include/opcode/
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
CommitLineData
252b5132 1/* tc-mips.c -- assemble code for a MIPS chip.
81912461 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
e407c74b 3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
c67a084a 4 Free Software Foundation, Inc.
252b5132
RH
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 Support.
9
10 This file is part of GAS.
11
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
ec2655a6 14 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
15 any later version.
16
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 02110-1301, USA. */
252b5132
RH
26
27#include "as.h"
28#include "config.h"
29#include "subsegs.h"
3882b010 30#include "safe-ctype.h"
252b5132 31
252b5132
RH
32#include "opcode/mips.h"
33#include "itbl-ops.h"
c5dd6aab 34#include "dwarf2dbg.h"
5862107c 35#include "dw2gencfi.h"
252b5132 36
42429eac
RS
37/* Check assumptions made in this file. */
38typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
39typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
40
252b5132
RH
41#ifdef DEBUG
42#define DBG(x) printf x
43#else
44#define DBG(x)
45#endif
46
9e12b7a2
RS
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
252b5132 50/* Clean up namespace so we can include obj-elf.h too. */
17a2f251
TS
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
252b5132
RH
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
252b5132
RH
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
252b5132 70
252b5132 71#include "elf/mips.h"
252b5132
RH
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
ecb4347a
DJ
78int mips_flag_mdebug = -1;
79
dcd410fe
RO
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
84int mips_flag_pdr = FALSE;
85#else
86int mips_flag_pdr = TRUE;
87#endif
88
252b5132
RH
89#include "ecoff.h"
90
252b5132 91static char *mips_regmask_frag;
252b5132 92
85b51719 93#define ZERO 0
741fe287 94#define ATREG 1
df58fc94
RS
95#define S0 16
96#define S7 23
252b5132
RH
97#define TREG 24
98#define PIC_CALL_REG 25
99#define KT0 26
100#define KT1 27
101#define GP 28
102#define SP 29
103#define FP 30
104#define RA 31
105
106#define ILLEGAL_REG (32)
107
741fe287
MR
108#define AT mips_opts.at
109
252b5132
RH
110extern int target_big_endian;
111
252b5132 112/* The name of the readonly data section. */
e8044f35 113#define RDATA_SECTION_NAME ".rodata"
252b5132 114
a4e06468
RS
115/* Ways in which an instruction can be "appended" to the output. */
116enum append_method {
117 /* Just add it normally. */
118 APPEND_ADD,
119
120 /* Add it normally and then add a nop. */
121 APPEND_ADD_WITH_NOP,
122
123 /* Turn an instruction with a delay slot into a "compact" version. */
124 APPEND_ADD_COMPACT,
125
126 /* Insert the instruction before the last one. */
127 APPEND_SWAP
128};
129
47e39b9d
RS
130/* Information about an instruction, including its format, operands
131 and fixups. */
132struct mips_cl_insn
133{
134 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
135 const struct mips_opcode *insn_mo;
136
47e39b9d 137 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
5c04167a
RS
138 a copy of INSN_MO->match with the operands filled in. If we have
139 decided to use an extended MIPS16 instruction, this includes the
140 extension. */
47e39b9d
RS
141 unsigned long insn_opcode;
142
143 /* The frag that contains the instruction. */
144 struct frag *frag;
145
146 /* The offset into FRAG of the first instruction byte. */
147 long where;
148
149 /* The relocs associated with the instruction, if any. */
150 fixS *fixp[3];
151
a38419a5
RS
152 /* True if this entry cannot be moved from its current position. */
153 unsigned int fixed_p : 1;
47e39b9d 154
708587a4 155 /* True if this instruction occurred in a .set noreorder block. */
47e39b9d
RS
156 unsigned int noreorder_p : 1;
157
2fa15973
RS
158 /* True for mips16 instructions that jump to an absolute address. */
159 unsigned int mips16_absolute_jump_p : 1;
15be625d
CM
160
161 /* True if this instruction is complete. */
162 unsigned int complete_p : 1;
e407c74b
NC
163
164 /* True if this instruction is cleared from history by unconditional
165 branch. */
166 unsigned int cleared_p : 1;
47e39b9d
RS
167};
168
a325df1d
TS
169/* The ABI to use. */
170enum mips_abi_level
171{
172 NO_ABI = 0,
173 O32_ABI,
174 O64_ABI,
175 N32_ABI,
176 N64_ABI,
177 EABI_ABI
178};
179
180/* MIPS ABI we are using for this output file. */
316f5878 181static enum mips_abi_level mips_abi = NO_ABI;
a325df1d 182
143d77c5
EC
183/* Whether or not we have code that can call pic code. */
184int mips_abicalls = FALSE;
185
aa6975fb
ILT
186/* Whether or not we have code which can be put into a shared
187 library. */
188static bfd_boolean mips_in_shared = TRUE;
189
252b5132
RH
190/* This is the set of options which may be modified by the .set
191 pseudo-op. We use a struct so that .set push and .set pop are more
192 reliable. */
193
e972090a
NC
194struct mips_set_options
195{
252b5132
RH
196 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
197 if it has not been initialized. Changed by `.set mipsN', and the
198 -mipsN command line option, and the default CPU. */
199 int isa;
846ef2d0
RS
200 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
201 <asename>', by command line options, and based on the default
202 architecture. */
203 int ase;
252b5132
RH
204 /* Whether we are assembling for the mips16 processor. 0 if we are
205 not, 1 if we are, and -1 if the value has not been initialized.
206 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
207 -nomips16 command line options, and the default CPU. */
208 int mips16;
df58fc94
RS
209 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
210 1 if we are, and -1 if the value has not been initialized. Changed
211 by `.set micromips' and `.set nomicromips', and the -mmicromips
212 and -mno-micromips command line options, and the default CPU. */
213 int micromips;
252b5132
RH
214 /* Non-zero if we should not reorder instructions. Changed by `.set
215 reorder' and `.set noreorder'. */
216 int noreorder;
741fe287
MR
217 /* Non-zero if we should not permit the register designated "assembler
218 temporary" to be used in instructions. The value is the register
219 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
220 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
221 unsigned int at;
252b5132
RH
222 /* Non-zero if we should warn when a macro instruction expands into
223 more than one machine instruction. Changed by `.set nomacro' and
224 `.set macro'. */
225 int warn_about_macros;
226 /* Non-zero if we should not move instructions. Changed by `.set
227 move', `.set volatile', `.set nomove', and `.set novolatile'. */
228 int nomove;
229 /* Non-zero if we should not optimize branches by moving the target
230 of the branch into the delay slot. Actually, we don't perform
231 this optimization anyhow. Changed by `.set bopt' and `.set
232 nobopt'. */
233 int nobopt;
234 /* Non-zero if we should not autoextend mips16 instructions.
235 Changed by `.set autoextend' and `.set noautoextend'. */
236 int noautoextend;
833794fc
MR
237 /* True if we should only emit 32-bit microMIPS instructions.
238 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
239 and -mno-insn32 command line options. */
240 bfd_boolean insn32;
a325df1d
TS
241 /* Restrict general purpose registers and floating point registers
242 to 32 bit. This is initially determined when -mgp32 or -mfp32
243 is passed but can changed if the assembler code uses .set mipsN. */
244 int gp32;
245 int fp32;
fef14a42
TS
246 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
247 command line option, and the default CPU. */
248 int arch;
aed1a261
RS
249 /* True if ".set sym32" is in effect. */
250 bfd_boolean sym32;
037b32b9
AN
251 /* True if floating-point operations are not allowed. Changed by .set
252 softfloat or .set hardfloat, by command line options -msoft-float or
253 -mhard-float. The default is false. */
254 bfd_boolean soft_float;
255
256 /* True if only single-precision floating-point operations are allowed.
257 Changed by .set singlefloat or .set doublefloat, command-line options
258 -msingle-float or -mdouble-float. The default is false. */
259 bfd_boolean single_float;
252b5132
RH
260};
261
037b32b9
AN
262/* This is the struct we use to hold the current set of options. Note
263 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
264 -1 to indicate that they have not been initialized. */
265
a325df1d 266/* True if -mgp32 was passed. */
a8e8e863 267static int file_mips_gp32 = -1;
a325df1d
TS
268
269/* True if -mfp32 was passed. */
a8e8e863 270static int file_mips_fp32 = -1;
a325df1d 271
037b32b9
AN
272/* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
273static int file_mips_soft_float = 0;
274
275/* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
276static int file_mips_single_float = 0;
252b5132 277
ba92f887
MR
278/* True if -mnan=2008, false if -mnan=legacy. */
279static bfd_boolean mips_flag_nan2008 = FALSE;
280
e972090a
NC
281static struct mips_set_options mips_opts =
282{
846ef2d0 283 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
b015e599 284 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
833794fc
MR
285 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
286 /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
b015e599 287 /* soft_float */ FALSE, /* single_float */ FALSE
e7af610e 288};
252b5132 289
846ef2d0
RS
290/* The set of ASEs that were selected on the command line, either
291 explicitly via ASE options or implicitly through things like -march. */
292static unsigned int file_ase;
293
294/* Which bits of file_ase were explicitly set or cleared by ASE options. */
295static unsigned int file_ase_explicit;
296
252b5132
RH
297/* These variables are filled in with the masks of registers used.
298 The object format code reads them and puts them in the appropriate
299 place. */
300unsigned long mips_gprmask;
301unsigned long mips_cprmask[4];
302
303/* MIPS ISA we are using for this output file. */
e7af610e 304static int file_mips_isa = ISA_UNKNOWN;
252b5132 305
738f4d98 306/* True if any MIPS16 code was produced. */
a4672219
TS
307static int file_ase_mips16;
308
3994f87e
TS
309#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
310 || mips_opts.isa == ISA_MIPS32R2 \
311 || mips_opts.isa == ISA_MIPS64 \
312 || mips_opts.isa == ISA_MIPS64R2)
313
df58fc94
RS
314/* True if any microMIPS code was produced. */
315static int file_ase_micromips;
316
b12dd2e4
CF
317/* True if we want to create R_MIPS_JALR for jalr $25. */
318#ifdef TE_IRIX
1180b5a4 319#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
b12dd2e4 320#else
1180b5a4
RS
321/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
322 because there's no place for any addend, the only acceptable
323 expression is a bare symbol. */
324#define MIPS_JALR_HINT_P(EXPR) \
325 (!HAVE_IN_PLACE_ADDENDS \
326 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
b12dd2e4
CF
327#endif
328
ec68c924 329/* The argument of the -march= flag. The architecture we are assembling. */
fef14a42 330static int file_mips_arch = CPU_UNKNOWN;
316f5878 331static const char *mips_arch_string;
ec68c924
EC
332
333/* The argument of the -mtune= flag. The architecture for which we
334 are optimizing. */
335static int mips_tune = CPU_UNKNOWN;
316f5878 336static const char *mips_tune_string;
ec68c924 337
316f5878 338/* True when generating 32-bit code for a 64-bit processor. */
252b5132
RH
339static int mips_32bitmode = 0;
340
316f5878
RS
341/* True if the given ABI requires 32-bit registers. */
342#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
343
344/* Likewise 64-bit registers. */
707bfff6
TS
345#define ABI_NEEDS_64BIT_REGS(ABI) \
346 ((ABI) == N32_ABI \
347 || (ABI) == N64_ABI \
316f5878
RS
348 || (ABI) == O64_ABI)
349
ad3fea08 350/* Return true if ISA supports 64 bit wide gp registers. */
707bfff6
TS
351#define ISA_HAS_64BIT_REGS(ISA) \
352 ((ISA) == ISA_MIPS3 \
353 || (ISA) == ISA_MIPS4 \
354 || (ISA) == ISA_MIPS5 \
355 || (ISA) == ISA_MIPS64 \
356 || (ISA) == ISA_MIPS64R2)
9ce8a5dd 357
ad3fea08
TS
358/* Return true if ISA supports 64 bit wide float registers. */
359#define ISA_HAS_64BIT_FPRS(ISA) \
360 ((ISA) == ISA_MIPS3 \
361 || (ISA) == ISA_MIPS4 \
362 || (ISA) == ISA_MIPS5 \
363 || (ISA) == ISA_MIPS32R2 \
364 || (ISA) == ISA_MIPS64 \
365 || (ISA) == ISA_MIPS64R2)
366
af7ee8bf
CD
367/* Return true if ISA supports 64-bit right rotate (dror et al.)
368 instructions. */
707bfff6 369#define ISA_HAS_DROR(ISA) \
df58fc94
RS
370 ((ISA) == ISA_MIPS64R2 \
371 || (mips_opts.micromips \
372 && ISA_HAS_64BIT_REGS (ISA)) \
373 )
af7ee8bf
CD
374
375/* Return true if ISA supports 32-bit right rotate (ror et al.)
376 instructions. */
707bfff6
TS
377#define ISA_HAS_ROR(ISA) \
378 ((ISA) == ISA_MIPS32R2 \
379 || (ISA) == ISA_MIPS64R2 \
846ef2d0 380 || (mips_opts.ase & ASE_SMARTMIPS) \
df58fc94
RS
381 || mips_opts.micromips \
382 )
707bfff6 383
7455baf8
TS
384/* Return true if ISA supports single-precision floats in odd registers. */
385#define ISA_HAS_ODD_SINGLE_FPR(ISA) \
386 ((ISA) == ISA_MIPS32 \
387 || (ISA) == ISA_MIPS32R2 \
388 || (ISA) == ISA_MIPS64 \
389 || (ISA) == ISA_MIPS64R2)
af7ee8bf 390
ad3fea08
TS
391/* Return true if ISA supports move to/from high part of a 64-bit
392 floating-point register. */
393#define ISA_HAS_MXHC1(ISA) \
394 ((ISA) == ISA_MIPS32R2 \
395 || (ISA) == ISA_MIPS64R2)
396
e013f690 397#define HAVE_32BIT_GPRS \
ad3fea08 398 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
ca4e0257 399
e013f690 400#define HAVE_32BIT_FPRS \
ad3fea08 401 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
ca4e0257 402
ad3fea08
TS
403#define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
404#define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
ca4e0257 405
316f5878 406#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
e013f690 407
316f5878 408#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
e013f690 409
3b91255e
RS
410/* True if relocations are stored in-place. */
411#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
412
aed1a261
RS
413/* The ABI-derived address size. */
414#define HAVE_64BIT_ADDRESSES \
415 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
416#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
e013f690 417
aed1a261
RS
418/* The size of symbolic constants (i.e., expressions of the form
419 "SYMBOL" or "SYMBOL + OFFSET"). */
420#define HAVE_32BIT_SYMBOLS \
421 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
422#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
ca4e0257 423
b7c7d6c1
TS
424/* Addresses are loaded in different ways, depending on the address size
425 in use. The n32 ABI Documentation also mandates the use of additions
426 with overflow checking, but existing implementations don't follow it. */
f899b4b8 427#define ADDRESS_ADD_INSN \
b7c7d6c1 428 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
f899b4b8
TS
429
430#define ADDRESS_ADDI_INSN \
b7c7d6c1 431 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
f899b4b8
TS
432
433#define ADDRESS_LOAD_INSN \
434 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
435
436#define ADDRESS_STORE_INSN \
437 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
438
a4672219 439/* Return true if the given CPU supports the MIPS16 ASE. */
3396de36
TS
440#define CPU_HAS_MIPS16(cpu) \
441 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
442 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
a4672219 443
2309ddf2 444/* Return true if the given CPU supports the microMIPS ASE. */
df58fc94
RS
445#define CPU_HAS_MICROMIPS(cpu) 0
446
60b63b72
RS
447/* True if CPU has a dror instruction. */
448#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
449
450/* True if CPU has a ror instruction. */
451#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
452
dd6a37e7 453/* True if CPU is in the Octeon family */
432233b3 454#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP || (CPU) == CPU_OCTEON2)
dd6a37e7 455
dd3cbb7e 456/* True if CPU has seq/sne and seqi/snei instructions. */
dd6a37e7 457#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
dd3cbb7e 458
0aa27725
RS
459/* True, if CPU has support for ldc1 and sdc1. */
460#define CPU_HAS_LDC1_SDC1(CPU) \
461 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
462
c8978940
CD
463/* True if mflo and mfhi can be immediately followed by instructions
464 which write to the HI and LO registers.
465
466 According to MIPS specifications, MIPS ISAs I, II, and III need
467 (at least) two instructions between the reads of HI/LO and
468 instructions which write them, and later ISAs do not. Contradicting
469 the MIPS specifications, some MIPS IV processor user manuals (e.g.
470 the UM for the NEC Vr5000) document needing the instructions between
471 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
472 MIPS64 and later ISAs to have the interlocks, plus any specific
473 earlier-ISA CPUs for which CPU documentation declares that the
474 instructions are really interlocked. */
475#define hilo_interlocks \
476 (mips_opts.isa == ISA_MIPS32 \
477 || mips_opts.isa == ISA_MIPS32R2 \
478 || mips_opts.isa == ISA_MIPS64 \
479 || mips_opts.isa == ISA_MIPS64R2 \
480 || mips_opts.arch == CPU_R4010 \
e407c74b 481 || mips_opts.arch == CPU_R5900 \
c8978940
CD
482 || mips_opts.arch == CPU_R10000 \
483 || mips_opts.arch == CPU_R12000 \
3aa3176b
TS
484 || mips_opts.arch == CPU_R14000 \
485 || mips_opts.arch == CPU_R16000 \
c8978940 486 || mips_opts.arch == CPU_RM7000 \
c8978940 487 || mips_opts.arch == CPU_VR5500 \
df58fc94 488 || mips_opts.micromips \
c8978940 489 )
252b5132
RH
490
491/* Whether the processor uses hardware interlocks to protect reads
81912461
ILT
492 from the GPRs after they are loaded from memory, and thus does not
493 require nops to be inserted. This applies to instructions marked
494 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
df58fc94
RS
495 level I and microMIPS mode instructions are always interlocked. */
496#define gpr_interlocks \
497 (mips_opts.isa != ISA_MIPS1 \
498 || mips_opts.arch == CPU_R3900 \
e407c74b 499 || mips_opts.arch == CPU_R5900 \
df58fc94
RS
500 || mips_opts.micromips \
501 )
252b5132 502
81912461
ILT
503/* Whether the processor uses hardware interlocks to avoid delays
504 required by coprocessor instructions, and thus does not require
505 nops to be inserted. This applies to instructions marked
506 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
507 between instructions marked INSN_WRITE_COND_CODE and ones marked
508 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
df58fc94
RS
509 levels I, II, and III and microMIPS mode instructions are always
510 interlocked. */
bdaaa2e1 511/* Itbl support may require additional care here. */
81912461
ILT
512#define cop_interlocks \
513 ((mips_opts.isa != ISA_MIPS1 \
514 && mips_opts.isa != ISA_MIPS2 \
515 && mips_opts.isa != ISA_MIPS3) \
516 || mips_opts.arch == CPU_R4300 \
df58fc94 517 || mips_opts.micromips \
81912461
ILT
518 )
519
520/* Whether the processor uses hardware interlocks to protect reads
521 from coprocessor registers after they are loaded from memory, and
522 thus does not require nops to be inserted. This applies to
523 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
df58fc94
RS
524 requires at MIPS ISA level I and microMIPS mode instructions are
525 always interlocked. */
526#define cop_mem_interlocks \
527 (mips_opts.isa != ISA_MIPS1 \
528 || mips_opts.micromips \
529 )
252b5132 530
6b76fefe
CM
531/* Is this a mfhi or mflo instruction? */
532#define MF_HILO_INSN(PINFO) \
b19e8a9b
AN
533 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
534
df58fc94
RS
535/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
536 has been selected. This implies, in particular, that addresses of text
537 labels have their LSB set. */
538#define HAVE_CODE_COMPRESSION \
539 ((mips_opts.mips16 | mips_opts.micromips) != 0)
540
42429eac
RS
541/* The minimum and maximum signed values that can be stored in a GPR. */
542#define GPR_SMAX ((offsetT) (((valueT) 1 << (HAVE_64BIT_GPRS ? 63 : 31)) - 1))
543#define GPR_SMIN (-GPR_SMAX - 1)
544
252b5132
RH
545/* MIPS PIC level. */
546
a161fe53 547enum mips_pic_level mips_pic;
252b5132 548
c9914766 549/* 1 if we should generate 32 bit offsets from the $gp register in
252b5132 550 SVR4_PIC mode. Currently has no meaning in other modes. */
c9914766 551static int mips_big_got = 0;
252b5132
RH
552
553/* 1 if trap instructions should used for overflow rather than break
554 instructions. */
c9914766 555static int mips_trap = 0;
252b5132 556
119d663a 557/* 1 if double width floating point constants should not be constructed
b6ff326e 558 by assembling two single width halves into two single width floating
119d663a
NC
559 point registers which just happen to alias the double width destination
560 register. On some architectures this aliasing can be disabled by a bit
d547a75e 561 in the status register, and the setting of this bit cannot be determined
119d663a
NC
562 automatically at assemble time. */
563static int mips_disable_float_construction;
564
252b5132
RH
565/* Non-zero if any .set noreorder directives were used. */
566
567static int mips_any_noreorder;
568
6b76fefe
CM
569/* Non-zero if nops should be inserted when the register referenced in
570 an mfhi/mflo instruction is read in the next two instructions. */
571static int mips_7000_hilo_fix;
572
02ffd3e4 573/* The size of objects in the small data section. */
156c2f8b 574static unsigned int g_switch_value = 8;
252b5132
RH
575/* Whether the -G option was used. */
576static int g_switch_seen = 0;
577
578#define N_RMASK 0xc4
579#define N_VFP 0xd4
580
581/* If we can determine in advance that GP optimization won't be
582 possible, we can skip the relaxation stuff that tries to produce
583 GP-relative references. This makes delay slot optimization work
584 better.
585
586 This function can only provide a guess, but it seems to work for
fba2b7f9
GK
587 gcc output. It needs to guess right for gcc, otherwise gcc
588 will put what it thinks is a GP-relative instruction in a branch
589 delay slot.
252b5132
RH
590
591 I don't know if a fix is needed for the SVR4_PIC mode. I've only
592 fixed it for the non-PIC mode. KR 95/04/07 */
17a2f251 593static int nopic_need_relax (symbolS *, int);
252b5132
RH
594
595/* handle of the OPCODE hash table */
596static struct hash_control *op_hash = NULL;
597
598/* The opcode hash table we use for the mips16. */
599static struct hash_control *mips16_op_hash = NULL;
600
df58fc94
RS
601/* The opcode hash table we use for the microMIPS ASE. */
602static struct hash_control *micromips_op_hash = NULL;
603
252b5132
RH
604/* This array holds the chars that always start a comment. If the
605 pre-processor is disabled, these aren't very useful */
606const char comment_chars[] = "#";
607
608/* This array holds the chars that only start a comment at the beginning of
609 a line. If the line seems to have the form '# 123 filename'
610 .line and .file directives will appear in the pre-processed output */
611/* Note that input_file.c hand checks for '#' at the beginning of the
612 first line of the input file. This is because the compiler outputs
bdaaa2e1 613 #NO_APP at the beginning of its output. */
252b5132
RH
614/* Also note that C style comments are always supported. */
615const char line_comment_chars[] = "#";
616
bdaaa2e1 617/* This array holds machine specific line separator characters. */
63a0b638 618const char line_separator_chars[] = ";";
252b5132
RH
619
620/* Chars that can be used to separate mant from exp in floating point nums */
621const char EXP_CHARS[] = "eE";
622
623/* Chars that mean this number is a floating point constant */
624/* As in 0f12.456 */
625/* or 0d1.2345e12 */
626const char FLT_CHARS[] = "rRsSfFdDxXpP";
627
628/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
629 changed in read.c . Ideally it shouldn't have to know about it at all,
630 but nothing is ideal around here.
631 */
632
633static char *insn_error;
634
635static int auto_align = 1;
636
637/* When outputting SVR4 PIC code, the assembler needs to know the
638 offset in the stack frame from which to restore the $gp register.
639 This is set by the .cprestore pseudo-op, and saved in this
640 variable. */
641static offsetT mips_cprestore_offset = -1;
642
67c1ffbe 643/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
6478892d 644 more optimizations, it can use a register value instead of a memory-saved
956cd1d6 645 offset and even an other register than $gp as global pointer. */
6478892d
TS
646static offsetT mips_cpreturn_offset = -1;
647static int mips_cpreturn_register = -1;
648static int mips_gp_register = GP;
def2e0dd 649static int mips_gprel_offset = 0;
6478892d 650
7a621144
DJ
651/* Whether mips_cprestore_offset has been set in the current function
652 (or whether it has already been warned about, if not). */
653static int mips_cprestore_valid = 0;
654
252b5132
RH
655/* This is the register which holds the stack frame, as set by the
656 .frame pseudo-op. This is needed to implement .cprestore. */
657static int mips_frame_reg = SP;
658
7a621144
DJ
659/* Whether mips_frame_reg has been set in the current function
660 (or whether it has already been warned about, if not). */
661static int mips_frame_reg_valid = 0;
662
252b5132
RH
663/* To output NOP instructions correctly, we need to keep information
664 about the previous two instructions. */
665
666/* Whether we are optimizing. The default value of 2 means to remove
667 unneeded NOPs and swap branch instructions when possible. A value
668 of 1 means to not swap branches. A value of 0 means to always
669 insert NOPs. */
670static int mips_optimize = 2;
671
672/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
673 equivalent to seeing no -g option at all. */
674static int mips_debug = 0;
675
7d8e00cf
RS
676/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
677#define MAX_VR4130_NOPS 4
678
679/* The maximum number of NOPs needed to fill delay slots. */
680#define MAX_DELAY_NOPS 2
681
682/* The maximum number of NOPs needed for any purpose. */
683#define MAX_NOPS 4
71400594
RS
684
685/* A list of previous instructions, with index 0 being the most recent.
686 We need to look back MAX_NOPS instructions when filling delay slots
687 or working around processor errata. We need to look back one
688 instruction further if we're thinking about using history[0] to
689 fill a branch delay slot. */
690static struct mips_cl_insn history[1 + MAX_NOPS];
252b5132 691
fc76e730
RS
692/* Arrays of operands for each instruction. */
693#define MAX_OPERANDS 5
694struct mips_operand_array {
695 const struct mips_operand *operand[MAX_OPERANDS];
696};
697static struct mips_operand_array *mips_operands;
698static struct mips_operand_array *mips16_operands;
699static struct mips_operand_array *micromips_operands;
700
1e915849 701/* Nop instructions used by emit_nop. */
df58fc94
RS
702static struct mips_cl_insn nop_insn;
703static struct mips_cl_insn mips16_nop_insn;
704static struct mips_cl_insn micromips_nop16_insn;
705static struct mips_cl_insn micromips_nop32_insn;
1e915849
RS
706
707/* The appropriate nop for the current mode. */
833794fc
MR
708#define NOP_INSN (mips_opts.mips16 \
709 ? &mips16_nop_insn \
710 : (mips_opts.micromips \
711 ? (mips_opts.insn32 \
712 ? &micromips_nop32_insn \
713 : &micromips_nop16_insn) \
714 : &nop_insn))
df58fc94
RS
715
716/* The size of NOP_INSN in bytes. */
833794fc
MR
717#define NOP_INSN_SIZE ((mips_opts.mips16 \
718 || (mips_opts.micromips && !mips_opts.insn32)) \
719 ? 2 : 4)
252b5132 720
252b5132
RH
721/* If this is set, it points to a frag holding nop instructions which
722 were inserted before the start of a noreorder section. If those
723 nops turn out to be unnecessary, the size of the frag can be
724 decreased. */
725static fragS *prev_nop_frag;
726
727/* The number of nop instructions we created in prev_nop_frag. */
728static int prev_nop_frag_holds;
729
730/* The number of nop instructions that we know we need in
bdaaa2e1 731 prev_nop_frag. */
252b5132
RH
732static int prev_nop_frag_required;
733
734/* The number of instructions we've seen since prev_nop_frag. */
735static int prev_nop_frag_since;
736
e8044f35
RS
737/* Relocations against symbols are sometimes done in two parts, with a HI
738 relocation and a LO relocation. Each relocation has only 16 bits of
739 space to store an addend. This means that in order for the linker to
740 handle carries correctly, it must be able to locate both the HI and
741 the LO relocation. This means that the relocations must appear in
742 order in the relocation table.
252b5132
RH
743
744 In order to implement this, we keep track of each unmatched HI
745 relocation. We then sort them so that they immediately precede the
bdaaa2e1 746 corresponding LO relocation. */
252b5132 747
e972090a
NC
748struct mips_hi_fixup
749{
252b5132
RH
750 /* Next HI fixup. */
751 struct mips_hi_fixup *next;
752 /* This fixup. */
753 fixS *fixp;
754 /* The section this fixup is in. */
755 segT seg;
756};
757
758/* The list of unmatched HI relocs. */
759
760static struct mips_hi_fixup *mips_hi_fixup_list;
761
64bdfcaf
RS
762/* The frag containing the last explicit relocation operator.
763 Null if explicit relocations have not been used. */
764
765static fragS *prev_reloc_op_frag;
766
252b5132
RH
767/* Map mips16 register numbers to normal MIPS register numbers. */
768
e972090a
NC
769static const unsigned int mips16_to_32_reg_map[] =
770{
252b5132
RH
771 16, 17, 2, 3, 4, 5, 6, 7
772};
60b63b72 773
df58fc94
RS
774/* Map microMIPS register numbers to normal MIPS register numbers. */
775
df58fc94 776#define micromips_to_32_reg_d_map mips16_to_32_reg_map
df58fc94
RS
777
778/* The microMIPS registers with type h. */
e76ff5ab 779static const unsigned int micromips_to_32_reg_h_map1[] =
df58fc94
RS
780{
781 5, 5, 6, 4, 4, 4, 4, 4
782};
e76ff5ab 783static const unsigned int micromips_to_32_reg_h_map2[] =
df58fc94
RS
784{
785 6, 7, 7, 21, 22, 5, 6, 7
786};
787
df58fc94
RS
788/* The microMIPS registers with type m. */
789static const unsigned int micromips_to_32_reg_m_map[] =
790{
791 0, 17, 2, 3, 16, 18, 19, 20
792};
793
794#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
795
71400594
RS
796/* Classifies the kind of instructions we're interested in when
797 implementing -mfix-vr4120. */
c67a084a
NC
798enum fix_vr4120_class
799{
71400594
RS
800 FIX_VR4120_MACC,
801 FIX_VR4120_DMACC,
802 FIX_VR4120_MULT,
803 FIX_VR4120_DMULT,
804 FIX_VR4120_DIV,
805 FIX_VR4120_MTHILO,
806 NUM_FIX_VR4120_CLASSES
807};
808
c67a084a
NC
809/* ...likewise -mfix-loongson2f-jump. */
810static bfd_boolean mips_fix_loongson2f_jump;
811
812/* ...likewise -mfix-loongson2f-nop. */
813static bfd_boolean mips_fix_loongson2f_nop;
814
815/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
816static bfd_boolean mips_fix_loongson2f;
817
71400594
RS
818/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
819 there must be at least one other instruction between an instruction
820 of type X and an instruction of type Y. */
821static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
822
823/* True if -mfix-vr4120 is in force. */
d766e8ec 824static int mips_fix_vr4120;
4a6a3df4 825
7d8e00cf
RS
826/* ...likewise -mfix-vr4130. */
827static int mips_fix_vr4130;
828
6a32d874
CM
829/* ...likewise -mfix-24k. */
830static int mips_fix_24k;
831
d954098f
DD
832/* ...likewise -mfix-cn63xxp1 */
833static bfd_boolean mips_fix_cn63xxp1;
834
4a6a3df4
AO
835/* We don't relax branches by default, since this causes us to expand
836 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
837 fail to compute the offset before expanding the macro to the most
838 efficient expansion. */
839
840static int mips_relax_branch;
252b5132 841\f
4d7206a2
RS
842/* The expansion of many macros depends on the type of symbol that
843 they refer to. For example, when generating position-dependent code,
844 a macro that refers to a symbol may have two different expansions,
845 one which uses GP-relative addresses and one which uses absolute
846 addresses. When generating SVR4-style PIC, a macro may have
847 different expansions for local and global symbols.
848
849 We handle these situations by generating both sequences and putting
850 them in variant frags. In position-dependent code, the first sequence
851 will be the GP-relative one and the second sequence will be the
852 absolute one. In SVR4 PIC, the first sequence will be for global
853 symbols and the second will be for local symbols.
854
584892a6
RS
855 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
856 SECOND are the lengths of the two sequences in bytes. These fields
857 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
858 the subtype has the following flags:
4d7206a2 859
584892a6
RS
860 RELAX_USE_SECOND
861 Set if it has been decided that we should use the second
862 sequence instead of the first.
863
864 RELAX_SECOND_LONGER
865 Set in the first variant frag if the macro's second implementation
866 is longer than its first. This refers to the macro as a whole,
867 not an individual relaxation.
868
869 RELAX_NOMACRO
870 Set in the first variant frag if the macro appeared in a .set nomacro
871 block and if one alternative requires a warning but the other does not.
872
873 RELAX_DELAY_SLOT
874 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
875 delay slot.
4d7206a2 876
df58fc94
RS
877 RELAX_DELAY_SLOT_16BIT
878 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
879 16-bit instruction.
880
881 RELAX_DELAY_SLOT_SIZE_FIRST
882 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
883 the macro is of the wrong size for the branch delay slot.
884
885 RELAX_DELAY_SLOT_SIZE_SECOND
886 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
887 the macro is of the wrong size for the branch delay slot.
888
4d7206a2
RS
889 The frag's "opcode" points to the first fixup for relaxable code.
890
891 Relaxable macros are generated using a sequence such as:
892
893 relax_start (SYMBOL);
894 ... generate first expansion ...
895 relax_switch ();
896 ... generate second expansion ...
897 relax_end ();
898
899 The code and fixups for the unwanted alternative are discarded
900 by md_convert_frag. */
584892a6 901#define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
4d7206a2 902
584892a6
RS
903#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
904#define RELAX_SECOND(X) ((X) & 0xff)
905#define RELAX_USE_SECOND 0x10000
906#define RELAX_SECOND_LONGER 0x20000
907#define RELAX_NOMACRO 0x40000
908#define RELAX_DELAY_SLOT 0x80000
df58fc94
RS
909#define RELAX_DELAY_SLOT_16BIT 0x100000
910#define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
911#define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
252b5132 912
4a6a3df4
AO
913/* Branch without likely bit. If label is out of range, we turn:
914
915 beq reg1, reg2, label
916 delay slot
917
918 into
919
920 bne reg1, reg2, 0f
921 nop
922 j label
923 0: delay slot
924
925 with the following opcode replacements:
926
927 beq <-> bne
928 blez <-> bgtz
929 bltz <-> bgez
930 bc1f <-> bc1t
931
932 bltzal <-> bgezal (with jal label instead of j label)
933
934 Even though keeping the delay slot instruction in the delay slot of
935 the branch would be more efficient, it would be very tricky to do
936 correctly, because we'd have to introduce a variable frag *after*
937 the delay slot instruction, and expand that instead. Let's do it
938 the easy way for now, even if the branch-not-taken case now costs
939 one additional instruction. Out-of-range branches are not supposed
940 to be common, anyway.
941
942 Branch likely. If label is out of range, we turn:
943
944 beql reg1, reg2, label
945 delay slot (annulled if branch not taken)
946
947 into
948
949 beql reg1, reg2, 1f
950 nop
951 beql $0, $0, 2f
952 nop
953 1: j[al] label
954 delay slot (executed only if branch taken)
955 2:
956
957 It would be possible to generate a shorter sequence by losing the
958 likely bit, generating something like:
b34976b6 959
4a6a3df4
AO
960 bne reg1, reg2, 0f
961 nop
962 j[al] label
963 delay slot (executed only if branch taken)
964 0:
965
966 beql -> bne
967 bnel -> beq
968 blezl -> bgtz
969 bgtzl -> blez
970 bltzl -> bgez
971 bgezl -> bltz
972 bc1fl -> bc1t
973 bc1tl -> bc1f
974
975 bltzall -> bgezal (with jal label instead of j label)
976 bgezall -> bltzal (ditto)
977
978
979 but it's not clear that it would actually improve performance. */
66b3e8da
MR
980#define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
981 ((relax_substateT) \
982 (0xc0000000 \
983 | ((at) & 0x1f) \
984 | ((toofar) ? 0x20 : 0) \
985 | ((link) ? 0x40 : 0) \
986 | ((likely) ? 0x80 : 0) \
987 | ((uncond) ? 0x100 : 0)))
4a6a3df4 988#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
66b3e8da
MR
989#define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
990#define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
991#define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
992#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
993#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
4a6a3df4 994
252b5132
RH
995/* For mips16 code, we use an entirely different form of relaxation.
996 mips16 supports two versions of most instructions which take
997 immediate values: a small one which takes some small value, and a
998 larger one which takes a 16 bit value. Since branches also follow
999 this pattern, relaxing these values is required.
1000
1001 We can assemble both mips16 and normal MIPS code in a single
1002 object. Therefore, we need to support this type of relaxation at
1003 the same time that we support the relaxation described above. We
1004 use the high bit of the subtype field to distinguish these cases.
1005
1006 The information we store for this type of relaxation is the
1007 argument code found in the opcode file for this relocation, whether
1008 the user explicitly requested a small or extended form, and whether
1009 the relocation is in a jump or jal delay slot. That tells us the
1010 size of the value, and how it should be stored. We also store
1011 whether the fragment is considered to be extended or not. We also
1012 store whether this is known to be a branch to a different section,
1013 whether we have tried to relax this frag yet, and whether we have
1014 ever extended a PC relative fragment because of a shift count. */
1015#define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1016 (0x80000000 \
1017 | ((type) & 0xff) \
1018 | ((small) ? 0x100 : 0) \
1019 | ((ext) ? 0x200 : 0) \
1020 | ((dslot) ? 0x400 : 0) \
1021 | ((jal_dslot) ? 0x800 : 0))
4a6a3df4 1022#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
252b5132
RH
1023#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1024#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1025#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1026#define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1027#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1028#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1029#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1030#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1031#define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1032#define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1033#define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
885add95 1034
df58fc94
RS
1035/* For microMIPS code, we use relaxation similar to one we use for
1036 MIPS16 code. Some instructions that take immediate values support
1037 two encodings: a small one which takes some small value, and a
1038 larger one which takes a 16 bit value. As some branches also follow
1039 this pattern, relaxing these values is required.
1040
1041 We can assemble both microMIPS and normal MIPS code in a single
1042 object. Therefore, we need to support this type of relaxation at
1043 the same time that we support the relaxation described above. We
1044 use one of the high bits of the subtype field to distinguish these
1045 cases.
1046
1047 The information we store for this type of relaxation is the argument
1048 code found in the opcode file for this relocation, the register
40209cad
MR
1049 selected as the assembler temporary, whether the branch is
1050 unconditional, whether it is compact, whether it stores the link
1051 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1052 branches to a sequence of instructions is enabled, and whether the
1053 displacement of a branch is too large to fit as an immediate argument
1054 of a 16-bit and a 32-bit branch, respectively. */
1055#define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1056 relax32, toofar16, toofar32) \
1057 (0x40000000 \
1058 | ((type) & 0xff) \
1059 | (((at) & 0x1f) << 8) \
1060 | ((uncond) ? 0x2000 : 0) \
1061 | ((compact) ? 0x4000 : 0) \
1062 | ((link) ? 0x8000 : 0) \
1063 | ((relax32) ? 0x10000 : 0) \
1064 | ((toofar16) ? 0x20000 : 0) \
1065 | ((toofar32) ? 0x40000 : 0))
df58fc94
RS
1066#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1067#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1068#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
40209cad
MR
1069#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1070#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1071#define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1072#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1073
1074#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1075#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1076#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1077#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1078#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1079#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
df58fc94 1080
43c0598f
RS
1081/* Sign-extend 16-bit value X. */
1082#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1083
885add95
CD
1084/* Is the given value a sign-extended 32-bit value? */
1085#define IS_SEXT_32BIT_NUM(x) \
1086 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1087 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1088
1089/* Is the given value a sign-extended 16-bit value? */
1090#define IS_SEXT_16BIT_NUM(x) \
1091 (((x) &~ (offsetT) 0x7fff) == 0 \
1092 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1093
df58fc94
RS
1094/* Is the given value a sign-extended 12-bit value? */
1095#define IS_SEXT_12BIT_NUM(x) \
1096 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1097
7f3c4072
CM
1098/* Is the given value a sign-extended 9-bit value? */
1099#define IS_SEXT_9BIT_NUM(x) \
1100 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1101
2051e8c4
MR
1102/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1103#define IS_ZEXT_32BIT_NUM(x) \
1104 (((x) &~ (offsetT) 0xffffffff) == 0 \
1105 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1106
bf12938e
RS
1107/* Extract bits MASK << SHIFT from STRUCT and shift them right
1108 SHIFT places. */
1109#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1110 (((STRUCT) >> (SHIFT)) & (MASK))
1111
bf12938e 1112/* Extract the operand given by FIELD from mips_cl_insn INSN. */
df58fc94
RS
1113#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1114 (!(MICROMIPS) \
1115 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1116 : EXTRACT_BITS ((INSN).insn_opcode, \
1117 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
bf12938e
RS
1118#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1119 EXTRACT_BITS ((INSN).insn_opcode, \
1120 MIPS16OP_MASK_##FIELD, \
1121 MIPS16OP_SH_##FIELD)
5c04167a
RS
1122
1123/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1124#define MIPS16_EXTEND (0xf000U << 16)
4d7206a2 1125\f
df58fc94
RS
1126/* Whether or not we are emitting a branch-likely macro. */
1127static bfd_boolean emit_branch_likely_macro = FALSE;
1128
4d7206a2
RS
1129/* Global variables used when generating relaxable macros. See the
1130 comment above RELAX_ENCODE for more details about how relaxation
1131 is used. */
1132static struct {
1133 /* 0 if we're not emitting a relaxable macro.
1134 1 if we're emitting the first of the two relaxation alternatives.
1135 2 if we're emitting the second alternative. */
1136 int sequence;
1137
1138 /* The first relaxable fixup in the current frag. (In other words,
1139 the first fixup that refers to relaxable code.) */
1140 fixS *first_fixup;
1141
1142 /* sizes[0] says how many bytes of the first alternative are stored in
1143 the current frag. Likewise sizes[1] for the second alternative. */
1144 unsigned int sizes[2];
1145
1146 /* The symbol on which the choice of sequence depends. */
1147 symbolS *symbol;
1148} mips_relax;
252b5132 1149\f
584892a6
RS
1150/* Global variables used to decide whether a macro needs a warning. */
1151static struct {
1152 /* True if the macro is in a branch delay slot. */
1153 bfd_boolean delay_slot_p;
1154
df58fc94
RS
1155 /* Set to the length in bytes required if the macro is in a delay slot
1156 that requires a specific length of instruction, otherwise zero. */
1157 unsigned int delay_slot_length;
1158
584892a6
RS
1159 /* For relaxable macros, sizes[0] is the length of the first alternative
1160 in bytes and sizes[1] is the length of the second alternative.
1161 For non-relaxable macros, both elements give the length of the
1162 macro in bytes. */
1163 unsigned int sizes[2];
1164
df58fc94
RS
1165 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1166 instruction of the first alternative in bytes and first_insn_sizes[1]
1167 is the length of the first instruction of the second alternative.
1168 For non-relaxable macros, both elements give the length of the first
1169 instruction in bytes.
1170
1171 Set to zero if we haven't yet seen the first instruction. */
1172 unsigned int first_insn_sizes[2];
1173
1174 /* For relaxable macros, insns[0] is the number of instructions for the
1175 first alternative and insns[1] is the number of instructions for the
1176 second alternative.
