BFD: Let targets handle relocations against absolute symbols
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
CommitLineData
252b5132 1/* tc-mips.c -- assemble code for a MIPS chip.
6f2750fe 2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
ec2655a6 12 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
252b5132
RH
24
25#include "as.h"
26#include "config.h"
27#include "subsegs.h"
3882b010 28#include "safe-ctype.h"
252b5132 29
252b5132
RH
30#include "opcode/mips.h"
31#include "itbl-ops.h"
c5dd6aab 32#include "dwarf2dbg.h"
5862107c 33#include "dw2gencfi.h"
252b5132 34
42429eac
RS
35/* Check assumptions made in this file. */
36typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
252b5132
RH
39#ifdef DEBUG
40#define DBG(x) printf x
41#else
42#define DBG(x)
43#endif
44
263b2574 45#define streq(a, b) (strcmp (a, b) == 0)
46
9e12b7a2
RS
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
252b5132 50/* Clean up namespace so we can include obj-elf.h too. */
17a2f251
TS
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
252b5132
RH
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
252b5132
RH
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
252b5132 70
252b5132 71#include "elf/mips.h"
252b5132
RH
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
ecb4347a
DJ
78int mips_flag_mdebug = -1;
79
dcd410fe
RO
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
84int mips_flag_pdr = FALSE;
85#else
86int mips_flag_pdr = TRUE;
87#endif
88
252b5132
RH
89#include "ecoff.h"
90
252b5132 91static char *mips_regmask_frag;
351cdf24 92static char *mips_flags_frag;
252b5132 93
85b51719 94#define ZERO 0
741fe287 95#define ATREG 1
df58fc94
RS
96#define S0 16
97#define S7 23
252b5132
RH
98#define TREG 24
99#define PIC_CALL_REG 25
100#define KT0 26
101#define KT1 27
102#define GP 28
103#define SP 29
104#define FP 30
105#define RA 31
106
107#define ILLEGAL_REG (32)
108
741fe287
MR
109#define AT mips_opts.at
110
252b5132
RH
111extern int target_big_endian;
112
252b5132 113/* The name of the readonly data section. */
e8044f35 114#define RDATA_SECTION_NAME ".rodata"
252b5132 115
a4e06468
RS
116/* Ways in which an instruction can be "appended" to the output. */
117enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129};
130
47e39b9d
RS
131/* Information about an instruction, including its format, operands
132 and fixups. */
133struct mips_cl_insn
134{
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
47e39b9d 138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
5c04167a
RS
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
47e39b9d
RS
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
a38419a5
RS
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
47e39b9d 155
708587a4 156 /* True if this instruction occurred in a .set noreorder block. */
47e39b9d
RS
157 unsigned int noreorder_p : 1;
158
2fa15973
RS
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
15be625d
CM
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
e407c74b
NC
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
47e39b9d
RS
168};
169
a325df1d
TS
170/* The ABI to use. */
171enum mips_abi_level
172{
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179};
180
181/* MIPS ABI we are using for this output file. */
316f5878 182static enum mips_abi_level mips_abi = NO_ABI;
a325df1d 183
143d77c5
EC
184/* Whether or not we have code that can call pic code. */
185int mips_abicalls = FALSE;
186
aa6975fb
ILT
187/* Whether or not we have code which can be put into a shared
188 library. */
189static bfd_boolean mips_in_shared = TRUE;
190
252b5132
RH
191/* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
e972090a
NC
195struct mips_set_options
196{
252b5132
RH
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
846ef2d0
RS
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
252b5132
RH
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
df58fc94
RS
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
252b5132
RH
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
741fe287
MR
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
252b5132
RH
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
833794fc
MR
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
a325df1d
TS
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
bad1aba3 245 int gp;
0b35dfee 246 int fp;
fef14a42
TS
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
aed1a261
RS
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
037b32b9
AN
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
351cdf24
MF
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
252b5132
RH
265};
266
919731af 267/* Specifies whether module level options have been checked yet. */
268static bfd_boolean file_mips_opts_checked = FALSE;
269
7361da2c
AB
270/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274static int mips_nan2008 = -1;
a325df1d 275
0b35dfee 276/* This is the struct we use to hold the module level set of options.
bad1aba3 277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
0b35dfee 278 fp fields to -1 to indicate that they have not been initialized. */
037b32b9 279
0b35dfee 280static struct mips_set_options file_mips_opts =
281{
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
0b35dfee 287};
252b5132 288
0b35dfee 289/* This is similar to file_mips_opts, but for the current set of options. */
ba92f887 290
e972090a
NC
291static struct mips_set_options mips_opts =
292{
846ef2d0 293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
b015e599 294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
833794fc 295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
e7af610e 298};
252b5132 299
846ef2d0
RS
300/* Which bits of file_ase were explicitly set or cleared by ASE options. */
301static unsigned int file_ase_explicit;
302
252b5132
RH
303/* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306unsigned long mips_gprmask;
307unsigned long mips_cprmask[4];
308
738f4d98 309/* True if any MIPS16 code was produced. */
a4672219
TS
310static int file_ase_mips16;
311
3994f87e
TS
312#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
3994f87e 316 || mips_opts.isa == ISA_MIPS64 \
ae52f483
AB
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
3994f87e 320
df58fc94
RS
321/* True if any microMIPS code was produced. */
322static int file_ase_micromips;
323
b12dd2e4
CF
324/* True if we want to create R_MIPS_JALR for jalr $25. */
325#ifdef TE_IRIX
1180b5a4 326#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
b12dd2e4 327#else
1180b5a4
RS
328/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331#define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
b12dd2e4
CF
334#endif
335
ec68c924 336/* The argument of the -march= flag. The architecture we are assembling. */
316f5878 337static const char *mips_arch_string;
ec68c924
EC
338
339/* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341static int mips_tune = CPU_UNKNOWN;
316f5878 342static const char *mips_tune_string;
ec68c924 343
316f5878 344/* True when generating 32-bit code for a 64-bit processor. */
252b5132
RH
345static int mips_32bitmode = 0;
346
316f5878
RS
347/* True if the given ABI requires 32-bit registers. */
348#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350/* Likewise 64-bit registers. */
707bfff6 351#define ABI_NEEDS_64BIT_REGS(ABI) \
134c0c8b 352 ((ABI) == N32_ABI \
707bfff6 353 || (ABI) == N64_ABI \
316f5878
RS
354 || (ABI) == O64_ABI)
355
7361da2c
AB
356#define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
ad3fea08 360/* Return true if ISA supports 64 bit wide gp registers. */
707bfff6
TS
361#define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
ae52f483
AB
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
9ce8a5dd 370
ad3fea08
TS
371/* Return true if ISA supports 64 bit wide float registers. */
372#define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
ae52f483
AB
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
7361da2c 379 || (ISA) == ISA_MIPS32R6 \
ad3fea08 380 || (ISA) == ISA_MIPS64 \
ae52f483
AB
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
ad3fea08 385
af7ee8bf
CD
386/* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
707bfff6 388#define ISA_HAS_DROR(ISA) \
df58fc94 389 ((ISA) == ISA_MIPS64R2 \
ae52f483
AB
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
7361da2c 392 || (ISA) == ISA_MIPS64R6 \
df58fc94
RS
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
af7ee8bf
CD
396
397/* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
707bfff6
TS
399#define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
7361da2c 403 || (ISA) == ISA_MIPS32R6 \
707bfff6 404 || (ISA) == ISA_MIPS64R2 \
ae52f483
AB
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
7361da2c 407 || (ISA) == ISA_MIPS64R6 \
846ef2d0 408 || (mips_opts.ase & ASE_SMARTMIPS) \
df58fc94
RS
409 || mips_opts.micromips \
410 )
707bfff6 411
7455baf8 412/* Return true if ISA supports single-precision floats in odd registers. */
351cdf24
MF
413#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
7361da2c 418 || (ISA) == ISA_MIPS32R6 \
351cdf24
MF
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
7361da2c 423 || (ISA) == ISA_MIPS64R6 \
351cdf24
MF
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
af7ee8bf 426
ad3fea08
TS
427/* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429#define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
7361da2c
AB
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439/* Return true if ISA supports legacy NAN. */
440#define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
ae52f483
AB
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
ad3fea08 454
bad1aba3 455#define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
ca4e0257 459
bad1aba3 460#define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
ca4e0257 464
316f5878 465#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
e013f690 466
316f5878 467#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
e013f690 468
3b91255e
RS
469/* True if relocations are stored in-place. */
470#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
aed1a261
RS
472/* The ABI-derived address size. */
473#define HAVE_64BIT_ADDRESSES \
bad1aba3 474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
aed1a261 475#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
e013f690 476
aed1a261
RS
477/* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479#define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
ca4e0257 482
b7c7d6c1
TS
483/* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
f899b4b8 486#define ADDRESS_ADD_INSN \
b7c7d6c1 487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
f899b4b8
TS
488
489#define ADDRESS_ADDI_INSN \
b7c7d6c1 490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
f899b4b8
TS
491
492#define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495#define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
a4672219 498/* Return true if the given CPU supports the MIPS16 ASE. */
3396de36
TS
499#define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
a4672219 502
2309ddf2 503/* Return true if the given CPU supports the microMIPS ASE. */
df58fc94
RS
504#define CPU_HAS_MICROMIPS(cpu) 0
505
60b63b72
RS
506/* True if CPU has a dror instruction. */
507#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509/* True if CPU has a ror instruction. */
510#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
dd6a37e7 512/* True if CPU is in the Octeon family */
2c629856
N
513#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
dd6a37e7 515
dd3cbb7e 516/* True if CPU has seq/sne and seqi/snei instructions. */
dd6a37e7 517#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
dd3cbb7e 518
0aa27725
RS
519/* True, if CPU has support for ldc1 and sdc1. */
520#define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
c8978940
CD
523/* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535#define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
7361da2c 540 || mips_opts.isa == ISA_MIPS32R6 \
c8978940
CD
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
ae52f483
AB
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
7361da2c 545 || mips_opts.isa == ISA_MIPS64R6 \
c8978940 546 || mips_opts.arch == CPU_R4010 \
e407c74b 547 || mips_opts.arch == CPU_R5900 \
c8978940
CD
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
3aa3176b
TS
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
c8978940 552 || mips_opts.arch == CPU_RM7000 \
c8978940 553 || mips_opts.arch == CPU_VR5500 \
df58fc94 554 || mips_opts.micromips \
c8978940 555 )
252b5132
RH
556
557/* Whether the processor uses hardware interlocks to protect reads
81912461
ILT
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
67dc82bc 560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
df58fc94
RS
561 level I and microMIPS mode instructions are always interlocked. */
562#define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
e407c74b 565 || mips_opts.arch == CPU_R5900 \
df58fc94
RS
566 || mips_opts.micromips \
567 )
252b5132 568
81912461
ILT
569/* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
43885403
MF
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
81912461 574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
df58fc94
RS
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
bdaaa2e1 577/* Itbl support may require additional care here. */
81912461
ILT
578#define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
df58fc94 583 || mips_opts.micromips \
81912461
ILT
584 )
585
586/* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
df58fc94
RS
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592#define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
252b5132 596
6b76fefe
CM
597/* Is this a mfhi or mflo instruction? */
598#define MF_HILO_INSN(PINFO) \
b19e8a9b
AN
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
df58fc94
RS
601/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604#define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
42429eac 607/* The minimum and maximum signed values that can be stored in a GPR. */
bad1aba3 608#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
42429eac
RS
609#define GPR_SMIN (-GPR_SMAX - 1)
610
252b5132
RH
611/* MIPS PIC level. */
612
a161fe53 613enum mips_pic_level mips_pic;
252b5132 614
c9914766 615/* 1 if we should generate 32 bit offsets from the $gp register in
252b5132 616 SVR4_PIC mode. Currently has no meaning in other modes. */
c9914766 617static int mips_big_got = 0;
252b5132
RH
618
619/* 1 if trap instructions should used for overflow rather than break
620 instructions. */
c9914766 621static int mips_trap = 0;
252b5132 622
119d663a 623/* 1 if double width floating point constants should not be constructed
b6ff326e 624 by assembling two single width halves into two single width floating
119d663a
NC
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
d547a75e 627 in the status register, and the setting of this bit cannot be determined
119d663a
NC
628 automatically at assemble time. */
629static int mips_disable_float_construction;
630
252b5132
RH
631/* Non-zero if any .set noreorder directives were used. */
632
633static int mips_any_noreorder;
634
6b76fefe
CM
635/* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637static int mips_7000_hilo_fix;
638
02ffd3e4 639/* The size of objects in the small data section. */
156c2f8b 640static unsigned int g_switch_value = 8;
252b5132
RH
641/* Whether the -G option was used. */
642static int g_switch_seen = 0;
643
644#define N_RMASK 0xc4
645#define N_VFP 0xd4
646
647/* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
fba2b7f9
GK
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
252b5132
RH
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
17a2f251 659static int nopic_need_relax (symbolS *, int);
252b5132
RH
660
661/* handle of the OPCODE hash table */
662static struct hash_control *op_hash = NULL;
663
664/* The opcode hash table we use for the mips16. */
665static struct hash_control *mips16_op_hash = NULL;
666
df58fc94
RS
667/* The opcode hash table we use for the microMIPS ASE. */
668static struct hash_control *micromips_op_hash = NULL;
669
252b5132
RH
670/* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672const char comment_chars[] = "#";
673
674/* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677/* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
bdaaa2e1 679 #NO_APP at the beginning of its output. */
252b5132
RH
680/* Also note that C style comments are always supported. */
681const char line_comment_chars[] = "#";
682
bdaaa2e1 683/* This array holds machine specific line separator characters. */
63a0b638 684const char line_separator_chars[] = ";";
252b5132
RH
685
686/* Chars that can be used to separate mant from exp in floating point nums */
687const char EXP_CHARS[] = "eE";
688
689/* Chars that mean this number is a floating point constant */
690/* As in 0f12.456 */
691/* or 0d1.2345e12 */
692const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
e3de51ce
RS
699/* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705};
706
707/* Information about an error that was found while assembling the current
708 instruction. */
709struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732};
733
734/* The error that should be reported for the current instruction. */
735static struct mips_insn_error insn_error;
252b5132
RH
736
737static int auto_align = 1;
738
739/* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743static offsetT mips_cprestore_offset = -1;
744
67c1ffbe 745/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
6478892d 746 more optimizations, it can use a register value instead of a memory-saved
956cd1d6 747 offset and even an other register than $gp as global pointer. */
6478892d
TS
748static offsetT mips_cpreturn_offset = -1;
749static int mips_cpreturn_register = -1;
750static int mips_gp_register = GP;
def2e0dd 751static int mips_gprel_offset = 0;
6478892d 752
7a621144
DJ
753/* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755static int mips_cprestore_valid = 0;
756
252b5132
RH
757/* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759static int mips_frame_reg = SP;
760
7a621144
DJ
761/* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763static int mips_frame_reg_valid = 0;
764
252b5132
RH
765/* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768/* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772static int mips_optimize = 2;
773
774/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776static int mips_debug = 0;
777
7d8e00cf
RS
778/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779#define MAX_VR4130_NOPS 4
780
781/* The maximum number of NOPs needed to fill delay slots. */
782#define MAX_DELAY_NOPS 2
783
784/* The maximum number of NOPs needed for any purpose. */
785#define MAX_NOPS 4
71400594
RS
786
787/* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792static struct mips_cl_insn history[1 + MAX_NOPS];
252b5132 793
fc76e730 794/* Arrays of operands for each instruction. */
14daeee3 795#define MAX_OPERANDS 6
fc76e730
RS
796struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798};
799static struct mips_operand_array *mips_operands;
800static struct mips_operand_array *mips16_operands;
801static struct mips_operand_array *micromips_operands;
802
1e915849 803/* Nop instructions used by emit_nop. */
df58fc94
RS
804static struct mips_cl_insn nop_insn;
805static struct mips_cl_insn mips16_nop_insn;
806static struct mips_cl_insn micromips_nop16_insn;
807static struct mips_cl_insn micromips_nop32_insn;
1e915849
RS
808
809/* The appropriate nop for the current mode. */
833794fc
MR
810#define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
df58fc94
RS
817
818/* The size of NOP_INSN in bytes. */
833794fc
MR
819#define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
252b5132 822
252b5132
RH
823/* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827static fragS *prev_nop_frag;
828
829/* The number of nop instructions we created in prev_nop_frag. */
830static int prev_nop_frag_holds;
831
832/* The number of nop instructions that we know we need in
bdaaa2e1 833 prev_nop_frag. */
252b5132
RH
834static int prev_nop_frag_required;
835
836/* The number of instructions we've seen since prev_nop_frag. */
837static int prev_nop_frag_since;
838
e8044f35
RS
839/* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
252b5132
RH
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
bdaaa2e1 848 corresponding LO relocation. */
252b5132 849
e972090a
NC
850struct mips_hi_fixup
851{
252b5132
RH
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858};
859
860/* The list of unmatched HI relocs. */
861
862static struct mips_hi_fixup *mips_hi_fixup_list;
863
64bdfcaf
RS
864/* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867static fragS *prev_reloc_op_frag;
868
252b5132
RH
869/* Map mips16 register numbers to normal MIPS register numbers. */
870
e972090a
NC
871static const unsigned int mips16_to_32_reg_map[] =
872{
252b5132
RH
873 16, 17, 2, 3, 4, 5, 6, 7
874};
60b63b72 875
df58fc94
RS
876/* Map microMIPS register numbers to normal MIPS register numbers. */
877
df58fc94 878#define micromips_to_32_reg_d_map mips16_to_32_reg_map
df58fc94
RS
879
880/* The microMIPS registers with type h. */
e76ff5ab 881static const unsigned int micromips_to_32_reg_h_map1[] =
df58fc94
RS
882{
883 5, 5, 6, 4, 4, 4, 4, 4
884};
e76ff5ab 885static const unsigned int micromips_to_32_reg_h_map2[] =
df58fc94
RS
886{
887 6, 7, 7, 21, 22, 5, 6, 7
888};
889
df58fc94
RS
890/* The microMIPS registers with type m. */
891static const unsigned int micromips_to_32_reg_m_map[] =
892{
893 0, 17, 2, 3, 16, 18, 19, 20
894};
895
896#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
71400594
RS
898/* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
c67a084a
NC
900enum fix_vr4120_class
901{
71400594
RS
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909};
910
c67a084a
NC
911/* ...likewise -mfix-loongson2f-jump. */
912static bfd_boolean mips_fix_loongson2f_jump;
913
914/* ...likewise -mfix-loongson2f-nop. */
915static bfd_boolean mips_fix_loongson2f_nop;
916
917/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918static bfd_boolean mips_fix_loongson2f;
919
71400594
RS
920/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925/* True if -mfix-vr4120 is in force. */
d766e8ec 926static int mips_fix_vr4120;
4a6a3df4 927
7d8e00cf
RS
928/* ...likewise -mfix-vr4130. */
929static int mips_fix_vr4130;
930
6a32d874
CM
931/* ...likewise -mfix-24k. */
932static int mips_fix_24k;
933
a8d14a88
CM
934/* ...likewise -mfix-rm7000 */
935static int mips_fix_rm7000;
936
d954098f
DD
937/* ...likewise -mfix-cn63xxp1 */
938static bfd_boolean mips_fix_cn63xxp1;
939
4a6a3df4
AO
940/* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945static int mips_relax_branch;
252b5132 946\f
4d7206a2
RS
947/* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
584892a6
RS
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
4d7206a2 964
584892a6
RS
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
4d7206a2 981
df58fc94
RS
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
4d7206a2
RS
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
584892a6 1006#define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
4d7206a2 1007
584892a6
RS
1008#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009#define RELAX_SECOND(X) ((X) & 0xff)
1010#define RELAX_USE_SECOND 0x10000
1011#define RELAX_SECOND_LONGER 0x20000
1012#define RELAX_NOMACRO 0x40000
1013#define RELAX_DELAY_SLOT 0x80000
df58fc94
RS
1014#define RELAX_DELAY_SLOT_16BIT 0x100000
1015#define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016#define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
252b5132 1017
4a6a3df4
AO
1018/* Branch without likely bit. If label is out of range, we turn:
1019
134c0c8b 1020 beq reg1, reg2, label
4a6a3df4
AO
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
b34976b6 1064
4a6a3df4
AO
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
66b3e8da
MR
1085#define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
4a6a3df4 1093#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
66b3e8da
MR
1094#define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095#define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096#define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
4a6a3df4 1099
252b5132
RH
1100/* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120#define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
4a6a3df4 1127#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
252b5132
RH
1128#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131#define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136#define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137#define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138#define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
885add95 1139
df58fc94
RS
1140/* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
40209cad
MR
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160#define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
df58fc94
RS
1171#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
40209cad
MR
1174#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176#define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
df58fc94 1185
43c0598f
RS
1186/* Sign-extend 16-bit value X. */
1187#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
885add95
CD
1189/* Is the given value a sign-extended 32-bit value? */
1190#define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194/* Is the given value a sign-extended 16-bit value? */
1195#define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
df58fc94
RS
1199/* Is the given value a sign-extended 12-bit value? */
1200#define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
7f3c4072
CM
1203/* Is the given value a sign-extended 9-bit value? */
1204#define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
2051e8c4
MR
1207/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208#define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
bf12938e
RS
1212/* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
bf12938e 1217/* Extract the operand given by FIELD from mips_cl_insn INSN. */
df58fc94
RS
1218#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
bf12938e
RS
1223#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
5c04167a
RS
1227
1228/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229#define MIPS16_EXTEND (0xf000U << 16)
4d7206a2 1230\f
df58fc94
RS
1231/* Whether or not we are emitting a branch-likely macro. */
1232static bfd_boolean emit_branch_likely_macro = FALSE;
1233
4d7206a2
RS
1234/* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253} mips_relax;
252b5132 1254\f
584892a6
RS
1255/* Global variables used to decide whether a macro needs a warning. */
1256static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
df58fc94
RS
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
584892a6
RS
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
df58fc94
RS
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
584892a6
RS
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289} mips_macro_warning;
1290\f
252b5132
RH
1291/* Prototypes for static functions. */
1292
252b5132
RH
1293enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
b34976b6 1295static void append_insn
df58fc94
RS
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
7d10b47d 1298static void mips_no_prev_insn (void);
c67a084a 1299static void macro_build (expressionS *, const char *, const char *, ...);
b34976b6 1300static void mips16_macro_build
03ea81db 1301 (expressionS *, const char *, const char *, va_list *);
67c0d1eb 1302static void load_register (int, expressionS *, int);
584892a6
RS
1303static void macro_start (void);
1304static void macro_end (void);
833794fc 1305static void macro (struct mips_cl_insn *ip, char *str);
17a2f251 1306static void mips16_macro (struct mips_cl_insn * ip);
17a2f251
TS
1307static void mips_ip (char *str, struct mips_cl_insn * ip);
1308static void mips16_ip (char *str, struct mips_cl_insn * ip);
b34976b6 1309static void mips16_immed
3b4dbbbf 1310 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
43c0598f 1311 unsigned int, unsigned long *);
5e0116d5 1312static size_t my_getSmallExpression
17a2f251
TS
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314static void my_getExpression (expressionS *, char *);
1315static void s_align (int);
1316static void s_change_sec (int);
1317static void s_change_section (int);
1318static void s_cons (int);
1319static void s_float_cons (int);
1320static void s_mips_globl (int);
1321static void s_option (int);
1322static void s_mipsset (int);
1323static void s_abicalls (int);
1324static void s_cpload (int);
1325static void s_cpsetup (int);
1326static void s_cplocal (int);
1327static void s_cprestore (int);
1328static void s_cpreturn (int);
741d6ea8
JM
1329static void s_dtprelword (int);
1330static void s_dtpreldword (int);
d0f13682
CLT
1331static void s_tprelword (int);
1332static void s_tpreldword (int);
17a2f251
TS
1333static void s_gpvalue (int);
1334static void s_gpword (int);
1335static void s_gpdword (int);
a3f278e2 1336static void s_ehword (int);
17a2f251
TS
1337static void s_cpadd (int);
1338static void s_insn (int);
ba92f887 1339static void s_nan (int);
919731af 1340static void s_module (int);
17a2f251
TS
1341static void s_mips_ent (int);
1342static void s_mips_end (int);
1343static void s_mips_frame (int);
1344static void s_mips_mask (int reg_type);
1345static void s_mips_stab (int);
1346static void s_mips_weakext (int);
1347static void s_mips_file (int);
1348static void s_mips_loc (int);
1349static bfd_boolean pic_need_relax (symbolS *, asection *);
4a6a3df4 1350static int relaxed_branch_length (fragS *, asection *, int);
df58fc94
RS
1351static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
919731af 1353static void file_mips_check_options (void);
e7af610e
NC
1354
1355/* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
e972090a
NC
1358struct mips_cpu_info
1359{
e7af610e 1360 const char *name; /* CPU or ISA name. */
d16afab6
RS
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
e7af610e
NC
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365};
1366
ad3fea08 1367#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
ad3fea08 1368
17a2f251
TS
1369static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
252b5132 1372\f
c31f3936
RS
1373/* Command-line options. */
1374const char *md_shortopts = "O::g::G:";
1375
1376enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
ae52f483
AB
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
7361da2c 1390 OPTION_MIPS32R6,
c31f3936 1391 OPTION_MIPS64R2,
ae52f483
AB
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
7361da2c 1394 OPTION_MIPS64R6,
c31f3936
RS
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
56d438b1
CF
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
c31f3936
RS
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
8f4f9071
MF
1413 OPTION_DSPR3,
1414 OPTION_NO_DSPR3,
c31f3936
RS
1415 OPTION_EVA,
1416 OPTION_NO_EVA,
7d64c587
AB
1417 OPTION_XPA,
1418 OPTION_NO_XPA,
c31f3936
RS
1419 OPTION_MICROMIPS,
1420 OPTION_NO_MICROMIPS,
1421 OPTION_MCU,
1422 OPTION_NO_MCU,
1423 OPTION_COMPAT_ARCH_BASE,
1424 OPTION_M4650,
1425 OPTION_NO_M4650,
1426 OPTION_M4010,
1427 OPTION_NO_M4010,
1428 OPTION_M4100,
1429 OPTION_NO_M4100,
1430 OPTION_M3900,
1431 OPTION_NO_M3900,
1432 OPTION_M7000_HILO_FIX,
1433 OPTION_MNO_7000_HILO_FIX,
1434 OPTION_FIX_24K,
1435 OPTION_NO_FIX_24K,
a8d14a88
CM
1436 OPTION_FIX_RM7000,
1437 OPTION_NO_FIX_RM7000,
c31f3936
RS
1438 OPTION_FIX_LOONGSON2F_JUMP,
1439 OPTION_NO_FIX_LOONGSON2F_JUMP,
1440 OPTION_FIX_LOONGSON2F_NOP,
1441 OPTION_NO_FIX_LOONGSON2F_NOP,
1442 OPTION_FIX_VR4120,
1443 OPTION_NO_FIX_VR4120,
1444 OPTION_FIX_VR4130,
1445 OPTION_NO_FIX_VR4130,
1446 OPTION_FIX_CN63XXP1,
1447 OPTION_NO_FIX_CN63XXP1,
1448 OPTION_TRAP,
1449 OPTION_BREAK,
1450 OPTION_EB,
1451 OPTION_EL,
1452 OPTION_FP32,
1453 OPTION_GP32,
1454 OPTION_CONSTRUCT_FLOATS,
1455 OPTION_NO_CONSTRUCT_FLOATS,
1456 OPTION_FP64,
351cdf24 1457 OPTION_FPXX,
c31f3936
RS
1458 OPTION_GP64,
1459 OPTION_RELAX_BRANCH,
1460 OPTION_NO_RELAX_BRANCH,
833794fc
MR
1461 OPTION_INSN32,
1462 OPTION_NO_INSN32,
c31f3936
RS
1463 OPTION_MSHARED,
1464 OPTION_MNO_SHARED,
1465 OPTION_MSYM32,
1466 OPTION_MNO_SYM32,
1467 OPTION_SOFT_FLOAT,
1468 OPTION_HARD_FLOAT,
1469 OPTION_SINGLE_FLOAT,
1470 OPTION_DOUBLE_FLOAT,
1471 OPTION_32,
c31f3936
RS
1472 OPTION_CALL_SHARED,
1473 OPTION_CALL_NONPIC,
1474 OPTION_NON_SHARED,
1475 OPTION_XGOT,
1476 OPTION_MABI,
1477 OPTION_N32,
1478 OPTION_64,
1479 OPTION_MDEBUG,
1480 OPTION_NO_MDEBUG,
1481 OPTION_PDR,
1482 OPTION_NO_PDR,
1483 OPTION_MVXWORKS_PIC,
ba92f887 1484 OPTION_NAN,
351cdf24
MF
1485 OPTION_ODD_SPREG,
1486 OPTION_NO_ODD_SPREG,
c31f3936
RS
1487 OPTION_END_OF_ENUM
1488 };
1489
1490struct option md_longopts[] =
1491{
1492 /* Options which specify architecture. */
1493 {"march", required_argument, NULL, OPTION_MARCH},
1494 {"mtune", required_argument, NULL, OPTION_MTUNE},
1495 {"mips0", no_argument, NULL, OPTION_MIPS1},
1496 {"mips1", no_argument, NULL, OPTION_MIPS1},
1497 {"mips2", no_argument, NULL, OPTION_MIPS2},
1498 {"mips3", no_argument, NULL, OPTION_MIPS3},
1499 {"mips4", no_argument, NULL, OPTION_MIPS4},
1500 {"mips5", no_argument, NULL, OPTION_MIPS5},
1501 {"mips32", no_argument, NULL, OPTION_MIPS32},
1502 {"mips64", no_argument, NULL, OPTION_MIPS64},
1503 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
ae52f483
AB
1504 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1505 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
7361da2c 1506 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
c31f3936 1507 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
ae52f483
AB
1508 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1509 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
7361da2c 1510 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
c31f3936
RS
1511
1512 /* Options which specify Application Specific Extensions (ASEs). */
1513 {"mips16", no_argument, NULL, OPTION_MIPS16},
1514 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1515 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1516 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1517 {"mdmx", no_argument, NULL, OPTION_MDMX},
1518 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1519 {"mdsp", no_argument, NULL, OPTION_DSP},
1520 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1521 {"mmt", no_argument, NULL, OPTION_MT},
1522 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1523 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1524 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1525 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1526 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
8f4f9071
MF
1527 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1528 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
c31f3936
RS
1529 {"meva", no_argument, NULL, OPTION_EVA},
1530 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1531 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1532 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1533 {"mmcu", no_argument, NULL, OPTION_MCU},
1534 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1535 {"mvirt", no_argument, NULL, OPTION_VIRT},
1536 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
56d438b1
CF
1537 {"mmsa", no_argument, NULL, OPTION_MSA},
1538 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
7d64c587
AB
1539 {"mxpa", no_argument, NULL, OPTION_XPA},
1540 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
c31f3936
RS
1541
1542 /* Old-style architecture options. Don't add more of these. */
1543 {"m4650", no_argument, NULL, OPTION_M4650},
1544 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1545 {"m4010", no_argument, NULL, OPTION_M4010},
1546 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1547 {"m4100", no_argument, NULL, OPTION_M4100},
1548 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1549 {"m3900", no_argument, NULL, OPTION_M3900},
1550 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1551
1552 /* Options which enable bug fixes. */
1553 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1554 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1555 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1556 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1557 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1558 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1559 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1560 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1561 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1562 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1563 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1564 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1565 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
a8d14a88
CM
1566 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1567 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
c31f3936
RS
1568 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1569 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1570
1571 /* Miscellaneous options. */
1572 {"trap", no_argument, NULL, OPTION_TRAP},
1573 {"no-break", no_argument, NULL, OPTION_TRAP},
1574 {"break", no_argument, NULL, OPTION_BREAK},
1575 {"no-trap", no_argument, NULL, OPTION_BREAK},
1576 {"EB", no_argument, NULL, OPTION_EB},
1577 {"EL", no_argument, NULL, OPTION_EL},
1578 {"mfp32", no_argument, NULL, OPTION_FP32},
1579 {"mgp32", no_argument, NULL, OPTION_GP32},
1580 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1581 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1582 {"mfp64", no_argument, NULL, OPTION_FP64},
351cdf24 1583 {"mfpxx", no_argument, NULL, OPTION_FPXX},
c31f3936
RS
1584 {"mgp64", no_argument, NULL, OPTION_GP64},
1585 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1586 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
833794fc
MR
1587 {"minsn32", no_argument, NULL, OPTION_INSN32},
1588 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
c31f3936
RS
1589 {"mshared", no_argument, NULL, OPTION_MSHARED},
1590 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1591 {"msym32", no_argument, NULL, OPTION_MSYM32},
1592 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1593 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1594 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1595 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1596 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
351cdf24
MF
1597 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1598 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
c31f3936
RS
1599
1600 /* Strictly speaking this next option is ELF specific,
1601 but we allow it for other ports as well in order to
1602 make testing easier. */
1603 {"32", no_argument, NULL, OPTION_32},
1604
1605 /* ELF-specific options. */
c31f3936
RS
1606 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1607 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1608 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1609 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1610 {"xgot", no_argument, NULL, OPTION_XGOT},
1611 {"mabi", required_argument, NULL, OPTION_MABI},
1612 {"n32", no_argument, NULL, OPTION_N32},
1613 {"64", no_argument, NULL, OPTION_64},
1614 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1615 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1616 {"mpdr", no_argument, NULL, OPTION_PDR},
1617 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1618 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
ba92f887 1619 {"mnan", required_argument, NULL, OPTION_NAN},
c31f3936
RS
1620
1621 {NULL, no_argument, NULL, 0}
1622};
1623size_t md_longopts_size = sizeof (md_longopts);
1624\f
c6278170
RS
1625/* Information about either an Application Specific Extension or an
1626 optional architecture feature that, for simplicity, we treat in the
1627 same way as an ASE. */
1628struct mips_ase
1629{
1630 /* The name of the ASE, used in both the command-line and .set options. */
1631 const char *name;
1632
1633 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1634 and 64-bit architectures, the flags here refer to the subset that
1635 is available on both. */
1636 unsigned int flags;
1637
1638 /* The ASE_* flag used for instructions that are available on 64-bit
1639 architectures but that are not included in FLAGS. */
1640 unsigned int flags64;
1641
1642 /* The command-line options that turn the ASE on and off. */
1643 int option_on;
1644 int option_off;
1645
1646 /* The minimum required architecture revisions for MIPS32, MIPS64,
1647 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1648 int mips32_rev;
1649 int mips64_rev;
1650 int micromips32_rev;
1651 int micromips64_rev;
7361da2c
AB
1652
1653 /* The architecture where the ASE was removed or -1 if the extension has not
1654 been removed. */
1655 int rem_rev;
c6278170
RS
1656};
1657
1658/* A table of all supported ASEs. */
1659static const struct mips_ase mips_ases[] = {
1660 { "dsp", ASE_DSP, ASE_DSP64,
1661 OPTION_DSP, OPTION_NO_DSP,
7361da2c
AB
1662 2, 2, 2, 2,
1663 -1 },
c6278170
RS
1664
1665 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1666 OPTION_DSPR2, OPTION_NO_DSPR2,
7361da2c
AB
1667 2, 2, 2, 2,
1668 -1 },
c6278170 1669
8f4f9071
MF
1670 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1671 OPTION_DSPR3, OPTION_NO_DSPR3,
1672 6, 6, -1, -1,
1673 -1 },
1674
c6278170
RS
1675 { "eva", ASE_EVA, 0,
1676 OPTION_EVA, OPTION_NO_EVA,
7361da2c
AB
1677 2, 2, 2, 2,
1678 -1 },
c6278170
RS
1679
1680 { "mcu", ASE_MCU, 0,
1681 OPTION_MCU, OPTION_NO_MCU,
7361da2c
AB
1682 2, 2, 2, 2,
1683 -1 },
c6278170
RS
1684
1685 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1686 { "mdmx", ASE_MDMX, 0,
1687 OPTION_MDMX, OPTION_NO_MDMX,
7361da2c
AB
1688 -1, 1, -1, -1,
1689 6 },
c6278170
RS
1690
1691 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1692 { "mips3d", ASE_MIPS3D, 0,
1693 OPTION_MIPS3D, OPTION_NO_MIPS3D,
7361da2c
AB
1694 2, 1, -1, -1,
1695 6 },
c6278170
RS
1696
1697 { "mt", ASE_MT, 0,
1698 OPTION_MT, OPTION_NO_MT,
7361da2c
AB
1699 2, 2, -1, -1,
1700 -1 },
c6278170
RS
1701
1702 { "smartmips", ASE_SMARTMIPS, 0,
1703 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
7361da2c
AB
1704 1, -1, -1, -1,
1705 6 },
c6278170
RS
1706
1707 { "virt", ASE_VIRT, ASE_VIRT64,
1708 OPTION_VIRT, OPTION_NO_VIRT,
7361da2c
AB
1709 2, 2, 2, 2,
1710 -1 },
56d438b1
CF
1711
1712 { "msa", ASE_MSA, ASE_MSA64,
1713 OPTION_MSA, OPTION_NO_MSA,
7361da2c
AB
1714 2, 2, 2, 2,
1715 -1 },
7d64c587
AB
1716
1717 { "xpa", ASE_XPA, 0,
1718 OPTION_XPA, OPTION_NO_XPA,
7361da2c
AB
1719 2, 2, -1, -1,
1720 -1 },
c6278170
RS
1721};
1722
1723/* The set of ASEs that require -mfp64. */
82bda27b 1724#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
c6278170
RS
1725
1726/* Groups of ASE_* flags that represent different revisions of an ASE. */
1727static const unsigned int mips_ase_groups[] = {
8f4f9071 1728 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
c6278170
RS
1729};
1730\f
252b5132
RH
1731/* Pseudo-op table.
1732
1733 The following pseudo-ops from the Kane and Heinrich MIPS book
1734 should be defined here, but are currently unsupported: .alias,
1735 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1736
1737 The following pseudo-ops from the Kane and Heinrich MIPS book are
1738 specific to the type of debugging information being generated, and
1739 should be defined by the object format: .aent, .begin, .bend,
1740 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1741 .vreg.
1742
1743 The following pseudo-ops from the Kane and Heinrich MIPS book are
1744 not MIPS CPU specific, but are also not specific to the object file
1745 format. This file is probably the best place to define them, but
d84bcf09 1746 they are not currently supported: .asm0, .endr, .lab, .struct. */
252b5132 1747
e972090a
NC
1748static const pseudo_typeS mips_pseudo_table[] =
1749{
beae10d5 1750 /* MIPS specific pseudo-ops. */
252b5132
RH
1751 {"option", s_option, 0},
1752 {"set", s_mipsset, 0},
1753 {"rdata", s_change_sec, 'r'},
1754 {"sdata", s_change_sec, 's'},
1755 {"livereg", s_ignore, 0},
1756 {"abicalls", s_abicalls, 0},
1757 {"cpload", s_cpload, 0},
6478892d
TS
1758 {"cpsetup", s_cpsetup, 0},
1759 {"cplocal", s_cplocal, 0},
252b5132 1760 {"cprestore", s_cprestore, 0},
6478892d 1761 {"cpreturn", s_cpreturn, 0},
741d6ea8
JM
1762 {"dtprelword", s_dtprelword, 0},
1763 {"dtpreldword", s_dtpreldword, 0},
d0f13682
CLT
1764 {"tprelword", s_tprelword, 0},
1765 {"tpreldword", s_tpreldword, 0},
6478892d 1766 {"gpvalue", s_gpvalue, 0},
252b5132 1767 {"gpword", s_gpword, 0},
10181a0d 1768 {"gpdword", s_gpdword, 0},
a3f278e2 1769 {"ehword", s_ehword, 0},
252b5132
RH
1770 {"cpadd", s_cpadd, 0},
1771 {"insn", s_insn, 0},
ba92f887 1772 {"nan", s_nan, 0},
919731af 1773 {"module", s_module, 0},
252b5132 1774
beae10d5 1775 /* Relatively generic pseudo-ops that happen to be used on MIPS
252b5132 1776 chips. */
38a57ae7 1777 {"asciiz", stringer, 8 + 1},
252b5132
RH
1778 {"bss", s_change_sec, 'b'},
1779 {"err", s_err, 0},
1780 {"half", s_cons, 1},
1781 {"dword", s_cons, 3},
1782 {"weakext", s_mips_weakext, 0},
7c752c2a
TS
1783 {"origin", s_org, 0},
1784 {"repeat", s_rept, 0},
252b5132 1785
998b3c36
MR
1786 /* For MIPS this is non-standard, but we define it for consistency. */
1787 {"sbss", s_change_sec, 'B'},
1788
beae10d5 1789 /* These pseudo-ops are defined in read.c, but must be overridden
252b5132
RH
1790 here for one reason or another. */
1791 {"align", s_align, 0},
1792 {"byte", s_cons, 0},
1793 {"data", s_change_sec, 'd'},
1794 {"double", s_float_cons, 'd'},
1795 {"float", s_float_cons, 'f'},
1796 {"globl", s_mips_globl, 0},
1797 {"global", s_mips_globl, 0},
1798 {"hword", s_cons, 1},
1799 {"int", s_cons, 2},
1800 {"long", s_cons, 2},
1801 {"octa", s_cons, 4},
1802 {"quad", s_cons, 3},
cca86cc8 1803 {"section", s_change_section, 0},
252b5132
RH
1804 {"short", s_cons, 1},
1805 {"single", s_float_cons, 'f'},
754e2bb9 1806 {"stabd", s_mips_stab, 'd'},
252b5132 1807 {"stabn", s_mips_stab, 'n'},
754e2bb9 1808 {"stabs", s_mips_stab, 's'},
252b5132
RH
1809 {"text", s_change_sec, 't'},
1810 {"word", s_cons, 2},
add56521 1811
add56521 1812 { "extern", ecoff_directive_extern, 0},
add56521 1813
43841e91 1814 { NULL, NULL, 0 },
252b5132
RH
1815};
1816
e972090a
NC
1817static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1818{
beae10d5
KH
1819 /* These pseudo-ops should be defined by the object file format.
1820 However, a.out doesn't support them, so we have versions here. */
252b5132
RH
1821 {"aent", s_mips_ent, 1},
1822 {"bgnb", s_ignore, 0},
1823 {"end", s_mips_end, 0},
1824 {"endb", s_ignore, 0},
1825 {"ent", s_mips_ent, 0},
c5dd6aab 1826 {"file", s_mips_file, 0},
252b5132
RH
1827 {"fmask", s_mips_mask, 'F'},
1828 {"frame", s_mips_frame, 0},
c5dd6aab 1829 {"loc", s_mips_loc, 0},
252b5132
RH
1830 {"mask", s_mips_mask, 'R'},
1831 {"verstamp", s_ignore, 0},
43841e91 1832 { NULL, NULL, 0 },
252b5132
RH
1833};
1834
3ae8dd8d
MR
1835/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1836 purpose of the `.dc.a' internal pseudo-op. */
1837
1838int
1839mips_address_bytes (void)
1840{
919731af 1841 file_mips_check_options ();
3ae8dd8d
MR
1842 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1843}
1844
17a2f251 1845extern void pop_insert (const pseudo_typeS *);
252b5132
RH
1846
1847void
17a2f251 1848mips_pop_insert (void)
252b5132
RH
1849{
1850 pop_insert (mips_pseudo_table);
1851 if (! ECOFF_DEBUGGING)
1852 pop_insert (mips_nonecoff_pseudo_table);
1853}
1854\f
1855/* Symbols labelling the current insn. */
1856
e972090a
NC
1857struct insn_label_list
1858{
252b5132
RH
1859 struct insn_label_list *next;
1860 symbolS *label;
1861};
1862
252b5132 1863static struct insn_label_list *free_insn_labels;
742a56fe 1864#define label_list tc_segment_info_data.labels
252b5132 1865
17a2f251 1866static void mips_clear_insn_labels (void);
df58fc94
RS
1867static void mips_mark_labels (void);
1868static void mips_compressed_mark_labels (void);
252b5132
RH
1869
1870static inline void
17a2f251 1871mips_clear_insn_labels (void)
252b5132 1872{
ed9e98c2 1873 struct insn_label_list **pl;
a8dbcb85 1874 segment_info_type *si;
252b5132 1875
a8dbcb85
TS
1876 if (now_seg)
1877 {
1878 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1879 ;
3739860c 1880
a8dbcb85
TS
1881 si = seg_info (now_seg);
1882 *pl = si->label_list;
1883 si->label_list = NULL;
1884 }
252b5132 1885}
a8dbcb85 1886
df58fc94
RS
1887/* Mark instruction labels in MIPS16/microMIPS mode. */
1888
1889static inline void
1890mips_mark_labels (void)
1891{
1892 if (HAVE_CODE_COMPRESSION)
1893 mips_compressed_mark_labels ();
1894}
252b5132
RH
1895\f
1896static char *expr_end;
1897
e423441d 1898/* An expression in a macro instruction. This is set by mips_ip and
b0e6f033 1899 mips16_ip and when populated is always an O_constant. */
252b5132
RH
1900
1901static expressionS imm_expr;
252b5132 1902
77bd4346
RS
1903/* The relocatable field in an instruction and the relocs associated
1904 with it. These variables are used for instructions like LUI and
1905 JAL as well as true offsets. They are also used for address
1906 operands in macros. */
252b5132 1907
77bd4346 1908static expressionS offset_expr;
f6688943
TS
1909static bfd_reloc_code_real_type offset_reloc[3]
1910 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 1911
df58fc94
RS
1912/* This is set to the resulting size of the instruction to be produced
1913 by mips16_ip if an explicit extension is used or by mips_ip if an
1914 explicit size is supplied. */
252b5132 1915
df58fc94 1916static unsigned int forced_insn_length;
252b5132 1917
e1b47bd5
RS
1918/* True if we are assembling an instruction. All dot symbols defined during
1919 this time should be treated as code labels. */
1920
1921static bfd_boolean mips_assembling_insn;
1922
ecb4347a
DJ
1923/* The pdr segment for per procedure frame/regmask info. Not used for
1924 ECOFF debugging. */
252b5132
RH
1925
1926static segT pdr_seg;
252b5132 1927
e013f690
TS
1928/* The default target format to use. */
1929
aeffff67
RS
1930#if defined (TE_FreeBSD)
1931#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1932#elif defined (TE_TMIPS)
1933#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1934#else
1935#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1936#endif
1937
e013f690 1938const char *
17a2f251 1939mips_target_format (void)
e013f690
TS
1940{
1941 switch (OUTPUT_FLAVOR)
1942 {
e013f690 1943 case bfd_target_elf_flavour:
0a44bf69
RS
1944#ifdef TE_VXWORKS
1945 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1946 return (target_big_endian
1947 ? "elf32-bigmips-vxworks"
1948 : "elf32-littlemips-vxworks");
1949#endif
e013f690 1950 return (target_big_endian
cfe86eaa 1951 ? (HAVE_64BIT_OBJECTS
aeffff67 1952 ? ELF_TARGET ("elf64-", "big")
cfe86eaa 1953 : (HAVE_NEWABI
aeffff67
RS
1954 ? ELF_TARGET ("elf32-n", "big")
1955 : ELF_TARGET ("elf32-", "big")))
cfe86eaa 1956 : (HAVE_64BIT_OBJECTS
aeffff67 1957 ? ELF_TARGET ("elf64-", "little")
cfe86eaa 1958 : (HAVE_NEWABI
aeffff67
RS
1959 ? ELF_TARGET ("elf32-n", "little")
1960 : ELF_TARGET ("elf32-", "little"))));
e013f690
TS
1961 default:
1962 abort ();
1963 return NULL;
1964 }
1965}
1966
c6278170
RS
1967/* Return the ISA revision that is currently in use, or 0 if we are
1968 generating code for MIPS V or below. */
1969
1970static int
1971mips_isa_rev (void)
1972{
1973 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1974 return 2;
1975
ae52f483
AB
1976 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1977 return 3;
1978
1979 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1980 return 5;
1981
7361da2c
AB
1982 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1983 return 6;
1984
c6278170
RS
1985 /* microMIPS implies revision 2 or above. */
1986 if (mips_opts.micromips)
1987 return 2;
1988
1989 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1990 return 1;
1991
1992 return 0;
1993}
1994
1995/* Return the mask of all ASEs that are revisions of those in FLAGS. */
1996
1997static unsigned int
1998mips_ase_mask (unsigned int flags)
1999{
2000 unsigned int i;
2001
2002 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2003 if (flags & mips_ase_groups[i])
2004 flags |= mips_ase_groups[i];
2005 return flags;
2006}
2007
2008/* Check whether the current ISA supports ASE. Issue a warning if
2009 appropriate. */
2010
2011static void
2012mips_check_isa_supports_ase (const struct mips_ase *ase)
2013{
2014 const char *base;
2015 int min_rev, size;
2016 static unsigned int warned_isa;
2017 static unsigned int warned_fp32;
2018
2019 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2020 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2021 else
2022 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2023 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2024 && (warned_isa & ase->flags) != ase->flags)
2025 {
2026 warned_isa |= ase->flags;
2027 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2028 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2029 if (min_rev < 0)
1661c76c 2030 as_warn (_("the %d-bit %s architecture does not support the"
c6278170
RS
2031 " `%s' extension"), size, base, ase->name);
2032 else
1661c76c 2033 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
c6278170
RS
2034 ase->name, base, size, min_rev);
2035 }
7361da2c
AB
2036 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2037 && (warned_isa & ase->flags) != ase->flags)
2038 {
2039 warned_isa |= ase->flags;
2040 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2041 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2042 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2043 ase->name, base, size, ase->rem_rev);
2044 }
2045
c6278170 2046 if ((ase->flags & FP64_ASES)
0b35dfee 2047 && mips_opts.fp != 64
c6278170
RS
2048 && (warned_fp32 & ase->flags) != ase->flags)
2049 {
2050 warned_fp32 |= ase->flags;
1661c76c 2051 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
c6278170
RS
2052 }
2053}
2054
2055/* Check all enabled ASEs to see whether they are supported by the
2056 chosen architecture. */
2057
2058static void
2059mips_check_isa_supports_ases (void)
2060{
2061 unsigned int i, mask;
2062
2063 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2064 {
2065 mask = mips_ase_mask (mips_ases[i].flags);
2066 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2067 mips_check_isa_supports_ase (&mips_ases[i]);
2068 }
2069}
2070
2071/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2072 that were affected. */
2073
2074static unsigned int
919731af 2075mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2076 bfd_boolean enabled_p)
c6278170
RS
2077{
2078 unsigned int mask;
2079
2080 mask = mips_ase_mask (ase->flags);
919731af 2081 opts->ase &= ~mask;
c6278170 2082 if (enabled_p)
919731af 2083 opts->ase |= ase->flags;
c6278170
RS
2084 return mask;
2085}
2086
2087/* Return the ASE called NAME, or null if none. */
2088
2089static const struct mips_ase *
2090mips_lookup_ase (const char *name)
2091{
2092 unsigned int i;
2093
2094 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2095 if (strcmp (name, mips_ases[i].name) == 0)
2096 return &mips_ases[i];
2097 return NULL;
2098}
2099
df58fc94 2100/* Return the length of a microMIPS instruction in bytes. If bits of
100b4f2e
MR
2101 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2102 otherwise it is a 32-bit instruction. */
df58fc94
RS
2103
2104static inline unsigned int
2105micromips_insn_length (const struct mips_opcode *mo)
2106{
2107 return (mo->mask >> 16) == 0 ? 2 : 4;
2108}
2109
5c04167a
RS
2110/* Return the length of MIPS16 instruction OPCODE. */
2111
2112static inline unsigned int
2113mips16_opcode_length (unsigned long opcode)
2114{
2115 return (opcode >> 16) == 0 ? 2 : 4;
2116}
2117
1e915849
RS
2118/* Return the length of instruction INSN. */
2119
2120static inline unsigned int
2121insn_length (const struct mips_cl_insn *insn)
2122{
df58fc94
RS
2123 if (mips_opts.micromips)
2124 return micromips_insn_length (insn->insn_mo);
2125 else if (mips_opts.mips16)
5c04167a 2126 return mips16_opcode_length (insn->insn_opcode);
df58fc94 2127 else
1e915849 2128 return 4;
1e915849
RS
2129}
2130
2131/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2132
2133static void
2134create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2135{
2136 size_t i;
2137
2138 insn->insn_mo = mo;
1e915849
RS
2139 insn->insn_opcode = mo->match;
2140 insn->frag = NULL;
2141 insn->where = 0;
2142 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2143 insn->fixp[i] = NULL;
2144 insn->fixed_p = (mips_opts.noreorder > 0);
2145 insn->noreorder_p = (mips_opts.noreorder > 0);
2146 insn->mips16_absolute_jump_p = 0;
15be625d 2147 insn->complete_p = 0;
e407c74b 2148 insn->cleared_p = 0;
1e915849
RS
2149}
2150
fc76e730
RS
2151/* Get a list of all the operands in INSN. */
2152
2153static const struct mips_operand_array *
2154insn_operands (const struct mips_cl_insn *insn)
2155{
2156 if (insn->insn_mo >= &mips_opcodes[0]
2157 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2158 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2159
2160 if (insn->insn_mo >= &mips16_opcodes[0]
2161 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2162 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2163
2164 if (insn->insn_mo >= &micromips_opcodes[0]
2165 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2166 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2167
2168 abort ();
2169}
2170
2171/* Get a description of operand OPNO of INSN. */
2172
2173static const struct mips_operand *
2174insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2175{
2176 const struct mips_operand_array *operands;
2177
2178 operands = insn_operands (insn);
2179 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2180 abort ();
2181 return operands->operand[opno];
2182}
2183
e077a1c8
RS
2184/* Install UVAL as the value of OPERAND in INSN. */
2185
2186static inline void
2187insn_insert_operand (struct mips_cl_insn *insn,
2188 const struct mips_operand *operand, unsigned int uval)
2189{
2190 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2191}
2192
fc76e730
RS
2193/* Extract the value of OPERAND from INSN. */
2194
2195static inline unsigned
2196insn_extract_operand (const struct mips_cl_insn *insn,
2197 const struct mips_operand *operand)
2198{
2199 return mips_extract_operand (operand, insn->insn_opcode);
2200}
2201
df58fc94 2202/* Record the current MIPS16/microMIPS mode in now_seg. */
742a56fe
RS
2203
2204static void
df58fc94 2205mips_record_compressed_mode (void)
742a56fe
RS
2206{
2207 segment_info_type *si;
2208
2209 si = seg_info (now_seg);
2210 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2211 si->tc_segment_info_data.mips16 = mips_opts.mips16;
df58fc94
RS
2212 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2213 si->tc_segment_info_data.micromips = mips_opts.micromips;
742a56fe
RS
2214}
2215
4d68580a
RS
2216/* Read a standard MIPS instruction from BUF. */
2217
2218static unsigned long
2219read_insn (char *buf)
2220{
2221 if (target_big_endian)
2222 return bfd_getb32 ((bfd_byte *) buf);
2223 else
2224 return bfd_getl32 ((bfd_byte *) buf);
2225}
2226
2227/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2228 the next byte. */
2229
2230static char *
2231write_insn (char *buf, unsigned int insn)
2232{
2233 md_number_to_chars (buf, insn, 4);
2234 return buf + 4;
2235}
2236
2237/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2238 has length LENGTH. */
2239
2240static unsigned long
2241read_compressed_insn (char *buf, unsigned int length)
2242{
2243 unsigned long insn;
2244 unsigned int i;
2245
2246 insn = 0;
2247 for (i = 0; i < length; i += 2)
2248 {
2249 insn <<= 16;
2250 if (target_big_endian)
2251 insn |= bfd_getb16 ((char *) buf);
2252 else
2253 insn |= bfd_getl16 ((char *) buf);
2254 buf += 2;
2255 }
2256 return insn;
2257}
2258
5c04167a
RS
2259/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2260 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2261
2262static char *
2263write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2264{
2265 unsigned int i;
2266
2267 for (i = 0; i < length; i += 2)
2268 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2269 return buf + length;
2270}
2271
1e915849
RS
2272/* Install INSN at the location specified by its "frag" and "where" fields. */
2273
2274static void
2275install_insn (const struct mips_cl_insn *insn)
2276{
2277 char *f = insn->frag->fr_literal + insn->where;
5c04167a
RS
2278 if (HAVE_CODE_COMPRESSION)
2279 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1e915849 2280 else
4d68580a 2281 write_insn (f, insn->insn_opcode);
df58fc94 2282 mips_record_compressed_mode ();
1e915849
RS
2283}
2284
2285/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2286 and install the opcode in the new location. */
2287
2288static void
2289move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2290{
2291 size_t i;
2292
2293 insn->frag = frag;
2294 insn->where = where;
2295 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2296 if (insn->fixp[i] != NULL)
2297 {
2298 insn->fixp[i]->fx_frag = frag;
2299 insn->fixp[i]->fx_where = where;
2300 }
2301 install_insn (insn);
2302}
2303
2304/* Add INSN to the end of the output. */
2305
2306static void
2307add_fixed_insn (struct mips_cl_insn *insn)
2308{
2309 char *f = frag_more (insn_length (insn));
2310 move_insn (insn, frag_now, f - frag_now->fr_literal);
2311}
2312
2313/* Start a variant frag and move INSN to the start of the variant part,
2314 marking it as fixed. The other arguments are as for frag_var. */
2315
2316static void
2317add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2318 relax_substateT subtype, symbolS *symbol, offsetT offset)
2319{
2320 frag_grow (max_chars);
2321 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2322 insn->fixed_p = 1;
2323 frag_var (rs_machine_dependent, max_chars, var,
2324 subtype, symbol, offset, NULL);
2325}
2326
2327/* Insert N copies of INSN into the history buffer, starting at
2328 position FIRST. Neither FIRST nor N need to be clipped. */
2329
2330static void
2331insert_into_history (unsigned int first, unsigned int n,
2332 const struct mips_cl_insn *insn)
2333{
2334 if (mips_relax.sequence != 2)
2335 {
2336 unsigned int i;
2337
2338 for (i = ARRAY_SIZE (history); i-- > first;)
2339 if (i >= first + n)
2340 history[i] = history[i - n];
2341 else
2342 history[i] = *insn;
2343 }
2344}
2345
e3de51ce
RS
2346/* Clear the error in insn_error. */
2347
2348static void
2349clear_insn_error (void)
2350{
2351 memset (&insn_error, 0, sizeof (insn_error));
2352}
2353
2354/* Possibly record error message MSG for the current instruction.
2355 If the error is about a particular argument, ARGNUM is the 1-based
2356 number of that argument, otherwise it is 0. FORMAT is the format
2357 of MSG. Return true if MSG was used, false if the current message
2358 was kept. */
2359
2360static bfd_boolean
2361set_insn_error_format (int argnum, enum mips_insn_error_format format,
2362 const char *msg)
2363{
2364 if (argnum == 0)
2365 {
2366 /* Give priority to errors against specific arguments, and to
2367 the first whole-instruction message. */
2368 if (insn_error.msg)
2369 return FALSE;
2370 }
2371 else
2372 {
2373 /* Keep insn_error if it is against a later argument. */
2374 if (argnum < insn_error.min_argnum)
2375 return FALSE;
2376
2377 /* If both errors are against the same argument but are different,
2378 give up on reporting a specific error for this argument.
2379 See the comment about mips_insn_error for details. */
2380 if (argnum == insn_error.min_argnum
2381 && insn_error.msg
2382 && strcmp (insn_error.msg, msg) != 0)
2383 {
2384 insn_error.msg = 0;
2385 insn_error.min_argnum += 1;
2386 return FALSE;
2387 }
2388 }
2389 insn_error.min_argnum = argnum;
2390 insn_error.format = format;
2391 insn_error.msg = msg;
2392 return TRUE;
2393}
2394
2395/* Record an instruction error with no % format fields. ARGNUM and MSG are
2396 as for set_insn_error_format. */
2397
2398static void
2399set_insn_error (int argnum, const char *msg)
2400{
2401 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2402}
2403
2404/* Record an instruction error with one %d field I. ARGNUM and MSG are
2405 as for set_insn_error_format. */
2406
2407static void
2408set_insn_error_i (int argnum, const char *msg, int i)
2409{
2410 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2411 insn_error.u.i = i;
2412}
2413
2414/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2415 are as for set_insn_error_format. */
2416
2417static void
2418set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2419{
2420 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2421 {
2422 insn_error.u.ss[0] = s1;
2423 insn_error.u.ss[1] = s2;
2424 }
2425}
2426
2427/* Report the error in insn_error, which is against assembly code STR. */
2428
2429static void
2430report_insn_error (const char *str)
2431{
e1fa0163 2432 const char *msg = concat (insn_error.msg, " `%s'", NULL);
e3de51ce 2433
e3de51ce
RS
2434 switch (insn_error.format)
2435 {
2436 case ERR_FMT_PLAIN:
2437 as_bad (msg, str);
2438 break;
2439
2440 case ERR_FMT_I:
2441 as_bad (msg, insn_error.u.i, str);
2442 break;
2443
2444 case ERR_FMT_SS:
2445 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2446 break;
2447 }
e1fa0163
NC
2448
2449 free ((char *) msg);
e3de51ce
RS
2450}
2451
71400594
RS
2452/* Initialize vr4120_conflicts. There is a bit of duplication here:
2453 the idea is to make it obvious at a glance that each errata is
2454 included. */
2455
2456static void
2457init_vr4120_conflicts (void)
2458{
2459#define CONFLICT(FIRST, SECOND) \
2460 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2461
2462 /* Errata 21 - [D]DIV[U] after [D]MACC */
2463 CONFLICT (MACC, DIV);
2464 CONFLICT (DMACC, DIV);
2465
2466 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2467 CONFLICT (DMULT, DMULT);
2468 CONFLICT (DMULT, DMACC);
2469 CONFLICT (DMACC, DMULT);
2470 CONFLICT (DMACC, DMACC);
2471
2472 /* Errata 24 - MT{LO,HI} after [D]MACC */
2473 CONFLICT (MACC, MTHILO);
2474 CONFLICT (DMACC, MTHILO);
2475
2476 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2477 instruction is executed immediately after a MACC or DMACC
2478 instruction, the result of [either instruction] is incorrect." */
2479 CONFLICT (MACC, MULT);
2480 CONFLICT (MACC, DMULT);
2481 CONFLICT (DMACC, MULT);
2482 CONFLICT (DMACC, DMULT);
2483
2484 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2485 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2486 DDIV or DDIVU instruction, the result of the MACC or
2487 DMACC instruction is incorrect.". */
2488 CONFLICT (DMULT, MACC);
2489 CONFLICT (DMULT, DMACC);
2490 CONFLICT (DIV, MACC);
2491 CONFLICT (DIV, DMACC);
2492
2493#undef CONFLICT
2494}
2495
707bfff6
TS
2496struct regname {
2497 const char *name;
2498 unsigned int num;
2499};
2500
14daeee3 2501#define RNUM_MASK 0x00000ff
56d438b1 2502#define RTYPE_MASK 0x0ffff00
14daeee3
RS
2503#define RTYPE_NUM 0x0000100
2504#define RTYPE_FPU 0x0000200
2505#define RTYPE_FCC 0x0000400
2506#define RTYPE_VEC 0x0000800
2507#define RTYPE_GP 0x0001000
2508#define RTYPE_CP0 0x0002000
2509#define RTYPE_PC 0x0004000
2510#define RTYPE_ACC 0x0008000
2511#define RTYPE_CCC 0x0010000
2512#define RTYPE_VI 0x0020000
2513#define RTYPE_VF 0x0040000
2514#define RTYPE_R5900_I 0x0080000
2515#define RTYPE_R5900_Q 0x0100000
2516#define RTYPE_R5900_R 0x0200000
2517#define RTYPE_R5900_ACC 0x0400000
56d438b1 2518#define RTYPE_MSA 0x0800000
14daeee3 2519#define RWARN 0x8000000
707bfff6
TS
2520
2521#define GENERIC_REGISTER_NUMBERS \
2522 {"$0", RTYPE_NUM | 0}, \
2523 {"$1", RTYPE_NUM | 1}, \
2524 {"$2", RTYPE_NUM | 2}, \
2525 {"$3", RTYPE_NUM | 3}, \
2526 {"$4", RTYPE_NUM | 4}, \
2527 {"$5", RTYPE_NUM | 5}, \
2528 {"$6", RTYPE_NUM | 6}, \
2529 {"$7", RTYPE_NUM | 7}, \
2530 {"$8", RTYPE_NUM | 8}, \
2531 {"$9", RTYPE_NUM | 9}, \
2532 {"$10", RTYPE_NUM | 10}, \
2533 {"$11", RTYPE_NUM | 11}, \
2534 {"$12", RTYPE_NUM | 12}, \
2535 {"$13", RTYPE_NUM | 13}, \
2536 {"$14", RTYPE_NUM | 14}, \
2537 {"$15", RTYPE_NUM | 15}, \
2538 {"$16", RTYPE_NUM | 16}, \
2539 {"$17", RTYPE_NUM | 17}, \
2540 {"$18", RTYPE_NUM | 18}, \
2541 {"$19", RTYPE_NUM | 19}, \
2542 {"$20", RTYPE_NUM | 20}, \
2543 {"$21", RTYPE_NUM | 21}, \
2544 {"$22", RTYPE_NUM | 22}, \
2545 {"$23", RTYPE_NUM | 23}, \
2546 {"$24", RTYPE_NUM | 24}, \
2547 {"$25", RTYPE_NUM | 25}, \
2548 {"$26", RTYPE_NUM | 26}, \
2549 {"$27", RTYPE_NUM | 27}, \
2550 {"$28", RTYPE_NUM | 28}, \
2551 {"$29", RTYPE_NUM | 29}, \
2552 {"$30", RTYPE_NUM | 30}, \
3739860c 2553 {"$31", RTYPE_NUM | 31}
707bfff6
TS
2554
2555#define FPU_REGISTER_NAMES \
2556 {"$f0", RTYPE_FPU | 0}, \
2557 {"$f1", RTYPE_FPU | 1}, \
2558 {"$f2", RTYPE_FPU | 2}, \
2559 {"$f3", RTYPE_FPU | 3}, \
2560 {"$f4", RTYPE_FPU | 4}, \
2561 {"$f5", RTYPE_FPU | 5}, \
2562 {"$f6", RTYPE_FPU | 6}, \
2563 {"$f7", RTYPE_FPU | 7}, \
2564 {"$f8", RTYPE_FPU | 8}, \
2565 {"$f9", RTYPE_FPU | 9}, \
2566 {"$f10", RTYPE_FPU | 10}, \
2567 {"$f11", RTYPE_FPU | 11}, \
2568 {"$f12", RTYPE_FPU | 12}, \
2569 {"$f13", RTYPE_FPU | 13}, \
2570 {"$f14", RTYPE_FPU | 14}, \
2571 {"$f15", RTYPE_FPU | 15}, \
2572 {"$f16", RTYPE_FPU | 16}, \
2573 {"$f17", RTYPE_FPU | 17}, \
2574 {"$f18", RTYPE_FPU | 18}, \
2575 {"$f19", RTYPE_FPU | 19}, \
2576 {"$f20", RTYPE_FPU | 20}, \
2577 {"$f21", RTYPE_FPU | 21}, \
2578 {"$f22", RTYPE_FPU | 22}, \
2579 {"$f23", RTYPE_FPU | 23}, \
2580 {"$f24", RTYPE_FPU | 24}, \
2581 {"$f25", RTYPE_FPU | 25}, \
2582 {"$f26", RTYPE_FPU | 26}, \
2583 {"$f27", RTYPE_FPU | 27}, \
2584 {"$f28", RTYPE_FPU | 28}, \
2585 {"$f29", RTYPE_FPU | 29}, \
2586 {"$f30", RTYPE_FPU | 30}, \
2587 {"$f31", RTYPE_FPU | 31}
2588
2589#define FPU_CONDITION_CODE_NAMES \
2590 {"$fcc0", RTYPE_FCC | 0}, \
2591 {"$fcc1", RTYPE_FCC | 1}, \
2592 {"$fcc2", RTYPE_FCC | 2}, \
2593 {"$fcc3", RTYPE_FCC | 3}, \
2594 {"$fcc4", RTYPE_FCC | 4}, \
2595 {"$fcc5", RTYPE_FCC | 5}, \
2596 {"$fcc6", RTYPE_FCC | 6}, \
2597 {"$fcc7", RTYPE_FCC | 7}
2598
2599#define COPROC_CONDITION_CODE_NAMES \
2600 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2601 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2602 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2603 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2604 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2605 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2606 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2607 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2608
2609#define N32N64_SYMBOLIC_REGISTER_NAMES \
2610 {"$a4", RTYPE_GP | 8}, \
2611 {"$a5", RTYPE_GP | 9}, \
2612 {"$a6", RTYPE_GP | 10}, \
2613 {"$a7", RTYPE_GP | 11}, \
2614 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2615 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2616 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2617 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2618 {"$t0", RTYPE_GP | 12}, \
2619 {"$t1", RTYPE_GP | 13}, \
2620 {"$t2", RTYPE_GP | 14}, \
2621 {"$t3", RTYPE_GP | 15}
2622
2623#define O32_SYMBOLIC_REGISTER_NAMES \
2624 {"$t0", RTYPE_GP | 8}, \
2625 {"$t1", RTYPE_GP | 9}, \
2626 {"$t2", RTYPE_GP | 10}, \
2627 {"$t3", RTYPE_GP | 11}, \
2628 {"$t4", RTYPE_GP | 12}, \
2629 {"$t5", RTYPE_GP | 13}, \
2630 {"$t6", RTYPE_GP | 14}, \
2631 {"$t7", RTYPE_GP | 15}, \
2632 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2633 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2634 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
3739860c 2635 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
707bfff6
TS
2636
2637/* Remaining symbolic register names */
2638#define SYMBOLIC_REGISTER_NAMES \
2639 {"$zero", RTYPE_GP | 0}, \
2640 {"$at", RTYPE_GP | 1}, \
2641 {"$AT", RTYPE_GP | 1}, \
2642 {"$v0", RTYPE_GP | 2}, \
2643 {"$v1", RTYPE_GP | 3}, \
2644 {"$a0", RTYPE_GP | 4}, \
2645 {"$a1", RTYPE_GP | 5}, \
2646 {"$a2", RTYPE_GP | 6}, \
2647 {"$a3", RTYPE_GP | 7}, \
2648 {"$s0", RTYPE_GP | 16}, \
2649 {"$s1", RTYPE_GP | 17}, \
2650 {"$s2", RTYPE_GP | 18}, \
2651 {"$s3", RTYPE_GP | 19}, \
2652 {"$s4", RTYPE_GP | 20}, \
2653 {"$s5", RTYPE_GP | 21}, \
2654 {"$s6", RTYPE_GP | 22}, \
2655 {"$s7", RTYPE_GP | 23}, \
2656 {"$t8", RTYPE_GP | 24}, \
2657 {"$t9", RTYPE_GP | 25}, \
2658 {"$k0", RTYPE_GP | 26}, \
2659 {"$kt0", RTYPE_GP | 26}, \
2660 {"$k1", RTYPE_GP | 27}, \
2661 {"$kt1", RTYPE_GP | 27}, \
2662 {"$gp", RTYPE_GP | 28}, \
2663 {"$sp", RTYPE_GP | 29}, \
2664 {"$s8", RTYPE_GP | 30}, \
2665 {"$fp", RTYPE_GP | 30}, \
2666 {"$ra", RTYPE_GP | 31}
2667
2668#define MIPS16_SPECIAL_REGISTER_NAMES \
2669 {"$pc", RTYPE_PC | 0}
2670
2671#define MDMX_VECTOR_REGISTER_NAMES \
2672 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2673 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2674 {"$v2", RTYPE_VEC | 2}, \
2675 {"$v3", RTYPE_VEC | 3}, \
2676 {"$v4", RTYPE_VEC | 4}, \
2677 {"$v5", RTYPE_VEC | 5}, \
2678 {"$v6", RTYPE_VEC | 6}, \
2679 {"$v7", RTYPE_VEC | 7}, \
2680 {"$v8", RTYPE_VEC | 8}, \
2681 {"$v9", RTYPE_VEC | 9}, \
2682 {"$v10", RTYPE_VEC | 10}, \
2683 {"$v11", RTYPE_VEC | 11}, \
2684 {"$v12", RTYPE_VEC | 12}, \
2685 {"$v13", RTYPE_VEC | 13}, \
2686 {"$v14", RTYPE_VEC | 14}, \
2687 {"$v15", RTYPE_VEC | 15}, \
2688 {"$v16", RTYPE_VEC | 16}, \
2689 {"$v17", RTYPE_VEC | 17}, \
2690 {"$v18", RTYPE_VEC | 18}, \
2691 {"$v19", RTYPE_VEC | 19}, \
2692 {"$v20", RTYPE_VEC | 20}, \
2693 {"$v21", RTYPE_VEC | 21}, \
2694 {"$v22", RTYPE_VEC | 22}, \
2695 {"$v23", RTYPE_VEC | 23}, \
2696 {"$v24", RTYPE_VEC | 24}, \
2697 {"$v25", RTYPE_VEC | 25}, \
2698 {"$v26", RTYPE_VEC | 26}, \
2699 {"$v27", RTYPE_VEC | 27}, \
2700 {"$v28", RTYPE_VEC | 28}, \
2701 {"$v29", RTYPE_VEC | 29}, \
2702 {"$v30", RTYPE_VEC | 30}, \
2703 {"$v31", RTYPE_VEC | 31}
2704
14daeee3
RS
2705#define R5900_I_NAMES \
2706 {"$I", RTYPE_R5900_I | 0}
2707
2708#define R5900_Q_NAMES \
2709 {"$Q", RTYPE_R5900_Q | 0}
2710
2711#define R5900_R_NAMES \
2712 {"$R", RTYPE_R5900_R | 0}
2713
2714#define R5900_ACC_NAMES \
2715 {"$ACC", RTYPE_R5900_ACC | 0 }
2716
707bfff6
TS
2717#define MIPS_DSP_ACCUMULATOR_NAMES \
2718 {"$ac0", RTYPE_ACC | 0}, \
2719 {"$ac1", RTYPE_ACC | 1}, \
2720 {"$ac2", RTYPE_ACC | 2}, \
2721 {"$ac3", RTYPE_ACC | 3}
2722
2723static const struct regname reg_names[] = {
2724 GENERIC_REGISTER_NUMBERS,
2725 FPU_REGISTER_NAMES,
2726 FPU_CONDITION_CODE_NAMES,
2727 COPROC_CONDITION_CODE_NAMES,
2728
2729 /* The $txx registers depends on the abi,
2730 these will be added later into the symbol table from
3739860c 2731 one of the tables below once mips_abi is set after
707bfff6
TS
2732 parsing of arguments from the command line. */
2733 SYMBOLIC_REGISTER_NAMES,
2734
2735 MIPS16_SPECIAL_REGISTER_NAMES,
2736 MDMX_VECTOR_REGISTER_NAMES,
14daeee3
RS
2737 R5900_I_NAMES,
2738 R5900_Q_NAMES,
2739 R5900_R_NAMES,
2740 R5900_ACC_NAMES,
707bfff6
TS
2741 MIPS_DSP_ACCUMULATOR_NAMES,
2742 {0, 0}
2743};
2744
2745static const struct regname reg_names_o32[] = {
2746 O32_SYMBOLIC_REGISTER_NAMES,
2747 {0, 0}
2748};
2749
2750static const struct regname reg_names_n32n64[] = {
2751 N32N64_SYMBOLIC_REGISTER_NAMES,
2752 {0, 0}
2753};
2754
a92713e6
RS
2755/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2756 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2757 of these register symbols, return the associated vector register,
2758 otherwise return SYMVAL itself. */
df58fc94 2759
a92713e6
RS
2760static unsigned int
2761mips_prefer_vec_regno (unsigned int symval)
707bfff6 2762{
a92713e6
RS
2763 if ((symval & -2) == (RTYPE_GP | 2))
2764 return RTYPE_VEC | (symval & 1);
2765 return symval;
2766}
2767
14daeee3
RS
2768/* Return true if string [S, E) is a valid register name, storing its
2769 symbol value in *SYMVAL_PTR if so. */
a92713e6
RS
2770
2771static bfd_boolean
14daeee3 2772mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
a92713e6 2773{
707bfff6 2774 char save_c;
14daeee3 2775 symbolS *symbol;
707bfff6
TS
2776
2777 /* Terminate name. */
2778 save_c = *e;
2779 *e = '\0';
2780
a92713e6
RS
2781 /* Look up the name. */
2782 symbol = symbol_find (s);
2783 *e = save_c;
2784
2785 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2786 return FALSE;
2787
14daeee3
RS
2788 *symval_ptr = S_GET_VALUE (symbol);
2789 return TRUE;
2790}
2791
2792/* Return true if the string at *SPTR is a valid register name. Allow it
2793 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2794 is nonnull.
2795
2796 When returning true, move *SPTR past the register, store the
2797 register's symbol value in *SYMVAL_PTR and the channel mask in
2798 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2799 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2800 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2801
2802static bfd_boolean
2803mips_parse_register (char **sptr, unsigned int *symval_ptr,
2804 unsigned int *channels_ptr)
2805{
2806 char *s, *e, *m;
2807 const char *q;
2808 unsigned int channels, symval, bit;
2809
2810 /* Find end of name. */
2811 s = e = *sptr;
2812 if (is_name_beginner (*e))
2813 ++e;
2814 while (is_part_of_name (*e))
2815 ++e;
2816
2817 channels = 0;
2818 if (!mips_parse_register_1 (s, e, &symval))
2819 {
2820 if (!channels_ptr)
2821 return FALSE;
2822
2823 /* Eat characters from the end of the string that are valid
2824 channel suffixes. The preceding register must be $ACC or
2825 end with a digit, so there is no ambiguity. */
2826 bit = 1;
2827 m = e;
2828 for (q = "wzyx"; *q; q++, bit <<= 1)
2829 if (m > s && m[-1] == *q)
2830 {
2831 --m;
2832 channels |= bit;
2833 }
2834
2835 if (channels == 0
2836 || !mips_parse_register_1 (s, m, &symval)
2837 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2838 return FALSE;
2839 }
2840
a92713e6 2841 *sptr = e;
14daeee3
RS
2842 *symval_ptr = symval;
2843 if (channels_ptr)
2844 *channels_ptr = channels;
a92713e6
RS
2845 return TRUE;
2846}
2847
2848/* Check if SPTR points at a valid register specifier according to TYPES.
