3f00ffff) != 0)
a92713e6 5411 return FALSE;
a1d78564
RS
5412
5413 ra = (reglist >> 27) & 0x10;
5414 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5415 }
5416 sregs += 1;
5417 if ((sregs & -sregs) != sregs)
a92713e6 5418 return FALSE;
a1d78564
RS
5419
5420 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
a92713e6 5421 return TRUE;
a1d78564
RS
5422}
5423
364215c8
RS
5424/* OP_ENTRY_EXIT_LIST matcher. */
5425
a92713e6 5426static unsigned int
364215c8 5427match_entry_exit_operand (struct mips_arg_info *arg,
a92713e6 5428 const struct mips_operand *operand)
364215c8
RS
5429{
5430 unsigned int mask;
5431 bfd_boolean is_exit;
5432
5433 /* The format is the same for both ENTRY and EXIT, but the constraints
5434 are different. */
5435 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5436 mask = (is_exit ? 7 << 3 : 0);
a92713e6 5437 do
364215c8
RS
5438 {
5439 unsigned int regno1, regno2;
5440 bfd_boolean is_freg;
5441
a92713e6 5442 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
364215c8 5443 is_freg = FALSE;
a92713e6 5444 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
364215c8
RS
5445 is_freg = TRUE;
5446 else
a92713e6 5447 return FALSE;
364215c8
RS
5448
5449 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5450 {
5451 mask &= ~(7 << 3);
5452 mask |= (5 + regno2) << 3;
5453 }
5454 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5455 mask |= (regno2 - 3) << 3;
5456 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5457 mask |= (regno2 - 15) << 1;
5458 else if (regno1 == RA && regno2 == RA)
5459 mask |= 1;
5460 else
a92713e6 5461 return FALSE;
364215c8 5462 }
a92713e6
RS
5463 while (match_char (arg, ','));
5464
364215c8 5465 insn_insert_operand (arg->insn, operand, mask);
a92713e6 5466 return TRUE;
364215c8
RS
5467}
5468
5469/* OP_SAVE_RESTORE_LIST matcher. */
5470
a92713e6
RS
5471static bfd_boolean
5472match_save_restore_list_operand (struct mips_arg_info *arg)
364215c8
RS
5473{
5474 unsigned int opcode, args, statics, sregs;
5475 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
364215c8 5476 offsetT frame_size;
364215c8 5477
364215c8
RS
5478 opcode = arg->insn->insn_opcode;
5479 frame_size = 0;
5480 num_frame_sizes = 0;
5481 args = 0;
5482 statics = 0;
5483 sregs = 0;
a92713e6 5484 do
364215c8
RS
5485 {
5486 unsigned int regno1, regno2;
5487
a92713e6 5488 if (arg->token->type == OT_INTEGER)
364215c8
RS
5489 {
5490 /* Handle the frame size. */
1a00e612 5491 if (!match_const_int (arg, &frame_size))
a92713e6 5492 return FALSE;
364215c8 5493 num_frame_sizes += 1;
364215c8
RS
5494 }
5495 else
5496 {
a92713e6
RS
5497 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5498 return FALSE;
364215c8
RS
5499
5500 while (regno1 <= regno2)
5501 {
5502 if (regno1 >= 4 && regno1 <= 7)
5503 {
5504 if (num_frame_sizes == 0)
5505 /* args $a0-$a3 */
5506 args |= 1 << (regno1 - 4);
5507 else
5508 /* statics $a0-$a3 */
5509 statics |= 1 << (regno1 - 4);
5510 }
5511 else if (regno1 >= 16 && regno1 <= 23)
5512 /* $s0-$s7 */
5513 sregs |= 1 << (regno1 - 16);
5514 else if (regno1 == 30)
5515 /* $s8 */
5516 sregs |= 1 << 8;
5517 else if (regno1 == 31)
5518 /* Add $ra to insn. */
5519 opcode |= 0x40;
5520 else
a92713e6 5521 return FALSE;
364215c8
RS
5522 regno1 += 1;
5523 if (regno1 == 24)
5524 regno1 = 30;
5525 }
5526 }
364215c8 5527 }
a92713e6 5528 while (match_char (arg, ','));
364215c8
RS
5529
5530 /* Encode args/statics combination. */
5531 if (args & statics)
a92713e6 5532 return FALSE;
364215c8
RS
5533 else if (args == 0xf)
5534 /* All $a0-$a3 are args. */
5535 opcode |= MIPS16_ALL_ARGS << 16;
5536 else if (statics == 0xf)
5537 /* All $a0-$a3 are statics. */
5538 opcode |= MIPS16_ALL_STATICS << 16;
5539 else
5540 {
5541 /* Count arg registers. */
5542 num_args = 0;
5543 while (args & 0x1)
5544 {
5545 args >>= 1;
5546 num_args += 1;
5547 }
5548 if (args != 0)
a92713e6 5549 return FALSE;
364215c8
RS
5550
5551 /* Count static registers. */
5552 num_statics = 0;
5553 while (statics & 0x8)
5554 {
5555 statics = (statics << 1) & 0xf;
5556 num_statics += 1;
5557 }
5558 if (statics != 0)
a92713e6 5559 return FALSE;
364215c8
RS
5560
5561 /* Encode args/statics. */
5562 opcode |= ((num_args << 2) | num_statics) << 16;
5563 }
5564
5565 /* Encode $s0/$s1. */
5566 if (sregs & (1 << 0)) /* $s0 */
5567 opcode |= 0x20;
5568 if (sregs & (1 << 1)) /* $s1 */
5569 opcode |= 0x10;
5570 sregs >>= 2;
5571
5572 /* Encode $s2-$s8. */
5573 num_sregs = 0;
5574 while (sregs & 1)
5575 {
5576 sregs >>= 1;
5577 num_sregs += 1;
5578 }
5579 if (sregs != 0)
a92713e6 5580 return FALSE;
364215c8
RS
5581 opcode |= num_sregs << 24;
5582
5583 /* Encode frame size. */
5584 if (num_frame_sizes == 0)
1a00e612
RS
5585 {
5586 set_insn_error (arg->argnum, _("missing frame size"));
5587 return FALSE;
5588 }
5589 if (num_frame_sizes > 1)
5590 {
5591 set_insn_error (arg->argnum, _("frame size specified twice"));
5592 return FALSE;
5593 }
5594 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5595 {
5596 set_insn_error (arg->argnum, _("invalid frame size"));
5597 return FALSE;
5598 }
5599 if (frame_size != 128 || (opcode >> 16) != 0)
364215c8
RS
5600 {
5601 frame_size /= 8;
5602 opcode |= (((frame_size & 0xf0) << 16)
5603 | (frame_size & 0x0f));
5604 }
5605
364215c8
RS
5606 /* Finally build the instruction. */
5607 if ((opcode >> 16) != 0 || frame_size == 0)
5608 opcode |= MIPS16_EXTEND;
5609 arg->insn->insn_opcode = opcode;
a92713e6 5610 return TRUE;
364215c8
RS
5611}
5612
a1d78564
RS
5613/* OP_MDMX_IMM_REG matcher. */
5614
a92713e6 5615static bfd_boolean
a1d78564 5616match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
a92713e6 5617 const struct mips_operand *operand)
a1d78564 5618{
a92713e6 5619 unsigned int regno, uval;
a1d78564
RS
5620 bfd_boolean is_qh;
5621 const struct mips_opcode *opcode;
5622
5623 /* The mips_opcode records whether this is an octobyte or quadhalf
5624 instruction. Start out with that bit in place. */
5625 opcode = arg->insn->insn_mo;
5626 uval = mips_extract_operand (operand, opcode->match);
5627 is_qh = (uval != 0);
5628
56d438b1 5629 if (arg->token->type == OT_REG)
a1d78564
RS
5630 {
5631 if ((opcode->membership & INSN_5400)
5632 && strcmp (opcode->name, "rzu.ob") == 0)
5633 {
1a00e612
RS
5634 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5635 arg->argnum);
5636 return FALSE;
a1d78564
RS
5637 }
5638
56d438b1
CF
5639 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5640 return FALSE;
5641 ++arg->token;
5642
a1d78564
RS
5643 /* Check whether this is a vector register or a broadcast of
5644 a single element. */
56d438b1 5645 if (arg->token->type == OT_INTEGER_INDEX)
a1d78564 5646 {
56d438b1 5647 if (arg->token->u.index > (is_qh ? 3 : 7))
a1d78564 5648 {
1a00e612
RS
5649 set_insn_error (arg->argnum, _("invalid element selector"));
5650 return FALSE;
a1d78564 5651 }
56d438b1
CF
5652 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5653 ++arg->token;
a1d78564
RS
5654 }
5655 else
5656 {
5657 /* A full vector. */
5658 if ((opcode->membership & INSN_5400)
5659 && (strcmp (opcode->name, "sll.ob") == 0
5660 || strcmp (opcode->name, "srl.ob") == 0))
5661 {
1a00e612
RS
5662 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5663 arg->argnum);
5664 return FALSE;
a1d78564
RS
5665 }
5666
5667 if (is_qh)
5668 uval |= MDMX_FMTSEL_VEC_QH << 5;
5669 else
5670 uval |= MDMX_FMTSEL_VEC_OB << 5;
5671 }
a1d78564
RS
5672 uval |= regno;
5673 }
5674 else
5675 {
5676 offsetT sval;
5677
1a00e612 5678 if (!match_const_int (arg, &sval))
a92713e6 5679 return FALSE;
a1d78564
RS
5680 if (sval < 0 || sval > 31)
5681 {
1a00e612
RS
5682 match_out_of_range (arg);
5683 return FALSE;
a1d78564
RS
5684 }
5685 uval |= (sval & 31);
5686 if (is_qh)
5687 uval |= MDMX_FMTSEL_IMM_QH << 5;
5688 else
5689 uval |= MDMX_FMTSEL_IMM_OB << 5;
5690 }
5691 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5692 return TRUE;
a1d78564
RS
5693}
5694
56d438b1
CF
5695/* OP_IMM_INDEX matcher. */
5696
5697static bfd_boolean
5698match_imm_index_operand (struct mips_arg_info *arg,
5699 const struct mips_operand *operand)
5700{
5701 unsigned int max_val;
5702
5703 if (arg->token->type != OT_INTEGER_INDEX)
5704 return FALSE;
5705
5706 max_val = (1 << operand->size) - 1;
5707 if (arg->token->u.index > max_val)
5708 {
5709 match_out_of_range (arg);
5710 return FALSE;
5711 }
5712 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5713 ++arg->token;
5714 return TRUE;
5715}
5716
5717/* OP_REG_INDEX matcher. */
5718
5719static bfd_boolean
5720match_reg_index_operand (struct mips_arg_info *arg,
5721 const struct mips_operand *operand)
5722{
5723 unsigned int regno;
5724
5725 if (arg->token->type != OT_REG_INDEX)
5726 return FALSE;
5727
5728 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5729 return FALSE;
5730
5731 insn_insert_operand (arg->insn, operand, regno);
5732 ++arg->token;
5733 return TRUE;
5734}
5735
a1d78564
RS
5736/* OP_PC matcher. */
5737
a92713e6
RS
5738static bfd_boolean
5739match_pc_operand (struct mips_arg_info *arg)
a1d78564 5740{
a92713e6
RS
5741 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5742 {
5743 ++arg->token;
5744 return TRUE;
5745 }
5746 return FALSE;
a1d78564
RS
5747}
5748
7361da2c
AB
5749/* OP_NON_ZERO_REG matcher. */
5750
5751static bfd_boolean
5752match_non_zero_reg_operand (struct mips_arg_info *arg,
5753 const struct mips_operand *operand)
5754{
5755 unsigned int regno;
5756
5757 if (!match_reg (arg, OP_REG_GP, &regno))
5758 return FALSE;
5759
5760 if (regno == 0)
5761 return FALSE;
5762
5763 arg->last_regno = regno;
5764 insn_insert_operand (arg->insn, operand, regno);
5765 return TRUE;
5766}
5767
a1d78564
RS
5768/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5769 register that we need to match. */
5770
a92713e6
RS
5771static bfd_boolean
5772match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
a1d78564
RS
5773{
5774 unsigned int regno;
5775
a92713e6 5776 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
a1d78564
RS
5777}
5778
89565f1b
RS
5779/* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5780 the length of the value in bytes (4 for float, 8 for double) and
5781 USING_GPRS says whether the destination is a GPR rather than an FPR.
5782
5783 Return the constant in IMM and OFFSET as follows:
5784
5785 - If the constant should be loaded via memory, set IMM to O_absent and
5786 OFFSET to the memory address.
5787
5788 - Otherwise, if the constant should be loaded into two 32-bit registers,
5789 set IMM to the O_constant to load into the high register and OFFSET
5790 to the corresponding value for the low register.
5791
5792 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5793
5794 These constants only appear as the last operand in an instruction,
5795 and every instruction that accepts them in any variant accepts them
5796 in all variants. This means we don't have to worry about backing out
5797 any changes if the instruction does not match. We just match
5798 unconditionally and report an error if the constant is invalid. */
5799
a92713e6
RS
5800static bfd_boolean
5801match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5802 expressionS *offset, int length, bfd_boolean using_gprs)
89565f1b 5803{
a92713e6 5804 char *p;
89565f1b
RS
5805 segT seg, new_seg;
5806 subsegT subseg;
5807 const char *newname;
a92713e6 5808 unsigned char *data;
89565f1b
RS
5809
5810 /* Where the constant is placed is based on how the MIPS assembler
5811 does things:
5812
5813 length == 4 && using_gprs -- immediate value only
5814 length == 8 && using_gprs -- .rdata or immediate value
5815 length == 4 && !using_gprs -- .lit4 or immediate value
5816 length == 8 && !using_gprs -- .lit8 or immediate value
5817
5818 The .lit4 and .lit8 sections are only used if permitted by the
5819 -G argument. */
a92713e6 5820 if (arg->token->type != OT_FLOAT)
1a00e612
RS
5821 {
5822 set_insn_error (arg->argnum, _("floating-point expression required"));
5823 return FALSE;
5824 }
a92713e6
RS
5825
5826 gas_assert (arg->token->u.flt.length == length);
5827 data = arg->token->u.flt.data;
5828 ++arg->token;
89565f1b
RS
5829
5830 /* Handle 32-bit constants for which an immediate value is best. */
5831 if (length == 4
5832 && (using_gprs
5833 || g_switch_value < 4
5834 || (data[0] == 0 && data[1] == 0)
5835 || (data[2] == 0 && data[3] == 0)))
5836 {
5837 imm->X_op = O_constant;
5838 if (!target_big_endian)
5839 imm->X_add_number = bfd_getl32 (data);
5840 else
5841 imm->X_add_number = bfd_getb32 (data);
5842 offset->X_op = O_absent;
a92713e6 5843 return TRUE;
89565f1b
RS
5844 }
5845
5846 /* Handle 64-bit constants for which an immediate value is best. */
5847 if (length == 8
5848 && !mips_disable_float_construction
351cdf24
MF
5849 /* Constants can only be constructed in GPRs and copied to FPRs if the
5850 GPRs are at least as wide as the FPRs or MTHC1 is available.
5851 Unlike most tests for 32-bit floating-point registers this check
5852 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5853 permit 64-bit moves without MXHC1.
5854 Force the constant into memory otherwise. */
5855 && (using_gprs
5856 || GPR_SIZE == 64
5857 || ISA_HAS_MXHC1 (mips_opts.isa)
5858 || FPR_SIZE == 32)
89565f1b
RS
5859 && ((data[0] == 0 && data[1] == 0)
5860 || (data[2] == 0 && data[3] == 0))
5861 && ((data[4] == 0 && data[5] == 0)
5862 || (data[6] == 0 && data[7] == 0)))
5863 {
5864 /* The value is simple enough to load with a couple of instructions.
5865 If using 32-bit registers, set IMM to the high order 32 bits and
5866 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5867 64 bit constant. */
351cdf24 5868 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
89565f1b
RS
5869 {
5870 imm->X_op = O_constant;
5871 offset->X_op = O_constant;
5872 if (!target_big_endian)
5873 {
5874 imm->X_add_number = bfd_getl32 (data + 4);
5875 offset->X_add_number = bfd_getl32 (data);
5876 }
5877 else
5878 {
5879 imm->X_add_number = bfd_getb32 (data);
5880 offset->X_add_number = bfd_getb32 (data + 4);
5881 }
5882 if (offset->X_add_number == 0)
5883 offset->X_op = O_absent;
5884 }
5885 else
5886 {
5887 imm->X_op = O_constant;
5888 if (!target_big_endian)
5889 imm->X_add_number = bfd_getl64 (data);
5890 else
5891 imm->X_add_number = bfd_getb64 (data);
5892 offset->X_op = O_absent;
5893 }
a92713e6 5894 return TRUE;
89565f1b
RS
5895 }
5896
5897 /* Switch to the right section. */
5898 seg = now_seg;
5899 subseg = now_subseg;
5900 if (length == 4)
5901 {
5902 gas_assert (!using_gprs && g_switch_value >= 4);
5903 newname = ".lit4";
5904 }
5905 else
5906 {
5907 if (using_gprs || g_switch_value < 8)
5908 newname = RDATA_SECTION_NAME;
5909 else
5910 newname = ".lit8";
5911 }
5912
5913 new_seg = subseg_new (newname, (subsegT) 0);
5914 bfd_set_section_flags (stdoutput, new_seg,
5915 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5916 frag_align (length == 4 ? 2 : 3, 0, 0);
5917 if (strncmp (TARGET_OS, "elf", 3) != 0)
5918 record_alignment (new_seg, 4);
5919 else
5920 record_alignment (new_seg, length == 4 ? 2 : 3);
5921 if (seg == now_seg)
1661c76c 5922 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
89565f1b
RS
5923
5924 /* Set the argument to the current address in the section. */
5925 imm->X_op = O_absent;
5926 offset->X_op = O_symbol;
5927 offset->X_add_symbol = symbol_temp_new_now ();
5928 offset->X_add_number = 0;
5929
5930 /* Put the floating point number into the section. */
5931 p = frag_more (length);
5932 memcpy (p, data, length);
5933
5934 /* Switch back to the original section. */
5935 subseg_set (seg, subseg);
a92713e6 5936 return TRUE;
89565f1b
RS
5937}
5938
14daeee3
RS
5939/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5940 them. */
5941
5942static bfd_boolean
5943match_vu0_suffix_operand (struct mips_arg_info *arg,
5944 const struct mips_operand *operand,
5945 bfd_boolean match_p)
5946{
5947 unsigned int uval;
5948
5949 /* The operand can be an XYZW mask or a single 2-bit channel index
5950 (with X being 0). */
5951 gas_assert (operand->size == 2 || operand->size == 4);
5952
ee5734f0 5953 /* The suffix can be omitted when it is already part of the opcode. */
14daeee3 5954 if (arg->token->type != OT_CHANNELS)
ee5734f0 5955 return match_p;
14daeee3
RS
5956
5957 uval = arg->token->u.channels;
5958 if (operand->size == 2)
5959 {
5960 /* Check that a single bit is set and convert it into a 2-bit index. */
5961 if ((uval & -uval) != uval)
5962 return FALSE;
5963 uval = 4 - ffs (uval);
5964 }
5965
5966 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5967 return FALSE;
5968
5969 ++arg->token;
5970 if (!match_p)
5971 insn_insert_operand (arg->insn, operand, uval);
5972 return TRUE;
5973}
5974
a1d78564
RS
5975/* S is the text seen for ARG. Match it against OPERAND. Return the end
5976 of the argument text if the match is successful, otherwise return null. */
5977
a92713e6 5978static bfd_boolean
a1d78564 5979match_operand (struct mips_arg_info *arg,
a92713e6 5980 const struct mips_operand *operand)
a1d78564
RS
5981{
5982 switch (operand->type)
5983 {
5984 case OP_INT:
a92713e6 5985 return match_int_operand (arg, operand);
a1d78564
RS
5986
5987 case OP_MAPPED_INT:
a92713e6 5988 return match_mapped_int_operand (arg, operand);
a1d78564
RS
5989
5990 case OP_MSB:
a92713e6 5991 return match_msb_operand (arg, operand);
a1d78564
RS
5992
5993 case OP_REG:
0f35dbc4 5994 case OP_OPTIONAL_REG:
a92713e6 5995 return match_reg_operand (arg, operand);
a1d78564
RS
5996
5997 case OP_REG_PAIR:
a92713e6 5998 return match_reg_pair_operand (arg, operand);
a1d78564
RS
5999
6000 case OP_PCREL:
a92713e6 6001 return match_pcrel_operand (arg);
a1d78564
RS
6002
6003 case OP_PERF_REG:
a92713e6 6004 return match_perf_reg_operand (arg, operand);
a1d78564
RS
6005
6006 case OP_ADDIUSP_INT:
a92713e6 6007 return match_addiusp_operand (arg, operand);
a1d78564
RS
6008
6009 case OP_CLO_CLZ_DEST:
a92713e6 6010 return match_clo_clz_dest_operand (arg, operand);
a1d78564
RS
6011
6012 case OP_LWM_SWM_LIST:
a92713e6 6013 return match_lwm_swm_list_operand (arg, operand);
a1d78564
RS
6014
6015 case OP_ENTRY_EXIT_LIST:
a92713e6 6016 return match_entry_exit_operand (arg, operand);
364215c8 6017
a1d78564 6018 case OP_SAVE_RESTORE_LIST:
a92713e6 6019 return match_save_restore_list_operand (arg);
a1d78564
RS
6020
6021 case OP_MDMX_IMM_REG:
a92713e6 6022 return match_mdmx_imm_reg_operand (arg, operand);
a1d78564
RS
6023
6024 case OP_REPEAT_DEST_REG:
a92713e6 6025 return match_tied_reg_operand (arg, arg->dest_regno);
a1d78564
RS
6026
6027 case OP_REPEAT_PREV_REG:
a92713e6 6028 return match_tied_reg_operand (arg, arg->last_regno);
a1d78564
RS
6029
6030 case OP_PC:
a92713e6 6031 return match_pc_operand (arg);
14daeee3
RS
6032
6033 case OP_VU0_SUFFIX:
6034 return match_vu0_suffix_operand (arg, operand, FALSE);
6035
6036 case OP_VU0_MATCH_SUFFIX:
6037 return match_vu0_suffix_operand (arg, operand, TRUE);
56d438b1
CF
6038
6039 case OP_IMM_INDEX:
6040 return match_imm_index_operand (arg, operand);
6041
6042 case OP_REG_INDEX:
6043 return match_reg_index_operand (arg, operand);
7361da2c
AB
6044
6045 case OP_SAME_RS_RT:
6046 return match_same_rs_rt_operand (arg, operand);
6047
6048 case OP_CHECK_PREV:
6049 return match_check_prev_operand (arg, operand);
6050
6051 case OP_NON_ZERO_REG:
6052 return match_non_zero_reg_operand (arg, operand);
a1d78564
RS
6053 }
6054 abort ();
6055}
6056
6057/* ARG is the state after successfully matching an instruction.
6058 Issue any queued-up warnings. */
6059
6060static void
6061check_completed_insn (struct mips_arg_info *arg)
6062{
6063 if (arg->seen_at)
6064 {
6065 if (AT == ATREG)
1661c76c 6066 as_warn (_("used $at without \".set noat\""));
a1d78564 6067 else
1661c76c 6068 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
a1d78564
RS
6069 }
6070}
a1d78564 6071
85fcb30f
RS
6072/* Return true if modifying general-purpose register REG needs a delay. */
6073
6074static bfd_boolean
6075reg_needs_delay (unsigned int reg)
6076{
6077 unsigned long prev_pinfo;
6078
6079 prev_pinfo = history[0].insn_mo->pinfo;
6080 if (!mips_opts.noreorder
67dc82bc 6081 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
43885403 6082 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
85fcb30f
RS
6083 && (gpr_write_mask (&history[0]) & (1 << reg)))
6084 return TRUE;
6085
6086 return FALSE;
6087}
6088
71400594
RS
6089/* Classify an instruction according to the FIX_VR4120_* enumeration.
6090 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6091 by VR4120 errata. */
4d7206a2 6092
71400594
RS
6093static unsigned int
6094classify_vr4120_insn (const char *name)
252b5132 6095{
71400594
RS
6096 if (strncmp (name, "macc", 4) == 0)
6097 return FIX_VR4120_MACC;
6098 if (strncmp (name, "dmacc", 5) == 0)
6099 return FIX_VR4120_DMACC;
6100 if (strncmp (name, "mult", 4) == 0)
6101 return FIX_VR4120_MULT;
6102 if (strncmp (name, "dmult", 5) == 0)
6103 return FIX_VR4120_DMULT;
6104 if (strstr (name, "div"))
6105 return FIX_VR4120_DIV;
6106 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6107 return FIX_VR4120_MTHILO;
6108 return NUM_FIX_VR4120_CLASSES;
6109}
252b5132 6110
a8d14a88
CM
6111#define INSN_ERET 0x42000018
6112#define INSN_DERET 0x4200001f
6113#define INSN_DMULT 0x1c
6114#define INSN_DMULTU 0x1d
ff239038 6115
71400594
RS
6116/* Return the number of instructions that must separate INSN1 and INSN2,
6117 where INSN1 is the earlier instruction. Return the worst-case value
6118 for any INSN2 if INSN2 is null. */
252b5132 6119
71400594
RS
6120static unsigned int
6121insns_between (const struct mips_cl_insn *insn1,
6122 const struct mips_cl_insn *insn2)
6123{
6124 unsigned long pinfo1, pinfo2;
4c260379 6125 unsigned int mask;
71400594 6126
85fcb30f
RS
6127 /* If INFO2 is null, pessimistically assume that all flags are set for
6128 the second instruction. */
71400594
RS
6129 pinfo1 = insn1->insn_mo->pinfo;
6130 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
252b5132 6131
71400594
RS
6132 /* For most targets, write-after-read dependencies on the HI and LO
6133 registers must be separated by at least two instructions. */
6134 if (!hilo_interlocks)
252b5132 6135 {
71400594
RS
6136 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6137 return 2;
6138 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6139 return 2;
6140 }
6141
6142 /* If we're working around r7000 errata, there must be two instructions
6143 between an mfhi or mflo and any instruction that uses the result. */
6144 if (mips_7000_hilo_fix
df58fc94 6145 && !mips_opts.micromips
71400594 6146 && MF_HILO_INSN (pinfo1)
85fcb30f 6147 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
71400594
RS
6148 return 2;
6149
ff239038
CM
6150 /* If we're working around 24K errata, one instruction is required
6151 if an ERET or DERET is followed by a branch instruction. */
df58fc94 6152 if (mips_fix_24k && !mips_opts.micromips)
ff239038
CM
6153 {
6154 if (insn1->insn_opcode == INSN_ERET
6155 || insn1->insn_opcode == INSN_DERET)
6156 {
6157 if (insn2 == NULL
6158 || insn2->insn_opcode == INSN_ERET
6159 || insn2->insn_opcode == INSN_DERET
11625dd8 6160 || delayed_branch_p (insn2))
ff239038
CM
6161 return 1;
6162 }
6163 }
6164
a8d14a88
CM
6165 /* If we're working around PMC RM7000 errata, there must be three
6166 nops between a dmult and a load instruction. */
6167 if (mips_fix_rm7000 && !mips_opts.micromips)
6168 {
6169 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6170 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6171 {
6172 if (pinfo2 & INSN_LOAD_MEMORY)
6173 return 3;
6174 }
6175 }
6176
71400594
RS
6177 /* If working around VR4120 errata, check for combinations that need
6178 a single intervening instruction. */
df58fc94 6179 if (mips_fix_vr4120 && !mips_opts.micromips)
71400594
RS
6180 {
6181 unsigned int class1, class2;
252b5132 6182
71400594
RS
6183 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6184 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
252b5132 6185 {
71400594
RS
6186 if (insn2 == NULL)
6187 return 1;
6188 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6189 if (vr4120_conflicts[class1] & (1 << class2))
6190 return 1;
252b5132 6191 }
71400594
RS
6192 }
6193
df58fc94 6194 if (!HAVE_CODE_COMPRESSION)
71400594
RS
6195 {
6196 /* Check for GPR or coprocessor load delays. All such delays
6197 are on the RT register. */
6198 /* Itbl support may require additional care here. */
67dc82bc 6199 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
43885403 6200 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
252b5132 6201 {
85fcb30f 6202 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
71400594
RS
6203 return 1;
6204 }
6205
6206 /* Check for generic coprocessor hazards.
6207
6208 This case is not handled very well. There is no special
6209 knowledge of CP0 handling, and the coprocessors other than
6210 the floating point unit are not distinguished at all. */
6211 /* Itbl support may require additional care here. FIXME!
6212 Need to modify this to include knowledge about
6213 user specified delays! */
43885403 6214 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
71400594
RS
6215 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6216 {
6217 /* Handle cases where INSN1 writes to a known general coprocessor
6218 register. There must be a one instruction delay before INSN2
6219 if INSN2 reads that register, otherwise no delay is needed. */
4c260379
RS
6220 mask = fpr_write_mask (insn1);
6221 if (mask != 0)
252b5132 6222 {
4c260379 6223 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
71400594 6224 return 1;
252b5132
RH
6225 }
6226 else
6227 {
71400594
RS
6228 /* Read-after-write dependencies on the control registers
6229 require a two-instruction gap. */
6230 if ((pinfo1 & INSN_WRITE_COND_CODE)
6231 && (pinfo2 & INSN_READ_COND_CODE))
6232 return 2;
6233
6234 /* We don't know exactly what INSN1 does. If INSN2 is
6235 also a coprocessor instruction, assume there must be
6236 a one instruction gap. */
6237 if (pinfo2 & INSN_COP)
6238 return 1;
252b5132
RH
6239 }
6240 }
6b76fefe 6241
71400594
RS
6242 /* Check for read-after-write dependencies on the coprocessor
6243 control registers in cases where INSN1 does not need a general
6244 coprocessor delay. This means that INSN1 is a floating point
6245 comparison instruction. */
6246 /* Itbl support may require additional care here. */
6247 else if (!cop_interlocks
6248 && (pinfo1 & INSN_WRITE_COND_CODE)
6249 && (pinfo2 & INSN_READ_COND_CODE))
6250 return 1;
6251 }
6b76fefe 6252
7361da2c
AB
6253 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6254 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6255 and pause. */
6256 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6257 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6258 || (insn2 && delayed_branch_p (insn2))))
6259 return 1;
6260
71400594
RS
6261 return 0;
6262}
6b76fefe 6263
7d8e00cf
RS
6264/* Return the number of nops that would be needed to work around the
6265 VR4130 mflo/mfhi errata if instruction INSN immediately followed
932d1a1b
RS
6266 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6267 that are contained within the first IGNORE instructions of HIST. */
7d8e00cf
RS
6268
6269static int
932d1a1b 6270nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
7d8e00cf
RS
6271 const struct mips_cl_insn *insn)
6272{
4c260379
RS
6273 int i, j;
6274 unsigned int mask;
7d8e00cf
RS
6275
6276 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6277 are not affected by the errata. */
6278 if (insn != 0
6279 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6280 || strcmp (insn->insn_mo->name, "mtlo") == 0
6281 || strcmp (insn->insn_mo->name, "mthi") == 0))
6282 return 0;
6283
6284 /* Search for the first MFLO or MFHI. */
6285 for (i = 0; i < MAX_VR4130_NOPS; i++)
91d6fa6a 6286 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
7d8e00cf
RS
6287 {
6288 /* Extract the destination register. */
4c260379 6289 mask = gpr_write_mask (&hist[i]);
7d8e00cf
RS
6290
6291 /* No nops are needed if INSN reads that register. */
4c260379 6292 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
7d8e00cf
RS
6293 return 0;
6294
6295 /* ...or if any of the intervening instructions do. */
6296 for (j = 0; j < i; j++)
4c260379 6297 if (gpr_read_mask (&hist[j]) & mask)
7d8e00cf
RS
6298 return 0;
6299
932d1a1b
RS
6300 if (i >= ignore)
6301 return MAX_VR4130_NOPS - i;
7d8e00cf
RS
6302 }
6303 return 0;
6304}
6305
134c0c8b
MR
6306#define BASE_REG_EQ(INSN1, INSN2) \
6307 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
15be625d
CM
6308 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6309
6310/* Return the minimum alignment for this store instruction. */
6311
6312static int
6313fix_24k_align_to (const struct mips_opcode *mo)
6314{
6315 if (strcmp (mo->name, "sh") == 0)
6316 return 2;
6317
6318 if (strcmp (mo->name, "swc1") == 0
6319 || strcmp (mo->name, "swc2") == 0
6320 || strcmp (mo->name, "sw") == 0
6321 || strcmp (mo->name, "sc") == 0
6322 || strcmp (mo->name, "s.s") == 0)
6323 return 4;
6324
6325 if (strcmp (mo->name, "sdc1") == 0
6326 || strcmp (mo->name, "sdc2") == 0
6327 || strcmp (mo->name, "s.d") == 0)
6328 return 8;
6329
6330 /* sb, swl, swr */
6331 return 1;
6332}
6333
6334struct fix_24k_store_info
6335 {
6336 /* Immediate offset, if any, for this store instruction. */
6337 short off;
6338 /* Alignment required by this store instruction. */
6339 int align_to;
6340 /* True for register offsets. */
6341 int register_offset;
6342 };
6343
6344/* Comparison function used by qsort. */
6345
6346static int
6347fix_24k_sort (const void *a, const void *b)
6348{
6349 const struct fix_24k_store_info *pos1 = a;
6350 const struct fix_24k_store_info *pos2 = b;
6351
6352 return (pos1->off - pos2->off);
6353}
6354
6355/* INSN is a store instruction. Try to record the store information
6356 in STINFO. Return false if the information isn't known. */
6357
6358static bfd_boolean
6359fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
ab9794cf 6360 const struct mips_cl_insn *insn)
15be625d
CM
6361{
6362 /* The instruction must have a known offset. */
6363 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6364 return FALSE;
6365
6366 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6367 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6368 return TRUE;
6369}
6370
932d1a1b
RS
6371/* Return the number of nops that would be needed to work around the 24k
6372 "lost data on stores during refill" errata if instruction INSN
6373 immediately followed the 2 instructions described by HIST.
6374 Ignore hazards that are contained within the first IGNORE
6375 instructions of HIST.
6376
6377 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6378 for the data cache refills and store data. The following describes
6379 the scenario where the store data could be lost.
6380
6381 * A data cache miss, due to either a load or a store, causing fill
6382 data to be supplied by the memory subsystem
6383 * The first three doublewords of fill data are returned and written
6384 into the cache
6385 * A sequence of four stores occurs in consecutive cycles around the
6386 final doubleword of the fill:
6387 * Store A
6388 * Store B
6389 * Store C
6390 * Zero, One or more instructions
6391 * Store D
6392
6393 The four stores A-D must be to different doublewords of the line that
6394 is being filled. The fourth instruction in the sequence above permits
6395 the fill of the final doubleword to be transferred from the FSB into
6396 the cache. In the sequence above, the stores may be either integer
6397 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6398 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6399 different doublewords on the line. If the floating point unit is
6400 running in 1:2 mode, it is not possible to create the sequence above
6401 using only floating point store instructions.
15be625d
CM
6402
6403 In this case, the cache line being filled is incorrectly marked
6404 invalid, thereby losing the data from any store to the line that
6405 occurs between the original miss and the completion of the five
6406 cycle sequence shown above.
6407
932d1a1b 6408 The workarounds are:
15be625d 6409
932d1a1b
RS
6410 * Run the data cache in write-through mode.
6411 * Insert a non-store instruction between
6412 Store A and Store B or Store B and Store C. */
3739860c 6413
15be625d 6414static int
932d1a1b 6415nops_for_24k (int ignore, const struct mips_cl_insn *hist,
15be625d
CM
6416 const struct mips_cl_insn *insn)
6417{
6418 struct fix_24k_store_info pos[3];
6419 int align, i, base_offset;
6420
932d1a1b
RS
6421 if (ignore >= 2)
6422 return 0;
6423
ab9794cf
RS
6424 /* If the previous instruction wasn't a store, there's nothing to
6425 worry about. */
15be625d
CM
6426 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6427 return 0;
6428
ab9794cf
RS
6429 /* If the instructions after the previous one are unknown, we have
6430 to assume the worst. */
6431 if (!insn)
15be625d
CM
6432 return 1;
6433
ab9794cf
RS
6434 /* Check whether we are dealing with three consecutive stores. */
6435 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6436 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
15be625d
CM
6437 return 0;
6438
6439 /* If we don't know the relationship between the store addresses,
6440 assume the worst. */
ab9794cf 6441 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
15be625d
CM
6442 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6443 return 1;
6444
6445 if (!fix_24k_record_store_info (&pos[0], insn)
6446 || !fix_24k_record_store_info (&pos[1], &hist[0])
6447 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6448 return 1;
6449
6450 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6451
6452 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6453 X bytes and such that the base register + X is known to be aligned
6454 to align bytes. */
6455
6456 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6457 align = 8;
6458 else
6459 {
6460 align = pos[0].align_to;
6461 base_offset = pos[0].off;
6462 for (i = 1; i < 3; i++)
6463 if (align < pos[i].align_to)
6464 {
6465 align = pos[i].align_to;
6466 base_offset = pos[i].off;
6467 }
6468 for (i = 0; i < 3; i++)
6469 pos[i].off -= base_offset;
6470 }
6471
6472 pos[0].off &= ~align + 1;
6473 pos[1].off &= ~align + 1;
6474 pos[2].off &= ~align + 1;
6475
6476 /* If any two stores write to the same chunk, they also write to the
6477 same doubleword. The offsets are still sorted at this point. */
6478 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6479 return 0;
6480
6481 /* A range of at least 9 bytes is needed for the stores to be in
6482 non-overlapping doublewords. */
6483 if (pos[2].off - pos[0].off <= 8)
6484 return 0;
6485
6486 if (pos[2].off - pos[1].off >= 24
6487 || pos[1].off - pos[0].off >= 24
6488 || pos[2].off - pos[0].off >= 32)
6489 return 0;
6490
6491 return 1;
6492}
6493
71400594 6494/* Return the number of nops that would be needed if instruction INSN
91d6fa6a 6495 immediately followed the MAX_NOPS instructions given by HIST,
932d1a1b
RS
6496 where HIST[0] is the most recent instruction. Ignore hazards
6497 between INSN and the first IGNORE instructions in HIST.
6498
6499 If INSN is null, return the worse-case number of nops for any
6500 instruction. */
bdaaa2e1 6501
71400594 6502static int
932d1a1b 6503nops_for_insn (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6504 const struct mips_cl_insn *insn)
6505{
6506 int i, nops, tmp_nops;
bdaaa2e1 6507
71400594 6508 nops = 0;
932d1a1b 6509 for (i = ignore; i < MAX_DELAY_NOPS; i++)
65b02341 6510 {
91d6fa6a 6511 tmp_nops = insns_between (hist + i, insn) - i;
65b02341
RS
6512 if (tmp_nops > nops)
6513 nops = tmp_nops;
6514 }
7d8e00cf 6515
df58fc94 6516 if (mips_fix_vr4130 && !mips_opts.micromips)
7d8e00cf 6517 {
932d1a1b 6518 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
7d8e00cf
RS
6519 if (tmp_nops > nops)
6520 nops = tmp_nops;
6521 }
6522
df58fc94 6523 if (mips_fix_24k && !mips_opts.micromips)
15be625d 6524 {
932d1a1b 6525 tmp_nops = nops_for_24k (ignore, hist, insn);
15be625d
CM
6526 if (tmp_nops > nops)
6527 nops = tmp_nops;
6528 }
6529
71400594
RS
6530 return nops;
6531}
252b5132 6532
71400594 6533/* The variable arguments provide NUM_INSNS extra instructions that
91d6fa6a 6534 might be added to HIST. Return the largest number of nops that
932d1a1b
RS
6535 would be needed after the extended sequence, ignoring hazards
6536 in the first IGNORE instructions. */
252b5132 6537
71400594 6538static int
932d1a1b
RS
6539nops_for_sequence (int num_insns, int ignore,
6540 const struct mips_cl_insn *hist, ...)
71400594
RS
6541{
6542 va_list args;
6543 struct mips_cl_insn buffer[MAX_NOPS];
6544 struct mips_cl_insn *cursor;
6545 int nops;
6546
91d6fa6a 6547 va_start (args, hist);
71400594 6548 cursor = buffer + num_insns;
91d6fa6a 6549 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
71400594
RS
6550 while (cursor > buffer)
6551 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6552
932d1a1b 6553 nops = nops_for_insn (ignore, buffer, NULL);
71400594
RS
6554 va_end (args);
6555 return nops;
6556}
252b5132 6557
71400594
RS
6558/* Like nops_for_insn, but if INSN is a branch, take into account the
6559 worst-case delay for the branch target. */
252b5132 6560
71400594 6561static int
932d1a1b 6562nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6563 const struct mips_cl_insn *insn)
6564{
6565 int nops, tmp_nops;
60b63b72 6566
932d1a1b 6567 nops = nops_for_insn (ignore, hist, insn);
11625dd8 6568 if (delayed_branch_p (insn))
71400594 6569 {
932d1a1b 6570 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
14fe068b 6571 hist, insn, get_delay_slot_nop (insn));
71400594
RS
6572 if (tmp_nops > nops)
6573 nops = tmp_nops;
6574 }
11625dd8 6575 else if (compact_branch_p (insn))
71400594 6576 {
932d1a1b 6577 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
71400594
RS
6578 if (tmp_nops > nops)
6579 nops = tmp_nops;
6580 }
6581 return nops;
6582}
6583
c67a084a
NC
6584/* Fix NOP issue: Replace nops by "or at,at,zero". */
6585
6586static void
6587fix_loongson2f_nop (struct mips_cl_insn * ip)
6588{
df58fc94 6589 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6590 if (strcmp (ip->insn_mo->name, "nop") == 0)
6591 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6592}
6593
6594/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6595 jr target pc &= 'hffff_ffff_cfff_ffff. */
6596
6597static void
6598fix_loongson2f_jump (struct mips_cl_insn * ip)
6599{
df58fc94 6600 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6601 if (strcmp (ip->insn_mo->name, "j") == 0
6602 || strcmp (ip->insn_mo->name, "jr") == 0
6603 || strcmp (ip->insn_mo->name, "jalr") == 0)
6604 {
6605 int sreg;
6606 expressionS ep;
6607
6608 if (! mips_opts.at)
6609 return;
6610
df58fc94 6611 sreg = EXTRACT_OPERAND (0, RS, *ip);
c67a084a
NC
6612 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6613 return;
6614
6615 ep.X_op = O_constant;
6616 ep.X_add_number = 0xcfff0000;
6617 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6618 ep.X_add_number = 0xffff;
6619 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6620 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6621 }
6622}
6623
6624static void
6625fix_loongson2f (struct mips_cl_insn * ip)
6626{
6627 if (mips_fix_loongson2f_nop)
6628 fix_loongson2f_nop (ip);
6629
6630 if (mips_fix_loongson2f_jump)
6631 fix_loongson2f_jump (ip);
6632}
6633
a4e06468
RS
6634/* IP is a branch that has a delay slot, and we need to fill it
6635 automatically. Return true if we can do that by swapping IP
e407c74b
NC
6636 with the previous instruction.
6637 ADDRESS_EXPR is an operand of the instruction to be used with
6638 RELOC_TYPE. */
a4e06468
RS
6639
6640static bfd_boolean
e407c74b 6641can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6642 bfd_reloc_code_real_type *reloc_type)
a4e06468 6643{
2b0c8b40 6644 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
a4e06468 6645 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
9d5de888 6646 unsigned int fpr_read, prev_fpr_write;
a4e06468
RS
6647
6648 /* -O2 and above is required for this optimization. */
6649 if (mips_optimize < 2)
6650 return FALSE;
6651
6652 /* If we have seen .set volatile or .set nomove, don't optimize. */
6653 if (mips_opts.nomove)
6654 return FALSE;
6655
6656 /* We can't swap if the previous instruction's position is fixed. */
6657 if (history[0].fixed_p)
6658 return FALSE;
6659
6660 /* If the previous previous insn was in a .set noreorder, we can't
6661 swap. Actually, the MIPS assembler will swap in this situation.
6662 However, gcc configured -with-gnu-as will generate code like
6663
6664 .set noreorder
6665 lw $4,XXX
6666 .set reorder
6667 INSN
6668 bne $4,$0,foo
6669
6670 in which we can not swap the bne and INSN. If gcc is not configured
6671 -with-gnu-as, it does not output the .set pseudo-ops. */
6672 if (history[1].noreorder_p)
6673 return FALSE;
6674
87333bb7
MR
6675 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6676 This means that the previous instruction was a 4-byte one anyhow. */
a4e06468
RS
6677 if (mips_opts.mips16 && history[0].fixp[0])
6678 return FALSE;
6679
6680 /* If the branch is itself the target of a branch, we can not swap.
6681 We cheat on this; all we check for is whether there is a label on
6682 this instruction. If there are any branches to anything other than
6683 a label, users must use .set noreorder. */
6684 if (seg_info (now_seg)->label_list)
6685 return FALSE;
6686
6687 /* If the previous instruction is in a variant frag other than this
2309ddf2 6688 branch's one, we cannot do the swap. This does not apply to
9301f9c3
MR
6689 MIPS16 code, which uses variant frags for different purposes. */
6690 if (!mips_opts.mips16
a4e06468
RS
6691 && history[0].frag
6692 && history[0].frag->fr_type == rs_machine_dependent)
6693 return FALSE;
6694
bcd530a7
RS
6695 /* We do not swap with instructions that cannot architecturally
6696 be placed in a branch delay slot, such as SYNC or ERET. We
6697 also refrain from swapping with a trap instruction, since it
6698 complicates trap handlers to have the trap instruction be in
6699 a delay slot. */
a4e06468 6700 prev_pinfo = history[0].insn_mo->pinfo;
bcd530a7 6701 if (prev_pinfo & INSN_NO_DELAY_SLOT)
a4e06468
RS
6702 return FALSE;
6703
6704 /* Check for conflicts between the branch and the instructions
6705 before the candidate delay slot. */
6706 if (nops_for_insn (0, history + 1, ip) > 0)
6707 return FALSE;
6708
6709 /* Check for conflicts between the swapped sequence and the
6710 target of the branch. */
6711 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6712 return FALSE;
6713
6714 /* If the branch reads a register that the previous
6715 instruction sets, we can not swap. */
6716 gpr_read = gpr_read_mask (ip);
6717 prev_gpr_write = gpr_write_mask (&history[0]);
6718 if (gpr_read & prev_gpr_write)
6719 return FALSE;
6720
9d5de888
CF
6721 fpr_read = fpr_read_mask (ip);
6722 prev_fpr_write = fpr_write_mask (&history[0]);
6723 if (fpr_read & prev_fpr_write)
6724 return FALSE;
6725
a4e06468
RS
6726 /* If the branch writes a register that the previous
6727 instruction sets, we can not swap. */
6728 gpr_write = gpr_write_mask (ip);
6729 if (gpr_write & prev_gpr_write)
6730 return FALSE;
6731
6732 /* If the branch writes a register that the previous
6733 instruction reads, we can not swap. */
6734 prev_gpr_read = gpr_read_mask (&history[0]);
6735 if (gpr_write & prev_gpr_read)
6736 return FALSE;
6737
6738 /* If one instruction sets a condition code and the
6739 other one uses a condition code, we can not swap. */
6740 pinfo = ip->insn_mo->pinfo;
6741 if ((pinfo & INSN_READ_COND_CODE)
6742 && (prev_pinfo & INSN_WRITE_COND_CODE))
6743 return FALSE;
6744 if ((pinfo & INSN_WRITE_COND_CODE)
6745 && (prev_pinfo & INSN_READ_COND_CODE))
6746 return FALSE;
6747
6748 /* If the previous instruction uses the PC, we can not swap. */
2b0c8b40 6749 prev_pinfo2 = history[0].insn_mo->pinfo2;
26545944 6750 if (prev_pinfo2 & INSN2_READ_PC)
2b0c8b40 6751 return FALSE;
a4e06468 6752
df58fc94
RS
6753 /* If the previous instruction has an incorrect size for a fixed
6754 branch delay slot in microMIPS mode, we cannot swap. */
2309ddf2
MR
6755 pinfo2 = ip->insn_mo->pinfo2;
6756 if (mips_opts.micromips
6757 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6758 && insn_length (history) != 2)
6759 return FALSE;
6760 if (mips_opts.micromips
6761 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6762 && insn_length (history) != 4)
6763 return FALSE;
6764
e407c74b
NC
6765 /* On R5900 short loops need to be fixed by inserting a nop in
6766 the branch delay slots.
6767 A short loop can be terminated too early. */
6768 if (mips_opts.arch == CPU_R5900
6769 /* Check if instruction has a parameter, ignore "j $31". */
6770 && (address_expr != NULL)
6771 /* Parameter must be 16 bit. */
6772 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6773 /* Branch to same segment. */
41065f5e 6774 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
e407c74b 6775 /* Branch to same code fragment. */
41065f5e 6776 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
e407c74b 6777 /* Can only calculate branch offset if value is known. */
41065f5e 6778 && symbol_constant_p (address_expr->X_add_symbol)
e407c74b
NC
6779 /* Check if branch is really conditional. */
6780 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6781 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6782 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6783 {
6784 int distance;
6785 /* Check if loop is shorter than 6 instructions including
6786 branch and delay slot. */
41065f5e 6787 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
e407c74b
NC
6788 if (distance <= 20)
6789 {
6790 int i;
6791 int rv;
6792
6793 rv = FALSE;
6794 /* When the loop includes branches or jumps,
6795 it is not a short loop. */
6796 for (i = 0; i < (distance / 4); i++)
6797 {
6798 if ((history[i].cleared_p)
41065f5e 6799 || delayed_branch_p (&history[i]))
e407c74b
NC
6800 {
6801 rv = TRUE;
6802 break;
6803 }
6804 }
6805 if (rv == FALSE)
6806 {
6807 /* Insert nop after branch to fix short loop. */
6808 return FALSE;
6809 }
6810 }
6811 }
6812
a4e06468
RS
6813 return TRUE;
6814}
6815
e407c74b
NC
6816/* Decide how we should add IP to the instruction stream.
6817 ADDRESS_EXPR is an operand of the instruction to be used with
6818 RELOC_TYPE. */
a4e06468
RS
6819
6820static enum append_method
e407c74b 6821get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6822 bfd_reloc_code_real_type *reloc_type)
a4e06468 6823{
a4e06468
RS
6824 /* The relaxed version of a macro sequence must be inherently
6825 hazard-free. */
6826 if (mips_relax.sequence == 2)
6827 return APPEND_ADD;
6828
3b821a28 6829 /* We must not dabble with instructions in a ".set noreorder" block. */
a4e06468
RS
6830 if (mips_opts.noreorder)
6831 return APPEND_ADD;
6832
6833 /* Otherwise, it's our responsibility to fill branch delay slots. */
11625dd8 6834 if (delayed_branch_p (ip))
a4e06468 6835 {
e407c74b
NC
6836 if (!branch_likely_p (ip)
6837 && can_swap_branch_p (ip, address_expr, reloc_type))
a4e06468
RS
6838 return APPEND_SWAP;
6839
6840 if (mips_opts.mips16
6841 && ISA_SUPPORTS_MIPS16E
fc76e730 6842 && gpr_read_mask (ip) != 0)
a4e06468
RS
6843 return APPEND_ADD_COMPACT;
6844
7bd374a4
MR
6845 if (mips_opts.micromips
6846 && ((ip->insn_opcode & 0xffe0) == 0x4580
6847 || (!forced_insn_length
6848 && ((ip->insn_opcode & 0xfc00) == 0xcc00
6849 || (ip->insn_opcode & 0xdc00) == 0x8c00))
6850 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
6851 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
6852 return APPEND_ADD_COMPACT;
6853
a4e06468
RS
6854 return APPEND_ADD_WITH_NOP;
6855 }
6856
a4e06468
RS
6857 return APPEND_ADD;
6858}
6859
7bd374a4
MR
6860/* IP is an instruction whose opcode we have just changed, END points
6861 to the end of the opcode table processed. Point IP->insn_mo to the
6862 new opcode's definition. */
ceb94aa5
RS
6863
6864static void
7bd374a4 6865find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
ceb94aa5 6866{
7bd374a4 6867 const struct mips_opcode *mo;
ceb94aa5 6868
ceb94aa5 6869 for (mo = ip->insn_mo; mo < end; mo++)
7bd374a4
MR
6870 if (mo->pinfo != INSN_MACRO
6871 && (ip->insn_opcode & mo->mask) == mo->match)
ceb94aa5
RS
6872 {
6873 ip->insn_mo = mo;
6874 return;
6875 }
6876 abort ();
6877}
6878
7bd374a4
MR
6879/* IP is a MIPS16 instruction whose opcode we have just changed.
6880 Point IP->insn_mo to the new opcode's definition. */
6881
6882static void
6883find_altered_mips16_opcode (struct mips_cl_insn *ip)
6884{
6885 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
6886}
6887
6888/* IP is a microMIPS instruction whose opcode we have just changed.
6889 Point IP->insn_mo to the new opcode's definition. */
6890
6891static void
6892find_altered_micromips_opcode (struct mips_cl_insn *ip)
6893{
6894 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
6895}
6896
df58fc94
RS
6897/* For microMIPS macros, we need to generate a local number label
6898 as the target of branches. */
6899#define MICROMIPS_LABEL_CHAR '\037'
6900static unsigned long micromips_target_label;
6901static char micromips_target_name[32];
6902
6903static char *
6904micromips_label_name (void)
6905{
6906 char *p = micromips_target_name;
6907 char symbol_name_temporary[24];
6908 unsigned long l;
6909 int i;
6910
6911 if (*p)
6912 return p;
6913
6914 i = 0;
6915 l = micromips_target_label;
6916#ifdef LOCAL_LABEL_PREFIX
6917 *p++ = LOCAL_LABEL_PREFIX;
6918#endif
6919 *p++ = 'L';
6920 *p++ = MICROMIPS_LABEL_CHAR;
6921 do
6922 {
6923 symbol_name_temporary[i++] = l % 10 + '0';
6924 l /= 10;
6925 }
6926 while (l != 0);
6927 while (i > 0)
6928 *p++ = symbol_name_temporary[--i];
6929 *p = '\0';
6930
6931 return micromips_target_name;
6932}
6933
6934static void
6935micromips_label_expr (expressionS *label_expr)
6936{
6937 label_expr->X_op = O_symbol;
6938 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6939 label_expr->X_add_number = 0;
6940}
6941
6942static void
6943micromips_label_inc (void)
6944{
6945 micromips_target_label++;
6946 *micromips_target_name = '\0';
6947}
6948
6949static void
6950micromips_add_label (void)
6951{
6952 symbolS *s;
6953
6954 s = colon (micromips_label_name ());
6955 micromips_label_inc ();
f3ded42a 6956 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
df58fc94
RS
6957}
6958
6959/* If assembling microMIPS code, then return the microMIPS reloc
6960 corresponding to the requested one if any. Otherwise return
6961 the reloc unchanged. */
6962
6963static bfd_reloc_code_real_type
6964micromips_map_reloc (bfd_reloc_code_real_type reloc)
6965{
6966 static const bfd_reloc_code_real_type relocs[][2] =
6967 {
6968 /* Keep sorted incrementally by the left-hand key. */
6969 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6970 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6971 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6972 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6973 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6974 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6975 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6976 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6977 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6978 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6979 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6980 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6981 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6982 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6983 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6984 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6985 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6986 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6987 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6988 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6989 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6990 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6991 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6992 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6993 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6994 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6995 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6996 };
6997 bfd_reloc_code_real_type r;
6998 size_t i;
6999
7000 if (!mips_opts.micromips)
7001 return reloc;
7002 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7003 {
7004 r = relocs[i][0];
7005 if (r > reloc)
7006 return reloc;
7007 if (r == reloc)
7008 return relocs[i][1];
7009 }
7010 return reloc;
7011}
7012
b886a2ab
RS
7013/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7014 Return true on success, storing the resolved value in RESULT. */
7015
7016static bfd_boolean
7017calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7018 offsetT *result)
7019{
7020 switch (reloc)
7021 {
7022 case BFD_RELOC_MIPS_HIGHEST:
7023 case BFD_RELOC_MICROMIPS_HIGHEST:
7024 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7025 return TRUE;
7026
7027 case BFD_RELOC_MIPS_HIGHER:
7028 case BFD_RELOC_MICROMIPS_HIGHER:
7029 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7030 return TRUE;
7031
7032 case BFD_RELOC_HI16_S:
41947d9e 7033 case BFD_RELOC_HI16_S_PCREL:
b886a2ab
RS
7034 case BFD_RELOC_MICROMIPS_HI16_S:
7035 case BFD_RELOC_MIPS16_HI16_S:
7036 *result = ((operand + 0x8000) >> 16) & 0xffff;
7037 return TRUE;
7038
7039 case BFD_RELOC_HI16:
7040 case BFD_RELOC_MICROMIPS_HI16:
7041 case BFD_RELOC_MIPS16_HI16:
7042 *result = (operand >> 16) & 0xffff;
7043 return TRUE;
7044
7045 case BFD_RELOC_LO16:
41947d9e 7046 case BFD_RELOC_LO16_PCREL:
b886a2ab
RS
7047 case BFD_RELOC_MICROMIPS_LO16:
7048 case BFD_RELOC_MIPS16_LO16:
7049 *result = operand & 0xffff;
7050 return TRUE;
7051
7052 case BFD_RELOC_UNUSED:
7053 *result = operand;
7054 return TRUE;
7055
7056 default:
7057 return FALSE;
7058 }
7059}
7060
71400594
RS
7061/* Output an instruction. IP is the instruction information.
7062 ADDRESS_EXPR is an operand of the instruction to be used with
df58fc94
RS
7063 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7064 a macro expansion. */
71400594
RS
7065
7066static void
7067append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
df58fc94 7068 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
71400594 7069{
14fe068b 7070 unsigned long prev_pinfo2, pinfo;
71400594 7071 bfd_boolean relaxed_branch = FALSE;
a4e06468 7072 enum append_method method;
2309ddf2 7073 bfd_boolean relax32;
2b0c8b40 7074 int branch_disp;
71400594 7075
2309ddf2 7076 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
c67a084a
NC
7077 fix_loongson2f (ip);
7078
738f4d98 7079 file_ase_mips16 |= mips_opts.mips16;
df58fc94 7080 file_ase_micromips |= mips_opts.micromips;
738f4d98 7081
df58fc94 7082 prev_pinfo2 = history[0].insn_mo->pinfo2;
71400594 7083 pinfo = ip->insn_mo->pinfo;
df58fc94 7084
7bd374a4
MR
7085 /* Don't raise alarm about `nods' frags as they'll fill in the right
7086 kind of nop in relaxation if required. */
df58fc94
RS
7087 if (mips_opts.micromips
7088 && !expansionp
7bd374a4
MR
7089 && !(history[0].frag
7090 && history[0].frag->fr_type == rs_machine_dependent
7091 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7092 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
df58fc94
RS
7093 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7094 && micromips_insn_length (ip->insn_mo) != 2)
7095 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7096 && micromips_insn_length (ip->insn_mo) != 4)))
1661c76c 7097 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
df58fc94 7098 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
71400594 7099
15be625d
CM
7100 if (address_expr == NULL)
7101 ip->complete_p = 1;
b886a2ab
RS
7102 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7103 && reloc_type[1] == BFD_RELOC_UNUSED
7104 && reloc_type[2] == BFD_RELOC_UNUSED
15be625d
CM
7105 && address_expr->X_op == O_constant)
7106 {
15be625d
CM
7107 switch (*reloc_type)
7108 {
15be625d 7109 case BFD_RELOC_MIPS_JMP:
df58fc94
RS
7110 {
7111 int shift;
7112
17c6c9d9
MR
7113 /* Shift is 2, unusually, for microMIPS JALX. */
7114 shift = (mips_opts.micromips
7115 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
df58fc94
RS
7116 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7117 as_bad (_("jump to misaligned address (0x%lx)"),
7118 (unsigned long) address_expr->X_add_number);
7119 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7120 & 0x3ffffff);
335574df 7121 ip->complete_p = 1;
df58fc94 7122 }
15be625d
CM
7123 break;
7124
7125 case BFD_RELOC_MIPS16_JMP:
7126 if ((address_expr->X_add_number & 3) != 0)
7127 as_bad (_("jump to misaligned address (0x%lx)"),
7128 (unsigned long) address_expr->X_add_number);
7129 ip->insn_opcode |=
7130 (((address_expr->X_add_number & 0x7c0000) << 3)
7131 | ((address_expr->X_add_number & 0xf800000) >> 7)
7132 | ((address_expr->X_add_number & 0x3fffc) >> 2));
335574df 7133 ip->complete_p = 1;
15be625d
CM
7134 break;
7135
7136 case BFD_RELOC_16_PCREL_S2:
df58fc94
RS
7137 {
7138 int shift;
7139
7140 shift = mips_opts.micromips ? 1 : 2;
7141 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7142 as_bad (_("branch to misaligned address (0x%lx)"),
7143 (unsigned long) address_expr->X_add_number);
7144 if (!mips_relax_branch)
7145 {
7146 if ((address_expr->X_add_number + (1 << (shift + 15)))
7147 & ~((1 << (shift + 16)) - 1))
7148 as_bad (_("branch address range overflow (0x%lx)"),
7149 (unsigned long) address_expr->X_add_number);
7150 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7151 & 0xffff);
7152 }
df58fc94 7153 }
15be625d
CM
7154 break;
7155
7361da2c
AB
7156 case BFD_RELOC_MIPS_21_PCREL_S2:
7157 {
7158 int shift;
7159
7160 shift = 2;
7161 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7162 as_bad (_("branch to misaligned address (0x%lx)"),
7163 (unsigned long) address_expr->X_add_number);
7164 if ((address_expr->X_add_number + (1 << (shift + 20)))
7165 & ~((1 << (shift + 21)) - 1))
7166 as_bad (_("branch address range overflow (0x%lx)"),
7167 (unsigned long) address_expr->X_add_number);
7168 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7169 & 0x1fffff);
7170 }
7171 break;
7172
7173 case BFD_RELOC_MIPS_26_PCREL_S2:
7174 {
7175 int shift;
7176
7177 shift = 2;
7178 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7179 as_bad (_("branch to misaligned address (0x%lx)"),
7180 (unsigned long) address_expr->X_add_number);
7181 if ((address_expr->X_add_number + (1 << (shift + 25)))
7182 & ~((1 << (shift + 26)) - 1))
7183 as_bad (_("branch address range overflow (0x%lx)"),
7184 (unsigned long) address_expr->X_add_number);
7185 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7186 & 0x3ffffff);
7187 }
7188 break;
7189
15be625d 7190 default:
b886a2ab
RS
7191 {
7192 offsetT value;
7193
7194 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7195 &value))
7196 {
7197 ip->insn_opcode |= value & 0xffff;
7198 ip->complete_p = 1;
7199 }
7200 }
7201 break;
7202 }
15be625d
CM
7203 }
7204
71400594
RS
7205 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7206 {
7207 /* There are a lot of optimizations we could do that we don't.