1177
1178 For non-relaxable macros, both elements give the number of
1179 instructions for the macro. */
1180 unsigned int insns[2];
1181
584892a6
RS
1182 /* The first variant frag for this macro. */
1183 fragS *first_frag;
1184} mips_macro_warning;
1185\f
252b5132
RH
1186/* Prototypes for static functions. */
1187
252b5132
RH
1188enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1189
b34976b6 1190static void append_insn
df58fc94
RS
1191 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1192 bfd_boolean expansionp);
7d10b47d 1193static void mips_no_prev_insn (void);
c67a084a 1194static void macro_build (expressionS *, const char *, const char *, ...);
b34976b6 1195static void mips16_macro_build
03ea81db 1196 (expressionS *, const char *, const char *, va_list *);
67c0d1eb 1197static void load_register (int, expressionS *, int);
584892a6
RS
1198static void macro_start (void);
1199static void macro_end (void);
833794fc 1200static void macro (struct mips_cl_insn *ip, char *str);
17a2f251 1201static void mips16_macro (struct mips_cl_insn * ip);
17a2f251
TS
1202static void mips_ip (char *str, struct mips_cl_insn * ip);
1203static void mips16_ip (char *str, struct mips_cl_insn * ip);
b34976b6 1204static void mips16_immed
43c0598f
RS
1205 (char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1206 unsigned int, unsigned long *);
5e0116d5 1207static size_t my_getSmallExpression
17a2f251
TS
1208 (expressionS *, bfd_reloc_code_real_type *, char *);
1209static void my_getExpression (expressionS *, char *);
1210static void s_align (int);
1211static void s_change_sec (int);
1212static void s_change_section (int);
1213static void s_cons (int);
1214static void s_float_cons (int);
1215static void s_mips_globl (int);
1216static void s_option (int);
1217static void s_mipsset (int);
1218static void s_abicalls (int);
1219static void s_cpload (int);
1220static void s_cpsetup (int);
1221static void s_cplocal (int);
1222static void s_cprestore (int);
1223static void s_cpreturn (int);
741d6ea8
JM
1224static void s_dtprelword (int);
1225static void s_dtpreldword (int);
d0f13682
CLT
1226static void s_tprelword (int);
1227static void s_tpreldword (int);
17a2f251
TS
1228static void s_gpvalue (int);
1229static void s_gpword (int);
1230static void s_gpdword (int);
a3f278e2 1231static void s_ehword (int);
17a2f251
TS
1232static void s_cpadd (int);
1233static void s_insn (int);
ba92f887 1234static void s_nan (int);
17a2f251
TS
1235static void md_obj_begin (void);
1236static void md_obj_end (void);
1237static void s_mips_ent (int);
1238static void s_mips_end (int);
1239static void s_mips_frame (int);
1240static void s_mips_mask (int reg_type);
1241static void s_mips_stab (int);
1242static void s_mips_weakext (int);
1243static void s_mips_file (int);
1244static void s_mips_loc (int);
1245static bfd_boolean pic_need_relax (symbolS *, asection *);
4a6a3df4 1246static int relaxed_branch_length (fragS *, asection *, int);
df58fc94
RS
1247static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1248static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
e7af610e
NC
1249
1250/* Table and functions used to map between CPU/ISA names, and
1251 ISA levels, and CPU numbers. */
1252
e972090a
NC
1253struct mips_cpu_info
1254{
e7af610e 1255 const char *name; /* CPU or ISA name. */
d16afab6
RS
1256 int flags; /* MIPS_CPU_* flags. */
1257 int ase; /* Set of ASEs implemented by the CPU. */
e7af610e
NC
1258 int isa; /* ISA level. */
1259 int cpu; /* CPU number (default CPU if ISA). */
1260};
1261
ad3fea08 1262#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
ad3fea08 1263
17a2f251
TS
1264static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1265static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1266static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
252b5132 1267\f
c31f3936
RS
1268/* Command-line options. */
1269const char *md_shortopts = "O::g::G:";
1270
1271enum options
1272 {
1273 OPTION_MARCH = OPTION_MD_BASE,
1274 OPTION_MTUNE,
1275 OPTION_MIPS1,
1276 OPTION_MIPS2,
1277 OPTION_MIPS3,
1278 OPTION_MIPS4,
1279 OPTION_MIPS5,
1280 OPTION_MIPS32,
1281 OPTION_MIPS64,
1282 OPTION_MIPS32R2,
1283 OPTION_MIPS64R2,
1284 OPTION_MIPS16,
1285 OPTION_NO_MIPS16,
1286 OPTION_MIPS3D,
1287 OPTION_NO_MIPS3D,
1288 OPTION_MDMX,
1289 OPTION_NO_MDMX,
1290 OPTION_DSP,
1291 OPTION_NO_DSP,
1292 OPTION_MT,
1293 OPTION_NO_MT,
1294 OPTION_VIRT,
1295 OPTION_NO_VIRT,
1296 OPTION_SMARTMIPS,
1297 OPTION_NO_SMARTMIPS,
1298 OPTION_DSPR2,
1299 OPTION_NO_DSPR2,
1300 OPTION_EVA,
1301 OPTION_NO_EVA,
1302 OPTION_MICROMIPS,
1303 OPTION_NO_MICROMIPS,
1304 OPTION_MCU,
1305 OPTION_NO_MCU,
1306 OPTION_COMPAT_ARCH_BASE,
1307 OPTION_M4650,
1308 OPTION_NO_M4650,
1309 OPTION_M4010,
1310 OPTION_NO_M4010,
1311 OPTION_M4100,
1312 OPTION_NO_M4100,
1313 OPTION_M3900,
1314 OPTION_NO_M3900,
1315 OPTION_M7000_HILO_FIX,
1316 OPTION_MNO_7000_HILO_FIX,
1317 OPTION_FIX_24K,
1318 OPTION_NO_FIX_24K,
1319 OPTION_FIX_LOONGSON2F_JUMP,
1320 OPTION_NO_FIX_LOONGSON2F_JUMP,
1321 OPTION_FIX_LOONGSON2F_NOP,
1322 OPTION_NO_FIX_LOONGSON2F_NOP,
1323 OPTION_FIX_VR4120,
1324 OPTION_NO_FIX_VR4120,
1325 OPTION_FIX_VR4130,
1326 OPTION_NO_FIX_VR4130,
1327 OPTION_FIX_CN63XXP1,
1328 OPTION_NO_FIX_CN63XXP1,
1329 OPTION_TRAP,
1330 OPTION_BREAK,
1331 OPTION_EB,
1332 OPTION_EL,
1333 OPTION_FP32,
1334 OPTION_GP32,
1335 OPTION_CONSTRUCT_FLOATS,
1336 OPTION_NO_CONSTRUCT_FLOATS,
1337 OPTION_FP64,
1338 OPTION_GP64,
1339 OPTION_RELAX_BRANCH,
1340 OPTION_NO_RELAX_BRANCH,
833794fc
MR
1341 OPTION_INSN32,
1342 OPTION_NO_INSN32,
c31f3936
RS
1343 OPTION_MSHARED,
1344 OPTION_MNO_SHARED,
1345 OPTION_MSYM32,
1346 OPTION_MNO_SYM32,
1347 OPTION_SOFT_FLOAT,
1348 OPTION_HARD_FLOAT,
1349 OPTION_SINGLE_FLOAT,
1350 OPTION_DOUBLE_FLOAT,
1351 OPTION_32,
c31f3936
RS
1352 OPTION_CALL_SHARED,
1353 OPTION_CALL_NONPIC,
1354 OPTION_NON_SHARED,
1355 OPTION_XGOT,
1356 OPTION_MABI,
1357 OPTION_N32,
1358 OPTION_64,
1359 OPTION_MDEBUG,
1360 OPTION_NO_MDEBUG,
1361 OPTION_PDR,
1362 OPTION_NO_PDR,
1363 OPTION_MVXWORKS_PIC,
ba92f887 1364 OPTION_NAN,
c31f3936
RS
1365 OPTION_END_OF_ENUM
1366 };
1367
1368struct option md_longopts[] =
1369{
1370 /* Options which specify architecture. */
1371 {"march", required_argument, NULL, OPTION_MARCH},
1372 {"mtune", required_argument, NULL, OPTION_MTUNE},
1373 {"mips0", no_argument, NULL, OPTION_MIPS1},
1374 {"mips1", no_argument, NULL, OPTION_MIPS1},
1375 {"mips2", no_argument, NULL, OPTION_MIPS2},
1376 {"mips3", no_argument, NULL, OPTION_MIPS3},
1377 {"mips4", no_argument, NULL, OPTION_MIPS4},
1378 {"mips5", no_argument, NULL, OPTION_MIPS5},
1379 {"mips32", no_argument, NULL, OPTION_MIPS32},
1380 {"mips64", no_argument, NULL, OPTION_MIPS64},
1381 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1382 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1383
1384 /* Options which specify Application Specific Extensions (ASEs). */
1385 {"mips16", no_argument, NULL, OPTION_MIPS16},
1386 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1387 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1388 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1389 {"mdmx", no_argument, NULL, OPTION_MDMX},
1390 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1391 {"mdsp", no_argument, NULL, OPTION_DSP},
1392 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1393 {"mmt", no_argument, NULL, OPTION_MT},
1394 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1395 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1396 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1397 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1398 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1399 {"meva", no_argument, NULL, OPTION_EVA},
1400 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1401 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1402 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1403 {"mmcu", no_argument, NULL, OPTION_MCU},
1404 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1405 {"mvirt", no_argument, NULL, OPTION_VIRT},
1406 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1407
1408 /* Old-style architecture options. Don't add more of these. */
1409 {"m4650", no_argument, NULL, OPTION_M4650},
1410 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1411 {"m4010", no_argument, NULL, OPTION_M4010},
1412 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1413 {"m4100", no_argument, NULL, OPTION_M4100},
1414 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1415 {"m3900", no_argument, NULL, OPTION_M3900},
1416 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1417
1418 /* Options which enable bug fixes. */
1419 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1420 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1421 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1422 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1423 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1424 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1425 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1426 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1427 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1428 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1429 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1430 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1431 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1432 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1433 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1434
1435 /* Miscellaneous options. */
1436 {"trap", no_argument, NULL, OPTION_TRAP},
1437 {"no-break", no_argument, NULL, OPTION_TRAP},
1438 {"break", no_argument, NULL, OPTION_BREAK},
1439 {"no-trap", no_argument, NULL, OPTION_BREAK},
1440 {"EB", no_argument, NULL, OPTION_EB},
1441 {"EL", no_argument, NULL, OPTION_EL},
1442 {"mfp32", no_argument, NULL, OPTION_FP32},
1443 {"mgp32", no_argument, NULL, OPTION_GP32},
1444 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1445 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1446 {"mfp64", no_argument, NULL, OPTION_FP64},
1447 {"mgp64", no_argument, NULL, OPTION_GP64},
1448 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1449 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
833794fc
MR
1450 {"minsn32", no_argument, NULL, OPTION_INSN32},
1451 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
c31f3936
RS
1452 {"mshared", no_argument, NULL, OPTION_MSHARED},
1453 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1454 {"msym32", no_argument, NULL, OPTION_MSYM32},
1455 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1456 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1457 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1458 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1459 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1460
1461 /* Strictly speaking this next option is ELF specific,
1462 but we allow it for other ports as well in order to
1463 make testing easier. */
1464 {"32", no_argument, NULL, OPTION_32},
1465
1466 /* ELF-specific options. */
c31f3936
RS
1467 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1468 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1469 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1470 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1471 {"xgot", no_argument, NULL, OPTION_XGOT},
1472 {"mabi", required_argument, NULL, OPTION_MABI},
1473 {"n32", no_argument, NULL, OPTION_N32},
1474 {"64", no_argument, NULL, OPTION_64},
1475 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1476 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1477 {"mpdr", no_argument, NULL, OPTION_PDR},
1478 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1479 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
ba92f887 1480 {"mnan", required_argument, NULL, OPTION_NAN},
c31f3936
RS
1481
1482 {NULL, no_argument, NULL, 0}
1483};
1484size_t md_longopts_size = sizeof (md_longopts);
1485\f
c6278170
RS
1486/* Information about either an Application Specific Extension or an
1487 optional architecture feature that, for simplicity, we treat in the
1488 same way as an ASE. */
1489struct mips_ase
1490{
1491 /* The name of the ASE, used in both the command-line and .set options. */
1492 const char *name;
1493
1494 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1495 and 64-bit architectures, the flags here refer to the subset that
1496 is available on both. */
1497 unsigned int flags;
1498
1499 /* The ASE_* flag used for instructions that are available on 64-bit
1500 architectures but that are not included in FLAGS. */
1501 unsigned int flags64;
1502
1503 /* The command-line options that turn the ASE on and off. */
1504 int option_on;
1505 int option_off;
1506
1507 /* The minimum required architecture revisions for MIPS32, MIPS64,
1508 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1509 int mips32_rev;
1510 int mips64_rev;
1511 int micromips32_rev;
1512 int micromips64_rev;
1513};
1514
1515/* A table of all supported ASEs. */
1516static const struct mips_ase mips_ases[] = {
1517 { "dsp", ASE_DSP, ASE_DSP64,
1518 OPTION_DSP, OPTION_NO_DSP,
1519 2, 2, 2, 2 },
1520
1521 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1522 OPTION_DSPR2, OPTION_NO_DSPR2,
1523 2, 2, 2, 2 },
1524
1525 { "eva", ASE_EVA, 0,
1526 OPTION_EVA, OPTION_NO_EVA,
1527 2, 2, 2, 2 },
1528
1529 { "mcu", ASE_MCU, 0,
1530 OPTION_MCU, OPTION_NO_MCU,
1531 2, 2, 2, 2 },
1532
1533 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1534 { "mdmx", ASE_MDMX, 0,
1535 OPTION_MDMX, OPTION_NO_MDMX,
1536 -1, 1, -1, -1 },
1537
1538 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1539 { "mips3d", ASE_MIPS3D, 0,
1540 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1541 2, 1, -1, -1 },
1542
1543 { "mt", ASE_MT, 0,
1544 OPTION_MT, OPTION_NO_MT,
1545 2, 2, -1, -1 },
1546
1547 { "smartmips", ASE_SMARTMIPS, 0,
1548 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1549 1, -1, -1, -1 },
1550
1551 { "virt", ASE_VIRT, ASE_VIRT64,
1552 OPTION_VIRT, OPTION_NO_VIRT,
1553 2, 2, 2, 2 }
1554};
1555
1556/* The set of ASEs that require -mfp64. */
1557#define FP64_ASES (ASE_MIPS3D | ASE_MDMX)
1558
1559/* Groups of ASE_* flags that represent different revisions of an ASE. */
1560static const unsigned int mips_ase_groups[] = {
1561 ASE_DSP | ASE_DSPR2
1562};
1563\f
252b5132
RH
1564/* Pseudo-op table.
1565
1566 The following pseudo-ops from the Kane and Heinrich MIPS book
1567 should be defined here, but are currently unsupported: .alias,
1568 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1569
1570 The following pseudo-ops from the Kane and Heinrich MIPS book are
1571 specific to the type of debugging information being generated, and
1572 should be defined by the object format: .aent, .begin, .bend,
1573 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1574 .vreg.
1575
1576 The following pseudo-ops from the Kane and Heinrich MIPS book are
1577 not MIPS CPU specific, but are also not specific to the object file
1578 format. This file is probably the best place to define them, but
d84bcf09 1579 they are not currently supported: .asm0, .endr, .lab, .struct. */
252b5132 1580
e972090a
NC
1581static const pseudo_typeS mips_pseudo_table[] =
1582{
beae10d5 1583 /* MIPS specific pseudo-ops. */
252b5132
RH
1584 {"option", s_option, 0},
1585 {"set", s_mipsset, 0},
1586 {"rdata", s_change_sec, 'r'},
1587 {"sdata", s_change_sec, 's'},
1588 {"livereg", s_ignore, 0},
1589 {"abicalls", s_abicalls, 0},
1590 {"cpload", s_cpload, 0},
6478892d
TS
1591 {"cpsetup", s_cpsetup, 0},
1592 {"cplocal", s_cplocal, 0},
252b5132 1593 {"cprestore", s_cprestore, 0},
6478892d 1594 {"cpreturn", s_cpreturn, 0},
741d6ea8
JM
1595 {"dtprelword", s_dtprelword, 0},
1596 {"dtpreldword", s_dtpreldword, 0},
d0f13682
CLT
1597 {"tprelword", s_tprelword, 0},
1598 {"tpreldword", s_tpreldword, 0},
6478892d 1599 {"gpvalue", s_gpvalue, 0},
252b5132 1600 {"gpword", s_gpword, 0},
10181a0d 1601 {"gpdword", s_gpdword, 0},
a3f278e2 1602 {"ehword", s_ehword, 0},
252b5132
RH
1603 {"cpadd", s_cpadd, 0},
1604 {"insn", s_insn, 0},
ba92f887 1605 {"nan", s_nan, 0},
252b5132 1606
beae10d5 1607 /* Relatively generic pseudo-ops that happen to be used on MIPS
252b5132 1608 chips. */
38a57ae7 1609 {"asciiz", stringer, 8 + 1},
252b5132
RH
1610 {"bss", s_change_sec, 'b'},
1611 {"err", s_err, 0},
1612 {"half", s_cons, 1},
1613 {"dword", s_cons, 3},
1614 {"weakext", s_mips_weakext, 0},
7c752c2a
TS
1615 {"origin", s_org, 0},
1616 {"repeat", s_rept, 0},
252b5132 1617
998b3c36
MR
1618 /* For MIPS this is non-standard, but we define it for consistency. */
1619 {"sbss", s_change_sec, 'B'},
1620
beae10d5 1621 /* These pseudo-ops are defined in read.c, but must be overridden
252b5132
RH
1622 here for one reason or another. */
1623 {"align", s_align, 0},
1624 {"byte", s_cons, 0},
1625 {"data", s_change_sec, 'd'},
1626 {"double", s_float_cons, 'd'},
1627 {"float", s_float_cons, 'f'},
1628 {"globl", s_mips_globl, 0},
1629 {"global", s_mips_globl, 0},
1630 {"hword", s_cons, 1},
1631 {"int", s_cons, 2},
1632 {"long", s_cons, 2},
1633 {"octa", s_cons, 4},
1634 {"quad", s_cons, 3},
cca86cc8 1635 {"section", s_change_section, 0},
252b5132
RH
1636 {"short", s_cons, 1},
1637 {"single", s_float_cons, 'f'},
754e2bb9 1638 {"stabd", s_mips_stab, 'd'},
252b5132 1639 {"stabn", s_mips_stab, 'n'},
754e2bb9 1640 {"stabs", s_mips_stab, 's'},
252b5132
RH
1641 {"text", s_change_sec, 't'},
1642 {"word", s_cons, 2},
add56521 1643
add56521 1644 { "extern", ecoff_directive_extern, 0},
add56521 1645
43841e91 1646 { NULL, NULL, 0 },
252b5132
RH
1647};
1648
e972090a
NC
1649static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1650{
beae10d5
KH
1651 /* These pseudo-ops should be defined by the object file format.
1652 However, a.out doesn't support them, so we have versions here. */
252b5132
RH
1653 {"aent", s_mips_ent, 1},
1654 {"bgnb", s_ignore, 0},
1655 {"end", s_mips_end, 0},
1656 {"endb", s_ignore, 0},
1657 {"ent", s_mips_ent, 0},
c5dd6aab 1658 {"file", s_mips_file, 0},
252b5132
RH
1659 {"fmask", s_mips_mask, 'F'},
1660 {"frame", s_mips_frame, 0},
c5dd6aab 1661 {"loc", s_mips_loc, 0},
252b5132
RH
1662 {"mask", s_mips_mask, 'R'},
1663 {"verstamp", s_ignore, 0},
43841e91 1664 { NULL, NULL, 0 },
252b5132
RH
1665};
1666
3ae8dd8d
MR
1667/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1668 purpose of the `.dc.a' internal pseudo-op. */
1669
1670int
1671mips_address_bytes (void)
1672{
1673 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1674}
1675
17a2f251 1676extern void pop_insert (const pseudo_typeS *);
252b5132
RH
1677
1678void
17a2f251 1679mips_pop_insert (void)
252b5132
RH
1680{
1681 pop_insert (mips_pseudo_table);
1682 if (! ECOFF_DEBUGGING)
1683 pop_insert (mips_nonecoff_pseudo_table);
1684}
1685\f
1686/* Symbols labelling the current insn. */
1687
e972090a
NC
1688struct insn_label_list
1689{
252b5132
RH
1690 struct insn_label_list *next;
1691 symbolS *label;
1692};
1693
252b5132 1694static struct insn_label_list *free_insn_labels;
742a56fe 1695#define label_list tc_segment_info_data.labels
252b5132 1696
17a2f251 1697static void mips_clear_insn_labels (void);
df58fc94
RS
1698static void mips_mark_labels (void);
1699static void mips_compressed_mark_labels (void);
252b5132
RH
1700
1701static inline void
17a2f251 1702mips_clear_insn_labels (void)
252b5132
RH
1703{
1704 register struct insn_label_list **pl;
a8dbcb85 1705 segment_info_type *si;
252b5132 1706
a8dbcb85
TS
1707 if (now_seg)
1708 {
1709 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1710 ;
1711
1712 si = seg_info (now_seg);
1713 *pl = si->label_list;
1714 si->label_list = NULL;
1715 }
252b5132 1716}
a8dbcb85 1717
df58fc94
RS
1718/* Mark instruction labels in MIPS16/microMIPS mode. */
1719
1720static inline void
1721mips_mark_labels (void)
1722{
1723 if (HAVE_CODE_COMPRESSION)
1724 mips_compressed_mark_labels ();
1725}
252b5132
RH
1726\f
1727static char *expr_end;
1728
77bd4346
RS
1729/* Expressions which appear in macro instructions. These are set by
1730 mips_ip and read by macro. */
252b5132
RH
1731
1732static expressionS imm_expr;
5f74bc13 1733static expressionS imm2_expr;
252b5132 1734
77bd4346
RS
1735/* The relocatable field in an instruction and the relocs associated
1736 with it. These variables are used for instructions like LUI and
1737 JAL as well as true offsets. They are also used for address
1738 operands in macros. */
252b5132 1739
77bd4346 1740static expressionS offset_expr;
f6688943
TS
1741static bfd_reloc_code_real_type offset_reloc[3]
1742 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 1743
df58fc94
RS
1744/* This is set to the resulting size of the instruction to be produced
1745 by mips16_ip if an explicit extension is used or by mips_ip if an
1746 explicit size is supplied. */
252b5132 1747
df58fc94 1748static unsigned int forced_insn_length;
252b5132 1749
e1b47bd5
RS
1750/* True if we are assembling an instruction. All dot symbols defined during
1751 this time should be treated as code labels. */
1752
1753static bfd_boolean mips_assembling_insn;
1754
ecb4347a
DJ
1755/* The pdr segment for per procedure frame/regmask info. Not used for
1756 ECOFF debugging. */
252b5132
RH
1757
1758static segT pdr_seg;
252b5132 1759
e013f690
TS
1760/* The default target format to use. */
1761
aeffff67
RS
1762#if defined (TE_FreeBSD)
1763#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1764#elif defined (TE_TMIPS)
1765#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1766#else
1767#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1768#endif
1769
e013f690 1770const char *
17a2f251 1771mips_target_format (void)
e013f690
TS
1772{
1773 switch (OUTPUT_FLAVOR)
1774 {
e013f690 1775 case bfd_target_elf_flavour:
0a44bf69
RS
1776#ifdef TE_VXWORKS
1777 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1778 return (target_big_endian
1779 ? "elf32-bigmips-vxworks"
1780 : "elf32-littlemips-vxworks");
1781#endif
e013f690 1782 return (target_big_endian
cfe86eaa 1783 ? (HAVE_64BIT_OBJECTS
aeffff67 1784 ? ELF_TARGET ("elf64-", "big")
cfe86eaa 1785 : (HAVE_NEWABI
aeffff67
RS
1786 ? ELF_TARGET ("elf32-n", "big")
1787 : ELF_TARGET ("elf32-", "big")))
cfe86eaa 1788 : (HAVE_64BIT_OBJECTS
aeffff67 1789 ? ELF_TARGET ("elf64-", "little")
cfe86eaa 1790 : (HAVE_NEWABI
aeffff67
RS
1791 ? ELF_TARGET ("elf32-n", "little")
1792 : ELF_TARGET ("elf32-", "little"))));
e013f690
TS
1793 default:
1794 abort ();
1795 return NULL;
1796 }
1797}
1798
c6278170
RS
1799/* Return the ISA revision that is currently in use, or 0 if we are
1800 generating code for MIPS V or below. */
1801
1802static int
1803mips_isa_rev (void)
1804{
1805 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1806 return 2;
1807
1808 /* microMIPS implies revision 2 or above. */
1809 if (mips_opts.micromips)
1810 return 2;
1811
1812 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1813 return 1;
1814
1815 return 0;
1816}
1817
1818/* Return the mask of all ASEs that are revisions of those in FLAGS. */
1819
1820static unsigned int
1821mips_ase_mask (unsigned int flags)
1822{
1823 unsigned int i;
1824
1825 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1826 if (flags & mips_ase_groups[i])
1827 flags |= mips_ase_groups[i];
1828 return flags;
1829}
1830
1831/* Check whether the current ISA supports ASE. Issue a warning if
1832 appropriate. */
1833
1834static void
1835mips_check_isa_supports_ase (const struct mips_ase *ase)
1836{
1837 const char *base;
1838 int min_rev, size;
1839 static unsigned int warned_isa;
1840 static unsigned int warned_fp32;
1841
1842 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
1843 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
1844 else
1845 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
1846 if ((min_rev < 0 || mips_isa_rev () < min_rev)
1847 && (warned_isa & ase->flags) != ase->flags)
1848 {
1849 warned_isa |= ase->flags;
1850 base = mips_opts.micromips ? "microMIPS" : "MIPS";
1851 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
1852 if (min_rev < 0)
1853 as_warn (_("The %d-bit %s architecture does not support the"
1854 " `%s' extension"), size, base, ase->name);
1855 else
1856 as_warn (_("The `%s' extension requires %s%d revision %d or greater"),
1857 ase->name, base, size, min_rev);
1858 }
1859 if ((ase->flags & FP64_ASES)
1860 && mips_opts.fp32
1861 && (warned_fp32 & ase->flags) != ase->flags)
1862 {
1863 warned_fp32 |= ase->flags;
1864 as_warn (_("The `%s' extension requires 64-bit FPRs"), ase->name);
1865 }
1866}
1867
1868/* Check all enabled ASEs to see whether they are supported by the
1869 chosen architecture. */
1870
1871static void
1872mips_check_isa_supports_ases (void)
1873{
1874 unsigned int i, mask;
1875
1876 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
1877 {
1878 mask = mips_ase_mask (mips_ases[i].flags);
1879 if ((mips_opts.ase & mask) == mips_ases[i].flags)
1880 mips_check_isa_supports_ase (&mips_ases[i]);
1881 }
1882}
1883
1884/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
1885 that were affected. */
1886
1887static unsigned int
1888mips_set_ase (const struct mips_ase *ase, bfd_boolean enabled_p)
1889{
1890 unsigned int mask;
1891
1892 mask = mips_ase_mask (ase->flags);
1893 mips_opts.ase &= ~mask;
1894 if (enabled_p)
1895 mips_opts.ase |= ase->flags;
1896 return mask;
1897}
1898
1899/* Return the ASE called NAME, or null if none. */
1900
1901static const struct mips_ase *
1902mips_lookup_ase (const char *name)
1903{
1904 unsigned int i;
1905
1906 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
1907 if (strcmp (name, mips_ases[i].name) == 0)
1908 return &mips_ases[i];
1909 return NULL;
1910}
1911
df58fc94
RS
1912/* Return the length of a microMIPS instruction in bytes. If bits of
1913 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
1914 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
1915 major opcode) will require further modifications to the opcode
1916 table. */
1917
1918static inline unsigned int
1919micromips_insn_length (const struct mips_opcode *mo)
1920{
1921 return (mo->mask >> 16) == 0 ? 2 : 4;
1922}
1923
5c04167a
RS
1924/* Return the length of MIPS16 instruction OPCODE. */
1925
1926static inline unsigned int
1927mips16_opcode_length (unsigned long opcode)
1928{
1929 return (opcode >> 16) == 0 ? 2 : 4;
1930}
1931
1e915849
RS
1932/* Return the length of instruction INSN. */
1933
1934static inline unsigned int
1935insn_length (const struct mips_cl_insn *insn)
1936{
df58fc94
RS
1937 if (mips_opts.micromips)
1938 return micromips_insn_length (insn->insn_mo);
1939 else if (mips_opts.mips16)
5c04167a 1940 return mips16_opcode_length (insn->insn_opcode);
df58fc94 1941 else
1e915849 1942 return 4;
1e915849
RS
1943}
1944
1945/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1946
1947static void
1948create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1949{
1950 size_t i;
1951
1952 insn->insn_mo = mo;
1e915849
RS
1953 insn->insn_opcode = mo->match;
1954 insn->frag = NULL;
1955 insn->where = 0;
1956 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1957 insn->fixp[i] = NULL;
1958 insn->fixed_p = (mips_opts.noreorder > 0);
1959 insn->noreorder_p = (mips_opts.noreorder > 0);
1960 insn->mips16_absolute_jump_p = 0;
15be625d 1961 insn->complete_p = 0;
e407c74b 1962 insn->cleared_p = 0;
1e915849
RS
1963}
1964
fc76e730
RS
1965/* Get a list of all the operands in INSN. */
1966
1967static const struct mips_operand_array *
1968insn_operands (const struct mips_cl_insn *insn)
1969{
1970 if (insn->insn_mo >= &mips_opcodes[0]
1971 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
1972 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
1973
1974 if (insn->insn_mo >= &mips16_opcodes[0]
1975 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
1976 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
1977
1978 if (insn->insn_mo >= &micromips_opcodes[0]
1979 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
1980 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
1981
1982 abort ();
1983}
1984
1985/* Get a description of operand OPNO of INSN. */
1986
1987static const struct mips_operand *
1988insn_opno (const struct mips_cl_insn *insn, unsigned opno)
1989{
1990 const struct mips_operand_array *operands;
1991
1992 operands = insn_operands (insn);
1993 if (opno >= MAX_OPERANDS || !operands->operand[opno])
1994 abort ();
1995 return operands->operand[opno];
1996}
1997
e077a1c8
RS
1998/* Install UVAL as the value of OPERAND in INSN. */
1999
2000static inline void
2001insn_insert_operand (struct mips_cl_insn *insn,
2002 const struct mips_operand *operand, unsigned int uval)
2003{
2004 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2005}
2006
fc76e730
RS
2007/* Extract the value of OPERAND from INSN. */
2008
2009static inline unsigned
2010insn_extract_operand (const struct mips_cl_insn *insn,
2011 const struct mips_operand *operand)
2012{
2013 return mips_extract_operand (operand, insn->insn_opcode);
2014}
2015
df58fc94 2016/* Record the current MIPS16/microMIPS mode in now_seg. */
742a56fe
RS
2017
2018static void
df58fc94 2019mips_record_compressed_mode (void)
742a56fe
RS
2020{
2021 segment_info_type *si;
2022
2023 si = seg_info (now_seg);
2024 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2025 si->tc_segment_info_data.mips16 = mips_opts.mips16;
df58fc94
RS
2026 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2027 si->tc_segment_info_data.micromips = mips_opts.micromips;
742a56fe
RS
2028}
2029
4d68580a
RS
2030/* Read a standard MIPS instruction from BUF. */
2031
2032static unsigned long
2033read_insn (char *buf)
2034{
2035 if (target_big_endian)
2036 return bfd_getb32 ((bfd_byte *) buf);
2037 else
2038 return bfd_getl32 ((bfd_byte *) buf);
2039}
2040
2041/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2042 the next byte. */
2043
2044static char *
2045write_insn (char *buf, unsigned int insn)
2046{
2047 md_number_to_chars (buf, insn, 4);
2048 return buf + 4;
2049}
2050
2051/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2052 has length LENGTH. */
2053
2054static unsigned long
2055read_compressed_insn (char *buf, unsigned int length)
2056{
2057 unsigned long insn;
2058 unsigned int i;
2059
2060 insn = 0;
2061 for (i = 0; i < length; i += 2)
2062 {
2063 insn <<= 16;
2064 if (target_big_endian)
2065 insn |= bfd_getb16 ((char *) buf);
2066 else
2067 insn |= bfd_getl16 ((char *) buf);
2068 buf += 2;
2069 }
2070 return insn;
2071}
2072
5c04167a
RS
2073/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2074 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2075
2076static char *
2077write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2078{
2079 unsigned int i;
2080
2081 for (i = 0; i < length; i += 2)
2082 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2083 return buf + length;
2084}
2085
1e915849
RS
2086/* Install INSN at the location specified by its "frag" and "where" fields. */
2087
2088static void
2089install_insn (const struct mips_cl_insn *insn)
2090{
2091 char *f = insn->frag->fr_literal + insn->where;
5c04167a
RS
2092 if (HAVE_CODE_COMPRESSION)
2093 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1e915849 2094 else
4d68580a 2095 write_insn (f, insn->insn_opcode);
df58fc94 2096 mips_record_compressed_mode ();
1e915849
RS
2097}
2098
2099/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2100 and install the opcode in the new location. */
2101
2102static void
2103move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2104{
2105 size_t i;
2106
2107 insn->frag = frag;
2108 insn->where = where;
2109 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2110 if (insn->fixp[i] != NULL)
2111 {
2112 insn->fixp[i]->fx_frag = frag;
2113 insn->fixp[i]->fx_where = where;
2114 }
2115 install_insn (insn);
2116}
2117
2118/* Add INSN to the end of the output. */
2119
2120static void
2121add_fixed_insn (struct mips_cl_insn *insn)
2122{
2123 char *f = frag_more (insn_length (insn));
2124 move_insn (insn, frag_now, f - frag_now->fr_literal);
2125}
2126
2127/* Start a variant frag and move INSN to the start of the variant part,
2128 marking it as fixed. The other arguments are as for frag_var. */
2129
2130static void
2131add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2132 relax_substateT subtype, symbolS *symbol, offsetT offset)
2133{
2134 frag_grow (max_chars);
2135 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2136 insn->fixed_p = 1;
2137 frag_var (rs_machine_dependent, max_chars, var,
2138 subtype, symbol, offset, NULL);
2139}
2140
2141/* Insert N copies of INSN into the history buffer, starting at
2142 position FIRST. Neither FIRST nor N need to be clipped. */
2143
2144static void
2145insert_into_history (unsigned int first, unsigned int n,
2146 const struct mips_cl_insn *insn)
2147{
2148 if (mips_relax.sequence != 2)
2149 {
2150 unsigned int i;
2151
2152 for (i = ARRAY_SIZE (history); i-- > first;)
2153 if (i >= first + n)
2154 history[i] = history[i - n];
2155 else
2156 history[i] = *insn;
2157 }
2158}
2159
71400594
RS
2160/* Initialize vr4120_conflicts. There is a bit of duplication here:
2161 the idea is to make it obvious at a glance that each errata is
2162 included. */
2163
2164static void
2165init_vr4120_conflicts (void)
2166{
2167#define CONFLICT(FIRST, SECOND) \
2168 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2169
2170 /* Errata 21 - [D]DIV[U] after [D]MACC */
2171 CONFLICT (MACC, DIV);
2172 CONFLICT (DMACC, DIV);
2173
2174 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2175 CONFLICT (DMULT, DMULT);
2176 CONFLICT (DMULT, DMACC);
2177 CONFLICT (DMACC, DMULT);
2178 CONFLICT (DMACC, DMACC);
2179
2180 /* Errata 24 - MT{LO,HI} after [D]MACC */
2181 CONFLICT (MACC, MTHILO);
2182 CONFLICT (DMACC, MTHILO);
2183
2184 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2185 instruction is executed immediately after a MACC or DMACC
2186 instruction, the result of [either instruction] is incorrect." */
2187 CONFLICT (MACC, MULT);
2188 CONFLICT (MACC, DMULT);
2189 CONFLICT (DMACC, MULT);
2190 CONFLICT (DMACC, DMULT);
2191
2192 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2193 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2194 DDIV or DDIVU instruction, the result of the MACC or
2195 DMACC instruction is incorrect.". */
2196 CONFLICT (DMULT, MACC);
2197 CONFLICT (DMULT, DMACC);
2198 CONFLICT (DIV, MACC);
2199 CONFLICT (DIV, DMACC);
2200
2201#undef CONFLICT
2202}
2203
707bfff6
TS
2204struct regname {
2205 const char *name;
2206 unsigned int num;
2207};
2208
2209#define RTYPE_MASK 0x1ff00
2210#define RTYPE_NUM 0x00100
2211#define RTYPE_FPU 0x00200
2212#define RTYPE_FCC 0x00400
2213#define RTYPE_VEC 0x00800
2214#define RTYPE_GP 0x01000
2215#define RTYPE_CP0 0x02000
2216#define RTYPE_PC 0x04000
2217#define RTYPE_ACC 0x08000
2218#define RTYPE_CCC 0x10000
2219#define RNUM_MASK 0x000ff
2220#define RWARN 0x80000
2221
2222#define GENERIC_REGISTER_NUMBERS \
2223 {"$0", RTYPE_NUM | 0}, \
2224 {"$1", RTYPE_NUM | 1}, \
2225 {"$2", RTYPE_NUM | 2}, \
2226 {"$3", RTYPE_NUM | 3}, \
2227 {"$4", RTYPE_NUM | 4}, \
2228 {"$5", RTYPE_NUM | 5}, \
2229 {"$6", RTYPE_NUM | 6}, \
2230 {"$7", RTYPE_NUM | 7}, \
2231 {"$8", RTYPE_NUM | 8}, \
2232 {"$9", RTYPE_NUM | 9}, \
2233 {"$10", RTYPE_NUM | 10}, \
2234 {"$11", RTYPE_NUM | 11}, \
2235 {"$12", RTYPE_NUM | 12}, \
2236 {"$13", RTYPE_NUM | 13}, \
2237 {"$14", RTYPE_NUM | 14}, \
2238 {"$15", RTYPE_NUM | 15}, \
2239 {"$16", RTYPE_NUM | 16}, \
2240 {"$17", RTYPE_NUM | 17}, \
2241 {"$18", RTYPE_NUM | 18}, \
2242 {"$19", RTYPE_NUM | 19}, \
2243 {"$20", RTYPE_NUM | 20}, \
2244 {"$21", RTYPE_NUM | 21}, \
2245 {"$22", RTYPE_NUM | 22}, \
2246 {"$23", RTYPE_NUM | 23}, \
2247 {"$24", RTYPE_NUM | 24}, \
2248 {"$25", RTYPE_NUM | 25}, \
2249 {"$26", RTYPE_NUM | 26}, \
2250 {"$27", RTYPE_NUM | 27}, \
2251 {"$28", RTYPE_NUM | 28}, \
2252 {"$29", RTYPE_NUM | 29}, \
2253 {"$30", RTYPE_NUM | 30}, \
2254 {"$31", RTYPE_NUM | 31}
2255
2256#define FPU_REGISTER_NAMES \
2257 {"$f0", RTYPE_FPU | 0}, \
2258 {"$f1", RTYPE_FPU | 1}, \
2259 {"$f2", RTYPE_FPU | 2}, \
2260 {"$f3", RTYPE_FPU | 3}, \
2261 {"$f4", RTYPE_FPU | 4}, \
2262 {"$f5", RTYPE_FPU | 5}, \
2263 {"$f6", RTYPE_FPU | 6}, \
2264 {"$f7", RTYPE_FPU | 7}, \
2265 {"$f8", RTYPE_FPU | 8}, \
2266 {"$f9", RTYPE_FPU | 9}, \
2267 {"$f10", RTYPE_FPU | 10}, \
2268 {"$f11", RTYPE_FPU | 11}, \
2269 {"$f12", RTYPE_FPU | 12}, \
2270 {"$f13", RTYPE_FPU | 13}, \
2271 {"$f14", RTYPE_FPU | 14}, \
2272 {"$f15", RTYPE_FPU | 15}, \
2273 {"$f16", RTYPE_FPU | 16}, \
2274 {"$f17", RTYPE_FPU | 17}, \
2275 {"$f18", RTYPE_FPU | 18}, \
2276 {"$f19", RTYPE_FPU | 19}, \
2277 {"$f20", RTYPE_FPU | 20}, \
2278 {"$f21", RTYPE_FPU | 21}, \
2279 {"$f22", RTYPE_FPU | 22}, \
2280 {"$f23", RTYPE_FPU | 23}, \
2281 {"$f24", RTYPE_FPU | 24}, \
2282 {"$f25", RTYPE_FPU | 25}, \
2283 {"$f26", RTYPE_FPU | 26}, \
2284 {"$f27", RTYPE_FPU | 27}, \
2285 {"$f28", RTYPE_FPU | 28}, \
2286 {"$f29", RTYPE_FPU | 29}, \
2287 {"$f30", RTYPE_FPU | 30}, \
2288 {"$f31", RTYPE_FPU | 31}
2289
2290#define FPU_CONDITION_CODE_NAMES \
2291 {"$fcc0", RTYPE_FCC | 0}, \
2292 {"$fcc1", RTYPE_FCC | 1}, \
2293 {"$fcc2", RTYPE_FCC | 2}, \
2294 {"$fcc3", RTYPE_FCC | 3}, \
2295 {"$fcc4", RTYPE_FCC | 4}, \
2296 {"$fcc5", RTYPE_FCC | 5}, \
2297 {"$fcc6", RTYPE_FCC | 6}, \
2298 {"$fcc7", RTYPE_FCC | 7}
2299
2300#define COPROC_CONDITION_CODE_NAMES \
2301 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2302 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2303 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2304 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2305 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2306 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2307 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2308 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2309
2310#define N32N64_SYMBOLIC_REGISTER_NAMES \
2311 {"$a4", RTYPE_GP | 8}, \
2312 {"$a5", RTYPE_GP | 9}, \
2313 {"$a6", RTYPE_GP | 10}, \
2314 {"$a7", RTYPE_GP | 11}, \
2315 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2316 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2317 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2318 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2319 {"$t0", RTYPE_GP | 12}, \
2320 {"$t1", RTYPE_GP | 13}, \
2321 {"$t2", RTYPE_GP | 14}, \
2322 {"$t3", RTYPE_GP | 15}
2323
2324#define O32_SYMBOLIC_REGISTER_NAMES \
2325 {"$t0", RTYPE_GP | 8}, \
2326 {"$t1", RTYPE_GP | 9}, \
2327 {"$t2", RTYPE_GP | 10}, \
2328 {"$t3", RTYPE_GP | 11}, \
2329 {"$t4", RTYPE_GP | 12}, \
2330 {"$t5", RTYPE_GP | 13}, \
2331 {"$t6", RTYPE_GP | 14}, \
2332 {"$t7", RTYPE_GP | 15}, \
2333 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2334 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2335 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2336 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2337
2338/* Remaining symbolic register names */
2339#define SYMBOLIC_REGISTER_NAMES \
2340 {"$zero", RTYPE_GP | 0}, \
2341 {"$at", RTYPE_GP | 1}, \
2342 {"$AT", RTYPE_GP | 1}, \
2343 {"$v0", RTYPE_GP | 2}, \
2344 {"$v1", RTYPE_GP | 3}, \
2345 {"$a0", RTYPE_GP | 4}, \
2346 {"$a1", RTYPE_GP | 5}, \
2347 {"$a2", RTYPE_GP | 6}, \
2348 {"$a3", RTYPE_GP | 7}, \
2349 {"$s0", RTYPE_GP | 16}, \
2350 {"$s1", RTYPE_GP | 17}, \
2351 {"$s2", RTYPE_GP | 18}, \
2352 {"$s3", RTYPE_GP | 19}, \
2353 {"$s4", RTYPE_GP | 20}, \
2354 {"$s5", RTYPE_GP | 21}, \
2355 {"$s6", RTYPE_GP | 22}, \
2356 {"$s7", RTYPE_GP | 23}, \
2357 {"$t8", RTYPE_GP | 24}, \
2358 {"$t9", RTYPE_GP | 25}, \
2359 {"$k0", RTYPE_GP | 26}, \
2360 {"$kt0", RTYPE_GP | 26}, \
2361 {"$k1", RTYPE_GP | 27}, \
2362 {"$kt1", RTYPE_GP | 27}, \
2363 {"$gp", RTYPE_GP | 28}, \
2364 {"$sp", RTYPE_GP | 29}, \
2365 {"$s8", RTYPE_GP | 30}, \
2366 {"$fp", RTYPE_GP | 30}, \
2367 {"$ra", RTYPE_GP | 31}
2368
2369#define MIPS16_SPECIAL_REGISTER_NAMES \
2370 {"$pc", RTYPE_PC | 0}
2371
2372#define MDMX_VECTOR_REGISTER_NAMES \
2373 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2374 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2375 {"$v2", RTYPE_VEC | 2}, \
2376 {"$v3", RTYPE_VEC | 3}, \
2377 {"$v4", RTYPE_VEC | 4}, \
2378 {"$v5", RTYPE_VEC | 5}, \
2379 {"$v6", RTYPE_VEC | 6}, \
2380 {"$v7", RTYPE_VEC | 7}, \
2381 {"$v8", RTYPE_VEC | 8}, \
2382 {"$v9", RTYPE_VEC | 9}, \
2383 {"$v10", RTYPE_VEC | 10}, \
2384 {"$v11", RTYPE_VEC | 11}, \
2385 {"$v12", RTYPE_VEC | 12}, \
2386 {"$v13", RTYPE_VEC | 13}, \
2387 {"$v14", RTYPE_VEC | 14}, \
2388 {"$v15", RTYPE_VEC | 15}, \
2389 {"$v16", RTYPE_VEC | 16}, \
2390 {"$v17", RTYPE_VEC | 17}, \
2391 {"$v18", RTYPE_VEC | 18}, \
2392 {"$v19", RTYPE_VEC | 19}, \
2393 {"$v20", RTYPE_VEC | 20}, \
2394 {"$v21", RTYPE_VEC | 21}, \
2395 {"$v22", RTYPE_VEC | 22}, \
2396 {"$v23", RTYPE_VEC | 23}, \
2397 {"$v24", RTYPE_VEC | 24}, \
2398 {"$v25", RTYPE_VEC | 25}, \
2399 {"$v26", RTYPE_VEC | 26}, \
2400 {"$v27", RTYPE_VEC | 27}, \
2401 {"$v28", RTYPE_VEC | 28}, \
2402 {"$v29", RTYPE_VEC | 29}, \
2403 {"$v30", RTYPE_VEC | 30}, \
2404 {"$v31", RTYPE_VEC | 31}
2405
2406#define MIPS_DSP_ACCUMULATOR_NAMES \
2407 {"$ac0", RTYPE_ACC | 0}, \
2408 {"$ac1", RTYPE_ACC | 1}, \
2409 {"$ac2", RTYPE_ACC | 2}, \
2410 {"$ac3", RTYPE_ACC | 3}
2411
2412static const struct regname reg_names[] = {
2413 GENERIC_REGISTER_NUMBERS,
2414 FPU_REGISTER_NAMES,
2415 FPU_CONDITION_CODE_NAMES,
2416 COPROC_CONDITION_CODE_NAMES,
2417
2418 /* The $txx registers depends on the abi,
2419 these will be added later into the symbol table from
2420 one of the tables below once mips_abi is set after
2421 parsing of arguments from the command line. */
2422 SYMBOLIC_REGISTER_NAMES,
2423
2424 MIPS16_SPECIAL_REGISTER_NAMES,
2425 MDMX_VECTOR_REGISTER_NAMES,
2426 MIPS_DSP_ACCUMULATOR_NAMES,
2427 {0, 0}
2428};
2429
2430static const struct regname reg_names_o32[] = {
2431 O32_SYMBOLIC_REGISTER_NAMES,
2432 {0, 0}
2433};
2434
2435static const struct regname reg_names_n32n64[] = {
2436 N32N64_SYMBOLIC_REGISTER_NAMES,
2437 {0, 0}
2438};
2439
a92713e6
RS
2440/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2441 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2442 of these register symbols, return the associated vector register,
2443 otherwise return SYMVAL itself. */
df58fc94 2444
a92713e6
RS
2445static unsigned int
2446mips_prefer_vec_regno (unsigned int symval)
707bfff6 2447{
a92713e6
RS
2448 if ((symval & -2) == (RTYPE_GP | 2))
2449 return RTYPE_VEC | (symval & 1);
2450 return symval;
2451}
2452
2453/* Return true if the string at *SPTR is a valid register name. If so,
2454 move *SPTR past the register and store the register's symbol value
2455 in *SYMVAL. This symbol value includes the register number
2456 (RNUM_MASK) and register type (RTYPE_MASK). */
2457
2458static bfd_boolean
2459mips_parse_register (char **sptr, unsigned int *symval)
2460{
2461 symbolS *symbol;
2462 char *s, *e;
707bfff6 2463 char save_c;
707bfff6
TS
2464
2465 /* Find end of name. */
a92713e6 2466 s = e = *sptr;
707bfff6
TS
2467 if (is_name_beginner (*e))
2468 ++e;
2469 while (is_part_of_name (*e))
2470 ++e;
2471
2472 /* Terminate name. */
2473 save_c = *e;
2474 *e = '\0';
2475
a92713e6
RS
2476 /* Look up the name. */
2477 symbol = symbol_find (s);
2478 *e = save_c;
2479
2480 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2481 return FALSE;
2482
2483 *sptr = e;
2484 *symval = S_GET_VALUE (symbol);
2485 return TRUE;
2486}
2487
2488/* Check if SPTR points at a valid register specifier according to TYPES.