2849 If so, then return 1, advance S to consume the specifier and store
2850 the register's number in REGNOP, otherwise return 0. */
2851
2852static int
2853reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2854{
2855 unsigned int regno;
2856
14daeee3 2857 if (mips_parse_register (s, &regno, NULL))
707bfff6 2858 {
a92713e6
RS
2859 if (types & RTYPE_VEC)
2860 regno = mips_prefer_vec_regno (regno);
2861 if (regno & types)
2862 regno &= RNUM_MASK;
2863 else
2864 regno = ~0;
707bfff6 2865 }
a92713e6 2866 else
707bfff6 2867 {
a92713e6 2868 if (types & RWARN)
1661c76c 2869 as_warn (_("unrecognized register name `%s'"), *s);
a92713e6 2870 regno = ~0;
707bfff6 2871 }
707bfff6 2872 if (regnop)
a92713e6
RS
2873 *regnop = regno;
2874 return regno <= RNUM_MASK;
707bfff6
TS
2875}
2876
14daeee3
RS
2877/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2878 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2879
2880static char *
2881mips_parse_vu0_channels (char *s, unsigned int *channels)
2882{
2883 unsigned int i;
2884
2885 *channels = 0;
2886 for (i = 0; i < 4; i++)
2887 if (*s == "xyzw"[i])
2888 {
2889 *channels |= 1 << (3 - i);
2890 ++s;
2891 }
2892 return s;
2893}
2894
a92713e6
RS
2895/* Token types for parsed operand lists. */
2896enum mips_operand_token_type {
2897 /* A plain register, e.g. $f2. */
2898 OT_REG,
df58fc94 2899
14daeee3
RS
2900 /* A 4-bit XYZW channel mask. */
2901 OT_CHANNELS,
2902
56d438b1
CF
2903 /* A constant vector index, e.g. [1]. */
2904 OT_INTEGER_INDEX,
2905
2906 /* A register vector index, e.g. [$2]. */
2907 OT_REG_INDEX,
df58fc94 2908
a92713e6
RS
2909 /* A continuous range of registers, e.g. $s0-$s4. */
2910 OT_REG_RANGE,
2911
2912 /* A (possibly relocated) expression. */
2913 OT_INTEGER,
2914
2915 /* A floating-point value. */
2916 OT_FLOAT,
2917
2918 /* A single character. This can be '(', ')' or ',', but '(' only appears
2919 before OT_REGs. */
2920 OT_CHAR,
2921
14daeee3
RS
2922 /* A doubled character, either "--" or "++". */
2923 OT_DOUBLE_CHAR,
2924
a92713e6
RS
2925 /* The end of the operand list. */
2926 OT_END
2927};
2928
2929/* A parsed operand token. */
2930struct mips_operand_token
2931{
2932 /* The type of token. */
2933 enum mips_operand_token_type type;
2934 union
2935 {
56d438b1 2936 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
a92713e6
RS
2937 unsigned int regno;
2938
14daeee3
RS
2939 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2940 unsigned int channels;
2941
56d438b1
CF
2942 /* The integer value of an OT_INTEGER_INDEX. */
2943 addressT index;
a92713e6
RS
2944
2945 /* The two register symbol values involved in an OT_REG_RANGE. */
2946 struct {
2947 unsigned int regno1;
2948 unsigned int regno2;
2949 } reg_range;
2950
2951 /* The value of an OT_INTEGER. The value is represented as an
2952 expression and the relocation operators that were applied to
2953 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2954 relocation operators were used. */
2955 struct {
2956 expressionS value;
2957 bfd_reloc_code_real_type relocs[3];
2958 } integer;
2959
2960 /* The binary data for an OT_FLOAT constant, and the number of bytes
2961 in the constant. */
2962 struct {
2963 unsigned char data[8];
2964 int length;
2965 } flt;
2966
14daeee3 2967 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
a92713e6
RS
2968 char ch;
2969 } u;
2970};
2971
2972/* An obstack used to construct lists of mips_operand_tokens. */
2973static struct obstack mips_operand_tokens;
2974
2975/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2976
2977static void
2978mips_add_token (struct mips_operand_token *token,
2979 enum mips_operand_token_type type)
2980{
2981 token->type = type;
2982 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2983}
2984
2985/* Check whether S is '(' followed by a register name. Add OT_CHAR
2986 and OT_REG tokens for them if so, and return a pointer to the first
2987 unconsumed character. Return null otherwise. */
2988
2989static char *
2990mips_parse_base_start (char *s)
2991{
2992 struct mips_operand_token token;
14daeee3
RS
2993 unsigned int regno, channels;
2994 bfd_boolean decrement_p;
df58fc94 2995
a92713e6
RS
2996 if (*s != '(')
2997 return 0;
2998
2999 ++s;
3000 SKIP_SPACE_TABS (s);
14daeee3
RS
3001
3002 /* Only match "--" as part of a base expression. In other contexts "--X"
3003 is a double negative. */
3004 decrement_p = (s[0] == '-' && s[1] == '-');
3005 if (decrement_p)
3006 {
3007 s += 2;
3008 SKIP_SPACE_TABS (s);
3009 }
3010
3011 /* Allow a channel specifier because that leads to better error messages
3012 than treating something like "$vf0x++" as an expression. */
3013 if (!mips_parse_register (&s, &regno, &channels))
a92713e6
RS
3014 return 0;
3015
3016 token.u.ch = '(';
3017 mips_add_token (&token, OT_CHAR);
3018
14daeee3
RS
3019 if (decrement_p)
3020 {
3021 token.u.ch = '-';
3022 mips_add_token (&token, OT_DOUBLE_CHAR);
3023 }
3024
a92713e6
RS
3025 token.u.regno = regno;
3026 mips_add_token (&token, OT_REG);
3027
14daeee3
RS
3028 if (channels)
3029 {
3030 token.u.channels = channels;
3031 mips_add_token (&token, OT_CHANNELS);
3032 }
3033
3034 /* For consistency, only match "++" as part of base expressions too. */
3035 SKIP_SPACE_TABS (s);
3036 if (s[0] == '+' && s[1] == '+')
3037 {
3038 s += 2;
3039 token.u.ch = '+';
3040 mips_add_token (&token, OT_DOUBLE_CHAR);
3041 }
3042
a92713e6
RS
3043 return s;
3044}
3045
3046/* Parse one or more tokens from S. Return a pointer to the first
3047 unconsumed character on success. Return null if an error was found
3048 and store the error text in insn_error. FLOAT_FORMAT is as for
3049 mips_parse_arguments. */
3050
3051static char *
3052mips_parse_argument_token (char *s, char float_format)
3053{
6d4af3c2
AM
3054 char *end, *save_in;
3055 const char *err;
14daeee3 3056 unsigned int regno1, regno2, channels;
a92713e6
RS
3057 struct mips_operand_token token;
3058
3059 /* First look for "($reg", since we want to treat that as an
3060 OT_CHAR and OT_REG rather than an expression. */
3061 end = mips_parse_base_start (s);
3062 if (end)
3063 return end;
3064
3065 /* Handle other characters that end up as OT_CHARs. */
3066 if (*s == ')' || *s == ',')
3067 {
3068 token.u.ch = *s;
3069 mips_add_token (&token, OT_CHAR);
3070 ++s;
3071 return s;
3072 }
3073
3074 /* Handle tokens that start with a register. */
14daeee3 3075 if (mips_parse_register (&s, &regno1, &channels))
df58fc94 3076 {
14daeee3
RS
3077 if (channels)
3078 {
3079 /* A register and a VU0 channel suffix. */
3080 token.u.regno = regno1;
3081 mips_add_token (&token, OT_REG);
3082
3083 token.u.channels = channels;
3084 mips_add_token (&token, OT_CHANNELS);
3085 return s;
3086 }
3087
a92713e6
RS
3088 SKIP_SPACE_TABS (s);
3089 if (*s == '-')
df58fc94 3090 {
a92713e6
RS
3091 /* A register range. */
3092 ++s;
3093 SKIP_SPACE_TABS (s);
14daeee3 3094 if (!mips_parse_register (&s, &regno2, NULL))
a92713e6 3095 {
1661c76c 3096 set_insn_error (0, _("invalid register range"));
a92713e6
RS
3097 return 0;
3098 }
df58fc94 3099
a92713e6
RS
3100 token.u.reg_range.regno1 = regno1;
3101 token.u.reg_range.regno2 = regno2;
3102 mips_add_token (&token, OT_REG_RANGE);
3103 return s;
3104 }
a92713e6 3105
56d438b1
CF
3106 /* Add the register itself. */
3107 token.u.regno = regno1;
3108 mips_add_token (&token, OT_REG);
3109
3110 /* Check for a vector index. */
3111 if (*s == '[')
3112 {
a92713e6
RS
3113 ++s;
3114 SKIP_SPACE_TABS (s);
56d438b1
CF
3115 if (mips_parse_register (&s, &token.u.regno, NULL))
3116 mips_add_token (&token, OT_REG_INDEX);
3117 else
a92713e6 3118 {
56d438b1
CF
3119 expressionS element;
3120
3121 my_getExpression (&element, s);
3122 if (element.X_op != O_constant)
3123 {
3124 set_insn_error (0, _("vector element must be constant"));
3125 return 0;
3126 }
3127 s = expr_end;
3128 token.u.index = element.X_add_number;
3129 mips_add_token (&token, OT_INTEGER_INDEX);
a92713e6 3130 }
a92713e6
RS
3131 SKIP_SPACE_TABS (s);
3132 if (*s != ']')
3133 {
1661c76c 3134 set_insn_error (0, _("missing `]'"));
a92713e6
RS
3135 return 0;
3136 }
3137 ++s;
df58fc94 3138 }
a92713e6 3139 return s;
df58fc94
RS
3140 }
3141
a92713e6
RS
3142 if (float_format)
3143 {
3144 /* First try to treat expressions as floats. */
3145 save_in = input_line_pointer;
3146 input_line_pointer = s;
3147 err = md_atof (float_format, (char *) token.u.flt.data,
3148 &token.u.flt.length);
3149 end = input_line_pointer;
3150 input_line_pointer = save_in;
3151 if (err && *err)
3152 {
e3de51ce 3153 set_insn_error (0, err);
a92713e6
RS
3154 return 0;
3155 }
3156 if (s != end)
3157 {
3158 mips_add_token (&token, OT_FLOAT);
3159 return end;
3160 }
3161 }
3162
3163 /* Treat everything else as an integer expression. */
3164 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3165 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3166 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3167 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3168 s = expr_end;
3169 mips_add_token (&token, OT_INTEGER);
3170 return s;
3171}
3172
3173/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3174 if expressions should be treated as 32-bit floating-point constants,
3175 'd' if they should be treated as 64-bit floating-point constants,
3176 or 0 if they should be treated as integer expressions (the usual case).
3177
3178 Return a list of tokens on success, otherwise return 0. The caller
3179 must obstack_free the list after use. */
3180
3181static struct mips_operand_token *
3182mips_parse_arguments (char *s, char float_format)
3183{
3184 struct mips_operand_token token;
3185
3186 SKIP_SPACE_TABS (s);
3187 while (*s)
3188 {
3189 s = mips_parse_argument_token (s, float_format);
3190 if (!s)
3191 {
3192 obstack_free (&mips_operand_tokens,
3193 obstack_finish (&mips_operand_tokens));
3194 return 0;
3195 }
3196 SKIP_SPACE_TABS (s);
3197 }
3198 mips_add_token (&token, OT_END);
3199 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
df58fc94
RS
3200}
3201
d301a56b
RS
3202/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3203 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
037b32b9
AN
3204
3205static bfd_boolean
f79e2745 3206is_opcode_valid (const struct mips_opcode *mo)
037b32b9
AN
3207{
3208 int isa = mips_opts.isa;
846ef2d0 3209 int ase = mips_opts.ase;
037b32b9 3210 int fp_s, fp_d;
c6278170 3211 unsigned int i;
037b32b9 3212
c6278170
RS
3213 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3214 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3215 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3216 ase |= mips_ases[i].flags64;
037b32b9 3217
d301a56b 3218 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
037b32b9
AN
3219 return FALSE;
3220
3221 /* Check whether the instruction or macro requires single-precision or
3222 double-precision floating-point support. Note that this information is
3223 stored differently in the opcode table for insns and macros. */
3224 if (mo->pinfo == INSN_MACRO)
3225 {
3226 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3227 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3228 }
3229 else
3230 {
3231 fp_s = mo->pinfo & FP_S;
3232 fp_d = mo->pinfo & FP_D;
3233 }
3234
3235 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3236 return FALSE;
3237
3238 if (fp_s && mips_opts.soft_float)
3239 return FALSE;
3240
3241 return TRUE;
3242}
3243
3244/* Return TRUE if the MIPS16 opcode MO is valid on the currently
3245 selected ISA and architecture. */
3246
3247static bfd_boolean
3248is_opcode_valid_16 (const struct mips_opcode *mo)
3249{
d301a56b 3250 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
037b32b9
AN
3251}
3252
df58fc94
RS
3253/* Return TRUE if the size of the microMIPS opcode MO matches one
3254 explicitly requested. Always TRUE in the standard MIPS mode. */
3255
3256static bfd_boolean
3257is_size_valid (const struct mips_opcode *mo)
3258{
3259 if (!mips_opts.micromips)
3260 return TRUE;
3261
833794fc
MR
3262 if (mips_opts.insn32)
3263 {
3264 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3265 return FALSE;
3266 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3267 return FALSE;
3268 }
df58fc94
RS
3269 if (!forced_insn_length)
3270 return TRUE;
3271 if (mo->pinfo == INSN_MACRO)
3272 return FALSE;
3273 return forced_insn_length == micromips_insn_length (mo);
3274}
3275
3276/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
e64af278
MR
3277 of the preceding instruction. Always TRUE in the standard MIPS mode.
3278
3279 We don't accept macros in 16-bit delay slots to avoid a case where
3280 a macro expansion fails because it relies on a preceding 32-bit real
3281 instruction to have matched and does not handle the operands correctly.
3282 The only macros that may expand to 16-bit instructions are JAL that
3283 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3284 and BGT (that likewise cannot be placed in a delay slot) that decay to
3285 a NOP. In all these cases the macros precede any corresponding real
3286 instruction definitions in the opcode table, so they will match in the
3287 second pass where the size of the delay slot is ignored and therefore
3288 produce correct code. */
df58fc94
RS
3289
3290static bfd_boolean
3291is_delay_slot_valid (const struct mips_opcode *mo)
3292{
3293 if (!mips_opts.micromips)
3294 return TRUE;
3295
3296 if (mo->pinfo == INSN_MACRO)
c06dec14 3297 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
df58fc94
RS
3298 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3299 && micromips_insn_length (mo) != 4)
3300 return FALSE;
3301 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3302 && micromips_insn_length (mo) != 2)
3303 return FALSE;
3304
3305 return TRUE;
3306}
3307
fc76e730
RS
3308/* For consistency checking, verify that all bits of OPCODE are specified
3309 either by the match/mask part of the instruction definition, or by the
3310 operand list. Also build up a list of operands in OPERANDS.
3311
3312 INSN_BITS says which bits of the instruction are significant.
3313 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3314 provides the mips_operand description of each operand. DECODE_OPERAND
3315 is null for MIPS16 instructions. */
ab902481
RS
3316
3317static int
3318validate_mips_insn (const struct mips_opcode *opcode,
3319 unsigned long insn_bits,
fc76e730
RS
3320 const struct mips_operand *(*decode_operand) (const char *),
3321 struct mips_operand_array *operands)
ab902481
RS
3322{
3323 const char *s;
fc76e730 3324 unsigned long used_bits, doubled, undefined, opno, mask;
ab902481
RS
3325 const struct mips_operand *operand;
3326
fc76e730
RS
3327 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3328 if ((mask & opcode->match) != opcode->match)
ab902481
RS
3329 {
3330 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3331 opcode->name, opcode->args);
3332 return 0;
3333 }
3334 used_bits = 0;
fc76e730 3335 opno = 0;
14daeee3
RS
3336 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3337 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
ab902481
RS
3338 for (s = opcode->args; *s; ++s)
3339 switch (*s)
3340 {
3341 case ',':
3342 case '(':
3343 case ')':
3344 break;
3345
14daeee3
RS
3346 case '#':
3347 s++;
3348 break;
3349
ab902481 3350 default:
fc76e730
RS
3351 if (!decode_operand)
3352 operand = decode_mips16_operand (*s, FALSE);
3353 else
3354 operand = decode_operand (s);
3355 if (!operand && opcode->pinfo != INSN_MACRO)
ab902481
RS
3356 {
3357 as_bad (_("internal: unknown operand type: %s %s"),
3358 opcode->name, opcode->args);
3359 return 0;
3360 }
fc76e730
RS
3361 gas_assert (opno < MAX_OPERANDS);
3362 operands->operand[opno] = operand;
14daeee3 3363 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
fc76e730 3364 {
14daeee3 3365 used_bits = mips_insert_operand (operand, used_bits, -1);
fc76e730
RS
3366 if (operand->type == OP_MDMX_IMM_REG)
3367 /* Bit 5 is the format selector (OB vs QH). The opcode table
3368 has separate entries for each format. */
3369 used_bits &= ~(1 << (operand->lsb + 5));
3370 if (operand->type == OP_ENTRY_EXIT_LIST)
3371 used_bits &= ~(mask & 0x700);
3372 }
ab902481 3373 /* Skip prefix characters. */
7361da2c 3374 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
ab902481 3375 ++s;
fc76e730 3376 opno += 1;
ab902481
RS
3377 break;
3378 }
fc76e730 3379 doubled = used_bits & mask & insn_bits;
ab902481
RS
3380 if (doubled)
3381 {
3382 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3383 " %s %s"), doubled, opcode->name, opcode->args);
3384 return 0;
3385 }
fc76e730 3386 used_bits |= mask;
ab902481 3387 undefined = ~used_bits & insn_bits;
fc76e730 3388 if (opcode->pinfo != INSN_MACRO && undefined)
ab902481
RS
3389 {
3390 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3391 undefined, opcode->name, opcode->args);
3392 return 0;
3393 }
3394 used_bits &= ~insn_bits;
3395 if (used_bits)
3396 {
3397 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3398 used_bits, opcode->name, opcode->args);
3399 return 0;
3400 }
3401 return 1;
3402}
3403
fc76e730
RS
3404/* The MIPS16 version of validate_mips_insn. */
3405
3406static int
3407validate_mips16_insn (const struct mips_opcode *opcode,
3408 struct mips_operand_array *operands)
3409{
3410 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3411 {
3412 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3413 instruction. Use TMP to describe the full instruction. */
3414 struct mips_opcode tmp;
3415
3416 tmp = *opcode;
3417 tmp.match <<= 16;
3418 tmp.mask <<= 16;
3419 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3420 }
3421 return validate_mips_insn (opcode, 0xffff, 0, operands);
3422}
3423
ab902481
RS
3424/* The microMIPS version of validate_mips_insn. */
3425
3426static int
fc76e730
RS
3427validate_micromips_insn (const struct mips_opcode *opc,
3428 struct mips_operand_array *operands)
ab902481
RS
3429{
3430 unsigned long insn_bits;
3431 unsigned long major;
3432 unsigned int length;
3433
fc76e730
RS
3434 if (opc->pinfo == INSN_MACRO)
3435 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3436 operands);
3437
ab902481
RS
3438 length = micromips_insn_length (opc);
3439 if (length != 2 && length != 4)
3440 {
1661c76c 3441 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
ab902481
RS
3442 "%s %s"), length, opc->name, opc->args);
3443 return 0;
3444 }
3445 major = opc->match >> (10 + 8 * (length - 2));
3446 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3447 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3448 {
1661c76c 3449 as_bad (_("internal error: bad microMIPS opcode "
ab902481
RS
3450 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3451 return 0;
3452 }
3453
3454 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3455 insn_bits = 1 << 4 * length;
3456 insn_bits <<= 4 * length;
3457 insn_bits -= 1;
fc76e730
RS
3458 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3459 operands);
ab902481
RS
3460}
3461
707bfff6
TS
3462/* This function is called once, at assembler startup time. It should set up
3463 all the tables, etc. that the MD part of the assembler will need. */
156c2f8b 3464
252b5132 3465void
17a2f251 3466md_begin (void)
252b5132 3467{
3994f87e 3468 const char *retval = NULL;
156c2f8b 3469 int i = 0;
252b5132 3470 int broken = 0;
1f25f5d3 3471
0a44bf69
RS
3472 if (mips_pic != NO_PIC)
3473 {
3474 if (g_switch_seen && g_switch_value != 0)
3475 as_bad (_("-G may not be used in position-independent code"));
3476 g_switch_value = 0;
3477 }
00acd688
CM
3478 else if (mips_abicalls)
3479 {
3480 if (g_switch_seen && g_switch_value != 0)
3481 as_bad (_("-G may not be used with abicalls"));
3482 g_switch_value = 0;
3483 }
0a44bf69 3484
0b35dfee 3485 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
1661c76c 3486 as_warn (_("could not set architecture and machine"));
252b5132 3487
252b5132
RH
3488 op_hash = hash_new ();
3489
fc76e730 3490 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
252b5132
RH
3491 for (i = 0; i < NUMOPCODES;)
3492 {
3493 const char *name = mips_opcodes[i].name;
3494
17a2f251 3495 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
252b5132
RH
3496 if (retval != NULL)
3497 {
3498 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3499 mips_opcodes[i].name, retval);
3500 /* Probably a memory allocation problem? Give up now. */
1661c76c 3501 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3502 }
3503 do
3504 {
fc76e730
RS
3505 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3506 decode_mips_operand, &mips_operands[i]))
3507 broken = 1;
3508 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
252b5132 3509 {
fc76e730
RS
3510 create_insn (&nop_insn, mips_opcodes + i);
3511 if (mips_fix_loongson2f_nop)
3512 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3513 nop_insn.fixed_p = 1;
252b5132
RH
3514 }
3515 ++i;
3516 }
3517 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3518 }
3519
3520 mips16_op_hash = hash_new ();
fc76e730
RS
3521 mips16_operands = XCNEWVEC (struct mips_operand_array,
3522 bfd_mips16_num_opcodes);
252b5132
RH
3523
3524 i = 0;
3525 while (i < bfd_mips16_num_opcodes)
3526 {
3527 const char *name = mips16_opcodes[i].name;
3528
17a2f251 3529 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
252b5132
RH
3530 if (retval != NULL)
3531 as_fatal (_("internal: can't hash `%s': %s"),
3532 mips16_opcodes[i].name, retval);
3533 do
3534 {
fc76e730
RS
3535 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3536 broken = 1;
1e915849
RS
3537 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3538 {
3539 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3540 mips16_nop_insn.fixed_p = 1;
3541 }
252b5132
RH
3542 ++i;
3543 }
3544 while (i < bfd_mips16_num_opcodes
3545 && strcmp (mips16_opcodes[i].name, name) == 0);
3546 }
3547
df58fc94 3548 micromips_op_hash = hash_new ();
fc76e730
RS
3549 micromips_operands = XCNEWVEC (struct mips_operand_array,
3550 bfd_micromips_num_opcodes);
df58fc94
RS
3551
3552 i = 0;
3553 while (i < bfd_micromips_num_opcodes)
3554 {
3555 const char *name = micromips_opcodes[i].name;
3556
3557 retval = hash_insert (micromips_op_hash, name,
3558 (void *) &micromips_opcodes[i]);
3559 if (retval != NULL)
3560 as_fatal (_("internal: can't hash `%s': %s"),
3561 micromips_opcodes[i].name, retval);
3562 do
fc76e730
RS
3563 {
3564 struct mips_cl_insn *micromips_nop_insn;
3565
3566 if (!validate_micromips_insn (&micromips_opcodes[i],
3567 &micromips_operands[i]))
3568 broken = 1;
3569
3570 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3571 {
3572 if (micromips_insn_length (micromips_opcodes + i) == 2)
3573 micromips_nop_insn = &micromips_nop16_insn;
3574 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3575 micromips_nop_insn = &micromips_nop32_insn;
3576 else
3577 continue;
3578
3579 if (micromips_nop_insn->insn_mo == NULL
3580 && strcmp (name, "nop") == 0)
3581 {
3582 create_insn (micromips_nop_insn, micromips_opcodes + i);
3583 micromips_nop_insn->fixed_p = 1;
3584 }
3585 }
3586 }
df58fc94
RS
3587 while (++i < bfd_micromips_num_opcodes
3588 && strcmp (micromips_opcodes[i].name, name) == 0);
3589 }
3590
252b5132 3591 if (broken)
1661c76c 3592 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3593
3594 /* We add all the general register names to the symbol table. This
3595 helps us detect invalid uses of them. */
3739860c 3596 for (i = 0; reg_names[i].name; i++)
707bfff6 3597 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
8fc4ee9b 3598 reg_names[i].num, /* & RNUM_MASK, */
707bfff6
TS
3599 &zero_address_frag));
3600 if (HAVE_NEWABI)
3739860c 3601 for (i = 0; reg_names_n32n64[i].name; i++)
707bfff6 3602 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
8fc4ee9b 3603 reg_names_n32n64[i].num, /* & RNUM_MASK, */
252b5132 3604 &zero_address_frag));
707bfff6 3605 else
3739860c 3606 for (i = 0; reg_names_o32[i].name; i++)
707bfff6 3607 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
8fc4ee9b 3608 reg_names_o32[i].num, /* & RNUM_MASK, */
6047c971 3609 &zero_address_frag));
6047c971 3610
14daeee3
RS
3611 for (i = 0; i < 32; i++)
3612 {
92fce9bd 3613 char regname[6];
14daeee3
RS
3614
3615 /* R5900 VU0 floating-point register. */
92fce9bd 3616 sprintf (regname, "$vf%d", i);
14daeee3
RS
3617 symbol_table_insert (symbol_new (regname, reg_section,
3618 RTYPE_VF | i, &zero_address_frag));
3619
3620 /* R5900 VU0 integer register. */
92fce9bd 3621 sprintf (regname, "$vi%d", i);
14daeee3
RS
3622 symbol_table_insert (symbol_new (regname, reg_section,
3623 RTYPE_VI | i, &zero_address_frag));
3624
56d438b1 3625 /* MSA register. */
92fce9bd 3626 sprintf (regname, "$w%d", i);
56d438b1
CF
3627 symbol_table_insert (symbol_new (regname, reg_section,
3628 RTYPE_MSA | i, &zero_address_frag));
14daeee3
RS
3629 }
3630
a92713e6
RS
3631 obstack_init (&mips_operand_tokens);
3632
7d10b47d 3633 mips_no_prev_insn ();
252b5132
RH
3634
3635 mips_gprmask = 0;
3636 mips_cprmask[0] = 0;
3637 mips_cprmask[1] = 0;
3638 mips_cprmask[2] = 0;
3639 mips_cprmask[3] = 0;
3640
3641 /* set the default alignment for the text section (2**2) */
3642 record_alignment (text_section, 2);
3643
4d0d148d 3644 bfd_set_gp_size (stdoutput, g_switch_value);
252b5132 3645
f3ded42a
RS
3646 /* On a native system other than VxWorks, sections must be aligned
3647 to 16 byte boundaries. When configured for an embedded ELF
3648 target, we don't bother. */
3649 if (strncmp (TARGET_OS, "elf", 3) != 0
3650 && strncmp (TARGET_OS, "vxworks", 7) != 0)
252b5132 3651 {
f3ded42a
RS
3652 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3653 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3654 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3655 }
252b5132 3656
f3ded42a
RS
3657 /* Create a .reginfo section for register masks and a .mdebug
3658 section for debugging information. */
3659 {
3660 segT seg;
3661 subsegT subseg;
3662 flagword flags;
3663 segT sec;
3664
3665 seg = now_seg;
3666 subseg = now_subseg;
3667
3668 /* The ABI says this section should be loaded so that the
3669 running program can access it. However, we don't load it
3670 if we are configured for an embedded target */
3671 flags = SEC_READONLY | SEC_DATA;
3672 if (strncmp (TARGET_OS, "elf", 3) != 0)
3673 flags |= SEC_ALLOC | SEC_LOAD;
3674
3675 if (mips_abi != N64_ABI)
252b5132 3676 {
f3ded42a 3677 sec = subseg_new (".reginfo", (subsegT) 0);
bdaaa2e1 3678
f3ded42a
RS
3679 bfd_set_section_flags (stdoutput, sec, flags);
3680 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
252b5132 3681
f3ded42a
RS
3682 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3683 }
3684 else
3685 {
3686 /* The 64-bit ABI uses a .MIPS.options section rather than
3687 .reginfo section. */
3688 sec = subseg_new (".MIPS.options", (subsegT) 0);
3689 bfd_set_section_flags (stdoutput, sec, flags);
3690 bfd_set_section_alignment (stdoutput, sec, 3);
252b5132 3691
f3ded42a
RS
3692 /* Set up the option header. */
3693 {
3694 Elf_Internal_Options opthdr;
3695 char *f;
3696
3697 opthdr.kind = ODK_REGINFO;
3698 opthdr.size = (sizeof (Elf_External_Options)
3699 + sizeof (Elf64_External_RegInfo));
3700 opthdr.section = 0;
3701 opthdr.info = 0;
3702 f = frag_more (sizeof (Elf_External_Options));
3703 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3704 (Elf_External_Options *) f);
3705
3706 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3707 }
3708 }
252b5132 3709
351cdf24
MF
3710 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3711 bfd_set_section_flags (stdoutput, sec,
3712 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3713 bfd_set_section_alignment (stdoutput, sec, 3);
3714 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3715
f3ded42a
RS
3716 if (ECOFF_DEBUGGING)
3717 {
3718 sec = subseg_new (".mdebug", (subsegT) 0);
3719 (void) bfd_set_section_flags (stdoutput, sec,
3720 SEC_HAS_CONTENTS | SEC_READONLY);
3721 (void) bfd_set_section_alignment (stdoutput, sec, 2);
252b5132 3722 }
f3ded42a
RS
3723 else if (mips_flag_pdr)
3724 {
3725 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3726 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3727 SEC_READONLY | SEC_RELOC
3728 | SEC_DEBUGGING);
3729 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3730 }
3731
3732 subseg_set (seg, subseg);
3733 }
252b5132 3734
71400594
RS
3735 if (mips_fix_vr4120)
3736 init_vr4120_conflicts ();
252b5132
RH
3737}
3738
351cdf24
MF
3739static inline void
3740fpabi_incompatible_with (int fpabi, const char *what)
3741{
3742 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3743 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3744}
3745
3746static inline void
3747fpabi_requires (int fpabi, const char *what)
3748{
3749 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3750 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3751}
3752
3753/* Check -mabi and register sizes against the specified FP ABI. */
3754static void
3755check_fpabi (int fpabi)
3756{
351cdf24
MF
3757 switch (fpabi)
3758 {
3759 case Val_GNU_MIPS_ABI_FP_DOUBLE:
ea79f94a
MF
3760 if (file_mips_opts.soft_float)
3761 fpabi_incompatible_with (fpabi, "softfloat");
3762 else if (file_mips_opts.single_float)
3763 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3764 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3765 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3766 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3767 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
351cdf24
MF
3768 break;
3769
3770 case Val_GNU_MIPS_ABI_FP_XX:
3771 if (mips_abi != O32_ABI)
3772 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3773 else if (file_mips_opts.soft_float)
3774 fpabi_incompatible_with (fpabi, "softfloat");
3775 else if (file_mips_opts.single_float)
3776 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3777 else if (file_mips_opts.fp != 0)
3778 fpabi_requires (fpabi, "fp=xx");
351cdf24
MF
3779 break;
3780
3781 case Val_GNU_MIPS_ABI_FP_64A:
3782 case Val_GNU_MIPS_ABI_FP_64:
3783 if (mips_abi != O32_ABI)
3784 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3785 else if (file_mips_opts.soft_float)
3786 fpabi_incompatible_with (fpabi, "softfloat");
3787 else if (file_mips_opts.single_float)
3788 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3789 else if (file_mips_opts.fp != 64)
3790 fpabi_requires (fpabi, "fp=64");
3791 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3792 fpabi_incompatible_with (fpabi, "nooddspreg");
3793 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3794 fpabi_requires (fpabi, "nooddspreg");
351cdf24
MF
3795 break;
3796
3797 case Val_GNU_MIPS_ABI_FP_SINGLE:
3798 if (file_mips_opts.soft_float)
3799 fpabi_incompatible_with (fpabi, "softfloat");
3800 else if (!file_mips_opts.single_float)
3801 fpabi_requires (fpabi, "singlefloat");
3802 break;
3803
3804 case Val_GNU_MIPS_ABI_FP_SOFT:
3805 if (!file_mips_opts.soft_float)
3806 fpabi_requires (fpabi, "softfloat");
3807 break;
3808
3809 case Val_GNU_MIPS_ABI_FP_OLD_64:
3810 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3811 Tag_GNU_MIPS_ABI_FP, fpabi);
3812 break;
3813
3350cc01
CM
3814 case Val_GNU_MIPS_ABI_FP_NAN2008:
3815 /* Silently ignore compatibility value. */
3816 break;
3817
351cdf24
MF
3818 default:
3819 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3820 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3821 break;
3822 }
351cdf24
MF
3823}
3824
919731af 3825/* Perform consistency checks on the current options. */
3826
3827static void
3828mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3829{
3830 /* Check the size of integer registers agrees with the ABI and ISA. */
3831 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3832 as_bad (_("`gp=64' used with a 32-bit processor"));
3833 else if (abi_checks
3834 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3835 as_bad (_("`gp=32' used with a 64-bit ABI"));
3836 else if (abi_checks
3837 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3838 as_bad (_("`gp=64' used with a 32-bit ABI"));
3839
3840 /* Check the size of the float registers agrees with the ABI and ISA. */
3841 switch (opts->fp)
3842 {
351cdf24
MF
3843 case 0:
3844 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3845 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3846 else if (opts->single_float == 1)
3847 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3848 break;
919731af 3849 case 64:
3850 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3851 as_bad (_("`fp=64' used with a 32-bit fpu"));
3852 else if (abi_checks
3853 && ABI_NEEDS_32BIT_REGS (mips_abi)
3854 && !ISA_HAS_MXHC1 (opts->isa))
3855 as_warn (_("`fp=64' used with a 32-bit ABI"));
3856 break;
3857 case 32:
3858 if (abi_checks
3859 && ABI_NEEDS_64BIT_REGS (mips_abi))
3860 as_warn (_("`fp=32' used with a 64-bit ABI"));
5f4678bb 3861 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
7361da2c 3862 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
919731af 3863 break;
3864 default:
3865 as_bad (_("Unknown size of floating point registers"));
3866 break;
3867 }
3868
351cdf24
MF
3869 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3870 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3871
919731af 3872 if (opts->micromips == 1 && opts->mips16 == 1)
1357373c 3873 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
5f4678bb 3874 else if (ISA_IS_R6 (opts->isa)
7361da2c
AB
3875 && (opts->micromips == 1
3876 || opts->mips16 == 1))
1357373c 3877 as_fatal (_("`%s' cannot be used with `%s'"),
7361da2c 3878 opts->micromips ? "micromips" : "mips16",
5f4678bb 3879 mips_cpu_info_from_isa (opts->isa)->name);
7361da2c
AB
3880
3881 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3882 as_fatal (_("branch relaxation is not supported in `%s'"),
3883 mips_cpu_info_from_isa (opts->isa)->name);
919731af 3884}
3885
3886/* Perform consistency checks on the module level options exactly once.
3887 This is a deferred check that happens:
3888 at the first .set directive
3889 or, at the first pseudo op that generates code (inc .dc.a)
3890 or, at the first instruction
3891 or, at the end. */
3892
3893static void
3894file_mips_check_options (void)
3895{
3896 const struct mips_cpu_info *arch_info = 0;
3897
3898 if (file_mips_opts_checked)
3899 return;
3900
3901 /* The following code determines the register size.
3902 Similar code was added to GCC 3.3 (see override_options() in
3903 config/mips/mips.c). The GAS and GCC code should be kept in sync
3904 as much as possible. */
3905
3906 if (file_mips_opts.gp < 0)
3907 {
3908 /* Infer the integer register size from the ABI and processor.
3909 Restrict ourselves to 32-bit registers if that's all the
3910 processor has, or if the ABI cannot handle 64-bit registers. */
3911 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3912 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3913 ? 32 : 64;
3914 }
3915
3916 if (file_mips_opts.fp < 0)
3917 {
3918 /* No user specified float register size.
3919 ??? GAS treats single-float processors as though they had 64-bit
3920 float registers (although it complains when double-precision
3921 instructions are used). As things stand, saying they have 32-bit
3922 registers would lead to spurious "register must be even" messages.
3923 So here we assume float registers are never smaller than the
3924 integer ones. */
3925 if (file_mips_opts.gp == 64)
3926 /* 64-bit integer registers implies 64-bit float registers. */
3927 file_mips_opts.fp = 64;
3928 else if ((file_mips_opts.ase & FP64_ASES)
3929 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3930 /* Handle ASEs that require 64-bit float registers, if possible. */
3931 file_mips_opts.fp = 64;
7361da2c
AB
3932 else if (ISA_IS_R6 (mips_opts.isa))
3933 /* R6 implies 64-bit float registers. */
3934 file_mips_opts.fp = 64;
919731af 3935 else
3936 /* 32-bit float registers. */
3937 file_mips_opts.fp = 32;
3938 }
3939
3940 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3941
351cdf24
MF
3942 /* Disable operations on odd-numbered floating-point registers by default
3943 when using the FPXX ABI. */
3944 if (file_mips_opts.oddspreg < 0)
3945 {
3946 if (file_mips_opts.fp == 0)
3947 file_mips_opts.oddspreg = 0;
3948 else
3949 file_mips_opts.oddspreg = 1;
3950 }
3951
919731af 3952 /* End of GCC-shared inference code. */
3953
3954 /* This flag is set when we have a 64-bit capable CPU but use only
3955 32-bit wide registers. Note that EABI does not use it. */
3956 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3957 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3958 || mips_abi == O32_ABI))
3959 mips_32bitmode = 1;
3960
3961 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3962 as_bad (_("trap exception not supported at ISA 1"));
3963
3964 /* If the selected architecture includes support for ASEs, enable
3965 generation of code for them. */
3966 if (file_mips_opts.mips16 == -1)
3967 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3968 if (file_mips_opts.micromips == -1)
3969 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3970 ? 1 : 0;
3971
7361da2c
AB
3972 if (mips_nan2008 == -1)
3973 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3974 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3975 as_fatal (_("`%s' does not support legacy NaN"),
3976 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3977
919731af 3978 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3979 being selected implicitly. */
3980 if (file_mips_opts.fp != 64)
3981 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3982
3983 /* If the user didn't explicitly select or deselect a particular ASE,
3984 use the default setting for the CPU. */
3985 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3986
3987 /* Set up the current options. These may change throughout assembly. */
3988 mips_opts = file_mips_opts;
3989
3990 mips_check_isa_supports_ases ();
3991 mips_check_options (&file_mips_opts, TRUE);
3992 file_mips_opts_checked = TRUE;
3993
3994 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3995 as_warn (_("could not set architecture and machine"));
3996}
3997
252b5132 3998void
17a2f251 3999md_assemble (char *str)
252b5132
RH
4000{
4001 struct mips_cl_insn insn;
f6688943
TS
4002 bfd_reloc_code_real_type unused_reloc[3]
4003 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 4004
919731af 4005 file_mips_check_options ();
4006
252b5132 4007 imm_expr.X_op = O_absent;
252b5132 4008 offset_expr.X_op = O_absent;
f6688943
TS
4009 offset_reloc[0] = BFD_RELOC_UNUSED;
4010 offset_reloc[1] = BFD_RELOC_UNUSED;
4011 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132 4012
e1b47bd5
RS
4013 mips_mark_labels ();
4014 mips_assembling_insn = TRUE;
e3de51ce 4015 clear_insn_error ();
e1b47bd5 4016
252b5132
RH
4017 if (mips_opts.mips16)
4018 mips16_ip (str, &insn);
4019 else
4020 {
4021 mips_ip (str, &insn);
beae10d5
KH
4022 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4023 str, insn.insn_opcode));
252b5132
RH
4024 }
4025
e3de51ce
RS
4026 if (insn_error.msg)
4027 report_insn_error (str);
e1b47bd5 4028 else if (insn.insn_mo->pinfo == INSN_MACRO)
252b5132 4029 {
584892a6 4030 macro_start ();
252b5132
RH
4031 if (mips_opts.mips16)
4032 mips16_macro (&insn);
4033 else
833794fc 4034 macro (&insn, str);
584892a6 4035 macro_end ();
252b5132
RH
4036 }
4037 else
4038 {
77bd4346 4039 if (offset_expr.X_op != O_absent)
df58fc94 4040 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
252b5132 4041 else
df58fc94 4042 append_insn (&insn, NULL, unused_reloc, FALSE);
252b5132 4043 }
e1b47bd5
RS
4044
4045 mips_assembling_insn = FALSE;
252b5132
RH
4046}
4047
738e5348
RS
4048/* Convenience functions for abstracting away the differences between
4049 MIPS16 and non-MIPS16 relocations. */
4050
4051static inline bfd_boolean
4052mips16_reloc_p (bfd_reloc_code_real_type reloc)
4053{
4054 switch (reloc)
4055 {
4056 case BFD_RELOC_MIPS16_JMP:
4057 case BFD_RELOC_MIPS16_GPREL:
4058 case BFD_RELOC_MIPS16_GOT16:
4059 case BFD_RELOC_MIPS16_CALL16:
4060 case BFD_RELOC_MIPS16_HI16_S:
4061 case BFD_RELOC_MIPS16_HI16:
4062 case BFD_RELOC_MIPS16_LO16:
c9775dde 4063 case BFD_RELOC_MIPS16_16_PCREL_S1:
738e5348
RS
4064 return TRUE;
4065
4066 default:
4067 return FALSE;
4068 }
4069}
4070
df58fc94
RS
4071static inline bfd_boolean
4072micromips_reloc_p (bfd_reloc_code_real_type reloc)
4073{
4074 switch (reloc)
4075 {
4076 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4077 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4078 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4079 case BFD_RELOC_MICROMIPS_GPREL16:
4080 case BFD_RELOC_MICROMIPS_JMP:
4081 case BFD_RELOC_MICROMIPS_HI16:
4082 case BFD_RELOC_MICROMIPS_HI16_S:
4083 case BFD_RELOC_MICROMIPS_LO16:
4084 case BFD_RELOC_MICROMIPS_LITERAL:
4085 case BFD_RELOC_MICROMIPS_GOT16:
4086 case BFD_RELOC_MICROMIPS_CALL16:
4087 case BFD_RELOC_MICROMIPS_GOT_HI16:
4088 case BFD_RELOC_MICROMIPS_GOT_LO16:
4089 case BFD_RELOC_MICROMIPS_CALL_HI16:
4090 case BFD_RELOC_MICROMIPS_CALL_LO16:
4091 case BFD_RELOC_MICROMIPS_SUB:
4092 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4093 case BFD_RELOC_MICROMIPS_GOT_OFST:
4094 case BFD_RELOC_MICROMIPS_GOT_DISP:
4095 case BFD_RELOC_MICROMIPS_HIGHEST:
4096 case BFD_RELOC_MICROMIPS_HIGHER:
4097 case BFD_RELOC_MICROMIPS_SCN_DISP:
4098 case BFD_RELOC_MICROMIPS_JALR:
4099 return TRUE;
4100
4101 default:
4102 return FALSE;
4103 }
4104}
4105
2309ddf2
MR
4106static inline bfd_boolean
4107jmp_reloc_p (bfd_reloc_code_real_type reloc)
4108{
4109 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4110}
4111
0e9c5a5c
MR
4112static inline bfd_boolean
4113b_reloc_p (bfd_reloc_code_real_type reloc)
4114{
4115 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4116 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4117 || reloc == BFD_RELOC_16_PCREL_S2
c9775dde 4118 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
0e9c5a5c
MR
4119 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4120 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4121 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4122}
4123
738e5348
RS
4124static inline bfd_boolean
4125got16_reloc_p (bfd_reloc_code_real_type reloc)
4126{
2309ddf2 4127 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
df58fc94 4128 || reloc == BFD_RELOC_MICROMIPS_GOT16);
738e5348
RS
4129}
4130
4131static inline bfd_boolean
4132hi16_reloc_p (bfd_reloc_code_real_type reloc)
4133{
2309ddf2 4134 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
df58fc94 4135 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
738e5348
RS
4136}
4137
4138static inline bfd_boolean
4139lo16_reloc_p (bfd_reloc_code_real_type reloc)
4140{
2309ddf2 4141 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
df58fc94
RS
4142 || reloc == BFD_RELOC_MICROMIPS_LO16);
4143}
4144
df58fc94
RS
4145static inline bfd_boolean
4146jalr_reloc_p (bfd_reloc_code_real_type reloc)
4147{
2309ddf2 4148 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
738e5348
RS
4149}
4150
f2ae14a1
RS
4151static inline bfd_boolean
4152gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4153{
4154 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4155 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4156}
4157
2de39019
CM
4158/* Return true if RELOC is a PC-relative relocation that does not have
4159 full address range. */
4160
4161static inline bfd_boolean
4162limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4163{
4164 switch (reloc)
4165 {
4166 case BFD_RELOC_16_PCREL_S2:
c9775dde 4167 case BFD_RELOC_MIPS16_16_PCREL_S1:
2de39019
CM
4168 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4169 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4170 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
7361da2c
AB
4171 case BFD_RELOC_MIPS_21_PCREL_S2:
4172 case BFD_RELOC_MIPS_26_PCREL_S2:
4173 case BFD_RELOC_MIPS_18_PCREL_S3:
4174 case BFD_RELOC_MIPS_19_PCREL_S2:
2de39019
CM
4175 return TRUE;
4176
b47468a6 4177 case BFD_RELOC_32_PCREL:
7361da2c
AB
4178 case BFD_RELOC_HI16_S_PCREL:
4179 case BFD_RELOC_LO16_PCREL:
b47468a6
CM
4180 return HAVE_64BIT_ADDRESSES;
4181
2de39019
CM
4182 default:
4183 return FALSE;
4184 }
4185}
b47468a6 4186
5919d012 4187/* Return true if the given relocation might need a matching %lo().
0a44bf69
RS
4188 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4189 need a matching %lo() when applied to local symbols. */
5919d012
RS
4190
4191static inline bfd_boolean
17a2f251 4192reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
5919d012 4193{
3b91255e 4194 return (HAVE_IN_PLACE_ADDENDS
738e5348 4195 && (hi16_reloc_p (reloc)
0a44bf69
RS
4196 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4197 all GOT16 relocations evaluate to "G". */
738e5348
RS
4198 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4199}
4200
4201/* Return the type of %lo() reloc needed by RELOC, given that
4202 reloc_needs_lo_p. */
4203
4204static inline bfd_reloc_code_real_type
4205matching_lo_reloc (bfd_reloc_code_real_type reloc)
4206{
df58fc94
RS
4207 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4208 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4209 : BFD_RELOC_LO16));
5919d012
RS
4210}
4211
4212/* Return true if the given fixup is followed by a matching R_MIPS_LO16
4213 relocation. */
4214
4215static inline bfd_boolean
17a2f251 4216fixup_has_matching_lo_p (fixS *fixp)
5919d012
RS
4217{
4218 return (fixp->fx_next != NULL
738e5348 4219 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
5919d012
RS
4220 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4221 && fixp->fx_offset == fixp->fx_next->fx_offset);
4222}
4223
462427c4
RS
4224/* Move all labels in LABELS to the current insertion point. TEXT_P
4225 says whether the labels refer to text or data. */
404a8071
RS
4226
4227static void
462427c4 4228mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
404a8071
RS
4229{
4230 struct insn_label_list *l;
4231 valueT val;
4232
462427c4 4233 for (l = labels; l != NULL; l = l->next)
404a8071 4234 {
9c2799c2 4235 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
404a8071
RS
4236 symbol_set_frag (l->label, frag_now);
4237 val = (valueT) frag_now_fix ();
df58fc94 4238 /* MIPS16/microMIPS text labels are stored as odd. */
462427c4 4239 if (text_p && HAVE_CODE_COMPRESSION)
404a8071
RS
4240 ++val;
4241 S_SET_VALUE (l->label, val);
4242 }
4243}
4244
462427c4
RS
4245/* Move all labels in insn_labels to the current insertion point
4246 and treat them as text labels. */
4247
4248static void
4249mips_move_text_labels (void)
4250{
4251 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4252}
4253
5f0fe04b
TS
4254static bfd_boolean
4255s_is_linkonce (symbolS *sym, segT from_seg)
4256{
4257 bfd_boolean linkonce = FALSE;
4258 segT symseg = S_GET_SEGMENT (sym);
4259
4260 if (symseg != from_seg && !S_IS_LOCAL (sym))
4261 {
4262 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4263 linkonce = TRUE;
5f0fe04b
TS
4264 /* The GNU toolchain uses an extension for ELF: a section
4265 beginning with the magic string .gnu.linkonce is a
4266 linkonce section. */
4267 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4268 sizeof ".gnu.linkonce" - 1) == 0)
4269 linkonce = TRUE;
5f0fe04b
TS
4270 }
4271 return linkonce;
4272}
4273
e1b47bd5 4274/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
df58fc94
RS
4275 linker to handle them specially, such as generating jalx instructions
4276 when needed. We also make them odd for the duration of the assembly,
4277 in order to generate the right sort of code. We will make them even
252b5132
RH
4278 in the adjust_symtab routine, while leaving them marked. This is
4279 convenient for the debugger and the disassembler. The linker knows
4280 to make them odd again. */
4281
4282static void
e1b47bd5 4283mips_compressed_mark_label (symbolS *label)
252b5132 4284{
df58fc94 4285 gas_assert (HAVE_CODE_COMPRESSION);
a8dbcb85 4286
f3ded42a
RS
4287 if (mips_opts.mips16)
4288 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4289 else
4290 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
e1b47bd5
RS
4291 if ((S_GET_VALUE (label) & 1) == 0
4292 /* Don't adjust the address if the label is global or weak, or
4293 in a link-once section, since we'll be emitting symbol reloc
4294 references to it which will be patched up by the linker, and
4295 the final value of the symbol may or may not be MIPS16/microMIPS. */
4296 && !S_IS_WEAK (label)
4297 && !S_IS_EXTERNAL (label)
4298 && !s_is_linkonce (label, now_seg))
4299 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4300}
4301
4302/* Mark preceding MIPS16 or microMIPS instruction labels. */
4303
4304static void
4305mips_compressed_mark_labels (void)
4306{
4307 struct insn_label_list *l;
4308
4309 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4310 mips_compressed_mark_label (l->label);
252b5132
RH
4311}
4312
4d7206a2
RS
4313/* End the current frag. Make it a variant frag and record the
4314 relaxation info. */
4315
4316static void
4317relax_close_frag (void)
4318{
584892a6 4319 mips_macro_warning.first_frag = frag_now;
4d7206a2 4320 frag_var (rs_machine_dependent, 0, 0,
584892a6 4321 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4d7206a2
RS
4322 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4323
4324 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4325 mips_relax.first_fixup = 0;
4326}
4327
4328/* Start a new relaxation sequence whose expansion depends on SYMBOL.
4329 See the comment above RELAX_ENCODE for more details. */
4330
4331static void
4332relax_start (symbolS *symbol)
4333{
9c2799c2 4334 gas_assert (mips_relax.sequence == 0);
4d7206a2
RS
4335 mips_relax.sequence = 1;
4336 mips_relax.symbol = symbol;
4337}
4338
4339/* Start generating the second version of a relaxable sequence.
4340 See the comment above RELAX_ENCODE for more details. */
252b5132
RH
4341
4342static void
4d7206a2
RS
4343relax_switch (void)
4344{
9c2799c2 4345 gas_assert (mips_relax.sequence == 1);
4d7206a2
RS
4346 mips_relax.sequence = 2;
4347}
4348
4349/* End the current relaxable sequence. */
4350
4351static void
4352relax_end (void)
4353{
9c2799c2 4354 gas_assert (mips_relax.sequence == 2);
4d7206a2
RS
4355 relax_close_frag ();
4356 mips_relax.sequence = 0;
4357}
4358
11625dd8
RS
4359/* Return true if IP is a delayed branch or jump. */
4360
4361static inline bfd_boolean
4362delayed_branch_p (const struct mips_cl_insn *ip)
4363{
4364 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4365 | INSN_COND_BRANCH_DELAY
4366 | INSN_COND_BRANCH_LIKELY)) != 0;
4367}
4368
4369/* Return true if IP is a compact branch or jump. */
4370
4371static inline bfd_boolean
4372compact_branch_p (const struct mips_cl_insn *ip)
4373{
26545944
RS
4374 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4375 | INSN2_COND_BRANCH)) != 0;
11625dd8
RS
4376}
4377
4378/* Return true if IP is an unconditional branch or jump. */
4379
4380static inline bfd_boolean
4381uncond_branch_p (const struct mips_cl_insn *ip)
4382{
4383 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
26545944 4384 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
11625dd8
RS
4385}
4386
4387/* Return true if IP is a branch-likely instruction. */
4388
4389static inline bfd_boolean
4390branch_likely_p (const struct mips_cl_insn *ip)
4391{
4392 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4393}
4394
14fe068b
RS
4395/* Return the type of nop that should be used to fill the delay slot
4396 of delayed branch IP. */
4397
4398static struct mips_cl_insn *
4399get_delay_slot_nop (const struct mips_cl_insn *ip)
4400{
4401 if (mips_opts.micromips
4402 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4403 return &micromips_nop32_insn;
4404 return NOP_INSN;
4405}
4406
fc76e730
RS
4407/* Return a mask that has bit N set if OPCODE reads the register(s)
4408 in operand N. */
df58fc94
RS
4409
4410static unsigned int
fc76e730 4411insn_read_mask (const struct mips_opcode *opcode)
df58fc94 4412{
fc76e730
RS
4413 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4414}
df58fc94 4415
fc76e730
RS
4416/* Return a mask that has bit N set if OPCODE writes to the register(s)
4417 in operand N. */
4418
4419static unsigned int
4420insn_write_mask (const struct mips_opcode *opcode)
4421{
4422 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4423}
4424
4425/* Return a mask of the registers specified by operand OPERAND of INSN.
4426 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4427 is set. */
4428
4429static unsigned int
4430operand_reg_mask (const struct mips_cl_insn *insn,
4431 const struct mips_operand *operand,
4432 unsigned int type_mask)
4433{
4434 unsigned int uval, vsel;
4435
4436 switch (operand->type)
df58fc94 4437 {
fc76e730
RS
4438 case OP_INT:
4439 case OP_MAPPED_INT:
4440 case OP_MSB:
4441 case OP_PCREL:
4442 case OP_PERF_REG:
4443 case OP_ADDIUSP_INT:
4444 case OP_ENTRY_EXIT_LIST:
4445 case OP_REPEAT_DEST_REG:
4446 case OP_REPEAT_PREV_REG:
4447 case OP_PC:
14daeee3
RS
4448 case OP_VU0_SUFFIX:
4449 case OP_VU0_MATCH_SUFFIX:
56d438b1 4450 case OP_IMM_INDEX:
fc76e730
RS
4451 abort ();
4452
4453 case OP_REG:
0f35dbc4 4454 case OP_OPTIONAL_REG:
fc76e730
RS
4455 {
4456 const struct mips_reg_operand *reg_op;
4457
4458 reg_op = (const struct mips_reg_operand *) operand;
4459 if (!(type_mask & (1 << reg_op->reg_type)))
4460 return 0;
4461 uval = insn_extract_operand (insn, operand);
4462 return 1 << mips_decode_reg_operand (reg_op, uval);
4463 }
4464
4465 case OP_REG_PAIR:
4466 {
4467 const struct mips_reg_pair_operand *pair_op;
4468
4469 pair_op = (const struct mips_reg_pair_operand *) operand;
4470 if (!(type_mask & (1 << pair_op->reg_type)))
4471 return 0;
4472 uval = insn_extract_operand (insn, operand);
4473 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4474 }
4475
4476 case OP_CLO_CLZ_DEST:
4477 if (!(type_mask & (1 << OP_REG_GP)))
4478 return 0;
4479 uval = insn_extract_operand (insn, operand);
4480 return (1 << (uval & 31)) | (1 << (uval >> 5));
4481
7361da2c
AB
4482 case OP_SAME_RS_RT:
4483 if (!(type_mask & (1 << OP_REG_GP)))
4484 return 0;
4485 uval = insn_extract_operand (insn, operand);
4486 gas_assert ((uval & 31) == (uval >> 5));
4487 return 1 << (uval & 31);
4488
4489 case OP_CHECK_PREV:
4490 case OP_NON_ZERO_REG:
4491 if (!(type_mask & (1 << OP_REG_GP)))
4492 return 0;
4493 uval = insn_extract_operand (insn, operand);
4494 return 1 << (uval & 31);
4495
fc76e730
RS
4496 case OP_LWM_SWM_LIST:
4497 abort ();
4498
4499 case OP_SAVE_RESTORE_LIST:
4500 abort ();
4501
4502 case OP_MDMX_IMM_REG:
4503 if (!(type_mask & (1 << OP_REG_VEC)))
4504 return 0;
4505 uval = insn_extract_operand (insn, operand);
4506 vsel = uval >> 5;
4507 if ((vsel & 0x18) == 0x18)
4508 return 0;
4509 return 1 << (uval & 31);
56d438b1
CF
4510
4511 case OP_REG_INDEX:
4512 if (!(type_mask & (1 << OP_REG_GP)))
4513 return 0;
4514 return 1 << insn_extract_operand (insn, operand);
df58fc94 4515 }
fc76e730
RS
4516 abort ();
4517}
4518
4519/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4520 where bit N of OPNO_MASK is set if operand N should be included.
4521 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4522 is set. */
4523
4524static unsigned int
4525insn_reg_mask (const struct mips_cl_insn *insn,
4526 unsigned int type_mask, unsigned int opno_mask)
4527{
4528 unsigned int opno, reg_mask;
4529
4530 opno = 0;
4531 reg_mask = 0;
4532 while (opno_mask != 0)
4533 {
4534 if (opno_mask & 1)
4535 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4536 opno_mask >>= 1;
4537 opno += 1;
4538 }
4539 return reg_mask;
df58fc94
RS
4540}
4541
4c260379
RS
4542/* Return the mask of core registers that IP reads. */
4543
4544static unsigned int
4545gpr_read_mask (const struct mips_cl_insn *ip)
4546{
4547 unsigned long pinfo, pinfo2;
4548 unsigned int mask;
4549
fc76e730 4550 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4c260379
RS
4551 pinfo = ip->insn_mo->pinfo;
4552 pinfo2 = ip->insn_mo->pinfo2;
fc76e730 4553 if (pinfo & INSN_UDI)
4c260379 4554 {
fc76e730
RS
4555 /* UDI instructions have traditionally been assumed to read RS
4556 and RT. */
4557 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4558 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4c260379 4559 }
fc76e730
RS
4560 if (pinfo & INSN_READ_GPR_24)
4561 mask |= 1 << 24;
4562 if (pinfo2 & INSN2_READ_GPR_16)
4563 mask |= 1 << 16;
4564 if (pinfo2 & INSN2_READ_SP)
4565 mask |= 1 << SP;
26545944 4566 if (pinfo2 & INSN2_READ_GPR_31)
fc76e730 4567 mask |= 1 << 31;
fe35f09f
RS
4568 /* Don't include register 0. */
4569 return mask & ~1;
4c260379
RS
4570}
4571
4572/* Return the mask of core registers that IP writes. */
4573
4574static unsigned int
4575gpr_write_mask (const struct mips_cl_insn *ip)
4576{
4577 unsigned long pinfo, pinfo2;
4578 unsigned int mask;
4579
fc76e730 4580 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4c260379
RS
4581 pinfo = ip->insn_mo->pinfo;
4582 pinfo2 = ip->insn_mo->pinfo2;
fc76e730
RS
4583 if (pinfo & INSN_WRITE_GPR_24)
4584 mask |= 1 << 24;
4585 if (pinfo & INSN_WRITE_GPR_31)
4586 mask |= 1 << 31;
4587 if (pinfo & INSN_UDI)
4588 /* UDI instructions have traditionally been assumed to write to RD. */
4589 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4590 if (pinfo2 & INSN2_WRITE_SP)
4591 mask |= 1 << SP;
fe35f09f
RS
4592 /* Don't include register 0. */
4593 return mask & ~1;
4c260379
RS
4594}
4595
4596/* Return the mask of floating-point registers that IP reads. */
4597
4598static unsigned int
4599fpr_read_mask (const struct mips_cl_insn *ip)
4600{
fc76e730 4601 unsigned long pinfo;
4c260379
RS
4602 unsigned int mask;
4603
9d5de888
CF
4604 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4605 | (1 << OP_REG_MSA)),
fc76e730 4606 insn_read_mask (ip->insn_mo));
4c260379 4607 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4608 /* Conservatively treat all operands to an FP_D instruction are doubles.
4609 (This is overly pessimistic for things like cvt.d.s.) */
bad1aba3 4610 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4611 mask |= mask << 1;
4612 return mask;
4613}
4614
4615/* Return the mask of floating-point registers that IP writes. */
4616
4617static unsigned int
4618fpr_write_mask (const struct mips_cl_insn *ip)
4619{
fc76e730 4620 unsigned long pinfo;
4c260379
RS
4621 unsigned int mask;
4622
9d5de888
CF
4623 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4624 | (1 << OP_REG_MSA)),
fc76e730 4625 insn_write_mask (ip->insn_mo));
4c260379 4626 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4627 /* Conservatively treat all operands to an FP_D instruction are doubles.
4628 (This is overly pessimistic for things like cvt.s.d.) */
bad1aba3 4629 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4630 mask |= mask << 1;
4631 return mask;
4632}
4633
a1d78564
RS
4634/* Operand OPNUM of INSN is an odd-numbered floating-point register.
4635 Check whether that is allowed. */
4636
4637static bfd_boolean
4638mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4639{
4640 const char *s = insn->name;
351cdf24
MF
4641 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4642 || FPR_SIZE == 64)
4643 && mips_opts.oddspreg;
a1d78564
RS
4644
4645 if (insn->pinfo == INSN_MACRO)
4646 /* Let a macro pass, we'll catch it later when it is expanded. */
4647 return TRUE;
4648
351cdf24
MF
4649 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4650 otherwise it depends on oddspreg. */
4651 if ((insn->pinfo & FP_S)
4652 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
43885403 4653 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
351cdf24 4654 return FPR_SIZE == 32 || oddspreg;
a1d78564 4655
351cdf24
MF
4656 /* Allow odd registers for single-precision ops and double-precision if the
4657 floating-point registers are 64-bit wide. */
4658 switch (insn->pinfo & (FP_S | FP_D))
4659 {
4660 case FP_S:
4661 case 0:
4662 return oddspreg;
4663 case FP_D:
4664 return FPR_SIZE == 64;
4665 default:
4666 break;
a1d78564
RS
4667 }
4668
351cdf24
MF
4669 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4670 s = strchr (insn->name, '.');
4671 if (s != NULL && opnum == 2)
4672 s = strchr (s + 1, '.');
4673 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4674 return oddspreg;
a1d78564 4675
351cdf24 4676 return FPR_SIZE == 64;
a1d78564
RS
4677}
4678
a1d78564
RS
4679/* Information about an instruction argument that we're trying to match. */
4680struct mips_arg_info
4681{
4682 /* The instruction so far. */
4683 struct mips_cl_insn *insn;
4684
a92713e6
RS
4685 /* The first unconsumed operand token. */
4686 struct mips_operand_token *token;
4687
a1d78564
RS
4688 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4689 int opnum;
4690
4691 /* The 1-based argument number, for error reporting. This does not
4692 count elided optional registers, etc.. */
4693 int argnum;
4694
4695 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4696 unsigned int last_regno;
4697
4698 /* If the first operand was an OP_REG, this is the register that it
4699 specified, otherwise it is ILLEGAL_REG. */
4700 unsigned int dest_regno;
4701
4702 /* The value of the last OP_INT operand. Only used for OP_MSB,
4703 where it gives the lsb position. */
4704 unsigned int last_op_int;
4705
60f20e8b
RS
4706 /* If true, match routines should assume that no later instruction
4707 alternative matches and should therefore be as accomodating as
4708 possible. Match routines should not report errors if something
4709 is only invalid for !LAX_MATCH. */
4710 bfd_boolean lax_match;
a1d78564 4711
a1d78564
RS
4712 /* True if a reference to the current AT register was seen. */
4713 bfd_boolean seen_at;
4714};
4715
1a00e612
RS
4716/* Record that the argument is out of range. */
4717
4718static void
4719match_out_of_range (struct mips_arg_info *arg)
4720{
4721 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4722}
4723
4724/* Record that the argument isn't constant but needs to be. */
4725
4726static void
4727match_not_constant (struct mips_arg_info *arg)
4728{
4729 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4730 arg->argnum);
4731}
4732
a92713e6
RS
4733/* Try to match an OT_CHAR token for character CH. Consume the token
4734 and return true on success, otherwise return false. */
a1d78564 4735
a92713e6
RS
4736static bfd_boolean
4737match_char (struct mips_arg_info *arg, char ch)
a1d78564 4738{
a92713e6
RS
4739 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4740 {
4741 ++arg->token;
4742 if (ch == ',')
4743 arg->argnum += 1;
4744 return TRUE;
4745 }
4746 return FALSE;
4747}
a1d78564 4748
a92713e6
RS
4749/* Try to get an expression from the next tokens in ARG. Consume the
4750 tokens and return true on success, storing the expression value in
4751 VALUE and relocation types in R. */
4752
4753static bfd_boolean
4754match_expression (struct mips_arg_info *arg, expressionS *value,
4755 bfd_reloc_code_real_type *r)
4756{
d436c1c2
RS
4757 /* If the next token is a '(' that was parsed as being part of a base
4758 expression, assume we have an elided offset. The later match will fail
4759 if this turns out to be wrong. */
4760 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
a1d78564 4761 {
d436c1c2
RS
4762 value->X_op = O_constant;
4763 value->X_add_number = 0;
4764 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
a92713e6
RS
4765 return TRUE;
4766 }
4767
d436c1c2
RS
4768 /* Reject register-based expressions such as "0+$2" and "(($2))".
4769 For plain registers the default error seems more appropriate. */
4770 if (arg->token->type == OT_INTEGER
4771 && arg->token->u.integer.value.X_op == O_register)
a92713e6 4772 {
d436c1c2
RS
4773 set_insn_error (arg->argnum, _("register value used as expression"));
4774 return FALSE;
a1d78564 4775 }
d436c1c2
RS
4776
4777 if (arg->token->type == OT_INTEGER)
a92713e6 4778 {
d436c1c2
RS
4779 *value = arg->token->u.integer.value;
4780 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4781 ++arg->token;
4782 return TRUE;
a92713e6 4783 }
a92713e6 4784
d436c1c2
RS
4785 set_insn_error_i
4786 (arg->argnum, _("operand %d must be an immediate expression"),
4787 arg->argnum);
4788 return FALSE;
a92713e6
RS
4789}
4790
4791/* Try to get a constant expression from the next tokens in ARG. Consume
4792 the tokens and return return true on success, storing the constant value
4793 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4794 error. */
4795
4796static bfd_boolean
1a00e612 4797match_const_int (struct mips_arg_info *arg, offsetT *value)
a92713e6
RS
4798{
4799 expressionS ex;
4800 bfd_reloc_code_real_type r[3];
a1d78564 4801
a92713e6
RS
4802 if (!match_expression (arg, &ex, r))
4803 return FALSE;
4804
4805 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
a1d78564
RS
4806 *value = ex.X_add_number;
4807 else
4808 {
1a00e612
RS
4809 match_not_constant (arg);
4810 return FALSE;
a1d78564 4811 }
a92713e6 4812 return TRUE;
a1d78564
RS
4813}
4814
4815/* Return the RTYPE_* flags for a register operand of type TYPE that
4816 appears in instruction OPCODE. */
4817
4818static unsigned int
4819convert_reg_type (const struct mips_opcode *opcode,
4820 enum mips_reg_operand_type type)
4821{
4822 switch (type)
4823 {
4824 case OP_REG_GP:
4825 return RTYPE_NUM | RTYPE_GP;
4826
4827 case OP_REG_FP:
4828 /* Allow vector register names for MDMX if the instruction is a 64-bit
4829 FPR load, store or move (including moves to and from GPRs). */
4830 if ((mips_opts.ase & ASE_MDMX)
4831 && (opcode->pinfo & FP_D)
43885403 4832 && (opcode->pinfo & (INSN_COPROC_MOVE
a1d78564 4833 | INSN_COPROC_MEMORY_DELAY
43885403 4834 | INSN_LOAD_COPROC
67dc82bc 4835 | INSN_LOAD_MEMORY
a1d78564
RS
4836 | INSN_STORE_MEMORY)))
4837 return RTYPE_FPU | RTYPE_VEC;
4838 return RTYPE_FPU;
4839
4840 case OP_REG_CCC:
4841 if (opcode->pinfo & (FP_D | FP_S))
4842 return RTYPE_CCC | RTYPE_FCC;
4843 return RTYPE_CCC;
4844
4845 case OP_REG_VEC:
4846 if (opcode->membership & INSN_5400)
4847 return RTYPE_FPU;
4848 return RTYPE_FPU | RTYPE_VEC;
4849
4850 case OP_REG_ACC:
4851 return RTYPE_ACC;
4852
4853 case OP_REG_COPRO:
4854 if (opcode->name[strlen (opcode->name) - 1] == '0')
4855 return RTYPE_NUM | RTYPE_CP0;
4856 return RTYPE_NUM;
4857
4858 case OP_REG_HW:
4859 return RTYPE_NUM;
14daeee3
RS
4860
4861 case OP_REG_VI:
4862 return RTYPE_NUM | RTYPE_VI;
4863
4864 case OP_REG_VF:
4865 return RTYPE_NUM | RTYPE_VF;
4866
4867 case OP_REG_R5900_I:
4868 return RTYPE_R5900_I;
4869
4870 case OP_REG_R5900_Q:
4871 return RTYPE_R5900_Q;
4872
4873 case OP_REG_R5900_R:
4874 return RTYPE_R5900_R;
4875
4876 case OP_REG_R5900_ACC:
4877 return RTYPE_R5900_ACC;
56d438b1
CF
4878
4879 case OP_REG_MSA:
4880 return RTYPE_MSA;
4881
4882 case OP_REG_MSA_CTRL:
4883 return RTYPE_NUM;
a1d78564
RS
4884 }
4885 abort ();
4886}
4887
4888/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4889
4890static void
4891check_regno (struct mips_arg_info *arg,
4892 enum mips_reg_operand_type type, unsigned int regno)
4893{
4894 if (AT && type == OP_REG_GP && regno == AT)
4895 arg->seen_at = TRUE;
4896
4897 if (type == OP_REG_FP
4898 && (regno & 1) != 0
a1d78564 4899 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
351cdf24
MF
4900 {
4901 /* This was a warning prior to introducing O32 FPXX and FP64 support
4902 so maintain a warning for FP32 but raise an error for the new
4903 cases. */
4904 if (FPR_SIZE == 32)
4905 as_warn (_("float register should be even, was %d"), regno);
4906 else
4907 as_bad (_("float register should be even, was %d"), regno);
4908 }
a1d78564
RS
4909
4910 if (type == OP_REG_CCC)
4911 {
4912 const char *name;
4913 size_t length;
4914
4915 name = arg->insn->insn_mo->name;
4916 length = strlen (name);
4917 if ((regno & 1) != 0
4918 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4919 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
1661c76c 4920 as_warn (_("condition code register should be even for %s, was %d"),
a1d78564
RS
4921 name, regno);
4922
4923 if ((regno & 3) != 0
4924 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
1661c76c 4925 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
a1d78564
RS
4926 name, regno);
4927 }
4928}
4929
a92713e6
RS
4930/* ARG is a register with symbol value SYMVAL. Try to interpret it as
4931 a register of type TYPE. Return true on success, storing the register
4932 number in *REGNO and warning about any dubious uses. */
4933
4934static bfd_boolean
4935match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4936 unsigned int symval, unsigned int *regno)
4937{
4938 if (type == OP_REG_VEC)
4939 symval = mips_prefer_vec_regno (symval);
4940 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4941 return FALSE;
4942
4943 *regno = symval & RNUM_MASK;
4944 check_regno (arg, type, *regno);
4945 return TRUE;
4946}
4947
4948/* Try to interpret the next token in ARG as a register of type TYPE.
4949 Consume the token and return true on success, storing the register
4950 number in *REGNO. Return false on failure. */
4951
4952static bfd_boolean
4953match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4954 unsigned int *regno)
4955{
4956 if (arg->token->type == OT_REG
4957 && match_regno (arg, type, arg->token->u.regno, regno))
4958 {
4959 ++arg->token;
4960 return TRUE;
4961 }
4962 return FALSE;
4963}
4964
4965/* Try to interpret the next token in ARG as a range of registers of type TYPE.