7208 In particular, we do not, in general, reorder instructions.
7209 If you use gcc with optimization, it will reorder
7210 instructions and generally do much more optimization then we
7211 do here; repeating all that work in the assembler would only
7212 benefit hand written assembly code, and does not seem worth
7213 it. */
7214 int nops = (mips_optimize == 0
932d1a1b
RS
7215 ? nops_for_insn (0, history, NULL)
7216 : nops_for_insn_or_target (0, history, ip));
71400594 7217 if (nops > 0)
252b5132
RH
7218 {
7219 fragS *old_frag;
7220 unsigned long old_frag_offset;
7221 int i;
252b5132
RH
7222
7223 old_frag = frag_now;
7224 old_frag_offset = frag_now_fix ();
7225
7226 for (i = 0; i < nops; i++)
14fe068b
RS
7227 add_fixed_insn (NOP_INSN);
7228 insert_into_history (0, nops, NOP_INSN);
252b5132
RH
7229
7230 if (listing)
7231 {
7232 listing_prev_line ();
7233 /* We may be at the start of a variant frag. In case we
7234 are, make sure there is enough space for the frag
7235 after the frags created by listing_prev_line. The
7236 argument to frag_grow here must be at least as large
7237 as the argument to all other calls to frag_grow in
7238 this file. We don't have to worry about being in the
7239 middle of a variant frag, because the variants insert
7240 all needed nop instructions themselves. */
7241 frag_grow (40);
7242 }
7243
462427c4 7244 mips_move_text_labels ();
252b5132
RH
7245
7246#ifndef NO_ECOFF_DEBUGGING
7247 if (ECOFF_DEBUGGING)
7248 ecoff_fix_loc (old_frag, old_frag_offset);
7249#endif
7250 }
71400594
RS
7251 }
7252 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7253 {
932d1a1b
RS
7254 int nops;
7255
7256 /* Work out how many nops in prev_nop_frag are needed by IP,
7257 ignoring hazards generated by the first prev_nop_frag_since
7258 instructions. */
7259 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
9c2799c2 7260 gas_assert (nops <= prev_nop_frag_holds);
252b5132 7261
71400594
RS
7262 /* Enforce NOPS as a minimum. */
7263 if (nops > prev_nop_frag_required)
7264 prev_nop_frag_required = nops;
252b5132 7265
71400594
RS
7266 if (prev_nop_frag_holds == prev_nop_frag_required)
7267 {
7268 /* Settle for the current number of nops. Update the history
7269 accordingly (for the benefit of any future .set reorder code). */
7270 prev_nop_frag = NULL;
7271 insert_into_history (prev_nop_frag_since,
7272 prev_nop_frag_holds, NOP_INSN);
7273 }
7274 else
7275 {
7276 /* Allow this instruction to replace one of the nops that was
7277 tentatively added to prev_nop_frag. */
df58fc94 7278 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
71400594
RS
7279 prev_nop_frag_holds--;
7280 prev_nop_frag_since++;
252b5132
RH
7281 }
7282 }
7283
e407c74b 7284 method = get_append_method (ip, address_expr, reloc_type);
2b0c8b40 7285 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
a4e06468 7286
e410add4
RS
7287 dwarf2_emit_insn (0);
7288 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7289 so "move" the instruction address accordingly.
7290
7291 Also, it doesn't seem appropriate for the assembler to reorder .loc
7292 entries. If this instruction is a branch that we are going to swap
7293 with the previous instruction, the two instructions should be
7294 treated as a unit, and the debug information for both instructions
7295 should refer to the start of the branch sequence. Using the
7296 current position is certainly wrong when swapping a 32-bit branch
7297 and a 16-bit delay slot, since the current position would then be
7298 in the middle of a branch. */
7299 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
58e2ea4d 7300
df58fc94
RS
7301 relax32 = (mips_relax_branch
7302 /* Don't try branch relaxation within .set nomacro, or within
7303 .set noat if we use $at for PIC computations. If it turns
7304 out that the branch was out-of-range, we'll get an error. */
7305 && !mips_opts.warn_about_macros
7306 && (mips_opts.at || mips_pic == NO_PIC)
3bf0dbfb
MR
7307 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7308 as they have no complementing branches. */
7309 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
df58fc94
RS
7310
7311 if (!HAVE_CODE_COMPRESSION
7312 && address_expr
7313 && relax32
0b25d3e6 7314 && *reloc_type == BFD_RELOC_16_PCREL_S2
11625dd8 7315 && delayed_branch_p (ip))
4a6a3df4 7316 {
895921c9 7317 relaxed_branch = TRUE;
1e915849
RS
7318 add_relaxed_insn (ip, (relaxed_branch_length
7319 (NULL, NULL,
11625dd8
RS
7320 uncond_branch_p (ip) ? -1
7321 : branch_likely_p (ip) ? 1
1e915849
RS
7322 : 0)), 4,
7323 RELAX_BRANCH_ENCODE
66b3e8da 7324 (AT,
11625dd8
RS
7325 uncond_branch_p (ip),
7326 branch_likely_p (ip),
1e915849
RS
7327 pinfo & INSN_WRITE_GPR_31,
7328 0),
7329 address_expr->X_add_symbol,
7330 address_expr->X_add_number);
4a6a3df4
AO
7331 *reloc_type = BFD_RELOC_UNUSED;
7332 }
df58fc94
RS
7333 else if (mips_opts.micromips
7334 && address_expr
7335 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7336 || *reloc_type > BFD_RELOC_UNUSED)
40209cad
MR
7337 && (delayed_branch_p (ip) || compact_branch_p (ip))
7338 /* Don't try branch relaxation when users specify
7339 16-bit/32-bit instructions. */
7340 && !forced_insn_length)
df58fc94 7341 {
7bd374a4
MR
7342 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7343 && *reloc_type > BFD_RELOC_UNUSED);
df58fc94 7344 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
11625dd8 7345 int uncond = uncond_branch_p (ip) ? -1 : 0;
7bd374a4
MR
7346 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7347 int nods = method == APPEND_ADD_WITH_NOP;
df58fc94 7348 int al = pinfo & INSN_WRITE_GPR_31;
7bd374a4 7349 int length32 = nods ? 8 : 4;
df58fc94
RS
7350
7351 gas_assert (address_expr != NULL);
7352 gas_assert (!mips_relax.sequence);
7353
2b0c8b40 7354 relaxed_branch = TRUE;
7bd374a4
MR
7355 if (nods)
7356 method = APPEND_ADD;
7357 if (relax32)
7358 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7359 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
8484fb75 7360 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7bd374a4 7361 uncond, compact, al, nods,
40209cad 7362 relax32, 0, 0),
df58fc94
RS
7363 address_expr->X_add_symbol,
7364 address_expr->X_add_number);
7365 *reloc_type = BFD_RELOC_UNUSED;
7366 }
7367 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
252b5132 7368 {
7fd53920
MR
7369 bfd_boolean require_unextended;
7370 bfd_boolean require_extended;
88a7ef16
MR
7371 symbolS *symbol;
7372 offsetT offset;
7373
7fd53920
MR
7374 if (forced_insn_length != 0)
7375 {
7376 require_unextended = forced_insn_length == 2;
7377 require_extended = forced_insn_length == 4;
7378 }
7379 else
7380 {
7381 require_unextended = (mips_opts.noautoextend
7382 && !mips_opcode_32bit_p (ip->insn_mo));
7383 require_extended = 0;
7384 }
7385
252b5132 7386 /* We need to set up a variant frag. */
df58fc94 7387 gas_assert (address_expr != NULL);
88a7ef16
MR
7388 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7389 symbol created by `make_expr_symbol' may not get a necessary
7390 external relocation produced. */
7391 if (address_expr->X_op == O_symbol)
7392 {
7393 symbol = address_expr->X_add_symbol;
7394 offset = address_expr->X_add_number;
7395 }
7396 else
7397 {
7398 symbol = make_expr_symbol (address_expr);
7399 offset = 0;
7400 }
1e915849
RS
7401 add_relaxed_insn (ip, 4, 0,
7402 RELAX_MIPS16_ENCODE
7403 (*reloc_type - BFD_RELOC_UNUSED,
7fd53920 7404 require_unextended, require_extended,
11625dd8 7405 delayed_branch_p (&history[0]),
1e915849 7406 history[0].mips16_absolute_jump_p),
88a7ef16 7407 symbol, offset);
252b5132 7408 }
5c04167a 7409 else if (mips_opts.mips16 && insn_length (ip) == 2)
9497f5ac 7410 {
11625dd8 7411 if (!delayed_branch_p (ip))
b8ee1a6e
DU
7412 /* Make sure there is enough room to swap this instruction with
7413 a following jump instruction. */
7414 frag_grow (6);
1e915849 7415 add_fixed_insn (ip);
252b5132
RH
7416 }
7417 else
7418 {
7419 if (mips_opts.mips16
7420 && mips_opts.noreorder
11625dd8 7421 && delayed_branch_p (&history[0]))
252b5132
RH
7422 as_warn (_("extended instruction in delay slot"));
7423
4d7206a2
RS
7424 if (mips_relax.sequence)
7425 {
7426 /* If we've reached the end of this frag, turn it into a variant
7427 frag and record the information for the instructions we've
7428 written so far. */
7429 if (frag_room () < 4)
7430 relax_close_frag ();
df58fc94 7431 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4d7206a2
RS
7432 }
7433
584892a6 7434 if (mips_relax.sequence != 2)
df58fc94
RS
7435 {
7436 if (mips_macro_warning.first_insn_sizes[0] == 0)
7437 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7438 mips_macro_warning.sizes[0] += insn_length (ip);
7439 mips_macro_warning.insns[0]++;
7440 }
584892a6 7441 if (mips_relax.sequence != 1)
df58fc94
RS
7442 {
7443 if (mips_macro_warning.first_insn_sizes[1] == 0)
7444 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7445 mips_macro_warning.sizes[1] += insn_length (ip);
7446 mips_macro_warning.insns[1]++;
7447 }
584892a6 7448
1e915849
RS
7449 if (mips_opts.mips16)
7450 {
7451 ip->fixed_p = 1;
7452 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7453 }
7454 add_fixed_insn (ip);
252b5132
RH
7455 }
7456
9fe77896 7457 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
252b5132 7458 {
df58fc94 7459 bfd_reloc_code_real_type final_type[3];
2309ddf2 7460 reloc_howto_type *howto0;
9fe77896
RS
7461 reloc_howto_type *howto;
7462 int i;
34ce925e 7463
df58fc94
RS
7464 /* Perform any necessary conversion to microMIPS relocations
7465 and find out how many relocations there actually are. */
7466 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7467 final_type[i] = micromips_map_reloc (reloc_type[i]);
7468
9fe77896
RS
7469 /* In a compound relocation, it is the final (outermost)
7470 operator that determines the relocated field. */
2309ddf2 7471 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
e8044f35
RS
7472 if (!howto)
7473 abort ();
2309ddf2
MR
7474
7475 if (i > 1)
7476 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
9fe77896
RS
7477 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7478 bfd_get_reloc_size (howto),
7479 address_expr,
2309ddf2
MR
7480 howto0 && howto0->pc_relative,
7481 final_type[0]);
9fe77896
RS
7482
7483 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2309ddf2 7484 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
9fe77896
RS
7485 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7486
7487 /* These relocations can have an addend that won't fit in
7488 4 octets for 64bit assembly. */
bad1aba3 7489 if (GPR_SIZE == 64
9fe77896
RS
7490 && ! howto->partial_inplace
7491 && (reloc_type[0] == BFD_RELOC_16
7492 || reloc_type[0] == BFD_RELOC_32
7493 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7494 || reloc_type[0] == BFD_RELOC_GPREL16
7495 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7496 || reloc_type[0] == BFD_RELOC_GPREL32
7497 || reloc_type[0] == BFD_RELOC_64
7498 || reloc_type[0] == BFD_RELOC_CTOR
7499 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7500 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7501 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7502 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7503 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7504 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7505 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7506 || hi16_reloc_p (reloc_type[0])
7507 || lo16_reloc_p (reloc_type[0])))
7508 ip->fixp[0]->fx_no_overflow = 1;
7509
ddaf2c41
MR
7510 /* These relocations can have an addend that won't fit in 2 octets. */
7511 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7512 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7513 ip->fixp[0]->fx_no_overflow = 1;
7514
9fe77896
RS
7515 if (mips_relax.sequence)
7516 {
7517 if (mips_relax.first_fixup == 0)
7518 mips_relax.first_fixup = ip->fixp[0];
7519 }
7520 else if (reloc_needs_lo_p (*reloc_type))
7521 {
7522 struct mips_hi_fixup *hi_fixup;
7523
7524 /* Reuse the last entry if it already has a matching %lo. */
7525 hi_fixup = mips_hi_fixup_list;
7526 if (hi_fixup == 0
7527 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4d7206a2 7528 {
325801bd 7529 hi_fixup = XNEW (struct mips_hi_fixup);
9fe77896
RS
7530 hi_fixup->next = mips_hi_fixup_list;
7531 mips_hi_fixup_list = hi_fixup;
4d7206a2 7532 }
9fe77896
RS
7533 hi_fixup->fixp = ip->fixp[0];
7534 hi_fixup->seg = now_seg;
7535 }
252b5132 7536
9fe77896
RS
7537 /* Add fixups for the second and third relocations, if given.
7538 Note that the ABI allows the second relocation to be
7539 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7540 moment we only use RSS_UNDEF, but we could add support
7541 for the others if it ever becomes necessary. */
7542 for (i = 1; i < 3; i++)
7543 if (reloc_type[i] != BFD_RELOC_UNUSED)
7544 {
7545 ip->fixp[i] = fix_new (ip->frag, ip->where,
7546 ip->fixp[0]->fx_size, NULL, 0,
df58fc94 7547 FALSE, final_type[i]);
f6688943 7548
9fe77896
RS
7549 /* Use fx_tcbit to mark compound relocs. */
7550 ip->fixp[0]->fx_tcbit = 1;
7551 ip->fixp[i]->fx_tcbit = 1;
7552 }
252b5132 7553 }
252b5132
RH
7554
7555 /* Update the register mask information. */
4c260379
RS
7556 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7557 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
252b5132 7558
a4e06468 7559 switch (method)
252b5132 7560 {
a4e06468
RS
7561 case APPEND_ADD:
7562 insert_into_history (0, 1, ip);
7563 break;
7564
7565 case APPEND_ADD_WITH_NOP:
14fe068b
RS
7566 {
7567 struct mips_cl_insn *nop;
7568
7569 insert_into_history (0, 1, ip);
7570 nop = get_delay_slot_nop (ip);
7571 add_fixed_insn (nop);
7572 insert_into_history (0, 1, nop);
7573 if (mips_relax.sequence)
7574 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7575 }
a4e06468
RS
7576 break;
7577
7578 case APPEND_ADD_COMPACT:
7579 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7bd374a4
MR
7580 if (mips_opts.mips16)
7581 {
7582 ip->insn_opcode |= 0x0080;
7583 find_altered_mips16_opcode (ip);
7584 }
7585 /* Convert microMIPS instructions. */
7586 else if (mips_opts.micromips)
7587 {
7588 /* jr16->jrc */
7589 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7590 ip->insn_opcode |= 0x0020;
7591 /* b16->bc */
7592 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7593 ip->insn_opcode = 0x40e00000;
7594 /* beqz16->beqzc, bnez16->bnezc */
7595 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7596 {
7597 unsigned long regno;
7598
7599 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7600 regno &= MICROMIPSOP_MASK_MD;
7601 regno = micromips_to_32_reg_d_map[regno];
7602 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7603 | (regno << MICROMIPSOP_SH_RS)
7604 | 0x40a00000) ^ 0x00400000;
7605 }
7606 /* beqz->beqzc, bnez->bnezc */
7607 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7608 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7609 | ((ip->insn_opcode >> 7) & 0x00400000)
7610 | 0x40a00000) ^ 0x00400000;
7611 /* beq $0->beqzc, bne $0->bnezc */
7612 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7613 ip->insn_opcode = (((ip->insn_opcode >>
7614 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7615 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7616 | ((ip->insn_opcode >> 7) & 0x00400000)
7617 | 0x40a00000) ^ 0x00400000;
7618 else
7619 abort ();
7620 find_altered_micromips_opcode (ip);
7621 }
7622 else
7623 abort ();
a4e06468
RS
7624 install_insn (ip);
7625 insert_into_history (0, 1, ip);
7626 break;
7627
7628 case APPEND_SWAP:
7629 {
7630 struct mips_cl_insn delay = history[0];
99e7978b
MF
7631
7632 if (relaxed_branch || delay.frag != ip->frag)
a4e06468
RS
7633 {
7634 /* Add the delay slot instruction to the end of the
7635 current frag and shrink the fixed part of the
7636 original frag. If the branch occupies the tail of
7637 the latter, move it backwards to cover the gap. */
2b0c8b40 7638 delay.frag->fr_fix -= branch_disp;
a4e06468 7639 if (delay.frag == ip->frag)
2b0c8b40 7640 move_insn (ip, ip->frag, ip->where - branch_disp);
a4e06468
RS
7641 add_fixed_insn (&delay);
7642 }
7643 else
7644 {
5e35670b
MR
7645 /* If this is not a relaxed branch and we are in the
7646 same frag, then just swap the instructions. */
7647 move_insn (ip, delay.frag, delay.where);
7648 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
a4e06468
RS
7649 }
7650 history[0] = *ip;
7651 delay.fixed_p = 1;
7652 insert_into_history (0, 1, &delay);
7653 }
7654 break;
252b5132
RH
7655 }
7656
13408f1e 7657 /* If we have just completed an unconditional branch, clear the history. */
11625dd8
RS
7658 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7659 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
e407c74b
NC
7660 {
7661 unsigned int i;
7662
79850f26 7663 mips_no_prev_insn ();
13408f1e 7664
e407c74b 7665 for (i = 0; i < ARRAY_SIZE (history); i++)
79850f26 7666 history[i].cleared_p = 1;
e407c74b
NC
7667 }
7668
df58fc94
RS
7669 /* We need to emit a label at the end of branch-likely macros. */
7670 if (emit_branch_likely_macro)
7671 {
7672 emit_branch_likely_macro = FALSE;
7673 micromips_add_label ();
7674 }
7675
252b5132
RH
7676 /* We just output an insn, so the next one doesn't have a label. */
7677 mips_clear_insn_labels ();
252b5132
RH
7678}
7679
e407c74b
NC
7680/* Forget that there was any previous instruction or label.
7681 When BRANCH is true, the branch history is also flushed. */
252b5132
RH
7682
7683static void
7d10b47d 7684mips_no_prev_insn (void)
252b5132 7685{
7d10b47d
RS
7686 prev_nop_frag = NULL;
7687 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
252b5132
RH
7688 mips_clear_insn_labels ();
7689}
7690
7d10b47d
RS
7691/* This function must be called before we emit something other than
7692 instructions. It is like mips_no_prev_insn except that it inserts
7693 any NOPS that might be needed by previous instructions. */
252b5132 7694
7d10b47d
RS
7695void
7696mips_emit_delays (void)
252b5132
RH
7697{
7698 if (! mips_opts.noreorder)
7699 {
932d1a1b 7700 int nops = nops_for_insn (0, history, NULL);
252b5132
RH
7701 if (nops > 0)
7702 {
7d10b47d
RS
7703 while (nops-- > 0)
7704 add_fixed_insn (NOP_INSN);
462427c4 7705 mips_move_text_labels ();
7d10b47d
RS
7706 }
7707 }
7708 mips_no_prev_insn ();
7709}
7710
7711/* Start a (possibly nested) noreorder block. */
7712
7713static void
7714start_noreorder (void)
7715{
7716 if (mips_opts.noreorder == 0)
7717 {
7718 unsigned int i;
7719 int nops;
7720
7721 /* None of the instructions before the .set noreorder can be moved. */
7722 for (i = 0; i < ARRAY_SIZE (history); i++)
7723 history[i].fixed_p = 1;
7724
7725 /* Insert any nops that might be needed between the .set noreorder
7726 block and the previous instructions. We will later remove any
7727 nops that turn out not to be needed. */
932d1a1b 7728 nops = nops_for_insn (0, history, NULL);
7d10b47d
RS
7729 if (nops > 0)
7730 {
7731 if (mips_optimize != 0)
252b5132
RH
7732 {
7733 /* Record the frag which holds the nop instructions, so
7734 that we can remove them if we don't need them. */
df58fc94 7735 frag_grow (nops * NOP_INSN_SIZE);
252b5132
RH
7736 prev_nop_frag = frag_now;
7737 prev_nop_frag_holds = nops;
7738 prev_nop_frag_required = 0;
7739 prev_nop_frag_since = 0;
7740 }
7741
7742 for (; nops > 0; --nops)
1e915849 7743 add_fixed_insn (NOP_INSN);
252b5132 7744
7d10b47d
RS
7745 /* Move on to a new frag, so that it is safe to simply
7746 decrease the size of prev_nop_frag. */
7747 frag_wane (frag_now);
7748 frag_new (0);
462427c4 7749 mips_move_text_labels ();
252b5132 7750 }
df58fc94 7751 mips_mark_labels ();
7d10b47d 7752 mips_clear_insn_labels ();
252b5132 7753 }
7d10b47d
RS
7754 mips_opts.noreorder++;
7755 mips_any_noreorder = 1;
7756}
252b5132 7757
7d10b47d 7758/* End a nested noreorder block. */
252b5132 7759
7d10b47d
RS
7760static void
7761end_noreorder (void)
7762{
7763 mips_opts.noreorder--;
7764 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7765 {
7766 /* Commit to inserting prev_nop_frag_required nops and go back to
7767 handling nop insertion the .set reorder way. */
7768 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
df58fc94 7769 * NOP_INSN_SIZE);
7d10b47d
RS
7770 insert_into_history (prev_nop_frag_since,
7771 prev_nop_frag_required, NOP_INSN);
7772 prev_nop_frag = NULL;
7773 }
252b5132
RH
7774}
7775
97d87491
RS
7776/* Sign-extend 32-bit mode constants that have bit 31 set and all
7777 higher bits unset. */
7778
7779static void
7780normalize_constant_expr (expressionS *ex)
7781{
7782 if (ex->X_op == O_constant
7783 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7784 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7785 - 0x80000000);
7786}
7787
7788/* Sign-extend 32-bit mode address offsets that have bit 31 set and
7789 all higher bits unset. */
7790
7791static void
7792normalize_address_expr (expressionS *ex)
7793{
7794 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7795 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7796 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7797 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7798 - 0x80000000);
7799}
7800
7801/* Try to match TOKENS against OPCODE, storing the result in INSN.
7802 Return true if the match was successful.
7803
7804 OPCODE_EXTRA is a value that should be ORed into the opcode
7805 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7806 there are more alternatives after OPCODE and SOFT_MATCH is
7807 as for mips_arg_info. */
7808
7809static bfd_boolean
7810match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7811 struct mips_operand_token *tokens, unsigned int opcode_extra,
60f20e8b 7812 bfd_boolean lax_match, bfd_boolean complete_p)
97d87491
RS
7813{
7814 const char *args;
7815 struct mips_arg_info arg;
7816 const struct mips_operand *operand;
7817 char c;
7818
7819 imm_expr.X_op = O_absent;
97d87491
RS
7820 offset_expr.X_op = O_absent;
7821 offset_reloc[0] = BFD_RELOC_UNUSED;
7822 offset_reloc[1] = BFD_RELOC_UNUSED;
7823 offset_reloc[2] = BFD_RELOC_UNUSED;
7824
7825 create_insn (insn, opcode);
60f20e8b
RS
7826 /* When no opcode suffix is specified, assume ".xyzw". */
7827 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7828 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7829 else
7830 insn->insn_opcode |= opcode_extra;
97d87491
RS
7831 memset (&arg, 0, sizeof (arg));
7832 arg.insn = insn;
7833 arg.token = tokens;
7834 arg.argnum = 1;
7835 arg.last_regno = ILLEGAL_REG;
7836 arg.dest_regno = ILLEGAL_REG;
60f20e8b 7837 arg.lax_match = lax_match;
97d87491
RS
7838 for (args = opcode->args;; ++args)
7839 {
7840 if (arg.token->type == OT_END)
7841 {
7842 /* Handle unary instructions in which only one operand is given.
7843 The source is then the same as the destination. */
7844 if (arg.opnum == 1 && *args == ',')
7845 {
7846 operand = (mips_opts.micromips
7847 ? decode_micromips_operand (args + 1)
7848 : decode_mips_operand (args + 1));
7849 if (operand && mips_optional_operand_p (operand))
7850 {
7851 arg.token = tokens;
7852 arg.argnum = 1;
7853 continue;
7854 }
7855 }
7856
7857 /* Treat elided base registers as $0. */
7858 if (strcmp (args, "(b)") == 0)
7859 args += 3;
7860
7861 if (args[0] == '+')
7862 switch (args[1])
7863 {
7864 case 'K':
7865 case 'N':
7866 /* The register suffix is optional. */
7867 args += 2;
7868 break;
7869 }
7870
7871 /* Fail the match if there were too few operands. */
7872 if (*args)
7873 return FALSE;
7874
7875 /* Successful match. */
60f20e8b
RS
7876 if (!complete_p)
7877 return TRUE;
e3de51ce 7878 clear_insn_error ();
97d87491
RS
7879 if (arg.dest_regno == arg.last_regno
7880 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7881 {
7882 if (arg.opnum == 2)
e3de51ce 7883 set_insn_error
1661c76c 7884 (0, _("source and destination must be different"));
97d87491 7885 else if (arg.last_regno == 31)
e3de51ce 7886 set_insn_error
1661c76c 7887 (0, _("a destination register must be supplied"));
97d87491 7888 }
173d3447
CF
7889 else if (arg.last_regno == 31
7890 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7891 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7892 set_insn_error (0, _("the source register must not be $31"));
97d87491
RS
7893 check_completed_insn (&arg);
7894 return TRUE;
7895 }
7896
7897 /* Fail the match if the line has too many operands. */
7898 if (*args == 0)
7899 return FALSE;
7900
7901 /* Handle characters that need to match exactly. */
7902 if (*args == '(' || *args == ')' || *args == ',')
7903 {
7904 if (match_char (&arg, *args))
7905 continue;
7906 return FALSE;
7907 }
7908 if (*args == '#')
7909 {
7910 ++args;
7911 if (arg.token->type == OT_DOUBLE_CHAR
7912 && arg.token->u.ch == *args)
7913 {
7914 ++arg.token;
7915 continue;
7916 }
7917 return FALSE;
7918 }
7919
7920 /* Handle special macro operands. Work out the properties of
7921 other operands. */
7922 arg.opnum += 1;
97d87491
RS
7923 switch (*args)
7924 {
7361da2c
AB
7925 case '-':
7926 switch (args[1])
7927 {
7928 case 'A':
7929 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7930 break;
7931
7932 case 'B':
7933 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7934 break;
7935 }
7936 break;
7937
97d87491
RS
7938 case '+':
7939 switch (args[1])
7940 {
97d87491
RS
7941 case 'i':
7942 *offset_reloc = BFD_RELOC_MIPS_JMP;
7943 break;
7361da2c
AB
7944
7945 case '\'':
7946 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7947 break;
7948
7949 case '\"':
7950 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7951 break;
97d87491
RS
7952 }
7953 break;
7954
97d87491 7955 case 'I':
1a00e612
RS
7956 if (!match_const_int (&arg, &imm_expr.X_add_number))
7957 return FALSE;
7958 imm_expr.X_op = O_constant;
bad1aba3 7959 if (GPR_SIZE == 32)
97d87491
RS
7960 normalize_constant_expr (&imm_expr);
7961 continue;
7962
7963 case 'A':
7964 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7965 {
7966 /* Assume that the offset has been elided and that what
7967 we saw was a base register. The match will fail later
7968 if that assumption turns out to be wrong. */
7969 offset_expr.X_op = O_constant;
7970 offset_expr.X_add_number = 0;
7971 }
97d87491 7972 else
1a00e612
RS
7973 {
7974 if (!match_expression (&arg, &offset_expr, offset_reloc))
7975 return FALSE;
7976 normalize_address_expr (&offset_expr);
7977 }
97d87491
RS
7978 continue;
7979
7980 case 'F':
7981 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7982 8, TRUE))
1a00e612 7983 return FALSE;
97d87491
RS
7984 continue;
7985
7986 case 'L':
7987 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7988 8, FALSE))
1a00e612 7989 return FALSE;
97d87491
RS
7990 continue;
7991
7992 case 'f':
7993 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7994 4, TRUE))
1a00e612 7995 return FALSE;
97d87491
RS
7996 continue;
7997
7998 case 'l':
7999 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8000 4, FALSE))
1a00e612 8001 return FALSE;
97d87491
RS
8002 continue;
8003
97d87491
RS
8004 case 'p':
8005 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8006 break;
8007
8008 case 'a':
8009 *offset_reloc = BFD_RELOC_MIPS_JMP;
8010 break;
8011
8012 case 'm':
8013 gas_assert (mips_opts.micromips);
8014 c = args[1];
8015 switch (c)
8016 {
8017 case 'D':
8018 case 'E':
8019 if (!forced_insn_length)
8020 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8021 else if (c == 'D')
8022 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8023 else
8024 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8025 break;
8026 }
8027 break;
8028 }
8029
8030 operand = (mips_opts.micromips
8031 ? decode_micromips_operand (args)
8032 : decode_mips_operand (args));
8033 if (!operand)
8034 abort ();
8035
8036 /* Skip prefixes. */
7361da2c 8037 if (*args == '+' || *args == 'm' || *args == '-')
97d87491
RS
8038 args++;
8039
8040 if (mips_optional_operand_p (operand)
8041 && args[1] == ','
8042 && (arg.token[0].type != OT_REG
8043 || arg.token[1].type == OT_END))
8044 {
8045 /* Assume that the register has been elided and is the
8046 same as the first operand. */
8047 arg.token = tokens;
8048 arg.argnum = 1;
8049 }
8050
8051 if (!match_operand (&arg, operand))
8052 return FALSE;
8053 }
8054}
8055
8056/* Like match_insn, but for MIPS16. */
8057
8058static bfd_boolean
8059match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
1a00e612 8060 struct mips_operand_token *tokens)
97d87491
RS
8061{
8062 const char *args;
8063 const struct mips_operand *operand;
8064 const struct mips_operand *ext_operand;
7fd53920 8065 int required_insn_length;
97d87491
RS
8066 struct mips_arg_info arg;
8067 int relax_char;
8068
7fd53920
MR
8069 if (forced_insn_length)
8070 required_insn_length = forced_insn_length;
8071 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8072 required_insn_length = 2;
8073 else
8074 required_insn_length = 0;
8075
97d87491
RS
8076 create_insn (insn, opcode);
8077 imm_expr.X_op = O_absent;
97d87491
RS
8078 offset_expr.X_op = O_absent;
8079 offset_reloc[0] = BFD_RELOC_UNUSED;
8080 offset_reloc[1] = BFD_RELOC_UNUSED;
8081 offset_reloc[2] = BFD_RELOC_UNUSED;
8082 relax_char = 0;
8083
8084 memset (&arg, 0, sizeof (arg));
8085 arg.insn = insn;
8086 arg.token = tokens;
8087 arg.argnum = 1;
8088 arg.last_regno = ILLEGAL_REG;
8089 arg.dest_regno = ILLEGAL_REG;
97d87491
RS
8090 relax_char = 0;
8091 for (args = opcode->args;; ++args)
8092 {
8093 int c;
8094
8095 if (arg.token->type == OT_END)
8096 {
8097 offsetT value;
8098
8099 /* Handle unary instructions in which only one operand is given.
8100 The source is then the same as the destination. */
8101 if (arg.opnum == 1 && *args == ',')
8102 {
8103 operand = decode_mips16_operand (args[1], FALSE);
8104 if (operand && mips_optional_operand_p (operand))
8105 {
8106 arg.token = tokens;
8107 arg.argnum = 1;
8108 continue;
8109 }
8110 }
8111
8112 /* Fail the match if there were too few operands. */
8113 if (*args)
8114 return FALSE;
8115
8116 /* Successful match. Stuff the immediate value in now, if
8117 we can. */
e3de51ce 8118 clear_insn_error ();
97d87491
RS
8119 if (opcode->pinfo == INSN_MACRO)
8120 {
8121 gas_assert (relax_char == 0 || relax_char == 'p');
8122 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8123 }
8124 else if (relax_char
8125 && offset_expr.X_op == O_constant
8126 && calculate_reloc (*offset_reloc,
8127 offset_expr.X_add_number,
8128 &value))
8129 {
8130 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7fd53920 8131 required_insn_length, &insn->insn_opcode);
97d87491
RS
8132 offset_expr.X_op = O_absent;
8133 *offset_reloc = BFD_RELOC_UNUSED;
8134 }
8135 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8136 {
7fd53920 8137 if (required_insn_length == 2)
e3de51ce 8138 set_insn_error (0, _("invalid unextended operand value"));
97d87491
RS
8139 forced_insn_length = 4;
8140 insn->insn_opcode |= MIPS16_EXTEND;
8141 }
8142 else if (relax_char)
8143 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8144
8145 check_completed_insn (&arg);
8146 return TRUE;
8147 }
8148
8149 /* Fail the match if the line has too many operands. */
8150 if (*args == 0)
8151 return FALSE;
8152
8153 /* Handle characters that need to match exactly. */
8154 if (*args == '(' || *args == ')' || *args == ',')
8155 {
8156 if (match_char (&arg, *args))
8157 continue;
8158 return FALSE;
8159 }
8160
8161 arg.opnum += 1;
8162 c = *args;
8163 switch (c)
8164 {
8165 case 'p':
8166 case 'q':
8167 case 'A':
8168 case 'B':
8169 case 'E':
8170 relax_char = c;
8171 break;
8172
8173 case 'I':
1a00e612
RS
8174 if (!match_const_int (&arg, &imm_expr.X_add_number))
8175 return FALSE;
8176 imm_expr.X_op = O_constant;
bad1aba3 8177 if (GPR_SIZE == 32)
97d87491
RS
8178 normalize_constant_expr (&imm_expr);
8179 continue;
8180
8181 case 'a':
8182 case 'i':
8183 *offset_reloc = BFD_RELOC_MIPS16_JMP;
97d87491
RS
8184 break;
8185 }
8186
7fd53920 8187 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
97d87491
RS
8188 if (!operand)
8189 abort ();
8190
b2805ed5 8191 if (operand->type != OP_PCREL)
97d87491
RS
8192 {
8193 ext_operand = decode_mips16_operand (c, TRUE);
8194 if (operand != ext_operand)
8195 {
8196 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8197 {
8198 offset_expr.X_op = O_constant;
8199 offset_expr.X_add_number = 0;
8200 relax_char = c;
8201 continue;
8202 }
8203
8204 /* We need the OT_INTEGER check because some MIPS16
8205 immediate variants are listed before the register ones. */
8206 if (arg.token->type != OT_INTEGER
8207 || !match_expression (&arg, &offset_expr, offset_reloc))
8208 return FALSE;
8209
8210 /* '8' is used for SLTI(U) and has traditionally not
8211 been allowed to take relocation operators. */
8212 if (offset_reloc[0] != BFD_RELOC_UNUSED
8213 && (ext_operand->size != 16 || c == '8'))
8214 return FALSE;
8215
8216 relax_char = c;
8217 continue;
8218 }
8219 }
8220
8221 if (mips_optional_operand_p (operand)
8222 && args[1] == ','
8223 && (arg.token[0].type != OT_REG
8224 || arg.token[1].type == OT_END))
8225 {
8226 /* Assume that the register has been elided and is the
8227 same as the first operand. */
8228 arg.token = tokens;
8229 arg.argnum = 1;
8230 }
8231
8232 if (!match_operand (&arg, operand))
8233 return FALSE;
8234 }
8235}
8236
60f20e8b
RS
8237/* Record that the current instruction is invalid for the current ISA. */
8238
8239static void
8240match_invalid_for_isa (void)
8241{
8242 set_insn_error_ss
1661c76c 8243 (0, _("opcode not supported on this processor: %s (%s)"),
60f20e8b
RS
8244 mips_cpu_info_from_arch (mips_opts.arch)->name,
8245 mips_cpu_info_from_isa (mips_opts.isa)->name);
8246}
8247
8248/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8249 Return true if a definite match or failure was found, storing any match
8250 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8251 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8252 tried and failed to match under normal conditions and now want to try a
8253 more relaxed match. */
8254
8255static bfd_boolean
8256match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8257 const struct mips_opcode *past, struct mips_operand_token *tokens,
8258 int opcode_extra, bfd_boolean lax_match)
8259{
8260 const struct mips_opcode *opcode;
8261 const struct mips_opcode *invalid_delay_slot;
8262 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8263
8264 /* Search for a match, ignoring alternatives that don't satisfy the
8265 current ISA or forced_length. */
8266 invalid_delay_slot = 0;
8267 seen_valid_for_isa = FALSE;
8268 seen_valid_for_size = FALSE;
8269 opcode = first;
8270 do
8271 {
8272 gas_assert (strcmp (opcode->name, first->name) == 0);
8273 if (is_opcode_valid (opcode))
8274 {
8275 seen_valid_for_isa = TRUE;
8276 if (is_size_valid (opcode))
8277 {
8278 bfd_boolean delay_slot_ok;
8279
8280 seen_valid_for_size = TRUE;
8281 delay_slot_ok = is_delay_slot_valid (opcode);
8282 if (match_insn (insn, opcode, tokens, opcode_extra,
8283 lax_match, delay_slot_ok))
8284 {
8285 if (!delay_slot_ok)
8286 {
8287 if (!invalid_delay_slot)
8288 invalid_delay_slot = opcode;
8289 }
8290 else
8291 return TRUE;
8292 }
8293 }
8294 }
8295 ++opcode;
8296 }
8297 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8298
8299 /* If the only matches we found had the wrong length for the delay slot,
8300 pick the first such match. We'll issue an appropriate warning later. */
8301 if (invalid_delay_slot)
8302 {
8303 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8304 lax_match, TRUE))
8305 return TRUE;
8306 abort ();
8307 }
8308
8309 /* Handle the case where we didn't try to match an instruction because
8310 all the alternatives were incompatible with the current ISA. */
8311 if (!seen_valid_for_isa)
8312 {
8313 match_invalid_for_isa ();
8314 return TRUE;
8315 }
8316
8317 /* Handle the case where we didn't try to match an instruction because
8318 all the alternatives were of the wrong size. */
8319 if (!seen_valid_for_size)
8320 {
8321 if (mips_opts.insn32)
1661c76c 8322 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
60f20e8b
RS
8323 else
8324 set_insn_error_i
1661c76c 8325 (0, _("unrecognized %d-bit version of microMIPS opcode"),
60f20e8b
RS
8326 8 * forced_insn_length);
8327 return TRUE;
8328 }
8329
8330 return FALSE;
8331}
8332
8333/* Like match_insns, but for MIPS16. */
8334
8335static bfd_boolean
8336match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8337 struct mips_operand_token *tokens)
8338{
8339 const struct mips_opcode *opcode;
8340 bfd_boolean seen_valid_for_isa;
7fd53920 8341 bfd_boolean seen_valid_for_size;
60f20e8b
RS
8342
8343 /* Search for a match, ignoring alternatives that don't satisfy the
8344 current ISA. There are no separate entries for extended forms so
8345 we deal with forced_length later. */
8346 seen_valid_for_isa = FALSE;
7fd53920 8347 seen_valid_for_size = FALSE;
60f20e8b
RS
8348 opcode = first;
8349 do
8350 {
8351 gas_assert (strcmp (opcode->name, first->name) == 0);
8352 if (is_opcode_valid_16 (opcode))
8353 {
8354 seen_valid_for_isa = TRUE;
7fd53920
MR
8355 if (is_size_valid_16 (opcode))
8356 {
8357 seen_valid_for_size = TRUE;
8358 if (match_mips16_insn (insn, opcode, tokens))
8359 return TRUE;
8360 }
60f20e8b
RS
8361 }
8362 ++opcode;
8363 }
8364 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8365 && strcmp (opcode->name, first->name) == 0);
8366
8367 /* Handle the case where we didn't try to match an instruction because
8368 all the alternatives were incompatible with the current ISA. */
8369 if (!seen_valid_for_isa)
8370 {
8371 match_invalid_for_isa ();
8372 return TRUE;
8373 }
8374
7fd53920
MR
8375 /* Handle the case where we didn't try to match an instruction because
8376 all the alternatives were of the wrong size. */
8377 if (!seen_valid_for_size)
8378 {
8379 if (forced_insn_length == 2)
8380 set_insn_error
8381 (0, _("unrecognized unextended version of MIPS16 opcode"));
8382 else
8383 set_insn_error
8384 (0, _("unrecognized extended version of MIPS16 opcode"));
8385 return TRUE;
8386 }
8387
60f20e8b
RS
8388 return FALSE;
8389}
8390
584892a6
RS
8391/* Set up global variables for the start of a new macro. */
8392
8393static void
8394macro_start (void)
8395{
8396 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
df58fc94
RS
8397 memset (&mips_macro_warning.first_insn_sizes, 0,
8398 sizeof (mips_macro_warning.first_insn_sizes));
8399 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
584892a6 8400 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
11625dd8 8401 && delayed_branch_p (&history[0]));
7bd374a4
MR
8402 if (history[0].frag
8403 && history[0].frag->fr_type == rs_machine_dependent
8404 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8405 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8406 mips_macro_warning.delay_slot_length = 0;
8407 else
8408 switch (history[0].insn_mo->pinfo2
8409 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8410 {
8411 case INSN2_BRANCH_DELAY_32BIT:
8412 mips_macro_warning.delay_slot_length = 4;
8413 break;
8414 case INSN2_BRANCH_DELAY_16BIT:
8415 mips_macro_warning.delay_slot_length = 2;
8416 break;
8417 default:
8418 mips_macro_warning.delay_slot_length = 0;
8419 break;
8420 }
df58fc94 8421 mips_macro_warning.first_frag = NULL;
584892a6
RS
8422}
8423
df58fc94
RS
8424/* Given that a macro is longer than one instruction or of the wrong size,
8425 return the appropriate warning for it. Return null if no warning is
8426 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8427 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8428 and RELAX_NOMACRO. */
584892a6
RS
8429
8430static const char *
8431macro_warning (relax_substateT subtype)
8432{
8433 if (subtype & RELAX_DELAY_SLOT)
1661c76c 8434 return _("macro instruction expanded into multiple instructions"
584892a6
RS
8435 " in a branch delay slot");
8436 else if (subtype & RELAX_NOMACRO)
1661c76c 8437 return _("macro instruction expanded into multiple instructions");
df58fc94
RS
8438 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8439 | RELAX_DELAY_SLOT_SIZE_SECOND))
8440 return ((subtype & RELAX_DELAY_SLOT_16BIT)
1661c76c 8441 ? _("macro instruction expanded into a wrong size instruction"
df58fc94 8442 " in a 16-bit branch delay slot")
1661c76c 8443 : _("macro instruction expanded into a wrong size instruction"
df58fc94 8444 " in a 32-bit branch delay slot"));
584892a6
RS
8445 else
8446 return 0;
8447}
8448
8449/* Finish up a macro. Emit warnings as appropriate. */
8450
8451static void
8452macro_end (void)
8453{
df58fc94
RS
8454 /* Relaxation warning flags. */
8455 relax_substateT subtype = 0;
8456
8457 /* Check delay slot size requirements. */
8458 if (mips_macro_warning.delay_slot_length == 2)
8459 subtype |= RELAX_DELAY_SLOT_16BIT;
8460 if (mips_macro_warning.delay_slot_length != 0)
584892a6 8461 {
df58fc94
RS
8462 if (mips_macro_warning.delay_slot_length
8463 != mips_macro_warning.first_insn_sizes[0])
8464 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8465 if (mips_macro_warning.delay_slot_length
8466 != mips_macro_warning.first_insn_sizes[1])
8467 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8468 }
584892a6 8469
df58fc94
RS
8470 /* Check instruction count requirements. */
8471 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8472 {
8473 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
584892a6
RS
8474 subtype |= RELAX_SECOND_LONGER;
8475 if (mips_opts.warn_about_macros)
8476 subtype |= RELAX_NOMACRO;
8477 if (mips_macro_warning.delay_slot_p)
8478 subtype |= RELAX_DELAY_SLOT;
df58fc94 8479 }
584892a6 8480
df58fc94
RS
8481 /* If both alternatives fail to fill a delay slot correctly,
8482 emit the warning now. */
8483 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8484 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8485 {
8486 relax_substateT s;
8487 const char *msg;
8488
8489 s = subtype & (RELAX_DELAY_SLOT_16BIT
8490 | RELAX_DELAY_SLOT_SIZE_FIRST
8491 | RELAX_DELAY_SLOT_SIZE_SECOND);
8492 msg = macro_warning (s);
8493 if (msg != NULL)
8494 as_warn ("%s", msg);
8495 subtype &= ~s;
8496 }
8497
8498 /* If both implementations are longer than 1 instruction, then emit the
8499 warning now. */
8500 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8501 {
8502 relax_substateT s;
8503 const char *msg;
8504
8505 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8506 msg = macro_warning (s);
8507 if (msg != NULL)
8508 as_warn ("%s", msg);
8509 subtype &= ~s;
584892a6 8510 }
df58fc94
RS
8511
8512 /* If any flags still set, then one implementation might need a warning
8513 and the other either will need one of a different kind or none at all.
8514 Pass any remaining flags over to relaxation. */
8515 if (mips_macro_warning.first_frag != NULL)
8516 mips_macro_warning.first_frag->fr_subtype |= subtype;
584892a6
RS
8517}
8518
df58fc94
RS
8519/* Instruction operand formats used in macros that vary between
8520 standard MIPS and microMIPS code. */
8521
833794fc 8522static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
df58fc94
RS
8523static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8524static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8525static const char * const lui_fmt[2] = { "t,u", "s,u" };
8526static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
833794fc 8527static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
df58fc94
RS
8528static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8529static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8530
833794fc 8531#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7361da2c
AB
8532#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8533 : cop12_fmt[mips_opts.micromips])
df58fc94
RS
8534#define JALR_FMT (jalr_fmt[mips_opts.micromips])
8535#define LUI_FMT (lui_fmt[mips_opts.micromips])
8536#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7361da2c
AB
8537#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8538 : mem12_fmt[mips_opts.micromips])
833794fc 8539#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
8540#define SHFT_FMT (shft_fmt[mips_opts.micromips])
8541#define TRAP_FMT (trap_fmt[mips_opts.micromips])
8542
6e1304d8
RS
8543/* Read a macro's relocation codes from *ARGS and store them in *R.
8544 The first argument in *ARGS will be either the code for a single
8545 relocation or -1 followed by the three codes that make up a
8546 composite relocation. */
8547
8548static void
8549macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8550{
8551 int i, next;
8552
8553 next = va_arg (*args, int);
8554 if (next >= 0)
8555 r[0] = (bfd_reloc_code_real_type) next;
8556 else
f2ae14a1
RS
8557 {
8558 for (i = 0; i < 3; i++)
8559 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8560 /* This function is only used for 16-bit relocation fields.
8561 To make the macro code simpler, treat an unrelocated value
8562 in the same way as BFD_RELOC_LO16. */
8563 if (r[0] == BFD_RELOC_UNUSED)
8564 r[0] = BFD_RELOC_LO16;
8565 }
6e1304d8
RS
8566}
8567
252b5132
RH
8568/* Build an instruction created by a macro expansion. This is passed
8569 a pointer to the count of instructions created so far, an
8570 expression, the name of the instruction to build, an operand format
8571 string, and corresponding arguments. */
8572
252b5132 8573static void
67c0d1eb 8574macro_build (expressionS *ep, const char *name, const char *fmt, ...)
252b5132 8575{
df58fc94 8576 const struct mips_opcode *mo = NULL;
f6688943 8577 bfd_reloc_code_real_type r[3];
df58fc94 8578 const struct mips_opcode *amo;
e077a1c8 8579 const struct mips_operand *operand;
df58fc94
RS
8580 struct hash_control *hash;
8581 struct mips_cl_insn insn;
252b5132 8582 va_list args;
e077a1c8 8583 unsigned int uval;
252b5132 8584
252b5132 8585 va_start (args, fmt);
252b5132 8586
252b5132
RH
8587 if (mips_opts.mips16)
8588 {
03ea81db 8589 mips16_macro_build (ep, name, fmt, &args);
252b5132
RH
8590 va_end (args);
8591 return;
8592 }
8593
f6688943
TS
8594 r[0] = BFD_RELOC_UNUSED;
8595 r[1] = BFD_RELOC_UNUSED;
8596 r[2] = BFD_RELOC_UNUSED;
df58fc94
RS
8597 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8598 amo = (struct mips_opcode *) hash_find (hash, name);
8599 gas_assert (amo);
8600 gas_assert (strcmp (name, amo->name) == 0);
1e915849 8601
df58fc94 8602 do
8b082fb1
TS
8603 {
8604 /* Search until we get a match for NAME. It is assumed here that
df58fc94
RS
8605 macros will never generate MDMX, MIPS-3D, or MT instructions.
8606 We try to match an instruction that fulfils the branch delay
8607 slot instruction length requirement (if any) of the previous
8608 instruction. While doing this we record the first instruction
8609 seen that matches all the other conditions and use it anyway
8610 if the requirement cannot be met; we will issue an appropriate
8611 warning later on. */
8612 if (strcmp (fmt, amo->args) == 0
8613 && amo->pinfo != INSN_MACRO
8614 && is_opcode_valid (amo)
8615 && is_size_valid (amo))
8616 {
8617 if (is_delay_slot_valid (amo))
8618 {
8619 mo = amo;
8620 break;
8621 }
8622 else if (!mo)
8623 mo = amo;
8624 }
8b082fb1 8625
df58fc94
RS
8626 ++amo;
8627 gas_assert (amo->name);
252b5132 8628 }
df58fc94 8629 while (strcmp (name, amo->name) == 0);
252b5132 8630
df58fc94 8631 gas_assert (mo);
1e915849 8632 create_insn (&insn, mo);
e077a1c8 8633 for (; *fmt; ++fmt)
252b5132 8634 {
e077a1c8 8635 switch (*fmt)
252b5132 8636 {
252b5132
RH
8637 case ',':
8638 case '(':
8639 case ')':
252b5132 8640 case 'z':
e077a1c8 8641 break;
252b5132
RH
8642
8643 case 'i':
8644 case 'j':
6e1304d8 8645 macro_read_relocs (&args, r);
9c2799c2 8646 gas_assert (*r == BFD_RELOC_GPREL16
e391c024
RS
8647 || *r == BFD_RELOC_MIPS_HIGHER
8648 || *r == BFD_RELOC_HI16_S
8649 || *r == BFD_RELOC_LO16
8650 || *r == BFD_RELOC_MIPS_GOT_OFST);
e077a1c8 8651 break;
e391c024
RS
8652
8653 case 'o':
8654 macro_read_relocs (&args, r);
e077a1c8 8655 break;
252b5132
RH
8656
8657 case 'u':
6e1304d8 8658 macro_read_relocs (&args, r);
9c2799c2 8659 gas_assert (ep != NULL
90ecf173
MR
8660 && (ep->X_op == O_constant
8661 || (ep->X_op == O_symbol
8662 && (*r == BFD_RELOC_MIPS_HIGHEST
8663 || *r == BFD_RELOC_HI16_S
8664 || *r == BFD_RELOC_HI16
8665 || *r == BFD_RELOC_GPREL16
8666 || *r == BFD_RELOC_MIPS_GOT_HI16
8667 || *r == BFD_RELOC_MIPS_CALL_HI16))));
e077a1c8 8668 break;
252b5132
RH
8669
8670 case 'p':
9c2799c2 8671 gas_assert (ep != NULL);
bad36eac 8672
252b5132
RH
8673 /*
8674 * This allows macro() to pass an immediate expression for
8675 * creating short branches without creating a symbol.
bad36eac
DJ
8676 *
8677 * We don't allow branch relaxation for these branches, as
8678 * they should only appear in ".set nomacro" anyway.
252b5132
RH
8679 */
8680 if (ep->X_op == O_constant)
8681 {
df58fc94
RS
8682 /* For microMIPS we always use relocations for branches.
8683 So we should not resolve immediate values. */
8684 gas_assert (!mips_opts.micromips);
8685
bad36eac
DJ
8686 if ((ep->X_add_number & 3) != 0)
8687 as_bad (_("branch to misaligned address (0x%lx)"),
8688 (unsigned long) ep->X_add_number);
8689 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8690 as_bad (_("branch address range overflow (0x%lx)"),
8691 (unsigned long) ep->X_add_number);
252b5132
RH
8692 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8693 ep = NULL;
8694 }
8695 else
0b25d3e6 8696 *r = BFD_RELOC_16_PCREL_S2;
e077a1c8 8697 break;
252b5132
RH
8698
8699 case 'a':
9c2799c2 8700 gas_assert (ep != NULL);
f6688943 8701 *r = BFD_RELOC_MIPS_JMP;
e077a1c8 8702 break;
d43b4baf 8703
252b5132 8704 default:
e077a1c8
RS
8705 operand = (mips_opts.micromips
8706 ? decode_micromips_operand (fmt)
8707 : decode_mips_operand (fmt));
8708 if (!operand)
8709 abort ();
8710
8711 uval = va_arg (args, int);
8712 if (operand->type == OP_CLO_CLZ_DEST)
8713 uval |= (uval << 5);
8714 insn_insert_operand (&insn, operand, uval);
8715
7361da2c 8716 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
e077a1c8
RS
8717 ++fmt;
8718 break;
252b5132 8719 }
252b5132
RH
8720 }
8721 va_end (args);
9c2799c2 8722 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8723
df58fc94 8724 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8725}
8726
8727static void
67c0d1eb 8728mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
03ea81db 8729 va_list *args)
252b5132 8730{
1e915849 8731 struct mips_opcode *mo;
252b5132 8732 struct mips_cl_insn insn;
e077a1c8 8733 const struct mips_operand *operand;
f6688943
TS
8734 bfd_reloc_code_real_type r[3]
8735 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 8736
1e915849 8737 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9c2799c2
NC
8738 gas_assert (mo);
8739 gas_assert (strcmp (name, mo->name) == 0);
252b5132 8740
1e915849 8741 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
252b5132 8742 {
1e915849 8743 ++mo;
9c2799c2
NC
8744 gas_assert (mo->name);
8745 gas_assert (strcmp (name, mo->name) == 0);
252b5132
RH
8746 }
8747
1e915849 8748 create_insn (&insn, mo);
e077a1c8 8749 for (; *fmt; ++fmt)
252b5132
RH
8750 {
8751 int c;
8752
e077a1c8 8753 c = *fmt;
252b5132
RH
8754 switch (c)
8755 {
252b5132
RH
8756 case ',':
8757 case '(':
8758 case ')':
e077a1c8 8759 break;
252b5132
RH
8760
8761 case '0':
8762 case 'S':
8763 case 'P':
8764 case 'R':
e077a1c8 8765 break;
252b5132
RH
8766
8767 case '<':
252b5132
RH
8768 case '4':
8769 case '5':
8770 case 'H':
8771 case 'W':
8772 case 'D':
8773 case 'j':
8774 case '8':
8775 case 'V':
8776 case 'C':
8777 case 'U':
8778 case 'k':
8779 case 'K':
8780 case 'p':
8781 case 'q':
8782 {
b886a2ab
RS
8783 offsetT value;
8784
9c2799c2 8785 gas_assert (ep != NULL);
252b5132
RH
8786
8787 if (ep->X_op != O_constant)
874e8986 8788 *r = (int) BFD_RELOC_UNUSED + c;
b886a2ab 8789 else if (calculate_reloc (*r, ep->X_add_number, &value))
252b5132 8790 {
b886a2ab 8791 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
252b5132 8792 ep = NULL;
f6688943 8793 *r = BFD_RELOC_UNUSED;
252b5132
RH
8794 }
8795 }
e077a1c8 8796 break;
252b5132 8797
e077a1c8
RS
8798 default:
8799 operand = decode_mips16_operand (c, FALSE);
8800 if (!operand)
8801 abort ();
252b5132 8802
4a06e5a2 8803 insn_insert_operand (&insn, operand, va_arg (*args, int));
e077a1c8
RS
8804 break;
8805 }
252b5132
RH
8806 }
8807
9c2799c2 8808 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8809
df58fc94 8810 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8811}
8812
438c16b8
TS
8813/*
8814 * Generate a "jalr" instruction with a relocation hint to the called
8815 * function. This occurs in NewABI PIC code.
8816 */
8817static void
df58fc94 8818macro_build_jalr (expressionS *ep, int cprestore)
438c16b8 8819{
df58fc94
RS
8820 static const bfd_reloc_code_real_type jalr_relocs[2]
8821 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8822 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8823 const char *jalr;
685736be 8824 char *f = NULL;
b34976b6 8825
1180b5a4 8826 if (MIPS_JALR_HINT_P (ep))
f21f8242 8827 {
cc3d92a5 8828 frag_grow (8);
f21f8242
AO
8829 f = frag_more (0);
8830 }
2906b037 8831 if (mips_opts.micromips)
df58fc94 8832 {
833794fc
MR
8833 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8834 ? "jalr" : "jalrs");
e64af278 8835 if (MIPS_JALR_HINT_P (ep)
833794fc 8836 || mips_opts.insn32
e64af278 8837 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
8838 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8839 else
8840 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8841 }
2906b037
MR
8842 else
8843 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
1180b5a4 8844 if (MIPS_JALR_HINT_P (ep))
df58fc94 8845 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
438c16b8
TS
8846}
8847
252b5132
RH
8848/*
8849 * Generate a "lui" instruction.
8850 */
8851static void
67c0d1eb 8852macro_build_lui (expressionS *ep, int regnum)
252b5132 8853{
9c2799c2 8854 gas_assert (! mips_opts.mips16);
252b5132 8855
df58fc94 8856 if (ep->X_op != O_constant)
252b5132 8857 {
9c2799c2 8858 gas_assert (ep->X_op == O_symbol);
bbe506e8
TS
8859 /* _gp_disp is a special case, used from s_cpload.
8860 __gnu_local_gp is used if mips_no_shared. */
9c2799c2 8861 gas_assert (mips_pic == NO_PIC
78e1bb40 8862 || (! HAVE_NEWABI
aa6975fb
ILT
8863 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8864 || (! mips_in_shared
bbe506e8
TS
8865 && strcmp (S_GET_NAME (ep->X_add_symbol),
8866 "__gnu_local_gp") == 0));
252b5132
RH
8867 }
8868
df58fc94 8869 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
252b5132
RH
8870}
8871
885add95
CD
8872/* Generate a sequence of instructions to do a load or store from a constant
8873 offset off of a base register (breg) into/from a target register (treg),
8874 using AT if necessary. */
8875static void
67c0d1eb
RS
8876macro_build_ldst_constoffset (expressionS *ep, const char *op,
8877 int treg, int breg, int dbl)
885add95 8878{
9c2799c2 8879 gas_assert (ep->X_op == O_constant);
885add95 8880
256ab948 8881 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8882 if (!dbl)
8883 normalize_constant_expr (ep);
256ab948 8884
67c1ffbe 8885 /* Right now, this routine can only handle signed 32-bit constants. */
ecd13cd3 8886 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
885add95
CD
8887 as_warn (_("operand overflow"));
8888
8889 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8890 {
8891 /* Signed 16-bit offset will fit in the op. Easy! */
67c0d1eb 8892 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
885add95
CD
8893 }
8894 else
8895 {
8896 /* 32-bit offset, need multiple instructions and AT, like:
8897 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8898 addu $tempreg,$tempreg,$breg
8899 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8900 to handle the complete offset. */
67c0d1eb
RS
8901 macro_build_lui (ep, AT);
8902 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8903 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
885add95 8904
741fe287 8905 if (!mips_opts.at)
1661c76c 8906 as_bad (_("macro used $at after \".set noat\""));
885add95
CD
8907 }
8908}
8909
252b5132
RH
8910/* set_at()
8911 * Generates code to set the $at register to true (one)
8912 * if reg is less than the immediate expression.
8913 */
8914static void
67c0d1eb 8915set_at (int reg, int unsignedp)
252b5132 8916{
b0e6f033 8917 if (imm_expr.X_add_number >= -0x8000
252b5132 8918 && imm_expr.X_add_number < 0x8000)
67c0d1eb
RS
8919 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8920 AT, reg, BFD_RELOC_LO16);
252b5132
RH
8921 else
8922 {
bad1aba3 8923 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 8924 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
252b5132
RH
8925 }
8926}
8927
252b5132
RH
8928/* Count the leading zeroes by performing a binary chop. This is a
8929 bulky bit of source, but performance is a LOT better for the
8930 majority of values than a simple loop to count the bits:
8931 for (lcnt = 0; (lcnt < 32); lcnt++)
8932 if ((v) & (1 << (31 - lcnt)))
8933 break;
8934 However it is not code size friendly, and the gain will drop a bit
8935 on certain cached systems.
8936*/
8937#define COUNT_TOP_ZEROES(v) \
8938 (((v) & ~0xffff) == 0 \
8939 ? ((v) & ~0xff) == 0 \
8940 ? ((v) & ~0xf) == 0 \
8941 ? ((v) & ~0x3) == 0 \
8942 ? ((v) & ~0x1) == 0 \
8943 ? !(v) \
8944 ? 32 \
8945 : 31 \
8946 : 30 \
8947 : ((v) & ~0x7) == 0 \
8948 ? 29 \
8949 : 28 \
8950 : ((v) & ~0x3f) == 0 \
8951 ? ((v) & ~0x1f) == 0 \
8952 ? 27 \
8953 : 26 \
8954 : ((v) & ~0x7f) == 0 \
8955 ? 25 \
8956 : 24 \
8957 : ((v) & ~0xfff) == 0 \
8958 ? ((v) & ~0x3ff) == 0 \
8959 ? ((v) & ~0x1ff) == 0 \
8960 ? 23 \
8961 : 22 \
8962 : ((v) & ~0x7ff) == 0 \
8963 ? 21 \
8964 : 20 \
8965 : ((v) & ~0x3fff) == 0 \
8966 ? ((v) & ~0x1fff) == 0 \
8967 ? 19 \
8968 : 18 \
8969 : ((v) & ~0x7fff) == 0 \
8970 ? 17 \
8971 : 16 \
8972 : ((v) & ~0xffffff) == 0 \
8973 ? ((v) & ~0xfffff) == 0 \
8974 ? ((v) & ~0x3ffff) == 0 \
8975 ? ((v) & ~0x1ffff) == 0 \
8976 ? 15 \
8977 : 14 \
8978 : ((v) & ~0x7ffff) == 0 \
8979 ? 13 \
8980 : 12 \
8981 : ((v) & ~0x3fffff) == 0 \
8982 ? ((v) & ~0x1fffff) == 0 \
8983 ? 11 \
8984 : 10 \
8985 : ((v) & ~0x7fffff) == 0 \
8986 ? 9 \
8987 : 8 \
8988 : ((v) & ~0xfffffff) == 0 \
8989 ? ((v) & ~0x3ffffff) == 0 \
8990 ? ((v) & ~0x1ffffff) == 0 \
8991 ? 7 \
8992 : 6 \
8993 : ((v) & ~0x7ffffff) == 0 \
8994 ? 5 \
8995 : 4 \
8996 : ((v) & ~0x3fffffff) == 0 \
8997 ? ((v) & ~0x1fffffff) == 0 \
8998 ? 3 \
8999 : 2 \
9000 : ((v) & ~0x7fffffff) == 0 \
9001 ? 1 \
9002 : 0)
9003
9004/* load_register()
67c1ffbe 9005 * This routine generates the least number of instructions necessary to load
252b5132
RH
9006 * an absolute expression value into a register.