2489 If so, then return 1, advance S to consume the specifier and store
2490 the register's number in REGNOP, otherwise return 0. */
2491
2492static int
2493reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2494{
2495 unsigned int regno;
2496
2497 if (mips_parse_register (s, &regno))
707bfff6 2498 {
a92713e6
RS
2499 if (types & RTYPE_VEC)
2500 regno = mips_prefer_vec_regno (regno);
2501 if (regno & types)
2502 regno &= RNUM_MASK;
2503 else
2504 regno = ~0;
707bfff6 2505 }
a92713e6 2506 else
707bfff6 2507 {
a92713e6
RS
2508 if (types & RWARN)
2509 as_warn (_("Unrecognized register name `%s'"), *s);
2510 regno = ~0;
707bfff6 2511 }
707bfff6 2512 if (regnop)
a92713e6
RS
2513 *regnop = regno;
2514 return regno <= RNUM_MASK;
707bfff6
TS
2515}
2516
a92713e6
RS
2517/* Token types for parsed operand lists. */
2518enum mips_operand_token_type {
2519 /* A plain register, e.g. $f2. */
2520 OT_REG,
df58fc94 2521
a92713e6
RS
2522 /* An element of a vector, e.g. $v0[1]. */
2523 OT_REG_ELEMENT,
df58fc94 2524
a92713e6
RS
2525 /* A continuous range of registers, e.g. $s0-$s4. */
2526 OT_REG_RANGE,
2527
2528 /* A (possibly relocated) expression. */
2529 OT_INTEGER,
2530
2531 /* A floating-point value. */
2532 OT_FLOAT,
2533
2534 /* A single character. This can be '(', ')' or ',', but '(' only appears
2535 before OT_REGs. */
2536 OT_CHAR,
2537
2538 /* The end of the operand list. */
2539 OT_END
2540};
2541
2542/* A parsed operand token. */
2543struct mips_operand_token
2544{
2545 /* The type of token. */
2546 enum mips_operand_token_type type;
2547 union
2548 {
2549 /* The register symbol value for an OT_REG. */
2550 unsigned int regno;
2551
2552 /* The register symbol value and index for an OT_REG_ELEMENT. */
2553 struct {
2554 unsigned int regno;
2555 addressT index;
2556 } reg_element;
2557
2558 /* The two register symbol values involved in an OT_REG_RANGE. */
2559 struct {
2560 unsigned int regno1;
2561 unsigned int regno2;
2562 } reg_range;
2563
2564 /* The value of an OT_INTEGER. The value is represented as an
2565 expression and the relocation operators that were applied to
2566 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2567 relocation operators were used. */
2568 struct {
2569 expressionS value;
2570 bfd_reloc_code_real_type relocs[3];
2571 } integer;
2572
2573 /* The binary data for an OT_FLOAT constant, and the number of bytes
2574 in the constant. */
2575 struct {
2576 unsigned char data[8];
2577 int length;
2578 } flt;
2579
2580 /* The character represented by an OT_CHAR. */
2581 char ch;
2582 } u;
2583};
2584
2585/* An obstack used to construct lists of mips_operand_tokens. */
2586static struct obstack mips_operand_tokens;
2587
2588/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2589
2590static void
2591mips_add_token (struct mips_operand_token *token,
2592 enum mips_operand_token_type type)
2593{
2594 token->type = type;
2595 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2596}
2597
2598/* Check whether S is '(' followed by a register name. Add OT_CHAR
2599 and OT_REG tokens for them if so, and return a pointer to the first
2600 unconsumed character. Return null otherwise. */
2601
2602static char *
2603mips_parse_base_start (char *s)
2604{
2605 struct mips_operand_token token;
2309ddf2 2606 unsigned int regno;
df58fc94 2607
a92713e6
RS
2608 if (*s != '(')
2609 return 0;
2610
2611 ++s;
2612 SKIP_SPACE_TABS (s);
2613 if (!mips_parse_register (&s, &regno))
2614 return 0;
2615
2616 token.u.ch = '(';
2617 mips_add_token (&token, OT_CHAR);
2618
2619 token.u.regno = regno;
2620 mips_add_token (&token, OT_REG);
2621
2622 return s;
2623}
2624
2625/* Parse one or more tokens from S. Return a pointer to the first
2626 unconsumed character on success. Return null if an error was found
2627 and store the error text in insn_error. FLOAT_FORMAT is as for
2628 mips_parse_arguments. */
2629
2630static char *
2631mips_parse_argument_token (char *s, char float_format)
2632{
2633 char *end, *save_in, *err;
2634 unsigned int regno1, regno2;
2635 struct mips_operand_token token;
2636
2637 /* First look for "($reg", since we want to treat that as an
2638 OT_CHAR and OT_REG rather than an expression. */
2639 end = mips_parse_base_start (s);
2640 if (end)
2641 return end;
2642
2643 /* Handle other characters that end up as OT_CHARs. */
2644 if (*s == ')' || *s == ',')
2645 {
2646 token.u.ch = *s;
2647 mips_add_token (&token, OT_CHAR);
2648 ++s;
2649 return s;
2650 }
2651
2652 /* Handle tokens that start with a register. */
2653 if (mips_parse_register (&s, &regno1))
df58fc94 2654 {
a92713e6
RS
2655 SKIP_SPACE_TABS (s);
2656 if (*s == '-')
df58fc94 2657 {
a92713e6
RS
2658 /* A register range. */
2659 ++s;
2660 SKIP_SPACE_TABS (s);
2661 if (!mips_parse_register (&s, &regno2))
2662 {
2663 insn_error = _("Invalid register range");
2664 return 0;
2665 }
df58fc94 2666
a92713e6
RS
2667 token.u.reg_range.regno1 = regno1;
2668 token.u.reg_range.regno2 = regno2;
2669 mips_add_token (&token, OT_REG_RANGE);
2670 return s;
2671 }
2672 else if (*s == '[')
df58fc94 2673 {
a92713e6
RS
2674 /* A vector element. */
2675 expressionS element;
2676
2677 ++s;
2678 SKIP_SPACE_TABS (s);
2679 my_getExpression (&element, s);
2680 if (element.X_op != O_constant)
2681 {
2682 insn_error = _("Vector element must be constant");
2683 return 0;
2684 }
2685 s = expr_end;
2686 SKIP_SPACE_TABS (s);
2687 if (*s != ']')
2688 {
2689 insn_error = _("Missing `]'");
2690 return 0;
2691 }
2692 ++s;
2693
2694 token.u.reg_element.regno = regno1;
2695 token.u.reg_element.index = element.X_add_number;
2696 mips_add_token (&token, OT_REG_ELEMENT);
2697 return s;
df58fc94 2698 }
df58fc94 2699
a92713e6
RS
2700 /* Looks like just a plain register. */
2701 token.u.regno = regno1;
2702 mips_add_token (&token, OT_REG);
2703 return s;
df58fc94
RS
2704 }
2705
a92713e6
RS
2706 if (float_format)
2707 {
2708 /* First try to treat expressions as floats. */
2709 save_in = input_line_pointer;
2710 input_line_pointer = s;
2711 err = md_atof (float_format, (char *) token.u.flt.data,
2712 &token.u.flt.length);
2713 end = input_line_pointer;
2714 input_line_pointer = save_in;
2715 if (err && *err)
2716 {
2717 insn_error = err;
2718 return 0;
2719 }
2720 if (s != end)
2721 {
2722 mips_add_token (&token, OT_FLOAT);
2723 return end;
2724 }
2725 }
2726
2727 /* Treat everything else as an integer expression. */
2728 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
2729 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
2730 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
2731 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
2732 s = expr_end;
2733 mips_add_token (&token, OT_INTEGER);
2734 return s;
2735}
2736
2737/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
2738 if expressions should be treated as 32-bit floating-point constants,
2739 'd' if they should be treated as 64-bit floating-point constants,
2740 or 0 if they should be treated as integer expressions (the usual case).
2741
2742 Return a list of tokens on success, otherwise return 0. The caller
2743 must obstack_free the list after use. */
2744
2745static struct mips_operand_token *
2746mips_parse_arguments (char *s, char float_format)
2747{
2748 struct mips_operand_token token;
2749
2750 SKIP_SPACE_TABS (s);
2751 while (*s)
2752 {
2753 s = mips_parse_argument_token (s, float_format);
2754 if (!s)
2755 {
2756 obstack_free (&mips_operand_tokens,
2757 obstack_finish (&mips_operand_tokens));
2758 return 0;
2759 }
2760 SKIP_SPACE_TABS (s);
2761 }
2762 mips_add_token (&token, OT_END);
2763 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
df58fc94
RS
2764}
2765
d301a56b
RS
2766/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
2767 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
037b32b9
AN
2768
2769static bfd_boolean
f79e2745 2770is_opcode_valid (const struct mips_opcode *mo)
037b32b9
AN
2771{
2772 int isa = mips_opts.isa;
846ef2d0 2773 int ase = mips_opts.ase;
037b32b9 2774 int fp_s, fp_d;
c6278170 2775 unsigned int i;
037b32b9 2776
c6278170
RS
2777 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2778 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2779 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
2780 ase |= mips_ases[i].flags64;
037b32b9 2781
d301a56b 2782 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
037b32b9
AN
2783 return FALSE;
2784
2785 /* Check whether the instruction or macro requires single-precision or
2786 double-precision floating-point support. Note that this information is
2787 stored differently in the opcode table for insns and macros. */
2788 if (mo->pinfo == INSN_MACRO)
2789 {
2790 fp_s = mo->pinfo2 & INSN2_M_FP_S;
2791 fp_d = mo->pinfo2 & INSN2_M_FP_D;
2792 }
2793 else
2794 {
2795 fp_s = mo->pinfo & FP_S;
2796 fp_d = mo->pinfo & FP_D;
2797 }
2798
2799 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
2800 return FALSE;
2801
2802 if (fp_s && mips_opts.soft_float)
2803 return FALSE;
2804
2805 return TRUE;
2806}
2807
2808/* Return TRUE if the MIPS16 opcode MO is valid on the currently
2809 selected ISA and architecture. */
2810
2811static bfd_boolean
2812is_opcode_valid_16 (const struct mips_opcode *mo)
2813{
d301a56b 2814 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
037b32b9
AN
2815}
2816
df58fc94
RS
2817/* Return TRUE if the size of the microMIPS opcode MO matches one
2818 explicitly requested. Always TRUE in the standard MIPS mode. */
2819
2820static bfd_boolean
2821is_size_valid (const struct mips_opcode *mo)
2822{
2823 if (!mips_opts.micromips)
2824 return TRUE;
2825
833794fc
MR
2826 if (mips_opts.insn32)
2827 {
2828 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
2829 return FALSE;
2830 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
2831 return FALSE;
2832 }
df58fc94
RS
2833 if (!forced_insn_length)
2834 return TRUE;
2835 if (mo->pinfo == INSN_MACRO)
2836 return FALSE;
2837 return forced_insn_length == micromips_insn_length (mo);
2838}
2839
2840/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
e64af278
MR
2841 of the preceding instruction. Always TRUE in the standard MIPS mode.
2842
2843 We don't accept macros in 16-bit delay slots to avoid a case where
2844 a macro expansion fails because it relies on a preceding 32-bit real
2845 instruction to have matched and does not handle the operands correctly.
2846 The only macros that may expand to 16-bit instructions are JAL that
2847 cannot be placed in a delay slot anyway, and corner cases of BALIGN
2848 and BGT (that likewise cannot be placed in a delay slot) that decay to
2849 a NOP. In all these cases the macros precede any corresponding real
2850 instruction definitions in the opcode table, so they will match in the
2851 second pass where the size of the delay slot is ignored and therefore
2852 produce correct code. */
df58fc94
RS
2853
2854static bfd_boolean
2855is_delay_slot_valid (const struct mips_opcode *mo)
2856{
2857 if (!mips_opts.micromips)
2858 return TRUE;
2859
2860 if (mo->pinfo == INSN_MACRO)
c06dec14 2861 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
df58fc94
RS
2862 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
2863 && micromips_insn_length (mo) != 4)
2864 return FALSE;
2865 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
2866 && micromips_insn_length (mo) != 2)
2867 return FALSE;
2868
2869 return TRUE;
2870}
2871
fc76e730
RS
2872/* For consistency checking, verify that all bits of OPCODE are specified
2873 either by the match/mask part of the instruction definition, or by the
2874 operand list. Also build up a list of operands in OPERANDS.
2875
2876 INSN_BITS says which bits of the instruction are significant.
2877 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
2878 provides the mips_operand description of each operand. DECODE_OPERAND
2879 is null for MIPS16 instructions. */
ab902481
RS
2880
2881static int
2882validate_mips_insn (const struct mips_opcode *opcode,
2883 unsigned long insn_bits,
fc76e730
RS
2884 const struct mips_operand *(*decode_operand) (const char *),
2885 struct mips_operand_array *operands)
ab902481
RS
2886{
2887 const char *s;
fc76e730 2888 unsigned long used_bits, doubled, undefined, opno, mask;
ab902481
RS
2889 const struct mips_operand *operand;
2890
fc76e730
RS
2891 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
2892 if ((mask & opcode->match) != opcode->match)
ab902481
RS
2893 {
2894 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
2895 opcode->name, opcode->args);
2896 return 0;
2897 }
2898 used_bits = 0;
fc76e730 2899 opno = 0;
ab902481
RS
2900 for (s = opcode->args; *s; ++s)
2901 switch (*s)
2902 {
2903 case ',':
2904 case '(':
2905 case ')':
2906 break;
2907
2908 default:
fc76e730
RS
2909 if (!decode_operand)
2910 operand = decode_mips16_operand (*s, FALSE);
2911 else
2912 operand = decode_operand (s);
2913 if (!operand && opcode->pinfo != INSN_MACRO)
ab902481
RS
2914 {
2915 as_bad (_("internal: unknown operand type: %s %s"),
2916 opcode->name, opcode->args);
2917 return 0;
2918 }
fc76e730
RS
2919 gas_assert (opno < MAX_OPERANDS);
2920 operands->operand[opno] = operand;
2921 if (operand)
2922 {
2923 used_bits |= ((1 << operand->size) - 1) << operand->lsb;
2924 if (operand->type == OP_MDMX_IMM_REG)
2925 /* Bit 5 is the format selector (OB vs QH). The opcode table
2926 has separate entries for each format. */
2927 used_bits &= ~(1 << (operand->lsb + 5));
2928 if (operand->type == OP_ENTRY_EXIT_LIST)
2929 used_bits &= ~(mask & 0x700);
2930 }
ab902481 2931 /* Skip prefix characters. */
fc76e730 2932 if (decode_operand && (*s == '+' || *s == 'm'))
ab902481 2933 ++s;
fc76e730 2934 opno += 1;
ab902481
RS
2935 break;
2936 }
fc76e730 2937 doubled = used_bits & mask & insn_bits;
ab902481
RS
2938 if (doubled)
2939 {
2940 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
2941 " %s %s"), doubled, opcode->name, opcode->args);
2942 return 0;
2943 }
fc76e730 2944 used_bits |= mask;
ab902481 2945 undefined = ~used_bits & insn_bits;
fc76e730 2946 if (opcode->pinfo != INSN_MACRO && undefined)
ab902481
RS
2947 {
2948 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
2949 undefined, opcode->name, opcode->args);
2950 return 0;
2951 }
2952 used_bits &= ~insn_bits;
2953 if (used_bits)
2954 {
2955 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
2956 used_bits, opcode->name, opcode->args);
2957 return 0;
2958 }
2959 return 1;
2960}
2961
fc76e730
RS
2962/* The MIPS16 version of validate_mips_insn. */
2963
2964static int
2965validate_mips16_insn (const struct mips_opcode *opcode,
2966 struct mips_operand_array *operands)
2967{
2968 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
2969 {
2970 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
2971 instruction. Use TMP to describe the full instruction. */
2972 struct mips_opcode tmp;
2973
2974 tmp = *opcode;
2975 tmp.match <<= 16;
2976 tmp.mask <<= 16;
2977 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
2978 }
2979 return validate_mips_insn (opcode, 0xffff, 0, operands);
2980}
2981
ab902481
RS
2982/* The microMIPS version of validate_mips_insn. */
2983
2984static int
fc76e730
RS
2985validate_micromips_insn (const struct mips_opcode *opc,
2986 struct mips_operand_array *operands)
ab902481
RS
2987{
2988 unsigned long insn_bits;
2989 unsigned long major;
2990 unsigned int length;
2991
fc76e730
RS
2992 if (opc->pinfo == INSN_MACRO)
2993 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
2994 operands);
2995
ab902481
RS
2996 length = micromips_insn_length (opc);
2997 if (length != 2 && length != 4)
2998 {
2999 as_bad (_("Internal error: bad microMIPS opcode (incorrect length: %u): "
3000 "%s %s"), length, opc->name, opc->args);
3001 return 0;
3002 }
3003 major = opc->match >> (10 + 8 * (length - 2));
3004 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3005 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3006 {
3007 as_bad (_("Internal error: bad microMIPS opcode "
3008 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3009 return 0;
3010 }
3011
3012 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3013 insn_bits = 1 << 4 * length;
3014 insn_bits <<= 4 * length;
3015 insn_bits -= 1;
fc76e730
RS
3016 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3017 operands);
ab902481
RS
3018}
3019
707bfff6
TS
3020/* This function is called once, at assembler startup time. It should set up
3021 all the tables, etc. that the MD part of the assembler will need. */
156c2f8b 3022
252b5132 3023void
17a2f251 3024md_begin (void)
252b5132 3025{
3994f87e 3026 const char *retval = NULL;
156c2f8b 3027 int i = 0;
252b5132 3028 int broken = 0;
1f25f5d3 3029
0a44bf69
RS
3030 if (mips_pic != NO_PIC)
3031 {
3032 if (g_switch_seen && g_switch_value != 0)
3033 as_bad (_("-G may not be used in position-independent code"));
3034 g_switch_value = 0;
3035 }
3036
fef14a42 3037 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
252b5132
RH
3038 as_warn (_("Could not set architecture and machine"));
3039
252b5132
RH
3040 op_hash = hash_new ();
3041
fc76e730 3042 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
252b5132
RH
3043 for (i = 0; i < NUMOPCODES;)
3044 {
3045 const char *name = mips_opcodes[i].name;
3046
17a2f251 3047 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
252b5132
RH
3048 if (retval != NULL)
3049 {
3050 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3051 mips_opcodes[i].name, retval);
3052 /* Probably a memory allocation problem? Give up now. */
3053 as_fatal (_("Broken assembler. No assembly attempted."));
3054 }
3055 do
3056 {
fc76e730
RS
3057 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3058 decode_mips_operand, &mips_operands[i]))
3059 broken = 1;
3060 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
252b5132 3061 {
fc76e730
RS
3062 create_insn (&nop_insn, mips_opcodes + i);
3063 if (mips_fix_loongson2f_nop)
3064 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3065 nop_insn.fixed_p = 1;
252b5132
RH
3066 }
3067 ++i;
3068 }
3069 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3070 }
3071
3072 mips16_op_hash = hash_new ();
fc76e730
RS
3073 mips16_operands = XCNEWVEC (struct mips_operand_array,
3074 bfd_mips16_num_opcodes);
252b5132
RH
3075
3076 i = 0;
3077 while (i < bfd_mips16_num_opcodes)
3078 {
3079 const char *name = mips16_opcodes[i].name;
3080
17a2f251 3081 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
252b5132
RH
3082 if (retval != NULL)
3083 as_fatal (_("internal: can't hash `%s': %s"),
3084 mips16_opcodes[i].name, retval);
3085 do
3086 {
fc76e730
RS
3087 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3088 broken = 1;
1e915849
RS
3089 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3090 {
3091 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3092 mips16_nop_insn.fixed_p = 1;
3093 }
252b5132
RH
3094 ++i;
3095 }
3096 while (i < bfd_mips16_num_opcodes
3097 && strcmp (mips16_opcodes[i].name, name) == 0);
3098 }
3099
df58fc94 3100 micromips_op_hash = hash_new ();
fc76e730
RS
3101 micromips_operands = XCNEWVEC (struct mips_operand_array,
3102 bfd_micromips_num_opcodes);
df58fc94
RS
3103
3104 i = 0;
3105 while (i < bfd_micromips_num_opcodes)
3106 {
3107 const char *name = micromips_opcodes[i].name;
3108
3109 retval = hash_insert (micromips_op_hash, name,
3110 (void *) &micromips_opcodes[i]);
3111 if (retval != NULL)
3112 as_fatal (_("internal: can't hash `%s': %s"),
3113 micromips_opcodes[i].name, retval);
3114 do
fc76e730
RS
3115 {
3116 struct mips_cl_insn *micromips_nop_insn;
3117
3118 if (!validate_micromips_insn (&micromips_opcodes[i],
3119 &micromips_operands[i]))
3120 broken = 1;
3121
3122 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3123 {
3124 if (micromips_insn_length (micromips_opcodes + i) == 2)
3125 micromips_nop_insn = &micromips_nop16_insn;
3126 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3127 micromips_nop_insn = &micromips_nop32_insn;
3128 else
3129 continue;
3130
3131 if (micromips_nop_insn->insn_mo == NULL
3132 && strcmp (name, "nop") == 0)
3133 {
3134 create_insn (micromips_nop_insn, micromips_opcodes + i);
3135 micromips_nop_insn->fixed_p = 1;
3136 }
3137 }
3138 }
df58fc94
RS
3139 while (++i < bfd_micromips_num_opcodes
3140 && strcmp (micromips_opcodes[i].name, name) == 0);
3141 }
3142
252b5132
RH
3143 if (broken)
3144 as_fatal (_("Broken assembler. No assembly attempted."));
3145
3146 /* We add all the general register names to the symbol table. This
3147 helps us detect invalid uses of them. */
707bfff6
TS
3148 for (i = 0; reg_names[i].name; i++)
3149 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
8fc4ee9b 3150 reg_names[i].num, /* & RNUM_MASK, */
707bfff6
TS
3151 &zero_address_frag));
3152 if (HAVE_NEWABI)
3153 for (i = 0; reg_names_n32n64[i].name; i++)
3154 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
8fc4ee9b 3155 reg_names_n32n64[i].num, /* & RNUM_MASK, */
252b5132 3156 &zero_address_frag));
707bfff6
TS
3157 else
3158 for (i = 0; reg_names_o32[i].name; i++)
3159 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
8fc4ee9b 3160 reg_names_o32[i].num, /* & RNUM_MASK, */
6047c971 3161 &zero_address_frag));
6047c971 3162
a92713e6
RS
3163 obstack_init (&mips_operand_tokens);
3164
7d10b47d 3165 mips_no_prev_insn ();
252b5132
RH
3166
3167 mips_gprmask = 0;
3168 mips_cprmask[0] = 0;
3169 mips_cprmask[1] = 0;
3170 mips_cprmask[2] = 0;
3171 mips_cprmask[3] = 0;
3172
3173 /* set the default alignment for the text section (2**2) */
3174 record_alignment (text_section, 2);
3175
4d0d148d 3176 bfd_set_gp_size (stdoutput, g_switch_value);
252b5132 3177
f3ded42a
RS
3178 /* On a native system other than VxWorks, sections must be aligned
3179 to 16 byte boundaries. When configured for an embedded ELF
3180 target, we don't bother. */
3181 if (strncmp (TARGET_OS, "elf", 3) != 0
3182 && strncmp (TARGET_OS, "vxworks", 7) != 0)
252b5132 3183 {
f3ded42a
RS
3184 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3185 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3186 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3187 }
252b5132 3188
f3ded42a
RS
3189 /* Create a .reginfo section for register masks and a .mdebug
3190 section for debugging information. */
3191 {
3192 segT seg;
3193 subsegT subseg;
3194 flagword flags;
3195 segT sec;
3196
3197 seg = now_seg;
3198 subseg = now_subseg;
3199
3200 /* The ABI says this section should be loaded so that the
3201 running program can access it. However, we don't load it
3202 if we are configured for an embedded target */
3203 flags = SEC_READONLY | SEC_DATA;
3204 if (strncmp (TARGET_OS, "elf", 3) != 0)
3205 flags |= SEC_ALLOC | SEC_LOAD;
3206
3207 if (mips_abi != N64_ABI)
252b5132 3208 {
f3ded42a 3209 sec = subseg_new (".reginfo", (subsegT) 0);
bdaaa2e1 3210
f3ded42a
RS
3211 bfd_set_section_flags (stdoutput, sec, flags);
3212 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
252b5132 3213
f3ded42a
RS
3214 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3215 }
3216 else
3217 {
3218 /* The 64-bit ABI uses a .MIPS.options section rather than
3219 .reginfo section. */
3220 sec = subseg_new (".MIPS.options", (subsegT) 0);
3221 bfd_set_section_flags (stdoutput, sec, flags);
3222 bfd_set_section_alignment (stdoutput, sec, 3);
252b5132 3223
f3ded42a
RS
3224 /* Set up the option header. */
3225 {
3226 Elf_Internal_Options opthdr;
3227 char *f;
3228
3229 opthdr.kind = ODK_REGINFO;
3230 opthdr.size = (sizeof (Elf_External_Options)
3231 + sizeof (Elf64_External_RegInfo));
3232 opthdr.section = 0;
3233 opthdr.info = 0;
3234 f = frag_more (sizeof (Elf_External_Options));
3235 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3236 (Elf_External_Options *) f);
3237
3238 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3239 }
3240 }
252b5132 3241
f3ded42a
RS
3242 if (ECOFF_DEBUGGING)
3243 {
3244 sec = subseg_new (".mdebug", (subsegT) 0);
3245 (void) bfd_set_section_flags (stdoutput, sec,
3246 SEC_HAS_CONTENTS | SEC_READONLY);
3247 (void) bfd_set_section_alignment (stdoutput, sec, 2);
252b5132 3248 }
f3ded42a
RS
3249 else if (mips_flag_pdr)
3250 {
3251 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3252 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3253 SEC_READONLY | SEC_RELOC
3254 | SEC_DEBUGGING);
3255 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3256 }
3257
3258 subseg_set (seg, subseg);
3259 }
252b5132
RH
3260
3261 if (! ECOFF_DEBUGGING)
3262 md_obj_begin ();
71400594
RS
3263
3264 if (mips_fix_vr4120)
3265 init_vr4120_conflicts ();
252b5132
RH
3266}
3267
3268void
17a2f251 3269md_mips_end (void)
252b5132 3270{
02b1ab82 3271 mips_emit_delays ();
252b5132
RH
3272 if (! ECOFF_DEBUGGING)
3273 md_obj_end ();
3274}
3275
3276void
17a2f251 3277md_assemble (char *str)
252b5132
RH
3278{
3279 struct mips_cl_insn insn;
f6688943
TS
3280 bfd_reloc_code_real_type unused_reloc[3]
3281 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132
RH
3282
3283 imm_expr.X_op = O_absent;
5f74bc13 3284 imm2_expr.X_op = O_absent;
252b5132 3285 offset_expr.X_op = O_absent;
f6688943
TS
3286 offset_reloc[0] = BFD_RELOC_UNUSED;
3287 offset_reloc[1] = BFD_RELOC_UNUSED;
3288 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132 3289
e1b47bd5
RS
3290 mips_mark_labels ();
3291 mips_assembling_insn = TRUE;
3292
252b5132
RH
3293 if (mips_opts.mips16)
3294 mips16_ip (str, &insn);
3295 else
3296 {
3297 mips_ip (str, &insn);
beae10d5
KH
3298 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
3299 str, insn.insn_opcode));
252b5132
RH
3300 }
3301
3302 if (insn_error)
e1b47bd5
RS
3303 as_bad ("%s `%s'", insn_error, str);
3304 else if (insn.insn_mo->pinfo == INSN_MACRO)
252b5132 3305 {
584892a6 3306 macro_start ();
252b5132
RH
3307 if (mips_opts.mips16)
3308 mips16_macro (&insn);
3309 else
833794fc 3310 macro (&insn, str);
584892a6 3311 macro_end ();
252b5132
RH
3312 }
3313 else
3314 {
77bd4346 3315 if (offset_expr.X_op != O_absent)
df58fc94 3316 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
252b5132 3317 else
df58fc94 3318 append_insn (&insn, NULL, unused_reloc, FALSE);
252b5132 3319 }
e1b47bd5
RS
3320
3321 mips_assembling_insn = FALSE;
252b5132
RH
3322}
3323
738e5348
RS
3324/* Convenience functions for abstracting away the differences between
3325 MIPS16 and non-MIPS16 relocations. */
3326
3327static inline bfd_boolean
3328mips16_reloc_p (bfd_reloc_code_real_type reloc)
3329{
3330 switch (reloc)
3331 {
3332 case BFD_RELOC_MIPS16_JMP:
3333 case BFD_RELOC_MIPS16_GPREL:
3334 case BFD_RELOC_MIPS16_GOT16:
3335 case BFD_RELOC_MIPS16_CALL16:
3336 case BFD_RELOC_MIPS16_HI16_S:
3337 case BFD_RELOC_MIPS16_HI16:
3338 case BFD_RELOC_MIPS16_LO16:
3339 return TRUE;
3340
3341 default:
3342 return FALSE;
3343 }
3344}
3345
df58fc94
RS
3346static inline bfd_boolean
3347micromips_reloc_p (bfd_reloc_code_real_type reloc)
3348{
3349 switch (reloc)
3350 {
3351 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
3352 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
3353 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
3354 case BFD_RELOC_MICROMIPS_GPREL16:
3355 case BFD_RELOC_MICROMIPS_JMP:
3356 case BFD_RELOC_MICROMIPS_HI16:
3357 case BFD_RELOC_MICROMIPS_HI16_S:
3358 case BFD_RELOC_MICROMIPS_LO16:
3359 case BFD_RELOC_MICROMIPS_LITERAL:
3360 case BFD_RELOC_MICROMIPS_GOT16:
3361 case BFD_RELOC_MICROMIPS_CALL16:
3362 case BFD_RELOC_MICROMIPS_GOT_HI16:
3363 case BFD_RELOC_MICROMIPS_GOT_LO16:
3364 case BFD_RELOC_MICROMIPS_CALL_HI16:
3365 case BFD_RELOC_MICROMIPS_CALL_LO16:
3366 case BFD_RELOC_MICROMIPS_SUB:
3367 case BFD_RELOC_MICROMIPS_GOT_PAGE:
3368 case BFD_RELOC_MICROMIPS_GOT_OFST:
3369 case BFD_RELOC_MICROMIPS_GOT_DISP:
3370 case BFD_RELOC_MICROMIPS_HIGHEST:
3371 case BFD_RELOC_MICROMIPS_HIGHER:
3372 case BFD_RELOC_MICROMIPS_SCN_DISP:
3373 case BFD_RELOC_MICROMIPS_JALR:
3374 return TRUE;
3375
3376 default:
3377 return FALSE;
3378 }
3379}
3380
2309ddf2
MR
3381static inline bfd_boolean
3382jmp_reloc_p (bfd_reloc_code_real_type reloc)
3383{
3384 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
3385}
3386
738e5348
RS
3387static inline bfd_boolean
3388got16_reloc_p (bfd_reloc_code_real_type reloc)
3389{
2309ddf2 3390 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
df58fc94 3391 || reloc == BFD_RELOC_MICROMIPS_GOT16);
738e5348
RS
3392}
3393
3394static inline bfd_boolean
3395hi16_reloc_p (bfd_reloc_code_real_type reloc)
3396{
2309ddf2 3397 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
df58fc94 3398 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
738e5348
RS
3399}
3400
3401static inline bfd_boolean
3402lo16_reloc_p (bfd_reloc_code_real_type reloc)
3403{
2309ddf2 3404 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
df58fc94
RS
3405 || reloc == BFD_RELOC_MICROMIPS_LO16);
3406}
3407
df58fc94
RS
3408static inline bfd_boolean
3409jalr_reloc_p (bfd_reloc_code_real_type reloc)
3410{
2309ddf2 3411 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
738e5348
RS
3412}
3413
f2ae14a1
RS
3414static inline bfd_boolean
3415gprel16_reloc_p (bfd_reloc_code_real_type reloc)
3416{
3417 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
3418 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
3419}
3420
2de39019
CM
3421/* Return true if RELOC is a PC-relative relocation that does not have
3422 full address range. */
3423
3424static inline bfd_boolean
3425limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
3426{
3427 switch (reloc)
3428 {
3429 case BFD_RELOC_16_PCREL_S2:
3430 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
3431 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
3432 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
3433 return TRUE;
3434
b47468a6
CM
3435 case BFD_RELOC_32_PCREL:
3436 return HAVE_64BIT_ADDRESSES;
3437
2de39019
CM
3438 default:
3439 return FALSE;
3440 }
3441}
b47468a6 3442
5919d012 3443/* Return true if the given relocation might need a matching %lo().
0a44bf69
RS
3444 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
3445 need a matching %lo() when applied to local symbols. */
5919d012
RS
3446
3447static inline bfd_boolean
17a2f251 3448reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
5919d012 3449{
3b91255e 3450 return (HAVE_IN_PLACE_ADDENDS
738e5348 3451 && (hi16_reloc_p (reloc)
0a44bf69
RS
3452 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
3453 all GOT16 relocations evaluate to "G". */
738e5348
RS
3454 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
3455}
3456
3457/* Return the type of %lo() reloc needed by RELOC, given that
3458 reloc_needs_lo_p. */
3459
3460static inline bfd_reloc_code_real_type
3461matching_lo_reloc (bfd_reloc_code_real_type reloc)
3462{
df58fc94
RS
3463 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
3464 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
3465 : BFD_RELOC_LO16));
5919d012
RS
3466}
3467
3468/* Return true if the given fixup is followed by a matching R_MIPS_LO16
3469 relocation. */
3470
3471static inline bfd_boolean
17a2f251 3472fixup_has_matching_lo_p (fixS *fixp)
5919d012
RS
3473{
3474 return (fixp->fx_next != NULL
738e5348 3475 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
5919d012
RS
3476 && fixp->fx_addsy == fixp->fx_next->fx_addsy
3477 && fixp->fx_offset == fixp->fx_next->fx_offset);
3478}
3479
462427c4
RS
3480/* Move all labels in LABELS to the current insertion point. TEXT_P
3481 says whether the labels refer to text or data. */
404a8071
RS
3482
3483static void
462427c4 3484mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
404a8071
RS
3485{
3486 struct insn_label_list *l;
3487 valueT val;
3488
462427c4 3489 for (l = labels; l != NULL; l = l->next)
404a8071 3490 {
9c2799c2 3491 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
404a8071
RS
3492 symbol_set_frag (l->label, frag_now);
3493 val = (valueT) frag_now_fix ();
df58fc94 3494 /* MIPS16/microMIPS text labels are stored as odd. */
462427c4 3495 if (text_p && HAVE_CODE_COMPRESSION)
404a8071
RS
3496 ++val;
3497 S_SET_VALUE (l->label, val);
3498 }
3499}
3500
462427c4
RS
3501/* Move all labels in insn_labels to the current insertion point
3502 and treat them as text labels. */
3503
3504static void
3505mips_move_text_labels (void)
3506{
3507 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
3508}
3509
5f0fe04b
TS
3510static bfd_boolean
3511s_is_linkonce (symbolS *sym, segT from_seg)
3512{
3513 bfd_boolean linkonce = FALSE;
3514 segT symseg = S_GET_SEGMENT (sym);
3515
3516 if (symseg != from_seg && !S_IS_LOCAL (sym))
3517 {
3518 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
3519 linkonce = TRUE;
5f0fe04b
TS
3520 /* The GNU toolchain uses an extension for ELF: a section
3521 beginning with the magic string .gnu.linkonce is a
3522 linkonce section. */
3523 if (strncmp (segment_name (symseg), ".gnu.linkonce",
3524 sizeof ".gnu.linkonce" - 1) == 0)
3525 linkonce = TRUE;
5f0fe04b
TS
3526 }
3527 return linkonce;
3528}
3529
e1b47bd5 3530/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
df58fc94
RS
3531 linker to handle them specially, such as generating jalx instructions
3532 when needed. We also make them odd for the duration of the assembly,
3533 in order to generate the right sort of code. We will make them even
252b5132
RH
3534 in the adjust_symtab routine, while leaving them marked. This is
3535 convenient for the debugger and the disassembler. The linker knows
3536 to make them odd again. */
3537
3538static void
e1b47bd5 3539mips_compressed_mark_label (symbolS *label)
252b5132 3540{
df58fc94 3541 gas_assert (HAVE_CODE_COMPRESSION);
a8dbcb85 3542
f3ded42a
RS
3543 if (mips_opts.mips16)
3544 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
3545 else
3546 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
e1b47bd5
RS
3547 if ((S_GET_VALUE (label) & 1) == 0
3548 /* Don't adjust the address if the label is global or weak, or
3549 in a link-once section, since we'll be emitting symbol reloc
3550 references to it which will be patched up by the linker, and
3551 the final value of the symbol may or may not be MIPS16/microMIPS. */
3552 && !S_IS_WEAK (label)
3553 && !S_IS_EXTERNAL (label)
3554 && !s_is_linkonce (label, now_seg))
3555 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
3556}
3557
3558/* Mark preceding MIPS16 or microMIPS instruction labels. */
3559
3560static void
3561mips_compressed_mark_labels (void)
3562{
3563 struct insn_label_list *l;
3564
3565 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
3566 mips_compressed_mark_label (l->label);
252b5132
RH
3567}
3568
4d7206a2
RS
3569/* End the current frag. Make it a variant frag and record the
3570 relaxation info. */
3571
3572static void
3573relax_close_frag (void)
3574{
584892a6 3575 mips_macro_warning.first_frag = frag_now;
4d7206a2 3576 frag_var (rs_machine_dependent, 0, 0,
584892a6 3577 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4d7206a2
RS
3578 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
3579
3580 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
3581 mips_relax.first_fixup = 0;
3582}
3583
3584/* Start a new relaxation sequence whose expansion depends on SYMBOL.
3585 See the comment above RELAX_ENCODE for more details. */
3586
3587static void
3588relax_start (symbolS *symbol)
3589{
9c2799c2 3590 gas_assert (mips_relax.sequence == 0);
4d7206a2
RS
3591 mips_relax.sequence = 1;
3592 mips_relax.symbol = symbol;
3593}
3594
3595/* Start generating the second version of a relaxable sequence.
3596 See the comment above RELAX_ENCODE for more details. */
252b5132
RH
3597
3598static void
4d7206a2
RS
3599relax_switch (void)
3600{
9c2799c2 3601 gas_assert (mips_relax.sequence == 1);
4d7206a2
RS
3602 mips_relax.sequence = 2;
3603}
3604
3605/* End the current relaxable sequence. */
3606
3607static void
3608relax_end (void)
3609{
9c2799c2 3610 gas_assert (mips_relax.sequence == 2);
4d7206a2
RS
3611 relax_close_frag ();
3612 mips_relax.sequence = 0;
3613}
3614
11625dd8
RS
3615/* Return true if IP is a delayed branch or jump. */
3616
3617static inline bfd_boolean
3618delayed_branch_p (const struct mips_cl_insn *ip)
3619{
3620 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
3621 | INSN_COND_BRANCH_DELAY
3622 | INSN_COND_BRANCH_LIKELY)) != 0;
3623}
3624
3625/* Return true if IP is a compact branch or jump. */
3626
3627static inline bfd_boolean
3628compact_branch_p (const struct mips_cl_insn *ip)
3629{
26545944
RS
3630 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
3631 | INSN2_COND_BRANCH)) != 0;
11625dd8
RS
3632}
3633
3634/* Return true if IP is an unconditional branch or jump. */
3635
3636static inline bfd_boolean
3637uncond_branch_p (const struct mips_cl_insn *ip)
3638{
3639 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
26545944 3640 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
11625dd8
RS
3641}
3642
3643/* Return true if IP is a branch-likely instruction. */
3644
3645static inline bfd_boolean
3646branch_likely_p (const struct mips_cl_insn *ip)
3647{
3648 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
3649}
3650
14fe068b
RS
3651/* Return the type of nop that should be used to fill the delay slot
3652 of delayed branch IP. */
3653
3654static struct mips_cl_insn *
3655get_delay_slot_nop (const struct mips_cl_insn *ip)
3656{
3657 if (mips_opts.micromips
3658 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
3659 return &micromips_nop32_insn;
3660 return NOP_INSN;
3661}
3662
fc76e730
RS
3663/* Return a mask that has bit N set if OPCODE reads the register(s)
3664 in operand N. */
df58fc94
RS
3665
3666static unsigned int
fc76e730 3667insn_read_mask (const struct mips_opcode *opcode)
df58fc94 3668{
fc76e730
RS
3669 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
3670}
df58fc94 3671
fc76e730
RS
3672/* Return a mask that has bit N set if OPCODE writes to the register(s)
3673 in operand N. */
3674
3675static unsigned int
3676insn_write_mask (const struct mips_opcode *opcode)
3677{
3678 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
3679}
3680
3681/* Return a mask of the registers specified by operand OPERAND of INSN.