4966 Consume the token and return true on success, storing the register numbers
4967 in *REGNO1 and *REGNO2. Return false on failure. */
4968
4969static bfd_boolean
4970match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4971 unsigned int *regno1, unsigned int *regno2)
4972{
4973 if (match_reg (arg, type, regno1))
4974 {
4975 *regno2 = *regno1;
4976 return TRUE;
4977 }
4978 if (arg->token->type == OT_REG_RANGE
4979 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4980 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4981 && *regno1 <= *regno2)
4982 {
4983 ++arg->token;
4984 return TRUE;
4985 }
4986 return FALSE;
4987}
4988
a1d78564
RS
4989/* OP_INT matcher. */
4990
a92713e6 4991static bfd_boolean
a1d78564 4992match_int_operand (struct mips_arg_info *arg,
a92713e6 4993 const struct mips_operand *operand_base)
a1d78564
RS
4994{
4995 const struct mips_int_operand *operand;
3ccad066 4996 unsigned int uval;
a1d78564
RS
4997 int min_val, max_val, factor;
4998 offsetT sval;
a1d78564
RS
4999
5000 operand = (const struct mips_int_operand *) operand_base;
5001 factor = 1 << operand->shift;
3ccad066
RS
5002 min_val = mips_int_operand_min (operand);
5003 max_val = mips_int_operand_max (operand);
a1d78564 5004
d436c1c2
RS
5005 if (operand_base->lsb == 0
5006 && operand_base->size == 16
5007 && operand->shift == 0
5008 && operand->bias == 0
5009 && (operand->max_val == 32767 || operand->max_val == 65535))
a1d78564
RS
5010 {
5011 /* The operand can be relocated. */
a92713e6
RS
5012 if (!match_expression (arg, &offset_expr, offset_reloc))
5013 return FALSE;
5014
5015 if (offset_reloc[0] != BFD_RELOC_UNUSED)
a1d78564
RS
5016 /* Relocation operators were used. Accept the arguent and
5017 leave the relocation value in offset_expr and offset_relocs
5018 for the caller to process. */
a92713e6
RS
5019 return TRUE;
5020
5021 if (offset_expr.X_op != O_constant)
a1d78564 5022 {
60f20e8b
RS
5023 /* Accept non-constant operands if no later alternative matches,
5024 leaving it for the caller to process. */
5025 if (!arg->lax_match)
5026 return FALSE;
a92713e6
RS
5027 offset_reloc[0] = BFD_RELOC_LO16;
5028 return TRUE;
a1d78564 5029 }
a92713e6 5030
a1d78564
RS
5031 /* Clear the global state; we're going to install the operand
5032 ourselves. */
a92713e6 5033 sval = offset_expr.X_add_number;
a1d78564 5034 offset_expr.X_op = O_absent;
60f20e8b
RS
5035
5036 /* For compatibility with older assemblers, we accept
5037 0x8000-0xffff as signed 16-bit numbers when only
5038 signed numbers are allowed. */
5039 if (sval > max_val)
5040 {
5041 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5042 if (!arg->lax_match && sval <= max_val)
5043 return FALSE;
5044 }
a1d78564
RS
5045 }
5046 else
5047 {
1a00e612 5048 if (!match_const_int (arg, &sval))
a92713e6 5049 return FALSE;
a1d78564
RS
5050 }
5051
5052 arg->last_op_int = sval;
5053
1a00e612 5054 if (sval < min_val || sval > max_val || sval % factor)
a1d78564 5055 {
1a00e612
RS
5056 match_out_of_range (arg);
5057 return FALSE;
a1d78564
RS
5058 }
5059
5060 uval = (unsigned int) sval >> operand->shift;
5061 uval -= operand->bias;
5062
5063 /* Handle -mfix-cn63xxp1. */
5064 if (arg->opnum == 1
5065 && mips_fix_cn63xxp1
5066 && !mips_opts.micromips
5067 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5068 switch (uval)
5069 {
5070 case 5:
5071 case 25:
5072 case 26:
5073 case 27:
5074 case 28:
5075 case 29:
5076 case 30:
5077 case 31:
5078 /* These are ok. */
5079 break;
5080
5081 default:
5082 /* The rest must be changed to 28. */
5083 uval = 28;
5084 break;
5085 }
5086
5087 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5088 return TRUE;
a1d78564
RS
5089}
5090
5091/* OP_MAPPED_INT matcher. */
5092
a92713e6 5093static bfd_boolean
a1d78564 5094match_mapped_int_operand (struct mips_arg_info *arg,
a92713e6 5095 const struct mips_operand *operand_base)
a1d78564
RS
5096{
5097 const struct mips_mapped_int_operand *operand;
5098 unsigned int uval, num_vals;
5099 offsetT sval;
5100
5101 operand = (const struct mips_mapped_int_operand *) operand_base;
1a00e612 5102 if (!match_const_int (arg, &sval))
a92713e6 5103 return FALSE;
a1d78564
RS
5104
5105 num_vals = 1 << operand_base->size;
5106 for (uval = 0; uval < num_vals; uval++)
5107 if (operand->int_map[uval] == sval)
5108 break;
5109 if (uval == num_vals)
1a00e612
RS
5110 {
5111 match_out_of_range (arg);
5112 return FALSE;
5113 }
a1d78564
RS
5114
5115 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5116 return TRUE;
a1d78564
RS
5117}
5118
5119/* OP_MSB matcher. */
5120
a92713e6 5121static bfd_boolean
a1d78564 5122match_msb_operand (struct mips_arg_info *arg,
a92713e6 5123 const struct mips_operand *operand_base)
a1d78564
RS
5124{
5125 const struct mips_msb_operand *operand;
5126 int min_val, max_val, max_high;
5127 offsetT size, sval, high;
5128
5129 operand = (const struct mips_msb_operand *) operand_base;
5130 min_val = operand->bias;
5131 max_val = min_val + (1 << operand_base->size) - 1;
5132 max_high = operand->opsize;
5133
1a00e612 5134 if (!match_const_int (arg, &size))
a92713e6 5135 return FALSE;
a1d78564
RS
5136
5137 high = size + arg->last_op_int;
5138 sval = operand->add_lsb ? high : size;
5139
5140 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5141 {
1a00e612
RS
5142 match_out_of_range (arg);
5143 return FALSE;
a1d78564
RS
5144 }
5145 insn_insert_operand (arg->insn, operand_base, sval - min_val);
a92713e6 5146 return TRUE;
a1d78564
RS
5147}
5148
5149/* OP_REG matcher. */
5150
a92713e6 5151static bfd_boolean
a1d78564 5152match_reg_operand (struct mips_arg_info *arg,
a92713e6 5153 const struct mips_operand *operand_base)
a1d78564
RS
5154{
5155 const struct mips_reg_operand *operand;
a92713e6 5156 unsigned int regno, uval, num_vals;
a1d78564
RS
5157
5158 operand = (const struct mips_reg_operand *) operand_base;
a92713e6
RS
5159 if (!match_reg (arg, operand->reg_type, &regno))
5160 return FALSE;
a1d78564
RS
5161
5162 if (operand->reg_map)
5163 {
5164 num_vals = 1 << operand->root.size;
5165 for (uval = 0; uval < num_vals; uval++)
5166 if (operand->reg_map[uval] == regno)
5167 break;
5168 if (num_vals == uval)
a92713e6 5169 return FALSE;
a1d78564
RS
5170 }
5171 else
5172 uval = regno;
5173
a1d78564
RS
5174 arg->last_regno = regno;
5175 if (arg->opnum == 1)
5176 arg->dest_regno = regno;
5177 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5178 return TRUE;
a1d78564
RS
5179}
5180
5181/* OP_REG_PAIR matcher. */
5182
a92713e6 5183static bfd_boolean
a1d78564 5184match_reg_pair_operand (struct mips_arg_info *arg,
a92713e6 5185 const struct mips_operand *operand_base)
a1d78564
RS
5186{
5187 const struct mips_reg_pair_operand *operand;
a92713e6 5188 unsigned int regno1, regno2, uval, num_vals;
a1d78564
RS
5189
5190 operand = (const struct mips_reg_pair_operand *) operand_base;
a92713e6
RS
5191 if (!match_reg (arg, operand->reg_type, &regno1)
5192 || !match_char (arg, ',')
5193 || !match_reg (arg, operand->reg_type, &regno2))
5194 return FALSE;
a1d78564
RS
5195
5196 num_vals = 1 << operand_base->size;
5197 for (uval = 0; uval < num_vals; uval++)
5198 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5199 break;
5200 if (uval == num_vals)
a92713e6 5201 return FALSE;
a1d78564 5202
a1d78564 5203 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5204 return TRUE;
a1d78564
RS
5205}
5206
5207/* OP_PCREL matcher. The caller chooses the relocation type. */
5208
a92713e6
RS
5209static bfd_boolean
5210match_pcrel_operand (struct mips_arg_info *arg)
a1d78564 5211{
a92713e6
RS
5212 bfd_reloc_code_real_type r[3];
5213
5214 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
a1d78564
RS
5215}
5216
5217/* OP_PERF_REG matcher. */
5218
a92713e6 5219static bfd_boolean
a1d78564 5220match_perf_reg_operand (struct mips_arg_info *arg,
a92713e6 5221 const struct mips_operand *operand)
a1d78564
RS
5222{
5223 offsetT sval;
5224
1a00e612 5225 if (!match_const_int (arg, &sval))
a92713e6 5226 return FALSE;
a1d78564
RS
5227
5228 if (sval != 0
5229 && (sval != 1
5230 || (mips_opts.arch == CPU_R5900
5231 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5232 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5233 {
1a00e612
RS
5234 set_insn_error (arg->argnum, _("invalid performance register"));
5235 return FALSE;
a1d78564
RS
5236 }
5237
5238 insn_insert_operand (arg->insn, operand, sval);
a92713e6 5239 return TRUE;
a1d78564
RS
5240}
5241
5242/* OP_ADDIUSP matcher. */
5243
a92713e6 5244static bfd_boolean
a1d78564 5245match_addiusp_operand (struct mips_arg_info *arg,
a92713e6 5246 const struct mips_operand *operand)
a1d78564
RS
5247{
5248 offsetT sval;
5249 unsigned int uval;
5250
1a00e612 5251 if (!match_const_int (arg, &sval))
a92713e6 5252 return FALSE;
a1d78564
RS
5253
5254 if (sval % 4)
1a00e612
RS
5255 {
5256 match_out_of_range (arg);
5257 return FALSE;
5258 }
a1d78564
RS
5259
5260 sval /= 4;
5261 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
1a00e612
RS
5262 {
5263 match_out_of_range (arg);
5264 return FALSE;
5265 }
a1d78564
RS
5266
5267 uval = (unsigned int) sval;
5268 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5269 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5270 return TRUE;
a1d78564
RS
5271}
5272
5273/* OP_CLO_CLZ_DEST matcher. */
5274
a92713e6 5275static bfd_boolean
a1d78564 5276match_clo_clz_dest_operand (struct mips_arg_info *arg,
a92713e6 5277 const struct mips_operand *operand)
a1d78564
RS
5278{
5279 unsigned int regno;
5280
a92713e6
RS
5281 if (!match_reg (arg, OP_REG_GP, &regno))
5282 return FALSE;
a1d78564 5283
a1d78564 5284 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
a92713e6 5285 return TRUE;
a1d78564
RS
5286}
5287
7361da2c
AB
5288/* OP_CHECK_PREV matcher. */
5289
5290static bfd_boolean
5291match_check_prev_operand (struct mips_arg_info *arg,
5292 const struct mips_operand *operand_base)
5293{
5294 const struct mips_check_prev_operand *operand;
5295 unsigned int regno;
5296
5297 operand = (const struct mips_check_prev_operand *) operand_base;
5298
5299 if (!match_reg (arg, OP_REG_GP, &regno))
5300 return FALSE;
5301
5302 if (!operand->zero_ok && regno == 0)
5303 return FALSE;
5304
5305 if ((operand->less_than_ok && regno < arg->last_regno)
5306 || (operand->greater_than_ok && regno > arg->last_regno)
5307 || (operand->equal_ok && regno == arg->last_regno))
5308 {
5309 arg->last_regno = regno;
5310 insn_insert_operand (arg->insn, operand_base, regno);
5311 return TRUE;
5312 }
5313
5314 return FALSE;
5315}
5316
5317/* OP_SAME_RS_RT matcher. */
5318
5319static bfd_boolean
5320match_same_rs_rt_operand (struct mips_arg_info *arg,
5321 const struct mips_operand *operand)
5322{
5323 unsigned int regno;
5324
5325 if (!match_reg (arg, OP_REG_GP, &regno))
5326 return FALSE;
5327
5328 if (regno == 0)
5329 {
5330 set_insn_error (arg->argnum, _("the source register must not be $0"));
5331 return FALSE;
5332 }
5333
5334 arg->last_regno = regno;
5335
5336 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5337 return TRUE;
5338}
5339
a1d78564
RS
5340/* OP_LWM_SWM_LIST matcher. */
5341
a92713e6 5342static bfd_boolean
a1d78564 5343match_lwm_swm_list_operand (struct mips_arg_info *arg,
a92713e6 5344 const struct mips_operand *operand)
a1d78564 5345{
a92713e6
RS
5346 unsigned int reglist, sregs, ra, regno1, regno2;
5347 struct mips_arg_info reset;
a1d78564 5348
a92713e6
RS
5349 reglist = 0;
5350 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5351 return FALSE;
5352 do
5353 {
5354 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5355 {
5356 reglist |= 1 << FP;
5357 regno2 = S7;
5358 }
5359 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5360 reset = *arg;
5361 }
5362 while (match_char (arg, ',')
5363 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5364 *arg = reset;
a1d78564
RS
5365
5366 if (operand->size == 2)
5367 {
5368 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5369
5370 s0, ra
5371 s0, s1, ra, s2, s3
5372 s0-s2, ra
5373
5374 and any permutations of these. */
5375 if ((reglist & 0xfff1ffff) != 0x80010000)
a92713e6 5376 return FALSE;
a1d78564
RS
5377
5378 sregs = (reglist >> 17) & 7;
5379 ra = 0;
5380 }
5381 else
5382 {
5383 /* The list must include at least one of ra and s0-sN,
5384 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5385 which are $23 and $30 respectively.) E.g.:
5386
5387 ra
5388 s0
5389 ra, s0, s1, s2
5390 s0-s8
5391 s0-s5, ra
5392
5393 and any permutations of these. */
5394 if ((reglist & 0x3f00ffff) != 0)
a92713e6 5395 return FALSE;
a1d78564
RS
5396
5397 ra = (reglist >> 27) & 0x10;
5398 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5399 }
5400 sregs += 1;
5401 if ((sregs & -sregs) != sregs)
a92713e6 5402 return FALSE;
a1d78564
RS
5403
5404 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
a92713e6 5405 return TRUE;
a1d78564
RS
5406}
5407
364215c8
RS
5408/* OP_ENTRY_EXIT_LIST matcher. */
5409
a92713e6 5410static unsigned int
364215c8 5411match_entry_exit_operand (struct mips_arg_info *arg,
a92713e6 5412 const struct mips_operand *operand)
364215c8
RS
5413{
5414 unsigned int mask;
5415 bfd_boolean is_exit;
5416
5417 /* The format is the same for both ENTRY and EXIT, but the constraints
5418 are different. */
5419 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5420 mask = (is_exit ? 7 << 3 : 0);
a92713e6 5421 do
364215c8
RS
5422 {
5423 unsigned int regno1, regno2;
5424 bfd_boolean is_freg;
5425
a92713e6 5426 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
364215c8 5427 is_freg = FALSE;
a92713e6 5428 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
364215c8
RS
5429 is_freg = TRUE;
5430 else
a92713e6 5431 return FALSE;
364215c8
RS
5432
5433 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5434 {
5435 mask &= ~(7 << 3);
5436 mask |= (5 + regno2) << 3;
5437 }
5438 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5439 mask |= (regno2 - 3) << 3;
5440 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5441 mask |= (regno2 - 15) << 1;
5442 else if (regno1 == RA && regno2 == RA)
5443 mask |= 1;
5444 else
a92713e6 5445 return FALSE;
364215c8 5446 }
a92713e6
RS
5447 while (match_char (arg, ','));
5448
364215c8 5449 insn_insert_operand (arg->insn, operand, mask);
a92713e6 5450 return TRUE;
364215c8
RS
5451}
5452
5453/* OP_SAVE_RESTORE_LIST matcher. */
5454
a92713e6
RS
5455static bfd_boolean
5456match_save_restore_list_operand (struct mips_arg_info *arg)
364215c8
RS
5457{
5458 unsigned int opcode, args, statics, sregs;
5459 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
364215c8 5460 offsetT frame_size;
364215c8 5461
364215c8
RS
5462 opcode = arg->insn->insn_opcode;
5463 frame_size = 0;
5464 num_frame_sizes = 0;
5465 args = 0;
5466 statics = 0;
5467 sregs = 0;
a92713e6 5468 do
364215c8
RS
5469 {
5470 unsigned int regno1, regno2;
5471
a92713e6 5472 if (arg->token->type == OT_INTEGER)
364215c8
RS
5473 {
5474 /* Handle the frame size. */
1a00e612 5475 if (!match_const_int (arg, &frame_size))
a92713e6 5476 return FALSE;
364215c8 5477 num_frame_sizes += 1;
364215c8
RS
5478 }
5479 else
5480 {
a92713e6
RS
5481 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5482 return FALSE;
364215c8
RS
5483
5484 while (regno1 <= regno2)
5485 {
5486 if (regno1 >= 4 && regno1 <= 7)
5487 {
5488 if (num_frame_sizes == 0)
5489 /* args $a0-$a3 */
5490 args |= 1 << (regno1 - 4);
5491 else
5492 /* statics $a0-$a3 */
5493 statics |= 1 << (regno1 - 4);
5494 }
5495 else if (regno1 >= 16 && regno1 <= 23)
5496 /* $s0-$s7 */
5497 sregs |= 1 << (regno1 - 16);
5498 else if (regno1 == 30)
5499 /* $s8 */
5500 sregs |= 1 << 8;
5501 else if (regno1 == 31)
5502 /* Add $ra to insn. */
5503 opcode |= 0x40;
5504 else
a92713e6 5505 return FALSE;
364215c8
RS
5506 regno1 += 1;
5507 if (regno1 == 24)
5508 regno1 = 30;
5509 }
5510 }
364215c8 5511 }
a92713e6 5512 while (match_char (arg, ','));
364215c8
RS
5513
5514 /* Encode args/statics combination. */
5515 if (args & statics)
a92713e6 5516 return FALSE;
364215c8
RS
5517 else if (args == 0xf)
5518 /* All $a0-$a3 are args. */
5519 opcode |= MIPS16_ALL_ARGS << 16;
5520 else if (statics == 0xf)
5521 /* All $a0-$a3 are statics. */
5522 opcode |= MIPS16_ALL_STATICS << 16;
5523 else
5524 {
5525 /* Count arg registers. */
5526 num_args = 0;
5527 while (args & 0x1)
5528 {
5529 args >>= 1;
5530 num_args += 1;
5531 }
5532 if (args != 0)
a92713e6 5533 return FALSE;
364215c8
RS
5534
5535 /* Count static registers. */
5536 num_statics = 0;
5537 while (statics & 0x8)
5538 {
5539 statics = (statics << 1) & 0xf;
5540 num_statics += 1;
5541 }
5542 if (statics != 0)
a92713e6 5543 return FALSE;
364215c8
RS
5544
5545 /* Encode args/statics. */
5546 opcode |= ((num_args << 2) | num_statics) << 16;
5547 }
5548
5549 /* Encode $s0/$s1. */
5550 if (sregs & (1 << 0)) /* $s0 */
5551 opcode |= 0x20;
5552 if (sregs & (1 << 1)) /* $s1 */
5553 opcode |= 0x10;
5554 sregs >>= 2;
5555
5556 /* Encode $s2-$s8. */
5557 num_sregs = 0;
5558 while (sregs & 1)
5559 {
5560 sregs >>= 1;
5561 num_sregs += 1;
5562 }
5563 if (sregs != 0)
a92713e6 5564 return FALSE;
364215c8
RS
5565 opcode |= num_sregs << 24;
5566
5567 /* Encode frame size. */
5568 if (num_frame_sizes == 0)
1a00e612
RS
5569 {
5570 set_insn_error (arg->argnum, _("missing frame size"));
5571 return FALSE;
5572 }
5573 if (num_frame_sizes > 1)
5574 {
5575 set_insn_error (arg->argnum, _("frame size specified twice"));
5576 return FALSE;
5577 }
5578 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5579 {
5580 set_insn_error (arg->argnum, _("invalid frame size"));
5581 return FALSE;
5582 }
5583 if (frame_size != 128 || (opcode >> 16) != 0)
364215c8
RS
5584 {
5585 frame_size /= 8;
5586 opcode |= (((frame_size & 0xf0) << 16)
5587 | (frame_size & 0x0f));
5588 }
5589
364215c8
RS
5590 /* Finally build the instruction. */
5591 if ((opcode >> 16) != 0 || frame_size == 0)
5592 opcode |= MIPS16_EXTEND;
5593 arg->insn->insn_opcode = opcode;
a92713e6 5594 return TRUE;
364215c8
RS
5595}
5596
a1d78564
RS
5597/* OP_MDMX_IMM_REG matcher. */
5598
a92713e6 5599static bfd_boolean
a1d78564 5600match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
a92713e6 5601 const struct mips_operand *operand)
a1d78564 5602{
a92713e6 5603 unsigned int regno, uval;
a1d78564
RS
5604 bfd_boolean is_qh;
5605 const struct mips_opcode *opcode;
5606
5607 /* The mips_opcode records whether this is an octobyte or quadhalf
5608 instruction. Start out with that bit in place. */
5609 opcode = arg->insn->insn_mo;
5610 uval = mips_extract_operand (operand, opcode->match);
5611 is_qh = (uval != 0);
5612
56d438b1 5613 if (arg->token->type == OT_REG)
a1d78564
RS
5614 {
5615 if ((opcode->membership & INSN_5400)
5616 && strcmp (opcode->name, "rzu.ob") == 0)
5617 {
1a00e612
RS
5618 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5619 arg->argnum);
5620 return FALSE;
a1d78564
RS
5621 }
5622
56d438b1
CF
5623 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5624 return FALSE;
5625 ++arg->token;
5626
a1d78564
RS
5627 /* Check whether this is a vector register or a broadcast of
5628 a single element. */
56d438b1 5629 if (arg->token->type == OT_INTEGER_INDEX)
a1d78564 5630 {
56d438b1 5631 if (arg->token->u.index > (is_qh ? 3 : 7))
a1d78564 5632 {
1a00e612
RS
5633 set_insn_error (arg->argnum, _("invalid element selector"));
5634 return FALSE;
a1d78564 5635 }
56d438b1
CF
5636 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5637 ++arg->token;
a1d78564
RS
5638 }
5639 else
5640 {
5641 /* A full vector. */
5642 if ((opcode->membership & INSN_5400)
5643 && (strcmp (opcode->name, "sll.ob") == 0
5644 || strcmp (opcode->name, "srl.ob") == 0))
5645 {
1a00e612
RS
5646 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5647 arg->argnum);
5648 return FALSE;
a1d78564
RS
5649 }
5650
5651 if (is_qh)
5652 uval |= MDMX_FMTSEL_VEC_QH << 5;
5653 else
5654 uval |= MDMX_FMTSEL_VEC_OB << 5;
5655 }
a1d78564
RS
5656 uval |= regno;
5657 }
5658 else
5659 {
5660 offsetT sval;
5661
1a00e612 5662 if (!match_const_int (arg, &sval))
a92713e6 5663 return FALSE;
a1d78564
RS
5664 if (sval < 0 || sval > 31)
5665 {
1a00e612
RS
5666 match_out_of_range (arg);
5667 return FALSE;
a1d78564
RS
5668 }
5669 uval |= (sval & 31);
5670 if (is_qh)
5671 uval |= MDMX_FMTSEL_IMM_QH << 5;
5672 else
5673 uval |= MDMX_FMTSEL_IMM_OB << 5;
5674 }
5675 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5676 return TRUE;
a1d78564
RS
5677}
5678
56d438b1
CF
5679/* OP_IMM_INDEX matcher. */
5680
5681static bfd_boolean
5682match_imm_index_operand (struct mips_arg_info *arg,
5683 const struct mips_operand *operand)
5684{
5685 unsigned int max_val;
5686
5687 if (arg->token->type != OT_INTEGER_INDEX)
5688 return FALSE;
5689
5690 max_val = (1 << operand->size) - 1;
5691 if (arg->token->u.index > max_val)
5692 {
5693 match_out_of_range (arg);
5694 return FALSE;
5695 }
5696 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5697 ++arg->token;
5698 return TRUE;
5699}
5700
5701/* OP_REG_INDEX matcher. */
5702
5703static bfd_boolean
5704match_reg_index_operand (struct mips_arg_info *arg,
5705 const struct mips_operand *operand)
5706{
5707 unsigned int regno;
5708
5709 if (arg->token->type != OT_REG_INDEX)
5710 return FALSE;
5711
5712 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5713 return FALSE;
5714
5715 insn_insert_operand (arg->insn, operand, regno);
5716 ++arg->token;
5717 return TRUE;
5718}
5719
a1d78564
RS
5720/* OP_PC matcher. */
5721
a92713e6
RS
5722static bfd_boolean
5723match_pc_operand (struct mips_arg_info *arg)
a1d78564 5724{
a92713e6
RS
5725 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5726 {
5727 ++arg->token;
5728 return TRUE;
5729 }
5730 return FALSE;
a1d78564
RS
5731}
5732
7361da2c
AB
5733/* OP_NON_ZERO_REG matcher. */
5734
5735static bfd_boolean
5736match_non_zero_reg_operand (struct mips_arg_info *arg,
5737 const struct mips_operand *operand)
5738{
5739 unsigned int regno;
5740
5741 if (!match_reg (arg, OP_REG_GP, &regno))
5742 return FALSE;
5743
5744 if (regno == 0)
5745 return FALSE;
5746
5747 arg->last_regno = regno;
5748 insn_insert_operand (arg->insn, operand, regno);
5749 return TRUE;
5750}
5751
a1d78564
RS
5752/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5753 register that we need to match. */
5754
a92713e6
RS
5755static bfd_boolean
5756match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
a1d78564
RS
5757{
5758 unsigned int regno;
5759
a92713e6 5760 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
a1d78564
RS
5761}
5762
89565f1b
RS
5763/* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5764 the length of the value in bytes (4 for float, 8 for double) and
5765 USING_GPRS says whether the destination is a GPR rather than an FPR.
5766
5767 Return the constant in IMM and OFFSET as follows:
5768
5769 - If the constant should be loaded via memory, set IMM to O_absent and
5770 OFFSET to the memory address.
5771
5772 - Otherwise, if the constant should be loaded into two 32-bit registers,
5773 set IMM to the O_constant to load into the high register and OFFSET
5774 to the corresponding value for the low register.
5775
5776 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5777
5778 These constants only appear as the last operand in an instruction,
5779 and every instruction that accepts them in any variant accepts them
5780 in all variants. This means we don't have to worry about backing out
5781 any changes if the instruction does not match. We just match
5782 unconditionally and report an error if the constant is invalid. */
5783
a92713e6
RS
5784static bfd_boolean
5785match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5786 expressionS *offset, int length, bfd_boolean using_gprs)
89565f1b 5787{
a92713e6 5788 char *p;
89565f1b
RS
5789 segT seg, new_seg;
5790 subsegT subseg;
5791 const char *newname;
a92713e6 5792 unsigned char *data;
89565f1b
RS
5793
5794 /* Where the constant is placed is based on how the MIPS assembler
5795 does things:
5796
5797 length == 4 && using_gprs -- immediate value only
5798 length == 8 && using_gprs -- .rdata or immediate value
5799 length == 4 && !using_gprs -- .lit4 or immediate value
5800 length == 8 && !using_gprs -- .lit8 or immediate value
5801
5802 The .lit4 and .lit8 sections are only used if permitted by the
5803 -G argument. */
a92713e6 5804 if (arg->token->type != OT_FLOAT)
1a00e612
RS
5805 {
5806 set_insn_error (arg->argnum, _("floating-point expression required"));
5807 return FALSE;
5808 }
a92713e6
RS
5809
5810 gas_assert (arg->token->u.flt.length == length);
5811 data = arg->token->u.flt.data;
5812 ++arg->token;
89565f1b
RS
5813
5814 /* Handle 32-bit constants for which an immediate value is best. */
5815 if (length == 4
5816 && (using_gprs
5817 || g_switch_value < 4
5818 || (data[0] == 0 && data[1] == 0)
5819 || (data[2] == 0 && data[3] == 0)))
5820 {
5821 imm->X_op = O_constant;
5822 if (!target_big_endian)
5823 imm->X_add_number = bfd_getl32 (data);
5824 else
5825 imm->X_add_number = bfd_getb32 (data);
5826 offset->X_op = O_absent;
a92713e6 5827 return TRUE;
89565f1b
RS
5828 }
5829
5830 /* Handle 64-bit constants for which an immediate value is best. */
5831 if (length == 8
5832 && !mips_disable_float_construction
351cdf24
MF
5833 /* Constants can only be constructed in GPRs and copied to FPRs if the
5834 GPRs are at least as wide as the FPRs or MTHC1 is available.
5835 Unlike most tests for 32-bit floating-point registers this check
5836 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5837 permit 64-bit moves without MXHC1.
5838 Force the constant into memory otherwise. */
5839 && (using_gprs
5840 || GPR_SIZE == 64
5841 || ISA_HAS_MXHC1 (mips_opts.isa)
5842 || FPR_SIZE == 32)
89565f1b
RS
5843 && ((data[0] == 0 && data[1] == 0)
5844 || (data[2] == 0 && data[3] == 0))
5845 && ((data[4] == 0 && data[5] == 0)
5846 || (data[6] == 0 && data[7] == 0)))
5847 {
5848 /* The value is simple enough to load with a couple of instructions.
5849 If using 32-bit registers, set IMM to the high order 32 bits and
5850 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5851 64 bit constant. */
351cdf24 5852 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
89565f1b
RS
5853 {
5854 imm->X_op = O_constant;
5855 offset->X_op = O_constant;
5856 if (!target_big_endian)
5857 {
5858 imm->X_add_number = bfd_getl32 (data + 4);
5859 offset->X_add_number = bfd_getl32 (data);
5860 }
5861 else
5862 {
5863 imm->X_add_number = bfd_getb32 (data);
5864 offset->X_add_number = bfd_getb32 (data + 4);
5865 }
5866 if (offset->X_add_number == 0)
5867 offset->X_op = O_absent;
5868 }
5869 else
5870 {
5871 imm->X_op = O_constant;
5872 if (!target_big_endian)
5873 imm->X_add_number = bfd_getl64 (data);
5874 else
5875 imm->X_add_number = bfd_getb64 (data);
5876 offset->X_op = O_absent;
5877 }
a92713e6 5878 return TRUE;
89565f1b
RS
5879 }
5880
5881 /* Switch to the right section. */
5882 seg = now_seg;
5883 subseg = now_subseg;
5884 if (length == 4)
5885 {
5886 gas_assert (!using_gprs && g_switch_value >= 4);
5887 newname = ".lit4";
5888 }
5889 else
5890 {
5891 if (using_gprs || g_switch_value < 8)
5892 newname = RDATA_SECTION_NAME;
5893 else
5894 newname = ".lit8";
5895 }
5896
5897 new_seg = subseg_new (newname, (subsegT) 0);
5898 bfd_set_section_flags (stdoutput, new_seg,
5899 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5900 frag_align (length == 4 ? 2 : 3, 0, 0);
5901 if (strncmp (TARGET_OS, "elf", 3) != 0)
5902 record_alignment (new_seg, 4);
5903 else
5904 record_alignment (new_seg, length == 4 ? 2 : 3);
5905 if (seg == now_seg)
1661c76c 5906 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
89565f1b
RS
5907
5908 /* Set the argument to the current address in the section. */
5909 imm->X_op = O_absent;
5910 offset->X_op = O_symbol;
5911 offset->X_add_symbol = symbol_temp_new_now ();
5912 offset->X_add_number = 0;
5913
5914 /* Put the floating point number into the section. */
5915 p = frag_more (length);
5916 memcpy (p, data, length);
5917
5918 /* Switch back to the original section. */
5919 subseg_set (seg, subseg);
a92713e6 5920 return TRUE;
89565f1b
RS
5921}
5922
14daeee3
RS
5923/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5924 them. */
5925
5926static bfd_boolean
5927match_vu0_suffix_operand (struct mips_arg_info *arg,
5928 const struct mips_operand *operand,
5929 bfd_boolean match_p)
5930{
5931 unsigned int uval;
5932
5933 /* The operand can be an XYZW mask or a single 2-bit channel index
5934 (with X being 0). */
5935 gas_assert (operand->size == 2 || operand->size == 4);
5936
ee5734f0 5937 /* The suffix can be omitted when it is already part of the opcode. */
14daeee3 5938 if (arg->token->type != OT_CHANNELS)
ee5734f0 5939 return match_p;
14daeee3
RS
5940
5941 uval = arg->token->u.channels;
5942 if (operand->size == 2)
5943 {
5944 /* Check that a single bit is set and convert it into a 2-bit index. */
5945 if ((uval & -uval) != uval)
5946 return FALSE;
5947 uval = 4 - ffs (uval);
5948 }
5949
5950 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5951 return FALSE;
5952
5953 ++arg->token;
5954 if (!match_p)
5955 insn_insert_operand (arg->insn, operand, uval);
5956 return TRUE;
5957}
5958
a1d78564
RS
5959/* S is the text seen for ARG. Match it against OPERAND. Return the end
5960 of the argument text if the match is successful, otherwise return null. */
5961
a92713e6 5962static bfd_boolean
a1d78564 5963match_operand (struct mips_arg_info *arg,
a92713e6 5964 const struct mips_operand *operand)
a1d78564
RS
5965{
5966 switch (operand->type)
5967 {
5968 case OP_INT:
a92713e6 5969 return match_int_operand (arg, operand);
a1d78564
RS
5970
5971 case OP_MAPPED_INT:
a92713e6 5972 return match_mapped_int_operand (arg, operand);
a1d78564
RS
5973
5974 case OP_MSB:
a92713e6 5975 return match_msb_operand (arg, operand);
a1d78564
RS
5976
5977 case OP_REG:
0f35dbc4 5978 case OP_OPTIONAL_REG:
a92713e6 5979 return match_reg_operand (arg, operand);
a1d78564
RS
5980
5981 case OP_REG_PAIR:
a92713e6 5982 return match_reg_pair_operand (arg, operand);
a1d78564
RS
5983
5984 case OP_PCREL:
a92713e6 5985 return match_pcrel_operand (arg);
a1d78564
RS
5986
5987 case OP_PERF_REG:
a92713e6 5988 return match_perf_reg_operand (arg, operand);
a1d78564
RS
5989
5990 case OP_ADDIUSP_INT:
a92713e6 5991 return match_addiusp_operand (arg, operand);
a1d78564
RS
5992
5993 case OP_CLO_CLZ_DEST:
a92713e6 5994 return match_clo_clz_dest_operand (arg, operand);
a1d78564
RS
5995
5996 case OP_LWM_SWM_LIST:
a92713e6 5997 return match_lwm_swm_list_operand (arg, operand);
a1d78564
RS
5998
5999 case OP_ENTRY_EXIT_LIST:
a92713e6 6000 return match_entry_exit_operand (arg, operand);
364215c8 6001
a1d78564 6002 case OP_SAVE_RESTORE_LIST:
a92713e6 6003 return match_save_restore_list_operand (arg);
a1d78564
RS
6004
6005 case OP_MDMX_IMM_REG:
a92713e6 6006 return match_mdmx_imm_reg_operand (arg, operand);
a1d78564
RS
6007
6008 case OP_REPEAT_DEST_REG:
a92713e6 6009 return match_tied_reg_operand (arg, arg->dest_regno);
a1d78564
RS
6010
6011 case OP_REPEAT_PREV_REG:
a92713e6 6012 return match_tied_reg_operand (arg, arg->last_regno);
a1d78564
RS
6013
6014 case OP_PC:
a92713e6 6015 return match_pc_operand (arg);
14daeee3
RS
6016
6017 case OP_VU0_SUFFIX:
6018 return match_vu0_suffix_operand (arg, operand, FALSE);
6019
6020 case OP_VU0_MATCH_SUFFIX:
6021 return match_vu0_suffix_operand (arg, operand, TRUE);
56d438b1
CF
6022
6023 case OP_IMM_INDEX:
6024 return match_imm_index_operand (arg, operand);
6025
6026 case OP_REG_INDEX:
6027 return match_reg_index_operand (arg, operand);
7361da2c
AB
6028
6029 case OP_SAME_RS_RT:
6030 return match_same_rs_rt_operand (arg, operand);
6031
6032 case OP_CHECK_PREV:
6033 return match_check_prev_operand (arg, operand);
6034
6035 case OP_NON_ZERO_REG:
6036 return match_non_zero_reg_operand (arg, operand);
a1d78564
RS
6037 }
6038 abort ();
6039}
6040
6041/* ARG is the state after successfully matching an instruction.
6042 Issue any queued-up warnings. */
6043
6044static void
6045check_completed_insn (struct mips_arg_info *arg)
6046{
6047 if (arg->seen_at)
6048 {
6049 if (AT == ATREG)
1661c76c 6050 as_warn (_("used $at without \".set noat\""));
a1d78564 6051 else
1661c76c 6052 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
a1d78564
RS
6053 }
6054}
a1d78564 6055
85fcb30f
RS
6056/* Return true if modifying general-purpose register REG needs a delay. */
6057
6058static bfd_boolean
6059reg_needs_delay (unsigned int reg)
6060{
6061 unsigned long prev_pinfo;
6062
6063 prev_pinfo = history[0].insn_mo->pinfo;
6064 if (!mips_opts.noreorder
67dc82bc 6065 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
43885403 6066 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
85fcb30f
RS
6067 && (gpr_write_mask (&history[0]) & (1 << reg)))
6068 return TRUE;
6069
6070 return FALSE;
6071}
6072
71400594
RS
6073/* Classify an instruction according to the FIX_VR4120_* enumeration.
6074 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6075 by VR4120 errata. */
4d7206a2 6076
71400594
RS
6077static unsigned int
6078classify_vr4120_insn (const char *name)
252b5132 6079{
71400594
RS
6080 if (strncmp (name, "macc", 4) == 0)
6081 return FIX_VR4120_MACC;
6082 if (strncmp (name, "dmacc", 5) == 0)
6083 return FIX_VR4120_DMACC;
6084 if (strncmp (name, "mult", 4) == 0)
6085 return FIX_VR4120_MULT;
6086 if (strncmp (name, "dmult", 5) == 0)
6087 return FIX_VR4120_DMULT;
6088 if (strstr (name, "div"))
6089 return FIX_VR4120_DIV;
6090 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6091 return FIX_VR4120_MTHILO;
6092 return NUM_FIX_VR4120_CLASSES;
6093}
252b5132 6094
a8d14a88
CM
6095#define INSN_ERET 0x42000018
6096#define INSN_DERET 0x4200001f
6097#define INSN_DMULT 0x1c
6098#define INSN_DMULTU 0x1d
ff239038 6099
71400594
RS
6100/* Return the number of instructions that must separate INSN1 and INSN2,
6101 where INSN1 is the earlier instruction. Return the worst-case value
6102 for any INSN2 if INSN2 is null. */
252b5132 6103
71400594
RS
6104static unsigned int
6105insns_between (const struct mips_cl_insn *insn1,
6106 const struct mips_cl_insn *insn2)
6107{
6108 unsigned long pinfo1, pinfo2;
4c260379 6109 unsigned int mask;
71400594 6110
85fcb30f
RS
6111 /* If INFO2 is null, pessimistically assume that all flags are set for
6112 the second instruction. */
71400594
RS
6113 pinfo1 = insn1->insn_mo->pinfo;
6114 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
252b5132 6115
71400594
RS
6116 /* For most targets, write-after-read dependencies on the HI and LO
6117 registers must be separated by at least two instructions. */
6118 if (!hilo_interlocks)
252b5132 6119 {
71400594
RS
6120 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6121 return 2;
6122 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6123 return 2;
6124 }
6125
6126 /* If we're working around r7000 errata, there must be two instructions
6127 between an mfhi or mflo and any instruction that uses the result. */
6128 if (mips_7000_hilo_fix
df58fc94 6129 && !mips_opts.micromips
71400594 6130 && MF_HILO_INSN (pinfo1)
85fcb30f 6131 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
71400594
RS
6132 return 2;
6133
ff239038
CM
6134 /* If we're working around 24K errata, one instruction is required
6135 if an ERET or DERET is followed by a branch instruction. */
df58fc94 6136 if (mips_fix_24k && !mips_opts.micromips)
ff239038
CM
6137 {
6138 if (insn1->insn_opcode == INSN_ERET
6139 || insn1->insn_opcode == INSN_DERET)
6140 {
6141 if (insn2 == NULL
6142 || insn2->insn_opcode == INSN_ERET
6143 || insn2->insn_opcode == INSN_DERET
11625dd8 6144 || delayed_branch_p (insn2))
ff239038
CM
6145 return 1;
6146 }
6147 }
6148
a8d14a88
CM
6149 /* If we're working around PMC RM7000 errata, there must be three
6150 nops between a dmult and a load instruction. */
6151 if (mips_fix_rm7000 && !mips_opts.micromips)
6152 {
6153 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6154 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6155 {
6156 if (pinfo2 & INSN_LOAD_MEMORY)
6157 return 3;
6158 }
6159 }
6160
71400594
RS
6161 /* If working around VR4120 errata, check for combinations that need
6162 a single intervening instruction. */
df58fc94 6163 if (mips_fix_vr4120 && !mips_opts.micromips)
71400594
RS
6164 {
6165 unsigned int class1, class2;
252b5132 6166
71400594
RS
6167 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6168 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
252b5132 6169 {
71400594
RS
6170 if (insn2 == NULL)
6171 return 1;
6172 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6173 if (vr4120_conflicts[class1] & (1 << class2))
6174 return 1;
252b5132 6175 }
71400594
RS
6176 }
6177
df58fc94 6178 if (!HAVE_CODE_COMPRESSION)
71400594
RS
6179 {
6180 /* Check for GPR or coprocessor load delays. All such delays
6181 are on the RT register. */
6182 /* Itbl support may require additional care here. */
67dc82bc 6183 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
43885403 6184 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
252b5132 6185 {
85fcb30f 6186 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
71400594
RS
6187 return 1;
6188 }
6189
6190 /* Check for generic coprocessor hazards.
6191
6192 This case is not handled very well. There is no special
6193 knowledge of CP0 handling, and the coprocessors other than
6194 the floating point unit are not distinguished at all. */
6195 /* Itbl support may require additional care here. FIXME!
6196 Need to modify this to include knowledge about
6197 user specified delays! */
43885403 6198 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
71400594
RS
6199 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6200 {
6201 /* Handle cases where INSN1 writes to a known general coprocessor
6202 register. There must be a one instruction delay before INSN2
6203 if INSN2 reads that register, otherwise no delay is needed. */
4c260379
RS
6204 mask = fpr_write_mask (insn1);
6205 if (mask != 0)
252b5132 6206 {
4c260379 6207 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
71400594 6208 return 1;
252b5132
RH
6209 }
6210 else
6211 {
71400594
RS
6212 /* Read-after-write dependencies on the control registers
6213 require a two-instruction gap. */
6214 if ((pinfo1 & INSN_WRITE_COND_CODE)
6215 && (pinfo2 & INSN_READ_COND_CODE))
6216 return 2;
6217
6218 /* We don't know exactly what INSN1 does. If INSN2 is
6219 also a coprocessor instruction, assume there must be
6220 a one instruction gap. */
6221 if (pinfo2 & INSN_COP)
6222 return 1;
252b5132
RH
6223 }
6224 }
6b76fefe 6225
71400594
RS
6226 /* Check for read-after-write dependencies on the coprocessor
6227 control registers in cases where INSN1 does not need a general
6228 coprocessor delay. This means that INSN1 is a floating point
6229 comparison instruction. */
6230 /* Itbl support may require additional care here. */
6231 else if (!cop_interlocks
6232 && (pinfo1 & INSN_WRITE_COND_CODE)
6233 && (pinfo2 & INSN_READ_COND_CODE))
6234 return 1;
6235 }
6b76fefe 6236
7361da2c
AB
6237 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6238 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6239 and pause. */
6240 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6241 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6242 || (insn2 && delayed_branch_p (insn2))))
6243 return 1;
6244
71400594
RS
6245 return 0;
6246}
6b76fefe 6247
7d8e00cf
RS
6248/* Return the number of nops that would be needed to work around the
6249 VR4130 mflo/mfhi errata if instruction INSN immediately followed
932d1a1b
RS
6250 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6251 that are contained within the first IGNORE instructions of HIST. */
7d8e00cf
RS
6252
6253static int
932d1a1b 6254nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
7d8e00cf
RS
6255 const struct mips_cl_insn *insn)
6256{
4c260379
RS
6257 int i, j;
6258 unsigned int mask;
7d8e00cf
RS
6259
6260 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6261 are not affected by the errata. */
6262 if (insn != 0
6263 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6264 || strcmp (insn->insn_mo->name, "mtlo") == 0
6265 || strcmp (insn->insn_mo->name, "mthi") == 0))
6266 return 0;
6267
6268 /* Search for the first MFLO or MFHI. */
6269 for (i = 0; i < MAX_VR4130_NOPS; i++)
91d6fa6a 6270 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
7d8e00cf
RS
6271 {
6272 /* Extract the destination register. */
4c260379 6273 mask = gpr_write_mask (&hist[i]);
7d8e00cf
RS
6274
6275 /* No nops are needed if INSN reads that register. */
4c260379 6276 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
7d8e00cf
RS
6277 return 0;
6278
6279 /* ...or if any of the intervening instructions do. */
6280 for (j = 0; j < i; j++)
4c260379 6281 if (gpr_read_mask (&hist[j]) & mask)
7d8e00cf
RS
6282 return 0;
6283
932d1a1b
RS
6284 if (i >= ignore)
6285 return MAX_VR4130_NOPS - i;
7d8e00cf
RS
6286 }
6287 return 0;
6288}
6289
134c0c8b
MR
6290#define BASE_REG_EQ(INSN1, INSN2) \
6291 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
15be625d
CM
6292 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6293
6294/* Return the minimum alignment for this store instruction. */
6295
6296static int
6297fix_24k_align_to (const struct mips_opcode *mo)
6298{
6299 if (strcmp (mo->name, "sh") == 0)
6300 return 2;
6301
6302 if (strcmp (mo->name, "swc1") == 0
6303 || strcmp (mo->name, "swc2") == 0
6304 || strcmp (mo->name, "sw") == 0
6305 || strcmp (mo->name, "sc") == 0
6306 || strcmp (mo->name, "s.s") == 0)
6307 return 4;
6308
6309 if (strcmp (mo->name, "sdc1") == 0
6310 || strcmp (mo->name, "sdc2") == 0
6311 || strcmp (mo->name, "s.d") == 0)
6312 return 8;
6313
6314 /* sb, swl, swr */
6315 return 1;
6316}
6317
6318struct fix_24k_store_info
6319 {
6320 /* Immediate offset, if any, for this store instruction. */
6321 short off;
6322 /* Alignment required by this store instruction. */
6323 int align_to;
6324 /* True for register offsets. */
6325 int register_offset;
6326 };
6327
6328/* Comparison function used by qsort. */
6329
6330static int
6331fix_24k_sort (const void *a, const void *b)
6332{
6333 const struct fix_24k_store_info *pos1 = a;
6334 const struct fix_24k_store_info *pos2 = b;
6335
6336 return (pos1->off - pos2->off);
6337}
6338
6339/* INSN is a store instruction. Try to record the store information
6340 in STINFO. Return false if the information isn't known. */
6341
6342static bfd_boolean
6343fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
ab9794cf 6344 const struct mips_cl_insn *insn)
15be625d
CM
6345{
6346 /* The instruction must have a known offset. */
6347 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6348 return FALSE;
6349
6350 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6351 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6352 return TRUE;
6353}
6354
932d1a1b
RS
6355/* Return the number of nops that would be needed to work around the 24k
6356 "lost data on stores during refill" errata if instruction INSN
6357 immediately followed the 2 instructions described by HIST.
6358 Ignore hazards that are contained within the first IGNORE
6359 instructions of HIST.
6360
6361 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6362 for the data cache refills and store data. The following describes
6363 the scenario where the store data could be lost.
6364
6365 * A data cache miss, due to either a load or a store, causing fill
6366 data to be supplied by the memory subsystem
6367 * The first three doublewords of fill data are returned and written
6368 into the cache
6369 * A sequence of four stores occurs in consecutive cycles around the
6370 final doubleword of the fill:
6371 * Store A
6372 * Store B
6373 * Store C
6374 * Zero, One or more instructions
6375 * Store D
6376
6377 The four stores A-D must be to different doublewords of the line that
6378 is being filled. The fourth instruction in the sequence above permits
6379 the fill of the final doubleword to be transferred from the FSB into
6380 the cache. In the sequence above, the stores may be either integer
6381 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6382 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6383 different doublewords on the line. If the floating point unit is
6384 running in 1:2 mode, it is not possible to create the sequence above
6385 using only floating point store instructions.
15be625d
CM
6386
6387 In this case, the cache line being filled is incorrectly marked
6388 invalid, thereby losing the data from any store to the line that
6389 occurs between the original miss and the completion of the five
6390 cycle sequence shown above.
6391
932d1a1b 6392 The workarounds are:
15be625d 6393
932d1a1b
RS
6394 * Run the data cache in write-through mode.
6395 * Insert a non-store instruction between
6396 Store A and Store B or Store B and Store C. */
3739860c 6397
15be625d 6398static int
932d1a1b 6399nops_for_24k (int ignore, const struct mips_cl_insn *hist,
15be625d
CM
6400 const struct mips_cl_insn *insn)
6401{
6402 struct fix_24k_store_info pos[3];
6403 int align, i, base_offset;
6404
932d1a1b
RS
6405 if (ignore >= 2)
6406 return 0;
6407
ab9794cf
RS
6408 /* If the previous instruction wasn't a store, there's nothing to
6409 worry about. */
15be625d
CM
6410 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6411 return 0;
6412
ab9794cf
RS
6413 /* If the instructions after the previous one are unknown, we have
6414 to assume the worst. */
6415 if (!insn)
15be625d
CM
6416 return 1;
6417
ab9794cf
RS
6418 /* Check whether we are dealing with three consecutive stores. */
6419 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6420 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
15be625d
CM
6421 return 0;
6422
6423 /* If we don't know the relationship between the store addresses,
6424 assume the worst. */
ab9794cf 6425 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
15be625d
CM
6426 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6427 return 1;
6428
6429 if (!fix_24k_record_store_info (&pos[0], insn)
6430 || !fix_24k_record_store_info (&pos[1], &hist[0])
6431 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6432 return 1;
6433
6434 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6435
6436 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6437 X bytes and such that the base register + X is known to be aligned
6438 to align bytes. */
6439
6440 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6441 align = 8;
6442 else
6443 {
6444 align = pos[0].align_to;
6445 base_offset = pos[0].off;
6446 for (i = 1; i < 3; i++)
6447 if (align < pos[i].align_to)
6448 {
6449 align = pos[i].align_to;
6450 base_offset = pos[i].off;
6451 }
6452 for (i = 0; i < 3; i++)
6453 pos[i].off -= base_offset;
6454 }
6455
6456 pos[0].off &= ~align + 1;
6457 pos[1].off &= ~align + 1;
6458 pos[2].off &= ~align + 1;
6459
6460 /* If any two stores write to the same chunk, they also write to the
6461 same doubleword. The offsets are still sorted at this point. */
6462 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6463 return 0;
6464
6465 /* A range of at least 9 bytes is needed for the stores to be in
6466 non-overlapping doublewords. */
6467 if (pos[2].off - pos[0].off <= 8)
6468 return 0;
6469
6470 if (pos[2].off - pos[1].off >= 24
6471 || pos[1].off - pos[0].off >= 24
6472 || pos[2].off - pos[0].off >= 32)
6473 return 0;
6474
6475 return 1;
6476}
6477
71400594 6478/* Return the number of nops that would be needed if instruction INSN
91d6fa6a 6479 immediately followed the MAX_NOPS instructions given by HIST,
932d1a1b
RS
6480 where HIST[0] is the most recent instruction. Ignore hazards
6481 between INSN and the first IGNORE instructions in HIST.
6482
6483 If INSN is null, return the worse-case number of nops for any
6484 instruction. */
bdaaa2e1 6485
71400594 6486static int
932d1a1b 6487nops_for_insn (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6488 const struct mips_cl_insn *insn)
6489{
6490 int i, nops, tmp_nops;
bdaaa2e1 6491
71400594 6492 nops = 0;
932d1a1b 6493 for (i = ignore; i < MAX_DELAY_NOPS; i++)
65b02341 6494 {
91d6fa6a 6495 tmp_nops = insns_between (hist + i, insn) - i;
65b02341
RS
6496 if (tmp_nops > nops)
6497 nops = tmp_nops;
6498 }
7d8e00cf 6499
df58fc94 6500 if (mips_fix_vr4130 && !mips_opts.micromips)
7d8e00cf 6501 {
932d1a1b 6502 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
7d8e00cf
RS
6503 if (tmp_nops > nops)
6504 nops = tmp_nops;
6505 }
6506
df58fc94 6507 if (mips_fix_24k && !mips_opts.micromips)
15be625d 6508 {
932d1a1b 6509 tmp_nops = nops_for_24k (ignore, hist, insn);
15be625d
CM
6510 if (tmp_nops > nops)
6511 nops = tmp_nops;
6512 }
6513
71400594
RS
6514 return nops;
6515}
252b5132 6516
71400594 6517/* The variable arguments provide NUM_INSNS extra instructions that
91d6fa6a 6518 might be added to HIST. Return the largest number of nops that
932d1a1b
RS
6519 would be needed after the extended sequence, ignoring hazards
6520 in the first IGNORE instructions. */
252b5132 6521
71400594 6522static int
932d1a1b
RS
6523nops_for_sequence (int num_insns, int ignore,
6524 const struct mips_cl_insn *hist, ...)
71400594
RS
6525{
6526 va_list args;
6527 struct mips_cl_insn buffer[MAX_NOPS];
6528 struct mips_cl_insn *cursor;
6529 int nops;
6530
91d6fa6a 6531 va_start (args, hist);
71400594 6532 cursor = buffer + num_insns;
91d6fa6a 6533 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
71400594
RS
6534 while (cursor > buffer)
6535 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6536
932d1a1b 6537 nops = nops_for_insn (ignore, buffer, NULL);
71400594
RS
6538 va_end (args);
6539 return nops;
6540}
252b5132 6541
71400594
RS
6542/* Like nops_for_insn, but if INSN is a branch, take into account the
6543 worst-case delay for the branch target. */
252b5132 6544
71400594 6545static int
932d1a1b 6546nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6547 const struct mips_cl_insn *insn)
6548{
6549 int nops, tmp_nops;
60b63b72 6550
932d1a1b 6551 nops = nops_for_insn (ignore, hist, insn);
11625dd8 6552 if (delayed_branch_p (insn))
71400594 6553 {
932d1a1b 6554 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
14fe068b 6555 hist, insn, get_delay_slot_nop (insn));
71400594
RS
6556 if (tmp_nops > nops)
6557 nops = tmp_nops;
6558 }
11625dd8 6559 else if (compact_branch_p (insn))
71400594 6560 {
932d1a1b 6561 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
71400594
RS
6562 if (tmp_nops > nops)
6563 nops = tmp_nops;
6564 }
6565 return nops;
6566}
6567
c67a084a
NC
6568/* Fix NOP issue: Replace nops by "or at,at,zero". */
6569
6570static void
6571fix_loongson2f_nop (struct mips_cl_insn * ip)
6572{
df58fc94 6573 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6574 if (strcmp (ip->insn_mo->name, "nop") == 0)
6575 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6576}
6577
6578/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6579 jr target pc &= 'hffff_ffff_cfff_ffff. */
6580
6581static void
6582fix_loongson2f_jump (struct mips_cl_insn * ip)
6583{
df58fc94 6584 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6585 if (strcmp (ip->insn_mo->name, "j") == 0
6586 || strcmp (ip->insn_mo->name, "jr") == 0
6587 || strcmp (ip->insn_mo->name, "jalr") == 0)
6588 {
6589 int sreg;
6590 expressionS ep;
6591
6592 if (! mips_opts.at)
6593 return;
6594
df58fc94 6595 sreg = EXTRACT_OPERAND (0, RS, *ip);
c67a084a
NC
6596 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6597 return;
6598
6599 ep.X_op = O_constant;
6600 ep.X_add_number = 0xcfff0000;
6601 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6602 ep.X_add_number = 0xffff;
6603 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6604 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6605 }
6606}
6607
6608static void
6609fix_loongson2f (struct mips_cl_insn * ip)
6610{
6611 if (mips_fix_loongson2f_nop)
6612 fix_loongson2f_nop (ip);
6613
6614 if (mips_fix_loongson2f_jump)
6615 fix_loongson2f_jump (ip);
6616}
6617
a4e06468
RS
6618/* IP is a branch that has a delay slot, and we need to fill it
6619 automatically. Return true if we can do that by swapping IP
e407c74b
NC
6620 with the previous instruction.
6621 ADDRESS_EXPR is an operand of the instruction to be used with
6622 RELOC_TYPE. */
a4e06468
RS
6623
6624static bfd_boolean
e407c74b 6625can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6626 bfd_reloc_code_real_type *reloc_type)
a4e06468 6627{
2b0c8b40 6628 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
a4e06468 6629 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
9d5de888 6630 unsigned int fpr_read, prev_fpr_write;
a4e06468
RS
6631
6632 /* -O2 and above is required for this optimization. */
6633 if (mips_optimize < 2)
6634 return FALSE;
6635
6636 /* If we have seen .set volatile or .set nomove, don't optimize. */
6637 if (mips_opts.nomove)
6638 return FALSE;
6639
6640 /* We can't swap if the previous instruction's position is fixed. */
6641 if (history[0].fixed_p)
6642 return FALSE;
6643
6644 /* If the previous previous insn was in a .set noreorder, we can't
6645 swap. Actually, the MIPS assembler will swap in this situation.
6646 However, gcc configured -with-gnu-as will generate code like
6647
6648 .set noreorder
6649 lw $4,XXX
6650 .set reorder
6651 INSN
6652 bne $4,$0,foo
6653
6654 in which we can not swap the bne and INSN. If gcc is not configured
6655 -with-gnu-as, it does not output the .set pseudo-ops. */
6656 if (history[1].noreorder_p)
6657 return FALSE;
6658
87333bb7
MR
6659 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6660 This means that the previous instruction was a 4-byte one anyhow. */
a4e06468
RS
6661 if (mips_opts.mips16 && history[0].fixp[0])
6662 return FALSE;
6663
6664 /* If the branch is itself the target of a branch, we can not swap.
6665 We cheat on this; all we check for is whether there is a label on
6666 this instruction. If there are any branches to anything other than
6667 a label, users must use .set noreorder. */
6668 if (seg_info (now_seg)->label_list)
6669 return FALSE;
6670
6671 /* If the previous instruction is in a variant frag other than this
2309ddf2 6672 branch's one, we cannot do the swap. This does not apply to
9301f9c3
MR
6673 MIPS16 code, which uses variant frags for different purposes. */
6674 if (!mips_opts.mips16
a4e06468
RS
6675 && history[0].frag
6676 && history[0].frag->fr_type == rs_machine_dependent)
6677 return FALSE;
6678
bcd530a7
RS
6679 /* We do not swap with instructions that cannot architecturally
6680 be placed in a branch delay slot, such as SYNC or ERET. We
6681 also refrain from swapping with a trap instruction, since it
6682 complicates trap handlers to have the trap instruction be in
6683 a delay slot. */
a4e06468 6684 prev_pinfo = history[0].insn_mo->pinfo;
bcd530a7 6685 if (prev_pinfo & INSN_NO_DELAY_SLOT)
a4e06468
RS
6686 return FALSE;
6687
6688 /* Check for conflicts between the branch and the instructions
6689 before the candidate delay slot. */
6690 if (nops_for_insn (0, history + 1, ip) > 0)
6691 return FALSE;
6692
6693 /* Check for conflicts between the swapped sequence and the
6694 target of the branch. */
6695 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6696 return FALSE;
6697
6698 /* If the branch reads a register that the previous
6699 instruction sets, we can not swap. */
6700 gpr_read = gpr_read_mask (ip);
6701 prev_gpr_write = gpr_write_mask (&history[0]);
6702 if (gpr_read & prev_gpr_write)
6703 return FALSE;
6704
9d5de888
CF
6705 fpr_read = fpr_read_mask (ip);
6706 prev_fpr_write = fpr_write_mask (&history[0]);
6707 if (fpr_read & prev_fpr_write)
6708 return FALSE;
6709
a4e06468
RS
6710 /* If the branch writes a register that the previous
6711 instruction sets, we can not swap. */
6712 gpr_write = gpr_write_mask (ip);
6713 if (gpr_write & prev_gpr_write)
6714 return FALSE;
6715
6716 /* If the branch writes a register that the previous
6717 instruction reads, we can not swap. */
6718 prev_gpr_read = gpr_read_mask (&history[0]);
6719 if (gpr_write & prev_gpr_read)
6720 return FALSE;
6721
6722 /* If one instruction sets a condition code and the
6723 other one uses a condition code, we can not swap. */
6724 pinfo = ip->insn_mo->pinfo;
6725 if ((pinfo & INSN_READ_COND_CODE)
6726 && (prev_pinfo & INSN_WRITE_COND_CODE))
6727 return FALSE;
6728 if ((pinfo & INSN_WRITE_COND_CODE)
6729 && (prev_pinfo & INSN_READ_COND_CODE))
6730 return FALSE;
6731
6732 /* If the previous instruction uses the PC, we can not swap. */
2b0c8b40 6733 prev_pinfo2 = history[0].insn_mo->pinfo2;
26545944 6734 if (prev_pinfo2 & INSN2_READ_PC)
2b0c8b40 6735 return FALSE;
a4e06468 6736
df58fc94
RS
6737 /* If the previous instruction has an incorrect size for a fixed
6738 branch delay slot in microMIPS mode, we cannot swap. */
2309ddf2
MR
6739 pinfo2 = ip->insn_mo->pinfo2;
6740 if (mips_opts.micromips
6741 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6742 && insn_length (history) != 2)
6743 return FALSE;
6744 if (mips_opts.micromips
6745 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6746 && insn_length (history) != 4)
6747 return FALSE;
6748
e407c74b
NC
6749 /* On R5900 short loops need to be fixed by inserting a nop in
6750 the branch delay slots.
6751 A short loop can be terminated too early. */
6752 if (mips_opts.arch == CPU_R5900
6753 /* Check if instruction has a parameter, ignore "j $31". */
6754 && (address_expr != NULL)
6755 /* Parameter must be 16 bit. */
6756 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6757 /* Branch to same segment. */
41065f5e 6758 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
e407c74b 6759 /* Branch to same code fragment. */
41065f5e 6760 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
e407c74b 6761 /* Can only calculate branch offset if value is known. */
41065f5e 6762 && symbol_constant_p (address_expr->X_add_symbol)
e407c74b
NC
6763 /* Check if branch is really conditional. */
6764 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6765 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6766 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6767 {
6768 int distance;
6769 /* Check if loop is shorter than 6 instructions including
6770 branch and delay slot. */
41065f5e 6771 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
e407c74b
NC
6772 if (distance <= 20)
6773 {
6774 int i;
6775 int rv;
6776
6777 rv = FALSE;
6778 /* When the loop includes branches or jumps,
6779 it is not a short loop. */
6780 for (i = 0; i < (distance / 4); i++)
6781 {
6782 if ((history[i].cleared_p)
41065f5e 6783 || delayed_branch_p (&history[i]))
e407c74b
NC
6784 {
6785 rv = TRUE;
6786 break;
6787 }
6788 }
6789 if (rv == FALSE)
6790 {
6791 /* Insert nop after branch to fix short loop. */
6792 return FALSE;
6793 }
6794 }
6795 }
6796
a4e06468
RS
6797 return TRUE;
6798}
6799
e407c74b
NC
6800/* Decide how we should add IP to the instruction stream.
6801 ADDRESS_EXPR is an operand of the instruction to be used with
6802 RELOC_TYPE. */
a4e06468
RS
6803
6804static enum append_method
e407c74b 6805get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6806 bfd_reloc_code_real_type *reloc_type)
a4e06468 6807{
a4e06468
RS
6808 /* The relaxed version of a macro sequence must be inherently
6809 hazard-free. */
6810 if (mips_relax.sequence == 2)
6811 return APPEND_ADD;
6812
3b821a28 6813 /* We must not dabble with instructions in a ".set noreorder" block. */
a4e06468
RS
6814 if (mips_opts.noreorder)
6815 return APPEND_ADD;
6816
6817 /* Otherwise, it's our responsibility to fill branch delay slots. */
11625dd8 6818 if (delayed_branch_p (ip))
a4e06468 6819 {
e407c74b
NC
6820 if (!branch_likely_p (ip)
6821 && can_swap_branch_p (ip, address_expr, reloc_type))
a4e06468
RS
6822 return APPEND_SWAP;
6823
6824 if (mips_opts.mips16
6825 && ISA_SUPPORTS_MIPS16E
fc76e730 6826 && gpr_read_mask (ip) != 0)
a4e06468
RS
6827 return APPEND_ADD_COMPACT;
6828
6829 return APPEND_ADD_WITH_NOP;
6830 }
6831
a4e06468
RS
6832 return APPEND_ADD;
6833}
6834
ceb94aa5
RS
6835/* IP is a MIPS16 instruction whose opcode we have just changed.
6836 Point IP->insn_mo to the new opcode's definition. */
6837
6838static void
6839find_altered_mips16_opcode (struct mips_cl_insn *ip)
6840{
6841 const struct mips_opcode *mo, *end;
6842
6843 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6844 for (mo = ip->insn_mo; mo < end; mo++)
6845 if ((ip->insn_opcode & mo->mask) == mo->match)
6846 {
6847 ip->insn_mo = mo;
6848 return;
6849 }
6850 abort ();
6851}
6852
df58fc94
RS
6853/* For microMIPS macros, we need to generate a local number label
6854 as the target of branches. */
6855#define MICROMIPS_LABEL_CHAR '\037'
6856static unsigned long micromips_target_label;
6857static char micromips_target_name[32];
6858
6859static char *
6860micromips_label_name (void)
6861{
6862 char *p = micromips_target_name;
6863 char symbol_name_temporary[24];
6864 unsigned long l;
6865 int i;
6866
6867 if (*p)
6868 return p;
6869
6870 i = 0;
6871 l = micromips_target_label;
6872#ifdef LOCAL_LABEL_PREFIX
6873 *p++ = LOCAL_LABEL_PREFIX;
6874#endif
6875 *p++ = 'L';
6876 *p++ = MICROMIPS_LABEL_CHAR;
6877 do
6878 {
6879 symbol_name_temporary[i++] = l % 10 + '0';
6880 l /= 10;
6881 }
6882 while (l != 0);
6883 while (i > 0)
6884 *p++ = symbol_name_temporary[--i];
6885 *p = '\0';
6886
6887 return micromips_target_name;
6888}
6889
6890static void
6891micromips_label_expr (expressionS *label_expr)
6892{
6893 label_expr->X_op = O_symbol;
6894 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6895 label_expr->X_add_number = 0;
6896}
6897
6898static void
6899micromips_label_inc (void)
6900{
6901 micromips_target_label++;
6902 *micromips_target_name = '\0';
6903}
6904
6905static void
6906micromips_add_label (void)
6907{
6908 symbolS *s;
6909
6910 s = colon (micromips_label_name ());
6911 micromips_label_inc ();
f3ded42a 6912 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
df58fc94
RS
6913}
6914
6915/* If assembling microMIPS code, then return the microMIPS reloc
6916 corresponding to the requested one if any. Otherwise return
6917 the reloc unchanged. */
6918
6919static bfd_reloc_code_real_type
6920micromips_map_reloc (bfd_reloc_code_real_type reloc)
6921{
6922 static const bfd_reloc_code_real_type relocs[][2] =
6923 {
6924 /* Keep sorted incrementally by the left-hand key. */
6925 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6926 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6927 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6928 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6929 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6930 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6931 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6932 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6933 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6934 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6935 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6936 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6937 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6938 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6939 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6940 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6941 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6942 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6943 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6944 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6945 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6946 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6947 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6948 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6949 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6950 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6951 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6952 };
6953 bfd_reloc_code_real_type r;
6954 size_t i;
6955
6956 if (!mips_opts.micromips)
6957 return reloc;
6958 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6959 {
6960 r = relocs[i][0];
6961 if (r > reloc)
6962 return reloc;
6963 if (r == reloc)
6964 return relocs[i][1];
6965 }
6966 return reloc;
6967}
6968
b886a2ab
RS
6969/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6970 Return true on success, storing the resolved value in RESULT. */
6971
6972static bfd_boolean
6973calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6974 offsetT *result)
6975{
6976 switch (reloc)
6977 {
6978 case BFD_RELOC_MIPS_HIGHEST:
6979 case BFD_RELOC_MICROMIPS_HIGHEST:
6980 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6981 return TRUE;
6982
6983 case BFD_RELOC_MIPS_HIGHER:
6984 case BFD_RELOC_MICROMIPS_HIGHER:
6985 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6986 return TRUE;
6987
6988 case BFD_RELOC_HI16_S:
41947d9e 6989 case BFD_RELOC_HI16_S_PCREL:
b886a2ab
RS
6990 case BFD_RELOC_MICROMIPS_HI16_S:
6991 case BFD_RELOC_MIPS16_HI16_S:
6992 *result = ((operand + 0x8000) >> 16) & 0xffff;
6993 return TRUE;
6994
6995 case BFD_RELOC_HI16:
6996 case BFD_RELOC_MICROMIPS_HI16:
6997 case BFD_RELOC_MIPS16_HI16:
6998 *result = (operand >> 16) & 0xffff;
6999 return TRUE;
7000
7001 case BFD_RELOC_LO16:
41947d9e 7002 case BFD_RELOC_LO16_PCREL:
b886a2ab
RS
7003 case BFD_RELOC_MICROMIPS_LO16:
7004 case BFD_RELOC_MIPS16_LO16:
7005 *result = operand & 0xffff;
7006 return TRUE;
7007
7008 case BFD_RELOC_UNUSED:
7009 *result = operand;
7010 return TRUE;
7011
7012 default:
7013 return FALSE;
7014 }
7015}
7016
71400594
RS
7017/* Output an instruction. IP is the instruction information.
7018 ADDRESS_EXPR is an operand of the instruction to be used with
df58fc94
RS
7019 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7020 a macro expansion. */
71400594
RS
7021
7022static void
7023append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
df58fc94 7024 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
71400594 7025{
14fe068b 7026 unsigned long prev_pinfo2, pinfo;
71400594 7027 bfd_boolean relaxed_branch = FALSE;
a4e06468 7028 enum append_method method;
2309ddf2 7029 bfd_boolean relax32;
2b0c8b40 7030 int branch_disp;
71400594 7031
2309ddf2 7032 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
c67a084a
NC
7033 fix_loongson2f (ip);
7034
738f4d98 7035 file_ase_mips16 |= mips_opts.mips16;
df58fc94 7036 file_ase_micromips |= mips_opts.micromips;
738f4d98 7037
df58fc94 7038 prev_pinfo2 = history[0].insn_mo->pinfo2;
71400594 7039 pinfo = ip->insn_mo->pinfo;
df58fc94
RS
7040
7041 if (mips_opts.micromips
7042 && !expansionp
7043 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7044 && micromips_insn_length (ip->insn_mo) != 2)
7045 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7046 && micromips_insn_length (ip->insn_mo) != 4)))
1661c76c 7047 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
df58fc94 7048 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
71400594 7049
15be625d
CM
7050 if (address_expr == NULL)
7051 ip->complete_p = 1;
b886a2ab
RS
7052 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7053 && reloc_type[1] == BFD_RELOC_UNUSED
7054 && reloc_type[2] == BFD_RELOC_UNUSED
15be625d
CM
7055 && address_expr->X_op == O_constant)
7056 {
15be625d
CM
7057 switch (*reloc_type)
7058 {
15be625d 7059 case BFD_RELOC_MIPS_JMP:
df58fc94
RS
7060 {
7061 int shift;
7062
17c6c9d9
MR
7063 /* Shift is 2, unusually, for microMIPS JALX. */
7064 shift = (mips_opts.micromips
7065 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
df58fc94
RS
7066 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7067 as_bad (_("jump to misaligned address (0x%lx)"),
7068 (unsigned long) address_expr->X_add_number);
7069 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7070 & 0x3ffffff);
335574df 7071 ip->complete_p = 1;
df58fc94 7072 }
15be625d
CM
7073 break;
7074
7075 case BFD_RELOC_MIPS16_JMP:
7076 if ((address_expr->X_add_number & 3) != 0)
7077 as_bad (_("jump to misaligned address (0x%lx)"),
7078 (unsigned long) address_expr->X_add_number);
7079 ip->insn_opcode |=
7080 (((address_expr->X_add_number & 0x7c0000) << 3)
7081 | ((address_expr->X_add_number & 0xf800000) >> 7)
7082 | ((address_expr->X_add_number & 0x3fffc) >> 2));
335574df 7083 ip->complete_p = 1;
15be625d
CM
7084 break;
7085
7086 case BFD_RELOC_16_PCREL_S2:
df58fc94
RS
7087 {
7088 int shift;
7089
7090 shift = mips_opts.micromips ? 1 : 2;
7091 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7092 as_bad (_("branch to misaligned address (0x%lx)"),
7093 (unsigned long) address_expr->X_add_number);
7094 if (!mips_relax_branch)
7095 {
7096 if ((address_expr->X_add_number + (1 << (shift + 15)))
7097 & ~((1 << (shift + 16)) - 1))
7098 as_bad (_("branch address range overflow (0x%lx)"),
7099 (unsigned long) address_expr->X_add_number);
7100 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7101 & 0xffff);
7102 }
df58fc94 7103 }
15be625d
CM
7104 break;
7105
7361da2c
AB
7106 case BFD_RELOC_MIPS_21_PCREL_S2:
7107 {
7108 int shift;
7109
7110 shift = 2;
7111 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7112 as_bad (_("branch to misaligned address (0x%lx)"),
7113 (unsigned long) address_expr->X_add_number);
7114 if ((address_expr->X_add_number + (1 << (shift + 20)))
7115 & ~((1 << (shift + 21)) - 1))
7116 as_bad (_("branch address range overflow (0x%lx)"),
7117 (unsigned long) address_expr->X_add_number);
7118 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7119 & 0x1fffff);
7120 }
7121 break;
7122
7123 case BFD_RELOC_MIPS_26_PCREL_S2:
7124 {
7125 int shift;
7126
7127 shift = 2;
7128 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7129 as_bad (_("branch to misaligned address (0x%lx)"),
7130 (unsigned long) address_expr->X_add_number);
7131 if ((address_expr->X_add_number + (1 << (shift + 25)))
7132 & ~((1 << (shift + 26)) - 1))
7133 as_bad (_("branch address range overflow (0x%lx)"),
7134 (unsigned long) address_expr->X_add_number);
7135 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7136 & 0x3ffffff);
7137 }
7138 break;
7139
15be625d 7140 default:
b886a2ab
RS
7141 {
7142 offsetT value;
7143
7144 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7145 &value))
7146 {
7147 ip->insn_opcode |= value & 0xffff;
7148 ip->complete_p = 1;
7149 }
7150 }
7151 break;
7152 }
15be625d
CM
7153 }
7154
71400594
RS
7155 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7156 {
7157 /* There are a lot of optimizations we could do that we don't.
7158 In particular, we do not, in general, reorder instructions.
7159 If you use gcc with optimization, it will reorder
7160 instructions and generally do much more optimization then we
7161 do here; repeating all that work in the assembler would only
7162 benefit hand written assembly code, and does not seem worth
7163 it. */
7164 int nops = (mips_optimize == 0
932d1a1b
RS
7165 ? nops_for_insn (0, history, NULL)
7166 : nops_for_insn_or_target (0, history, ip));
71400594 7167 if (nops > 0)
252b5132
RH
7168 {
7169 fragS *old_frag;
7170 unsigned long old_frag_offset;
7171 int i;
252b5132
RH
7172
7173 old_frag = frag_now;
7174 old_frag_offset = frag_now_fix ();
7175
7176 for (i = 0; i < nops; i++)
14fe068b
RS
7177 add_fixed_insn (NOP_INSN);
7178 insert_into_history (0, nops, NOP_INSN);
252b5132
RH
7179
7180 if (listing)
7181 {
7182 listing_prev_line ();
7183 /* We may be at the start of a variant frag. In case we
7184 are, make sure there is enough space for the frag
7185 after the frags created by listing_prev_line. The
7186 argument to frag_grow here must be at least as large
7187 as the argument to all other calls to frag_grow in
7188 this file. We don't have to worry about being in the
7189 middle of a variant frag, because the variants insert
7190 all needed nop instructions themselves. */
7191 frag_grow (40);
7192 }
7193
462427c4 7194 mips_move_text_labels ();
252b5132
RH
7195
7196#ifndef NO_ECOFF_DEBUGGING
7197 if (ECOFF_DEBUGGING)
7198 ecoff_fix_loc (old_frag, old_frag_offset);
7199#endif
7200 }
71400594
RS
7201 }
7202 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7203 {
932d1a1b
RS
7204 int nops;
7205
7206 /* Work out how many nops in prev_nop_frag are needed by IP,
7207 ignoring hazards generated by the first prev_nop_frag_since
7208 instructions. */
7209 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
9c2799c2 7210 gas_assert (nops <= prev_nop_frag_holds);
252b5132 7211
71400594
RS
7212 /* Enforce NOPS as a minimum. */
7213 if (nops > prev_nop_frag_required)
7214 prev_nop_frag_required = nops;
252b5132 7215
71400594
RS
7216 if (prev_nop_frag_holds == prev_nop_frag_required)
7217 {
7218 /* Settle for the current number of nops. Update the history
7219 accordingly (for the benefit of any future .set reorder code). */
7220 prev_nop_frag = NULL;
7221 insert_into_history (prev_nop_frag_since,
7222 prev_nop_frag_holds, NOP_INSN);
7223 }
7224 else
7225 {
7226 /* Allow this instruction to replace one of the nops that was
7227 tentatively added to prev_nop_frag. */
df58fc94 7228 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
71400594
RS
7229 prev_nop_frag_holds--;
7230 prev_nop_frag_since++;
252b5132
RH
7231 }
7232 }
7233
e407c74b 7234 method = get_append_method (ip, address_expr, reloc_type);
2b0c8b40 7235 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
a4e06468 7236
e410add4
RS
7237 dwarf2_emit_insn (0);
7238 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7239 so "move" the instruction address accordingly.
7240
7241 Also, it doesn't seem appropriate for the assembler to reorder .loc
7242 entries. If this instruction is a branch that we are going to swap
7243 with the previous instruction, the two instructions should be
7244 treated as a unit, and the debug information for both instructions
7245 should refer to the start of the branch sequence. Using the
7246 current position is certainly wrong when swapping a 32-bit branch
7247 and a 16-bit delay slot, since the current position would then be
7248 in the middle of a branch. */
7249 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
58e2ea4d 7250
df58fc94
RS
7251 relax32 = (mips_relax_branch
7252 /* Don't try branch relaxation within .set nomacro, or within
7253 .set noat if we use $at for PIC computations. If it turns
7254 out that the branch was out-of-range, we'll get an error. */
7255 && !mips_opts.warn_about_macros
7256 && (mips_opts.at || mips_pic == NO_PIC)
3bf0dbfb
MR
7257 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7258 as they have no complementing branches. */
7259 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
df58fc94
RS
7260
7261 if (!HAVE_CODE_COMPRESSION
7262 && address_expr
7263 && relax32
0b25d3e6 7264 && *reloc_type == BFD_RELOC_16_PCREL_S2
11625dd8 7265 && delayed_branch_p (ip))
4a6a3df4 7266 {
895921c9 7267 relaxed_branch = TRUE;
1e915849
RS
7268 add_relaxed_insn (ip, (relaxed_branch_length
7269 (NULL, NULL,
11625dd8
RS
7270 uncond_branch_p (ip) ? -1
7271 : branch_likely_p (ip) ? 1
1e915849
RS
7272 : 0)), 4,
7273 RELAX_BRANCH_ENCODE
66b3e8da 7274 (AT,
11625dd8
RS
7275 uncond_branch_p (ip),
7276 branch_likely_p (ip),
1e915849
RS
7277 pinfo & INSN_WRITE_GPR_31,
7278 0),
7279 address_expr->X_add_symbol,
7280 address_expr->X_add_number);
4a6a3df4
AO
7281 *reloc_type = BFD_RELOC_UNUSED;
7282 }
df58fc94
RS
7283 else if (mips_opts.micromips
7284 && address_expr
7285 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7286 || *reloc_type > BFD_RELOC_UNUSED)
40209cad
MR
7287 && (delayed_branch_p (ip) || compact_branch_p (ip))
7288 /* Don't try branch relaxation when users specify
7289 16-bit/32-bit instructions. */
7290 && !forced_insn_length)
df58fc94
RS
7291 {
7292 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7293 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
11625dd8
RS
7294 int uncond = uncond_branch_p (ip) ? -1 : 0;
7295 int compact = compact_branch_p (ip);
df58fc94
RS
7296 int al = pinfo & INSN_WRITE_GPR_31;
7297 int length32;
7298
7299 gas_assert (address_expr != NULL);
7300 gas_assert (!mips_relax.sequence);
7301
2b0c8b40 7302 relaxed_branch = TRUE;
df58fc94
RS
7303 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7304 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
40209cad
MR
7305 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7306 relax32, 0, 0),
df58fc94
RS
7307 address_expr->X_add_symbol,
7308 address_expr->X_add_number);
7309 *reloc_type = BFD_RELOC_UNUSED;
7310 }
7311 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
252b5132 7312 {
88a7ef16
MR
7313 symbolS *symbol;
7314 offsetT offset;
7315
252b5132 7316 /* We need to set up a variant frag. */
df58fc94 7317 gas_assert (address_expr != NULL);
88a7ef16
MR
7318 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7319 symbol created by `make_expr_symbol' may not get a necessary
7320 external relocation produced. */
7321 if (address_expr->X_op == O_symbol)
7322 {
7323 symbol = address_expr->X_add_symbol;
7324 offset = address_expr->X_add_number;
7325 }
7326 else
7327 {
7328 symbol = make_expr_symbol (address_expr);
7329 offset = 0;
7330 }
1e915849
RS
7331 add_relaxed_insn (ip, 4, 0,
7332 RELAX_MIPS16_ENCODE
7333 (*reloc_type - BFD_RELOC_UNUSED,
df58fc94 7334 forced_insn_length == 2, forced_insn_length == 4,
11625dd8 7335 delayed_branch_p (&history[0]),
1e915849 7336 history[0].mips16_absolute_jump_p),
88a7ef16 7337 symbol, offset);
252b5132 7338 }
5c04167a 7339 else if (mips_opts.mips16 && insn_length (ip) == 2)
9497f5ac 7340 {
11625dd8 7341 if (!delayed_branch_p (ip))
b8ee1a6e
DU
7342 /* Make sure there is enough room to swap this instruction with
7343 a following jump instruction. */
7344 frag_grow (6);
1e915849 7345 add_fixed_insn (ip);
252b5132
RH
7346 }
7347 else
7348 {
7349 if (mips_opts.mips16
7350 && mips_opts.noreorder
11625dd8 7351 && delayed_branch_p (&history[0]))
252b5132
RH
7352 as_warn (_("extended instruction in delay slot"));
7353
4d7206a2
RS
7354 if (mips_relax.sequence)
7355 {
7356 /* If we've reached the end of this frag, turn it into a variant
7357 frag and record the information for the instructions we've
7358 written so far. */
7359 if (frag_room () < 4)
7360 relax_close_frag ();
df58fc94 7361 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4d7206a2
RS
7362 }
7363
584892a6 7364 if (mips_relax.sequence != 2)
df58fc94
RS
7365 {
7366 if (mips_macro_warning.first_insn_sizes[0] == 0)
7367 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7368 mips_macro_warning.sizes[0] += insn_length (ip);
7369 mips_macro_warning.insns[0]++;
7370 }
584892a6 7371 if (mips_relax.sequence != 1)
df58fc94
RS
7372 {
7373 if (mips_macro_warning.first_insn_sizes[1] == 0)
7374 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7375 mips_macro_warning.sizes[1] += insn_length (ip);
7376 mips_macro_warning.insns[1]++;
7377 }
584892a6 7378
1e915849
RS
7379 if (mips_opts.mips16)
7380 {
7381 ip->fixed_p = 1;
7382 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7383 }
7384 add_fixed_insn (ip);
252b5132
RH
7385 }
7386
9fe77896 7387 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
252b5132 7388 {
df58fc94 7389 bfd_reloc_code_real_type final_type[3];
2309ddf2 7390 reloc_howto_type *howto0;
9fe77896
RS
7391 reloc_howto_type *howto;
7392 int i;
34ce925e 7393
df58fc94
RS
7394 /* Perform any necessary conversion to microMIPS relocations
7395 and find out how many relocations there actually are. */
7396 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7397 final_type[i] = micromips_map_reloc (reloc_type[i]);
7398
9fe77896
RS
7399 /* In a compound relocation, it is the final (outermost)
7400 operator that determines the relocated field. */
2309ddf2 7401 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
e8044f35
RS
7402 if (!howto)
7403 abort ();
2309ddf2
MR
7404
7405 if (i > 1)
7406 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
9fe77896
RS
7407 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7408 bfd_get_reloc_size (howto),
7409 address_expr,
2309ddf2
MR
7410 howto0 && howto0->pc_relative,
7411 final_type[0]);
9fe77896
RS
7412
7413 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2309ddf2 7414 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
9fe77896
RS
7415 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7416
7417 /* These relocations can have an addend that won't fit in
7418 4 octets for 64bit assembly. */
bad1aba3 7419 if (GPR_SIZE == 64
9fe77896
RS
7420 && ! howto->partial_inplace
7421 && (reloc_type[0] == BFD_RELOC_16
7422 || reloc_type[0] == BFD_RELOC_32
7423 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7424 || reloc_type[0] == BFD_RELOC_GPREL16
7425 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7426 || reloc_type[0] == BFD_RELOC_GPREL32
7427 || reloc_type[0] == BFD_RELOC_64
7428 || reloc_type[0] == BFD_RELOC_CTOR
7429 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7430 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7431 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7432 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7433 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7434 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7435 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7436 || hi16_reloc_p (reloc_type[0])
7437 || lo16_reloc_p (reloc_type[0])))
7438 ip->fixp[0]->fx_no_overflow = 1;
7439
ddaf2c41
MR
7440 /* These relocations can have an addend that won't fit in 2 octets. */
7441 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7442 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7443 ip->fixp[0]->fx_no_overflow = 1;
7444
9fe77896
RS
7445 if (mips_relax.sequence)
7446 {
7447 if (mips_relax.first_fixup == 0)
7448 mips_relax.first_fixup = ip->fixp[0];
7449 }
7450 else if (reloc_needs_lo_p (*reloc_type))
7451 {
7452 struct mips_hi_fixup *hi_fixup;
7453
7454 /* Reuse the last entry if it already has a matching %lo. */
7455 hi_fixup = mips_hi_fixup_list;
7456 if (hi_fixup == 0
7457 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4d7206a2 7458 {
325801bd 7459 hi_fixup = XNEW (struct mips_hi_fixup);
9fe77896
RS
7460 hi_fixup->next = mips_hi_fixup_list;
7461 mips_hi_fixup_list = hi_fixup;
4d7206a2 7462 }
9fe77896
RS
7463 hi_fixup->fixp = ip->fixp[0];
7464 hi_fixup->seg = now_seg;
7465 }
252b5132 7466
9fe77896
RS
7467 /* Add fixups for the second and third relocations, if given.
7468 Note that the ABI allows the second relocation to be
7469 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7470 moment we only use RSS_UNDEF, but we could add support
7471 for the others if it ever becomes necessary. */
7472 for (i = 1; i < 3; i++)
7473 if (reloc_type[i] != BFD_RELOC_UNUSED)
7474 {
7475 ip->fixp[i] = fix_new (ip->frag, ip->where,
7476 ip->fixp[0]->fx_size, NULL, 0,
df58fc94 7477 FALSE, final_type[i]);
f6688943 7478
9fe77896
RS
7479 /* Use fx_tcbit to mark compound relocs. */
7480 ip->fixp[0]->fx_tcbit = 1;
7481 ip->fixp[i]->fx_tcbit = 1;
7482 }
252b5132 7483 }
252b5132
RH
7484
7485 /* Update the register mask information. */
4c260379
RS
7486 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7487 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
252b5132 7488
a4e06468 7489 switch (method)
252b5132 7490 {
a4e06468
RS
7491 case APPEND_ADD:
7492 insert_into_history (0, 1, ip);
7493 break;
7494
7495 case APPEND_ADD_WITH_NOP:
14fe068b
RS
7496 {
7497 struct mips_cl_insn *nop;
7498
7499 insert_into_history (0, 1, ip);
7500 nop = get_delay_slot_nop (ip);
7501 add_fixed_insn (nop);
7502 insert_into_history (0, 1, nop);
7503 if (mips_relax.sequence)
7504 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7505 }
a4e06468
RS
7506 break;
7507
7508 case APPEND_ADD_COMPACT:
7509 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7510 gas_assert (mips_opts.mips16);
7511 ip->insn_opcode |= 0x0080;
7512 find_altered_mips16_opcode (ip);
7513 install_insn (ip);
7514 insert_into_history (0, 1, ip);
7515 break;
7516
7517 case APPEND_SWAP:
7518 {
7519 struct mips_cl_insn delay = history[0];
99e7978b
MF
7520
7521 if (relaxed_branch || delay.frag != ip->frag)
a4e06468
RS
7522 {
7523 /* Add the delay slot instruction to the end of the
7524 current frag and shrink the fixed part of the
7525 original frag. If the branch occupies the tail of
7526 the latter, move it backwards to cover the gap. */
2b0c8b40 7527 delay.frag->fr_fix -= branch_disp;
a4e06468 7528 if (delay.frag == ip->frag)
2b0c8b40 7529 move_insn (ip, ip->frag, ip->where - branch_disp);
a4e06468
RS
7530 add_fixed_insn (&delay);
7531 }
7532 else
7533 {
5e35670b
MR
7534 /* If this is not a relaxed branch and we are in the
7535 same frag, then just swap the instructions. */
7536 move_insn (ip, delay.frag, delay.where);
7537 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
a4e06468
RS
7538 }
7539 history[0] = *ip;
7540 delay.fixed_p = 1;
7541 insert_into_history (0, 1, &delay);
7542 }
7543 break;
252b5132
RH
7544 }
7545
13408f1e 7546 /* If we have just completed an unconditional branch, clear the history. */
11625dd8
RS
7547 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7548 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
e407c74b
NC
7549 {
7550 unsigned int i;
7551
79850f26 7552 mips_no_prev_insn ();
13408f1e 7553
e407c74b 7554 for (i = 0; i < ARRAY_SIZE (history); i++)
79850f26 7555 history[i].cleared_p = 1;
e407c74b
NC
7556 }
7557
df58fc94
RS
7558 /* We need to emit a label at the end of branch-likely macros. */
7559 if (emit_branch_likely_macro)
7560 {
7561 emit_branch_likely_macro = FALSE;
7562 micromips_add_label ();
7563 }
7564
252b5132
RH
7565 /* We just output an insn, so the next one doesn't have a label. */
7566 mips_clear_insn_labels ();
252b5132
RH
7567}
7568
e407c74b
NC
7569/* Forget that there was any previous instruction or label.