9007 */
9008static void
67c0d1eb 9009load_register (int reg, expressionS *ep, int dbl)
252b5132
RH
9010{
9011 int freg;
9012 expressionS hi32, lo32;
9013
9014 if (ep->X_op != O_big)
9015 {
9c2799c2 9016 gas_assert (ep->X_op == O_constant);
256ab948
TS
9017
9018 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
9019 if (!dbl)
9020 normalize_constant_expr (ep);
256ab948
TS
9021
9022 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
252b5132
RH
9023 {
9024 /* We can handle 16 bit signed values with an addiu to
9025 $zero. No need to ever use daddiu here, since $zero and
9026 the result are always correct in 32 bit mode. */
67c0d1eb 9027 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9028 return;
9029 }
9030 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9031 {
9032 /* We can handle 16 bit unsigned values with an ori to
9033 $zero. */
67c0d1eb 9034 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9035 return;
9036 }
256ab948 9037 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
252b5132
RH
9038 {
9039 /* 32 bit values require an lui. */
df58fc94 9040 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 9041 if ((ep->X_add_number & 0xffff) != 0)
67c0d1eb 9042 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
252b5132
RH
9043 return;
9044 }
9045 }
9046
9047 /* The value is larger than 32 bits. */
9048
bad1aba3 9049 if (!dbl || GPR_SIZE == 32)
252b5132 9050 {
55e08f71
NC
9051 char value[32];
9052
9053 sprintf_vma (value, ep->X_add_number);
1661c76c 9054 as_bad (_("number (0x%s) larger than 32 bits"), value);
67c0d1eb 9055 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9056 return;
9057 }
9058
9059 if (ep->X_op != O_big)
9060 {
9061 hi32 = *ep;
9062 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9063 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9064 hi32.X_add_number &= 0xffffffff;
9065 lo32 = *ep;
9066 lo32.X_add_number &= 0xffffffff;
9067 }
9068 else
9069 {
9c2799c2 9070 gas_assert (ep->X_add_number > 2);
252b5132
RH
9071 if (ep->X_add_number == 3)
9072 generic_bignum[3] = 0;
9073 else if (ep->X_add_number > 4)
1661c76c 9074 as_bad (_("number larger than 64 bits"));
252b5132
RH
9075 lo32.X_op = O_constant;
9076 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9077 hi32.X_op = O_constant;
9078 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9079 }
9080
9081 if (hi32.X_add_number == 0)
9082 freg = 0;
9083 else
9084 {
9085 int shift, bit;
9086 unsigned long hi, lo;
9087
956cd1d6 9088 if (hi32.X_add_number == (offsetT) 0xffffffff)
beae10d5
KH
9089 {
9090 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9091 {
67c0d1eb 9092 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9093 return;
9094 }
9095 if (lo32.X_add_number & 0x80000000)
9096 {
df58fc94 9097 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 9098 if (lo32.X_add_number & 0xffff)
67c0d1eb 9099 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
beae10d5
KH
9100 return;
9101 }
9102 }
252b5132
RH
9103
9104 /* Check for 16bit shifted constant. We know that hi32 is
9105 non-zero, so start the mask on the first bit of the hi32
9106 value. */
9107 shift = 17;
9108 do
beae10d5
KH
9109 {
9110 unsigned long himask, lomask;
9111
9112 if (shift < 32)
9113 {
9114 himask = 0xffff >> (32 - shift);
9115 lomask = (0xffff << shift) & 0xffffffff;
9116 }
9117 else
9118 {
9119 himask = 0xffff << (shift - 32);
9120 lomask = 0;
9121 }
9122 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9123 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9124 {
9125 expressionS tmp;
9126
9127 tmp.X_op = O_constant;
9128 if (shift < 32)
9129 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9130 | (lo32.X_add_number >> shift));
9131 else
9132 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
67c0d1eb 9133 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
df58fc94 9134 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9135 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9136 return;
9137 }
f9419b05 9138 ++shift;
beae10d5
KH
9139 }
9140 while (shift <= (64 - 16));
252b5132
RH
9141
9142 /* Find the bit number of the lowest one bit, and store the
9143 shifted value in hi/lo. */
9144 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9145 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9146 if (lo != 0)
9147 {
9148 bit = 0;
9149 while ((lo & 1) == 0)
9150 {
9151 lo >>= 1;
9152 ++bit;
9153 }
9154 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9155 hi >>= bit;
9156 }
9157 else
9158 {
9159 bit = 32;
9160 while ((hi & 1) == 0)
9161 {
9162 hi >>= 1;
9163 ++bit;
9164 }
9165 lo = hi;
9166 hi = 0;
9167 }
9168
9169 /* Optimize if the shifted value is a (power of 2) - 1. */
9170 if ((hi == 0 && ((lo + 1) & lo) == 0)
9171 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
beae10d5
KH
9172 {
9173 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
252b5132 9174 if (shift != 0)
beae10d5 9175 {
252b5132
RH
9176 expressionS tmp;
9177
9178 /* This instruction will set the register to be all
9179 ones. */
beae10d5
KH
9180 tmp.X_op = O_constant;
9181 tmp.X_add_number = (offsetT) -1;
67c0d1eb 9182 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9183 if (bit != 0)
9184 {
9185 bit += shift;
df58fc94 9186 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9187 reg, reg, (bit >= 32) ? bit - 32 : bit);
beae10d5 9188 }
df58fc94 9189 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
67c0d1eb 9190 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9191 return;
9192 }
9193 }
252b5132
RH
9194
9195 /* Sign extend hi32 before calling load_register, because we can
9196 generally get better code when we load a sign extended value. */
9197 if ((hi32.X_add_number & 0x80000000) != 0)
beae10d5 9198 hi32.X_add_number |= ~(offsetT) 0xffffffff;
67c0d1eb 9199 load_register (reg, &hi32, 0);
252b5132
RH
9200 freg = reg;
9201 }
9202 if ((lo32.X_add_number & 0xffff0000) == 0)
9203 {
9204 if (freg != 0)
9205 {
df58fc94 9206 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
252b5132
RH
9207 freg = reg;
9208 }
9209 }
9210 else
9211 {
9212 expressionS mid16;
9213
956cd1d6 9214 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
beae10d5 9215 {
df58fc94
RS
9216 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9217 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
beae10d5
KH
9218 return;
9219 }
252b5132
RH
9220
9221 if (freg != 0)
9222 {
df58fc94 9223 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
252b5132
RH
9224 freg = reg;
9225 }
9226 mid16 = lo32;
9227 mid16.X_add_number >>= 16;
67c0d1eb 9228 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
df58fc94 9229 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
252b5132
RH
9230 freg = reg;
9231 }
9232 if ((lo32.X_add_number & 0xffff) != 0)
67c0d1eb 9233 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
252b5132
RH
9234}
9235
269137b2
TS
9236static inline void
9237load_delay_nop (void)
9238{
9239 if (!gpr_interlocks)
9240 macro_build (NULL, "nop", "");
9241}
9242
252b5132
RH
9243/* Load an address into a register. */
9244
9245static void
67c0d1eb 9246load_address (int reg, expressionS *ep, int *used_at)
252b5132 9247{
252b5132
RH
9248 if (ep->X_op != O_constant
9249 && ep->X_op != O_symbol)
9250 {
9251 as_bad (_("expression too complex"));
9252 ep->X_op = O_constant;
9253 }
9254
9255 if (ep->X_op == O_constant)
9256 {
67c0d1eb 9257 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
252b5132
RH
9258 return;
9259 }
9260
9261 if (mips_pic == NO_PIC)
9262 {
9263 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 9264 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
9265 Otherwise we want
9266 lui $reg,<sym> (BFD_RELOC_HI16_S)
9267 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
d6bc6245 9268 If we have an addend, we always use the latter form.
76b3015f 9269
d6bc6245
TS
9270 With 64bit address space and a usable $at we want
9271 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9272 lui $at,<sym> (BFD_RELOC_HI16_S)
9273 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9274 daddiu $at,<sym> (BFD_RELOC_LO16)
9275 dsll32 $reg,0
3a482fd5 9276 daddu $reg,$reg,$at
76b3015f 9277
c03099e6 9278 If $at is already in use, we use a path which is suboptimal
d6bc6245
TS
9279 on superscalar processors.
9280 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9281 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9282 dsll $reg,16
9283 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9284 dsll $reg,16
9285 daddiu $reg,<sym> (BFD_RELOC_LO16)
6caf9ef4
TS
9286
9287 For GP relative symbols in 64bit address space we can use
9288 the same sequence as in 32bit address space. */
aed1a261 9289 if (HAVE_64BIT_SYMBOLS)
d6bc6245 9290 {
6caf9ef4
TS
9291 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9292 && !nopic_need_relax (ep->X_add_symbol, 1))
9293 {
9294 relax_start (ep->X_add_symbol);
9295 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9296 mips_gp_register, BFD_RELOC_GPREL16);
9297 relax_switch ();
9298 }
d6bc6245 9299
741fe287 9300 if (*used_at == 0 && mips_opts.at)
d6bc6245 9301 {
df58fc94
RS
9302 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9303 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
67c0d1eb
RS
9304 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9305 BFD_RELOC_MIPS_HIGHER);
9306 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
df58fc94 9307 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
67c0d1eb 9308 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
d6bc6245
TS
9309 *used_at = 1;
9310 }
9311 else
9312 {
df58fc94 9313 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb
RS
9314 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9315 BFD_RELOC_MIPS_HIGHER);
df58fc94 9316 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9317 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
df58fc94 9318 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9319 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
d6bc6245 9320 }
6caf9ef4
TS
9321
9322 if (mips_relax.sequence)
9323 relax_end ();
d6bc6245 9324 }
252b5132
RH
9325 else
9326 {
d6bc6245 9327 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 9328 && !nopic_need_relax (ep->X_add_symbol, 1))
d6bc6245 9329 {
4d7206a2 9330 relax_start (ep->X_add_symbol);
67c0d1eb 9331 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
17a2f251 9332 mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 9333 relax_switch ();
d6bc6245 9334 }
67c0d1eb
RS
9335 macro_build_lui (ep, reg);
9336 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9337 reg, reg, BFD_RELOC_LO16);
4d7206a2
RS
9338 if (mips_relax.sequence)
9339 relax_end ();
d6bc6245 9340 }
252b5132 9341 }
0a44bf69 9342 else if (!mips_big_got)
252b5132
RH
9343 {
9344 expressionS ex;
9345
9346 /* If this is a reference to an external symbol, we want
9347 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9348 Otherwise we want
9349 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9350 nop
9351 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
f5040a92
AO
9352 If there is a constant, it must be added in after.
9353
ed6fb7bd 9354 If we have NewABI, we want
f5040a92
AO
9355 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9356 unless we're referencing a global symbol with a non-zero
9357 offset, in which case cst must be added separately. */
ed6fb7bd
SC
9358 if (HAVE_NEWABI)
9359 {
f5040a92
AO
9360 if (ep->X_add_number)
9361 {
4d7206a2 9362 ex.X_add_number = ep->X_add_number;
f5040a92 9363 ep->X_add_number = 0;
4d7206a2 9364 relax_start (ep->X_add_symbol);
67c0d1eb
RS
9365 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9366 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9367 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9368 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9369 ex.X_op = O_constant;
67c0d1eb 9370 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9371 reg, reg, BFD_RELOC_LO16);
f5040a92 9372 ep->X_add_number = ex.X_add_number;
4d7206a2 9373 relax_switch ();
f5040a92 9374 }
67c0d1eb 9375 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9376 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2
RS
9377 if (mips_relax.sequence)
9378 relax_end ();
ed6fb7bd
SC
9379 }
9380 else
9381 {
f5040a92
AO
9382 ex.X_add_number = ep->X_add_number;
9383 ep->X_add_number = 0;
67c0d1eb
RS
9384 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9385 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9386 load_delay_nop ();
4d7206a2
RS
9387 relax_start (ep->X_add_symbol);
9388 relax_switch ();
67c0d1eb 9389 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9390 BFD_RELOC_LO16);
4d7206a2 9391 relax_end ();
ed6fb7bd 9392
f5040a92
AO
9393 if (ex.X_add_number != 0)
9394 {
9395 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9396 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9397 ex.X_op = O_constant;
67c0d1eb 9398 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9399 reg, reg, BFD_RELOC_LO16);
f5040a92 9400 }
252b5132
RH
9401 }
9402 }
0a44bf69 9403 else if (mips_big_got)
252b5132
RH
9404 {
9405 expressionS ex;
252b5132
RH
9406
9407 /* This is the large GOT case. If this is a reference to an
9408 external symbol, we want
9409 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9410 addu $reg,$reg,$gp
9411 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
f5040a92
AO
9412
9413 Otherwise, for a reference to a local symbol in old ABI, we want
252b5132
RH
9414 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9415 nop
9416 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
684022ea 9417 If there is a constant, it must be added in after.
f5040a92
AO
9418
9419 In the NewABI, for local symbols, with or without offsets, we want:
438c16b8
TS
9420 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9421 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 9422 */
438c16b8
TS
9423 if (HAVE_NEWABI)
9424 {
4d7206a2 9425 ex.X_add_number = ep->X_add_number;
f5040a92 9426 ep->X_add_number = 0;
4d7206a2 9427 relax_start (ep->X_add_symbol);
df58fc94 9428 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9429 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9430 reg, reg, mips_gp_register);
9431 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9432 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
f5040a92
AO
9433 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9434 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9435 else if (ex.X_add_number)
9436 {
9437 ex.X_op = O_constant;
67c0d1eb
RS
9438 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9439 BFD_RELOC_LO16);
f5040a92
AO
9440 }
9441
9442 ep->X_add_number = ex.X_add_number;
4d7206a2 9443 relax_switch ();
67c0d1eb 9444 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9445 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
67c0d1eb
RS
9446 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9447 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 9448 relax_end ();
438c16b8 9449 }
252b5132 9450 else
438c16b8 9451 {
f5040a92
AO
9452 ex.X_add_number = ep->X_add_number;
9453 ep->X_add_number = 0;
4d7206a2 9454 relax_start (ep->X_add_symbol);
df58fc94 9455 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9456 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9457 reg, reg, mips_gp_register);
9458 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9459 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4d7206a2
RS
9460 relax_switch ();
9461 if (reg_needs_delay (mips_gp_register))
438c16b8
TS
9462 {
9463 /* We need a nop before loading from $gp. This special
9464 check is required because the lui which starts the main
9465 instruction stream does not refer to $gp, and so will not
9466 insert the nop which may be required. */
67c0d1eb 9467 macro_build (NULL, "nop", "");
438c16b8 9468 }
67c0d1eb 9469 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9470 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9471 load_delay_nop ();
67c0d1eb 9472 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9473 BFD_RELOC_LO16);
4d7206a2 9474 relax_end ();
438c16b8 9475
f5040a92
AO
9476 if (ex.X_add_number != 0)
9477 {
9478 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9479 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9480 ex.X_op = O_constant;
67c0d1eb
RS
9481 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9482 BFD_RELOC_LO16);
f5040a92 9483 }
252b5132
RH
9484 }
9485 }
252b5132
RH
9486 else
9487 abort ();
8fc2e39e 9488
741fe287 9489 if (!mips_opts.at && *used_at == 1)
1661c76c 9490 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
9491}
9492
ea1fb5dc
RS
9493/* Move the contents of register SOURCE into register DEST. */
9494
9495static void
67c0d1eb 9496move_register (int dest, int source)
ea1fb5dc 9497{
df58fc94
RS
9498 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9499 instruction specifically requires a 32-bit one. */
9500 if (mips_opts.micromips
833794fc 9501 && !mips_opts.insn32
df58fc94 9502 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7951ca42 9503 macro_build (NULL, "move", "mp,mj", dest, source);
df58fc94 9504 else
40fc1451 9505 macro_build (NULL, "or", "d,v,t", dest, source, 0);
ea1fb5dc
RS
9506}
9507
4d7206a2 9508/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
f6a22291
MR
9509 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9510 The two alternatives are:
4d7206a2
RS
9511
9512 Global symbol Local sybmol
9513 ------------- ------------
9514 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9515 ... ...
9516 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9517
9518 load_got_offset emits the first instruction and add_got_offset
f6a22291
MR
9519 emits the second for a 16-bit offset or add_got_offset_hilo emits
9520 a sequence to add a 32-bit offset using a scratch register. */
4d7206a2
RS
9521
9522static void
67c0d1eb 9523load_got_offset (int dest, expressionS *local)
4d7206a2
RS
9524{
9525 expressionS global;
9526
9527 global = *local;
9528 global.X_add_number = 0;
9529
9530 relax_start (local->X_add_symbol);
67c0d1eb
RS
9531 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9532 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2 9533 relax_switch ();
67c0d1eb
RS
9534 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9535 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2
RS
9536 relax_end ();
9537}
9538
9539static void
67c0d1eb 9540add_got_offset (int dest, expressionS *local)
4d7206a2
RS
9541{
9542 expressionS global;
9543
9544 global.X_op = O_constant;
9545 global.X_op_symbol = NULL;
9546 global.X_add_symbol = NULL;
9547 global.X_add_number = local->X_add_number;
9548
9549 relax_start (local->X_add_symbol);
67c0d1eb 9550 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4d7206a2
RS
9551 dest, dest, BFD_RELOC_LO16);
9552 relax_switch ();
67c0d1eb 9553 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4d7206a2
RS
9554 relax_end ();
9555}
9556
f6a22291
MR
9557static void
9558add_got_offset_hilo (int dest, expressionS *local, int tmp)
9559{
9560 expressionS global;
9561 int hold_mips_optimize;
9562
9563 global.X_op = O_constant;
9564 global.X_op_symbol = NULL;
9565 global.X_add_symbol = NULL;
9566 global.X_add_number = local->X_add_number;
9567
9568 relax_start (local->X_add_symbol);
9569 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9570 relax_switch ();
9571 /* Set mips_optimize around the lui instruction to avoid
9572 inserting an unnecessary nop after the lw. */
9573 hold_mips_optimize = mips_optimize;
9574 mips_optimize = 2;
9575 macro_build_lui (&global, tmp);
9576 mips_optimize = hold_mips_optimize;
9577 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9578 relax_end ();
9579
9580 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9581}
9582
df58fc94
RS
9583/* Emit a sequence of instructions to emulate a branch likely operation.
9584 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9585 is its complementing branch with the original condition negated.
9586 CALL is set if the original branch specified the link operation.
9587 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9588
9589 Code like this is produced in the noreorder mode:
9590
9591 BRNEG <args>, 1f
9592 nop
9593 b <sym>
9594 delay slot (executed only if branch taken)
9595 1:
9596
9597 or, if CALL is set:
9598
9599 BRNEG <args>, 1f
9600 nop
9601 bal <sym>
9602 delay slot (executed only if branch taken)
9603 1:
9604
9605 In the reorder mode the delay slot would be filled with a nop anyway,
9606 so code produced is simply:
9607
9608 BR <args>, <sym>
9609 nop
9610
9611 This function is used when producing code for the microMIPS ASE that
9612 does not implement branch likely instructions in hardware. */
9613
9614static void
9615macro_build_branch_likely (const char *br, const char *brneg,
9616 int call, expressionS *ep, const char *fmt,
9617 unsigned int sreg, unsigned int treg)
9618{
9619 int noreorder = mips_opts.noreorder;
9620 expressionS expr1;
9621
9622 gas_assert (mips_opts.micromips);
9623 start_noreorder ();
9624 if (noreorder)
9625 {
9626 micromips_label_expr (&expr1);
9627 macro_build (&expr1, brneg, fmt, sreg, treg);
9628 macro_build (NULL, "nop", "");
9629 macro_build (ep, call ? "bal" : "b", "p");
9630
9631 /* Set to true so that append_insn adds a label. */
9632 emit_branch_likely_macro = TRUE;
9633 }
9634 else
9635 {
9636 macro_build (ep, br, fmt, sreg, treg);
9637 macro_build (NULL, "nop", "");
9638 }
9639 end_noreorder ();
9640}
9641
9642/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9643 the condition code tested. EP specifies the branch target. */
9644
9645static void
9646macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9647{
9648 const int call = 0;
9649 const char *brneg;
9650 const char *br;
9651
9652 switch (type)
9653 {
9654 case M_BC1FL:
9655 br = "bc1f";
9656 brneg = "bc1t";
9657 break;
9658 case M_BC1TL:
9659 br = "bc1t";
9660 brneg = "bc1f";
9661 break;
9662 case M_BC2FL:
9663 br = "bc2f";
9664 brneg = "bc2t";
9665 break;
9666 case M_BC2TL:
9667 br = "bc2t";
9668 brneg = "bc2f";
9669 break;
9670 default:
9671 abort ();
9672 }
9673 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9674}
9675
9676/* Emit a two-argument branch macro specified by TYPE, using SREG as
9677 the register tested. EP specifies the branch target. */
9678
9679static void
9680macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9681{
9682 const char *brneg = NULL;
9683 const char *br;
9684 int call = 0;
9685
9686 switch (type)
9687 {
9688 case M_BGEZ:
9689 br = "bgez";
9690 break;
9691 case M_BGEZL:
9692 br = mips_opts.micromips ? "bgez" : "bgezl";
9693 brneg = "bltz";
9694 break;
9695 case M_BGEZALL:
9696 gas_assert (mips_opts.micromips);
833794fc 9697 br = mips_opts.insn32 ? "bgezal" : "bgezals";
df58fc94
RS
9698 brneg = "bltz";
9699 call = 1;
9700 break;
9701 case M_BGTZ:
9702 br = "bgtz";
9703 break;
9704 case M_BGTZL:
9705 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9706 brneg = "blez";
9707 break;
9708 case M_BLEZ:
9709 br = "blez";
9710 break;
9711 case M_BLEZL:
9712 br = mips_opts.micromips ? "blez" : "blezl";
9713 brneg = "bgtz";
9714 break;
9715 case M_BLTZ:
9716 br = "bltz";
9717 break;
9718 case M_BLTZL:
9719 br = mips_opts.micromips ? "bltz" : "bltzl";
9720 brneg = "bgez";
9721 break;
9722 case M_BLTZALL:
9723 gas_assert (mips_opts.micromips);
833794fc 9724 br = mips_opts.insn32 ? "bltzal" : "bltzals";
df58fc94
RS
9725 brneg = "bgez";
9726 call = 1;
9727 break;
9728 default:
9729 abort ();
9730 }
9731 if (mips_opts.micromips && brneg)
9732 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9733 else
9734 macro_build (ep, br, "s,p", sreg);
9735}
9736
9737/* Emit a three-argument branch macro specified by TYPE, using SREG and
9738 TREG as the registers tested. EP specifies the branch target. */
9739
9740static void
9741macro_build_branch_rsrt (int type, expressionS *ep,
9742 unsigned int sreg, unsigned int treg)
9743{
9744 const char *brneg = NULL;
9745 const int call = 0;
9746 const char *br;
9747
9748 switch (type)
9749 {
9750 case M_BEQ:
9751 case M_BEQ_I:
9752 br = "beq";
9753 break;
9754 case M_BEQL:
9755 case M_BEQL_I:
9756 br = mips_opts.micromips ? "beq" : "beql";
9757 brneg = "bne";
9758 break;
9759 case M_BNE:
9760 case M_BNE_I:
9761 br = "bne";
9762 break;
9763 case M_BNEL:
9764 case M_BNEL_I:
9765 br = mips_opts.micromips ? "bne" : "bnel";
9766 brneg = "beq";
9767 break;
9768 default:
9769 abort ();
9770 }
9771 if (mips_opts.micromips && brneg)
9772 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9773 else
9774 macro_build (ep, br, "s,t,p", sreg, treg);
9775}
9776
f2ae14a1
RS
9777/* Return the high part that should be loaded in order to make the low
9778 part of VALUE accessible using an offset of OFFBITS bits. */
9779
9780static offsetT
9781offset_high_part (offsetT value, unsigned int offbits)
9782{
9783 offsetT bias;
9784 addressT low_mask;
9785
9786 if (offbits == 0)
9787 return value;
9788 bias = 1 << (offbits - 1);
9789 low_mask = bias * 2 - 1;
9790 return (value + bias) & ~low_mask;
9791}
9792
9793/* Return true if the value stored in offset_expr and offset_reloc
9794 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9795 amount that the caller wants to add without inducing overflow
9796 and ALIGN is the known alignment of the value in bytes. */
9797
9798static bfd_boolean
9799small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9800{
9801 if (offbits == 16)
9802 {
9803 /* Accept any relocation operator if overflow isn't a concern. */
9804 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9805 return TRUE;
9806
9807 /* These relocations are guaranteed not to overflow in correct links. */
9808 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9809 || gprel16_reloc_p (*offset_reloc))
9810 return TRUE;
9811 }
9812 if (offset_expr.X_op == O_constant
9813 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9814 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9815 return TRUE;
9816 return FALSE;
9817}
9818
252b5132
RH
9819/*
9820 * Build macros
9821 * This routine implements the seemingly endless macro or synthesized
9822 * instructions and addressing modes in the mips assembly language. Many
9823 * of these macros are simple and are similar to each other. These could
67c1ffbe 9824 * probably be handled by some kind of table or grammar approach instead of
252b5132
RH
9825 * this verbose method. Others are not simple macros but are more like
9826 * optimizing code generation.
9827 * One interesting optimization is when several store macros appear
67c1ffbe 9828 * consecutively that would load AT with the upper half of the same address.
2b0f3761 9829 * The ensuing load upper instructions are omitted. This implies some kind
252b5132
RH
9830 * of global optimization. We currently only optimize within a single macro.
9831 * For many of the load and store macros if the address is specified as a
9832 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9833 * first load register 'at' with zero and use it as the base register. The
9834 * mips assembler simply uses register $zero. Just one tiny optimization
9835 * we're missing.
9836 */
9837static void
833794fc 9838macro (struct mips_cl_insn *ip, char *str)
252b5132 9839{
c0ebe874
RS
9840 const struct mips_operand_array *operands;
9841 unsigned int breg, i;
741fe287 9842 unsigned int tempreg;
252b5132 9843 int mask;
43841e91 9844 int used_at = 0;
df58fc94 9845 expressionS label_expr;
252b5132 9846 expressionS expr1;
df58fc94 9847 expressionS *ep;
252b5132
RH
9848 const char *s;
9849 const char *s2;
9850 const char *fmt;
9851 int likely = 0;
252b5132 9852 int coproc = 0;
7f3c4072 9853 int offbits = 16;
1abe91b1 9854 int call = 0;
df58fc94
RS
9855 int jals = 0;
9856 int dbl = 0;
9857 int imm = 0;
9858 int ust = 0;
9859 int lp = 0;
f2ae14a1 9860 bfd_boolean large_offset;
252b5132 9861 int off;
252b5132 9862 int hold_mips_optimize;
f2ae14a1 9863 unsigned int align;
c0ebe874 9864 unsigned int op[MAX_OPERANDS];
252b5132 9865
9c2799c2 9866 gas_assert (! mips_opts.mips16);
252b5132 9867
c0ebe874
RS
9868 operands = insn_operands (ip);
9869 for (i = 0; i < MAX_OPERANDS; i++)
9870 if (operands->operand[i])
9871 op[i] = insn_extract_operand (ip, operands->operand[i]);
9872 else
9873 op[i] = -1;
9874
252b5132
RH
9875 mask = ip->insn_mo->mask;
9876
df58fc94
RS
9877 label_expr.X_op = O_constant;
9878 label_expr.X_op_symbol = NULL;
9879 label_expr.X_add_symbol = NULL;
9880 label_expr.X_add_number = 0;
9881
252b5132
RH
9882 expr1.X_op = O_constant;
9883 expr1.X_op_symbol = NULL;
9884 expr1.X_add_symbol = NULL;
9885 expr1.X_add_number = 1;
f2ae14a1 9886 align = 1;
252b5132
RH
9887
9888 switch (mask)
9889 {
9890 case M_DABS:
9891 dbl = 1;
1a0670f3 9892 /* Fall through. */
252b5132 9893 case M_ABS:
df58fc94
RS
9894 /* bgez $a0,1f
9895 move v0,$a0
9896 sub v0,$zero,$a0
9897 1:
9898 */
252b5132 9899
7d10b47d 9900 start_noreorder ();
252b5132 9901
df58fc94
RS
9902 if (mips_opts.micromips)
9903 micromips_label_expr (&label_expr);
9904 else
9905 label_expr.X_add_number = 8;
c0ebe874
RS
9906 macro_build (&label_expr, "bgez", "s,p", op[1]);
9907 if (op[0] == op[1])
a605d2b3 9908 macro_build (NULL, "nop", "");
252b5132 9909 else
c0ebe874
RS
9910 move_register (op[0], op[1]);
9911 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
df58fc94
RS
9912 if (mips_opts.micromips)
9913 micromips_add_label ();
252b5132 9914
7d10b47d 9915 end_noreorder ();
8fc2e39e 9916 break;
252b5132
RH
9917
9918 case M_ADD_I:
9919 s = "addi";
9920 s2 = "add";
9921 goto do_addi;
9922 case M_ADDU_I:
9923 s = "addiu";
9924 s2 = "addu";
9925 goto do_addi;
9926 case M_DADD_I:
9927 dbl = 1;
9928 s = "daddi";
9929 s2 = "dadd";
df58fc94
RS
9930 if (!mips_opts.micromips)
9931 goto do_addi;
b0e6f033 9932 if (imm_expr.X_add_number >= -0x200
df58fc94
RS
9933 && imm_expr.X_add_number < 0x200)
9934 {
b0e6f033
RS
9935 macro_build (NULL, s, "t,r,.", op[0], op[1],
9936 (int) imm_expr.X_add_number);
df58fc94
RS
9937 break;
9938 }
9939 goto do_addi_i;
252b5132
RH
9940 case M_DADDU_I:
9941 dbl = 1;
9942 s = "daddiu";
9943 s2 = "daddu";
9944 do_addi:
b0e6f033 9945 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
9946 && imm_expr.X_add_number < 0x8000)
9947 {
c0ebe874 9948 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 9949 break;
252b5132 9950 }
df58fc94 9951 do_addi_i:
8fc2e39e 9952 used_at = 1;
67c0d1eb 9953 load_register (AT, &imm_expr, dbl);
c0ebe874 9954 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9955 break;
9956
9957 case M_AND_I:
9958 s = "andi";
9959 s2 = "and";
9960 goto do_bit;
9961 case M_OR_I:
9962 s = "ori";
9963 s2 = "or";
9964 goto do_bit;
9965 case M_NOR_I:
9966 s = "";
9967 s2 = "nor";
9968 goto do_bit;
9969 case M_XOR_I:
9970 s = "xori";
9971 s2 = "xor";
9972 do_bit:
b0e6f033 9973 if (imm_expr.X_add_number >= 0
252b5132
RH
9974 && imm_expr.X_add_number < 0x10000)
9975 {
9976 if (mask != M_NOR_I)
c0ebe874 9977 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
9978 else
9979 {
67c0d1eb 9980 macro_build (&imm_expr, "ori", "t,r,i",
c0ebe874
RS
9981 op[0], op[1], BFD_RELOC_LO16);
9982 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
252b5132 9983 }
8fc2e39e 9984 break;
252b5132
RH
9985 }
9986
8fc2e39e 9987 used_at = 1;
bad1aba3 9988 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 9989 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9990 break;
9991
8b082fb1
TS
9992 case M_BALIGN:
9993 switch (imm_expr.X_add_number)
9994 {
9995 case 0:
9996 macro_build (NULL, "nop", "");
9997 break;
9998 case 2:
c0ebe874 9999 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
8b082fb1 10000 break;
03f66e8a
MR
10001 case 1:
10002 case 3:
c0ebe874 10003 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
90ecf173 10004 (int) imm_expr.X_add_number);
8b082fb1 10005 break;
03f66e8a
MR
10006 default:
10007 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10008 (unsigned long) imm_expr.X_add_number);
10009 break;
8b082fb1
TS
10010 }
10011 break;
10012
df58fc94
RS
10013 case M_BC1FL:
10014 case M_BC1TL:
10015 case M_BC2FL:
10016 case M_BC2TL:
10017 gas_assert (mips_opts.micromips);
10018 macro_build_branch_ccl (mask, &offset_expr,
10019 EXTRACT_OPERAND (1, BCC, *ip));
10020 break;
10021
252b5132 10022 case M_BEQ_I:
252b5132 10023 case M_BEQL_I:
252b5132 10024 case M_BNE_I:
252b5132 10025 case M_BNEL_I:
b0e6f033 10026 if (imm_expr.X_add_number == 0)
c0ebe874 10027 op[1] = 0;
df58fc94 10028 else
252b5132 10029 {
c0ebe874 10030 op[1] = AT;
df58fc94 10031 used_at = 1;
bad1aba3 10032 load_register (op[1], &imm_expr, GPR_SIZE == 64);
252b5132 10033 }
df58fc94
RS
10034 /* Fall through. */
10035 case M_BEQL:
10036 case M_BNEL:
c0ebe874 10037 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
252b5132
RH
10038 break;
10039
10040 case M_BGEL:
10041 likely = 1;
1a0670f3 10042 /* Fall through. */
252b5132 10043 case M_BGE:
c0ebe874
RS
10044 if (op[1] == 0)
10045 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10046 else if (op[0] == 0)
10047 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
df58fc94 10048 else
252b5132 10049 {
df58fc94 10050 used_at = 1;
c0ebe874 10051 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10052 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10053 &offset_expr, AT, ZERO);
252b5132 10054 }
df58fc94
RS
10055 break;
10056
10057 case M_BGEZL:
10058 case M_BGEZALL:
10059 case M_BGTZL:
10060 case M_BLEZL:
10061 case M_BLTZL:
10062 case M_BLTZALL:
c0ebe874 10063 macro_build_branch_rs (mask, &offset_expr, op[0]);
252b5132
RH
10064 break;
10065
10066 case M_BGTL_I:
10067 likely = 1;
1a0670f3 10068 /* Fall through. */
252b5132 10069 case M_BGT_I:
90ecf173 10070 /* Check for > max integer. */
b0e6f033 10071 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
10072 {
10073 do_false:
90ecf173 10074 /* Result is always false. */
252b5132 10075 if (! likely)
a605d2b3 10076 macro_build (NULL, "nop", "");
252b5132 10077 else
df58fc94 10078 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8fc2e39e 10079 break;
252b5132 10080 }
f9419b05 10081 ++imm_expr.X_add_number;
252b5132
RH
10082 /* FALLTHROUGH */
10083 case M_BGE_I:
10084 case M_BGEL_I:
10085 if (mask == M_BGEL_I)
10086 likely = 1;
b0e6f033 10087 if (imm_expr.X_add_number == 0)
252b5132 10088 {
df58fc94 10089 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
c0ebe874 10090 &offset_expr, op[0]);
8fc2e39e 10091 break;
252b5132 10092 }
b0e6f033 10093 if (imm_expr.X_add_number == 1)
252b5132 10094 {
df58fc94 10095 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
c0ebe874 10096 &offset_expr, op[0]);
8fc2e39e 10097 break;
252b5132 10098 }
b0e6f033 10099 if (imm_expr.X_add_number <= GPR_SMIN)
252b5132
RH
10100 {
10101 do_true:
10102 /* result is always true */
1661c76c 10103 as_warn (_("branch %s is always true"), ip->insn_mo->name);
67c0d1eb 10104 macro_build (&offset_expr, "b", "p");
8fc2e39e 10105 break;
252b5132 10106 }
8fc2e39e 10107 used_at = 1;
c0ebe874 10108 set_at (op[0], 0);
df58fc94
RS
10109 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10110 &offset_expr, AT, ZERO);
252b5132
RH
10111 break;
10112
10113 case M_BGEUL:
10114 likely = 1;
1a0670f3 10115 /* Fall through. */
252b5132 10116 case M_BGEU:
c0ebe874 10117 if (op[1] == 0)
252b5132 10118 goto do_true;
c0ebe874 10119 else if (op[0] == 0)
df58fc94 10120 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10121 &offset_expr, ZERO, op[1]);
df58fc94 10122 else
252b5132 10123 {
df58fc94 10124 used_at = 1;
c0ebe874 10125 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10126 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10127 &offset_expr, AT, ZERO);
252b5132 10128 }
252b5132
RH
10129 break;
10130
10131 case M_BGTUL_I:
10132 likely = 1;
1a0670f3 10133 /* Fall through. */
252b5132 10134 case M_BGTU_I:
c0ebe874 10135 if (op[0] == 0
bad1aba3 10136 || (GPR_SIZE == 32
f01dc953 10137 && imm_expr.X_add_number == -1))
252b5132 10138 goto do_false;
f9419b05 10139 ++imm_expr.X_add_number;
252b5132
RH
10140 /* FALLTHROUGH */
10141 case M_BGEU_I:
10142 case M_BGEUL_I:
10143 if (mask == M_BGEUL_I)
10144 likely = 1;
b0e6f033 10145 if (imm_expr.X_add_number == 0)
252b5132 10146 goto do_true;
b0e6f033 10147 else if (imm_expr.X_add_number == 1)
df58fc94 10148 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10149 &offset_expr, op[0], ZERO);
df58fc94 10150 else
252b5132 10151 {
df58fc94 10152 used_at = 1;
c0ebe874 10153 set_at (op[0], 1);
df58fc94
RS
10154 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10155 &offset_expr, AT, ZERO);
252b5132 10156 }
252b5132
RH
10157 break;
10158
10159 case M_BGTL:
10160 likely = 1;
1a0670f3 10161 /* Fall through. */
252b5132 10162 case M_BGT:
c0ebe874
RS
10163 if (op[1] == 0)
10164 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10165 else if (op[0] == 0)
10166 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
df58fc94 10167 else
252b5132 10168 {
df58fc94 10169 used_at = 1;
c0ebe874 10170 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10171 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10172 &offset_expr, AT, ZERO);
252b5132 10173 }
252b5132
RH
10174 break;
10175
10176 case M_BGTUL:
10177 likely = 1;
1a0670f3 10178 /* Fall through. */
252b5132 10179 case M_BGTU:
c0ebe874 10180 if (op[1] == 0)
df58fc94 10181 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874
RS
10182 &offset_expr, op[0], ZERO);
10183 else if (op[0] == 0)
df58fc94
RS
10184 goto do_false;
10185 else
252b5132 10186 {
df58fc94 10187 used_at = 1;
c0ebe874 10188 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10189 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10190 &offset_expr, AT, ZERO);
252b5132 10191 }
252b5132
RH
10192 break;
10193
10194 case M_BLEL:
10195 likely = 1;
1a0670f3 10196 /* Fall through. */
252b5132 10197 case M_BLE:
c0ebe874
RS
10198 if (op[1] == 0)
10199 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10200 else if (op[0] == 0)
10201 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
df58fc94 10202 else
252b5132 10203 {
df58fc94 10204 used_at = 1;
c0ebe874 10205 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10206 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10207 &offset_expr, AT, ZERO);
252b5132 10208 }
252b5132
RH
10209 break;
10210
10211 case M_BLEL_I:
10212 likely = 1;
1a0670f3 10213 /* Fall through. */
252b5132 10214 case M_BLE_I:
b0e6f033 10215 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132 10216 goto do_true;
f9419b05 10217 ++imm_expr.X_add_number;
252b5132
RH
10218 /* FALLTHROUGH */
10219 case M_BLT_I:
10220 case M_BLTL_I:
10221 if (mask == M_BLTL_I)
10222 likely = 1;
b0e6f033 10223 if (imm_expr.X_add_number == 0)
c0ebe874 10224 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
b0e6f033 10225 else if (imm_expr.X_add_number == 1)
c0ebe874 10226 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
df58fc94 10227 else
252b5132 10228 {
df58fc94 10229 used_at = 1;
c0ebe874 10230 set_at (op[0], 0);
df58fc94
RS
10231 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10232 &offset_expr, AT, ZERO);
252b5132 10233 }
252b5132
RH
10234 break;
10235
10236 case M_BLEUL:
10237 likely = 1;
1a0670f3 10238 /* Fall through. */
252b5132 10239 case M_BLEU:
c0ebe874 10240 if (op[1] == 0)
df58fc94 10241 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874
RS
10242 &offset_expr, op[0], ZERO);
10243 else if (op[0] == 0)
df58fc94
RS
10244 goto do_true;
10245 else
252b5132 10246 {
df58fc94 10247 used_at = 1;
c0ebe874 10248 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10249 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10250 &offset_expr, AT, ZERO);
252b5132 10251 }
252b5132
RH
10252 break;
10253
10254 case M_BLEUL_I:
10255 likely = 1;
1a0670f3 10256 /* Fall through. */
252b5132 10257 case M_BLEU_I:
c0ebe874 10258 if (op[0] == 0
bad1aba3 10259 || (GPR_SIZE == 32
f01dc953 10260 && imm_expr.X_add_number == -1))
252b5132 10261 goto do_true;
f9419b05 10262 ++imm_expr.X_add_number;
252b5132
RH
10263 /* FALLTHROUGH */
10264 case M_BLTU_I:
10265 case M_BLTUL_I:
10266 if (mask == M_BLTUL_I)
10267 likely = 1;
b0e6f033 10268 if (imm_expr.X_add_number == 0)
252b5132 10269 goto do_false;
b0e6f033 10270 else if (imm_expr.X_add_number == 1)
df58fc94 10271 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10272 &offset_expr, op[0], ZERO);
df58fc94 10273 else
252b5132 10274 {
df58fc94 10275 used_at = 1;
c0ebe874 10276 set_at (op[0], 1);
df58fc94
RS
10277 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10278 &offset_expr, AT, ZERO);
252b5132 10279 }
252b5132
RH
10280 break;
10281
10282 case M_BLTL:
10283 likely = 1;
1a0670f3 10284 /* Fall through. */
252b5132 10285 case M_BLT:
c0ebe874
RS
10286 if (op[1] == 0)
10287 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10288 else if (op[0] == 0)
10289 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
df58fc94 10290 else
252b5132 10291 {
df58fc94 10292 used_at = 1;
c0ebe874 10293 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10294 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10295 &offset_expr, AT, ZERO);
252b5132 10296 }
252b5132
RH
10297 break;
10298
10299 case M_BLTUL:
10300 likely = 1;
1a0670f3 10301 /* Fall through. */
252b5132 10302 case M_BLTU:
c0ebe874 10303 if (op[1] == 0)
252b5132 10304 goto do_false;
c0ebe874 10305 else if (op[0] == 0)
df58fc94 10306 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10307 &offset_expr, ZERO, op[1]);
df58fc94 10308 else
252b5132 10309 {
df58fc94 10310 used_at = 1;
c0ebe874 10311 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10312 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10313 &offset_expr, AT, ZERO);
252b5132 10314 }
252b5132
RH
10315 break;
10316
10317 case M_DDIV_3:
10318 dbl = 1;
1a0670f3 10319 /* Fall through. */
252b5132
RH
10320 case M_DIV_3:
10321 s = "mflo";
10322 goto do_div3;
10323 case M_DREM_3:
10324 dbl = 1;
1a0670f3 10325 /* Fall through. */
252b5132
RH
10326 case M_REM_3:
10327 s = "mfhi";
10328 do_div3:
c0ebe874 10329 if (op[2] == 0)
252b5132 10330 {
1661c76c 10331 as_warn (_("divide by zero"));
252b5132 10332 if (mips_trap)
df58fc94 10333 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10334 else
df58fc94 10335 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10336 break;
252b5132
RH
10337 }
10338
7d10b47d 10339 start_noreorder ();
252b5132
RH
10340 if (mips_trap)
10341 {
c0ebe874
RS
10342 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10343 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
252b5132
RH
10344 }
10345 else
10346 {
df58fc94
RS
10347 if (mips_opts.micromips)
10348 micromips_label_expr (&label_expr);
10349 else
10350 label_expr.X_add_number = 8;
c0ebe874
RS
10351 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10352 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
df58fc94
RS
10353 macro_build (NULL, "break", BRK_FMT, 7);
10354 if (mips_opts.micromips)
10355 micromips_add_label ();
252b5132
RH
10356 }
10357 expr1.X_add_number = -1;
8fc2e39e 10358 used_at = 1;
f6a22291 10359 load_register (AT, &expr1, dbl);
df58fc94
RS
10360 if (mips_opts.micromips)
10361 micromips_label_expr (&label_expr);
10362 else
10363 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
c0ebe874 10364 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
252b5132
RH
10365 if (dbl)
10366 {
10367 expr1.X_add_number = 1;
f6a22291 10368 load_register (AT, &expr1, dbl);
df58fc94 10369 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
252b5132
RH
10370 }
10371 else
10372 {
10373 expr1.X_add_number = 0x80000000;
df58fc94 10374 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
252b5132
RH
10375 }
10376 if (mips_trap)
10377 {
c0ebe874 10378 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
252b5132
RH
10379 /* We want to close the noreorder block as soon as possible, so
10380 that later insns are available for delay slot filling. */
7d10b47d 10381 end_noreorder ();
252b5132
RH
10382 }
10383 else
10384 {
df58fc94
RS
10385 if (mips_opts.micromips)
10386 micromips_label_expr (&label_expr);
10387 else
10388 label_expr.X_add_number = 8;
c0ebe874 10389 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
a605d2b3 10390 macro_build (NULL, "nop", "");
252b5132
RH
10391
10392 /* We want to close the noreorder block as soon as possible, so
10393 that later insns are available for delay slot filling. */
7d10b47d 10394 end_noreorder ();
252b5132 10395
df58fc94 10396 macro_build (NULL, "break", BRK_FMT, 6);
252b5132 10397 }
df58fc94
RS
10398 if (mips_opts.micromips)
10399 micromips_add_label ();
c0ebe874 10400 macro_build (NULL, s, MFHL_FMT, op[0]);
252b5132
RH
10401 break;
10402
10403 case M_DIV_3I:
10404 s = "div";
10405 s2 = "mflo";
10406 goto do_divi;
10407 case M_DIVU_3I:
10408 s = "divu";
10409 s2 = "mflo";
10410 goto do_divi;
10411 case M_REM_3I:
10412 s = "div";
10413 s2 = "mfhi";
10414 goto do_divi;
10415 case M_REMU_3I:
10416 s = "divu";
10417 s2 = "mfhi";
10418 goto do_divi;
10419 case M_DDIV_3I:
10420 dbl = 1;
10421 s = "ddiv";
10422 s2 = "mflo";
10423 goto do_divi;
10424 case M_DDIVU_3I:
10425 dbl = 1;
10426 s = "ddivu";
10427 s2 = "mflo";
10428 goto do_divi;
10429 case M_DREM_3I:
10430 dbl = 1;
10431 s = "ddiv";
10432 s2 = "mfhi";
10433 goto do_divi;
10434 case M_DREMU_3I:
10435 dbl = 1;
10436 s = "ddivu";
10437 s2 = "mfhi";
10438 do_divi:
b0e6f033 10439 if (imm_expr.X_add_number == 0)
252b5132 10440 {
1661c76c 10441 as_warn (_("divide by zero"));
252b5132 10442 if (mips_trap)
df58fc94 10443 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10444 else
df58fc94 10445 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10446 break;
252b5132 10447 }
b0e6f033 10448 if (imm_expr.X_add_number == 1)
252b5132
RH
10449 {
10450 if (strcmp (s2, "mflo") == 0)
c0ebe874 10451 move_register (op[0], op[1]);
252b5132 10452 else
c0ebe874 10453 move_register (op[0], ZERO);
8fc2e39e 10454 break;
252b5132 10455 }
b0e6f033 10456 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
252b5132
RH
10457 {
10458 if (strcmp (s2, "mflo") == 0)
c0ebe874 10459 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
252b5132 10460 else
c0ebe874 10461 move_register (op[0], ZERO);
8fc2e39e 10462 break;
252b5132
RH
10463 }
10464
8fc2e39e 10465 used_at = 1;
67c0d1eb 10466 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
10467 macro_build (NULL, s, "z,s,t", op[1], AT);
10468 macro_build (NULL, s2, MFHL_FMT, op[0]);
252b5132
RH
10469 break;
10470
10471 case M_DIVU_3:
10472 s = "divu";
10473 s2 = "mflo";
10474 goto do_divu3;
10475 case M_REMU_3:
10476 s = "divu";
10477 s2 = "mfhi";
10478 goto do_divu3;
10479 case M_DDIVU_3:
10480 s = "ddivu";
10481 s2 = "mflo";
10482 goto do_divu3;
10483 case M_DREMU_3:
10484 s = "ddivu";
10485 s2 = "mfhi";
10486 do_divu3:
7d10b47d 10487 start_noreorder ();
252b5132
RH
10488 if (mips_trap)
10489 {
c0ebe874
RS
10490 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10491 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10492 /* We want to close the noreorder block as soon as possible, so
10493 that later insns are available for delay slot filling. */
7d10b47d 10494 end_noreorder ();
252b5132
RH
10495 }
10496 else
10497 {
df58fc94
RS
10498 if (mips_opts.micromips)
10499 micromips_label_expr (&label_expr);
10500 else
10501 label_expr.X_add_number = 8;
c0ebe874
RS
10502 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10503 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10504
10505 /* We want to close the noreorder block as soon as possible, so
10506 that later insns are available for delay slot filling. */
7d10b47d 10507 end_noreorder ();
df58fc94
RS
10508 macro_build (NULL, "break", BRK_FMT, 7);
10509 if (mips_opts.micromips)
10510 micromips_add_label ();
252b5132 10511 }
c0ebe874 10512 macro_build (NULL, s2, MFHL_FMT, op[0]);
8fc2e39e 10513 break;
252b5132 10514
1abe91b1
MR
10515 case M_DLCA_AB:
10516 dbl = 1;
1a0670f3 10517 /* Fall through. */
1abe91b1
MR
10518 case M_LCA_AB:
10519 call = 1;
10520 goto do_la;
252b5132
RH
10521 case M_DLA_AB:
10522 dbl = 1;
1a0670f3 10523 /* Fall through. */
252b5132 10524 case M_LA_AB:
1abe91b1 10525 do_la:
252b5132
RH
10526 /* Load the address of a symbol into a register. If breg is not
10527 zero, we then add a base register to it. */
10528
c0ebe874 10529 breg = op[2];
bad1aba3 10530 if (dbl && GPR_SIZE == 32)
ece794d9
MF
10531 as_warn (_("dla used to load 32-bit register; recommend using la "
10532 "instead"));
3bec30a8 10533
90ecf173 10534 if (!dbl && HAVE_64BIT_OBJECTS)
ece794d9
MF
10535 as_warn (_("la used to load 64-bit address; recommend using dla "
10536 "instead"));
3bec30a8 10537
f2ae14a1 10538 if (small_offset_p (0, align, 16))
0c11417f 10539 {
c0ebe874 10540 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
f2ae14a1 10541 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8fc2e39e 10542 break;
0c11417f
MR
10543 }
10544
c0ebe874 10545 if (mips_opts.at && (op[0] == breg))
afdbd6d0
CD
10546 {
10547 tempreg = AT;
10548 used_at = 1;
10549 }
10550 else
c0ebe874 10551 tempreg = op[0];
afdbd6d0 10552
252b5132
RH
10553 if (offset_expr.X_op != O_symbol
10554 && offset_expr.X_op != O_constant)
10555 {
1661c76c 10556 as_bad (_("expression too complex"));
252b5132
RH
10557 offset_expr.X_op = O_constant;
10558 }
10559
252b5132 10560 if (offset_expr.X_op == O_constant)
aed1a261 10561 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
252b5132
RH
10562 else if (mips_pic == NO_PIC)
10563 {
d6bc6245 10564 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 10565 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
10566 Otherwise we want
10567 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10568 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10569 If we have a constant, we need two instructions anyhow,
d6bc6245 10570 so we may as well always use the latter form.
76b3015f 10571
6caf9ef4
TS
10572 With 64bit address space and a usable $at we want
10573 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10574 lui $at,<sym> (BFD_RELOC_HI16_S)
10575 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10576 daddiu $at,<sym> (BFD_RELOC_LO16)
10577 dsll32 $tempreg,0
10578 daddu $tempreg,$tempreg,$at
10579
10580 If $at is already in use, we use a path which is suboptimal
10581 on superscalar processors.
10582 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10583 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10584 dsll $tempreg,16
10585 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10586 dsll $tempreg,16
10587 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10588
10589 For GP relative symbols in 64bit address space we can use
10590 the same sequence as in 32bit address space. */
aed1a261 10591 if (HAVE_64BIT_SYMBOLS)
252b5132 10592 {
6caf9ef4
TS
10593 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10594 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10595 {
10596 relax_start (offset_expr.X_add_symbol);
10597 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10598 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10599 relax_switch ();
10600 }
d6bc6245 10601
741fe287 10602 if (used_at == 0 && mips_opts.at)
98d3f06f 10603 {
df58fc94 10604 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10605 tempreg, BFD_RELOC_MIPS_HIGHEST);
df58fc94 10606 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10607 AT, BFD_RELOC_HI16_S);
67c0d1eb 10608 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10609 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
67c0d1eb 10610 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10611 AT, AT, BFD_RELOC_LO16);
df58fc94 10612 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 10613 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
98d3f06f
KH
10614 used_at = 1;
10615 }
10616 else
10617 {
df58fc94 10618 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10619 tempreg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb 10620 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10621 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 10622 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10623 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10624 tempreg, tempreg, BFD_RELOC_HI16_S);
df58fc94 10625 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10626 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10627 tempreg, tempreg, BFD_RELOC_LO16);
98d3f06f 10628 }
6caf9ef4
TS
10629
10630 if (mips_relax.sequence)
10631 relax_end ();
98d3f06f
KH
10632 }
10633 else
10634 {
10635 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 10636 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
98d3f06f 10637 {
4d7206a2 10638 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10639 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10640 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 10641 relax_switch ();
98d3f06f 10642 }
6943caf0 10643 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
1661c76c 10644 as_bad (_("offset too large"));
67c0d1eb
RS
10645 macro_build_lui (&offset_expr, tempreg);
10646 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10647 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2
RS
10648 if (mips_relax.sequence)
10649 relax_end ();
98d3f06f 10650 }
252b5132 10651 }
0a44bf69 10652 else if (!mips_big_got && !HAVE_NEWABI)
252b5132 10653 {
9117d219
NC
10654 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10655
252b5132
RH
10656 /* If this is a reference to an external symbol, and there
10657 is no constant, we want
10658 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
1abe91b1 10659 or for lca or if tempreg is PIC_CALL_REG
9117d219 10660 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
252b5132
RH
10661 For a local symbol, we want
10662 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10663 nop
10664 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10665
10666 If we have a small constant, and this is a reference to
10667 an external symbol, we want
10668 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10669 nop
10670 addiu $tempreg,$tempreg,<constant>
10671 For a local symbol, we want the same instruction
10672 sequence, but we output a BFD_RELOC_LO16 reloc on the
10673 addiu instruction.