3682 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
3683 is set. */
3684
3685static unsigned int
3686operand_reg_mask (const struct mips_cl_insn *insn,
3687 const struct mips_operand *operand,
3688 unsigned int type_mask)
3689{
3690 unsigned int uval, vsel;
3691
3692 switch (operand->type)
df58fc94 3693 {
fc76e730
RS
3694 case OP_INT:
3695 case OP_MAPPED_INT:
3696 case OP_MSB:
3697 case OP_PCREL:
3698 case OP_PERF_REG:
3699 case OP_ADDIUSP_INT:
3700 case OP_ENTRY_EXIT_LIST:
3701 case OP_REPEAT_DEST_REG:
3702 case OP_REPEAT_PREV_REG:
3703 case OP_PC:
3704 abort ();
3705
3706 case OP_REG:
3707 {
3708 const struct mips_reg_operand *reg_op;
3709
3710 reg_op = (const struct mips_reg_operand *) operand;
3711 if (!(type_mask & (1 << reg_op->reg_type)))
3712 return 0;
3713 uval = insn_extract_operand (insn, operand);
3714 return 1 << mips_decode_reg_operand (reg_op, uval);
3715 }
3716
3717 case OP_REG_PAIR:
3718 {
3719 const struct mips_reg_pair_operand *pair_op;
3720
3721 pair_op = (const struct mips_reg_pair_operand *) operand;
3722 if (!(type_mask & (1 << pair_op->reg_type)))
3723 return 0;
3724 uval = insn_extract_operand (insn, operand);
3725 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
3726 }
3727
3728 case OP_CLO_CLZ_DEST:
3729 if (!(type_mask & (1 << OP_REG_GP)))
3730 return 0;
3731 uval = insn_extract_operand (insn, operand);
3732 return (1 << (uval & 31)) | (1 << (uval >> 5));
3733
3734 case OP_LWM_SWM_LIST:
3735 abort ();
3736
3737 case OP_SAVE_RESTORE_LIST:
3738 abort ();
3739
3740 case OP_MDMX_IMM_REG:
3741 if (!(type_mask & (1 << OP_REG_VEC)))
3742 return 0;
3743 uval = insn_extract_operand (insn, operand);
3744 vsel = uval >> 5;
3745 if ((vsel & 0x18) == 0x18)
3746 return 0;
3747 return 1 << (uval & 31);
df58fc94 3748 }
fc76e730
RS
3749 abort ();
3750}
3751
3752/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
3753 where bit N of OPNO_MASK is set if operand N should be included.
3754 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
3755 is set. */
3756
3757static unsigned int
3758insn_reg_mask (const struct mips_cl_insn *insn,
3759 unsigned int type_mask, unsigned int opno_mask)
3760{
3761 unsigned int opno, reg_mask;
3762
3763 opno = 0;
3764 reg_mask = 0;
3765 while (opno_mask != 0)
3766 {
3767 if (opno_mask & 1)
3768 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
3769 opno_mask >>= 1;
3770 opno += 1;
3771 }
3772 return reg_mask;
df58fc94
RS
3773}
3774
4c260379
RS
3775/* Return the mask of core registers that IP reads. */
3776
3777static unsigned int
3778gpr_read_mask (const struct mips_cl_insn *ip)
3779{
3780 unsigned long pinfo, pinfo2;
3781 unsigned int mask;
3782
fc76e730 3783 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4c260379
RS
3784 pinfo = ip->insn_mo->pinfo;
3785 pinfo2 = ip->insn_mo->pinfo2;
fc76e730 3786 if (pinfo & INSN_UDI)
4c260379 3787 {
fc76e730
RS
3788 /* UDI instructions have traditionally been assumed to read RS
3789 and RT. */
3790 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
3791 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4c260379 3792 }
fc76e730
RS
3793 if (pinfo & INSN_READ_GPR_24)
3794 mask |= 1 << 24;
3795 if (pinfo2 & INSN2_READ_GPR_16)
3796 mask |= 1 << 16;
3797 if (pinfo2 & INSN2_READ_SP)
3798 mask |= 1 << SP;
26545944 3799 if (pinfo2 & INSN2_READ_GPR_31)
fc76e730 3800 mask |= 1 << 31;
fe35f09f
RS
3801 /* Don't include register 0. */
3802 return mask & ~1;
4c260379
RS
3803}
3804
3805/* Return the mask of core registers that IP writes. */
3806
3807static unsigned int
3808gpr_write_mask (const struct mips_cl_insn *ip)
3809{
3810 unsigned long pinfo, pinfo2;
3811 unsigned int mask;
3812
fc76e730 3813 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4c260379
RS
3814 pinfo = ip->insn_mo->pinfo;
3815 pinfo2 = ip->insn_mo->pinfo2;
fc76e730
RS
3816 if (pinfo & INSN_WRITE_GPR_24)
3817 mask |= 1 << 24;
3818 if (pinfo & INSN_WRITE_GPR_31)
3819 mask |= 1 << 31;
3820 if (pinfo & INSN_UDI)
3821 /* UDI instructions have traditionally been assumed to write to RD. */
3822 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
3823 if (pinfo2 & INSN2_WRITE_SP)
3824 mask |= 1 << SP;
fe35f09f
RS
3825 /* Don't include register 0. */
3826 return mask & ~1;
4c260379
RS
3827}
3828
3829/* Return the mask of floating-point registers that IP reads. */
3830
3831static unsigned int
3832fpr_read_mask (const struct mips_cl_insn *ip)
3833{
fc76e730 3834 unsigned long pinfo;
4c260379
RS
3835 unsigned int mask;
3836
fc76e730
RS
3837 mask = insn_reg_mask (ip, (1 << OP_REG_FP) | (1 << OP_REG_VEC),
3838 insn_read_mask (ip->insn_mo));
4c260379 3839 pinfo = ip->insn_mo->pinfo;
4c260379
RS
3840 /* Conservatively treat all operands to an FP_D instruction are doubles.
3841 (This is overly pessimistic for things like cvt.d.s.) */
3842 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
3843 mask |= mask << 1;
3844 return mask;
3845}
3846
3847/* Return the mask of floating-point registers that IP writes. */
3848
3849static unsigned int
3850fpr_write_mask (const struct mips_cl_insn *ip)
3851{
fc76e730 3852 unsigned long pinfo;
4c260379
RS
3853 unsigned int mask;
3854
fc76e730
RS
3855 mask = insn_reg_mask (ip, (1 << OP_REG_FP) | (1 << OP_REG_VEC),
3856 insn_write_mask (ip->insn_mo));
4c260379 3857 pinfo = ip->insn_mo->pinfo;
4c260379
RS
3858 /* Conservatively treat all operands to an FP_D instruction are doubles.
3859 (This is overly pessimistic for things like cvt.s.d.) */
3860 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
3861 mask |= mask << 1;
3862 return mask;
3863}
3864
a1d78564
RS
3865/* Operand OPNUM of INSN is an odd-numbered floating-point register.
3866 Check whether that is allowed. */
3867
3868static bfd_boolean
3869mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
3870{
3871 const char *s = insn->name;
3872
3873 if (insn->pinfo == INSN_MACRO)
3874 /* Let a macro pass, we'll catch it later when it is expanded. */
3875 return TRUE;
3876
3877 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa) || mips_opts.arch == CPU_R5900)
3878 {
3879 /* Allow odd registers for single-precision ops. */
3880 switch (insn->pinfo & (FP_S | FP_D))
3881 {
3882 case FP_S:
3883 case 0:
3884 return TRUE;
3885 case FP_D:
3886 return FALSE;
3887 default:
3888 break;
3889 }
3890
3891 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
3892 s = strchr (insn->name, '.');
3893 if (s != NULL && opnum == 2)
3894 s = strchr (s + 1, '.');
3895 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
3896 }
3897
3898 /* Single-precision coprocessor loads and moves are OK too. */
3899 if ((insn->pinfo & FP_S)
3900 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
3901 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
3902 return TRUE;
3903
3904 return FALSE;
3905}
3906
a1d78564
RS
3907/* Report that user-supplied argument ARGNUM for INSN was VAL, but should
3908 have been in the range [MIN_VAL, MAX_VAL]. PRINT_HEX says whether
3909 this operand is normally printed in hex or decimal. */
3910
3911static void
3912report_bad_range (struct mips_cl_insn *insn, int argnum,
3913 offsetT val, int min_val, int max_val,
3914 bfd_boolean print_hex)
3915{
3916 if (print_hex && val >= 0)
3917 as_bad (_("Operand %d of `%s' must be in the range [0x%x, 0x%x],"
3918 " was 0x%lx."),
3919 argnum, insn->insn_mo->name, min_val, max_val, (unsigned long) val);
3920 else if (print_hex)
3921 as_bad (_("Operand %d of `%s' must be in the range [0x%x, 0x%x],"
3922 " was %ld."),
3923 argnum, insn->insn_mo->name, min_val, max_val, (unsigned long) val);
3924 else
3925 as_bad (_("Operand %d of `%s' must be in the range [%d, %d],"
3926 " was %ld."),
3927 argnum, insn->insn_mo->name, min_val, max_val, (unsigned long) val);
3928}
3929
3930/* Report an invalid combination of position and size operands for a bitfield
3931 operation. POS and SIZE are the values that were given. */
3932
3933static void
3934report_bad_field (offsetT pos, offsetT size)
3935{
3936 as_bad (_("Invalid field specification (position %ld, size %ld)"),
3937 (unsigned long) pos, (unsigned long) size);
3938}
3939
3940/* Information about an instruction argument that we're trying to match. */
3941struct mips_arg_info
3942{
3943 /* The instruction so far. */
3944 struct mips_cl_insn *insn;
3945
a92713e6
RS
3946 /* The first unconsumed operand token. */
3947 struct mips_operand_token *token;
3948
a1d78564
RS
3949 /* The 1-based operand number, in terms of insn->insn_mo->args. */
3950 int opnum;
3951
3952 /* The 1-based argument number, for error reporting. This does not
3953 count elided optional registers, etc.. */
3954 int argnum;
3955
3956 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
3957 unsigned int last_regno;
3958
3959 /* If the first operand was an OP_REG, this is the register that it
3960 specified, otherwise it is ILLEGAL_REG. */
3961 unsigned int dest_regno;
3962
3963 /* The value of the last OP_INT operand. Only used for OP_MSB,
3964 where it gives the lsb position. */
3965 unsigned int last_op_int;
3966
3967 /* If true, match routines should silently reject invalid arguments.
3968 If false, match routines can accept invalid arguments as long as
3969 they report an appropriate error. They still have the option of
3970 silently rejecting arguments, in which case a generic "Invalid operands"
3971 style of error will be used instead. */
3972 bfd_boolean soft_match;
3973
3974 /* If true, the OP_INT match routine should treat plain symbolic operands
3975 as if a relocation operator like %lo(...) had been used. This is only
3976 ever true if the operand can be relocated. */
3977 bfd_boolean allow_nonconst;
3978
3979 /* When true, the OP_INT match routine should allow unsigned N-bit
3980 arguments to be used where a signed N-bit operand is expected. */
3981 bfd_boolean lax_max;
3982
a1d78564
RS
3983 /* True if a reference to the current AT register was seen. */
3984 bfd_boolean seen_at;
3985};
3986
a92713e6
RS
3987/* Try to match an OT_CHAR token for character CH. Consume the token
3988 and return true on success, otherwise return false. */
a1d78564 3989
a92713e6
RS
3990static bfd_boolean
3991match_char (struct mips_arg_info *arg, char ch)
a1d78564 3992{
a92713e6
RS
3993 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
3994 {
3995 ++arg->token;
3996 if (ch == ',')
3997 arg->argnum += 1;
3998 return TRUE;
3999 }
4000 return FALSE;
4001}
a1d78564 4002
a92713e6
RS
4003/* Try to get an expression from the next tokens in ARG. Consume the
4004 tokens and return true on success, storing the expression value in
4005 VALUE and relocation types in R. */
4006
4007static bfd_boolean
4008match_expression (struct mips_arg_info *arg, expressionS *value,
4009 bfd_reloc_code_real_type *r)
4010{
4011 if (arg->token->type == OT_INTEGER)
a1d78564 4012 {
a92713e6
RS
4013 *value = arg->token->u.integer.value;
4014 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4015 ++arg->token;
4016 return TRUE;
4017 }
4018
4019 /* Error-reporting is more consistent if we treat registers as O_register
4020 rather than rejecting them outright. "$1", "($1)" and "(($1))" are
4021 then handled in the same way. */
4022 if (arg->token->type == OT_REG)
4023 {
4024 value->X_add_number = arg->token->u.regno;
4025 ++arg->token;
a1d78564 4026 }
a92713e6
RS
4027 else if (arg->token[0].type == OT_CHAR
4028 && arg->token[0].u.ch == '('
4029 && arg->token[1].type == OT_REG
4030 && arg->token[2].type == OT_CHAR
4031 && arg->token[2].u.ch == ')')
4032 {
4033 value->X_add_number = arg->token[1].u.regno;
4034 arg->token += 3;
4035 }
4036 else
4037 return FALSE;
4038
4039 value->X_op = O_register;
4040 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4041 return TRUE;
4042}
4043
4044/* Try to get a constant expression from the next tokens in ARG. Consume
4045 the tokens and return return true on success, storing the constant value
4046 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4047 error. */
4048
4049static bfd_boolean
4050match_const_int (struct mips_arg_info *arg, offsetT *value, offsetT fallback)
4051{
4052 expressionS ex;
4053 bfd_reloc_code_real_type r[3];
a1d78564 4054
a92713e6
RS
4055 if (!match_expression (arg, &ex, r))
4056 return FALSE;
4057
4058 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
a1d78564
RS
4059 *value = ex.X_add_number;
4060 else
4061 {
a92713e6
RS
4062 if (arg->soft_match)
4063 return FALSE;
a1d78564
RS
4064 as_bad (_("Operand %d of `%s' must be constant"),
4065 arg->argnum, arg->insn->insn_mo->name);
4066 *value = fallback;
4067 }
a92713e6 4068 return TRUE;
a1d78564
RS
4069}
4070
4071/* Return the RTYPE_* flags for a register operand of type TYPE that
4072 appears in instruction OPCODE. */
4073
4074static unsigned int
4075convert_reg_type (const struct mips_opcode *opcode,
4076 enum mips_reg_operand_type type)
4077{
4078 switch (type)
4079 {
4080 case OP_REG_GP:
4081 return RTYPE_NUM | RTYPE_GP;
4082
4083 case OP_REG_FP:
4084 /* Allow vector register names for MDMX if the instruction is a 64-bit
4085 FPR load, store or move (including moves to and from GPRs). */
4086 if ((mips_opts.ase & ASE_MDMX)
4087 && (opcode->pinfo & FP_D)
4088 && (opcode->pinfo & (INSN_COPROC_MOVE_DELAY
4089 | INSN_COPROC_MEMORY_DELAY
4090 | INSN_LOAD_COPROC_DELAY
4091 | INSN_LOAD_MEMORY_DELAY
4092 | INSN_STORE_MEMORY)))
4093 return RTYPE_FPU | RTYPE_VEC;
4094 return RTYPE_FPU;
4095
4096 case OP_REG_CCC:
4097 if (opcode->pinfo & (FP_D | FP_S))
4098 return RTYPE_CCC | RTYPE_FCC;
4099 return RTYPE_CCC;
4100
4101 case OP_REG_VEC:
4102 if (opcode->membership & INSN_5400)
4103 return RTYPE_FPU;
4104 return RTYPE_FPU | RTYPE_VEC;
4105
4106 case OP_REG_ACC:
4107 return RTYPE_ACC;
4108
4109 case OP_REG_COPRO:
4110 if (opcode->name[strlen (opcode->name) - 1] == '0')
4111 return RTYPE_NUM | RTYPE_CP0;
4112 return RTYPE_NUM;
4113
4114 case OP_REG_HW:
4115 return RTYPE_NUM;
4116 }
4117 abort ();
4118}
4119
4120/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4121
4122static void
4123check_regno (struct mips_arg_info *arg,
4124 enum mips_reg_operand_type type, unsigned int regno)
4125{
4126 if (AT && type == OP_REG_GP && regno == AT)
4127 arg->seen_at = TRUE;
4128
4129 if (type == OP_REG_FP
4130 && (regno & 1) != 0
4131 && HAVE_32BIT_FPRS
4132 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4133 as_warn (_("Float register should be even, was %d"), regno);
4134
4135 if (type == OP_REG_CCC)
4136 {
4137 const char *name;
4138 size_t length;
4139
4140 name = arg->insn->insn_mo->name;
4141 length = strlen (name);
4142 if ((regno & 1) != 0
4143 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4144 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4145 as_warn (_("Condition code register should be even for %s, was %d"),
4146 name, regno);
4147
4148 if ((regno & 3) != 0
4149 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4150 as_warn (_("Condition code register should be 0 or 4 for %s, was %d"),
4151 name, regno);
4152 }
4153}
4154
a92713e6
RS
4155/* ARG is a register with symbol value SYMVAL. Try to interpret it as
4156 a register of type TYPE. Return true on success, storing the register
4157 number in *REGNO and warning about any dubious uses. */
4158
4159static bfd_boolean
4160match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4161 unsigned int symval, unsigned int *regno)
4162{
4163 if (type == OP_REG_VEC)
4164 symval = mips_prefer_vec_regno (symval);
4165 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4166 return FALSE;
4167
4168 *regno = symval & RNUM_MASK;
4169 check_regno (arg, type, *regno);
4170 return TRUE;
4171}
4172
4173/* Try to interpret the next token in ARG as a register of type TYPE.
4174 Consume the token and return true on success, storing the register
4175 number in *REGNO. Return false on failure. */
4176
4177static bfd_boolean
4178match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4179 unsigned int *regno)
4180{
4181 if (arg->token->type == OT_REG
4182 && match_regno (arg, type, arg->token->u.regno, regno))
4183 {
4184 ++arg->token;
4185 return TRUE;
4186 }
4187 return FALSE;
4188}
4189
4190/* Try to interpret the next token in ARG as a range of registers of type TYPE.
4191 Consume the token and return true on success, storing the register numbers
4192 in *REGNO1 and *REGNO2. Return false on failure. */
4193
4194static bfd_boolean
4195match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4196 unsigned int *regno1, unsigned int *regno2)
4197{
4198 if (match_reg (arg, type, regno1))
4199 {
4200 *regno2 = *regno1;
4201 return TRUE;
4202 }
4203 if (arg->token->type == OT_REG_RANGE
4204 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4205 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4206 && *regno1 <= *regno2)
4207 {
4208 ++arg->token;
4209 return TRUE;
4210 }
4211 return FALSE;
4212}
4213
a1d78564
RS
4214/* OP_INT matcher. */
4215
a92713e6 4216static bfd_boolean
a1d78564 4217match_int_operand (struct mips_arg_info *arg,
a92713e6 4218 const struct mips_operand *operand_base)
a1d78564
RS
4219{
4220 const struct mips_int_operand *operand;
3ccad066 4221 unsigned int uval;
a1d78564
RS
4222 int min_val, max_val, factor;
4223 offsetT sval;
4224 bfd_boolean print_hex;
4225
4226 operand = (const struct mips_int_operand *) operand_base;
4227 factor = 1 << operand->shift;
3ccad066
RS
4228 min_val = mips_int_operand_min (operand);
4229 max_val = mips_int_operand_max (operand);
a1d78564 4230 if (arg->lax_max)
3ccad066 4231 max_val = ((1 << operand_base->size) - 1) << operand->shift;
a1d78564 4232
a92713e6
RS
4233 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4234 /* Assume we have an elided offset. The later match will fail
4235 if this turns out to be wrong. */
4236 sval = 0;
4237 else if (operand_base->lsb == 0
4238 && operand_base->size == 16
4239 && operand->shift == 0
4240 && operand->bias == 0
4241 && (operand->max_val == 32767 || operand->max_val == 65535))
a1d78564
RS
4242 {
4243 /* The operand can be relocated. */
a92713e6
RS
4244 if (!match_expression (arg, &offset_expr, offset_reloc))
4245 return FALSE;
4246
4247 if (offset_reloc[0] != BFD_RELOC_UNUSED)
a1d78564
RS
4248 /* Relocation operators were used. Accept the arguent and
4249 leave the relocation value in offset_expr and offset_relocs
4250 for the caller to process. */
a92713e6
RS
4251 return TRUE;
4252
4253 if (offset_expr.X_op != O_constant)
a1d78564 4254 {
a92713e6
RS
4255 /* If non-constant operands are allowed then leave them for
4256 the caller to process, otherwise fail the match. */
4257 if (!arg->allow_nonconst)
4258 return FALSE;
4259 offset_reloc[0] = BFD_RELOC_LO16;
4260 return TRUE;
a1d78564 4261 }
a92713e6 4262
a1d78564
RS
4263 /* Clear the global state; we're going to install the operand
4264 ourselves. */
a92713e6 4265 sval = offset_expr.X_add_number;
a1d78564
RS
4266 offset_expr.X_op = O_absent;
4267 }
4268 else
4269 {
a92713e6
RS
4270 if (!match_const_int (arg, &sval, min_val))
4271 return FALSE;
a1d78564
RS
4272 }
4273
4274 arg->last_op_int = sval;
4275
4276 /* Check the range. If there's a problem, record the lowest acceptable
4277 value in arg->last_op_int in order to prevent an unhelpful error
4278 from OP_MSB too.
4279
4280 Bit counts have traditionally been printed in hex by the disassembler
4281 but printed as decimal in error messages. Only resort to hex if
4282 the operand is bigger than 6 bits. */
4283 print_hex = operand->print_hex && operand_base->size > 6;
4284 if (sval < min_val || sval > max_val)
4285 {
4286 if (arg->soft_match)
a92713e6 4287 return FALSE;
a1d78564
RS
4288 report_bad_range (arg->insn, arg->argnum, sval, min_val, max_val,
4289 print_hex);
4290 arg->last_op_int = min_val;
4291 }
4292 else if (sval % factor)
4293 {
4294 if (arg->soft_match)
a92713e6 4295 return FALSE;
a1d78564
RS
4296 as_bad (print_hex && sval >= 0
4297 ? _("Operand %d of `%s' must be a factor of %d, was 0x%lx.")
4298 : _("Operand %d of `%s' must be a factor of %d, was %ld."),
4299 arg->argnum, arg->insn->insn_mo->name, factor,
4300 (unsigned long) sval);
4301 arg->last_op_int = min_val;
4302 }
4303
4304 uval = (unsigned int) sval >> operand->shift;
4305 uval -= operand->bias;
4306
4307 /* Handle -mfix-cn63xxp1. */
4308 if (arg->opnum == 1
4309 && mips_fix_cn63xxp1
4310 && !mips_opts.micromips
4311 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
4312 switch (uval)
4313 {
4314 case 5:
4315 case 25:
4316 case 26:
4317 case 27:
4318 case 28:
4319 case 29:
4320 case 30:
4321 case 31:
4322 /* These are ok. */
4323 break;
4324
4325 default:
4326 /* The rest must be changed to 28. */
4327 uval = 28;
4328 break;
4329 }
4330
4331 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 4332 return TRUE;
a1d78564
RS
4333}
4334
4335/* OP_MAPPED_INT matcher. */
4336
a92713e6 4337static bfd_boolean
a1d78564 4338match_mapped_int_operand (struct mips_arg_info *arg,
a92713e6 4339 const struct mips_operand *operand_base)
a1d78564
RS
4340{
4341 const struct mips_mapped_int_operand *operand;
4342 unsigned int uval, num_vals;
4343 offsetT sval;
4344
4345 operand = (const struct mips_mapped_int_operand *) operand_base;
a92713e6
RS
4346 if (!match_const_int (arg, &sval, operand->int_map[0]))
4347 return FALSE;
a1d78564
RS
4348
4349 num_vals = 1 << operand_base->size;
4350 for (uval = 0; uval < num_vals; uval++)
4351 if (operand->int_map[uval] == sval)
4352 break;
4353 if (uval == num_vals)
a92713e6 4354 return FALSE;
a1d78564
RS
4355
4356 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 4357 return TRUE;
a1d78564
RS
4358}
4359
4360/* OP_MSB matcher. */
4361
a92713e6 4362static bfd_boolean
a1d78564 4363match_msb_operand (struct mips_arg_info *arg,
a92713e6 4364 const struct mips_operand *operand_base)
a1d78564
RS
4365{
4366 const struct mips_msb_operand *operand;
4367 int min_val, max_val, max_high;
4368 offsetT size, sval, high;
4369
4370 operand = (const struct mips_msb_operand *) operand_base;
4371 min_val = operand->bias;
4372 max_val = min_val + (1 << operand_base->size) - 1;
4373 max_high = operand->opsize;
4374
a92713e6
RS
4375 if (!match_const_int (arg, &size, 1))
4376 return FALSE;
a1d78564
RS
4377
4378 high = size + arg->last_op_int;
4379 sval = operand->add_lsb ? high : size;
4380
4381 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
4382 {
4383 if (arg->soft_match)
a92713e6 4384 return FALSE;
a1d78564
RS
4385 report_bad_field (arg->last_op_int, size);
4386 sval = min_val;
4387 }
4388 insn_insert_operand (arg->insn, operand_base, sval - min_val);
a92713e6 4389 return TRUE;
a1d78564
RS
4390}
4391
4392/* OP_REG matcher. */
4393
a92713e6 4394static bfd_boolean
a1d78564 4395match_reg_operand (struct mips_arg_info *arg,
a92713e6 4396 const struct mips_operand *operand_base)
a1d78564
RS
4397{
4398 const struct mips_reg_operand *operand;
a92713e6 4399 unsigned int regno, uval, num_vals;
a1d78564
RS
4400
4401 operand = (const struct mips_reg_operand *) operand_base;
a92713e6
RS
4402 if (!match_reg (arg, operand->reg_type, &regno))
4403 return FALSE;
a1d78564
RS
4404
4405 if (operand->reg_map)
4406 {
4407 num_vals = 1 << operand->root.size;
4408 for (uval = 0; uval < num_vals; uval++)
4409 if (operand->reg_map[uval] == regno)
4410 break;
4411 if (num_vals == uval)
a92713e6 4412 return FALSE;
a1d78564
RS
4413 }
4414 else
4415 uval = regno;
4416
a1d78564
RS
4417 arg->last_regno = regno;
4418 if (arg->opnum == 1)
4419 arg->dest_regno = regno;
4420 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 4421 return TRUE;
a1d78564
RS
4422}
4423
4424/* OP_REG_PAIR matcher. */
4425
a92713e6 4426static bfd_boolean
a1d78564 4427match_reg_pair_operand (struct mips_arg_info *arg,
a92713e6 4428 const struct mips_operand *operand_base)
a1d78564
RS
4429{
4430 const struct mips_reg_pair_operand *operand;
a92713e6 4431 unsigned int regno1, regno2, uval, num_vals;
a1d78564
RS
4432
4433 operand = (const struct mips_reg_pair_operand *) operand_base;
a92713e6
RS
4434 if (!match_reg (arg, operand->reg_type, &regno1)
4435 || !match_char (arg, ',')
4436 || !match_reg (arg, operand->reg_type, &regno2))
4437 return FALSE;
a1d78564
RS
4438
4439 num_vals = 1 << operand_base->size;
4440 for (uval = 0; uval < num_vals; uval++)
4441 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
4442 break;
4443 if (uval == num_vals)
a92713e6 4444 return FALSE;
a1d78564 4445
a1d78564 4446 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 4447 return TRUE;
a1d78564
RS
4448}
4449
4450/* OP_PCREL matcher. The caller chooses the relocation type. */
4451
a92713e6
RS
4452static bfd_boolean
4453match_pcrel_operand (struct mips_arg_info *arg)
a1d78564 4454{
a92713e6
RS
4455 bfd_reloc_code_real_type r[3];
4456
4457 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
a1d78564
RS
4458}
4459
4460/* OP_PERF_REG matcher. */
4461
a92713e6 4462static bfd_boolean
a1d78564 4463match_perf_reg_operand (struct mips_arg_info *arg,
a92713e6 4464 const struct mips_operand *operand)
a1d78564
RS
4465{
4466 offsetT sval;
4467
a92713e6
RS
4468 if (!match_const_int (arg, &sval, 0))
4469 return FALSE;
a1d78564
RS
4470
4471 if (sval != 0
4472 && (sval != 1
4473 || (mips_opts.arch == CPU_R5900
4474 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
4475 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
4476 {
4477 if (arg->soft_match)
a92713e6 4478 return FALSE;
a1d78564
RS
4479 as_bad (_("Invalid performance register (%ld)"), (unsigned long) sval);
4480 }
4481
4482 insn_insert_operand (arg->insn, operand, sval);
a92713e6 4483 return TRUE;
a1d78564
RS
4484}
4485
4486/* OP_ADDIUSP matcher. */
4487
a92713e6 4488static bfd_boolean
a1d78564 4489match_addiusp_operand (struct mips_arg_info *arg,
a92713e6 4490 const struct mips_operand *operand)
a1d78564
RS
4491{
4492 offsetT sval;
4493 unsigned int uval;
4494
a92713e6
RS
4495 if (!match_const_int (arg, &sval, -256))
4496 return FALSE;
a1d78564
RS
4497
4498 if (sval % 4)
a92713e6 4499 return FALSE;
a1d78564
RS
4500
4501 sval /= 4;
4502 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
a92713e6 4503 return FALSE;
a1d78564
RS
4504
4505 uval = (unsigned int) sval;
4506 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
4507 insn_insert_operand (arg->insn, operand, uval);
a92713e6 4508 return TRUE;
a1d78564
RS
4509}
4510
4511/* OP_CLO_CLZ_DEST matcher. */
4512
a92713e6 4513static bfd_boolean
a1d78564 4514match_clo_clz_dest_operand (struct mips_arg_info *arg,
a92713e6 4515 const struct mips_operand *operand)
a1d78564
RS
4516{
4517 unsigned int regno;
4518
a92713e6
RS
4519 if (!match_reg (arg, OP_REG_GP, &regno))
4520 return FALSE;
a1d78564 4521
a1d78564 4522 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
a92713e6 4523 return TRUE;
a1d78564
RS
4524}
4525
4526/* OP_LWM_SWM_LIST matcher. */
4527
a92713e6 4528static bfd_boolean
a1d78564 4529match_lwm_swm_list_operand (struct mips_arg_info *arg,
a92713e6 4530 const struct mips_operand *operand)
a1d78564 4531{
a92713e6
RS
4532 unsigned int reglist, sregs, ra, regno1, regno2;
4533 struct mips_arg_info reset;
a1d78564 4534
a92713e6
RS
4535 reglist = 0;
4536 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
4537 return FALSE;
4538 do
4539 {
4540 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
4541 {
4542 reglist |= 1 << FP;
4543 regno2 = S7;
4544 }
4545 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
4546 reset = *arg;
4547 }
4548 while (match_char (arg, ',')
4549 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
4550 *arg = reset;
a1d78564
RS
4551
4552 if (operand->size == 2)
4553 {
4554 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
4555
4556 s0, ra
4557 s0, s1, ra, s2, s3
4558 s0-s2, ra
4559
4560 and any permutations of these. */
4561 if ((reglist & 0xfff1ffff) != 0x80010000)
a92713e6 4562 return FALSE;
a1d78564
RS
4563
4564 sregs = (reglist >> 17) & 7;
4565 ra = 0;
4566 }
4567 else
4568 {
4569 /* The list must include at least one of ra and s0-sN,
4570 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
4571 which are $23 and $30 respectively.) E.g.:
4572
4573 ra
4574 s0
4575 ra, s0, s1, s2
4576 s0-s8
4577 s0-s5, ra
4578
4579 and any permutations of these. */
4580 if ((reglist & 0x3f00ffff) != 0)
a92713e6 4581 return FALSE;
a1d78564
RS
4582
4583 ra = (reglist >> 27) & 0x10;
4584 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
4585 }
4586 sregs += 1;
4587 if ((sregs & -sregs) != sregs)
a92713e6 4588 return FALSE;
a1d78564
RS
4589
4590 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
a92713e6 4591 return TRUE;
a1d78564
RS
4592}
4593
364215c8
RS
4594/* OP_ENTRY_EXIT_LIST matcher. */
4595
a92713e6 4596static unsigned int
364215c8 4597match_entry_exit_operand (struct mips_arg_info *arg,
a92713e6 4598 const struct mips_operand *operand)
364215c8
RS
4599{
4600 unsigned int mask;
4601 bfd_boolean is_exit;
4602
4603 /* The format is the same for both ENTRY and EXIT, but the constraints
4604 are different. */
4605 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
4606 mask = (is_exit ? 7 << 3 : 0);
a92713e6 4607 do
364215c8
RS
4608 {
4609 unsigned int regno1, regno2;
4610 bfd_boolean is_freg;
4611
a92713e6 4612 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
364215c8 4613 is_freg = FALSE;
a92713e6 4614 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
364215c8
RS
4615 is_freg = TRUE;
4616 else
a92713e6 4617 return FALSE;
364215c8
RS
4618
4619 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
4620 {
4621 mask &= ~(7 << 3);
4622 mask |= (5 + regno2) << 3;
4623 }
4624 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
4625 mask |= (regno2 - 3) << 3;
4626 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
4627 mask |= (regno2 - 15) << 1;
4628 else if (regno1 == RA && regno2 == RA)
4629 mask |= 1;
4630 else
a92713e6 4631 return FALSE;
364215c8 4632 }
a92713e6
RS
4633 while (match_char (arg, ','));
4634
364215c8 4635 insn_insert_operand (arg->insn, operand, mask);
a92713e6 4636 return TRUE;
364215c8
RS
4637}
4638
4639/* OP_SAVE_RESTORE_LIST matcher. */
4640
a92713e6
RS
4641static bfd_boolean
4642match_save_restore_list_operand (struct mips_arg_info *arg)
364215c8
RS
4643{
4644 unsigned int opcode, args, statics, sregs;
4645 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
364215c8
RS
4646 offsetT frame_size;
4647 const char *error;
4648
4649 error = 0;
4650 opcode = arg->insn->insn_opcode;
4651 frame_size = 0;
4652 num_frame_sizes = 0;
4653 args = 0;
4654 statics = 0;
4655 sregs = 0;
a92713e6 4656 do
364215c8
RS
4657 {
4658 unsigned int regno1, regno2;
4659
a92713e6 4660 if (arg->token->type == OT_INTEGER)
364215c8
RS
4661 {
4662 /* Handle the frame size. */
a92713e6
RS
4663 if (!match_const_int (arg, &frame_size, 0))
4664 return FALSE;
364215c8 4665 num_frame_sizes += 1;
364215c8
RS
4666 }
4667 else
4668 {
a92713e6
RS
4669 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
4670 return FALSE;
364215c8
RS
4671
4672 while (regno1 <= regno2)
4673 {
4674 if (regno1 >= 4 && regno1 <= 7)
4675 {
4676 if (num_frame_sizes == 0)
4677 /* args $a0-$a3 */
4678 args |= 1 << (regno1 - 4);
4679 else
4680 /* statics $a0-$a3 */
4681 statics |= 1 << (regno1 - 4);
4682 }
4683 else if (regno1 >= 16 && regno1 <= 23)
4684 /* $s0-$s7 */
4685 sregs |= 1 << (regno1 - 16);
4686 else if (regno1 == 30)
4687 /* $s8 */
4688 sregs |= 1 << 8;
4689 else if (regno1 == 31)
4690 /* Add $ra to insn. */
4691 opcode |= 0x40;
4692 else
a92713e6 4693 return FALSE;
364215c8
RS
4694 regno1 += 1;
4695 if (regno1 == 24)
4696 regno1 = 30;
4697 }
4698 }
364215c8 4699 }
a92713e6 4700 while (match_char (arg, ','));
364215c8
RS
4701
4702 /* Encode args/statics combination. */
4703 if (args & statics)
a92713e6 4704 return FALSE;
364215c8
RS
4705 else if (args == 0xf)
4706 /* All $a0-$a3 are args. */
4707 opcode |= MIPS16_ALL_ARGS << 16;
4708 else if (statics == 0xf)
4709 /* All $a0-$a3 are statics. */
4710 opcode |= MIPS16_ALL_STATICS << 16;
4711 else
4712 {
4713 /* Count arg registers. */
4714 num_args = 0;
4715 while (args & 0x1)
4716 {
4717 args >>= 1;
4718 num_args += 1;
4719 }
4720 if (args != 0)
a92713e6 4721 return FALSE;
364215c8
RS
4722
4723 /* Count static registers. */
4724 num_statics = 0;
4725 while (statics & 0x8)
4726 {
4727 statics = (statics << 1) & 0xf;
4728 num_statics += 1;
4729 }
4730 if (statics != 0)
a92713e6 4731 return FALSE;
364215c8
RS
4732
4733 /* Encode args/statics. */
4734 opcode |= ((num_args << 2) | num_statics) << 16;
4735 }
4736
4737 /* Encode $s0/$s1. */
4738 if (sregs & (1 << 0)) /* $s0 */
4739 opcode |= 0x20;
4740 if (sregs & (1 << 1)) /* $s1 */
4741 opcode |= 0x10;
4742 sregs >>= 2;
4743
4744 /* Encode $s2-$s8. */
4745 num_sregs = 0;
4746 while (sregs & 1)
4747 {
4748 sregs >>= 1;
4749 num_sregs += 1;
4750 }
4751 if (sregs != 0)
a92713e6 4752 return FALSE;
364215c8
RS
4753 opcode |= num_sregs << 24;
4754
4755 /* Encode frame size. */
4756 if (num_frame_sizes == 0)
4757 error = _("Missing frame size");
4758 else if (num_frame_sizes > 1)
4759 error = _("Frame size specified twice");
4760 else if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
4761 error = _("Invalid frame size");
4762 else if (frame_size != 128 || (opcode >> 16) != 0)
4763 {
4764 frame_size /= 8;
4765 opcode |= (((frame_size & 0xf0) << 16)
4766 | (frame_size & 0x0f));
4767 }
4768
4769 if (error)
4770 {
4771 if (arg->soft_match)
a92713e6 4772 return FALSE;
4a06e5a2 4773 as_bad ("%s", error);
364215c8
RS
4774 }
4775
4776 /* Finally build the instruction. */
4777 if ((opcode >> 16) != 0 || frame_size == 0)
4778 opcode |= MIPS16_EXTEND;
4779 arg->insn->insn_opcode = opcode;
a92713e6 4780 return TRUE;
364215c8
RS
4781}
4782
a1d78564
RS
4783/* OP_MDMX_IMM_REG matcher. */
4784
a92713e6 4785static bfd_boolean
a1d78564 4786match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
a92713e6 4787 const struct mips_operand *operand)
a1d78564 4788{
a92713e6 4789 unsigned int regno, uval;
a1d78564
RS
4790 bfd_boolean is_qh;
4791 const struct mips_opcode *opcode;
4792
4793 /* The mips_opcode records whether this is an octobyte or quadhalf
4794 instruction. Start out with that bit in place. */
4795 opcode = arg->insn->insn_mo;
4796 uval = mips_extract_operand (operand, opcode->match);
4797 is_qh = (uval != 0);
4798
a92713e6 4799 if (arg->token->type == OT_REG || arg->token->type == OT_REG_ELEMENT)
a1d78564
RS
4800 {
4801 if ((opcode->membership & INSN_5400)
4802 && strcmp (opcode->name, "rzu.ob") == 0)
4803 {
4804 if (arg->soft_match)
a92713e6 4805 return FALSE;
a1d78564
RS
4806 as_bad (_("Operand %d of `%s' must be an immediate"),
4807 arg->argnum, opcode->name);
4808 }
4809
4810 /* Check whether this is a vector register or a broadcast of
4811 a single element. */
a92713e6 4812 if (arg->token->type == OT_REG_ELEMENT)
a1d78564 4813 {
a92713e6
RS
4814 if (!match_regno (arg, OP_REG_VEC, arg->token->u.reg_element.regno,
4815 &regno))
4816 return FALSE;
4817 if (arg->token->u.reg_element.index > (is_qh ? 3 : 7))
a1d78564
RS
4818 {
4819 if (arg->soft_match)
a92713e6 4820 return FALSE;
a1d78564 4821 as_bad (_("Invalid element selector"));
a1d78564 4822 }
a1d78564 4823 else
a92713e6 4824 uval |= arg->token->u.reg_element.index << (is_qh ? 2 : 1) << 5;
a1d78564
RS
4825 }
4826 else
4827 {
4828 /* A full vector. */
4829 if ((opcode->membership & INSN_5400)
4830 && (strcmp (opcode->name, "sll.ob") == 0
4831 || strcmp (opcode->name, "srl.ob") == 0))
4832 {
4833 if (arg->soft_match)
a92713e6 4834 return FALSE;
a1d78564
RS
4835 as_bad (_("Operand %d of `%s' must be scalar"),
4836 arg->argnum, opcode->name);
4837 }
4838
a92713e6
RS
4839 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
4840 return FALSE;
a1d78564
RS
4841 if (is_qh)
4842 uval |= MDMX_FMTSEL_VEC_QH << 5;
4843 else
4844 uval |= MDMX_FMTSEL_VEC_OB << 5;
4845 }
a1d78564 4846 uval |= regno;
a92713e6 4847 ++arg->token;
a1d78564
RS
4848 }
4849 else
4850 {
4851 offsetT sval;
4852
a92713e6
RS
4853 if (!match_const_int (arg, &sval, 0))
4854 return FALSE;
a1d78564
RS
4855 if (sval < 0 || sval > 31)
4856 {
4857 if (arg->soft_match)
a92713e6 4858 return FALSE;
a1d78564
RS
4859 report_bad_range (arg->insn, arg->argnum, sval, 0, 31, FALSE);
4860 }
4861 uval |= (sval & 31);
4862 if (is_qh)
4863 uval |= MDMX_FMTSEL_IMM_QH << 5;
4864 else
4865 uval |= MDMX_FMTSEL_IMM_OB << 5;
4866 }
4867 insn_insert_operand (arg->insn, operand, uval);
a92713e6 4868 return TRUE;
a1d78564
RS
4869}
4870
4871/* OP_PC matcher. */
4872
a92713e6
RS
4873static bfd_boolean
4874match_pc_operand (struct mips_arg_info *arg)
a1d78564 4875{
a92713e6
RS
4876 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
4877 {
4878 ++arg->token;
4879 return TRUE;
4880 }
4881 return FALSE;
a1d78564
RS
4882}
4883
4884/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
4885 register that we need to match. */
4886
a92713e6
RS
4887static bfd_boolean
4888match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
a1d78564
RS
4889{
4890 unsigned int regno;
4891
a92713e6 4892 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
a1d78564
RS
4893}
4894
89565f1b
RS
4895/* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
4896 the length of the value in bytes (4 for float, 8 for double) and
4897 USING_GPRS says whether the destination is a GPR rather than an FPR.
4898
4899 Return the constant in IMM and OFFSET as follows:
4900
4901 - If the constant should be loaded via memory, set IMM to O_absent and
4902 OFFSET to the memory address.
4903
4904 - Otherwise, if the constant should be loaded into two 32-bit registers,
4905 set IMM to the O_constant to load into the high register and OFFSET
4906 to the corresponding value for the low register.
4907
4908 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
4909
4910 These constants only appear as the last operand in an instruction,
4911 and every instruction that accepts them in any variant accepts them
4912 in all variants. This means we don't have to worry about backing out
4913 any changes if the instruction does not match. We just match
4914 unconditionally and report an error if the constant is invalid. */
4915
a92713e6
RS
4916static bfd_boolean
4917match_float_constant (struct mips_arg_info *arg, expressionS *imm,
4918 expressionS *offset, int length, bfd_boolean using_gprs)
89565f1b 4919{
a92713e6 4920 char *p;
89565f1b
RS
4921 segT seg, new_seg;
4922 subsegT subseg;
4923 const char *newname;
a92713e6 4924 unsigned char *data;
89565f1b
RS
4925
4926 /* Where the constant is placed is based on how the MIPS assembler
4927 does things:
4928
4929 length == 4 && using_gprs -- immediate value only
4930 length == 8 && using_gprs -- .rdata or immediate value
4931 length == 4 && !using_gprs -- .lit4 or immediate value
4932 length == 8 && !using_gprs -- .lit8 or immediate value
4933
4934 The .lit4 and .lit8 sections are only used if permitted by the
4935 -G argument. */
a92713e6
RS
4936 if (arg->token->type != OT_FLOAT)
4937 return FALSE;
4938
4939 gas_assert (arg->token->u.flt.length == length);
4940 data = arg->token->u.flt.data;
4941 ++arg->token;
89565f1b
RS
4942
4943 /* Handle 32-bit constants for which an immediate value is best. */
4944 if (length == 4
4945 && (using_gprs
4946 || g_switch_value < 4
4947 || (data[0] == 0 && data[1] == 0)
4948 || (data[2] == 0 && data[3] == 0)))
4949 {
4950 imm->X_op = O_constant;
4951 if (!target_big_endian)
4952 imm->X_add_number = bfd_getl32 (data);
4953 else
4954 imm->X_add_number = bfd_getb32 (data);
4955 offset->X_op = O_absent;
a92713e6 4956 return TRUE;
89565f1b
RS
4957 }
4958
4959 /* Handle 64-bit constants for which an immediate value is best. */
4960 if (length == 8
4961 && !mips_disable_float_construction
4962 /* Constants can only be constructed in GPRs and copied
4963 to FPRs if the GPRs are at least as wide as the FPRs.