7570 When BRANCH is true, the branch history is also flushed. */
252b5132
RH
7571
7572static void
7d10b47d 7573mips_no_prev_insn (void)
252b5132 7574{
7d10b47d
RS
7575 prev_nop_frag = NULL;
7576 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
252b5132
RH
7577 mips_clear_insn_labels ();
7578}
7579
7d10b47d
RS
7580/* This function must be called before we emit something other than
7581 instructions. It is like mips_no_prev_insn except that it inserts
7582 any NOPS that might be needed by previous instructions. */
252b5132 7583
7d10b47d
RS
7584void
7585mips_emit_delays (void)
252b5132
RH
7586{
7587 if (! mips_opts.noreorder)
7588 {
932d1a1b 7589 int nops = nops_for_insn (0, history, NULL);
252b5132
RH
7590 if (nops > 0)
7591 {
7d10b47d
RS
7592 while (nops-- > 0)
7593 add_fixed_insn (NOP_INSN);
462427c4 7594 mips_move_text_labels ();
7d10b47d
RS
7595 }
7596 }
7597 mips_no_prev_insn ();
7598}
7599
7600/* Start a (possibly nested) noreorder block. */
7601
7602static void
7603start_noreorder (void)
7604{
7605 if (mips_opts.noreorder == 0)
7606 {
7607 unsigned int i;
7608 int nops;
7609
7610 /* None of the instructions before the .set noreorder can be moved. */
7611 for (i = 0; i < ARRAY_SIZE (history); i++)
7612 history[i].fixed_p = 1;
7613
7614 /* Insert any nops that might be needed between the .set noreorder
7615 block and the previous instructions. We will later remove any
7616 nops that turn out not to be needed. */
932d1a1b 7617 nops = nops_for_insn (0, history, NULL);
7d10b47d
RS
7618 if (nops > 0)
7619 {
7620 if (mips_optimize != 0)
252b5132
RH
7621 {
7622 /* Record the frag which holds the nop instructions, so
7623 that we can remove them if we don't need them. */
df58fc94 7624 frag_grow (nops * NOP_INSN_SIZE);
252b5132
RH
7625 prev_nop_frag = frag_now;
7626 prev_nop_frag_holds = nops;
7627 prev_nop_frag_required = 0;
7628 prev_nop_frag_since = 0;
7629 }
7630
7631 for (; nops > 0; --nops)
1e915849 7632 add_fixed_insn (NOP_INSN);
252b5132 7633
7d10b47d
RS
7634 /* Move on to a new frag, so that it is safe to simply
7635 decrease the size of prev_nop_frag. */
7636 frag_wane (frag_now);
7637 frag_new (0);
462427c4 7638 mips_move_text_labels ();
252b5132 7639 }
df58fc94 7640 mips_mark_labels ();
7d10b47d 7641 mips_clear_insn_labels ();
252b5132 7642 }
7d10b47d
RS
7643 mips_opts.noreorder++;
7644 mips_any_noreorder = 1;
7645}
252b5132 7646
7d10b47d 7647/* End a nested noreorder block. */
252b5132 7648
7d10b47d
RS
7649static void
7650end_noreorder (void)
7651{
7652 mips_opts.noreorder--;
7653 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7654 {
7655 /* Commit to inserting prev_nop_frag_required nops and go back to
7656 handling nop insertion the .set reorder way. */
7657 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
df58fc94 7658 * NOP_INSN_SIZE);
7d10b47d
RS
7659 insert_into_history (prev_nop_frag_since,
7660 prev_nop_frag_required, NOP_INSN);
7661 prev_nop_frag = NULL;
7662 }
252b5132
RH
7663}
7664
97d87491
RS
7665/* Sign-extend 32-bit mode constants that have bit 31 set and all
7666 higher bits unset. */
7667
7668static void
7669normalize_constant_expr (expressionS *ex)
7670{
7671 if (ex->X_op == O_constant
7672 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7673 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7674 - 0x80000000);
7675}
7676
7677/* Sign-extend 32-bit mode address offsets that have bit 31 set and
7678 all higher bits unset. */
7679
7680static void
7681normalize_address_expr (expressionS *ex)
7682{
7683 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7684 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7685 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7686 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7687 - 0x80000000);
7688}
7689
7690/* Try to match TOKENS against OPCODE, storing the result in INSN.
7691 Return true if the match was successful.
7692
7693 OPCODE_EXTRA is a value that should be ORed into the opcode
7694 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7695 there are more alternatives after OPCODE and SOFT_MATCH is
7696 as for mips_arg_info. */
7697
7698static bfd_boolean
7699match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7700 struct mips_operand_token *tokens, unsigned int opcode_extra,
60f20e8b 7701 bfd_boolean lax_match, bfd_boolean complete_p)
97d87491
RS
7702{
7703 const char *args;
7704 struct mips_arg_info arg;
7705 const struct mips_operand *operand;
7706 char c;
7707
7708 imm_expr.X_op = O_absent;
97d87491
RS
7709 offset_expr.X_op = O_absent;
7710 offset_reloc[0] = BFD_RELOC_UNUSED;
7711 offset_reloc[1] = BFD_RELOC_UNUSED;
7712 offset_reloc[2] = BFD_RELOC_UNUSED;
7713
7714 create_insn (insn, opcode);
60f20e8b
RS
7715 /* When no opcode suffix is specified, assume ".xyzw". */
7716 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7717 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7718 else
7719 insn->insn_opcode |= opcode_extra;
97d87491
RS
7720 memset (&arg, 0, sizeof (arg));
7721 arg.insn = insn;
7722 arg.token = tokens;
7723 arg.argnum = 1;
7724 arg.last_regno = ILLEGAL_REG;
7725 arg.dest_regno = ILLEGAL_REG;
60f20e8b 7726 arg.lax_match = lax_match;
97d87491
RS
7727 for (args = opcode->args;; ++args)
7728 {
7729 if (arg.token->type == OT_END)
7730 {
7731 /* Handle unary instructions in which only one operand is given.
7732 The source is then the same as the destination. */
7733 if (arg.opnum == 1 && *args == ',')
7734 {
7735 operand = (mips_opts.micromips
7736 ? decode_micromips_operand (args + 1)
7737 : decode_mips_operand (args + 1));
7738 if (operand && mips_optional_operand_p (operand))
7739 {
7740 arg.token = tokens;
7741 arg.argnum = 1;
7742 continue;
7743 }
7744 }
7745
7746 /* Treat elided base registers as $0. */
7747 if (strcmp (args, "(b)") == 0)
7748 args += 3;
7749
7750 if (args[0] == '+')
7751 switch (args[1])
7752 {
7753 case 'K':
7754 case 'N':
7755 /* The register suffix is optional. */
7756 args += 2;
7757 break;
7758 }
7759
7760 /* Fail the match if there were too few operands. */
7761 if (*args)
7762 return FALSE;
7763
7764 /* Successful match. */
60f20e8b
RS
7765 if (!complete_p)
7766 return TRUE;
e3de51ce 7767 clear_insn_error ();
97d87491
RS
7768 if (arg.dest_regno == arg.last_regno
7769 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7770 {
7771 if (arg.opnum == 2)
e3de51ce 7772 set_insn_error
1661c76c 7773 (0, _("source and destination must be different"));
97d87491 7774 else if (arg.last_regno == 31)
e3de51ce 7775 set_insn_error
1661c76c 7776 (0, _("a destination register must be supplied"));
97d87491 7777 }
173d3447
CF
7778 else if (arg.last_regno == 31
7779 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7780 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7781 set_insn_error (0, _("the source register must not be $31"));
97d87491
RS
7782 check_completed_insn (&arg);
7783 return TRUE;
7784 }
7785
7786 /* Fail the match if the line has too many operands. */
7787 if (*args == 0)
7788 return FALSE;
7789
7790 /* Handle characters that need to match exactly. */
7791 if (*args == '(' || *args == ')' || *args == ',')
7792 {
7793 if (match_char (&arg, *args))
7794 continue;
7795 return FALSE;
7796 }
7797 if (*args == '#')
7798 {
7799 ++args;
7800 if (arg.token->type == OT_DOUBLE_CHAR
7801 && arg.token->u.ch == *args)
7802 {
7803 ++arg.token;
7804 continue;
7805 }
7806 return FALSE;
7807 }
7808
7809 /* Handle special macro operands. Work out the properties of
7810 other operands. */
7811 arg.opnum += 1;
97d87491
RS
7812 switch (*args)
7813 {
7361da2c
AB
7814 case '-':
7815 switch (args[1])
7816 {
7817 case 'A':
7818 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7819 break;
7820
7821 case 'B':
7822 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7823 break;
7824 }
7825 break;
7826
97d87491
RS
7827 case '+':
7828 switch (args[1])
7829 {
97d87491
RS
7830 case 'i':
7831 *offset_reloc = BFD_RELOC_MIPS_JMP;
7832 break;
7361da2c
AB
7833
7834 case '\'':
7835 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7836 break;
7837
7838 case '\"':
7839 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7840 break;
97d87491
RS
7841 }
7842 break;
7843
97d87491 7844 case 'I':
1a00e612
RS
7845 if (!match_const_int (&arg, &imm_expr.X_add_number))
7846 return FALSE;
7847 imm_expr.X_op = O_constant;
bad1aba3 7848 if (GPR_SIZE == 32)
97d87491
RS
7849 normalize_constant_expr (&imm_expr);
7850 continue;
7851
7852 case 'A':
7853 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7854 {
7855 /* Assume that the offset has been elided and that what
7856 we saw was a base register. The match will fail later
7857 if that assumption turns out to be wrong. */
7858 offset_expr.X_op = O_constant;
7859 offset_expr.X_add_number = 0;
7860 }
97d87491 7861 else
1a00e612
RS
7862 {
7863 if (!match_expression (&arg, &offset_expr, offset_reloc))
7864 return FALSE;
7865 normalize_address_expr (&offset_expr);
7866 }
97d87491
RS
7867 continue;
7868
7869 case 'F':
7870 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7871 8, TRUE))
1a00e612 7872 return FALSE;
97d87491
RS
7873 continue;
7874
7875 case 'L':
7876 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7877 8, FALSE))
1a00e612 7878 return FALSE;
97d87491
RS
7879 continue;
7880
7881 case 'f':
7882 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7883 4, TRUE))
1a00e612 7884 return FALSE;
97d87491
RS
7885 continue;
7886
7887 case 'l':
7888 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7889 4, FALSE))
1a00e612 7890 return FALSE;
97d87491
RS
7891 continue;
7892
97d87491
RS
7893 case 'p':
7894 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7895 break;
7896
7897 case 'a':
7898 *offset_reloc = BFD_RELOC_MIPS_JMP;
7899 break;
7900
7901 case 'm':
7902 gas_assert (mips_opts.micromips);
7903 c = args[1];
7904 switch (c)
7905 {
7906 case 'D':
7907 case 'E':
7908 if (!forced_insn_length)
7909 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7910 else if (c == 'D')
7911 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7912 else
7913 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7914 break;
7915 }
7916 break;
7917 }
7918
7919 operand = (mips_opts.micromips
7920 ? decode_micromips_operand (args)
7921 : decode_mips_operand (args));
7922 if (!operand)
7923 abort ();
7924
7925 /* Skip prefixes. */
7361da2c 7926 if (*args == '+' || *args == 'm' || *args == '-')
97d87491
RS
7927 args++;
7928
7929 if (mips_optional_operand_p (operand)
7930 && args[1] == ','
7931 && (arg.token[0].type != OT_REG
7932 || arg.token[1].type == OT_END))
7933 {
7934 /* Assume that the register has been elided and is the
7935 same as the first operand. */
7936 arg.token = tokens;
7937 arg.argnum = 1;
7938 }
7939
7940 if (!match_operand (&arg, operand))
7941 return FALSE;
7942 }
7943}
7944
7945/* Like match_insn, but for MIPS16. */
7946
7947static bfd_boolean
7948match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
1a00e612 7949 struct mips_operand_token *tokens)
97d87491
RS
7950{
7951 const char *args;
7952 const struct mips_operand *operand;
7953 const struct mips_operand *ext_operand;
7954 struct mips_arg_info arg;
7955 int relax_char;
7956
7957 create_insn (insn, opcode);
7958 imm_expr.X_op = O_absent;
97d87491
RS
7959 offset_expr.X_op = O_absent;
7960 offset_reloc[0] = BFD_RELOC_UNUSED;
7961 offset_reloc[1] = BFD_RELOC_UNUSED;
7962 offset_reloc[2] = BFD_RELOC_UNUSED;
7963 relax_char = 0;
7964
7965 memset (&arg, 0, sizeof (arg));
7966 arg.insn = insn;
7967 arg.token = tokens;
7968 arg.argnum = 1;
7969 arg.last_regno = ILLEGAL_REG;
7970 arg.dest_regno = ILLEGAL_REG;
97d87491
RS
7971 relax_char = 0;
7972 for (args = opcode->args;; ++args)
7973 {
7974 int c;
7975
7976 if (arg.token->type == OT_END)
7977 {
7978 offsetT value;
7979
7980 /* Handle unary instructions in which only one operand is given.
7981 The source is then the same as the destination. */
7982 if (arg.opnum == 1 && *args == ',')
7983 {
7984 operand = decode_mips16_operand (args[1], FALSE);
7985 if (operand && mips_optional_operand_p (operand))
7986 {
7987 arg.token = tokens;
7988 arg.argnum = 1;
7989 continue;
7990 }
7991 }
7992
7993 /* Fail the match if there were too few operands. */
7994 if (*args)
7995 return FALSE;
7996
7997 /* Successful match. Stuff the immediate value in now, if
7998 we can. */
e3de51ce 7999 clear_insn_error ();
97d87491
RS
8000 if (opcode->pinfo == INSN_MACRO)
8001 {
8002 gas_assert (relax_char == 0 || relax_char == 'p');
8003 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8004 }
8005 else if (relax_char
8006 && offset_expr.X_op == O_constant
8007 && calculate_reloc (*offset_reloc,
8008 offset_expr.X_add_number,
8009 &value))
8010 {
8011 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8012 forced_insn_length, &insn->insn_opcode);
8013 offset_expr.X_op = O_absent;
8014 *offset_reloc = BFD_RELOC_UNUSED;
8015 }
8016 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8017 {
8018 if (forced_insn_length == 2)
e3de51ce 8019 set_insn_error (0, _("invalid unextended operand value"));
97d87491
RS
8020 forced_insn_length = 4;
8021 insn->insn_opcode |= MIPS16_EXTEND;
8022 }
8023 else if (relax_char)
8024 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8025
8026 check_completed_insn (&arg);
8027 return TRUE;
8028 }
8029
8030 /* Fail the match if the line has too many operands. */
8031 if (*args == 0)
8032 return FALSE;
8033
8034 /* Handle characters that need to match exactly. */
8035 if (*args == '(' || *args == ')' || *args == ',')
8036 {
8037 if (match_char (&arg, *args))
8038 continue;
8039 return FALSE;
8040 }
8041
8042 arg.opnum += 1;
8043 c = *args;
8044 switch (c)
8045 {
8046 case 'p':
8047 case 'q':
8048 case 'A':
8049 case 'B':
8050 case 'E':
8051 relax_char = c;
8052 break;
8053
8054 case 'I':
1a00e612
RS
8055 if (!match_const_int (&arg, &imm_expr.X_add_number))
8056 return FALSE;
8057 imm_expr.X_op = O_constant;
bad1aba3 8058 if (GPR_SIZE == 32)
97d87491
RS
8059 normalize_constant_expr (&imm_expr);
8060 continue;
8061
8062 case 'a':
8063 case 'i':
8064 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8065 insn->insn_opcode <<= 16;
8066 break;
8067 }
8068
8069 operand = decode_mips16_operand (c, FALSE);
8070 if (!operand)
8071 abort ();
8072
8073 /* '6' is a special case. It is used for BREAK and SDBBP,
8074 whose operands are only meaningful to the software that decodes
8075 them. This means that there is no architectural reason why
8076 they cannot be prefixed by EXTEND, but in practice,
8077 exception handlers will only look at the instruction
8078 itself. We therefore allow '6' to be extended when
8079 disassembling but not when assembling. */
8080 if (operand->type != OP_PCREL && c != '6')
8081 {
8082 ext_operand = decode_mips16_operand (c, TRUE);
8083 if (operand != ext_operand)
8084 {
8085 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8086 {
8087 offset_expr.X_op = O_constant;
8088 offset_expr.X_add_number = 0;
8089 relax_char = c;
8090 continue;
8091 }
8092
8093 /* We need the OT_INTEGER check because some MIPS16
8094 immediate variants are listed before the register ones. */
8095 if (arg.token->type != OT_INTEGER
8096 || !match_expression (&arg, &offset_expr, offset_reloc))
8097 return FALSE;
8098
8099 /* '8' is used for SLTI(U) and has traditionally not
8100 been allowed to take relocation operators. */
8101 if (offset_reloc[0] != BFD_RELOC_UNUSED
8102 && (ext_operand->size != 16 || c == '8'))
8103 return FALSE;
8104
8105 relax_char = c;
8106 continue;
8107 }
8108 }
8109
8110 if (mips_optional_operand_p (operand)
8111 && args[1] == ','
8112 && (arg.token[0].type != OT_REG
8113 || arg.token[1].type == OT_END))
8114 {
8115 /* Assume that the register has been elided and is the
8116 same as the first operand. */
8117 arg.token = tokens;
8118 arg.argnum = 1;
8119 }
8120
8121 if (!match_operand (&arg, operand))
8122 return FALSE;
8123 }
8124}
8125
60f20e8b
RS
8126/* Record that the current instruction is invalid for the current ISA. */
8127
8128static void
8129match_invalid_for_isa (void)
8130{
8131 set_insn_error_ss
1661c76c 8132 (0, _("opcode not supported on this processor: %s (%s)"),
60f20e8b
RS
8133 mips_cpu_info_from_arch (mips_opts.arch)->name,
8134 mips_cpu_info_from_isa (mips_opts.isa)->name);
8135}
8136
8137/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8138 Return true if a definite match or failure was found, storing any match
8139 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8140 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8141 tried and failed to match under normal conditions and now want to try a
8142 more relaxed match. */
8143
8144static bfd_boolean
8145match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8146 const struct mips_opcode *past, struct mips_operand_token *tokens,
8147 int opcode_extra, bfd_boolean lax_match)
8148{
8149 const struct mips_opcode *opcode;
8150 const struct mips_opcode *invalid_delay_slot;
8151 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8152
8153 /* Search for a match, ignoring alternatives that don't satisfy the
8154 current ISA or forced_length. */
8155 invalid_delay_slot = 0;
8156 seen_valid_for_isa = FALSE;
8157 seen_valid_for_size = FALSE;
8158 opcode = first;
8159 do
8160 {
8161 gas_assert (strcmp (opcode->name, first->name) == 0);
8162 if (is_opcode_valid (opcode))
8163 {
8164 seen_valid_for_isa = TRUE;
8165 if (is_size_valid (opcode))
8166 {
8167 bfd_boolean delay_slot_ok;
8168
8169 seen_valid_for_size = TRUE;
8170 delay_slot_ok = is_delay_slot_valid (opcode);
8171 if (match_insn (insn, opcode, tokens, opcode_extra,
8172 lax_match, delay_slot_ok))
8173 {
8174 if (!delay_slot_ok)
8175 {
8176 if (!invalid_delay_slot)
8177 invalid_delay_slot = opcode;
8178 }
8179 else
8180 return TRUE;
8181 }
8182 }
8183 }
8184 ++opcode;
8185 }
8186 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8187
8188 /* If the only matches we found had the wrong length for the delay slot,
8189 pick the first such match. We'll issue an appropriate warning later. */
8190 if (invalid_delay_slot)
8191 {
8192 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8193 lax_match, TRUE))
8194 return TRUE;
8195 abort ();
8196 }
8197
8198 /* Handle the case where we didn't try to match an instruction because
8199 all the alternatives were incompatible with the current ISA. */
8200 if (!seen_valid_for_isa)
8201 {
8202 match_invalid_for_isa ();
8203 return TRUE;
8204 }
8205
8206 /* Handle the case where we didn't try to match an instruction because
8207 all the alternatives were of the wrong size. */
8208 if (!seen_valid_for_size)
8209 {
8210 if (mips_opts.insn32)
1661c76c 8211 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
60f20e8b
RS
8212 else
8213 set_insn_error_i
1661c76c 8214 (0, _("unrecognized %d-bit version of microMIPS opcode"),
60f20e8b
RS
8215 8 * forced_insn_length);
8216 return TRUE;
8217 }
8218
8219 return FALSE;
8220}
8221
8222/* Like match_insns, but for MIPS16. */
8223
8224static bfd_boolean
8225match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8226 struct mips_operand_token *tokens)
8227{
8228 const struct mips_opcode *opcode;
8229 bfd_boolean seen_valid_for_isa;
8230
8231 /* Search for a match, ignoring alternatives that don't satisfy the
8232 current ISA. There are no separate entries for extended forms so
8233 we deal with forced_length later. */
8234 seen_valid_for_isa = FALSE;
8235 opcode = first;
8236 do
8237 {
8238 gas_assert (strcmp (opcode->name, first->name) == 0);
8239 if (is_opcode_valid_16 (opcode))
8240 {
8241 seen_valid_for_isa = TRUE;
8242 if (match_mips16_insn (insn, opcode, tokens))
8243 return TRUE;
8244 }
8245 ++opcode;
8246 }
8247 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8248 && strcmp (opcode->name, first->name) == 0);
8249
8250 /* Handle the case where we didn't try to match an instruction because
8251 all the alternatives were incompatible with the current ISA. */
8252 if (!seen_valid_for_isa)
8253 {
8254 match_invalid_for_isa ();
8255 return TRUE;
8256 }
8257
8258 return FALSE;
8259}
8260
584892a6
RS
8261/* Set up global variables for the start of a new macro. */
8262
8263static void
8264macro_start (void)
8265{
8266 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
df58fc94
RS
8267 memset (&mips_macro_warning.first_insn_sizes, 0,
8268 sizeof (mips_macro_warning.first_insn_sizes));
8269 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
584892a6 8270 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
11625dd8 8271 && delayed_branch_p (&history[0]));
df58fc94
RS
8272 switch (history[0].insn_mo->pinfo2
8273 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8274 {
8275 case INSN2_BRANCH_DELAY_32BIT:
8276 mips_macro_warning.delay_slot_length = 4;
8277 break;
8278 case INSN2_BRANCH_DELAY_16BIT:
8279 mips_macro_warning.delay_slot_length = 2;
8280 break;
8281 default:
8282 mips_macro_warning.delay_slot_length = 0;
8283 break;
8284 }
8285 mips_macro_warning.first_frag = NULL;
584892a6
RS
8286}
8287
df58fc94
RS
8288/* Given that a macro is longer than one instruction or of the wrong size,
8289 return the appropriate warning for it. Return null if no warning is
8290 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8291 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8292 and RELAX_NOMACRO. */
584892a6
RS
8293
8294static const char *
8295macro_warning (relax_substateT subtype)
8296{
8297 if (subtype & RELAX_DELAY_SLOT)
1661c76c 8298 return _("macro instruction expanded into multiple instructions"
584892a6
RS
8299 " in a branch delay slot");
8300 else if (subtype & RELAX_NOMACRO)
1661c76c 8301 return _("macro instruction expanded into multiple instructions");
df58fc94
RS
8302 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8303 | RELAX_DELAY_SLOT_SIZE_SECOND))
8304 return ((subtype & RELAX_DELAY_SLOT_16BIT)
1661c76c 8305 ? _("macro instruction expanded into a wrong size instruction"
df58fc94 8306 " in a 16-bit branch delay slot")
1661c76c 8307 : _("macro instruction expanded into a wrong size instruction"
df58fc94 8308 " in a 32-bit branch delay slot"));
584892a6
RS
8309 else
8310 return 0;
8311}
8312
8313/* Finish up a macro. Emit warnings as appropriate. */
8314
8315static void
8316macro_end (void)
8317{
df58fc94
RS
8318 /* Relaxation warning flags. */
8319 relax_substateT subtype = 0;
8320
8321 /* Check delay slot size requirements. */
8322 if (mips_macro_warning.delay_slot_length == 2)
8323 subtype |= RELAX_DELAY_SLOT_16BIT;
8324 if (mips_macro_warning.delay_slot_length != 0)
584892a6 8325 {
df58fc94
RS
8326 if (mips_macro_warning.delay_slot_length
8327 != mips_macro_warning.first_insn_sizes[0])
8328 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8329 if (mips_macro_warning.delay_slot_length
8330 != mips_macro_warning.first_insn_sizes[1])
8331 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8332 }
584892a6 8333
df58fc94
RS
8334 /* Check instruction count requirements. */
8335 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8336 {
8337 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
584892a6
RS
8338 subtype |= RELAX_SECOND_LONGER;
8339 if (mips_opts.warn_about_macros)
8340 subtype |= RELAX_NOMACRO;
8341 if (mips_macro_warning.delay_slot_p)
8342 subtype |= RELAX_DELAY_SLOT;
df58fc94 8343 }
584892a6 8344
df58fc94
RS
8345 /* If both alternatives fail to fill a delay slot correctly,
8346 emit the warning now. */
8347 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8348 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8349 {
8350 relax_substateT s;
8351 const char *msg;
8352
8353 s = subtype & (RELAX_DELAY_SLOT_16BIT
8354 | RELAX_DELAY_SLOT_SIZE_FIRST
8355 | RELAX_DELAY_SLOT_SIZE_SECOND);
8356 msg = macro_warning (s);
8357 if (msg != NULL)
8358 as_warn ("%s", msg);
8359 subtype &= ~s;
8360 }
8361
8362 /* If both implementations are longer than 1 instruction, then emit the
8363 warning now. */
8364 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8365 {
8366 relax_substateT s;
8367 const char *msg;
8368
8369 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8370 msg = macro_warning (s);
8371 if (msg != NULL)
8372 as_warn ("%s", msg);
8373 subtype &= ~s;
584892a6 8374 }
df58fc94
RS
8375
8376 /* If any flags still set, then one implementation might need a warning
8377 and the other either will need one of a different kind or none at all.
8378 Pass any remaining flags over to relaxation. */
8379 if (mips_macro_warning.first_frag != NULL)
8380 mips_macro_warning.first_frag->fr_subtype |= subtype;
584892a6
RS
8381}
8382
df58fc94
RS
8383/* Instruction operand formats used in macros that vary between
8384 standard MIPS and microMIPS code. */
8385
833794fc 8386static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
df58fc94
RS
8387static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8388static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8389static const char * const lui_fmt[2] = { "t,u", "s,u" };
8390static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
833794fc 8391static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
df58fc94
RS
8392static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8393static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8394
833794fc 8395#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7361da2c
AB
8396#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8397 : cop12_fmt[mips_opts.micromips])
df58fc94
RS
8398#define JALR_FMT (jalr_fmt[mips_opts.micromips])
8399#define LUI_FMT (lui_fmt[mips_opts.micromips])
8400#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7361da2c
AB
8401#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8402 : mem12_fmt[mips_opts.micromips])
833794fc 8403#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
8404#define SHFT_FMT (shft_fmt[mips_opts.micromips])
8405#define TRAP_FMT (trap_fmt[mips_opts.micromips])
8406
6e1304d8
RS
8407/* Read a macro's relocation codes from *ARGS and store them in *R.
8408 The first argument in *ARGS will be either the code for a single
8409 relocation or -1 followed by the three codes that make up a
8410 composite relocation. */
8411
8412static void
8413macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8414{
8415 int i, next;
8416
8417 next = va_arg (*args, int);
8418 if (next >= 0)
8419 r[0] = (bfd_reloc_code_real_type) next;
8420 else
f2ae14a1
RS
8421 {
8422 for (i = 0; i < 3; i++)
8423 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8424 /* This function is only used for 16-bit relocation fields.
8425 To make the macro code simpler, treat an unrelocated value
8426 in the same way as BFD_RELOC_LO16. */
8427 if (r[0] == BFD_RELOC_UNUSED)
8428 r[0] = BFD_RELOC_LO16;
8429 }
6e1304d8
RS
8430}
8431
252b5132
RH
8432/* Build an instruction created by a macro expansion. This is passed
8433 a pointer to the count of instructions created so far, an
8434 expression, the name of the instruction to build, an operand format
8435 string, and corresponding arguments. */
8436
252b5132 8437static void
67c0d1eb 8438macro_build (expressionS *ep, const char *name, const char *fmt, ...)
252b5132 8439{
df58fc94 8440 const struct mips_opcode *mo = NULL;
f6688943 8441 bfd_reloc_code_real_type r[3];
df58fc94 8442 const struct mips_opcode *amo;
e077a1c8 8443 const struct mips_operand *operand;
df58fc94
RS
8444 struct hash_control *hash;
8445 struct mips_cl_insn insn;
252b5132 8446 va_list args;
e077a1c8 8447 unsigned int uval;
252b5132 8448
252b5132 8449 va_start (args, fmt);
252b5132 8450
252b5132
RH
8451 if (mips_opts.mips16)
8452 {
03ea81db 8453 mips16_macro_build (ep, name, fmt, &args);
252b5132
RH
8454 va_end (args);
8455 return;
8456 }
8457
f6688943
TS
8458 r[0] = BFD_RELOC_UNUSED;
8459 r[1] = BFD_RELOC_UNUSED;
8460 r[2] = BFD_RELOC_UNUSED;
df58fc94
RS
8461 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8462 amo = (struct mips_opcode *) hash_find (hash, name);
8463 gas_assert (amo);
8464 gas_assert (strcmp (name, amo->name) == 0);
1e915849 8465
df58fc94 8466 do
8b082fb1
TS
8467 {
8468 /* Search until we get a match for NAME. It is assumed here that
df58fc94
RS
8469 macros will never generate MDMX, MIPS-3D, or MT instructions.
8470 We try to match an instruction that fulfils the branch delay
8471 slot instruction length requirement (if any) of the previous
8472 instruction. While doing this we record the first instruction
8473 seen that matches all the other conditions and use it anyway
8474 if the requirement cannot be met; we will issue an appropriate
8475 warning later on. */
8476 if (strcmp (fmt, amo->args) == 0
8477 && amo->pinfo != INSN_MACRO
8478 && is_opcode_valid (amo)
8479 && is_size_valid (amo))
8480 {
8481 if (is_delay_slot_valid (amo))
8482 {
8483 mo = amo;
8484 break;
8485 }
8486 else if (!mo)
8487 mo = amo;
8488 }
8b082fb1 8489
df58fc94
RS
8490 ++amo;
8491 gas_assert (amo->name);
252b5132 8492 }
df58fc94 8493 while (strcmp (name, amo->name) == 0);
252b5132 8494
df58fc94 8495 gas_assert (mo);
1e915849 8496 create_insn (&insn, mo);
e077a1c8 8497 for (; *fmt; ++fmt)
252b5132 8498 {
e077a1c8 8499 switch (*fmt)
252b5132 8500 {
252b5132
RH
8501 case ',':
8502 case '(':
8503 case ')':
252b5132 8504 case 'z':
e077a1c8 8505 break;
252b5132
RH
8506
8507 case 'i':
8508 case 'j':
6e1304d8 8509 macro_read_relocs (&args, r);
9c2799c2 8510 gas_assert (*r == BFD_RELOC_GPREL16
e391c024
RS
8511 || *r == BFD_RELOC_MIPS_HIGHER
8512 || *r == BFD_RELOC_HI16_S
8513 || *r == BFD_RELOC_LO16
8514 || *r == BFD_RELOC_MIPS_GOT_OFST);
e077a1c8 8515 break;
e391c024
RS
8516
8517 case 'o':
8518 macro_read_relocs (&args, r);
e077a1c8 8519 break;
252b5132
RH
8520
8521 case 'u':
6e1304d8 8522 macro_read_relocs (&args, r);
9c2799c2 8523 gas_assert (ep != NULL
90ecf173
MR
8524 && (ep->X_op == O_constant
8525 || (ep->X_op == O_symbol
8526 && (*r == BFD_RELOC_MIPS_HIGHEST
8527 || *r == BFD_RELOC_HI16_S
8528 || *r == BFD_RELOC_HI16
8529 || *r == BFD_RELOC_GPREL16
8530 || *r == BFD_RELOC_MIPS_GOT_HI16
8531 || *r == BFD_RELOC_MIPS_CALL_HI16))));
e077a1c8 8532 break;
252b5132
RH
8533
8534 case 'p':
9c2799c2 8535 gas_assert (ep != NULL);
bad36eac 8536
252b5132
RH
8537 /*
8538 * This allows macro() to pass an immediate expression for
8539 * creating short branches without creating a symbol.
bad36eac
DJ
8540 *
8541 * We don't allow branch relaxation for these branches, as
8542 * they should only appear in ".set nomacro" anyway.
252b5132
RH
8543 */
8544 if (ep->X_op == O_constant)
8545 {
df58fc94
RS
8546 /* For microMIPS we always use relocations for branches.
8547 So we should not resolve immediate values. */
8548 gas_assert (!mips_opts.micromips);
8549
bad36eac
DJ
8550 if ((ep->X_add_number & 3) != 0)
8551 as_bad (_("branch to misaligned address (0x%lx)"),
8552 (unsigned long) ep->X_add_number);
8553 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8554 as_bad (_("branch address range overflow (0x%lx)"),
8555 (unsigned long) ep->X_add_number);
252b5132
RH
8556 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8557 ep = NULL;
8558 }
8559 else
0b25d3e6 8560 *r = BFD_RELOC_16_PCREL_S2;
e077a1c8 8561 break;
252b5132
RH
8562
8563 case 'a':
9c2799c2 8564 gas_assert (ep != NULL);
f6688943 8565 *r = BFD_RELOC_MIPS_JMP;
e077a1c8 8566 break;
d43b4baf 8567
252b5132 8568 default:
e077a1c8
RS
8569 operand = (mips_opts.micromips
8570 ? decode_micromips_operand (fmt)
8571 : decode_mips_operand (fmt));
8572 if (!operand)
8573 abort ();
8574
8575 uval = va_arg (args, int);
8576 if (operand->type == OP_CLO_CLZ_DEST)
8577 uval |= (uval << 5);
8578 insn_insert_operand (&insn, operand, uval);
8579
7361da2c 8580 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
e077a1c8
RS
8581 ++fmt;
8582 break;
252b5132 8583 }
252b5132
RH
8584 }
8585 va_end (args);
9c2799c2 8586 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8587
df58fc94 8588 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8589}
8590
8591static void
67c0d1eb 8592mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
03ea81db 8593 va_list *args)
252b5132 8594{
1e915849 8595 struct mips_opcode *mo;
252b5132 8596 struct mips_cl_insn insn;
e077a1c8 8597 const struct mips_operand *operand;
f6688943
TS
8598 bfd_reloc_code_real_type r[3]
8599 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 8600
1e915849 8601 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9c2799c2
NC
8602 gas_assert (mo);
8603 gas_assert (strcmp (name, mo->name) == 0);
252b5132 8604
1e915849 8605 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
252b5132 8606 {
1e915849 8607 ++mo;
9c2799c2
NC
8608 gas_assert (mo->name);
8609 gas_assert (strcmp (name, mo->name) == 0);
252b5132
RH
8610 }
8611
1e915849 8612 create_insn (&insn, mo);
e077a1c8 8613 for (; *fmt; ++fmt)
252b5132
RH
8614 {
8615 int c;
8616
e077a1c8 8617 c = *fmt;
252b5132
RH
8618 switch (c)
8619 {
252b5132
RH
8620 case ',':
8621 case '(':
8622 case ')':
e077a1c8 8623 break;
252b5132
RH
8624
8625 case '0':
8626 case 'S':
8627 case 'P':
8628 case 'R':
e077a1c8 8629 break;
252b5132
RH
8630
8631 case '<':
8632 case '>':
8633 case '4':
8634 case '5':
8635 case 'H':
8636 case 'W':
8637 case 'D':
8638 case 'j':
8639 case '8':
8640 case 'V':
8641 case 'C':
8642 case 'U':
8643 case 'k':
8644 case 'K':
8645 case 'p':
8646 case 'q':
8647 {
b886a2ab
RS
8648 offsetT value;
8649
9c2799c2 8650 gas_assert (ep != NULL);
252b5132
RH
8651
8652 if (ep->X_op != O_constant)
874e8986 8653 *r = (int) BFD_RELOC_UNUSED + c;
b886a2ab 8654 else if (calculate_reloc (*r, ep->X_add_number, &value))
252b5132 8655 {
b886a2ab 8656 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
252b5132 8657 ep = NULL;
f6688943 8658 *r = BFD_RELOC_UNUSED;
252b5132
RH
8659 }
8660 }
e077a1c8 8661 break;
252b5132 8662
e077a1c8
RS
8663 default:
8664 operand = decode_mips16_operand (c, FALSE);
8665 if (!operand)
8666 abort ();
252b5132 8667
4a06e5a2 8668 insn_insert_operand (&insn, operand, va_arg (*args, int));
e077a1c8
RS
8669 break;
8670 }
252b5132
RH
8671 }
8672
9c2799c2 8673 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8674
df58fc94 8675 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8676}
8677
438c16b8
TS
8678/*
8679 * Generate a "jalr" instruction with a relocation hint to the called
8680 * function. This occurs in NewABI PIC code.
8681 */
8682static void
df58fc94 8683macro_build_jalr (expressionS *ep, int cprestore)
438c16b8 8684{
df58fc94
RS
8685 static const bfd_reloc_code_real_type jalr_relocs[2]
8686 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8687 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8688 const char *jalr;
685736be 8689 char *f = NULL;
b34976b6 8690
1180b5a4 8691 if (MIPS_JALR_HINT_P (ep))
f21f8242 8692 {
cc3d92a5 8693 frag_grow (8);
f21f8242
AO
8694 f = frag_more (0);
8695 }
2906b037 8696 if (mips_opts.micromips)
df58fc94 8697 {
833794fc
MR
8698 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8699 ? "jalr" : "jalrs");
e64af278 8700 if (MIPS_JALR_HINT_P (ep)
833794fc 8701 || mips_opts.insn32
e64af278 8702 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
8703 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8704 else
8705 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8706 }
2906b037
MR
8707 else
8708 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
1180b5a4 8709 if (MIPS_JALR_HINT_P (ep))
df58fc94 8710 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
438c16b8
TS
8711}
8712
252b5132
RH
8713/*
8714 * Generate a "lui" instruction.
8715 */
8716static void
67c0d1eb 8717macro_build_lui (expressionS *ep, int regnum)
252b5132 8718{
9c2799c2 8719 gas_assert (! mips_opts.mips16);
252b5132 8720
df58fc94 8721 if (ep->X_op != O_constant)
252b5132 8722 {
9c2799c2 8723 gas_assert (ep->X_op == O_symbol);
bbe506e8
TS
8724 /* _gp_disp is a special case, used from s_cpload.
8725 __gnu_local_gp is used if mips_no_shared. */
9c2799c2 8726 gas_assert (mips_pic == NO_PIC
78e1bb40 8727 || (! HAVE_NEWABI
aa6975fb
ILT
8728 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8729 || (! mips_in_shared
bbe506e8
TS
8730 && strcmp (S_GET_NAME (ep->X_add_symbol),
8731 "__gnu_local_gp") == 0));
252b5132
RH
8732 }
8733
df58fc94 8734 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
252b5132
RH
8735}
8736
885add95
CD
8737/* Generate a sequence of instructions to do a load or store from a constant
8738 offset off of a base register (breg) into/from a target register (treg),
8739 using AT if necessary. */
8740static void
67c0d1eb
RS
8741macro_build_ldst_constoffset (expressionS *ep, const char *op,
8742 int treg, int breg, int dbl)
885add95 8743{
9c2799c2 8744 gas_assert (ep->X_op == O_constant);
885add95 8745
256ab948 8746 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8747 if (!dbl)
8748 normalize_constant_expr (ep);
256ab948 8749
67c1ffbe 8750 /* Right now, this routine can only handle signed 32-bit constants. */
ecd13cd3 8751 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
885add95
CD
8752 as_warn (_("operand overflow"));
8753
8754 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8755 {
8756 /* Signed 16-bit offset will fit in the op. Easy! */
67c0d1eb 8757 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
885add95
CD
8758 }
8759 else
8760 {
8761 /* 32-bit offset, need multiple instructions and AT, like:
8762 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8763 addu $tempreg,$tempreg,$breg
8764 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8765 to handle the complete offset. */
67c0d1eb
RS
8766 macro_build_lui (ep, AT);
8767 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8768 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
885add95 8769
741fe287 8770 if (!mips_opts.at)
1661c76c 8771 as_bad (_("macro used $at after \".set noat\""));
885add95
CD
8772 }
8773}
8774
252b5132
RH
8775/* set_at()
8776 * Generates code to set the $at register to true (one)
8777 * if reg is less than the immediate expression.
8778 */
8779static void
67c0d1eb 8780set_at (int reg, int unsignedp)
252b5132 8781{
b0e6f033 8782 if (imm_expr.X_add_number >= -0x8000
252b5132 8783 && imm_expr.X_add_number < 0x8000)
67c0d1eb
RS
8784 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8785 AT, reg, BFD_RELOC_LO16);
252b5132
RH
8786 else
8787 {
bad1aba3 8788 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 8789 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
252b5132
RH
8790 }
8791}
8792
252b5132
RH
8793/* Count the leading zeroes by performing a binary chop. This is a
8794 bulky bit of source, but performance is a LOT better for the
8795 majority of values than a simple loop to count the bits:
8796 for (lcnt = 0; (lcnt < 32); lcnt++)
8797 if ((v) & (1 << (31 - lcnt)))
8798 break;
8799 However it is not code size friendly, and the gain will drop a bit
8800 on certain cached systems.
8801*/
8802#define COUNT_TOP_ZEROES(v) \
8803 (((v) & ~0xffff) == 0 \
8804 ? ((v) & ~0xff) == 0 \
8805 ? ((v) & ~0xf) == 0 \
8806 ? ((v) & ~0x3) == 0 \
8807 ? ((v) & ~0x1) == 0 \
8808 ? !(v) \
8809 ? 32 \
8810 : 31 \
8811 : 30 \
8812 : ((v) & ~0x7) == 0 \
8813 ? 29 \
8814 : 28 \
8815 : ((v) & ~0x3f) == 0 \
8816 ? ((v) & ~0x1f) == 0 \
8817 ? 27 \
8818 : 26 \
8819 : ((v) & ~0x7f) == 0 \
8820 ? 25 \
8821 : 24 \
8822 : ((v) & ~0xfff) == 0 \
8823 ? ((v) & ~0x3ff) == 0 \
8824 ? ((v) & ~0x1ff) == 0 \
8825 ? 23 \
8826 : 22 \
8827 : ((v) & ~0x7ff) == 0 \
8828 ? 21 \
8829 : 20 \
8830 : ((v) & ~0x3fff) == 0 \
8831 ? ((v) & ~0x1fff) == 0 \
8832 ? 19 \
8833 : 18 \
8834 : ((v) & ~0x7fff) == 0 \
8835 ? 17 \
8836 : 16 \
8837 : ((v) & ~0xffffff) == 0 \
8838 ? ((v) & ~0xfffff) == 0 \
8839 ? ((v) & ~0x3ffff) == 0 \
8840 ? ((v) & ~0x1ffff) == 0 \
8841 ? 15 \
8842 : 14 \
8843 : ((v) & ~0x7ffff) == 0 \
8844 ? 13 \
8845 : 12 \
8846 : ((v) & ~0x3fffff) == 0 \
8847 ? ((v) & ~0x1fffff) == 0 \
8848 ? 11 \
8849 : 10 \
8850 : ((v) & ~0x7fffff) == 0 \
8851 ? 9 \
8852 : 8 \
8853 : ((v) & ~0xfffffff) == 0 \
8854 ? ((v) & ~0x3ffffff) == 0 \
8855 ? ((v) & ~0x1ffffff) == 0 \
8856 ? 7 \
8857 : 6 \
8858 : ((v) & ~0x7ffffff) == 0 \
8859 ? 5 \
8860 : 4 \
8861 : ((v) & ~0x3fffffff) == 0 \
8862 ? ((v) & ~0x1fffffff) == 0 \
8863 ? 3 \
8864 : 2 \
8865 : ((v) & ~0x7fffffff) == 0 \
8866 ? 1 \
8867 : 0)
8868
8869/* load_register()
67c1ffbe 8870 * This routine generates the least number of instructions necessary to load
252b5132
RH
8871 * an absolute expression value into a register.
8872 */
8873static void
67c0d1eb 8874load_register (int reg, expressionS *ep, int dbl)
252b5132
RH
8875{
8876 int freg;
8877 expressionS hi32, lo32;
8878
8879 if (ep->X_op != O_big)
8880 {
9c2799c2 8881 gas_assert (ep->X_op == O_constant);
256ab948
TS
8882
8883 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8884 if (!dbl)
8885 normalize_constant_expr (ep);
256ab948
TS
8886
8887 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
252b5132
RH
8888 {
8889 /* We can handle 16 bit signed values with an addiu to
8890 $zero. No need to ever use daddiu here, since $zero and
8891 the result are always correct in 32 bit mode. */
67c0d1eb 8892 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8893 return;
8894 }
8895 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8896 {
8897 /* We can handle 16 bit unsigned values with an ori to
8898 $zero. */
67c0d1eb 8899 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8900 return;
8901 }
256ab948 8902 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
252b5132
RH
8903 {
8904 /* 32 bit values require an lui. */
df58fc94 8905 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 8906 if ((ep->X_add_number & 0xffff) != 0)
67c0d1eb 8907 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
252b5132
RH
8908 return;
8909 }
8910 }
8911
8912 /* The value is larger than 32 bits. */
8913
bad1aba3 8914 if (!dbl || GPR_SIZE == 32)
252b5132 8915 {
55e08f71
NC
8916 char value[32];
8917
8918 sprintf_vma (value, ep->X_add_number);
1661c76c 8919 as_bad (_("number (0x%s) larger than 32 bits"), value);
67c0d1eb 8920 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8921 return;
8922 }
8923
8924 if (ep->X_op != O_big)
8925 {
8926 hi32 = *ep;
8927 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8928 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8929 hi32.X_add_number &= 0xffffffff;
8930 lo32 = *ep;
8931 lo32.X_add_number &= 0xffffffff;
8932 }
8933 else
8934 {
9c2799c2 8935 gas_assert (ep->X_add_number > 2);
252b5132
RH
8936 if (ep->X_add_number == 3)
8937 generic_bignum[3] = 0;
8938 else if (ep->X_add_number > 4)
1661c76c 8939 as_bad (_("number larger than 64 bits"));
252b5132
RH
8940 lo32.X_op = O_constant;
8941 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8942 hi32.X_op = O_constant;
8943 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8944 }
8945
8946 if (hi32.X_add_number == 0)
8947 freg = 0;
8948 else
8949 {
8950 int shift, bit;
8951 unsigned long hi, lo;
8952
956cd1d6 8953 if (hi32.X_add_number == (offsetT) 0xffffffff)
beae10d5
KH
8954 {
8955 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8956 {
67c0d1eb 8957 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
8958 return;
8959 }
8960 if (lo32.X_add_number & 0x80000000)
8961 {
df58fc94 8962 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 8963 if (lo32.X_add_number & 0xffff)
67c0d1eb 8964 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
beae10d5
KH
8965 return;
8966 }
8967 }
252b5132
RH
8968
8969 /* Check for 16bit shifted constant. We know that hi32 is
8970 non-zero, so start the mask on the first bit of the hi32
8971 value. */
8972 shift = 17;
8973 do
beae10d5
KH
8974 {
8975 unsigned long himask, lomask;
8976
8977 if (shift < 32)
8978 {
8979 himask = 0xffff >> (32 - shift);
8980 lomask = (0xffff << shift) & 0xffffffff;
8981 }
8982 else
8983 {
8984 himask = 0xffff << (shift - 32);
8985 lomask = 0;
8986 }
8987 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8988 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8989 {
8990 expressionS tmp;
8991
8992 tmp.X_op = O_constant;
8993 if (shift < 32)
8994 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8995 | (lo32.X_add_number >> shift));
8996 else
8997 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
67c0d1eb 8998 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
df58fc94 8999 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9000 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9001 return;
9002 }
f9419b05 9003 ++shift;
beae10d5
KH
9004 }
9005 while (shift <= (64 - 16));
252b5132
RH
9006
9007 /* Find the bit number of the lowest one bit, and store the
9008 shifted value in hi/lo. */
9009 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9010 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9011 if (lo != 0)
9012 {
9013 bit = 0;
9014 while ((lo & 1) == 0)
9015 {
9016 lo >>= 1;
9017 ++bit;
9018 }
9019 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9020 hi >>= bit;
9021 }
9022 else
9023 {
9024 bit = 32;
9025 while ((hi & 1) == 0)
9026 {
9027 hi >>= 1;
9028 ++bit;
9029 }
9030 lo = hi;
9031 hi = 0;
9032 }
9033
9034 /* Optimize if the shifted value is a (power of 2) - 1. */
9035 if ((hi == 0 && ((lo + 1) & lo) == 0)
9036 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
beae10d5
KH
9037 {
9038 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
252b5132 9039 if (shift != 0)
beae10d5 9040 {
252b5132
RH
9041 expressionS tmp;
9042
9043 /* This instruction will set the register to be all
9044 ones. */
beae10d5
KH
9045 tmp.X_op = O_constant;
9046 tmp.X_add_number = (offsetT) -1;
67c0d1eb 9047 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9048 if (bit != 0)
9049 {
9050 bit += shift;
df58fc94 9051 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9052 reg, reg, (bit >= 32) ? bit - 32 : bit);
beae10d5 9053 }
df58fc94 9054 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
67c0d1eb 9055 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9056 return;
9057 }
9058 }
252b5132
RH
9059
9060 /* Sign extend hi32 before calling load_register, because we can
9061 generally get better code when we load a sign extended value. */
9062 if ((hi32.X_add_number & 0x80000000) != 0)
beae10d5 9063 hi32.X_add_number |= ~(offsetT) 0xffffffff;
67c0d1eb 9064 load_register (reg, &hi32, 0);
252b5132
RH
9065 freg = reg;
9066 }
9067 if ((lo32.X_add_number & 0xffff0000) == 0)
9068 {
9069 if (freg != 0)
9070 {
df58fc94 9071 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
252b5132
RH
9072 freg = reg;
9073 }
9074 }
9075 else
9076 {
9077 expressionS mid16;
9078
956cd1d6 9079 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
beae10d5 9080 {
df58fc94
RS
9081 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9082 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
beae10d5
KH
9083 return;
9084 }
252b5132
RH
9085
9086 if (freg != 0)
9087 {
df58fc94 9088 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
252b5132
RH
9089 freg = reg;
9090 }
9091 mid16 = lo32;
9092 mid16.X_add_number >>= 16;
67c0d1eb 9093 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
df58fc94 9094 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
252b5132
RH
9095 freg = reg;
9096 }
9097 if ((lo32.X_add_number & 0xffff) != 0)
67c0d1eb 9098 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
252b5132
RH
9099}
9100
269137b2
TS
9101static inline void
9102load_delay_nop (void)
9103{
9104 if (!gpr_interlocks)
9105 macro_build (NULL, "nop", "");
9106}
9107
252b5132
RH
9108/* Load an address into a register. */
9109
9110static void
67c0d1eb 9111load_address (int reg, expressionS *ep, int *used_at)
252b5132 9112{
252b5132
RH
9113 if (ep->X_op != O_constant
9114 && ep->X_op != O_symbol)
9115 {
9116 as_bad (_("expression too complex"));
9117 ep->X_op = O_constant;
9118 }
9119
9120 if (ep->X_op == O_constant)
9121 {
67c0d1eb 9122 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
252b5132
RH
9123 return;
9124 }
9125
9126 if (mips_pic == NO_PIC)
9127 {
9128 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 9129 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
9130 Otherwise we want
9131 lui $reg,<sym> (BFD_RELOC_HI16_S)
9132 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
d6bc6245 9133 If we have an addend, we always use the latter form.
76b3015f 9134
d6bc6245
TS
9135 With 64bit address space and a usable $at we want
9136 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9137 lui $at,<sym> (BFD_RELOC_HI16_S)
9138 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9139 daddiu $at,<sym> (BFD_RELOC_LO16)
9140 dsll32 $reg,0
3a482fd5 9141 daddu $reg,$reg,$at
76b3015f 9142
c03099e6 9143 If $at is already in use, we use a path which is suboptimal
d6bc6245
TS
9144 on superscalar processors.
9145 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9146 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9147 dsll $reg,16
9148 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9149 dsll $reg,16
9150 daddiu $reg,<sym> (BFD_RELOC_LO16)
6caf9ef4
TS
9151
9152 For GP relative symbols in 64bit address space we can use
9153 the same sequence as in 32bit address space. */
aed1a261 9154 if (HAVE_64BIT_SYMBOLS)
d6bc6245 9155 {
6caf9ef4
TS
9156 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9157 && !nopic_need_relax (ep->X_add_symbol, 1))
9158 {
9159 relax_start (ep->X_add_symbol);
9160 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9161 mips_gp_register, BFD_RELOC_GPREL16);
9162 relax_switch ();
9163 }
d6bc6245 9164
741fe287 9165 if (*used_at == 0 && mips_opts.at)
d6bc6245 9166 {
df58fc94
RS
9167 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9168 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
67c0d1eb
RS
9169 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9170 BFD_RELOC_MIPS_HIGHER);
9171 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
df58fc94 9172 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
67c0d1eb 9173 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
d6bc6245
TS
9174 *used_at = 1;
9175 }
9176 else
9177 {
df58fc94 9178 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb
RS
9179 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9180 BFD_RELOC_MIPS_HIGHER);
df58fc94 9181 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9182 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
df58fc94 9183 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9184 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
d6bc6245 9185 }
6caf9ef4
TS
9186
9187 if (mips_relax.sequence)
9188 relax_end ();
d6bc6245 9189 }
252b5132
RH
9190 else
9191 {
d6bc6245 9192 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 9193 && !nopic_need_relax (ep->X_add_symbol, 1))
d6bc6245 9194 {
4d7206a2 9195 relax_start (ep->X_add_symbol);
67c0d1eb 9196 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
17a2f251 9197 mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 9198 relax_switch ();
d6bc6245 9199 }
67c0d1eb
RS
9200 macro_build_lui (ep, reg);
9201 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9202 reg, reg, BFD_RELOC_LO16);
4d7206a2
RS
9203 if (mips_relax.sequence)
9204 relax_end ();
d6bc6245 9205 }
252b5132 9206 }
0a44bf69 9207 else if (!mips_big_got)
252b5132
RH
9208 {
9209 expressionS ex;
9210
9211 /* If this is a reference to an external symbol, we want
9212 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9213 Otherwise we want
9214 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9215 nop
9216 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
f5040a92
AO
9217 If there is a constant, it must be added in after.
9218
ed6fb7bd 9219 If we have NewABI, we want
f5040a92
AO
9220 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9221 unless we're referencing a global symbol with a non-zero
9222 offset, in which case cst must be added separately. */
ed6fb7bd
SC
9223 if (HAVE_NEWABI)
9224 {
f5040a92
AO
9225 if (ep->X_add_number)
9226 {
4d7206a2 9227 ex.X_add_number = ep->X_add_number;
f5040a92 9228 ep->X_add_number = 0;
4d7206a2 9229 relax_start (ep->X_add_symbol);
67c0d1eb
RS
9230 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9231 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9232 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9233 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9234 ex.X_op = O_constant;
67c0d1eb 9235 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9236 reg, reg, BFD_RELOC_LO16);
f5040a92 9237 ep->X_add_number = ex.X_add_number;
4d7206a2 9238 relax_switch ();
f5040a92 9239 }
67c0d1eb 9240 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9241 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2
RS
9242 if (mips_relax.sequence)
9243 relax_end ();
ed6fb7bd
SC
9244 }
9245 else
9246 {
f5040a92
AO
9247 ex.X_add_number = ep->X_add_number;
9248 ep->X_add_number = 0;
67c0d1eb
RS
9249 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9250 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9251 load_delay_nop ();
4d7206a2
RS
9252 relax_start (ep->X_add_symbol);
9253 relax_switch ();
67c0d1eb 9254 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9255 BFD_RELOC_LO16);
4d7206a2 9256 relax_end ();
ed6fb7bd 9257
f5040a92
AO
9258 if (ex.X_add_number != 0)
9259 {
9260 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9261 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9262 ex.X_op = O_constant;
67c0d1eb 9263 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9264 reg, reg, BFD_RELOC_LO16);
f5040a92 9265 }
252b5132
RH
9266 }
9267 }
0a44bf69 9268 else if (mips_big_got)
252b5132
RH
9269 {
9270 expressionS ex;
252b5132
RH
9271
9272 /* This is the large GOT case. If this is a reference to an
9273 external symbol, we want
9274 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9275 addu $reg,$reg,$gp
9276 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
f5040a92
AO
9277
9278 Otherwise, for a reference to a local symbol in old ABI, we want
252b5132
RH
9279 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9280 nop
9281 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
684022ea 9282 If there is a constant, it must be added in after.
f5040a92
AO
9283
9284 In the NewABI, for local symbols, with or without offsets, we want:
438c16b8
TS
9285 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9286 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 9287 */
438c16b8
TS
9288 if (HAVE_NEWABI)
9289 {
4d7206a2 9290 ex.X_add_number = ep->X_add_number;
f5040a92 9291 ep->X_add_number = 0;
4d7206a2 9292 relax_start (ep->X_add_symbol);
df58fc94 9293 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9294 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9295 reg, reg, mips_gp_register);
9296 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9297 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
f5040a92
AO
9298 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9299 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9300 else if (ex.X_add_number)
9301 {
9302 ex.X_op = O_constant;
67c0d1eb
RS
9303 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9304 BFD_RELOC_LO16);
f5040a92
AO
9305 }
9306
9307 ep->X_add_number = ex.X_add_number;
4d7206a2 9308 relax_switch ();
67c0d1eb 9309 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9310 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
67c0d1eb
RS
9311 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9312 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 9313 relax_end ();
438c16b8 9314 }
252b5132 9315 else
438c16b8 9316 {
f5040a92
AO
9317 ex.X_add_number = ep->X_add_number;
9318 ep->X_add_number = 0;
4d7206a2 9319 relax_start (ep->X_add_symbol);
df58fc94 9320 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9321 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9322 reg, reg, mips_gp_register);
9323 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9324 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4d7206a2
RS
9325 relax_switch ();
9326 if (reg_needs_delay (mips_gp_register))
438c16b8
TS
9327 {
9328 /* We need a nop before loading from $gp. This special
9329 check is required because the lui which starts the main
9330 instruction stream does not refer to $gp, and so will not
9331 insert the nop which may be required. */
67c0d1eb 9332 macro_build (NULL, "nop", "");
438c16b8 9333 }
67c0d1eb 9334 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9335 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9336 load_delay_nop ();
67c0d1eb 9337 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9338 BFD_RELOC_LO16);
4d7206a2 9339 relax_end ();
438c16b8 9340
f5040a92
AO
9341 if (ex.X_add_number != 0)
9342 {
9343 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9344 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9345 ex.X_op = O_constant;
67c0d1eb
RS
9346 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9347 BFD_RELOC_LO16);
f5040a92 9348 }
252b5132
RH
9349 }
9350 }
252b5132
RH
9351 else
9352 abort ();
8fc2e39e 9353
741fe287 9354 if (!mips_opts.at && *used_at == 1)
1661c76c 9355 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
9356}
9357
ea1fb5dc
RS
9358/* Move the contents of register SOURCE into register DEST. */
9359
9360static void
67c0d1eb 9361move_register (int dest, int source)
ea1fb5dc 9362{
df58fc94
RS
9363 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9364 instruction specifically requires a 32-bit one. */
9365 if (mips_opts.micromips
833794fc 9366 && !mips_opts.insn32
df58fc94 9367 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7951ca42 9368 macro_build (NULL, "move", "mp,mj", dest, source);
df58fc94 9369 else
40fc1451 9370 macro_build (NULL, "or", "d,v,t", dest, source, 0);
ea1fb5dc
RS
9371}
9372
4d7206a2 9373/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
f6a22291
MR
9374 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9375 The two alternatives are:
4d7206a2
RS
9376
9377 Global symbol Local sybmol
9378 ------------- ------------
9379 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9380 ... ...
9381 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9382
9383 load_got_offset emits the first instruction and add_got_offset
f6a22291
MR
9384 emits the second for a 16-bit offset or add_got_offset_hilo emits
9385 a sequence to add a 32-bit offset using a scratch register. */
4d7206a2
RS
9386
9387static void
67c0d1eb 9388load_got_offset (int dest, expressionS *local)
4d7206a2
RS
9389{
9390 expressionS global;
9391
9392 global = *local;
9393 global.X_add_number = 0;
9394
9395 relax_start (local->X_add_symbol);
67c0d1eb
RS
9396 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9397 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2 9398 relax_switch ();
67c0d1eb
RS
9399 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9400 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2
RS
9401 relax_end ();
9402}
9403
9404static void
67c0d1eb 9405add_got_offset (int dest, expressionS *local)
4d7206a2
RS
9406{
9407 expressionS global;
9408
9409 global.X_op = O_constant;
9410 global.X_op_symbol = NULL;
9411 global.X_add_symbol = NULL;
9412 global.X_add_number = local->X_add_number;
9413
9414 relax_start (local->X_add_symbol);
67c0d1eb 9415 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4d7206a2
RS
9416 dest, dest, BFD_RELOC_LO16);
9417 relax_switch ();
67c0d1eb 9418 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4d7206a2
RS
9419 relax_end ();
9420}
9421
f6a22291
MR
9422static void
9423add_got_offset_hilo (int dest, expressionS *local, int tmp)
9424{
9425 expressionS global;
9426 int hold_mips_optimize;
9427
9428 global.X_op = O_constant;
9429 global.X_op_symbol = NULL;
9430 global.X_add_symbol = NULL;
9431 global.X_add_number = local->X_add_number;
9432
9433 relax_start (local->X_add_symbol);
9434 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9435 relax_switch ();
9436 /* Set mips_optimize around the lui instruction to avoid
9437 inserting an unnecessary nop after the lw. */
9438 hold_mips_optimize = mips_optimize;
9439 mips_optimize = 2;
9440 macro_build_lui (&global, tmp);
9441 mips_optimize = hold_mips_optimize;
9442 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9443 relax_end ();
9444
9445 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9446}
9447
df58fc94
RS
9448/* Emit a sequence of instructions to emulate a branch likely operation.
9449 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9450 is its complementing branch with the original condition negated.
9451 CALL is set if the original branch specified the link operation.
9452 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9453
9454 Code like this is produced in the noreorder mode:
9455
9456 BRNEG <args>, 1f
9457 nop
9458 b <sym>
9459 delay slot (executed only if branch taken)
9460 1:
9461
9462 or, if CALL is set:
9463
9464 BRNEG <args>, 1f
9465 nop
9466 bal <sym>
9467 delay slot (executed only if branch taken)
9468 1:
9469
9470 In the reorder mode the delay slot would be filled with a nop anyway,
9471 so code produced is simply:
9472
9473 BR <args>, <sym>
9474 nop
9475
9476 This function is used when producing code for the microMIPS ASE that
9477 does not implement branch likely instructions in hardware. */
9478
9479static void
9480macro_build_branch_likely (const char *br, const char *brneg,
9481 int call, expressionS *ep, const char *fmt,
9482 unsigned int sreg, unsigned int treg)
9483{
9484 int noreorder = mips_opts.noreorder;
9485 expressionS expr1;
9486
9487 gas_assert (mips_opts.micromips);
9488 start_noreorder ();
9489 if (noreorder)
9490 {
9491 micromips_label_expr (&expr1);
9492 macro_build (&expr1, brneg, fmt, sreg, treg);
9493 macro_build (NULL, "nop", "");
9494 macro_build (ep, call ? "bal" : "b", "p");
9495
9496 /* Set to true so that append_insn adds a label. */
9497 emit_branch_likely_macro = TRUE;
9498 }
9499 else
9500 {
9501 macro_build (ep, br, fmt, sreg, treg);
9502 macro_build (NULL, "nop", "");
9503 }
9504 end_noreorder ();
9505}
9506
9507/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9508 the condition code tested. EP specifies the branch target. */
9509
9510static void
9511macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9512{
9513 const int call = 0;
9514 const char *brneg;
9515 const char *br;
9516
9517 switch (type)
9518 {
9519 case M_BC1FL:
9520 br = "bc1f";
9521 brneg = "bc1t";
9522 break;
9523 case M_BC1TL:
9524 br = "bc1t";
9525 brneg = "bc1f";
9526 break;
9527 case M_BC2FL:
9528 br = "bc2f";
9529 brneg = "bc2t";
9530 break;
9531 case M_BC2TL:
9532 br = "bc2t";
9533 brneg = "bc2f";
9534 break;
9535 default:
9536 abort ();
9537 }
9538 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9539}
9540
9541/* Emit a two-argument branch macro specified by TYPE, using SREG as
9542 the register tested. EP specifies the branch target. */
9543
9544static void
9545macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9546{
9547 const char *brneg = NULL;
9548 const char *br;
9549 int call = 0;
9550
9551 switch (type)
9552 {
9553 case M_BGEZ:
9554 br = "bgez";
9555 break;
9556 case M_BGEZL:
9557 br = mips_opts.micromips ? "bgez" : "bgezl";
9558 brneg = "bltz";
9559 break;
9560 case M_BGEZALL:
9561 gas_assert (mips_opts.micromips);
833794fc 9562 br = mips_opts.insn32 ? "bgezal" : "bgezals";
df58fc94
RS
9563 brneg = "bltz";
9564 call = 1;
9565 break;
9566 case M_BGTZ:
9567 br = "bgtz";
9568 break;
9569 case M_BGTZL:
9570 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9571 brneg = "blez";
9572 break;
9573 case M_BLEZ:
9574 br = "blez";
9575 break;
9576 case M_BLEZL:
9577 br = mips_opts.micromips ? "blez" : "blezl";
9578 brneg = "bgtz";
9579 break;
9580 case M_BLTZ:
9581 br = "bltz";
9582 break;
9583 case M_BLTZL:
9584 br = mips_opts.micromips ? "bltz" : "bltzl";
9585 brneg = "bgez";
9586 break;
9587 case M_BLTZALL:
9588 gas_assert (mips_opts.micromips);
833794fc 9589 br = mips_opts.insn32 ? "bltzal" : "bltzals";
df58fc94
RS
9590 brneg = "bgez";
9591 call = 1;
9592 break;
9593 default:
9594 abort ();
9595 }
9596 if (mips_opts.micromips && brneg)
9597 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9598 else
9599 macro_build (ep, br, "s,p", sreg);
9600}
9601
9602/* Emit a three-argument branch macro specified by TYPE, using SREG and
9603 TREG as the registers tested. EP specifies the branch target. */
9604
9605static void
9606macro_build_branch_rsrt (int type, expressionS *ep,
9607 unsigned int sreg, unsigned int treg)
9608{
9609 const char *brneg = NULL;
9610 const int call = 0;
9611 const char *br;
9612
9613 switch (type)
9614 {
9615 case M_BEQ:
9616 case M_BEQ_I:
9617 br = "beq";
9618 break;
9619 case M_BEQL:
9620 case M_BEQL_I:
9621 br = mips_opts.micromips ? "beq" : "beql";
9622 brneg = "bne";
9623 break;
9624 case M_BNE:
9625 case M_BNE_I:
9626 br = "bne";
9627 break;
9628 case M_BNEL:
9629 case M_BNEL_I:
9630 br = mips_opts.micromips ? "bne" : "bnel";
9631 brneg = "beq";
9632 break;
9633 default:
9634 abort ();
9635 }
9636 if (mips_opts.micromips && brneg)
9637 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9638 else
9639 macro_build (ep, br, "s,t,p", sreg, treg);
9640}
9641
f2ae14a1
RS
9642/* Return the high part that should be loaded in order to make the low
9643 part of VALUE accessible using an offset of OFFBITS bits. */
9644
9645static offsetT
9646offset_high_part (offsetT value, unsigned int offbits)
9647{
9648 offsetT bias;
9649 addressT low_mask;
9650
9651 if (offbits == 0)
9652 return value;
9653 bias = 1 << (offbits - 1);
9654 low_mask = bias * 2 - 1;
9655 return (value + bias) & ~low_mask;
9656}
9657
9658/* Return true if the value stored in offset_expr and offset_reloc
9659 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9660 amount that the caller wants to add without inducing overflow
9661 and ALIGN is the known alignment of the value in bytes. */
9662
9663static bfd_boolean
9664small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9665{
9666 if (offbits == 16)
9667 {
9668 /* Accept any relocation operator if overflow isn't a concern. */
9669 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9670 return TRUE;
9671
9672 /* These relocations are guaranteed not to overflow in correct links. */
9673 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9674 || gprel16_reloc_p (*offset_reloc))
9675 return TRUE;
9676 }
9677 if (offset_expr.X_op == O_constant
9678 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9679 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9680 return TRUE;
9681 return FALSE;
9682}
9683
252b5132
RH
9684/*
9685 * Build macros
9686 * This routine implements the seemingly endless macro or synthesized
9687 * instructions and addressing modes in the mips assembly language. Many
9688 * of these macros are simple and are similar to each other. These could
67c1ffbe 9689 * probably be handled by some kind of table or grammar approach instead of
252b5132
RH
9690 * this verbose method. Others are not simple macros but are more like
9691 * optimizing code generation.
9692 * One interesting optimization is when several store macros appear
67c1ffbe 9693 * consecutively that would load AT with the upper half of the same address.
252b5132
RH
9694 * The ensuing load upper instructions are ommited. This implies some kind
9695 * of global optimization. We currently only optimize within a single macro.
9696 * For many of the load and store macros if the address is specified as a
9697 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9698 * first load register 'at' with zero and use it as the base register. The
9699 * mips assembler simply uses register $zero. Just one tiny optimization
9700 * we're missing.