10674
10675 If we have a large constant, and this is a reference to
10676 an external symbol, we want
10677 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10678 lui $at,<hiconstant>
10679 addiu $at,$at,<loconstant>
10680 addu $tempreg,$tempreg,$at
10681 For a local symbol, we want the same instruction
10682 sequence, but we output a BFD_RELOC_LO16 reloc on the
ed6fb7bd 10683 addiu instruction.
ed6fb7bd
SC
10684 */
10685
4d7206a2 10686 if (offset_expr.X_add_number == 0)
252b5132 10687 {
0a44bf69
RS
10688 if (mips_pic == SVR4_PIC
10689 && breg == 0
10690 && (call || tempreg == PIC_CALL_REG))
4d7206a2
RS
10691 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10692
10693 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10694 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10695 lw_reloc_type, mips_gp_register);
4d7206a2 10696 if (breg != 0)
252b5132
RH
10697 {
10698 /* We're going to put in an addu instruction using
10699 tempreg, so we may as well insert the nop right
10700 now. */
269137b2 10701 load_delay_nop ();
252b5132 10702 }
4d7206a2 10703 relax_switch ();
67c0d1eb
RS
10704 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10705 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 10706 load_delay_nop ();
67c0d1eb
RS
10707 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10708 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2 10709 relax_end ();
252b5132
RH
10710 /* FIXME: If breg == 0, and the next instruction uses
10711 $tempreg, then if this variant case is used an extra
10712 nop will be generated. */
10713 }
4d7206a2
RS
10714 else if (offset_expr.X_add_number >= -0x8000
10715 && offset_expr.X_add_number < 0x8000)
252b5132 10716 {
67c0d1eb 10717 load_got_offset (tempreg, &offset_expr);
269137b2 10718 load_delay_nop ();
67c0d1eb 10719 add_got_offset (tempreg, &offset_expr);
252b5132
RH
10720 }
10721 else
10722 {
4d7206a2
RS
10723 expr1.X_add_number = offset_expr.X_add_number;
10724 offset_expr.X_add_number =
43c0598f 10725 SEXT_16BIT (offset_expr.X_add_number);
67c0d1eb 10726 load_got_offset (tempreg, &offset_expr);
f6a22291 10727 offset_expr.X_add_number = expr1.X_add_number;
252b5132
RH
10728 /* If we are going to add in a base register, and the
10729 target register and the base register are the same,
10730 then we are using AT as a temporary register. Since
10731 we want to load the constant into AT, we add our
10732 current AT (from the global offset table) and the
10733 register into the register now, and pretend we were
10734 not using a base register. */
c0ebe874 10735 if (breg == op[0])
252b5132 10736 {
269137b2 10737 load_delay_nop ();
67c0d1eb 10738 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10739 op[0], AT, breg);
252b5132 10740 breg = 0;
c0ebe874 10741 tempreg = op[0];
252b5132 10742 }
f6a22291 10743 add_got_offset_hilo (tempreg, &offset_expr, AT);
252b5132
RH
10744 used_at = 1;
10745 }
10746 }
0a44bf69 10747 else if (!mips_big_got && HAVE_NEWABI)
f5040a92 10748 {
67c0d1eb 10749 int add_breg_early = 0;
f5040a92
AO
10750
10751 /* If this is a reference to an external, and there is no
10752 constant, or local symbol (*), with or without a
10753 constant, we want
10754 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
1abe91b1 10755 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10756 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10757
10758 If we have a small constant, and this is a reference to
10759 an external symbol, we want
10760 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10761 addiu $tempreg,$tempreg,<constant>
10762
10763 If we have a large constant, and this is a reference to
10764 an external symbol, we want
10765 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10766 lui $at,<hiconstant>
10767 addiu $at,$at,<loconstant>
10768 addu $tempreg,$tempreg,$at
10769
10770 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10771 local symbols, even though it introduces an additional
10772 instruction. */
10773
f5040a92
AO
10774 if (offset_expr.X_add_number)
10775 {
4d7206a2 10776 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10777 offset_expr.X_add_number = 0;
10778
4d7206a2 10779 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10780 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10781 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10782
10783 if (expr1.X_add_number >= -0x8000
10784 && expr1.X_add_number < 0x8000)
10785 {
67c0d1eb
RS
10786 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10787 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10788 }
ecd13cd3 10789 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10790 {
c0ebe874
RS
10791 unsigned int dreg;
10792
f5040a92
AO
10793 /* If we are going to add in a base register, and the
10794 target register and the base register are the same,
10795 then we are using AT as a temporary register. Since
10796 we want to load the constant into AT, we add our
10797 current AT (from the global offset table) and the
10798 register into the register now, and pretend we were
10799 not using a base register. */
c0ebe874 10800 if (breg != op[0])
f5040a92
AO
10801 dreg = tempreg;
10802 else
10803 {
9c2799c2 10804 gas_assert (tempreg == AT);
67c0d1eb 10805 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10806 op[0], AT, breg);
10807 dreg = op[0];
67c0d1eb 10808 add_breg_early = 1;
f5040a92
AO
10809 }
10810
f6a22291 10811 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10812 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10813 dreg, dreg, AT);
f5040a92 10814
f5040a92
AO
10815 used_at = 1;
10816 }
10817 else
10818 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10819
4d7206a2 10820 relax_switch ();
f5040a92
AO
10821 offset_expr.X_add_number = expr1.X_add_number;
10822
67c0d1eb
RS
10823 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10824 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10825 if (add_breg_early)
f5040a92 10826 {
67c0d1eb 10827 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10828 op[0], tempreg, breg);
f5040a92 10829 breg = 0;
c0ebe874 10830 tempreg = op[0];
f5040a92 10831 }
4d7206a2 10832 relax_end ();
f5040a92 10833 }
4d7206a2 10834 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
f5040a92 10835 {
4d7206a2 10836 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10837 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10838 BFD_RELOC_MIPS_CALL16, mips_gp_register);
4d7206a2 10839 relax_switch ();
67c0d1eb
RS
10840 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10841 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2 10842 relax_end ();
f5040a92 10843 }
4d7206a2 10844 else
f5040a92 10845 {
67c0d1eb
RS
10846 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10847 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10848 }
10849 }
0a44bf69 10850 else if (mips_big_got && !HAVE_NEWABI)
252b5132 10851 {
67c0d1eb 10852 int gpdelay;
9117d219
NC
10853 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10854 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
ed6fb7bd 10855 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
252b5132
RH
10856
10857 /* This is the large GOT case. If this is a reference to an
10858 external symbol, and there is no constant, we want
10859 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10860 addu $tempreg,$tempreg,$gp
10861 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10862 or for lca or if tempreg is PIC_CALL_REG
9117d219
NC
10863 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10864 addu $tempreg,$tempreg,$gp
10865 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
252b5132
RH
10866 For a local symbol, we want
10867 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10868 nop
10869 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10870
10871 If we have a small constant, and this is a reference to
10872 an external symbol, we want
10873 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10874 addu $tempreg,$tempreg,$gp
10875 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10876 nop
10877 addiu $tempreg,$tempreg,<constant>
10878 For a local symbol, we want
10879 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10880 nop
10881 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10882
10883 If we have a large constant, and this is a reference to
10884 an external symbol, we want
10885 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10886 addu $tempreg,$tempreg,$gp
10887 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10888 lui $at,<hiconstant>
10889 addiu $at,$at,<loconstant>
10890 addu $tempreg,$tempreg,$at
10891 For a local symbol, we want
10892 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10893 lui $at,<hiconstant>
10894 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10895 addu $tempreg,$tempreg,$at
f5040a92 10896 */
438c16b8 10897
252b5132
RH
10898 expr1.X_add_number = offset_expr.X_add_number;
10899 offset_expr.X_add_number = 0;
4d7206a2 10900 relax_start (offset_expr.X_add_symbol);
67c0d1eb 10901 gpdelay = reg_needs_delay (mips_gp_register);
1abe91b1
MR
10902 if (expr1.X_add_number == 0 && breg == 0
10903 && (call || tempreg == PIC_CALL_REG))
9117d219
NC
10904 {
10905 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10906 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10907 }
df58fc94 10908 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10909 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10910 tempreg, tempreg, mips_gp_register);
67c0d1eb 10911 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 10912 tempreg, lw_reloc_type, tempreg);
252b5132
RH
10913 if (expr1.X_add_number == 0)
10914 {
67c0d1eb 10915 if (breg != 0)
252b5132
RH
10916 {
10917 /* We're going to put in an addu instruction using
10918 tempreg, so we may as well insert the nop right
10919 now. */
269137b2 10920 load_delay_nop ();
252b5132 10921 }
252b5132
RH
10922 }
10923 else if (expr1.X_add_number >= -0x8000
10924 && expr1.X_add_number < 0x8000)
10925 {
269137b2 10926 load_delay_nop ();
67c0d1eb 10927 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10928 tempreg, tempreg, BFD_RELOC_LO16);
252b5132
RH
10929 }
10930 else
10931 {
c0ebe874
RS
10932 unsigned int dreg;
10933
252b5132
RH
10934 /* If we are going to add in a base register, and the
10935 target register and the base register are the same,
10936 then we are using AT as a temporary register. Since
10937 we want to load the constant into AT, we add our
10938 current AT (from the global offset table) and the
10939 register into the register now, and pretend we were
10940 not using a base register. */
c0ebe874 10941 if (breg != op[0])
67c0d1eb 10942 dreg = tempreg;
252b5132
RH
10943 else
10944 {
9c2799c2 10945 gas_assert (tempreg == AT);
269137b2 10946 load_delay_nop ();
67c0d1eb 10947 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10948 op[0], AT, breg);
10949 dreg = op[0];
252b5132
RH
10950 }
10951
f6a22291 10952 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10953 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
252b5132 10954
252b5132
RH
10955 used_at = 1;
10956 }
43c0598f 10957 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
4d7206a2 10958 relax_switch ();
252b5132 10959
67c0d1eb 10960 if (gpdelay)
252b5132
RH
10961 {
10962 /* This is needed because this instruction uses $gp, but
f5040a92 10963 the first instruction on the main stream does not. */
67c0d1eb 10964 macro_build (NULL, "nop", "");
252b5132 10965 }
ed6fb7bd 10966
67c0d1eb
RS
10967 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10968 local_reloc_type, mips_gp_register);
f5040a92 10969 if (expr1.X_add_number >= -0x8000
252b5132
RH
10970 && expr1.X_add_number < 0x8000)
10971 {
269137b2 10972 load_delay_nop ();
67c0d1eb
RS
10973 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10974 tempreg, tempreg, BFD_RELOC_LO16);
252b5132 10975 /* FIXME: If add_number is 0, and there was no base
f5040a92
AO
10976 register, the external symbol case ended with a load,
10977 so if the symbol turns out to not be external, and
10978 the next instruction uses tempreg, an unnecessary nop
10979 will be inserted. */
252b5132
RH
10980 }
10981 else
10982 {
c0ebe874 10983 if (breg == op[0])
252b5132
RH
10984 {
10985 /* We must add in the base register now, as in the
f5040a92 10986 external symbol case. */
9c2799c2 10987 gas_assert (tempreg == AT);
269137b2 10988 load_delay_nop ();
67c0d1eb 10989 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10990 op[0], AT, breg);
10991 tempreg = op[0];
252b5132 10992 /* We set breg to 0 because we have arranged to add
f5040a92 10993 it in in both cases. */
252b5132
RH
10994 breg = 0;
10995 }
10996
67c0d1eb
RS
10997 macro_build_lui (&expr1, AT);
10998 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10999 AT, AT, BFD_RELOC_LO16);
67c0d1eb 11000 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11001 tempreg, tempreg, AT);
8fc2e39e 11002 used_at = 1;
252b5132 11003 }
4d7206a2 11004 relax_end ();
252b5132 11005 }
0a44bf69 11006 else if (mips_big_got && HAVE_NEWABI)
f5040a92 11007 {
f5040a92
AO
11008 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11009 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
67c0d1eb 11010 int add_breg_early = 0;
f5040a92
AO
11011
11012 /* This is the large GOT case. If this is a reference to an
11013 external symbol, and there is no constant, we want
11014 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11015 add $tempreg,$tempreg,$gp
11016 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 11017 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
11018 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11019 add $tempreg,$tempreg,$gp
11020 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11021
11022 If we have a small constant, and this is a reference to
11023 an external symbol, we want
11024 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11025 add $tempreg,$tempreg,$gp
11026 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11027 addi $tempreg,$tempreg,<constant>
11028
11029 If we have a large constant, and this is a reference to
11030 an external symbol, we want
11031 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11032 addu $tempreg,$tempreg,$gp
11033 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11034 lui $at,<hiconstant>
11035 addi $at,$at,<loconstant>
11036 add $tempreg,$tempreg,$at
11037
11038 If we have NewABI, and we know it's a local symbol, we want
11039 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11040 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11041 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11042
4d7206a2 11043 relax_start (offset_expr.X_add_symbol);
f5040a92 11044
4d7206a2 11045 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11046 offset_expr.X_add_number = 0;
11047
1abe91b1
MR
11048 if (expr1.X_add_number == 0 && breg == 0
11049 && (call || tempreg == PIC_CALL_REG))
f5040a92
AO
11050 {
11051 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11052 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11053 }
df58fc94 11054 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 11055 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11056 tempreg, tempreg, mips_gp_register);
67c0d1eb
RS
11057 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11058 tempreg, lw_reloc_type, tempreg);
f5040a92
AO
11059
11060 if (expr1.X_add_number == 0)
4d7206a2 11061 ;
f5040a92
AO
11062 else if (expr1.X_add_number >= -0x8000
11063 && expr1.X_add_number < 0x8000)
11064 {
67c0d1eb 11065 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11066 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 11067 }
ecd13cd3 11068 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 11069 {
c0ebe874
RS
11070 unsigned int dreg;
11071
f5040a92
AO
11072 /* If we are going to add in a base register, and the
11073 target register and the base register are the same,
11074 then we are using AT as a temporary register. Since
11075 we want to load the constant into AT, we add our
11076 current AT (from the global offset table) and the
11077 register into the register now, and pretend we were
11078 not using a base register. */
c0ebe874 11079 if (breg != op[0])
f5040a92
AO
11080 dreg = tempreg;
11081 else
11082 {
9c2799c2 11083 gas_assert (tempreg == AT);
67c0d1eb 11084 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11085 op[0], AT, breg);
11086 dreg = op[0];
67c0d1eb 11087 add_breg_early = 1;
f5040a92
AO
11088 }
11089
f6a22291 11090 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 11091 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
f5040a92 11092
f5040a92
AO
11093 used_at = 1;
11094 }
11095 else
11096 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11097
4d7206a2 11098 relax_switch ();
f5040a92 11099 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
11100 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11101 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11102 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11103 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11104 if (add_breg_early)
f5040a92 11105 {
67c0d1eb 11106 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 11107 op[0], tempreg, breg);
f5040a92 11108 breg = 0;
c0ebe874 11109 tempreg = op[0];
f5040a92 11110 }
4d7206a2 11111 relax_end ();
f5040a92 11112 }
252b5132
RH
11113 else
11114 abort ();
11115
11116 if (breg != 0)
c0ebe874 11117 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
252b5132
RH
11118 break;
11119
52b6b6b9 11120 case M_MSGSND:
df58fc94 11121 gas_assert (!mips_opts.micromips);
c0ebe874 11122 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
c7af4273 11123 break;
52b6b6b9
JM
11124
11125 case M_MSGLD:
df58fc94 11126 gas_assert (!mips_opts.micromips);
c8276761 11127 macro_build (NULL, "c2", "C", 0x02);
c7af4273 11128 break;
52b6b6b9
JM
11129
11130 case M_MSGLD_T:
df58fc94 11131 gas_assert (!mips_opts.micromips);
c0ebe874 11132 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
c7af4273 11133 break;
52b6b6b9
JM
11134
11135 case M_MSGWAIT:
df58fc94 11136 gas_assert (!mips_opts.micromips);
52b6b6b9 11137 macro_build (NULL, "c2", "C", 3);
c7af4273 11138 break;
52b6b6b9
JM
11139
11140 case M_MSGWAIT_T:
df58fc94 11141 gas_assert (!mips_opts.micromips);
c0ebe874 11142 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
c7af4273 11143 break;
52b6b6b9 11144
252b5132
RH
11145 case M_J_A:
11146 /* The j instruction may not be used in PIC code, since it
11147 requires an absolute address. We convert it to a b
11148 instruction. */
11149 if (mips_pic == NO_PIC)
67c0d1eb 11150 macro_build (&offset_expr, "j", "a");
252b5132 11151 else
67c0d1eb 11152 macro_build (&offset_expr, "b", "p");
8fc2e39e 11153 break;
252b5132
RH
11154
11155 /* The jal instructions must be handled as macros because when
11156 generating PIC code they expand to multi-instruction
11157 sequences. Normally they are simple instructions. */
df58fc94 11158 case M_JALS_1:
c0ebe874
RS
11159 op[1] = op[0];
11160 op[0] = RA;
df58fc94
RS
11161 /* Fall through. */
11162 case M_JALS_2:
11163 gas_assert (mips_opts.micromips);
833794fc
MR
11164 if (mips_opts.insn32)
11165 {
1661c76c 11166 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11167 break;
11168 }
df58fc94
RS
11169 jals = 1;
11170 goto jal;
252b5132 11171 case M_JAL_1:
c0ebe874
RS
11172 op[1] = op[0];
11173 op[0] = RA;
252b5132
RH
11174 /* Fall through. */
11175 case M_JAL_2:
df58fc94 11176 jal:
3e722fb5 11177 if (mips_pic == NO_PIC)
df58fc94
RS
11178 {
11179 s = jals ? "jalrs" : "jalr";
e64af278 11180 if (mips_opts.micromips
833794fc 11181 && !mips_opts.insn32
c0ebe874 11182 && op[0] == RA
e64af278 11183 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11184 macro_build (NULL, s, "mj", op[1]);
df58fc94 11185 else
c0ebe874 11186 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
df58fc94 11187 }
0a44bf69 11188 else
252b5132 11189 {
df58fc94
RS
11190 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11191 && mips_cprestore_offset >= 0);
11192
c0ebe874 11193 if (op[1] != PIC_CALL_REG)
252b5132 11194 as_warn (_("MIPS PIC call to register other than $25"));
bdaaa2e1 11195
833794fc
MR
11196 s = ((mips_opts.micromips
11197 && !mips_opts.insn32
11198 && (!mips_opts.noreorder || cprestore))
df58fc94 11199 ? "jalrs" : "jalr");
e64af278 11200 if (mips_opts.micromips
833794fc 11201 && !mips_opts.insn32
c0ebe874 11202 && op[0] == RA
e64af278 11203 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11204 macro_build (NULL, s, "mj", op[1]);
df58fc94 11205 else
c0ebe874 11206 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
0a44bf69 11207 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
252b5132 11208 {
6478892d 11209 if (mips_cprestore_offset < 0)
1661c76c 11210 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11211 else
11212 {
90ecf173 11213 if (!mips_frame_reg_valid)
7a621144 11214 {
1661c76c 11215 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11216 /* Quiet this warning. */
11217 mips_frame_reg_valid = 1;
11218 }
90ecf173 11219 if (!mips_cprestore_valid)
7a621144 11220 {
1661c76c 11221 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11222 /* Quiet this warning. */
11223 mips_cprestore_valid = 1;
11224 }
d3fca0b5
MR
11225 if (mips_opts.noreorder)
11226 macro_build (NULL, "nop", "");
6478892d 11227 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11228 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11229 mips_gp_register,
256ab948
TS
11230 mips_frame_reg,
11231 HAVE_64BIT_ADDRESSES);
6478892d 11232 }
252b5132
RH
11233 }
11234 }
252b5132 11235
8fc2e39e 11236 break;
252b5132 11237
df58fc94
RS
11238 case M_JALS_A:
11239 gas_assert (mips_opts.micromips);
833794fc
MR
11240 if (mips_opts.insn32)
11241 {
1661c76c 11242 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11243 break;
11244 }
df58fc94
RS
11245 jals = 1;
11246 /* Fall through. */
252b5132
RH
11247 case M_JAL_A:
11248 if (mips_pic == NO_PIC)
df58fc94 11249 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
252b5132
RH
11250 else if (mips_pic == SVR4_PIC)
11251 {
11252 /* If this is a reference to an external symbol, and we are
11253 using a small GOT, we want
11254 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11255 nop
f9419b05 11256 jalr $ra,$25
252b5132
RH
11257 nop
11258 lw $gp,cprestore($sp)
11259 The cprestore value is set using the .cprestore
11260 pseudo-op. If we are using a big GOT, we want
11261 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11262 addu $25,$25,$gp
11263 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11264 nop
f9419b05 11265 jalr $ra,$25
252b5132
RH
11266 nop
11267 lw $gp,cprestore($sp)
11268 If the symbol is not external, we want
11269 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11270 nop
11271 addiu $25,$25,<sym> (BFD_RELOC_LO16)
f9419b05 11272 jalr $ra,$25
252b5132 11273 nop
438c16b8 11274 lw $gp,cprestore($sp)
f5040a92
AO
11275
11276 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11277 sequences above, minus nops, unless the symbol is local,
11278 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11279 GOT_DISP. */
438c16b8 11280 if (HAVE_NEWABI)
252b5132 11281 {
90ecf173 11282 if (!mips_big_got)
f5040a92 11283 {
4d7206a2 11284 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11285 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11286 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
f5040a92 11287 mips_gp_register);
4d7206a2 11288 relax_switch ();
67c0d1eb
RS
11289 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11290 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
4d7206a2
RS
11291 mips_gp_register);
11292 relax_end ();
f5040a92
AO
11293 }
11294 else
11295 {
4d7206a2 11296 relax_start (offset_expr.X_add_symbol);
df58fc94 11297 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11298 BFD_RELOC_MIPS_CALL_HI16);
11299 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11300 PIC_CALL_REG, mips_gp_register);
11301 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11302 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11303 PIC_CALL_REG);
4d7206a2 11304 relax_switch ();
67c0d1eb
RS
11305 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11306 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11307 mips_gp_register);
11308 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11309 PIC_CALL_REG, PIC_CALL_REG,
17a2f251 11310 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 11311 relax_end ();
f5040a92 11312 }
684022ea 11313
df58fc94 11314 macro_build_jalr (&offset_expr, 0);
252b5132
RH
11315 }
11316 else
11317 {
4d7206a2 11318 relax_start (offset_expr.X_add_symbol);
90ecf173 11319 if (!mips_big_got)
438c16b8 11320 {
67c0d1eb
RS
11321 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11322 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
17a2f251 11323 mips_gp_register);
269137b2 11324 load_delay_nop ();
4d7206a2 11325 relax_switch ();
438c16b8 11326 }
252b5132 11327 else
252b5132 11328 {
67c0d1eb
RS
11329 int gpdelay;
11330
11331 gpdelay = reg_needs_delay (mips_gp_register);
df58fc94 11332 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11333 BFD_RELOC_MIPS_CALL_HI16);
11334 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11335 PIC_CALL_REG, mips_gp_register);
11336 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11337 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11338 PIC_CALL_REG);
269137b2 11339 load_delay_nop ();
4d7206a2 11340 relax_switch ();
67c0d1eb
RS
11341 if (gpdelay)
11342 macro_build (NULL, "nop", "");
252b5132 11343 }
67c0d1eb
RS
11344 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11345 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
4d7206a2 11346 mips_gp_register);
269137b2 11347 load_delay_nop ();
67c0d1eb
RS
11348 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11349 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
4d7206a2 11350 relax_end ();
df58fc94 11351 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
438c16b8 11352
6478892d 11353 if (mips_cprestore_offset < 0)
1661c76c 11354 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11355 else
11356 {
90ecf173 11357 if (!mips_frame_reg_valid)
7a621144 11358 {
1661c76c 11359 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11360 /* Quiet this warning. */
11361 mips_frame_reg_valid = 1;
11362 }
90ecf173 11363 if (!mips_cprestore_valid)
7a621144 11364 {
1661c76c 11365 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11366 /* Quiet this warning. */
11367 mips_cprestore_valid = 1;
11368 }
6478892d 11369 if (mips_opts.noreorder)
67c0d1eb 11370 macro_build (NULL, "nop", "");
6478892d 11371 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11372 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11373 mips_gp_register,
256ab948
TS
11374 mips_frame_reg,
11375 HAVE_64BIT_ADDRESSES);
6478892d 11376 }
252b5132
RH
11377 }
11378 }
0a44bf69 11379 else if (mips_pic == VXWORKS_PIC)
1661c76c 11380 as_bad (_("non-PIC jump used in PIC library"));
252b5132
RH
11381 else
11382 abort ();
11383
8fc2e39e 11384 break;
252b5132 11385
7f3c4072 11386 case M_LBUE_AB:
7f3c4072
CM
11387 s = "lbue";
11388 fmt = "t,+j(b)";
11389 offbits = 9;
11390 goto ld_st;
11391 case M_LHUE_AB:
7f3c4072
CM
11392 s = "lhue";
11393 fmt = "t,+j(b)";
11394 offbits = 9;
11395 goto ld_st;
11396 case M_LBE_AB:
7f3c4072
CM
11397 s = "lbe";
11398 fmt = "t,+j(b)";
11399 offbits = 9;
11400 goto ld_st;
11401 case M_LHE_AB:
7f3c4072
CM
11402 s = "lhe";
11403 fmt = "t,+j(b)";
11404 offbits = 9;
11405 goto ld_st;
11406 case M_LLE_AB:
7f3c4072
CM
11407 s = "lle";
11408 fmt = "t,+j(b)";
11409 offbits = 9;
11410 goto ld_st;
11411 case M_LWE_AB:
7f3c4072
CM
11412 s = "lwe";
11413 fmt = "t,+j(b)";
11414 offbits = 9;
11415 goto ld_st;
11416 case M_LWLE_AB:
7f3c4072
CM
11417 s = "lwle";
11418 fmt = "t,+j(b)";
11419 offbits = 9;
11420 goto ld_st;
11421 case M_LWRE_AB:
7f3c4072
CM
11422 s = "lwre";
11423 fmt = "t,+j(b)";
11424 offbits = 9;
11425 goto ld_st;
11426 case M_SBE_AB:
7f3c4072
CM
11427 s = "sbe";
11428 fmt = "t,+j(b)";
11429 offbits = 9;
11430 goto ld_st;
11431 case M_SCE_AB:
7f3c4072
CM
11432 s = "sce";
11433 fmt = "t,+j(b)";
11434 offbits = 9;
11435 goto ld_st;
11436 case M_SHE_AB:
7f3c4072
CM
11437 s = "she";
11438 fmt = "t,+j(b)";
11439 offbits = 9;
11440 goto ld_st;
11441 case M_SWE_AB:
7f3c4072
CM
11442 s = "swe";
11443 fmt = "t,+j(b)";
11444 offbits = 9;
11445 goto ld_st;
11446 case M_SWLE_AB:
7f3c4072
CM
11447 s = "swle";
11448 fmt = "t,+j(b)";
11449 offbits = 9;
11450 goto ld_st;
11451 case M_SWRE_AB:
7f3c4072
CM
11452 s = "swre";
11453 fmt = "t,+j(b)";
11454 offbits = 9;
11455 goto ld_st;
dec0624d 11456 case M_ACLR_AB:
dec0624d 11457 s = "aclr";
dec0624d 11458 fmt = "\\,~(b)";
7f3c4072 11459 offbits = 12;
dec0624d
MR
11460 goto ld_st;
11461 case M_ASET_AB:
dec0624d 11462 s = "aset";
dec0624d 11463 fmt = "\\,~(b)";
7f3c4072 11464 offbits = 12;
dec0624d 11465 goto ld_st;
252b5132
RH
11466 case M_LB_AB:
11467 s = "lb";
df58fc94 11468 fmt = "t,o(b)";
252b5132
RH
11469 goto ld;
11470 case M_LBU_AB:
11471 s = "lbu";
df58fc94 11472 fmt = "t,o(b)";
252b5132
RH
11473 goto ld;
11474 case M_LH_AB:
11475 s = "lh";
df58fc94 11476 fmt = "t,o(b)";
252b5132
RH
11477 goto ld;
11478 case M_LHU_AB:
11479 s = "lhu";
df58fc94 11480 fmt = "t,o(b)";
252b5132
RH
11481 goto ld;
11482 case M_LW_AB:
11483 s = "lw";
df58fc94 11484 fmt = "t,o(b)";
252b5132
RH
11485 goto ld;
11486 case M_LWC0_AB:
df58fc94 11487 gas_assert (!mips_opts.micromips);
252b5132 11488 s = "lwc0";
df58fc94 11489 fmt = "E,o(b)";
bdaaa2e1 11490 /* Itbl support may require additional care here. */
252b5132 11491 coproc = 1;
df58fc94 11492 goto ld_st;
252b5132
RH
11493 case M_LWC1_AB:
11494 s = "lwc1";
df58fc94 11495 fmt = "T,o(b)";
bdaaa2e1 11496 /* Itbl support may require additional care here. */
252b5132 11497 coproc = 1;
df58fc94 11498 goto ld_st;
252b5132
RH
11499 case M_LWC2_AB:
11500 s = "lwc2";
df58fc94 11501 fmt = COP12_FMT;
7361da2c
AB
11502 offbits = (mips_opts.micromips ? 12
11503 : ISA_IS_R6 (mips_opts.isa) ? 11
11504 : 16);
bdaaa2e1 11505 /* Itbl support may require additional care here. */
252b5132 11506 coproc = 1;
df58fc94 11507 goto ld_st;
252b5132 11508 case M_LWC3_AB:
df58fc94 11509 gas_assert (!mips_opts.micromips);
252b5132 11510 s = "lwc3";
df58fc94 11511 fmt = "E,o(b)";
bdaaa2e1 11512 /* Itbl support may require additional care here. */
252b5132 11513 coproc = 1;
df58fc94 11514 goto ld_st;
252b5132
RH
11515 case M_LWL_AB:
11516 s = "lwl";
df58fc94 11517 fmt = MEM12_FMT;
7f3c4072 11518 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11519 goto ld_st;
252b5132
RH
11520 case M_LWR_AB:
11521 s = "lwr";
df58fc94 11522 fmt = MEM12_FMT;
7f3c4072 11523 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11524 goto ld_st;
252b5132 11525 case M_LDC1_AB:
252b5132 11526 s = "ldc1";
df58fc94 11527 fmt = "T,o(b)";
bdaaa2e1 11528 /* Itbl support may require additional care here. */
252b5132 11529 coproc = 1;
df58fc94 11530 goto ld_st;
252b5132
RH
11531 case M_LDC2_AB:
11532 s = "ldc2";
df58fc94 11533 fmt = COP12_FMT;
7361da2c
AB
11534 offbits = (mips_opts.micromips ? 12
11535 : ISA_IS_R6 (mips_opts.isa) ? 11
11536 : 16);
bdaaa2e1 11537 /* Itbl support may require additional care here. */
252b5132 11538 coproc = 1;
df58fc94 11539 goto ld_st;
c77c0862 11540 case M_LQC2_AB:
c77c0862 11541 s = "lqc2";
14daeee3 11542 fmt = "+7,o(b)";
c77c0862
RS
11543 /* Itbl support may require additional care here. */
11544 coproc = 1;
11545 goto ld_st;
252b5132
RH
11546 case M_LDC3_AB:
11547 s = "ldc3";
df58fc94 11548 fmt = "E,o(b)";
bdaaa2e1 11549 /* Itbl support may require additional care here. */
252b5132 11550 coproc = 1;
df58fc94 11551 goto ld_st;
252b5132
RH
11552 case M_LDL_AB:
11553 s = "ldl";
df58fc94 11554 fmt = MEM12_FMT;
7f3c4072 11555 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11556 goto ld_st;
252b5132
RH
11557 case M_LDR_AB:
11558 s = "ldr";
df58fc94 11559 fmt = MEM12_FMT;
7f3c4072 11560 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11561 goto ld_st;
252b5132
RH
11562 case M_LL_AB:
11563 s = "ll";
7361da2c
AB
11564 fmt = LL_SC_FMT;
11565 offbits = (mips_opts.micromips ? 12
11566 : ISA_IS_R6 (mips_opts.isa) ? 9
11567 : 16);
252b5132
RH
11568 goto ld;
11569 case M_LLD_AB:
11570 s = "lld";
7361da2c
AB
11571 fmt = LL_SC_FMT;
11572 offbits = (mips_opts.micromips ? 12
11573 : ISA_IS_R6 (mips_opts.isa) ? 9
11574 : 16);
252b5132
RH
11575 goto ld;
11576 case M_LWU_AB:
11577 s = "lwu";
df58fc94 11578 fmt = MEM12_FMT;
7f3c4072 11579 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11580 goto ld;
11581 case M_LWP_AB:
df58fc94
RS
11582 gas_assert (mips_opts.micromips);
11583 s = "lwp";
11584 fmt = "t,~(b)";
7f3c4072 11585 offbits = 12;
df58fc94
RS
11586 lp = 1;
11587 goto ld;
11588 case M_LDP_AB:
df58fc94
RS
11589 gas_assert (mips_opts.micromips);
11590 s = "ldp";
11591 fmt = "t,~(b)";
7f3c4072 11592 offbits = 12;
df58fc94
RS
11593 lp = 1;
11594 goto ld;
11595 case M_LWM_AB:
df58fc94
RS
11596 gas_assert (mips_opts.micromips);
11597 s = "lwm";
11598 fmt = "n,~(b)";
7f3c4072 11599 offbits = 12;
df58fc94
RS
11600 goto ld_st;
11601 case M_LDM_AB:
df58fc94
RS
11602 gas_assert (mips_opts.micromips);
11603 s = "ldm";
11604 fmt = "n,~(b)";
7f3c4072 11605 offbits = 12;
df58fc94
RS
11606 goto ld_st;
11607
252b5132 11608 ld:
f19ccbda 11609 /* We don't want to use $0 as tempreg. */
c0ebe874 11610 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
df58fc94 11611 goto ld_st;
252b5132 11612 else
c0ebe874 11613 tempreg = op[0] + lp;
df58fc94
RS
11614 goto ld_noat;
11615
252b5132
RH
11616 case M_SB_AB:
11617 s = "sb";
df58fc94
RS
11618 fmt = "t,o(b)";
11619 goto ld_st;
252b5132
RH
11620 case M_SH_AB:
11621 s = "sh";
df58fc94
RS
11622 fmt = "t,o(b)";
11623 goto ld_st;
252b5132
RH
11624 case M_SW_AB:
11625 s = "sw";
df58fc94
RS
11626 fmt = "t,o(b)";
11627 goto ld_st;
252b5132 11628 case M_SWC0_AB:
df58fc94 11629 gas_assert (!mips_opts.micromips);
252b5132 11630 s = "swc0";
df58fc94 11631 fmt = "E,o(b)";
bdaaa2e1 11632 /* Itbl support may require additional care here. */
252b5132 11633 coproc = 1;
df58fc94 11634 goto ld_st;
252b5132
RH
11635 case M_SWC1_AB:
11636 s = "swc1";
df58fc94 11637 fmt = "T,o(b)";
bdaaa2e1 11638 /* Itbl support may require additional care here. */
252b5132 11639 coproc = 1;
df58fc94 11640 goto ld_st;
252b5132
RH
11641 case M_SWC2_AB:
11642 s = "swc2";
df58fc94 11643 fmt = COP12_FMT;
7361da2c
AB
11644 offbits = (mips_opts.micromips ? 12
11645 : ISA_IS_R6 (mips_opts.isa) ? 11
11646 : 16);
bdaaa2e1 11647 /* Itbl support may require additional care here. */
252b5132 11648 coproc = 1;
df58fc94 11649 goto ld_st;
252b5132 11650 case M_SWC3_AB:
df58fc94 11651 gas_assert (!mips_opts.micromips);
252b5132 11652 s = "swc3";
df58fc94 11653 fmt = "E,o(b)";
bdaaa2e1 11654 /* Itbl support may require additional care here. */
252b5132 11655 coproc = 1;
df58fc94 11656 goto ld_st;
252b5132
RH
11657 case M_SWL_AB:
11658 s = "swl";
df58fc94 11659 fmt = MEM12_FMT;
7f3c4072 11660 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11661 goto ld_st;
252b5132
RH
11662 case M_SWR_AB:
11663 s = "swr";
df58fc94 11664 fmt = MEM12_FMT;
7f3c4072 11665 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11666 goto ld_st;
252b5132
RH
11667 case M_SC_AB:
11668 s = "sc";
7361da2c
AB
11669 fmt = LL_SC_FMT;
11670 offbits = (mips_opts.micromips ? 12
11671 : ISA_IS_R6 (mips_opts.isa) ? 9
11672 : 16);
df58fc94 11673 goto ld_st;
252b5132
RH
11674 case M_SCD_AB:
11675 s = "scd";
7361da2c
AB
11676 fmt = LL_SC_FMT;
11677 offbits = (mips_opts.micromips ? 12
11678 : ISA_IS_R6 (mips_opts.isa) ? 9
11679 : 16);
df58fc94 11680 goto ld_st;
d43b4baf
TS
11681 case M_CACHE_AB:
11682 s = "cache";
7361da2c
AB
11683 fmt = (mips_opts.micromips ? "k,~(b)"
11684 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11685 : "k,o(b)");
11686 offbits = (mips_opts.micromips ? 12
11687 : ISA_IS_R6 (mips_opts.isa) ? 9
11688 : 16);
7f3c4072
CM
11689 goto ld_st;
11690 case M_CACHEE_AB:
7f3c4072
CM
11691 s = "cachee";
11692 fmt = "k,+j(b)";
11693 offbits = 9;
df58fc94 11694 goto ld_st;
3eebd5eb
MR
11695 case M_PREF_AB:
11696 s = "pref";
7361da2c
AB
11697 fmt = (mips_opts.micromips ? "k,~(b)"
11698 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11699 : "k,o(b)");
11700 offbits = (mips_opts.micromips ? 12
11701 : ISA_IS_R6 (mips_opts.isa) ? 9
11702 : 16);
7f3c4072
CM
11703 goto ld_st;
11704 case M_PREFE_AB:
7f3c4072
CM
11705 s = "prefe";
11706 fmt = "k,+j(b)";
11707 offbits = 9;
df58fc94 11708 goto ld_st;
252b5132 11709 case M_SDC1_AB:
252b5132 11710 s = "sdc1";
df58fc94 11711 fmt = "T,o(b)";
252b5132 11712 coproc = 1;
bdaaa2e1 11713 /* Itbl support may require additional care here. */
df58fc94 11714 goto ld_st;
252b5132
RH
11715 case M_SDC2_AB:
11716 s = "sdc2";
df58fc94 11717 fmt = COP12_FMT;
7361da2c
AB
11718 offbits = (mips_opts.micromips ? 12
11719 : ISA_IS_R6 (mips_opts.isa) ? 11
11720 : 16);
c77c0862
RS
11721 /* Itbl support may require additional care here. */
11722 coproc = 1;
11723 goto ld_st;
11724 case M_SQC2_AB:
c77c0862 11725 s = "sqc2";
14daeee3 11726 fmt = "+7,o(b)";
bdaaa2e1 11727 /* Itbl support may require additional care here. */
252b5132 11728 coproc = 1;
df58fc94 11729 goto ld_st;
252b5132 11730 case M_SDC3_AB:
df58fc94 11731 gas_assert (!mips_opts.micromips);
252b5132 11732 s = "sdc3";
df58fc94 11733 fmt = "E,o(b)";
bdaaa2e1 11734 /* Itbl support may require additional care here. */
252b5132 11735 coproc = 1;
df58fc94 11736 goto ld_st;
252b5132
RH
11737 case M_SDL_AB:
11738 s = "sdl";
df58fc94 11739 fmt = MEM12_FMT;
7f3c4072 11740 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11741 goto ld_st;
252b5132
RH
11742 case M_SDR_AB:
11743 s = "sdr";
df58fc94 11744 fmt = MEM12_FMT;
7f3c4072 11745 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11746 goto ld_st;
11747 case M_SWP_AB:
df58fc94
RS
11748 gas_assert (mips_opts.micromips);
11749 s = "swp";
11750 fmt = "t,~(b)";
7f3c4072 11751 offbits = 12;
df58fc94
RS
11752 goto ld_st;
11753 case M_SDP_AB:
df58fc94
RS
11754 gas_assert (mips_opts.micromips);
11755 s = "sdp";
11756 fmt = "t,~(b)";
7f3c4072 11757 offbits = 12;
df58fc94
RS
11758 goto ld_st;
11759 case M_SWM_AB:
df58fc94
RS
11760 gas_assert (mips_opts.micromips);
11761 s = "swm";
11762 fmt = "n,~(b)";
7f3c4072 11763 offbits = 12;
df58fc94
RS
11764 goto ld_st;
11765 case M_SDM_AB:
df58fc94
RS
11766 gas_assert (mips_opts.micromips);
11767 s = "sdm";
11768 fmt = "n,~(b)";
7f3c4072 11769 offbits = 12;
df58fc94
RS
11770
11771 ld_st:
8fc2e39e 11772 tempreg = AT;
df58fc94 11773 ld_noat:
c0ebe874 11774 breg = op[2];
f2ae14a1
RS
11775 if (small_offset_p (0, align, 16))
11776 {
11777 /* The first case exists for M_LD_AB and M_SD_AB, which are
11778 macros for o32 but which should act like normal instructions
11779 otherwise. */
11780 if (offbits == 16)
c0ebe874 11781 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
11782 offset_reloc[1], offset_reloc[2], breg);
11783 else if (small_offset_p (0, align, offbits))
11784 {
11785 if (offbits == 0)
c0ebe874 11786 macro_build (NULL, s, fmt, op[0], breg);
f2ae14a1 11787 else
c0ebe874 11788 macro_build (NULL, s, fmt, op[0],
c8276761 11789 (int) offset_expr.X_add_number, breg);
f2ae14a1
RS
11790 }
11791 else
11792 {
11793 if (tempreg == AT)
11794 used_at = 1;
11795 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11796 tempreg, breg, -1, offset_reloc[0],
11797 offset_reloc[1], offset_reloc[2]);
11798 if (offbits == 0)
c0ebe874 11799 macro_build (NULL, s, fmt, op[0], tempreg);
f2ae14a1 11800 else
c0ebe874 11801 macro_build (NULL, s, fmt, op[0], 0, tempreg);
f2ae14a1
RS
11802 }
11803 break;
11804 }
11805
11806 if (tempreg == AT)
11807 used_at = 1;
11808
252b5132
RH
11809 if (offset_expr.X_op != O_constant
11810 && offset_expr.X_op != O_symbol)
11811 {
1661c76c 11812 as_bad (_("expression too complex"));
252b5132
RH
11813 offset_expr.X_op = O_constant;
11814 }
11815
2051e8c4
MR
11816 if (HAVE_32BIT_ADDRESSES
11817 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
11818 {
11819 char value [32];
11820
11821 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 11822 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 11823 }
2051e8c4 11824
252b5132
RH
11825 /* A constant expression in PIC code can be handled just as it
11826 is in non PIC code. */
aed1a261
RS
11827 if (offset_expr.X_op == O_constant)
11828 {
f2ae14a1
RS
11829 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11830 offbits == 0 ? 16 : offbits);
11831 offset_expr.X_add_number -= expr1.X_add_number;
df58fc94 11832
f2ae14a1
RS
11833 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11834 if (breg != 0)
11835 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11836 tempreg, tempreg, breg);
7f3c4072 11837 if (offbits == 0)
dd6a37e7 11838 {
f2ae14a1 11839 if (offset_expr.X_add_number != 0)
dd6a37e7 11840 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
f2ae14a1 11841 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
c0ebe874 11842 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11843 }
7f3c4072 11844 else if (offbits == 16)
c0ebe874 11845 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
df58fc94 11846 else
c0ebe874 11847 macro_build (NULL, s, fmt, op[0],
c8276761 11848 (int) offset_expr.X_add_number, tempreg);
df58fc94 11849 }
7f3c4072 11850 else if (offbits != 16)
df58fc94 11851 {
7f3c4072 11852 /* The offset field is too narrow to be used for a low-part
2b0f3761 11853 relocation, so load the whole address into the auxiliary
f2ae14a1
RS
11854 register. */
11855 load_address (tempreg, &offset_expr, &used_at);
11856 if (breg != 0)
11857 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11858 tempreg, tempreg, breg);
7f3c4072 11859 if (offbits == 0)
c0ebe874 11860 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11861 else
c0ebe874 11862 macro_build (NULL, s, fmt, op[0], 0, tempreg);
aed1a261
RS
11863 }
11864 else if (mips_pic == NO_PIC)
252b5132
RH
11865 {
11866 /* If this is a reference to a GP relative symbol, and there
11867 is no base register, we want
c0ebe874 11868 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
252b5132
RH
11869 Otherwise, if there is no base register, we want
11870 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
c0ebe874 11871 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
252b5132
RH
11872 If we have a constant, we need two instructions anyhow,
11873 so we always use the latter form.
11874
11875 If we have a base register, and this is a reference to a
11876 GP relative symbol, we want
11877 addu $tempreg,$breg,$gp
c0ebe874 11878 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
252b5132
RH
11879 Otherwise we want
11880 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11881 addu $tempreg,$tempreg,$breg
c0ebe874 11882 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245 11883 With a constant we always use the latter case.
76b3015f 11884
d6bc6245
TS
11885 With 64bit address space and no base register and $at usable,
11886 we want
11887 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11888 lui $at,<sym> (BFD_RELOC_HI16_S)
11889 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11890 dsll32 $tempreg,0
11891 daddu $tempreg,$at
c0ebe874 11892 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11893 If we have a base register, we want
11894 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11895 lui $at,<sym> (BFD_RELOC_HI16_S)
11896 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11897 daddu $at,$breg
11898 dsll32 $tempreg,0
11899 daddu $tempreg,$at
c0ebe874 11900 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11901
11902 Without $at we can't generate the optimal path for superscalar
11903 processors here since this would require two temporary registers.
11904 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11905 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11906 dsll $tempreg,16
11907 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11908 dsll $tempreg,16
c0ebe874 11909 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11910 If we have a base register, we want
11911 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11912 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11913 dsll $tempreg,16
11914 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11915 dsll $tempreg,16
11916 daddu $tempreg,$tempreg,$breg
c0ebe874 11917 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
6373ee54 11918
6caf9ef4 11919 For GP relative symbols in 64bit address space we can use
aed1a261
RS
11920 the same sequence as in 32bit address space. */
11921 if (HAVE_64BIT_SYMBOLS)
d6bc6245 11922 {
aed1a261 11923 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4
TS
11924 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11925 {
11926 relax_start (offset_expr.X_add_symbol);
11927 if (breg == 0)
11928 {
c0ebe874 11929 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11930 BFD_RELOC_GPREL16, mips_gp_register);
11931 }
11932 else
11933 {
11934 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11935 tempreg, breg, mips_gp_register);
c0ebe874 11936 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11937 BFD_RELOC_GPREL16, tempreg);
11938 }
11939 relax_switch ();
11940 }
d6bc6245 11941
741fe287 11942 if (used_at == 0 && mips_opts.at)
d6bc6245 11943 {
df58fc94 11944 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb 11945 BFD_RELOC_MIPS_HIGHEST);
df58fc94 11946 macro_build (&offset_expr, "lui", LUI_FMT, AT,
67c0d1eb
RS
11947 BFD_RELOC_HI16_S);
11948 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11949 tempreg, BFD_RELOC_MIPS_HIGHER);
d6bc6245 11950 if (breg != 0)
67c0d1eb 11951 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
df58fc94 11952 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 11953 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
c0ebe874 11954 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
67c0d1eb 11955 tempreg);
d6bc6245
TS
11956 used_at = 1;
11957 }
11958 else
11959 {
df58fc94 11960 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb
RS
11961 BFD_RELOC_MIPS_HIGHEST);
11962 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11963 tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 11964 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb
RS
11965 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11966 tempreg, BFD_RELOC_HI16_S);
df58fc94 11967 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
d6bc6245 11968 if (breg != 0)
67c0d1eb 11969 macro_build (NULL, "daddu", "d,v,t",
17a2f251 11970 tempreg, tempreg, breg);
c0ebe874 11971 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11972 BFD_RELOC_LO16, tempreg);
d6bc6245 11973 }
6caf9ef4
TS
11974
11975 if (mips_relax.sequence)
11976 relax_end ();
8fc2e39e 11977 break;
d6bc6245 11978 }
256ab948 11979
252b5132
RH
11980 if (breg == 0)
11981 {
67c0d1eb 11982 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11983 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11984 {
4d7206a2 11985 relax_start (offset_expr.X_add_symbol);
c0ebe874 11986 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
67c0d1eb 11987 mips_gp_register);
4d7206a2 11988 relax_switch ();
252b5132 11989 }
67c0d1eb 11990 macro_build_lui (&offset_expr, tempreg);
c0ebe874 11991 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11992 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11993 if (mips_relax.sequence)
11994 relax_end ();
252b5132
RH
11995 }
11996 else
11997 {
67c0d1eb 11998 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11999 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12000 {
4d7206a2 12001 relax_start (offset_expr.X_add_symbol);
67c0d1eb 12002 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12003 tempreg, breg, mips_gp_register);
c0ebe874 12004 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12005 BFD_RELOC_GPREL16, tempreg);
4d7206a2 12006 relax_switch ();
252b5132 12007 }
67c0d1eb
RS
12008 macro_build_lui (&offset_expr, tempreg);
12009 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12010 tempreg, tempreg, breg);
c0ebe874 12011 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12012 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
12013 if (mips_relax.sequence)
12014 relax_end ();
252b5132
RH
12015 }
12016 }
0a44bf69 12017 else if (!mips_big_got)
252b5132 12018 {
ed6fb7bd 12019 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
f9419b05 12020
252b5132
RH
12021 /* If this is a reference to an external symbol, we want
12022 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12023 nop
c0ebe874 12024 <op> op[0],0($tempreg)
252b5132
RH
12025 Otherwise we want
12026 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12027 nop
12028 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 12029 <op> op[0],0($tempreg)
f5040a92
AO
12030
12031 For NewABI, we want
12032 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 12033 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 12034
252b5132
RH
12035 If there is a base register, we add it to $tempreg before
12036 the <op>. If there is a constant, we stick it in the
12037 <op> instruction. We don't handle constants larger than
12038 16 bits, because we have no way to load the upper 16 bits
12039 (actually, we could handle them for the subset of cases
12040 in which we are not using $at). */
9c2799c2 12041 gas_assert (offset_expr.X_op == O_symbol);
f5040a92
AO
12042 if (HAVE_NEWABI)
12043 {
67c0d1eb
RS
12044 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12045 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 12046 if (breg != 0)
67c0d1eb 12047 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12048 tempreg, tempreg, breg);
c0ebe874 12049 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12050 BFD_RELOC_MIPS_GOT_OFST, tempreg);
f5040a92
AO
12051 break;
12052 }
252b5132
RH
12053 expr1.X_add_number = offset_expr.X_add_number;
12054 offset_expr.X_add_number = 0;
12055 if (expr1.X_add_number < -0x8000
12056 || expr1.X_add_number >= 0x8000)
12057 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb
RS
12058 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12059 lw_reloc_type, mips_gp_register);
269137b2 12060 load_delay_nop ();
4d7206a2
RS
12061 relax_start (offset_expr.X_add_symbol);
12062 relax_switch ();
67c0d1eb
RS
12063 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12064 tempreg, BFD_RELOC_LO16);
4d7206a2 12065 relax_end ();
252b5132 12066 if (breg != 0)
67c0d1eb 12067 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12068 tempreg, tempreg, breg);
c0ebe874 12069 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 12070 }
0a44bf69 12071 else if (mips_big_got && !HAVE_NEWABI)
252b5132 12072 {
67c0d1eb 12073 int gpdelay;
252b5132
RH
12074
12075 /* If this is a reference to an external symbol, we want
12076 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12077 addu $tempreg,$tempreg,$gp
12078 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 12079 <op> op[0],0($tempreg)
252b5132
RH
12080 Otherwise we want
12081 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12082 nop
12083 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 12084 <op> op[0],0($tempreg)
252b5132
RH
12085 If there is a base register, we add it to $tempreg before
12086 the <op>. If there is a constant, we stick it in the
12087 <op> instruction. We don't handle constants larger than
12088 16 bits, because we have no way to load the upper 16 bits
12089 (actually, we could handle them for the subset of cases
f5040a92 12090 in which we are not using $at). */
9c2799c2 12091 gas_assert (offset_expr.X_op == O_symbol);
252b5132
RH
12092 expr1.X_add_number = offset_expr.X_add_number;
12093 offset_expr.X_add_number = 0;
12094 if (expr1.X_add_number < -0x8000
12095 || expr1.X_add_number >= 0x8000)
12096 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12097 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12098 relax_start (offset_expr.X_add_symbol);
df58fc94 12099 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 12100 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
12101 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12102 mips_gp_register);
12103 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12104 BFD_RELOC_MIPS_GOT_LO16, tempreg);
4d7206a2 12105 relax_switch ();
67c0d1eb
RS
12106 if (gpdelay)
12107 macro_build (NULL, "nop", "");
12108 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12109 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12110 load_delay_nop ();
67c0d1eb
RS
12111 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12112 tempreg, BFD_RELOC_LO16);
4d7206a2
RS
12113 relax_end ();
12114
252b5132 12115 if (breg != 0)
67c0d1eb 12116 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12117 tempreg, tempreg, breg);
c0ebe874 12118 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 12119 }
0a44bf69 12120 else if (mips_big_got && HAVE_NEWABI)
f5040a92 12121 {
f5040a92
AO
12122 /* If this is a reference to an external symbol, we want
12123 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12124 add $tempreg,$tempreg,$gp
12125 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 12126 <op> op[0],<ofst>($tempreg)
f5040a92
AO
12127 Otherwise, for local symbols, we want:
12128 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 12129 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9c2799c2 12130 gas_assert (offset_expr.X_op == O_symbol);
4d7206a2 12131 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
12132 offset_expr.X_add_number = 0;
12133 if (expr1.X_add_number < -0x8000
12134 || expr1.X_add_number >= 0x8000)
12135 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4d7206a2 12136 relax_start (offset_expr.X_add_symbol);
df58fc94 12137 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 12138 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
12139 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12140 mips_gp_register);
12141 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12142 BFD_RELOC_MIPS_GOT_LO16, tempreg);
f5040a92 12143 if (breg != 0)
67c0d1eb 12144 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12145 tempreg, tempreg, breg);
c0ebe874 12146 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
684022ea 12147
4d7206a2 12148 relax_switch ();
f5040a92 12149 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12150 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12151 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 12152 if (breg != 0)
67c0d1eb 12153 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12154 tempreg, tempreg, breg);
c0ebe874 12155 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12156 BFD_RELOC_MIPS_GOT_OFST, tempreg);
4d7206a2 12157 relax_end ();
f5040a92 12158 }
252b5132
RH
12159 else
12160 abort ();
12161
252b5132
RH
12162 break;
12163
833794fc
MR
12164 case M_JRADDIUSP:
12165 gas_assert (mips_opts.micromips);
12166 gas_assert (mips_opts.insn32);
12167 start_noreorder ();
12168 macro_build (NULL, "jr", "s", RA);
c0ebe874 12169 expr1.X_add_number = op[0] << 2;
833794fc
MR
12170 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12171 end_noreorder ();
12172 break;
12173
12174 case M_JRC:
12175 gas_assert (mips_opts.micromips);
12176 gas_assert (mips_opts.insn32);
c0ebe874 12177 macro_build (NULL, "jr", "s", op[0]);
833794fc
MR
12178 if (mips_opts.noreorder)
12179 macro_build (NULL, "nop", "");
12180 break;
12181
252b5132
RH
12182 case M_LI:
12183 case M_LI_S:
c0ebe874 12184 load_register (op[0], &imm_expr, 0);
8fc2e39e 12185 break;
252b5132
RH
12186
12187 case M_DLI:
c0ebe874 12188 load_register (op[0], &imm_expr, 1);
8fc2e39e 12189 break;
252b5132
RH
12190
12191 case M_LI_SS:
12192 if (imm_expr.X_op == O_constant)
12193 {
8fc2e39e 12194 used_at = 1;
67c0d1eb 12195 load_register (AT, &imm_expr, 0);
c0ebe874 12196 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12197 break;
12198 }
12199 else
12200 {
b0e6f033
RS
12201 gas_assert (imm_expr.X_op == O_absent
12202 && offset_expr.X_op == O_symbol
90ecf173
MR
12203 && strcmp (segment_name (S_GET_SEGMENT
12204 (offset_expr.X_add_symbol)),
12205 ".lit4") == 0
12206 && offset_expr.X_add_number == 0);
c0ebe874 12207 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
17a2f251 12208 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8fc2e39e 12209 break;
252b5132
RH
12210 }
12211
12212 case M_LI_D:
ca4e0257
RS
12213 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12214 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12215 order 32 bits of the value and the low order 32 bits are either
12216 zero or in OFFSET_EXPR. */
b0e6f033 12217 if (imm_expr.X_op == O_constant)
252b5132 12218 {
bad1aba3 12219 if (GPR_SIZE == 64)
c0ebe874 12220 load_register (op[0], &imm_expr, 1);
252b5132
RH
12221 else
12222 {
12223 int hreg, lreg;
12224
12225 if (target_big_endian)
12226 {
c0ebe874
RS
12227 hreg = op[0];
12228 lreg = op[0] + 1;
252b5132
RH
12229 }
12230 else
12231 {
c0ebe874
RS
12232 hreg = op[0] + 1;
12233 lreg = op[0];
252b5132
RH
12234 }
12235
12236 if (hreg <= 31)
67c0d1eb 12237 load_register (hreg, &imm_expr, 0);
252b5132
RH
12238 if (lreg <= 31)
12239 {
12240 if (offset_expr.X_op == O_absent)
67c0d1eb 12241 move_register (lreg, 0);
252b5132
RH
12242 else
12243 {
9c2799c2 12244 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12245 load_register (lreg, &offset_expr, 0);
252b5132
RH
12246 }
12247 }
12248 }
8fc2e39e 12249 break;
252b5132 12250 }
b0e6f033 12251 gas_assert (imm_expr.X_op == O_absent);
252b5132
RH
12252
12253 /* We know that sym is in the .rdata section. First we get the
12254 upper 16 bits of the address. */
12255 if (mips_pic == NO_PIC)
12256 {
67c0d1eb 12257 macro_build_lui (&offset_expr, AT);
8fc2e39e 12258 used_at = 1;
252b5132 12259 }
0a44bf69 12260 else
252b5132 12261 {
67c0d1eb
RS
12262 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12263 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8fc2e39e 12264 used_at = 1;
252b5132 12265 }
bdaaa2e1 12266
252b5132 12267 /* Now we load the register(s). */
bad1aba3 12268 if (GPR_SIZE == 64)
8fc2e39e
TS
12269 {
12270 used_at = 1;
c0ebe874
RS
12271 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12272 BFD_RELOC_LO16, AT);
8fc2e39e 12273 }
252b5132
RH
12274 else
12275 {
8fc2e39e 12276 used_at = 1;
c0ebe874
RS
12277 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12278 BFD_RELOC_LO16, AT);
12279 if (op[0] != RA)
252b5132
RH
12280 {
12281 /* FIXME: How in the world do we deal with the possible
12282 overflow here? */
12283 offset_expr.X_add_number += 4;
67c0d1eb 12284 macro_build (&offset_expr, "lw", "t,o(b)",
c0ebe874 12285 op[0] + 1, BFD_RELOC_LO16, AT);
252b5132
RH
12286 }
12287 }
252b5132
RH
12288 break;
12289
12290 case M_LI_DD:
ca4e0257
RS
12291 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12292 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12293 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12294 the value and the low order 32 bits are either zero or in
12295 OFFSET_EXPR. */
b0e6f033 12296 if (imm_expr.X_op == O_constant)
252b5132 12297 {
8fc2e39e 12298 used_at = 1;
bad1aba3 12299 load_register (AT, &imm_expr, FPR_SIZE == 64);
351cdf24
MF
12300 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12301 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
252b5132
RH
12302 else
12303 {
351cdf24
MF
12304 if (ISA_HAS_MXHC1 (mips_opts.isa))
12305 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12306 else if (FPR_SIZE != 32)
12307 as_bad (_("Unable to generate `%s' compliant code "
12308 "without mthc1"),
12309 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12310 else
12311 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
252b5132 12312 if (offset_expr.X_op == O_absent)
c0ebe874 12313 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
252b5132
RH
12314 else
12315 {
9c2799c2 12316 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12317 load_register (AT, &offset_expr, 0);
c0ebe874 12318 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12319 }
12320 }
12321 break;
12322 }
12323
b0e6f033
RS
12324 gas_assert (imm_expr.X_op == O_absent
12325 && offset_expr.X_op == O_symbol
90ecf173 12326 && offset_expr.X_add_number == 0);
252b5132
RH
12327 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12328 if (strcmp (s, ".lit8") == 0)
134c0c8b
MR
12329 {
12330 op[2] = mips_gp_register;
f2ae14a1
RS
12331 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12332 offset_reloc[1] = BFD_RELOC_UNUSED;
12333 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132
RH
12334 }
12335 else
12336 {
9c2799c2 12337 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8fc2e39e 12338 used_at = 1;
0a44bf69 12339 if (mips_pic != NO_PIC)
67c0d1eb
RS
12340 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12341 BFD_RELOC_MIPS_GOT16, mips_gp_register);
252b5132
RH
12342 else
12343 {
12344 /* FIXME: This won't work for a 64 bit address. */
67c0d1eb 12345 macro_build_lui (&offset_expr, AT);
252b5132 12346 }
bdaaa2e1 12347
c0ebe874 12348 op[2] = AT;
f2ae14a1
RS
12349 offset_reloc[0] = BFD_RELOC_LO16;
12350 offset_reloc[1] = BFD_RELOC_UNUSED;
12351 offset_reloc[2] = BFD_RELOC_UNUSED;
134c0c8b 12352 }
f2ae14a1
RS
12353 align = 8;
12354 /* Fall through */
c4a68bea 12355
252b5132
RH
12356 case M_L_DAB:
12357 /*
12358 * The MIPS assembler seems to check for X_add_number not
12359 * being double aligned and generating:
12360 * lui at,%hi(foo+1)
12361 * addu at,at,v1
12362 * addiu at,at,%lo(foo+1)
12363 * lwc1 f2,0(at)
12364 * lwc1 f3,4(at)
12365 * But, the resulting address is the same after relocation so why
12366 * generate the extra instruction?
12367 */
bdaaa2e1 12368 /* Itbl support may require additional care here. */
252b5132 12369 coproc = 1;
df58fc94 12370 fmt = "T,o(b)";
0aa27725 12371 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12372 {
12373 s = "ldc1";
df58fc94 12374 goto ld_st;
252b5132 12375 }
252b5132 12376 s = "lwc1";
252b5132
RH
12377 goto ldd_std;
12378
12379 case M_S_DAB:
df58fc94
RS
12380 gas_assert (!mips_opts.micromips);
12381 /* Itbl support may require additional care here. */
12382 coproc = 1;
12383 fmt = "T,o(b)";
0aa27725 12384 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12385 {
12386 s = "sdc1";
df58fc94 12387 goto ld_st;
252b5132 12388 }
252b5132 12389 s = "swc1";
252b5132
RH
12390 goto ldd_std;
12391
e407c74b
NC
12392 case M_LQ_AB:
12393 fmt = "t,o(b)";
12394 s = "lq";
12395 goto ld;
12396
12397 case M_SQ_AB:
12398 fmt = "t,o(b)";
12399 s = "sq";
12400 goto ld_st;
12401
252b5132 12402 case M_LD_AB:
df58fc94 12403 fmt = "t,o(b)";
bad1aba3 12404 if (GPR_SIZE == 64)
252b5132
RH
12405 {
12406 s = "ld";
12407 goto ld;
12408 }
252b5132 12409 s = "lw";
252b5132
RH
12410 goto ldd_std;
12411
12412 case M_SD_AB:
df58fc94 12413 fmt = "t,o(b)";
bad1aba3 12414 if (GPR_SIZE == 64)
252b5132
RH
12415 {
12416 s = "sd";
df58fc94 12417 goto ld_st;
252b5132 12418 }
252b5132 12419 s = "sw";
252b5132
RH
12420
12421 ldd_std:
f2ae14a1
RS
12422 /* Even on a big endian machine $fn comes before $fn+1. We have
12423 to adjust when loading from memory. We set coproc if we must
12424 load $fn+1 first. */
12425 /* Itbl support may require additional care here. */
12426 if (!target_big_endian)
12427 coproc = 0;
12428
c0ebe874 12429 breg = op[2];
f2ae14a1
RS
12430 if (small_offset_p (0, align, 16))
12431 {
12432 ep = &offset_expr;
12433 if (!small_offset_p (4, align, 16))
12434 {
12435 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12436 -1, offset_reloc[0], offset_reloc[1],
12437 offset_reloc[2]);
12438 expr1.X_add_number = 0;
12439 ep = &expr1;
12440 breg = AT;
12441 used_at = 1;
12442 offset_reloc[0] = BFD_RELOC_LO16;
12443 offset_reloc[1] = BFD_RELOC_UNUSED;
12444 offset_reloc[2] = BFD_RELOC_UNUSED;
12445 }
c0ebe874 12446 if (strcmp (s, "lw") == 0 && op[0] == breg)
f2ae14a1
RS
12447 {
12448 ep->X_add_number += 4;
c0ebe874 12449 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
f2ae14a1
RS
12450 offset_reloc[1], offset_reloc[2], breg);
12451 ep->X_add_number -= 4;
c0ebe874 12452 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12453 offset_reloc[1], offset_reloc[2], breg);
12454 }
12455 else
12456 {
c0ebe874 12457 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
f2ae14a1
RS
12458 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12459 breg);
12460 ep->X_add_number += 4;
c0ebe874 12461 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
f2ae14a1
RS
12462 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12463 breg);
12464 }
12465 break;
12466 }
12467
252b5132
RH
12468 if (offset_expr.X_op != O_symbol
12469 && offset_expr.X_op != O_constant)
12470 {
1661c76c 12471 as_bad (_("expression too complex"));
252b5132
RH
12472 offset_expr.X_op = O_constant;
12473 }
12474
2051e8c4
MR
12475 if (HAVE_32BIT_ADDRESSES
12476 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
12477 {
12478 char value [32];
12479
12480 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 12481 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 12482 }
2051e8c4 12483
90ecf173 12484 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
252b5132
RH
12485 {
12486 /* If this is a reference to a GP relative symbol, we want
c0ebe874
RS
12487 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12488 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
252b5132
RH
12489 If we have a base register, we use this
12490 addu $at,$breg,$gp
c0ebe874
RS
12491 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12492 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
252b5132
RH
12493 If this is not a GP relative symbol, we want
12494 lui $at,<sym> (BFD_RELOC_HI16_S)
c0ebe874
RS
12495 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12496 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12497 If there is a base register, we add it to $at after the
12498 lui instruction. If there is a constant, we always use
12499 the last case. */
39a59cf8
MR
12500 if (offset_expr.X_op == O_symbol
12501 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12502 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12503 {
4d7206a2 12504 relax_start (offset_expr.X_add_symbol);
252b5132
RH
12505 if (breg == 0)
12506 {
c9914766 12507 tempreg = mips_gp_register;
252b5132
RH
12508 }
12509 else
12510 {
67c0d1eb 12511 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12512 AT, breg, mips_gp_register);
252b5132 12513 tempreg = AT;
252b5132
RH
12514 used_at = 1;
12515 }
12516
beae10d5 12517 /* Itbl support may require additional care here. */
c0ebe874 12518 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12519 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12520 offset_expr.X_add_number += 4;
12521
12522 /* Set mips_optimize to 2 to avoid inserting an
12523 undesired nop. */
12524 hold_mips_optimize = mips_optimize;
12525 mips_optimize = 2;
beae10d5 12526 /* Itbl support may require additional care here. */
c0ebe874 12527 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12528 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12529 mips_optimize = hold_mips_optimize;
12530
4d7206a2 12531 relax_switch ();
252b5132 12532
0970e49e 12533 offset_expr.X_add_number -= 4;
252b5132 12534 }
8fc2e39e 12535 used_at = 1;
f2ae14a1
RS
12536 if (offset_high_part (offset_expr.X_add_number, 16)
12537 != offset_high_part (offset_expr.X_add_number + 4, 16))
12538 {
12539 load_address (AT, &offset_expr, &used_at);
12540 offset_expr.X_op = O_constant;
12541 offset_expr.X_add_number = 0;
12542 }
12543 else
12544 macro_build_lui (&offset_expr, AT);
252b5132 12545 if (breg != 0)
67c0d1eb 12546 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12547 /* Itbl support may require additional care here. */
c0ebe874 12548 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12549 BFD_RELOC_LO16, AT);
252b5132
RH
12550 /* FIXME: How do we handle overflow here? */
12551 offset_expr.X_add_number += 4;
beae10d5 12552 /* Itbl support may require additional care here. */
c0ebe874 12553 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12554 BFD_RELOC_LO16, AT);
4d7206a2
RS
12555 if (mips_relax.sequence)
12556 relax_end ();
bdaaa2e1 12557 }
0a44bf69 12558 else if (!mips_big_got)
252b5132 12559 {
252b5132
RH
12560 /* If this is a reference to an external symbol, we want
12561 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12562 nop
c0ebe874
RS
12563 <op> op[0],0($at)
12564 <op> op[0]+1,4($at)
252b5132
RH
12565 Otherwise we want
12566 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12567 nop
c0ebe874
RS
12568 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12569 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12570 If there is a base register we add it to $at before the
12571 lwc1 instructions. If there is a constant we include it
12572 in the lwc1 instructions. */
12573 used_at = 1;
12574 expr1.X_add_number = offset_expr.X_add_number;
252b5132
RH
12575 if (expr1.X_add_number < -0x8000
12576 || expr1.X_add_number >= 0x8000 - 4)
12577 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12578 load_got_offset (AT, &offset_expr);
269137b2 12579 load_delay_nop ();
252b5132 12580 if (breg != 0)
67c0d1eb 12581 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
252b5132
RH
12582
12583 /* Set mips_optimize to 2 to avoid inserting an undesired
12584 nop. */
12585 hold_mips_optimize = mips_optimize;
12586 mips_optimize = 2;
4d7206a2 12587
beae10d5 12588 /* Itbl support may require additional care here. */
4d7206a2 12589 relax_start (offset_expr.X_add_symbol);
c0ebe874 12590 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12591 BFD_RELOC_LO16, AT);
4d7206a2 12592 expr1.X_add_number += 4;
c0ebe874 12593 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12594 BFD_RELOC_LO16, AT);
4d7206a2 12595 relax_switch ();
c0ebe874 12596 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12597 BFD_RELOC_LO16, AT);
4d7206a2 12598 offset_expr.X_add_number += 4;
c0ebe874 12599 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12600 BFD_RELOC_LO16, AT);
4d7206a2 12601 relax_end ();
252b5132 12602
4d7206a2 12603 mips_optimize = hold_mips_optimize;
252b5132 12604 }
0a44bf69 12605 else if (mips_big_got)
252b5132 12606 {
67c0d1eb 12607 int gpdelay;
252b5132
RH
12608
12609 /* If this is a reference to an external symbol, we want
12610 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12611 addu $at,$at,$gp
12612 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12613 nop
c0ebe874
RS
12614 <op> op[0],0($at)
12615 <op> op[0]+1,4($at)
252b5132
RH
12616 Otherwise we want
12617 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12618 nop
c0ebe874
RS
12619 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12620 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12621 If there is a base register we add it to $at before the
12622 lwc1 instructions. If there is a constant we include it
12623 in the lwc1 instructions. */
12624 used_at = 1;
12625 expr1.X_add_number = offset_expr.X_add_number;
12626 offset_expr.X_add_number = 0;
12627 if (expr1.X_add_number < -0x8000
12628 || expr1.X_add_number >= 0x8000 - 4)
12629 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12630 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12631 relax_start (offset_expr.X_add_symbol);
df58fc94 12632 macro_build (&offset_expr, "lui", LUI_FMT,
67c0d1eb
RS
12633 AT, BFD_RELOC_MIPS_GOT_HI16);
12634 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12635 AT, AT, mips_gp_register);
67c0d1eb 12636 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 12637 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
269137b2 12638 load_delay_nop ();
252b5132 12639 if (breg != 0)
67c0d1eb 12640 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12641 /* Itbl support may require additional care here. */
c0ebe874 12642 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12643 BFD_RELOC_LO16, AT);
252b5132
RH
12644 expr1.X_add_number += 4;
12645
12646 /* Set mips_optimize to 2 to avoid inserting an undesired
12647 nop. */
12648 hold_mips_optimize = mips_optimize;
12649 mips_optimize = 2;
beae10d5 12650 /* Itbl support may require additional care here. */
c0ebe874 12651 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12652 BFD_RELOC_LO16, AT);
252b5132
RH
12653 mips_optimize = hold_mips_optimize;
12654 expr1.X_add_number -= 4;
12655
4d7206a2
RS
12656 relax_switch ();
12657 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12658 if (gpdelay)
12659 macro_build (NULL, "nop", "");
12660 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12661 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12662 load_delay_nop ();
252b5132 12663 if (breg != 0)
67c0d1eb 12664 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12665 /* Itbl support may require additional care here. */
c0ebe874 12666 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12667 BFD_RELOC_LO16, AT);
4d7206a2 12668 offset_expr.X_add_number += 4;
252b5132
RH
12669
12670 /* Set mips_optimize to 2 to avoid inserting an undesired
12671 nop. */
12672 hold_mips_optimize = mips_optimize;
12673 mips_optimize = 2;
beae10d5 12674 /* Itbl support may require additional care here. */
c0ebe874 12675 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12676 BFD_RELOC_LO16, AT);
252b5132 12677 mips_optimize = hold_mips_optimize;
4d7206a2 12678 relax_end ();
252b5132 12679 }
252b5132
RH
12680 else
12681 abort ();
12682
252b5132 12683 break;
3739860c 12684
dd6a37e7 12685 case M_SAA_AB:
dd6a37e7 12686 s = "saa";
0db377d0 12687 goto saa_saad;
dd6a37e7 12688 case M_SAAD_AB:
dd6a37e7 12689 s = "saad";
0db377d0
MR
12690 saa_saad:
12691 gas_assert (!mips_opts.micromips);
7f3c4072 12692 offbits = 0;
dd6a37e7
AP
12693 fmt = "t,(b)";
12694 goto ld_st;
12695
252b5132
RH
12696 /* New code added to support COPZ instructions.