4964 Force the constant into memory if we are using 64-bit FPRs
4965 but the GPRs are only 32 bits wide. */
4966 /* ??? No longer true with the addition of MTHC1, but this
4967 is legacy code... */
4968 && (using_gprs || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
4969 && ((data[0] == 0 && data[1] == 0)
4970 || (data[2] == 0 && data[3] == 0))
4971 && ((data[4] == 0 && data[5] == 0)
4972 || (data[6] == 0 && data[7] == 0)))
4973 {
4974 /* The value is simple enough to load with a couple of instructions.
4975 If using 32-bit registers, set IMM to the high order 32 bits and
4976 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
4977 64 bit constant. */
4978 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
4979 {
4980 imm->X_op = O_constant;
4981 offset->X_op = O_constant;
4982 if (!target_big_endian)
4983 {
4984 imm->X_add_number = bfd_getl32 (data + 4);
4985 offset->X_add_number = bfd_getl32 (data);
4986 }
4987 else
4988 {
4989 imm->X_add_number = bfd_getb32 (data);
4990 offset->X_add_number = bfd_getb32 (data + 4);
4991 }
4992 if (offset->X_add_number == 0)
4993 offset->X_op = O_absent;
4994 }
4995 else
4996 {
4997 imm->X_op = O_constant;
4998 if (!target_big_endian)
4999 imm->X_add_number = bfd_getl64 (data);
5000 else
5001 imm->X_add_number = bfd_getb64 (data);
5002 offset->X_op = O_absent;
5003 }
a92713e6 5004 return TRUE;
89565f1b
RS
5005 }
5006
5007 /* Switch to the right section. */
5008 seg = now_seg;
5009 subseg = now_subseg;
5010 if (length == 4)
5011 {
5012 gas_assert (!using_gprs && g_switch_value >= 4);
5013 newname = ".lit4";
5014 }
5015 else
5016 {
5017 if (using_gprs || g_switch_value < 8)
5018 newname = RDATA_SECTION_NAME;
5019 else
5020 newname = ".lit8";
5021 }
5022
5023 new_seg = subseg_new (newname, (subsegT) 0);
5024 bfd_set_section_flags (stdoutput, new_seg,
5025 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5026 frag_align (length == 4 ? 2 : 3, 0, 0);
5027 if (strncmp (TARGET_OS, "elf", 3) != 0)
5028 record_alignment (new_seg, 4);
5029 else
5030 record_alignment (new_seg, length == 4 ? 2 : 3);
5031 if (seg == now_seg)
5032 as_bad (_("Can't use floating point insn in this section"));
5033
5034 /* Set the argument to the current address in the section. */
5035 imm->X_op = O_absent;
5036 offset->X_op = O_symbol;
5037 offset->X_add_symbol = symbol_temp_new_now ();
5038 offset->X_add_number = 0;
5039
5040 /* Put the floating point number into the section. */
5041 p = frag_more (length);
5042 memcpy (p, data, length);
5043
5044 /* Switch back to the original section. */
5045 subseg_set (seg, subseg);
a92713e6 5046 return TRUE;
89565f1b
RS
5047}
5048
a1d78564
RS
5049/* S is the text seen for ARG. Match it against OPERAND. Return the end
5050 of the argument text if the match is successful, otherwise return null. */
5051
a92713e6 5052static bfd_boolean
a1d78564 5053match_operand (struct mips_arg_info *arg,
a92713e6 5054 const struct mips_operand *operand)
a1d78564
RS
5055{
5056 switch (operand->type)
5057 {
5058 case OP_INT:
a92713e6 5059 return match_int_operand (arg, operand);
a1d78564
RS
5060
5061 case OP_MAPPED_INT:
a92713e6 5062 return match_mapped_int_operand (arg, operand);
a1d78564
RS
5063
5064 case OP_MSB:
a92713e6 5065 return match_msb_operand (arg, operand);
a1d78564
RS
5066
5067 case OP_REG:
a92713e6 5068 return match_reg_operand (arg, operand);
a1d78564
RS
5069
5070 case OP_REG_PAIR:
a92713e6 5071 return match_reg_pair_operand (arg, operand);
a1d78564
RS
5072
5073 case OP_PCREL:
a92713e6 5074 return match_pcrel_operand (arg);
a1d78564
RS
5075
5076 case OP_PERF_REG:
a92713e6 5077 return match_perf_reg_operand (arg, operand);
a1d78564
RS
5078
5079 case OP_ADDIUSP_INT:
a92713e6 5080 return match_addiusp_operand (arg, operand);
a1d78564
RS
5081
5082 case OP_CLO_CLZ_DEST:
a92713e6 5083 return match_clo_clz_dest_operand (arg, operand);
a1d78564
RS
5084
5085 case OP_LWM_SWM_LIST:
a92713e6 5086 return match_lwm_swm_list_operand (arg, operand);
a1d78564
RS
5087
5088 case OP_ENTRY_EXIT_LIST:
a92713e6 5089 return match_entry_exit_operand (arg, operand);
364215c8 5090
a1d78564 5091 case OP_SAVE_RESTORE_LIST:
a92713e6 5092 return match_save_restore_list_operand (arg);
a1d78564
RS
5093
5094 case OP_MDMX_IMM_REG:
a92713e6 5095 return match_mdmx_imm_reg_operand (arg, operand);
a1d78564
RS
5096
5097 case OP_REPEAT_DEST_REG:
a92713e6 5098 return match_tied_reg_operand (arg, arg->dest_regno);
a1d78564
RS
5099
5100 case OP_REPEAT_PREV_REG:
a92713e6 5101 return match_tied_reg_operand (arg, arg->last_regno);
a1d78564
RS
5102
5103 case OP_PC:
a92713e6 5104 return match_pc_operand (arg);
a1d78564
RS
5105 }
5106 abort ();
5107}
5108
5109/* ARG is the state after successfully matching an instruction.
5110 Issue any queued-up warnings. */
5111
5112static void
5113check_completed_insn (struct mips_arg_info *arg)
5114{
5115 if (arg->seen_at)
5116 {
5117 if (AT == ATREG)
5118 as_warn (_("Used $at without \".set noat\""));
5119 else
5120 as_warn (_("Used $%u with \".set at=$%u\""), AT, AT);
5121 }
5122}
a1d78564 5123
85fcb30f
RS
5124/* Return true if modifying general-purpose register REG needs a delay. */
5125
5126static bfd_boolean
5127reg_needs_delay (unsigned int reg)
5128{
5129 unsigned long prev_pinfo;
5130
5131 prev_pinfo = history[0].insn_mo->pinfo;
5132 if (!mips_opts.noreorder
5133 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY) && !gpr_interlocks)
5134 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY) && !cop_interlocks))
5135 && (gpr_write_mask (&history[0]) & (1 << reg)))
5136 return TRUE;
5137
5138 return FALSE;
5139}
5140
71400594
RS
5141/* Classify an instruction according to the FIX_VR4120_* enumeration.
5142 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
5143 by VR4120 errata. */
4d7206a2 5144
71400594
RS
5145static unsigned int
5146classify_vr4120_insn (const char *name)
252b5132 5147{
71400594
RS
5148 if (strncmp (name, "macc", 4) == 0)
5149 return FIX_VR4120_MACC;
5150 if (strncmp (name, "dmacc", 5) == 0)
5151 return FIX_VR4120_DMACC;
5152 if (strncmp (name, "mult", 4) == 0)
5153 return FIX_VR4120_MULT;
5154 if (strncmp (name, "dmult", 5) == 0)
5155 return FIX_VR4120_DMULT;
5156 if (strstr (name, "div"))
5157 return FIX_VR4120_DIV;
5158 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
5159 return FIX_VR4120_MTHILO;
5160 return NUM_FIX_VR4120_CLASSES;
5161}
252b5132 5162
ff239038
CM
5163#define INSN_ERET 0x42000018
5164#define INSN_DERET 0x4200001f
5165
71400594
RS
5166/* Return the number of instructions that must separate INSN1 and INSN2,
5167 where INSN1 is the earlier instruction. Return the worst-case value
5168 for any INSN2 if INSN2 is null. */
252b5132 5169
71400594
RS
5170static unsigned int
5171insns_between (const struct mips_cl_insn *insn1,
5172 const struct mips_cl_insn *insn2)
5173{
5174 unsigned long pinfo1, pinfo2;
4c260379 5175 unsigned int mask;
71400594 5176
85fcb30f
RS
5177 /* If INFO2 is null, pessimistically assume that all flags are set for
5178 the second instruction. */
71400594
RS
5179 pinfo1 = insn1->insn_mo->pinfo;
5180 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
252b5132 5181
71400594
RS
5182 /* For most targets, write-after-read dependencies on the HI and LO
5183 registers must be separated by at least two instructions. */
5184 if (!hilo_interlocks)
252b5132 5185 {
71400594
RS
5186 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
5187 return 2;
5188 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
5189 return 2;
5190 }
5191
5192 /* If we're working around r7000 errata, there must be two instructions
5193 between an mfhi or mflo and any instruction that uses the result. */
5194 if (mips_7000_hilo_fix
df58fc94 5195 && !mips_opts.micromips
71400594 5196 && MF_HILO_INSN (pinfo1)
85fcb30f 5197 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
71400594
RS
5198 return 2;
5199
ff239038
CM
5200 /* If we're working around 24K errata, one instruction is required
5201 if an ERET or DERET is followed by a branch instruction. */
df58fc94 5202 if (mips_fix_24k && !mips_opts.micromips)
ff239038
CM
5203 {
5204 if (insn1->insn_opcode == INSN_ERET
5205 || insn1->insn_opcode == INSN_DERET)
5206 {
5207 if (insn2 == NULL
5208 || insn2->insn_opcode == INSN_ERET
5209 || insn2->insn_opcode == INSN_DERET
11625dd8 5210 || delayed_branch_p (insn2))
ff239038
CM
5211 return 1;
5212 }
5213 }
5214
71400594
RS
5215 /* If working around VR4120 errata, check for combinations that need
5216 a single intervening instruction. */
df58fc94 5217 if (mips_fix_vr4120 && !mips_opts.micromips)
71400594
RS
5218 {
5219 unsigned int class1, class2;
252b5132 5220
71400594
RS
5221 class1 = classify_vr4120_insn (insn1->insn_mo->name);
5222 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
252b5132 5223 {
71400594
RS
5224 if (insn2 == NULL)
5225 return 1;
5226 class2 = classify_vr4120_insn (insn2->insn_mo->name);
5227 if (vr4120_conflicts[class1] & (1 << class2))
5228 return 1;
252b5132 5229 }
71400594
RS
5230 }
5231
df58fc94 5232 if (!HAVE_CODE_COMPRESSION)
71400594
RS
5233 {
5234 /* Check for GPR or coprocessor load delays. All such delays
5235 are on the RT register. */
5236 /* Itbl support may require additional care here. */
5237 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
5238 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
252b5132 5239 {
85fcb30f 5240 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
71400594
RS
5241 return 1;
5242 }
5243
5244 /* Check for generic coprocessor hazards.
5245
5246 This case is not handled very well. There is no special
5247 knowledge of CP0 handling, and the coprocessors other than
5248 the floating point unit are not distinguished at all. */
5249 /* Itbl support may require additional care here. FIXME!
5250 Need to modify this to include knowledge about
5251 user specified delays! */
5252 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
5253 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
5254 {
5255 /* Handle cases where INSN1 writes to a known general coprocessor
5256 register. There must be a one instruction delay before INSN2
5257 if INSN2 reads that register, otherwise no delay is needed. */
4c260379
RS
5258 mask = fpr_write_mask (insn1);
5259 if (mask != 0)
252b5132 5260 {
4c260379 5261 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
71400594 5262 return 1;
252b5132
RH
5263 }
5264 else
5265 {
71400594
RS
5266 /* Read-after-write dependencies on the control registers
5267 require a two-instruction gap. */
5268 if ((pinfo1 & INSN_WRITE_COND_CODE)
5269 && (pinfo2 & INSN_READ_COND_CODE))
5270 return 2;
5271
5272 /* We don't know exactly what INSN1 does. If INSN2 is
5273 also a coprocessor instruction, assume there must be
5274 a one instruction gap. */
5275 if (pinfo2 & INSN_COP)
5276 return 1;
252b5132
RH
5277 }
5278 }
6b76fefe 5279
71400594
RS
5280 /* Check for read-after-write dependencies on the coprocessor
5281 control registers in cases where INSN1 does not need a general
5282 coprocessor delay. This means that INSN1 is a floating point
5283 comparison instruction. */
5284 /* Itbl support may require additional care here. */
5285 else if (!cop_interlocks
5286 && (pinfo1 & INSN_WRITE_COND_CODE)
5287 && (pinfo2 & INSN_READ_COND_CODE))
5288 return 1;
5289 }
6b76fefe 5290
71400594
RS
5291 return 0;
5292}
6b76fefe 5293
7d8e00cf
RS
5294/* Return the number of nops that would be needed to work around the
5295 VR4130 mflo/mfhi errata if instruction INSN immediately followed
932d1a1b
RS
5296 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
5297 that are contained within the first IGNORE instructions of HIST. */
7d8e00cf
RS
5298
5299static int
932d1a1b 5300nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
7d8e00cf
RS
5301 const struct mips_cl_insn *insn)
5302{
4c260379
RS
5303 int i, j;
5304 unsigned int mask;
7d8e00cf
RS
5305
5306 /* Check if the instruction writes to HI or LO. MTHI and MTLO
5307 are not affected by the errata. */
5308 if (insn != 0
5309 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
5310 || strcmp (insn->insn_mo->name, "mtlo") == 0
5311 || strcmp (insn->insn_mo->name, "mthi") == 0))
5312 return 0;
5313
5314 /* Search for the first MFLO or MFHI. */
5315 for (i = 0; i < MAX_VR4130_NOPS; i++)
91d6fa6a 5316 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
7d8e00cf
RS
5317 {
5318 /* Extract the destination register. */
4c260379 5319 mask = gpr_write_mask (&hist[i]);
7d8e00cf
RS
5320
5321 /* No nops are needed if INSN reads that register. */
4c260379 5322 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
7d8e00cf
RS
5323 return 0;
5324
5325 /* ...or if any of the intervening instructions do. */
5326 for (j = 0; j < i; j++)
4c260379 5327 if (gpr_read_mask (&hist[j]) & mask)
7d8e00cf
RS
5328 return 0;
5329
932d1a1b
RS
5330 if (i >= ignore)
5331 return MAX_VR4130_NOPS - i;
7d8e00cf
RS
5332 }
5333 return 0;
5334}
5335
15be625d
CM
5336#define BASE_REG_EQ(INSN1, INSN2) \
5337 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
5338 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
5339
5340/* Return the minimum alignment for this store instruction. */
5341
5342static int
5343fix_24k_align_to (const struct mips_opcode *mo)
5344{
5345 if (strcmp (mo->name, "sh") == 0)
5346 return 2;
5347
5348 if (strcmp (mo->name, "swc1") == 0
5349 || strcmp (mo->name, "swc2") == 0
5350 || strcmp (mo->name, "sw") == 0
5351 || strcmp (mo->name, "sc") == 0
5352 || strcmp (mo->name, "s.s") == 0)
5353 return 4;
5354
5355 if (strcmp (mo->name, "sdc1") == 0
5356 || strcmp (mo->name, "sdc2") == 0
5357 || strcmp (mo->name, "s.d") == 0)
5358 return 8;
5359
5360 /* sb, swl, swr */
5361 return 1;
5362}
5363
5364struct fix_24k_store_info
5365 {
5366 /* Immediate offset, if any, for this store instruction. */
5367 short off;
5368 /* Alignment required by this store instruction. */
5369 int align_to;
5370 /* True for register offsets. */
5371 int register_offset;
5372 };
5373
5374/* Comparison function used by qsort. */
5375
5376static int
5377fix_24k_sort (const void *a, const void *b)
5378{
5379 const struct fix_24k_store_info *pos1 = a;
5380 const struct fix_24k_store_info *pos2 = b;
5381
5382 return (pos1->off - pos2->off);
5383}
5384
5385/* INSN is a store instruction. Try to record the store information
5386 in STINFO. Return false if the information isn't known. */
5387
5388static bfd_boolean
5389fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
ab9794cf 5390 const struct mips_cl_insn *insn)
15be625d
CM
5391{
5392 /* The instruction must have a known offset. */
5393 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
5394 return FALSE;
5395
5396 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
5397 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
5398 return TRUE;
5399}
5400
932d1a1b
RS
5401/* Return the number of nops that would be needed to work around the 24k
5402 "lost data on stores during refill" errata if instruction INSN
5403 immediately followed the 2 instructions described by HIST.
5404 Ignore hazards that are contained within the first IGNORE
5405 instructions of HIST.
5406
5407 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
5408 for the data cache refills and store data. The following describes
5409 the scenario where the store data could be lost.
5410
5411 * A data cache miss, due to either a load or a store, causing fill
5412 data to be supplied by the memory subsystem
5413 * The first three doublewords of fill data are returned and written
5414 into the cache
5415 * A sequence of four stores occurs in consecutive cycles around the
5416 final doubleword of the fill:
5417 * Store A
5418 * Store B
5419 * Store C
5420 * Zero, One or more instructions
5421 * Store D
5422
5423 The four stores A-D must be to different doublewords of the line that
5424 is being filled. The fourth instruction in the sequence above permits
5425 the fill of the final doubleword to be transferred from the FSB into
5426 the cache. In the sequence above, the stores may be either integer
5427 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
5428 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
5429 different doublewords on the line. If the floating point unit is
5430 running in 1:2 mode, it is not possible to create the sequence above
5431 using only floating point store instructions.
15be625d
CM
5432
5433 In this case, the cache line being filled is incorrectly marked
5434 invalid, thereby losing the data from any store to the line that
5435 occurs between the original miss and the completion of the five
5436 cycle sequence shown above.
5437
932d1a1b 5438 The workarounds are:
15be625d 5439
932d1a1b
RS
5440 * Run the data cache in write-through mode.
5441 * Insert a non-store instruction between
5442 Store A and Store B or Store B and Store C. */
15be625d
CM
5443
5444static int
932d1a1b 5445nops_for_24k (int ignore, const struct mips_cl_insn *hist,
15be625d
CM
5446 const struct mips_cl_insn *insn)
5447{
5448 struct fix_24k_store_info pos[3];
5449 int align, i, base_offset;
5450
932d1a1b
RS
5451 if (ignore >= 2)
5452 return 0;
5453
ab9794cf
RS
5454 /* If the previous instruction wasn't a store, there's nothing to
5455 worry about. */
15be625d
CM
5456 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
5457 return 0;
5458
ab9794cf
RS
5459 /* If the instructions after the previous one are unknown, we have
5460 to assume the worst. */
5461 if (!insn)
15be625d
CM
5462 return 1;
5463
ab9794cf
RS
5464 /* Check whether we are dealing with three consecutive stores. */
5465 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
5466 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
15be625d
CM
5467 return 0;
5468
5469 /* If we don't know the relationship between the store addresses,
5470 assume the worst. */
ab9794cf 5471 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
15be625d
CM
5472 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
5473 return 1;
5474
5475 if (!fix_24k_record_store_info (&pos[0], insn)
5476 || !fix_24k_record_store_info (&pos[1], &hist[0])
5477 || !fix_24k_record_store_info (&pos[2], &hist[1]))
5478 return 1;
5479
5480 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
5481
5482 /* Pick a value of ALIGN and X such that all offsets are adjusted by
5483 X bytes and such that the base register + X is known to be aligned
5484 to align bytes. */
5485
5486 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
5487 align = 8;
5488 else
5489 {
5490 align = pos[0].align_to;
5491 base_offset = pos[0].off;
5492 for (i = 1; i < 3; i++)
5493 if (align < pos[i].align_to)
5494 {
5495 align = pos[i].align_to;
5496 base_offset = pos[i].off;
5497 }
5498 for (i = 0; i < 3; i++)
5499 pos[i].off -= base_offset;
5500 }
5501
5502 pos[0].off &= ~align + 1;
5503 pos[1].off &= ~align + 1;
5504 pos[2].off &= ~align + 1;
5505
5506 /* If any two stores write to the same chunk, they also write to the
5507 same doubleword. The offsets are still sorted at this point. */
5508 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
5509 return 0;
5510
5511 /* A range of at least 9 bytes is needed for the stores to be in
5512 non-overlapping doublewords. */
5513 if (pos[2].off - pos[0].off <= 8)
5514 return 0;
5515
5516 if (pos[2].off - pos[1].off >= 24
5517 || pos[1].off - pos[0].off >= 24
5518 || pos[2].off - pos[0].off >= 32)
5519 return 0;
5520
5521 return 1;
5522}
5523
71400594 5524/* Return the number of nops that would be needed if instruction INSN
91d6fa6a 5525 immediately followed the MAX_NOPS instructions given by HIST,
932d1a1b
RS
5526 where HIST[0] is the most recent instruction. Ignore hazards
5527 between INSN and the first IGNORE instructions in HIST.
5528
5529 If INSN is null, return the worse-case number of nops for any
5530 instruction. */
bdaaa2e1 5531
71400594 5532static int
932d1a1b 5533nops_for_insn (int ignore, const struct mips_cl_insn *hist,
71400594
RS
5534 const struct mips_cl_insn *insn)
5535{
5536 int i, nops, tmp_nops;
bdaaa2e1 5537
71400594 5538 nops = 0;
932d1a1b 5539 for (i = ignore; i < MAX_DELAY_NOPS; i++)
65b02341 5540 {
91d6fa6a 5541 tmp_nops = insns_between (hist + i, insn) - i;
65b02341
RS
5542 if (tmp_nops > nops)
5543 nops = tmp_nops;
5544 }
7d8e00cf 5545
df58fc94 5546 if (mips_fix_vr4130 && !mips_opts.micromips)
7d8e00cf 5547 {
932d1a1b 5548 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
7d8e00cf
RS
5549 if (tmp_nops > nops)
5550 nops = tmp_nops;
5551 }
5552
df58fc94 5553 if (mips_fix_24k && !mips_opts.micromips)
15be625d 5554 {
932d1a1b 5555 tmp_nops = nops_for_24k (ignore, hist, insn);
15be625d
CM
5556 if (tmp_nops > nops)
5557 nops = tmp_nops;
5558 }
5559
71400594
RS
5560 return nops;
5561}
252b5132 5562
71400594 5563/* The variable arguments provide NUM_INSNS extra instructions that
91d6fa6a 5564 might be added to HIST. Return the largest number of nops that
932d1a1b
RS
5565 would be needed after the extended sequence, ignoring hazards
5566 in the first IGNORE instructions. */
252b5132 5567
71400594 5568static int
932d1a1b
RS
5569nops_for_sequence (int num_insns, int ignore,
5570 const struct mips_cl_insn *hist, ...)
71400594
RS
5571{
5572 va_list args;
5573 struct mips_cl_insn buffer[MAX_NOPS];
5574 struct mips_cl_insn *cursor;
5575 int nops;
5576
91d6fa6a 5577 va_start (args, hist);
71400594 5578 cursor = buffer + num_insns;
91d6fa6a 5579 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
71400594
RS
5580 while (cursor > buffer)
5581 *--cursor = *va_arg (args, const struct mips_cl_insn *);
5582
932d1a1b 5583 nops = nops_for_insn (ignore, buffer, NULL);
71400594
RS
5584 va_end (args);
5585 return nops;
5586}
252b5132 5587
71400594
RS
5588/* Like nops_for_insn, but if INSN is a branch, take into account the
5589 worst-case delay for the branch target. */
252b5132 5590
71400594 5591static int
932d1a1b 5592nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
71400594
RS
5593 const struct mips_cl_insn *insn)
5594{
5595 int nops, tmp_nops;
60b63b72 5596
932d1a1b 5597 nops = nops_for_insn (ignore, hist, insn);
11625dd8 5598 if (delayed_branch_p (insn))
71400594 5599 {
932d1a1b 5600 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
14fe068b 5601 hist, insn, get_delay_slot_nop (insn));
71400594
RS
5602 if (tmp_nops > nops)
5603 nops = tmp_nops;
5604 }
11625dd8 5605 else if (compact_branch_p (insn))
71400594 5606 {
932d1a1b 5607 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
71400594
RS
5608 if (tmp_nops > nops)
5609 nops = tmp_nops;
5610 }
5611 return nops;
5612}
5613
c67a084a
NC
5614/* Fix NOP issue: Replace nops by "or at,at,zero". */
5615
5616static void
5617fix_loongson2f_nop (struct mips_cl_insn * ip)
5618{
df58fc94 5619 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
5620 if (strcmp (ip->insn_mo->name, "nop") == 0)
5621 ip->insn_opcode = LOONGSON2F_NOP_INSN;
5622}
5623
5624/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
5625 jr target pc &= 'hffff_ffff_cfff_ffff. */
5626
5627static void
5628fix_loongson2f_jump (struct mips_cl_insn * ip)
5629{
df58fc94 5630 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
5631 if (strcmp (ip->insn_mo->name, "j") == 0
5632 || strcmp (ip->insn_mo->name, "jr") == 0
5633 || strcmp (ip->insn_mo->name, "jalr") == 0)
5634 {
5635 int sreg;
5636 expressionS ep;
5637
5638 if (! mips_opts.at)
5639 return;
5640
df58fc94 5641 sreg = EXTRACT_OPERAND (0, RS, *ip);
c67a084a
NC
5642 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
5643 return;
5644
5645 ep.X_op = O_constant;
5646 ep.X_add_number = 0xcfff0000;
5647 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
5648 ep.X_add_number = 0xffff;
5649 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
5650 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
5651 }
5652}
5653
5654static void
5655fix_loongson2f (struct mips_cl_insn * ip)
5656{
5657 if (mips_fix_loongson2f_nop)
5658 fix_loongson2f_nop (ip);
5659
5660 if (mips_fix_loongson2f_jump)
5661 fix_loongson2f_jump (ip);
5662}
5663
a4e06468
RS
5664/* IP is a branch that has a delay slot, and we need to fill it
5665 automatically. Return true if we can do that by swapping IP
e407c74b
NC
5666 with the previous instruction.
5667 ADDRESS_EXPR is an operand of the instruction to be used with
5668 RELOC_TYPE. */
a4e06468
RS
5669
5670static bfd_boolean
e407c74b 5671can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 5672 bfd_reloc_code_real_type *reloc_type)
a4e06468 5673{
2b0c8b40 5674 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
a4e06468
RS
5675 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
5676
5677 /* -O2 and above is required for this optimization. */
5678 if (mips_optimize < 2)
5679 return FALSE;
5680
5681 /* If we have seen .set volatile or .set nomove, don't optimize. */
5682 if (mips_opts.nomove)
5683 return FALSE;
5684
5685 /* We can't swap if the previous instruction's position is fixed. */
5686 if (history[0].fixed_p)
5687 return FALSE;
5688
5689 /* If the previous previous insn was in a .set noreorder, we can't
5690 swap. Actually, the MIPS assembler will swap in this situation.
5691 However, gcc configured -with-gnu-as will generate code like
5692
5693 .set noreorder
5694 lw $4,XXX
5695 .set reorder
5696 INSN
5697 bne $4,$0,foo
5698
5699 in which we can not swap the bne and INSN. If gcc is not configured
5700 -with-gnu-as, it does not output the .set pseudo-ops. */
5701 if (history[1].noreorder_p)
5702 return FALSE;
5703
87333bb7
MR
5704 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
5705 This means that the previous instruction was a 4-byte one anyhow. */
a4e06468
RS
5706 if (mips_opts.mips16 && history[0].fixp[0])
5707 return FALSE;
5708
5709 /* If the branch is itself the target of a branch, we can not swap.
5710 We cheat on this; all we check for is whether there is a label on
5711 this instruction. If there are any branches to anything other than
5712 a label, users must use .set noreorder. */
5713 if (seg_info (now_seg)->label_list)
5714 return FALSE;
5715
5716 /* If the previous instruction is in a variant frag other than this
2309ddf2 5717 branch's one, we cannot do the swap. This does not apply to
9301f9c3
MR
5718 MIPS16 code, which uses variant frags for different purposes. */
5719 if (!mips_opts.mips16
a4e06468
RS
5720 && history[0].frag
5721 && history[0].frag->fr_type == rs_machine_dependent)
5722 return FALSE;
5723
bcd530a7
RS
5724 /* We do not swap with instructions that cannot architecturally
5725 be placed in a branch delay slot, such as SYNC or ERET. We
5726 also refrain from swapping with a trap instruction, since it
5727 complicates trap handlers to have the trap instruction be in
5728 a delay slot. */
a4e06468 5729 prev_pinfo = history[0].insn_mo->pinfo;
bcd530a7 5730 if (prev_pinfo & INSN_NO_DELAY_SLOT)
a4e06468
RS
5731 return FALSE;
5732
5733 /* Check for conflicts between the branch and the instructions
5734 before the candidate delay slot. */
5735 if (nops_for_insn (0, history + 1, ip) > 0)
5736 return FALSE;
5737
5738 /* Check for conflicts between the swapped sequence and the
5739 target of the branch. */
5740 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
5741 return FALSE;
5742
5743 /* If the branch reads a register that the previous
5744 instruction sets, we can not swap. */
5745 gpr_read = gpr_read_mask (ip);
5746 prev_gpr_write = gpr_write_mask (&history[0]);
5747 if (gpr_read & prev_gpr_write)
5748 return FALSE;
5749
5750 /* If the branch writes a register that the previous
5751 instruction sets, we can not swap. */
5752 gpr_write = gpr_write_mask (ip);
5753 if (gpr_write & prev_gpr_write)
5754 return FALSE;
5755
5756 /* If the branch writes a register that the previous
5757 instruction reads, we can not swap. */
5758 prev_gpr_read = gpr_read_mask (&history[0]);
5759 if (gpr_write & prev_gpr_read)
5760 return FALSE;
5761
5762 /* If one instruction sets a condition code and the
5763 other one uses a condition code, we can not swap. */
5764 pinfo = ip->insn_mo->pinfo;
5765 if ((pinfo & INSN_READ_COND_CODE)
5766 && (prev_pinfo & INSN_WRITE_COND_CODE))
5767 return FALSE;
5768 if ((pinfo & INSN_WRITE_COND_CODE)
5769 && (prev_pinfo & INSN_READ_COND_CODE))
5770 return FALSE;
5771
5772 /* If the previous instruction uses the PC, we can not swap. */
2b0c8b40 5773 prev_pinfo2 = history[0].insn_mo->pinfo2;
26545944 5774 if (prev_pinfo2 & INSN2_READ_PC)
2b0c8b40 5775 return FALSE;
a4e06468 5776
df58fc94
RS
5777 /* If the previous instruction has an incorrect size for a fixed
5778 branch delay slot in microMIPS mode, we cannot swap. */
2309ddf2
MR
5779 pinfo2 = ip->insn_mo->pinfo2;
5780 if (mips_opts.micromips
5781 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
5782 && insn_length (history) != 2)
5783 return FALSE;
5784 if (mips_opts.micromips
5785 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
5786 && insn_length (history) != 4)
5787 return FALSE;
5788
e407c74b
NC
5789 /* On R5900 short loops need to be fixed by inserting a nop in
5790 the branch delay slots.
5791 A short loop can be terminated too early. */
5792 if (mips_opts.arch == CPU_R5900
5793 /* Check if instruction has a parameter, ignore "j $31". */
5794 && (address_expr != NULL)
5795 /* Parameter must be 16 bit. */
5796 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
5797 /* Branch to same segment. */
5798 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
5799 /* Branch to same code fragment. */
5800 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
5801 /* Can only calculate branch offset if value is known. */
5802 && symbol_constant_p(address_expr->X_add_symbol)
5803 /* Check if branch is really conditional. */
5804 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
5805 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
5806 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
5807 {
5808 int distance;
5809 /* Check if loop is shorter than 6 instructions including
5810 branch and delay slot. */
5811 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
5812 if (distance <= 20)
5813 {
5814 int i;
5815 int rv;
5816
5817 rv = FALSE;
5818 /* When the loop includes branches or jumps,
5819 it is not a short loop. */
5820 for (i = 0; i < (distance / 4); i++)
5821 {
5822 if ((history[i].cleared_p)
5823 || delayed_branch_p(&history[i]))
5824 {
5825 rv = TRUE;
5826 break;
5827 }
5828 }
5829 if (rv == FALSE)
5830 {
5831 /* Insert nop after branch to fix short loop. */
5832 return FALSE;
5833 }
5834 }
5835 }
5836
a4e06468
RS
5837 return TRUE;
5838}
5839
e407c74b
NC
5840/* Decide how we should add IP to the instruction stream.
5841 ADDRESS_EXPR is an operand of the instruction to be used with
5842 RELOC_TYPE. */
a4e06468
RS
5843
5844static enum append_method
e407c74b 5845get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 5846 bfd_reloc_code_real_type *reloc_type)
a4e06468 5847{
a4e06468
RS
5848 /* The relaxed version of a macro sequence must be inherently
5849 hazard-free. */
5850 if (mips_relax.sequence == 2)
5851 return APPEND_ADD;
5852
5853 /* We must not dabble with instructions in a ".set norerorder" block. */
5854 if (mips_opts.noreorder)
5855 return APPEND_ADD;
5856
5857 /* Otherwise, it's our responsibility to fill branch delay slots. */
11625dd8 5858 if (delayed_branch_p (ip))
a4e06468 5859 {
e407c74b
NC
5860 if (!branch_likely_p (ip)
5861 && can_swap_branch_p (ip, address_expr, reloc_type))
a4e06468
RS
5862 return APPEND_SWAP;
5863
5864 if (mips_opts.mips16
5865 && ISA_SUPPORTS_MIPS16E
fc76e730 5866 && gpr_read_mask (ip) != 0)
a4e06468
RS
5867 return APPEND_ADD_COMPACT;
5868
5869 return APPEND_ADD_WITH_NOP;
5870 }
5871
a4e06468
RS
5872 return APPEND_ADD;
5873}
5874
ceb94aa5
RS
5875/* IP is a MIPS16 instruction whose opcode we have just changed.
5876 Point IP->insn_mo to the new opcode's definition. */
5877
5878static void
5879find_altered_mips16_opcode (struct mips_cl_insn *ip)
5880{
5881 const struct mips_opcode *mo, *end;
5882
5883 end = &mips16_opcodes[bfd_mips16_num_opcodes];
5884 for (mo = ip->insn_mo; mo < end; mo++)
5885 if ((ip->insn_opcode & mo->mask) == mo->match)
5886 {
5887 ip->insn_mo = mo;
5888 return;
5889 }
5890 abort ();
5891}
5892
df58fc94
RS
5893/* For microMIPS macros, we need to generate a local number label
5894 as the target of branches. */
5895#define MICROMIPS_LABEL_CHAR '\037'
5896static unsigned long micromips_target_label;
5897static char micromips_target_name[32];
5898
5899static char *
5900micromips_label_name (void)
5901{
5902 char *p = micromips_target_name;
5903 char symbol_name_temporary[24];
5904 unsigned long l;
5905 int i;
5906
5907 if (*p)
5908 return p;
5909
5910 i = 0;
5911 l = micromips_target_label;
5912#ifdef LOCAL_LABEL_PREFIX
5913 *p++ = LOCAL_LABEL_PREFIX;
5914#endif
5915 *p++ = 'L';
5916 *p++ = MICROMIPS_LABEL_CHAR;
5917 do
5918 {
5919 symbol_name_temporary[i++] = l % 10 + '0';
5920 l /= 10;
5921 }
5922 while (l != 0);
5923 while (i > 0)
5924 *p++ = symbol_name_temporary[--i];
5925 *p = '\0';
5926
5927 return micromips_target_name;
5928}
5929
5930static void
5931micromips_label_expr (expressionS *label_expr)
5932{
5933 label_expr->X_op = O_symbol;
5934 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
5935 label_expr->X_add_number = 0;
5936}
5937
5938static void
5939micromips_label_inc (void)
5940{
5941 micromips_target_label++;
5942 *micromips_target_name = '\0';
5943}
5944
5945static void
5946micromips_add_label (void)
5947{
5948 symbolS *s;
5949
5950 s = colon (micromips_label_name ());
5951 micromips_label_inc ();
f3ded42a 5952 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
df58fc94
RS
5953}
5954
5955/* If assembling microMIPS code, then return the microMIPS reloc
5956 corresponding to the requested one if any. Otherwise return
5957 the reloc unchanged. */
5958
5959static bfd_reloc_code_real_type
5960micromips_map_reloc (bfd_reloc_code_real_type reloc)
5961{
5962 static const bfd_reloc_code_real_type relocs[][2] =
5963 {
5964 /* Keep sorted incrementally by the left-hand key. */
5965 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
5966 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
5967 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
5968 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
5969 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
5970 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
5971 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
5972 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
5973 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
5974 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
5975 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
5976 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
5977 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
5978 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
5979 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
5980 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
5981 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
5982 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
5983 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
5984 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
5985 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
5986 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
5987 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
5988 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
5989 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
5990 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
5991 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
5992 };
5993 bfd_reloc_code_real_type r;
5994 size_t i;
5995
5996 if (!mips_opts.micromips)
5997 return reloc;
5998 for (i = 0; i < ARRAY_SIZE (relocs); i++)
5999 {
6000 r = relocs[i][0];
6001 if (r > reloc)
6002 return reloc;
6003 if (r == reloc)
6004 return relocs[i][1];
6005 }
6006 return reloc;
6007}
6008
b886a2ab
RS
6009/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6010 Return true on success, storing the resolved value in RESULT. */
6011
6012static bfd_boolean
6013calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6014 offsetT *result)
6015{
6016 switch (reloc)
6017 {
6018 case BFD_RELOC_MIPS_HIGHEST:
6019 case BFD_RELOC_MICROMIPS_HIGHEST:
6020 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6021 return TRUE;
6022
6023 case BFD_RELOC_MIPS_HIGHER:
6024 case BFD_RELOC_MICROMIPS_HIGHER:
6025 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6026 return TRUE;
6027
6028 case BFD_RELOC_HI16_S:
6029 case BFD_RELOC_MICROMIPS_HI16_S:
6030 case BFD_RELOC_MIPS16_HI16_S:
6031 *result = ((operand + 0x8000) >> 16) & 0xffff;
6032 return TRUE;
6033
6034 case BFD_RELOC_HI16:
6035 case BFD_RELOC_MICROMIPS_HI16:
6036 case BFD_RELOC_MIPS16_HI16:
6037 *result = (operand >> 16) & 0xffff;
6038 return TRUE;
6039
6040 case BFD_RELOC_LO16:
6041 case BFD_RELOC_MICROMIPS_LO16:
6042 case BFD_RELOC_MIPS16_LO16:
6043 *result = operand & 0xffff;
6044 return TRUE;
6045
6046 case BFD_RELOC_UNUSED:
6047 *result = operand;
6048 return TRUE;
6049
6050 default:
6051 return FALSE;
6052 }
6053}
6054
71400594
RS
6055/* Output an instruction. IP is the instruction information.
6056 ADDRESS_EXPR is an operand of the instruction to be used with
df58fc94
RS
6057 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6058 a macro expansion. */
71400594
RS
6059
6060static void
6061append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
df58fc94 6062 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
71400594 6063{
14fe068b 6064 unsigned long prev_pinfo2, pinfo;
71400594 6065 bfd_boolean relaxed_branch = FALSE;
a4e06468 6066 enum append_method method;
2309ddf2 6067 bfd_boolean relax32;
2b0c8b40 6068 int branch_disp;
71400594 6069
2309ddf2 6070 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
c67a084a
NC
6071 fix_loongson2f (ip);
6072
738f4d98 6073 file_ase_mips16 |= mips_opts.mips16;
df58fc94 6074 file_ase_micromips |= mips_opts.micromips;
738f4d98 6075
df58fc94 6076 prev_pinfo2 = history[0].insn_mo->pinfo2;
71400594 6077 pinfo = ip->insn_mo->pinfo;
df58fc94
RS
6078
6079 if (mips_opts.micromips
6080 && !expansionp
6081 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
6082 && micromips_insn_length (ip->insn_mo) != 2)
6083 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
6084 && micromips_insn_length (ip->insn_mo) != 4)))
6085 as_warn (_("Wrong size instruction in a %u-bit branch delay slot"),
6086 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
71400594 6087
15be625d
CM
6088 if (address_expr == NULL)
6089 ip->complete_p = 1;
b886a2ab
RS
6090 else if (reloc_type[0] <= BFD_RELOC_UNUSED
6091 && reloc_type[1] == BFD_RELOC_UNUSED
6092 && reloc_type[2] == BFD_RELOC_UNUSED
15be625d
CM
6093 && address_expr->X_op == O_constant)
6094 {
15be625d
CM
6095 switch (*reloc_type)
6096 {
15be625d 6097 case BFD_RELOC_MIPS_JMP:
df58fc94
RS
6098 {
6099 int shift;
6100
6101 shift = mips_opts.micromips ? 1 : 2;
6102 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
6103 as_bad (_("jump to misaligned address (0x%lx)"),
6104 (unsigned long) address_expr->X_add_number);
6105 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
6106 & 0x3ffffff);
335574df 6107 ip->complete_p = 1;
df58fc94 6108 }
15be625d
CM
6109 break;
6110
6111 case BFD_RELOC_MIPS16_JMP:
6112 if ((address_expr->X_add_number & 3) != 0)
6113 as_bad (_("jump to misaligned address (0x%lx)"),
6114 (unsigned long) address_expr->X_add_number);
6115 ip->insn_opcode |=
6116 (((address_expr->X_add_number & 0x7c0000) << 3)
6117 | ((address_expr->X_add_number & 0xf800000) >> 7)
6118 | ((address_expr->X_add_number & 0x3fffc) >> 2));
335574df 6119 ip->complete_p = 1;
15be625d
CM
6120 break;
6121
6122 case BFD_RELOC_16_PCREL_S2:
df58fc94
RS
6123 {
6124 int shift;
6125
6126 shift = mips_opts.micromips ? 1 : 2;
6127 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
6128 as_bad (_("branch to misaligned address (0x%lx)"),
6129 (unsigned long) address_expr->X_add_number);
6130 if (!mips_relax_branch)
6131 {
6132 if ((address_expr->X_add_number + (1 << (shift + 15)))
6133 & ~((1 << (shift + 16)) - 1))
6134 as_bad (_("branch address range overflow (0x%lx)"),
6135 (unsigned long) address_expr->X_add_number);
6136 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
6137 & 0xffff);
6138 }
df58fc94 6139 }
15be625d
CM
6140 break;
6141
6142 default:
b886a2ab
RS
6143 {
6144 offsetT value;
6145
6146 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
6147 &value))
6148 {
6149 ip->insn_opcode |= value & 0xffff;
6150 ip->complete_p = 1;
6151 }
6152 }
6153 break;
6154 }
15be625d
CM
6155 }
6156
71400594
RS
6157 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
6158 {
6159 /* There are a lot of optimizations we could do that we don't.