9701 */
9702static void
833794fc 9703macro (struct mips_cl_insn *ip, char *str)
252b5132 9704{
c0ebe874
RS
9705 const struct mips_operand_array *operands;
9706 unsigned int breg, i;
741fe287 9707 unsigned int tempreg;
252b5132 9708 int mask;
43841e91 9709 int used_at = 0;
df58fc94 9710 expressionS label_expr;
252b5132 9711 expressionS expr1;
df58fc94 9712 expressionS *ep;
252b5132
RH
9713 const char *s;
9714 const char *s2;
9715 const char *fmt;
9716 int likely = 0;
252b5132 9717 int coproc = 0;
7f3c4072 9718 int offbits = 16;
1abe91b1 9719 int call = 0;
df58fc94
RS
9720 int jals = 0;
9721 int dbl = 0;
9722 int imm = 0;
9723 int ust = 0;
9724 int lp = 0;
f2ae14a1 9725 bfd_boolean large_offset;
252b5132 9726 int off;
252b5132 9727 int hold_mips_optimize;
f2ae14a1 9728 unsigned int align;
c0ebe874 9729 unsigned int op[MAX_OPERANDS];
252b5132 9730
9c2799c2 9731 gas_assert (! mips_opts.mips16);
252b5132 9732
c0ebe874
RS
9733 operands = insn_operands (ip);
9734 for (i = 0; i < MAX_OPERANDS; i++)
9735 if (operands->operand[i])
9736 op[i] = insn_extract_operand (ip, operands->operand[i]);
9737 else
9738 op[i] = -1;
9739
252b5132
RH
9740 mask = ip->insn_mo->mask;
9741
df58fc94
RS
9742 label_expr.X_op = O_constant;
9743 label_expr.X_op_symbol = NULL;
9744 label_expr.X_add_symbol = NULL;
9745 label_expr.X_add_number = 0;
9746
252b5132
RH
9747 expr1.X_op = O_constant;
9748 expr1.X_op_symbol = NULL;
9749 expr1.X_add_symbol = NULL;
9750 expr1.X_add_number = 1;
f2ae14a1 9751 align = 1;
252b5132
RH
9752
9753 switch (mask)
9754 {
9755 case M_DABS:
9756 dbl = 1;
9757 case M_ABS:
df58fc94
RS
9758 /* bgez $a0,1f
9759 move v0,$a0
9760 sub v0,$zero,$a0
9761 1:
9762 */
252b5132 9763
7d10b47d 9764 start_noreorder ();
252b5132 9765
df58fc94
RS
9766 if (mips_opts.micromips)
9767 micromips_label_expr (&label_expr);
9768 else
9769 label_expr.X_add_number = 8;
c0ebe874
RS
9770 macro_build (&label_expr, "bgez", "s,p", op[1]);
9771 if (op[0] == op[1])
a605d2b3 9772 macro_build (NULL, "nop", "");
252b5132 9773 else
c0ebe874
RS
9774 move_register (op[0], op[1]);
9775 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
df58fc94
RS
9776 if (mips_opts.micromips)
9777 micromips_add_label ();
252b5132 9778
7d10b47d 9779 end_noreorder ();
8fc2e39e 9780 break;
252b5132
RH
9781
9782 case M_ADD_I:
9783 s = "addi";
9784 s2 = "add";
9785 goto do_addi;
9786 case M_ADDU_I:
9787 s = "addiu";
9788 s2 = "addu";
9789 goto do_addi;
9790 case M_DADD_I:
9791 dbl = 1;
9792 s = "daddi";
9793 s2 = "dadd";
df58fc94
RS
9794 if (!mips_opts.micromips)
9795 goto do_addi;
b0e6f033 9796 if (imm_expr.X_add_number >= -0x200
df58fc94
RS
9797 && imm_expr.X_add_number < 0x200)
9798 {
b0e6f033
RS
9799 macro_build (NULL, s, "t,r,.", op[0], op[1],
9800 (int) imm_expr.X_add_number);
df58fc94
RS
9801 break;
9802 }
9803 goto do_addi_i;
252b5132
RH
9804 case M_DADDU_I:
9805 dbl = 1;
9806 s = "daddiu";
9807 s2 = "daddu";
9808 do_addi:
b0e6f033 9809 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
9810 && imm_expr.X_add_number < 0x8000)
9811 {
c0ebe874 9812 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 9813 break;
252b5132 9814 }
df58fc94 9815 do_addi_i:
8fc2e39e 9816 used_at = 1;
67c0d1eb 9817 load_register (AT, &imm_expr, dbl);
c0ebe874 9818 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9819 break;
9820
9821 case M_AND_I:
9822 s = "andi";
9823 s2 = "and";
9824 goto do_bit;
9825 case M_OR_I:
9826 s = "ori";
9827 s2 = "or";
9828 goto do_bit;
9829 case M_NOR_I:
9830 s = "";
9831 s2 = "nor";
9832 goto do_bit;
9833 case M_XOR_I:
9834 s = "xori";
9835 s2 = "xor";
9836 do_bit:
b0e6f033 9837 if (imm_expr.X_add_number >= 0
252b5132
RH
9838 && imm_expr.X_add_number < 0x10000)
9839 {
9840 if (mask != M_NOR_I)
c0ebe874 9841 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
9842 else
9843 {
67c0d1eb 9844 macro_build (&imm_expr, "ori", "t,r,i",
c0ebe874
RS
9845 op[0], op[1], BFD_RELOC_LO16);
9846 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
252b5132 9847 }
8fc2e39e 9848 break;
252b5132
RH
9849 }
9850
8fc2e39e 9851 used_at = 1;
bad1aba3 9852 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 9853 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9854 break;
9855
8b082fb1
TS
9856 case M_BALIGN:
9857 switch (imm_expr.X_add_number)
9858 {
9859 case 0:
9860 macro_build (NULL, "nop", "");
9861 break;
9862 case 2:
c0ebe874 9863 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
8b082fb1 9864 break;
03f66e8a
MR
9865 case 1:
9866 case 3:
c0ebe874 9867 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
90ecf173 9868 (int) imm_expr.X_add_number);
8b082fb1 9869 break;
03f66e8a
MR
9870 default:
9871 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9872 (unsigned long) imm_expr.X_add_number);
9873 break;
8b082fb1
TS
9874 }
9875 break;
9876
df58fc94
RS
9877 case M_BC1FL:
9878 case M_BC1TL:
9879 case M_BC2FL:
9880 case M_BC2TL:
9881 gas_assert (mips_opts.micromips);
9882 macro_build_branch_ccl (mask, &offset_expr,
9883 EXTRACT_OPERAND (1, BCC, *ip));
9884 break;
9885
252b5132 9886 case M_BEQ_I:
252b5132 9887 case M_BEQL_I:
252b5132 9888 case M_BNE_I:
252b5132 9889 case M_BNEL_I:
b0e6f033 9890 if (imm_expr.X_add_number == 0)
c0ebe874 9891 op[1] = 0;
df58fc94 9892 else
252b5132 9893 {
c0ebe874 9894 op[1] = AT;
df58fc94 9895 used_at = 1;
bad1aba3 9896 load_register (op[1], &imm_expr, GPR_SIZE == 64);
252b5132 9897 }
df58fc94
RS
9898 /* Fall through. */
9899 case M_BEQL:
9900 case M_BNEL:
c0ebe874 9901 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
252b5132
RH
9902 break;
9903
9904 case M_BGEL:
9905 likely = 1;
9906 case M_BGE:
c0ebe874
RS
9907 if (op[1] == 0)
9908 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9909 else if (op[0] == 0)
9910 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
df58fc94 9911 else
252b5132 9912 {
df58fc94 9913 used_at = 1;
c0ebe874 9914 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9915 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9916 &offset_expr, AT, ZERO);
252b5132 9917 }
df58fc94
RS
9918 break;
9919
9920 case M_BGEZL:
9921 case M_BGEZALL:
9922 case M_BGTZL:
9923 case M_BLEZL:
9924 case M_BLTZL:
9925 case M_BLTZALL:
c0ebe874 9926 macro_build_branch_rs (mask, &offset_expr, op[0]);
252b5132
RH
9927 break;
9928
9929 case M_BGTL_I:
9930 likely = 1;
9931 case M_BGT_I:
90ecf173 9932 /* Check for > max integer. */
b0e6f033 9933 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
9934 {
9935 do_false:
90ecf173 9936 /* Result is always false. */
252b5132 9937 if (! likely)
a605d2b3 9938 macro_build (NULL, "nop", "");
252b5132 9939 else
df58fc94 9940 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8fc2e39e 9941 break;
252b5132 9942 }
f9419b05 9943 ++imm_expr.X_add_number;
252b5132
RH
9944 /* FALLTHROUGH */
9945 case M_BGE_I:
9946 case M_BGEL_I:
9947 if (mask == M_BGEL_I)
9948 likely = 1;
b0e6f033 9949 if (imm_expr.X_add_number == 0)
252b5132 9950 {
df58fc94 9951 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
c0ebe874 9952 &offset_expr, op[0]);
8fc2e39e 9953 break;
252b5132 9954 }
b0e6f033 9955 if (imm_expr.X_add_number == 1)
252b5132 9956 {
df58fc94 9957 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
c0ebe874 9958 &offset_expr, op[0]);
8fc2e39e 9959 break;
252b5132 9960 }
b0e6f033 9961 if (imm_expr.X_add_number <= GPR_SMIN)
252b5132
RH
9962 {
9963 do_true:
9964 /* result is always true */
1661c76c 9965 as_warn (_("branch %s is always true"), ip->insn_mo->name);
67c0d1eb 9966 macro_build (&offset_expr, "b", "p");
8fc2e39e 9967 break;
252b5132 9968 }
8fc2e39e 9969 used_at = 1;
c0ebe874 9970 set_at (op[0], 0);
df58fc94
RS
9971 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9972 &offset_expr, AT, ZERO);
252b5132
RH
9973 break;
9974
9975 case M_BGEUL:
9976 likely = 1;
9977 case M_BGEU:
c0ebe874 9978 if (op[1] == 0)
252b5132 9979 goto do_true;
c0ebe874 9980 else if (op[0] == 0)
df58fc94 9981 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 9982 &offset_expr, ZERO, op[1]);
df58fc94 9983 else
252b5132 9984 {
df58fc94 9985 used_at = 1;
c0ebe874 9986 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9987 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9988 &offset_expr, AT, ZERO);
252b5132 9989 }
252b5132
RH
9990 break;
9991
9992 case M_BGTUL_I:
9993 likely = 1;
9994 case M_BGTU_I:
c0ebe874 9995 if (op[0] == 0
bad1aba3 9996 || (GPR_SIZE == 32
f01dc953 9997 && imm_expr.X_add_number == -1))
252b5132 9998 goto do_false;
f9419b05 9999 ++imm_expr.X_add_number;
252b5132
RH
10000 /* FALLTHROUGH */
10001 case M_BGEU_I:
10002 case M_BGEUL_I:
10003 if (mask == M_BGEUL_I)
10004 likely = 1;
b0e6f033 10005 if (imm_expr.X_add_number == 0)
252b5132 10006 goto do_true;
b0e6f033 10007 else if (imm_expr.X_add_number == 1)
df58fc94 10008 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10009 &offset_expr, op[0], ZERO);
df58fc94 10010 else
252b5132 10011 {
df58fc94 10012 used_at = 1;
c0ebe874 10013 set_at (op[0], 1);
df58fc94
RS
10014 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10015 &offset_expr, AT, ZERO);
252b5132 10016 }
252b5132
RH
10017 break;
10018
10019 case M_BGTL:
10020 likely = 1;
10021 case M_BGT:
c0ebe874
RS
10022 if (op[1] == 0)
10023 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10024 else if (op[0] == 0)
10025 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
df58fc94 10026 else
252b5132 10027 {
df58fc94 10028 used_at = 1;
c0ebe874 10029 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10030 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10031 &offset_expr, AT, ZERO);
252b5132 10032 }
252b5132
RH
10033 break;
10034
10035 case M_BGTUL:
10036 likely = 1;
10037 case M_BGTU:
c0ebe874 10038 if (op[1] == 0)
df58fc94 10039 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874
RS
10040 &offset_expr, op[0], ZERO);
10041 else if (op[0] == 0)
df58fc94
RS
10042 goto do_false;
10043 else
252b5132 10044 {
df58fc94 10045 used_at = 1;
c0ebe874 10046 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10047 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10048 &offset_expr, AT, ZERO);
252b5132 10049 }
252b5132
RH
10050 break;
10051
10052 case M_BLEL:
10053 likely = 1;
10054 case M_BLE:
c0ebe874
RS
10055 if (op[1] == 0)
10056 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10057 else if (op[0] == 0)
10058 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
df58fc94 10059 else
252b5132 10060 {
df58fc94 10061 used_at = 1;
c0ebe874 10062 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10063 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10064 &offset_expr, AT, ZERO);
252b5132 10065 }
252b5132
RH
10066 break;
10067
10068 case M_BLEL_I:
10069 likely = 1;
10070 case M_BLE_I:
b0e6f033 10071 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132 10072 goto do_true;
f9419b05 10073 ++imm_expr.X_add_number;
252b5132
RH
10074 /* FALLTHROUGH */
10075 case M_BLT_I:
10076 case M_BLTL_I:
10077 if (mask == M_BLTL_I)
10078 likely = 1;
b0e6f033 10079 if (imm_expr.X_add_number == 0)
c0ebe874 10080 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
b0e6f033 10081 else if (imm_expr.X_add_number == 1)
c0ebe874 10082 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
df58fc94 10083 else
252b5132 10084 {
df58fc94 10085 used_at = 1;
c0ebe874 10086 set_at (op[0], 0);
df58fc94
RS
10087 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10088 &offset_expr, AT, ZERO);
252b5132 10089 }
252b5132
RH
10090 break;
10091
10092 case M_BLEUL:
10093 likely = 1;
10094 case M_BLEU:
c0ebe874 10095 if (op[1] == 0)
df58fc94 10096 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874
RS
10097 &offset_expr, op[0], ZERO);
10098 else if (op[0] == 0)
df58fc94
RS
10099 goto do_true;
10100 else
252b5132 10101 {
df58fc94 10102 used_at = 1;
c0ebe874 10103 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10104 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10105 &offset_expr, AT, ZERO);
252b5132 10106 }
252b5132
RH
10107 break;
10108
10109 case M_BLEUL_I:
10110 likely = 1;
10111 case M_BLEU_I:
c0ebe874 10112 if (op[0] == 0
bad1aba3 10113 || (GPR_SIZE == 32
f01dc953 10114 && imm_expr.X_add_number == -1))
252b5132 10115 goto do_true;
f9419b05 10116 ++imm_expr.X_add_number;
252b5132
RH
10117 /* FALLTHROUGH */
10118 case M_BLTU_I:
10119 case M_BLTUL_I:
10120 if (mask == M_BLTUL_I)
10121 likely = 1;
b0e6f033 10122 if (imm_expr.X_add_number == 0)
252b5132 10123 goto do_false;
b0e6f033 10124 else if (imm_expr.X_add_number == 1)
df58fc94 10125 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10126 &offset_expr, op[0], ZERO);
df58fc94 10127 else
252b5132 10128 {
df58fc94 10129 used_at = 1;
c0ebe874 10130 set_at (op[0], 1);
df58fc94
RS
10131 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10132 &offset_expr, AT, ZERO);
252b5132 10133 }
252b5132
RH
10134 break;
10135
10136 case M_BLTL:
10137 likely = 1;
10138 case M_BLT:
c0ebe874
RS
10139 if (op[1] == 0)
10140 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10141 else if (op[0] == 0)
10142 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
df58fc94 10143 else
252b5132 10144 {
df58fc94 10145 used_at = 1;
c0ebe874 10146 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10147 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10148 &offset_expr, AT, ZERO);
252b5132 10149 }
252b5132
RH
10150 break;
10151
10152 case M_BLTUL:
10153 likely = 1;
10154 case M_BLTU:
c0ebe874 10155 if (op[1] == 0)
252b5132 10156 goto do_false;
c0ebe874 10157 else if (op[0] == 0)
df58fc94 10158 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10159 &offset_expr, ZERO, op[1]);
df58fc94 10160 else
252b5132 10161 {
df58fc94 10162 used_at = 1;
c0ebe874 10163 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10164 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10165 &offset_expr, AT, ZERO);
252b5132 10166 }
252b5132
RH
10167 break;
10168
10169 case M_DDIV_3:
10170 dbl = 1;
10171 case M_DIV_3:
10172 s = "mflo";
10173 goto do_div3;
10174 case M_DREM_3:
10175 dbl = 1;
10176 case M_REM_3:
10177 s = "mfhi";
10178 do_div3:
c0ebe874 10179 if (op[2] == 0)
252b5132 10180 {
1661c76c 10181 as_warn (_("divide by zero"));
252b5132 10182 if (mips_trap)
df58fc94 10183 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10184 else
df58fc94 10185 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10186 break;
252b5132
RH
10187 }
10188
7d10b47d 10189 start_noreorder ();
252b5132
RH
10190 if (mips_trap)
10191 {
c0ebe874
RS
10192 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10193 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
252b5132
RH
10194 }
10195 else
10196 {
df58fc94
RS
10197 if (mips_opts.micromips)
10198 micromips_label_expr (&label_expr);
10199 else
10200 label_expr.X_add_number = 8;
c0ebe874
RS
10201 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10202 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
df58fc94
RS
10203 macro_build (NULL, "break", BRK_FMT, 7);
10204 if (mips_opts.micromips)
10205 micromips_add_label ();
252b5132
RH
10206 }
10207 expr1.X_add_number = -1;
8fc2e39e 10208 used_at = 1;
f6a22291 10209 load_register (AT, &expr1, dbl);
df58fc94
RS
10210 if (mips_opts.micromips)
10211 micromips_label_expr (&label_expr);
10212 else
10213 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
c0ebe874 10214 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
252b5132
RH
10215 if (dbl)
10216 {
10217 expr1.X_add_number = 1;
f6a22291 10218 load_register (AT, &expr1, dbl);
df58fc94 10219 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
252b5132
RH
10220 }
10221 else
10222 {
10223 expr1.X_add_number = 0x80000000;
df58fc94 10224 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
252b5132
RH
10225 }
10226 if (mips_trap)
10227 {
c0ebe874 10228 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
252b5132
RH
10229 /* We want to close the noreorder block as soon as possible, so
10230 that later insns are available for delay slot filling. */
7d10b47d 10231 end_noreorder ();
252b5132
RH
10232 }
10233 else
10234 {
df58fc94
RS
10235 if (mips_opts.micromips)
10236 micromips_label_expr (&label_expr);
10237 else
10238 label_expr.X_add_number = 8;
c0ebe874 10239 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
a605d2b3 10240 macro_build (NULL, "nop", "");
252b5132
RH
10241
10242 /* We want to close the noreorder block as soon as possible, so
10243 that later insns are available for delay slot filling. */
7d10b47d 10244 end_noreorder ();
252b5132 10245
df58fc94 10246 macro_build (NULL, "break", BRK_FMT, 6);
252b5132 10247 }
df58fc94
RS
10248 if (mips_opts.micromips)
10249 micromips_add_label ();
c0ebe874 10250 macro_build (NULL, s, MFHL_FMT, op[0]);
252b5132
RH
10251 break;
10252
10253 case M_DIV_3I:
10254 s = "div";
10255 s2 = "mflo";
10256 goto do_divi;
10257 case M_DIVU_3I:
10258 s = "divu";
10259 s2 = "mflo";
10260 goto do_divi;
10261 case M_REM_3I:
10262 s = "div";
10263 s2 = "mfhi";
10264 goto do_divi;
10265 case M_REMU_3I:
10266 s = "divu";
10267 s2 = "mfhi";
10268 goto do_divi;
10269 case M_DDIV_3I:
10270 dbl = 1;
10271 s = "ddiv";
10272 s2 = "mflo";
10273 goto do_divi;
10274 case M_DDIVU_3I:
10275 dbl = 1;
10276 s = "ddivu";
10277 s2 = "mflo";
10278 goto do_divi;
10279 case M_DREM_3I:
10280 dbl = 1;
10281 s = "ddiv";
10282 s2 = "mfhi";
10283 goto do_divi;
10284 case M_DREMU_3I:
10285 dbl = 1;
10286 s = "ddivu";
10287 s2 = "mfhi";
10288 do_divi:
b0e6f033 10289 if (imm_expr.X_add_number == 0)
252b5132 10290 {
1661c76c 10291 as_warn (_("divide by zero"));
252b5132 10292 if (mips_trap)
df58fc94 10293 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10294 else
df58fc94 10295 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10296 break;
252b5132 10297 }
b0e6f033 10298 if (imm_expr.X_add_number == 1)
252b5132
RH
10299 {
10300 if (strcmp (s2, "mflo") == 0)
c0ebe874 10301 move_register (op[0], op[1]);
252b5132 10302 else
c0ebe874 10303 move_register (op[0], ZERO);
8fc2e39e 10304 break;
252b5132 10305 }
b0e6f033 10306 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
252b5132
RH
10307 {
10308 if (strcmp (s2, "mflo") == 0)
c0ebe874 10309 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
252b5132 10310 else
c0ebe874 10311 move_register (op[0], ZERO);
8fc2e39e 10312 break;
252b5132
RH
10313 }
10314
8fc2e39e 10315 used_at = 1;
67c0d1eb 10316 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
10317 macro_build (NULL, s, "z,s,t", op[1], AT);
10318 macro_build (NULL, s2, MFHL_FMT, op[0]);
252b5132
RH
10319 break;
10320
10321 case M_DIVU_3:
10322 s = "divu";
10323 s2 = "mflo";
10324 goto do_divu3;
10325 case M_REMU_3:
10326 s = "divu";
10327 s2 = "mfhi";
10328 goto do_divu3;
10329 case M_DDIVU_3:
10330 s = "ddivu";
10331 s2 = "mflo";
10332 goto do_divu3;
10333 case M_DREMU_3:
10334 s = "ddivu";
10335 s2 = "mfhi";
10336 do_divu3:
7d10b47d 10337 start_noreorder ();
252b5132
RH
10338 if (mips_trap)
10339 {
c0ebe874
RS
10340 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10341 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10342 /* We want to close the noreorder block as soon as possible, so
10343 that later insns are available for delay slot filling. */
7d10b47d 10344 end_noreorder ();
252b5132
RH
10345 }
10346 else
10347 {
df58fc94
RS
10348 if (mips_opts.micromips)
10349 micromips_label_expr (&label_expr);
10350 else
10351 label_expr.X_add_number = 8;
c0ebe874
RS
10352 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10353 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10354
10355 /* We want to close the noreorder block as soon as possible, so
10356 that later insns are available for delay slot filling. */
7d10b47d 10357 end_noreorder ();
df58fc94
RS
10358 macro_build (NULL, "break", BRK_FMT, 7);
10359 if (mips_opts.micromips)
10360 micromips_add_label ();
252b5132 10361 }
c0ebe874 10362 macro_build (NULL, s2, MFHL_FMT, op[0]);
8fc2e39e 10363 break;
252b5132 10364
1abe91b1
MR
10365 case M_DLCA_AB:
10366 dbl = 1;
10367 case M_LCA_AB:
10368 call = 1;
10369 goto do_la;
252b5132
RH
10370 case M_DLA_AB:
10371 dbl = 1;
10372 case M_LA_AB:
1abe91b1 10373 do_la:
252b5132
RH
10374 /* Load the address of a symbol into a register. If breg is not
10375 zero, we then add a base register to it. */
10376
c0ebe874 10377 breg = op[2];
bad1aba3 10378 if (dbl && GPR_SIZE == 32)
ece794d9
MF
10379 as_warn (_("dla used to load 32-bit register; recommend using la "
10380 "instead"));
3bec30a8 10381
90ecf173 10382 if (!dbl && HAVE_64BIT_OBJECTS)
ece794d9
MF
10383 as_warn (_("la used to load 64-bit address; recommend using dla "
10384 "instead"));
3bec30a8 10385
f2ae14a1 10386 if (small_offset_p (0, align, 16))
0c11417f 10387 {
c0ebe874 10388 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
f2ae14a1 10389 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8fc2e39e 10390 break;
0c11417f
MR
10391 }
10392
c0ebe874 10393 if (mips_opts.at && (op[0] == breg))
afdbd6d0
CD
10394 {
10395 tempreg = AT;
10396 used_at = 1;
10397 }
10398 else
c0ebe874 10399 tempreg = op[0];
afdbd6d0 10400
252b5132
RH
10401 if (offset_expr.X_op != O_symbol
10402 && offset_expr.X_op != O_constant)
10403 {
1661c76c 10404 as_bad (_("expression too complex"));
252b5132
RH
10405 offset_expr.X_op = O_constant;
10406 }
10407
252b5132 10408 if (offset_expr.X_op == O_constant)
aed1a261 10409 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
252b5132
RH
10410 else if (mips_pic == NO_PIC)
10411 {
d6bc6245 10412 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 10413 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
10414 Otherwise we want
10415 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10416 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10417 If we have a constant, we need two instructions anyhow,
d6bc6245 10418 so we may as well always use the latter form.
76b3015f 10419
6caf9ef4
TS
10420 With 64bit address space and a usable $at we want
10421 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10422 lui $at,<sym> (BFD_RELOC_HI16_S)
10423 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10424 daddiu $at,<sym> (BFD_RELOC_LO16)
10425 dsll32 $tempreg,0
10426 daddu $tempreg,$tempreg,$at
10427
10428 If $at is already in use, we use a path which is suboptimal
10429 on superscalar processors.
10430 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10431 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10432 dsll $tempreg,16
10433 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10434 dsll $tempreg,16
10435 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10436
10437 For GP relative symbols in 64bit address space we can use
10438 the same sequence as in 32bit address space. */
aed1a261 10439 if (HAVE_64BIT_SYMBOLS)
252b5132 10440 {
6caf9ef4
TS
10441 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10442 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10443 {
10444 relax_start (offset_expr.X_add_symbol);
10445 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10446 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10447 relax_switch ();
10448 }
d6bc6245 10449
741fe287 10450 if (used_at == 0 && mips_opts.at)
98d3f06f 10451 {
df58fc94 10452 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10453 tempreg, BFD_RELOC_MIPS_HIGHEST);
df58fc94 10454 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10455 AT, BFD_RELOC_HI16_S);
67c0d1eb 10456 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10457 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
67c0d1eb 10458 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10459 AT, AT, BFD_RELOC_LO16);
df58fc94 10460 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 10461 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
98d3f06f
KH
10462 used_at = 1;
10463 }
10464 else
10465 {
df58fc94 10466 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10467 tempreg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb 10468 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10469 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 10470 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10471 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10472 tempreg, tempreg, BFD_RELOC_HI16_S);
df58fc94 10473 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10474 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10475 tempreg, tempreg, BFD_RELOC_LO16);
98d3f06f 10476 }
6caf9ef4
TS
10477
10478 if (mips_relax.sequence)
10479 relax_end ();
98d3f06f
KH
10480 }
10481 else
10482 {
10483 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 10484 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
98d3f06f 10485 {
4d7206a2 10486 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10487 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10488 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 10489 relax_switch ();
98d3f06f 10490 }
6943caf0 10491 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
1661c76c 10492 as_bad (_("offset too large"));
67c0d1eb
RS
10493 macro_build_lui (&offset_expr, tempreg);
10494 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10495 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2
RS
10496 if (mips_relax.sequence)
10497 relax_end ();
98d3f06f 10498 }
252b5132 10499 }
0a44bf69 10500 else if (!mips_big_got && !HAVE_NEWABI)
252b5132 10501 {
9117d219
NC
10502 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10503
252b5132
RH
10504 /* If this is a reference to an external symbol, and there
10505 is no constant, we want
10506 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
1abe91b1 10507 or for lca or if tempreg is PIC_CALL_REG
9117d219 10508 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
252b5132
RH
10509 For a local symbol, we want
10510 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10511 nop
10512 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10513
10514 If we have a small constant, and this is a reference to
10515 an external symbol, we want
10516 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10517 nop
10518 addiu $tempreg,$tempreg,<constant>
10519 For a local symbol, we want the same instruction
10520 sequence, but we output a BFD_RELOC_LO16 reloc on the
10521 addiu instruction.
10522
10523 If we have a large constant, and this is a reference to
10524 an external symbol, we want
10525 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10526 lui $at,<hiconstant>
10527 addiu $at,$at,<loconstant>
10528 addu $tempreg,$tempreg,$at
10529 For a local symbol, we want the same instruction
10530 sequence, but we output a BFD_RELOC_LO16 reloc on the
ed6fb7bd 10531 addiu instruction.
ed6fb7bd
SC
10532 */
10533
4d7206a2 10534 if (offset_expr.X_add_number == 0)
252b5132 10535 {
0a44bf69
RS
10536 if (mips_pic == SVR4_PIC
10537 && breg == 0
10538 && (call || tempreg == PIC_CALL_REG))
4d7206a2
RS
10539 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10540
10541 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10542 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10543 lw_reloc_type, mips_gp_register);
4d7206a2 10544 if (breg != 0)
252b5132
RH
10545 {
10546 /* We're going to put in an addu instruction using
10547 tempreg, so we may as well insert the nop right
10548 now. */
269137b2 10549 load_delay_nop ();
252b5132 10550 }
4d7206a2 10551 relax_switch ();
67c0d1eb
RS
10552 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10553 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 10554 load_delay_nop ();
67c0d1eb
RS
10555 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10556 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2 10557 relax_end ();
252b5132
RH
10558 /* FIXME: If breg == 0, and the next instruction uses
10559 $tempreg, then if this variant case is used an extra
10560 nop will be generated. */
10561 }
4d7206a2
RS
10562 else if (offset_expr.X_add_number >= -0x8000
10563 && offset_expr.X_add_number < 0x8000)
252b5132 10564 {
67c0d1eb 10565 load_got_offset (tempreg, &offset_expr);
269137b2 10566 load_delay_nop ();
67c0d1eb 10567 add_got_offset (tempreg, &offset_expr);
252b5132
RH
10568 }
10569 else
10570 {
4d7206a2
RS
10571 expr1.X_add_number = offset_expr.X_add_number;
10572 offset_expr.X_add_number =
43c0598f 10573 SEXT_16BIT (offset_expr.X_add_number);
67c0d1eb 10574 load_got_offset (tempreg, &offset_expr);
f6a22291 10575 offset_expr.X_add_number = expr1.X_add_number;
252b5132
RH
10576 /* If we are going to add in a base register, and the
10577 target register and the base register are the same,
10578 then we are using AT as a temporary register. Since
10579 we want to load the constant into AT, we add our
10580 current AT (from the global offset table) and the
10581 register into the register now, and pretend we were
10582 not using a base register. */
c0ebe874 10583 if (breg == op[0])
252b5132 10584 {
269137b2 10585 load_delay_nop ();
67c0d1eb 10586 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10587 op[0], AT, breg);
252b5132 10588 breg = 0;
c0ebe874 10589 tempreg = op[0];
252b5132 10590 }
f6a22291 10591 add_got_offset_hilo (tempreg, &offset_expr, AT);
252b5132
RH
10592 used_at = 1;
10593 }
10594 }
0a44bf69 10595 else if (!mips_big_got && HAVE_NEWABI)
f5040a92 10596 {
67c0d1eb 10597 int add_breg_early = 0;
f5040a92
AO
10598
10599 /* If this is a reference to an external, and there is no
10600 constant, or local symbol (*), with or without a
10601 constant, we want
10602 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
1abe91b1 10603 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10604 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10605
10606 If we have a small constant, and this is a reference to
10607 an external symbol, we want
10608 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10609 addiu $tempreg,$tempreg,<constant>
10610
10611 If we have a large constant, and this is a reference to
10612 an external symbol, we want
10613 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10614 lui $at,<hiconstant>
10615 addiu $at,$at,<loconstant>
10616 addu $tempreg,$tempreg,$at
10617
10618 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10619 local symbols, even though it introduces an additional
10620 instruction. */
10621
f5040a92
AO
10622 if (offset_expr.X_add_number)
10623 {
4d7206a2 10624 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10625 offset_expr.X_add_number = 0;
10626
4d7206a2 10627 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10628 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10629 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10630
10631 if (expr1.X_add_number >= -0x8000
10632 && expr1.X_add_number < 0x8000)
10633 {
67c0d1eb
RS
10634 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10635 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10636 }
ecd13cd3 10637 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10638 {
c0ebe874
RS
10639 unsigned int dreg;
10640
f5040a92
AO
10641 /* If we are going to add in a base register, and the
10642 target register and the base register are the same,
10643 then we are using AT as a temporary register. Since
10644 we want to load the constant into AT, we add our
10645 current AT (from the global offset table) and the
10646 register into the register now, and pretend we were
10647 not using a base register. */
c0ebe874 10648 if (breg != op[0])
f5040a92
AO
10649 dreg = tempreg;
10650 else
10651 {
9c2799c2 10652 gas_assert (tempreg == AT);
67c0d1eb 10653 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10654 op[0], AT, breg);
10655 dreg = op[0];
67c0d1eb 10656 add_breg_early = 1;
f5040a92
AO
10657 }
10658
f6a22291 10659 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10660 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10661 dreg, dreg, AT);
f5040a92 10662
f5040a92
AO
10663 used_at = 1;
10664 }
10665 else
10666 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10667
4d7206a2 10668 relax_switch ();
f5040a92
AO
10669 offset_expr.X_add_number = expr1.X_add_number;
10670
67c0d1eb
RS
10671 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10672 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10673 if (add_breg_early)
f5040a92 10674 {
67c0d1eb 10675 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10676 op[0], tempreg, breg);
f5040a92 10677 breg = 0;
c0ebe874 10678 tempreg = op[0];
f5040a92 10679 }
4d7206a2 10680 relax_end ();
f5040a92 10681 }
4d7206a2 10682 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
f5040a92 10683 {
4d7206a2 10684 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10685 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10686 BFD_RELOC_MIPS_CALL16, mips_gp_register);
4d7206a2 10687 relax_switch ();
67c0d1eb
RS
10688 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10689 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2 10690 relax_end ();
f5040a92 10691 }
4d7206a2 10692 else
f5040a92 10693 {
67c0d1eb
RS
10694 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10695 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10696 }
10697 }
0a44bf69 10698 else if (mips_big_got && !HAVE_NEWABI)
252b5132 10699 {
67c0d1eb 10700 int gpdelay;
9117d219
NC
10701 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10702 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
ed6fb7bd 10703 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
252b5132
RH
10704
10705 /* This is the large GOT case. If this is a reference to an
10706 external symbol, and there is no constant, we want
10707 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10708 addu $tempreg,$tempreg,$gp
10709 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10710 or for lca or if tempreg is PIC_CALL_REG
9117d219
NC
10711 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10712 addu $tempreg,$tempreg,$gp
10713 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
252b5132
RH
10714 For a local symbol, we want
10715 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10716 nop
10717 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10718
10719 If we have a small constant, and this is a reference to
10720 an external symbol, we want
10721 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10722 addu $tempreg,$tempreg,$gp
10723 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10724 nop
10725 addiu $tempreg,$tempreg,<constant>
10726 For a local symbol, we want
10727 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10728 nop
10729 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10730
10731 If we have a large constant, and this is a reference to
10732 an external symbol, we want
10733 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10734 addu $tempreg,$tempreg,$gp
10735 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10736 lui $at,<hiconstant>
10737 addiu $at,$at,<loconstant>
10738 addu $tempreg,$tempreg,$at
10739 For a local symbol, we want
10740 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10741 lui $at,<hiconstant>
10742 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10743 addu $tempreg,$tempreg,$at
f5040a92 10744 */
438c16b8 10745
252b5132
RH
10746 expr1.X_add_number = offset_expr.X_add_number;
10747 offset_expr.X_add_number = 0;
4d7206a2 10748 relax_start (offset_expr.X_add_symbol);
67c0d1eb 10749 gpdelay = reg_needs_delay (mips_gp_register);
1abe91b1
MR
10750 if (expr1.X_add_number == 0 && breg == 0
10751 && (call || tempreg == PIC_CALL_REG))
9117d219
NC
10752 {
10753 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10754 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10755 }
df58fc94 10756 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10757 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10758 tempreg, tempreg, mips_gp_register);
67c0d1eb 10759 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 10760 tempreg, lw_reloc_type, tempreg);
252b5132
RH
10761 if (expr1.X_add_number == 0)
10762 {
67c0d1eb 10763 if (breg != 0)
252b5132
RH
10764 {
10765 /* We're going to put in an addu instruction using
10766 tempreg, so we may as well insert the nop right
10767 now. */
269137b2 10768 load_delay_nop ();
252b5132 10769 }
252b5132
RH
10770 }
10771 else if (expr1.X_add_number >= -0x8000
10772 && expr1.X_add_number < 0x8000)
10773 {
269137b2 10774 load_delay_nop ();
67c0d1eb 10775 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10776 tempreg, tempreg, BFD_RELOC_LO16);
252b5132
RH
10777 }
10778 else
10779 {
c0ebe874
RS
10780 unsigned int dreg;
10781
252b5132
RH
10782 /* If we are going to add in a base register, and the
10783 target register and the base register are the same,
10784 then we are using AT as a temporary register. Since
10785 we want to load the constant into AT, we add our
10786 current AT (from the global offset table) and the
10787 register into the register now, and pretend we were
10788 not using a base register. */
c0ebe874 10789 if (breg != op[0])
67c0d1eb 10790 dreg = tempreg;
252b5132
RH
10791 else
10792 {
9c2799c2 10793 gas_assert (tempreg == AT);
269137b2 10794 load_delay_nop ();
67c0d1eb 10795 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10796 op[0], AT, breg);
10797 dreg = op[0];
252b5132
RH
10798 }
10799
f6a22291 10800 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10801 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
252b5132 10802
252b5132
RH
10803 used_at = 1;
10804 }
43c0598f 10805 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
4d7206a2 10806 relax_switch ();
252b5132 10807
67c0d1eb 10808 if (gpdelay)
252b5132
RH
10809 {
10810 /* This is needed because this instruction uses $gp, but
f5040a92 10811 the first instruction on the main stream does not. */
67c0d1eb 10812 macro_build (NULL, "nop", "");
252b5132 10813 }
ed6fb7bd 10814
67c0d1eb
RS
10815 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10816 local_reloc_type, mips_gp_register);
f5040a92 10817 if (expr1.X_add_number >= -0x8000
252b5132
RH
10818 && expr1.X_add_number < 0x8000)
10819 {
269137b2 10820 load_delay_nop ();
67c0d1eb
RS
10821 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10822 tempreg, tempreg, BFD_RELOC_LO16);
252b5132 10823 /* FIXME: If add_number is 0, and there was no base
f5040a92
AO
10824 register, the external symbol case ended with a load,
10825 so if the symbol turns out to not be external, and
10826 the next instruction uses tempreg, an unnecessary nop
10827 will be inserted. */
252b5132
RH
10828 }
10829 else
10830 {
c0ebe874 10831 if (breg == op[0])
252b5132
RH
10832 {
10833 /* We must add in the base register now, as in the
f5040a92 10834 external symbol case. */
9c2799c2 10835 gas_assert (tempreg == AT);
269137b2 10836 load_delay_nop ();
67c0d1eb 10837 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10838 op[0], AT, breg);
10839 tempreg = op[0];
252b5132 10840 /* We set breg to 0 because we have arranged to add
f5040a92 10841 it in in both cases. */
252b5132
RH
10842 breg = 0;
10843 }
10844
67c0d1eb
RS
10845 macro_build_lui (&expr1, AT);
10846 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10847 AT, AT, BFD_RELOC_LO16);
67c0d1eb 10848 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10849 tempreg, tempreg, AT);
8fc2e39e 10850 used_at = 1;
252b5132 10851 }
4d7206a2 10852 relax_end ();
252b5132 10853 }
0a44bf69 10854 else if (mips_big_got && HAVE_NEWABI)
f5040a92 10855 {
f5040a92
AO
10856 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10857 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
67c0d1eb 10858 int add_breg_early = 0;
f5040a92
AO
10859
10860 /* This is the large GOT case. If this is a reference to an
10861 external symbol, and there is no constant, we want
10862 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10863 add $tempreg,$tempreg,$gp
10864 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10865 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10866 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10867 add $tempreg,$tempreg,$gp
10868 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10869
10870 If we have a small constant, and this is a reference to
10871 an external symbol, we want
10872 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10873 add $tempreg,$tempreg,$gp
10874 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10875 addi $tempreg,$tempreg,<constant>
10876
10877 If we have a large constant, and this is a reference to
10878 an external symbol, we want
10879 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10880 addu $tempreg,$tempreg,$gp
10881 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10882 lui $at,<hiconstant>
10883 addi $at,$at,<loconstant>
10884 add $tempreg,$tempreg,$at
10885
10886 If we have NewABI, and we know it's a local symbol, we want
10887 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10888 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10889 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10890
4d7206a2 10891 relax_start (offset_expr.X_add_symbol);
f5040a92 10892
4d7206a2 10893 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10894 offset_expr.X_add_number = 0;
10895
1abe91b1
MR
10896 if (expr1.X_add_number == 0 && breg == 0
10897 && (call || tempreg == PIC_CALL_REG))
f5040a92
AO
10898 {
10899 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10900 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10901 }
df58fc94 10902 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10903 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10904 tempreg, tempreg, mips_gp_register);
67c0d1eb
RS
10905 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10906 tempreg, lw_reloc_type, tempreg);
f5040a92
AO
10907
10908 if (expr1.X_add_number == 0)
4d7206a2 10909 ;
f5040a92
AO
10910 else if (expr1.X_add_number >= -0x8000
10911 && expr1.X_add_number < 0x8000)
10912 {
67c0d1eb 10913 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10914 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10915 }
ecd13cd3 10916 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10917 {
c0ebe874
RS
10918 unsigned int dreg;
10919
f5040a92
AO
10920 /* If we are going to add in a base register, and the
10921 target register and the base register are the same,
10922 then we are using AT as a temporary register. Since
10923 we want to load the constant into AT, we add our
10924 current AT (from the global offset table) and the
10925 register into the register now, and pretend we were
10926 not using a base register. */
c0ebe874 10927 if (breg != op[0])
f5040a92
AO
10928 dreg = tempreg;
10929 else
10930 {
9c2799c2 10931 gas_assert (tempreg == AT);
67c0d1eb 10932 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10933 op[0], AT, breg);
10934 dreg = op[0];
67c0d1eb 10935 add_breg_early = 1;
f5040a92
AO
10936 }
10937
f6a22291 10938 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10939 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
f5040a92 10940
f5040a92
AO
10941 used_at = 1;
10942 }
10943 else
10944 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10945
4d7206a2 10946 relax_switch ();
f5040a92 10947 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
10948 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10949 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10950 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10951 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10952 if (add_breg_early)
f5040a92 10953 {
67c0d1eb 10954 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10955 op[0], tempreg, breg);
f5040a92 10956 breg = 0;
c0ebe874 10957 tempreg = op[0];
f5040a92 10958 }
4d7206a2 10959 relax_end ();
f5040a92 10960 }
252b5132
RH
10961 else
10962 abort ();
10963
10964 if (breg != 0)
c0ebe874 10965 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
252b5132
RH
10966 break;
10967
52b6b6b9 10968 case M_MSGSND:
df58fc94 10969 gas_assert (!mips_opts.micromips);
c0ebe874 10970 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
c7af4273 10971 break;
52b6b6b9
JM
10972
10973 case M_MSGLD:
df58fc94 10974 gas_assert (!mips_opts.micromips);
c8276761 10975 macro_build (NULL, "c2", "C", 0x02);
c7af4273 10976 break;
52b6b6b9
JM
10977
10978 case M_MSGLD_T:
df58fc94 10979 gas_assert (!mips_opts.micromips);
c0ebe874 10980 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
c7af4273 10981 break;
52b6b6b9
JM
10982
10983 case M_MSGWAIT:
df58fc94 10984 gas_assert (!mips_opts.micromips);
52b6b6b9 10985 macro_build (NULL, "c2", "C", 3);
c7af4273 10986 break;
52b6b6b9
JM
10987
10988 case M_MSGWAIT_T:
df58fc94 10989 gas_assert (!mips_opts.micromips);
c0ebe874 10990 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
c7af4273 10991 break;
52b6b6b9 10992
252b5132
RH
10993 case M_J_A:
10994 /* The j instruction may not be used in PIC code, since it
10995 requires an absolute address. We convert it to a b
10996 instruction. */
10997 if (mips_pic == NO_PIC)
67c0d1eb 10998 macro_build (&offset_expr, "j", "a");
252b5132 10999 else
67c0d1eb 11000 macro_build (&offset_expr, "b", "p");
8fc2e39e 11001 break;
252b5132
RH
11002
11003 /* The jal instructions must be handled as macros because when
11004 generating PIC code they expand to multi-instruction
11005 sequences. Normally they are simple instructions. */
df58fc94 11006 case M_JALS_1:
c0ebe874
RS
11007 op[1] = op[0];
11008 op[0] = RA;
df58fc94
RS
11009 /* Fall through. */
11010 case M_JALS_2:
11011 gas_assert (mips_opts.micromips);
833794fc
MR
11012 if (mips_opts.insn32)
11013 {
1661c76c 11014 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11015 break;
11016 }
df58fc94
RS
11017 jals = 1;
11018 goto jal;
252b5132 11019 case M_JAL_1:
c0ebe874
RS
11020 op[1] = op[0];
11021 op[0] = RA;
252b5132
RH
11022 /* Fall through. */
11023 case M_JAL_2:
df58fc94 11024 jal:
3e722fb5 11025 if (mips_pic == NO_PIC)
df58fc94
RS
11026 {
11027 s = jals ? "jalrs" : "jalr";
e64af278 11028 if (mips_opts.micromips
833794fc 11029 && !mips_opts.insn32
c0ebe874 11030 && op[0] == RA
e64af278 11031 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11032 macro_build (NULL, s, "mj", op[1]);
df58fc94 11033 else
c0ebe874 11034 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
df58fc94 11035 }
0a44bf69 11036 else
252b5132 11037 {
df58fc94
RS
11038 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11039 && mips_cprestore_offset >= 0);
11040
c0ebe874 11041 if (op[1] != PIC_CALL_REG)
252b5132 11042 as_warn (_("MIPS PIC call to register other than $25"));
bdaaa2e1 11043
833794fc
MR
11044 s = ((mips_opts.micromips
11045 && !mips_opts.insn32
11046 && (!mips_opts.noreorder || cprestore))
df58fc94 11047 ? "jalrs" : "jalr");
e64af278 11048 if (mips_opts.micromips
833794fc 11049 && !mips_opts.insn32
c0ebe874 11050 && op[0] == RA
e64af278 11051 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11052 macro_build (NULL, s, "mj", op[1]);
df58fc94 11053 else
c0ebe874 11054 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
0a44bf69 11055 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
252b5132 11056 {
6478892d 11057 if (mips_cprestore_offset < 0)
1661c76c 11058 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11059 else
11060 {
90ecf173 11061 if (!mips_frame_reg_valid)
7a621144 11062 {
1661c76c 11063 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11064 /* Quiet this warning. */
11065 mips_frame_reg_valid = 1;
11066 }
90ecf173 11067 if (!mips_cprestore_valid)
7a621144 11068 {
1661c76c 11069 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11070 /* Quiet this warning. */
11071 mips_cprestore_valid = 1;
11072 }
d3fca0b5
MR
11073 if (mips_opts.noreorder)
11074 macro_build (NULL, "nop", "");
6478892d 11075 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11076 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11077 mips_gp_register,
256ab948
TS
11078 mips_frame_reg,
11079 HAVE_64BIT_ADDRESSES);
6478892d 11080 }
252b5132
RH
11081 }
11082 }
252b5132 11083
8fc2e39e 11084 break;
252b5132 11085
df58fc94
RS
11086 case M_JALS_A:
11087 gas_assert (mips_opts.micromips);
833794fc
MR
11088 if (mips_opts.insn32)
11089 {
1661c76c 11090 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11091 break;
11092 }
df58fc94
RS
11093 jals = 1;
11094 /* Fall through. */
252b5132
RH
11095 case M_JAL_A:
11096 if (mips_pic == NO_PIC)
df58fc94 11097 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
252b5132
RH
11098 else if (mips_pic == SVR4_PIC)
11099 {
11100 /* If this is a reference to an external symbol, and we are
11101 using a small GOT, we want
11102 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11103 nop
f9419b05 11104 jalr $ra,$25
252b5132
RH
11105 nop
11106 lw $gp,cprestore($sp)
11107 The cprestore value is set using the .cprestore
11108 pseudo-op. If we are using a big GOT, we want
11109 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11110 addu $25,$25,$gp
11111 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11112 nop
f9419b05 11113 jalr $ra,$25
252b5132
RH
11114 nop
11115 lw $gp,cprestore($sp)
11116 If the symbol is not external, we want
11117 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11118 nop
11119 addiu $25,$25,<sym> (BFD_RELOC_LO16)
f9419b05 11120 jalr $ra,$25
252b5132 11121 nop
438c16b8 11122 lw $gp,cprestore($sp)
f5040a92
AO
11123
11124 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11125 sequences above, minus nops, unless the symbol is local,
11126 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11127 GOT_DISP. */
438c16b8 11128 if (HAVE_NEWABI)
252b5132 11129 {
90ecf173 11130 if (!mips_big_got)
f5040a92 11131 {
4d7206a2 11132 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11133 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11134 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
f5040a92 11135 mips_gp_register);
4d7206a2 11136 relax_switch ();
67c0d1eb
RS
11137 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11138 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
4d7206a2
RS
11139 mips_gp_register);
11140 relax_end ();
f5040a92
AO
11141 }
11142 else
11143 {
4d7206a2 11144 relax_start (offset_expr.X_add_symbol);
df58fc94 11145 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11146 BFD_RELOC_MIPS_CALL_HI16);
11147 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11148 PIC_CALL_REG, mips_gp_register);
11149 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11150 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11151 PIC_CALL_REG);
4d7206a2 11152 relax_switch ();
67c0d1eb
RS
11153 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11154 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11155 mips_gp_register);
11156 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11157 PIC_CALL_REG, PIC_CALL_REG,
17a2f251 11158 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 11159 relax_end ();
f5040a92 11160 }
684022ea 11161
df58fc94 11162 macro_build_jalr (&offset_expr, 0);
252b5132
RH
11163 }
11164 else
11165 {
4d7206a2 11166 relax_start (offset_expr.X_add_symbol);
90ecf173 11167 if (!mips_big_got)
438c16b8 11168 {
67c0d1eb
RS
11169 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11170 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
17a2f251 11171 mips_gp_register);
269137b2 11172 load_delay_nop ();
4d7206a2 11173 relax_switch ();
438c16b8 11174 }
252b5132 11175 else
252b5132 11176 {
67c0d1eb
RS
11177 int gpdelay;
11178
11179 gpdelay = reg_needs_delay (mips_gp_register);
df58fc94 11180 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11181 BFD_RELOC_MIPS_CALL_HI16);
11182 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11183 PIC_CALL_REG, mips_gp_register);
11184 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11185 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11186 PIC_CALL_REG);
269137b2 11187 load_delay_nop ();
4d7206a2 11188 relax_switch ();
67c0d1eb
RS
11189 if (gpdelay)
11190 macro_build (NULL, "nop", "");
252b5132 11191 }
67c0d1eb
RS
11192 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11193 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
4d7206a2 11194 mips_gp_register);
269137b2 11195 load_delay_nop ();
67c0d1eb
RS
11196 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11197 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
4d7206a2 11198 relax_end ();
df58fc94 11199 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
438c16b8 11200
6478892d 11201 if (mips_cprestore_offset < 0)
1661c76c 11202 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11203 else
11204 {
90ecf173 11205 if (!mips_frame_reg_valid)
7a621144 11206 {
1661c76c 11207 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11208 /* Quiet this warning. */
11209 mips_frame_reg_valid = 1;
11210 }
90ecf173 11211 if (!mips_cprestore_valid)
7a621144 11212 {
1661c76c 11213 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11214 /* Quiet this warning. */
11215 mips_cprestore_valid = 1;
11216 }
6478892d 11217 if (mips_opts.noreorder)
67c0d1eb 11218 macro_build (NULL, "nop", "");
6478892d 11219 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11220 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11221 mips_gp_register,
256ab948
TS
11222 mips_frame_reg,
11223 HAVE_64BIT_ADDRESSES);
6478892d 11224 }
252b5132
RH
11225 }
11226 }
0a44bf69 11227 else if (mips_pic == VXWORKS_PIC)
1661c76c 11228 as_bad (_("non-PIC jump used in PIC library"));
252b5132
RH
11229 else
11230 abort ();
11231
8fc2e39e 11232 break;
252b5132 11233
7f3c4072 11234 case M_LBUE_AB:
7f3c4072
CM
11235 s = "lbue";
11236 fmt = "t,+j(b)";
11237 offbits = 9;
11238 goto ld_st;
11239 case M_LHUE_AB:
7f3c4072
CM
11240 s = "lhue";
11241 fmt = "t,+j(b)";
11242 offbits = 9;
11243 goto ld_st;
11244 case M_LBE_AB:
7f3c4072
CM
11245 s = "lbe";
11246 fmt = "t,+j(b)";
11247 offbits = 9;
11248 goto ld_st;
11249 case M_LHE_AB:
7f3c4072
CM
11250 s = "lhe";
11251 fmt = "t,+j(b)";
11252 offbits = 9;
11253 goto ld_st;
11254 case M_LLE_AB:
7f3c4072
CM
11255 s = "lle";
11256 fmt = "t,+j(b)";
11257 offbits = 9;
11258 goto ld_st;
11259 case M_LWE_AB:
7f3c4072
CM
11260 s = "lwe";
11261 fmt = "t,+j(b)";
11262 offbits = 9;
11263 goto ld_st;
11264 case M_LWLE_AB:
7f3c4072
CM
11265 s = "lwle";
11266 fmt = "t,+j(b)";
11267 offbits = 9;
11268 goto ld_st;
11269 case M_LWRE_AB:
7f3c4072
CM
11270 s = "lwre";
11271 fmt = "t,+j(b)";
11272 offbits = 9;
11273 goto ld_st;
11274 case M_SBE_AB:
7f3c4072
CM
11275 s = "sbe";
11276 fmt = "t,+j(b)";
11277 offbits = 9;
11278 goto ld_st;
11279 case M_SCE_AB:
7f3c4072
CM
11280 s = "sce";
11281 fmt = "t,+j(b)";
11282 offbits = 9;
11283 goto ld_st;
11284 case M_SHE_AB:
7f3c4072
CM
11285 s = "she";
11286 fmt = "t,+j(b)";
11287 offbits = 9;
11288 goto ld_st;
11289 case M_SWE_AB:
7f3c4072
CM
11290 s = "swe";
11291 fmt = "t,+j(b)";
11292 offbits = 9;
11293 goto ld_st;
11294 case M_SWLE_AB:
7f3c4072
CM
11295 s = "swle";
11296 fmt = "t,+j(b)";
11297 offbits = 9;
11298 goto ld_st;
11299 case M_SWRE_AB:
7f3c4072
CM
11300 s = "swre";
11301 fmt = "t,+j(b)";
11302 offbits = 9;
11303 goto ld_st;
dec0624d 11304 case M_ACLR_AB:
dec0624d 11305 s = "aclr";
dec0624d 11306 fmt = "\\,~(b)";
7f3c4072 11307 offbits = 12;
dec0624d
MR
11308 goto ld_st;
11309 case M_ASET_AB:
dec0624d 11310 s = "aset";
dec0624d 11311 fmt = "\\,~(b)";
7f3c4072 11312 offbits = 12;
dec0624d 11313 goto ld_st;
252b5132
RH
11314 case M_LB_AB:
11315 s = "lb";
df58fc94 11316 fmt = "t,o(b)";
252b5132
RH
11317 goto ld;
11318 case M_LBU_AB:
11319 s = "lbu";
df58fc94 11320 fmt = "t,o(b)";
252b5132
RH
11321 goto ld;
11322 case M_LH_AB:
11323 s = "lh";
df58fc94 11324 fmt = "t,o(b)";
252b5132
RH
11325 goto ld;
11326 case M_LHU_AB:
11327 s = "lhu";
df58fc94 11328 fmt = "t,o(b)";
252b5132
RH
11329 goto ld;
11330 case M_LW_AB:
11331 s = "lw";
df58fc94 11332 fmt = "t,o(b)";
252b5132
RH
11333 goto ld;
11334 case M_LWC0_AB:
df58fc94 11335 gas_assert (!mips_opts.micromips);
252b5132 11336 s = "lwc0";
df58fc94 11337 fmt = "E,o(b)";
bdaaa2e1 11338 /* Itbl support may require additional care here. */
252b5132 11339 coproc = 1;
df58fc94 11340 goto ld_st;
252b5132
RH
11341 case M_LWC1_AB:
11342 s = "lwc1";
df58fc94 11343 fmt = "T,o(b)";
bdaaa2e1 11344 /* Itbl support may require additional care here. */
252b5132 11345 coproc = 1;
df58fc94 11346 goto ld_st;
252b5132
RH
11347 case M_LWC2_AB:
11348 s = "lwc2";
df58fc94 11349 fmt = COP12_FMT;
7361da2c
AB
11350 offbits = (mips_opts.micromips ? 12
11351 : ISA_IS_R6 (mips_opts.isa) ? 11
11352 : 16);
bdaaa2e1 11353 /* Itbl support may require additional care here. */
252b5132 11354 coproc = 1;
df58fc94 11355 goto ld_st;
252b5132 11356 case M_LWC3_AB:
df58fc94 11357 gas_assert (!mips_opts.micromips);
252b5132 11358 s = "lwc3";
df58fc94 11359 fmt = "E,o(b)";
bdaaa2e1 11360 /* Itbl support may require additional care here. */
252b5132 11361 coproc = 1;
df58fc94 11362 goto ld_st;
252b5132
RH
11363 case M_LWL_AB:
11364 s = "lwl";
df58fc94 11365 fmt = MEM12_FMT;
7f3c4072 11366 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11367 goto ld_st;
252b5132
RH
11368 case M_LWR_AB:
11369 s = "lwr";
df58fc94 11370 fmt = MEM12_FMT;
7f3c4072 11371 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11372 goto ld_st;
252b5132 11373 case M_LDC1_AB:
252b5132 11374 s = "ldc1";
df58fc94 11375 fmt = "T,o(b)";
bdaaa2e1 11376 /* Itbl support may require additional care here. */
252b5132 11377 coproc = 1;
df58fc94 11378 goto ld_st;
252b5132
RH
11379 case M_LDC2_AB:
11380 s = "ldc2";
df58fc94 11381 fmt = COP12_FMT;
7361da2c
AB
11382 offbits = (mips_opts.micromips ? 12
11383 : ISA_IS_R6 (mips_opts.isa) ? 11
11384 : 16);
bdaaa2e1 11385 /* Itbl support may require additional care here. */
252b5132 11386 coproc = 1;
df58fc94 11387 goto ld_st;
c77c0862 11388 case M_LQC2_AB:
c77c0862 11389 s = "lqc2";
14daeee3 11390 fmt = "+7,o(b)";
c77c0862
RS
11391 /* Itbl support may require additional care here. */
11392 coproc = 1;
11393 goto ld_st;
252b5132
RH
11394 case M_LDC3_AB:
11395 s = "ldc3";
df58fc94 11396 fmt = "E,o(b)";
bdaaa2e1 11397 /* Itbl support may require additional care here. */
252b5132 11398 coproc = 1;
df58fc94 11399 goto ld_st;
252b5132
RH
11400 case M_LDL_AB:
11401 s = "ldl";
df58fc94 11402 fmt = MEM12_FMT;
7f3c4072 11403 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11404 goto ld_st;
252b5132
RH
11405 case M_LDR_AB:
11406 s = "ldr";
df58fc94 11407 fmt = MEM12_FMT;
7f3c4072 11408 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11409 goto ld_st;
252b5132
RH
11410 case M_LL_AB:
11411 s = "ll";
7361da2c
AB
11412 fmt = LL_SC_FMT;
11413 offbits = (mips_opts.micromips ? 12
11414 : ISA_IS_R6 (mips_opts.isa) ? 9
11415 : 16);
252b5132
RH
11416 goto ld;
11417 case M_LLD_AB:
11418 s = "lld";
7361da2c
AB
11419 fmt = LL_SC_FMT;
11420 offbits = (mips_opts.micromips ? 12
11421 : ISA_IS_R6 (mips_opts.isa) ? 9
11422 : 16);
252b5132
RH
11423 goto ld;
11424 case M_LWU_AB:
11425 s = "lwu";
df58fc94 11426 fmt = MEM12_FMT;
7f3c4072 11427 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11428 goto ld;
11429 case M_LWP_AB:
df58fc94
RS
11430 gas_assert (mips_opts.micromips);
11431 s = "lwp";
11432 fmt = "t,~(b)";
7f3c4072 11433 offbits = 12;
df58fc94
RS
11434 lp = 1;
11435 goto ld;
11436 case M_LDP_AB:
df58fc94
RS
11437 gas_assert (mips_opts.micromips);
11438 s = "ldp";
11439 fmt = "t,~(b)";
7f3c4072 11440 offbits = 12;
df58fc94
RS
11441 lp = 1;
11442 goto ld;
11443 case M_LWM_AB:
df58fc94
RS
11444 gas_assert (mips_opts.micromips);
11445 s = "lwm";
11446 fmt = "n,~(b)";
7f3c4072 11447 offbits = 12;
df58fc94
RS
11448 goto ld_st;
11449 case M_LDM_AB:
df58fc94
RS
11450 gas_assert (mips_opts.micromips);
11451 s = "ldm";
11452 fmt = "n,~(b)";
7f3c4072 11453 offbits = 12;
df58fc94
RS
11454 goto ld_st;
11455
252b5132 11456 ld:
f19ccbda 11457 /* We don't want to use $0 as tempreg. */
c0ebe874 11458 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
df58fc94 11459 goto ld_st;
252b5132 11460 else
c0ebe874 11461 tempreg = op[0] + lp;
df58fc94
RS
11462 goto ld_noat;
11463
252b5132
RH
11464 case M_SB_AB:
11465 s = "sb";
df58fc94
RS
11466 fmt = "t,o(b)";
11467 goto ld_st;
252b5132
RH
11468 case M_SH_AB:
11469 s = "sh";
df58fc94
RS
11470 fmt = "t,o(b)";
11471 goto ld_st;
252b5132
RH
11472 case M_SW_AB:
11473 s = "sw";
df58fc94
RS
11474 fmt = "t,o(b)";
11475 goto ld_st;
252b5132 11476 case M_SWC0_AB:
df58fc94 11477 gas_assert (!mips_opts.micromips);
252b5132 11478 s = "swc0";
df58fc94 11479 fmt = "E,o(b)";
bdaaa2e1 11480 /* Itbl support may require additional care here. */
252b5132 11481 coproc = 1;
df58fc94 11482 goto ld_st;
252b5132
RH
11483 case M_SWC1_AB:
11484 s = "swc1";
df58fc94 11485 fmt = "T,o(b)";
bdaaa2e1 11486 /* Itbl support may require additional care here. */
252b5132 11487 coproc = 1;
df58fc94 11488 goto ld_st;
252b5132
RH
11489 case M_SWC2_AB:
11490 s = "swc2";
df58fc94 11491 fmt = COP12_FMT;
7361da2c
AB
11492 offbits = (mips_opts.micromips ? 12
11493 : ISA_IS_R6 (mips_opts.isa) ? 11
11494 : 16);
bdaaa2e1 11495 /* Itbl support may require additional care here. */
252b5132 11496 coproc = 1;
df58fc94 11497 goto ld_st;
252b5132 11498 case M_SWC3_AB:
df58fc94 11499 gas_assert (!mips_opts.micromips);
252b5132 11500 s = "swc3";
df58fc94 11501 fmt = "E,o(b)";
bdaaa2e1 11502 /* Itbl support may require additional care here. */
252b5132 11503 coproc = 1;
df58fc94 11504 goto ld_st;
252b5132
RH
11505 case M_SWL_AB:
11506 s = "swl";
df58fc94 11507 fmt = MEM12_FMT;
7f3c4072 11508 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11509 goto ld_st;
252b5132
RH
11510 case M_SWR_AB:
11511 s = "swr";
df58fc94 11512 fmt = MEM12_FMT;
7f3c4072 11513 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11514 goto ld_st;
252b5132
RH
11515 case M_SC_AB:
11516 s = "sc";
7361da2c
AB
11517 fmt = LL_SC_FMT;
11518 offbits = (mips_opts.micromips ? 12
11519 : ISA_IS_R6 (mips_opts.isa) ? 9
11520 : 16);
df58fc94 11521 goto ld_st;
252b5132
RH
11522 case M_SCD_AB:
11523 s = "scd";
7361da2c
AB
11524 fmt = LL_SC_FMT;
11525 offbits = (mips_opts.micromips ? 12
11526 : ISA_IS_R6 (mips_opts.isa) ? 9
11527 : 16);
df58fc94 11528 goto ld_st;
d43b4baf
TS
11529 case M_CACHE_AB:
11530 s = "cache";
7361da2c
AB
11531 fmt = (mips_opts.micromips ? "k,~(b)"
11532 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11533 : "k,o(b)");
11534 offbits = (mips_opts.micromips ? 12
11535 : ISA_IS_R6 (mips_opts.isa) ? 9
11536 : 16);
7f3c4072
CM
11537 goto ld_st;
11538 case M_CACHEE_AB:
7f3c4072
CM
11539 s = "cachee";
11540 fmt = "k,+j(b)";
11541 offbits = 9;
df58fc94 11542 goto ld_st;
3eebd5eb
MR
11543 case M_PREF_AB:
11544 s = "pref";
7361da2c
AB
11545 fmt = (mips_opts.micromips ? "k,~(b)"
11546 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11547 : "k,o(b)");
11548 offbits = (mips_opts.micromips ? 12
11549 : ISA_IS_R6 (mips_opts.isa) ? 9
11550 : 16);
7f3c4072
CM
11551 goto ld_st;
11552 case M_PREFE_AB:
7f3c4072
CM
11553 s = "prefe";
11554 fmt = "k,+j(b)";
11555 offbits = 9;
df58fc94 11556 goto ld_st;
252b5132 11557 case M_SDC1_AB:
252b5132 11558 s = "sdc1";
df58fc94 11559 fmt = "T,o(b)";
252b5132 11560 coproc = 1;
bdaaa2e1 11561 /* Itbl support may require additional care here. */
df58fc94 11562 goto ld_st;
252b5132
RH
11563 case M_SDC2_AB:
11564 s = "sdc2";
df58fc94 11565 fmt = COP12_FMT;
7361da2c
AB
11566 offbits = (mips_opts.micromips ? 12
11567 : ISA_IS_R6 (mips_opts.isa) ? 11
11568 : 16);
c77c0862
RS
11569 /* Itbl support may require additional care here. */
11570 coproc = 1;
11571 goto ld_st;
11572 case M_SQC2_AB:
c77c0862 11573 s = "sqc2";
14daeee3 11574 fmt = "+7,o(b)";
bdaaa2e1 11575 /* Itbl support may require additional care here. */
252b5132 11576 coproc = 1;
df58fc94 11577 goto ld_st;
252b5132 11578 case M_SDC3_AB:
df58fc94 11579 gas_assert (!mips_opts.micromips);
252b5132 11580 s = "sdc3";
df58fc94 11581 fmt = "E,o(b)";
bdaaa2e1 11582 /* Itbl support may require additional care here. */
252b5132 11583 coproc = 1;
df58fc94 11584 goto ld_st;
252b5132
RH
11585 case M_SDL_AB:
11586 s = "sdl";
df58fc94 11587 fmt = MEM12_FMT;
7f3c4072 11588 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11589 goto ld_st;
252b5132
RH
11590 case M_SDR_AB:
11591 s = "sdr";
df58fc94 11592 fmt = MEM12_FMT;
7f3c4072 11593 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11594 goto ld_st;
11595 case M_SWP_AB:
df58fc94
RS
11596 gas_assert (mips_opts.micromips);
11597 s = "swp";
11598 fmt = "t,~(b)";
7f3c4072 11599 offbits = 12;
df58fc94
RS
11600 goto ld_st;
11601 case M_SDP_AB:
df58fc94
RS
11602 gas_assert (mips_opts.micromips);
11603 s = "sdp";
11604 fmt = "t,~(b)";
7f3c4072 11605 offbits = 12;
df58fc94
RS
11606 goto ld_st;
11607 case M_SWM_AB:
df58fc94
RS
11608 gas_assert (mips_opts.micromips);
11609 s = "swm";
11610 fmt = "n,~(b)";
7f3c4072 11611 offbits = 12;
df58fc94
RS
11612 goto ld_st;
11613 case M_SDM_AB:
df58fc94
RS
11614 gas_assert (mips_opts.micromips);
11615 s = "sdm";
11616 fmt = "n,~(b)";
7f3c4072 11617 offbits = 12;
df58fc94
RS
11618
11619 ld_st:
8fc2e39e 11620 tempreg = AT;
df58fc94 11621 ld_noat:
c0ebe874 11622 breg = op[2];
f2ae14a1
RS
11623 if (small_offset_p (0, align, 16))
11624 {
11625 /* The first case exists for M_LD_AB and M_SD_AB, which are
11626 macros for o32 but which should act like normal instructions
11627 otherwise. */
11628 if (offbits == 16)
c0ebe874 11629 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
11630 offset_reloc[1], offset_reloc[2], breg);
11631 else if (small_offset_p (0, align, offbits))
11632 {
11633 if (offbits == 0)
c0ebe874 11634 macro_build (NULL, s, fmt, op[0], breg);
f2ae14a1 11635 else
c0ebe874 11636 macro_build (NULL, s, fmt, op[0],
c8276761 11637 (int) offset_expr.X_add_number, breg);
f2ae14a1
RS
11638 }
11639 else
11640 {
11641 if (tempreg == AT)
11642 used_at = 1;
11643 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11644 tempreg, breg, -1, offset_reloc[0],
11645 offset_reloc[1], offset_reloc[2]);
11646 if (offbits == 0)
c0ebe874 11647 macro_build (NULL, s, fmt, op[0], tempreg);
f2ae14a1 11648 else
c0ebe874 11649 macro_build (NULL, s, fmt, op[0], 0, tempreg);
f2ae14a1
RS
11650 }
11651 break;
11652 }
11653
11654 if (tempreg == AT)
11655 used_at = 1;
11656
252b5132
RH
11657 if (offset_expr.X_op != O_constant
11658 && offset_expr.X_op != O_symbol)
11659 {
1661c76c 11660 as_bad (_("expression too complex"));
252b5132
RH
11661 offset_expr.X_op = O_constant;
11662 }
11663
2051e8c4
MR
11664 if (HAVE_32BIT_ADDRESSES
11665 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
11666 {
11667 char value [32];
11668
11669 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 11670 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 11671 }
2051e8c4 11672
252b5132
RH
11673 /* A constant expression in PIC code can be handled just as it
11674 is in non PIC code. */
aed1a261
RS
11675 if (offset_expr.X_op == O_constant)
11676 {
f2ae14a1
RS
11677 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11678 offbits == 0 ? 16 : offbits);
11679 offset_expr.X_add_number -= expr1.X_add_number;
df58fc94 11680
f2ae14a1
RS
11681 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11682 if (breg != 0)
11683 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11684 tempreg, tempreg, breg);
7f3c4072 11685 if (offbits == 0)
dd6a37e7 11686 {
f2ae14a1 11687 if (offset_expr.X_add_number != 0)
dd6a37e7 11688 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
f2ae14a1 11689 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
c0ebe874 11690 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11691 }
7f3c4072 11692 else if (offbits == 16)
c0ebe874 11693 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
df58fc94 11694 else
c0ebe874 11695 macro_build (NULL, s, fmt, op[0],
c8276761 11696 (int) offset_expr.X_add_number, tempreg);
df58fc94 11697 }
7f3c4072 11698 else if (offbits != 16)
df58fc94 11699 {
7f3c4072
CM
11700 /* The offset field is too narrow to be used for a low-part
11701 relocation, so load the whole address into the auxillary
f2ae14a1
RS
11702 register. */
11703 load_address (tempreg, &offset_expr, &used_at);
11704 if (breg != 0)
11705 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11706 tempreg, tempreg, breg);
7f3c4072 11707 if (offbits == 0)
c0ebe874 11708 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11709 else
c0ebe874 11710 macro_build (NULL, s, fmt, op[0], 0, tempreg);
aed1a261
RS
11711 }
11712 else if (mips_pic == NO_PIC)
252b5132
RH
11713 {
11714 /* If this is a reference to a GP relative symbol, and there
11715 is no base register, we want
c0ebe874 11716 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
252b5132
RH
11717 Otherwise, if there is no base register, we want
11718 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
c0ebe874 11719 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
252b5132
RH
11720 If we have a constant, we need two instructions anyhow,
11721 so we always use the latter form.
11722
11723 If we have a base register, and this is a reference to a
11724 GP relative symbol, we want
11725 addu $tempreg,$breg,$gp
c0ebe874 11726 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
252b5132
RH
11727 Otherwise we want
11728 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11729 addu $tempreg,$tempreg,$breg
c0ebe874 11730 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245 11731 With a constant we always use the latter case.
76b3015f 11732
d6bc6245
TS
11733 With 64bit address space and no base register and $at usable,
11734 we want
11735 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11736 lui $at,<sym> (BFD_RELOC_HI16_S)
11737 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11738 dsll32 $tempreg,0
11739 daddu $tempreg,$at
c0ebe874 11740 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11741 If we have a base register, we want
11742 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11743 lui $at,<sym> (BFD_RELOC_HI16_S)
11744 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11745 daddu $at,$breg
11746 dsll32 $tempreg,0
11747 daddu $tempreg,$at
c0ebe874 11748 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11749
11750 Without $at we can't generate the optimal path for superscalar
11751 processors here since this would require two temporary registers.
11752 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11753 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11754 dsll $tempreg,16
11755 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11756 dsll $tempreg,16
c0ebe874 11757 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11758 If we have a base register, we want
11759 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11760 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11761 dsll $tempreg,16
11762 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11763 dsll $tempreg,16
11764 daddu $tempreg,$tempreg,$breg
c0ebe874 11765 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
6373ee54 11766
6caf9ef4 11767 For GP relative symbols in 64bit address space we can use
aed1a261
RS
11768 the same sequence as in 32bit address space. */
11769 if (HAVE_64BIT_SYMBOLS)
d6bc6245 11770 {
aed1a261 11771 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4
TS
11772 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11773 {
11774 relax_start (offset_expr.X_add_symbol);
11775 if (breg == 0)
11776 {
c0ebe874 11777 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11778 BFD_RELOC_GPREL16, mips_gp_register);
11779 }
11780 else
11781 {
11782 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11783 tempreg, breg, mips_gp_register);
c0ebe874 11784 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11785 BFD_RELOC_GPREL16, tempreg);
11786 }
11787 relax_switch ();
11788 }
d6bc6245 11789
741fe287 11790 if (used_at == 0 && mips_opts.at)
d6bc6245 11791 {
df58fc94 11792 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb 11793 BFD_RELOC_MIPS_HIGHEST);
df58fc94 11794 macro_build (&offset_expr, "lui", LUI_FMT, AT,
67c0d1eb
RS
11795 BFD_RELOC_HI16_S);
11796 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11797 tempreg, BFD_RELOC_MIPS_HIGHER);
d6bc6245 11798 if (breg != 0)
67c0d1eb 11799 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
df58fc94 11800 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 11801 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
c0ebe874 11802 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
67c0d1eb 11803 tempreg);
d6bc6245
TS
11804 used_at = 1;
11805 }
11806 else
11807 {
df58fc94 11808 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb
RS
11809 BFD_RELOC_MIPS_HIGHEST);
11810 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11811 tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 11812 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb
RS
11813 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11814 tempreg, BFD_RELOC_HI16_S);
df58fc94 11815 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
d6bc6245 11816 if (breg != 0)
67c0d1eb 11817 macro_build (NULL, "daddu", "d,v,t",
17a2f251 11818 tempreg, tempreg, breg);
c0ebe874 11819 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11820 BFD_RELOC_LO16, tempreg);
d6bc6245 11821 }
6caf9ef4
TS
11822
11823 if (mips_relax.sequence)
11824 relax_end ();
8fc2e39e 11825 break;
d6bc6245 11826 }
256ab948 11827
252b5132
RH
11828 if (breg == 0)
11829 {
67c0d1eb 11830 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11831 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11832 {
4d7206a2 11833 relax_start (offset_expr.X_add_symbol);
c0ebe874 11834 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
67c0d1eb 11835 mips_gp_register);
4d7206a2 11836 relax_switch ();
252b5132 11837 }
67c0d1eb 11838 macro_build_lui (&offset_expr, tempreg);
c0ebe874 11839 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11840 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11841 if (mips_relax.sequence)
11842 relax_end ();
252b5132
RH
11843 }
11844 else
11845 {
67c0d1eb 11846 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11847 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11848 {
4d7206a2 11849 relax_start (offset_expr.X_add_symbol);
67c0d1eb 11850 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11851 tempreg, breg, mips_gp_register);
c0ebe874 11852 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11853 BFD_RELOC_GPREL16, tempreg);
4d7206a2 11854 relax_switch ();
252b5132 11855 }
67c0d1eb
RS
11856 macro_build_lui (&offset_expr, tempreg);
11857 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11858 tempreg, tempreg, breg);
c0ebe874 11859 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11860 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11861 if (mips_relax.sequence)
11862 relax_end ();
252b5132
RH
11863 }
11864 }
0a44bf69 11865 else if (!mips_big_got)
252b5132 11866 {
ed6fb7bd 11867 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
f9419b05 11868
252b5132
RH
11869 /* If this is a reference to an external symbol, we want
11870 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11871 nop
c0ebe874 11872 <op> op[0],0($tempreg)
252b5132
RH
11873 Otherwise we want
11874 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11875 nop
11876 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 11877 <op> op[0],0($tempreg)
f5040a92
AO
11878
11879 For NewABI, we want
11880 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 11881 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 11882
252b5132
RH
11883 If there is a base register, we add it to $tempreg before
11884 the <op>. If there is a constant, we stick it in the
11885 <op> instruction. We don't handle constants larger than
11886 16 bits, because we have no way to load the upper 16 bits
11887 (actually, we could handle them for the subset of cases
11888 in which we are not using $at). */
9c2799c2 11889 gas_assert (offset_expr.X_op == O_symbol);
f5040a92
AO
11890 if (HAVE_NEWABI)
11891 {
67c0d1eb
RS
11892 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11893 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 11894 if (breg != 0)
67c0d1eb 11895 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11896 tempreg, tempreg, breg);
c0ebe874 11897 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11898 BFD_RELOC_MIPS_GOT_OFST, tempreg);
f5040a92
AO
11899 break;
11900 }
252b5132
RH
11901 expr1.X_add_number = offset_expr.X_add_number;
11902 offset_expr.X_add_number = 0;
11903 if (expr1.X_add_number < -0x8000
11904 || expr1.X_add_number >= 0x8000)
11905 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb
RS
11906 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11907 lw_reloc_type, mips_gp_register);
269137b2 11908 load_delay_nop ();
4d7206a2
RS
11909 relax_start (offset_expr.X_add_symbol);
11910 relax_switch ();
67c0d1eb
RS
11911 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11912 tempreg, BFD_RELOC_LO16);
4d7206a2 11913 relax_end ();
252b5132 11914 if (breg != 0)
67c0d1eb 11915 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11916 tempreg, tempreg, breg);
c0ebe874 11917 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 11918 }
0a44bf69 11919 else if (mips_big_got && !HAVE_NEWABI)
252b5132 11920 {
67c0d1eb 11921 int gpdelay;
252b5132
RH
11922
11923 /* If this is a reference to an external symbol, we want
11924 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11925 addu $tempreg,$tempreg,$gp
11926 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 11927 <op> op[0],0($tempreg)
252b5132
RH
11928 Otherwise we want
11929 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11930 nop
11931 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 11932 <op> op[0],0($tempreg)
252b5132
RH
11933 If there is a base register, we add it to $tempreg before
11934 the <op>. If there is a constant, we stick it in the
11935 <op> instruction. We don't handle constants larger than
11936 16 bits, because we have no way to load the upper 16 bits
11937 (actually, we could handle them for the subset of cases
f5040a92 11938 in which we are not using $at). */
9c2799c2 11939 gas_assert (offset_expr.X_op == O_symbol);
252b5132
RH
11940 expr1.X_add_number = offset_expr.X_add_number;
11941 offset_expr.X_add_number = 0;
11942 if (expr1.X_add_number < -0x8000
11943 || expr1.X_add_number >= 0x8000)
11944 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 11945 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 11946 relax_start (offset_expr.X_add_symbol);
df58fc94 11947 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 11948 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
11949 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11950 mips_gp_register);
11951 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11952 BFD_RELOC_MIPS_GOT_LO16, tempreg);
4d7206a2 11953 relax_switch ();
67c0d1eb
RS
11954 if (gpdelay)
11955 macro_build (NULL, "nop", "");
11956 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11957 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 11958 load_delay_nop ();
67c0d1eb
RS
11959 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11960 tempreg, BFD_RELOC_LO16);
4d7206a2
RS
11961 relax_end ();
11962
252b5132 11963 if (breg != 0)
67c0d1eb 11964 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11965 tempreg, tempreg, breg);
c0ebe874 11966 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 11967 }
0a44bf69 11968 else if (mips_big_got && HAVE_NEWABI)
f5040a92 11969 {
f5040a92
AO
11970 /* If this is a reference to an external symbol, we want
11971 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11972 add $tempreg,$tempreg,$gp
11973 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 11974 <op> op[0],<ofst>($tempreg)
f5040a92
AO
11975 Otherwise, for local symbols, we want:
11976 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 11977 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9c2799c2 11978 gas_assert (offset_expr.X_op == O_symbol);
4d7206a2 11979 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11980 offset_expr.X_add_number = 0;
11981 if (expr1.X_add_number < -0x8000
11982 || expr1.X_add_number >= 0x8000)
11983 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4d7206a2 11984 relax_start (offset_expr.X_add_symbol);
df58fc94 11985 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 11986 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
11987 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11988 mips_gp_register);
11989 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11990 BFD_RELOC_MIPS_GOT_LO16, tempreg);
f5040a92 11991 if (breg != 0)
67c0d1eb 11992 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11993 tempreg, tempreg, breg);
c0ebe874 11994 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
684022ea 11995
4d7206a2 11996 relax_switch ();
f5040a92 11997 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
11998 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11999 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 12000 if (breg != 0)
67c0d1eb 12001 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12002 tempreg, tempreg, breg);
c0ebe874 12003 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12004 BFD_RELOC_MIPS_GOT_OFST, tempreg);
4d7206a2 12005 relax_end ();
f5040a92 12006 }
252b5132
RH
12007 else
12008 abort ();
12009
252b5132
RH
12010 break;
12011
833794fc
MR
12012 case M_JRADDIUSP:
12013 gas_assert (mips_opts.micromips);
12014 gas_assert (mips_opts.insn32);
12015 start_noreorder ();
12016 macro_build (NULL, "jr", "s", RA);
c0ebe874 12017 expr1.X_add_number = op[0] << 2;
833794fc
MR
12018 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12019 end_noreorder ();
12020 break;
12021
12022 case M_JRC:
12023 gas_assert (mips_opts.micromips);
12024 gas_assert (mips_opts.insn32);
c0ebe874 12025 macro_build (NULL, "jr", "s", op[0]);
833794fc
MR
12026 if (mips_opts.noreorder)
12027 macro_build (NULL, "nop", "");
12028 break;
12029
252b5132
RH
12030 case M_LI:
12031 case M_LI_S:
c0ebe874 12032 load_register (op[0], &imm_expr, 0);
8fc2e39e 12033 break;
252b5132
RH
12034
12035 case M_DLI:
c0ebe874 12036 load_register (op[0], &imm_expr, 1);
8fc2e39e 12037 break;
252b5132
RH
12038
12039 case M_LI_SS:
12040 if (imm_expr.X_op == O_constant)
12041 {
8fc2e39e 12042 used_at = 1;
67c0d1eb 12043 load_register (AT, &imm_expr, 0);
c0ebe874 12044 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12045 break;
12046 }
12047 else
12048 {
b0e6f033
RS
12049 gas_assert (imm_expr.X_op == O_absent
12050 && offset_expr.X_op == O_symbol
90ecf173
MR
12051 && strcmp (segment_name (S_GET_SEGMENT
12052 (offset_expr.X_add_symbol)),
12053 ".lit4") == 0
12054 && offset_expr.X_add_number == 0);
c0ebe874 12055 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
17a2f251 12056 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8fc2e39e 12057 break;
252b5132
RH
12058 }
12059
12060 case M_LI_D:
ca4e0257
RS
12061 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12062 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12063 order 32 bits of the value and the low order 32 bits are either
12064 zero or in OFFSET_EXPR. */
b0e6f033 12065 if (imm_expr.X_op == O_constant)
252b5132 12066 {
bad1aba3 12067 if (GPR_SIZE == 64)
c0ebe874 12068 load_register (op[0], &imm_expr, 1);
252b5132
RH
12069 else
12070 {
12071 int hreg, lreg;
12072
12073 if (target_big_endian)
12074 {
c0ebe874
RS
12075 hreg = op[0];
12076 lreg = op[0] + 1;
252b5132
RH
12077 }
12078 else
12079 {
c0ebe874
RS
12080 hreg = op[0] + 1;
12081 lreg = op[0];
252b5132
RH
12082 }
12083
12084 if (hreg <= 31)
67c0d1eb 12085 load_register (hreg, &imm_expr, 0);
252b5132
RH
12086 if (lreg <= 31)
12087 {
12088 if (offset_expr.X_op == O_absent)
67c0d1eb 12089 move_register (lreg, 0);
252b5132
RH
12090 else
12091 {
9c2799c2 12092 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12093 load_register (lreg, &offset_expr, 0);
252b5132
RH
12094 }
12095 }
12096 }
8fc2e39e 12097 break;
252b5132 12098 }
b0e6f033 12099 gas_assert (imm_expr.X_op == O_absent);
252b5132
RH
12100
12101 /* We know that sym is in the .rdata section. First we get the
12102 upper 16 bits of the address. */
12103 if (mips_pic == NO_PIC)
12104 {
67c0d1eb 12105 macro_build_lui (&offset_expr, AT);
8fc2e39e 12106 used_at = 1;
252b5132 12107 }
0a44bf69 12108 else
252b5132 12109 {
67c0d1eb
RS
12110 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12111 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8fc2e39e 12112 used_at = 1;
252b5132 12113 }
bdaaa2e1 12114
252b5132 12115 /* Now we load the register(s). */
bad1aba3 12116 if (GPR_SIZE == 64)
8fc2e39e
TS
12117 {
12118 used_at = 1;
c0ebe874
RS
12119 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12120 BFD_RELOC_LO16, AT);
8fc2e39e 12121 }
252b5132
RH
12122 else
12123 {
8fc2e39e 12124 used_at = 1;
c0ebe874
RS
12125 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12126 BFD_RELOC_LO16, AT);
12127 if (op[0] != RA)
252b5132
RH
12128 {
12129 /* FIXME: How in the world do we deal with the possible
12130 overflow here? */
12131 offset_expr.X_add_number += 4;
67c0d1eb 12132 macro_build (&offset_expr, "lw", "t,o(b)",
c0ebe874 12133 op[0] + 1, BFD_RELOC_LO16, AT);
252b5132
RH
12134 }
12135 }
252b5132
RH
12136 break;
12137
12138 case M_LI_DD:
ca4e0257
RS
12139 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12140 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12141 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12142 the value and the low order 32 bits are either zero or in
12143 OFFSET_EXPR. */
b0e6f033 12144 if (imm_expr.X_op == O_constant)
252b5132 12145 {
8fc2e39e 12146 used_at = 1;
bad1aba3 12147 load_register (AT, &imm_expr, FPR_SIZE == 64);
351cdf24
MF
12148 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12149 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
252b5132
RH
12150 else
12151 {
351cdf24
MF
12152 if (ISA_HAS_MXHC1 (mips_opts.isa))
12153 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12154 else if (FPR_SIZE != 32)
12155 as_bad (_("Unable to generate `%s' compliant code "
12156 "without mthc1"),
12157 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12158 else
12159 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
252b5132 12160 if (offset_expr.X_op == O_absent)
c0ebe874 12161 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
252b5132
RH
12162 else
12163 {
9c2799c2 12164 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12165 load_register (AT, &offset_expr, 0);
c0ebe874 12166 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12167 }
12168 }
12169 break;
12170 }
12171
b0e6f033
RS
12172 gas_assert (imm_expr.X_op == O_absent
12173 && offset_expr.X_op == O_symbol
90ecf173 12174 && offset_expr.X_add_number == 0);
252b5132
RH
12175 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12176 if (strcmp (s, ".lit8") == 0)
134c0c8b
MR
12177 {
12178 op[2] = mips_gp_register;
f2ae14a1
RS
12179 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12180 offset_reloc[1] = BFD_RELOC_UNUSED;
12181 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132
RH
12182 }
12183 else
12184 {
9c2799c2 12185 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8fc2e39e 12186 used_at = 1;
0a44bf69 12187 if (mips_pic != NO_PIC)
67c0d1eb
RS
12188 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12189 BFD_RELOC_MIPS_GOT16, mips_gp_register);
252b5132
RH
12190 else
12191 {
12192 /* FIXME: This won't work for a 64 bit address. */
67c0d1eb 12193 macro_build_lui (&offset_expr, AT);
252b5132 12194 }
bdaaa2e1 12195
c0ebe874 12196 op[2] = AT;
f2ae14a1
RS
12197 offset_reloc[0] = BFD_RELOC_LO16;
12198 offset_reloc[1] = BFD_RELOC_UNUSED;
12199 offset_reloc[2] = BFD_RELOC_UNUSED;
134c0c8b 12200 }
f2ae14a1
RS
12201 align = 8;
12202 /* Fall through */
c4a68bea 12203
252b5132
RH
12204 case M_L_DAB:
12205 /*
12206 * The MIPS assembler seems to check for X_add_number not
12207 * being double aligned and generating:
12208 * lui at,%hi(foo+1)
12209 * addu at,at,v1
12210 * addiu at,at,%lo(foo+1)
12211 * lwc1 f2,0(at)
12212 * lwc1 f3,4(at)
12213 * But, the resulting address is the same after relocation so why
12214 * generate the extra instruction?