12697 This code builds table entries out of the macros in mip_opcodes.
12698 R4000 uses interlocks to handle coproc delays.
12699 Other chips (like the R3000) require nops to be inserted for delays.
12700
f72c8c98 12701 FIXME: Currently, we require that the user handle delays.
252b5132
RH
12702 In order to fill delay slots for non-interlocked chips,
12703 we must have a way to specify delays based on the coprocessor.
12704 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12705 What are the side-effects of the cop instruction?
12706 What cache support might we have and what are its effects?
12707 Both coprocessor & memory require delays. how long???
bdaaa2e1 12708 What registers are read/set/modified?
252b5132
RH
12709
12710 If an itbl is provided to interpret cop instructions,
bdaaa2e1 12711 this knowledge can be encoded in the itbl spec. */
252b5132
RH
12712
12713 case M_COP0:
12714 s = "c0";
12715 goto copz;
12716 case M_COP1:
12717 s = "c1";
12718 goto copz;
12719 case M_COP2:
12720 s = "c2";
12721 goto copz;
12722 case M_COP3:
12723 s = "c3";
12724 copz:
df58fc94 12725 gas_assert (!mips_opts.micromips);
252b5132
RH
12726 /* For now we just do C (same as Cz). The parameter will be
12727 stored in insn_opcode by mips_ip. */
c8276761 12728 macro_build (NULL, s, "C", (int) ip->insn_opcode);
8fc2e39e 12729 break;
252b5132 12730
ea1fb5dc 12731 case M_MOVE:
c0ebe874 12732 move_register (op[0], op[1]);
8fc2e39e 12733 break;
ea1fb5dc 12734
833794fc
MR
12735 case M_MOVEP:
12736 gas_assert (mips_opts.micromips);
12737 gas_assert (mips_opts.insn32);
c0ebe874
RS
12738 move_register (micromips_to_32_reg_h_map1[op[0]],
12739 micromips_to_32_reg_m_map[op[1]]);
12740 move_register (micromips_to_32_reg_h_map2[op[0]],
12741 micromips_to_32_reg_n_map[op[2]]);
833794fc
MR
12742 break;
12743
252b5132
RH
12744 case M_DMUL:
12745 dbl = 1;
1a0670f3 12746 /* Fall through. */
252b5132 12747 case M_MUL:
e407c74b 12748 if (mips_opts.arch == CPU_R5900)
c0ebe874
RS
12749 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12750 op[2]);
e407c74b
NC
12751 else
12752 {
c0ebe874
RS
12753 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12754 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
e407c74b 12755 }
8fc2e39e 12756 break;
252b5132
RH
12757
12758 case M_DMUL_I:
12759 dbl = 1;
1a0670f3 12760 /* Fall through. */
252b5132
RH
12761 case M_MUL_I:
12762 /* The MIPS assembler some times generates shifts and adds. I'm
12763 not trying to be that fancy. GCC should do this for us
12764 anyway. */
8fc2e39e 12765 used_at = 1;
67c0d1eb 12766 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12767 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12768 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12769 break;
12770
12771 case M_DMULO_I:
12772 dbl = 1;
1a0670f3 12773 /* Fall through. */
252b5132
RH
12774 case M_MULO_I:
12775 imm = 1;
12776 goto do_mulo;
12777
12778 case M_DMULO:
12779 dbl = 1;
1a0670f3 12780 /* Fall through. */
252b5132
RH
12781 case M_MULO:
12782 do_mulo:
7d10b47d 12783 start_noreorder ();
8fc2e39e 12784 used_at = 1;
252b5132 12785 if (imm)
67c0d1eb 12786 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12787 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12788 op[1], imm ? AT : op[2]);
12789 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12790 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
df58fc94 12791 macro_build (NULL, "mfhi", MFHL_FMT, AT);
252b5132 12792 if (mips_trap)
c0ebe874 12793 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
252b5132
RH
12794 else
12795 {
df58fc94
RS
12796 if (mips_opts.micromips)
12797 micromips_label_expr (&label_expr);
12798 else
12799 label_expr.X_add_number = 8;
c0ebe874 12800 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
a605d2b3 12801 macro_build (NULL, "nop", "");
df58fc94
RS
12802 macro_build (NULL, "break", BRK_FMT, 6);
12803 if (mips_opts.micromips)
12804 micromips_add_label ();
252b5132 12805 }
7d10b47d 12806 end_noreorder ();
c0ebe874 12807 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12808 break;
12809
12810 case M_DMULOU_I:
12811 dbl = 1;
1a0670f3 12812 /* Fall through. */
252b5132
RH
12813 case M_MULOU_I:
12814 imm = 1;
12815 goto do_mulou;
12816
12817 case M_DMULOU:
12818 dbl = 1;
1a0670f3 12819 /* Fall through. */
252b5132
RH
12820 case M_MULOU:
12821 do_mulou:
7d10b47d 12822 start_noreorder ();
8fc2e39e 12823 used_at = 1;
252b5132 12824 if (imm)
67c0d1eb
RS
12825 load_register (AT, &imm_expr, dbl);
12826 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
c0ebe874 12827 op[1], imm ? AT : op[2]);
df58fc94 12828 macro_build (NULL, "mfhi", MFHL_FMT, AT);
c0ebe874 12829 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132 12830 if (mips_trap)
df58fc94 12831 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
252b5132
RH
12832 else
12833 {
df58fc94
RS
12834 if (mips_opts.micromips)
12835 micromips_label_expr (&label_expr);
12836 else
12837 label_expr.X_add_number = 8;
12838 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
a605d2b3 12839 macro_build (NULL, "nop", "");
df58fc94
RS
12840 macro_build (NULL, "break", BRK_FMT, 6);
12841 if (mips_opts.micromips)
12842 micromips_add_label ();
252b5132 12843 }
7d10b47d 12844 end_noreorder ();
252b5132
RH
12845 break;
12846
771c7ce4 12847 case M_DROL:
fef14a42 12848 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12849 {
c0ebe874 12850 if (op[0] == op[1])
82dd0097
CD
12851 {
12852 tempreg = AT;
12853 used_at = 1;
12854 }
12855 else
c0ebe874
RS
12856 tempreg = op[0];
12857 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12858 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12859 break;
82dd0097 12860 }
8fc2e39e 12861 used_at = 1;
c0ebe874
RS
12862 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12863 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12864 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12865 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12866 break;
12867
252b5132 12868 case M_ROL:
fef14a42 12869 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12870 {
c0ebe874 12871 if (op[0] == op[1])
82dd0097
CD
12872 {
12873 tempreg = AT;
12874 used_at = 1;
12875 }
12876 else
c0ebe874
RS
12877 tempreg = op[0];
12878 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12879 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12880 break;
82dd0097 12881 }
8fc2e39e 12882 used_at = 1;
c0ebe874
RS
12883 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12884 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12885 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12886 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12887 break;
12888
771c7ce4
TS
12889 case M_DROL_I:
12890 {
12891 unsigned int rot;
e0471c16
TS
12892 const char *l;
12893 const char *rr;
771c7ce4 12894
771c7ce4 12895 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12896 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
60b63b72
RS
12897 {
12898 rot = (64 - rot) & 0x3f;
12899 if (rot >= 32)
c0ebe874 12900 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
60b63b72 12901 else
c0ebe874 12902 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12903 break;
60b63b72 12904 }
483fc7cd 12905 if (rot == 0)
483fc7cd 12906 {
c0ebe874 12907 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12908 break;
483fc7cd 12909 }
82dd0097 12910 l = (rot < 0x20) ? "dsll" : "dsll32";
91d6fa6a 12911 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
82dd0097 12912 rot &= 0x1f;
8fc2e39e 12913 used_at = 1;
c0ebe874
RS
12914 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12915 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12916 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12917 }
12918 break;
12919
252b5132 12920 case M_ROL_I:
771c7ce4
TS
12921 {
12922 unsigned int rot;
12923
771c7ce4 12924 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12925 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
60b63b72 12926 {
c0ebe874
RS
12927 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12928 (32 - rot) & 0x1f);
8fc2e39e 12929 break;
60b63b72 12930 }
483fc7cd 12931 if (rot == 0)
483fc7cd 12932 {
c0ebe874 12933 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12934 break;
483fc7cd 12935 }
8fc2e39e 12936 used_at = 1;
c0ebe874
RS
12937 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12938 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12939 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12940 }
12941 break;
12942
12943 case M_DROR:
fef14a42 12944 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12945 {
c0ebe874 12946 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12947 break;
82dd0097 12948 }
8fc2e39e 12949 used_at = 1;
c0ebe874
RS
12950 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12951 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12952 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12953 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12954 break;
12955
12956 case M_ROR:
fef14a42 12957 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12958 {
c0ebe874 12959 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12960 break;
82dd0097 12961 }
8fc2e39e 12962 used_at = 1;
c0ebe874
RS
12963 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12964 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12965 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12966 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12967 break;
12968
771c7ce4
TS
12969 case M_DROR_I:
12970 {
12971 unsigned int rot;
e0471c16
TS
12972 const char *l;
12973 const char *rr;
771c7ce4 12974
771c7ce4 12975 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12976 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
12977 {
12978 if (rot >= 32)
c0ebe874 12979 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
82dd0097 12980 else
c0ebe874 12981 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12982 break;
82dd0097 12983 }
483fc7cd 12984 if (rot == 0)
483fc7cd 12985 {
c0ebe874 12986 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12987 break;
483fc7cd 12988 }
91d6fa6a 12989 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
82dd0097
CD
12990 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12991 rot &= 0x1f;
8fc2e39e 12992 used_at = 1;
c0ebe874
RS
12993 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12994 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12995 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12996 }
12997 break;
12998
252b5132 12999 case M_ROR_I:
771c7ce4
TS
13000 {
13001 unsigned int rot;
13002
771c7ce4 13003 rot = imm_expr.X_add_number & 0x1f;
fef14a42 13004 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 13005 {
c0ebe874 13006 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 13007 break;
82dd0097 13008 }
483fc7cd 13009 if (rot == 0)
483fc7cd 13010 {
c0ebe874 13011 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13012 break;
483fc7cd 13013 }
8fc2e39e 13014 used_at = 1;
c0ebe874
RS
13015 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13016 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13017 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4 13018 }
252b5132
RH
13019 break;
13020
252b5132 13021 case M_SEQ:
c0ebe874
RS
13022 if (op[1] == 0)
13023 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13024 else if (op[2] == 0)
13025 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
13026 else
13027 {
c0ebe874
RS
13028 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13029 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
252b5132 13030 }
8fc2e39e 13031 break;
252b5132
RH
13032
13033 case M_SEQ_I:
b0e6f033 13034 if (imm_expr.X_add_number == 0)
252b5132 13035 {
c0ebe874 13036 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13037 break;
252b5132 13038 }
c0ebe874 13039 if (op[1] == 0)
252b5132 13040 {
1661c76c 13041 as_warn (_("instruction %s: result is always false"),
252b5132 13042 ip->insn_mo->name);
c0ebe874 13043 move_register (op[0], 0);
8fc2e39e 13044 break;
252b5132 13045 }
dd3cbb7e
NC
13046 if (CPU_HAS_SEQ (mips_opts.arch)
13047 && -512 <= imm_expr.X_add_number
13048 && imm_expr.X_add_number < 512)
13049 {
c0ebe874 13050 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
750bdd57 13051 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13052 break;
13053 }
b0e6f033 13054 if (imm_expr.X_add_number >= 0
252b5132 13055 && imm_expr.X_add_number < 0x10000)
c0ebe874 13056 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
b0e6f033 13057 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13058 && imm_expr.X_add_number < 0)
13059 {
13060 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13061 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13062 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13063 }
dd3cbb7e
NC
13064 else if (CPU_HAS_SEQ (mips_opts.arch))
13065 {
13066 used_at = 1;
bad1aba3 13067 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13068 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13069 break;
13070 }
252b5132
RH
13071 else
13072 {
bad1aba3 13073 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13074 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13075 used_at = 1;
13076 }
c0ebe874 13077 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13078 break;
252b5132 13079
c0ebe874 13080 case M_SGE: /* X >= Y <==> not (X < Y) */
252b5132
RH
13081 s = "slt";
13082 goto sge;
13083 case M_SGEU:
13084 s = "sltu";
13085 sge:
c0ebe874
RS
13086 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13087 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13088 break;
252b5132 13089
c0ebe874 13090 case M_SGE_I: /* X >= I <==> not (X < I) */
252b5132 13091 case M_SGEU_I:
b0e6f033 13092 if (imm_expr.X_add_number >= -0x8000
252b5132 13093 && imm_expr.X_add_number < 0x8000)
c0ebe874
RS
13094 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13095 op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
13096 else
13097 {
bad1aba3 13098 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 13099 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
c0ebe874 13100 op[0], op[1], AT);
252b5132
RH
13101 used_at = 1;
13102 }
c0ebe874 13103 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13104 break;
252b5132 13105
c0ebe874 13106 case M_SGT: /* X > Y <==> Y < X */
252b5132
RH
13107 s = "slt";
13108 goto sgt;
13109 case M_SGTU:
13110 s = "sltu";
13111 sgt:
c0ebe874 13112 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
8fc2e39e 13113 break;
252b5132 13114
c0ebe874 13115 case M_SGT_I: /* X > I <==> I < X */
252b5132
RH
13116 s = "slt";
13117 goto sgti;
13118 case M_SGTU_I:
13119 s = "sltu";
13120 sgti:
8fc2e39e 13121 used_at = 1;
bad1aba3 13122 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13123 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
252b5132
RH
13124 break;
13125
c0ebe874 13126 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
252b5132
RH
13127 s = "slt";
13128 goto sle;
13129 case M_SLEU:
13130 s = "sltu";
13131 sle:
c0ebe874
RS
13132 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13133 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13134 break;
252b5132 13135
c0ebe874 13136 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
252b5132
RH
13137 s = "slt";
13138 goto slei;
13139 case M_SLEU_I:
13140 s = "sltu";
13141 slei:
8fc2e39e 13142 used_at = 1;
bad1aba3 13143 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874
RS
13144 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13145 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
252b5132
RH
13146 break;
13147
13148 case M_SLT_I:
b0e6f033 13149 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
13150 && imm_expr.X_add_number < 0x8000)
13151 {
c0ebe874
RS
13152 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13153 BFD_RELOC_LO16);
8fc2e39e 13154 break;
252b5132 13155 }
8fc2e39e 13156 used_at = 1;
bad1aba3 13157 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13158 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
252b5132
RH
13159 break;
13160
13161 case M_SLTU_I:
b0e6f033 13162 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
13163 && imm_expr.X_add_number < 0x8000)
13164 {
c0ebe874 13165 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
17a2f251 13166 BFD_RELOC_LO16);
8fc2e39e 13167 break;
252b5132 13168 }
8fc2e39e 13169 used_at = 1;
bad1aba3 13170 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13171 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
252b5132
RH
13172 break;
13173
13174 case M_SNE:
c0ebe874
RS
13175 if (op[1] == 0)
13176 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13177 else if (op[2] == 0)
13178 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
252b5132
RH
13179 else
13180 {
c0ebe874
RS
13181 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13182 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
252b5132 13183 }
8fc2e39e 13184 break;
252b5132
RH
13185
13186 case M_SNE_I:
b0e6f033 13187 if (imm_expr.X_add_number == 0)
252b5132 13188 {
c0ebe874 13189 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
8fc2e39e 13190 break;
252b5132 13191 }
c0ebe874 13192 if (op[1] == 0)
252b5132 13193 {
1661c76c 13194 as_warn (_("instruction %s: result is always true"),
252b5132 13195 ip->insn_mo->name);
bad1aba3 13196 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
c0ebe874 13197 op[0], 0, BFD_RELOC_LO16);
8fc2e39e 13198 break;
252b5132 13199 }
dd3cbb7e
NC
13200 if (CPU_HAS_SEQ (mips_opts.arch)
13201 && -512 <= imm_expr.X_add_number
13202 && imm_expr.X_add_number < 512)
13203 {
c0ebe874 13204 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
750bdd57 13205 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13206 break;
13207 }
b0e6f033 13208 if (imm_expr.X_add_number >= 0
252b5132
RH
13209 && imm_expr.X_add_number < 0x10000)
13210 {
c0ebe874
RS
13211 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13212 BFD_RELOC_LO16);
252b5132 13213 }
b0e6f033 13214 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13215 && imm_expr.X_add_number < 0)
13216 {
13217 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13218 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13219 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13220 }
dd3cbb7e
NC
13221 else if (CPU_HAS_SEQ (mips_opts.arch))
13222 {
13223 used_at = 1;
bad1aba3 13224 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13225 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13226 break;
13227 }
252b5132
RH
13228 else
13229 {
bad1aba3 13230 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13231 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13232 used_at = 1;
13233 }
c0ebe874 13234 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
8fc2e39e 13235 break;
252b5132 13236
df58fc94
RS
13237 case M_SUB_I:
13238 s = "addi";
13239 s2 = "sub";
13240 goto do_subi;
13241 case M_SUBU_I:
13242 s = "addiu";
13243 s2 = "subu";
13244 goto do_subi;
252b5132
RH
13245 case M_DSUB_I:
13246 dbl = 1;
df58fc94
RS
13247 s = "daddi";
13248 s2 = "dsub";
13249 if (!mips_opts.micromips)
13250 goto do_subi;
b0e6f033 13251 if (imm_expr.X_add_number > -0x200
df58fc94 13252 && imm_expr.X_add_number <= 0x200)
252b5132 13253 {
b0e6f033
RS
13254 macro_build (NULL, s, "t,r,.", op[0], op[1],
13255 (int) -imm_expr.X_add_number);
8fc2e39e 13256 break;
252b5132 13257 }
df58fc94 13258 goto do_subi_i;
252b5132
RH
13259 case M_DSUBU_I:
13260 dbl = 1;
df58fc94
RS
13261 s = "daddiu";
13262 s2 = "dsubu";
13263 do_subi:
b0e6f033 13264 if (imm_expr.X_add_number > -0x8000
252b5132
RH
13265 && imm_expr.X_add_number <= 0x8000)
13266 {
13267 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13268 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13269 break;
252b5132 13270 }
df58fc94 13271 do_subi_i:
8fc2e39e 13272 used_at = 1;
67c0d1eb 13273 load_register (AT, &imm_expr, dbl);
c0ebe874 13274 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
13275 break;
13276
13277 case M_TEQ_I:
13278 s = "teq";
13279 goto trap;
13280 case M_TGE_I:
13281 s = "tge";
13282 goto trap;
13283 case M_TGEU_I:
13284 s = "tgeu";
13285 goto trap;
13286 case M_TLT_I:
13287 s = "tlt";
13288 goto trap;
13289 case M_TLTU_I:
13290 s = "tltu";
13291 goto trap;
13292 case M_TNE_I:
13293 s = "tne";
13294 trap:
8fc2e39e 13295 used_at = 1;
bad1aba3 13296 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13297 macro_build (NULL, s, "s,t", op[0], AT);
252b5132
RH
13298 break;
13299
252b5132 13300 case M_TRUNCWS:
43841e91 13301 case M_TRUNCWD:
df58fc94 13302 gas_assert (!mips_opts.micromips);
0aa27725 13303 gas_assert (mips_opts.isa == ISA_MIPS1);
8fc2e39e 13304 used_at = 1;
252b5132
RH
13305
13306 /*
13307 * Is the double cfc1 instruction a bug in the mips assembler;
13308 * or is there a reason for it?
13309 */
7d10b47d 13310 start_noreorder ();
c0ebe874
RS
13311 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13312 macro_build (NULL, "cfc1", "t,G", op[2], RA);
67c0d1eb 13313 macro_build (NULL, "nop", "");
252b5132 13314 expr1.X_add_number = 3;
c0ebe874 13315 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
252b5132 13316 expr1.X_add_number = 2;
67c0d1eb
RS
13317 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13318 macro_build (NULL, "ctc1", "t,G", AT, RA);
13319 macro_build (NULL, "nop", "");
13320 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
c0ebe874
RS
13321 op[0], op[1]);
13322 macro_build (NULL, "ctc1", "t,G", op[2], RA);
67c0d1eb 13323 macro_build (NULL, "nop", "");
7d10b47d 13324 end_noreorder ();
252b5132
RH
13325 break;
13326
f2ae14a1 13327 case M_ULH_AB:
252b5132 13328 s = "lb";
df58fc94
RS
13329 s2 = "lbu";
13330 off = 1;
13331 goto uld_st;
f2ae14a1 13332 case M_ULHU_AB:
252b5132 13333 s = "lbu";
df58fc94
RS
13334 s2 = "lbu";
13335 off = 1;
13336 goto uld_st;
f2ae14a1 13337 case M_ULW_AB:
df58fc94
RS
13338 s = "lwl";
13339 s2 = "lwr";
7f3c4072 13340 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13341 off = 3;
13342 goto uld_st;
f2ae14a1 13343 case M_ULD_AB:
252b5132
RH
13344 s = "ldl";
13345 s2 = "ldr";
7f3c4072 13346 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13347 off = 7;
df58fc94 13348 goto uld_st;
f2ae14a1 13349 case M_USH_AB:
df58fc94
RS
13350 s = "sb";
13351 s2 = "sb";
13352 off = 1;
13353 ust = 1;
13354 goto uld_st;
f2ae14a1 13355 case M_USW_AB:
df58fc94
RS
13356 s = "swl";
13357 s2 = "swr";
7f3c4072 13358 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13359 off = 3;
df58fc94
RS
13360 ust = 1;
13361 goto uld_st;
f2ae14a1 13362 case M_USD_AB:
df58fc94
RS
13363 s = "sdl";
13364 s2 = "sdr";
7f3c4072 13365 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13366 off = 7;
13367 ust = 1;
13368
13369 uld_st:
c0ebe874 13370 breg = op[2];
f2ae14a1 13371 large_offset = !small_offset_p (off, align, offbits);
df58fc94
RS
13372 ep = &offset_expr;
13373 expr1.X_add_number = 0;
f2ae14a1 13374 if (large_offset)
df58fc94
RS
13375 {
13376 used_at = 1;
13377 tempreg = AT;
f2ae14a1
RS
13378 if (small_offset_p (0, align, 16))
13379 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13380 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13381 else
13382 {
13383 load_address (tempreg, ep, &used_at);
13384 if (breg != 0)
13385 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13386 tempreg, tempreg, breg);
13387 }
13388 offset_reloc[0] = BFD_RELOC_LO16;
13389 offset_reloc[1] = BFD_RELOC_UNUSED;
13390 offset_reloc[2] = BFD_RELOC_UNUSED;
df58fc94 13391 breg = tempreg;
c0ebe874 13392 tempreg = op[0];
df58fc94
RS
13393 ep = &expr1;
13394 }
c0ebe874 13395 else if (!ust && op[0] == breg)
8fc2e39e
TS
13396 {
13397 used_at = 1;
13398 tempreg = AT;
13399 }
252b5132 13400 else
c0ebe874 13401 tempreg = op[0];
af22f5b2 13402
df58fc94
RS
13403 if (off == 1)
13404 goto ulh_sh;
252b5132 13405
90ecf173 13406 if (!target_big_endian)
df58fc94 13407 ep->X_add_number += off;
f2ae14a1 13408 if (offbits == 12)
c8276761 13409 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13410 else
13411 macro_build (ep, s, "t,o(b)", tempreg, -1,
13412 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94 13413
90ecf173 13414 if (!target_big_endian)
df58fc94 13415 ep->X_add_number -= off;
252b5132 13416 else
df58fc94 13417 ep->X_add_number += off;
f2ae14a1 13418 if (offbits == 12)
df58fc94 13419 macro_build (NULL, s2, "t,~(b)",
c8276761 13420 tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13421 else
13422 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13423 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13424
df58fc94 13425 /* If necessary, move the result in tempreg to the final destination. */
c0ebe874 13426 if (!ust && op[0] != tempreg)
df58fc94
RS
13427 {
13428 /* Protect second load's delay slot. */
13429 load_delay_nop ();
c0ebe874 13430 move_register (op[0], tempreg);
df58fc94 13431 }
8fc2e39e 13432 break;
252b5132 13433
df58fc94 13434 ulh_sh:
d6bc6245 13435 used_at = 1;
df58fc94
RS
13436 if (target_big_endian == ust)
13437 ep->X_add_number += off;
c0ebe874 13438 tempreg = ust || large_offset ? op[0] : AT;
f2ae14a1
RS
13439 macro_build (ep, s, "t,o(b)", tempreg, -1,
13440 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94
RS
13441
13442 /* For halfword transfers we need a temporary register to shuffle
13443 bytes. Unfortunately for M_USH_A we have none available before
13444 the next store as AT holds the base address. We deal with this
13445 case by clobbering TREG and then restoring it as with ULH. */
c0ebe874 13446 tempreg = ust == large_offset ? op[0] : AT;
df58fc94 13447 if (ust)
c0ebe874 13448 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
df58fc94
RS
13449
13450 if (target_big_endian == ust)
13451 ep->X_add_number -= off;
252b5132 13452 else
df58fc94 13453 ep->X_add_number += off;
f2ae14a1
RS
13454 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13455 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13456
df58fc94 13457 /* For M_USH_A re-retrieve the LSB. */
f2ae14a1 13458 if (ust && large_offset)
df58fc94
RS
13459 {
13460 if (target_big_endian)
13461 ep->X_add_number += off;
13462 else
13463 ep->X_add_number -= off;
f2ae14a1
RS
13464 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13465 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
df58fc94
RS
13466 }
13467 /* For ULH and M_USH_A OR the LSB in. */
f2ae14a1 13468 if (!ust || large_offset)
df58fc94 13469 {
c0ebe874 13470 tempreg = !large_offset ? AT : op[0];
df58fc94 13471 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
c0ebe874 13472 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
df58fc94 13473 }
252b5132
RH
13474 break;
13475
13476 default:
13477 /* FIXME: Check if this is one of the itbl macros, since they
bdaaa2e1 13478 are added dynamically. */
1661c76c 13479 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
252b5132
RH
13480 break;
13481 }
741fe287 13482 if (!mips_opts.at && used_at)
1661c76c 13483 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
13484}
13485
13486/* Implement macros in mips16 mode. */
13487
13488static void
17a2f251 13489mips16_macro (struct mips_cl_insn *ip)
252b5132 13490{
c0ebe874 13491 const struct mips_operand_array *operands;
252b5132 13492 int mask;
c0ebe874 13493 int tmp;
252b5132
RH
13494 expressionS expr1;
13495 int dbl;
13496 const char *s, *s2, *s3;
c0ebe874
RS
13497 unsigned int op[MAX_OPERANDS];
13498 unsigned int i;
252b5132
RH
13499
13500 mask = ip->insn_mo->mask;
13501
c0ebe874
RS
13502 operands = insn_operands (ip);
13503 for (i = 0; i < MAX_OPERANDS; i++)
13504 if (operands->operand[i])
13505 op[i] = insn_extract_operand (ip, operands->operand[i]);
13506 else
13507 op[i] = -1;
252b5132 13508
252b5132
RH
13509 expr1.X_op = O_constant;
13510 expr1.X_op_symbol = NULL;
13511 expr1.X_add_symbol = NULL;
13512 expr1.X_add_number = 1;
13513
13514 dbl = 0;
13515
13516 switch (mask)
13517 {
13518 default:
b37df7c4 13519 abort ();
252b5132
RH
13520
13521 case M_DDIV_3:
13522 dbl = 1;
1a0670f3 13523 /* Fall through. */
252b5132
RH
13524 case M_DIV_3:
13525 s = "mflo";
13526 goto do_div3;
13527 case M_DREM_3:
13528 dbl = 1;
1a0670f3 13529 /* Fall through. */
252b5132
RH
13530 case M_REM_3:
13531 s = "mfhi";
13532 do_div3:
7d10b47d 13533 start_noreorder ();
c0ebe874 13534 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
252b5132 13535 expr1.X_add_number = 2;
c0ebe874 13536 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13537 macro_build (NULL, "break", "6", 7);
bdaaa2e1 13538
252b5132
RH
13539 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13540 since that causes an overflow. We should do that as well,
13541 but I don't see how to do the comparisons without a temporary
13542 register. */
7d10b47d 13543 end_noreorder ();
c0ebe874 13544 macro_build (NULL, s, "x", op[0]);
252b5132
RH
13545 break;
13546
13547 case M_DIVU_3:
13548 s = "divu";
13549 s2 = "mflo";
13550 goto do_divu3;
13551 case M_REMU_3:
13552 s = "divu";
13553 s2 = "mfhi";
13554 goto do_divu3;
13555 case M_DDIVU_3:
13556 s = "ddivu";
13557 s2 = "mflo";
13558 goto do_divu3;
13559 case M_DREMU_3:
13560 s = "ddivu";
13561 s2 = "mfhi";
13562 do_divu3:
7d10b47d 13563 start_noreorder ();
c0ebe874 13564 macro_build (NULL, s, "0,x,y", op[1], op[2]);
252b5132 13565 expr1.X_add_number = 2;
c0ebe874 13566 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13567 macro_build (NULL, "break", "6", 7);
7d10b47d 13568 end_noreorder ();
c0ebe874 13569 macro_build (NULL, s2, "x", op[0]);
252b5132
RH
13570 break;
13571
13572 case M_DMUL:
13573 dbl = 1;
1a0670f3 13574 /* Fall through. */
252b5132 13575 case M_MUL:
c0ebe874
RS
13576 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13577 macro_build (NULL, "mflo", "x", op[0]);
8fc2e39e 13578 break;
252b5132
RH
13579
13580 case M_DSUBU_I:
13581 dbl = 1;
13582 goto do_subu;
13583 case M_SUBU_I:
13584 do_subu:
252b5132 13585 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13586 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
252b5132
RH
13587 break;
13588
13589 case M_SUBU_I_2:
252b5132 13590 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13591 macro_build (&imm_expr, "addiu", "x,k", op[0]);
252b5132
RH
13592 break;
13593
13594 case M_DSUBU_I_2:
252b5132 13595 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13596 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
252b5132
RH
13597 break;
13598
13599 case M_BEQ:
13600 s = "cmp";
13601 s2 = "bteqz";
13602 goto do_branch;
13603 case M_BNE:
13604 s = "cmp";
13605 s2 = "btnez";
13606 goto do_branch;
13607 case M_BLT:
13608 s = "slt";
13609 s2 = "btnez";
13610 goto do_branch;
13611 case M_BLTU:
13612 s = "sltu";
13613 s2 = "btnez";
13614 goto do_branch;
13615 case M_BLE:
13616 s = "slt";
13617 s2 = "bteqz";
13618 goto do_reverse_branch;
13619 case M_BLEU:
13620 s = "sltu";
13621 s2 = "bteqz";
13622 goto do_reverse_branch;
13623 case M_BGE:
13624 s = "slt";
13625 s2 = "bteqz";
13626 goto do_branch;
13627 case M_BGEU:
13628 s = "sltu";
13629 s2 = "bteqz";
13630 goto do_branch;
13631 case M_BGT:
13632 s = "slt";
13633 s2 = "btnez";
13634 goto do_reverse_branch;
13635 case M_BGTU:
13636 s = "sltu";
13637 s2 = "btnez";
13638
13639 do_reverse_branch:
c0ebe874
RS
13640 tmp = op[1];
13641 op[1] = op[0];
13642 op[0] = tmp;
252b5132
RH
13643
13644 do_branch:
c0ebe874 13645 macro_build (NULL, s, "x,y", op[0], op[1]);
67c0d1eb 13646 macro_build (&offset_expr, s2, "p");
252b5132
RH
13647 break;
13648
13649 case M_BEQ_I:
13650 s = "cmpi";
13651 s2 = "bteqz";
13652 s3 = "x,U";
13653 goto do_branch_i;
13654 case M_BNE_I:
13655 s = "cmpi";
13656 s2 = "btnez";
13657 s3 = "x,U";
13658 goto do_branch_i;
13659 case M_BLT_I:
13660 s = "slti";
13661 s2 = "btnez";
13662 s3 = "x,8";
13663 goto do_branch_i;
13664 case M_BLTU_I:
13665 s = "sltiu";
13666 s2 = "btnez";
13667 s3 = "x,8";
13668 goto do_branch_i;
13669 case M_BLE_I:
13670 s = "slti";
13671 s2 = "btnez";
13672 s3 = "x,8";
13673 goto do_addone_branch_i;
13674 case M_BLEU_I:
13675 s = "sltiu";
13676 s2 = "btnez";
13677 s3 = "x,8";
13678 goto do_addone_branch_i;
13679 case M_BGE_I:
13680 s = "slti";
13681 s2 = "bteqz";
13682 s3 = "x,8";
13683 goto do_branch_i;
13684 case M_BGEU_I:
13685 s = "sltiu";
13686 s2 = "bteqz";
13687 s3 = "x,8";
13688 goto do_branch_i;
13689 case M_BGT_I:
13690 s = "slti";
13691 s2 = "bteqz";
13692 s3 = "x,8";
13693 goto do_addone_branch_i;
13694 case M_BGTU_I:
13695 s = "sltiu";
13696 s2 = "bteqz";
13697 s3 = "x,8";
13698
13699 do_addone_branch_i:
252b5132
RH
13700 ++imm_expr.X_add_number;
13701
13702 do_branch_i:
c0ebe874 13703 macro_build (&imm_expr, s, s3, op[0]);
67c0d1eb 13704 macro_build (&offset_expr, s2, "p");
252b5132
RH
13705 break;
13706
13707 case M_ABS:
13708 expr1.X_add_number = 0;
c0ebe874
RS
13709 macro_build (&expr1, "slti", "x,8", op[1]);
13710 if (op[0] != op[1])
13711 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
252b5132 13712 expr1.X_add_number = 2;
67c0d1eb 13713 macro_build (&expr1, "bteqz", "p");
c0ebe874 13714 macro_build (NULL, "neg", "x,w", op[0], op[0]);
0acfaea6 13715 break;
252b5132
RH
13716 }
13717}
13718
14daeee3
RS
13719/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13720 opcode bits in *OPCODE_EXTRA. */
13721
13722static struct mips_opcode *
13723mips_lookup_insn (struct hash_control *hash, const char *start,
da8bca91 13724 ssize_t length, unsigned int *opcode_extra)
14daeee3
RS
13725{
13726 char *name, *dot, *p;
13727 unsigned int mask, suffix;
da8bca91 13728 ssize_t opend;
14daeee3
RS
13729 struct mips_opcode *insn;
13730
13731 /* Make a copy of the instruction so that we can fiddle with it. */
4ec9d7d5 13732 name = xstrndup (start, length);
14daeee3
RS
13733
13734 /* Look up the instruction as-is. */
13735 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13736 if (insn)
e1fa0163 13737 goto end;
14daeee3
RS
13738
13739 dot = strchr (name, '.');
13740 if (dot && dot[1])
13741 {
13742 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13743 p = mips_parse_vu0_channels (dot + 1, &mask);
13744 if (*p == 0 && mask != 0)
13745 {
13746 *dot = 0;
13747 insn = (struct mips_opcode *) hash_find (hash, name);
13748 *dot = '.';
13749 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13750 {
13751 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
e1fa0163 13752 goto end;
14daeee3
RS
13753 }
13754 }
13755 }
13756
13757 if (mips_opts.micromips)
13758 {
13759 /* See if there's an instruction size override suffix,
13760 either `16' or `32', at the end of the mnemonic proper,
13761 that defines the operation, i.e. before the first `.'
13762 character if any. Strip it and retry. */
13763 opend = dot != NULL ? dot - name : length;
13764 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13765 suffix = 2;
13766 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13767 suffix = 4;
13768 else
13769 suffix = 0;
13770 if (suffix)
13771 {
13772 memcpy (name + opend - 2, name + opend, length - opend + 1);
13773 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13774 if (insn)
14daeee3
RS
13775 {
13776 forced_insn_length = suffix;
e1fa0163 13777 goto end;
14daeee3
RS
13778 }
13779 }
13780 }
13781
e1fa0163
NC
13782 insn = NULL;
13783 end:
13784 free (name);
13785 return insn;
14daeee3
RS
13786}
13787
77bd4346 13788/* Assemble an instruction into its binary format. If the instruction
e423441d
RS
13789 is a macro, set imm_expr and offset_expr to the values associated
13790 with "I" and "A" operands respectively. Otherwise store the value
13791 of the relocatable field (if any) in offset_expr. In both cases
13792 set offset_reloc to the relocation operators applied to offset_expr. */
252b5132
RH
13793
13794static void
60f20e8b 13795mips_ip (char *str, struct mips_cl_insn *insn)
252b5132 13796{
60f20e8b 13797 const struct mips_opcode *first, *past;
df58fc94 13798 struct hash_control *hash;
a92713e6 13799 char format;
14daeee3 13800 size_t end;
a92713e6 13801 struct mips_operand_token *tokens;
14daeee3 13802 unsigned int opcode_extra;
252b5132 13803
df58fc94
RS
13804 if (mips_opts.micromips)
13805 {
13806 hash = micromips_op_hash;
13807 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13808 }
13809 else
13810 {
13811 hash = op_hash;
13812 past = &mips_opcodes[NUMOPCODES];
13813 }
13814 forced_insn_length = 0;
14daeee3 13815 opcode_extra = 0;
252b5132 13816
df58fc94 13817 /* We first try to match an instruction up to a space or to the end. */
a40bc9dd
RS
13818 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13819 continue;
bdaaa2e1 13820
60f20e8b
RS
13821 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13822 if (first == NULL)
252b5132 13823 {
1661c76c 13824 set_insn_error (0, _("unrecognized opcode"));
a40bc9dd 13825 return;
252b5132
RH
13826 }
13827
60f20e8b 13828 if (strcmp (first->name, "li.s") == 0)
a92713e6 13829 format = 'f';
60f20e8b 13830 else if (strcmp (first->name, "li.d") == 0)
a92713e6
RS
13831 format = 'd';
13832 else
13833 format = 0;
13834 tokens = mips_parse_arguments (str + end, format);
13835 if (!tokens)
13836 return;
13837
60f20e8b
RS
13838 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13839 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
1661c76c 13840 set_insn_error (0, _("invalid operands"));
df58fc94 13841
e3de51ce 13842 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13843}
13844
77bd4346
RS
13845/* As for mips_ip, but used when assembling MIPS16 code.
13846 Also set forced_insn_length to the resulting instruction size in
13847 bytes if the user explicitly requested a small or extended instruction. */
252b5132
RH
13848
13849static void
60f20e8b 13850mips16_ip (char *str, struct mips_cl_insn *insn)
252b5132 13851{
1a00e612 13852 char *end, *s, c;
60f20e8b 13853 struct mips_opcode *first;
a92713e6 13854 struct mips_operand_token *tokens;
3fb49709 13855 unsigned int l;
252b5132 13856
3882b010 13857 for (s = str; ISLOWER (*s); ++s)
252b5132 13858 ;
1a00e612
RS
13859 end = s;
13860 c = *end;
3fb49709
MR
13861
13862 l = 0;
1a00e612 13863 switch (c)
252b5132
RH
13864 {
13865 case '\0':
13866 break;
13867
13868 case ' ':
1a00e612 13869 s++;
252b5132
RH
13870 break;
13871
13872 case '.':
3fb49709
MR
13873 s++;
13874 if (*s == 't')
252b5132 13875 {
3fb49709
MR
13876 l = 2;
13877 s++;
252b5132 13878 }
3fb49709 13879 else if (*s == 'e')
252b5132 13880 {
3fb49709
MR
13881 l = 4;
13882 s++;
252b5132 13883 }
3fb49709
MR
13884 if (*s == '\0')
13885 break;
13886 else if (*s++ == ' ')
13887 break;
252b5132
RH
13888 /* Fall through. */
13889 default:
1661c76c 13890 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13891 return;
13892 }
3fb49709 13893 forced_insn_length = l;
252b5132 13894
1a00e612 13895 *end = 0;
60f20e8b 13896 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
1a00e612
RS
13897 *end = c;
13898
60f20e8b 13899 if (!first)
252b5132 13900 {
1661c76c 13901 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13902 return;
13903 }
13904
a92713e6
RS
13905 tokens = mips_parse_arguments (s, 0);
13906 if (!tokens)
13907 return;
13908
60f20e8b 13909 if (!match_mips16_insns (insn, first, tokens))
1661c76c 13910 set_insn_error (0, _("invalid operands"));
252b5132 13911
e3de51ce 13912 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13913}
13914
b886a2ab
RS
13915/* Marshal immediate value VAL for an extended MIPS16 instruction.
13916 NBITS is the number of significant bits in VAL. */
13917
13918static unsigned long
13919mips16_immed_extend (offsetT val, unsigned int nbits)
13920{
13921 int extval;
13922 if (nbits == 16)
13923 {
13924 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13925 val &= 0x1f;
13926 }
13927 else if (nbits == 15)
13928 {
13929 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13930 val &= 0xf;
13931 }
13932 else
13933 {
13934 extval = ((val & 0x1f) << 6) | (val & 0x20);
13935 val = 0;
13936 }
13937 return (extval << 16) | val;
13938}
13939
3ccad066
RS
13940/* Like decode_mips16_operand, but require the operand to be defined and
13941 require it to be an integer. */
13942
13943static const struct mips_int_operand *
13944mips16_immed_operand (int type, bfd_boolean extended_p)
13945{
13946 const struct mips_operand *operand;
13947
13948 operand = decode_mips16_operand (type, extended_p);
13949 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13950 abort ();
13951 return (const struct mips_int_operand *) operand;
13952}
13953
13954/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13955
13956static bfd_boolean
13957mips16_immed_in_range_p (const struct mips_int_operand *operand,
13958 bfd_reloc_code_real_type reloc, offsetT sval)
13959{
13960 int min_val, max_val;
13961
13962 min_val = mips_int_operand_min (operand);
13963 max_val = mips_int_operand_max (operand);
13964 if (reloc != BFD_RELOC_UNUSED)
13965 {
13966 if (min_val < 0)
13967 sval = SEXT_16BIT (sval);
13968 else
13969 sval &= 0xffff;
13970 }
13971
13972 return (sval >= min_val
13973 && sval <= max_val
13974 && (sval & ((1 << operand->shift) - 1)) == 0);
13975}
13976
5c04167a
RS
13977/* Install immediate value VAL into MIPS16 instruction *INSN,
13978 extending it if necessary. The instruction in *INSN may
13979 already be extended.
13980
43c0598f
RS
13981 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13982 if none. In the former case, VAL is a 16-bit number with no
13983 defined signedness.
13984
13985 TYPE is the type of the immediate field. USER_INSN_LENGTH
13986 is the length that the user requested, or 0 if none. */
252b5132
RH
13987
13988static void
3b4dbbbf 13989mips16_immed (const char *file, unsigned int line, int type,
43c0598f 13990 bfd_reloc_code_real_type reloc, offsetT val,
5c04167a 13991 unsigned int user_insn_length, unsigned long *insn)
252b5132 13992{
3ccad066
RS
13993 const struct mips_int_operand *operand;
13994 unsigned int uval, length;
252b5132 13995
3ccad066
RS
13996 operand = mips16_immed_operand (type, FALSE);
13997 if (!mips16_immed_in_range_p (operand, reloc, val))
5c04167a
RS
13998 {
13999 /* We need an extended instruction. */
14000 if (user_insn_length == 2)
14001 as_bad_where (file, line, _("invalid unextended operand value"));
14002 else
14003 *insn |= MIPS16_EXTEND;
14004 }
14005 else if (user_insn_length == 4)
14006 {
14007 /* The operand doesn't force an unextended instruction to be extended.
14008 Warn if the user wanted an extended instruction anyway. */
14009 *insn |= MIPS16_EXTEND;
14010 as_warn_where (file, line,
14011 _("extended operand requested but not required"));
14012 }
252b5132 14013
3ccad066
RS
14014 length = mips16_opcode_length (*insn);
14015 if (length == 4)
252b5132 14016 {
3ccad066
RS
14017 operand = mips16_immed_operand (type, TRUE);
14018 if (!mips16_immed_in_range_p (operand, reloc, val))
14019 as_bad_where (file, line,
14020 _("operand value out of range for instruction"));
252b5132 14021 }
3ccad066
RS
14022 uval = ((unsigned int) val >> operand->shift) - operand->bias;
14023 if (length == 2)
14024 *insn = mips_insert_operand (&operand->root, *insn, uval);
252b5132 14025 else
3ccad066 14026 *insn |= mips16_immed_extend (uval, operand->root.size);
252b5132
RH
14027}
14028\f
d6f16593 14029struct percent_op_match
ad8d3bb3 14030{
5e0116d5
RS
14031 const char *str;
14032 bfd_reloc_code_real_type reloc;
d6f16593
MR
14033};
14034
14035static const struct percent_op_match mips_percent_op[] =
ad8d3bb3 14036{
5e0116d5 14037 {"%lo", BFD_RELOC_LO16},
5e0116d5
RS
14038 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14039 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14040 {"%call16", BFD_RELOC_MIPS_CALL16},
14041 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14042 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14043 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14044 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14045 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14046 {"%got", BFD_RELOC_MIPS_GOT16},
14047 {"%gp_rel", BFD_RELOC_GPREL16},
14048 {"%half", BFD_RELOC_16},
14049 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14050 {"%higher", BFD_RELOC_MIPS_HIGHER},
14051 {"%neg", BFD_RELOC_MIPS_SUB},
3f98094e
DJ
14052 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14053 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14054 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14055 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14056 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14057 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14058 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
7361da2c
AB
14059 {"%hi", BFD_RELOC_HI16_S},
14060 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14061 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
ad8d3bb3
TS
14062};
14063
d6f16593
MR
14064static const struct percent_op_match mips16_percent_op[] =
14065{
14066 {"%lo", BFD_RELOC_MIPS16_LO16},
14067 {"%gprel", BFD_RELOC_MIPS16_GPREL},
738e5348
RS
14068 {"%got", BFD_RELOC_MIPS16_GOT16},
14069 {"%call16", BFD_RELOC_MIPS16_CALL16},
d0f13682
CLT
14070 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14071 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14072 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14073 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14074 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14075 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14076 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14077 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
d6f16593
MR
14078};
14079
252b5132 14080
5e0116d5
RS
14081/* Return true if *STR points to a relocation operator. When returning true,
14082 move *STR over the operator and store its relocation code in *RELOC.
14083 Leave both *STR and *RELOC alone when returning false. */
14084
14085static bfd_boolean
17a2f251 14086parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
252b5132 14087{
d6f16593
MR
14088 const struct percent_op_match *percent_op;
14089 size_t limit, i;
14090
14091 if (mips_opts.mips16)
14092 {
14093 percent_op = mips16_percent_op;
14094 limit = ARRAY_SIZE (mips16_percent_op);
14095 }
14096 else
14097 {
14098 percent_op = mips_percent_op;
14099 limit = ARRAY_SIZE (mips_percent_op);
14100 }
76b3015f 14101
d6f16593 14102 for (i = 0; i < limit; i++)
5e0116d5 14103 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
394f9b3a 14104 {
3f98094e
DJ
14105 int len = strlen (percent_op[i].str);
14106
14107 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14108 continue;
14109
5e0116d5
RS
14110 *str += strlen (percent_op[i].str);
14111 *reloc = percent_op[i].reloc;
394f9b3a 14112
5e0116d5
RS
14113 /* Check whether the output BFD supports this relocation.
14114 If not, issue an error and fall back on something safe. */
14115 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
394f9b3a 14116 {
20203fb9 14117 as_bad (_("relocation %s isn't supported by the current ABI"),
5e0116d5 14118 percent_op[i].str);
01a3f561 14119 *reloc = BFD_RELOC_UNUSED;
394f9b3a 14120 }
5e0116d5 14121 return TRUE;
394f9b3a 14122 }
5e0116d5 14123 return FALSE;
394f9b3a 14124}
ad8d3bb3 14125
ad8d3bb3 14126
5e0116d5
RS
14127/* Parse string STR as a 16-bit relocatable operand. Store the
14128 expression in *EP and the relocations in the array starting
14129 at RELOC. Return the number of relocation operators used.