6160 In particular, we do not, in general, reorder instructions.
6161 If you use gcc with optimization, it will reorder
6162 instructions and generally do much more optimization then we
6163 do here; repeating all that work in the assembler would only
6164 benefit hand written assembly code, and does not seem worth
6165 it. */
6166 int nops = (mips_optimize == 0
932d1a1b
RS
6167 ? nops_for_insn (0, history, NULL)
6168 : nops_for_insn_or_target (0, history, ip));
71400594 6169 if (nops > 0)
252b5132
RH
6170 {
6171 fragS *old_frag;
6172 unsigned long old_frag_offset;
6173 int i;
252b5132
RH
6174
6175 old_frag = frag_now;
6176 old_frag_offset = frag_now_fix ();
6177
6178 for (i = 0; i < nops; i++)
14fe068b
RS
6179 add_fixed_insn (NOP_INSN);
6180 insert_into_history (0, nops, NOP_INSN);
252b5132
RH
6181
6182 if (listing)
6183 {
6184 listing_prev_line ();
6185 /* We may be at the start of a variant frag. In case we
6186 are, make sure there is enough space for the frag
6187 after the frags created by listing_prev_line. The
6188 argument to frag_grow here must be at least as large
6189 as the argument to all other calls to frag_grow in
6190 this file. We don't have to worry about being in the
6191 middle of a variant frag, because the variants insert
6192 all needed nop instructions themselves. */
6193 frag_grow (40);
6194 }
6195
462427c4 6196 mips_move_text_labels ();
252b5132
RH
6197
6198#ifndef NO_ECOFF_DEBUGGING
6199 if (ECOFF_DEBUGGING)
6200 ecoff_fix_loc (old_frag, old_frag_offset);
6201#endif
6202 }
71400594
RS
6203 }
6204 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
6205 {
932d1a1b
RS
6206 int nops;
6207
6208 /* Work out how many nops in prev_nop_frag are needed by IP,
6209 ignoring hazards generated by the first prev_nop_frag_since
6210 instructions. */
6211 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
9c2799c2 6212 gas_assert (nops <= prev_nop_frag_holds);
252b5132 6213
71400594
RS
6214 /* Enforce NOPS as a minimum. */
6215 if (nops > prev_nop_frag_required)
6216 prev_nop_frag_required = nops;
252b5132 6217
71400594
RS
6218 if (prev_nop_frag_holds == prev_nop_frag_required)
6219 {
6220 /* Settle for the current number of nops. Update the history
6221 accordingly (for the benefit of any future .set reorder code). */
6222 prev_nop_frag = NULL;
6223 insert_into_history (prev_nop_frag_since,
6224 prev_nop_frag_holds, NOP_INSN);
6225 }
6226 else
6227 {
6228 /* Allow this instruction to replace one of the nops that was
6229 tentatively added to prev_nop_frag. */
df58fc94 6230 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
71400594
RS
6231 prev_nop_frag_holds--;
6232 prev_nop_frag_since++;
252b5132
RH
6233 }
6234 }
6235
e407c74b 6236 method = get_append_method (ip, address_expr, reloc_type);
2b0c8b40 6237 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
a4e06468 6238
e410add4
RS
6239 dwarf2_emit_insn (0);
6240 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
6241 so "move" the instruction address accordingly.
6242
6243 Also, it doesn't seem appropriate for the assembler to reorder .loc
6244 entries. If this instruction is a branch that we are going to swap
6245 with the previous instruction, the two instructions should be
6246 treated as a unit, and the debug information for both instructions
6247 should refer to the start of the branch sequence. Using the
6248 current position is certainly wrong when swapping a 32-bit branch
6249 and a 16-bit delay slot, since the current position would then be
6250 in the middle of a branch. */
6251 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
58e2ea4d 6252
df58fc94
RS
6253 relax32 = (mips_relax_branch
6254 /* Don't try branch relaxation within .set nomacro, or within
6255 .set noat if we use $at for PIC computations. If it turns
6256 out that the branch was out-of-range, we'll get an error. */
6257 && !mips_opts.warn_about_macros
6258 && (mips_opts.at || mips_pic == NO_PIC)
3bf0dbfb
MR
6259 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
6260 as they have no complementing branches. */
6261 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
df58fc94
RS
6262
6263 if (!HAVE_CODE_COMPRESSION
6264 && address_expr
6265 && relax32
0b25d3e6 6266 && *reloc_type == BFD_RELOC_16_PCREL_S2
11625dd8 6267 && delayed_branch_p (ip))
4a6a3df4 6268 {
895921c9 6269 relaxed_branch = TRUE;
1e915849
RS
6270 add_relaxed_insn (ip, (relaxed_branch_length
6271 (NULL, NULL,
11625dd8
RS
6272 uncond_branch_p (ip) ? -1
6273 : branch_likely_p (ip) ? 1
1e915849
RS
6274 : 0)), 4,
6275 RELAX_BRANCH_ENCODE
66b3e8da 6276 (AT,
11625dd8
RS
6277 uncond_branch_p (ip),
6278 branch_likely_p (ip),
1e915849
RS
6279 pinfo & INSN_WRITE_GPR_31,
6280 0),
6281 address_expr->X_add_symbol,
6282 address_expr->X_add_number);
4a6a3df4
AO
6283 *reloc_type = BFD_RELOC_UNUSED;
6284 }
df58fc94
RS
6285 else if (mips_opts.micromips
6286 && address_expr
6287 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
6288 || *reloc_type > BFD_RELOC_UNUSED)
40209cad
MR
6289 && (delayed_branch_p (ip) || compact_branch_p (ip))
6290 /* Don't try branch relaxation when users specify
6291 16-bit/32-bit instructions. */
6292 && !forced_insn_length)
df58fc94
RS
6293 {
6294 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
6295 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
11625dd8
RS
6296 int uncond = uncond_branch_p (ip) ? -1 : 0;
6297 int compact = compact_branch_p (ip);
df58fc94
RS
6298 int al = pinfo & INSN_WRITE_GPR_31;
6299 int length32;
6300
6301 gas_assert (address_expr != NULL);
6302 gas_assert (!mips_relax.sequence);
6303
2b0c8b40 6304 relaxed_branch = TRUE;
df58fc94
RS
6305 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
6306 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
40209cad
MR
6307 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
6308 relax32, 0, 0),
df58fc94
RS
6309 address_expr->X_add_symbol,
6310 address_expr->X_add_number);
6311 *reloc_type = BFD_RELOC_UNUSED;
6312 }
6313 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
252b5132
RH
6314 {
6315 /* We need to set up a variant frag. */
df58fc94 6316 gas_assert (address_expr != NULL);
1e915849
RS
6317 add_relaxed_insn (ip, 4, 0,
6318 RELAX_MIPS16_ENCODE
6319 (*reloc_type - BFD_RELOC_UNUSED,
df58fc94 6320 forced_insn_length == 2, forced_insn_length == 4,
11625dd8 6321 delayed_branch_p (&history[0]),
1e915849
RS
6322 history[0].mips16_absolute_jump_p),
6323 make_expr_symbol (address_expr), 0);
252b5132 6324 }
5c04167a 6325 else if (mips_opts.mips16 && insn_length (ip) == 2)
9497f5ac 6326 {
11625dd8 6327 if (!delayed_branch_p (ip))
b8ee1a6e
DU
6328 /* Make sure there is enough room to swap this instruction with
6329 a following jump instruction. */
6330 frag_grow (6);
1e915849 6331 add_fixed_insn (ip);
252b5132
RH
6332 }
6333 else
6334 {
6335 if (mips_opts.mips16
6336 && mips_opts.noreorder
11625dd8 6337 && delayed_branch_p (&history[0]))
252b5132
RH
6338 as_warn (_("extended instruction in delay slot"));
6339
4d7206a2
RS
6340 if (mips_relax.sequence)
6341 {
6342 /* If we've reached the end of this frag, turn it into a variant
6343 frag and record the information for the instructions we've
6344 written so far. */
6345 if (frag_room () < 4)
6346 relax_close_frag ();
df58fc94 6347 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4d7206a2
RS
6348 }
6349
584892a6 6350 if (mips_relax.sequence != 2)
df58fc94
RS
6351 {
6352 if (mips_macro_warning.first_insn_sizes[0] == 0)
6353 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
6354 mips_macro_warning.sizes[0] += insn_length (ip);
6355 mips_macro_warning.insns[0]++;
6356 }
584892a6 6357 if (mips_relax.sequence != 1)
df58fc94
RS
6358 {
6359 if (mips_macro_warning.first_insn_sizes[1] == 0)
6360 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
6361 mips_macro_warning.sizes[1] += insn_length (ip);
6362 mips_macro_warning.insns[1]++;
6363 }
584892a6 6364
1e915849
RS
6365 if (mips_opts.mips16)
6366 {
6367 ip->fixed_p = 1;
6368 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
6369 }
6370 add_fixed_insn (ip);
252b5132
RH
6371 }
6372
9fe77896 6373 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
252b5132 6374 {
df58fc94 6375 bfd_reloc_code_real_type final_type[3];
2309ddf2 6376 reloc_howto_type *howto0;
9fe77896
RS
6377 reloc_howto_type *howto;
6378 int i;
34ce925e 6379
df58fc94
RS
6380 /* Perform any necessary conversion to microMIPS relocations
6381 and find out how many relocations there actually are. */
6382 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
6383 final_type[i] = micromips_map_reloc (reloc_type[i]);
6384
9fe77896
RS
6385 /* In a compound relocation, it is the final (outermost)
6386 operator that determines the relocated field. */
2309ddf2 6387 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
e8044f35
RS
6388 if (!howto)
6389 abort ();
2309ddf2
MR
6390
6391 if (i > 1)
6392 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
9fe77896
RS
6393 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
6394 bfd_get_reloc_size (howto),
6395 address_expr,
2309ddf2
MR
6396 howto0 && howto0->pc_relative,
6397 final_type[0]);
9fe77896
RS
6398
6399 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2309ddf2 6400 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
9fe77896
RS
6401 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
6402
6403 /* These relocations can have an addend that won't fit in
6404 4 octets for 64bit assembly. */
6405 if (HAVE_64BIT_GPRS
6406 && ! howto->partial_inplace
6407 && (reloc_type[0] == BFD_RELOC_16
6408 || reloc_type[0] == BFD_RELOC_32
6409 || reloc_type[0] == BFD_RELOC_MIPS_JMP
6410 || reloc_type[0] == BFD_RELOC_GPREL16
6411 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
6412 || reloc_type[0] == BFD_RELOC_GPREL32
6413 || reloc_type[0] == BFD_RELOC_64
6414 || reloc_type[0] == BFD_RELOC_CTOR
6415 || reloc_type[0] == BFD_RELOC_MIPS_SUB
6416 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
6417 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
6418 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
6419 || reloc_type[0] == BFD_RELOC_MIPS_REL16
6420 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
6421 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
6422 || hi16_reloc_p (reloc_type[0])
6423 || lo16_reloc_p (reloc_type[0])))
6424 ip->fixp[0]->fx_no_overflow = 1;
6425
ddaf2c41
MR
6426 /* These relocations can have an addend that won't fit in 2 octets. */
6427 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
6428 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
6429 ip->fixp[0]->fx_no_overflow = 1;
6430
9fe77896
RS
6431 if (mips_relax.sequence)
6432 {
6433 if (mips_relax.first_fixup == 0)
6434 mips_relax.first_fixup = ip->fixp[0];
6435 }
6436 else if (reloc_needs_lo_p (*reloc_type))
6437 {
6438 struct mips_hi_fixup *hi_fixup;
6439
6440 /* Reuse the last entry if it already has a matching %lo. */
6441 hi_fixup = mips_hi_fixup_list;
6442 if (hi_fixup == 0
6443 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4d7206a2 6444 {
9fe77896
RS
6445 hi_fixup = ((struct mips_hi_fixup *)
6446 xmalloc (sizeof (struct mips_hi_fixup)));
6447 hi_fixup->next = mips_hi_fixup_list;
6448 mips_hi_fixup_list = hi_fixup;
4d7206a2 6449 }
9fe77896
RS
6450 hi_fixup->fixp = ip->fixp[0];
6451 hi_fixup->seg = now_seg;
6452 }
252b5132 6453
9fe77896
RS
6454 /* Add fixups for the second and third relocations, if given.
6455 Note that the ABI allows the second relocation to be
6456 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
6457 moment we only use RSS_UNDEF, but we could add support
6458 for the others if it ever becomes necessary. */
6459 for (i = 1; i < 3; i++)
6460 if (reloc_type[i] != BFD_RELOC_UNUSED)
6461 {
6462 ip->fixp[i] = fix_new (ip->frag, ip->where,
6463 ip->fixp[0]->fx_size, NULL, 0,
df58fc94 6464 FALSE, final_type[i]);
f6688943 6465
9fe77896
RS
6466 /* Use fx_tcbit to mark compound relocs. */
6467 ip->fixp[0]->fx_tcbit = 1;
6468 ip->fixp[i]->fx_tcbit = 1;
6469 }
252b5132 6470 }
1e915849 6471 install_insn (ip);
252b5132
RH
6472
6473 /* Update the register mask information. */
4c260379
RS
6474 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
6475 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
252b5132 6476
a4e06468 6477 switch (method)
252b5132 6478 {
a4e06468
RS
6479 case APPEND_ADD:
6480 insert_into_history (0, 1, ip);
6481 break;
6482
6483 case APPEND_ADD_WITH_NOP:
14fe068b
RS
6484 {
6485 struct mips_cl_insn *nop;
6486
6487 insert_into_history (0, 1, ip);
6488 nop = get_delay_slot_nop (ip);
6489 add_fixed_insn (nop);
6490 insert_into_history (0, 1, nop);
6491 if (mips_relax.sequence)
6492 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
6493 }
a4e06468
RS
6494 break;
6495
6496 case APPEND_ADD_COMPACT:
6497 /* Convert MIPS16 jr/jalr into a "compact" jump. */
6498 gas_assert (mips_opts.mips16);
6499 ip->insn_opcode |= 0x0080;
6500 find_altered_mips16_opcode (ip);
6501 install_insn (ip);
6502 insert_into_history (0, 1, ip);
6503 break;
6504
6505 case APPEND_SWAP:
6506 {
6507 struct mips_cl_insn delay = history[0];
6508 if (mips_opts.mips16)
6509 {
6510 know (delay.frag == ip->frag);
6511 move_insn (ip, delay.frag, delay.where);
6512 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
6513 }
464ab0e5 6514 else if (relaxed_branch || delay.frag != ip->frag)
a4e06468
RS
6515 {
6516 /* Add the delay slot instruction to the end of the
6517 current frag and shrink the fixed part of the
6518 original frag. If the branch occupies the tail of
6519 the latter, move it backwards to cover the gap. */
2b0c8b40 6520 delay.frag->fr_fix -= branch_disp;
a4e06468 6521 if (delay.frag == ip->frag)
2b0c8b40 6522 move_insn (ip, ip->frag, ip->where - branch_disp);
a4e06468
RS
6523 add_fixed_insn (&delay);
6524 }
6525 else
6526 {
2b0c8b40
MR
6527 move_insn (&delay, ip->frag,
6528 ip->where - branch_disp + insn_length (ip));
a4e06468
RS
6529 move_insn (ip, history[0].frag, history[0].where);
6530 }
6531 history[0] = *ip;
6532 delay.fixed_p = 1;
6533 insert_into_history (0, 1, &delay);
6534 }
6535 break;
252b5132
RH
6536 }
6537
13408f1e 6538 /* If we have just completed an unconditional branch, clear the history. */
11625dd8
RS
6539 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
6540 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
e407c74b
NC
6541 {
6542 unsigned int i;
6543
79850f26 6544 mips_no_prev_insn ();
13408f1e 6545
e407c74b 6546 for (i = 0; i < ARRAY_SIZE (history); i++)
79850f26 6547 history[i].cleared_p = 1;
e407c74b
NC
6548 }
6549
df58fc94
RS
6550 /* We need to emit a label at the end of branch-likely macros. */
6551 if (emit_branch_likely_macro)
6552 {
6553 emit_branch_likely_macro = FALSE;
6554 micromips_add_label ();
6555 }
6556
252b5132
RH
6557 /* We just output an insn, so the next one doesn't have a label. */
6558 mips_clear_insn_labels ();
252b5132
RH
6559}
6560
e407c74b
NC
6561/* Forget that there was any previous instruction or label.
6562 When BRANCH is true, the branch history is also flushed. */
252b5132
RH
6563
6564static void
7d10b47d 6565mips_no_prev_insn (void)
252b5132 6566{
7d10b47d
RS
6567 prev_nop_frag = NULL;
6568 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
252b5132
RH
6569 mips_clear_insn_labels ();
6570}
6571
7d10b47d
RS
6572/* This function must be called before we emit something other than
6573 instructions. It is like mips_no_prev_insn except that it inserts
6574 any NOPS that might be needed by previous instructions. */
252b5132 6575
7d10b47d
RS
6576void
6577mips_emit_delays (void)
252b5132
RH
6578{
6579 if (! mips_opts.noreorder)
6580 {
932d1a1b 6581 int nops = nops_for_insn (0, history, NULL);
252b5132
RH
6582 if (nops > 0)
6583 {
7d10b47d
RS
6584 while (nops-- > 0)
6585 add_fixed_insn (NOP_INSN);
462427c4 6586 mips_move_text_labels ();
7d10b47d
RS
6587 }
6588 }
6589 mips_no_prev_insn ();
6590}
6591
6592/* Start a (possibly nested) noreorder block. */
6593
6594static void
6595start_noreorder (void)
6596{
6597 if (mips_opts.noreorder == 0)
6598 {
6599 unsigned int i;
6600 int nops;
6601
6602 /* None of the instructions before the .set noreorder can be moved. */
6603 for (i = 0; i < ARRAY_SIZE (history); i++)
6604 history[i].fixed_p = 1;
6605
6606 /* Insert any nops that might be needed between the .set noreorder
6607 block and the previous instructions. We will later remove any
6608 nops that turn out not to be needed. */
932d1a1b 6609 nops = nops_for_insn (0, history, NULL);
7d10b47d
RS
6610 if (nops > 0)
6611 {
6612 if (mips_optimize != 0)
252b5132
RH
6613 {
6614 /* Record the frag which holds the nop instructions, so
6615 that we can remove them if we don't need them. */
df58fc94 6616 frag_grow (nops * NOP_INSN_SIZE);
252b5132
RH
6617 prev_nop_frag = frag_now;
6618 prev_nop_frag_holds = nops;
6619 prev_nop_frag_required = 0;
6620 prev_nop_frag_since = 0;
6621 }
6622
6623 for (; nops > 0; --nops)
1e915849 6624 add_fixed_insn (NOP_INSN);
252b5132 6625
7d10b47d
RS
6626 /* Move on to a new frag, so that it is safe to simply
6627 decrease the size of prev_nop_frag. */
6628 frag_wane (frag_now);
6629 frag_new (0);
462427c4 6630 mips_move_text_labels ();
252b5132 6631 }
df58fc94 6632 mips_mark_labels ();
7d10b47d 6633 mips_clear_insn_labels ();
252b5132 6634 }
7d10b47d
RS
6635 mips_opts.noreorder++;
6636 mips_any_noreorder = 1;
6637}
252b5132 6638
7d10b47d 6639/* End a nested noreorder block. */
252b5132 6640
7d10b47d
RS
6641static void
6642end_noreorder (void)
6643{
6644 mips_opts.noreorder--;
6645 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
6646 {
6647 /* Commit to inserting prev_nop_frag_required nops and go back to
6648 handling nop insertion the .set reorder way. */
6649 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
df58fc94 6650 * NOP_INSN_SIZE);
7d10b47d
RS
6651 insert_into_history (prev_nop_frag_since,
6652 prev_nop_frag_required, NOP_INSN);
6653 prev_nop_frag = NULL;
6654 }
252b5132
RH
6655}
6656
584892a6
RS
6657/* Set up global variables for the start of a new macro. */
6658
6659static void
6660macro_start (void)
6661{
6662 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
df58fc94
RS
6663 memset (&mips_macro_warning.first_insn_sizes, 0,
6664 sizeof (mips_macro_warning.first_insn_sizes));
6665 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
584892a6 6666 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
11625dd8 6667 && delayed_branch_p (&history[0]));
df58fc94
RS
6668 switch (history[0].insn_mo->pinfo2
6669 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
6670 {
6671 case INSN2_BRANCH_DELAY_32BIT:
6672 mips_macro_warning.delay_slot_length = 4;
6673 break;
6674 case INSN2_BRANCH_DELAY_16BIT:
6675 mips_macro_warning.delay_slot_length = 2;
6676 break;
6677 default:
6678 mips_macro_warning.delay_slot_length = 0;
6679 break;
6680 }
6681 mips_macro_warning.first_frag = NULL;
584892a6
RS
6682}
6683
df58fc94
RS
6684/* Given that a macro is longer than one instruction or of the wrong size,
6685 return the appropriate warning for it. Return null if no warning is
6686 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
6687 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
6688 and RELAX_NOMACRO. */
584892a6
RS
6689
6690static const char *
6691macro_warning (relax_substateT subtype)
6692{
6693 if (subtype & RELAX_DELAY_SLOT)
6694 return _("Macro instruction expanded into multiple instructions"
6695 " in a branch delay slot");
6696 else if (subtype & RELAX_NOMACRO)
6697 return _("Macro instruction expanded into multiple instructions");
df58fc94
RS
6698 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
6699 | RELAX_DELAY_SLOT_SIZE_SECOND))
6700 return ((subtype & RELAX_DELAY_SLOT_16BIT)
6701 ? _("Macro instruction expanded into a wrong size instruction"
6702 " in a 16-bit branch delay slot")
6703 : _("Macro instruction expanded into a wrong size instruction"
6704 " in a 32-bit branch delay slot"));
584892a6
RS
6705 else
6706 return 0;
6707}
6708
6709/* Finish up a macro. Emit warnings as appropriate. */
6710
6711static void
6712macro_end (void)
6713{
df58fc94
RS
6714 /* Relaxation warning flags. */
6715 relax_substateT subtype = 0;
6716
6717 /* Check delay slot size requirements. */
6718 if (mips_macro_warning.delay_slot_length == 2)
6719 subtype |= RELAX_DELAY_SLOT_16BIT;
6720 if (mips_macro_warning.delay_slot_length != 0)
584892a6 6721 {
df58fc94
RS
6722 if (mips_macro_warning.delay_slot_length
6723 != mips_macro_warning.first_insn_sizes[0])
6724 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
6725 if (mips_macro_warning.delay_slot_length
6726 != mips_macro_warning.first_insn_sizes[1])
6727 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
6728 }
584892a6 6729
df58fc94
RS
6730 /* Check instruction count requirements. */
6731 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
6732 {
6733 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
584892a6
RS
6734 subtype |= RELAX_SECOND_LONGER;
6735 if (mips_opts.warn_about_macros)
6736 subtype |= RELAX_NOMACRO;
6737 if (mips_macro_warning.delay_slot_p)
6738 subtype |= RELAX_DELAY_SLOT;
df58fc94 6739 }
584892a6 6740
df58fc94
RS
6741 /* If both alternatives fail to fill a delay slot correctly,
6742 emit the warning now. */
6743 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
6744 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
6745 {
6746 relax_substateT s;
6747 const char *msg;
6748
6749 s = subtype & (RELAX_DELAY_SLOT_16BIT
6750 | RELAX_DELAY_SLOT_SIZE_FIRST
6751 | RELAX_DELAY_SLOT_SIZE_SECOND);
6752 msg = macro_warning (s);
6753 if (msg != NULL)
6754 as_warn ("%s", msg);
6755 subtype &= ~s;
6756 }
6757
6758 /* If both implementations are longer than 1 instruction, then emit the
6759 warning now. */
6760 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
6761 {
6762 relax_substateT s;
6763 const char *msg;
6764
6765 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
6766 msg = macro_warning (s);
6767 if (msg != NULL)
6768 as_warn ("%s", msg);
6769 subtype &= ~s;
584892a6 6770 }
df58fc94
RS
6771
6772 /* If any flags still set, then one implementation might need a warning
6773 and the other either will need one of a different kind or none at all.
6774 Pass any remaining flags over to relaxation. */
6775 if (mips_macro_warning.first_frag != NULL)
6776 mips_macro_warning.first_frag->fr_subtype |= subtype;
584892a6
RS
6777}
6778
df58fc94
RS
6779/* Instruction operand formats used in macros that vary between
6780 standard MIPS and microMIPS code. */
6781
833794fc 6782static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
df58fc94
RS
6783static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
6784static const char * const jalr_fmt[2] = { "d,s", "t,s" };
6785static const char * const lui_fmt[2] = { "t,u", "s,u" };
6786static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
833794fc 6787static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
df58fc94
RS
6788static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
6789static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
6790
833794fc 6791#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
6792#define COP12_FMT (cop12_fmt[mips_opts.micromips])
6793#define JALR_FMT (jalr_fmt[mips_opts.micromips])
6794#define LUI_FMT (lui_fmt[mips_opts.micromips])
6795#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
833794fc 6796#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
6797#define SHFT_FMT (shft_fmt[mips_opts.micromips])
6798#define TRAP_FMT (trap_fmt[mips_opts.micromips])
6799
6e1304d8
RS
6800/* Read a macro's relocation codes from *ARGS and store them in *R.
6801 The first argument in *ARGS will be either the code for a single
6802 relocation or -1 followed by the three codes that make up a
6803 composite relocation. */
6804
6805static void
6806macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
6807{
6808 int i, next;
6809
6810 next = va_arg (*args, int);
6811 if (next >= 0)
6812 r[0] = (bfd_reloc_code_real_type) next;
6813 else
f2ae14a1
RS
6814 {
6815 for (i = 0; i < 3; i++)
6816 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
6817 /* This function is only used for 16-bit relocation fields.
6818 To make the macro code simpler, treat an unrelocated value
6819 in the same way as BFD_RELOC_LO16. */
6820 if (r[0] == BFD_RELOC_UNUSED)
6821 r[0] = BFD_RELOC_LO16;
6822 }
6e1304d8
RS
6823}
6824
252b5132
RH
6825/* Build an instruction created by a macro expansion. This is passed
6826 a pointer to the count of instructions created so far, an
6827 expression, the name of the instruction to build, an operand format
6828 string, and corresponding arguments. */
6829
252b5132 6830static void
67c0d1eb 6831macro_build (expressionS *ep, const char *name, const char *fmt, ...)
252b5132 6832{
df58fc94 6833 const struct mips_opcode *mo = NULL;
f6688943 6834 bfd_reloc_code_real_type r[3];
df58fc94 6835 const struct mips_opcode *amo;
e077a1c8 6836 const struct mips_operand *operand;
df58fc94
RS
6837 struct hash_control *hash;
6838 struct mips_cl_insn insn;
252b5132 6839 va_list args;
e077a1c8 6840 unsigned int uval;
252b5132 6841
252b5132 6842 va_start (args, fmt);
252b5132 6843
252b5132
RH
6844 if (mips_opts.mips16)
6845 {
03ea81db 6846 mips16_macro_build (ep, name, fmt, &args);
252b5132
RH
6847 va_end (args);
6848 return;
6849 }
6850
f6688943
TS
6851 r[0] = BFD_RELOC_UNUSED;
6852 r[1] = BFD_RELOC_UNUSED;
6853 r[2] = BFD_RELOC_UNUSED;
df58fc94
RS
6854 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
6855 amo = (struct mips_opcode *) hash_find (hash, name);
6856 gas_assert (amo);
6857 gas_assert (strcmp (name, amo->name) == 0);
1e915849 6858
df58fc94 6859 do
8b082fb1
TS
6860 {
6861 /* Search until we get a match for NAME. It is assumed here that
df58fc94
RS
6862 macros will never generate MDMX, MIPS-3D, or MT instructions.
6863 We try to match an instruction that fulfils the branch delay
6864 slot instruction length requirement (if any) of the previous
6865 instruction. While doing this we record the first instruction
6866 seen that matches all the other conditions and use it anyway
6867 if the requirement cannot be met; we will issue an appropriate
6868 warning later on. */
6869 if (strcmp (fmt, amo->args) == 0
6870 && amo->pinfo != INSN_MACRO
6871 && is_opcode_valid (amo)
6872 && is_size_valid (amo))
6873 {
6874 if (is_delay_slot_valid (amo))
6875 {
6876 mo = amo;
6877 break;
6878 }
6879 else if (!mo)
6880 mo = amo;
6881 }
8b082fb1 6882
df58fc94
RS
6883 ++amo;
6884 gas_assert (amo->name);
252b5132 6885 }
df58fc94 6886 while (strcmp (name, amo->name) == 0);
252b5132 6887
df58fc94 6888 gas_assert (mo);
1e915849 6889 create_insn (&insn, mo);
e077a1c8 6890 for (; *fmt; ++fmt)
252b5132 6891 {
e077a1c8 6892 switch (*fmt)
252b5132 6893 {
252b5132
RH
6894 case ',':
6895 case '(':
6896 case ')':
252b5132 6897 case 'z':
e077a1c8 6898 break;
252b5132
RH
6899
6900 case 'i':
6901 case 'j':
6e1304d8 6902 macro_read_relocs (&args, r);
9c2799c2 6903 gas_assert (*r == BFD_RELOC_GPREL16
e391c024
RS
6904 || *r == BFD_RELOC_MIPS_HIGHER
6905 || *r == BFD_RELOC_HI16_S
6906 || *r == BFD_RELOC_LO16
6907 || *r == BFD_RELOC_MIPS_GOT_OFST);
e077a1c8 6908 break;
e391c024
RS
6909
6910 case 'o':
6911 macro_read_relocs (&args, r);
e077a1c8 6912 break;
252b5132
RH
6913
6914 case 'u':
6e1304d8 6915 macro_read_relocs (&args, r);
9c2799c2 6916 gas_assert (ep != NULL
90ecf173
MR
6917 && (ep->X_op == O_constant
6918 || (ep->X_op == O_symbol
6919 && (*r == BFD_RELOC_MIPS_HIGHEST
6920 || *r == BFD_RELOC_HI16_S
6921 || *r == BFD_RELOC_HI16
6922 || *r == BFD_RELOC_GPREL16
6923 || *r == BFD_RELOC_MIPS_GOT_HI16
6924 || *r == BFD_RELOC_MIPS_CALL_HI16))));
e077a1c8 6925 break;
252b5132
RH
6926
6927 case 'p':
9c2799c2 6928 gas_assert (ep != NULL);
bad36eac 6929
252b5132
RH
6930 /*
6931 * This allows macro() to pass an immediate expression for
6932 * creating short branches without creating a symbol.
bad36eac
DJ
6933 *
6934 * We don't allow branch relaxation for these branches, as
6935 * they should only appear in ".set nomacro" anyway.
252b5132
RH
6936 */
6937 if (ep->X_op == O_constant)
6938 {
df58fc94
RS
6939 /* For microMIPS we always use relocations for branches.
6940 So we should not resolve immediate values. */
6941 gas_assert (!mips_opts.micromips);
6942
bad36eac
DJ
6943 if ((ep->X_add_number & 3) != 0)
6944 as_bad (_("branch to misaligned address (0x%lx)"),
6945 (unsigned long) ep->X_add_number);
6946 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
6947 as_bad (_("branch address range overflow (0x%lx)"),
6948 (unsigned long) ep->X_add_number);
252b5132
RH
6949 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
6950 ep = NULL;
6951 }
6952 else
0b25d3e6 6953 *r = BFD_RELOC_16_PCREL_S2;
e077a1c8 6954 break;
252b5132
RH
6955
6956 case 'a':
9c2799c2 6957 gas_assert (ep != NULL);
f6688943 6958 *r = BFD_RELOC_MIPS_JMP;
e077a1c8 6959 break;
d43b4baf 6960
252b5132 6961 default:
e077a1c8
RS
6962 operand = (mips_opts.micromips
6963 ? decode_micromips_operand (fmt)
6964 : decode_mips_operand (fmt));
6965 if (!operand)
6966 abort ();
6967
6968 uval = va_arg (args, int);
6969 if (operand->type == OP_CLO_CLZ_DEST)
6970 uval |= (uval << 5);
6971 insn_insert_operand (&insn, operand, uval);
6972
6973 if (*fmt == '+' || *fmt == 'm')
6974 ++fmt;
6975 break;
252b5132 6976 }
252b5132
RH
6977 }
6978 va_end (args);
9c2799c2 6979 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 6980
df58fc94 6981 append_insn (&insn, ep, r, TRUE);
252b5132
RH
6982}
6983
6984static void
67c0d1eb 6985mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
03ea81db 6986 va_list *args)
252b5132 6987{
1e915849 6988 struct mips_opcode *mo;
252b5132 6989 struct mips_cl_insn insn;
e077a1c8 6990 const struct mips_operand *operand;
f6688943
TS
6991 bfd_reloc_code_real_type r[3]
6992 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 6993
1e915849 6994 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9c2799c2
NC
6995 gas_assert (mo);
6996 gas_assert (strcmp (name, mo->name) == 0);
252b5132 6997
1e915849 6998 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
252b5132 6999 {
1e915849 7000 ++mo;
9c2799c2
NC
7001 gas_assert (mo->name);
7002 gas_assert (strcmp (name, mo->name) == 0);
252b5132
RH
7003 }
7004
1e915849 7005 create_insn (&insn, mo);
e077a1c8 7006 for (; *fmt; ++fmt)
252b5132
RH
7007 {
7008 int c;
7009
e077a1c8 7010 c = *fmt;
252b5132
RH
7011 switch (c)
7012 {
252b5132
RH
7013 case ',':
7014 case '(':
7015 case ')':
e077a1c8 7016 break;
252b5132
RH
7017
7018 case '0':
7019 case 'S':
7020 case 'P':
7021 case 'R':
e077a1c8 7022 break;
252b5132
RH
7023
7024 case '<':
7025 case '>':
7026 case '4':
7027 case '5':
7028 case 'H':
7029 case 'W':
7030 case 'D':
7031 case 'j':
7032 case '8':
7033 case 'V':
7034 case 'C':
7035 case 'U':
7036 case 'k':
7037 case 'K':
7038 case 'p':
7039 case 'q':
7040 {
b886a2ab
RS
7041 offsetT value;
7042
9c2799c2 7043 gas_assert (ep != NULL);
252b5132
RH
7044
7045 if (ep->X_op != O_constant)
874e8986 7046 *r = (int) BFD_RELOC_UNUSED + c;
b886a2ab 7047 else if (calculate_reloc (*r, ep->X_add_number, &value))
252b5132 7048 {
b886a2ab 7049 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
252b5132 7050 ep = NULL;
f6688943 7051 *r = BFD_RELOC_UNUSED;
252b5132
RH
7052 }
7053 }
e077a1c8 7054 break;
252b5132 7055
e077a1c8
RS
7056 default:
7057 operand = decode_mips16_operand (c, FALSE);
7058 if (!operand)
7059 abort ();
252b5132 7060
4a06e5a2 7061 insn_insert_operand (&insn, operand, va_arg (*args, int));
e077a1c8
RS
7062 break;
7063 }
252b5132
RH
7064 }
7065
9c2799c2 7066 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 7067
df58fc94 7068 append_insn (&insn, ep, r, TRUE);
252b5132
RH
7069}
7070
2051e8c4
MR
7071/*
7072 * Sign-extend 32-bit mode constants that have bit 31 set and all
7073 * higher bits unset.
7074 */
9f872bbe 7075static void
2051e8c4
MR
7076normalize_constant_expr (expressionS *ex)
7077{
9ee2a2d4 7078 if (ex->X_op == O_constant
2051e8c4
MR
7079 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7080 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7081 - 0x80000000);
7082}
7083
7084/*
7085 * Sign-extend 32-bit mode address offsets that have bit 31 set and
7086 * all higher bits unset.
7087 */
7088static void
7089normalize_address_expr (expressionS *ex)
7090{
7091 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7092 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7093 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7094 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7095 - 0x80000000);
7096}
7097
438c16b8
TS
7098/*
7099 * Generate a "jalr" instruction with a relocation hint to the called
7100 * function. This occurs in NewABI PIC code.
7101 */
7102static void
df58fc94 7103macro_build_jalr (expressionS *ep, int cprestore)
438c16b8 7104{
df58fc94
RS
7105 static const bfd_reloc_code_real_type jalr_relocs[2]
7106 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
7107 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
7108 const char *jalr;
685736be 7109 char *f = NULL;
b34976b6 7110
1180b5a4 7111 if (MIPS_JALR_HINT_P (ep))
f21f8242 7112 {
cc3d92a5 7113 frag_grow (8);
f21f8242
AO
7114 f = frag_more (0);
7115 }
2906b037 7116 if (mips_opts.micromips)
df58fc94 7117 {
833794fc
MR
7118 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
7119 ? "jalr" : "jalrs");
e64af278 7120 if (MIPS_JALR_HINT_P (ep)
833794fc 7121 || mips_opts.insn32
e64af278 7122 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
7123 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
7124 else
7125 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
7126 }
2906b037
MR
7127 else
7128 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
1180b5a4 7129 if (MIPS_JALR_HINT_P (ep))
df58fc94 7130 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
438c16b8
TS
7131}
7132
252b5132
RH
7133/*
7134 * Generate a "lui" instruction.
7135 */
7136static void
67c0d1eb 7137macro_build_lui (expressionS *ep, int regnum)
252b5132 7138{
9c2799c2 7139 gas_assert (! mips_opts.mips16);
252b5132 7140
df58fc94 7141 if (ep->X_op != O_constant)
252b5132 7142 {
9c2799c2 7143 gas_assert (ep->X_op == O_symbol);
bbe506e8
TS
7144 /* _gp_disp is a special case, used from s_cpload.
7145 __gnu_local_gp is used if mips_no_shared. */
9c2799c2 7146 gas_assert (mips_pic == NO_PIC
78e1bb40 7147 || (! HAVE_NEWABI
aa6975fb
ILT
7148 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
7149 || (! mips_in_shared
bbe506e8
TS
7150 && strcmp (S_GET_NAME (ep->X_add_symbol),
7151 "__gnu_local_gp") == 0));
252b5132
RH
7152 }
7153
df58fc94 7154 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
252b5132
RH
7155}
7156
885add95
CD
7157/* Generate a sequence of instructions to do a load or store from a constant
7158 offset off of a base register (breg) into/from a target register (treg),
7159 using AT if necessary. */
7160static void
67c0d1eb
RS
7161macro_build_ldst_constoffset (expressionS *ep, const char *op,
7162 int treg, int breg, int dbl)
885add95 7163{
9c2799c2 7164 gas_assert (ep->X_op == O_constant);
885add95 7165
256ab948 7166 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
7167 if (!dbl)
7168 normalize_constant_expr (ep);
256ab948 7169
67c1ffbe 7170 /* Right now, this routine can only handle signed 32-bit constants. */
ecd13cd3 7171 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
885add95
CD
7172 as_warn (_("operand overflow"));
7173
7174 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
7175 {
7176 /* Signed 16-bit offset will fit in the op. Easy! */
67c0d1eb 7177 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
885add95
CD
7178 }
7179 else
7180 {
7181 /* 32-bit offset, need multiple instructions and AT, like:
7182 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
7183 addu $tempreg,$tempreg,$breg
7184 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
7185 to handle the complete offset. */
67c0d1eb
RS
7186 macro_build_lui (ep, AT);
7187 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7188 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
885add95 7189
741fe287 7190 if (!mips_opts.at)
8fc2e39e 7191 as_bad (_("Macro used $at after \".set noat\""));
885add95
CD
7192 }
7193}
7194
252b5132
RH
7195/* set_at()
7196 * Generates code to set the $at register to true (one)
7197 * if reg is less than the immediate expression.
7198 */
7199static void
67c0d1eb 7200set_at (int reg, int unsignedp)
252b5132
RH
7201{
7202 if (imm_expr.X_op == O_constant
7203 && imm_expr.X_add_number >= -0x8000
7204 && imm_expr.X_add_number < 0x8000)
67c0d1eb
RS
7205 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
7206 AT, reg, BFD_RELOC_LO16);
252b5132
RH
7207 else
7208 {
67c0d1eb
RS
7209 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7210 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
252b5132
RH
7211 }
7212}
7213
252b5132
RH
7214/* Count the leading zeroes by performing a binary chop. This is a
7215 bulky bit of source, but performance is a LOT better for the
7216 majority of values than a simple loop to count the bits:
7217 for (lcnt = 0; (lcnt < 32); lcnt++)
7218 if ((v) & (1 << (31 - lcnt)))
7219 break;
7220 However it is not code size friendly, and the gain will drop a bit
7221 on certain cached systems.
7222*/
7223#define COUNT_TOP_ZEROES(v) \
7224 (((v) & ~0xffff) == 0 \
7225 ? ((v) & ~0xff) == 0 \
7226 ? ((v) & ~0xf) == 0 \
7227 ? ((v) & ~0x3) == 0 \
7228 ? ((v) & ~0x1) == 0 \
7229 ? !(v) \
7230 ? 32 \
7231 : 31 \
7232 : 30 \
7233 : ((v) & ~0x7) == 0 \
7234 ? 29 \
7235 : 28 \
7236 : ((v) & ~0x3f) == 0 \
7237 ? ((v) & ~0x1f) == 0 \
7238 ? 27 \
7239 : 26 \
7240 : ((v) & ~0x7f) == 0 \
7241 ? 25 \
7242 : 24 \
7243 : ((v) & ~0xfff) == 0 \
7244 ? ((v) & ~0x3ff) == 0 \
7245 ? ((v) & ~0x1ff) == 0 \
7246 ? 23 \
7247 : 22 \
7248 : ((v) & ~0x7ff) == 0 \
7249 ? 21 \
7250 : 20 \
7251 : ((v) & ~0x3fff) == 0 \
7252 ? ((v) & ~0x1fff) == 0 \
7253 ? 19 \
7254 : 18 \
7255 : ((v) & ~0x7fff) == 0 \
7256 ? 17 \
7257 : 16 \
7258 : ((v) & ~0xffffff) == 0 \
7259 ? ((v) & ~0xfffff) == 0 \
7260 ? ((v) & ~0x3ffff) == 0 \
7261 ? ((v) & ~0x1ffff) == 0 \
7262 ? 15 \
7263 : 14 \
7264 : ((v) & ~0x7ffff) == 0 \
7265 ? 13 \
7266 : 12 \
7267 : ((v) & ~0x3fffff) == 0 \
7268 ? ((v) & ~0x1fffff) == 0 \
7269 ? 11 \
7270 : 10 \
7271 : ((v) & ~0x7fffff) == 0 \
7272 ? 9 \
7273 : 8 \
7274 : ((v) & ~0xfffffff) == 0 \
7275 ? ((v) & ~0x3ffffff) == 0 \
7276 ? ((v) & ~0x1ffffff) == 0 \
7277 ? 7 \
7278 : 6 \
7279 : ((v) & ~0x7ffffff) == 0 \
7280 ? 5 \
7281 : 4 \
7282 : ((v) & ~0x3fffffff) == 0 \
7283 ? ((v) & ~0x1fffffff) == 0 \
7284 ? 3 \
7285 : 2 \
7286 : ((v) & ~0x7fffffff) == 0 \
7287 ? 1 \
7288 : 0)
7289
7290/* load_register()
67c1ffbe 7291 * This routine generates the least number of instructions necessary to load
252b5132
RH
7292 * an absolute expression value into a register.