12215 */
bdaaa2e1 12216 /* Itbl support may require additional care here. */
252b5132 12217 coproc = 1;
df58fc94 12218 fmt = "T,o(b)";
0aa27725 12219 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12220 {
12221 s = "ldc1";
df58fc94 12222 goto ld_st;
252b5132 12223 }
252b5132 12224 s = "lwc1";
252b5132
RH
12225 goto ldd_std;
12226
12227 case M_S_DAB:
df58fc94
RS
12228 gas_assert (!mips_opts.micromips);
12229 /* Itbl support may require additional care here. */
12230 coproc = 1;
12231 fmt = "T,o(b)";
0aa27725 12232 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12233 {
12234 s = "sdc1";
df58fc94 12235 goto ld_st;
252b5132 12236 }
252b5132 12237 s = "swc1";
252b5132
RH
12238 goto ldd_std;
12239
e407c74b
NC
12240 case M_LQ_AB:
12241 fmt = "t,o(b)";
12242 s = "lq";
12243 goto ld;
12244
12245 case M_SQ_AB:
12246 fmt = "t,o(b)";
12247 s = "sq";
12248 goto ld_st;
12249
252b5132 12250 case M_LD_AB:
df58fc94 12251 fmt = "t,o(b)";
bad1aba3 12252 if (GPR_SIZE == 64)
252b5132
RH
12253 {
12254 s = "ld";
12255 goto ld;
12256 }
252b5132 12257 s = "lw";
252b5132
RH
12258 goto ldd_std;
12259
12260 case M_SD_AB:
df58fc94 12261 fmt = "t,o(b)";
bad1aba3 12262 if (GPR_SIZE == 64)
252b5132
RH
12263 {
12264 s = "sd";
df58fc94 12265 goto ld_st;
252b5132 12266 }
252b5132 12267 s = "sw";
252b5132
RH
12268
12269 ldd_std:
f2ae14a1
RS
12270 /* Even on a big endian machine $fn comes before $fn+1. We have
12271 to adjust when loading from memory. We set coproc if we must
12272 load $fn+1 first. */
12273 /* Itbl support may require additional care here. */
12274 if (!target_big_endian)
12275 coproc = 0;
12276
c0ebe874 12277 breg = op[2];
f2ae14a1
RS
12278 if (small_offset_p (0, align, 16))
12279 {
12280 ep = &offset_expr;
12281 if (!small_offset_p (4, align, 16))
12282 {
12283 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12284 -1, offset_reloc[0], offset_reloc[1],
12285 offset_reloc[2]);
12286 expr1.X_add_number = 0;
12287 ep = &expr1;
12288 breg = AT;
12289 used_at = 1;
12290 offset_reloc[0] = BFD_RELOC_LO16;
12291 offset_reloc[1] = BFD_RELOC_UNUSED;
12292 offset_reloc[2] = BFD_RELOC_UNUSED;
12293 }
c0ebe874 12294 if (strcmp (s, "lw") == 0 && op[0] == breg)
f2ae14a1
RS
12295 {
12296 ep->X_add_number += 4;
c0ebe874 12297 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
f2ae14a1
RS
12298 offset_reloc[1], offset_reloc[2], breg);
12299 ep->X_add_number -= 4;
c0ebe874 12300 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12301 offset_reloc[1], offset_reloc[2], breg);
12302 }
12303 else
12304 {
c0ebe874 12305 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
f2ae14a1
RS
12306 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12307 breg);
12308 ep->X_add_number += 4;
c0ebe874 12309 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
f2ae14a1
RS
12310 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12311 breg);
12312 }
12313 break;
12314 }
12315
252b5132
RH
12316 if (offset_expr.X_op != O_symbol
12317 && offset_expr.X_op != O_constant)
12318 {
1661c76c 12319 as_bad (_("expression too complex"));
252b5132
RH
12320 offset_expr.X_op = O_constant;
12321 }
12322
2051e8c4
MR
12323 if (HAVE_32BIT_ADDRESSES
12324 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
12325 {
12326 char value [32];
12327
12328 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 12329 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 12330 }
2051e8c4 12331
90ecf173 12332 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
252b5132
RH
12333 {
12334 /* If this is a reference to a GP relative symbol, we want
c0ebe874
RS
12335 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12336 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
252b5132
RH
12337 If we have a base register, we use this
12338 addu $at,$breg,$gp
c0ebe874
RS
12339 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12340 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
252b5132
RH
12341 If this is not a GP relative symbol, we want
12342 lui $at,<sym> (BFD_RELOC_HI16_S)
c0ebe874
RS
12343 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12344 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12345 If there is a base register, we add it to $at after the
12346 lui instruction. If there is a constant, we always use
12347 the last case. */
39a59cf8
MR
12348 if (offset_expr.X_op == O_symbol
12349 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12350 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12351 {
4d7206a2 12352 relax_start (offset_expr.X_add_symbol);
252b5132
RH
12353 if (breg == 0)
12354 {
c9914766 12355 tempreg = mips_gp_register;
252b5132
RH
12356 }
12357 else
12358 {
67c0d1eb 12359 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12360 AT, breg, mips_gp_register);
252b5132 12361 tempreg = AT;
252b5132
RH
12362 used_at = 1;
12363 }
12364
beae10d5 12365 /* Itbl support may require additional care here. */
c0ebe874 12366 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12367 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12368 offset_expr.X_add_number += 4;
12369
12370 /* Set mips_optimize to 2 to avoid inserting an
12371 undesired nop. */
12372 hold_mips_optimize = mips_optimize;
12373 mips_optimize = 2;
beae10d5 12374 /* Itbl support may require additional care here. */
c0ebe874 12375 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12376 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12377 mips_optimize = hold_mips_optimize;
12378
4d7206a2 12379 relax_switch ();
252b5132 12380
0970e49e 12381 offset_expr.X_add_number -= 4;
252b5132 12382 }
8fc2e39e 12383 used_at = 1;
f2ae14a1
RS
12384 if (offset_high_part (offset_expr.X_add_number, 16)
12385 != offset_high_part (offset_expr.X_add_number + 4, 16))
12386 {
12387 load_address (AT, &offset_expr, &used_at);
12388 offset_expr.X_op = O_constant;
12389 offset_expr.X_add_number = 0;
12390 }
12391 else
12392 macro_build_lui (&offset_expr, AT);
252b5132 12393 if (breg != 0)
67c0d1eb 12394 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12395 /* Itbl support may require additional care here. */
c0ebe874 12396 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12397 BFD_RELOC_LO16, AT);
252b5132
RH
12398 /* FIXME: How do we handle overflow here? */
12399 offset_expr.X_add_number += 4;
beae10d5 12400 /* Itbl support may require additional care here. */
c0ebe874 12401 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12402 BFD_RELOC_LO16, AT);
4d7206a2
RS
12403 if (mips_relax.sequence)
12404 relax_end ();
bdaaa2e1 12405 }
0a44bf69 12406 else if (!mips_big_got)
252b5132 12407 {
252b5132
RH
12408 /* If this is a reference to an external symbol, we want
12409 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12410 nop
c0ebe874
RS
12411 <op> op[0],0($at)
12412 <op> op[0]+1,4($at)
252b5132
RH
12413 Otherwise we want
12414 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12415 nop
c0ebe874
RS
12416 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12417 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12418 If there is a base register we add it to $at before the
12419 lwc1 instructions. If there is a constant we include it
12420 in the lwc1 instructions. */
12421 used_at = 1;
12422 expr1.X_add_number = offset_expr.X_add_number;
252b5132
RH
12423 if (expr1.X_add_number < -0x8000
12424 || expr1.X_add_number >= 0x8000 - 4)
12425 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12426 load_got_offset (AT, &offset_expr);
269137b2 12427 load_delay_nop ();
252b5132 12428 if (breg != 0)
67c0d1eb 12429 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
252b5132
RH
12430
12431 /* Set mips_optimize to 2 to avoid inserting an undesired
12432 nop. */
12433 hold_mips_optimize = mips_optimize;
12434 mips_optimize = 2;
4d7206a2 12435
beae10d5 12436 /* Itbl support may require additional care here. */
4d7206a2 12437 relax_start (offset_expr.X_add_symbol);
c0ebe874 12438 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12439 BFD_RELOC_LO16, AT);
4d7206a2 12440 expr1.X_add_number += 4;
c0ebe874 12441 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12442 BFD_RELOC_LO16, AT);
4d7206a2 12443 relax_switch ();
c0ebe874 12444 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12445 BFD_RELOC_LO16, AT);
4d7206a2 12446 offset_expr.X_add_number += 4;
c0ebe874 12447 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12448 BFD_RELOC_LO16, AT);
4d7206a2 12449 relax_end ();
252b5132 12450
4d7206a2 12451 mips_optimize = hold_mips_optimize;
252b5132 12452 }
0a44bf69 12453 else if (mips_big_got)
252b5132 12454 {
67c0d1eb 12455 int gpdelay;
252b5132
RH
12456
12457 /* If this is a reference to an external symbol, we want
12458 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12459 addu $at,$at,$gp
12460 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12461 nop
c0ebe874
RS
12462 <op> op[0],0($at)
12463 <op> op[0]+1,4($at)
252b5132
RH
12464 Otherwise we want
12465 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12466 nop
c0ebe874
RS
12467 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12468 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12469 If there is a base register we add it to $at before the
12470 lwc1 instructions. If there is a constant we include it
12471 in the lwc1 instructions. */
12472 used_at = 1;
12473 expr1.X_add_number = offset_expr.X_add_number;
12474 offset_expr.X_add_number = 0;
12475 if (expr1.X_add_number < -0x8000
12476 || expr1.X_add_number >= 0x8000 - 4)
12477 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12478 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12479 relax_start (offset_expr.X_add_symbol);
df58fc94 12480 macro_build (&offset_expr, "lui", LUI_FMT,
67c0d1eb
RS
12481 AT, BFD_RELOC_MIPS_GOT_HI16);
12482 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12483 AT, AT, mips_gp_register);
67c0d1eb 12484 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 12485 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
269137b2 12486 load_delay_nop ();
252b5132 12487 if (breg != 0)
67c0d1eb 12488 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12489 /* Itbl support may require additional care here. */
c0ebe874 12490 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12491 BFD_RELOC_LO16, AT);
252b5132
RH
12492 expr1.X_add_number += 4;
12493
12494 /* Set mips_optimize to 2 to avoid inserting an undesired
12495 nop. */
12496 hold_mips_optimize = mips_optimize;
12497 mips_optimize = 2;
beae10d5 12498 /* Itbl support may require additional care here. */
c0ebe874 12499 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12500 BFD_RELOC_LO16, AT);
252b5132
RH
12501 mips_optimize = hold_mips_optimize;
12502 expr1.X_add_number -= 4;
12503
4d7206a2
RS
12504 relax_switch ();
12505 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12506 if (gpdelay)
12507 macro_build (NULL, "nop", "");
12508 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12509 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12510 load_delay_nop ();
252b5132 12511 if (breg != 0)
67c0d1eb 12512 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12513 /* Itbl support may require additional care here. */
c0ebe874 12514 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12515 BFD_RELOC_LO16, AT);
4d7206a2 12516 offset_expr.X_add_number += 4;
252b5132
RH
12517
12518 /* Set mips_optimize to 2 to avoid inserting an undesired
12519 nop. */
12520 hold_mips_optimize = mips_optimize;
12521 mips_optimize = 2;
beae10d5 12522 /* Itbl support may require additional care here. */
c0ebe874 12523 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12524 BFD_RELOC_LO16, AT);
252b5132 12525 mips_optimize = hold_mips_optimize;
4d7206a2 12526 relax_end ();
252b5132 12527 }
252b5132
RH
12528 else
12529 abort ();
12530
252b5132 12531 break;
3739860c 12532
dd6a37e7 12533 case M_SAA_AB:
dd6a37e7 12534 s = "saa";
0db377d0 12535 goto saa_saad;
dd6a37e7 12536 case M_SAAD_AB:
dd6a37e7 12537 s = "saad";
0db377d0
MR
12538 saa_saad:
12539 gas_assert (!mips_opts.micromips);
7f3c4072 12540 offbits = 0;
dd6a37e7
AP
12541 fmt = "t,(b)";
12542 goto ld_st;
12543
252b5132
RH
12544 /* New code added to support COPZ instructions.
12545 This code builds table entries out of the macros in mip_opcodes.
12546 R4000 uses interlocks to handle coproc delays.
12547 Other chips (like the R3000) require nops to be inserted for delays.
12548
f72c8c98 12549 FIXME: Currently, we require that the user handle delays.
252b5132
RH
12550 In order to fill delay slots for non-interlocked chips,
12551 we must have a way to specify delays based on the coprocessor.
12552 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12553 What are the side-effects of the cop instruction?
12554 What cache support might we have and what are its effects?
12555 Both coprocessor & memory require delays. how long???
bdaaa2e1 12556 What registers are read/set/modified?
252b5132
RH
12557
12558 If an itbl is provided to interpret cop instructions,
bdaaa2e1 12559 this knowledge can be encoded in the itbl spec. */
252b5132
RH
12560
12561 case M_COP0:
12562 s = "c0";
12563 goto copz;
12564 case M_COP1:
12565 s = "c1";
12566 goto copz;
12567 case M_COP2:
12568 s = "c2";
12569 goto copz;
12570 case M_COP3:
12571 s = "c3";
12572 copz:
df58fc94 12573 gas_assert (!mips_opts.micromips);
252b5132
RH
12574 /* For now we just do C (same as Cz). The parameter will be
12575 stored in insn_opcode by mips_ip. */
c8276761 12576 macro_build (NULL, s, "C", (int) ip->insn_opcode);
8fc2e39e 12577 break;
252b5132 12578
ea1fb5dc 12579 case M_MOVE:
c0ebe874 12580 move_register (op[0], op[1]);
8fc2e39e 12581 break;
ea1fb5dc 12582
833794fc
MR
12583 case M_MOVEP:
12584 gas_assert (mips_opts.micromips);
12585 gas_assert (mips_opts.insn32);
c0ebe874
RS
12586 move_register (micromips_to_32_reg_h_map1[op[0]],
12587 micromips_to_32_reg_m_map[op[1]]);
12588 move_register (micromips_to_32_reg_h_map2[op[0]],
12589 micromips_to_32_reg_n_map[op[2]]);
833794fc
MR
12590 break;
12591
252b5132
RH
12592 case M_DMUL:
12593 dbl = 1;
12594 case M_MUL:
e407c74b 12595 if (mips_opts.arch == CPU_R5900)
c0ebe874
RS
12596 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12597 op[2]);
e407c74b
NC
12598 else
12599 {
c0ebe874
RS
12600 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12601 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
e407c74b 12602 }
8fc2e39e 12603 break;
252b5132
RH
12604
12605 case M_DMUL_I:
12606 dbl = 1;
12607 case M_MUL_I:
12608 /* The MIPS assembler some times generates shifts and adds. I'm
12609 not trying to be that fancy. GCC should do this for us
12610 anyway. */
8fc2e39e 12611 used_at = 1;
67c0d1eb 12612 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12613 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12614 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12615 break;
12616
12617 case M_DMULO_I:
12618 dbl = 1;
12619 case M_MULO_I:
12620 imm = 1;
12621 goto do_mulo;
12622
12623 case M_DMULO:
12624 dbl = 1;
12625 case M_MULO:
12626 do_mulo:
7d10b47d 12627 start_noreorder ();
8fc2e39e 12628 used_at = 1;
252b5132 12629 if (imm)
67c0d1eb 12630 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12631 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12632 op[1], imm ? AT : op[2]);
12633 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12634 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
df58fc94 12635 macro_build (NULL, "mfhi", MFHL_FMT, AT);
252b5132 12636 if (mips_trap)
c0ebe874 12637 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
252b5132
RH
12638 else
12639 {
df58fc94
RS
12640 if (mips_opts.micromips)
12641 micromips_label_expr (&label_expr);
12642 else
12643 label_expr.X_add_number = 8;
c0ebe874 12644 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
a605d2b3 12645 macro_build (NULL, "nop", "");
df58fc94
RS
12646 macro_build (NULL, "break", BRK_FMT, 6);
12647 if (mips_opts.micromips)
12648 micromips_add_label ();
252b5132 12649 }
7d10b47d 12650 end_noreorder ();
c0ebe874 12651 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12652 break;
12653
12654 case M_DMULOU_I:
12655 dbl = 1;
12656 case M_MULOU_I:
12657 imm = 1;
12658 goto do_mulou;
12659
12660 case M_DMULOU:
12661 dbl = 1;
12662 case M_MULOU:
12663 do_mulou:
7d10b47d 12664 start_noreorder ();
8fc2e39e 12665 used_at = 1;
252b5132 12666 if (imm)
67c0d1eb
RS
12667 load_register (AT, &imm_expr, dbl);
12668 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
c0ebe874 12669 op[1], imm ? AT : op[2]);
df58fc94 12670 macro_build (NULL, "mfhi", MFHL_FMT, AT);
c0ebe874 12671 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132 12672 if (mips_trap)
df58fc94 12673 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
252b5132
RH
12674 else
12675 {
df58fc94
RS
12676 if (mips_opts.micromips)
12677 micromips_label_expr (&label_expr);
12678 else
12679 label_expr.X_add_number = 8;
12680 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
a605d2b3 12681 macro_build (NULL, "nop", "");
df58fc94
RS
12682 macro_build (NULL, "break", BRK_FMT, 6);
12683 if (mips_opts.micromips)
12684 micromips_add_label ();
252b5132 12685 }
7d10b47d 12686 end_noreorder ();
252b5132
RH
12687 break;
12688
771c7ce4 12689 case M_DROL:
fef14a42 12690 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12691 {
c0ebe874 12692 if (op[0] == op[1])
82dd0097
CD
12693 {
12694 tempreg = AT;
12695 used_at = 1;
12696 }
12697 else
c0ebe874
RS
12698 tempreg = op[0];
12699 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12700 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12701 break;
82dd0097 12702 }
8fc2e39e 12703 used_at = 1;
c0ebe874
RS
12704 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12705 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12706 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12707 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12708 break;
12709
252b5132 12710 case M_ROL:
fef14a42 12711 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12712 {
c0ebe874 12713 if (op[0] == op[1])
82dd0097
CD
12714 {
12715 tempreg = AT;
12716 used_at = 1;
12717 }
12718 else
c0ebe874
RS
12719 tempreg = op[0];
12720 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12721 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12722 break;
82dd0097 12723 }
8fc2e39e 12724 used_at = 1;
c0ebe874
RS
12725 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12726 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12727 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12728 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12729 break;
12730
771c7ce4
TS
12731 case M_DROL_I:
12732 {
12733 unsigned int rot;
e0471c16
TS
12734 const char *l;
12735 const char *rr;
771c7ce4 12736
771c7ce4 12737 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12738 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
60b63b72
RS
12739 {
12740 rot = (64 - rot) & 0x3f;
12741 if (rot >= 32)
c0ebe874 12742 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
60b63b72 12743 else
c0ebe874 12744 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12745 break;
60b63b72 12746 }
483fc7cd 12747 if (rot == 0)
483fc7cd 12748 {
c0ebe874 12749 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12750 break;
483fc7cd 12751 }
82dd0097 12752 l = (rot < 0x20) ? "dsll" : "dsll32";
91d6fa6a 12753 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
82dd0097 12754 rot &= 0x1f;
8fc2e39e 12755 used_at = 1;
c0ebe874
RS
12756 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12757 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12758 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12759 }
12760 break;
12761
252b5132 12762 case M_ROL_I:
771c7ce4
TS
12763 {
12764 unsigned int rot;
12765
771c7ce4 12766 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12767 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
60b63b72 12768 {
c0ebe874
RS
12769 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12770 (32 - rot) & 0x1f);
8fc2e39e 12771 break;
60b63b72 12772 }
483fc7cd 12773 if (rot == 0)
483fc7cd 12774 {
c0ebe874 12775 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12776 break;
483fc7cd 12777 }
8fc2e39e 12778 used_at = 1;
c0ebe874
RS
12779 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12780 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12781 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12782 }
12783 break;
12784
12785 case M_DROR:
fef14a42 12786 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12787 {
c0ebe874 12788 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12789 break;
82dd0097 12790 }
8fc2e39e 12791 used_at = 1;
c0ebe874
RS
12792 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12793 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12794 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12795 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12796 break;
12797
12798 case M_ROR:
fef14a42 12799 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12800 {
c0ebe874 12801 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12802 break;
82dd0097 12803 }
8fc2e39e 12804 used_at = 1;
c0ebe874
RS
12805 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12806 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12807 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12808 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12809 break;
12810
771c7ce4
TS
12811 case M_DROR_I:
12812 {
12813 unsigned int rot;
e0471c16
TS
12814 const char *l;
12815 const char *rr;
771c7ce4 12816
771c7ce4 12817 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12818 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
12819 {
12820 if (rot >= 32)
c0ebe874 12821 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
82dd0097 12822 else
c0ebe874 12823 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12824 break;
82dd0097 12825 }
483fc7cd 12826 if (rot == 0)
483fc7cd 12827 {
c0ebe874 12828 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12829 break;
483fc7cd 12830 }
91d6fa6a 12831 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
82dd0097
CD
12832 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12833 rot &= 0x1f;
8fc2e39e 12834 used_at = 1;
c0ebe874
RS
12835 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12836 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12837 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12838 }
12839 break;
12840
252b5132 12841 case M_ROR_I:
771c7ce4
TS
12842 {
12843 unsigned int rot;
12844
771c7ce4 12845 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12846 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12847 {
c0ebe874 12848 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12849 break;
82dd0097 12850 }
483fc7cd 12851 if (rot == 0)
483fc7cd 12852 {
c0ebe874 12853 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12854 break;
483fc7cd 12855 }
8fc2e39e 12856 used_at = 1;
c0ebe874
RS
12857 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12858 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12859 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4 12860 }
252b5132
RH
12861 break;
12862
252b5132 12863 case M_SEQ:
c0ebe874
RS
12864 if (op[1] == 0)
12865 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12866 else if (op[2] == 0)
12867 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
12868 else
12869 {
c0ebe874
RS
12870 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12871 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
252b5132 12872 }
8fc2e39e 12873 break;
252b5132
RH
12874
12875 case M_SEQ_I:
b0e6f033 12876 if (imm_expr.X_add_number == 0)
252b5132 12877 {
c0ebe874 12878 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 12879 break;
252b5132 12880 }
c0ebe874 12881 if (op[1] == 0)
252b5132 12882 {
1661c76c 12883 as_warn (_("instruction %s: result is always false"),
252b5132 12884 ip->insn_mo->name);
c0ebe874 12885 move_register (op[0], 0);
8fc2e39e 12886 break;
252b5132 12887 }
dd3cbb7e
NC
12888 if (CPU_HAS_SEQ (mips_opts.arch)
12889 && -512 <= imm_expr.X_add_number
12890 && imm_expr.X_add_number < 512)
12891 {
c0ebe874 12892 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
750bdd57 12893 (int) imm_expr.X_add_number);
dd3cbb7e
NC
12894 break;
12895 }
b0e6f033 12896 if (imm_expr.X_add_number >= 0
252b5132 12897 && imm_expr.X_add_number < 0x10000)
c0ebe874 12898 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
b0e6f033 12899 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
12900 && imm_expr.X_add_number < 0)
12901 {
12902 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 12903 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 12904 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 12905 }
dd3cbb7e
NC
12906 else if (CPU_HAS_SEQ (mips_opts.arch))
12907 {
12908 used_at = 1;
bad1aba3 12909 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12910 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
12911 break;
12912 }
252b5132
RH
12913 else
12914 {
bad1aba3 12915 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12916 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
12917 used_at = 1;
12918 }
c0ebe874 12919 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12920 break;
252b5132 12921
c0ebe874 12922 case M_SGE: /* X >= Y <==> not (X < Y) */
252b5132
RH
12923 s = "slt";
12924 goto sge;
12925 case M_SGEU:
12926 s = "sltu";
12927 sge:
c0ebe874
RS
12928 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12929 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12930 break;
252b5132 12931
c0ebe874 12932 case M_SGE_I: /* X >= I <==> not (X < I) */
252b5132 12933 case M_SGEU_I:
b0e6f033 12934 if (imm_expr.X_add_number >= -0x8000
252b5132 12935 && imm_expr.X_add_number < 0x8000)
c0ebe874
RS
12936 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12937 op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
12938 else
12939 {
bad1aba3 12940 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 12941 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
c0ebe874 12942 op[0], op[1], AT);
252b5132
RH
12943 used_at = 1;
12944 }
c0ebe874 12945 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12946 break;
252b5132 12947
c0ebe874 12948 case M_SGT: /* X > Y <==> Y < X */
252b5132
RH
12949 s = "slt";
12950 goto sgt;
12951 case M_SGTU:
12952 s = "sltu";
12953 sgt:
c0ebe874 12954 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
8fc2e39e 12955 break;
252b5132 12956
c0ebe874 12957 case M_SGT_I: /* X > I <==> I < X */
252b5132
RH
12958 s = "slt";
12959 goto sgti;
12960 case M_SGTU_I:
12961 s = "sltu";
12962 sgti:
8fc2e39e 12963 used_at = 1;
bad1aba3 12964 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12965 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
252b5132
RH
12966 break;
12967
c0ebe874 12968 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
252b5132
RH
12969 s = "slt";
12970 goto sle;
12971 case M_SLEU:
12972 s = "sltu";
12973 sle:
c0ebe874
RS
12974 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12975 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12976 break;
252b5132 12977
c0ebe874 12978 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
252b5132
RH
12979 s = "slt";
12980 goto slei;
12981 case M_SLEU_I:
12982 s = "sltu";
12983 slei:
8fc2e39e 12984 used_at = 1;
bad1aba3 12985 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874
RS
12986 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12987 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
252b5132
RH
12988 break;
12989
12990 case M_SLT_I:
b0e6f033 12991 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
12992 && imm_expr.X_add_number < 0x8000)
12993 {
c0ebe874
RS
12994 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12995 BFD_RELOC_LO16);
8fc2e39e 12996 break;
252b5132 12997 }
8fc2e39e 12998 used_at = 1;
bad1aba3 12999 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13000 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
252b5132
RH
13001 break;
13002
13003 case M_SLTU_I:
b0e6f033 13004 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
13005 && imm_expr.X_add_number < 0x8000)
13006 {
c0ebe874 13007 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
17a2f251 13008 BFD_RELOC_LO16);
8fc2e39e 13009 break;
252b5132 13010 }
8fc2e39e 13011 used_at = 1;
bad1aba3 13012 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13013 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
252b5132
RH
13014 break;
13015
13016 case M_SNE:
c0ebe874
RS
13017 if (op[1] == 0)
13018 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13019 else if (op[2] == 0)
13020 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
252b5132
RH
13021 else
13022 {
c0ebe874
RS
13023 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13024 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
252b5132 13025 }
8fc2e39e 13026 break;
252b5132
RH
13027
13028 case M_SNE_I:
b0e6f033 13029 if (imm_expr.X_add_number == 0)
252b5132 13030 {
c0ebe874 13031 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
8fc2e39e 13032 break;
252b5132 13033 }
c0ebe874 13034 if (op[1] == 0)
252b5132 13035 {
1661c76c 13036 as_warn (_("instruction %s: result is always true"),
252b5132 13037 ip->insn_mo->name);
bad1aba3 13038 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
c0ebe874 13039 op[0], 0, BFD_RELOC_LO16);
8fc2e39e 13040 break;
252b5132 13041 }
dd3cbb7e
NC
13042 if (CPU_HAS_SEQ (mips_opts.arch)
13043 && -512 <= imm_expr.X_add_number
13044 && imm_expr.X_add_number < 512)
13045 {
c0ebe874 13046 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
750bdd57 13047 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13048 break;
13049 }
b0e6f033 13050 if (imm_expr.X_add_number >= 0
252b5132
RH
13051 && imm_expr.X_add_number < 0x10000)
13052 {
c0ebe874
RS
13053 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13054 BFD_RELOC_LO16);
252b5132 13055 }
b0e6f033 13056 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13057 && imm_expr.X_add_number < 0)
13058 {
13059 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13060 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13061 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13062 }
dd3cbb7e
NC
13063 else if (CPU_HAS_SEQ (mips_opts.arch))
13064 {
13065 used_at = 1;
bad1aba3 13066 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13067 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13068 break;
13069 }
252b5132
RH
13070 else
13071 {
bad1aba3 13072 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13073 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13074 used_at = 1;
13075 }
c0ebe874 13076 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
8fc2e39e 13077 break;
252b5132 13078
df58fc94
RS
13079 case M_SUB_I:
13080 s = "addi";
13081 s2 = "sub";
13082 goto do_subi;
13083 case M_SUBU_I:
13084 s = "addiu";
13085 s2 = "subu";
13086 goto do_subi;
252b5132
RH
13087 case M_DSUB_I:
13088 dbl = 1;
df58fc94
RS
13089 s = "daddi";
13090 s2 = "dsub";
13091 if (!mips_opts.micromips)
13092 goto do_subi;
b0e6f033 13093 if (imm_expr.X_add_number > -0x200
df58fc94 13094 && imm_expr.X_add_number <= 0x200)
252b5132 13095 {
b0e6f033
RS
13096 macro_build (NULL, s, "t,r,.", op[0], op[1],
13097 (int) -imm_expr.X_add_number);
8fc2e39e 13098 break;
252b5132 13099 }
df58fc94 13100 goto do_subi_i;
252b5132
RH
13101 case M_DSUBU_I:
13102 dbl = 1;
df58fc94
RS
13103 s = "daddiu";
13104 s2 = "dsubu";
13105 do_subi:
b0e6f033 13106 if (imm_expr.X_add_number > -0x8000
252b5132
RH
13107 && imm_expr.X_add_number <= 0x8000)
13108 {
13109 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13110 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13111 break;
252b5132 13112 }
df58fc94 13113 do_subi_i:
8fc2e39e 13114 used_at = 1;
67c0d1eb 13115 load_register (AT, &imm_expr, dbl);
c0ebe874 13116 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
13117 break;
13118
13119 case M_TEQ_I:
13120 s = "teq";
13121 goto trap;
13122 case M_TGE_I:
13123 s = "tge";
13124 goto trap;
13125 case M_TGEU_I:
13126 s = "tgeu";
13127 goto trap;
13128 case M_TLT_I:
13129 s = "tlt";
13130 goto trap;
13131 case M_TLTU_I:
13132 s = "tltu";
13133 goto trap;
13134 case M_TNE_I:
13135 s = "tne";
13136 trap:
8fc2e39e 13137 used_at = 1;
bad1aba3 13138 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13139 macro_build (NULL, s, "s,t", op[0], AT);
252b5132
RH
13140 break;
13141
252b5132 13142 case M_TRUNCWS:
43841e91 13143 case M_TRUNCWD:
df58fc94 13144 gas_assert (!mips_opts.micromips);
0aa27725 13145 gas_assert (mips_opts.isa == ISA_MIPS1);
8fc2e39e 13146 used_at = 1;
252b5132
RH
13147
13148 /*
13149 * Is the double cfc1 instruction a bug in the mips assembler;
13150 * or is there a reason for it?
13151 */
7d10b47d 13152 start_noreorder ();
c0ebe874
RS
13153 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13154 macro_build (NULL, "cfc1", "t,G", op[2], RA);
67c0d1eb 13155 macro_build (NULL, "nop", "");
252b5132 13156 expr1.X_add_number = 3;
c0ebe874 13157 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
252b5132 13158 expr1.X_add_number = 2;
67c0d1eb
RS
13159 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13160 macro_build (NULL, "ctc1", "t,G", AT, RA);
13161 macro_build (NULL, "nop", "");
13162 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
c0ebe874
RS
13163 op[0], op[1]);
13164 macro_build (NULL, "ctc1", "t,G", op[2], RA);
67c0d1eb 13165 macro_build (NULL, "nop", "");
7d10b47d 13166 end_noreorder ();
252b5132
RH
13167 break;
13168
f2ae14a1 13169 case M_ULH_AB:
252b5132 13170 s = "lb";
df58fc94
RS
13171 s2 = "lbu";
13172 off = 1;
13173 goto uld_st;
f2ae14a1 13174 case M_ULHU_AB:
252b5132 13175 s = "lbu";
df58fc94
RS
13176 s2 = "lbu";
13177 off = 1;
13178 goto uld_st;
f2ae14a1 13179 case M_ULW_AB:
df58fc94
RS
13180 s = "lwl";
13181 s2 = "lwr";
7f3c4072 13182 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13183 off = 3;
13184 goto uld_st;
f2ae14a1 13185 case M_ULD_AB:
252b5132
RH
13186 s = "ldl";
13187 s2 = "ldr";
7f3c4072 13188 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13189 off = 7;
df58fc94 13190 goto uld_st;
f2ae14a1 13191 case M_USH_AB:
df58fc94
RS
13192 s = "sb";
13193 s2 = "sb";
13194 off = 1;
13195 ust = 1;
13196 goto uld_st;
f2ae14a1 13197 case M_USW_AB:
df58fc94
RS
13198 s = "swl";
13199 s2 = "swr";
7f3c4072 13200 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13201 off = 3;
df58fc94
RS
13202 ust = 1;
13203 goto uld_st;
f2ae14a1 13204 case M_USD_AB:
df58fc94
RS
13205 s = "sdl";
13206 s2 = "sdr";
7f3c4072 13207 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13208 off = 7;
13209 ust = 1;
13210
13211 uld_st:
c0ebe874 13212 breg = op[2];
f2ae14a1 13213 large_offset = !small_offset_p (off, align, offbits);
df58fc94
RS
13214 ep = &offset_expr;
13215 expr1.X_add_number = 0;
f2ae14a1 13216 if (large_offset)
df58fc94
RS
13217 {
13218 used_at = 1;
13219 tempreg = AT;
f2ae14a1
RS
13220 if (small_offset_p (0, align, 16))
13221 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13222 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13223 else
13224 {
13225 load_address (tempreg, ep, &used_at);
13226 if (breg != 0)
13227 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13228 tempreg, tempreg, breg);
13229 }
13230 offset_reloc[0] = BFD_RELOC_LO16;
13231 offset_reloc[1] = BFD_RELOC_UNUSED;
13232 offset_reloc[2] = BFD_RELOC_UNUSED;
df58fc94 13233 breg = tempreg;
c0ebe874 13234 tempreg = op[0];
df58fc94
RS
13235 ep = &expr1;
13236 }
c0ebe874 13237 else if (!ust && op[0] == breg)
8fc2e39e
TS
13238 {
13239 used_at = 1;
13240 tempreg = AT;
13241 }
252b5132 13242 else
c0ebe874 13243 tempreg = op[0];
af22f5b2 13244
df58fc94
RS
13245 if (off == 1)
13246 goto ulh_sh;
252b5132 13247
90ecf173 13248 if (!target_big_endian)
df58fc94 13249 ep->X_add_number += off;
f2ae14a1 13250 if (offbits == 12)
c8276761 13251 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13252 else
13253 macro_build (ep, s, "t,o(b)", tempreg, -1,
13254 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94 13255
90ecf173 13256 if (!target_big_endian)
df58fc94 13257 ep->X_add_number -= off;
252b5132 13258 else
df58fc94 13259 ep->X_add_number += off;
f2ae14a1 13260 if (offbits == 12)
df58fc94 13261 macro_build (NULL, s2, "t,~(b)",
c8276761 13262 tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13263 else
13264 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13265 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13266
df58fc94 13267 /* If necessary, move the result in tempreg to the final destination. */
c0ebe874 13268 if (!ust && op[0] != tempreg)
df58fc94
RS
13269 {
13270 /* Protect second load's delay slot. */
13271 load_delay_nop ();
c0ebe874 13272 move_register (op[0], tempreg);
df58fc94 13273 }
8fc2e39e 13274 break;
252b5132 13275
df58fc94 13276 ulh_sh:
d6bc6245 13277 used_at = 1;
df58fc94
RS
13278 if (target_big_endian == ust)
13279 ep->X_add_number += off;
c0ebe874 13280 tempreg = ust || large_offset ? op[0] : AT;
f2ae14a1
RS
13281 macro_build (ep, s, "t,o(b)", tempreg, -1,
13282 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94
RS
13283
13284 /* For halfword transfers we need a temporary register to shuffle
13285 bytes. Unfortunately for M_USH_A we have none available before
13286 the next store as AT holds the base address. We deal with this
13287 case by clobbering TREG and then restoring it as with ULH. */
c0ebe874 13288 tempreg = ust == large_offset ? op[0] : AT;
df58fc94 13289 if (ust)
c0ebe874 13290 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
df58fc94
RS
13291
13292 if (target_big_endian == ust)
13293 ep->X_add_number -= off;
252b5132 13294 else
df58fc94 13295 ep->X_add_number += off;
f2ae14a1
RS
13296 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13297 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13298
df58fc94 13299 /* For M_USH_A re-retrieve the LSB. */
f2ae14a1 13300 if (ust && large_offset)
df58fc94
RS
13301 {
13302 if (target_big_endian)
13303 ep->X_add_number += off;
13304 else
13305 ep->X_add_number -= off;
f2ae14a1
RS
13306 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13307 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
df58fc94
RS
13308 }
13309 /* For ULH and M_USH_A OR the LSB in. */
f2ae14a1 13310 if (!ust || large_offset)
df58fc94 13311 {
c0ebe874 13312 tempreg = !large_offset ? AT : op[0];
df58fc94 13313 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
c0ebe874 13314 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
df58fc94 13315 }
252b5132
RH
13316 break;
13317
13318 default:
13319 /* FIXME: Check if this is one of the itbl macros, since they
bdaaa2e1 13320 are added dynamically. */
1661c76c 13321 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
252b5132
RH
13322 break;
13323 }
741fe287 13324 if (!mips_opts.at && used_at)
1661c76c 13325 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
13326}
13327
13328/* Implement macros in mips16 mode. */
13329
13330static void
17a2f251 13331mips16_macro (struct mips_cl_insn *ip)
252b5132 13332{
c0ebe874 13333 const struct mips_operand_array *operands;
252b5132 13334 int mask;
c0ebe874 13335 int tmp;
252b5132
RH
13336 expressionS expr1;
13337 int dbl;
13338 const char *s, *s2, *s3;
c0ebe874
RS
13339 unsigned int op[MAX_OPERANDS];
13340 unsigned int i;
252b5132
RH
13341
13342 mask = ip->insn_mo->mask;
13343
c0ebe874
RS
13344 operands = insn_operands (ip);
13345 for (i = 0; i < MAX_OPERANDS; i++)
13346 if (operands->operand[i])
13347 op[i] = insn_extract_operand (ip, operands->operand[i]);
13348 else
13349 op[i] = -1;
252b5132 13350
252b5132
RH
13351 expr1.X_op = O_constant;
13352 expr1.X_op_symbol = NULL;
13353 expr1.X_add_symbol = NULL;
13354 expr1.X_add_number = 1;
13355
13356 dbl = 0;
13357
13358 switch (mask)
13359 {
13360 default:
b37df7c4 13361 abort ();
252b5132
RH
13362
13363 case M_DDIV_3:
13364 dbl = 1;
13365 case M_DIV_3:
13366 s = "mflo";
13367 goto do_div3;
13368 case M_DREM_3:
13369 dbl = 1;
13370 case M_REM_3:
13371 s = "mfhi";
13372 do_div3:
7d10b47d 13373 start_noreorder ();
c0ebe874 13374 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
252b5132 13375 expr1.X_add_number = 2;
c0ebe874 13376 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13377 macro_build (NULL, "break", "6", 7);
bdaaa2e1 13378
252b5132
RH
13379 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13380 since that causes an overflow. We should do that as well,
13381 but I don't see how to do the comparisons without a temporary
13382 register. */
7d10b47d 13383 end_noreorder ();
c0ebe874 13384 macro_build (NULL, s, "x", op[0]);
252b5132
RH
13385 break;
13386
13387 case M_DIVU_3:
13388 s = "divu";
13389 s2 = "mflo";
13390 goto do_divu3;
13391 case M_REMU_3:
13392 s = "divu";
13393 s2 = "mfhi";
13394 goto do_divu3;
13395 case M_DDIVU_3:
13396 s = "ddivu";
13397 s2 = "mflo";
13398 goto do_divu3;
13399 case M_DREMU_3:
13400 s = "ddivu";
13401 s2 = "mfhi";
13402 do_divu3:
7d10b47d 13403 start_noreorder ();
c0ebe874 13404 macro_build (NULL, s, "0,x,y", op[1], op[2]);
252b5132 13405 expr1.X_add_number = 2;
c0ebe874 13406 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13407 macro_build (NULL, "break", "6", 7);
7d10b47d 13408 end_noreorder ();
c0ebe874 13409 macro_build (NULL, s2, "x", op[0]);
252b5132
RH
13410 break;
13411
13412 case M_DMUL:
13413 dbl = 1;
13414 case M_MUL:
c0ebe874
RS
13415 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13416 macro_build (NULL, "mflo", "x", op[0]);
8fc2e39e 13417 break;
252b5132
RH
13418
13419 case M_DSUBU_I:
13420 dbl = 1;
13421 goto do_subu;
13422 case M_SUBU_I:
13423 do_subu:
252b5132 13424 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13425 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
252b5132
RH
13426 break;
13427
13428 case M_SUBU_I_2:
252b5132 13429 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13430 macro_build (&imm_expr, "addiu", "x,k", op[0]);
252b5132
RH
13431 break;
13432
13433 case M_DSUBU_I_2:
252b5132 13434 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13435 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
252b5132
RH
13436 break;
13437
13438 case M_BEQ:
13439 s = "cmp";
13440 s2 = "bteqz";
13441 goto do_branch;
13442 case M_BNE:
13443 s = "cmp";
13444 s2 = "btnez";
13445 goto do_branch;
13446 case M_BLT:
13447 s = "slt";
13448 s2 = "btnez";
13449 goto do_branch;
13450 case M_BLTU:
13451 s = "sltu";
13452 s2 = "btnez";
13453 goto do_branch;
13454 case M_BLE:
13455 s = "slt";
13456 s2 = "bteqz";
13457 goto do_reverse_branch;
13458 case M_BLEU:
13459 s = "sltu";
13460 s2 = "bteqz";
13461 goto do_reverse_branch;
13462 case M_BGE:
13463 s = "slt";
13464 s2 = "bteqz";
13465 goto do_branch;
13466 case M_BGEU:
13467 s = "sltu";
13468 s2 = "bteqz";
13469 goto do_branch;
13470 case M_BGT:
13471 s = "slt";
13472 s2 = "btnez";
13473 goto do_reverse_branch;
13474 case M_BGTU:
13475 s = "sltu";
13476 s2 = "btnez";
13477
13478 do_reverse_branch:
c0ebe874
RS
13479 tmp = op[1];
13480 op[1] = op[0];
13481 op[0] = tmp;
252b5132
RH
13482
13483 do_branch:
c0ebe874 13484 macro_build (NULL, s, "x,y", op[0], op[1]);
67c0d1eb 13485 macro_build (&offset_expr, s2, "p");
252b5132
RH
13486 break;
13487
13488 case M_BEQ_I:
13489 s = "cmpi";
13490 s2 = "bteqz";
13491 s3 = "x,U";
13492 goto do_branch_i;
13493 case M_BNE_I:
13494 s = "cmpi";
13495 s2 = "btnez";
13496 s3 = "x,U";
13497 goto do_branch_i;
13498 case M_BLT_I:
13499 s = "slti";
13500 s2 = "btnez";
13501 s3 = "x,8";
13502 goto do_branch_i;
13503 case M_BLTU_I:
13504 s = "sltiu";
13505 s2 = "btnez";
13506 s3 = "x,8";
13507 goto do_branch_i;
13508 case M_BLE_I:
13509 s = "slti";
13510 s2 = "btnez";
13511 s3 = "x,8";
13512 goto do_addone_branch_i;
13513 case M_BLEU_I:
13514 s = "sltiu";
13515 s2 = "btnez";
13516 s3 = "x,8";
13517 goto do_addone_branch_i;
13518 case M_BGE_I:
13519 s = "slti";
13520 s2 = "bteqz";
13521 s3 = "x,8";
13522 goto do_branch_i;
13523 case M_BGEU_I:
13524 s = "sltiu";
13525 s2 = "bteqz";
13526 s3 = "x,8";
13527 goto do_branch_i;
13528 case M_BGT_I:
13529 s = "slti";
13530 s2 = "bteqz";
13531 s3 = "x,8";
13532 goto do_addone_branch_i;
13533 case M_BGTU_I:
13534 s = "sltiu";
13535 s2 = "bteqz";
13536 s3 = "x,8";
13537
13538 do_addone_branch_i:
252b5132
RH
13539 ++imm_expr.X_add_number;
13540
13541 do_branch_i:
c0ebe874 13542 macro_build (&imm_expr, s, s3, op[0]);
67c0d1eb 13543 macro_build (&offset_expr, s2, "p");
252b5132
RH
13544 break;
13545
13546 case M_ABS:
13547 expr1.X_add_number = 0;
c0ebe874
RS
13548 macro_build (&expr1, "slti", "x,8", op[1]);
13549 if (op[0] != op[1])
13550 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
252b5132 13551 expr1.X_add_number = 2;
67c0d1eb 13552 macro_build (&expr1, "bteqz", "p");
c0ebe874 13553 macro_build (NULL, "neg", "x,w", op[0], op[0]);
0acfaea6 13554 break;
252b5132
RH
13555 }
13556}
13557
14daeee3
RS
13558/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13559 opcode bits in *OPCODE_EXTRA. */
13560
13561static struct mips_opcode *
13562mips_lookup_insn (struct hash_control *hash, const char *start,
da8bca91 13563 ssize_t length, unsigned int *opcode_extra)
14daeee3
RS
13564{
13565 char *name, *dot, *p;
13566 unsigned int mask, suffix;
da8bca91 13567 ssize_t opend;
14daeee3
RS
13568 struct mips_opcode *insn;
13569
13570 /* Make a copy of the instruction so that we can fiddle with it. */
4ec9d7d5 13571 name = xstrndup (start, length);
14daeee3
RS
13572
13573 /* Look up the instruction as-is. */
13574 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13575 if (insn)
e1fa0163 13576 goto end;
14daeee3
RS
13577
13578 dot = strchr (name, '.');
13579 if (dot && dot[1])
13580 {
13581 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13582 p = mips_parse_vu0_channels (dot + 1, &mask);
13583 if (*p == 0 && mask != 0)
13584 {
13585 *dot = 0;
13586 insn = (struct mips_opcode *) hash_find (hash, name);
13587 *dot = '.';
13588 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13589 {
13590 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
e1fa0163 13591 goto end;
14daeee3
RS
13592 }
13593 }
13594 }
13595
13596 if (mips_opts.micromips)
13597 {
13598 /* See if there's an instruction size override suffix,
13599 either `16' or `32', at the end of the mnemonic proper,
13600 that defines the operation, i.e. before the first `.'
13601 character if any. Strip it and retry. */
13602 opend = dot != NULL ? dot - name : length;
13603 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13604 suffix = 2;
13605 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13606 suffix = 4;
13607 else
13608 suffix = 0;
13609 if (suffix)
13610 {
13611 memcpy (name + opend - 2, name + opend, length - opend + 1);
13612 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13613 if (insn)
14daeee3
RS
13614 {
13615 forced_insn_length = suffix;
e1fa0163 13616 goto end;
14daeee3
RS
13617 }
13618 }
13619 }
13620
e1fa0163
NC
13621 insn = NULL;
13622 end:
13623 free (name);
13624 return insn;
14daeee3
RS
13625}
13626
77bd4346 13627/* Assemble an instruction into its binary format. If the instruction
e423441d
RS
13628 is a macro, set imm_expr and offset_expr to the values associated
13629 with "I" and "A" operands respectively. Otherwise store the value
13630 of the relocatable field (if any) in offset_expr. In both cases
13631 set offset_reloc to the relocation operators applied to offset_expr. */
252b5132
RH
13632
13633static void
60f20e8b 13634mips_ip (char *str, struct mips_cl_insn *insn)
252b5132 13635{
60f20e8b 13636 const struct mips_opcode *first, *past;
df58fc94 13637 struct hash_control *hash;
a92713e6 13638 char format;
14daeee3 13639 size_t end;
a92713e6 13640 struct mips_operand_token *tokens;
14daeee3 13641 unsigned int opcode_extra;
252b5132 13642
df58fc94
RS
13643 if (mips_opts.micromips)
13644 {
13645 hash = micromips_op_hash;
13646 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13647 }
13648 else
13649 {
13650 hash = op_hash;
13651 past = &mips_opcodes[NUMOPCODES];
13652 }
13653 forced_insn_length = 0;
14daeee3 13654 opcode_extra = 0;
252b5132 13655
df58fc94 13656 /* We first try to match an instruction up to a space or to the end. */
a40bc9dd
RS
13657 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13658 continue;
bdaaa2e1 13659
60f20e8b
RS
13660 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13661 if (first == NULL)
252b5132 13662 {
1661c76c 13663 set_insn_error (0, _("unrecognized opcode"));
a40bc9dd 13664 return;
252b5132
RH
13665 }
13666
60f20e8b 13667 if (strcmp (first->name, "li.s") == 0)
a92713e6 13668 format = 'f';
60f20e8b 13669 else if (strcmp (first->name, "li.d") == 0)
a92713e6
RS
13670 format = 'd';
13671 else
13672 format = 0;
13673 tokens = mips_parse_arguments (str + end, format);
13674 if (!tokens)
13675 return;
13676
60f20e8b
RS
13677 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13678 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
1661c76c 13679 set_insn_error (0, _("invalid operands"));
df58fc94 13680
e3de51ce 13681 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13682}
13683
77bd4346
RS
13684/* As for mips_ip, but used when assembling MIPS16 code.
13685 Also set forced_insn_length to the resulting instruction size in
13686 bytes if the user explicitly requested a small or extended instruction. */
252b5132
RH
13687
13688static void
60f20e8b 13689mips16_ip (char *str, struct mips_cl_insn *insn)
252b5132 13690{
1a00e612 13691 char *end, *s, c;
60f20e8b 13692 struct mips_opcode *first;
a92713e6 13693 struct mips_operand_token *tokens;
252b5132 13694
df58fc94 13695 forced_insn_length = 0;
252b5132 13696
3882b010 13697 for (s = str; ISLOWER (*s); ++s)
252b5132 13698 ;
1a00e612
RS
13699 end = s;
13700 c = *end;
13701 switch (c)
252b5132
RH
13702 {
13703 case '\0':
13704 break;
13705
13706 case ' ':
1a00e612 13707 s++;
252b5132
RH
13708 break;
13709
13710 case '.':
13711 if (s[1] == 't' && s[2] == ' ')
13712 {
df58fc94 13713 forced_insn_length = 2;
252b5132
RH
13714 s += 3;
13715 break;
13716 }
13717 else if (s[1] == 'e' && s[2] == ' ')
13718 {
df58fc94 13719 forced_insn_length = 4;
252b5132
RH
13720 s += 3;
13721 break;
13722 }
13723 /* Fall through. */
13724 default:
1661c76c 13725 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13726 return;
13727 }
13728
df58fc94
RS
13729 if (mips_opts.noautoextend && !forced_insn_length)
13730 forced_insn_length = 2;
252b5132 13731
1a00e612 13732 *end = 0;
60f20e8b 13733 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
1a00e612
RS
13734 *end = c;
13735
60f20e8b 13736 if (!first)
252b5132 13737 {
1661c76c 13738 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13739 return;
13740 }
13741
a92713e6
RS
13742 tokens = mips_parse_arguments (s, 0);
13743 if (!tokens)
13744 return;
13745
60f20e8b 13746 if (!match_mips16_insns (insn, first, tokens))
1661c76c 13747 set_insn_error (0, _("invalid operands"));
252b5132 13748
e3de51ce 13749 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13750}
13751
b886a2ab
RS
13752/* Marshal immediate value VAL for an extended MIPS16 instruction.
13753 NBITS is the number of significant bits in VAL. */
13754
13755static unsigned long
13756mips16_immed_extend (offsetT val, unsigned int nbits)
13757{
13758 int extval;
13759 if (nbits == 16)
13760 {
13761 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13762 val &= 0x1f;
13763 }
13764 else if (nbits == 15)
13765 {
13766 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13767 val &= 0xf;
13768 }
13769 else
13770 {
13771 extval = ((val & 0x1f) << 6) | (val & 0x20);
13772 val = 0;
13773 }
13774 return (extval << 16) | val;
13775}
13776
3ccad066
RS
13777/* Like decode_mips16_operand, but require the operand to be defined and
13778 require it to be an integer. */
13779
13780static const struct mips_int_operand *
13781mips16_immed_operand (int type, bfd_boolean extended_p)
13782{
13783 const struct mips_operand *operand;
13784
13785 operand = decode_mips16_operand (type, extended_p);
13786 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13787 abort ();
13788 return (const struct mips_int_operand *) operand;
13789}
13790
13791/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13792
13793static bfd_boolean
13794mips16_immed_in_range_p (const struct mips_int_operand *operand,
13795 bfd_reloc_code_real_type reloc, offsetT sval)
13796{
13797 int min_val, max_val;
13798
13799 min_val = mips_int_operand_min (operand);
13800 max_val = mips_int_operand_max (operand);
13801 if (reloc != BFD_RELOC_UNUSED)
13802 {
13803 if (min_val < 0)
13804 sval = SEXT_16BIT (sval);
13805 else
13806 sval &= 0xffff;
13807 }
13808
13809 return (sval >= min_val
13810 && sval <= max_val
13811 && (sval & ((1 << operand->shift) - 1)) == 0);
13812}
13813
5c04167a
RS
13814/* Install immediate value VAL into MIPS16 instruction *INSN,
13815 extending it if necessary. The instruction in *INSN may
13816 already be extended.
13817
43c0598f
RS
13818 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13819 if none. In the former case, VAL is a 16-bit number with no
13820 defined signedness.
13821
13822 TYPE is the type of the immediate field. USER_INSN_LENGTH
13823 is the length that the user requested, or 0 if none. */
252b5132
RH
13824
13825static void
3b4dbbbf 13826mips16_immed (const char *file, unsigned int line, int type,
43c0598f 13827 bfd_reloc_code_real_type reloc, offsetT val,
5c04167a 13828 unsigned int user_insn_length, unsigned long *insn)
252b5132 13829{
3ccad066
RS
13830 const struct mips_int_operand *operand;
13831 unsigned int uval, length;
252b5132 13832
3ccad066
RS
13833 operand = mips16_immed_operand (type, FALSE);
13834 if (!mips16_immed_in_range_p (operand, reloc, val))
5c04167a
RS
13835 {
13836 /* We need an extended instruction. */
13837 if (user_insn_length == 2)
13838 as_bad_where (file, line, _("invalid unextended operand value"));
13839 else
13840 *insn |= MIPS16_EXTEND;
13841 }
13842 else if (user_insn_length == 4)
13843 {
13844 /* The operand doesn't force an unextended instruction to be extended.
13845 Warn if the user wanted an extended instruction anyway. */
13846 *insn |= MIPS16_EXTEND;
13847 as_warn_where (file, line,
13848 _("extended operand requested but not required"));
13849 }
252b5132 13850
3ccad066
RS
13851 length = mips16_opcode_length (*insn);
13852 if (length == 4)
252b5132 13853 {
3ccad066
RS
13854 operand = mips16_immed_operand (type, TRUE);
13855 if (!mips16_immed_in_range_p (operand, reloc, val))
13856 as_bad_where (file, line,
13857 _("operand value out of range for instruction"));
252b5132 13858 }
3ccad066
RS
13859 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13860 if (length == 2)
13861 *insn = mips_insert_operand (&operand->root, *insn, uval);
252b5132 13862 else
3ccad066 13863 *insn |= mips16_immed_extend (uval, operand->root.size);
252b5132
RH
13864}
13865\f
d6f16593 13866struct percent_op_match
ad8d3bb3 13867{
5e0116d5
RS
13868 const char *str;
13869 bfd_reloc_code_real_type reloc;
d6f16593
MR
13870};
13871
13872static const struct percent_op_match mips_percent_op[] =
ad8d3bb3 13873{
5e0116d5 13874 {"%lo", BFD_RELOC_LO16},
5e0116d5
RS
13875 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13876 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13877 {"%call16", BFD_RELOC_MIPS_CALL16},
13878 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13879 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13880 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13881 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13882 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13883 {"%got", BFD_RELOC_MIPS_GOT16},
13884 {"%gp_rel", BFD_RELOC_GPREL16},
13885 {"%half", BFD_RELOC_16},
13886 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13887 {"%higher", BFD_RELOC_MIPS_HIGHER},
13888 {"%neg", BFD_RELOC_MIPS_SUB},
3f98094e
DJ
13889 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13890 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13891 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13892 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13893 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13894 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13895 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
7361da2c
AB
13896 {"%hi", BFD_RELOC_HI16_S},
13897 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13898 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
ad8d3bb3
TS
13899};
13900
d6f16593
MR
13901static const struct percent_op_match mips16_percent_op[] =
13902{
13903 {"%lo", BFD_RELOC_MIPS16_LO16},
13904 {"%gprel", BFD_RELOC_MIPS16_GPREL},
738e5348
RS
13905 {"%got", BFD_RELOC_MIPS16_GOT16},
13906 {"%call16", BFD_RELOC_MIPS16_CALL16},
d0f13682
CLT
13907 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13908 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13909 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13910 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13911 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13912 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13913 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13914 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
d6f16593
MR
13915};
13916
252b5132 13917
5e0116d5
RS
13918/* Return true if *STR points to a relocation operator. When returning true,
13919 move *STR over the operator and store its relocation code in *RELOC.
13920 Leave both *STR and *RELOC alone when returning false. */
13921
13922static bfd_boolean
17a2f251 13923parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
252b5132 13924{
d6f16593
MR
13925 const struct percent_op_match *percent_op;
13926 size_t limit, i;
13927
13928 if (mips_opts.mips16)
13929 {
13930 percent_op = mips16_percent_op;
13931 limit = ARRAY_SIZE (mips16_percent_op);
13932 }
13933 else
13934 {
13935 percent_op = mips_percent_op;
13936 limit = ARRAY_SIZE (mips_percent_op);
13937 }
76b3015f 13938
d6f16593 13939 for (i = 0; i < limit; i++)
5e0116d5 13940 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
394f9b3a 13941 {
3f98094e
DJ
13942 int len = strlen (percent_op[i].str);
13943
13944 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13945 continue;
13946
5e0116d5
RS
13947 *str += strlen (percent_op[i].str);
13948 *reloc = percent_op[i].reloc;
394f9b3a 13949
5e0116d5
RS
13950 /* Check whether the output BFD supports this relocation.
13951 If not, issue an error and fall back on something safe. */
13952 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
394f9b3a 13953 {
20203fb9 13954 as_bad (_("relocation %s isn't supported by the current ABI"),
5e0116d5 13955 percent_op[i].str);
01a3f561 13956 *reloc = BFD_RELOC_UNUSED;
394f9b3a 13957 }
5e0116d5 13958 return TRUE;
394f9b3a 13959 }
5e0116d5 13960 return FALSE;
394f9b3a 13961}
ad8d3bb3 13962
ad8d3bb3 13963
5e0116d5
RS
13964/* Parse string STR as a 16-bit relocatable operand. Store the
13965 expression in *EP and the relocations in the array starting
13966 at RELOC. Return the number of relocation operators used.
ad8d3bb3 13967
01a3f561 13968 On exit, EXPR_END points to the first character after the expression. */
ad8d3bb3 13969
5e0116d5 13970static size_t
17a2f251
TS
13971my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13972 char *str)
ad8d3bb3 13973{
5e0116d5
RS
13974 bfd_reloc_code_real_type reversed_reloc[3];
13975 size_t reloc_index, i;
09b8f35a
RS
13976 int crux_depth, str_depth;
13977 char *crux;
5e0116d5
RS
13978
13979 /* Search for the start of the main expression, recoding relocations
09b8f35a
RS
13980 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13981 of the main expression and with CRUX_DEPTH containing the number
13982 of open brackets at that point. */
13983 reloc_index = -1;
13984 str_depth = 0;
13985 do
fb1b3232 13986 {
09b8f35a
RS
13987 reloc_index++;
13988 crux = str;
13989 crux_depth = str_depth;
13990
13991 /* Skip over whitespace and brackets, keeping count of the number
13992 of brackets. */
13993 while (*str == ' ' || *str == '\t' || *str == '(')
13994 if (*str++ == '(')
13995 str_depth++;
5e0116d5 13996 }
09b8f35a
RS
13997 while (*str == '%'
13998 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13999 && parse_relocation (&str, &reversed_reloc[reloc_index]));
ad8d3bb3 14000
09b8f35a 14001 my_getExpression (ep, crux);
5e0116d5 14002 str = expr_end;
394f9b3a 14003
5e0116d5 14004 /* Match every open bracket. */
09b8f35a 14005 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
5e0116d5 14006 if (*str++ == ')')
09b8f35a 14007 crux_depth--;
394f9b3a 14008
09b8f35a 14009 if (crux_depth > 0)
20203fb9 14010 as_bad (_("unclosed '('"));
394f9b3a 14011
5e0116d5 14012 expr_end = str;
252b5132 14013
01a3f561 14014 if (reloc_index != 0)
64bdfcaf
RS
14015 {
14016 prev_reloc_op_frag = frag_now;
14017 for (i = 0; i < reloc_index; i++)
14018 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14019 }
fb1b3232 14020
5e0116d5 14021 return reloc_index;
252b5132
RH
14022}
14023
14024static void
17a2f251 14025my_getExpression (expressionS *ep, char *str)
252b5132
RH
14026{
14027 char *save_in;
14028
14029 save_in = input_line_pointer;
14030 input_line_pointer = str;
14031 expression (ep);
14032 expr_end = input_line_pointer;
14033 input_line_pointer = save_in;
252b5132
RH
14034}
14035
6d4af3c2 14036const char *
17a2f251 14037md_atof (int type, char *litP, int *sizeP)
252b5132 14038{
499ac353 14039 return ieee_md_atof (type, litP, sizeP, target_big_endian);
252b5132
RH
14040}
14041
14042void
17a2f251 14043md_number_to_chars (char *buf, valueT val, int n)
252b5132
RH
14044{
14045 if (target_big_endian)
14046 number_to_chars_bigendian (buf, val, n);
14047 else
14048 number_to_chars_littleendian (buf, val, n);
14049}
14050\f
e013f690
TS
14051static int support_64bit_objects(void)
14052{
14053 const char **list, **l;
aa3d8fdf 14054 int yes;
e013f690
TS
14055
14056 list = bfd_target_list ();
14057 for (l = list; *l != NULL; l++)
aeffff67
RS
14058 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14059 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
e013f690 14060 break;
aa3d8fdf 14061 yes = (*l != NULL);
e013f690 14062 free (list);
aa3d8fdf 14063 return yes;
e013f690
TS
14064}
14065
316f5878
RS
14066/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14067 NEW_VALUE. Warn if another value was already specified. Note:
14068 we have to defer parsing the -march and -mtune arguments in order
14069 to handle 'from-abi' correctly, since the ABI might be specified
14070 in a later argument. */
14071
14072static void
17a2f251 14073mips_set_option_string (const char **string_ptr, const char *new_value)
316f5878
RS
14074{
14075 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
1661c76c 14076 as_warn (_("a different %s was already specified, is now %s"),
316f5878
RS
14077 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14078 new_value);
14079
14080 *string_ptr = new_value;
14081}
14082
252b5132 14083int
17b9d67d 14084md_parse_option (int c, const char *arg)
252b5132 14085{
c6278170
RS
14086 unsigned int i;
14087
14088 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14089 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14090 {
919731af 14091 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c6278170
RS
14092 c == mips_ases[i].option_on);
14093 return 1;
14094 }
14095
252b5132
RH
14096 switch (c)
14097 {
119d663a
NC
14098 case OPTION_CONSTRUCT_FLOATS:
14099 mips_disable_float_construction = 0;
14100 break;
bdaaa2e1 14101
119d663a
NC
14102 case OPTION_NO_CONSTRUCT_FLOATS:
14103 mips_disable_float_construction = 1;
14104 break;
bdaaa2e1 14105
252b5132
RH
14106 case OPTION_TRAP:
14107 mips_trap = 1;
14108 break;
14109
14110 case OPTION_BREAK:
14111 mips_trap = 0;
14112 break;
14113
14114 case OPTION_EB:
14115 target_big_endian = 1;
14116 break;
14117
14118 case OPTION_EL:
14119 target_big_endian = 0;
14120 break;
14121
14122 case 'O':
4ffff32f
TS
14123 if (arg == NULL)
14124 mips_optimize = 1;
14125 else if (arg[0] == '0')
14126 mips_optimize = 0;
14127 else if (arg[0] == '1')
252b5132
RH
14128 mips_optimize = 1;
14129 else
14130 mips_optimize = 2;
14131 break;
14132
14133 case 'g':
14134 if (arg == NULL)
14135 mips_debug = 2;
14136 else
14137 mips_debug = atoi (arg);
252b5132
RH
14138 break;
14139
14140 case OPTION_MIPS1:
0b35dfee 14141 file_mips_opts.isa = ISA_MIPS1;
252b5132
RH
14142 break;
14143
14144 case OPTION_MIPS2:
0b35dfee 14145 file_mips_opts.isa = ISA_MIPS2;
252b5132
RH
14146 break;
14147
14148 case OPTION_MIPS3:
0b35dfee 14149 file_mips_opts.isa = ISA_MIPS3;
252b5132
RH
14150 break;
14151
14152 case OPTION_MIPS4:
0b35dfee 14153 file_mips_opts.isa = ISA_MIPS4;
e7af610e
NC
14154 break;
14155
84ea6cf2 14156 case OPTION_MIPS5:
0b35dfee 14157 file_mips_opts.isa = ISA_MIPS5;
84ea6cf2
NC
14158 break;
14159
e7af610e 14160 case OPTION_MIPS32:
0b35dfee 14161 file_mips_opts.isa = ISA_MIPS32;
252b5132
RH
14162 break;
14163
af7ee8bf 14164 case OPTION_MIPS32R2:
0b35dfee 14165 file_mips_opts.isa = ISA_MIPS32R2;
af7ee8bf
CD
14166 break;
14167
ae52f483 14168 case OPTION_MIPS32R3:
0ae19f05 14169 file_mips_opts.isa = ISA_MIPS32R3;
ae52f483
AB
14170 break;
14171
14172 case OPTION_MIPS32R5:
0ae19f05 14173 file_mips_opts.isa = ISA_MIPS32R5;
ae52f483
AB
14174 break;
14175
7361da2c
AB
14176 case OPTION_MIPS32R6:
14177 file_mips_opts.isa = ISA_MIPS32R6;
14178 break;
14179
5f74bc13 14180 case OPTION_MIPS64R2:
0b35dfee 14181 file_mips_opts.isa = ISA_MIPS64R2;
5f74bc13
CD
14182 break;
14183
ae52f483 14184 case OPTION_MIPS64R3:
0ae19f05 14185 file_mips_opts.isa = ISA_MIPS64R3;
ae52f483
AB
14186 break;
14187
14188 case OPTION_MIPS64R5:
0ae19f05 14189 file_mips_opts.isa = ISA_MIPS64R5;
ae52f483
AB
14190 break;
14191
7361da2c
AB
14192 case OPTION_MIPS64R6:
14193 file_mips_opts.isa = ISA_MIPS64R6;
14194 break;
14195
84ea6cf2 14196 case OPTION_MIPS64:
0b35dfee 14197 file_mips_opts.isa = ISA_MIPS64;
84ea6cf2
NC
14198 break;
14199
ec68c924 14200 case OPTION_MTUNE:
316f5878
RS
14201 mips_set_option_string (&mips_tune_string, arg);
14202 break;
ec68c924 14203
316f5878
RS
14204 case OPTION_MARCH:
14205 mips_set_option_string (&mips_arch_string, arg);
252b5132
RH
14206 break;
14207
14208 case OPTION_M4650:
316f5878
RS
14209 mips_set_option_string (&mips_arch_string, "4650");
14210 mips_set_option_string (&mips_tune_string, "4650");
252b5132
RH
14211 break;
14212
14213 case OPTION_NO_M4650:
14214 break;
14215
14216 case OPTION_M4010:
316f5878
RS
14217 mips_set_option_string (&mips_arch_string, "4010");
14218 mips_set_option_string (&mips_tune_string, "4010");
252b5132
RH
14219 break;
14220
14221 case OPTION_NO_M4010:
14222 break;
14223
14224 case OPTION_M4100:
316f5878
RS
14225 mips_set_option_string (&mips_arch_string, "4100");
14226 mips_set_option_string (&mips_tune_string, "4100");
252b5132
RH
14227 break;
14228
14229 case OPTION_NO_M4100:
14230 break;
14231
252b5132 14232 case OPTION_M3900:
316f5878
RS
14233 mips_set_option_string (&mips_arch_string, "3900");
14234 mips_set_option_string (&mips_tune_string, "3900");
252b5132 14235 break;
bdaaa2e1 14236
252b5132
RH
14237 case OPTION_NO_M3900:
14238 break;
14239
df58fc94 14240 case OPTION_MICROMIPS:
919731af 14241 if (file_mips_opts.mips16 == 1)
df58fc94
RS
14242 {
14243 as_bad (_("-mmicromips cannot be used with -mips16"));
14244 return 0;
14245 }
919731af 14246 file_mips_opts.micromips = 1;
df58fc94
RS
14247 mips_no_prev_insn ();
14248 break;
14249
14250 case OPTION_NO_MICROMIPS:
919731af 14251 file_mips_opts.micromips = 0;
df58fc94
RS
14252 mips_no_prev_insn ();
14253 break;
14254
252b5132 14255 case OPTION_MIPS16:
919731af 14256 if (file_mips_opts.micromips == 1)
df58fc94
RS
14257 {
14258 as_bad (_("-mips16 cannot be used with -micromips"));
14259 return 0;
14260 }
919731af 14261 file_mips_opts.mips16 = 1;
7d10b47d 14262 mips_no_prev_insn ();
252b5132
RH
14263 break;
14264
14265 case OPTION_NO_MIPS16:
919731af 14266 file_mips_opts.mips16 = 0;
7d10b47d 14267 mips_no_prev_insn ();
252b5132
RH
14268 break;
14269
6a32d874
CM
14270 case OPTION_FIX_24K:
14271 mips_fix_24k = 1;
14272 break;
14273
14274 case OPTION_NO_FIX_24K:
14275 mips_fix_24k = 0;
14276 break;
14277
a8d14a88
CM
14278 case OPTION_FIX_RM7000:
14279 mips_fix_rm7000 = 1;
14280 break;
14281
14282 case OPTION_NO_FIX_RM7000:
14283 mips_fix_rm7000 = 0;
14284 break;
14285
c67a084a
NC
14286 case OPTION_FIX_LOONGSON2F_JUMP:
14287 mips_fix_loongson2f_jump = TRUE;
14288 break;
14289
14290 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14291 mips_fix_loongson2f_jump = FALSE;
14292 break;
14293
14294 case OPTION_FIX_LOONGSON2F_NOP:
14295 mips_fix_loongson2f_nop = TRUE;
14296 break;
14297
14298 case OPTION_NO_FIX_LOONGSON2F_NOP:
14299 mips_fix_loongson2f_nop = FALSE;
14300 break;
14301
d766e8ec
RS
14302 case OPTION_FIX_VR4120:
14303 mips_fix_vr4120 = 1;
60b63b72
RS
14304 break;
14305
d766e8ec
RS
14306 case OPTION_NO_FIX_VR4120:
14307 mips_fix_vr4120 = 0;
60b63b72
RS
14308 break;
14309
7d8e00cf
RS
14310 case OPTION_FIX_VR4130:
14311 mips_fix_vr4130 = 1;
14312 break;
14313
14314 case OPTION_NO_FIX_VR4130:
14315 mips_fix_vr4130 = 0;
14316 break;
14317
d954098f
DD
14318 case OPTION_FIX_CN63XXP1:
14319 mips_fix_cn63xxp1 = TRUE;
14320 break;
14321
14322 case OPTION_NO_FIX_CN63XXP1:
14323 mips_fix_cn63xxp1 = FALSE;
14324 break;
14325
4a6a3df4
AO
14326 case OPTION_RELAX_BRANCH:
14327 mips_relax_branch = 1;
14328 break;
14329
14330 case OPTION_NO_RELAX_BRANCH:
14331 mips_relax_branch = 0;
14332 break;
14333
833794fc 14334 case OPTION_INSN32:
919731af 14335 file_mips_opts.insn32 = TRUE;
833794fc
MR
14336 break;
14337
14338 case OPTION_NO_INSN32:
919731af 14339 file_mips_opts.insn32 = FALSE;
833794fc
MR
14340 break;
14341
aa6975fb
ILT
14342 case OPTION_MSHARED:
14343 mips_in_shared = TRUE;
14344 break;
14345
14346 case OPTION_MNO_SHARED:
14347 mips_in_shared = FALSE;
14348 break;
14349
aed1a261 14350 case OPTION_MSYM32:
919731af 14351 file_mips_opts.sym32 = TRUE;
aed1a261
RS
14352 break;
14353
14354 case OPTION_MNO_SYM32:
919731af 14355 file_mips_opts.sym32 = FALSE;
aed1a261
RS
14356 break;
14357
252b5132
RH
14358 /* When generating ELF code, we permit -KPIC and -call_shared to
14359 select SVR4_PIC, and -non_shared to select no PIC. This is
14360 intended to be compatible with Irix 5. */
14361 case OPTION_CALL_SHARED:
252b5132 14362 mips_pic = SVR4_PIC;
143d77c5 14363 mips_abicalls = TRUE;
252b5132
RH
14364 break;
14365
861fb55a 14366 case OPTION_CALL_NONPIC:
861fb55a
DJ
14367 mips_pic = NO_PIC;
14368 mips_abicalls = TRUE;
14369 break;
14370
252b5132 14371 case OPTION_NON_SHARED:
252b5132 14372 mips_pic = NO_PIC;
143d77c5 14373 mips_abicalls = FALSE;
252b5132
RH
14374 break;
14375
44075ae2
TS
14376 /* The -xgot option tells the assembler to use 32 bit offsets
14377 when accessing the got in SVR4_PIC mode. It is for Irix
252b5132
RH
14378 compatibility. */
14379 case OPTION_XGOT:
14380 mips_big_got = 1;
14381 break;
14382
14383 case 'G':
6caf9ef4
TS
14384 g_switch_value = atoi (arg);
14385 g_switch_seen = 1;
252b5132
RH
14386 break;
14387
34ba82a8
TS
14388 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14389 and -mabi=64. */
252b5132 14390 case OPTION_32:
f3ded42a 14391 mips_abi = O32_ABI;
252b5132
RH
14392 break;
14393
e013f690 14394 case OPTION_N32:
316f5878 14395 mips_abi = N32_ABI;
e013f690 14396 break;
252b5132 14397
e013f690 14398 case OPTION_64:
316f5878 14399 mips_abi = N64_ABI;
f43abd2b 14400 if (!support_64bit_objects())
1661c76c 14401 as_fatal (_("no compiled in support for 64 bit object file format"));
252b5132
RH
14402 break;
14403
c97ef257 14404 case OPTION_GP32:
bad1aba3 14405 file_mips_opts.gp = 32;
c97ef257
AH
14406 break;
14407
14408 case OPTION_GP64:
bad1aba3 14409 file_mips_opts.gp = 64;
c97ef257 14410 break;
252b5132 14411
ca4e0257 14412 case OPTION_FP32:
0b35dfee 14413 file_mips_opts.fp = 32;
316f5878
RS
14414 break;
14415
351cdf24
MF
14416 case OPTION_FPXX:
14417 file_mips_opts.fp = 0;
14418 break;
14419
316f5878 14420 case OPTION_FP64:
0b35dfee 14421 file_mips_opts.fp = 64;
ca4e0257
RS
14422 break;
14423
351cdf24
MF
14424 case OPTION_ODD_SPREG:
14425 file_mips_opts.oddspreg = 1;
14426 break;
14427
14428 case OPTION_NO_ODD_SPREG:
14429 file_mips_opts.oddspreg = 0;
14430 break;
14431
037b32b9 14432 case OPTION_SINGLE_FLOAT:
0b35dfee 14433 file_mips_opts.single_float = 1;
037b32b9
AN
14434 break;
14435
14436 case OPTION_DOUBLE_FLOAT:
0b35dfee 14437 file_mips_opts.single_float = 0;
037b32b9
AN
14438 break;
14439
14440 case OPTION_SOFT_FLOAT:
0b35dfee 14441 file_mips_opts.soft_float = 1;
037b32b9
AN
14442 break;
14443
14444 case OPTION_HARD_FLOAT:
0b35dfee 14445 file_mips_opts.soft_float = 0;
037b32b9
AN
14446 break;
14447
252b5132 14448 case OPTION_MABI:
e013f690 14449 if (strcmp (arg, "32") == 0)
316f5878 14450 mips_abi = O32_ABI;
e013f690 14451 else if (strcmp (arg, "o64") == 0)
316f5878 14452 mips_abi = O64_ABI;
e013f690 14453 else if (strcmp (arg, "n32") == 0)
316f5878 14454 mips_abi = N32_ABI;
e013f690
TS
14455 else if (strcmp (arg, "64") == 0)
14456 {
316f5878 14457 mips_abi = N64_ABI;
e013f690 14458 if (! support_64bit_objects())
1661c76c 14459 as_fatal (_("no compiled in support for 64 bit object file "
e013f690
TS
14460 "format"));
14461 }
14462 else if (strcmp (arg, "eabi") == 0)
316f5878 14463 mips_abi = EABI_ABI;
e013f690 14464 else
da0e507f
TS
14465 {
14466 as_fatal (_("invalid abi -mabi=%s"), arg);
14467 return 0;
14468 }
252b5132
RH
14469 break;
14470
6b76fefe 14471 case OPTION_M7000_HILO_FIX:
b34976b6 14472 mips_7000_hilo_fix = TRUE;
6b76fefe
CM
14473 break;
14474
9ee72ff1 14475 case OPTION_MNO_7000_HILO_FIX:
b34976b6 14476 mips_7000_hilo_fix = FALSE;
6b76fefe
CM
14477 break;
14478
ecb4347a 14479 case OPTION_MDEBUG:
b34976b6 14480 mips_flag_mdebug = TRUE;
ecb4347a
DJ
14481 break;
14482
14483 case OPTION_NO_MDEBUG:
b34976b6 14484 mips_flag_mdebug = FALSE;
ecb4347a 14485 break;
dcd410fe
RO
14486
14487 case OPTION_PDR:
14488 mips_flag_pdr = TRUE;
14489 break;
14490
14491 case OPTION_NO_PDR:
14492 mips_flag_pdr = FALSE;
14493 break;
0a44bf69
RS
14494
14495 case OPTION_MVXWORKS_PIC:
14496 mips_pic = VXWORKS_PIC;
14497 break;
ecb4347a 14498
ba92f887
MR
14499 case OPTION_NAN:
14500 if (strcmp (arg, "2008") == 0)
7361da2c 14501 mips_nan2008 = 1;
ba92f887 14502 else if (strcmp (arg, "legacy") == 0)
7361da2c 14503 mips_nan2008 = 0;
ba92f887
MR
14504 else
14505 {
1661c76c 14506 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
ba92f887
MR
14507 return 0;
14508 }
14509 break;
14510
252b5132
RH
14511 default:
14512 return 0;
14513 }
14514
c67a084a
NC
14515 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14516
252b5132
RH
14517 return 1;
14518}
316f5878 14519\f
919731af 14520/* Set up globals to tune for the ISA or processor described by INFO. */
252b5132 14521
316f5878 14522static void
17a2f251 14523mips_set_tune (const struct mips_cpu_info *info)
316f5878
RS
14524{
14525 if (info != 0)
fef14a42 14526 mips_tune = info->cpu;
316f5878 14527}
80cc45a5 14528
34ba82a8 14529
252b5132 14530void
17a2f251 14531mips_after_parse_args (void)
e9670677 14532{
fef14a42
TS
14533 const struct mips_cpu_info *arch_info = 0;
14534 const struct mips_cpu_info *tune_info = 0;
14535
e9670677 14536 /* GP relative stuff not working for PE */
6caf9ef4 14537 if (strncmp (TARGET_OS, "pe", 2) == 0)
e9670677 14538 {
6caf9ef4 14539 if (g_switch_seen && g_switch_value != 0)
1661c76c 14540 as_bad (_("-G not supported in this configuration"));
e9670677
MR
14541 g_switch_value = 0;
14542 }
14543
cac012d6
AO
14544 if (mips_abi == NO_ABI)
14545 mips_abi = MIPS_DEFAULT_ABI;
14546
919731af 14547 /* The following code determines the architecture.
22923709
RS
14548 Similar code was added to GCC 3.3 (see override_options() in
14549 config/mips/mips.c). The GAS and GCC code should be kept in sync
14550 as much as possible. */
e9670677 14551
316f5878 14552 if (mips_arch_string != 0)
fef14a42 14553 arch_info = mips_parse_cpu ("-march", mips_arch_string);
e9670677 14554
0b35dfee 14555 if (file_mips_opts.isa != ISA_UNKNOWN)
e9670677 14556 {
0b35dfee 14557 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
fef14a42 14558 ISA level specified by -mipsN, while arch_info->isa contains
316f5878 14559 the -march selection (if any). */
fef14a42 14560 if (arch_info != 0)
e9670677 14561 {
316f5878
RS
14562 /* -march takes precedence over -mipsN, since it is more descriptive.
14563 There's no harm in specifying both as long as the ISA levels
14564 are the same. */
0b35dfee 14565 if (file_mips_opts.isa != arch_info->isa)
1661c76c
RS
14566 as_bad (_("-%s conflicts with the other architecture options,"
14567 " which imply -%s"),
0b35dfee 14568 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
fef14a42 14569 mips_cpu_info_from_isa (arch_info->isa)->name);
e9670677 14570 }
316f5878 14571 else
0b35dfee 14572 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
e9670677
MR
14573 }
14574
fef14a42 14575 if (arch_info == 0)
95bfe26e
MF
14576 {
14577 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14578 gas_assert (arch_info);
14579 }
e9670677 14580
fef14a42 14581 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
20203fb9 14582 as_bad (_("-march=%s is not compatible with the selected ABI"),
fef14a42
TS
14583 arch_info->name);
14584
919731af 14585 file_mips_opts.arch = arch_info->cpu;
14586 file_mips_opts.isa = arch_info->isa;
14587
14588 /* Set up initial mips_opts state. */
14589 mips_opts = file_mips_opts;
14590
14591 /* The register size inference code is now placed in
14592 file_mips_check_options. */
fef14a42 14593
0b35dfee 14594 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14595 processor. */
fef14a42
TS
14596 if (mips_tune_string != 0)
14597 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
e9670677 14598
fef14a42
TS
14599 if (tune_info == 0)
14600 mips_set_tune (arch_info);
14601 else
14602 mips_set_tune (tune_info);
e9670677 14603
ecb4347a 14604 if (mips_flag_mdebug < 0)
e8044f35 14605 mips_flag_mdebug = 0;
e9670677
MR
14606}
14607\f
14608void
17a2f251 14609mips_init_after_args (void)
252b5132
RH
14610{
14611 /* initialize opcodes */
14612 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
beae10d5 14613 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
252b5132
RH
14614}
14615
14616long
17a2f251 14617md_pcrel_from (fixS *fixP)
252b5132 14618{
a7ebbfdf
TS
14619 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14620 switch (fixP->fx_r_type)
14621 {
df58fc94
RS
14622 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14623 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14624 /* Return the address of the delay slot. */
14625 return addr + 2;
14626
14627 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14628 case BFD_RELOC_MICROMIPS_JMP:
c9775dde 14629 case BFD_RELOC_MIPS16_16_PCREL_S1:
a7ebbfdf 14630 case BFD_RELOC_16_PCREL_S2:
7361da2c
AB
14631 case BFD_RELOC_MIPS_21_PCREL_S2:
14632 case BFD_RELOC_MIPS_26_PCREL_S2:
a7ebbfdf
TS
14633 case BFD_RELOC_MIPS_JMP:
14634 /* Return the address of the delay slot. */
14635 return addr + 4;
df58fc94 14636
51f6035b
MR
14637 case BFD_RELOC_MIPS_18_PCREL_S3:
14638 /* Return the aligned address of the doubleword containing
14639 the instruction. */
14640 return addr & ~7;
14641
a7ebbfdf
TS
14642 default:
14643 return addr;
14644 }
252b5132
RH
14645}
14646
252b5132
RH
14647/* This is called before the symbol table is processed. In order to
14648 work with gcc when using mips-tfile, we must keep all local labels.