ad8d3bb3 14130
01a3f561 14131 On exit, EXPR_END points to the first character after the expression. */
ad8d3bb3 14132
5e0116d5 14133static size_t
17a2f251
TS
14134my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14135 char *str)
ad8d3bb3 14136{
5e0116d5
RS
14137 bfd_reloc_code_real_type reversed_reloc[3];
14138 size_t reloc_index, i;
09b8f35a
RS
14139 int crux_depth, str_depth;
14140 char *crux;
5e0116d5
RS
14141
14142 /* Search for the start of the main expression, recoding relocations
09b8f35a
RS
14143 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14144 of the main expression and with CRUX_DEPTH containing the number
14145 of open brackets at that point. */
14146 reloc_index = -1;
14147 str_depth = 0;
14148 do
fb1b3232 14149 {
09b8f35a
RS
14150 reloc_index++;
14151 crux = str;
14152 crux_depth = str_depth;
14153
14154 /* Skip over whitespace and brackets, keeping count of the number
14155 of brackets. */
14156 while (*str == ' ' || *str == '\t' || *str == '(')
14157 if (*str++ == '(')
14158 str_depth++;
5e0116d5 14159 }
09b8f35a
RS
14160 while (*str == '%'
14161 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14162 && parse_relocation (&str, &reversed_reloc[reloc_index]));
ad8d3bb3 14163
09b8f35a 14164 my_getExpression (ep, crux);
5e0116d5 14165 str = expr_end;
394f9b3a 14166
5e0116d5 14167 /* Match every open bracket. */
09b8f35a 14168 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
5e0116d5 14169 if (*str++ == ')')
09b8f35a 14170 crux_depth--;
394f9b3a 14171
09b8f35a 14172 if (crux_depth > 0)
20203fb9 14173 as_bad (_("unclosed '('"));
394f9b3a 14174
5e0116d5 14175 expr_end = str;
252b5132 14176
01a3f561 14177 if (reloc_index != 0)
64bdfcaf
RS
14178 {
14179 prev_reloc_op_frag = frag_now;
14180 for (i = 0; i < reloc_index; i++)
14181 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14182 }
fb1b3232 14183
5e0116d5 14184 return reloc_index;
252b5132
RH
14185}
14186
14187static void
17a2f251 14188my_getExpression (expressionS *ep, char *str)
252b5132
RH
14189{
14190 char *save_in;
14191
14192 save_in = input_line_pointer;
14193 input_line_pointer = str;
14194 expression (ep);
14195 expr_end = input_line_pointer;
14196 input_line_pointer = save_in;
252b5132
RH
14197}
14198
6d4af3c2 14199const char *
17a2f251 14200md_atof (int type, char *litP, int *sizeP)
252b5132 14201{
499ac353 14202 return ieee_md_atof (type, litP, sizeP, target_big_endian);
252b5132
RH
14203}
14204
14205void
17a2f251 14206md_number_to_chars (char *buf, valueT val, int n)
252b5132
RH
14207{
14208 if (target_big_endian)
14209 number_to_chars_bigendian (buf, val, n);
14210 else
14211 number_to_chars_littleendian (buf, val, n);
14212}
14213\f
e013f690
TS
14214static int support_64bit_objects(void)
14215{
14216 const char **list, **l;
aa3d8fdf 14217 int yes;
e013f690
TS
14218
14219 list = bfd_target_list ();
14220 for (l = list; *l != NULL; l++)
aeffff67
RS
14221 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14222 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
e013f690 14223 break;
aa3d8fdf 14224 yes = (*l != NULL);
e013f690 14225 free (list);
aa3d8fdf 14226 return yes;
e013f690
TS
14227}
14228
316f5878
RS
14229/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14230 NEW_VALUE. Warn if another value was already specified. Note:
14231 we have to defer parsing the -march and -mtune arguments in order
14232 to handle 'from-abi' correctly, since the ABI might be specified
14233 in a later argument. */
14234
14235static void
17a2f251 14236mips_set_option_string (const char **string_ptr, const char *new_value)
316f5878
RS
14237{
14238 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
1661c76c 14239 as_warn (_("a different %s was already specified, is now %s"),
316f5878
RS
14240 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14241 new_value);
14242
14243 *string_ptr = new_value;
14244}
14245
252b5132 14246int
17b9d67d 14247md_parse_option (int c, const char *arg)
252b5132 14248{
c6278170
RS
14249 unsigned int i;
14250
14251 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14252 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14253 {
919731af 14254 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c6278170
RS
14255 c == mips_ases[i].option_on);
14256 return 1;
14257 }
14258
252b5132
RH
14259 switch (c)
14260 {
119d663a
NC
14261 case OPTION_CONSTRUCT_FLOATS:
14262 mips_disable_float_construction = 0;
14263 break;
bdaaa2e1 14264
119d663a
NC
14265 case OPTION_NO_CONSTRUCT_FLOATS:
14266 mips_disable_float_construction = 1;
14267 break;
bdaaa2e1 14268
252b5132
RH
14269 case OPTION_TRAP:
14270 mips_trap = 1;
14271 break;
14272
14273 case OPTION_BREAK:
14274 mips_trap = 0;
14275 break;
14276
14277 case OPTION_EB:
14278 target_big_endian = 1;
14279 break;
14280
14281 case OPTION_EL:
14282 target_big_endian = 0;
14283 break;
14284
14285 case 'O':
4ffff32f
TS
14286 if (arg == NULL)
14287 mips_optimize = 1;
14288 else if (arg[0] == '0')
14289 mips_optimize = 0;
14290 else if (arg[0] == '1')
252b5132
RH
14291 mips_optimize = 1;
14292 else
14293 mips_optimize = 2;
14294 break;
14295
14296 case 'g':
14297 if (arg == NULL)
14298 mips_debug = 2;
14299 else
14300 mips_debug = atoi (arg);
252b5132
RH
14301 break;
14302
14303 case OPTION_MIPS1:
0b35dfee 14304 file_mips_opts.isa = ISA_MIPS1;
252b5132
RH
14305 break;
14306
14307 case OPTION_MIPS2:
0b35dfee 14308 file_mips_opts.isa = ISA_MIPS2;
252b5132
RH
14309 break;
14310
14311 case OPTION_MIPS3:
0b35dfee 14312 file_mips_opts.isa = ISA_MIPS3;
252b5132
RH
14313 break;
14314
14315 case OPTION_MIPS4:
0b35dfee 14316 file_mips_opts.isa = ISA_MIPS4;
e7af610e
NC
14317 break;
14318
84ea6cf2 14319 case OPTION_MIPS5:
0b35dfee 14320 file_mips_opts.isa = ISA_MIPS5;
84ea6cf2
NC
14321 break;
14322
e7af610e 14323 case OPTION_MIPS32:
0b35dfee 14324 file_mips_opts.isa = ISA_MIPS32;
252b5132
RH
14325 break;
14326
af7ee8bf 14327 case OPTION_MIPS32R2:
0b35dfee 14328 file_mips_opts.isa = ISA_MIPS32R2;
af7ee8bf
CD
14329 break;
14330
ae52f483 14331 case OPTION_MIPS32R3:
0ae19f05 14332 file_mips_opts.isa = ISA_MIPS32R3;
ae52f483
AB
14333 break;
14334
14335 case OPTION_MIPS32R5:
0ae19f05 14336 file_mips_opts.isa = ISA_MIPS32R5;
ae52f483
AB
14337 break;
14338
7361da2c
AB
14339 case OPTION_MIPS32R6:
14340 file_mips_opts.isa = ISA_MIPS32R6;
14341 break;
14342
5f74bc13 14343 case OPTION_MIPS64R2:
0b35dfee 14344 file_mips_opts.isa = ISA_MIPS64R2;
5f74bc13
CD
14345 break;
14346
ae52f483 14347 case OPTION_MIPS64R3:
0ae19f05 14348 file_mips_opts.isa = ISA_MIPS64R3;
ae52f483
AB
14349 break;
14350
14351 case OPTION_MIPS64R5:
0ae19f05 14352 file_mips_opts.isa = ISA_MIPS64R5;
ae52f483
AB
14353 break;
14354
7361da2c
AB
14355 case OPTION_MIPS64R6:
14356 file_mips_opts.isa = ISA_MIPS64R6;
14357 break;
14358
84ea6cf2 14359 case OPTION_MIPS64:
0b35dfee 14360 file_mips_opts.isa = ISA_MIPS64;
84ea6cf2
NC
14361 break;
14362
ec68c924 14363 case OPTION_MTUNE:
316f5878
RS
14364 mips_set_option_string (&mips_tune_string, arg);
14365 break;
ec68c924 14366
316f5878
RS
14367 case OPTION_MARCH:
14368 mips_set_option_string (&mips_arch_string, arg);
252b5132
RH
14369 break;
14370
14371 case OPTION_M4650:
316f5878
RS
14372 mips_set_option_string (&mips_arch_string, "4650");
14373 mips_set_option_string (&mips_tune_string, "4650");
252b5132
RH
14374 break;
14375
14376 case OPTION_NO_M4650:
14377 break;
14378
14379 case OPTION_M4010:
316f5878
RS
14380 mips_set_option_string (&mips_arch_string, "4010");
14381 mips_set_option_string (&mips_tune_string, "4010");
252b5132
RH
14382 break;
14383
14384 case OPTION_NO_M4010:
14385 break;
14386
14387 case OPTION_M4100:
316f5878
RS
14388 mips_set_option_string (&mips_arch_string, "4100");
14389 mips_set_option_string (&mips_tune_string, "4100");
252b5132
RH
14390 break;
14391
14392 case OPTION_NO_M4100:
14393 break;
14394
252b5132 14395 case OPTION_M3900:
316f5878
RS
14396 mips_set_option_string (&mips_arch_string, "3900");
14397 mips_set_option_string (&mips_tune_string, "3900");
252b5132 14398 break;
bdaaa2e1 14399
252b5132
RH
14400 case OPTION_NO_M3900:
14401 break;
14402
df58fc94 14403 case OPTION_MICROMIPS:
919731af 14404 if (file_mips_opts.mips16 == 1)
df58fc94
RS
14405 {
14406 as_bad (_("-mmicromips cannot be used with -mips16"));
14407 return 0;
14408 }
919731af 14409 file_mips_opts.micromips = 1;
df58fc94
RS
14410 mips_no_prev_insn ();
14411 break;
14412
14413 case OPTION_NO_MICROMIPS:
919731af 14414 file_mips_opts.micromips = 0;
df58fc94
RS
14415 mips_no_prev_insn ();
14416 break;
14417
252b5132 14418 case OPTION_MIPS16:
919731af 14419 if (file_mips_opts.micromips == 1)
df58fc94
RS
14420 {
14421 as_bad (_("-mips16 cannot be used with -micromips"));
14422 return 0;
14423 }
919731af 14424 file_mips_opts.mips16 = 1;
7d10b47d 14425 mips_no_prev_insn ();
252b5132
RH
14426 break;
14427
14428 case OPTION_NO_MIPS16:
919731af 14429 file_mips_opts.mips16 = 0;
7d10b47d 14430 mips_no_prev_insn ();
252b5132
RH
14431 break;
14432
6a32d874
CM
14433 case OPTION_FIX_24K:
14434 mips_fix_24k = 1;
14435 break;
14436
14437 case OPTION_NO_FIX_24K:
14438 mips_fix_24k = 0;
14439 break;
14440
a8d14a88
CM
14441 case OPTION_FIX_RM7000:
14442 mips_fix_rm7000 = 1;
14443 break;
14444
14445 case OPTION_NO_FIX_RM7000:
14446 mips_fix_rm7000 = 0;
14447 break;
14448
c67a084a
NC
14449 case OPTION_FIX_LOONGSON2F_JUMP:
14450 mips_fix_loongson2f_jump = TRUE;
14451 break;
14452
14453 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14454 mips_fix_loongson2f_jump = FALSE;
14455 break;
14456
14457 case OPTION_FIX_LOONGSON2F_NOP:
14458 mips_fix_loongson2f_nop = TRUE;
14459 break;
14460
14461 case OPTION_NO_FIX_LOONGSON2F_NOP:
14462 mips_fix_loongson2f_nop = FALSE;
14463 break;
14464
d766e8ec
RS
14465 case OPTION_FIX_VR4120:
14466 mips_fix_vr4120 = 1;
60b63b72
RS
14467 break;
14468
d766e8ec
RS
14469 case OPTION_NO_FIX_VR4120:
14470 mips_fix_vr4120 = 0;
60b63b72
RS
14471 break;
14472
7d8e00cf
RS
14473 case OPTION_FIX_VR4130:
14474 mips_fix_vr4130 = 1;
14475 break;
14476
14477 case OPTION_NO_FIX_VR4130:
14478 mips_fix_vr4130 = 0;
14479 break;
14480
d954098f
DD
14481 case OPTION_FIX_CN63XXP1:
14482 mips_fix_cn63xxp1 = TRUE;
14483 break;
14484
14485 case OPTION_NO_FIX_CN63XXP1:
14486 mips_fix_cn63xxp1 = FALSE;
14487 break;
14488
4a6a3df4
AO
14489 case OPTION_RELAX_BRANCH:
14490 mips_relax_branch = 1;
14491 break;
14492
14493 case OPTION_NO_RELAX_BRANCH:
14494 mips_relax_branch = 0;
14495 break;
14496
833794fc 14497 case OPTION_INSN32:
919731af 14498 file_mips_opts.insn32 = TRUE;
833794fc
MR
14499 break;
14500
14501 case OPTION_NO_INSN32:
919731af 14502 file_mips_opts.insn32 = FALSE;
833794fc
MR
14503 break;
14504
aa6975fb
ILT
14505 case OPTION_MSHARED:
14506 mips_in_shared = TRUE;
14507 break;
14508
14509 case OPTION_MNO_SHARED:
14510 mips_in_shared = FALSE;
14511 break;
14512
aed1a261 14513 case OPTION_MSYM32:
919731af 14514 file_mips_opts.sym32 = TRUE;
aed1a261
RS
14515 break;
14516
14517 case OPTION_MNO_SYM32:
919731af 14518 file_mips_opts.sym32 = FALSE;
aed1a261
RS
14519 break;
14520
252b5132
RH
14521 /* When generating ELF code, we permit -KPIC and -call_shared to
14522 select SVR4_PIC, and -non_shared to select no PIC. This is
14523 intended to be compatible with Irix 5. */
14524 case OPTION_CALL_SHARED:
252b5132 14525 mips_pic = SVR4_PIC;
143d77c5 14526 mips_abicalls = TRUE;
252b5132
RH
14527 break;
14528
861fb55a 14529 case OPTION_CALL_NONPIC:
861fb55a
DJ
14530 mips_pic = NO_PIC;
14531 mips_abicalls = TRUE;
14532 break;
14533
252b5132 14534 case OPTION_NON_SHARED:
252b5132 14535 mips_pic = NO_PIC;
143d77c5 14536 mips_abicalls = FALSE;
252b5132
RH
14537 break;
14538
44075ae2
TS
14539 /* The -xgot option tells the assembler to use 32 bit offsets
14540 when accessing the got in SVR4_PIC mode. It is for Irix
252b5132
RH
14541 compatibility. */
14542 case OPTION_XGOT:
14543 mips_big_got = 1;
14544 break;
14545
14546 case 'G':
6caf9ef4
TS
14547 g_switch_value = atoi (arg);
14548 g_switch_seen = 1;
252b5132
RH
14549 break;
14550
34ba82a8
TS
14551 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14552 and -mabi=64. */
252b5132 14553 case OPTION_32:
f3ded42a 14554 mips_abi = O32_ABI;
252b5132
RH
14555 break;
14556
e013f690 14557 case OPTION_N32:
316f5878 14558 mips_abi = N32_ABI;
e013f690 14559 break;
252b5132 14560
e013f690 14561 case OPTION_64:
316f5878 14562 mips_abi = N64_ABI;
f43abd2b 14563 if (!support_64bit_objects())
1661c76c 14564 as_fatal (_("no compiled in support for 64 bit object file format"));
252b5132
RH
14565 break;
14566
c97ef257 14567 case OPTION_GP32:
bad1aba3 14568 file_mips_opts.gp = 32;
c97ef257
AH
14569 break;
14570
14571 case OPTION_GP64:
bad1aba3 14572 file_mips_opts.gp = 64;
c97ef257 14573 break;
252b5132 14574
ca4e0257 14575 case OPTION_FP32:
0b35dfee 14576 file_mips_opts.fp = 32;
316f5878
RS
14577 break;
14578
351cdf24
MF
14579 case OPTION_FPXX:
14580 file_mips_opts.fp = 0;
14581 break;
14582
316f5878 14583 case OPTION_FP64:
0b35dfee 14584 file_mips_opts.fp = 64;
ca4e0257
RS
14585 break;
14586
351cdf24
MF
14587 case OPTION_ODD_SPREG:
14588 file_mips_opts.oddspreg = 1;
14589 break;
14590
14591 case OPTION_NO_ODD_SPREG:
14592 file_mips_opts.oddspreg = 0;
14593 break;
14594
037b32b9 14595 case OPTION_SINGLE_FLOAT:
0b35dfee 14596 file_mips_opts.single_float = 1;
037b32b9
AN
14597 break;
14598
14599 case OPTION_DOUBLE_FLOAT:
0b35dfee 14600 file_mips_opts.single_float = 0;
037b32b9
AN
14601 break;
14602
14603 case OPTION_SOFT_FLOAT:
0b35dfee 14604 file_mips_opts.soft_float = 1;
037b32b9
AN
14605 break;
14606
14607 case OPTION_HARD_FLOAT:
0b35dfee 14608 file_mips_opts.soft_float = 0;
037b32b9
AN
14609 break;
14610
252b5132 14611 case OPTION_MABI:
e013f690 14612 if (strcmp (arg, "32") == 0)
316f5878 14613 mips_abi = O32_ABI;
e013f690 14614 else if (strcmp (arg, "o64") == 0)
316f5878 14615 mips_abi = O64_ABI;
e013f690 14616 else if (strcmp (arg, "n32") == 0)
316f5878 14617 mips_abi = N32_ABI;
e013f690
TS
14618 else if (strcmp (arg, "64") == 0)
14619 {
316f5878 14620 mips_abi = N64_ABI;
e013f690 14621 if (! support_64bit_objects())
1661c76c 14622 as_fatal (_("no compiled in support for 64 bit object file "
e013f690
TS
14623 "format"));
14624 }
14625 else if (strcmp (arg, "eabi") == 0)
316f5878 14626 mips_abi = EABI_ABI;
e013f690 14627 else
da0e507f
TS
14628 {
14629 as_fatal (_("invalid abi -mabi=%s"), arg);
14630 return 0;
14631 }
252b5132
RH
14632 break;
14633
6b76fefe 14634 case OPTION_M7000_HILO_FIX:
b34976b6 14635 mips_7000_hilo_fix = TRUE;
6b76fefe
CM
14636 break;
14637
9ee72ff1 14638 case OPTION_MNO_7000_HILO_FIX:
b34976b6 14639 mips_7000_hilo_fix = FALSE;
6b76fefe
CM
14640 break;
14641
ecb4347a 14642 case OPTION_MDEBUG:
b34976b6 14643 mips_flag_mdebug = TRUE;
ecb4347a
DJ
14644 break;
14645
14646 case OPTION_NO_MDEBUG:
b34976b6 14647 mips_flag_mdebug = FALSE;
ecb4347a 14648 break;
dcd410fe
RO
14649
14650 case OPTION_PDR:
14651 mips_flag_pdr = TRUE;
14652 break;
14653
14654 case OPTION_NO_PDR:
14655 mips_flag_pdr = FALSE;
14656 break;
0a44bf69
RS
14657
14658 case OPTION_MVXWORKS_PIC:
14659 mips_pic = VXWORKS_PIC;
14660 break;
ecb4347a 14661
ba92f887
MR
14662 case OPTION_NAN:
14663 if (strcmp (arg, "2008") == 0)
7361da2c 14664 mips_nan2008 = 1;
ba92f887 14665 else if (strcmp (arg, "legacy") == 0)
7361da2c 14666 mips_nan2008 = 0;
ba92f887
MR
14667 else
14668 {
1661c76c 14669 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
ba92f887
MR
14670 return 0;
14671 }
14672 break;
14673
252b5132
RH
14674 default:
14675 return 0;
14676 }
14677
c67a084a
NC
14678 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14679
252b5132
RH
14680 return 1;
14681}
316f5878 14682\f
919731af 14683/* Set up globals to tune for the ISA or processor described by INFO. */
252b5132 14684
316f5878 14685static void
17a2f251 14686mips_set_tune (const struct mips_cpu_info *info)
316f5878
RS
14687{
14688 if (info != 0)
fef14a42 14689 mips_tune = info->cpu;
316f5878 14690}
80cc45a5 14691
34ba82a8 14692
252b5132 14693void
17a2f251 14694mips_after_parse_args (void)
e9670677 14695{
fef14a42
TS
14696 const struct mips_cpu_info *arch_info = 0;
14697 const struct mips_cpu_info *tune_info = 0;
14698
e9670677 14699 /* GP relative stuff not working for PE */
6caf9ef4 14700 if (strncmp (TARGET_OS, "pe", 2) == 0)
e9670677 14701 {
6caf9ef4 14702 if (g_switch_seen && g_switch_value != 0)
1661c76c 14703 as_bad (_("-G not supported in this configuration"));
e9670677
MR
14704 g_switch_value = 0;
14705 }
14706
cac012d6
AO
14707 if (mips_abi == NO_ABI)
14708 mips_abi = MIPS_DEFAULT_ABI;
14709
919731af 14710 /* The following code determines the architecture.
22923709
RS
14711 Similar code was added to GCC 3.3 (see override_options() in
14712 config/mips/mips.c). The GAS and GCC code should be kept in sync
14713 as much as possible. */
e9670677 14714
316f5878 14715 if (mips_arch_string != 0)
fef14a42 14716 arch_info = mips_parse_cpu ("-march", mips_arch_string);
e9670677 14717
0b35dfee 14718 if (file_mips_opts.isa != ISA_UNKNOWN)
e9670677 14719 {
0b35dfee 14720 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
fef14a42 14721 ISA level specified by -mipsN, while arch_info->isa contains
316f5878 14722 the -march selection (if any). */
fef14a42 14723 if (arch_info != 0)
e9670677 14724 {
316f5878
RS
14725 /* -march takes precedence over -mipsN, since it is more descriptive.
14726 There's no harm in specifying both as long as the ISA levels
14727 are the same. */
0b35dfee 14728 if (file_mips_opts.isa != arch_info->isa)
1661c76c
RS
14729 as_bad (_("-%s conflicts with the other architecture options,"
14730 " which imply -%s"),
0b35dfee 14731 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
fef14a42 14732 mips_cpu_info_from_isa (arch_info->isa)->name);
e9670677 14733 }
316f5878 14734 else
0b35dfee 14735 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
e9670677
MR
14736 }
14737
fef14a42 14738 if (arch_info == 0)
95bfe26e
MF
14739 {
14740 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14741 gas_assert (arch_info);
14742 }
e9670677 14743
fef14a42 14744 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
20203fb9 14745 as_bad (_("-march=%s is not compatible with the selected ABI"),
fef14a42
TS
14746 arch_info->name);
14747
919731af 14748 file_mips_opts.arch = arch_info->cpu;
14749 file_mips_opts.isa = arch_info->isa;
14750
14751 /* Set up initial mips_opts state. */
14752 mips_opts = file_mips_opts;
14753
14754 /* The register size inference code is now placed in
14755 file_mips_check_options. */
fef14a42 14756
0b35dfee 14757 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14758 processor. */
fef14a42
TS
14759 if (mips_tune_string != 0)
14760 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
e9670677 14761
fef14a42
TS
14762 if (tune_info == 0)
14763 mips_set_tune (arch_info);
14764 else
14765 mips_set_tune (tune_info);
e9670677 14766
ecb4347a 14767 if (mips_flag_mdebug < 0)
e8044f35 14768 mips_flag_mdebug = 0;
e9670677
MR
14769}
14770\f
14771void
17a2f251 14772mips_init_after_args (void)
252b5132
RH
14773{
14774 /* initialize opcodes */
14775 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
beae10d5 14776 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
252b5132
RH
14777}
14778
14779long
17a2f251 14780md_pcrel_from (fixS *fixP)
252b5132 14781{
a7ebbfdf
TS
14782 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14783 switch (fixP->fx_r_type)
14784 {
df58fc94
RS
14785 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14786 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14787 /* Return the address of the delay slot. */
14788 return addr + 2;
14789
14790 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14791 case BFD_RELOC_MICROMIPS_JMP:
c9775dde 14792 case BFD_RELOC_MIPS16_16_PCREL_S1:
a7ebbfdf 14793 case BFD_RELOC_16_PCREL_S2:
7361da2c
AB
14794 case BFD_RELOC_MIPS_21_PCREL_S2:
14795 case BFD_RELOC_MIPS_26_PCREL_S2:
a7ebbfdf
TS
14796 case BFD_RELOC_MIPS_JMP:
14797 /* Return the address of the delay slot. */
14798 return addr + 4;
df58fc94 14799
51f6035b
MR
14800 case BFD_RELOC_MIPS_18_PCREL_S3:
14801 /* Return the aligned address of the doubleword containing
14802 the instruction. */
14803 return addr & ~7;
14804
a7ebbfdf
TS
14805 default:
14806 return addr;
14807 }
252b5132
RH
14808}
14809
252b5132
RH
14810/* This is called before the symbol table is processed. In order to
14811 work with gcc when using mips-tfile, we must keep all local labels.
14812 However, in other cases, we want to discard them. If we were
14813 called with -g, but we didn't see any debugging information, it may
14814 mean that gcc is smuggling debugging information through to
14815 mips-tfile, in which case we must generate all local labels. */
14816
14817void
17a2f251 14818mips_frob_file_before_adjust (void)
252b5132
RH
14819{
14820#ifndef NO_ECOFF_DEBUGGING
14821 if (ECOFF_DEBUGGING
14822 && mips_debug != 0
14823 && ! ecoff_debugging_seen)
14824 flag_keep_locals = 1;
14825#endif
14826}
14827
3b91255e 14828/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
55cf6793 14829 the corresponding LO16 reloc. This is called before md_apply_fix and
3b91255e
RS
14830 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14831 relocation operators.
14832
14833 For our purposes, a %lo() expression matches a %got() or %hi()
14834 expression if:
14835
14836 (a) it refers to the same symbol; and
14837 (b) the offset applied in the %lo() expression is no lower than
14838 the offset applied in the %got() or %hi().
14839
14840 (b) allows us to cope with code like:
14841
14842 lui $4,%hi(foo)
14843 lh $4,%lo(foo+2)($4)
14844
14845 ...which is legal on RELA targets, and has a well-defined behaviour
14846 if the user knows that adding 2 to "foo" will not induce a carry to
14847 the high 16 bits.
14848
14849 When several %lo()s match a particular %got() or %hi(), we use the
14850 following rules to distinguish them:
14851
14852 (1) %lo()s with smaller offsets are a better match than %lo()s with
14853 higher offsets.
14854
14855 (2) %lo()s with no matching %got() or %hi() are better than those
14856 that already have a matching %got() or %hi().
14857
14858 (3) later %lo()s are better than earlier %lo()s.
14859
14860 These rules are applied in order.
14861
14862 (1) means, among other things, that %lo()s with identical offsets are
14863 chosen if they exist.
14864
14865 (2) means that we won't associate several high-part relocations with
14866 the same low-part relocation unless there's no alternative. Having
14867 several high parts for the same low part is a GNU extension; this rule
14868 allows careful users to avoid it.
14869
14870 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14871 with the last high-part relocation being at the front of the list.
14872 It therefore makes sense to choose the last matching low-part
14873 relocation, all other things being equal. It's also easier
14874 to code that way. */
252b5132
RH
14875
14876void
17a2f251 14877mips_frob_file (void)
252b5132
RH
14878{
14879 struct mips_hi_fixup *l;
35903be0 14880 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
252b5132
RH
14881
14882 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14883 {
14884 segment_info_type *seginfo;
3b91255e
RS
14885 bfd_boolean matched_lo_p;
14886 fixS **hi_pos, **lo_pos, **pos;
252b5132 14887
9c2799c2 14888 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
252b5132 14889
5919d012 14890 /* If a GOT16 relocation turns out to be against a global symbol,
b886a2ab
RS
14891 there isn't supposed to be a matching LO. Ignore %gots against
14892 constants; we'll report an error for those later. */
738e5348 14893 if (got16_reloc_p (l->fixp->fx_r_type)
b886a2ab
RS
14894 && !(l->fixp->fx_addsy
14895 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
5919d012
RS
14896 continue;
14897
14898 /* Check quickly whether the next fixup happens to be a matching %lo. */
14899 if (fixup_has_matching_lo_p (l->fixp))
252b5132
RH
14900 continue;
14901
252b5132 14902 seginfo = seg_info (l->seg);
252b5132 14903
3b91255e
RS
14904 /* Set HI_POS to the position of this relocation in the chain.
14905 Set LO_POS to the position of the chosen low-part relocation.
14906 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14907 relocation that matches an immediately-preceding high-part
14908 relocation. */
14909 hi_pos = NULL;
14910 lo_pos = NULL;
14911 matched_lo_p = FALSE;
738e5348 14912 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
35903be0 14913
3b91255e
RS
14914 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14915 {
14916 if (*pos == l->fixp)
14917 hi_pos = pos;
14918
35903be0 14919 if ((*pos)->fx_r_type == looking_for_rtype
30cfc97a 14920 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
3b91255e
RS
14921 && (*pos)->fx_offset >= l->fixp->fx_offset
14922 && (lo_pos == NULL
14923 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14924 || (!matched_lo_p
14925 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14926 lo_pos = pos;
14927
14928 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14929 && fixup_has_matching_lo_p (*pos));
14930 }
14931
14932 /* If we found a match, remove the high-part relocation from its
14933 current position and insert it before the low-part relocation.
14934 Make the offsets match so that fixup_has_matching_lo_p()
14935 will return true.
14936
14937 We don't warn about unmatched high-part relocations since some
14938 versions of gcc have been known to emit dead "lui ...%hi(...)"
14939 instructions. */
14940 if (lo_pos != NULL)
14941 {
14942 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14943 if (l->fixp->fx_next != *lo_pos)
252b5132 14944 {
3b91255e
RS
14945 *hi_pos = l->fixp->fx_next;
14946 l->fixp->fx_next = *lo_pos;
14947 *lo_pos = l->fixp;
252b5132 14948 }
252b5132
RH
14949 }
14950 }
14951}
14952
252b5132 14953int
17a2f251 14954mips_force_relocation (fixS *fixp)
252b5132 14955{
ae6063d4 14956 if (generic_force_reloc (fixp))
252b5132
RH
14957 return 1;
14958
df58fc94
RS
14959 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14960 so that the linker relaxation can update targets. */
14961 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14962 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14963 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14964 return 1;
14965
5caa2b07
MR
14966 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
14967 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
14968 microMIPS symbols so that we can do cross-mode branch diagnostics
14969 and BAL to JALX conversion by the linker. */
14970 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
9d862524
MR
14971 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14972 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
14973 && fixp->fx_addsy
14974 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
14975 return 1;
14976
7361da2c 14977 /* We want all PC-relative relocations to be kept for R6 relaxation. */
912815f0 14978 if (ISA_IS_R6 (file_mips_opts.isa)
7361da2c
AB
14979 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14980 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14981 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14982 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14983 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14984 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14985 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14986 return 1;
14987
3e722fb5 14988 return 0;
252b5132
RH
14989}
14990
b416ba9b
MR
14991/* Implement TC_FORCE_RELOCATION_ABS. */
14992
14993bfd_boolean
14994mips_force_relocation_abs (fixS *fixp)
14995{
14996 if (generic_force_reloc (fixp))
14997 return TRUE;
14998
14999 /* These relocations do not have enough bits in the in-place addend
15000 to hold an arbitrary absolute section's offset. */
15001 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15002 return TRUE;
15003
15004 return FALSE;
15005}
15006
b886a2ab
RS
15007/* Read the instruction associated with RELOC from BUF. */
15008
15009static unsigned int
15010read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15011{
15012 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15013 return read_compressed_insn (buf, 4);
15014 else
15015 return read_insn (buf);
15016}
15017
15018/* Write instruction INSN to BUF, given that it has been relocated
15019 by RELOC. */
15020
15021static void
15022write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15023 unsigned long insn)
15024{
15025 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15026 write_compressed_insn (buf, insn, 4);
15027 else
15028 write_insn (buf, insn);
15029}
15030
9d862524
MR
15031/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15032 to a symbol in another ISA mode, which cannot be converted to JALX. */
15033
15034static bfd_boolean
15035fix_bad_cross_mode_jump_p (fixS *fixP)
15036{
15037 unsigned long opcode;
15038 int other;
15039 char *buf;
15040
15041 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15042 return FALSE;
15043
15044 other = S_GET_OTHER (fixP->fx_addsy);
15045 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15046 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15047 switch (fixP->fx_r_type)
15048 {
15049 case BFD_RELOC_MIPS_JMP:
15050 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15051 case BFD_RELOC_MICROMIPS_JMP:
15052 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15053 default:
15054 return FALSE;
15055 }
15056}
15057
15058/* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15059 jump to a symbol in the same ISA mode. */
15060
15061static bfd_boolean
15062fix_bad_same_mode_jalx_p (fixS *fixP)
15063{
15064 unsigned long opcode;
15065 int other;
15066 char *buf;
15067
15068 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15069 return FALSE;
15070
15071 other = S_GET_OTHER (fixP->fx_addsy);
15072 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15073 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15074 switch (fixP->fx_r_type)
15075 {
15076 case BFD_RELOC_MIPS_JMP:
15077 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15078 case BFD_RELOC_MIPS16_JMP:
15079 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15080 case BFD_RELOC_MICROMIPS_JMP:
15081 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15082 default:
15083 return FALSE;
15084 }
15085}
15086
15087/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15088 to a symbol whose value plus addend is not aligned according to the
15089 ultimate (after linker relaxation) jump instruction's immediate field
15090 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15091 regular MIPS code, to (1 << 2). */
15092
15093static bfd_boolean
15094fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15095{
15096 bfd_boolean micro_to_mips_p;
15097 valueT val;
15098 int other;
15099
15100 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15101 return FALSE;
15102
15103 other = S_GET_OTHER (fixP->fx_addsy);
15104 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15105 val += fixP->fx_offset;
15106 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15107 && !ELF_ST_IS_MICROMIPS (other));
15108 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15109 != ELF_ST_IS_COMPRESSED (other));
15110}
15111
15112/* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15113 to a symbol whose annotation indicates another ISA mode. For absolute
a6ebf616
MR
15114 symbols check the ISA bit instead.
15115
15116 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15117 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15118 MIPS symbols and associated with BAL instructions as these instructions
15119 may be be converted to JALX by the linker. */
9d862524
MR
15120
15121static bfd_boolean
15122fix_bad_cross_mode_branch_p (fixS *fixP)
15123{
15124 bfd_boolean absolute_p;
15125 unsigned long opcode;
15126 asection *symsec;
15127 valueT val;
15128 int other;
15129 char *buf;
15130
15131 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15132 return FALSE;
15133
15134 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15135 absolute_p = bfd_is_abs_section (symsec);
15136
15137 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15138 other = S_GET_OTHER (fixP->fx_addsy);
15139
15140 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15141 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15142 switch (fixP->fx_r_type)
15143 {
15144 case BFD_RELOC_16_PCREL_S2:
a6ebf616
MR
15145 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15146 && opcode != 0x0411);
15147 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15148 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15149 && opcode != 0x4060);
9d862524
MR
15150 case BFD_RELOC_MIPS_21_PCREL_S2:
15151 case BFD_RELOC_MIPS_26_PCREL_S2:
15152 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15153 case BFD_RELOC_MIPS16_16_PCREL_S1:
15154 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15155 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15156 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
9d862524
MR
15157 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15158 default:
15159 abort ();
15160 }
15161}
15162
15163/* Return TRUE if the symbol plus addend associated with a regular MIPS
15164 branch instruction pointed to by FIXP is not aligned according to the
15165 branch instruction's immediate field requirement. We need the addend
15166 to preserve the ISA bit and also the sum must not have bit 2 set. We
15167 must explicitly OR in the ISA bit from symbol annotation as the bit
15168 won't be set in the symbol's value then. */
15169
15170static bfd_boolean
15171fix_bad_misaligned_branch_p (fixS *fixP)
15172{
15173 bfd_boolean absolute_p;
15174 asection *symsec;
15175 valueT isa_bit;
15176 valueT val;
15177 valueT off;
15178 int other;
15179
15180 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15181 return FALSE;
15182
15183 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15184 absolute_p = bfd_is_abs_section (symsec);
15185
15186 val = S_GET_VALUE (fixP->fx_addsy);
15187 other = S_GET_OTHER (fixP->fx_addsy);
15188 off = fixP->fx_offset;
15189
15190 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15191 val |= ELF_ST_IS_COMPRESSED (other);
15192 val += off;
15193 return (val & 0x3) != isa_bit;
15194}
15195
15196/* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15197 and its calculated value VAL. */
15198
15199static void
15200fix_validate_branch (fixS *fixP, valueT val)
15201{
15202 if (fixP->fx_done && (val & 0x3) != 0)
15203 as_bad_where (fixP->fx_file, fixP->fx_line,
15204 _("branch to misaligned address (0x%lx)"),
15205 (long) (val + md_pcrel_from (fixP)));
15206 else if (fix_bad_cross_mode_branch_p (fixP))
15207 as_bad_where (fixP->fx_file, fixP->fx_line,
15208 _("branch to a symbol in another ISA mode"));
15209 else if (fix_bad_misaligned_branch_p (fixP))
15210 as_bad_where (fixP->fx_file, fixP->fx_line,
15211 _("branch to misaligned address (0x%lx)"),
15212 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15213 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15214 as_bad_where (fixP->fx_file, fixP->fx_line,
15215 _("cannot encode misaligned addend "
15216 "in the relocatable field (0x%lx)"),
15217 (long) fixP->fx_offset);
15218}
15219
252b5132
RH
15220/* Apply a fixup to the object file. */
15221
94f592af 15222void
55cf6793 15223md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 15224{
4d68580a 15225 char *buf;
b886a2ab 15226 unsigned long insn;
a7ebbfdf 15227 reloc_howto_type *howto;
252b5132 15228
d56a8dda
RS
15229 if (fixP->fx_pcrel)
15230 switch (fixP->fx_r_type)
15231 {
15232 case BFD_RELOC_16_PCREL_S2:
c9775dde 15233 case BFD_RELOC_MIPS16_16_PCREL_S1:
d56a8dda
RS
15234 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15235 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15236 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15237 case BFD_RELOC_32_PCREL:
7361da2c
AB
15238 case BFD_RELOC_MIPS_21_PCREL_S2:
15239 case BFD_RELOC_MIPS_26_PCREL_S2:
15240 case BFD_RELOC_MIPS_18_PCREL_S3:
15241 case BFD_RELOC_MIPS_19_PCREL_S2:
15242 case BFD_RELOC_HI16_S_PCREL:
15243 case BFD_RELOC_LO16_PCREL:
d56a8dda
RS
15244 break;
15245
15246 case BFD_RELOC_32:
15247 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15248 break;
15249
15250 default:
15251 as_bad_where (fixP->fx_file, fixP->fx_line,
15252 _("PC-relative reference to a different section"));
15253 break;
15254 }
15255
15256 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15257 that have no MIPS ELF equivalent. */
15258 if (fixP->fx_r_type != BFD_RELOC_8)
15259 {
15260 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15261 if (!howto)
15262 return;
15263 }
65551fa4 15264
df58fc94
RS
15265 gas_assert (fixP->fx_size == 2
15266 || fixP->fx_size == 4
d56a8dda 15267 || fixP->fx_r_type == BFD_RELOC_8
90ecf173
MR
15268 || fixP->fx_r_type == BFD_RELOC_16
15269 || fixP->fx_r_type == BFD_RELOC_64
15270 || fixP->fx_r_type == BFD_RELOC_CTOR
15271 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
df58fc94 15272 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
90ecf173
MR
15273 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15274 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2f0c68f2
CM
15275 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15276 || fixP->fx_r_type == BFD_RELOC_NONE);
252b5132 15277
4d68580a 15278 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 15279
b1dca8ee
RS
15280 /* Don't treat parts of a composite relocation as done. There are two
15281 reasons for this:
15282
15283 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15284 should nevertheless be emitted if the first part is.
15285
15286 (2) In normal usage, composite relocations are never assembly-time
15287 constants. The easiest way of dealing with the pathological
15288 exceptions is to generate a relocation against STN_UNDEF and
15289 leave everything up to the linker. */
3994f87e 15290 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
252b5132
RH
15291 fixP->fx_done = 1;
15292
15293 switch (fixP->fx_r_type)
15294 {
3f98094e
DJ
15295 case BFD_RELOC_MIPS_TLS_GD:
15296 case BFD_RELOC_MIPS_TLS_LDM:
741d6ea8
JM
15297 case BFD_RELOC_MIPS_TLS_DTPREL32:
15298 case BFD_RELOC_MIPS_TLS_DTPREL64:
3f98094e
DJ
15299 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15300 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15301 case BFD_RELOC_MIPS_TLS_GOTTPREL:
d0f13682
CLT
15302 case BFD_RELOC_MIPS_TLS_TPREL32:
15303 case BFD_RELOC_MIPS_TLS_TPREL64:
3f98094e
DJ
15304 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15305 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
df58fc94
RS
15306 case BFD_RELOC_MICROMIPS_TLS_GD:
15307 case BFD_RELOC_MICROMIPS_TLS_LDM:
15308 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15309 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15310 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15311 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15312 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
d0f13682
CLT
15313 case BFD_RELOC_MIPS16_TLS_GD:
15314 case BFD_RELOC_MIPS16_TLS_LDM:
15315 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15316 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15317 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15318 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15319 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
4512dafa
MR
15320 if (fixP->fx_addsy)
15321 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15322 else
15323 as_bad_where (fixP->fx_file, fixP->fx_line,
15324 _("TLS relocation against a constant"));
15325 break;
3f98094e 15326
252b5132 15327 case BFD_RELOC_MIPS_JMP:
9d862524
MR
15328 case BFD_RELOC_MIPS16_JMP:
15329 case BFD_RELOC_MICROMIPS_JMP:
15330 {
15331 int shift;
15332
15333 gas_assert (!fixP->fx_done);
15334
15335 /* Shift is 2, unusually, for microMIPS JALX. */
15336 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15337 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15338 shift = 1;
15339 else
15340 shift = 2;
15341
15342 if (fix_bad_cross_mode_jump_p (fixP))
15343 as_bad_where (fixP->fx_file, fixP->fx_line,
15344 _("jump to a symbol in another ISA mode"));
15345 else if (fix_bad_same_mode_jalx_p (fixP))
15346 as_bad_where (fixP->fx_file, fixP->fx_line,
15347 _("JALX to a symbol in the same ISA mode"));
15348 else if (fix_bad_misaligned_jump_p (fixP, shift))
15349 as_bad_where (fixP->fx_file, fixP->fx_line,
15350 _("jump to misaligned address (0x%lx)"),
15351 (long) (S_GET_VALUE (fixP->fx_addsy)
15352 + fixP->fx_offset));
15353 else if (HAVE_IN_PLACE_ADDENDS
15354 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15355 as_bad_where (fixP->fx_file, fixP->fx_line,
15356 _("cannot encode misaligned addend "
15357 "in the relocatable field (0x%lx)"),
15358 (long) fixP->fx_offset);
15359 }
15360 /* Fall through. */
15361
e369bcce
TS
15362 case BFD_RELOC_MIPS_SHIFT5:
15363 case BFD_RELOC_MIPS_SHIFT6:
15364 case BFD_RELOC_MIPS_GOT_DISP:
15365 case BFD_RELOC_MIPS_GOT_PAGE:
15366 case BFD_RELOC_MIPS_GOT_OFST:
15367 case BFD_RELOC_MIPS_SUB:
15368 case BFD_RELOC_MIPS_INSERT_A:
15369 case BFD_RELOC_MIPS_INSERT_B:
15370 case BFD_RELOC_MIPS_DELETE:
15371 case BFD_RELOC_MIPS_HIGHEST:
15372 case BFD_RELOC_MIPS_HIGHER:
15373 case BFD_RELOC_MIPS_SCN_DISP:
15374 case BFD_RELOC_MIPS_REL16:
15375 case BFD_RELOC_MIPS_RELGOT:
15376 case BFD_RELOC_MIPS_JALR:
252b5132
RH
15377 case BFD_RELOC_HI16:
15378 case BFD_RELOC_HI16_S:
b886a2ab 15379 case BFD_RELOC_LO16:
cdf6fd85 15380 case BFD_RELOC_GPREL16:
252b5132
RH
15381 case BFD_RELOC_MIPS_LITERAL:
15382 case BFD_RELOC_MIPS_CALL16:
15383 case BFD_RELOC_MIPS_GOT16:
cdf6fd85 15384 case BFD_RELOC_GPREL32:
252b5132
RH
15385 case BFD_RELOC_MIPS_GOT_HI16:
15386 case BFD_RELOC_MIPS_GOT_LO16:
15387 case BFD_RELOC_MIPS_CALL_HI16:
15388 case BFD_RELOC_MIPS_CALL_LO16:
41947d9e
MR
15389 case BFD_RELOC_HI16_S_PCREL:
15390 case BFD_RELOC_LO16_PCREL:
252b5132 15391 case BFD_RELOC_MIPS16_GPREL:
738e5348
RS
15392 case BFD_RELOC_MIPS16_GOT16:
15393 case BFD_RELOC_MIPS16_CALL16:
d6f16593
MR
15394 case BFD_RELOC_MIPS16_HI16:
15395 case BFD_RELOC_MIPS16_HI16_S:
b886a2ab 15396 case BFD_RELOC_MIPS16_LO16:
df58fc94
RS
15397 case BFD_RELOC_MICROMIPS_GOT_DISP:
15398 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15399 case BFD_RELOC_MICROMIPS_GOT_OFST:
15400 case BFD_RELOC_MICROMIPS_SUB:
15401 case BFD_RELOC_MICROMIPS_HIGHEST:
15402 case BFD_RELOC_MICROMIPS_HIGHER:
15403 case BFD_RELOC_MICROMIPS_SCN_DISP:
15404 case BFD_RELOC_MICROMIPS_JALR:
15405 case BFD_RELOC_MICROMIPS_HI16:
15406 case BFD_RELOC_MICROMIPS_HI16_S:
b886a2ab 15407 case BFD_RELOC_MICROMIPS_LO16:
df58fc94
RS
15408 case BFD_RELOC_MICROMIPS_GPREL16:
15409 case BFD_RELOC_MICROMIPS_LITERAL:
15410 case BFD_RELOC_MICROMIPS_CALL16:
15411 case BFD_RELOC_MICROMIPS_GOT16:
15412 case BFD_RELOC_MICROMIPS_GOT_HI16:
15413 case BFD_RELOC_MICROMIPS_GOT_LO16:
15414 case BFD_RELOC_MICROMIPS_CALL_HI16:
15415 case BFD_RELOC_MICROMIPS_CALL_LO16:
067ec077 15416 case BFD_RELOC_MIPS_EH:
b886a2ab
RS
15417 if (fixP->fx_done)
15418 {
15419 offsetT value;
15420
15421 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15422 {
15423 insn = read_reloc_insn (buf, fixP->fx_r_type);
15424 if (mips16_reloc_p (fixP->fx_r_type))
15425 insn |= mips16_immed_extend (value, 16);
15426 else
15427 insn |= (value & 0xffff);
15428 write_reloc_insn (buf, fixP->fx_r_type, insn);
15429 }
15430 else
15431 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15432 _("unsupported constant in relocation"));
b886a2ab 15433 }
252b5132
RH
15434 break;
15435
252b5132
RH
15436 case BFD_RELOC_64:
15437 /* This is handled like BFD_RELOC_32, but we output a sign
15438 extended value if we are only 32 bits. */
3e722fb5 15439 if (fixP->fx_done)
252b5132
RH
15440 {
15441 if (8 <= sizeof (valueT))
4d68580a 15442 md_number_to_chars (buf, *valP, 8);
252b5132
RH
15443 else
15444 {
a7ebbfdf 15445 valueT hiv;
252b5132 15446
a7ebbfdf 15447 if ((*valP & 0x80000000) != 0)
252b5132
RH
15448 hiv = 0xffffffff;
15449 else
15450 hiv = 0;
4d68580a
RS
15451 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15452 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
252b5132
RH
15453 }
15454 }
15455 break;
15456
056350c6 15457 case BFD_RELOC_RVA:
252b5132 15458 case BFD_RELOC_32:
b47468a6 15459 case BFD_RELOC_32_PCREL:
252b5132 15460 case BFD_RELOC_16:
d56a8dda 15461 case BFD_RELOC_8:
252b5132 15462 /* If we are deleting this reloc entry, we must fill in the
54f4ddb3
TS
15463 value now. This can happen if we have a .word which is not
15464 resolved when it appears but is later defined. */
252b5132 15465 if (fixP->fx_done)
4d68580a 15466 md_number_to_chars (buf, *valP, fixP->fx_size);
252b5132
RH
15467 break;
15468
7361da2c 15469 case BFD_RELOC_MIPS_21_PCREL_S2:
9d862524 15470 fix_validate_branch (fixP, *valP);
41947d9e
MR
15471 if (!fixP->fx_done)
15472 break;
15473
15474 if (*valP + 0x400000 <= 0x7fffff)
15475 {
15476 insn = read_insn (buf);
15477 insn |= (*valP >> 2) & 0x1fffff;
15478 write_insn (buf, insn);
15479 }
15480 else
15481 as_bad_where (fixP->fx_file, fixP->fx_line,
15482 _("branch out of range"));
15483 break;
15484
7361da2c 15485 case BFD_RELOC_MIPS_26_PCREL_S2:
9d862524 15486 fix_validate_branch (fixP, *valP);
41947d9e
MR
15487 if (!fixP->fx_done)
15488 break;
7361da2c 15489
41947d9e
MR
15490 if (*valP + 0x8000000 <= 0xfffffff)
15491 {
15492 insn = read_insn (buf);
15493 insn |= (*valP >> 2) & 0x3ffffff;
15494 write_insn (buf, insn);
15495 }
15496 else
15497 as_bad_where (fixP->fx_file, fixP->fx_line,
15498 _("branch out of range"));
7361da2c
AB
15499 break;
15500
15501 case BFD_RELOC_MIPS_18_PCREL_S3:
717ba204 15502 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
7361da2c 15503 as_bad_where (fixP->fx_file, fixP->fx_line,
0866e94c
MF
15504 _("PC-relative access using misaligned symbol (%lx)"),
15505 (long) S_GET_VALUE (fixP->fx_addsy));
15506 if ((fixP->fx_offset & 0x7) != 0)
15507 as_bad_where (fixP->fx_file, fixP->fx_line,
15508 _("PC-relative access using misaligned offset (%lx)"),
15509 (long) fixP->fx_offset);
41947d9e
MR
15510 if (!fixP->fx_done)
15511 break;
7361da2c 15512
41947d9e
MR
15513 if (*valP + 0x100000 <= 0x1fffff)
15514 {
15515 insn = read_insn (buf);
15516 insn |= (*valP >> 3) & 0x3ffff;
15517 write_insn (buf, insn);
15518 }
15519 else
15520 as_bad_where (fixP->fx_file, fixP->fx_line,
15521 _("PC-relative access out of range"));
7361da2c
AB
15522 break;
15523
15524 case BFD_RELOC_MIPS_19_PCREL_S2:
15525 if ((*valP & 0x3) != 0)
15526 as_bad_where (fixP->fx_file, fixP->fx_line,
15527 _("PC-relative access to misaligned address (%lx)"),
717ba204 15528 (long) *valP);
41947d9e
MR
15529 if (!fixP->fx_done)
15530 break;
7361da2c 15531
41947d9e
MR
15532 if (*valP + 0x100000 <= 0x1fffff)
15533 {
15534 insn = read_insn (buf);
15535 insn |= (*valP >> 2) & 0x7ffff;
15536 write_insn (buf, insn);
15537 }
15538 else
15539 as_bad_where (fixP->fx_file, fixP->fx_line,
15540 _("PC-relative access out of range"));
7361da2c
AB
15541 break;
15542
252b5132 15543 case BFD_RELOC_16_PCREL_S2:
9d862524 15544 fix_validate_branch (fixP, *valP);
cb56d3d3 15545
54f4ddb3
TS
15546 /* We need to save the bits in the instruction since fixup_segment()
15547 might be deleting the relocation entry (i.e., a branch within
15548 the current segment). */
a7ebbfdf 15549 if (! fixP->fx_done)
bb2d6cd7 15550 break;
252b5132 15551
54f4ddb3 15552 /* Update old instruction data. */
4d68580a 15553 insn = read_insn (buf);
252b5132 15554
a7ebbfdf
TS
15555 if (*valP + 0x20000 <= 0x3ffff)
15556 {
15557 insn |= (*valP >> 2) & 0xffff;
4d68580a 15558 write_insn (buf, insn);
a7ebbfdf
TS
15559 }
15560 else if (mips_pic == NO_PIC
15561 && fixP->fx_done
15562 && fixP->fx_frag->fr_address >= text_section->vma
15563 && (fixP->fx_frag->fr_address
587aac4e 15564 < text_section->vma + bfd_get_section_size (text_section))
a7ebbfdf
TS
15565 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15566 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15567 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
252b5132
RH
15568 {
15569 /* The branch offset is too large. If this is an
15570 unconditional branch, and we are not generating PIC code,
15571 we can convert it to an absolute jump instruction. */
a7ebbfdf
TS
15572 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15573 insn = 0x0c000000; /* jal */
252b5132 15574 else
a7ebbfdf
TS
15575 insn = 0x08000000; /* j */
15576 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15577 fixP->fx_done = 0;
15578 fixP->fx_addsy = section_symbol (text_section);
15579 *valP += md_pcrel_from (fixP);
4d68580a 15580 write_insn (buf, insn);
a7ebbfdf
TS
15581 }
15582 else
15583 {
15584 /* If we got here, we have branch-relaxation disabled,
15585 and there's nothing we can do to fix this instruction
15586 without turning it into a longer sequence. */
15587 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15588 _("branch out of range"));
252b5132 15589 }
252b5132
RH
15590 break;
15591
c9775dde 15592 case BFD_RELOC_MIPS16_16_PCREL_S1:
df58fc94
RS
15593 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15594 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15595 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
96e9ba5f 15596 gas_assert (!fixP->fx_done);
9d862524
MR
15597 if (fix_bad_cross_mode_branch_p (fixP))
15598 as_bad_where (fixP->fx_file, fixP->fx_line,
15599 _("branch to a symbol in another ISA mode"));
15600 else if (fixP->fx_addsy
15601 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15602 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15603 && (fixP->fx_offset & 0x1) != 0)
15604 as_bad_where (fixP->fx_file, fixP->fx_line,
15605 _("branch to misaligned address (0x%lx)"),
15606 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15607 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15608 as_bad_where (fixP->fx_file, fixP->fx_line,
15609 _("cannot encode misaligned addend "
15610 "in the relocatable field (0x%lx)"),
15611 (long) fixP->fx_offset);
df58fc94
RS
15612 break;
15613
252b5132
RH
15614 case BFD_RELOC_VTABLE_INHERIT:
15615 fixP->fx_done = 0;
15616 if (fixP->fx_addsy
15617 && !S_IS_DEFINED (fixP->fx_addsy)
15618 && !S_IS_WEAK (fixP->fx_addsy))
15619 S_SET_WEAK (fixP->fx_addsy);
15620 break;
15621
2f0c68f2 15622 case BFD_RELOC_NONE:
252b5132
RH
15623 case BFD_RELOC_VTABLE_ENTRY:
15624 fixP->fx_done = 0;
15625 break;
15626
15627 default:
b37df7c4 15628 abort ();
252b5132 15629 }
a7ebbfdf
TS
15630
15631 /* Remember value for tc_gen_reloc. */
15632 fixP->fx_addnumber = *valP;
252b5132
RH
15633}
15634
252b5132 15635static symbolS *
17a2f251 15636get_symbol (void)
252b5132
RH
15637{
15638 int c;
15639 char *name;
15640 symbolS *p;
15641
d02603dc 15642 c = get_symbol_name (&name);
252b5132 15643 p = (symbolS *) symbol_find_or_make (name);
d02603dc 15644 (void) restore_line_pointer (c);
252b5132
RH
15645 return p;
15646}
15647
742a56fe
RS
15648/* Align the current frag to a given power of two. If a particular
15649 fill byte should be used, FILL points to an integer that contains
15650 that byte, otherwise FILL is null.
15651
462427c4
RS
15652 This function used to have the comment:
15653
15654 The MIPS assembler also automatically adjusts any preceding label.
15655
15656 The implementation therefore applied the adjustment to a maximum of
15657 one label. However, other label adjustments are applied to batches
15658 of labels, and adjusting just one caused problems when new labels
15659 were added for the sake of debugging or unwind information.
15660 We therefore adjust all preceding labels (given as LABELS) instead. */
252b5132
RH
15661
15662static void
462427c4 15663mips_align (int to, int *fill, struct insn_label_list *labels)
252b5132 15664{
7d10b47d 15665 mips_emit_delays ();
df58fc94 15666 mips_record_compressed_mode ();
742a56fe
RS
15667 if (fill == NULL && subseg_text_p (now_seg))
15668 frag_align_code (to, 0);
15669 else
15670 frag_align (to, fill ? *fill : 0, 0);
252b5132 15671 record_alignment (now_seg, to);
462427c4 15672 mips_move_labels (labels, FALSE);
252b5132
RH
15673}
15674
15675/* Align to a given power of two. .align 0 turns off the automatic
15676 alignment used by the data creating pseudo-ops. */
15677
15678static void
17a2f251 15679s_align (int x ATTRIBUTE_UNUSED)
252b5132 15680{
742a56fe 15681 int temp, fill_value, *fill_ptr;
49954fb4 15682 long max_alignment = 28;
252b5132 15683
54f4ddb3 15684 /* o Note that the assembler pulls down any immediately preceding label
252b5132 15685 to the aligned address.
54f4ddb3 15686 o It's not documented but auto alignment is reinstated by
252b5132 15687 a .align pseudo instruction.
54f4ddb3 15688 o Note also that after auto alignment is turned off the mips assembler
252b5132 15689 issues an error on attempt to assemble an improperly aligned data item.
54f4ddb3 15690 We don't. */
252b5132
RH
15691
15692 temp = get_absolute_expression ();
15693 if (temp > max_alignment)
1661c76c 15694 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
252b5132
RH
15695 else if (temp < 0)
15696 {
1661c76c 15697 as_warn (_("alignment negative, 0 assumed"));
252b5132
RH
15698 temp = 0;
15699 }
15700 if (*input_line_pointer == ',')
15701 {
f9419b05 15702 ++input_line_pointer;
742a56fe
RS
15703 fill_value = get_absolute_expression ();
15704 fill_ptr = &fill_value;
252b5132
RH
15705 }
15706 else
742a56fe 15707 fill_ptr = 0;
252b5132
RH
15708 if (temp)
15709 {
a8dbcb85
TS
15710 segment_info_type *si = seg_info (now_seg);
15711 struct insn_label_list *l = si->label_list;
54f4ddb3 15712 /* Auto alignment should be switched on by next section change. */
252b5132 15713 auto_align = 1;
462427c4 15714 mips_align (temp, fill_ptr, l);
252b5132
RH
15715 }
15716 else
15717 {
15718 auto_align = 0;
15719 }
15720
15721 demand_empty_rest_of_line ();
15722}
15723
252b5132 15724static void
17a2f251 15725s_change_sec (int sec)
252b5132
RH
15726{
15727 segT seg;
15728
252b5132
RH
15729 /* The ELF backend needs to know that we are changing sections, so
15730 that .previous works correctly. We could do something like check
b6ff326e 15731 for an obj_section_change_hook macro, but that might be confusing
252b5132
RH
15732 as it would not be appropriate to use it in the section changing
15733 functions in read.c, since obj-elf.c intercepts those. FIXME:
15734 This should be cleaner, somehow. */
f3ded42a 15735 obj_elf_section_change_hook ();
252b5132 15736
7d10b47d 15737 mips_emit_delays ();
6a32d874 15738
252b5132
RH
15739 switch (sec)
15740 {
15741 case 't':
15742 s_text (0);
15743 break;
15744 case 'd':
15745 s_data (0);
15746 break;
15747 case 'b':
15748 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15749 demand_empty_rest_of_line ();
15750 break;
15751
15752 case 'r':
4d0d148d
TS
15753 seg = subseg_new (RDATA_SECTION_NAME,
15754 (subsegT) get_absolute_expression ());
f3ded42a
RS
15755 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15756 | SEC_READONLY | SEC_RELOC
15757 | SEC_DATA));
15758 if (strncmp (TARGET_OS, "elf", 3) != 0)
15759 record_alignment (seg, 4);
4d0d148d 15760 demand_empty_rest_of_line ();
252b5132
RH
15761 break;
15762
15763 case 's':
4d0d148d 15764 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
f3ded42a
RS
15765 bfd_set_section_flags (stdoutput, seg,
15766 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15767 if (strncmp (TARGET_OS, "elf", 3) != 0)
15768 record_alignment (seg, 4);
4d0d148d
TS
15769 demand_empty_rest_of_line ();
15770 break;
998b3c36
MR
15771
15772 case 'B':
15773 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
f3ded42a
RS
15774 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15775 if (strncmp (TARGET_OS, "elf", 3) != 0)
15776 record_alignment (seg, 4);
998b3c36
MR
15777 demand_empty_rest_of_line ();
15778 break;
252b5132
RH
15779 }
15780
15781 auto_align = 1;
15782}
b34976b6 15783
cca86cc8 15784void
17a2f251 15785s_change_section (int ignore ATTRIBUTE_UNUSED)
cca86cc8 15786{
d02603dc 15787 char *saved_ilp;
cca86cc8 15788 char *section_name;
d02603dc 15789 char c, endc;
684022ea 15790 char next_c = 0;
cca86cc8
SC
15791 int section_type;
15792 int section_flag;
15793 int section_entry_size;
15794 int section_alignment;
b34976b6 15795
d02603dc
NC
15796 saved_ilp = input_line_pointer;
15797 endc = get_symbol_name (&section_name);
15798 c = (endc == '"' ? input_line_pointer[1] : endc);
a816d1ed 15799 if (c)
d02603dc 15800 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
cca86cc8 15801
4cf0dd0d
TS
15802 /* Do we have .section Name<,"flags">? */
15803 if (c != ',' || (c == ',' && next_c == '"'))
cca86cc8 15804 {
d02603dc
NC
15805 /* Just after name is now '\0'. */
15806 (void) restore_line_pointer (endc);
15807 input_line_pointer = saved_ilp;
cca86cc8
SC
15808 obj_elf_section (ignore);
15809 return;
15810 }
d02603dc
NC
15811
15812 section_name = xstrdup (section_name);
15813 c = restore_line_pointer (endc);
15814
cca86cc8
SC
15815 input_line_pointer++;
15816
15817 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15818 if (c == ',')
15819 section_type = get_absolute_expression ();
15820 else
15821 section_type = 0;
d02603dc 15822
cca86cc8
SC
15823 if (*input_line_pointer++ == ',')
15824 section_flag = get_absolute_expression ();
15825 else
15826 section_flag = 0;
d02603dc 15827
cca86cc8
SC
15828 if (*input_line_pointer++ == ',')
15829 section_entry_size = get_absolute_expression ();
15830 else
15831 section_entry_size = 0;
d02603dc 15832
cca86cc8
SC
15833 if (*input_line_pointer++ == ',')
15834 section_alignment = get_absolute_expression ();
15835 else
15836 section_alignment = 0;
d02603dc 15837
87975d2a
AM
15838 /* FIXME: really ignore? */
15839 (void) section_alignment;
cca86cc8 15840
8ab8a5c8
RS
15841 /* When using the generic form of .section (as implemented by obj-elf.c),
15842 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15843 traditionally had to fall back on the more common @progbits instead.
15844
15845 There's nothing really harmful in this, since bfd will correct
15846 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
708587a4 15847 means that, for backwards compatibility, the special_section entries
8ab8a5c8
RS
15848 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15849
15850 Even so, we shouldn't force users of the MIPS .section syntax to
15851 incorrectly label the sections as SHT_PROGBITS. The best compromise
15852 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15853 generic type-checking code. */
15854 if (section_type == SHT_MIPS_DWARF)
15855 section_type = SHT_PROGBITS;
15856
cca86cc8
SC
15857 obj_elf_change_section (section_name, section_type, section_flag,
15858 section_entry_size, 0, 0, 0);
a816d1ed
AO
15859
15860 if (now_seg->name != section_name)
15861 free (section_name);
cca86cc8 15862}
252b5132
RH
15863
15864void
17a2f251 15865mips_enable_auto_align (void)
252b5132
RH
15866{
15867 auto_align = 1;
15868}
15869
15870static void
17a2f251 15871s_cons (int log_size)
252b5132 15872{
a8dbcb85
TS
15873 segment_info_type *si = seg_info (now_seg);
15874 struct insn_label_list *l = si->label_list;
252b5132 15875
7d10b47d 15876 mips_emit_delays ();
252b5132 15877 if (log_size > 0 && auto_align)
462427c4 15878 mips_align (log_size, 0, l);
252b5132 15879 cons (1 << log_size);
a1facbec 15880 mips_clear_insn_labels ();
252b5132
RH
15881}
15882
15883static void
17a2f251 15884s_float_cons (int type)
252b5132 15885{
a8dbcb85
TS
15886 segment_info_type *si = seg_info (now_seg);
15887 struct insn_label_list *l = si->label_list;
252b5132 15888
7d10b47d 15889 mips_emit_delays ();
252b5132
RH
15890
15891 if (auto_align)
49309057
ILT
15892 {
15893 if (type == 'd')
462427c4 15894 mips_align (3, 0, l);
49309057 15895 else
462427c4 15896 mips_align (2, 0, l);
49309057 15897 }
252b5132 15898
252b5132 15899 float_cons (type);
a1facbec 15900 mips_clear_insn_labels ();
252b5132
RH
15901}
15902
15903/* Handle .globl. We need to override it because on Irix 5 you are
15904 permitted to say
15905 .globl foo .text
15906 where foo is an undefined symbol, to mean that foo should be
15907 considered to be the address of a function. */
15908
15909static void
17a2f251 15910s_mips_globl (int x ATTRIBUTE_UNUSED)
252b5132
RH
15911{
15912 char *name;
15913 int c;
15914 symbolS *symbolP;
15915 flagword flag;
15916
8a06b769 15917 do
252b5132 15918 {
d02603dc 15919 c = get_symbol_name (&name);
8a06b769
TS
15920 symbolP = symbol_find_or_make (name);
15921 S_SET_EXTERNAL (symbolP);
15922
252b5132 15923 *input_line_pointer = c;
d02603dc 15924 SKIP_WHITESPACE_AFTER_NAME ();
252b5132 15925
8a06b769
TS
15926 /* On Irix 5, every global symbol that is not explicitly labelled as
15927 being a function is apparently labelled as being an object. */
15928 flag = BSF_OBJECT;
252b5132 15929
8a06b769
TS
15930 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15931 && (*input_line_pointer != ','))
15932 {
15933 char *secname;
15934 asection *sec;
15935
d02603dc 15936 c = get_symbol_name (&secname);
8a06b769
TS
15937 sec = bfd_get_section_by_name (stdoutput, secname);
15938 if (sec == NULL)
15939 as_bad (_("%s: no such section"), secname);
d02603dc 15940 (void) restore_line_pointer (c);
8a06b769
TS
15941
15942 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15943 flag = BSF_FUNCTION;
15944 }
15945
15946 symbol_get_bfdsym (symbolP)->flags |= flag;
15947
15948 c = *input_line_pointer;
15949 if (c == ',')
15950 {
15951 input_line_pointer++;
15952 SKIP_WHITESPACE ();
15953 if (is_end_of_line[(unsigned char) *input_line_pointer])
15954 c = '\n';
15955 }
15956 }
15957 while (c == ',');
252b5132 15958
252b5132
RH
15959 demand_empty_rest_of_line ();
15960}
15961
15962static void
17a2f251 15963s_option (int x ATTRIBUTE_UNUSED)
252b5132
RH
15964{
15965 char *opt;
15966 char c;
15967
d02603dc 15968 c = get_symbol_name (&opt);
252b5132
RH
15969
15970 if (*opt == 'O')
15971 {
15972 /* FIXME: What does this mean? */
15973 }
41a1578e 15974 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
252b5132
RH
15975 {
15976 int i;
15977
15978 i = atoi (opt + 3);
668c5ebc
MR
15979 if (i != 0 && i != 2)
15980 as_bad (_(".option pic%d not supported"), i);
15981 else if (mips_pic == VXWORKS_PIC)
15982 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15983 else if (i == 0)
252b5132
RH
15984 mips_pic = NO_PIC;
15985 else if (i == 2)
143d77c5 15986 {
8b828383 15987 mips_pic = SVR4_PIC;
143d77c5
EC
15988 mips_abicalls = TRUE;
15989 }
252b5132 15990
4d0d148d 15991 if (mips_pic == SVR4_PIC)
252b5132
RH
15992 {
15993 if (g_switch_seen && g_switch_value != 0)
15994 as_warn (_("-G may not be used with SVR4 PIC code"));
15995 g_switch_value = 0;
15996 bfd_set_gp_size (stdoutput, 0);
15997 }
15998 }
15999 else
1661c76c 16000 as_warn (_("unrecognized option \"%s\""), opt);
252b5132 16001
d02603dc 16002 (void) restore_line_pointer (c);
252b5132
RH
16003 demand_empty_rest_of_line ();
16004}
16005
16006/* This structure is used to hold a stack of .set values. */
16007
e972090a
NC
16008struct mips_option_stack
16009{
252b5132
RH
16010 struct mips_option_stack *next;
16011 struct mips_set_options options;
16012};
16013
16014static struct mips_option_stack *mips_opts_stack;
16015
22522f88
MR
16016/* Return status for .set/.module option handling. */
16017
16018enum code_option_type
16019{
16020 /* Unrecognized option. */
16021 OPTION_TYPE_BAD = -1,
16022
16023 /* Ordinary option. */
16024 OPTION_TYPE_NORMAL,
16025
16026 /* ISA changing option. */
16027 OPTION_TYPE_ISA
16028};
16029
16030/* Handle common .set/.module options. Return status indicating option
16031 type. */
16032
16033static enum code_option_type
919731af 16034parse_code_option (char * name)
252b5132 16035{
22522f88 16036 bfd_boolean isa_set = FALSE;
c6278170 16037 const struct mips_ase *ase;
22522f88 16038
919731af 16039 if (strncmp (name, "at=", 3) == 0)
741fe287
MR
16040 {
16041 char *s = name + 3;
16042
16043 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
1661c76c 16044 as_bad (_("unrecognized register name `%s'"), s);
741fe287 16045 }
252b5132 16046 else if (strcmp (name, "at") == 0)
919731af 16047 mips_opts.at = ATREG;
252b5132 16048 else if (strcmp (name, "noat") == 0)
919731af 16049 mips_opts.at = ZERO;
252b5132 16050 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
919731af 16051 mips_opts.nomove = 0;
252b5132 16052 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
919731af 16053 mips_opts.nomove = 1;
252b5132 16054 else if (strcmp (name, "bopt") == 0)
919731af 16055 mips_opts.nobopt = 0;
252b5132 16056 else if (strcmp (name, "nobopt") == 0)
919731af 16057 mips_opts.nobopt = 1;
ad3fea08 16058 else if (strcmp (name, "gp=32") == 0)
bad1aba3 16059 mips_opts.gp = 32;
ad3fea08 16060 else if (strcmp (name, "gp=64") == 0)
919731af 16061 mips_opts.gp = 64;
ad3fea08 16062 else if (strcmp (name, "fp=32") == 0)
0b35dfee 16063 mips_opts.fp = 32;
351cdf24
MF
16064 else if (strcmp (name, "fp=xx") == 0)
16065 mips_opts.fp = 0;
ad3fea08 16066 else if (strcmp (name, "fp=64") == 0)
919731af 16067 mips_opts.fp = 64;
037b32b9
AN
16068 else if (strcmp (name, "softfloat") == 0)
16069 mips_opts.soft_float = 1;
16070 else if (strcmp (name, "hardfloat") == 0)
16071 mips_opts.soft_float = 0;
16072 else if (strcmp (name, "singlefloat") == 0)
16073 mips_opts.single_float = 1;
16074 else if (strcmp (name, "doublefloat") == 0)
16075 mips_opts.single_float = 0;
351cdf24
MF
16076 else if (strcmp (name, "nooddspreg") == 0)
16077 mips_opts.oddspreg = 0;
16078 else if (strcmp (name, "oddspreg") == 0)
16079 mips_opts.oddspreg = 1;
252b5132
RH
16080 else if (strcmp (name, "mips16") == 0
16081 || strcmp (name, "MIPS-16") == 0)
919731af 16082 mips_opts.mips16 = 1;
252b5132
RH
16083 else if (strcmp (name, "nomips16") == 0
16084 || strcmp (name, "noMIPS-16") == 0)
16085 mips_opts.mips16 = 0;
df58fc94 16086 else if (strcmp (name, "micromips") == 0)
919731af 16087 mips_opts.micromips = 1;
df58fc94
RS
16088 else if (strcmp (name, "nomicromips") == 0)
16089 mips_opts.micromips = 0;
c6278170
RS
16090 else if (name[0] == 'n'
16091 && name[1] == 'o'
16092 && (ase = mips_lookup_ase (name + 2)))
919731af 16093 mips_set_ase (ase, &mips_opts, FALSE);
c6278170 16094 else if ((ase = mips_lookup_ase (name)))
919731af 16095 mips_set_ase (ase, &mips_opts, TRUE);
1a2c1fad 16096 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
252b5132 16097 {
1a2c1fad
CD
16098 /* Permit the user to change the ISA and architecture on the fly.