7293 */
7294static void
67c0d1eb 7295load_register (int reg, expressionS *ep, int dbl)
252b5132
RH
7296{
7297 int freg;
7298 expressionS hi32, lo32;
7299
7300 if (ep->X_op != O_big)
7301 {
9c2799c2 7302 gas_assert (ep->X_op == O_constant);
256ab948
TS
7303
7304 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
7305 if (!dbl)
7306 normalize_constant_expr (ep);
256ab948
TS
7307
7308 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
252b5132
RH
7309 {
7310 /* We can handle 16 bit signed values with an addiu to
7311 $zero. No need to ever use daddiu here, since $zero and
7312 the result are always correct in 32 bit mode. */
67c0d1eb 7313 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
7314 return;
7315 }
7316 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
7317 {
7318 /* We can handle 16 bit unsigned values with an ori to
7319 $zero. */
67c0d1eb 7320 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
252b5132
RH
7321 return;
7322 }
256ab948 7323 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
252b5132
RH
7324 {
7325 /* 32 bit values require an lui. */
df58fc94 7326 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 7327 if ((ep->X_add_number & 0xffff) != 0)
67c0d1eb 7328 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
252b5132
RH
7329 return;
7330 }
7331 }
7332
7333 /* The value is larger than 32 bits. */
7334
2051e8c4 7335 if (!dbl || HAVE_32BIT_GPRS)
252b5132 7336 {
55e08f71
NC
7337 char value[32];
7338
7339 sprintf_vma (value, ep->X_add_number);
20e1fcfd 7340 as_bad (_("Number (0x%s) larger than 32 bits"), value);
67c0d1eb 7341 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
7342 return;
7343 }
7344
7345 if (ep->X_op != O_big)
7346 {
7347 hi32 = *ep;
7348 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
7349 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
7350 hi32.X_add_number &= 0xffffffff;
7351 lo32 = *ep;
7352 lo32.X_add_number &= 0xffffffff;
7353 }
7354 else
7355 {
9c2799c2 7356 gas_assert (ep->X_add_number > 2);
252b5132
RH
7357 if (ep->X_add_number == 3)
7358 generic_bignum[3] = 0;
7359 else if (ep->X_add_number > 4)
7360 as_bad (_("Number larger than 64 bits"));
7361 lo32.X_op = O_constant;
7362 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
7363 hi32.X_op = O_constant;
7364 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
7365 }
7366
7367 if (hi32.X_add_number == 0)
7368 freg = 0;
7369 else
7370 {
7371 int shift, bit;
7372 unsigned long hi, lo;
7373
956cd1d6 7374 if (hi32.X_add_number == (offsetT) 0xffffffff)
beae10d5
KH
7375 {
7376 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
7377 {
67c0d1eb 7378 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
7379 return;
7380 }
7381 if (lo32.X_add_number & 0x80000000)
7382 {
df58fc94 7383 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 7384 if (lo32.X_add_number & 0xffff)
67c0d1eb 7385 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
beae10d5
KH
7386 return;
7387 }
7388 }
252b5132
RH
7389
7390 /* Check for 16bit shifted constant. We know that hi32 is
7391 non-zero, so start the mask on the first bit of the hi32
7392 value. */
7393 shift = 17;
7394 do
beae10d5
KH
7395 {
7396 unsigned long himask, lomask;
7397
7398 if (shift < 32)
7399 {
7400 himask = 0xffff >> (32 - shift);
7401 lomask = (0xffff << shift) & 0xffffffff;
7402 }
7403 else
7404 {
7405 himask = 0xffff << (shift - 32);
7406 lomask = 0;
7407 }
7408 if ((hi32.X_add_number & ~(offsetT) himask) == 0
7409 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
7410 {
7411 expressionS tmp;
7412
7413 tmp.X_op = O_constant;
7414 if (shift < 32)
7415 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
7416 | (lo32.X_add_number >> shift));
7417 else
7418 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
67c0d1eb 7419 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
df58fc94 7420 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 7421 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
7422 return;
7423 }
f9419b05 7424 ++shift;
beae10d5
KH
7425 }
7426 while (shift <= (64 - 16));
252b5132
RH
7427
7428 /* Find the bit number of the lowest one bit, and store the
7429 shifted value in hi/lo. */
7430 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
7431 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
7432 if (lo != 0)
7433 {
7434 bit = 0;
7435 while ((lo & 1) == 0)
7436 {
7437 lo >>= 1;
7438 ++bit;
7439 }
7440 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
7441 hi >>= bit;
7442 }
7443 else
7444 {
7445 bit = 32;
7446 while ((hi & 1) == 0)
7447 {
7448 hi >>= 1;
7449 ++bit;
7450 }
7451 lo = hi;
7452 hi = 0;
7453 }
7454
7455 /* Optimize if the shifted value is a (power of 2) - 1. */
7456 if ((hi == 0 && ((lo + 1) & lo) == 0)
7457 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
beae10d5
KH
7458 {
7459 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
252b5132 7460 if (shift != 0)
beae10d5 7461 {
252b5132
RH
7462 expressionS tmp;
7463
7464 /* This instruction will set the register to be all
7465 ones. */
beae10d5
KH
7466 tmp.X_op = O_constant;
7467 tmp.X_add_number = (offsetT) -1;
67c0d1eb 7468 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
7469 if (bit != 0)
7470 {
7471 bit += shift;
df58fc94 7472 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 7473 reg, reg, (bit >= 32) ? bit - 32 : bit);
beae10d5 7474 }
df58fc94 7475 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
67c0d1eb 7476 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
7477 return;
7478 }
7479 }
252b5132
RH
7480
7481 /* Sign extend hi32 before calling load_register, because we can
7482 generally get better code when we load a sign extended value. */
7483 if ((hi32.X_add_number & 0x80000000) != 0)
beae10d5 7484 hi32.X_add_number |= ~(offsetT) 0xffffffff;
67c0d1eb 7485 load_register (reg, &hi32, 0);
252b5132
RH
7486 freg = reg;
7487 }
7488 if ((lo32.X_add_number & 0xffff0000) == 0)
7489 {
7490 if (freg != 0)
7491 {
df58fc94 7492 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
252b5132
RH
7493 freg = reg;
7494 }
7495 }
7496 else
7497 {
7498 expressionS mid16;
7499
956cd1d6 7500 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
beae10d5 7501 {
df58fc94
RS
7502 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
7503 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
beae10d5
KH
7504 return;
7505 }
252b5132
RH
7506
7507 if (freg != 0)
7508 {
df58fc94 7509 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
252b5132
RH
7510 freg = reg;
7511 }
7512 mid16 = lo32;
7513 mid16.X_add_number >>= 16;
67c0d1eb 7514 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
df58fc94 7515 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
252b5132
RH
7516 freg = reg;
7517 }
7518 if ((lo32.X_add_number & 0xffff) != 0)
67c0d1eb 7519 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
252b5132
RH
7520}
7521
269137b2
TS
7522static inline void
7523load_delay_nop (void)
7524{
7525 if (!gpr_interlocks)
7526 macro_build (NULL, "nop", "");
7527}
7528
252b5132
RH
7529/* Load an address into a register. */
7530
7531static void
67c0d1eb 7532load_address (int reg, expressionS *ep, int *used_at)
252b5132 7533{
252b5132
RH
7534 if (ep->X_op != O_constant
7535 && ep->X_op != O_symbol)
7536 {
7537 as_bad (_("expression too complex"));
7538 ep->X_op = O_constant;
7539 }
7540
7541 if (ep->X_op == O_constant)
7542 {
67c0d1eb 7543 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
252b5132
RH
7544 return;
7545 }
7546
7547 if (mips_pic == NO_PIC)
7548 {
7549 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 7550 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
7551 Otherwise we want
7552 lui $reg,<sym> (BFD_RELOC_HI16_S)
7553 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
d6bc6245 7554 If we have an addend, we always use the latter form.
76b3015f 7555
d6bc6245
TS
7556 With 64bit address space and a usable $at we want
7557 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
7558 lui $at,<sym> (BFD_RELOC_HI16_S)
7559 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
7560 daddiu $at,<sym> (BFD_RELOC_LO16)
7561 dsll32 $reg,0
3a482fd5 7562 daddu $reg,$reg,$at
76b3015f 7563
c03099e6 7564 If $at is already in use, we use a path which is suboptimal
d6bc6245
TS
7565 on superscalar processors.
7566 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
7567 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
7568 dsll $reg,16
7569 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
7570 dsll $reg,16
7571 daddiu $reg,<sym> (BFD_RELOC_LO16)
6caf9ef4
TS
7572
7573 For GP relative symbols in 64bit address space we can use
7574 the same sequence as in 32bit address space. */
aed1a261 7575 if (HAVE_64BIT_SYMBOLS)
d6bc6245 7576 {
6caf9ef4
TS
7577 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
7578 && !nopic_need_relax (ep->X_add_symbol, 1))
7579 {
7580 relax_start (ep->X_add_symbol);
7581 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
7582 mips_gp_register, BFD_RELOC_GPREL16);
7583 relax_switch ();
7584 }
d6bc6245 7585
741fe287 7586 if (*used_at == 0 && mips_opts.at)
d6bc6245 7587 {
df58fc94
RS
7588 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
7589 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
67c0d1eb
RS
7590 macro_build (ep, "daddiu", "t,r,j", reg, reg,
7591 BFD_RELOC_MIPS_HIGHER);
7592 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
df58fc94 7593 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
67c0d1eb 7594 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
d6bc6245
TS
7595 *used_at = 1;
7596 }
7597 else
7598 {
df58fc94 7599 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb
RS
7600 macro_build (ep, "daddiu", "t,r,j", reg, reg,
7601 BFD_RELOC_MIPS_HIGHER);
df58fc94 7602 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 7603 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
df58fc94 7604 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 7605 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
d6bc6245 7606 }
6caf9ef4
TS
7607
7608 if (mips_relax.sequence)
7609 relax_end ();
d6bc6245 7610 }
252b5132
RH
7611 else
7612 {
d6bc6245 7613 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 7614 && !nopic_need_relax (ep->X_add_symbol, 1))
d6bc6245 7615 {
4d7206a2 7616 relax_start (ep->X_add_symbol);
67c0d1eb 7617 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
17a2f251 7618 mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 7619 relax_switch ();
d6bc6245 7620 }
67c0d1eb
RS
7621 macro_build_lui (ep, reg);
7622 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
7623 reg, reg, BFD_RELOC_LO16);
4d7206a2
RS
7624 if (mips_relax.sequence)
7625 relax_end ();
d6bc6245 7626 }
252b5132 7627 }
0a44bf69 7628 else if (!mips_big_got)
252b5132
RH
7629 {
7630 expressionS ex;
7631
7632 /* If this is a reference to an external symbol, we want
7633 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7634 Otherwise we want
7635 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7636 nop
7637 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
f5040a92
AO
7638 If there is a constant, it must be added in after.
7639
ed6fb7bd 7640 If we have NewABI, we want
f5040a92
AO
7641 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7642 unless we're referencing a global symbol with a non-zero
7643 offset, in which case cst must be added separately. */
ed6fb7bd
SC
7644 if (HAVE_NEWABI)
7645 {
f5040a92
AO
7646 if (ep->X_add_number)
7647 {
4d7206a2 7648 ex.X_add_number = ep->X_add_number;
f5040a92 7649 ep->X_add_number = 0;
4d7206a2 7650 relax_start (ep->X_add_symbol);
67c0d1eb
RS
7651 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
7652 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
7653 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
7654 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7655 ex.X_op = O_constant;
67c0d1eb 7656 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 7657 reg, reg, BFD_RELOC_LO16);
f5040a92 7658 ep->X_add_number = ex.X_add_number;
4d7206a2 7659 relax_switch ();
f5040a92 7660 }
67c0d1eb 7661 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 7662 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2
RS
7663 if (mips_relax.sequence)
7664 relax_end ();
ed6fb7bd
SC
7665 }
7666 else
7667 {
f5040a92
AO
7668 ex.X_add_number = ep->X_add_number;
7669 ep->X_add_number = 0;
67c0d1eb
RS
7670 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
7671 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 7672 load_delay_nop ();
4d7206a2
RS
7673 relax_start (ep->X_add_symbol);
7674 relax_switch ();
67c0d1eb 7675 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 7676 BFD_RELOC_LO16);
4d7206a2 7677 relax_end ();
ed6fb7bd 7678
f5040a92
AO
7679 if (ex.X_add_number != 0)
7680 {
7681 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
7682 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7683 ex.X_op = O_constant;
67c0d1eb 7684 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 7685 reg, reg, BFD_RELOC_LO16);
f5040a92 7686 }
252b5132
RH
7687 }
7688 }
0a44bf69 7689 else if (mips_big_got)
252b5132
RH
7690 {
7691 expressionS ex;
252b5132
RH
7692
7693 /* This is the large GOT case. If this is a reference to an
7694 external symbol, we want
7695 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7696 addu $reg,$reg,$gp
7697 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
f5040a92
AO
7698
7699 Otherwise, for a reference to a local symbol in old ABI, we want
252b5132
RH
7700 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7701 nop
7702 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
684022ea 7703 If there is a constant, it must be added in after.
f5040a92
AO
7704
7705 In the NewABI, for local symbols, with or without offsets, we want:
438c16b8
TS
7706 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
7707 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 7708 */
438c16b8
TS
7709 if (HAVE_NEWABI)
7710 {
4d7206a2 7711 ex.X_add_number = ep->X_add_number;
f5040a92 7712 ep->X_add_number = 0;
4d7206a2 7713 relax_start (ep->X_add_symbol);
df58fc94 7714 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
7715 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7716 reg, reg, mips_gp_register);
7717 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
7718 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
f5040a92
AO
7719 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
7720 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7721 else if (ex.X_add_number)
7722 {
7723 ex.X_op = O_constant;
67c0d1eb
RS
7724 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
7725 BFD_RELOC_LO16);
f5040a92
AO
7726 }
7727
7728 ep->X_add_number = ex.X_add_number;
4d7206a2 7729 relax_switch ();
67c0d1eb 7730 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 7731 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
67c0d1eb
RS
7732 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
7733 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 7734 relax_end ();
438c16b8 7735 }
252b5132 7736 else
438c16b8 7737 {
f5040a92
AO
7738 ex.X_add_number = ep->X_add_number;
7739 ep->X_add_number = 0;
4d7206a2 7740 relax_start (ep->X_add_symbol);
df58fc94 7741 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
7742 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7743 reg, reg, mips_gp_register);
7744 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
7745 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4d7206a2
RS
7746 relax_switch ();
7747 if (reg_needs_delay (mips_gp_register))
438c16b8
TS
7748 {
7749 /* We need a nop before loading from $gp. This special
7750 check is required because the lui which starts the main
7751 instruction stream does not refer to $gp, and so will not
7752 insert the nop which may be required. */
67c0d1eb 7753 macro_build (NULL, "nop", "");
438c16b8 7754 }
67c0d1eb 7755 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 7756 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 7757 load_delay_nop ();
67c0d1eb 7758 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 7759 BFD_RELOC_LO16);
4d7206a2 7760 relax_end ();
438c16b8 7761
f5040a92
AO
7762 if (ex.X_add_number != 0)
7763 {
7764 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
7765 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7766 ex.X_op = O_constant;
67c0d1eb
RS
7767 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
7768 BFD_RELOC_LO16);
f5040a92 7769 }
252b5132
RH
7770 }
7771 }
252b5132
RH
7772 else
7773 abort ();
8fc2e39e 7774
741fe287 7775 if (!mips_opts.at && *used_at == 1)
8fc2e39e 7776 as_bad (_("Macro used $at after \".set noat\""));
252b5132
RH
7777}
7778
ea1fb5dc
RS
7779/* Move the contents of register SOURCE into register DEST. */
7780
7781static void
67c0d1eb 7782move_register (int dest, int source)
ea1fb5dc 7783{
df58fc94
RS
7784 /* Prefer to use a 16-bit microMIPS instruction unless the previous
7785 instruction specifically requires a 32-bit one. */
7786 if (mips_opts.micromips
833794fc 7787 && !mips_opts.insn32
df58fc94 7788 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7951ca42 7789 macro_build (NULL, "move", "mp,mj", dest, source);
df58fc94
RS
7790 else
7791 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
7792 dest, source, 0);
ea1fb5dc
RS
7793}
7794
4d7206a2 7795/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
f6a22291
MR
7796 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
7797 The two alternatives are:
4d7206a2
RS
7798
7799 Global symbol Local sybmol
7800 ------------- ------------
7801 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
7802 ... ...
7803 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
7804
7805 load_got_offset emits the first instruction and add_got_offset
f6a22291
MR
7806 emits the second for a 16-bit offset or add_got_offset_hilo emits
7807 a sequence to add a 32-bit offset using a scratch register. */
4d7206a2
RS
7808
7809static void
67c0d1eb 7810load_got_offset (int dest, expressionS *local)
4d7206a2
RS
7811{
7812 expressionS global;
7813
7814 global = *local;
7815 global.X_add_number = 0;
7816
7817 relax_start (local->X_add_symbol);
67c0d1eb
RS
7818 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
7819 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2 7820 relax_switch ();
67c0d1eb
RS
7821 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
7822 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2
RS
7823 relax_end ();
7824}
7825
7826static void
67c0d1eb 7827add_got_offset (int dest, expressionS *local)
4d7206a2
RS
7828{
7829 expressionS global;
7830
7831 global.X_op = O_constant;
7832 global.X_op_symbol = NULL;
7833 global.X_add_symbol = NULL;
7834 global.X_add_number = local->X_add_number;
7835
7836 relax_start (local->X_add_symbol);
67c0d1eb 7837 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4d7206a2
RS
7838 dest, dest, BFD_RELOC_LO16);
7839 relax_switch ();
67c0d1eb 7840 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4d7206a2
RS
7841 relax_end ();
7842}
7843
f6a22291
MR
7844static void
7845add_got_offset_hilo (int dest, expressionS *local, int tmp)
7846{
7847 expressionS global;
7848 int hold_mips_optimize;
7849
7850 global.X_op = O_constant;
7851 global.X_op_symbol = NULL;
7852 global.X_add_symbol = NULL;
7853 global.X_add_number = local->X_add_number;
7854
7855 relax_start (local->X_add_symbol);
7856 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
7857 relax_switch ();
7858 /* Set mips_optimize around the lui instruction to avoid
7859 inserting an unnecessary nop after the lw. */
7860 hold_mips_optimize = mips_optimize;
7861 mips_optimize = 2;
7862 macro_build_lui (&global, tmp);
7863 mips_optimize = hold_mips_optimize;
7864 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
7865 relax_end ();
7866
7867 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
7868}
7869
df58fc94
RS
7870/* Emit a sequence of instructions to emulate a branch likely operation.
7871 BR is an ordinary branch corresponding to one to be emulated. BRNEG
7872 is its complementing branch with the original condition negated.
7873 CALL is set if the original branch specified the link operation.
7874 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
7875
7876 Code like this is produced in the noreorder mode:
7877
7878 BRNEG <args>, 1f
7879 nop
7880 b <sym>
7881 delay slot (executed only if branch taken)
7882 1:
7883
7884 or, if CALL is set:
7885
7886 BRNEG <args>, 1f
7887 nop
7888 bal <sym>
7889 delay slot (executed only if branch taken)
7890 1:
7891
7892 In the reorder mode the delay slot would be filled with a nop anyway,
7893 so code produced is simply:
7894
7895 BR <args>, <sym>
7896 nop
7897
7898 This function is used when producing code for the microMIPS ASE that
7899 does not implement branch likely instructions in hardware. */
7900
7901static void
7902macro_build_branch_likely (const char *br, const char *brneg,
7903 int call, expressionS *ep, const char *fmt,
7904 unsigned int sreg, unsigned int treg)
7905{
7906 int noreorder = mips_opts.noreorder;
7907 expressionS expr1;
7908
7909 gas_assert (mips_opts.micromips);
7910 start_noreorder ();
7911 if (noreorder)
7912 {
7913 micromips_label_expr (&expr1);
7914 macro_build (&expr1, brneg, fmt, sreg, treg);
7915 macro_build (NULL, "nop", "");
7916 macro_build (ep, call ? "bal" : "b", "p");
7917
7918 /* Set to true so that append_insn adds a label. */
7919 emit_branch_likely_macro = TRUE;
7920 }
7921 else
7922 {
7923 macro_build (ep, br, fmt, sreg, treg);
7924 macro_build (NULL, "nop", "");
7925 }
7926 end_noreorder ();
7927}
7928
7929/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
7930 the condition code tested. EP specifies the branch target. */
7931
7932static void
7933macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
7934{
7935 const int call = 0;
7936 const char *brneg;
7937 const char *br;
7938
7939 switch (type)
7940 {
7941 case M_BC1FL:
7942 br = "bc1f";
7943 brneg = "bc1t";
7944 break;
7945 case M_BC1TL:
7946 br = "bc1t";
7947 brneg = "bc1f";
7948 break;
7949 case M_BC2FL:
7950 br = "bc2f";
7951 brneg = "bc2t";
7952 break;
7953 case M_BC2TL:
7954 br = "bc2t";
7955 brneg = "bc2f";
7956 break;
7957 default:
7958 abort ();
7959 }
7960 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
7961}
7962
7963/* Emit a two-argument branch macro specified by TYPE, using SREG as
7964 the register tested. EP specifies the branch target. */
7965
7966static void
7967macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
7968{
7969 const char *brneg = NULL;
7970 const char *br;
7971 int call = 0;
7972
7973 switch (type)
7974 {
7975 case M_BGEZ:
7976 br = "bgez";
7977 break;
7978 case M_BGEZL:
7979 br = mips_opts.micromips ? "bgez" : "bgezl";
7980 brneg = "bltz";
7981 break;
7982 case M_BGEZALL:
7983 gas_assert (mips_opts.micromips);
833794fc 7984 br = mips_opts.insn32 ? "bgezal" : "bgezals";
df58fc94
RS
7985 brneg = "bltz";
7986 call = 1;
7987 break;
7988 case M_BGTZ:
7989 br = "bgtz";
7990 break;
7991 case M_BGTZL:
7992 br = mips_opts.micromips ? "bgtz" : "bgtzl";
7993 brneg = "blez";
7994 break;
7995 case M_BLEZ:
7996 br = "blez";
7997 break;
7998 case M_BLEZL:
7999 br = mips_opts.micromips ? "blez" : "blezl";
8000 brneg = "bgtz";
8001 break;
8002 case M_BLTZ:
8003 br = "bltz";
8004 break;
8005 case M_BLTZL:
8006 br = mips_opts.micromips ? "bltz" : "bltzl";
8007 brneg = "bgez";
8008 break;
8009 case M_BLTZALL:
8010 gas_assert (mips_opts.micromips);
833794fc 8011 br = mips_opts.insn32 ? "bltzal" : "bltzals";
df58fc94
RS
8012 brneg = "bgez";
8013 call = 1;
8014 break;
8015 default:
8016 abort ();
8017 }
8018 if (mips_opts.micromips && brneg)
8019 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
8020 else
8021 macro_build (ep, br, "s,p", sreg);
8022}
8023
8024/* Emit a three-argument branch macro specified by TYPE, using SREG and
8025 TREG as the registers tested. EP specifies the branch target. */
8026
8027static void
8028macro_build_branch_rsrt (int type, expressionS *ep,
8029 unsigned int sreg, unsigned int treg)
8030{
8031 const char *brneg = NULL;
8032 const int call = 0;
8033 const char *br;
8034
8035 switch (type)
8036 {
8037 case M_BEQ:
8038 case M_BEQ_I:
8039 br = "beq";
8040 break;
8041 case M_BEQL:
8042 case M_BEQL_I:
8043 br = mips_opts.micromips ? "beq" : "beql";
8044 brneg = "bne";
8045 break;
8046 case M_BNE:
8047 case M_BNE_I:
8048 br = "bne";
8049 break;
8050 case M_BNEL:
8051 case M_BNEL_I:
8052 br = mips_opts.micromips ? "bne" : "bnel";
8053 brneg = "beq";
8054 break;
8055 default:
8056 abort ();
8057 }
8058 if (mips_opts.micromips && brneg)
8059 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
8060 else
8061 macro_build (ep, br, "s,t,p", sreg, treg);
8062}
8063
f2ae14a1
RS
8064/* Return the high part that should be loaded in order to make the low
8065 part of VALUE accessible using an offset of OFFBITS bits. */
8066
8067static offsetT
8068offset_high_part (offsetT value, unsigned int offbits)
8069{
8070 offsetT bias;
8071 addressT low_mask;
8072
8073 if (offbits == 0)
8074 return value;
8075 bias = 1 << (offbits - 1);
8076 low_mask = bias * 2 - 1;
8077 return (value + bias) & ~low_mask;
8078}
8079
8080/* Return true if the value stored in offset_expr and offset_reloc
8081 fits into a signed offset of OFFBITS bits. RANGE is the maximum
8082 amount that the caller wants to add without inducing overflow
8083 and ALIGN is the known alignment of the value in bytes. */
8084
8085static bfd_boolean
8086small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
8087{
8088 if (offbits == 16)
8089 {
8090 /* Accept any relocation operator if overflow isn't a concern. */
8091 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
8092 return TRUE;
8093
8094 /* These relocations are guaranteed not to overflow in correct links. */
8095 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
8096 || gprel16_reloc_p (*offset_reloc))
8097 return TRUE;
8098 }
8099 if (offset_expr.X_op == O_constant
8100 && offset_high_part (offset_expr.X_add_number, offbits) == 0
8101 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
8102 return TRUE;
8103 return FALSE;
8104}
8105
252b5132
RH
8106/*
8107 * Build macros
8108 * This routine implements the seemingly endless macro or synthesized
8109 * instructions and addressing modes in the mips assembly language. Many
8110 * of these macros are simple and are similar to each other. These could
67c1ffbe 8111 * probably be handled by some kind of table or grammar approach instead of
252b5132
RH
8112 * this verbose method. Others are not simple macros but are more like
8113 * optimizing code generation.
8114 * One interesting optimization is when several store macros appear
67c1ffbe 8115 * consecutively that would load AT with the upper half of the same address.
252b5132
RH
8116 * The ensuing load upper instructions are ommited. This implies some kind
8117 * of global optimization. We currently only optimize within a single macro.
8118 * For many of the load and store macros if the address is specified as a
8119 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
8120 * first load register 'at' with zero and use it as the base register. The
8121 * mips assembler simply uses register $zero. Just one tiny optimization
8122 * we're missing.
8123 */
8124static void
833794fc 8125macro (struct mips_cl_insn *ip, char *str)
252b5132 8126{
741fe287
MR
8127 unsigned int treg, sreg, dreg, breg;
8128 unsigned int tempreg;
252b5132 8129 int mask;
43841e91 8130 int used_at = 0;
df58fc94 8131 expressionS label_expr;
252b5132 8132 expressionS expr1;
df58fc94 8133 expressionS *ep;
252b5132
RH
8134 const char *s;
8135 const char *s2;
8136 const char *fmt;
8137 int likely = 0;
252b5132 8138 int coproc = 0;
7f3c4072 8139 int offbits = 16;
1abe91b1 8140 int call = 0;
df58fc94
RS
8141 int jals = 0;
8142 int dbl = 0;
8143 int imm = 0;
8144 int ust = 0;
8145 int lp = 0;
f2ae14a1 8146 bfd_boolean large_offset;
252b5132 8147 int off;
252b5132 8148 int hold_mips_optimize;
f2ae14a1 8149 unsigned int align;
252b5132 8150
9c2799c2 8151 gas_assert (! mips_opts.mips16);
252b5132 8152
df58fc94
RS
8153 treg = EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
8154 dreg = EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
8155 sreg = breg = EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
252b5132
RH
8156 mask = ip->insn_mo->mask;
8157
df58fc94
RS
8158 label_expr.X_op = O_constant;
8159 label_expr.X_op_symbol = NULL;
8160 label_expr.X_add_symbol = NULL;
8161 label_expr.X_add_number = 0;
8162
252b5132
RH
8163 expr1.X_op = O_constant;
8164 expr1.X_op_symbol = NULL;
8165 expr1.X_add_symbol = NULL;
8166 expr1.X_add_number = 1;
f2ae14a1 8167 align = 1;
252b5132
RH
8168
8169 switch (mask)
8170 {
8171 case M_DABS:
8172 dbl = 1;
8173 case M_ABS:
df58fc94
RS
8174 /* bgez $a0,1f
8175 move v0,$a0
8176 sub v0,$zero,$a0
8177 1:
8178 */
252b5132 8179
7d10b47d 8180 start_noreorder ();
252b5132 8181
df58fc94
RS
8182 if (mips_opts.micromips)
8183 micromips_label_expr (&label_expr);
8184 else
8185 label_expr.X_add_number = 8;
8186 macro_build (&label_expr, "bgez", "s,p", sreg);
252b5132 8187 if (dreg == sreg)
a605d2b3 8188 macro_build (NULL, "nop", "");
252b5132 8189 else
67c0d1eb
RS
8190 move_register (dreg, sreg);
8191 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
df58fc94
RS
8192 if (mips_opts.micromips)
8193 micromips_add_label ();
252b5132 8194
7d10b47d 8195 end_noreorder ();
8fc2e39e 8196 break;
252b5132
RH
8197
8198 case M_ADD_I:
8199 s = "addi";
8200 s2 = "add";
8201 goto do_addi;
8202 case M_ADDU_I:
8203 s = "addiu";
8204 s2 = "addu";
8205 goto do_addi;
8206 case M_DADD_I:
8207 dbl = 1;
8208 s = "daddi";
8209 s2 = "dadd";
df58fc94
RS
8210 if (!mips_opts.micromips)
8211 goto do_addi;
8212 if (imm_expr.X_op == O_constant
8213 && imm_expr.X_add_number >= -0x200
8214 && imm_expr.X_add_number < 0x200)
8215 {
8216 macro_build (NULL, s, "t,r,.", treg, sreg, imm_expr.X_add_number);
8217 break;
8218 }
8219 goto do_addi_i;
252b5132
RH
8220 case M_DADDU_I:
8221 dbl = 1;
8222 s = "daddiu";
8223 s2 = "daddu";
8224 do_addi:
8225 if (imm_expr.X_op == O_constant
8226 && imm_expr.X_add_number >= -0x8000
8227 && imm_expr.X_add_number < 0x8000)
8228 {
67c0d1eb 8229 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
8fc2e39e 8230 break;
252b5132 8231 }
df58fc94 8232 do_addi_i:
8fc2e39e 8233 used_at = 1;
67c0d1eb
RS
8234 load_register (AT, &imm_expr, dbl);
8235 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
252b5132
RH
8236 break;
8237
8238 case M_AND_I:
8239 s = "andi";
8240 s2 = "and";
8241 goto do_bit;
8242 case M_OR_I:
8243 s = "ori";
8244 s2 = "or";
8245 goto do_bit;
8246 case M_NOR_I:
8247 s = "";
8248 s2 = "nor";
8249 goto do_bit;
8250 case M_XOR_I:
8251 s = "xori";
8252 s2 = "xor";
8253 do_bit:
8254 if (imm_expr.X_op == O_constant
8255 && imm_expr.X_add_number >= 0
8256 && imm_expr.X_add_number < 0x10000)
8257 {
8258 if (mask != M_NOR_I)
67c0d1eb 8259 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
252b5132
RH
8260 else
8261 {
67c0d1eb
RS
8262 macro_build (&imm_expr, "ori", "t,r,i",
8263 treg, sreg, BFD_RELOC_LO16);
8264 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
252b5132 8265 }
8fc2e39e 8266 break;
252b5132
RH
8267 }
8268
8fc2e39e 8269 used_at = 1;
67c0d1eb
RS
8270 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
8271 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
252b5132
RH
8272 break;
8273
8b082fb1
TS
8274 case M_BALIGN:
8275 switch (imm_expr.X_add_number)
8276 {
8277 case 0:
8278 macro_build (NULL, "nop", "");
8279 break;
8280 case 2:
8281 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
8282 break;
03f66e8a
MR
8283 case 1:
8284 case 3:
8b082fb1 8285 macro_build (NULL, "balign", "t,s,2", treg, sreg,
90ecf173 8286 (int) imm_expr.X_add_number);
8b082fb1 8287 break;
03f66e8a
MR
8288 default:
8289 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
8290 (unsigned long) imm_expr.X_add_number);
8291 break;
8b082fb1
TS
8292 }
8293 break;
8294
df58fc94
RS
8295 case M_BC1FL:
8296 case M_BC1TL:
8297 case M_BC2FL:
8298 case M_BC2TL:
8299 gas_assert (mips_opts.micromips);
8300 macro_build_branch_ccl (mask, &offset_expr,
8301 EXTRACT_OPERAND (1, BCC, *ip));
8302 break;
8303
252b5132 8304 case M_BEQ_I:
252b5132 8305 case M_BEQL_I:
252b5132 8306 case M_BNE_I:
252b5132 8307 case M_BNEL_I:
252b5132 8308 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
df58fc94
RS
8309 treg = 0;
8310 else
252b5132 8311 {
df58fc94
RS
8312 treg = AT;
8313 used_at = 1;
8314 load_register (treg, &imm_expr, HAVE_64BIT_GPRS);
252b5132 8315 }
df58fc94
RS
8316 /* Fall through. */
8317 case M_BEQL:
8318 case M_BNEL:
8319 macro_build_branch_rsrt (mask, &offset_expr, sreg, treg);
252b5132
RH
8320 break;
8321
8322 case M_BGEL:
8323 likely = 1;
8324 case M_BGE:
8325 if (treg == 0)
df58fc94
RS
8326 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, sreg);
8327 else if (sreg == 0)
8328 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, treg);
8329 else
252b5132 8330 {
df58fc94
RS
8331 used_at = 1;
8332 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
8333 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
8334 &offset_expr, AT, ZERO);
252b5132 8335 }
df58fc94
RS
8336 break;
8337
8338 case M_BGEZL:
8339 case M_BGEZALL:
8340 case M_BGTZL:
8341 case M_BLEZL:
8342 case M_BLTZL:
8343 case M_BLTZALL:
8344 macro_build_branch_rs (mask, &offset_expr, sreg);
252b5132
RH
8345 break;
8346
8347 case M_BGTL_I:
8348 likely = 1;
8349 case M_BGT_I:
90ecf173 8350 /* Check for > max integer. */
42429eac 8351 if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
8352 {
8353 do_false:
90ecf173 8354 /* Result is always false. */
252b5132 8355 if (! likely)
a605d2b3 8356 macro_build (NULL, "nop", "");
252b5132 8357 else
df58fc94 8358 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8fc2e39e 8359 break;
252b5132
RH
8360 }
8361 if (imm_expr.X_op != O_constant)
8362 as_bad (_("Unsupported large constant"));
f9419b05 8363 ++imm_expr.X_add_number;
252b5132
RH
8364 /* FALLTHROUGH */
8365 case M_BGE_I:
8366 case M_BGEL_I:
8367 if (mask == M_BGEL_I)
8368 likely = 1;
8369 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
8370 {
df58fc94
RS
8371 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
8372 &offset_expr, sreg);
8fc2e39e 8373 break;
252b5132
RH
8374 }
8375 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
8376 {
df58fc94
RS
8377 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
8378 &offset_expr, sreg);
8fc2e39e 8379 break;
252b5132 8380 }
42429eac 8381 if (imm_expr.X_op == O_constant && imm_expr.X_add_number <= GPR_SMIN)
252b5132
RH
8382 {
8383 do_true:
8384 /* result is always true */
8385 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
67c0d1eb 8386 macro_build (&offset_expr, "b", "p");
8fc2e39e 8387 break;
252b5132 8388 }
8fc2e39e 8389 used_at = 1;
67c0d1eb 8390 set_at (sreg, 0);
df58fc94
RS
8391 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
8392 &offset_expr, AT, ZERO);
252b5132
RH
8393 break;
8394
8395 case M_BGEUL:
8396 likely = 1;
8397 case M_BGEU:
8398 if (treg == 0)
8399 goto do_true;
df58fc94
RS
8400 else if (sreg == 0)
8401 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
8402 &offset_expr, ZERO, treg);
8403 else
252b5132 8404 {
df58fc94
RS
8405 used_at = 1;
8406 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
8407 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
8408 &offset_expr, AT, ZERO);
252b5132 8409 }
252b5132
RH
8410 break;
8411
8412 case M_BGTUL_I:
8413 likely = 1;
8414 case M_BGTU_I:
8415 if (sreg == 0
ca4e0257 8416 || (HAVE_32BIT_GPRS
252b5132 8417 && imm_expr.X_op == O_constant
f01dc953 8418 && imm_expr.X_add_number == -1))
252b5132
RH
8419 goto do_false;
8420 if (imm_expr.X_op != O_constant)
8421 as_bad (_("Unsupported large constant"));
f9419b05 8422 ++imm_expr.X_add_number;
252b5132
RH
8423 /* FALLTHROUGH */
8424 case M_BGEU_I:
8425 case M_BGEUL_I:
8426 if (mask == M_BGEUL_I)
8427 likely = 1;
8428 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
8429 goto do_true;
df58fc94
RS
8430 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
8431 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
8432 &offset_expr, sreg, ZERO);
8433 else
252b5132 8434 {
df58fc94
RS
8435 used_at = 1;
8436 set_at (sreg, 1);
8437 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
8438 &offset_expr, AT, ZERO);
252b5132 8439 }
252b5132
RH
8440 break;
8441
8442 case M_BGTL:
8443 likely = 1;
8444 case M_BGT:
8445 if (treg == 0)
df58fc94
RS
8446 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, sreg);
8447 else if (sreg == 0)
8448 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, treg);
8449 else
252b5132 8450 {
df58fc94
RS
8451 used_at = 1;
8452 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
8453 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
8454 &offset_expr, AT, ZERO);
252b5132 8455 }
252b5132
RH
8456 break;
8457
8458 case M_BGTUL:
8459 likely = 1;
8460 case M_BGTU:
8461 if (treg == 0)
df58fc94
RS
8462 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
8463 &offset_expr, sreg, ZERO);
8464 else if (sreg == 0)
8465 goto do_false;
8466 else
252b5132 8467 {
df58fc94
RS
8468 used_at = 1;
8469 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
8470 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
8471 &offset_expr, AT, ZERO);
252b5132 8472 }
252b5132
RH
8473 break;
8474
8475 case M_BLEL:
8476 likely = 1;
8477 case M_BLE:
8478 if (treg == 0)
df58fc94
RS
8479 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, sreg);
8480 else if (sreg == 0)
8481 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, treg);
8482 else
252b5132 8483 {
df58fc94
RS
8484 used_at = 1;
8485 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
8486 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
8487 &offset_expr, AT, ZERO);
252b5132 8488 }
252b5132
RH
8489 break;
8490
8491 case M_BLEL_I:
8492 likely = 1;
8493 case M_BLE_I:
42429eac 8494 if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
8495 goto do_true;
8496 if (imm_expr.X_op != O_constant)
8497 as_bad (_("Unsupported large constant"));
f9419b05 8498 ++imm_expr.X_add_number;
252b5132
RH
8499 /* FALLTHROUGH */
8500 case M_BLT_I:
8501 case M_BLTL_I:
8502 if (mask == M_BLTL_I)
8503 likely = 1;
8504 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
df58fc94
RS
8505 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, sreg);
8506 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
8507 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, sreg);
8508 else
252b5132 8509 {
df58fc94
RS
8510 used_at = 1;
8511 set_at (sreg, 0);
8512 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
8513 &offset_expr, AT, ZERO);
252b5132 8514 }
252b5132
RH
8515 break;
8516
8517 case M_BLEUL:
8518 likely = 1;
8519 case M_BLEU:
8520 if (treg == 0)
df58fc94
RS
8521 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
8522 &offset_expr, sreg, ZERO);
8523 else if (sreg == 0)
8524 goto do_true;
8525 else
252b5132 8526 {
df58fc94
RS
8527 used_at = 1;
8528 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
8529 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
8530 &offset_expr, AT, ZERO);
252b5132 8531 }
252b5132
RH
8532 break;
8533
8534 case M_BLEUL_I:
8535 likely = 1;
8536 case M_BLEU_I:
8537 if (sreg == 0
ca4e0257 8538 || (HAVE_32BIT_GPRS
252b5132 8539 && imm_expr.X_op == O_constant
f01dc953 8540 && imm_expr.X_add_number == -1))
252b5132
RH
8541 goto do_true;
8542 if (imm_expr.X_op != O_constant)
8543 as_bad (_("Unsupported large constant"));
f9419b05 8544 ++imm_expr.X_add_number;
252b5132
RH
8545 /* FALLTHROUGH */
8546 case M_BLTU_I:
8547 case M_BLTUL_I:
8548 if (mask == M_BLTUL_I)
8549 likely = 1;
8550 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
8551 goto do_false;
df58fc94
RS
8552 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
8553 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
8554 &offset_expr, sreg, ZERO);
8555 else
252b5132 8556 {
df58fc94
RS
8557 used_at = 1;
8558 set_at (sreg, 1);
8559 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
8560 &offset_expr, AT, ZERO);
252b5132 8561 }
252b5132
RH
8562 break;
8563
8564 case M_BLTL:
8565 likely = 1;
8566 case M_BLT:
8567 if (treg == 0)
df58fc94
RS
8568 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, sreg);
8569 else if (sreg == 0)
8570 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, treg);
8571 else
252b5132 8572 {
df58fc94
RS
8573 used_at = 1;
8574 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
8575 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
8576 &offset_expr, AT, ZERO);
252b5132 8577 }
252b5132
RH
8578 break;
8579
8580 case M_BLTUL:
8581 likely = 1;
8582 case M_BLTU:
8583 if (treg == 0)
8584 goto do_false;
df58fc94
RS
8585 else if (sreg == 0)
8586 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
8587 &offset_expr, ZERO, treg);
8588 else
252b5132 8589 {
df58fc94
RS
8590 used_at = 1;
8591 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
8592 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
8593 &offset_expr, AT, ZERO);
252b5132 8594 }
252b5132
RH
8595 break;
8596
5f74bc13
CD
8597 case M_DEXT:
8598 {
d5818fca
MR
8599 /* Use unsigned arithmetic. */
8600 addressT pos;
8601 addressT size;
5f74bc13 8602
90ecf173 8603 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5f74bc13
CD
8604 {
8605 as_bad (_("Unsupported large constant"));
8606 pos = size = 1;
8607 }
8608 else
8609 {
d5818fca
MR
8610 pos = imm_expr.X_add_number;
8611 size = imm2_expr.X_add_number;
5f74bc13
CD
8612 }
8613
8614 if (pos > 63)
8615 {
9e12b7a2 8616 report_bad_range (ip, 3, pos, 0, 63, FALSE);
5f74bc13
CD
8617 pos = 1;
8618 }
90ecf173 8619 if (size == 0 || size > 64 || (pos + size - 1) > 63)
5f74bc13 8620 {
9e12b7a2 8621 report_bad_field (pos, size);
5f74bc13
CD
8622 size = 1;
8623 }
8624
8625 if (size <= 32 && pos < 32)
8626 {
8627 s = "dext";
8628 fmt = "t,r,+A,+C";
8629 }
8630 else if (size <= 32)
8631 {
8632 s = "dextu";
8633 fmt = "t,r,+E,+H";
8634 }
8635 else
8636 {
8637 s = "dextm";
8638 fmt = "t,r,+A,+G";
8639 }
d5818fca
MR
8640 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
8641 (int) (size - 1));
5f74bc13 8642 }
8fc2e39e 8643 break;
5f74bc13
CD
8644
8645 case M_DINS:
8646 {
d5818fca
MR
8647 /* Use unsigned arithmetic. */
8648 addressT pos;
8649 addressT size;
5f74bc13 8650
90ecf173 8651 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5f74bc13
CD
8652 {
8653 as_bad (_("Unsupported large constant"));
8654 pos = size = 1;
8655 }
8656 else
8657 {
d5818fca
MR
8658 pos = imm_expr.X_add_number;
8659 size = imm2_expr.X_add_number;
5f74bc13
CD
8660 }
8661
8662 if (pos > 63)
8663 {
9e12b7a2 8664 report_bad_range (ip, 3, pos, 0, 63, FALSE);
5f74bc13
CD
8665 pos = 1;
8666 }
90ecf173 8667 if (size == 0 || size > 64 || (pos + size - 1) > 63)
5f74bc13 8668 {
9e12b7a2 8669 report_bad_field (pos, size);
5f74bc13
CD
8670 size = 1;
8671 }
8672
8673 if (pos < 32 && (pos + size - 1) < 32)
8674 {
8675 s = "dins";
8676 fmt = "t,r,+A,+B";
8677 }
8678 else if (pos >= 32)
8679 {
8680 s = "dinsu";
8681 fmt = "t,r,+E,+F";
8682 }
8683 else
8684 {
8685 s = "dinsm";
8686 fmt = "t,r,+A,+F";
8687 }
750bdd57
AS
8688 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
8689 (int) (pos + size - 1));
5f74bc13 8690 }
8fc2e39e 8691 break;
5f74bc13 8692
252b5132
RH
8693 case M_DDIV_3:
8694 dbl = 1;
8695 case M_DIV_3:
8696 s = "mflo";
8697 goto do_div3;
8698 case M_DREM_3:
8699 dbl = 1;
8700 case M_REM_3:
8701 s = "mfhi";
8702 do_div3:
8703 if (treg == 0)
8704 {
8705 as_warn (_("Divide by zero."));
8706 if (mips_trap)
df58fc94 8707 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 8708 else
df58fc94 8709 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 8710 break;
252b5132
RH
8711 }
8712
7d10b47d 8713 start_noreorder ();
252b5132
RH
8714 if (mips_trap)
8715 {
df58fc94 8716 macro_build (NULL, "teq", TRAP_FMT, treg, ZERO, 7);
67c0d1eb 8717 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
252b5132
RH
8718 }
8719 else
8720 {
df58fc94
RS
8721 if (mips_opts.micromips)
8722 micromips_label_expr (&label_expr);
8723 else
8724 label_expr.X_add_number = 8;
8725 macro_build (&label_expr, "bne", "s,t,p", treg, ZERO);
67c0d1eb 8726 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
df58fc94
RS
8727 macro_build (NULL, "break", BRK_FMT, 7);
8728 if (mips_opts.micromips)
8729 micromips_add_label ();
252b5132
RH
8730 }
8731 expr1.X_add_number = -1;
8fc2e39e 8732 used_at = 1;
f6a22291 8733 load_register (AT, &expr1, dbl);
df58fc94
RS
8734 if (mips_opts.micromips)
8735 micromips_label_expr (&label_expr);
8736 else
8737 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
8738 macro_build (&label_expr, "bne", "s,t,p", treg, AT);
252b5132
RH
8739 if (dbl)
8740 {
8741 expr1.X_add_number = 1;
f6a22291 8742 load_register (AT, &expr1, dbl);
df58fc94 8743 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
252b5132
RH
8744 }
8745 else
8746 {
8747 expr1.X_add_number = 0x80000000;
df58fc94 8748 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
252b5132
RH
8749 }
8750 if (mips_trap)
8751 {
df58fc94 8752 macro_build (NULL, "teq", TRAP_FMT, sreg, AT, 6);
252b5132
RH
8753 /* We want to close the noreorder block as soon as possible, so
8754 that later insns are available for delay slot filling. */
7d10b47d 8755 end_noreorder ();
252b5132
RH
8756 }
8757 else
8758 {
df58fc94
RS
8759 if (mips_opts.micromips)
8760 micromips_label_expr (&label_expr);
8761 else
8762 label_expr.X_add_number = 8;
8763 macro_build (&label_expr, "bne", "s,t,p", sreg, AT);
a605d2b3 8764 macro_build (NULL, "nop", "");
252b5132
RH
8765
8766 /* We want to close the noreorder block as soon as possible, so
8767 that later insns are available for delay slot filling. */
7d10b47d 8768 end_noreorder ();
252b5132 8769
df58fc94 8770 macro_build (NULL, "break", BRK_FMT, 6);
252b5132 8771 }
df58fc94
RS
8772 if (mips_opts.micromips)
8773 micromips_add_label ();
8774 macro_build (NULL, s, MFHL_FMT, dreg);
252b5132
RH
8775 break;
8776
8777 case M_DIV_3I:
8778 s = "div";
8779 s2 = "mflo";
8780 goto do_divi;
8781 case M_DIVU_3I:
8782 s = "divu";
8783 s2 = "mflo";
8784 goto do_divi;
8785 case M_REM_3I:
8786 s = "div";
8787 s2 = "mfhi";
8788 goto do_divi;
8789 case M_REMU_3I:
8790 s = "divu";
8791 s2 = "mfhi";
8792 goto do_divi;
8793 case M_DDIV_3I:
8794 dbl = 1;
8795 s = "ddiv";
8796 s2 = "mflo";
8797 goto do_divi;
8798 case M_DDIVU_3I:
8799 dbl = 1;
8800 s = "ddivu";
8801 s2 = "mflo";
8802 goto do_divi;
8803 case M_DREM_3I:
8804 dbl = 1;
8805 s = "ddiv";
8806 s2 = "mfhi";
8807 goto do_divi;
8808 case M_DREMU_3I:
8809 dbl = 1;
8810 s = "ddivu";
8811 s2 = "mfhi";
8812 do_divi:
8813 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
8814 {
8815 as_warn (_("Divide by zero."));
8816 if (mips_trap)
df58fc94 8817 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 8818 else
df58fc94 8819 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 8820 break;
252b5132
RH
8821 }
8822 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
8823 {
8824 if (strcmp (s2, "mflo") == 0)
67c0d1eb 8825 move_register (dreg, sreg);
252b5132 8826 else
c80c840e 8827 move_register (dreg, ZERO);
8fc2e39e 8828 break;
252b5132
RH
8829 }
8830 if (imm_expr.X_op == O_constant
8831 && imm_expr.X_add_number == -1
8832 && s[strlen (s) - 1] != 'u')
8833 {
8834 if (strcmp (s2, "mflo") == 0)
8835 {
67c0d1eb 8836 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
252b5132
RH
8837 }
8838 else
c80c840e 8839 move_register (dreg, ZERO);
8fc2e39e 8840 break;
252b5132
RH
8841 }
8842
8fc2e39e 8843 used_at = 1;
67c0d1eb
RS
8844 load_register (AT, &imm_expr, dbl);
8845 macro_build (NULL, s, "z,s,t", sreg, AT);
df58fc94 8846 macro_build (NULL, s2, MFHL_FMT, dreg);
252b5132
RH
8847 break;
8848
8849 case M_DIVU_3:
8850 s = "divu";
8851 s2 = "mflo";
8852 goto do_divu3;
8853 case M_REMU_3:
8854 s = "divu";
8855 s2 = "mfhi";
8856 goto do_divu3;
8857 case M_DDIVU_3:
8858 s = "ddivu";
8859 s2 = "mflo";
8860 goto do_divu3;
8861 case M_DREMU_3:
8862 s = "ddivu";
8863 s2 = "mfhi";
8864 do_divu3:
7d10b47d 8865 start_noreorder ();
252b5132
RH
8866 if (mips_trap)
8867 {
df58fc94 8868 macro_build (NULL, "teq", TRAP_FMT, treg, ZERO, 7);
67c0d1eb 8869 macro_build (NULL, s, "z,s,t", sreg, treg);
252b5132
RH
8870 /* We want to close the noreorder block as soon as possible, so
8871 that later insns are available for delay slot filling. */
7d10b47d 8872 end_noreorder ();
252b5132
RH
8873 }
8874 else
8875 {
df58fc94
RS
8876 if (mips_opts.micromips)
8877 micromips_label_expr (&label_expr);
8878 else
8879 label_expr.X_add_number = 8;
8880 macro_build (&label_expr, "bne", "s,t,p", treg, ZERO);
67c0d1eb 8881 macro_build (NULL, s, "z,s,t", sreg, treg);
252b5132
RH
8882
8883 /* We want to close the noreorder block as soon as possible, so
8884 that later insns are available for delay slot filling. */
7d10b47d 8885 end_noreorder ();
df58fc94
RS
8886 macro_build (NULL, "break", BRK_FMT, 7);
8887 if (mips_opts.micromips)
8888 micromips_add_label ();
252b5132 8889 }
df58fc94 8890 macro_build (NULL, s2, MFHL_FMT, dreg);
8fc2e39e 8891 break;
252b5132 8892
1abe91b1
MR
8893 case M_DLCA_AB:
8894 dbl = 1;
8895 case M_LCA_AB:
8896 call = 1;
8897 goto do_la;
252b5132
RH
8898 case M_DLA_AB:
8899 dbl = 1;
8900 case M_LA_AB:
1abe91b1 8901 do_la:
252b5132
RH
8902 /* Load the address of a symbol into a register. If breg is not
8903 zero, we then add a base register to it. */
8904
3bec30a8
TS
8905 if (dbl && HAVE_32BIT_GPRS)
8906 as_warn (_("dla used to load 32-bit register"));
8907
90ecf173 8908 if (!dbl && HAVE_64BIT_OBJECTS)
3bec30a8
TS
8909 as_warn (_("la used to load 64-bit address"));
8910
f2ae14a1 8911 if (small_offset_p (0, align, 16))
0c11417f 8912 {
f2ae14a1
RS
8913 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", treg, breg,
8914 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8fc2e39e 8915 break;
0c11417f
MR
8916 }
8917
741fe287 8918 if (mips_opts.at && (treg == breg))
afdbd6d0
CD
8919 {
8920 tempreg = AT;
8921 used_at = 1;
8922 }
8923 else
8924 {
8925 tempreg = treg;
afdbd6d0
CD
8926 }
8927
252b5132
RH
8928 if (offset_expr.X_op != O_symbol
8929 && offset_expr.X_op != O_constant)
8930 {
f71d0d44 8931 as_bad (_("Expression too complex"));
252b5132
RH
8932 offset_expr.X_op = O_constant;
8933 }
8934
252b5132 8935 if (offset_expr.X_op == O_constant)
aed1a261 8936 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
252b5132
RH
8937 else if (mips_pic == NO_PIC)
8938 {
d6bc6245 8939 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 8940 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
8941 Otherwise we want
8942 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
8943 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
8944 If we have a constant, we need two instructions anyhow,
d6bc6245 8945 so we may as well always use the latter form.