14649 However, in other cases, we want to discard them. If we were
14650 called with -g, but we didn't see any debugging information, it may
14651 mean that gcc is smuggling debugging information through to
14652 mips-tfile, in which case we must generate all local labels. */
14653
14654void
17a2f251 14655mips_frob_file_before_adjust (void)
252b5132
RH
14656{
14657#ifndef NO_ECOFF_DEBUGGING
14658 if (ECOFF_DEBUGGING
14659 && mips_debug != 0
14660 && ! ecoff_debugging_seen)
14661 flag_keep_locals = 1;
14662#endif
14663}
14664
3b91255e 14665/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
55cf6793 14666 the corresponding LO16 reloc. This is called before md_apply_fix and
3b91255e
RS
14667 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14668 relocation operators.
14669
14670 For our purposes, a %lo() expression matches a %got() or %hi()
14671 expression if:
14672
14673 (a) it refers to the same symbol; and
14674 (b) the offset applied in the %lo() expression is no lower than
14675 the offset applied in the %got() or %hi().
14676
14677 (b) allows us to cope with code like:
14678
14679 lui $4,%hi(foo)
14680 lh $4,%lo(foo+2)($4)
14681
14682 ...which is legal on RELA targets, and has a well-defined behaviour
14683 if the user knows that adding 2 to "foo" will not induce a carry to
14684 the high 16 bits.
14685
14686 When several %lo()s match a particular %got() or %hi(), we use the
14687 following rules to distinguish them:
14688
14689 (1) %lo()s with smaller offsets are a better match than %lo()s with
14690 higher offsets.
14691
14692 (2) %lo()s with no matching %got() or %hi() are better than those
14693 that already have a matching %got() or %hi().
14694
14695 (3) later %lo()s are better than earlier %lo()s.
14696
14697 These rules are applied in order.
14698
14699 (1) means, among other things, that %lo()s with identical offsets are
14700 chosen if they exist.
14701
14702 (2) means that we won't associate several high-part relocations with
14703 the same low-part relocation unless there's no alternative. Having
14704 several high parts for the same low part is a GNU extension; this rule
14705 allows careful users to avoid it.
14706
14707 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14708 with the last high-part relocation being at the front of the list.
14709 It therefore makes sense to choose the last matching low-part
14710 relocation, all other things being equal. It's also easier
14711 to code that way. */
252b5132
RH
14712
14713void
17a2f251 14714mips_frob_file (void)
252b5132
RH
14715{
14716 struct mips_hi_fixup *l;
35903be0 14717 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
252b5132
RH
14718
14719 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14720 {
14721 segment_info_type *seginfo;
3b91255e
RS
14722 bfd_boolean matched_lo_p;
14723 fixS **hi_pos, **lo_pos, **pos;
252b5132 14724
9c2799c2 14725 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
252b5132 14726
5919d012 14727 /* If a GOT16 relocation turns out to be against a global symbol,
b886a2ab
RS
14728 there isn't supposed to be a matching LO. Ignore %gots against
14729 constants; we'll report an error for those later. */
738e5348 14730 if (got16_reloc_p (l->fixp->fx_r_type)
b886a2ab
RS
14731 && !(l->fixp->fx_addsy
14732 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
5919d012
RS
14733 continue;
14734
14735 /* Check quickly whether the next fixup happens to be a matching %lo. */
14736 if (fixup_has_matching_lo_p (l->fixp))
252b5132
RH
14737 continue;
14738
252b5132 14739 seginfo = seg_info (l->seg);
252b5132 14740
3b91255e
RS
14741 /* Set HI_POS to the position of this relocation in the chain.
14742 Set LO_POS to the position of the chosen low-part relocation.
14743 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14744 relocation that matches an immediately-preceding high-part
14745 relocation. */
14746 hi_pos = NULL;
14747 lo_pos = NULL;
14748 matched_lo_p = FALSE;
738e5348 14749 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
35903be0 14750
3b91255e
RS
14751 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14752 {
14753 if (*pos == l->fixp)
14754 hi_pos = pos;
14755
35903be0 14756 if ((*pos)->fx_r_type == looking_for_rtype
30cfc97a 14757 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
3b91255e
RS
14758 && (*pos)->fx_offset >= l->fixp->fx_offset
14759 && (lo_pos == NULL
14760 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14761 || (!matched_lo_p
14762 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14763 lo_pos = pos;
14764
14765 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14766 && fixup_has_matching_lo_p (*pos));
14767 }
14768
14769 /* If we found a match, remove the high-part relocation from its
14770 current position and insert it before the low-part relocation.
14771 Make the offsets match so that fixup_has_matching_lo_p()
14772 will return true.
14773
14774 We don't warn about unmatched high-part relocations since some
14775 versions of gcc have been known to emit dead "lui ...%hi(...)"
14776 instructions. */
14777 if (lo_pos != NULL)
14778 {
14779 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14780 if (l->fixp->fx_next != *lo_pos)
252b5132 14781 {
3b91255e
RS
14782 *hi_pos = l->fixp->fx_next;
14783 l->fixp->fx_next = *lo_pos;
14784 *lo_pos = l->fixp;
252b5132 14785 }
252b5132
RH
14786 }
14787 }
14788}
14789
252b5132 14790int
17a2f251 14791mips_force_relocation (fixS *fixp)
252b5132 14792{
ae6063d4 14793 if (generic_force_reloc (fixp))
252b5132
RH
14794 return 1;
14795
df58fc94
RS
14796 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14797 so that the linker relaxation can update targets. */
14798 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14799 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14800 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14801 return 1;
14802
7361da2c 14803 /* We want all PC-relative relocations to be kept for R6 relaxation. */
912815f0 14804 if (ISA_IS_R6 (file_mips_opts.isa)
7361da2c
AB
14805 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14806 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14807 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14808 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14809 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14810 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14811 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14812 return 1;
14813
3e722fb5 14814 return 0;
252b5132
RH
14815}
14816
b886a2ab
RS
14817/* Read the instruction associated with RELOC from BUF. */
14818
14819static unsigned int
14820read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14821{
14822 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14823 return read_compressed_insn (buf, 4);
14824 else
14825 return read_insn (buf);
14826}
14827
14828/* Write instruction INSN to BUF, given that it has been relocated
14829 by RELOC. */
14830
14831static void
14832write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14833 unsigned long insn)
14834{
14835 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14836 write_compressed_insn (buf, insn, 4);
14837 else
14838 write_insn (buf, insn);
14839}
14840
252b5132
RH
14841/* Apply a fixup to the object file. */
14842
94f592af 14843void
55cf6793 14844md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 14845{
4d68580a 14846 char *buf;
b886a2ab 14847 unsigned long insn;
a7ebbfdf 14848 reloc_howto_type *howto;
252b5132 14849
d56a8dda
RS
14850 if (fixP->fx_pcrel)
14851 switch (fixP->fx_r_type)
14852 {
14853 case BFD_RELOC_16_PCREL_S2:
c9775dde 14854 case BFD_RELOC_MIPS16_16_PCREL_S1:
d56a8dda
RS
14855 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14856 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14857 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14858 case BFD_RELOC_32_PCREL:
7361da2c
AB
14859 case BFD_RELOC_MIPS_21_PCREL_S2:
14860 case BFD_RELOC_MIPS_26_PCREL_S2:
14861 case BFD_RELOC_MIPS_18_PCREL_S3:
14862 case BFD_RELOC_MIPS_19_PCREL_S2:
14863 case BFD_RELOC_HI16_S_PCREL:
14864 case BFD_RELOC_LO16_PCREL:
d56a8dda
RS
14865 break;
14866
14867 case BFD_RELOC_32:
14868 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14869 break;
14870
14871 default:
14872 as_bad_where (fixP->fx_file, fixP->fx_line,
14873 _("PC-relative reference to a different section"));
14874 break;
14875 }
14876
14877 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14878 that have no MIPS ELF equivalent. */
14879 if (fixP->fx_r_type != BFD_RELOC_8)
14880 {
14881 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14882 if (!howto)
14883 return;
14884 }
65551fa4 14885
df58fc94
RS
14886 gas_assert (fixP->fx_size == 2
14887 || fixP->fx_size == 4
d56a8dda 14888 || fixP->fx_r_type == BFD_RELOC_8
90ecf173
MR
14889 || fixP->fx_r_type == BFD_RELOC_16
14890 || fixP->fx_r_type == BFD_RELOC_64
14891 || fixP->fx_r_type == BFD_RELOC_CTOR
14892 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
df58fc94 14893 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
90ecf173
MR
14894 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14895 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2f0c68f2
CM
14896 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14897 || fixP->fx_r_type == BFD_RELOC_NONE);
252b5132 14898
4d68580a 14899 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 14900
b1dca8ee
RS
14901 /* Don't treat parts of a composite relocation as done. There are two
14902 reasons for this:
14903
14904 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14905 should nevertheless be emitted if the first part is.
14906
14907 (2) In normal usage, composite relocations are never assembly-time
14908 constants. The easiest way of dealing with the pathological
14909 exceptions is to generate a relocation against STN_UNDEF and
14910 leave everything up to the linker. */
3994f87e 14911 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
252b5132
RH
14912 fixP->fx_done = 1;
14913
14914 switch (fixP->fx_r_type)
14915 {
3f98094e
DJ
14916 case BFD_RELOC_MIPS_TLS_GD:
14917 case BFD_RELOC_MIPS_TLS_LDM:
741d6ea8
JM
14918 case BFD_RELOC_MIPS_TLS_DTPREL32:
14919 case BFD_RELOC_MIPS_TLS_DTPREL64:
3f98094e
DJ
14920 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14921 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14922 case BFD_RELOC_MIPS_TLS_GOTTPREL:
d0f13682
CLT
14923 case BFD_RELOC_MIPS_TLS_TPREL32:
14924 case BFD_RELOC_MIPS_TLS_TPREL64:
3f98094e
DJ
14925 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14926 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
df58fc94
RS
14927 case BFD_RELOC_MICROMIPS_TLS_GD:
14928 case BFD_RELOC_MICROMIPS_TLS_LDM:
14929 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14930 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14931 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14932 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14933 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
d0f13682
CLT
14934 case BFD_RELOC_MIPS16_TLS_GD:
14935 case BFD_RELOC_MIPS16_TLS_LDM:
14936 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14937 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14938 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14939 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14940 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
4512dafa
MR
14941 if (fixP->fx_addsy)
14942 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14943 else
14944 as_bad_where (fixP->fx_file, fixP->fx_line,
14945 _("TLS relocation against a constant"));
14946 break;
3f98094e 14947
252b5132 14948 case BFD_RELOC_MIPS_JMP:
e369bcce
TS
14949 case BFD_RELOC_MIPS_SHIFT5:
14950 case BFD_RELOC_MIPS_SHIFT6:
14951 case BFD_RELOC_MIPS_GOT_DISP:
14952 case BFD_RELOC_MIPS_GOT_PAGE:
14953 case BFD_RELOC_MIPS_GOT_OFST:
14954 case BFD_RELOC_MIPS_SUB:
14955 case BFD_RELOC_MIPS_INSERT_A:
14956 case BFD_RELOC_MIPS_INSERT_B:
14957 case BFD_RELOC_MIPS_DELETE:
14958 case BFD_RELOC_MIPS_HIGHEST:
14959 case BFD_RELOC_MIPS_HIGHER:
14960 case BFD_RELOC_MIPS_SCN_DISP:
14961 case BFD_RELOC_MIPS_REL16:
14962 case BFD_RELOC_MIPS_RELGOT:
14963 case BFD_RELOC_MIPS_JALR:
252b5132
RH
14964 case BFD_RELOC_HI16:
14965 case BFD_RELOC_HI16_S:
b886a2ab 14966 case BFD_RELOC_LO16:
cdf6fd85 14967 case BFD_RELOC_GPREL16:
252b5132
RH
14968 case BFD_RELOC_MIPS_LITERAL:
14969 case BFD_RELOC_MIPS_CALL16:
14970 case BFD_RELOC_MIPS_GOT16:
cdf6fd85 14971 case BFD_RELOC_GPREL32:
252b5132
RH
14972 case BFD_RELOC_MIPS_GOT_HI16:
14973 case BFD_RELOC_MIPS_GOT_LO16:
14974 case BFD_RELOC_MIPS_CALL_HI16:
14975 case BFD_RELOC_MIPS_CALL_LO16:
41947d9e
MR
14976 case BFD_RELOC_HI16_S_PCREL:
14977 case BFD_RELOC_LO16_PCREL:
252b5132 14978 case BFD_RELOC_MIPS16_GPREL:
738e5348
RS
14979 case BFD_RELOC_MIPS16_GOT16:
14980 case BFD_RELOC_MIPS16_CALL16:
d6f16593
MR
14981 case BFD_RELOC_MIPS16_HI16:
14982 case BFD_RELOC_MIPS16_HI16_S:
b886a2ab 14983 case BFD_RELOC_MIPS16_LO16:
252b5132 14984 case BFD_RELOC_MIPS16_JMP:
df58fc94
RS
14985 case BFD_RELOC_MICROMIPS_JMP:
14986 case BFD_RELOC_MICROMIPS_GOT_DISP:
14987 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14988 case BFD_RELOC_MICROMIPS_GOT_OFST:
14989 case BFD_RELOC_MICROMIPS_SUB:
14990 case BFD_RELOC_MICROMIPS_HIGHEST:
14991 case BFD_RELOC_MICROMIPS_HIGHER:
14992 case BFD_RELOC_MICROMIPS_SCN_DISP:
14993 case BFD_RELOC_MICROMIPS_JALR:
14994 case BFD_RELOC_MICROMIPS_HI16:
14995 case BFD_RELOC_MICROMIPS_HI16_S:
b886a2ab 14996 case BFD_RELOC_MICROMIPS_LO16:
df58fc94
RS
14997 case BFD_RELOC_MICROMIPS_GPREL16:
14998 case BFD_RELOC_MICROMIPS_LITERAL:
14999 case BFD_RELOC_MICROMIPS_CALL16:
15000 case BFD_RELOC_MICROMIPS_GOT16:
15001 case BFD_RELOC_MICROMIPS_GOT_HI16:
15002 case BFD_RELOC_MICROMIPS_GOT_LO16:
15003 case BFD_RELOC_MICROMIPS_CALL_HI16:
15004 case BFD_RELOC_MICROMIPS_CALL_LO16:
067ec077 15005 case BFD_RELOC_MIPS_EH:
b886a2ab
RS
15006 if (fixP->fx_done)
15007 {
15008 offsetT value;
15009
15010 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15011 {
15012 insn = read_reloc_insn (buf, fixP->fx_r_type);
15013 if (mips16_reloc_p (fixP->fx_r_type))
15014 insn |= mips16_immed_extend (value, 16);
15015 else
15016 insn |= (value & 0xffff);
15017 write_reloc_insn (buf, fixP->fx_r_type, insn);
15018 }
15019 else
15020 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15021 _("unsupported constant in relocation"));
b886a2ab 15022 }
252b5132
RH
15023 break;
15024
252b5132
RH
15025 case BFD_RELOC_64:
15026 /* This is handled like BFD_RELOC_32, but we output a sign
15027 extended value if we are only 32 bits. */
3e722fb5 15028 if (fixP->fx_done)
252b5132
RH
15029 {
15030 if (8 <= sizeof (valueT))
4d68580a 15031 md_number_to_chars (buf, *valP, 8);
252b5132
RH
15032 else
15033 {
a7ebbfdf 15034 valueT hiv;
252b5132 15035
a7ebbfdf 15036 if ((*valP & 0x80000000) != 0)
252b5132
RH
15037 hiv = 0xffffffff;
15038 else
15039 hiv = 0;
4d68580a
RS
15040 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15041 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
252b5132
RH
15042 }
15043 }
15044 break;
15045
056350c6 15046 case BFD_RELOC_RVA:
252b5132 15047 case BFD_RELOC_32:
b47468a6 15048 case BFD_RELOC_32_PCREL:
252b5132 15049 case BFD_RELOC_16:
d56a8dda 15050 case BFD_RELOC_8:
252b5132 15051 /* If we are deleting this reloc entry, we must fill in the
54f4ddb3
TS
15052 value now. This can happen if we have a .word which is not
15053 resolved when it appears but is later defined. */
252b5132 15054 if (fixP->fx_done)
4d68580a 15055 md_number_to_chars (buf, *valP, fixP->fx_size);
252b5132
RH
15056 break;
15057
7361da2c 15058 case BFD_RELOC_MIPS_21_PCREL_S2:
41947d9e
MR
15059 if ((*valP & 0x3) != 0)
15060 as_bad_where (fixP->fx_file, fixP->fx_line,
15061 _("branch to misaligned address (%lx)"), (long) *valP);
15062 if (!fixP->fx_done)
15063 break;
15064
15065 if (*valP + 0x400000 <= 0x7fffff)
15066 {
15067 insn = read_insn (buf);
15068 insn |= (*valP >> 2) & 0x1fffff;
15069 write_insn (buf, insn);
15070 }
15071 else
15072 as_bad_where (fixP->fx_file, fixP->fx_line,
15073 _("branch out of range"));
15074 break;
15075
7361da2c
AB
15076 case BFD_RELOC_MIPS_26_PCREL_S2:
15077 if ((*valP & 0x3) != 0)
15078 as_bad_where (fixP->fx_file, fixP->fx_line,
15079 _("branch to misaligned address (%lx)"), (long) *valP);
41947d9e
MR
15080 if (!fixP->fx_done)
15081 break;
7361da2c 15082
41947d9e
MR
15083 if (*valP + 0x8000000 <= 0xfffffff)
15084 {
15085 insn = read_insn (buf);
15086 insn |= (*valP >> 2) & 0x3ffffff;
15087 write_insn (buf, insn);
15088 }
15089 else
15090 as_bad_where (fixP->fx_file, fixP->fx_line,
15091 _("branch out of range"));
7361da2c
AB
15092 break;
15093
15094 case BFD_RELOC_MIPS_18_PCREL_S3:
717ba204 15095 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
7361da2c 15096 as_bad_where (fixP->fx_file, fixP->fx_line,
0866e94c
MF
15097 _("PC-relative access using misaligned symbol (%lx)"),
15098 (long) S_GET_VALUE (fixP->fx_addsy));
15099 if ((fixP->fx_offset & 0x7) != 0)
15100 as_bad_where (fixP->fx_file, fixP->fx_line,
15101 _("PC-relative access using misaligned offset (%lx)"),
15102 (long) fixP->fx_offset);
41947d9e
MR
15103 if (!fixP->fx_done)
15104 break;
7361da2c 15105
41947d9e
MR
15106 if (*valP + 0x100000 <= 0x1fffff)
15107 {
15108 insn = read_insn (buf);
15109 insn |= (*valP >> 3) & 0x3ffff;
15110 write_insn (buf, insn);
15111 }
15112 else
15113 as_bad_where (fixP->fx_file, fixP->fx_line,
15114 _("PC-relative access out of range"));
7361da2c
AB
15115 break;
15116
15117 case BFD_RELOC_MIPS_19_PCREL_S2:
15118 if ((*valP & 0x3) != 0)
15119 as_bad_where (fixP->fx_file, fixP->fx_line,
15120 _("PC-relative access to misaligned address (%lx)"),
717ba204 15121 (long) *valP);
41947d9e
MR
15122 if (!fixP->fx_done)
15123 break;
7361da2c 15124
41947d9e
MR
15125 if (*valP + 0x100000 <= 0x1fffff)
15126 {
15127 insn = read_insn (buf);
15128 insn |= (*valP >> 2) & 0x7ffff;
15129 write_insn (buf, insn);
15130 }
15131 else
15132 as_bad_where (fixP->fx_file, fixP->fx_line,
15133 _("PC-relative access out of range"));
7361da2c
AB
15134 break;
15135
252b5132 15136 case BFD_RELOC_16_PCREL_S2:
a7ebbfdf 15137 if ((*valP & 0x3) != 0)
cb56d3d3 15138 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15139 _("branch to misaligned address (%lx)"), (long) *valP);
cb56d3d3 15140
54f4ddb3
TS
15141 /* We need to save the bits in the instruction since fixup_segment()
15142 might be deleting the relocation entry (i.e., a branch within
15143 the current segment). */
a7ebbfdf 15144 if (! fixP->fx_done)
bb2d6cd7 15145 break;
252b5132 15146
54f4ddb3 15147 /* Update old instruction data. */
4d68580a 15148 insn = read_insn (buf);
252b5132 15149
a7ebbfdf
TS
15150 if (*valP + 0x20000 <= 0x3ffff)
15151 {
15152 insn |= (*valP >> 2) & 0xffff;
4d68580a 15153 write_insn (buf, insn);
a7ebbfdf
TS
15154 }
15155 else if (mips_pic == NO_PIC
15156 && fixP->fx_done
15157 && fixP->fx_frag->fr_address >= text_section->vma
15158 && (fixP->fx_frag->fr_address
587aac4e 15159 < text_section->vma + bfd_get_section_size (text_section))
a7ebbfdf
TS
15160 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15161 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15162 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
252b5132
RH
15163 {
15164 /* The branch offset is too large. If this is an
15165 unconditional branch, and we are not generating PIC code,
15166 we can convert it to an absolute jump instruction. */
a7ebbfdf
TS
15167 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15168 insn = 0x0c000000; /* jal */
252b5132 15169 else
a7ebbfdf
TS
15170 insn = 0x08000000; /* j */
15171 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15172 fixP->fx_done = 0;
15173 fixP->fx_addsy = section_symbol (text_section);
15174 *valP += md_pcrel_from (fixP);
4d68580a 15175 write_insn (buf, insn);
a7ebbfdf
TS
15176 }
15177 else
15178 {
15179 /* If we got here, we have branch-relaxation disabled,
15180 and there's nothing we can do to fix this instruction
15181 without turning it into a longer sequence. */
15182 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15183 _("branch out of range"));
252b5132 15184 }
252b5132
RH
15185 break;
15186
c9775dde 15187 case BFD_RELOC_MIPS16_16_PCREL_S1:
df58fc94
RS
15188 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15189 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15190 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15191 /* We adjust the offset back to even. */
15192 if ((*valP & 0x1) != 0)
15193 --(*valP);
15194
15195 if (! fixP->fx_done)
15196 break;
15197
15198 /* Should never visit here, because we keep the relocation. */
15199 abort ();
15200 break;
15201
252b5132
RH
15202 case BFD_RELOC_VTABLE_INHERIT:
15203 fixP->fx_done = 0;
15204 if (fixP->fx_addsy
15205 && !S_IS_DEFINED (fixP->fx_addsy)
15206 && !S_IS_WEAK (fixP->fx_addsy))
15207 S_SET_WEAK (fixP->fx_addsy);
15208 break;
15209
2f0c68f2 15210 case BFD_RELOC_NONE:
252b5132
RH
15211 case BFD_RELOC_VTABLE_ENTRY:
15212 fixP->fx_done = 0;
15213 break;
15214
15215 default:
b37df7c4 15216 abort ();
252b5132 15217 }
a7ebbfdf
TS
15218
15219 /* Remember value for tc_gen_reloc. */
15220 fixP->fx_addnumber = *valP;
252b5132
RH
15221}
15222
252b5132 15223static symbolS *
17a2f251 15224get_symbol (void)
252b5132
RH
15225{
15226 int c;
15227 char *name;
15228 symbolS *p;
15229
d02603dc 15230 c = get_symbol_name (&name);
252b5132 15231 p = (symbolS *) symbol_find_or_make (name);
d02603dc 15232 (void) restore_line_pointer (c);
252b5132
RH
15233 return p;
15234}
15235
742a56fe
RS
15236/* Align the current frag to a given power of two. If a particular
15237 fill byte should be used, FILL points to an integer that contains
15238 that byte, otherwise FILL is null.
15239
462427c4
RS
15240 This function used to have the comment:
15241
15242 The MIPS assembler also automatically adjusts any preceding label.
15243
15244 The implementation therefore applied the adjustment to a maximum of
15245 one label. However, other label adjustments are applied to batches
15246 of labels, and adjusting just one caused problems when new labels
15247 were added for the sake of debugging or unwind information.
15248 We therefore adjust all preceding labels (given as LABELS) instead. */
252b5132
RH
15249
15250static void
462427c4 15251mips_align (int to, int *fill, struct insn_label_list *labels)
252b5132 15252{
7d10b47d 15253 mips_emit_delays ();
df58fc94 15254 mips_record_compressed_mode ();
742a56fe
RS
15255 if (fill == NULL && subseg_text_p (now_seg))
15256 frag_align_code (to, 0);
15257 else
15258 frag_align (to, fill ? *fill : 0, 0);
252b5132 15259 record_alignment (now_seg, to);
462427c4 15260 mips_move_labels (labels, FALSE);
252b5132
RH
15261}
15262
15263/* Align to a given power of two. .align 0 turns off the automatic
15264 alignment used by the data creating pseudo-ops. */
15265
15266static void
17a2f251 15267s_align (int x ATTRIBUTE_UNUSED)
252b5132 15268{
742a56fe 15269 int temp, fill_value, *fill_ptr;
49954fb4 15270 long max_alignment = 28;
252b5132 15271
54f4ddb3 15272 /* o Note that the assembler pulls down any immediately preceding label
252b5132 15273 to the aligned address.
54f4ddb3 15274 o It's not documented but auto alignment is reinstated by
252b5132 15275 a .align pseudo instruction.
54f4ddb3 15276 o Note also that after auto alignment is turned off the mips assembler
252b5132 15277 issues an error on attempt to assemble an improperly aligned data item.
54f4ddb3 15278 We don't. */
252b5132
RH
15279
15280 temp = get_absolute_expression ();
15281 if (temp > max_alignment)
1661c76c 15282 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
252b5132
RH
15283 else if (temp < 0)
15284 {
1661c76c 15285 as_warn (_("alignment negative, 0 assumed"));
252b5132
RH
15286 temp = 0;
15287 }
15288 if (*input_line_pointer == ',')
15289 {
f9419b05 15290 ++input_line_pointer;
742a56fe
RS
15291 fill_value = get_absolute_expression ();
15292 fill_ptr = &fill_value;
252b5132
RH
15293 }
15294 else
742a56fe 15295 fill_ptr = 0;
252b5132
RH
15296 if (temp)
15297 {
a8dbcb85
TS
15298 segment_info_type *si = seg_info (now_seg);
15299 struct insn_label_list *l = si->label_list;
54f4ddb3 15300 /* Auto alignment should be switched on by next section change. */
252b5132 15301 auto_align = 1;
462427c4 15302 mips_align (temp, fill_ptr, l);
252b5132
RH
15303 }
15304 else
15305 {
15306 auto_align = 0;
15307 }
15308
15309 demand_empty_rest_of_line ();
15310}
15311
252b5132 15312static void
17a2f251 15313s_change_sec (int sec)
252b5132
RH
15314{
15315 segT seg;
15316
252b5132
RH
15317 /* The ELF backend needs to know that we are changing sections, so
15318 that .previous works correctly. We could do something like check
b6ff326e 15319 for an obj_section_change_hook macro, but that might be confusing
252b5132
RH
15320 as it would not be appropriate to use it in the section changing
15321 functions in read.c, since obj-elf.c intercepts those. FIXME:
15322 This should be cleaner, somehow. */
f3ded42a 15323 obj_elf_section_change_hook ();
252b5132 15324
7d10b47d 15325 mips_emit_delays ();
6a32d874 15326
252b5132
RH
15327 switch (sec)
15328 {
15329 case 't':
15330 s_text (0);
15331 break;
15332 case 'd':
15333 s_data (0);
15334 break;
15335 case 'b':
15336 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15337 demand_empty_rest_of_line ();
15338 break;
15339
15340 case 'r':
4d0d148d
TS
15341 seg = subseg_new (RDATA_SECTION_NAME,
15342 (subsegT) get_absolute_expression ());
f3ded42a
RS
15343 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15344 | SEC_READONLY | SEC_RELOC
15345 | SEC_DATA));
15346 if (strncmp (TARGET_OS, "elf", 3) != 0)
15347 record_alignment (seg, 4);
4d0d148d 15348 demand_empty_rest_of_line ();
252b5132
RH
15349 break;
15350
15351 case 's':
4d0d148d 15352 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
f3ded42a
RS
15353 bfd_set_section_flags (stdoutput, seg,
15354 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15355 if (strncmp (TARGET_OS, "elf", 3) != 0)
15356 record_alignment (seg, 4);
4d0d148d
TS
15357 demand_empty_rest_of_line ();
15358 break;
998b3c36
MR
15359
15360 case 'B':
15361 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
f3ded42a
RS
15362 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15363 if (strncmp (TARGET_OS, "elf", 3) != 0)
15364 record_alignment (seg, 4);
998b3c36
MR
15365 demand_empty_rest_of_line ();
15366 break;
252b5132
RH
15367 }
15368
15369 auto_align = 1;
15370}
b34976b6 15371
cca86cc8 15372void
17a2f251 15373s_change_section (int ignore ATTRIBUTE_UNUSED)
cca86cc8 15374{
d02603dc 15375 char *saved_ilp;
cca86cc8 15376 char *section_name;
d02603dc 15377 char c, endc;
684022ea 15378 char next_c = 0;
cca86cc8
SC
15379 int section_type;
15380 int section_flag;
15381 int section_entry_size;
15382 int section_alignment;
b34976b6 15383
d02603dc
NC
15384 saved_ilp = input_line_pointer;
15385 endc = get_symbol_name (&section_name);
15386 c = (endc == '"' ? input_line_pointer[1] : endc);
a816d1ed 15387 if (c)
d02603dc 15388 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
cca86cc8 15389
4cf0dd0d
TS
15390 /* Do we have .section Name<,"flags">? */
15391 if (c != ',' || (c == ',' && next_c == '"'))
cca86cc8 15392 {
d02603dc
NC
15393 /* Just after name is now '\0'. */
15394 (void) restore_line_pointer (endc);
15395 input_line_pointer = saved_ilp;
cca86cc8
SC
15396 obj_elf_section (ignore);
15397 return;
15398 }
d02603dc
NC
15399
15400 section_name = xstrdup (section_name);
15401 c = restore_line_pointer (endc);
15402
cca86cc8
SC
15403 input_line_pointer++;
15404
15405 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15406 if (c == ',')
15407 section_type = get_absolute_expression ();
15408 else
15409 section_type = 0;
d02603dc 15410
cca86cc8
SC
15411 if (*input_line_pointer++ == ',')
15412 section_flag = get_absolute_expression ();
15413 else
15414 section_flag = 0;
d02603dc 15415
cca86cc8
SC
15416 if (*input_line_pointer++ == ',')
15417 section_entry_size = get_absolute_expression ();
15418 else
15419 section_entry_size = 0;
d02603dc 15420
cca86cc8
SC
15421 if (*input_line_pointer++ == ',')
15422 section_alignment = get_absolute_expression ();
15423 else
15424 section_alignment = 0;
d02603dc 15425
87975d2a
AM
15426 /* FIXME: really ignore? */
15427 (void) section_alignment;
cca86cc8 15428
8ab8a5c8
RS
15429 /* When using the generic form of .section (as implemented by obj-elf.c),
15430 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15431 traditionally had to fall back on the more common @progbits instead.
15432
15433 There's nothing really harmful in this, since bfd will correct
15434 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
708587a4 15435 means that, for backwards compatibility, the special_section entries
8ab8a5c8
RS
15436 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15437
15438 Even so, we shouldn't force users of the MIPS .section syntax to
15439 incorrectly label the sections as SHT_PROGBITS. The best compromise
15440 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15441 generic type-checking code. */
15442 if (section_type == SHT_MIPS_DWARF)
15443 section_type = SHT_PROGBITS;
15444
cca86cc8
SC
15445 obj_elf_change_section (section_name, section_type, section_flag,
15446 section_entry_size, 0, 0, 0);
a816d1ed
AO
15447
15448 if (now_seg->name != section_name)
15449 free (section_name);
cca86cc8 15450}
252b5132
RH
15451
15452void
17a2f251 15453mips_enable_auto_align (void)
252b5132
RH
15454{
15455 auto_align = 1;
15456}
15457
15458static void
17a2f251 15459s_cons (int log_size)
252b5132 15460{
a8dbcb85
TS
15461 segment_info_type *si = seg_info (now_seg);
15462 struct insn_label_list *l = si->label_list;
252b5132 15463
7d10b47d 15464 mips_emit_delays ();
252b5132 15465 if (log_size > 0 && auto_align)
462427c4 15466 mips_align (log_size, 0, l);
252b5132 15467 cons (1 << log_size);
a1facbec 15468 mips_clear_insn_labels ();
252b5132
RH
15469}
15470
15471static void
17a2f251 15472s_float_cons (int type)
252b5132 15473{
a8dbcb85
TS
15474 segment_info_type *si = seg_info (now_seg);
15475 struct insn_label_list *l = si->label_list;
252b5132 15476
7d10b47d 15477 mips_emit_delays ();
252b5132
RH
15478
15479 if (auto_align)
49309057
ILT
15480 {
15481 if (type == 'd')
462427c4 15482 mips_align (3, 0, l);
49309057 15483 else
462427c4 15484 mips_align (2, 0, l);
49309057 15485 }
252b5132 15486
252b5132 15487 float_cons (type);
a1facbec 15488 mips_clear_insn_labels ();
252b5132
RH
15489}
15490
15491/* Handle .globl. We need to override it because on Irix 5 you are
15492 permitted to say
15493 .globl foo .text
15494 where foo is an undefined symbol, to mean that foo should be
15495 considered to be the address of a function. */
15496
15497static void
17a2f251 15498s_mips_globl (int x ATTRIBUTE_UNUSED)
252b5132
RH
15499{
15500 char *name;
15501 int c;
15502 symbolS *symbolP;
15503 flagword flag;
15504
8a06b769 15505 do
252b5132 15506 {
d02603dc 15507 c = get_symbol_name (&name);
8a06b769
TS
15508 symbolP = symbol_find_or_make (name);
15509 S_SET_EXTERNAL (symbolP);
15510
252b5132 15511 *input_line_pointer = c;
d02603dc 15512 SKIP_WHITESPACE_AFTER_NAME ();
252b5132 15513
8a06b769
TS
15514 /* On Irix 5, every global symbol that is not explicitly labelled as
15515 being a function is apparently labelled as being an object. */
15516 flag = BSF_OBJECT;
252b5132 15517
8a06b769
TS
15518 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15519 && (*input_line_pointer != ','))
15520 {
15521 char *secname;
15522 asection *sec;
15523
d02603dc 15524 c = get_symbol_name (&secname);
8a06b769
TS
15525 sec = bfd_get_section_by_name (stdoutput, secname);
15526 if (sec == NULL)
15527 as_bad (_("%s: no such section"), secname);
d02603dc 15528 (void) restore_line_pointer (c);
8a06b769
TS
15529
15530 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15531 flag = BSF_FUNCTION;
15532 }
15533
15534 symbol_get_bfdsym (symbolP)->flags |= flag;
15535
15536 c = *input_line_pointer;
15537 if (c == ',')
15538 {
15539 input_line_pointer++;
15540 SKIP_WHITESPACE ();
15541 if (is_end_of_line[(unsigned char) *input_line_pointer])
15542 c = '\n';
15543 }
15544 }
15545 while (c == ',');
252b5132 15546
252b5132
RH
15547 demand_empty_rest_of_line ();
15548}
15549
15550static void
17a2f251 15551s_option (int x ATTRIBUTE_UNUSED)
252b5132
RH
15552{
15553 char *opt;
15554 char c;
15555
d02603dc 15556 c = get_symbol_name (&opt);
252b5132
RH
15557
15558 if (*opt == 'O')
15559 {
15560 /* FIXME: What does this mean? */
15561 }
41a1578e 15562 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
252b5132
RH
15563 {
15564 int i;
15565
15566 i = atoi (opt + 3);
668c5ebc
MR
15567 if (i != 0 && i != 2)
15568 as_bad (_(".option pic%d not supported"), i);
15569 else if (mips_pic == VXWORKS_PIC)
15570 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15571 else if (i == 0)
252b5132
RH
15572 mips_pic = NO_PIC;
15573 else if (i == 2)
143d77c5 15574 {
8b828383 15575 mips_pic = SVR4_PIC;
143d77c5
EC
15576 mips_abicalls = TRUE;
15577 }
252b5132 15578
4d0d148d 15579 if (mips_pic == SVR4_PIC)
252b5132
RH
15580 {
15581 if (g_switch_seen && g_switch_value != 0)
15582 as_warn (_("-G may not be used with SVR4 PIC code"));
15583 g_switch_value = 0;
15584 bfd_set_gp_size (stdoutput, 0);
15585 }
15586 }
15587 else
1661c76c 15588 as_warn (_("unrecognized option \"%s\""), opt);
252b5132 15589
d02603dc 15590 (void) restore_line_pointer (c);
252b5132
RH
15591 demand_empty_rest_of_line ();
15592}
15593
15594/* This structure is used to hold a stack of .set values. */
15595
e972090a
NC
15596struct mips_option_stack
15597{
252b5132
RH
15598 struct mips_option_stack *next;
15599 struct mips_set_options options;
15600};
15601
15602static struct mips_option_stack *mips_opts_stack;
15603
22522f88
MR
15604/* Return status for .set/.module option handling. */
15605
15606enum code_option_type
15607{
15608 /* Unrecognized option. */
15609 OPTION_TYPE_BAD = -1,
15610
15611 /* Ordinary option. */
15612 OPTION_TYPE_NORMAL,
15613
15614 /* ISA changing option. */
15615 OPTION_TYPE_ISA
15616};
15617
15618/* Handle common .set/.module options. Return status indicating option
15619 type. */
15620
15621static enum code_option_type
919731af 15622parse_code_option (char * name)
252b5132 15623{
22522f88 15624 bfd_boolean isa_set = FALSE;
c6278170 15625 const struct mips_ase *ase;
22522f88 15626
919731af 15627 if (strncmp (name, "at=", 3) == 0)
741fe287
MR
15628 {
15629 char *s = name + 3;
15630
15631 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
1661c76c 15632 as_bad (_("unrecognized register name `%s'"), s);
741fe287 15633 }
252b5132 15634 else if (strcmp (name, "at") == 0)
919731af 15635 mips_opts.at = ATREG;
252b5132 15636 else if (strcmp (name, "noat") == 0)
919731af 15637 mips_opts.at = ZERO;
252b5132 15638 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
919731af 15639 mips_opts.nomove = 0;
252b5132 15640 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
919731af 15641 mips_opts.nomove = 1;
252b5132 15642 else if (strcmp (name, "bopt") == 0)
919731af 15643 mips_opts.nobopt = 0;
252b5132 15644 else if (strcmp (name, "nobopt") == 0)
919731af 15645 mips_opts.nobopt = 1;
ad3fea08 15646 else if (strcmp (name, "gp=32") == 0)
bad1aba3 15647 mips_opts.gp = 32;
ad3fea08 15648 else if (strcmp (name, "gp=64") == 0)
919731af 15649 mips_opts.gp = 64;
ad3fea08 15650 else if (strcmp (name, "fp=32") == 0)
0b35dfee 15651 mips_opts.fp = 32;
351cdf24
MF
15652 else if (strcmp (name, "fp=xx") == 0)
15653 mips_opts.fp = 0;
ad3fea08 15654 else if (strcmp (name, "fp=64") == 0)
919731af 15655 mips_opts.fp = 64;
037b32b9
AN
15656 else if (strcmp (name, "softfloat") == 0)
15657 mips_opts.soft_float = 1;
15658 else if (strcmp (name, "hardfloat") == 0)
15659 mips_opts.soft_float = 0;
15660 else if (strcmp (name, "singlefloat") == 0)
15661 mips_opts.single_float = 1;
15662 else if (strcmp (name, "doublefloat") == 0)
15663 mips_opts.single_float = 0;
351cdf24
MF
15664 else if (strcmp (name, "nooddspreg") == 0)
15665 mips_opts.oddspreg = 0;
15666 else if (strcmp (name, "oddspreg") == 0)
15667 mips_opts.oddspreg = 1;
252b5132
RH
15668 else if (strcmp (name, "mips16") == 0
15669 || strcmp (name, "MIPS-16") == 0)
919731af 15670 mips_opts.mips16 = 1;
252b5132
RH
15671 else if (strcmp (name, "nomips16") == 0
15672 || strcmp (name, "noMIPS-16") == 0)
15673 mips_opts.mips16 = 0;
df58fc94 15674 else if (strcmp (name, "micromips") == 0)
919731af 15675 mips_opts.micromips = 1;
df58fc94
RS
15676 else if (strcmp (name, "nomicromips") == 0)
15677 mips_opts.micromips = 0;
c6278170
RS
15678 else if (name[0] == 'n'
15679 && name[1] == 'o'
15680 && (ase = mips_lookup_ase (name + 2)))
919731af 15681 mips_set_ase (ase, &mips_opts, FALSE);
c6278170 15682 else if ((ase = mips_lookup_ase (name)))
919731af 15683 mips_set_ase (ase, &mips_opts, TRUE);
1a2c1fad 15684 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
252b5132 15685 {
1a2c1fad
CD
15686 /* Permit the user to change the ISA and architecture on the fly.
15687 Needless to say, misuse can cause serious problems. */
919731af 15688 if (strncmp (name, "arch=", 5) == 0)
1a2c1fad
CD
15689 {
15690 const struct mips_cpu_info *p;
15691
919731af 15692 p = mips_parse_cpu ("internal use", name + 5);
1a2c1fad
CD
15693 if (!p)
15694 as_bad (_("unknown architecture %s"), name + 5);
15695 else
15696 {
15697 mips_opts.arch = p->cpu;
15698 mips_opts.isa = p->isa;
22522f88 15699 isa_set = TRUE;
1a2c1fad
CD
15700 }
15701 }
81a21e38
TS
15702 else if (strncmp (name, "mips", 4) == 0)
15703 {
15704 const struct mips_cpu_info *p;
15705
919731af 15706 p = mips_parse_cpu ("internal use", name);
81a21e38
TS
15707 if (!p)
15708 as_bad (_("unknown ISA level %s"), name + 4);
15709 else
15710 {
15711 mips_opts.arch = p->cpu;
15712 mips_opts.isa = p->isa;
22522f88 15713 isa_set = TRUE;
81a21e38
TS
15714 }
15715 }
af7ee8bf 15716 else
81a21e38 15717 as_bad (_("unknown ISA or architecture %s"), name);
252b5132
RH
15718 }
15719 else if (strcmp (name, "autoextend") == 0)
15720 mips_opts.noautoextend = 0;
15721 else if (strcmp (name, "noautoextend") == 0)
15722 mips_opts.noautoextend = 1;
833794fc
MR
15723 else if (strcmp (name, "insn32") == 0)
15724 mips_opts.insn32 = TRUE;
15725 else if (strcmp (name, "noinsn32") == 0)
15726 mips_opts.insn32 = FALSE;
919731af 15727 else if (strcmp (name, "sym32") == 0)
15728 mips_opts.sym32 = TRUE;
15729 else if (strcmp (name, "nosym32") == 0)
15730 mips_opts.sym32 = FALSE;
15731 else
22522f88
MR
15732 return OPTION_TYPE_BAD;
15733
15734 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
919731af 15735}
15736
15737/* Handle the .set pseudo-op. */
15738
15739static void
15740s_mipsset (int x ATTRIBUTE_UNUSED)
15741{
22522f88 15742 enum code_option_type type = OPTION_TYPE_NORMAL;
919731af 15743 char *name = input_line_pointer, ch;
919731af 15744
15745 file_mips_check_options ();
15746
15747 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15748 ++input_line_pointer;
15749 ch = *input_line_pointer;
15750 *input_line_pointer = '\0';
15751
15752 if (strchr (name, ','))
15753 {
15754 /* Generic ".set" directive; use the generic handler. */
15755 *input_line_pointer = ch;
15756 input_line_pointer = name;
15757 s_set (0);
15758 return;
15759 }
15760
15761 if (strcmp (name, "reorder") == 0)
15762 {
15763 if (mips_opts.noreorder)
15764 end_noreorder ();
15765 }
15766 else if (strcmp (name, "noreorder") == 0)
15767 {
15768 if (!mips_opts.noreorder)
15769 start_noreorder ();
15770 }
15771 else if (strcmp (name, "macro") == 0)
15772 mips_opts.warn_about_macros = 0;
15773 else if (strcmp (name, "nomacro") == 0)
15774 {
15775 if (mips_opts.noreorder == 0)
15776 as_bad (_("`noreorder' must be set before `nomacro'"));
15777 mips_opts.warn_about_macros = 1;
15778 }
15779 else if (strcmp (name, "gp=default") == 0)
15780 mips_opts.gp = file_mips_opts.gp;
15781 else if (strcmp (name, "fp=default") == 0)
15782 mips_opts.fp = file_mips_opts.fp;
15783 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15784 {
15785 mips_opts.isa = file_mips_opts.isa;
15786 mips_opts.arch = file_mips_opts.arch;
15787 mips_opts.gp = file_mips_opts.gp;
15788 mips_opts.fp = file_mips_opts.fp;
15789 }
252b5132
RH
15790 else if (strcmp (name, "push") == 0)
15791 {
15792 struct mips_option_stack *s;
15793
325801bd 15794 s = XNEW (struct mips_option_stack);
252b5132
RH
15795 s->next = mips_opts_stack;
15796 s->options = mips_opts;
15797 mips_opts_stack = s;
15798 }
15799 else if (strcmp (name, "pop") == 0)
15800 {
15801 struct mips_option_stack *s;
15802
15803 s = mips_opts_stack;
15804 if (s == NULL)
15805 as_bad (_(".set pop with no .set push"));
15806 else
15807 {
15808 /* If we're changing the reorder mode we need to handle
15809 delay slots correctly. */
15810 if (s->options.noreorder && ! mips_opts.noreorder)
7d10b47d 15811 start_noreorder ();
252b5132 15812 else if (! s->options.noreorder && mips_opts.noreorder)
7d10b47d 15813 end_noreorder ();
252b5132
RH
15814
15815 mips_opts = s->options;
15816 mips_opts_stack = s->next;
15817 free (s);
15818 }
15819 }
22522f88
MR
15820 else
15821 {
15822 type = parse_code_option (name);
15823 if (type == OPTION_TYPE_BAD)
15824 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15825 }
919731af 15826
15827 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15828 registers based on what is supported by the arch/cpu. */
22522f88 15829 if (type == OPTION_TYPE_ISA)
e6559e01 15830 {
919731af 15831 switch (mips_opts.isa)
15832 {
15833 case 0:
15834 break;
15835 case ISA_MIPS1:
351cdf24
MF
15836 /* MIPS I cannot support FPXX. */
15837 mips_opts.fp = 32;
15838 /* fall-through. */
919731af 15839 case ISA_MIPS2:
15840 case ISA_MIPS32:
15841 case ISA_MIPS32R2:
15842 case ISA_MIPS32R3:
15843 case ISA_MIPS32R5:
15844 mips_opts.gp = 32;
351cdf24
MF
15845 if (mips_opts.fp != 0)
15846 mips_opts.fp = 32;
919731af 15847 break;
7361da2c
AB
15848 case ISA_MIPS32R6:
15849 mips_opts.gp = 32;
15850 mips_opts.fp = 64;
15851 break;
919731af 15852 case ISA_MIPS3:
15853 case ISA_MIPS4:
15854 case ISA_MIPS5:
15855 case ISA_MIPS64:
15856 case ISA_MIPS64R2:
15857 case ISA_MIPS64R3:
15858 case ISA_MIPS64R5:
7361da2c 15859 case ISA_MIPS64R6:
919731af 15860 mips_opts.gp = 64;
351cdf24
MF
15861 if (mips_opts.fp != 0)
15862 {
15863 if (mips_opts.arch == CPU_R5900)
15864 mips_opts.fp = 32;
15865 else
15866 mips_opts.fp = 64;
15867 }
919731af 15868 break;
15869 default:
15870 as_bad (_("unknown ISA level %s"), name + 4);
15871 break;
15872 }
e6559e01 15873 }
919731af 15874
15875 mips_check_options (&mips_opts, FALSE);
15876
15877 mips_check_isa_supports_ases ();
15878 *input_line_pointer = ch;
15879 demand_empty_rest_of_line ();
15880}
15881
15882/* Handle the .module pseudo-op. */
15883
15884static void
15885s_module (int ignore ATTRIBUTE_UNUSED)
15886{
15887 char *name = input_line_pointer, ch;
15888
15889 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15890 ++input_line_pointer;
15891 ch = *input_line_pointer;
15892 *input_line_pointer = '\0';
15893
15894 if (!file_mips_opts_checked)
252b5132 15895 {
22522f88 15896 if (parse_code_option (name) == OPTION_TYPE_BAD)
919731af 15897 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15898
15899 /* Update module level settings from mips_opts. */
15900 file_mips_opts = mips_opts;
252b5132 15901 }
919731af 15902 else
15903 as_bad (_(".module is not permitted after generating code"));
15904
252b5132
RH
15905 *input_line_pointer = ch;
15906 demand_empty_rest_of_line ();
15907}
15908
15909/* Handle the .abicalls pseudo-op. I believe this is equivalent to
15910 .option pic2. It means to generate SVR4 PIC calls. */
15911
15912static void
17a2f251 15913s_abicalls (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15914{
15915 mips_pic = SVR4_PIC;
143d77c5 15916 mips_abicalls = TRUE;
4d0d148d
TS
15917
15918 if (g_switch_seen && g_switch_value != 0)
15919 as_warn (_("-G may not be used with SVR4 PIC code"));
15920 g_switch_value = 0;
15921
252b5132
RH
15922 bfd_set_gp_size (stdoutput, 0);
15923 demand_empty_rest_of_line ();
15924}
15925
15926/* Handle the .cpload pseudo-op. This is used when generating SVR4
15927 PIC code. It sets the $gp register for the function based on the
15928 function address, which is in the register named in the argument.
15929 This uses a relocation against _gp_disp, which is handled specially
15930 by the linker. The result is:
15931 lui $gp,%hi(_gp_disp)
15932 addiu $gp,$gp,%lo(_gp_disp)
15933 addu $gp,$gp,.cpload argument
aa6975fb
ILT
15934 The .cpload argument is normally $25 == $t9.
15935
15936 The -mno-shared option changes this to:
bbe506e8
TS
15937 lui $gp,%hi(__gnu_local_gp)
15938 addiu $gp,$gp,%lo(__gnu_local_gp)
aa6975fb
ILT
15939 and the argument is ignored. This saves an instruction, but the
15940 resulting code is not position independent; it uses an absolute
bbe506e8
TS
15941 address for __gnu_local_gp. Thus code assembled with -mno-shared
15942 can go into an ordinary executable, but not into a shared library. */
252b5132
RH
15943
15944static void
17a2f251 15945s_cpload (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15946{
15947 expressionS ex;
aa6975fb
ILT
15948 int reg;
15949 int in_shared;
252b5132 15950
919731af 15951 file_mips_check_options ();
15952
6478892d
TS
15953 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15954 .cpload is ignored. */
15955 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
15956 {
15957 s_ignore (0);
15958 return;
15959 }
15960
a276b80c
MR
15961 if (mips_opts.mips16)
15962 {
15963 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15964 ignore_rest_of_line ();
15965 return;
15966 }
15967
d3ecfc59 15968 /* .cpload should be in a .set noreorder section. */
252b5132
RH
15969 if (mips_opts.noreorder == 0)
15970 as_warn (_(".cpload not in noreorder section"));
15971
aa6975fb
ILT
15972 reg = tc_get_register (0);
15973
15974 /* If we need to produce a 64-bit address, we are better off using
15975 the default instruction sequence. */
aed1a261 15976 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
aa6975fb 15977
252b5132 15978 ex.X_op = O_symbol;
bbe506e8
TS
15979 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15980 "__gnu_local_gp");
252b5132
RH
15981 ex.X_op_symbol = NULL;
15982 ex.X_add_number = 0;
15983
15984 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
49309057 15985 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
252b5132 15986
8a75745d
MR
15987 mips_mark_labels ();
15988 mips_assembling_insn = TRUE;
15989
584892a6 15990 macro_start ();
67c0d1eb
RS
15991 macro_build_lui (&ex, mips_gp_register);
15992 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17a2f251 15993 mips_gp_register, BFD_RELOC_LO16);
aa6975fb
ILT
15994 if (in_shared)
15995 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15996 mips_gp_register, reg);
584892a6 15997 macro_end ();
252b5132 15998
8a75745d 15999 mips_assembling_insn = FALSE;
252b5132
RH
16000 demand_empty_rest_of_line ();
16001}
16002
6478892d
TS
16003/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16004 .cpsetup $reg1, offset|$reg2, label
16005
16006 If offset is given, this results in:
16007 sd $gp, offset($sp)
956cd1d6 16008 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
16009 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16010 daddu $gp, $gp, $reg1
6478892d
TS
16011
16012 If $reg2 is given, this results in:
40fc1451 16013 or $reg2, $gp, $0
956cd1d6 16014 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
16015 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16016 daddu $gp, $gp, $reg1
aa6975fb
ILT
16017 $reg1 is normally $25 == $t9.
16018
16019 The -mno-shared option replaces the last three instructions with
16020 lui $gp,%hi(_gp)
54f4ddb3 16021 addiu $gp,$gp,%lo(_gp) */
aa6975fb 16022
6478892d 16023static void
17a2f251 16024s_cpsetup (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16025{
16026 expressionS ex_off;
16027 expressionS ex_sym;
16028 int reg1;
6478892d 16029
919731af 16030 file_mips_check_options ();
16031
8586fc66 16032 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
6478892d
TS
16033 We also need NewABI support. */
16034 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16035 {
16036 s_ignore (0);
16037 return;
16038 }
16039
a276b80c
MR
16040 if (mips_opts.mips16)
16041 {
16042 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16043 ignore_rest_of_line ();
16044 return;
16045 }
16046
6478892d
TS
16047 reg1 = tc_get_register (0);
16048 SKIP_WHITESPACE ();
16049 if (*input_line_pointer != ',')
16050 {
16051 as_bad (_("missing argument separator ',' for .cpsetup"));
16052 return;
16053 }
16054 else
80245285 16055 ++input_line_pointer;
6478892d
TS
16056 SKIP_WHITESPACE ();
16057 if (*input_line_pointer == '$')
80245285
TS
16058 {
16059 mips_cpreturn_register = tc_get_register (0);
16060 mips_cpreturn_offset = -1;
16061 }
6478892d 16062 else
80245285
TS
16063 {
16064 mips_cpreturn_offset = get_absolute_expression ();
16065 mips_cpreturn_register = -1;
16066 }
6478892d
TS
16067 SKIP_WHITESPACE ();
16068 if (*input_line_pointer != ',')
16069 {
16070 as_bad (_("missing argument separator ',' for .cpsetup"));
16071 return;
16072 }
16073 else
f9419b05 16074 ++input_line_pointer;
6478892d 16075 SKIP_WHITESPACE ();
f21f8242 16076 expression (&ex_sym);
6478892d 16077
8a75745d
MR
16078 mips_mark_labels ();
16079 mips_assembling_insn = TRUE;
16080
584892a6 16081 macro_start ();
6478892d
TS
16082 if (mips_cpreturn_register == -1)
16083 {
16084 ex_off.X_op = O_constant;
16085 ex_off.X_add_symbol = NULL;
16086 ex_off.X_op_symbol = NULL;
16087 ex_off.X_add_number = mips_cpreturn_offset;
16088
67c0d1eb 16089 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17a2f251 16090 BFD_RELOC_LO16, SP);
6478892d
TS
16091 }
16092 else
40fc1451 16093 move_register (mips_cpreturn_register, mips_gp_register);
6478892d 16094
aed1a261 16095 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
aa6975fb 16096 {
df58fc94 16097 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
aa6975fb
ILT
16098 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16099 BFD_RELOC_HI16_S);
16100
16101 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16102 mips_gp_register, -1, BFD_RELOC_GPREL16,
16103 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16104
16105 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16106 mips_gp_register, reg1);
16107 }
16108 else
16109 {
16110 expressionS ex;
16111
16112 ex.X_op = O_symbol;
4184909a 16113 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
aa6975fb
ILT
16114 ex.X_op_symbol = NULL;
16115 ex.X_add_number = 0;
6e1304d8 16116
aa6975fb
ILT
16117 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16118 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16119
16120 macro_build_lui (&ex, mips_gp_register);
16121 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16122 mips_gp_register, BFD_RELOC_LO16);
16123 }
f21f8242 16124
584892a6 16125 macro_end ();
6478892d 16126
8a75745d 16127 mips_assembling_insn = FALSE;
6478892d
TS
16128 demand_empty_rest_of_line ();
16129}
16130
16131static void
17a2f251 16132s_cplocal (int ignore ATTRIBUTE_UNUSED)
6478892d 16133{
919731af 16134 file_mips_check_options ();
16135
6478892d 16136 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
54f4ddb3 16137 .cplocal is ignored. */
6478892d
TS
16138 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16139 {
16140 s_ignore (0);
16141 return;
16142 }
16143
a276b80c
MR
16144 if (mips_opts.mips16)
16145 {
16146 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16147 ignore_rest_of_line ();
16148 return;
16149 }
16150
6478892d 16151 mips_gp_register = tc_get_register (0);
85b51719 16152 demand_empty_rest_of_line ();
6478892d
TS
16153}
16154
252b5132
RH
16155/* Handle the .cprestore pseudo-op. This stores $gp into a given
16156 offset from $sp. The offset is remembered, and after making a PIC
16157 call $gp is restored from that location. */
16158
16159static void
17a2f251 16160s_cprestore (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16161{
16162 expressionS ex;
252b5132 16163
919731af 16164 file_mips_check_options ();
16165
6478892d 16166 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
c9914766 16167 .cprestore is ignored. */
6478892d 16168 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16169 {
16170 s_ignore (0);
16171 return;
16172 }
16173
a276b80c
MR
16174 if (mips_opts.mips16)
16175 {
16176 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16177 ignore_rest_of_line ();
16178 return;
16179 }
16180
252b5132 16181 mips_cprestore_offset = get_absolute_expression ();
7a621144 16182 mips_cprestore_valid = 1;
252b5132
RH
16183
16184 ex.X_op = O_constant;
16185 ex.X_add_symbol = NULL;
16186 ex.X_op_symbol = NULL;
16187 ex.X_add_number = mips_cprestore_offset;
16188
8a75745d
MR
16189 mips_mark_labels ();
16190 mips_assembling_insn = TRUE;
16191
584892a6 16192 macro_start ();
67c0d1eb
RS
16193 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16194 SP, HAVE_64BIT_ADDRESSES);
584892a6 16195 macro_end ();
252b5132 16196
8a75745d 16197 mips_assembling_insn = FALSE;
252b5132
RH
16198 demand_empty_rest_of_line ();
16199}
16200
6478892d 16201/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
67c1ffbe 16202 was given in the preceding .cpsetup, it results in:
6478892d 16203 ld $gp, offset($sp)
76b3015f 16204
6478892d 16205 If a register $reg2 was given there, it results in:
40fc1451 16206 or $gp, $reg2, $0 */
54f4ddb3 16207
6478892d 16208static void
17a2f251 16209s_cpreturn (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16210{
16211 expressionS ex;
6478892d 16212
919731af 16213 file_mips_check_options ();
16214
6478892d
TS
16215 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16216 We also need NewABI support. */
16217 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16218 {
16219 s_ignore (0);
16220 return;
16221 }
16222
a276b80c
MR
16223 if (mips_opts.mips16)
16224 {
16225 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16226 ignore_rest_of_line ();
16227 return;
16228 }
16229
8a75745d
MR
16230 mips_mark_labels ();
16231 mips_assembling_insn = TRUE;
16232
584892a6 16233 macro_start ();
6478892d
TS
16234 if (mips_cpreturn_register == -1)
16235 {
16236 ex.X_op = O_constant;
16237 ex.X_add_symbol = NULL;
16238 ex.X_op_symbol = NULL;
16239 ex.X_add_number = mips_cpreturn_offset;
16240
67c0d1eb 16241 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
6478892d
TS
16242 }
16243 else
40fc1451
SD
16244 move_register (mips_gp_register, mips_cpreturn_register);
16245
584892a6 16246 macro_end ();
6478892d 16247
8a75745d 16248 mips_assembling_insn = FALSE;
6478892d
TS
16249 demand_empty_rest_of_line ();
16250}
16251
d0f13682
CLT
16252/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16253 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16254 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16255 debug information or MIPS16 TLS. */
741d6ea8
JM
16256
16257static void
d0f13682
CLT
16258s_tls_rel_directive (const size_t bytes, const char *dirstr,
16259 bfd_reloc_code_real_type rtype)
741d6ea8
JM
16260{
16261 expressionS ex;
16262 char *p;
16263
16264 expression (&ex);
16265
16266 if (ex.X_op != O_symbol)
16267 {
1661c76c 16268 as_bad (_("unsupported use of %s"), dirstr);
741d6ea8
JM
16269 ignore_rest_of_line ();
16270 }
16271
16272 p = frag_more (bytes);
16273 md_number_to_chars (p, 0, bytes);
d0f13682 16274 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
741d6ea8 16275 demand_empty_rest_of_line ();
de64cffd 16276 mips_clear_insn_labels ();
741d6ea8
JM
16277}
16278
16279/* Handle .dtprelword. */
16280
16281static void
16282s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16283{
d0f13682 16284 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
741d6ea8
JM
16285}
16286
16287/* Handle .dtpreldword. */
16288
16289static void
16290s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16291{
d0f13682
CLT
16292 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16293}
16294
16295/* Handle .tprelword. */
16296
16297static void
16298s_tprelword (int ignore ATTRIBUTE_UNUSED)
16299{
16300 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16301}
16302
16303/* Handle .tpreldword. */
16304
16305static void
16306s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16307{
16308 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
741d6ea8
JM
16309}
16310
6478892d
TS
16311/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16312 code. It sets the offset to use in gp_rel relocations. */
16313
16314static void
17a2f251 16315s_gpvalue (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16316{
16317 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16318 We also need NewABI support. */
16319 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16320 {
16321 s_ignore (0);
16322 return;
16323 }
16324
def2e0dd 16325 mips_gprel_offset = get_absolute_expression ();
6478892d
TS
16326
16327 demand_empty_rest_of_line ();
16328}
16329
252b5132
RH
16330/* Handle the .gpword pseudo-op. This is used when generating PIC
16331 code. It generates a 32 bit GP relative reloc. */
16332
16333static void
17a2f251 16334s_gpword (int ignore ATTRIBUTE_UNUSED)
252b5132 16335{
a8dbcb85
TS
16336 segment_info_type *si;
16337 struct insn_label_list *l;
252b5132
RH
16338 expressionS ex;
16339 char *p;
16340
16341 /* When not generating PIC code, this is treated as .word. */
16342 if (mips_pic != SVR4_PIC)
16343 {
16344 s_cons (2);
16345 return;
16346 }
16347
a8dbcb85
TS
16348 si = seg_info (now_seg);
16349 l = si->label_list;
7d10b47d 16350 mips_emit_delays ();
252b5132 16351 if (auto_align)
462427c4 16352 mips_align (2, 0, l);
252b5132
RH
16353
16354 expression (&ex);
a1facbec 16355 mips_clear_insn_labels ();
252b5132
RH
16356
16357 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16358 {
1661c76c 16359 as_bad (_("unsupported use of .gpword"));
252b5132
RH
16360 ignore_rest_of_line ();
16361 }
16362
16363 p = frag_more (4);
17a2f251 16364 md_number_to_chars (p, 0, 4);
b34976b6 16365 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
cdf6fd85 16366 BFD_RELOC_GPREL32);
252b5132
RH
16367
16368 demand_empty_rest_of_line ();
16369}
16370
10181a0d 16371static void
17a2f251 16372s_gpdword (int ignore ATTRIBUTE_UNUSED)
10181a0d 16373{
a8dbcb85
TS
16374 segment_info_type *si;
16375 struct insn_label_list *l;
10181a0d
AO
16376 expressionS ex;
16377 char *p;
16378
16379 /* When not generating PIC code, this is treated as .dword. */
16380 if (mips_pic != SVR4_PIC)
16381 {
16382 s_cons (3);
16383 return;
16384 }
16385
a8dbcb85
TS
16386 si = seg_info (now_seg);
16387 l = si->label_list;
7d10b47d 16388 mips_emit_delays ();
10181a0d 16389 if (auto_align)
462427c4 16390 mips_align (3, 0, l);
10181a0d
AO
16391
16392 expression (&ex);
a1facbec 16393 mips_clear_insn_labels ();
10181a0d
AO
16394
16395 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16396 {
1661c76c 16397 as_bad (_("unsupported use of .gpdword"));
10181a0d
AO
16398 ignore_rest_of_line ();
16399 }
16400
16401 p = frag_more (8);
17a2f251 16402 md_number_to_chars (p, 0, 8);
a105a300 16403 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
6e1304d8 16404 BFD_RELOC_GPREL32)->fx_tcbit = 1;
10181a0d
AO
16405
16406 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
6e1304d8
RS
16407 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16408 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
10181a0d
AO
16409
16410 demand_empty_rest_of_line ();
16411}
16412
a3f278e2
CM
16413/* Handle the .ehword pseudo-op. This is used when generating unwinding
16414 tables. It generates a R_MIPS_EH reloc. */
16415
16416static void
16417s_ehword (int ignore ATTRIBUTE_UNUSED)
16418{
16419 expressionS ex;
16420 char *p;
16421
16422 mips_emit_delays ();
16423
16424 expression (&ex);
16425 mips_clear_insn_labels ();
16426
16427 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16428 {
1661c76c 16429 as_bad (_("unsupported use of .ehword"));
a3f278e2
CM
16430 ignore_rest_of_line ();
16431 }
16432
16433 p = frag_more (4);
16434 md_number_to_chars (p, 0, 4);
16435 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
2f0c68f2 16436 BFD_RELOC_32_PCREL);
a3f278e2
CM
16437
16438 demand_empty_rest_of_line ();
16439}
16440
252b5132
RH
16441/* Handle the .cpadd pseudo-op. This is used when dealing with switch
16442 tables in SVR4 PIC code. */
16443
16444static void
17a2f251 16445s_cpadd (int ignore ATTRIBUTE_UNUSED)
252b5132 16446{
252b5132
RH
16447 int reg;
16448
919731af 16449 file_mips_check_options ();
16450
10181a0d
AO
16451 /* This is ignored when not generating SVR4 PIC code. */
16452 if (mips_pic != SVR4_PIC)
252b5132
RH
16453 {
16454 s_ignore (0);
16455 return;
16456 }
16457
8a75745d
MR
16458 mips_mark_labels ();
16459 mips_assembling_insn = TRUE;
16460
252b5132 16461 /* Add $gp to the register named as an argument. */
584892a6 16462 macro_start ();
252b5132 16463 reg = tc_get_register (0);
67c0d1eb 16464 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
584892a6 16465 macro_end ();
252b5132 16466
8a75745d 16467 mips_assembling_insn = FALSE;
bdaaa2e1 16468 demand_empty_rest_of_line ();
252b5132
RH
16469}
16470
16471/* Handle the .insn pseudo-op. This marks instruction labels in
df58fc94 16472 mips16/micromips mode. This permits the linker to handle them specially,
252b5132
RH
16473 such as generating jalx instructions when needed. We also make
16474 them odd for the duration of the assembly, in order to generate the
16475 right sort of code. We will make them even in the adjust_symtab
16476 routine, while leaving them marked. This is convenient for the
16477 debugger and the disassembler. The linker knows to make them odd
16478 again. */
16479
16480static void
17a2f251 16481s_insn (int ignore ATTRIBUTE_UNUSED)
252b5132 16482{
7bb01e2d
MR
16483 file_mips_check_options ();
16484 file_ase_mips16 |= mips_opts.mips16;
16485 file_ase_micromips |= mips_opts.micromips;
16486
df58fc94 16487 mips_mark_labels ();
252b5132
RH
16488
16489 demand_empty_rest_of_line ();
16490}
16491
ba92f887
MR
16492/* Handle the .nan pseudo-op. */
16493
16494static void
16495s_nan (int ignore ATTRIBUTE_UNUSED)
16496{
16497 static const char str_legacy[] = "legacy";
16498 static const char str_2008[] = "2008";
16499 size_t i;
16500
16501 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16502
16503 if (i == sizeof (str_2008) - 1
16504 && memcmp (input_line_pointer, str_2008, i) == 0)
7361da2c 16505 mips_nan2008 = 1;
ba92f887
MR
16506 else if (i == sizeof (str_legacy) - 1
16507 && memcmp (input_line_pointer, str_legacy, i) == 0)
7361da2c
AB
16508 {
16509 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16510 mips_nan2008 = 0;
16511 else
16512 as_bad (_("`%s' does not support legacy NaN"),
16513 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16514 }
ba92f887 16515 else
1661c76c 16516 as_bad (_("bad .nan directive"));
ba92f887
MR
16517
16518 input_line_pointer += i;
16519 demand_empty_rest_of_line ();
16520}
16521
754e2bb9
RS
16522/* Handle a .stab[snd] directive. Ideally these directives would be
16523 implemented in a transparent way, so that removing them would not
16524 have any effect on the generated instructions. However, s_stab
16525 internally changes the section, so in practice we need to decide
16526 now whether the preceding label marks compressed code. We do not
16527 support changing the compression mode of a label after a .stab*
16528 directive, such as in:
16529
16530 foo:
134c0c8b 16531 .stabs ...
754e2bb9
RS
16532 .set mips16
16533
16534 so the current mode wins. */
252b5132
RH
16535
16536static void
17a2f251 16537s_mips_stab (int type)
252b5132 16538{
754e2bb9 16539 mips_mark_labels ();
252b5132
RH
16540 s_stab (type);
16541}
16542
54f4ddb3 16543/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
252b5132
RH
16544
16545static void
17a2f251 16546s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16547{
16548 char *name;
16549 int c;
16550 symbolS *symbolP;
16551 expressionS exp;
16552
d02603dc 16553 c = get_symbol_name (&name);
252b5132
RH
16554 symbolP = symbol_find_or_make (name);
16555 S_SET_WEAK (symbolP);
16556 *input_line_pointer = c;
16557
d02603dc 16558 SKIP_WHITESPACE_AFTER_NAME ();
252b5132
RH
16559
16560 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16561 {
16562 if (S_IS_DEFINED (symbolP))
16563 {
20203fb9 16564 as_bad (_("ignoring attempt to redefine symbol %s"),
252b5132
RH
16565 S_GET_NAME (symbolP));
16566 ignore_rest_of_line ();
16567 return;
16568 }
bdaaa2e1 16569
252b5132
RH
16570 if (*input_line_pointer == ',')
16571 {
16572 ++input_line_pointer;
16573 SKIP_WHITESPACE ();
16574 }
bdaaa2e1 16575
252b5132
RH
16576 expression (&exp);
16577 if (exp.X_op != O_symbol)
16578 {
20203fb9 16579 as_bad (_("bad .weakext directive"));
98d3f06f 16580 ignore_rest_of_line ();
252b5132
RH
16581 return;
16582 }
49309057 16583 symbol_set_value_expression (symbolP, &exp);
252b5132
RH
16584 }
16585
16586 demand_empty_rest_of_line ();
16587}
16588
16589/* Parse a register string into a number. Called from the ECOFF code
16590 to parse .frame. The argument is non-zero if this is the frame
16591 register, so that we can record it in mips_frame_reg. */
16592
16593int
17a2f251 16594tc_get_register (int frame)
252b5132 16595{
707bfff6 16596 unsigned int reg;
252b5132
RH
16597
16598 SKIP_WHITESPACE ();
707bfff6
TS
16599 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16600 reg = 0;
252b5132 16601 if (frame)
7a621144
DJ
16602 {
16603 mips_frame_reg = reg != 0 ? reg : SP;
16604 mips_frame_reg_valid = 1;
16605 mips_cprestore_valid = 0;
16606 }
252b5132
RH
16607 return reg;
16608}
16609
16610valueT
17a2f251 16611md_section_align (asection *seg, valueT addr)
252b5132
RH
16612{
16613 int align = bfd_get_section_alignment (stdoutput, seg);
16614
f3ded42a
RS
16615 /* We don't need to align ELF sections to the full alignment.