16099 Needless to say, misuse can cause serious problems. */
919731af 16100 if (strncmp (name, "arch=", 5) == 0)
1a2c1fad
CD
16101 {
16102 const struct mips_cpu_info *p;
16103
919731af 16104 p = mips_parse_cpu ("internal use", name + 5);
1a2c1fad
CD
16105 if (!p)
16106 as_bad (_("unknown architecture %s"), name + 5);
16107 else
16108 {
16109 mips_opts.arch = p->cpu;
16110 mips_opts.isa = p->isa;
22522f88 16111 isa_set = TRUE;
1a2c1fad
CD
16112 }
16113 }
81a21e38
TS
16114 else if (strncmp (name, "mips", 4) == 0)
16115 {
16116 const struct mips_cpu_info *p;
16117
919731af 16118 p = mips_parse_cpu ("internal use", name);
81a21e38
TS
16119 if (!p)
16120 as_bad (_("unknown ISA level %s"), name + 4);
16121 else
16122 {
16123 mips_opts.arch = p->cpu;
16124 mips_opts.isa = p->isa;
22522f88 16125 isa_set = TRUE;
81a21e38
TS
16126 }
16127 }
af7ee8bf 16128 else
81a21e38 16129 as_bad (_("unknown ISA or architecture %s"), name);
252b5132
RH
16130 }
16131 else if (strcmp (name, "autoextend") == 0)
16132 mips_opts.noautoextend = 0;
16133 else if (strcmp (name, "noautoextend") == 0)
16134 mips_opts.noautoextend = 1;
833794fc
MR
16135 else if (strcmp (name, "insn32") == 0)
16136 mips_opts.insn32 = TRUE;
16137 else if (strcmp (name, "noinsn32") == 0)
16138 mips_opts.insn32 = FALSE;
919731af 16139 else if (strcmp (name, "sym32") == 0)
16140 mips_opts.sym32 = TRUE;
16141 else if (strcmp (name, "nosym32") == 0)
16142 mips_opts.sym32 = FALSE;
16143 else
22522f88
MR
16144 return OPTION_TYPE_BAD;
16145
16146 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
919731af 16147}
16148
16149/* Handle the .set pseudo-op. */
16150
16151static void
16152s_mipsset (int x ATTRIBUTE_UNUSED)
16153{
22522f88 16154 enum code_option_type type = OPTION_TYPE_NORMAL;
919731af 16155 char *name = input_line_pointer, ch;
919731af 16156
16157 file_mips_check_options ();
16158
16159 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16160 ++input_line_pointer;
16161 ch = *input_line_pointer;
16162 *input_line_pointer = '\0';
16163
16164 if (strchr (name, ','))
16165 {
16166 /* Generic ".set" directive; use the generic handler. */
16167 *input_line_pointer = ch;
16168 input_line_pointer = name;
16169 s_set (0);
16170 return;
16171 }
16172
16173 if (strcmp (name, "reorder") == 0)
16174 {
16175 if (mips_opts.noreorder)
16176 end_noreorder ();
16177 }
16178 else if (strcmp (name, "noreorder") == 0)
16179 {
16180 if (!mips_opts.noreorder)
16181 start_noreorder ();
16182 }
16183 else if (strcmp (name, "macro") == 0)
16184 mips_opts.warn_about_macros = 0;
16185 else if (strcmp (name, "nomacro") == 0)
16186 {
16187 if (mips_opts.noreorder == 0)
16188 as_bad (_("`noreorder' must be set before `nomacro'"));
16189 mips_opts.warn_about_macros = 1;
16190 }
16191 else if (strcmp (name, "gp=default") == 0)
16192 mips_opts.gp = file_mips_opts.gp;
16193 else if (strcmp (name, "fp=default") == 0)
16194 mips_opts.fp = file_mips_opts.fp;
16195 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16196 {
16197 mips_opts.isa = file_mips_opts.isa;
16198 mips_opts.arch = file_mips_opts.arch;
16199 mips_opts.gp = file_mips_opts.gp;
16200 mips_opts.fp = file_mips_opts.fp;
16201 }
252b5132
RH
16202 else if (strcmp (name, "push") == 0)
16203 {
16204 struct mips_option_stack *s;
16205
325801bd 16206 s = XNEW (struct mips_option_stack);
252b5132
RH
16207 s->next = mips_opts_stack;
16208 s->options = mips_opts;
16209 mips_opts_stack = s;
16210 }
16211 else if (strcmp (name, "pop") == 0)
16212 {
16213 struct mips_option_stack *s;
16214
16215 s = mips_opts_stack;
16216 if (s == NULL)
16217 as_bad (_(".set pop with no .set push"));
16218 else
16219 {
16220 /* If we're changing the reorder mode we need to handle
16221 delay slots correctly. */
16222 if (s->options.noreorder && ! mips_opts.noreorder)
7d10b47d 16223 start_noreorder ();
252b5132 16224 else if (! s->options.noreorder && mips_opts.noreorder)
7d10b47d 16225 end_noreorder ();
252b5132
RH
16226
16227 mips_opts = s->options;
16228 mips_opts_stack = s->next;
16229 free (s);
16230 }
16231 }
22522f88
MR
16232 else
16233 {
16234 type = parse_code_option (name);
16235 if (type == OPTION_TYPE_BAD)
16236 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16237 }
919731af 16238
16239 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16240 registers based on what is supported by the arch/cpu. */
22522f88 16241 if (type == OPTION_TYPE_ISA)
e6559e01 16242 {
919731af 16243 switch (mips_opts.isa)
16244 {
16245 case 0:
16246 break;
16247 case ISA_MIPS1:
351cdf24
MF
16248 /* MIPS I cannot support FPXX. */
16249 mips_opts.fp = 32;
16250 /* fall-through. */
919731af 16251 case ISA_MIPS2:
16252 case ISA_MIPS32:
16253 case ISA_MIPS32R2:
16254 case ISA_MIPS32R3:
16255 case ISA_MIPS32R5:
16256 mips_opts.gp = 32;
351cdf24
MF
16257 if (mips_opts.fp != 0)
16258 mips_opts.fp = 32;
919731af 16259 break;
7361da2c
AB
16260 case ISA_MIPS32R6:
16261 mips_opts.gp = 32;
16262 mips_opts.fp = 64;
16263 break;
919731af 16264 case ISA_MIPS3:
16265 case ISA_MIPS4:
16266 case ISA_MIPS5:
16267 case ISA_MIPS64:
16268 case ISA_MIPS64R2:
16269 case ISA_MIPS64R3:
16270 case ISA_MIPS64R5:
7361da2c 16271 case ISA_MIPS64R6:
919731af 16272 mips_opts.gp = 64;
351cdf24
MF
16273 if (mips_opts.fp != 0)
16274 {
16275 if (mips_opts.arch == CPU_R5900)
16276 mips_opts.fp = 32;
16277 else
16278 mips_opts.fp = 64;
16279 }
919731af 16280 break;
16281 default:
16282 as_bad (_("unknown ISA level %s"), name + 4);
16283 break;
16284 }
e6559e01 16285 }
919731af 16286
16287 mips_check_options (&mips_opts, FALSE);
16288
16289 mips_check_isa_supports_ases ();
16290 *input_line_pointer = ch;
16291 demand_empty_rest_of_line ();
16292}
16293
16294/* Handle the .module pseudo-op. */
16295
16296static void
16297s_module (int ignore ATTRIBUTE_UNUSED)
16298{
16299 char *name = input_line_pointer, ch;
16300
16301 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16302 ++input_line_pointer;
16303 ch = *input_line_pointer;
16304 *input_line_pointer = '\0';
16305
16306 if (!file_mips_opts_checked)
252b5132 16307 {
22522f88 16308 if (parse_code_option (name) == OPTION_TYPE_BAD)
919731af 16309 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16310
16311 /* Update module level settings from mips_opts. */
16312 file_mips_opts = mips_opts;
252b5132 16313 }
919731af 16314 else
16315 as_bad (_(".module is not permitted after generating code"));
16316
252b5132
RH
16317 *input_line_pointer = ch;
16318 demand_empty_rest_of_line ();
16319}
16320
16321/* Handle the .abicalls pseudo-op. I believe this is equivalent to
16322 .option pic2. It means to generate SVR4 PIC calls. */
16323
16324static void
17a2f251 16325s_abicalls (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16326{
16327 mips_pic = SVR4_PIC;
143d77c5 16328 mips_abicalls = TRUE;
4d0d148d
TS
16329
16330 if (g_switch_seen && g_switch_value != 0)
16331 as_warn (_("-G may not be used with SVR4 PIC code"));
16332 g_switch_value = 0;
16333
252b5132
RH
16334 bfd_set_gp_size (stdoutput, 0);
16335 demand_empty_rest_of_line ();
16336}
16337
16338/* Handle the .cpload pseudo-op. This is used when generating SVR4
16339 PIC code. It sets the $gp register for the function based on the
16340 function address, which is in the register named in the argument.
16341 This uses a relocation against _gp_disp, which is handled specially
16342 by the linker. The result is:
16343 lui $gp,%hi(_gp_disp)
16344 addiu $gp,$gp,%lo(_gp_disp)
16345 addu $gp,$gp,.cpload argument
aa6975fb
ILT
16346 The .cpload argument is normally $25 == $t9.
16347
16348 The -mno-shared option changes this to:
bbe506e8
TS
16349 lui $gp,%hi(__gnu_local_gp)
16350 addiu $gp,$gp,%lo(__gnu_local_gp)
aa6975fb
ILT
16351 and the argument is ignored. This saves an instruction, but the
16352 resulting code is not position independent; it uses an absolute
bbe506e8
TS
16353 address for __gnu_local_gp. Thus code assembled with -mno-shared
16354 can go into an ordinary executable, but not into a shared library. */
252b5132
RH
16355
16356static void
17a2f251 16357s_cpload (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16358{
16359 expressionS ex;
aa6975fb
ILT
16360 int reg;
16361 int in_shared;
252b5132 16362
919731af 16363 file_mips_check_options ();
16364
6478892d
TS
16365 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16366 .cpload is ignored. */
16367 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16368 {
16369 s_ignore (0);
16370 return;
16371 }
16372
a276b80c
MR
16373 if (mips_opts.mips16)
16374 {
16375 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16376 ignore_rest_of_line ();
16377 return;
16378 }
16379
d3ecfc59 16380 /* .cpload should be in a .set noreorder section. */
252b5132
RH
16381 if (mips_opts.noreorder == 0)
16382 as_warn (_(".cpload not in noreorder section"));
16383
aa6975fb
ILT
16384 reg = tc_get_register (0);
16385
16386 /* If we need to produce a 64-bit address, we are better off using
16387 the default instruction sequence. */
aed1a261 16388 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
aa6975fb 16389
252b5132 16390 ex.X_op = O_symbol;
bbe506e8
TS
16391 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16392 "__gnu_local_gp");
252b5132
RH
16393 ex.X_op_symbol = NULL;
16394 ex.X_add_number = 0;
16395
16396 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
49309057 16397 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
252b5132 16398
8a75745d
MR
16399 mips_mark_labels ();
16400 mips_assembling_insn = TRUE;
16401
584892a6 16402 macro_start ();
67c0d1eb
RS
16403 macro_build_lui (&ex, mips_gp_register);
16404 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17a2f251 16405 mips_gp_register, BFD_RELOC_LO16);
aa6975fb
ILT
16406 if (in_shared)
16407 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16408 mips_gp_register, reg);
584892a6 16409 macro_end ();
252b5132 16410
8a75745d 16411 mips_assembling_insn = FALSE;
252b5132
RH
16412 demand_empty_rest_of_line ();
16413}
16414
6478892d
TS
16415/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16416 .cpsetup $reg1, offset|$reg2, label
16417
16418 If offset is given, this results in:
16419 sd $gp, offset($sp)
956cd1d6 16420 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
16421 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16422 daddu $gp, $gp, $reg1
6478892d
TS
16423
16424 If $reg2 is given, this results in:
40fc1451 16425 or $reg2, $gp, $0
956cd1d6 16426 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
16427 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16428 daddu $gp, $gp, $reg1
aa6975fb
ILT
16429 $reg1 is normally $25 == $t9.
16430
16431 The -mno-shared option replaces the last three instructions with
16432 lui $gp,%hi(_gp)
54f4ddb3 16433 addiu $gp,$gp,%lo(_gp) */
aa6975fb 16434
6478892d 16435static void
17a2f251 16436s_cpsetup (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16437{
16438 expressionS ex_off;
16439 expressionS ex_sym;
16440 int reg1;
6478892d 16441
919731af 16442 file_mips_check_options ();
16443
8586fc66 16444 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
6478892d
TS
16445 We also need NewABI support. */
16446 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16447 {
16448 s_ignore (0);
16449 return;
16450 }
16451
a276b80c
MR
16452 if (mips_opts.mips16)
16453 {
16454 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16455 ignore_rest_of_line ();
16456 return;
16457 }
16458
6478892d
TS
16459 reg1 = tc_get_register (0);
16460 SKIP_WHITESPACE ();
16461 if (*input_line_pointer != ',')
16462 {
16463 as_bad (_("missing argument separator ',' for .cpsetup"));
16464 return;
16465 }
16466 else
80245285 16467 ++input_line_pointer;
6478892d
TS
16468 SKIP_WHITESPACE ();
16469 if (*input_line_pointer == '$')
80245285
TS
16470 {
16471 mips_cpreturn_register = tc_get_register (0);
16472 mips_cpreturn_offset = -1;
16473 }
6478892d 16474 else
80245285
TS
16475 {
16476 mips_cpreturn_offset = get_absolute_expression ();
16477 mips_cpreturn_register = -1;
16478 }
6478892d
TS
16479 SKIP_WHITESPACE ();
16480 if (*input_line_pointer != ',')
16481 {
16482 as_bad (_("missing argument separator ',' for .cpsetup"));
16483 return;
16484 }
16485 else
f9419b05 16486 ++input_line_pointer;
6478892d 16487 SKIP_WHITESPACE ();
f21f8242 16488 expression (&ex_sym);
6478892d 16489
8a75745d
MR
16490 mips_mark_labels ();
16491 mips_assembling_insn = TRUE;
16492
584892a6 16493 macro_start ();
6478892d
TS
16494 if (mips_cpreturn_register == -1)
16495 {
16496 ex_off.X_op = O_constant;
16497 ex_off.X_add_symbol = NULL;
16498 ex_off.X_op_symbol = NULL;
16499 ex_off.X_add_number = mips_cpreturn_offset;
16500
67c0d1eb 16501 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17a2f251 16502 BFD_RELOC_LO16, SP);
6478892d
TS
16503 }
16504 else
40fc1451 16505 move_register (mips_cpreturn_register, mips_gp_register);
6478892d 16506
aed1a261 16507 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
aa6975fb 16508 {
df58fc94 16509 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
aa6975fb
ILT
16510 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16511 BFD_RELOC_HI16_S);
16512
16513 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16514 mips_gp_register, -1, BFD_RELOC_GPREL16,
16515 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16516
16517 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16518 mips_gp_register, reg1);
16519 }
16520 else
16521 {
16522 expressionS ex;
16523
16524 ex.X_op = O_symbol;
4184909a 16525 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
aa6975fb
ILT
16526 ex.X_op_symbol = NULL;
16527 ex.X_add_number = 0;
6e1304d8 16528
aa6975fb
ILT
16529 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16530 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16531
16532 macro_build_lui (&ex, mips_gp_register);
16533 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16534 mips_gp_register, BFD_RELOC_LO16);
16535 }
f21f8242 16536
584892a6 16537 macro_end ();
6478892d 16538
8a75745d 16539 mips_assembling_insn = FALSE;
6478892d
TS
16540 demand_empty_rest_of_line ();
16541}
16542
16543static void
17a2f251 16544s_cplocal (int ignore ATTRIBUTE_UNUSED)
6478892d 16545{
919731af 16546 file_mips_check_options ();
16547
6478892d 16548 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
54f4ddb3 16549 .cplocal is ignored. */
6478892d
TS
16550 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16551 {
16552 s_ignore (0);
16553 return;
16554 }
16555
a276b80c
MR
16556 if (mips_opts.mips16)
16557 {
16558 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16559 ignore_rest_of_line ();
16560 return;
16561 }
16562
6478892d 16563 mips_gp_register = tc_get_register (0);
85b51719 16564 demand_empty_rest_of_line ();
6478892d
TS
16565}
16566
252b5132
RH
16567/* Handle the .cprestore pseudo-op. This stores $gp into a given
16568 offset from $sp. The offset is remembered, and after making a PIC
16569 call $gp is restored from that location. */
16570
16571static void
17a2f251 16572s_cprestore (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16573{
16574 expressionS ex;
252b5132 16575
919731af 16576 file_mips_check_options ();
16577
6478892d 16578 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
c9914766 16579 .cprestore is ignored. */
6478892d 16580 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16581 {
16582 s_ignore (0);
16583 return;
16584 }
16585
a276b80c
MR
16586 if (mips_opts.mips16)
16587 {
16588 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16589 ignore_rest_of_line ();
16590 return;
16591 }
16592
252b5132 16593 mips_cprestore_offset = get_absolute_expression ();
7a621144 16594 mips_cprestore_valid = 1;
252b5132
RH
16595
16596 ex.X_op = O_constant;
16597 ex.X_add_symbol = NULL;
16598 ex.X_op_symbol = NULL;
16599 ex.X_add_number = mips_cprestore_offset;
16600
8a75745d
MR
16601 mips_mark_labels ();
16602 mips_assembling_insn = TRUE;
16603
584892a6 16604 macro_start ();
67c0d1eb
RS
16605 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16606 SP, HAVE_64BIT_ADDRESSES);
584892a6 16607 macro_end ();
252b5132 16608
8a75745d 16609 mips_assembling_insn = FALSE;
252b5132
RH
16610 demand_empty_rest_of_line ();
16611}
16612
6478892d 16613/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
67c1ffbe 16614 was given in the preceding .cpsetup, it results in:
6478892d 16615 ld $gp, offset($sp)
76b3015f 16616
6478892d 16617 If a register $reg2 was given there, it results in:
40fc1451 16618 or $gp, $reg2, $0 */
54f4ddb3 16619
6478892d 16620static void
17a2f251 16621s_cpreturn (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16622{
16623 expressionS ex;
6478892d 16624
919731af 16625 file_mips_check_options ();
16626
6478892d
TS
16627 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16628 We also need NewABI support. */
16629 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16630 {
16631 s_ignore (0);
16632 return;
16633 }
16634
a276b80c
MR
16635 if (mips_opts.mips16)
16636 {
16637 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16638 ignore_rest_of_line ();
16639 return;
16640 }
16641
8a75745d
MR
16642 mips_mark_labels ();
16643 mips_assembling_insn = TRUE;
16644
584892a6 16645 macro_start ();
6478892d
TS
16646 if (mips_cpreturn_register == -1)
16647 {
16648 ex.X_op = O_constant;
16649 ex.X_add_symbol = NULL;
16650 ex.X_op_symbol = NULL;
16651 ex.X_add_number = mips_cpreturn_offset;
16652
67c0d1eb 16653 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
6478892d
TS
16654 }
16655 else
40fc1451
SD
16656 move_register (mips_gp_register, mips_cpreturn_register);
16657
584892a6 16658 macro_end ();
6478892d 16659
8a75745d 16660 mips_assembling_insn = FALSE;
6478892d
TS
16661 demand_empty_rest_of_line ();
16662}
16663
d0f13682
CLT
16664/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16665 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16666 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16667 debug information or MIPS16 TLS. */
741d6ea8
JM
16668
16669static void
d0f13682
CLT
16670s_tls_rel_directive (const size_t bytes, const char *dirstr,
16671 bfd_reloc_code_real_type rtype)
741d6ea8
JM
16672{
16673 expressionS ex;
16674 char *p;
16675
16676 expression (&ex);
16677
16678 if (ex.X_op != O_symbol)
16679 {
1661c76c 16680 as_bad (_("unsupported use of %s"), dirstr);
741d6ea8
JM
16681 ignore_rest_of_line ();
16682 }
16683
16684 p = frag_more (bytes);
16685 md_number_to_chars (p, 0, bytes);
d0f13682 16686 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
741d6ea8 16687 demand_empty_rest_of_line ();
de64cffd 16688 mips_clear_insn_labels ();
741d6ea8
JM
16689}
16690
16691/* Handle .dtprelword. */
16692
16693static void
16694s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16695{
d0f13682 16696 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
741d6ea8
JM
16697}
16698
16699/* Handle .dtpreldword. */
16700
16701static void
16702s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16703{
d0f13682
CLT
16704 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16705}
16706
16707/* Handle .tprelword. */
16708
16709static void
16710s_tprelword (int ignore ATTRIBUTE_UNUSED)
16711{
16712 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16713}
16714
16715/* Handle .tpreldword. */
16716
16717static void
16718s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16719{
16720 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
741d6ea8
JM
16721}
16722
6478892d
TS
16723/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16724 code. It sets the offset to use in gp_rel relocations. */
16725
16726static void
17a2f251 16727s_gpvalue (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16728{
16729 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16730 We also need NewABI support. */
16731 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16732 {
16733 s_ignore (0);
16734 return;
16735 }
16736
def2e0dd 16737 mips_gprel_offset = get_absolute_expression ();
6478892d
TS
16738
16739 demand_empty_rest_of_line ();
16740}
16741
252b5132
RH
16742/* Handle the .gpword pseudo-op. This is used when generating PIC
16743 code. It generates a 32 bit GP relative reloc. */
16744
16745static void
17a2f251 16746s_gpword (int ignore ATTRIBUTE_UNUSED)
252b5132 16747{
a8dbcb85
TS
16748 segment_info_type *si;
16749 struct insn_label_list *l;
252b5132
RH
16750 expressionS ex;
16751 char *p;
16752
16753 /* When not generating PIC code, this is treated as .word. */
16754 if (mips_pic != SVR4_PIC)
16755 {
16756 s_cons (2);
16757 return;
16758 }
16759
a8dbcb85
TS
16760 si = seg_info (now_seg);
16761 l = si->label_list;
7d10b47d 16762 mips_emit_delays ();
252b5132 16763 if (auto_align)
462427c4 16764 mips_align (2, 0, l);
252b5132
RH
16765
16766 expression (&ex);
a1facbec 16767 mips_clear_insn_labels ();
252b5132
RH
16768
16769 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16770 {
1661c76c 16771 as_bad (_("unsupported use of .gpword"));
252b5132
RH
16772 ignore_rest_of_line ();
16773 }
16774
16775 p = frag_more (4);
17a2f251 16776 md_number_to_chars (p, 0, 4);
b34976b6 16777 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
cdf6fd85 16778 BFD_RELOC_GPREL32);
252b5132
RH
16779
16780 demand_empty_rest_of_line ();
16781}
16782
10181a0d 16783static void
17a2f251 16784s_gpdword (int ignore ATTRIBUTE_UNUSED)
10181a0d 16785{
a8dbcb85
TS
16786 segment_info_type *si;
16787 struct insn_label_list *l;
10181a0d
AO
16788 expressionS ex;
16789 char *p;
16790
16791 /* When not generating PIC code, this is treated as .dword. */
16792 if (mips_pic != SVR4_PIC)
16793 {
16794 s_cons (3);
16795 return;
16796 }
16797
a8dbcb85
TS
16798 si = seg_info (now_seg);
16799 l = si->label_list;
7d10b47d 16800 mips_emit_delays ();
10181a0d 16801 if (auto_align)
462427c4 16802 mips_align (3, 0, l);
10181a0d
AO
16803
16804 expression (&ex);
a1facbec 16805 mips_clear_insn_labels ();
10181a0d
AO
16806
16807 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16808 {
1661c76c 16809 as_bad (_("unsupported use of .gpdword"));
10181a0d
AO
16810 ignore_rest_of_line ();
16811 }
16812
16813 p = frag_more (8);
17a2f251 16814 md_number_to_chars (p, 0, 8);
a105a300 16815 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
6e1304d8 16816 BFD_RELOC_GPREL32)->fx_tcbit = 1;
10181a0d
AO
16817
16818 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
6e1304d8
RS
16819 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16820 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
10181a0d
AO
16821
16822 demand_empty_rest_of_line ();
16823}
16824
a3f278e2
CM
16825/* Handle the .ehword pseudo-op. This is used when generating unwinding
16826 tables. It generates a R_MIPS_EH reloc. */
16827
16828static void
16829s_ehword (int ignore ATTRIBUTE_UNUSED)
16830{
16831 expressionS ex;
16832 char *p;
16833
16834 mips_emit_delays ();
16835
16836 expression (&ex);
16837 mips_clear_insn_labels ();
16838
16839 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16840 {
1661c76c 16841 as_bad (_("unsupported use of .ehword"));
a3f278e2
CM
16842 ignore_rest_of_line ();
16843 }
16844
16845 p = frag_more (4);
16846 md_number_to_chars (p, 0, 4);
16847 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
2f0c68f2 16848 BFD_RELOC_32_PCREL);
a3f278e2
CM
16849
16850 demand_empty_rest_of_line ();
16851}
16852
252b5132
RH
16853/* Handle the .cpadd pseudo-op. This is used when dealing with switch
16854 tables in SVR4 PIC code. */
16855
16856static void
17a2f251 16857s_cpadd (int ignore ATTRIBUTE_UNUSED)
252b5132 16858{
252b5132
RH
16859 int reg;
16860
919731af 16861 file_mips_check_options ();
16862
10181a0d
AO
16863 /* This is ignored when not generating SVR4 PIC code. */
16864 if (mips_pic != SVR4_PIC)
252b5132
RH
16865 {
16866 s_ignore (0);
16867 return;
16868 }
16869
8a75745d
MR
16870 mips_mark_labels ();
16871 mips_assembling_insn = TRUE;
16872
252b5132 16873 /* Add $gp to the register named as an argument. */
584892a6 16874 macro_start ();
252b5132 16875 reg = tc_get_register (0);
67c0d1eb 16876 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
584892a6 16877 macro_end ();
252b5132 16878
8a75745d 16879 mips_assembling_insn = FALSE;
bdaaa2e1 16880 demand_empty_rest_of_line ();
252b5132
RH
16881}
16882
16883/* Handle the .insn pseudo-op. This marks instruction labels in
df58fc94 16884 mips16/micromips mode. This permits the linker to handle them specially,
252b5132
RH
16885 such as generating jalx instructions when needed. We also make
16886 them odd for the duration of the assembly, in order to generate the
16887 right sort of code. We will make them even in the adjust_symtab
16888 routine, while leaving them marked. This is convenient for the
16889 debugger and the disassembler. The linker knows to make them odd
16890 again. */
16891
16892static void
17a2f251 16893s_insn (int ignore ATTRIBUTE_UNUSED)
252b5132 16894{
7bb01e2d
MR
16895 file_mips_check_options ();
16896 file_ase_mips16 |= mips_opts.mips16;
16897 file_ase_micromips |= mips_opts.micromips;
16898
df58fc94 16899 mips_mark_labels ();
252b5132
RH
16900
16901 demand_empty_rest_of_line ();
16902}
16903
ba92f887
MR
16904/* Handle the .nan pseudo-op. */
16905
16906static void
16907s_nan (int ignore ATTRIBUTE_UNUSED)
16908{
16909 static const char str_legacy[] = "legacy";
16910 static const char str_2008[] = "2008";
16911 size_t i;
16912
16913 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16914
16915 if (i == sizeof (str_2008) - 1
16916 && memcmp (input_line_pointer, str_2008, i) == 0)
7361da2c 16917 mips_nan2008 = 1;
ba92f887
MR
16918 else if (i == sizeof (str_legacy) - 1
16919 && memcmp (input_line_pointer, str_legacy, i) == 0)
7361da2c
AB
16920 {
16921 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16922 mips_nan2008 = 0;
16923 else
16924 as_bad (_("`%s' does not support legacy NaN"),
16925 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16926 }
ba92f887 16927 else
1661c76c 16928 as_bad (_("bad .nan directive"));
ba92f887
MR
16929
16930 input_line_pointer += i;
16931 demand_empty_rest_of_line ();
16932}
16933
754e2bb9
RS
16934/* Handle a .stab[snd] directive. Ideally these directives would be
16935 implemented in a transparent way, so that removing them would not
16936 have any effect on the generated instructions. However, s_stab
16937 internally changes the section, so in practice we need to decide
16938 now whether the preceding label marks compressed code. We do not
16939 support changing the compression mode of a label after a .stab*
16940 directive, such as in:
16941
16942 foo:
134c0c8b 16943 .stabs ...
754e2bb9
RS
16944 .set mips16
16945
16946 so the current mode wins. */
252b5132
RH
16947
16948static void
17a2f251 16949s_mips_stab (int type)
252b5132 16950{
754e2bb9 16951 mips_mark_labels ();
252b5132
RH
16952 s_stab (type);
16953}
16954
54f4ddb3 16955/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
252b5132
RH
16956
16957static void
17a2f251 16958s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16959{
16960 char *name;
16961 int c;
16962 symbolS *symbolP;
16963 expressionS exp;
16964
d02603dc 16965 c = get_symbol_name (&name);
252b5132
RH
16966 symbolP = symbol_find_or_make (name);
16967 S_SET_WEAK (symbolP);
16968 *input_line_pointer = c;
16969
d02603dc 16970 SKIP_WHITESPACE_AFTER_NAME ();
252b5132
RH
16971
16972 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16973 {
16974 if (S_IS_DEFINED (symbolP))
16975 {
20203fb9 16976 as_bad (_("ignoring attempt to redefine symbol %s"),
252b5132
RH
16977 S_GET_NAME (symbolP));
16978 ignore_rest_of_line ();
16979 return;
16980 }
bdaaa2e1 16981
252b5132
RH
16982 if (*input_line_pointer == ',')
16983 {
16984 ++input_line_pointer;
16985 SKIP_WHITESPACE ();
16986 }
bdaaa2e1 16987
252b5132
RH
16988 expression (&exp);
16989 if (exp.X_op != O_symbol)
16990 {
20203fb9 16991 as_bad (_("bad .weakext directive"));
98d3f06f 16992 ignore_rest_of_line ();
252b5132
RH
16993 return;
16994 }
49309057 16995 symbol_set_value_expression (symbolP, &exp);
252b5132
RH
16996 }
16997
16998 demand_empty_rest_of_line ();
16999}
17000
17001/* Parse a register string into a number. Called from the ECOFF code
17002 to parse .frame. The argument is non-zero if this is the frame
17003 register, so that we can record it in mips_frame_reg. */
17004
17005int
17a2f251 17006tc_get_register (int frame)
252b5132 17007{
707bfff6 17008 unsigned int reg;
252b5132
RH
17009
17010 SKIP_WHITESPACE ();
707bfff6
TS
17011 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17012 reg = 0;
252b5132 17013 if (frame)
7a621144
DJ
17014 {
17015 mips_frame_reg = reg != 0 ? reg : SP;
17016 mips_frame_reg_valid = 1;
17017 mips_cprestore_valid = 0;
17018 }
252b5132
RH
17019 return reg;
17020}
17021
17022valueT
17a2f251 17023md_section_align (asection *seg, valueT addr)
252b5132
RH
17024{
17025 int align = bfd_get_section_alignment (stdoutput, seg);
17026
f3ded42a
RS
17027 /* We don't need to align ELF sections to the full alignment.
17028 However, Irix 5 may prefer that we align them at least to a 16
17029 byte boundary. We don't bother to align the sections if we
17030 are targeted for an embedded system. */
17031 if (strncmp (TARGET_OS, "elf", 3) == 0)
17032 return addr;
17033 if (align > 4)
17034 align = 4;
252b5132 17035
8d3842cd 17036 return ((addr + (1 << align) - 1) & -(1 << align));
252b5132
RH
17037}
17038
17039/* Utility routine, called from above as well. If called while the
17040 input file is still being read, it's only an approximation. (For
17041 example, a symbol may later become defined which appeared to be
17042 undefined earlier.) */
17043
17044static int
17a2f251 17045nopic_need_relax (symbolS *sym, int before_relaxing)
252b5132
RH
17046{
17047 if (sym == 0)
17048 return 0;
17049
4d0d148d 17050 if (g_switch_value > 0)
252b5132
RH
17051 {
17052 const char *symname;
17053 int change;
17054
c9914766 17055 /* Find out whether this symbol can be referenced off the $gp
252b5132
RH
17056 register. It can be if it is smaller than the -G size or if
17057 it is in the .sdata or .sbss section. Certain symbols can
c9914766 17058 not be referenced off the $gp, although it appears as though
252b5132
RH
17059 they can. */
17060 symname = S_GET_NAME (sym);
17061 if (symname != (const char *) NULL
17062 && (strcmp (symname, "eprol") == 0
17063 || strcmp (symname, "etext") == 0
17064 || strcmp (symname, "_gp") == 0
17065 || strcmp (symname, "edata") == 0
17066 || strcmp (symname, "_fbss") == 0
17067 || strcmp (symname, "_fdata") == 0
17068 || strcmp (symname, "_ftext") == 0
17069 || strcmp (symname, "end") == 0
17070 || strcmp (symname, "_gp_disp") == 0))
17071 change = 1;
17072 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17073 && (0
17074#ifndef NO_ECOFF_DEBUGGING
49309057
ILT
17075 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17076 && (symbol_get_obj (sym)->ecoff_extern_size
17077 <= g_switch_value))
252b5132
RH
17078#endif
17079 /* We must defer this decision until after the whole
17080 file has been read, since there might be a .extern
17081 after the first use of this symbol. */
17082 || (before_relaxing
17083#ifndef NO_ECOFF_DEBUGGING
49309057 17084 && symbol_get_obj (sym)->ecoff_extern_size == 0
252b5132
RH
17085#endif
17086 && S_GET_VALUE (sym) == 0)
17087 || (S_GET_VALUE (sym) != 0
17088 && S_GET_VALUE (sym) <= g_switch_value)))
17089 change = 0;
17090 else
17091 {
17092 const char *segname;
17093
17094 segname = segment_name (S_GET_SEGMENT (sym));
9c2799c2 17095 gas_assert (strcmp (segname, ".lit8") != 0
252b5132
RH
17096 && strcmp (segname, ".lit4") != 0);
17097 change = (strcmp (segname, ".sdata") != 0
fba2b7f9
GK
17098 && strcmp (segname, ".sbss") != 0
17099 && strncmp (segname, ".sdata.", 7) != 0
d4dc2f22
TS
17100 && strncmp (segname, ".sbss.", 6) != 0
17101 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
fba2b7f9 17102 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
252b5132
RH
17103 }
17104 return change;
17105 }
17106 else
c9914766 17107 /* We are not optimizing for the $gp register. */
252b5132
RH
17108 return 1;
17109}
17110
5919d012
RS
17111
17112/* Return true if the given symbol should be considered local for SVR4 PIC. */
17113
17114static bfd_boolean
17a2f251 17115pic_need_relax (symbolS *sym, asection *segtype)
5919d012
RS
17116{
17117 asection *symsec;
5919d012
RS
17118
17119 /* Handle the case of a symbol equated to another symbol. */
17120 while (symbol_equated_reloc_p (sym))
17121 {
17122 symbolS *n;
17123
5f0fe04b 17124 /* It's possible to get a loop here in a badly written program. */
5919d012
RS
17125 n = symbol_get_value_expression (sym)->X_add_symbol;
17126 if (n == sym)
17127 break;
17128 sym = n;
17129 }
17130
df1f3cda
DD
17131 if (symbol_section_p (sym))
17132 return TRUE;
17133
5919d012
RS
17134 symsec = S_GET_SEGMENT (sym);
17135
5919d012 17136 /* This must duplicate the test in adjust_reloc_syms. */
45dfa85a
AM
17137 return (!bfd_is_und_section (symsec)
17138 && !bfd_is_abs_section (symsec)
5f0fe04b
TS
17139 && !bfd_is_com_section (symsec)
17140 && !s_is_linkonce (sym, segtype)
5919d012 17141 /* A global or weak symbol is treated as external. */
f3ded42a 17142 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
5919d012
RS
17143}
17144
17145
252b5132
RH
17146/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17147 extended opcode. SEC is the section the frag is in. */
17148
17149static int
17a2f251 17150mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
252b5132
RH
17151{
17152 int type;
3ccad066 17153 const struct mips_int_operand *operand;
252b5132 17154 offsetT val;
252b5132 17155 segT symsec;
98aa84af 17156 fragS *sym_frag;
252b5132
RH
17157
17158 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17159 return 0;
17160 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17161 return 1;
17162
88a7ef16 17163 symsec = S_GET_SEGMENT (fragp->fr_symbol);
252b5132 17164 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 17165 operand = mips16_immed_operand (type, FALSE);
88a7ef16
MR
17166 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17167 || (operand->root.type == OP_PCREL
17168 ? sec != symsec
17169 : !bfd_is_abs_section (symsec)))
17170 return 1;
252b5132 17171
98aa84af 17172 sym_frag = symbol_get_frag (fragp->fr_symbol);
88a7ef16 17173 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
252b5132 17174
3ccad066 17175 if (operand->root.type == OP_PCREL)
252b5132 17176 {
3ccad066 17177 const struct mips_pcrel_operand *pcrel_op;
252b5132 17178 addressT addr;
3ccad066 17179 offsetT maxtiny;
252b5132 17180
88a7ef16
MR
17181 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
17182 return 1;
252b5132 17183
88a7ef16 17184 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132 17185
88a7ef16
MR
17186 /* If the relax_marker of the symbol fragment differs from the
17187 relax_marker of this fragment, we have not yet adjusted the
17188 symbol fragment fr_address. We want to add in STRETCH in
17189 order to get a better estimate of the address. This
17190 particularly matters because of the shift bits. */
252b5132 17191 if (stretch != 0
98aa84af 17192 && sym_frag->relax_marker != fragp->relax_marker)
252b5132
RH
17193 {
17194 fragS *f;
17195
17196 /* Adjust stretch for any alignment frag. Note that if have
17197 been expanding the earlier code, the symbol may be
17198 defined in what appears to be an earlier frag. FIXME:
17199 This doesn't handle the fr_subtype field, which specifies
17200 a maximum number of bytes to skip when doing an
17201 alignment. */
98aa84af 17202 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
252b5132
RH
17203 {
17204 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17205 {
17206 if (stretch < 0)
17207 stretch = - ((- stretch)
17208 & ~ ((1 << (int) f->fr_offset) - 1));
17209 else
17210 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17211 if (stretch == 0)
17212 break;
17213 }
17214 }
17215 if (f != NULL)
17216 val += stretch;
17217 }
17218
17219 addr = fragp->fr_address + fragp->fr_fix;
17220
17221 /* The base address rules are complicated. The base address of
17222 a branch is the following instruction. The base address of a
17223 PC relative load or add is the instruction itself, but if it
17224 is in a delay slot (in which case it can not be extended) use
17225 the address of the instruction whose delay slot it is in. */
3ccad066 17226 if (pcrel_op->include_isa_bit)
252b5132
RH
17227 {
17228 addr += 2;
17229
17230 /* If we are currently assuming that this frag should be
17231 extended, then, the current address is two bytes
bdaaa2e1 17232 higher. */
252b5132
RH
17233 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17234 addr += 2;
17235
17236 /* Ignore the low bit in the target, since it will be set
17237 for a text label. */
3ccad066 17238 val &= -2;
252b5132
RH
17239 }
17240 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17241 addr -= 4;
17242 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17243 addr -= 2;
17244
3ccad066 17245 val -= addr & -(1 << pcrel_op->align_log2);
252b5132
RH
17246
17247 /* If any of the shifted bits are set, we must use an extended
17248 opcode. If the address depends on the size of this
17249 instruction, this can lead to a loop, so we arrange to always
88a7ef16
MR
17250 use an extended opcode. */
17251 if ((val & ((1 << operand->shift) - 1)) != 0)
252b5132
RH
17252 {
17253 fragp->fr_subtype =
17254 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17255 return 1;
17256 }
17257
17258 /* If we are about to mark a frag as extended because the value
3ccad066
RS
17259 is precisely the next value above maxtiny, then there is a
17260 chance of an infinite loop as in the following code:
252b5132
RH
17261 la $4,foo
17262 .skip 1020
17263 .align 2
17264 foo:
17265 In this case when the la is extended, foo is 0x3fc bytes
17266 away, so the la can be shrunk, but then foo is 0x400 away, so
17267 the la must be extended. To avoid this loop, we mark the
17268 frag as extended if it was small, and is about to become
3ccad066
RS
17269 extended with the next value above maxtiny. */
17270 maxtiny = mips_int_operand_max (operand);
17271 if (val == maxtiny + (1 << operand->shift)
88a7ef16 17272 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
252b5132
RH
17273 {
17274 fragp->fr_subtype =
17275 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17276 return 1;
17277 }
17278 }
252b5132 17279
3ccad066 17280 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
252b5132
RH
17281}
17282
4a6a3df4
AO
17283/* Compute the length of a branch sequence, and adjust the
17284 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17285 worst-case length is computed, with UPDATE being used to indicate
17286 whether an unconditional (-1), branch-likely (+1) or regular (0)
17287 branch is to be computed. */
17288static int
17a2f251 17289relaxed_branch_length (fragS *fragp, asection *sec, int update)
4a6a3df4 17290{
b34976b6 17291 bfd_boolean toofar;
4a6a3df4
AO
17292 int length;
17293
17294 if (fragp
17295 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17296 && !S_IS_WEAK (fragp->fr_symbol)
4a6a3df4
AO
17297 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17298 {
17299 addressT addr;
17300 offsetT val;
17301
17302 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17303
17304 addr = fragp->fr_address + fragp->fr_fix + 4;
17305
17306 val -= addr;
17307
17308 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17309 }
4a6a3df4 17310 else
c1f61bd2
MR
17311 /* If the symbol is not defined or it's in a different segment,
17312 we emit the long sequence. */
b34976b6 17313 toofar = TRUE;
4a6a3df4
AO
17314
17315 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17316 fragp->fr_subtype
66b3e8da
MR
17317 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17318 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
4a6a3df4
AO
17319 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17320 RELAX_BRANCH_LINK (fragp->fr_subtype),
17321 toofar);
17322
17323 length = 4;
17324 if (toofar)
17325 {
17326 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17327 length += 8;
17328
17329 if (mips_pic != NO_PIC)
17330 {
17331 /* Additional space for PIC loading of target address. */
17332 length += 8;
17333 if (mips_opts.isa == ISA_MIPS1)
17334 /* Additional space for $at-stabilizing nop. */
17335 length += 4;
17336 }
17337
17338 /* If branch is conditional. */
17339 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17340 length += 8;
17341 }
b34976b6 17342
4a6a3df4
AO
17343 return length;
17344}
17345
7bd374a4
MR
17346/* Get a FRAG's branch instruction delay slot size, either from the
17347 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17348 or SHORT_INSN_SIZE otherwise. */
17349
17350static int
17351frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17352{
17353 char *buf = fragp->fr_literal + fragp->fr_fix;
17354
17355 if (al)
17356 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17357 else
17358 return short_insn_size;
17359}
17360
df58fc94
RS
17361/* Compute the length of a branch sequence, and adjust the
17362 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17363 worst-case length is computed, with UPDATE being used to indicate
17364 whether an unconditional (-1), or regular (0) branch is to be
17365 computed. */
17366
17367static int
17368relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17369{
7bd374a4
MR
17370 bfd_boolean insn32 = TRUE;
17371 bfd_boolean nods = TRUE;
17372 bfd_boolean al = TRUE;
17373 int short_insn_size;
df58fc94
RS
17374 bfd_boolean toofar;
17375 int length;
17376
7bd374a4
MR
17377 if (fragp)
17378 {
17379 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17380 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17381 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17382 }
17383 short_insn_size = insn32 ? 4 : 2;
17384
df58fc94
RS
17385 if (fragp
17386 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17387 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
17388 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17389 {
17390 addressT addr;
17391 offsetT val;
17392
17393 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17394 /* Ignore the low bit in the target, since it will be set
17395 for a text label. */
17396 if ((val & 1) != 0)
17397 --val;
17398
17399 addr = fragp->fr_address + fragp->fr_fix + 4;
17400
17401 val -= addr;
17402
17403 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17404 }
df58fc94 17405 else
c1f61bd2
MR
17406 /* If the symbol is not defined or it's in a different segment,
17407 we emit the long sequence. */
df58fc94
RS
17408 toofar = TRUE;
17409
17410 if (fragp && update
17411 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17412 fragp->fr_subtype = (toofar
17413 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17414 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17415
17416 length = 4;
17417 if (toofar)
17418 {
17419 bfd_boolean compact_known = fragp != NULL;
17420 bfd_boolean compact = FALSE;
17421 bfd_boolean uncond;
17422
df58fc94 17423 if (fragp)
8484fb75
MR
17424 {
17425 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17426 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
8484fb75 17427 }
df58fc94
RS
17428 else
17429 uncond = update < 0;
17430
17431 /* If label is out of range, we turn branch <br>:
17432
17433 <br> label # 4 bytes
17434 0:
17435
17436 into:
17437
17438 j label # 4 bytes
8484fb75
MR
17439 nop # 2/4 bytes if
17440 # compact && (!PIC || insn32)
df58fc94
RS
17441 0:
17442 */
8484fb75
MR
17443 if ((mips_pic == NO_PIC || insn32) && (!compact_known || compact))
17444 length += short_insn_size;
df58fc94
RS
17445
17446 /* If assembling PIC code, we further turn:
17447
17448 j label # 4 bytes
17449
17450 into:
17451
17452 lw/ld at, %got(label)(gp) # 4 bytes
17453 d/addiu at, %lo(label) # 4 bytes
8484fb75 17454 jr/c at # 2/4 bytes
df58fc94
RS
17455 */
17456 if (mips_pic != NO_PIC)
8484fb75 17457 length += 4 + short_insn_size;
df58fc94 17458
7bd374a4
MR
17459 /* Add an extra nop if the jump has no compact form and we need
17460 to fill the delay slot. */
17461 if ((mips_pic == NO_PIC || al) && nods)
17462 length += (fragp
17463 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17464 : short_insn_size);
17465
df58fc94
RS
17466 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17467
17468 <brneg> 0f # 4 bytes
8484fb75 17469 nop # 2/4 bytes if !compact
df58fc94
RS
17470 */
17471 if (!uncond)
8484fb75 17472 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
df58fc94 17473 }
7bd374a4
MR
17474 else if (nods)
17475 {
17476 /* Add an extra nop to fill the delay slot. */
17477 gas_assert (fragp);
17478 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17479 }
df58fc94
RS
17480
17481 return length;
17482}
17483
17484/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17485 bit accordingly. */
17486
17487static int
17488relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17489{
17490 bfd_boolean toofar;
17491
df58fc94
RS
17492 if (fragp
17493 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17494 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
17495 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17496 {
17497 addressT addr;
17498 offsetT val;
17499 int type;
17500
17501 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17502 /* Ignore the low bit in the target, since it will be set
17503 for a text label. */
17504 if ((val & 1) != 0)
17505 --val;
17506
17507 /* Assume this is a 2-byte branch. */
17508 addr = fragp->fr_address + fragp->fr_fix + 2;
17509
17510 /* We try to avoid the infinite loop by not adding 2 more bytes for
17511 long branches. */
17512
17513 val -= addr;
17514
17515 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17516 if (type == 'D')
17517 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17518 else if (type == 'E')
17519 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17520 else
17521 abort ();
17522 }
17523 else
17524 /* If the symbol is not defined or it's in a different segment,
17525 we emit a normal 32-bit branch. */
17526 toofar = TRUE;
17527
17528 if (fragp && update
17529 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17530 fragp->fr_subtype
17531 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17532 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17533
17534 if (toofar)
17535 return 4;
17536
17537 return 2;
17538}
17539
252b5132
RH
17540/* Estimate the size of a frag before relaxing. Unless this is the
17541 mips16, we are not really relaxing here, and the final size is
17542 encoded in the subtype information. For the mips16, we have to
17543 decide whether we are using an extended opcode or not. */
17544
252b5132 17545int
17a2f251 17546md_estimate_size_before_relax (fragS *fragp, asection *segtype)
252b5132 17547{
5919d012 17548 int change;
252b5132 17549
4a6a3df4
AO
17550 if (RELAX_BRANCH_P (fragp->fr_subtype))
17551 {
17552
b34976b6
AM
17553 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17554
4a6a3df4
AO
17555 return fragp->fr_var;
17556 }
17557
252b5132 17558 if (RELAX_MIPS16_P (fragp->fr_subtype))
177b4a6a
AO
17559 /* We don't want to modify the EXTENDED bit here; it might get us
17560 into infinite loops. We change it only in mips_relax_frag(). */
17561 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
252b5132 17562
df58fc94
RS
17563 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17564 {
17565 int length = 4;
17566
17567 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17568 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17569 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17570 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17571 fragp->fr_var = length;
17572
17573 return length;
17574 }
17575
252b5132 17576 if (mips_pic == NO_PIC)
5919d012 17577 change = nopic_need_relax (fragp->fr_symbol, 0);
252b5132 17578 else if (mips_pic == SVR4_PIC)
5919d012 17579 change = pic_need_relax (fragp->fr_symbol, segtype);
0a44bf69
RS
17580 else if (mips_pic == VXWORKS_PIC)
17581 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17582 change = 0;
252b5132
RH
17583 else
17584 abort ();
17585
17586 if (change)
17587 {
4d7206a2 17588 fragp->fr_subtype |= RELAX_USE_SECOND;
4d7206a2 17589 return -RELAX_FIRST (fragp->fr_subtype);
252b5132 17590 }
4d7206a2
RS
17591 else
17592 return -RELAX_SECOND (fragp->fr_subtype);
252b5132
RH
17593}
17594
17595/* This is called to see whether a reloc against a defined symbol
de7e6852 17596 should be converted into a reloc against a section. */
252b5132
RH
17597
17598int
17a2f251 17599mips_fix_adjustable (fixS *fixp)
252b5132 17600{
252b5132
RH
17601 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17602 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17603 return 0;
a161fe53 17604
252b5132
RH
17605 if (fixp->fx_addsy == NULL)
17606 return 1;
a161fe53 17607
2f0c68f2
CM
17608 /* Allow relocs used for EH tables. */
17609 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17610 return 1;
17611
de7e6852
RS
17612 /* If symbol SYM is in a mergeable section, relocations of the form
17613 SYM + 0 can usually be made section-relative. The mergeable data
17614 is then identified by the section offset rather than by the symbol.
17615
17616 However, if we're generating REL LO16 relocations, the offset is split
17617 between the LO16 and parterning high part relocation. The linker will
17618 need to recalculate the complete offset in order to correctly identify
17619 the merge data.
17620
17621 The linker has traditionally not looked for the parterning high part
17622 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17623 placed anywhere. Rather than break backwards compatibility by changing
17624 this, it seems better not to force the issue, and instead keep the
17625 original symbol. This will work with either linker behavior. */
738e5348 17626 if ((lo16_reloc_p (fixp->fx_r_type)
704803a9 17627 || reloc_needs_lo_p (fixp->fx_r_type))
de7e6852
RS
17628 && HAVE_IN_PLACE_ADDENDS
17629 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17630 return 0;
17631
97f50151
MR
17632 /* There is no place to store an in-place offset for JALR relocations. */
17633 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17634 return 0;
17635
17636 /* Likewise an in-range offset of limited PC-relative relocations may
2de39019 17637 overflow the in-place relocatable field if recalculated against the
7361da2c
AB
17638 start address of the symbol's containing section.
17639
17640 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17641 section relative to allow linker relaxations to be performed later on. */
97f50151 17642 if (limited_pcrel_reloc_p (fixp->fx_r_type)
912815f0 17643 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
1180b5a4
RS
17644 return 0;
17645
b314ec0e
RS
17646 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17647 to a floating-point stub. The same is true for non-R_MIPS16_26
17648 relocations against MIPS16 functions; in this case, the stub becomes
17649 the function's canonical address.
17650
17651 Floating-point stubs are stored in unique .mips16.call.* or
17652 .mips16.fn.* sections. If a stub T for function F is in section S,
17653 the first relocation in section S must be against F; this is how the
17654 linker determines the target function. All relocations that might
17655 resolve to T must also be against F. We therefore have the following
17656 restrictions, which are given in an intentionally-redundant way:
17657
17658 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17659 symbols.
17660
17661 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17662 if that stub might be used.
17663
17664 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17665 symbols.
17666
17667 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17668 that stub might be used.
17669
17670 There is a further restriction:
17671
df58fc94 17672 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
0e9c5a5c 17673 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
c9775dde
MR
17674 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17675 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17676 against MIPS16 or microMIPS symbols because we need to keep the
17677 MIPS16 or microMIPS symbol for the purpose of mode mismatch
a6ebf616
MR
17678 detection and JAL or BAL to JALX instruction conversion in the
17679 linker.
b314ec0e 17680
df58fc94 17681 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
507dcb32 17682 against a MIPS16 symbol. We deal with (5) by additionally leaving
0e9c5a5c 17683 alone any jump and branch relocations against a microMIPS symbol.