16616 However, Irix 5 may prefer that we align them at least to a 16
16617 byte boundary. We don't bother to align the sections if we
16618 are targeted for an embedded system. */
16619 if (strncmp (TARGET_OS, "elf", 3) == 0)
16620 return addr;
16621 if (align > 4)
16622 align = 4;
252b5132 16623
8d3842cd 16624 return ((addr + (1 << align) - 1) & -(1 << align));
252b5132
RH
16625}
16626
16627/* Utility routine, called from above as well. If called while the
16628 input file is still being read, it's only an approximation. (For
16629 example, a symbol may later become defined which appeared to be
16630 undefined earlier.) */
16631
16632static int
17a2f251 16633nopic_need_relax (symbolS *sym, int before_relaxing)
252b5132
RH
16634{
16635 if (sym == 0)
16636 return 0;
16637
4d0d148d 16638 if (g_switch_value > 0)
252b5132
RH
16639 {
16640 const char *symname;
16641 int change;
16642
c9914766 16643 /* Find out whether this symbol can be referenced off the $gp
252b5132
RH
16644 register. It can be if it is smaller than the -G size or if
16645 it is in the .sdata or .sbss section. Certain symbols can
c9914766 16646 not be referenced off the $gp, although it appears as though
252b5132
RH
16647 they can. */
16648 symname = S_GET_NAME (sym);
16649 if (symname != (const char *) NULL
16650 && (strcmp (symname, "eprol") == 0
16651 || strcmp (symname, "etext") == 0
16652 || strcmp (symname, "_gp") == 0
16653 || strcmp (symname, "edata") == 0
16654 || strcmp (symname, "_fbss") == 0
16655 || strcmp (symname, "_fdata") == 0
16656 || strcmp (symname, "_ftext") == 0
16657 || strcmp (symname, "end") == 0
16658 || strcmp (symname, "_gp_disp") == 0))
16659 change = 1;
16660 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16661 && (0
16662#ifndef NO_ECOFF_DEBUGGING
49309057
ILT
16663 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16664 && (symbol_get_obj (sym)->ecoff_extern_size
16665 <= g_switch_value))
252b5132
RH
16666#endif
16667 /* We must defer this decision until after the whole
16668 file has been read, since there might be a .extern
16669 after the first use of this symbol. */
16670 || (before_relaxing
16671#ifndef NO_ECOFF_DEBUGGING
49309057 16672 && symbol_get_obj (sym)->ecoff_extern_size == 0
252b5132
RH
16673#endif
16674 && S_GET_VALUE (sym) == 0)
16675 || (S_GET_VALUE (sym) != 0
16676 && S_GET_VALUE (sym) <= g_switch_value)))
16677 change = 0;
16678 else
16679 {
16680 const char *segname;
16681
16682 segname = segment_name (S_GET_SEGMENT (sym));
9c2799c2 16683 gas_assert (strcmp (segname, ".lit8") != 0
252b5132
RH
16684 && strcmp (segname, ".lit4") != 0);
16685 change = (strcmp (segname, ".sdata") != 0
fba2b7f9
GK
16686 && strcmp (segname, ".sbss") != 0
16687 && strncmp (segname, ".sdata.", 7) != 0
d4dc2f22
TS
16688 && strncmp (segname, ".sbss.", 6) != 0
16689 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
fba2b7f9 16690 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
252b5132
RH
16691 }
16692 return change;
16693 }
16694 else
c9914766 16695 /* We are not optimizing for the $gp register. */
252b5132
RH
16696 return 1;
16697}
16698
5919d012
RS
16699
16700/* Return true if the given symbol should be considered local for SVR4 PIC. */
16701
16702static bfd_boolean
17a2f251 16703pic_need_relax (symbolS *sym, asection *segtype)
5919d012
RS
16704{
16705 asection *symsec;
5919d012
RS
16706
16707 /* Handle the case of a symbol equated to another symbol. */
16708 while (symbol_equated_reloc_p (sym))
16709 {
16710 symbolS *n;
16711
5f0fe04b 16712 /* It's possible to get a loop here in a badly written program. */
5919d012
RS
16713 n = symbol_get_value_expression (sym)->X_add_symbol;
16714 if (n == sym)
16715 break;
16716 sym = n;
16717 }
16718
df1f3cda
DD
16719 if (symbol_section_p (sym))
16720 return TRUE;
16721
5919d012
RS
16722 symsec = S_GET_SEGMENT (sym);
16723
5919d012 16724 /* This must duplicate the test in adjust_reloc_syms. */
45dfa85a
AM
16725 return (!bfd_is_und_section (symsec)
16726 && !bfd_is_abs_section (symsec)
5f0fe04b
TS
16727 && !bfd_is_com_section (symsec)
16728 && !s_is_linkonce (sym, segtype)
5919d012 16729 /* A global or weak symbol is treated as external. */
f3ded42a 16730 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
5919d012
RS
16731}
16732
16733
252b5132
RH
16734/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16735 extended opcode. SEC is the section the frag is in. */
16736
16737static int
17a2f251 16738mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
252b5132
RH
16739{
16740 int type;
3ccad066 16741 const struct mips_int_operand *operand;
252b5132 16742 offsetT val;
252b5132 16743 segT symsec;
98aa84af 16744 fragS *sym_frag;
252b5132
RH
16745
16746 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16747 return 0;
16748 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16749 return 1;
16750
88a7ef16 16751 symsec = S_GET_SEGMENT (fragp->fr_symbol);
252b5132 16752 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 16753 operand = mips16_immed_operand (type, FALSE);
88a7ef16
MR
16754 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
16755 || (operand->root.type == OP_PCREL
16756 ? sec != symsec
16757 : !bfd_is_abs_section (symsec)))
16758 return 1;
252b5132 16759
98aa84af 16760 sym_frag = symbol_get_frag (fragp->fr_symbol);
88a7ef16 16761 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
252b5132 16762
3ccad066 16763 if (operand->root.type == OP_PCREL)
252b5132 16764 {
3ccad066 16765 const struct mips_pcrel_operand *pcrel_op;
252b5132 16766 addressT addr;
3ccad066 16767 offsetT maxtiny;
252b5132 16768
88a7ef16
MR
16769 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16770 return 1;
252b5132 16771
88a7ef16 16772 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132 16773
88a7ef16
MR
16774 /* If the relax_marker of the symbol fragment differs from the
16775 relax_marker of this fragment, we have not yet adjusted the
16776 symbol fragment fr_address. We want to add in STRETCH in
16777 order to get a better estimate of the address. This
16778 particularly matters because of the shift bits. */
252b5132 16779 if (stretch != 0
98aa84af 16780 && sym_frag->relax_marker != fragp->relax_marker)
252b5132
RH
16781 {
16782 fragS *f;
16783
16784 /* Adjust stretch for any alignment frag. Note that if have
16785 been expanding the earlier code, the symbol may be
16786 defined in what appears to be an earlier frag. FIXME:
16787 This doesn't handle the fr_subtype field, which specifies
16788 a maximum number of bytes to skip when doing an
16789 alignment. */
98aa84af 16790 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
252b5132
RH
16791 {
16792 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16793 {
16794 if (stretch < 0)
16795 stretch = - ((- stretch)
16796 & ~ ((1 << (int) f->fr_offset) - 1));
16797 else
16798 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16799 if (stretch == 0)
16800 break;
16801 }
16802 }
16803 if (f != NULL)
16804 val += stretch;
16805 }
16806
16807 addr = fragp->fr_address + fragp->fr_fix;
16808
16809 /* The base address rules are complicated. The base address of
16810 a branch is the following instruction. The base address of a
16811 PC relative load or add is the instruction itself, but if it
16812 is in a delay slot (in which case it can not be extended) use
16813 the address of the instruction whose delay slot it is in. */
3ccad066 16814 if (pcrel_op->include_isa_bit)
252b5132
RH
16815 {
16816 addr += 2;
16817
16818 /* If we are currently assuming that this frag should be
16819 extended, then, the current address is two bytes
bdaaa2e1 16820 higher. */
252b5132
RH
16821 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16822 addr += 2;
16823
16824 /* Ignore the low bit in the target, since it will be set
16825 for a text label. */
3ccad066 16826 val &= -2;
252b5132
RH
16827 }
16828 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16829 addr -= 4;
16830 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16831 addr -= 2;
16832
3ccad066 16833 val -= addr & -(1 << pcrel_op->align_log2);
252b5132
RH
16834
16835 /* If any of the shifted bits are set, we must use an extended
16836 opcode. If the address depends on the size of this
16837 instruction, this can lead to a loop, so we arrange to always
88a7ef16
MR
16838 use an extended opcode. */
16839 if ((val & ((1 << operand->shift) - 1)) != 0)
252b5132
RH
16840 {
16841 fragp->fr_subtype =
16842 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16843 return 1;
16844 }
16845
16846 /* If we are about to mark a frag as extended because the value
3ccad066
RS
16847 is precisely the next value above maxtiny, then there is a
16848 chance of an infinite loop as in the following code:
252b5132
RH
16849 la $4,foo
16850 .skip 1020
16851 .align 2
16852 foo:
16853 In this case when the la is extended, foo is 0x3fc bytes
16854 away, so the la can be shrunk, but then foo is 0x400 away, so
16855 the la must be extended. To avoid this loop, we mark the
16856 frag as extended if it was small, and is about to become
3ccad066
RS
16857 extended with the next value above maxtiny. */
16858 maxtiny = mips_int_operand_max (operand);
16859 if (val == maxtiny + (1 << operand->shift)
88a7ef16 16860 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
252b5132
RH
16861 {
16862 fragp->fr_subtype =
16863 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16864 return 1;
16865 }
16866 }
252b5132 16867
3ccad066 16868 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
252b5132
RH
16869}
16870
4a6a3df4
AO
16871/* Compute the length of a branch sequence, and adjust the
16872 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16873 worst-case length is computed, with UPDATE being used to indicate
16874 whether an unconditional (-1), branch-likely (+1) or regular (0)
16875 branch is to be computed. */
16876static int
17a2f251 16877relaxed_branch_length (fragS *fragp, asection *sec, int update)
4a6a3df4 16878{
b34976b6 16879 bfd_boolean toofar;
4a6a3df4
AO
16880 int length;
16881
16882 if (fragp
16883 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 16884 && !S_IS_WEAK (fragp->fr_symbol)
4a6a3df4
AO
16885 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16886 {
16887 addressT addr;
16888 offsetT val;
16889
16890 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16891
16892 addr = fragp->fr_address + fragp->fr_fix + 4;
16893
16894 val -= addr;
16895
16896 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16897 }
4a6a3df4 16898 else
c1f61bd2
MR
16899 /* If the symbol is not defined or it's in a different segment,
16900 we emit the long sequence. */
b34976b6 16901 toofar = TRUE;
4a6a3df4
AO
16902
16903 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16904 fragp->fr_subtype
66b3e8da
MR
16905 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16906 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
4a6a3df4
AO
16907 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16908 RELAX_BRANCH_LINK (fragp->fr_subtype),
16909 toofar);
16910
16911 length = 4;
16912 if (toofar)
16913 {
16914 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16915 length += 8;
16916
16917 if (mips_pic != NO_PIC)
16918 {
16919 /* Additional space for PIC loading of target address. */
16920 length += 8;
16921 if (mips_opts.isa == ISA_MIPS1)
16922 /* Additional space for $at-stabilizing nop. */
16923 length += 4;
16924 }
16925
16926 /* If branch is conditional. */
16927 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16928 length += 8;
16929 }
b34976b6 16930
4a6a3df4
AO
16931 return length;
16932}
16933
df58fc94
RS
16934/* Compute the length of a branch sequence, and adjust the
16935 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16936 worst-case length is computed, with UPDATE being used to indicate
16937 whether an unconditional (-1), or regular (0) branch is to be
16938 computed. */
16939
16940static int
16941relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16942{
16943 bfd_boolean toofar;
16944 int length;
16945
16946 if (fragp
16947 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 16948 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
16949 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16950 {
16951 addressT addr;
16952 offsetT val;
16953
16954 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16955 /* Ignore the low bit in the target, since it will be set
16956 for a text label. */
16957 if ((val & 1) != 0)
16958 --val;
16959
16960 addr = fragp->fr_address + fragp->fr_fix + 4;
16961
16962 val -= addr;
16963
16964 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16965 }
df58fc94 16966 else
c1f61bd2
MR
16967 /* If the symbol is not defined or it's in a different segment,
16968 we emit the long sequence. */
df58fc94
RS
16969 toofar = TRUE;
16970
16971 if (fragp && update
16972 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16973 fragp->fr_subtype = (toofar
16974 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16975 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16976
16977 length = 4;
16978 if (toofar)
16979 {
16980 bfd_boolean compact_known = fragp != NULL;
16981 bfd_boolean compact = FALSE;
16982 bfd_boolean uncond;
16983
16984 if (compact_known)
16985 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16986 if (fragp)
16987 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16988 else
16989 uncond = update < 0;
16990
16991 /* If label is out of range, we turn branch <br>:
16992
16993 <br> label # 4 bytes
16994 0:
16995
16996 into:
16997
16998 j label # 4 bytes
16999 nop # 2 bytes if compact && !PIC
17000 0:
17001 */
17002 if (mips_pic == NO_PIC && (!compact_known || compact))
17003 length += 2;
17004
17005 /* If assembling PIC code, we further turn:
17006
17007 j label # 4 bytes
17008
17009 into:
17010
17011 lw/ld at, %got(label)(gp) # 4 bytes
17012 d/addiu at, %lo(label) # 4 bytes
17013 jr/c at # 2 bytes
17014 */
17015 if (mips_pic != NO_PIC)
17016 length += 6;
17017
17018 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17019
17020 <brneg> 0f # 4 bytes
17021 nop # 2 bytes if !compact
17022 */
17023 if (!uncond)
17024 length += (compact_known && compact) ? 4 : 6;
17025 }
17026
17027 return length;
17028}
17029
17030/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17031 bit accordingly. */
17032
17033static int
17034relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17035{
17036 bfd_boolean toofar;
17037
df58fc94
RS
17038 if (fragp
17039 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17040 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
17041 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17042 {
17043 addressT addr;
17044 offsetT val;
17045 int type;
17046
17047 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17048 /* Ignore the low bit in the target, since it will be set
17049 for a text label. */
17050 if ((val & 1) != 0)
17051 --val;
17052
17053 /* Assume this is a 2-byte branch. */
17054 addr = fragp->fr_address + fragp->fr_fix + 2;
17055
17056 /* We try to avoid the infinite loop by not adding 2 more bytes for
17057 long branches. */
17058
17059 val -= addr;
17060
17061 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17062 if (type == 'D')
17063 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17064 else if (type == 'E')
17065 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17066 else
17067 abort ();
17068 }
17069 else
17070 /* If the symbol is not defined or it's in a different segment,
17071 we emit a normal 32-bit branch. */
17072 toofar = TRUE;
17073
17074 if (fragp && update
17075 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17076 fragp->fr_subtype
17077 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17078 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17079
17080 if (toofar)
17081 return 4;
17082
17083 return 2;
17084}
17085
252b5132
RH
17086/* Estimate the size of a frag before relaxing. Unless this is the
17087 mips16, we are not really relaxing here, and the final size is
17088 encoded in the subtype information. For the mips16, we have to
17089 decide whether we are using an extended opcode or not. */
17090
252b5132 17091int
17a2f251 17092md_estimate_size_before_relax (fragS *fragp, asection *segtype)
252b5132 17093{
5919d012 17094 int change;
252b5132 17095
4a6a3df4
AO
17096 if (RELAX_BRANCH_P (fragp->fr_subtype))
17097 {
17098
b34976b6
AM
17099 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17100
4a6a3df4
AO
17101 return fragp->fr_var;
17102 }
17103
252b5132 17104 if (RELAX_MIPS16_P (fragp->fr_subtype))
177b4a6a
AO
17105 /* We don't want to modify the EXTENDED bit here; it might get us
17106 into infinite loops. We change it only in mips_relax_frag(). */
17107 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
252b5132 17108
df58fc94
RS
17109 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17110 {
17111 int length = 4;
17112
17113 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17114 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17115 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17116 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17117 fragp->fr_var = length;
17118
17119 return length;
17120 }
17121
252b5132 17122 if (mips_pic == NO_PIC)
5919d012 17123 change = nopic_need_relax (fragp->fr_symbol, 0);
252b5132 17124 else if (mips_pic == SVR4_PIC)
5919d012 17125 change = pic_need_relax (fragp->fr_symbol, segtype);
0a44bf69
RS
17126 else if (mips_pic == VXWORKS_PIC)
17127 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17128 change = 0;
252b5132
RH
17129 else
17130 abort ();
17131
17132 if (change)
17133 {
4d7206a2 17134 fragp->fr_subtype |= RELAX_USE_SECOND;
4d7206a2 17135 return -RELAX_FIRST (fragp->fr_subtype);
252b5132 17136 }
4d7206a2
RS
17137 else
17138 return -RELAX_SECOND (fragp->fr_subtype);
252b5132
RH
17139}
17140
17141/* This is called to see whether a reloc against a defined symbol
de7e6852 17142 should be converted into a reloc against a section. */
252b5132
RH
17143
17144int
17a2f251 17145mips_fix_adjustable (fixS *fixp)
252b5132 17146{
252b5132
RH
17147 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17148 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17149 return 0;
a161fe53 17150
252b5132
RH
17151 if (fixp->fx_addsy == NULL)
17152 return 1;
a161fe53 17153
2f0c68f2
CM
17154 /* Allow relocs used for EH tables. */
17155 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17156 return 1;
17157
de7e6852
RS
17158 /* If symbol SYM is in a mergeable section, relocations of the form
17159 SYM + 0 can usually be made section-relative. The mergeable data
17160 is then identified by the section offset rather than by the symbol.
17161
17162 However, if we're generating REL LO16 relocations, the offset is split
17163 between the LO16 and parterning high part relocation. The linker will
17164 need to recalculate the complete offset in order to correctly identify
17165 the merge data.
17166
17167 The linker has traditionally not looked for the parterning high part
17168 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17169 placed anywhere. Rather than break backwards compatibility by changing
17170 this, it seems better not to force the issue, and instead keep the
17171 original symbol. This will work with either linker behavior. */
738e5348 17172 if ((lo16_reloc_p (fixp->fx_r_type)
704803a9 17173 || reloc_needs_lo_p (fixp->fx_r_type))
de7e6852
RS
17174 && HAVE_IN_PLACE_ADDENDS
17175 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17176 return 0;
17177
97f50151
MR
17178 /* There is no place to store an in-place offset for JALR relocations. */
17179 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17180 return 0;
17181
17182 /* Likewise an in-range offset of limited PC-relative relocations may
2de39019 17183 overflow the in-place relocatable field if recalculated against the
7361da2c
AB
17184 start address of the symbol's containing section.
17185
17186 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17187 section relative to allow linker relaxations to be performed later on. */
97f50151 17188 if (limited_pcrel_reloc_p (fixp->fx_r_type)
912815f0 17189 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
1180b5a4
RS
17190 return 0;
17191
b314ec0e
RS
17192 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17193 to a floating-point stub. The same is true for non-R_MIPS16_26
17194 relocations against MIPS16 functions; in this case, the stub becomes
17195 the function's canonical address.
17196
17197 Floating-point stubs are stored in unique .mips16.call.* or
17198 .mips16.fn.* sections. If a stub T for function F is in section S,
17199 the first relocation in section S must be against F; this is how the
17200 linker determines the target function. All relocations that might
17201 resolve to T must also be against F. We therefore have the following
17202 restrictions, which are given in an intentionally-redundant way:
17203
17204 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17205 symbols.
17206
17207 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17208 if that stub might be used.
17209
17210 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17211 symbols.
17212
17213 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17214 that stub might be used.
17215
17216 There is a further restriction:
17217
df58fc94 17218 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
0e9c5a5c 17219 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
c9775dde
MR
17220 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17221 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17222 against MIPS16 or microMIPS symbols because we need to keep the
17223 MIPS16 or microMIPS symbol for the purpose of mode mismatch
17224 detection and JAL to JALX instruction conversion in the linker.
b314ec0e 17225
df58fc94 17226 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
507dcb32 17227 against a MIPS16 symbol. We deal with (5) by additionally leaving
0e9c5a5c 17228 alone any jump and branch relocations against a microMIPS symbol.
b314ec0e
RS
17229
17230 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17231 relocation against some symbol R, no relocation against R may be
17232 reduced. (Note that this deals with (2) as well as (1) because
17233 relocations against global symbols will never be reduced on ELF
17234 targets.) This approach is a little simpler than trying to detect
17235 stub sections, and gives the "all or nothing" per-symbol consistency
17236 that we have for MIPS16 symbols. */
f3ded42a 17237 if (fixp->fx_subsy == NULL
30c09090 17238 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
44d3da23 17239 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
0e9c5a5c
MR
17240 && (jmp_reloc_p (fixp->fx_r_type)
17241 || b_reloc_p (fixp->fx_r_type)))
44d3da23 17242 || *symbol_get_tc (fixp->fx_addsy)))
252b5132 17243 return 0;
a161fe53 17244
252b5132
RH
17245 return 1;
17246}
17247
17248/* Translate internal representation of relocation info to BFD target
17249 format. */
17250
17251arelent **
17a2f251 17252tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
17253{
17254 static arelent *retval[4];
17255 arelent *reloc;
17256 bfd_reloc_code_real_type code;
17257
4b0cff4e 17258 memset (retval, 0, sizeof(retval));
325801bd
TS
17259 reloc = retval[0] = XCNEW (arelent);
17260 reloc->sym_ptr_ptr = XNEW (asymbol *);
49309057 17261 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
17262 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17263
bad36eac
DJ
17264 if (fixp->fx_pcrel)
17265 {
df58fc94 17266 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
c9775dde 17267 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
df58fc94
RS
17268 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17269 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6 17270 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
7361da2c
AB
17271 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17272 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17273 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17274 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17275 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17276 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17277 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
bad36eac
DJ
17278
17279 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17280 Relocations want only the symbol offset. */
51f6035b
MR
17281 switch (fixp->fx_r_type)
17282 {
17283 case BFD_RELOC_MIPS_18_PCREL_S3:
17284 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17285 break;
17286 default:
17287 reloc->addend = fixp->fx_addnumber + reloc->address;
17288 break;
17289 }
bad36eac 17290 }
17c6c9d9
MR
17291 else if (HAVE_IN_PLACE_ADDENDS
17292 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17293 && (read_compressed_insn (fixp->fx_frag->fr_literal
17294 + fixp->fx_where, 4) >> 26) == 0x3c)
17295 {
17296 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17297 addend accordingly. */
17298 reloc->addend = fixp->fx_addnumber >> 1;
17299 }
bad36eac
DJ
17300 else
17301 reloc->addend = fixp->fx_addnumber;
252b5132 17302
438c16b8
TS
17303 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17304 entry to be used in the relocation's section offset. */
17305 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
252b5132
RH
17306 {
17307 reloc->address = reloc->addend;
17308 reloc->addend = 0;
17309 }
17310
252b5132 17311 code = fixp->fx_r_type;
252b5132 17312
bad36eac 17313 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
252b5132
RH
17314 if (reloc->howto == NULL)
17315 {
17316 as_bad_where (fixp->fx_file, fixp->fx_line,
1661c76c
RS
17317 _("cannot represent %s relocation in this object file"
17318 " format"),
252b5132
RH
17319 bfd_get_reloc_code_name (code));
17320 retval[0] = NULL;
17321 }
17322
17323 return retval;
17324}
17325
17326/* Relax a machine dependent frag. This returns the amount by which
17327 the current size of the frag should change. */
17328
17329int
17a2f251 17330mips_relax_frag (asection *sec, fragS *fragp, long stretch)
252b5132 17331{
4a6a3df4
AO
17332 if (RELAX_BRANCH_P (fragp->fr_subtype))
17333 {
17334 offsetT old_var = fragp->fr_var;
b34976b6
AM
17335
17336 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
4a6a3df4
AO
17337
17338 return fragp->fr_var - old_var;
17339 }
17340
df58fc94
RS
17341 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17342 {
17343 offsetT old_var = fragp->fr_var;
17344 offsetT new_var = 4;
17345
17346 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17347 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17348 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17349 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17350 fragp->fr_var = new_var;
17351
17352 return new_var - old_var;
17353 }
17354
252b5132
RH
17355 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17356 return 0;
17357
88a7ef16 17358 if (mips16_extended_frag (fragp, sec, stretch))
252b5132
RH
17359 {
17360 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17361 return 0;
17362 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17363 return 2;
17364 }
17365 else
17366 {
17367 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17368 return 0;
17369 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17370 return -2;
17371 }
17372
17373 return 0;
17374}
17375
17376/* Convert a machine dependent frag. */
17377
17378void
17a2f251 17379md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
252b5132 17380{
4a6a3df4
AO
17381 if (RELAX_BRANCH_P (fragp->fr_subtype))
17382 {
4d68580a 17383 char *buf;
4a6a3df4
AO
17384 unsigned long insn;
17385 expressionS exp;
17386 fixS *fixp;
b34976b6 17387
4d68580a
RS
17388 buf = fragp->fr_literal + fragp->fr_fix;
17389 insn = read_insn (buf);
b34976b6 17390
4a6a3df4
AO
17391 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17392 {
17393 /* We generate a fixup instead of applying it right now
17394 because, if there are linker relaxations, we're going to
17395 need the relocations. */
17396 exp.X_op = O_symbol;
17397 exp.X_add_symbol = fragp->fr_symbol;
17398 exp.X_add_number = fragp->fr_offset;
17399
4d68580a
RS
17400 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17401 BFD_RELOC_16_PCREL_S2);
4a6a3df4
AO
17402 fixp->fx_file = fragp->fr_file;
17403 fixp->fx_line = fragp->fr_line;
b34976b6 17404
4d68580a 17405 buf = write_insn (buf, insn);
4a6a3df4
AO
17406 }
17407 else
17408 {
17409 int i;
17410
17411 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17412 _("relaxed out-of-range branch into a jump"));
4a6a3df4
AO
17413
17414 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17415 goto uncond;
17416
17417 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17418 {
17419 /* Reverse the branch. */
17420 switch ((insn >> 28) & 0xf)
17421 {
17422 case 4:
56d438b1
CF
17423 if ((insn & 0xff000000) == 0x47000000
17424 || (insn & 0xff600000) == 0x45600000)
17425 {
17426 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17427 reversed by tweaking bit 23. */
17428 insn ^= 0x00800000;
17429 }
17430 else
17431 {
17432 /* bc[0-3][tf]l? instructions can have the condition
17433 reversed by tweaking a single TF bit, and their
17434 opcodes all have 0x4???????. */
17435 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17436 insn ^= 0x00010000;
17437 }
4a6a3df4
AO
17438 break;
17439
17440 case 0:
17441 /* bltz 0x04000000 bgez 0x04010000
54f4ddb3 17442 bltzal 0x04100000 bgezal 0x04110000 */
9c2799c2 17443 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
4a6a3df4
AO
17444 insn ^= 0x00010000;
17445 break;
b34976b6 17446
4a6a3df4
AO
17447 case 1:
17448 /* beq 0x10000000 bne 0x14000000
54f4ddb3 17449 blez 0x18000000 bgtz 0x1c000000 */
4a6a3df4
AO
17450 insn ^= 0x04000000;
17451 break;
17452
17453 default:
17454 abort ();
17455 }
17456 }
17457
17458 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17459 {
17460 /* Clear the and-link bit. */
9c2799c2 17461 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
4a6a3df4 17462
54f4ddb3
TS
17463 /* bltzal 0x04100000 bgezal 0x04110000
17464 bltzall 0x04120000 bgezall 0x04130000 */
4a6a3df4
AO
17465 insn &= ~0x00100000;
17466 }
17467
17468 /* Branch over the branch (if the branch was likely) or the
17469 full jump (not likely case). Compute the offset from the
17470 current instruction to branch to. */
17471 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17472 i = 16;
17473 else
17474 {
17475 /* How many bytes in instructions we've already emitted? */
4d68580a 17476 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17477 /* How many bytes in instructions from here to the end? */
17478 i = fragp->fr_var - i;
17479 }
17480 /* Convert to instruction count. */
17481 i >>= 2;
17482 /* Branch counts from the next instruction. */
b34976b6 17483 i--;
4a6a3df4
AO
17484 insn |= i;
17485 /* Branch over the jump. */
4d68580a 17486 buf = write_insn (buf, insn);
4a6a3df4 17487
54f4ddb3 17488 /* nop */
4d68580a 17489 buf = write_insn (buf, 0);
4a6a3df4
AO
17490
17491 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17492 {
17493 /* beql $0, $0, 2f */
17494 insn = 0x50000000;
17495 /* Compute the PC offset from the current instruction to
17496 the end of the variable frag. */
17497 /* How many bytes in instructions we've already emitted? */
4d68580a 17498 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17499 /* How many bytes in instructions from here to the end? */
17500 i = fragp->fr_var - i;
17501 /* Convert to instruction count. */
17502 i >>= 2;
17503 /* Don't decrement i, because we want to branch over the
17504 delay slot. */
4a6a3df4 17505 insn |= i;
4a6a3df4 17506
4d68580a
RS
17507 buf = write_insn (buf, insn);
17508 buf = write_insn (buf, 0);
4a6a3df4
AO
17509 }
17510
17511 uncond:
17512 if (mips_pic == NO_PIC)
17513 {
17514 /* j or jal. */
17515 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17516 ? 0x0c000000 : 0x08000000);
17517 exp.X_op = O_symbol;
17518 exp.X_add_symbol = fragp->fr_symbol;
17519 exp.X_add_number = fragp->fr_offset;
17520
4d68580a
RS
17521 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17522 FALSE, BFD_RELOC_MIPS_JMP);
4a6a3df4
AO
17523 fixp->fx_file = fragp->fr_file;
17524 fixp->fx_line = fragp->fr_line;
17525
4d68580a 17526 buf = write_insn (buf, insn);
4a6a3df4
AO
17527 }
17528 else
17529 {
66b3e8da
MR
17530 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17531
4a6a3df4 17532 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
66b3e8da
MR
17533 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17534 insn |= at << OP_SH_RT;
4a6a3df4
AO
17535 exp.X_op = O_symbol;
17536 exp.X_add_symbol = fragp->fr_symbol;
17537 exp.X_add_number = fragp->fr_offset;
17538
17539 if (fragp->fr_offset)
17540 {
17541 exp.X_add_symbol = make_expr_symbol (&exp);
17542 exp.X_add_number = 0;
17543 }
17544
4d68580a
RS
17545 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17546 FALSE, BFD_RELOC_MIPS_GOT16);
4a6a3df4
AO
17547 fixp->fx_file = fragp->fr_file;
17548 fixp->fx_line = fragp->fr_line;
17549
4d68580a 17550 buf = write_insn (buf, insn);
b34976b6 17551
4a6a3df4 17552 if (mips_opts.isa == ISA_MIPS1)
4d68580a
RS
17553 /* nop */
17554 buf = write_insn (buf, 0);
4a6a3df4
AO
17555
17556 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
66b3e8da
MR
17557 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17558 insn |= at << OP_SH_RS | at << OP_SH_RT;
4a6a3df4 17559
4d68580a
RS
17560 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17561 FALSE, BFD_RELOC_LO16);
4a6a3df4
AO
17562 fixp->fx_file = fragp->fr_file;
17563 fixp->fx_line = fragp->fr_line;
b34976b6 17564
4d68580a 17565 buf = write_insn (buf, insn);
4a6a3df4
AO
17566
17567 /* j(al)r $at. */
17568 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
66b3e8da 17569 insn = 0x0000f809;
4a6a3df4 17570 else
66b3e8da
MR
17571 insn = 0x00000008;
17572 insn |= at << OP_SH_RS;
4a6a3df4 17573
4d68580a 17574 buf = write_insn (buf, insn);
4a6a3df4
AO
17575 }
17576 }
17577
4a6a3df4 17578 fragp->fr_fix += fragp->fr_var;
4d68580a 17579 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
4a6a3df4
AO
17580 return;
17581 }
17582
df58fc94
RS
17583 /* Relax microMIPS branches. */
17584 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17585 {
4d68580a 17586 char *buf = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
17587 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17588 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17589 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
2309ddf2 17590 bfd_boolean short_ds;
df58fc94
RS
17591 unsigned long insn;
17592 expressionS exp;
17593 fixS *fixp;
17594
17595 exp.X_op = O_symbol;
17596 exp.X_add_symbol = fragp->fr_symbol;
17597 exp.X_add_number = fragp->fr_offset;
17598
17599 fragp->fr_fix += fragp->fr_var;
17600
17601 /* Handle 16-bit branches that fit or are forced to fit. */
17602 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17603 {
17604 /* We generate a fixup instead of applying it right now,
17605 because if there is linker relaxation, we're going to
17606 need the relocations. */
17607 if (type == 'D')
4d68580a 17608 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
17609 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17610 else if (type == 'E')
4d68580a 17611 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
17612 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17613 else
17614 abort ();
17615
17616 fixp->fx_file = fragp->fr_file;
17617 fixp->fx_line = fragp->fr_line;
17618
17619 /* These relocations can have an addend that won't fit in
17620 2 octets. */
17621 fixp->fx_no_overflow = 1;
17622
17623 return;
17624 }
17625
2309ddf2 17626 /* Handle 32-bit branches that fit or are forced to fit. */
df58fc94
RS
17627 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17628 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17629 {
17630 /* We generate a fixup instead of applying it right now,
17631 because if there is linker relaxation, we're going to
17632 need the relocations. */
4d68580a
RS
17633 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17634 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
17635 fixp->fx_file = fragp->fr_file;
17636 fixp->fx_line = fragp->fr_line;
17637
17638 if (type == 0)
17639 return;
17640 }
17641
17642 /* Relax 16-bit branches to 32-bit branches. */
17643 if (type != 0)
17644 {
4d68580a 17645 insn = read_compressed_insn (buf, 2);
df58fc94
RS
17646
17647 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17648 insn = 0x94000000; /* beq */
17649 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17650 {
17651 unsigned long regno;
17652
17653 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17654 regno = micromips_to_32_reg_d_map [regno];
17655 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17656 insn |= regno << MICROMIPSOP_SH_RS;
17657 }
17658 else
17659 abort ();
17660
17661 /* Nothing else to do, just write it out. */
17662 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17663 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17664 {
4d68580a
RS
17665 buf = write_compressed_insn (buf, insn, 4);
17666 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
17667 return;
17668 }
17669 }
17670 else
4d68580a 17671 insn = read_compressed_insn (buf, 4);
df58fc94
RS
17672
17673 /* Relax 32-bit branches to a sequence of instructions. */
17674 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17675 _("relaxed out-of-range branch into a jump"));
df58fc94 17676
2309ddf2
MR
17677 /* Set the short-delay-slot bit. */
17678 short_ds = al && (insn & 0x02000000) != 0;
df58fc94
RS
17679
17680 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17681 {
17682 symbolS *l;
17683
17684 /* Reverse the branch. */
17685 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17686 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17687 insn ^= 0x20000000;
17688 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17689 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17690 || (insn & 0xffe00000) == 0x40800000 /* blez */
17691 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17692 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17693 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17694 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17695 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17696 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17697 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17698 insn ^= 0x00400000;
17699 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17700 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17701 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17702 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17703 insn ^= 0x00200000;
56d438b1
CF
17704 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17705 BNZ.df */
17706 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17707 BNZ.V */
17708 insn ^= 0x00800000;
df58fc94
RS
17709 else
17710 abort ();
17711
17712 if (al)
17713 {
17714 /* Clear the and-link and short-delay-slot bits. */
17715 gas_assert ((insn & 0xfda00000) == 0x40200000);
17716
17717 /* bltzal 0x40200000 bgezal 0x40600000 */
17718 /* bltzals 0x42200000 bgezals 0x42600000 */
17719 insn &= ~0x02200000;
17720 }
17721
17722 /* Make a label at the end for use with the branch. */
17723 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17724 micromips_label_inc ();
f3ded42a 17725 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
df58fc94
RS
17726
17727 /* Refer to it. */
4d68580a
RS
17728 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17729 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
17730 fixp->fx_file = fragp->fr_file;
17731 fixp->fx_line = fragp->fr_line;
17732
17733 /* Branch over the jump. */
4d68580a 17734 buf = write_compressed_insn (buf, insn, 4);
df58fc94 17735 if (!compact)
4d68580a
RS
17736 /* nop */
17737 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
17738 }
17739
17740 if (mips_pic == NO_PIC)
17741 {
2309ddf2
MR
17742 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17743
df58fc94
RS
17744 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17745 insn = al ? jal : 0xd4000000;
17746
4d68580a
RS
17747 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17748 BFD_RELOC_MICROMIPS_JMP);
df58fc94
RS
17749 fixp->fx_file = fragp->fr_file;
17750 fixp->fx_line = fragp->fr_line;
17751
4d68580a 17752 buf = write_compressed_insn (buf, insn, 4);
df58fc94 17753 if (compact)
4d68580a
RS
17754 /* nop */
17755 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
17756 }
17757 else
17758 {
17759 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
2309ddf2
MR
17760 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17761 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
df58fc94
RS
17762
17763 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17764 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17765 insn |= at << MICROMIPSOP_SH_RT;
17766
17767 if (exp.X_add_number)
17768 {
17769 exp.X_add_symbol = make_expr_symbol (&exp);
17770 exp.X_add_number = 0;
17771 }
17772
4d68580a
RS
17773 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17774 BFD_RELOC_MICROMIPS_GOT16);
df58fc94
RS
17775 fixp->fx_file = fragp->fr_file;
17776 fixp->fx_line = fragp->fr_line;
17777
4d68580a 17778 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
17779
17780 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17781 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17782 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17783
4d68580a
RS
17784 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17785 BFD_RELOC_MICROMIPS_LO16);
df58fc94
RS
17786 fixp->fx_file = fragp->fr_file;
17787 fixp->fx_line = fragp->fr_line;
17788
4d68580a 17789 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
17790
17791 /* jr/jrc/jalr/jalrs $at */
17792 insn = al ? jalr : jr;
17793 insn |= at << MICROMIPSOP_SH_MJ;
17794
4d68580a 17795 buf = write_compressed_insn (buf, insn, 2);
df58fc94
RS
17796 }
17797
4d68580a 17798 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
17799 return;
17800 }
17801
252b5132
RH
17802 if (RELAX_MIPS16_P (fragp->fr_subtype))
17803 {
17804 int type;
3ccad066 17805 const struct mips_int_operand *operand;
252b5132 17806 offsetT val;
5c04167a
RS
17807 char *buf;
17808 unsigned int user_length, length;
252b5132 17809 unsigned long insn;
5c04167a 17810 bfd_boolean ext;
88a7ef16 17811 segT symsec;
252b5132
RH
17812
17813 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 17814 operand = mips16_immed_operand (type, FALSE);
252b5132 17815
5c04167a 17816 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
88a7ef16 17817 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
3ccad066 17818 if (operand->root.type == OP_PCREL)
252b5132 17819 {
3ccad066 17820 const struct mips_pcrel_operand *pcrel_op;
252b5132
RH
17821 addressT addr;
17822
3ccad066 17823 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
17824 addr = fragp->fr_address + fragp->fr_fix;
17825
17826 /* The rules for the base address of a PC relative reloc are
17827 complicated; see mips16_extended_frag. */
3ccad066 17828 if (pcrel_op->include_isa_bit)
252b5132
RH
17829 {
17830 addr += 2;
17831 if (ext)
17832 addr += 2;
17833 /* Ignore the low bit in the target, since it will be
17834 set for a text label. */
3ccad066 17835 val &= -2;
252b5132
RH
17836 }
17837 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17838 addr -= 4;
17839 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17840 addr -= 2;
17841
3ccad066 17842 addr &= -(1 << pcrel_op->align_log2);
252b5132
RH
17843 val -= addr;
17844
17845 /* Make sure the section winds up with the alignment we have
17846 assumed. */
3ccad066
RS
17847 if (operand->shift > 0)
17848 record_alignment (asec, operand->shift);
252b5132
RH
17849 }
17850
17851 if (ext
17852 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17853 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17854 as_warn_where (fragp->fr_file, fragp->fr_line,
17855 _("extended instruction in delay slot"));
17856
5c04167a 17857 buf = fragp->fr_literal + fragp->fr_fix;
252b5132 17858
4d68580a 17859 insn = read_compressed_insn (buf, 2);
5c04167a
RS
17860 if (ext)
17861 insn |= MIPS16_EXTEND;
252b5132 17862
5c04167a
RS
17863 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17864 user_length = 4;
17865 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17866 user_length = 2;
17867 else
17868 user_length = 0;
17869
88a7ef16
MR
17870 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17871 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17872 || (operand->root.type == OP_PCREL
17873 ? asec != symsec
17874 : !bfd_is_abs_section (symsec)))
c9775dde
MR
17875 {
17876 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
17877 expressionS exp;
17878 fixS *fixp;
17879
17880 switch (type)
17881 {
17882 case 'p':
17883 case 'q':
17884 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
17885 break;
17886 default:
17887 as_bad_where (fragp->fr_file, fragp->fr_line,
17888 _("unsupported relocation"));
17889 break;
17890 }
17891 if (reloc != BFD_RELOC_NONE)
17892 {
17893 gas_assert (ext);
17894
17895 exp.X_op = O_symbol;
17896 exp.X_add_symbol = fragp->fr_symbol;
17897 exp.X_add_number = fragp->fr_offset;
17898
17899 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp,
17900 TRUE, reloc);
17901
17902 fixp->fx_file = fragp->fr_file;
17903 fixp->fx_line = fragp->fr_line;
17904
17905 /* These relocations can have an addend that won't fit
17906 in 2 octets. */
17907 fixp->fx_no_overflow = 1;
17908 }
17909 }
88a7ef16
MR
17910 else
17911 mips16_immed (fragp->fr_file, fragp->fr_line, type,
17912 BFD_RELOC_UNUSED, val, user_length, &insn);
252b5132 17913
5c04167a
RS
17914 length = (ext ? 4 : 2);
17915 gas_assert (mips16_opcode_length (insn) == length);
17916 write_compressed_insn (buf, insn, length);
17917 fragp->fr_fix += length;
252b5132
RH
17918 }
17919 else
17920 {
df58fc94
RS
17921 relax_substateT subtype = fragp->fr_subtype;
17922 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17923 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
4d7206a2
RS
17924 int first, second;
17925 fixS *fixp;
252b5132 17926
df58fc94
RS
17927 first = RELAX_FIRST (subtype);
17928 second = RELAX_SECOND (subtype);
4d7206a2 17929 fixp = (fixS *) fragp->fr_opcode;
252b5132 17930
df58fc94
RS
17931 /* If the delay slot chosen does not match the size of the instruction,
17932 then emit a warning. */
17933 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17934 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17935 {
17936 relax_substateT s;
17937 const char *msg;
17938
17939 s = subtype & (RELAX_DELAY_SLOT_16BIT
17940 | RELAX_DELAY_SLOT_SIZE_FIRST
17941 | RELAX_DELAY_SLOT_SIZE_SECOND);
17942 msg = macro_warning (s);
17943 if (msg != NULL)
db9b2be4 17944 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94
RS
17945 subtype &= ~s;
17946 }
17947
584892a6 17948 /* Possibly emit a warning if we've chosen the longer option. */
df58fc94 17949 if (use_second == second_longer)
584892a6 17950 {
df58fc94
RS
17951 relax_substateT s;
17952 const char *msg;
17953
17954 s = (subtype
17955 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17956 msg = macro_warning (s);
17957 if (msg != NULL)
db9b2be4 17958 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94 17959 subtype &= ~s;
584892a6
RS
17960 }
17961
4d7206a2
RS
17962 /* Go through all the fixups for the first sequence. Disable them
17963 (by marking them as done) if we're going to use the second
17964 sequence instead. */
17965 while (fixp
17966 && fixp->fx_frag == fragp
17967 && fixp->fx_where < fragp->fr_fix - second)
17968 {
df58fc94 17969 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17970 fixp->fx_done = 1;
17971 fixp = fixp->fx_next;
17972 }
252b5132 17973
4d7206a2
RS
17974 /* Go through the fixups for the second sequence. Disable them if
17975 we're going to use the first sequence, otherwise adjust their
17976 addresses to account for the relaxation. */
17977 while (fixp && fixp->fx_frag == fragp)
17978 {
df58fc94 17979 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17980 fixp->fx_where -= first;
17981 else
17982 fixp->fx_done = 1;
17983 fixp = fixp->fx_next;
17984 }
17985
17986 /* Now modify the frag contents. */
df58fc94 17987 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17988 {
17989 char *start;
17990
17991 start = fragp->fr_literal + fragp->fr_fix - first - second;
17992 memmove (start, start + first, second);
17993 fragp->fr_fix -= first;
17994 }
17995 else
17996 fragp->fr_fix -= second;
252b5132
RH
17997 }
17998}
17999
252b5132
RH
18000/* This function is called after the relocs have been generated.
18001 We've been storing mips16 text labels as odd. Here we convert them
18002 back to even for the convenience of the debugger. */
18003
18004void
17a2f251 18005mips_frob_file_after_relocs (void)
252b5132
RH
18006{
18007 asymbol **syms;
18008 unsigned int count, i;
18009
252b5132
RH
18010 syms = bfd_get_outsymbols (stdoutput);
18011 count = bfd_get_symcount (stdoutput);
18012 for (i = 0; i < count; i++, syms++)
df58fc94
RS
18013 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18014 && ((*syms)->value & 1) != 0)
18015 {
18016 (*syms)->value &= ~1;
18017 /* If the symbol has an odd size, it was probably computed
18018 incorrectly, so adjust that as well. */
18019 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18020 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18021 }
252b5132
RH
18022}
18023
a1facbec
MR
18024/* This function is called whenever a label is defined, including fake
18025 labels instantiated off the dot special symbol. It is used when
18026 handling branch delays; if a branch has a label, we assume we cannot
18027 move it. This also bumps the value of the symbol by 1 in compressed
18028 code. */
252b5132 18029
e1b47bd5 18030static void
a1facbec 18031mips_record_label (symbolS *sym)
252b5132 18032{
a8dbcb85 18033 segment_info_type *si = seg_info (now_seg);
252b5132
RH
18034 struct insn_label_list *l;
18035
18036 if (free_insn_labels == NULL)
325801bd 18037 l = XNEW (struct insn_label_list);
252b5132
RH
18038 else
18039 {
18040 l = free_insn_labels;
18041 free_insn_labels = l->next;
18042 }
18043
18044 l->label = sym;
a8dbcb85
TS
18045 l->next = si->label_list;
18046 si->label_list = l;
a1facbec 18047}
07a53e5c 18048
a1facbec
MR
18049/* This function is called as tc_frob_label() whenever a label is defined
18050 and adds a DWARF-2 record we only want for true labels. */
18051
18052void
18053mips_define_label (symbolS *sym)
18054{
18055 mips_record_label (sym);
07a53e5c 18056 dwarf2_emit_label (sym);
252b5132 18057}
e1b47bd5
RS
18058
18059/* This function is called by tc_new_dot_label whenever a new dot symbol
18060 is defined. */
18061
18062void
18063mips_add_dot_label (symbolS *sym)
18064{
18065 mips_record_label (sym);
18066 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18067 mips_compressed_mark_label (sym);
18068}
252b5132 18069\f
351cdf24
MF
18070/* Converting ASE flags from internal to .MIPS.abiflags values. */
18071static unsigned int
18072mips_convert_ase_flags (int ase)
18073{
18074 unsigned int ext_ases = 0;
18075
18076 if (ase & ASE_DSP)
18077 ext_ases |= AFL_ASE_DSP;
18078 if (ase & ASE_DSPR2)
18079 ext_ases |= AFL_ASE_DSPR2;
8f4f9071
MF
18080 if (ase & ASE_DSPR3)
18081 ext_ases |= AFL_ASE_DSPR3;
351cdf24
MF
18082 if (ase & ASE_EVA)
18083 ext_ases |= AFL_ASE_EVA;
18084 if (ase & ASE_MCU)
18085 ext_ases |= AFL_ASE_MCU;
18086 if (ase & ASE_MDMX)
18087 ext_ases |= AFL_ASE_MDMX;
18088 if (ase & ASE_MIPS3D)
18089 ext_ases |= AFL_ASE_MIPS3D;
18090 if (ase & ASE_MT)
18091 ext_ases |= AFL_ASE_MT;
18092 if (ase & ASE_SMARTMIPS)
18093 ext_ases |= AFL_ASE_SMARTMIPS;
18094 if (ase & ASE_VIRT)
18095 ext_ases |= AFL_ASE_VIRT;
18096 if (ase & ASE_MSA)
18097 ext_ases |= AFL_ASE_MSA;
18098 if (ase & ASE_XPA)
18099 ext_ases |= AFL_ASE_XPA;
18100
18101 return ext_ases;
18102}
252b5132
RH
18103/* Some special processing for a MIPS ELF file. */
18104
18105void
17a2f251 18106mips_elf_final_processing (void)
252b5132 18107{
351cdf24
MF
18108 int fpabi;
18109 Elf_Internal_ABIFlags_v0 flags;
18110
18111 flags.version = 0;
18112 flags.isa_rev = 0;
18113 switch (file_mips_opts.isa)
18114 {
18115 case INSN_ISA1:
18116 flags.isa_level = 1;
18117 break;
18118 case INSN_ISA2:
18119 flags.isa_level = 2;
18120 break;
18121 case INSN_ISA3:
18122 flags.isa_level = 3;
18123 break;
18124 case INSN_ISA4:
18125 flags.isa_level = 4;
18126 break;
18127 case INSN_ISA5:
18128 flags.isa_level = 5;
18129 break;
18130 case INSN_ISA32:
18131 flags.isa_level = 32;
18132 flags.isa_rev = 1;
18133 break;
18134 case INSN_ISA32R2:
18135 flags.isa_level = 32;
18136 flags.isa_rev = 2;
18137 break;
18138 case INSN_ISA32R3:
18139 flags.isa_level = 32;
18140 flags.isa_rev = 3;
18141 break;
18142 case INSN_ISA32R5:
18143 flags.isa_level = 32;
18144 flags.isa_rev = 5;
18145 break;
09c14161
MF
18146 case INSN_ISA32R6:
18147 flags.isa_level = 32;
18148 flags.isa_rev = 6;
18149 break;
351cdf24
MF
18150 case INSN_ISA64:
18151 flags.isa_level = 64;
18152 flags.isa_rev = 1;
18153 break;
18154 case INSN_ISA64R2:
18155 flags.isa_level = 64;
18156 flags.isa_rev = 2;
18157 break;
18158 case INSN_ISA64R3:
18159 flags.isa_level = 64;
18160 flags.isa_rev = 3;
18161 break;
18162 case INSN_ISA64R5:
18163 flags.isa_level = 64;
18164 flags.isa_rev = 5;
18165 break;
09c14161
MF
18166 case INSN_ISA64R6:
18167 flags.isa_level = 64;
18168 flags.isa_rev = 6;
18169 break;
351cdf24
MF
18170 }
18171
18172 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18173 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18174 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18175 : (file_mips_opts.fp == 64) ? AFL_REG_64
18176 : AFL_REG_32;
18177 flags.cpr2_size = AFL_REG_NONE;
18178 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18179 Tag_GNU_MIPS_ABI_FP);
18180 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18181 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18182 if (file_ase_mips16)
18183 flags.ases |= AFL_ASE_MIPS16;
18184 if (file_ase_micromips)
18185 flags.ases |= AFL_ASE_MICROMIPS;
18186 flags.flags1 = 0;
18187 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18188 || file_mips_opts.fp == 64)
18189 && file_mips_opts.oddspreg)
18190 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18191 flags.flags2 = 0;
18192
18193 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18194 ((Elf_External_ABIFlags_v0 *)
18195 mips_flags_frag));
18196
252b5132 18197 /* Write out the register information. */
316f5878 18198 if (mips_abi != N64_ABI)
252b5132
RH
18199 {
18200 Elf32_RegInfo s;
18201
18202 s.ri_gprmask = mips_gprmask;
18203 s.ri_cprmask[0] = mips_cprmask[0];
18204 s.ri_cprmask[1] = mips_cprmask[1];
18205 s.ri_cprmask[2] = mips_cprmask[2];
18206 s.ri_cprmask[3] = mips_cprmask[3];
18207 /* The gp_value field is set by the MIPS ELF backend. */
18208
18209 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18210 ((Elf32_External_RegInfo *)
18211 mips_regmask_frag));
18212 }
18213 else
18214 {
18215 Elf64_Internal_RegInfo s;
18216
18217 s.ri_gprmask = mips_gprmask;
18218 s.ri_pad = 0;
18219 s.ri_cprmask[0] = mips_cprmask[0];
18220 s.ri_cprmask[1] = mips_cprmask[1];
18221 s.ri_cprmask[2] = mips_cprmask[2];
18222 s.ri_cprmask[3] = mips_cprmask[3];
18223 /* The gp_value field is set by the MIPS ELF backend. */
18224
18225 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18226 ((Elf64_External_RegInfo *)
18227 mips_regmask_frag));
18228 }
18229
18230 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18231 sort of BFD interface for this. */
18232 if (mips_any_noreorder)
18233 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18234 if (mips_pic != NO_PIC)
143d77c5 18235 {
8b828383 18236 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
143d77c5
EC
18237 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18238 }
18239 if (mips_abicalls)
18240 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
252b5132 18241
b015e599
AP
18242 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18243 defined at present; this might need to change in future. */
a4672219
TS
18244 if (file_ase_mips16)
18245 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
df58fc94
RS
18246 if (file_ase_micromips)
18247 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
919731af 18248 if (file_mips_opts.ase & ASE_MDMX)
deec1734 18249 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
1f25f5d3 18250
bdaaa2e1 18251 /* Set the MIPS ELF ABI flags. */
316f5878 18252 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
252b5132 18253 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
316f5878 18254 else if (mips_abi == O64_ABI)
252b5132 18255 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
316f5878 18256 else if (mips_abi == EABI_ABI)
252b5132 18257 {
bad1aba3 18258 if (file_mips_opts.gp == 64)
252b5132
RH
18259 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18260 else
18261 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18262 }
316f5878 18263 else if (mips_abi == N32_ABI)
be00bddd
TS
18264 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18265
c9914766 18266 /* Nothing to do for N64_ABI. */
252b5132
RH
18267
18268 if (mips_32bitmode)
18269 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
ad3fea08 18270
7361da2c 18271 if (mips_nan2008 == 1)
ba92f887
MR
18272 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18273
ad3fea08 18274 /* 32 bit code with 64 bit FP registers. */
351cdf24
MF
18275 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18276 Tag_GNU_MIPS_ABI_FP);
18277 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
f1c38003 18278 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
252b5132 18279}
252b5132 18280\f
beae10d5 18281typedef struct proc {
9b2f1d35
EC
18282 symbolS *func_sym;
18283 symbolS *func_end_sym;
beae10d5
KH
18284 unsigned long reg_mask;
18285 unsigned long reg_offset;
18286 unsigned long fpreg_mask;
18287 unsigned long fpreg_offset;
18288 unsigned long frame_offset;
18289 unsigned long frame_reg;
18290 unsigned long pc_reg;
18291} procS;
252b5132
RH
18292
18293static procS cur_proc;
18294static procS *cur_proc_ptr;
18295static int numprocs;
18296
df58fc94
RS
18297/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18298 as "2", and a normal nop as "0". */
18299
18300#define NOP_OPCODE_MIPS 0
18301#define NOP_OPCODE_MIPS16 1
18302#define NOP_OPCODE_MICROMIPS 2
742a56fe
RS
18303
18304char
18305mips_nop_opcode (void)
18306{
df58fc94
RS
18307 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18308 return NOP_OPCODE_MICROMIPS;
18309 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18310 return NOP_OPCODE_MIPS16;
18311 else
18312 return NOP_OPCODE_MIPS;
742a56fe
RS
18313}
18314
df58fc94
RS
18315/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18316 32-bit microMIPS NOPs here (if applicable). */
a19d8eb0 18317
0a9ef439 18318void
17a2f251 18319mips_handle_align (fragS *fragp)
a19d8eb0 18320{
df58fc94 18321 char nop_opcode;
742a56fe 18322 char *p;
c67a084a
NC
18323 int bytes, size, excess;
18324 valueT opcode;
742a56fe 18325
0a9ef439
RH
18326 if (fragp->fr_type != rs_align_code)
18327 return;
18328
742a56fe 18329 p = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
18330 nop_opcode = *p;
18331 switch (nop_opcode)
a19d8eb0 18332 {
df58fc94
RS
18333 case NOP_OPCODE_MICROMIPS:
18334 opcode = micromips_nop32_insn.insn_opcode;
18335 size = 4;
18336 break;
18337 case NOP_OPCODE_MIPS16:
c67a084a
NC
18338 opcode = mips16_nop_insn.insn_opcode;
18339 size = 2;
df58fc94
RS
18340 break;
18341 case NOP_OPCODE_MIPS:
18342 default:
c67a084a
NC
18343 opcode = nop_insn.insn_opcode;
18344 size = 4;
df58fc94 18345 break;
c67a084a 18346 }
a19d8eb0 18347
c67a084a
NC
18348 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18349 excess = bytes % size;
df58fc94
RS
18350
18351 /* Handle the leading part if we're not inserting a whole number of
18352 instructions, and make it the end of the fixed part of the frag.
18353 Try to fit in a short microMIPS NOP if applicable and possible,
18354 and use zeroes otherwise. */
18355 gas_assert (excess < 4);
18356 fragp->fr_fix += excess;
18357 switch (excess)
c67a084a 18358 {
df58fc94
RS
18359 case 3:
18360 *p++ = '\0';
18361 /* Fall through. */
18362 case 2:
833794fc 18363 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
df58fc94 18364 {
4d68580a 18365 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
df58fc94
RS
18366 break;
18367 }
18368 *p++ = '\0';
18369 /* Fall through. */
18370 case 1:
18371 *p++ = '\0';
18372 /* Fall through. */
18373 case 0:
18374 break;
a19d8eb0 18375 }
c67a084a
NC
18376
18377 md_number_to_chars (p, opcode, size);
18378 fragp->fr_var = size;
a19d8eb0
CP
18379}
18380
252b5132 18381static long
17a2f251 18382get_number (void)
252b5132
RH
18383{
18384 int negative = 0;
18385 long val = 0;
18386
18387 if (*input_line_pointer == '-')
18388 {
18389 ++input_line_pointer;
18390 negative = 1;
18391 }
3882b010 18392 if (!ISDIGIT (*input_line_pointer))
956cd1d6 18393 as_bad (_("expected simple number"));
252b5132
RH
18394 if (input_line_pointer[0] == '0')
18395 {
18396 if (input_line_pointer[1] == 'x')
18397 {
18398 input_line_pointer += 2;
3882b010 18399 while (ISXDIGIT (*input_line_pointer))
252b5132
RH
18400 {
18401 val <<= 4;
18402 val |= hex_value (*input_line_pointer++);
18403 }
18404 return negative ? -val : val;
18405 }
18406 else
18407 {
18408 ++input_line_pointer;
3882b010 18409 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18410 {
18411 val <<= 3;
18412 val |= *input_line_pointer++ - '0';
18413 }
18414 return negative ? -val : val;
18415 }
18416 }
3882b010 18417 if (!ISDIGIT (*input_line_pointer))
252b5132
RH
18418 {
18419 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18420 *input_line_pointer, *input_line_pointer);
956cd1d6 18421 as_warn (_("invalid number"));
252b5132
RH
18422 return -1;
18423 }
3882b010 18424 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18425 {
18426 val *= 10;
18427 val += *input_line_pointer++ - '0';
18428 }
18429 return negative ? -val : val;
18430}
18431
18432/* The .file directive; just like the usual .file directive, but there
c5dd6aab
DJ
18433 is an initial number which is the ECOFF file index. In the non-ECOFF
18434 case .file implies DWARF-2. */
18435
18436static void
17a2f251 18437s_mips_file (int x ATTRIBUTE_UNUSED)
c5dd6aab 18438{
ecb4347a
DJ
18439 static int first_file_directive = 0;
18440
c5dd6aab
DJ
18441 if (ECOFF_DEBUGGING)
18442 {
18443 get_number ();
18444 s_app_file (0);
18445 }
18446 else
ecb4347a
DJ
18447 {
18448 char *filename;
18449
18450 filename = dwarf2_directive_file (0);
18451
18452 /* Versions of GCC up to 3.1 start files with a ".file"
18453 directive even for stabs output. Make sure that this
18454 ".file" is handled. Note that you need a version of GCC
18455 after 3.1 in order to support DWARF-2 on MIPS. */
18456 if (filename != NULL && ! first_file_directive)
18457 {
18458 (void) new_logical_line (filename, -1);
c04f5787 18459 s_app_file_string (filename, 0);
ecb4347a
DJ
18460 }
18461 first_file_directive = 1;
18462 }
c5dd6aab
DJ
18463}
18464
18465/* The .loc directive, implying DWARF-2. */
252b5132
RH
18466
18467static void
17a2f251 18468s_mips_loc (int x ATTRIBUTE_UNUSED)
252b5132 18469{
c5dd6aab
DJ
18470 if (!ECOFF_DEBUGGING)
18471 dwarf2_directive_loc (0);
252b5132
RH
18472}
18473
252b5132
RH
18474/* The .end directive. */
18475
18476static void
17a2f251 18477s_mips_end (int x ATTRIBUTE_UNUSED)
252b5132
RH
18478{
18479 symbolS *p;
252b5132 18480
7a621144
DJ
18481 /* Following functions need their own .frame and .cprestore directives. */
18482 mips_frame_reg_valid = 0;
18483 mips_cprestore_valid = 0;
18484
252b5132
RH
18485 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18486 {
18487 p = get_symbol ();
18488 demand_empty_rest_of_line ();
18489 }
18490 else
18491 p = NULL;
18492
14949570 18493 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
18494 as_warn (_(".end not in text section"));
18495
18496 if (!cur_proc_ptr)
18497 {
1661c76c 18498 as_warn (_(".end directive without a preceding .ent directive"));
252b5132
RH
18499 demand_empty_rest_of_line ();
18500 return;
18501 }
18502
18503 if (p != NULL)
18504 {
9c2799c2 18505 gas_assert (S_GET_NAME (p));
9b2f1d35 18506 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
1661c76c 18507 as_warn (_(".end symbol does not match .ent symbol"));
ecb4347a
DJ
18508
18509 if (debug_type == DEBUG_STABS)
18510 stabs_generate_asm_endfunc (S_GET_NAME (p),
18511 S_GET_NAME (p));
252b5132
RH
18512 }
18513 else
18514 as_warn (_(".end directive missing or unknown symbol"));
18515
9b2f1d35
EC
18516 /* Create an expression to calculate the size of the function. */
18517 if (p && cur_proc_ptr)
18518 {
18519 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
325801bd 18520 expressionS *exp = XNEW (expressionS);
9b2f1d35
EC
18521
18522 obj->size = exp;
18523 exp->X_op = O_subtract;
18524 exp->X_add_symbol = symbol_temp_new_now ();
18525 exp->X_op_symbol = p;
18526 exp->X_add_number = 0;
18527
18528 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18529 }
18530
ecb4347a 18531 /* Generate a .pdr section. */
f3ded42a 18532 if (!ECOFF_DEBUGGING && mips_flag_pdr)
ecb4347a
DJ
18533 {
18534 segT saved_seg = now_seg;
18535 subsegT saved_subseg = now_subseg;
ecb4347a
DJ
18536 expressionS exp;
18537 char *fragp;
252b5132 18538
252b5132 18539#ifdef md_flush_pending_output
ecb4347a 18540 md_flush_pending_output ();
252b5132
RH
18541#endif
18542
9c2799c2 18543 gas_assert (pdr_seg);
ecb4347a 18544 subseg_set (pdr_seg, 0);
252b5132 18545
ecb4347a
DJ
18546 /* Write the symbol. */
18547 exp.X_op = O_symbol;
18548 exp.X_add_symbol = p;
18549 exp.X_add_number = 0;
18550 emit_expr (&exp, 4);
252b5132 18551
ecb4347a 18552 fragp = frag_more (7 * 4);
252b5132 18553
17a2f251
TS
18554 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18555 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18556 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18557 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18558 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18559 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18560 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
252b5132 18561
ecb4347a
DJ
18562 subseg_set (saved_seg, saved_subseg);
18563 }
252b5132
RH
18564
18565 cur_proc_ptr = NULL;
18566}
18567
18568/* The .aent and .ent directives. */
18569
18570static void
17a2f251 18571s_mips_ent (int aent)
252b5132 18572{
252b5132 18573 symbolS *symbolP;
252b5132
RH
18574
18575 symbolP = get_symbol ();
18576 if (*input_line_pointer == ',')
f9419b05 18577 ++input_line_pointer;
252b5132 18578 SKIP_WHITESPACE ();
3882b010 18579 if (ISDIGIT (*input_line_pointer)
d9a62219 18580 || *input_line_pointer == '-')
874e8986 18581 get_number ();
252b5132 18582
14949570 18583 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
1661c76c 18584 as_warn (_(".ent or .aent not in text section"));
252b5132
RH
18585
18586 if (!aent && cur_proc_ptr)
9a41af64 18587 as_warn (_("missing .end"));
252b5132
RH
18588
18589 if (!aent)
18590 {
7a621144
DJ
18591 /* This function needs its own .frame and .cprestore directives. */
18592 mips_frame_reg_valid = 0;
18593 mips_cprestore_valid = 0;
18594
252b5132
RH
18595 cur_proc_ptr = &cur_proc;
18596 memset (cur_proc_ptr, '\0', sizeof (procS));
18597
9b2f1d35 18598 cur_proc_ptr->func_sym = symbolP;
252b5132 18599
f9419b05 18600 ++numprocs;
ecb4347a
DJ
18601
18602 if (debug_type == DEBUG_STABS)
18603 stabs_generate_asm_func (S_GET_NAME (symbolP),
18604 S_GET_NAME (symbolP));
252b5132
RH
18605 }
18606
7c0fc524
MR
18607 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18608
252b5132
RH
18609 demand_empty_rest_of_line ();
18610}
18611
18612/* The .frame directive. If the mdebug section is present (IRIX 5 native)
bdaaa2e1 18613 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
252b5132 18614 s_mips_frame is used so that we can set the PDR information correctly.
bdaaa2e1 18615 We can't use the ecoff routines because they make reference to the ecoff
252b5132
RH
18616 symbol table (in the mdebug section). */
18617
18618static void
17a2f251 18619s_mips_frame (int ignore ATTRIBUTE_UNUSED)
252b5132 18620{
f3ded42a
RS
18621 if (ECOFF_DEBUGGING)
18622 s_ignore (ignore);
18623 else
ecb4347a
DJ
18624 {
18625 long val;
252b5132 18626
ecb4347a
DJ
18627 if (cur_proc_ptr == (procS *) NULL)
18628 {
18629 as_warn (_(".frame outside of .ent"));
18630 demand_empty_rest_of_line ();
18631 return;
18632 }
252b5132 18633
ecb4347a
DJ
18634 cur_proc_ptr->frame_reg = tc_get_register (1);
18635
18636 SKIP_WHITESPACE ();
18637 if (*input_line_pointer++ != ','
18638 || get_absolute_expression_and_terminator (&val) != ',')
18639 {
1661c76c 18640 as_warn (_("bad .frame directive"));
ecb4347a
DJ
18641 --input_line_pointer;
18642 demand_empty_rest_of_line ();
18643 return;
18644 }
252b5132 18645
ecb4347a
DJ
18646 cur_proc_ptr->frame_offset = val;
18647 cur_proc_ptr->pc_reg = tc_get_register (0);
252b5132 18648
252b5132 18649 demand_empty_rest_of_line ();
252b5132 18650 }
252b5132
RH
18651}
18652
bdaaa2e1
KH
18653/* The .fmask and .mask directives. If the mdebug section is present
18654 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
252b5132 18655 embedded targets, s_mips_mask is used so that we can set the PDR
bdaaa2e1 18656 information correctly. We can't use the ecoff routines because they
252b5132
RH
18657 make reference to the ecoff symbol table (in the mdebug section). */
18658
18659static void
17a2f251 18660s_mips_mask (int reg_type)
252b5132 18661{
f3ded42a
RS
18662 if (ECOFF_DEBUGGING)
18663 s_ignore (reg_type);
18664 else
252b5132 18665 {
ecb4347a 18666 long mask, off;
252b5132 18667
ecb4347a
DJ
18668 if (cur_proc_ptr == (procS *) NULL)
18669 {
18670 as_warn (_(".mask/.fmask outside of .ent"));
18671 demand_empty_rest_of_line ();
18672 return;
18673 }
252b5132 18674
ecb4347a
DJ
18675 if (get_absolute_expression_and_terminator (&mask) != ',')
18676 {
1661c76c 18677 as_warn (_("bad .mask/.fmask directive"));
ecb4347a
DJ
18678 --input_line_pointer;
18679 demand_empty_rest_of_line ();
18680 return;
18681 }
252b5132 18682
ecb4347a
DJ
18683 off = get_absolute_expression ();
18684
18685 if (reg_type == 'F')
18686 {
18687 cur_proc_ptr->fpreg_mask = mask;
18688 cur_proc_ptr->fpreg_offset = off;
18689 }
18690 else
18691 {
18692 cur_proc_ptr->reg_mask = mask;
18693 cur_proc_ptr->reg_offset = off;
18694 }
18695
18696 demand_empty_rest_of_line ();
252b5132 18697 }
252b5132
RH
18698}
18699
316f5878
RS
18700/* A table describing all the processors gas knows about. Names are
18701 matched in the order listed.
e7af610e 18702
316f5878
RS
18703 To ease comparison, please keep this table in the same order as
18704 gcc's mips_cpu_info_table[]. */
e972090a
NC
18705static const struct mips_cpu_info mips_cpu_info_table[] =
18706{
316f5878 18707 /* Entries for generic ISAs */
d16afab6
RS
18708 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18709 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18710 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18711 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18712 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18713 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18714 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
ae52f483
AB
18715 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18716 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
7361da2c 18717 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
d16afab6
RS
18718 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18719 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
ae52f483
AB
18720 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18721 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
7361da2c 18722 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
316f5878
RS
18723
18724 /* MIPS I */
d16afab6
RS
18725 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18726 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18727 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
316f5878
RS
18728
18729 /* MIPS II */
d16afab6 18730 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
316f5878
RS
18731
18732 /* MIPS III */
d16afab6
RS
18733 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18734 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18735 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18736 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18737 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18738 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18739 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18740 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18741 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18742 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18743 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18744 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18745 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
b15591bb 18746 /* ST Microelectronics Loongson 2E and 2F cores */
d16afab6
RS
18747 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18748 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
316f5878
RS
18749
18750 /* MIPS IV */
d16afab6
RS
18751 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18752 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18753 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18754 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18755 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18756 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18757 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18758 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18759 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18760 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18761 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18762 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18763 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18764 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18765 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
316f5878
RS
18766
18767 /* MIPS 32 */
d16afab6
RS
18768 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18769 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18770 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18771 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
ad3fea08
TS
18772
18773 /* MIPS 32 Release 2 */
d16afab6
RS
18774 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18775 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18776 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18777 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18778 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18779 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18780 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18781 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18782 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18783 ISA_MIPS32R2, CPU_MIPS32R2 },
18784 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18785 ISA_MIPS32R2, CPU_MIPS32R2 },
18786 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18787 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18788 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18789 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18790 /* Deprecated forms of the above. */
d16afab6
RS
18791 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18792 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18793 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
d16afab6
RS
18794 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18795 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18796 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18797 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18798 /* Deprecated forms of the above. */
d16afab6
RS
18799 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18800 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18801 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
d16afab6
RS
18802 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18803 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18804 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18805 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18806 /* Deprecated forms of the above. */
d16afab6
RS
18807 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18808 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
711eefe4 18809 /* 34Kn is a 34kc without DSP. */
d16afab6 18810 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18811 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
d16afab6
RS
18812 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18813 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18814 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18815 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18816 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18817 /* Deprecated forms of the above. */
d16afab6
RS
18818 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18819 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
30f8113a 18820 /* 1004K cores are multiprocessor versions of the 34K. */
d16afab6
RS
18821 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18822 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18823 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18824 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
77403ce9
RS
18825 /* interaptiv is the new name for 1004kf */
18826 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
c6e5c03a
RS
18827 /* M5100 family */
18828 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18829 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
bbaa46c0 18830 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
134c0c8b 18831 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
32b26a03 18832
316f5878 18833 /* MIPS 64 */
d16afab6
RS
18834 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18835 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18836 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18837 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
ad3fea08 18838
c7a23324 18839 /* Broadcom SB-1 CPU core */
d16afab6 18840 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
1e85aad8 18841 /* Broadcom SB-1A CPU core */
d16afab6 18842 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
3739860c 18843
4ba154f5 18844 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
e7af610e 18845
ed163775
MR
18846 /* MIPS 64 Release 2 */
18847
967344c6 18848 /* Cavium Networks Octeon CPU core */
d16afab6
RS
18849 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18850 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18851 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
2c629856 18852 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
967344c6 18853
52b6b6b9 18854 /* RMI Xlr */
d16afab6 18855 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
52b6b6b9 18856
55a36193
MK
18857 /* Broadcom XLP.
18858 XLP is mostly like XLR, with the prominent exception that it is
18859 MIPS64R2 rather than MIPS64. */
d16afab6 18860 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
55a36193 18861
a4968f42 18862 /* MIPS 64 Release 6 */
7ef0d297 18863 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
a4968f42 18864 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
7ef0d297 18865
316f5878 18866 /* End marker */
d16afab6 18867 { NULL, 0, 0, 0, 0 }
316f5878 18868};
e7af610e 18869
84ea6cf2 18870
316f5878
RS
18871/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18872 with a final "000" replaced by "k". Ignore case.
e7af610e 18873
316f5878 18874 Note: this function is shared between GCC and GAS. */
c6c98b38 18875
b34976b6 18876static bfd_boolean
17a2f251 18877mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
18878{
18879 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18880 given++, canonical++;
18881
18882 return ((*given == 0 && *canonical == 0)
18883 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18884}
18885
18886
18887/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18888 CPU name. We've traditionally allowed a lot of variation here.
18889
18890 Note: this function is shared between GCC and GAS. */
18891
b34976b6 18892static bfd_boolean
17a2f251 18893mips_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
18894{
18895 /* First see if the name matches exactly, or with a final "000"
18896 turned into "k". */
18897 if (mips_strict_matching_cpu_name_p (canonical, given))
b34976b6 18898 return TRUE;
316f5878
RS
18899
18900 /* If not, try comparing based on numerical designation alone.
18901 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18902 if (TOLOWER (*given) == 'r')
18903 given++;
18904 if (!ISDIGIT (*given))
b34976b6 18905 return FALSE;
316f5878
RS
18906
18907 /* Skip over some well-known prefixes in the canonical name,
18908 hoping to find a number there too. */
18909 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18910 canonical += 2;
18911 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18912 canonical += 2;
18913 else if (TOLOWER (canonical[0]) == 'r')
18914 canonical += 1;
18915
18916 return mips_strict_matching_cpu_name_p (canonical, given);
18917}
18918
18919
18920/* Parse an option that takes the name of a processor as its argument.
18921 OPTION is the name of the option and CPU_STRING is the argument.
18922 Return the corresponding processor enumeration if the CPU_STRING is
18923 recognized, otherwise report an error and return null.
18924
18925 A similar function exists in GCC. */
e7af610e
NC
18926
18927static const struct mips_cpu_info *
17a2f251 18928mips_parse_cpu (const char *option, const char *cpu_string)
e7af610e 18929{
316f5878 18930 const struct mips_cpu_info *p;
e7af610e 18931
316f5878
RS
18932 /* 'from-abi' selects the most compatible architecture for the given
18933 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18934 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18935 version. Look first at the -mgp options, if given, otherwise base
18936 the choice on MIPS_DEFAULT_64BIT.
e7af610e 18937
316f5878
RS
18938 Treat NO_ABI like the EABIs. One reason to do this is that the
18939 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18940 architecture. This code picks MIPS I for 'mips' and MIPS III for
18941 'mips64', just as we did in the days before 'from-abi'. */
18942 if (strcasecmp (cpu_string, "from-abi") == 0)
18943 {
18944 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18945 return mips_cpu_info_from_isa (ISA_MIPS1);
18946
18947 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18948 return mips_cpu_info_from_isa (ISA_MIPS3);
18949
bad1aba3 18950 if (file_mips_opts.gp >= 0)
18951 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
0b35dfee 18952 ? ISA_MIPS1 : ISA_MIPS3);
316f5878
RS
18953
18954 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18955 ? ISA_MIPS3
18956 : ISA_MIPS1);
18957 }
18958
18959 /* 'default' has traditionally been a no-op. Probably not very useful. */
18960 if (strcasecmp (cpu_string, "default") == 0)
18961 return 0;
18962
18963 for (p = mips_cpu_info_table; p->name != 0; p++)
18964 if (mips_matching_cpu_name_p (p->name, cpu_string))
18965 return p;
18966
1661c76c 18967 as_bad (_("bad value (%s) for %s"), cpu_string, option);
316f5878 18968 return 0;
e7af610e
NC
18969}
18970
316f5878
RS
18971/* Return the canonical processor information for ISA (a member of the
18972 ISA_MIPS* enumeration). */
18973
e7af610e 18974static const struct mips_cpu_info *
17a2f251 18975mips_cpu_info_from_isa (int isa)
e7af610e
NC
18976{
18977 int i;
18978
18979 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
ad3fea08 18980 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
316f5878 18981 && isa == mips_cpu_info_table[i].isa)
e7af610e
NC
18982 return (&mips_cpu_info_table[i]);
18983
e972090a 18984 return NULL;
e7af610e 18985}
fef14a42
TS
18986
18987static const struct mips_cpu_info *
17a2f251 18988mips_cpu_info_from_arch (int arch)
fef14a42
TS
18989{
18990 int i;
18991
18992 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18993 if (arch == mips_cpu_info_table[i].cpu)
18994 return (&mips_cpu_info_table[i]);
18995
18996 return NULL;
18997}
316f5878
RS
18998\f
18999static void
17a2f251 19000show (FILE *stream, const char *string, int *col_p, int *first_p)
316f5878
RS
19001{
19002 if (*first_p)
19003 {
19004 fprintf (stream, "%24s", "");
19005 *col_p = 24;
19006 }
19007 else
19008 {
19009 fprintf (stream, ", ");
19010 *col_p += 2;
19011 }
e7af610e 19012
316f5878
RS
19013 if (*col_p + strlen (string) > 72)
19014 {
19015 fprintf (stream, "\n%24s", "");
19016 *col_p = 24;
19017 }
19018
19019 fprintf (stream, "%s", string);
19020 *col_p += strlen (string);
19021
19022 *first_p = 0;
19023}
19024
19025void
17a2f251 19026md_show_usage (FILE *stream)
e7af610e 19027{
316f5878
RS
19028 int column, first;
19029 size_t i;
19030
19031 fprintf (stream, _("\
19032MIPS options:\n\
316f5878
RS
19033-EB generate big endian output\n\
19034-EL generate little endian output\n\
19035-g, -g2 do not remove unneeded NOPs or swap branches\n\
19036-G NUM allow referencing objects up to NUM bytes\n\
19037 implicitly with the gp register [default 8]\n"));
19038 fprintf (stream, _("\
19039-mips1 generate MIPS ISA I instructions\n\
19040-mips2 generate MIPS ISA II instructions\n\
19041-mips3 generate MIPS ISA III instructions\n\
19042-mips4 generate MIPS ISA IV instructions\n\
19043-mips5 generate MIPS ISA V instructions\n\
19044-mips32 generate MIPS32 ISA instructions\n\
af7ee8bf 19045-mips32r2 generate MIPS32 release 2 ISA instructions\n\
ae52f483
AB
19046-mips32r3 generate MIPS32 release 3 ISA instructions\n\
19047-mips32r5 generate MIPS32 release 5 ISA instructions\n\
7361da2c 19048-mips32r6 generate MIPS32 release 6 ISA instructions\n\
316f5878 19049-mips64 generate MIPS64 ISA instructions\n\
5f74bc13 19050-mips64r2 generate MIPS64 release 2 ISA instructions\n\
ae52f483
AB
19051-mips64r3 generate MIPS64 release 3 ISA instructions\n\
19052-mips64r5 generate MIPS64 release 5 ISA instructions\n\
7361da2c 19053-mips64r6 generate MIPS64 release 6 ISA instructions\n\
316f5878
RS
19054-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19055
19056 first = 1;
e7af610e
NC
19057
19058 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
316f5878
RS
19059 show (stream, mips_cpu_info_table[i].name, &column, &first);
19060 show (stream, "from-abi", &column, &first);
19061 fputc ('\n', stream);
e7af610e 19062
316f5878
RS
19063 fprintf (stream, _("\
19064-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19065-no-mCPU don't generate code specific to CPU.\n\
19066 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19067
19068 first = 1;
19069
19070 show (stream, "3900", &column, &first);
19071 show (stream, "4010", &column, &first);
19072 show (stream, "4100", &column, &first);
19073 show (stream, "4650", &column, &first);
19074 fputc ('\n', stream);
19075
19076 fprintf (stream, _("\
19077-mips16 generate mips16 instructions\n\
19078-no-mips16 do not generate mips16 instructions\n"));
19079 fprintf (stream, _("\
df58fc94
RS
19080-mmicromips generate microMIPS instructions\n\
19081-mno-micromips do not generate microMIPS instructions\n"));
19082 fprintf (stream, _("\
e16bfa71 19083-msmartmips generate smartmips instructions\n\
3739860c 19084-mno-smartmips do not generate smartmips instructions\n"));
e16bfa71 19085 fprintf (stream, _("\
74cd071d
CF
19086-mdsp generate DSP instructions\n\
19087-mno-dsp do not generate DSP instructions\n"));
19088 fprintf (stream, _("\
8b082fb1
TS
19089-mdspr2 generate DSP R2 instructions\n\
19090-mno-dspr2 do not generate DSP R2 instructions\n"));
19091 fprintf (stream, _("\
8f4f9071
MF
19092-mdspr3 generate DSP R3 instructions\n\
19093-mno-dspr3 do not generate DSP R3 instructions\n"));
19094 fprintf (stream, _("\
ef2e4d86
CF
19095-mmt generate MT instructions\n\
19096-mno-mt do not generate MT instructions\n"));
19097 fprintf (stream, _("\
dec0624d
MR
19098-mmcu generate MCU instructions\n\
19099-mno-mcu do not generate MCU instructions\n"));
19100 fprintf (stream, _("\
56d438b1
CF
19101-mmsa generate MSA instructions\n\
19102-mno-msa do not generate MSA instructions\n"));
19103 fprintf (stream, _("\
7d64c587
AB
19104-mxpa generate eXtended Physical Address (XPA) instructions\n\
19105-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19106 fprintf (stream, _("\
b015e599
AP
19107-mvirt generate Virtualization instructions\n\
19108-mno-virt do not generate Virtualization instructions\n"));
19109 fprintf (stream, _("\
833794fc
MR
19110-minsn32 only generate 32-bit microMIPS instructions\n\
19111-mno-insn32 generate all microMIPS instructions\n"));
19112 fprintf (stream, _("\
c67a084a
NC
19113-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19114-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
d766e8ec 19115-mfix-vr4120 work around certain VR4120 errata\n\
7d8e00cf 19116-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
6a32d874 19117-mfix-24k insert a nop after ERET and DERET instructions\n\
d954098f 19118-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
316f5878
RS
19119-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19120-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
aed1a261 19121-msym32 assume all symbols have 32-bit values\n\
316f5878
RS
19122-O0 remove unneeded NOPs, do not swap branches\n\
19123-O remove unneeded NOPs and swap branches\n\
316f5878
RS
19124--trap, --no-break trap exception on div by 0 and mult overflow\n\
19125--break, --no-trap break exception on div by 0 and mult overflow\n"));
037b32b9
AN
19126 fprintf (stream, _("\
19127-mhard-float allow floating-point instructions\n\
19128-msoft-float do not allow floating-point instructions\n\
19129-msingle-float only allow 32-bit floating-point operations\n\
19130-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
3bf0dbfb 19131--[no-]construct-floats [dis]allow floating point values to be constructed\n\
ba92f887
MR
19132--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19133-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19134
19135 first = 1;
19136
19137 show (stream, "legacy", &column, &first);
19138 show (stream, "2008", &column, &first);
19139
19140 fputc ('\n', stream);
19141
316f5878
RS
19142 fprintf (stream, _("\
19143-KPIC, -call_shared generate SVR4 position independent code\n\
861fb55a 19144-call_nonpic generate non-PIC code that can operate with DSOs\n\
0c000745 19145-mvxworks-pic generate VxWorks position independent code\n\
861fb55a 19146-non_shared do not generate code that can operate with DSOs\n\
316f5878 19147-xgot assume a 32 bit GOT\n\
dcd410fe 19148-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
bbe506e8 19149-mshared, -mno-shared disable/enable .cpload optimization for\n\
d821e36b 19150 position dependent (non shared) code\n\
316f5878
RS
19151-mabi=ABI create ABI conformant object file for:\n"));
19152
19153 first = 1;
19154
19155 show (stream, "32", &column, &first);
19156 show (stream, "o64", &column, &first);
19157 show (stream, "n32", &column, &first);
19158 show (stream, "64", &column, &first);
19159 show (stream, "eabi", &column, &first);
19160
19161 fputc ('\n', stream);
19162
19163 fprintf (stream, _("\
19164-32 create o32 ABI object file (default)\n\
19165-n32 create n32 ABI object file\n\
19166-64 create 64 ABI object file\n"));
e7af610e 19167}
14e777e0 19168
1575952e 19169#ifdef TE_IRIX
14e777e0 19170enum dwarf2_format
413a266c 19171mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
14e777e0 19172{
369943fe 19173 if (HAVE_64BIT_SYMBOLS)
1575952e 19174 return dwarf2_format_64bit_irix;
14e777e0
KB
19175 else
19176 return dwarf2_format_32bit;
19177}
1575952e 19178#endif
73369e65
EC
19179
19180int
19181mips_dwarf2_addr_size (void)
19182{
6b6b3450 19183 if (HAVE_64BIT_OBJECTS)
73369e65 19184 return 8;
73369e65
EC
19185 else
19186 return 4;
19187}
5862107c
EC
19188
19189/* Standard calling conventions leave the CFA at SP on entry. */
19190void
19191mips_cfi_frame_initial_instructions (void)
19192{
19193 cfi_add_CFA_def_cfa_register (SP);
19194}
19195
707bfff6
TS
19196int
19197tc_mips_regname_to_dw2regnum (char *regname)
19198{
19199 unsigned int regnum = -1;
19200 unsigned int reg;
19201
19202 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19203 regnum = reg;
19204
19205 return regnum;
19206}
263b2574 19207
19208/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19209 Given a symbolic attribute NAME, return the proper integer value.
19210 Returns -1 if the attribute is not known. */
19211
19212int
19213mips_convert_symbolic_attribute (const char *name)
19214{
19215 static const struct
19216 {
19217 const char * name;
19218 const int tag;
19219 }
19220 attribute_table[] =
19221 {
19222#define T(tag) {#tag, tag}
19223 T (Tag_GNU_MIPS_ABI_FP),
19224 T (Tag_GNU_MIPS_ABI_MSA),
19225#undef T
19226 };
19227 unsigned int i;
19228
19229 if (name == NULL)
19230 return -1;
19231
19232 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19233 if (streq (name, attribute_table[i].name))
19234 return attribute_table[i].tag;
19235
19236 return -1;
19237}
fd5c94ab
RS
19238
19239void
19240md_mips_end (void)
19241{
351cdf24
MF
19242 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19243
fd5c94ab
RS
19244 mips_emit_delays ();
19245 if (cur_proc_ptr)
19246 as_warn (_("missing .end at end of assembly"));
919731af 19247
19248 /* Just in case no code was emitted, do the consistency check. */
19249 file_mips_check_options ();
351cdf24
MF
19250
19251 /* Set a floating-point ABI if the user did not. */
19252 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19253 {
19254 /* Perform consistency checks on the floating-point ABI. */
19255 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19256 Tag_GNU_MIPS_ABI_FP);
19257 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19258 check_fpabi (fpabi);
19259 }
19260 else
19261 {
19262 /* Soft-float gets precedence over single-float, the two options should
19263 not be used together so this should not matter. */
19264 if (file_mips_opts.soft_float == 1)
19265 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19266 /* Single-float gets precedence over all double_float cases. */
19267 else if (file_mips_opts.single_float == 1)
19268 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19269 else
19270 {
19271 switch (file_mips_opts.fp)
19272 {
19273 case 32:
19274 if (file_mips_opts.gp == 32)
19275 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19276 break;
19277 case 0:
19278 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19279 break;
19280 case 64:
19281 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19282 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19283 else if (file_mips_opts.gp == 32)
19284 fpabi = Val_GNU_MIPS_ABI_FP_64;
19285 else
19286 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19287 break;
19288 }
19289 }
19290
19291 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19292 Tag_GNU_MIPS_ABI_FP, fpabi);
19293 }
fd5c94ab 19294}
2f0c68f2
CM
19295
19296/* Returns the relocation type required for a particular CFI encoding. */
19297
19298bfd_reloc_code_real_type
19299mips_cfi_reloc_for_encoding (int encoding)
19300{
19301 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19302 return BFD_RELOC_32_PCREL;
19303 else return BFD_RELOC_NONE;
19304}
This page took 3.248507 seconds and 4 git commands to generate.