b314ec0e
RS
17684
17685 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17686 relocation against some symbol R, no relocation against R may be
17687 reduced. (Note that this deals with (2) as well as (1) because
17688 relocations against global symbols will never be reduced on ELF
17689 targets.) This approach is a little simpler than trying to detect
17690 stub sections, and gives the "all or nothing" per-symbol consistency
17691 that we have for MIPS16 symbols. */
f3ded42a 17692 if (fixp->fx_subsy == NULL
30c09090 17693 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
44d3da23 17694 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
0e9c5a5c
MR
17695 && (jmp_reloc_p (fixp->fx_r_type)
17696 || b_reloc_p (fixp->fx_r_type)))
44d3da23 17697 || *symbol_get_tc (fixp->fx_addsy)))
252b5132 17698 return 0;
a161fe53 17699
252b5132
RH
17700 return 1;
17701}
17702
17703/* Translate internal representation of relocation info to BFD target
17704 format. */
17705
17706arelent **
17a2f251 17707tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
17708{
17709 static arelent *retval[4];
17710 arelent *reloc;
17711 bfd_reloc_code_real_type code;
17712
4b0cff4e 17713 memset (retval, 0, sizeof(retval));
325801bd
TS
17714 reloc = retval[0] = XCNEW (arelent);
17715 reloc->sym_ptr_ptr = XNEW (asymbol *);
49309057 17716 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
17717 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17718
bad36eac
DJ
17719 if (fixp->fx_pcrel)
17720 {
df58fc94 17721 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
c9775dde 17722 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
df58fc94
RS
17723 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17724 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6 17725 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
7361da2c
AB
17726 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17727 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17728 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17729 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17730 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17731 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17732 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
bad36eac
DJ
17733
17734 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17735 Relocations want only the symbol offset. */
51f6035b
MR
17736 switch (fixp->fx_r_type)
17737 {
17738 case BFD_RELOC_MIPS_18_PCREL_S3:
17739 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17740 break;
17741 default:
17742 reloc->addend = fixp->fx_addnumber + reloc->address;
17743 break;
17744 }
bad36eac 17745 }
17c6c9d9
MR
17746 else if (HAVE_IN_PLACE_ADDENDS
17747 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17748 && (read_compressed_insn (fixp->fx_frag->fr_literal
17749 + fixp->fx_where, 4) >> 26) == 0x3c)
17750 {
17751 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17752 addend accordingly. */
17753 reloc->addend = fixp->fx_addnumber >> 1;
17754 }
bad36eac
DJ
17755 else
17756 reloc->addend = fixp->fx_addnumber;
252b5132 17757
438c16b8
TS
17758 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17759 entry to be used in the relocation's section offset. */
17760 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
252b5132
RH
17761 {
17762 reloc->address = reloc->addend;
17763 reloc->addend = 0;
17764 }
17765
252b5132 17766 code = fixp->fx_r_type;
252b5132 17767
bad36eac 17768 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
252b5132
RH
17769 if (reloc->howto == NULL)
17770 {
17771 as_bad_where (fixp->fx_file, fixp->fx_line,
1661c76c
RS
17772 _("cannot represent %s relocation in this object file"
17773 " format"),
252b5132
RH
17774 bfd_get_reloc_code_name (code));
17775 retval[0] = NULL;
17776 }
17777
17778 return retval;
17779}
17780
17781/* Relax a machine dependent frag. This returns the amount by which
17782 the current size of the frag should change. */
17783
17784int
17a2f251 17785mips_relax_frag (asection *sec, fragS *fragp, long stretch)
252b5132 17786{
4a6a3df4
AO
17787 if (RELAX_BRANCH_P (fragp->fr_subtype))
17788 {
17789 offsetT old_var = fragp->fr_var;
b34976b6
AM
17790
17791 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
4a6a3df4
AO
17792
17793 return fragp->fr_var - old_var;
17794 }
17795
df58fc94
RS
17796 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17797 {
17798 offsetT old_var = fragp->fr_var;
17799 offsetT new_var = 4;
17800
17801 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17802 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17803 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17804 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17805 fragp->fr_var = new_var;
17806
17807 return new_var - old_var;
17808 }
17809
252b5132
RH
17810 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17811 return 0;
17812
88a7ef16 17813 if (mips16_extended_frag (fragp, sec, stretch))
252b5132
RH
17814 {
17815 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17816 return 0;
17817 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17818 return 2;
17819 }
17820 else
17821 {
17822 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17823 return 0;
17824 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17825 return -2;
17826 }
17827
17828 return 0;
17829}
17830
17831/* Convert a machine dependent frag. */
17832
17833void
17a2f251 17834md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
252b5132 17835{
4a6a3df4
AO
17836 if (RELAX_BRANCH_P (fragp->fr_subtype))
17837 {
4d68580a 17838 char *buf;
4a6a3df4
AO
17839 unsigned long insn;
17840 expressionS exp;
17841 fixS *fixp;
b34976b6 17842
4d68580a
RS
17843 buf = fragp->fr_literal + fragp->fr_fix;
17844 insn = read_insn (buf);
b34976b6 17845
4a6a3df4
AO
17846 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17847 {
17848 /* We generate a fixup instead of applying it right now
17849 because, if there are linker relaxations, we're going to
17850 need the relocations. */
17851 exp.X_op = O_symbol;
17852 exp.X_add_symbol = fragp->fr_symbol;
17853 exp.X_add_number = fragp->fr_offset;
17854
4d68580a
RS
17855 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17856 BFD_RELOC_16_PCREL_S2);
4a6a3df4
AO
17857 fixp->fx_file = fragp->fr_file;
17858 fixp->fx_line = fragp->fr_line;
b34976b6 17859
4d68580a 17860 buf = write_insn (buf, insn);
4a6a3df4
AO
17861 }
17862 else
17863 {
17864 int i;
17865
17866 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17867 _("relaxed out-of-range branch into a jump"));
4a6a3df4
AO
17868
17869 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17870 goto uncond;
17871
17872 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17873 {
17874 /* Reverse the branch. */
17875 switch ((insn >> 28) & 0xf)
17876 {
17877 case 4:
56d438b1
CF
17878 if ((insn & 0xff000000) == 0x47000000
17879 || (insn & 0xff600000) == 0x45600000)
17880 {
17881 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17882 reversed by tweaking bit 23. */
17883 insn ^= 0x00800000;
17884 }
17885 else
17886 {
17887 /* bc[0-3][tf]l? instructions can have the condition
17888 reversed by tweaking a single TF bit, and their
17889 opcodes all have 0x4???????. */
17890 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17891 insn ^= 0x00010000;
17892 }
4a6a3df4
AO
17893 break;
17894
17895 case 0:
17896 /* bltz 0x04000000 bgez 0x04010000
54f4ddb3 17897 bltzal 0x04100000 bgezal 0x04110000 */
9c2799c2 17898 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
4a6a3df4
AO
17899 insn ^= 0x00010000;
17900 break;
b34976b6 17901
4a6a3df4
AO
17902 case 1:
17903 /* beq 0x10000000 bne 0x14000000
54f4ddb3 17904 blez 0x18000000 bgtz 0x1c000000 */
4a6a3df4
AO
17905 insn ^= 0x04000000;
17906 break;
17907
17908 default:
17909 abort ();
17910 }
17911 }
17912
17913 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17914 {
17915 /* Clear the and-link bit. */
9c2799c2 17916 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
4a6a3df4 17917
54f4ddb3
TS
17918 /* bltzal 0x04100000 bgezal 0x04110000
17919 bltzall 0x04120000 bgezall 0x04130000 */
4a6a3df4
AO
17920 insn &= ~0x00100000;
17921 }
17922
17923 /* Branch over the branch (if the branch was likely) or the
17924 full jump (not likely case). Compute the offset from the
17925 current instruction to branch to. */
17926 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17927 i = 16;
17928 else
17929 {
17930 /* How many bytes in instructions we've already emitted? */
4d68580a 17931 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17932 /* How many bytes in instructions from here to the end? */
17933 i = fragp->fr_var - i;
17934 }
17935 /* Convert to instruction count. */
17936 i >>= 2;
17937 /* Branch counts from the next instruction. */
b34976b6 17938 i--;
4a6a3df4
AO
17939 insn |= i;
17940 /* Branch over the jump. */
4d68580a 17941 buf = write_insn (buf, insn);
4a6a3df4 17942
54f4ddb3 17943 /* nop */
4d68580a 17944 buf = write_insn (buf, 0);
4a6a3df4
AO
17945
17946 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17947 {
17948 /* beql $0, $0, 2f */
17949 insn = 0x50000000;
17950 /* Compute the PC offset from the current instruction to
17951 the end of the variable frag. */
17952 /* How many bytes in instructions we've already emitted? */
4d68580a 17953 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17954 /* How many bytes in instructions from here to the end? */
17955 i = fragp->fr_var - i;
17956 /* Convert to instruction count. */
17957 i >>= 2;
17958 /* Don't decrement i, because we want to branch over the
17959 delay slot. */
4a6a3df4 17960 insn |= i;
4a6a3df4 17961
4d68580a
RS
17962 buf = write_insn (buf, insn);
17963 buf = write_insn (buf, 0);
4a6a3df4
AO
17964 }
17965
17966 uncond:
17967 if (mips_pic == NO_PIC)
17968 {
17969 /* j or jal. */
17970 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17971 ? 0x0c000000 : 0x08000000);
17972 exp.X_op = O_symbol;
17973 exp.X_add_symbol = fragp->fr_symbol;
17974 exp.X_add_number = fragp->fr_offset;
17975
4d68580a
RS
17976 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17977 FALSE, BFD_RELOC_MIPS_JMP);
4a6a3df4
AO
17978 fixp->fx_file = fragp->fr_file;
17979 fixp->fx_line = fragp->fr_line;
17980
4d68580a 17981 buf = write_insn (buf, insn);
4a6a3df4
AO
17982 }
17983 else
17984 {
66b3e8da
MR
17985 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17986
4a6a3df4 17987 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
66b3e8da
MR
17988 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17989 insn |= at << OP_SH_RT;
4a6a3df4
AO
17990 exp.X_op = O_symbol;
17991 exp.X_add_symbol = fragp->fr_symbol;
17992 exp.X_add_number = fragp->fr_offset;
17993
17994 if (fragp->fr_offset)
17995 {
17996 exp.X_add_symbol = make_expr_symbol (&exp);
17997 exp.X_add_number = 0;
17998 }
17999
4d68580a
RS
18000 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18001 FALSE, BFD_RELOC_MIPS_GOT16);
4a6a3df4
AO
18002 fixp->fx_file = fragp->fr_file;
18003 fixp->fx_line = fragp->fr_line;
18004
4d68580a 18005 buf = write_insn (buf, insn);
b34976b6 18006
4a6a3df4 18007 if (mips_opts.isa == ISA_MIPS1)
4d68580a
RS
18008 /* nop */
18009 buf = write_insn (buf, 0);
4a6a3df4
AO
18010
18011 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
66b3e8da
MR
18012 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18013 insn |= at << OP_SH_RS | at << OP_SH_RT;
4a6a3df4 18014
4d68580a
RS
18015 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18016 FALSE, BFD_RELOC_LO16);
4a6a3df4
AO
18017 fixp->fx_file = fragp->fr_file;
18018 fixp->fx_line = fragp->fr_line;
b34976b6 18019
4d68580a 18020 buf = write_insn (buf, insn);
4a6a3df4
AO
18021
18022 /* j(al)r $at. */
18023 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
66b3e8da 18024 insn = 0x0000f809;
4a6a3df4 18025 else
66b3e8da
MR
18026 insn = 0x00000008;
18027 insn |= at << OP_SH_RS;
4a6a3df4 18028
4d68580a 18029 buf = write_insn (buf, insn);
4a6a3df4
AO
18030 }
18031 }
18032
4a6a3df4 18033 fragp->fr_fix += fragp->fr_var;
4d68580a 18034 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
4a6a3df4
AO
18035 return;
18036 }
18037
df58fc94
RS
18038 /* Relax microMIPS branches. */
18039 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18040 {
4d68580a 18041 char *buf = fragp->fr_literal + fragp->fr_fix;
df58fc94 18042 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
8484fb75 18043 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
7bd374a4 18044 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
df58fc94
RS
18045 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18046 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
2309ddf2 18047 bfd_boolean short_ds;
df58fc94
RS
18048 unsigned long insn;
18049 expressionS exp;
18050 fixS *fixp;
18051
18052 exp.X_op = O_symbol;
18053 exp.X_add_symbol = fragp->fr_symbol;
18054 exp.X_add_number = fragp->fr_offset;
18055
18056 fragp->fr_fix += fragp->fr_var;
18057
18058 /* Handle 16-bit branches that fit or are forced to fit. */
18059 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18060 {
18061 /* We generate a fixup instead of applying it right now,
18062 because if there is linker relaxation, we're going to
18063 need the relocations. */
18064 if (type == 'D')
4d68580a 18065 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
18066 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18067 else if (type == 'E')
4d68580a 18068 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
18069 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18070 else
18071 abort ();
18072
18073 fixp->fx_file = fragp->fr_file;
18074 fixp->fx_line = fragp->fr_line;
18075
18076 /* These relocations can have an addend that won't fit in
18077 2 octets. */
18078 fixp->fx_no_overflow = 1;
18079
18080 return;
18081 }
18082
2309ddf2 18083 /* Handle 32-bit branches that fit or are forced to fit. */
df58fc94
RS
18084 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18085 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18086 {
18087 /* We generate a fixup instead of applying it right now,
18088 because if there is linker relaxation, we're going to
18089 need the relocations. */
4d68580a
RS
18090 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18091 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
18092 fixp->fx_file = fragp->fr_file;
18093 fixp->fx_line = fragp->fr_line;
18094
18095 if (type == 0)
7bd374a4
MR
18096 {
18097 insn = read_compressed_insn (buf, 4);
18098 buf += 4;
18099
18100 if (nods)
18101 {
18102 /* Check the short-delay-slot bit. */
18103 if (!al || (insn & 0x02000000) != 0)
18104 buf = write_compressed_insn (buf, 0x0c00, 2);
18105 else
18106 buf = write_compressed_insn (buf, 0x00000000, 4);
18107 }
18108
18109 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18110 return;
18111 }
df58fc94
RS
18112 }
18113
18114 /* Relax 16-bit branches to 32-bit branches. */
18115 if (type != 0)
18116 {
4d68580a 18117 insn = read_compressed_insn (buf, 2);
df58fc94
RS
18118
18119 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18120 insn = 0x94000000; /* beq */
18121 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18122 {
18123 unsigned long regno;
18124
18125 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18126 regno = micromips_to_32_reg_d_map [regno];
18127 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18128 insn |= regno << MICROMIPSOP_SH_RS;
18129 }
18130 else
18131 abort ();
18132
18133 /* Nothing else to do, just write it out. */
18134 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18135 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18136 {
4d68580a 18137 buf = write_compressed_insn (buf, insn, 4);
7bd374a4
MR
18138 if (nods)
18139 buf = write_compressed_insn (buf, 0x0c00, 2);
4d68580a 18140 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
18141 return;
18142 }
18143 }
18144 else
4d68580a 18145 insn = read_compressed_insn (buf, 4);
df58fc94
RS
18146
18147 /* Relax 32-bit branches to a sequence of instructions. */
18148 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 18149 _("relaxed out-of-range branch into a jump"));
df58fc94 18150
2309ddf2 18151 /* Set the short-delay-slot bit. */
7bd374a4 18152 short_ds = !al || (insn & 0x02000000) != 0;
df58fc94
RS
18153
18154 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18155 {
18156 symbolS *l;
18157
18158 /* Reverse the branch. */
18159 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18160 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18161 insn ^= 0x20000000;
18162 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18163 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18164 || (insn & 0xffe00000) == 0x40800000 /* blez */
18165 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18166 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18167 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18168 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18169 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18170 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18171 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18172 insn ^= 0x00400000;
18173 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18174 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18175 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18176 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18177 insn ^= 0x00200000;
56d438b1
CF
18178 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18179 BNZ.df */
18180 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18181 BNZ.V */
18182 insn ^= 0x00800000;
df58fc94
RS
18183 else
18184 abort ();
18185
18186 if (al)
18187 {
18188 /* Clear the and-link and short-delay-slot bits. */
18189 gas_assert ((insn & 0xfda00000) == 0x40200000);
18190
18191 /* bltzal 0x40200000 bgezal 0x40600000 */
18192 /* bltzals 0x42200000 bgezals 0x42600000 */
18193 insn &= ~0x02200000;
18194 }
18195
18196 /* Make a label at the end for use with the branch. */
18197 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18198 micromips_label_inc ();
f3ded42a 18199 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
df58fc94
RS
18200
18201 /* Refer to it. */
4d68580a
RS
18202 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18203 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
18204 fixp->fx_file = fragp->fr_file;
18205 fixp->fx_line = fragp->fr_line;
18206
18207 /* Branch over the jump. */
4d68580a 18208 buf = write_compressed_insn (buf, insn, 4);
8484fb75 18209
df58fc94 18210 if (!compact)
8484fb75
MR
18211 {
18212 /* nop */
18213 if (insn32)
18214 buf = write_compressed_insn (buf, 0x00000000, 4);
18215 else
18216 buf = write_compressed_insn (buf, 0x0c00, 2);
18217 }
df58fc94
RS
18218 }
18219
18220 if (mips_pic == NO_PIC)
18221 {
7bd374a4
MR
18222 unsigned long jal = (short_ds || nods
18223 ? 0x74000000 : 0xf4000000); /* jal/s */
2309ddf2 18224
df58fc94
RS
18225 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18226 insn = al ? jal : 0xd4000000;
18227
4d68580a
RS
18228 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18229 BFD_RELOC_MICROMIPS_JMP);
df58fc94
RS
18230 fixp->fx_file = fragp->fr_file;
18231 fixp->fx_line = fragp->fr_line;
18232
4d68580a 18233 buf = write_compressed_insn (buf, insn, 4);
8484fb75 18234
7bd374a4 18235 if (compact || nods)
8484fb75
MR
18236 {
18237 /* nop */
18238 if (insn32)
18239 buf = write_compressed_insn (buf, 0x00000000, 4);
18240 else
18241 buf = write_compressed_insn (buf, 0x0c00, 2);
18242 }
df58fc94
RS
18243 }
18244 else
18245 {
18246 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18247
18248 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18249 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18250 insn |= at << MICROMIPSOP_SH_RT;
18251
18252 if (exp.X_add_number)
18253 {
18254 exp.X_add_symbol = make_expr_symbol (&exp);
18255 exp.X_add_number = 0;
18256 }
18257
4d68580a
RS
18258 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18259 BFD_RELOC_MICROMIPS_GOT16);
df58fc94
RS
18260 fixp->fx_file = fragp->fr_file;
18261 fixp->fx_line = fragp->fr_line;
18262
4d68580a 18263 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
18264
18265 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18266 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18267 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18268
4d68580a
RS
18269 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18270 BFD_RELOC_MICROMIPS_LO16);
df58fc94
RS
18271 fixp->fx_file = fragp->fr_file;
18272 fixp->fx_line = fragp->fr_line;
18273
4d68580a 18274 buf = write_compressed_insn (buf, insn, 4);
df58fc94 18275
8484fb75
MR
18276 if (insn32)
18277 {
18278 /* jr/jalr $at */
18279 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18280 insn |= at << MICROMIPSOP_SH_RS;
18281
18282 buf = write_compressed_insn (buf, insn, 4);
df58fc94 18283
7bd374a4 18284 if (compact || nods)
8484fb75
MR
18285 /* nop */
18286 buf = write_compressed_insn (buf, 0x00000000, 4);
18287 }
18288 else
18289 {
18290 /* jr/jrc/jalr/jalrs $at */
18291 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
7bd374a4 18292 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
8484fb75
MR
18293
18294 insn = al ? jalr : jr;
18295 insn |= at << MICROMIPSOP_SH_MJ;
18296
18297 buf = write_compressed_insn (buf, insn, 2);
7bd374a4
MR
18298 if (al && nods)
18299 {
18300 /* nop */
18301 if (short_ds)
18302 buf = write_compressed_insn (buf, 0x0c00, 2);
18303 else
18304 buf = write_compressed_insn (buf, 0x00000000, 4);
18305 }
8484fb75 18306 }
df58fc94
RS
18307 }
18308
4d68580a 18309 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
18310 return;
18311 }
18312
252b5132
RH
18313 if (RELAX_MIPS16_P (fragp->fr_subtype))
18314 {
18315 int type;
3ccad066 18316 const struct mips_int_operand *operand;
252b5132 18317 offsetT val;
5c04167a
RS
18318 char *buf;
18319 unsigned int user_length, length;
9d862524 18320 bfd_boolean need_reloc;
252b5132 18321 unsigned long insn;
5c04167a 18322 bfd_boolean ext;
88a7ef16 18323 segT symsec;
252b5132
RH
18324
18325 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 18326 operand = mips16_immed_operand (type, FALSE);
252b5132 18327
5c04167a 18328 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
88a7ef16 18329 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
9d862524
MR
18330
18331 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18332 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18333 || (operand->root.type == OP_PCREL
18334 ? asec != symsec
18335 : !bfd_is_abs_section (symsec)));
18336
3ccad066 18337 if (operand->root.type == OP_PCREL)
252b5132 18338 {
3ccad066 18339 const struct mips_pcrel_operand *pcrel_op;
252b5132
RH
18340 addressT addr;
18341
3ccad066 18342 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
18343 addr = fragp->fr_address + fragp->fr_fix;
18344
18345 /* The rules for the base address of a PC relative reloc are
18346 complicated; see mips16_extended_frag. */
3ccad066 18347 if (pcrel_op->include_isa_bit)
252b5132 18348 {
9d862524
MR
18349 if (!need_reloc)
18350 {
18351 if (!ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18352 as_bad_where (fragp->fr_file, fragp->fr_line,
18353 _("branch to a symbol in another ISA mode"));
18354 else if ((fragp->fr_offset & 0x1) != 0)
18355 as_bad_where (fragp->fr_file, fragp->fr_line,
18356 _("branch to misaligned address (0x%lx)"),
18357 (long) val);
18358 }
252b5132
RH
18359 addr += 2;
18360 if (ext)
18361 addr += 2;
18362 /* Ignore the low bit in the target, since it will be
18363 set for a text label. */
3ccad066 18364 val &= -2;
252b5132
RH
18365 }
18366 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
18367 addr -= 4;
18368 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18369 addr -= 2;
18370
3ccad066 18371 addr &= -(1 << pcrel_op->align_log2);
252b5132
RH
18372 val -= addr;
18373
18374 /* Make sure the section winds up with the alignment we have
18375 assumed. */
3ccad066
RS
18376 if (operand->shift > 0)
18377 record_alignment (asec, operand->shift);
252b5132
RH
18378 }
18379
18380 if (ext
18381 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18382 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18383 as_warn_where (fragp->fr_file, fragp->fr_line,
18384 _("extended instruction in delay slot"));
18385
5c04167a 18386 buf = fragp->fr_literal + fragp->fr_fix;
252b5132 18387
4d68580a 18388 insn = read_compressed_insn (buf, 2);
5c04167a
RS
18389 if (ext)
18390 insn |= MIPS16_EXTEND;
252b5132 18391
5c04167a
RS
18392 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18393 user_length = 4;
18394 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18395 user_length = 2;
18396 else
18397 user_length = 0;
18398
9d862524 18399 if (need_reloc)
c9775dde
MR
18400 {
18401 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18402 expressionS exp;
18403 fixS *fixp;
18404
18405 switch (type)
18406 {
18407 case 'p':
18408 case 'q':
18409 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18410 break;
18411 default:
18412 as_bad_where (fragp->fr_file, fragp->fr_line,
18413 _("unsupported relocation"));
18414 break;
18415 }
eefc3365
MR
18416 if (reloc == BFD_RELOC_NONE)
18417 ;
18418 else if (ext)
c9775dde 18419 {
c9775dde
MR
18420 exp.X_op = O_symbol;
18421 exp.X_add_symbol = fragp->fr_symbol;
18422 exp.X_add_number = fragp->fr_offset;
18423
18424 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp,
18425 TRUE, reloc);
18426
18427 fixp->fx_file = fragp->fr_file;
18428 fixp->fx_line = fragp->fr_line;
18429
18430 /* These relocations can have an addend that won't fit
18431 in 2 octets. */
18432 fixp->fx_no_overflow = 1;
18433 }
eefc3365
MR
18434 else
18435 as_bad_where (fragp->fr_file, fragp->fr_line,
18436 _("invalid unextended operand value"));
c9775dde 18437 }
88a7ef16
MR
18438 else
18439 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18440 BFD_RELOC_UNUSED, val, user_length, &insn);
252b5132 18441
5c04167a
RS
18442 length = (ext ? 4 : 2);
18443 gas_assert (mips16_opcode_length (insn) == length);
18444 write_compressed_insn (buf, insn, length);
18445 fragp->fr_fix += length;
252b5132
RH
18446 }
18447 else
18448 {
df58fc94
RS
18449 relax_substateT subtype = fragp->fr_subtype;
18450 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18451 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
4d7206a2
RS
18452 int first, second;
18453 fixS *fixp;
252b5132 18454
df58fc94
RS
18455 first = RELAX_FIRST (subtype);
18456 second = RELAX_SECOND (subtype);
4d7206a2 18457 fixp = (fixS *) fragp->fr_opcode;
252b5132 18458
df58fc94
RS
18459 /* If the delay slot chosen does not match the size of the instruction,
18460 then emit a warning. */
18461 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18462 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18463 {
18464 relax_substateT s;
18465 const char *msg;
18466
18467 s = subtype & (RELAX_DELAY_SLOT_16BIT
18468 | RELAX_DELAY_SLOT_SIZE_FIRST
18469 | RELAX_DELAY_SLOT_SIZE_SECOND);
18470 msg = macro_warning (s);
18471 if (msg != NULL)
db9b2be4 18472 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94
RS
18473 subtype &= ~s;
18474 }
18475
584892a6 18476 /* Possibly emit a warning if we've chosen the longer option. */
df58fc94 18477 if (use_second == second_longer)
584892a6 18478 {
df58fc94
RS
18479 relax_substateT s;
18480 const char *msg;
18481
18482 s = (subtype
18483 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18484 msg = macro_warning (s);
18485 if (msg != NULL)
db9b2be4 18486 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94 18487 subtype &= ~s;
584892a6
RS
18488 }
18489
4d7206a2
RS
18490 /* Go through all the fixups for the first sequence. Disable them
18491 (by marking them as done) if we're going to use the second
18492 sequence instead. */
18493 while (fixp
18494 && fixp->fx_frag == fragp
18495 && fixp->fx_where < fragp->fr_fix - second)
18496 {
df58fc94 18497 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18498 fixp->fx_done = 1;
18499 fixp = fixp->fx_next;
18500 }
252b5132 18501
4d7206a2
RS
18502 /* Go through the fixups for the second sequence. Disable them if
18503 we're going to use the first sequence, otherwise adjust their
18504 addresses to account for the relaxation. */
18505 while (fixp && fixp->fx_frag == fragp)
18506 {
df58fc94 18507 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18508 fixp->fx_where -= first;
18509 else
18510 fixp->fx_done = 1;
18511 fixp = fixp->fx_next;
18512 }
18513
18514 /* Now modify the frag contents. */
df58fc94 18515 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18516 {
18517 char *start;
18518
18519 start = fragp->fr_literal + fragp->fr_fix - first - second;
18520 memmove (start, start + first, second);
18521 fragp->fr_fix -= first;
18522 }
18523 else
18524 fragp->fr_fix -= second;
252b5132
RH
18525 }
18526}
18527
252b5132
RH
18528/* This function is called after the relocs have been generated.
18529 We've been storing mips16 text labels as odd. Here we convert them
18530 back to even for the convenience of the debugger. */
18531
18532void
17a2f251 18533mips_frob_file_after_relocs (void)
252b5132
RH
18534{
18535 asymbol **syms;
18536 unsigned int count, i;
18537
252b5132
RH
18538 syms = bfd_get_outsymbols (stdoutput);
18539 count = bfd_get_symcount (stdoutput);
18540 for (i = 0; i < count; i++, syms++)
df58fc94
RS
18541 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18542 && ((*syms)->value & 1) != 0)
18543 {
18544 (*syms)->value &= ~1;
18545 /* If the symbol has an odd size, it was probably computed
18546 incorrectly, so adjust that as well. */
18547 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18548 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18549 }
252b5132
RH
18550}
18551
a1facbec
MR
18552/* This function is called whenever a label is defined, including fake
18553 labels instantiated off the dot special symbol. It is used when
18554 handling branch delays; if a branch has a label, we assume we cannot
18555 move it. This also bumps the value of the symbol by 1 in compressed
18556 code. */
252b5132 18557
e1b47bd5 18558static void
a1facbec 18559mips_record_label (symbolS *sym)
252b5132 18560{
a8dbcb85 18561 segment_info_type *si = seg_info (now_seg);
252b5132
RH
18562 struct insn_label_list *l;
18563
18564 if (free_insn_labels == NULL)
325801bd 18565 l = XNEW (struct insn_label_list);
252b5132
RH
18566 else
18567 {
18568 l = free_insn_labels;
18569 free_insn_labels = l->next;
18570 }
18571
18572 l->label = sym;
a8dbcb85
TS
18573 l->next = si->label_list;
18574 si->label_list = l;
a1facbec 18575}
07a53e5c 18576
a1facbec
MR
18577/* This function is called as tc_frob_label() whenever a label is defined
18578 and adds a DWARF-2 record we only want for true labels. */
18579
18580void
18581mips_define_label (symbolS *sym)
18582{
18583 mips_record_label (sym);
07a53e5c 18584 dwarf2_emit_label (sym);
252b5132 18585}
e1b47bd5
RS
18586
18587/* This function is called by tc_new_dot_label whenever a new dot symbol
18588 is defined. */
18589
18590void
18591mips_add_dot_label (symbolS *sym)
18592{
18593 mips_record_label (sym);
18594 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18595 mips_compressed_mark_label (sym);
18596}
252b5132 18597\f
351cdf24
MF
18598/* Converting ASE flags from internal to .MIPS.abiflags values. */
18599static unsigned int
18600mips_convert_ase_flags (int ase)
18601{
18602 unsigned int ext_ases = 0;
18603
18604 if (ase & ASE_DSP)
18605 ext_ases |= AFL_ASE_DSP;
18606 if (ase & ASE_DSPR2)
18607 ext_ases |= AFL_ASE_DSPR2;
8f4f9071
MF
18608 if (ase & ASE_DSPR3)
18609 ext_ases |= AFL_ASE_DSPR3;
351cdf24
MF
18610 if (ase & ASE_EVA)
18611 ext_ases |= AFL_ASE_EVA;
18612 if (ase & ASE_MCU)
18613 ext_ases |= AFL_ASE_MCU;
18614 if (ase & ASE_MDMX)
18615 ext_ases |= AFL_ASE_MDMX;
18616 if (ase & ASE_MIPS3D)
18617 ext_ases |= AFL_ASE_MIPS3D;
18618 if (ase & ASE_MT)
18619 ext_ases |= AFL_ASE_MT;
18620 if (ase & ASE_SMARTMIPS)
18621 ext_ases |= AFL_ASE_SMARTMIPS;
18622 if (ase & ASE_VIRT)
18623 ext_ases |= AFL_ASE_VIRT;
18624 if (ase & ASE_MSA)
18625 ext_ases |= AFL_ASE_MSA;
18626 if (ase & ASE_XPA)
18627 ext_ases |= AFL_ASE_XPA;
18628
18629 return ext_ases;
18630}
252b5132
RH
18631/* Some special processing for a MIPS ELF file. */
18632
18633void
17a2f251 18634mips_elf_final_processing (void)
252b5132 18635{
351cdf24
MF
18636 int fpabi;
18637 Elf_Internal_ABIFlags_v0 flags;
18638
18639 flags.version = 0;
18640 flags.isa_rev = 0;
18641 switch (file_mips_opts.isa)
18642 {
18643 case INSN_ISA1:
18644 flags.isa_level = 1;
18645 break;
18646 case INSN_ISA2:
18647 flags.isa_level = 2;
18648 break;
18649 case INSN_ISA3:
18650 flags.isa_level = 3;
18651 break;
18652 case INSN_ISA4:
18653 flags.isa_level = 4;
18654 break;
18655 case INSN_ISA5:
18656 flags.isa_level = 5;
18657 break;
18658 case INSN_ISA32:
18659 flags.isa_level = 32;
18660 flags.isa_rev = 1;
18661 break;
18662 case INSN_ISA32R2:
18663 flags.isa_level = 32;
18664 flags.isa_rev = 2;
18665 break;
18666 case INSN_ISA32R3:
18667 flags.isa_level = 32;
18668 flags.isa_rev = 3;
18669 break;
18670 case INSN_ISA32R5:
18671 flags.isa_level = 32;
18672 flags.isa_rev = 5;
18673 break;
09c14161
MF
18674 case INSN_ISA32R6:
18675 flags.isa_level = 32;
18676 flags.isa_rev = 6;
18677 break;
351cdf24
MF
18678 case INSN_ISA64:
18679 flags.isa_level = 64;
18680 flags.isa_rev = 1;
18681 break;
18682 case INSN_ISA64R2:
18683 flags.isa_level = 64;
18684 flags.isa_rev = 2;
18685 break;
18686 case INSN_ISA64R3:
18687 flags.isa_level = 64;
18688 flags.isa_rev = 3;
18689 break;
18690 case INSN_ISA64R5:
18691 flags.isa_level = 64;
18692 flags.isa_rev = 5;
18693 break;
09c14161
MF
18694 case INSN_ISA64R6:
18695 flags.isa_level = 64;
18696 flags.isa_rev = 6;
18697 break;
351cdf24
MF
18698 }
18699
18700 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18701 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18702 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18703 : (file_mips_opts.fp == 64) ? AFL_REG_64
18704 : AFL_REG_32;
18705 flags.cpr2_size = AFL_REG_NONE;
18706 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18707 Tag_GNU_MIPS_ABI_FP);
18708 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18709 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18710 if (file_ase_mips16)
18711 flags.ases |= AFL_ASE_MIPS16;
18712 if (file_ase_micromips)
18713 flags.ases |= AFL_ASE_MICROMIPS;
18714 flags.flags1 = 0;
18715 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18716 || file_mips_opts.fp == 64)
18717 && file_mips_opts.oddspreg)
18718 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18719 flags.flags2 = 0;
18720
18721 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18722 ((Elf_External_ABIFlags_v0 *)
18723 mips_flags_frag));
18724
252b5132 18725 /* Write out the register information. */
316f5878 18726 if (mips_abi != N64_ABI)
252b5132
RH
18727 {
18728 Elf32_RegInfo s;
18729
18730 s.ri_gprmask = mips_gprmask;
18731 s.ri_cprmask[0] = mips_cprmask[0];
18732 s.ri_cprmask[1] = mips_cprmask[1];
18733 s.ri_cprmask[2] = mips_cprmask[2];
18734 s.ri_cprmask[3] = mips_cprmask[3];
18735 /* The gp_value field is set by the MIPS ELF backend. */
18736
18737 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18738 ((Elf32_External_RegInfo *)
18739 mips_regmask_frag));
18740 }
18741 else
18742 {
18743 Elf64_Internal_RegInfo s;
18744
18745 s.ri_gprmask = mips_gprmask;
18746 s.ri_pad = 0;
18747 s.ri_cprmask[0] = mips_cprmask[0];
18748 s.ri_cprmask[1] = mips_cprmask[1];
18749 s.ri_cprmask[2] = mips_cprmask[2];
18750 s.ri_cprmask[3] = mips_cprmask[3];
18751 /* The gp_value field is set by the MIPS ELF backend. */
18752
18753 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18754 ((Elf64_External_RegInfo *)
18755 mips_regmask_frag));
18756 }
18757
18758 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18759 sort of BFD interface for this. */
18760 if (mips_any_noreorder)
18761 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18762 if (mips_pic != NO_PIC)
143d77c5 18763 {
8b828383 18764 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
143d77c5
EC
18765 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18766 }
18767 if (mips_abicalls)
18768 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
252b5132 18769
b015e599
AP
18770 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18771 defined at present; this might need to change in future. */
a4672219
TS
18772 if (file_ase_mips16)
18773 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
df58fc94
RS
18774 if (file_ase_micromips)
18775 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
919731af 18776 if (file_mips_opts.ase & ASE_MDMX)
deec1734 18777 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
1f25f5d3 18778
bdaaa2e1 18779 /* Set the MIPS ELF ABI flags. */
316f5878 18780 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
252b5132 18781 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
316f5878 18782 else if (mips_abi == O64_ABI)
252b5132 18783 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
316f5878 18784 else if (mips_abi == EABI_ABI)
252b5132 18785 {
bad1aba3 18786 if (file_mips_opts.gp == 64)
252b5132
RH
18787 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18788 else
18789 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18790 }
316f5878 18791 else if (mips_abi == N32_ABI)
be00bddd
TS
18792 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18793
c9914766 18794 /* Nothing to do for N64_ABI. */
252b5132
RH
18795
18796 if (mips_32bitmode)
18797 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
ad3fea08 18798
7361da2c 18799 if (mips_nan2008 == 1)
ba92f887
MR
18800 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18801
ad3fea08 18802 /* 32 bit code with 64 bit FP registers. */
351cdf24
MF
18803 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18804 Tag_GNU_MIPS_ABI_FP);
18805 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
f1c38003 18806 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
252b5132 18807}
252b5132 18808\f
beae10d5 18809typedef struct proc {
9b2f1d35
EC
18810 symbolS *func_sym;
18811 symbolS *func_end_sym;
beae10d5
KH
18812 unsigned long reg_mask;
18813 unsigned long reg_offset;
18814 unsigned long fpreg_mask;
18815 unsigned long fpreg_offset;
18816 unsigned long frame_offset;
18817 unsigned long frame_reg;
18818 unsigned long pc_reg;
18819} procS;
252b5132
RH
18820
18821static procS cur_proc;
18822static procS *cur_proc_ptr;
18823static int numprocs;
18824
df58fc94
RS
18825/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18826 as "2", and a normal nop as "0". */
18827
18828#define NOP_OPCODE_MIPS 0
18829#define NOP_OPCODE_MIPS16 1
18830#define NOP_OPCODE_MICROMIPS 2
742a56fe
RS
18831
18832char
18833mips_nop_opcode (void)
18834{
df58fc94
RS
18835 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18836 return NOP_OPCODE_MICROMIPS;
18837 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18838 return NOP_OPCODE_MIPS16;
18839 else
18840 return NOP_OPCODE_MIPS;
742a56fe
RS
18841}
18842
df58fc94
RS
18843/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18844 32-bit microMIPS NOPs here (if applicable). */
a19d8eb0 18845
0a9ef439 18846void
17a2f251 18847mips_handle_align (fragS *fragp)
a19d8eb0 18848{
df58fc94 18849 char nop_opcode;
742a56fe 18850 char *p;
c67a084a
NC
18851 int bytes, size, excess;
18852 valueT opcode;
742a56fe 18853
0a9ef439
RH
18854 if (fragp->fr_type != rs_align_code)
18855 return;
18856
742a56fe 18857 p = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
18858 nop_opcode = *p;
18859 switch (nop_opcode)
a19d8eb0 18860 {
df58fc94
RS
18861 case NOP_OPCODE_MICROMIPS:
18862 opcode = micromips_nop32_insn.insn_opcode;
18863 size = 4;
18864 break;
18865 case NOP_OPCODE_MIPS16:
c67a084a
NC
18866 opcode = mips16_nop_insn.insn_opcode;
18867 size = 2;
df58fc94
RS
18868 break;
18869 case NOP_OPCODE_MIPS:
18870 default:
c67a084a
NC
18871 opcode = nop_insn.insn_opcode;
18872 size = 4;
df58fc94 18873 break;
c67a084a 18874 }
a19d8eb0 18875
c67a084a
NC
18876 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18877 excess = bytes % size;
df58fc94
RS
18878
18879 /* Handle the leading part if we're not inserting a whole number of
18880 instructions, and make it the end of the fixed part of the frag.
18881 Try to fit in a short microMIPS NOP if applicable and possible,
18882 and use zeroes otherwise. */
18883 gas_assert (excess < 4);
18884 fragp->fr_fix += excess;
18885 switch (excess)
c67a084a 18886 {
df58fc94
RS
18887 case 3:
18888 *p++ = '\0';
18889 /* Fall through. */
18890 case 2:
833794fc 18891 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
df58fc94 18892 {
4d68580a 18893 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
df58fc94
RS
18894 break;
18895 }
18896 *p++ = '\0';
18897 /* Fall through. */
18898 case 1:
18899 *p++ = '\0';
18900 /* Fall through. */
18901 case 0:
18902 break;
a19d8eb0 18903 }
c67a084a
NC
18904
18905 md_number_to_chars (p, opcode, size);
18906 fragp->fr_var = size;
a19d8eb0
CP
18907}
18908
252b5132 18909static long
17a2f251 18910get_number (void)
252b5132
RH
18911{
18912 int negative = 0;
18913 long val = 0;
18914
18915 if (*input_line_pointer == '-')
18916 {
18917 ++input_line_pointer;
18918 negative = 1;
18919 }
3882b010 18920 if (!ISDIGIT (*input_line_pointer))
956cd1d6 18921 as_bad (_("expected simple number"));
252b5132
RH
18922 if (input_line_pointer[0] == '0')
18923 {
18924 if (input_line_pointer[1] == 'x')
18925 {
18926 input_line_pointer += 2;
3882b010 18927 while (ISXDIGIT (*input_line_pointer))
252b5132
RH
18928 {
18929 val <<= 4;
18930 val |= hex_value (*input_line_pointer++);
18931 }
18932 return negative ? -val : val;
18933 }
18934 else
18935 {
18936 ++input_line_pointer;
3882b010 18937 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18938 {
18939 val <<= 3;
18940 val |= *input_line_pointer++ - '0';
18941 }
18942 return negative ? -val : val;
18943 }
18944 }
3882b010 18945 if (!ISDIGIT (*input_line_pointer))
252b5132
RH
18946 {
18947 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18948 *input_line_pointer, *input_line_pointer);
956cd1d6 18949 as_warn (_("invalid number"));
252b5132
RH
18950 return -1;
18951 }
3882b010 18952 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18953 {
18954 val *= 10;
18955 val += *input_line_pointer++ - '0';
18956 }
18957 return negative ? -val : val;
18958}
18959
18960/* The .file directive; just like the usual .file directive, but there
c5dd6aab
DJ
18961 is an initial number which is the ECOFF file index. In the non-ECOFF
18962 case .file implies DWARF-2. */
18963
18964static void
17a2f251 18965s_mips_file (int x ATTRIBUTE_UNUSED)
c5dd6aab 18966{
ecb4347a
DJ
18967 static int first_file_directive = 0;
18968
c5dd6aab
DJ
18969 if (ECOFF_DEBUGGING)
18970 {
18971 get_number ();
18972 s_app_file (0);
18973 }
18974 else
ecb4347a
DJ
18975 {
18976 char *filename;
18977
18978 filename = dwarf2_directive_file (0);
18979
18980 /* Versions of GCC up to 3.1 start files with a ".file"
18981 directive even for stabs output. Make sure that this
18982 ".file" is handled. Note that you need a version of GCC
18983 after 3.1 in order to support DWARF-2 on MIPS. */
18984 if (filename != NULL && ! first_file_directive)
18985 {
18986 (void) new_logical_line (filename, -1);
c04f5787 18987 s_app_file_string (filename, 0);
ecb4347a
DJ
18988 }
18989 first_file_directive = 1;
18990 }
c5dd6aab
DJ
18991}
18992
18993/* The .loc directive, implying DWARF-2. */
252b5132
RH
18994
18995static void
17a2f251 18996s_mips_loc (int x ATTRIBUTE_UNUSED)
252b5132 18997{
c5dd6aab
DJ
18998 if (!ECOFF_DEBUGGING)
18999 dwarf2_directive_loc (0);
252b5132
RH
19000}
19001
252b5132
RH
19002/* The .end directive. */
19003
19004static void
17a2f251 19005s_mips_end (int x ATTRIBUTE_UNUSED)
252b5132
RH
19006{
19007 symbolS *p;
252b5132 19008
7a621144
DJ
19009 /* Following functions need their own .frame and .cprestore directives. */
19010 mips_frame_reg_valid = 0;
19011 mips_cprestore_valid = 0;
19012
252b5132
RH
19013 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19014 {
19015 p = get_symbol ();
19016 demand_empty_rest_of_line ();
19017 }
19018 else
19019 p = NULL;
19020
14949570 19021 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
19022 as_warn (_(".end not in text section"));
19023
19024 if (!cur_proc_ptr)
19025 {
1661c76c 19026 as_warn (_(".end directive without a preceding .ent directive"));
252b5132
RH
19027 demand_empty_rest_of_line ();
19028 return;
19029 }
19030
19031 if (p != NULL)
19032 {
9c2799c2 19033 gas_assert (S_GET_NAME (p));
9b2f1d35 19034 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
1661c76c 19035 as_warn (_(".end symbol does not match .ent symbol"));
ecb4347a
DJ
19036
19037 if (debug_type == DEBUG_STABS)
19038 stabs_generate_asm_endfunc (S_GET_NAME (p),
19039 S_GET_NAME (p));
252b5132
RH
19040 }
19041 else
19042 as_warn (_(".end directive missing or unknown symbol"));
19043
9b2f1d35
EC
19044 /* Create an expression to calculate the size of the function. */
19045 if (p && cur_proc_ptr)
19046 {
19047 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
325801bd 19048 expressionS *exp = XNEW (expressionS);
9b2f1d35
EC
19049
19050 obj->size = exp;
19051 exp->X_op = O_subtract;
19052 exp->X_add_symbol = symbol_temp_new_now ();
19053 exp->X_op_symbol = p;
19054 exp->X_add_number = 0;
19055
19056 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19057 }
19058
ecb4347a 19059 /* Generate a .pdr section. */
f3ded42a 19060 if (!ECOFF_DEBUGGING && mips_flag_pdr)
ecb4347a
DJ
19061 {
19062 segT saved_seg = now_seg;
19063 subsegT saved_subseg = now_subseg;
ecb4347a
DJ
19064 expressionS exp;
19065 char *fragp;
252b5132 19066
252b5132 19067#ifdef md_flush_pending_output
ecb4347a 19068 md_flush_pending_output ();
252b5132
RH
19069#endif
19070
9c2799c2 19071 gas_assert (pdr_seg);
ecb4347a 19072 subseg_set (pdr_seg, 0);
252b5132 19073
ecb4347a
DJ
19074 /* Write the symbol. */
19075 exp.X_op = O_symbol;
19076 exp.X_add_symbol = p;
19077 exp.X_add_number = 0;
19078 emit_expr (&exp, 4);
252b5132 19079
ecb4347a 19080 fragp = frag_more (7 * 4);
252b5132 19081
17a2f251
TS
19082 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19083 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19084 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19085 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19086 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19087 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19088 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
252b5132 19089
ecb4347a
DJ
19090 subseg_set (saved_seg, saved_subseg);
19091 }
252b5132
RH
19092
19093 cur_proc_ptr = NULL;
19094}
19095
19096/* The .aent and .ent directives. */
19097
19098static void
17a2f251 19099s_mips_ent (int aent)
252b5132 19100{
252b5132 19101 symbolS *symbolP;
252b5132
RH
19102
19103 symbolP = get_symbol ();
19104 if (*input_line_pointer == ',')
f9419b05 19105 ++input_line_pointer;
252b5132 19106 SKIP_WHITESPACE ();
3882b010 19107 if (ISDIGIT (*input_line_pointer)
d9a62219 19108 || *input_line_pointer == '-')
874e8986 19109 get_number ();
252b5132 19110
14949570 19111 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
1661c76c 19112 as_warn (_(".ent or .aent not in text section"));
252b5132
RH
19113
19114 if (!aent && cur_proc_ptr)
9a41af64 19115 as_warn (_("missing .end"));
252b5132
RH
19116
19117 if (!aent)
19118 {
7a621144
DJ
19119 /* This function needs its own .frame and .cprestore directives. */
19120 mips_frame_reg_valid = 0;
19121 mips_cprestore_valid = 0;
19122
252b5132
RH
19123 cur_proc_ptr = &cur_proc;
19124 memset (cur_proc_ptr, '\0', sizeof (procS));
19125
9b2f1d35 19126 cur_proc_ptr->func_sym = symbolP;
252b5132 19127
f9419b05 19128 ++numprocs;
ecb4347a
DJ
19129
19130 if (debug_type == DEBUG_STABS)
19131 stabs_generate_asm_func (S_GET_NAME (symbolP),
19132 S_GET_NAME (symbolP));
252b5132
RH
19133 }
19134
7c0fc524
MR
19135 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19136
252b5132
RH
19137 demand_empty_rest_of_line ();
19138}
19139
19140/* The .frame directive. If the mdebug section is present (IRIX 5 native)
bdaaa2e1 19141 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
252b5132 19142 s_mips_frame is used so that we can set the PDR information correctly.
bdaaa2e1 19143 We can't use the ecoff routines because they make reference to the ecoff
252b5132
RH
19144 symbol table (in the mdebug section). */
19145
19146static void
17a2f251 19147s_mips_frame (int ignore ATTRIBUTE_UNUSED)
252b5132 19148{
f3ded42a
RS
19149 if (ECOFF_DEBUGGING)
19150 s_ignore (ignore);
19151 else
ecb4347a
DJ
19152 {
19153 long val;
252b5132 19154
ecb4347a
DJ
19155 if (cur_proc_ptr == (procS *) NULL)
19156 {
19157 as_warn (_(".frame outside of .ent"));
19158 demand_empty_rest_of_line ();
19159 return;
19160 }
252b5132 19161
ecb4347a
DJ
19162 cur_proc_ptr->frame_reg = tc_get_register (1);
19163
19164 SKIP_WHITESPACE ();
19165 if (*input_line_pointer++ != ','
19166 || get_absolute_expression_and_terminator (&val) != ',')
19167 {
1661c76c 19168 as_warn (_("bad .frame directive"));
ecb4347a
DJ
19169 --input_line_pointer;
19170 demand_empty_rest_of_line ();
19171 return;
19172 }
252b5132 19173
ecb4347a
DJ
19174 cur_proc_ptr->frame_offset = val;
19175 cur_proc_ptr->pc_reg = tc_get_register (0);
252b5132 19176
252b5132 19177 demand_empty_rest_of_line ();
252b5132 19178 }
252b5132
RH
19179}
19180
bdaaa2e1
KH
19181/* The .fmask and .mask directives. If the mdebug section is present
19182 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
252b5132 19183 embedded targets, s_mips_mask is used so that we can set the PDR
bdaaa2e1 19184 information correctly. We can't use the ecoff routines because they
252b5132
RH
19185 make reference to the ecoff symbol table (in the mdebug section). */
19186
19187static void
17a2f251 19188s_mips_mask (int reg_type)
252b5132 19189{
f3ded42a
RS
19190 if (ECOFF_DEBUGGING)
19191 s_ignore (reg_type);
19192 else
252b5132 19193 {
ecb4347a 19194 long mask, off;
252b5132 19195
ecb4347a
DJ
19196 if (cur_proc_ptr == (procS *) NULL)
19197 {
19198 as_warn (_(".mask/.fmask outside of .ent"));
19199 demand_empty_rest_of_line ();
19200 return;
19201 }
252b5132 19202
ecb4347a
DJ
19203 if (get_absolute_expression_and_terminator (&mask) != ',')
19204 {
1661c76c 19205 as_warn (_("bad .mask/.fmask directive"));
ecb4347a
DJ
19206 --input_line_pointer;
19207 demand_empty_rest_of_line ();
19208 return;
19209 }
252b5132 19210
ecb4347a
DJ
19211 off = get_absolute_expression ();
19212
19213 if (reg_type == 'F')
19214 {
19215 cur_proc_ptr->fpreg_mask = mask;
19216 cur_proc_ptr->fpreg_offset = off;
19217 }
19218 else
19219 {
19220 cur_proc_ptr->reg_mask = mask;
19221 cur_proc_ptr->reg_offset = off;
19222 }
19223
19224 demand_empty_rest_of_line ();
252b5132 19225 }
252b5132
RH
19226}
19227
316f5878
RS
19228/* A table describing all the processors gas knows about. Names are
19229 matched in the order listed.
e7af610e 19230
316f5878
RS
19231 To ease comparison, please keep this table in the same order as
19232 gcc's mips_cpu_info_table[]. */
e972090a
NC
19233static const struct mips_cpu_info mips_cpu_info_table[] =
19234{
316f5878 19235 /* Entries for generic ISAs */
d16afab6
RS
19236 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19237 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19238 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19239 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19240 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19241 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19242 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
ae52f483
AB
19243 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19244 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
7361da2c 19245 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
d16afab6
RS
19246 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19247 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
ae52f483
AB
19248 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19249 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
7361da2c 19250 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
316f5878
RS
19251
19252 /* MIPS I */
d16afab6
RS
19253 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19254 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19255 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
316f5878
RS
19256
19257 /* MIPS II */
d16afab6 19258 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
316f5878
RS
19259
19260 /* MIPS III */
d16afab6
RS
19261 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19262 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19263 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19264 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19265 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19266 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19267 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19268 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19269 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19270 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19271 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19272 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19273 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
b15591bb 19274 /* ST Microelectronics Loongson 2E and 2F cores */
d16afab6
RS
19275 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19276 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
316f5878
RS
19277
19278 /* MIPS IV */
d16afab6
RS
19279 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19280 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19281 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19282 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19283 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19284 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19285 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19286 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19287 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19288 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19289 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19290 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19291 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19292 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19293 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
316f5878
RS
19294
19295 /* MIPS 32 */
d16afab6
RS
19296 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19297 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19298 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19299 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
ad3fea08
TS
19300
19301 /* MIPS 32 Release 2 */
d16afab6
RS
19302 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19303 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19304 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19305 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19306 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19307 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19308 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19309 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19310 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19311 ISA_MIPS32R2, CPU_MIPS32R2 },
19312 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19313 ISA_MIPS32R2, CPU_MIPS32R2 },
19314 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19315 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19316 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19317 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19318 /* Deprecated forms of the above. */
d16afab6
RS
19319 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19320 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19321 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
d16afab6
RS
19322 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19323 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19324 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19325 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19326 /* Deprecated forms of the above. */
d16afab6
RS
19327 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19328 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19329 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
d16afab6
RS
19330 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19331 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19332 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19333 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19334 /* Deprecated forms of the above. */
d16afab6
RS
19335 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19336 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
711eefe4 19337 /* 34Kn is a 34kc without DSP. */
d16afab6 19338 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19339 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
d16afab6
RS
19340 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19341 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19342 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19343 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19344 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19345 /* Deprecated forms of the above. */
d16afab6
RS
19346 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19347 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
30f8113a 19348 /* 1004K cores are multiprocessor versions of the 34K. */
d16afab6
RS
19349 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19350 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19351 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19352 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
77403ce9
RS
19353 /* interaptiv is the new name for 1004kf */
19354 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
c6e5c03a
RS
19355 /* M5100 family */
19356 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19357 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
bbaa46c0 19358 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
134c0c8b 19359 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
32b26a03 19360
316f5878 19361 /* MIPS 64 */
d16afab6
RS
19362 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19363 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19364 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19365 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
ad3fea08 19366
c7a23324 19367 /* Broadcom SB-1 CPU core */
d16afab6 19368 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
1e85aad8 19369 /* Broadcom SB-1A CPU core */
d16afab6 19370 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
3739860c 19371
4ba154f5 19372 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
e7af610e 19373
ed163775
MR
19374 /* MIPS 64 Release 2 */
19375
967344c6 19376 /* Cavium Networks Octeon CPU core */
d16afab6
RS
19377 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19378 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19379 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
2c629856 19380 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
967344c6 19381
52b6b6b9 19382 /* RMI Xlr */
d16afab6 19383 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
52b6b6b9 19384
55a36193
MK
19385 /* Broadcom XLP.
19386 XLP is mostly like XLR, with the prominent exception that it is
19387 MIPS64R2 rather than MIPS64. */
d16afab6 19388 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
55a36193 19389
a4968f42 19390 /* MIPS 64 Release 6 */
7ef0d297 19391 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
a4968f42 19392 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
7ef0d297 19393
316f5878 19394 /* End marker */
d16afab6 19395 { NULL, 0, 0, 0, 0 }
316f5878 19396};
e7af610e 19397
84ea6cf2 19398
316f5878
RS
19399/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19400 with a final "000" replaced by "k". Ignore case.
e7af610e 19401
316f5878 19402 Note: this function is shared between GCC and GAS. */
c6c98b38 19403
b34976b6 19404static bfd_boolean
17a2f251 19405mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
19406{
19407 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19408 given++, canonical++;
19409
19410 return ((*given == 0 && *canonical == 0)
19411 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19412}
19413
19414
19415/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19416 CPU name. We've traditionally allowed a lot of variation here.
19417
19418 Note: this function is shared between GCC and GAS. */
19419
b34976b6 19420static bfd_boolean
17a2f251 19421mips_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
19422{
19423 /* First see if the name matches exactly, or with a final "000"
19424 turned into "k". */
19425 if (mips_strict_matching_cpu_name_p (canonical, given))
b34976b6 19426 return TRUE;
316f5878
RS
19427
19428 /* If not, try comparing based on numerical designation alone.
19429 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19430 if (TOLOWER (*given) == 'r')
19431 given++;
19432 if (!ISDIGIT (*given))
b34976b6 19433 return FALSE;
316f5878
RS
19434
19435 /* Skip over some well-known prefixes in the canonical name,
19436 hoping to find a number there too. */
19437 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19438 canonical += 2;
19439 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19440 canonical += 2;
19441 else if (TOLOWER (canonical[0]) == 'r')
19442 canonical += 1;
19443
19444 return mips_strict_matching_cpu_name_p (canonical, given);
19445}
19446
19447
19448/* Parse an option that takes the name of a processor as its argument.
19449 OPTION is the name of the option and CPU_STRING is the argument.
19450 Return the corresponding processor enumeration if the CPU_STRING is
19451 recognized, otherwise report an error and return null.
19452
19453 A similar function exists in GCC. */
e7af610e
NC
19454
19455static const struct mips_cpu_info *
17a2f251 19456mips_parse_cpu (const char *option, const char *cpu_string)
e7af610e 19457{
316f5878 19458 const struct mips_cpu_info *p;
e7af610e 19459
316f5878
RS
19460 /* 'from-abi' selects the most compatible architecture for the given
19461 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19462 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19463 version. Look first at the -mgp options, if given, otherwise base
19464 the choice on MIPS_DEFAULT_64BIT.
e7af610e 19465
316f5878
RS
19466 Treat NO_ABI like the EABIs. One reason to do this is that the
19467 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19468 architecture. This code picks MIPS I for 'mips' and MIPS III for
19469 'mips64', just as we did in the days before 'from-abi'. */
19470 if (strcasecmp (cpu_string, "from-abi") == 0)
19471 {
19472 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19473 return mips_cpu_info_from_isa (ISA_MIPS1);
19474
19475 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19476 return mips_cpu_info_from_isa (ISA_MIPS3);
19477
bad1aba3 19478 if (file_mips_opts.gp >= 0)
19479 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
0b35dfee 19480 ? ISA_MIPS1 : ISA_MIPS3);
316f5878
RS
19481
19482 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19483 ? ISA_MIPS3
19484 : ISA_MIPS1);
19485 }
19486
19487 /* 'default' has traditionally been a no-op. Probably not very useful. */
19488 if (strcasecmp (cpu_string, "default") == 0)
19489 return 0;
19490
19491 for (p = mips_cpu_info_table; p->name != 0; p++)
19492 if (mips_matching_cpu_name_p (p->name, cpu_string))
19493 return p;
19494
1661c76c 19495 as_bad (_("bad value (%s) for %s"), cpu_string, option);
316f5878 19496 return 0;
e7af610e
NC
19497}
19498
316f5878
RS
19499/* Return the canonical processor information for ISA (a member of the
19500 ISA_MIPS* enumeration). */
19501
e7af610e 19502static const struct mips_cpu_info *
17a2f251 19503mips_cpu_info_from_isa (int isa)
e7af610e
NC
19504{
19505 int i;
19506
19507 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
ad3fea08 19508 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
316f5878 19509 && isa == mips_cpu_info_table[i].isa)
e7af610e
NC
19510 return (&mips_cpu_info_table[i]);
19511
e972090a 19512 return NULL;
e7af610e 19513}
fef14a42
TS
19514
19515static const struct mips_cpu_info *
17a2f251 19516mips_cpu_info_from_arch (int arch)
fef14a42
TS
19517{
19518 int i;
19519
19520 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19521 if (arch == mips_cpu_info_table[i].cpu)
19522 return (&mips_cpu_info_table[i]);
19523
19524 return NULL;
19525}
316f5878
RS
19526\f
19527static void
17a2f251 19528show (FILE *stream, const char *string, int *col_p, int *first_p)
316f5878
RS
19529{
19530 if (*first_p)
19531 {
19532 fprintf (stream, "%24s", "");
19533 *col_p = 24;
19534 }
19535 else
19536 {
19537 fprintf (stream, ", ");
19538 *col_p += 2;
19539 }
e7af610e 19540
316f5878
RS
19541 if (*col_p + strlen (string) > 72)
19542 {
19543 fprintf (stream, "\n%24s", "");
19544 *col_p = 24;
19545 }
19546
19547 fprintf (stream, "%s", string);
19548 *col_p += strlen (string);
19549
19550 *first_p = 0;
19551}
19552
19553void
17a2f251 19554md_show_usage (FILE *stream)
e7af610e 19555{
316f5878
RS
19556 int column, first;
19557 size_t i;
19558
19559 fprintf (stream, _("\
19560MIPS options:\n\
316f5878
RS
19561-EB generate big endian output\n\
19562-EL generate little endian output\n\
19563-g, -g2 do not remove unneeded NOPs or swap branches\n\
19564-G NUM allow referencing objects up to NUM bytes\n\
19565 implicitly with the gp register [default 8]\n"));
19566 fprintf (stream, _("\
19567-mips1 generate MIPS ISA I instructions\n\
19568-mips2 generate MIPS ISA II instructions\n\
19569-mips3 generate MIPS ISA III instructions\n\
19570-mips4 generate MIPS ISA IV instructions\n\
19571-mips5 generate MIPS ISA V instructions\n\
19572-mips32 generate MIPS32 ISA instructions\n\
af7ee8bf 19573-mips32r2 generate MIPS32 release 2 ISA instructions\n\
ae52f483
AB
19574-mips32r3 generate MIPS32 release 3 ISA instructions\n\
19575-mips32r5 generate MIPS32 release 5 ISA instructions\n\
7361da2c 19576-mips32r6 generate MIPS32 release 6 ISA instructions\n\
316f5878 19577-mips64 generate MIPS64 ISA instructions\n\
5f74bc13 19578-mips64r2 generate MIPS64 release 2 ISA instructions\n\
ae52f483
AB
19579-mips64r3 generate MIPS64 release 3 ISA instructions\n\
19580-mips64r5 generate MIPS64 release 5 ISA instructions\n\
7361da2c 19581-mips64r6 generate MIPS64 release 6 ISA instructions\n\
316f5878
RS
19582-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19583
19584 first = 1;
e7af610e
NC
19585
19586 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
316f5878
RS
19587 show (stream, mips_cpu_info_table[i].name, &column, &first);
19588 show (stream, "from-abi", &column, &first);
19589 fputc ('\n', stream);
e7af610e 19590
316f5878
RS
19591 fprintf (stream, _("\
19592-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19593-no-mCPU don't generate code specific to CPU.\n\
19594 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19595
19596 first = 1;
19597
19598 show (stream, "3900", &column, &first);
19599 show (stream, "4010", &column, &first);
19600 show (stream, "4100", &column, &first);
19601 show (stream, "4650", &column, &first);
19602 fputc ('\n', stream);
19603
19604 fprintf (stream, _("\
19605-mips16 generate mips16 instructions\n\
19606-no-mips16 do not generate mips16 instructions\n"));
19607 fprintf (stream, _("\
df58fc94
RS
19608-mmicromips generate microMIPS instructions\n\
19609-mno-micromips do not generate microMIPS instructions\n"));
19610 fprintf (stream, _("\
e16bfa71 19611-msmartmips generate smartmips instructions\n\
3739860c 19612-mno-smartmips do not generate smartmips instructions\n"));
e16bfa71 19613 fprintf (stream, _("\
74cd071d
CF
19614-mdsp generate DSP instructions\n\
19615-mno-dsp do not generate DSP instructions\n"));
19616 fprintf (stream, _("\
8b082fb1
TS
19617-mdspr2 generate DSP R2 instructions\n\
19618-mno-dspr2 do not generate DSP R2 instructions\n"));
19619 fprintf (stream, _("\
8f4f9071
MF
19620-mdspr3 generate DSP R3 instructions\n\
19621-mno-dspr3 do not generate DSP R3 instructions\n"));
19622 fprintf (stream, _("\
ef2e4d86
CF
19623-mmt generate MT instructions\n\
19624-mno-mt do not generate MT instructions\n"));
19625 fprintf (stream, _("\
dec0624d
MR
19626-mmcu generate MCU instructions\n\
19627-mno-mcu do not generate MCU instructions\n"));
19628 fprintf (stream, _("\
56d438b1
CF
19629-mmsa generate MSA instructions\n\
19630-mno-msa do not generate MSA instructions\n"));
19631 fprintf (stream, _("\
7d64c587
AB
19632-mxpa generate eXtended Physical Address (XPA) instructions\n\
19633-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19634 fprintf (stream, _("\
b015e599
AP
19635-mvirt generate Virtualization instructions\n\
19636-mno-virt do not generate Virtualization instructions\n"));
19637 fprintf (stream, _("\
833794fc
MR
19638-minsn32 only generate 32-bit microMIPS instructions\n\
19639-mno-insn32 generate all microMIPS instructions\n"));
19640 fprintf (stream, _("\
c67a084a
NC
19641-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19642-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
d766e8ec 19643-mfix-vr4120 work around certain VR4120 errata\n\
7d8e00cf 19644-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
6a32d874 19645-mfix-24k insert a nop after ERET and DERET instructions\n\
d954098f 19646-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
316f5878
RS
19647-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19648-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
aed1a261 19649-msym32 assume all symbols have 32-bit values\n\
316f5878
RS
19650-O0 remove unneeded NOPs, do not swap branches\n\
19651-O remove unneeded NOPs and swap branches\n\
316f5878
RS
19652--trap, --no-break trap exception on div by 0 and mult overflow\n\
19653--break, --no-trap break exception on div by 0 and mult overflow\n"));
037b32b9
AN
19654 fprintf (stream, _("\
19655-mhard-float allow floating-point instructions\n\
19656-msoft-float do not allow floating-point instructions\n\
19657-msingle-float only allow 32-bit floating-point operations\n\
19658-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
3bf0dbfb 19659--[no-]construct-floats [dis]allow floating point values to be constructed\n\
ba92f887
MR
19660--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19661-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19662
19663 first = 1;
19664
19665 show (stream, "legacy", &column, &first);
19666 show (stream, "2008", &column, &first);
19667
19668 fputc ('\n', stream);
19669
316f5878
RS
19670 fprintf (stream, _("\
19671-KPIC, -call_shared generate SVR4 position independent code\n\
861fb55a 19672-call_nonpic generate non-PIC code that can operate with DSOs\n\
0c000745 19673-mvxworks-pic generate VxWorks position independent code\n\
861fb55a 19674-non_shared do not generate code that can operate with DSOs\n\
316f5878 19675-xgot assume a 32 bit GOT\n\
dcd410fe 19676-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
bbe506e8 19677-mshared, -mno-shared disable/enable .cpload optimization for\n\
d821e36b 19678 position dependent (non shared) code\n\
316f5878
RS
19679-mabi=ABI create ABI conformant object file for:\n"));
19680
19681 first = 1;
19682
19683 show (stream, "32", &column, &first);
19684 show (stream, "o64", &column, &first);
19685 show (stream, "n32", &column, &first);
19686 show (stream, "64", &column, &first);
19687 show (stream, "eabi", &column, &first);
19688
19689 fputc ('\n', stream);
19690
19691 fprintf (stream, _("\
19692-32 create o32 ABI object file (default)\n\
19693-n32 create n32 ABI object file\n\
19694-64 create 64 ABI object file\n"));
e7af610e 19695}
14e777e0 19696
1575952e 19697#ifdef TE_IRIX
14e777e0 19698enum dwarf2_format
413a266c 19699mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
14e777e0 19700{
369943fe 19701 if (HAVE_64BIT_SYMBOLS)
1575952e 19702 return dwarf2_format_64bit_irix;
14e777e0
KB
19703 else
19704 return dwarf2_format_32bit;
19705}
1575952e 19706#endif
73369e65
EC
19707
19708int
19709mips_dwarf2_addr_size (void)
19710{
6b6b3450 19711 if (HAVE_64BIT_OBJECTS)
73369e65 19712 return 8;
73369e65
EC
19713 else
19714 return 4;
19715}
5862107c
EC
19716
19717/* Standard calling conventions leave the CFA at SP on entry. */
19718void
19719mips_cfi_frame_initial_instructions (void)
19720{
19721 cfi_add_CFA_def_cfa_register (SP);
19722}
19723
707bfff6
TS
19724int
19725tc_mips_regname_to_dw2regnum (char *regname)
19726{
19727 unsigned int regnum = -1;
19728 unsigned int reg;
19729
19730 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19731 regnum = reg;
19732
19733 return regnum;
19734}
263b2574 19735
19736/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19737 Given a symbolic attribute NAME, return the proper integer value.
19738 Returns -1 if the attribute is not known. */
19739
19740int
19741mips_convert_symbolic_attribute (const char *name)
19742{
19743 static const struct
19744 {
19745 const char * name;
19746 const int tag;
19747 }
19748 attribute_table[] =
19749 {
19750#define T(tag) {#tag, tag}
19751 T (Tag_GNU_MIPS_ABI_FP),
19752 T (Tag_GNU_MIPS_ABI_MSA),
19753#undef T
19754 };
19755 unsigned int i;
19756
19757 if (name == NULL)
19758 return -1;
19759
19760 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19761 if (streq (name, attribute_table[i].name))
19762 return attribute_table[i].tag;
19763
19764 return -1;
19765}
fd5c94ab
RS
19766
19767void
19768md_mips_end (void)
19769{
351cdf24
MF
19770 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19771
fd5c94ab
RS
19772 mips_emit_delays ();
19773 if (cur_proc_ptr)
19774 as_warn (_("missing .end at end of assembly"));
919731af 19775
19776 /* Just in case no code was emitted, do the consistency check. */
19777 file_mips_check_options ();
351cdf24
MF
19778
19779 /* Set a floating-point ABI if the user did not. */
19780 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19781 {
19782 /* Perform consistency checks on the floating-point ABI. */
19783 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19784 Tag_GNU_MIPS_ABI_FP);
19785 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19786 check_fpabi (fpabi);
19787 }
19788 else
19789 {
19790 /* Soft-float gets precedence over single-float, the two options should
19791 not be used together so this should not matter. */
19792 if (file_mips_opts.soft_float == 1)
19793 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19794 /* Single-float gets precedence over all double_float cases. */
19795 else if (file_mips_opts.single_float == 1)
19796 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19797 else
19798 {
19799 switch (file_mips_opts.fp)
19800 {
19801 case 32:
19802 if (file_mips_opts.gp == 32)
19803 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19804 break;
19805 case 0:
19806 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19807 break;
19808 case 64:
19809 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19810 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19811 else if (file_mips_opts.gp == 32)
19812 fpabi = Val_GNU_MIPS_ABI_FP_64;
19813 else
19814 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19815 break;
19816 }
19817 }
19818
19819 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19820 Tag_GNU_MIPS_ABI_FP, fpabi);
19821 }
fd5c94ab 19822}
2f0c68f2
CM
19823
19824/* Returns the relocation type required for a particular CFI encoding. */
19825
19826bfd_reloc_code_real_type
19827mips_cfi_reloc_for_encoding (int encoding)
19828{
19829 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19830 return BFD_RELOC_32_PCREL;
19831 else return BFD_RELOC_NONE;
19832}
This page took 3.054003 seconds and 4 git commands to generate.