76b3015f 8946
6caf9ef4
TS
8947 With 64bit address space and a usable $at we want
8948 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8949 lui $at,<sym> (BFD_RELOC_HI16_S)
8950 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8951 daddiu $at,<sym> (BFD_RELOC_LO16)
8952 dsll32 $tempreg,0
8953 daddu $tempreg,$tempreg,$at
8954
8955 If $at is already in use, we use a path which is suboptimal
8956 on superscalar processors.
8957 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8958 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8959 dsll $tempreg,16
8960 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
8961 dsll $tempreg,16
8962 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
8963
8964 For GP relative symbols in 64bit address space we can use
8965 the same sequence as in 32bit address space. */
aed1a261 8966 if (HAVE_64BIT_SYMBOLS)
252b5132 8967 {
6caf9ef4
TS
8968 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8969 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8970 {
8971 relax_start (offset_expr.X_add_symbol);
8972 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8973 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
8974 relax_switch ();
8975 }
d6bc6245 8976
741fe287 8977 if (used_at == 0 && mips_opts.at)
98d3f06f 8978 {
df58fc94 8979 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 8980 tempreg, BFD_RELOC_MIPS_HIGHEST);
df58fc94 8981 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 8982 AT, BFD_RELOC_HI16_S);
67c0d1eb 8983 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 8984 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
67c0d1eb 8985 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 8986 AT, AT, BFD_RELOC_LO16);
df58fc94 8987 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 8988 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
98d3f06f
KH
8989 used_at = 1;
8990 }
8991 else
8992 {
df58fc94 8993 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 8994 tempreg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb 8995 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 8996 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 8997 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 8998 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 8999 tempreg, tempreg, BFD_RELOC_HI16_S);
df58fc94 9000 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 9001 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 9002 tempreg, tempreg, BFD_RELOC_LO16);
98d3f06f 9003 }
6caf9ef4
TS
9004
9005 if (mips_relax.sequence)
9006 relax_end ();
98d3f06f
KH
9007 }
9008 else
9009 {
9010 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 9011 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
98d3f06f 9012 {
4d7206a2 9013 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
9014 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9015 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 9016 relax_switch ();
98d3f06f 9017 }
6943caf0 9018 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
f71d0d44 9019 as_bad (_("Offset too large"));
67c0d1eb
RS
9020 macro_build_lui (&offset_expr, tempreg);
9021 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9022 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2
RS
9023 if (mips_relax.sequence)
9024 relax_end ();
98d3f06f 9025 }
252b5132 9026 }
0a44bf69 9027 else if (!mips_big_got && !HAVE_NEWABI)
252b5132 9028 {
9117d219
NC
9029 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
9030
252b5132
RH
9031 /* If this is a reference to an external symbol, and there
9032 is no constant, we want
9033 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
1abe91b1 9034 or for lca or if tempreg is PIC_CALL_REG
9117d219 9035 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
252b5132
RH
9036 For a local symbol, we want
9037 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9038 nop
9039 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
9040
9041 If we have a small constant, and this is a reference to
9042 an external symbol, we want
9043 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9044 nop
9045 addiu $tempreg,$tempreg,<constant>
9046 For a local symbol, we want the same instruction
9047 sequence, but we output a BFD_RELOC_LO16 reloc on the
9048 addiu instruction.
9049
9050 If we have a large constant, and this is a reference to
9051 an external symbol, we want
9052 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9053 lui $at,<hiconstant>
9054 addiu $at,$at,<loconstant>
9055 addu $tempreg,$tempreg,$at
9056 For a local symbol, we want the same instruction
9057 sequence, but we output a BFD_RELOC_LO16 reloc on the
ed6fb7bd 9058 addiu instruction.
ed6fb7bd
SC
9059 */
9060
4d7206a2 9061 if (offset_expr.X_add_number == 0)
252b5132 9062 {
0a44bf69
RS
9063 if (mips_pic == SVR4_PIC
9064 && breg == 0
9065 && (call || tempreg == PIC_CALL_REG))
4d7206a2
RS
9066 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
9067
9068 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
9069 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9070 lw_reloc_type, mips_gp_register);
4d7206a2 9071 if (breg != 0)
252b5132
RH
9072 {
9073 /* We're going to put in an addu instruction using
9074 tempreg, so we may as well insert the nop right
9075 now. */
269137b2 9076 load_delay_nop ();
252b5132 9077 }
4d7206a2 9078 relax_switch ();
67c0d1eb
RS
9079 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9080 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9081 load_delay_nop ();
67c0d1eb
RS
9082 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9083 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2 9084 relax_end ();
252b5132
RH
9085 /* FIXME: If breg == 0, and the next instruction uses
9086 $tempreg, then if this variant case is used an extra
9087 nop will be generated. */
9088 }
4d7206a2
RS
9089 else if (offset_expr.X_add_number >= -0x8000
9090 && offset_expr.X_add_number < 0x8000)
252b5132 9091 {
67c0d1eb 9092 load_got_offset (tempreg, &offset_expr);
269137b2 9093 load_delay_nop ();
67c0d1eb 9094 add_got_offset (tempreg, &offset_expr);
252b5132
RH
9095 }
9096 else
9097 {
4d7206a2
RS
9098 expr1.X_add_number = offset_expr.X_add_number;
9099 offset_expr.X_add_number =
43c0598f 9100 SEXT_16BIT (offset_expr.X_add_number);
67c0d1eb 9101 load_got_offset (tempreg, &offset_expr);
f6a22291 9102 offset_expr.X_add_number = expr1.X_add_number;
252b5132
RH
9103 /* If we are going to add in a base register, and the
9104 target register and the base register are the same,
9105 then we are using AT as a temporary register. Since
9106 we want to load the constant into AT, we add our
9107 current AT (from the global offset table) and the
9108 register into the register now, and pretend we were
9109 not using a base register. */
67c0d1eb 9110 if (breg == treg)
252b5132 9111 {
269137b2 9112 load_delay_nop ();
67c0d1eb 9113 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 9114 treg, AT, breg);
252b5132
RH
9115 breg = 0;
9116 tempreg = treg;
252b5132 9117 }
f6a22291 9118 add_got_offset_hilo (tempreg, &offset_expr, AT);
252b5132
RH
9119 used_at = 1;
9120 }
9121 }
0a44bf69 9122 else if (!mips_big_got && HAVE_NEWABI)
f5040a92 9123 {
67c0d1eb 9124 int add_breg_early = 0;
f5040a92
AO
9125
9126 /* If this is a reference to an external, and there is no
9127 constant, or local symbol (*), with or without a
9128 constant, we want
9129 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
1abe91b1 9130 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
9131 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
9132
9133 If we have a small constant, and this is a reference to
9134 an external symbol, we want
9135 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9136 addiu $tempreg,$tempreg,<constant>
9137
9138 If we have a large constant, and this is a reference to
9139 an external symbol, we want
9140 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9141 lui $at,<hiconstant>
9142 addiu $at,$at,<loconstant>
9143 addu $tempreg,$tempreg,$at
9144
9145 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
9146 local symbols, even though it introduces an additional
9147 instruction. */
9148
f5040a92
AO
9149 if (offset_expr.X_add_number)
9150 {
4d7206a2 9151 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
9152 offset_expr.X_add_number = 0;
9153
4d7206a2 9154 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
9155 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9156 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9157
9158 if (expr1.X_add_number >= -0x8000
9159 && expr1.X_add_number < 0x8000)
9160 {
67c0d1eb
RS
9161 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
9162 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 9163 }
ecd13cd3 9164 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 9165 {
f5040a92
AO
9166 /* If we are going to add in a base register, and the
9167 target register and the base register are the same,
9168 then we are using AT as a temporary register. Since
9169 we want to load the constant into AT, we add our
9170 current AT (from the global offset table) and the
9171 register into the register now, and pretend we were
9172 not using a base register. */
9173 if (breg != treg)
9174 dreg = tempreg;
9175 else
9176 {
9c2799c2 9177 gas_assert (tempreg == AT);
67c0d1eb
RS
9178 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9179 treg, AT, breg);
f5040a92 9180 dreg = treg;
67c0d1eb 9181 add_breg_early = 1;
f5040a92
AO
9182 }
9183
f6a22291 9184 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 9185 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 9186 dreg, dreg, AT);
f5040a92 9187
f5040a92
AO
9188 used_at = 1;
9189 }
9190 else
9191 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
9192
4d7206a2 9193 relax_switch ();
f5040a92
AO
9194 offset_expr.X_add_number = expr1.X_add_number;
9195
67c0d1eb
RS
9196 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9197 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9198 if (add_breg_early)
f5040a92 9199 {
67c0d1eb 9200 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
f899b4b8 9201 treg, tempreg, breg);
f5040a92
AO
9202 breg = 0;
9203 tempreg = treg;
9204 }
4d7206a2 9205 relax_end ();
f5040a92 9206 }
4d7206a2 9207 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
f5040a92 9208 {
4d7206a2 9209 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
9210 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9211 BFD_RELOC_MIPS_CALL16, mips_gp_register);
4d7206a2 9212 relax_switch ();
67c0d1eb
RS
9213 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9214 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2 9215 relax_end ();
f5040a92 9216 }
4d7206a2 9217 else
f5040a92 9218 {
67c0d1eb
RS
9219 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9220 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9221 }
9222 }
0a44bf69 9223 else if (mips_big_got && !HAVE_NEWABI)
252b5132 9224 {
67c0d1eb 9225 int gpdelay;
9117d219
NC
9226 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
9227 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
ed6fb7bd 9228 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
252b5132
RH
9229
9230 /* This is the large GOT case. If this is a reference to an
9231 external symbol, and there is no constant, we want
9232 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9233 addu $tempreg,$tempreg,$gp
9234 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 9235 or for lca or if tempreg is PIC_CALL_REG
9117d219
NC
9236 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
9237 addu $tempreg,$tempreg,$gp
9238 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
252b5132
RH
9239 For a local symbol, we want
9240 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9241 nop
9242 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
9243
9244 If we have a small constant, and this is a reference to
9245 an external symbol, we want
9246 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9247 addu $tempreg,$tempreg,$gp
9248 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
9249 nop
9250 addiu $tempreg,$tempreg,<constant>
9251 For a local symbol, we want
9252 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9253 nop
9254 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
9255
9256 If we have a large constant, and this is a reference to
9257 an external symbol, we want
9258 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9259 addu $tempreg,$tempreg,$gp
9260 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
9261 lui $at,<hiconstant>
9262 addiu $at,$at,<loconstant>
9263 addu $tempreg,$tempreg,$at
9264 For a local symbol, we want
9265 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9266 lui $at,<hiconstant>
9267 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
9268 addu $tempreg,$tempreg,$at
f5040a92 9269 */
438c16b8 9270
252b5132
RH
9271 expr1.X_add_number = offset_expr.X_add_number;
9272 offset_expr.X_add_number = 0;
4d7206a2 9273 relax_start (offset_expr.X_add_symbol);
67c0d1eb 9274 gpdelay = reg_needs_delay (mips_gp_register);
1abe91b1
MR
9275 if (expr1.X_add_number == 0 && breg == 0
9276 && (call || tempreg == PIC_CALL_REG))
9117d219
NC
9277 {
9278 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
9279 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
9280 }
df58fc94 9281 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 9282 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 9283 tempreg, tempreg, mips_gp_register);
67c0d1eb 9284 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 9285 tempreg, lw_reloc_type, tempreg);
252b5132
RH
9286 if (expr1.X_add_number == 0)
9287 {
67c0d1eb 9288 if (breg != 0)
252b5132
RH
9289 {
9290 /* We're going to put in an addu instruction using
9291 tempreg, so we may as well insert the nop right
9292 now. */
269137b2 9293 load_delay_nop ();
252b5132 9294 }
252b5132
RH
9295 }
9296 else if (expr1.X_add_number >= -0x8000
9297 && expr1.X_add_number < 0x8000)
9298 {
269137b2 9299 load_delay_nop ();
67c0d1eb 9300 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9301 tempreg, tempreg, BFD_RELOC_LO16);
252b5132
RH
9302 }
9303 else
9304 {
252b5132
RH
9305 /* If we are going to add in a base register, and the
9306 target register and the base register are the same,
9307 then we are using AT as a temporary register. Since
9308 we want to load the constant into AT, we add our
9309 current AT (from the global offset table) and the
9310 register into the register now, and pretend we were
9311 not using a base register. */
9312 if (breg != treg)
67c0d1eb 9313 dreg = tempreg;
252b5132
RH
9314 else
9315 {
9c2799c2 9316 gas_assert (tempreg == AT);
269137b2 9317 load_delay_nop ();
67c0d1eb 9318 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 9319 treg, AT, breg);
252b5132 9320 dreg = treg;
252b5132
RH
9321 }
9322
f6a22291 9323 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 9324 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
252b5132 9325
252b5132
RH
9326 used_at = 1;
9327 }
43c0598f 9328 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
4d7206a2 9329 relax_switch ();
252b5132 9330
67c0d1eb 9331 if (gpdelay)
252b5132
RH
9332 {
9333 /* This is needed because this instruction uses $gp, but
f5040a92 9334 the first instruction on the main stream does not. */
67c0d1eb 9335 macro_build (NULL, "nop", "");
252b5132 9336 }
ed6fb7bd 9337
67c0d1eb
RS
9338 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9339 local_reloc_type, mips_gp_register);
f5040a92 9340 if (expr1.X_add_number >= -0x8000
252b5132
RH
9341 && expr1.X_add_number < 0x8000)
9342 {
269137b2 9343 load_delay_nop ();
67c0d1eb
RS
9344 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9345 tempreg, tempreg, BFD_RELOC_LO16);
252b5132 9346 /* FIXME: If add_number is 0, and there was no base
f5040a92
AO
9347 register, the external symbol case ended with a load,
9348 so if the symbol turns out to not be external, and
9349 the next instruction uses tempreg, an unnecessary nop
9350 will be inserted. */
252b5132
RH
9351 }
9352 else
9353 {
9354 if (breg == treg)
9355 {
9356 /* We must add in the base register now, as in the
f5040a92 9357 external symbol case. */
9c2799c2 9358 gas_assert (tempreg == AT);
269137b2 9359 load_delay_nop ();
67c0d1eb 9360 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 9361 treg, AT, breg);
252b5132
RH
9362 tempreg = treg;
9363 /* We set breg to 0 because we have arranged to add
f5040a92 9364 it in in both cases. */
252b5132
RH
9365 breg = 0;
9366 }
9367
67c0d1eb
RS
9368 macro_build_lui (&expr1, AT);
9369 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9370 AT, AT, BFD_RELOC_LO16);
67c0d1eb 9371 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 9372 tempreg, tempreg, AT);
8fc2e39e 9373 used_at = 1;
252b5132 9374 }
4d7206a2 9375 relax_end ();
252b5132 9376 }
0a44bf69 9377 else if (mips_big_got && HAVE_NEWABI)
f5040a92 9378 {
f5040a92
AO
9379 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
9380 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
67c0d1eb 9381 int add_breg_early = 0;
f5040a92
AO
9382
9383 /* This is the large GOT case. If this is a reference to an
9384 external symbol, and there is no constant, we want
9385 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9386 add $tempreg,$tempreg,$gp
9387 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 9388 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
9389 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
9390 add $tempreg,$tempreg,$gp
9391 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
9392
9393 If we have a small constant, and this is a reference to
9394 an external symbol, we want
9395 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9396 add $tempreg,$tempreg,$gp
9397 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
9398 addi $tempreg,$tempreg,<constant>
9399
9400 If we have a large constant, and this is a reference to
9401 an external symbol, we want
9402 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9403 addu $tempreg,$tempreg,$gp
9404 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
9405 lui $at,<hiconstant>
9406 addi $at,$at,<loconstant>
9407 add $tempreg,$tempreg,$at
9408
9409 If we have NewABI, and we know it's a local symbol, we want
9410 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9411 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9412 otherwise we have to resort to GOT_HI16/GOT_LO16. */
9413
4d7206a2 9414 relax_start (offset_expr.X_add_symbol);
f5040a92 9415
4d7206a2 9416 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
9417 offset_expr.X_add_number = 0;
9418
1abe91b1
MR
9419 if (expr1.X_add_number == 0 && breg == 0
9420 && (call || tempreg == PIC_CALL_REG))
f5040a92
AO
9421 {
9422 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
9423 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
9424 }
df58fc94 9425 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 9426 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 9427 tempreg, tempreg, mips_gp_register);
67c0d1eb
RS
9428 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9429 tempreg, lw_reloc_type, tempreg);
f5040a92
AO
9430
9431 if (expr1.X_add_number == 0)
4d7206a2 9432 ;
f5040a92
AO
9433 else if (expr1.X_add_number >= -0x8000
9434 && expr1.X_add_number < 0x8000)
9435 {
67c0d1eb 9436 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9437 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 9438 }
ecd13cd3 9439 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 9440 {
f5040a92
AO
9441 /* If we are going to add in a base register, and the
9442 target register and the base register are the same,
9443 then we are using AT as a temporary register. Since
9444 we want to load the constant into AT, we add our
9445 current AT (from the global offset table) and the
9446 register into the register now, and pretend we were
9447 not using a base register. */
9448 if (breg != treg)
9449 dreg = tempreg;
9450 else
9451 {
9c2799c2 9452 gas_assert (tempreg == AT);
67c0d1eb 9453 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 9454 treg, AT, breg);
f5040a92 9455 dreg = treg;
67c0d1eb 9456 add_breg_early = 1;
f5040a92
AO
9457 }
9458
f6a22291 9459 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 9460 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
f5040a92 9461
f5040a92
AO
9462 used_at = 1;
9463 }
9464 else
9465 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
9466
4d7206a2 9467 relax_switch ();
f5040a92 9468 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
9469 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9470 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9471 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
9472 tempreg, BFD_RELOC_MIPS_GOT_OFST);
9473 if (add_breg_early)
f5040a92 9474 {
67c0d1eb 9475 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 9476 treg, tempreg, breg);
f5040a92
AO
9477 breg = 0;
9478 tempreg = treg;
9479 }
4d7206a2 9480 relax_end ();
f5040a92 9481 }
252b5132
RH
9482 else
9483 abort ();
9484
9485 if (breg != 0)
aed1a261 9486 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
252b5132
RH
9487 break;
9488
52b6b6b9 9489 case M_MSGSND:
df58fc94 9490 gas_assert (!mips_opts.micromips);
c8276761 9491 macro_build (NULL, "c2", "C", (treg << 16) | 0x01);
c7af4273 9492 break;
52b6b6b9
JM
9493
9494 case M_MSGLD:
df58fc94 9495 gas_assert (!mips_opts.micromips);
c8276761 9496 macro_build (NULL, "c2", "C", 0x02);
c7af4273 9497 break;
52b6b6b9
JM
9498
9499 case M_MSGLD_T:
df58fc94 9500 gas_assert (!mips_opts.micromips);
c8276761 9501 macro_build (NULL, "c2", "C", (treg << 16) | 0x02);
c7af4273 9502 break;
52b6b6b9
JM
9503
9504 case M_MSGWAIT:
df58fc94 9505 gas_assert (!mips_opts.micromips);
52b6b6b9 9506 macro_build (NULL, "c2", "C", 3);
c7af4273 9507 break;
52b6b6b9
JM
9508
9509 case M_MSGWAIT_T:
df58fc94 9510 gas_assert (!mips_opts.micromips);
c8276761 9511 macro_build (NULL, "c2", "C", (treg << 16) | 0x03);
c7af4273 9512 break;
52b6b6b9 9513
252b5132
RH
9514 case M_J_A:
9515 /* The j instruction may not be used in PIC code, since it
9516 requires an absolute address. We convert it to a b
9517 instruction. */
9518 if (mips_pic == NO_PIC)
67c0d1eb 9519 macro_build (&offset_expr, "j", "a");
252b5132 9520 else
67c0d1eb 9521 macro_build (&offset_expr, "b", "p");
8fc2e39e 9522 break;
252b5132
RH
9523
9524 /* The jal instructions must be handled as macros because when
9525 generating PIC code they expand to multi-instruction
9526 sequences. Normally they are simple instructions. */
df58fc94
RS
9527 case M_JALS_1:
9528 dreg = RA;
9529 /* Fall through. */
9530 case M_JALS_2:
9531 gas_assert (mips_opts.micromips);
833794fc
MR
9532 if (mips_opts.insn32)
9533 {
9534 as_bad (_("Opcode not supported in the `insn32' mode `%s'"), str);
9535 break;
9536 }
df58fc94
RS
9537 jals = 1;
9538 goto jal;
252b5132
RH
9539 case M_JAL_1:
9540 dreg = RA;
9541 /* Fall through. */
9542 case M_JAL_2:
df58fc94 9543 jal:
3e722fb5 9544 if (mips_pic == NO_PIC)
df58fc94
RS
9545 {
9546 s = jals ? "jalrs" : "jalr";
e64af278 9547 if (mips_opts.micromips
833794fc 9548 && !mips_opts.insn32
e64af278
MR
9549 && dreg == RA
9550 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
9551 macro_build (NULL, s, "mj", sreg);
9552 else
9553 macro_build (NULL, s, JALR_FMT, dreg, sreg);
9554 }
0a44bf69 9555 else
252b5132 9556 {
df58fc94
RS
9557 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
9558 && mips_cprestore_offset >= 0);
9559
252b5132
RH
9560 if (sreg != PIC_CALL_REG)
9561 as_warn (_("MIPS PIC call to register other than $25"));
bdaaa2e1 9562
833794fc
MR
9563 s = ((mips_opts.micromips
9564 && !mips_opts.insn32
9565 && (!mips_opts.noreorder || cprestore))
df58fc94 9566 ? "jalrs" : "jalr");
e64af278 9567 if (mips_opts.micromips
833794fc 9568 && !mips_opts.insn32
e64af278
MR
9569 && dreg == RA
9570 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
9571 macro_build (NULL, s, "mj", sreg);
9572 else
9573 macro_build (NULL, s, JALR_FMT, dreg, sreg);
0a44bf69 9574 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
252b5132 9575 {
6478892d
TS
9576 if (mips_cprestore_offset < 0)
9577 as_warn (_("No .cprestore pseudo-op used in PIC code"));
9578 else
9579 {
90ecf173 9580 if (!mips_frame_reg_valid)
7a621144
DJ
9581 {
9582 as_warn (_("No .frame pseudo-op used in PIC code"));
9583 /* Quiet this warning. */
9584 mips_frame_reg_valid = 1;
9585 }
90ecf173 9586 if (!mips_cprestore_valid)
7a621144
DJ
9587 {
9588 as_warn (_("No .cprestore pseudo-op used in PIC code"));
9589 /* Quiet this warning. */
9590 mips_cprestore_valid = 1;
9591 }
d3fca0b5
MR
9592 if (mips_opts.noreorder)
9593 macro_build (NULL, "nop", "");
6478892d 9594 expr1.X_add_number = mips_cprestore_offset;
67c0d1eb 9595 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 9596 mips_gp_register,
256ab948
TS
9597 mips_frame_reg,
9598 HAVE_64BIT_ADDRESSES);
6478892d 9599 }
252b5132
RH
9600 }
9601 }
252b5132 9602
8fc2e39e 9603 break;
252b5132 9604
df58fc94
RS
9605 case M_JALS_A:
9606 gas_assert (mips_opts.micromips);
833794fc
MR
9607 if (mips_opts.insn32)
9608 {
9609 as_bad (_("Opcode not supported in the `insn32' mode `%s'"), str);
9610 break;
9611 }
df58fc94
RS
9612 jals = 1;
9613 /* Fall through. */
252b5132
RH
9614 case M_JAL_A:
9615 if (mips_pic == NO_PIC)
df58fc94 9616 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
252b5132
RH
9617 else if (mips_pic == SVR4_PIC)
9618 {
9619 /* If this is a reference to an external symbol, and we are
9620 using a small GOT, we want
9621 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
9622 nop
f9419b05 9623 jalr $ra,$25
252b5132
RH
9624 nop
9625 lw $gp,cprestore($sp)
9626 The cprestore value is set using the .cprestore
9627 pseudo-op. If we are using a big GOT, we want
9628 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
9629 addu $25,$25,$gp
9630 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
9631 nop
f9419b05 9632 jalr $ra,$25
252b5132
RH
9633 nop
9634 lw $gp,cprestore($sp)
9635 If the symbol is not external, we want
9636 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9637 nop
9638 addiu $25,$25,<sym> (BFD_RELOC_LO16)
f9419b05 9639 jalr $ra,$25
252b5132 9640 nop
438c16b8 9641 lw $gp,cprestore($sp)
f5040a92
AO
9642
9643 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
9644 sequences above, minus nops, unless the symbol is local,
9645 which enables us to use GOT_PAGE/GOT_OFST (big got) or
9646 GOT_DISP. */
438c16b8 9647 if (HAVE_NEWABI)
252b5132 9648 {
90ecf173 9649 if (!mips_big_got)
f5040a92 9650 {
4d7206a2 9651 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
9652 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9653 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
f5040a92 9654 mips_gp_register);
4d7206a2 9655 relax_switch ();
67c0d1eb
RS
9656 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9657 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
4d7206a2
RS
9658 mips_gp_register);
9659 relax_end ();
f5040a92
AO
9660 }
9661 else
9662 {
4d7206a2 9663 relax_start (offset_expr.X_add_symbol);
df58fc94 9664 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
9665 BFD_RELOC_MIPS_CALL_HI16);
9666 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
9667 PIC_CALL_REG, mips_gp_register);
9668 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9669 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
9670 PIC_CALL_REG);
4d7206a2 9671 relax_switch ();
67c0d1eb
RS
9672 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9673 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
9674 mips_gp_register);
9675 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9676 PIC_CALL_REG, PIC_CALL_REG,
17a2f251 9677 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 9678 relax_end ();
f5040a92 9679 }
684022ea 9680
df58fc94 9681 macro_build_jalr (&offset_expr, 0);
252b5132
RH
9682 }
9683 else
9684 {
4d7206a2 9685 relax_start (offset_expr.X_add_symbol);
90ecf173 9686 if (!mips_big_got)
438c16b8 9687 {
67c0d1eb
RS
9688 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9689 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
17a2f251 9690 mips_gp_register);
269137b2 9691 load_delay_nop ();
4d7206a2 9692 relax_switch ();
438c16b8 9693 }
252b5132 9694 else
252b5132 9695 {
67c0d1eb
RS
9696 int gpdelay;
9697
9698 gpdelay = reg_needs_delay (mips_gp_register);
df58fc94 9699 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
9700 BFD_RELOC_MIPS_CALL_HI16);
9701 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
9702 PIC_CALL_REG, mips_gp_register);
9703 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9704 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
9705 PIC_CALL_REG);
269137b2 9706 load_delay_nop ();
4d7206a2 9707 relax_switch ();
67c0d1eb
RS
9708 if (gpdelay)
9709 macro_build (NULL, "nop", "");
252b5132 9710 }
67c0d1eb
RS
9711 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9712 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
4d7206a2 9713 mips_gp_register);
269137b2 9714 load_delay_nop ();
67c0d1eb
RS
9715 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9716 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
4d7206a2 9717 relax_end ();
df58fc94 9718 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
438c16b8 9719
6478892d
TS
9720 if (mips_cprestore_offset < 0)
9721 as_warn (_("No .cprestore pseudo-op used in PIC code"));
9722 else
9723 {
90ecf173 9724 if (!mips_frame_reg_valid)
7a621144
DJ
9725 {
9726 as_warn (_("No .frame pseudo-op used in PIC code"));
9727 /* Quiet this warning. */
9728 mips_frame_reg_valid = 1;
9729 }
90ecf173 9730 if (!mips_cprestore_valid)
7a621144
DJ
9731 {
9732 as_warn (_("No .cprestore pseudo-op used in PIC code"));
9733 /* Quiet this warning. */
9734 mips_cprestore_valid = 1;
9735 }
6478892d 9736 if (mips_opts.noreorder)
67c0d1eb 9737 macro_build (NULL, "nop", "");
6478892d 9738 expr1.X_add_number = mips_cprestore_offset;
67c0d1eb 9739 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 9740 mips_gp_register,
256ab948
TS
9741 mips_frame_reg,
9742 HAVE_64BIT_ADDRESSES);
6478892d 9743 }
252b5132
RH
9744 }
9745 }
0a44bf69
RS
9746 else if (mips_pic == VXWORKS_PIC)
9747 as_bad (_("Non-PIC jump used in PIC library"));
252b5132
RH
9748 else
9749 abort ();
9750
8fc2e39e 9751 break;
252b5132 9752
7f3c4072 9753 case M_LBUE_AB:
7f3c4072
CM
9754 s = "lbue";
9755 fmt = "t,+j(b)";
9756 offbits = 9;
9757 goto ld_st;
9758 case M_LHUE_AB:
7f3c4072
CM
9759 s = "lhue";
9760 fmt = "t,+j(b)";
9761 offbits = 9;
9762 goto ld_st;
9763 case M_LBE_AB:
7f3c4072
CM
9764 s = "lbe";
9765 fmt = "t,+j(b)";
9766 offbits = 9;
9767 goto ld_st;
9768 case M_LHE_AB:
7f3c4072
CM
9769 s = "lhe";
9770 fmt = "t,+j(b)";
9771 offbits = 9;
9772 goto ld_st;
9773 case M_LLE_AB:
7f3c4072
CM
9774 s = "lle";
9775 fmt = "t,+j(b)";
9776 offbits = 9;
9777 goto ld_st;
9778 case M_LWE_AB:
7f3c4072
CM
9779 s = "lwe";
9780 fmt = "t,+j(b)";
9781 offbits = 9;
9782 goto ld_st;
9783 case M_LWLE_AB:
7f3c4072
CM
9784 s = "lwle";
9785 fmt = "t,+j(b)";
9786 offbits = 9;
9787 goto ld_st;
9788 case M_LWRE_AB:
7f3c4072
CM
9789 s = "lwre";
9790 fmt = "t,+j(b)";
9791 offbits = 9;
9792 goto ld_st;
9793 case M_SBE_AB:
7f3c4072
CM
9794 s = "sbe";
9795 fmt = "t,+j(b)";
9796 offbits = 9;
9797 goto ld_st;
9798 case M_SCE_AB:
7f3c4072
CM
9799 s = "sce";
9800 fmt = "t,+j(b)";
9801 offbits = 9;
9802 goto ld_st;
9803 case M_SHE_AB:
7f3c4072
CM
9804 s = "she";
9805 fmt = "t,+j(b)";
9806 offbits = 9;
9807 goto ld_st;
9808 case M_SWE_AB:
7f3c4072
CM
9809 s = "swe";
9810 fmt = "t,+j(b)";
9811 offbits = 9;
9812 goto ld_st;
9813 case M_SWLE_AB:
7f3c4072
CM
9814 s = "swle";
9815 fmt = "t,+j(b)";
9816 offbits = 9;
9817 goto ld_st;
9818 case M_SWRE_AB:
7f3c4072
CM
9819 s = "swre";
9820 fmt = "t,+j(b)";
9821 offbits = 9;
9822 goto ld_st;
dec0624d 9823 case M_ACLR_AB:
dec0624d
MR
9824 s = "aclr";
9825 treg = EXTRACT_OPERAND (mips_opts.micromips, 3BITPOS, *ip);
9826 fmt = "\\,~(b)";
7f3c4072 9827 offbits = 12;
dec0624d
MR
9828 goto ld_st;
9829 case M_ASET_AB:
dec0624d
MR
9830 s = "aset";
9831 treg = EXTRACT_OPERAND (mips_opts.micromips, 3BITPOS, *ip);
9832 fmt = "\\,~(b)";
7f3c4072 9833 offbits = 12;
dec0624d 9834 goto ld_st;
252b5132
RH
9835 case M_LB_AB:
9836 s = "lb";
df58fc94 9837 fmt = "t,o(b)";
252b5132
RH
9838 goto ld;
9839 case M_LBU_AB:
9840 s = "lbu";
df58fc94 9841 fmt = "t,o(b)";
252b5132
RH
9842 goto ld;
9843 case M_LH_AB:
9844 s = "lh";
df58fc94 9845 fmt = "t,o(b)";
252b5132
RH
9846 goto ld;
9847 case M_LHU_AB:
9848 s = "lhu";
df58fc94 9849 fmt = "t,o(b)";
252b5132
RH
9850 goto ld;
9851 case M_LW_AB:
9852 s = "lw";
df58fc94 9853 fmt = "t,o(b)";
252b5132
RH
9854 goto ld;
9855 case M_LWC0_AB:
df58fc94 9856 gas_assert (!mips_opts.micromips);
252b5132 9857 s = "lwc0";
df58fc94 9858 fmt = "E,o(b)";
bdaaa2e1 9859 /* Itbl support may require additional care here. */
252b5132 9860 coproc = 1;
df58fc94 9861 goto ld_st;
252b5132
RH
9862 case M_LWC1_AB:
9863 s = "lwc1";
df58fc94 9864 fmt = "T,o(b)";
bdaaa2e1 9865 /* Itbl support may require additional care here. */
252b5132 9866 coproc = 1;
df58fc94 9867 goto ld_st;
252b5132
RH
9868 case M_LWC2_AB:
9869 s = "lwc2";
df58fc94 9870 fmt = COP12_FMT;
7f3c4072 9871 offbits = (mips_opts.micromips ? 12 : 16);
bdaaa2e1 9872 /* Itbl support may require additional care here. */
252b5132 9873 coproc = 1;
df58fc94 9874 goto ld_st;
252b5132 9875 case M_LWC3_AB:
df58fc94 9876 gas_assert (!mips_opts.micromips);
252b5132 9877 s = "lwc3";
df58fc94 9878 fmt = "E,o(b)";
bdaaa2e1 9879 /* Itbl support may require additional care here. */
252b5132 9880 coproc = 1;
df58fc94 9881 goto ld_st;
252b5132
RH
9882 case M_LWL_AB:
9883 s = "lwl";
df58fc94 9884 fmt = MEM12_FMT;
7f3c4072 9885 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 9886 goto ld_st;
252b5132
RH
9887 case M_LWR_AB:
9888 s = "lwr";
df58fc94 9889 fmt = MEM12_FMT;
7f3c4072 9890 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 9891 goto ld_st;
252b5132 9892 case M_LDC1_AB:
252b5132 9893 s = "ldc1";
df58fc94 9894 fmt = "T,o(b)";
bdaaa2e1 9895 /* Itbl support may require additional care here. */
252b5132 9896 coproc = 1;
df58fc94 9897 goto ld_st;
252b5132
RH
9898 case M_LDC2_AB:
9899 s = "ldc2";
df58fc94 9900 fmt = COP12_FMT;
7f3c4072 9901 offbits = (mips_opts.micromips ? 12 : 16);
bdaaa2e1 9902 /* Itbl support may require additional care here. */
252b5132 9903 coproc = 1;
df58fc94 9904 goto ld_st;
c77c0862 9905 case M_LQC2_AB:
c77c0862
RS
9906 s = "lqc2";
9907 fmt = "E,o(b)";
9908 /* Itbl support may require additional care here. */
9909 coproc = 1;
9910 goto ld_st;
252b5132
RH
9911 case M_LDC3_AB:
9912 s = "ldc3";
df58fc94 9913 fmt = "E,o(b)";
bdaaa2e1 9914 /* Itbl support may require additional care here. */
252b5132 9915 coproc = 1;
df58fc94 9916 goto ld_st;
252b5132
RH
9917 case M_LDL_AB:
9918 s = "ldl";
df58fc94 9919 fmt = MEM12_FMT;
7f3c4072 9920 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 9921 goto ld_st;
252b5132
RH
9922 case M_LDR_AB:
9923 s = "ldr";
df58fc94 9924 fmt = MEM12_FMT;
7f3c4072 9925 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 9926 goto ld_st;
252b5132
RH
9927 case M_LL_AB:
9928 s = "ll";
df58fc94 9929 fmt = MEM12_FMT;
7f3c4072 9930 offbits = (mips_opts.micromips ? 12 : 16);
252b5132
RH
9931 goto ld;
9932 case M_LLD_AB:
9933 s = "lld";
df58fc94 9934 fmt = MEM12_FMT;
7f3c4072 9935 offbits = (mips_opts.micromips ? 12 : 16);
252b5132
RH
9936 goto ld;
9937 case M_LWU_AB:
9938 s = "lwu";
df58fc94 9939 fmt = MEM12_FMT;
7f3c4072 9940 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
9941 goto ld;
9942 case M_LWP_AB:
df58fc94
RS
9943 gas_assert (mips_opts.micromips);
9944 s = "lwp";
9945 fmt = "t,~(b)";
7f3c4072 9946 offbits = 12;
df58fc94
RS
9947 lp = 1;
9948 goto ld;
9949 case M_LDP_AB:
df58fc94
RS
9950 gas_assert (mips_opts.micromips);
9951 s = "ldp";
9952 fmt = "t,~(b)";
7f3c4072 9953 offbits = 12;
df58fc94
RS
9954 lp = 1;
9955 goto ld;
9956 case M_LWM_AB:
df58fc94
RS
9957 gas_assert (mips_opts.micromips);
9958 s = "lwm";
9959 fmt = "n,~(b)";
7f3c4072 9960 offbits = 12;
df58fc94
RS
9961 goto ld_st;
9962 case M_LDM_AB:
df58fc94
RS
9963 gas_assert (mips_opts.micromips);
9964 s = "ldm";
9965 fmt = "n,~(b)";
7f3c4072 9966 offbits = 12;
df58fc94
RS
9967 goto ld_st;
9968
252b5132 9969 ld:
f19ccbda
MR
9970 /* We don't want to use $0 as tempreg. */
9971 if (breg == treg + lp || treg + lp == ZERO)
df58fc94 9972 goto ld_st;
252b5132 9973 else
df58fc94
RS
9974 tempreg = treg + lp;
9975 goto ld_noat;
9976
252b5132
RH
9977 case M_SB_AB:
9978 s = "sb";
df58fc94
RS
9979 fmt = "t,o(b)";
9980 goto ld_st;
252b5132
RH
9981 case M_SH_AB:
9982 s = "sh";
df58fc94
RS
9983 fmt = "t,o(b)";
9984 goto ld_st;
252b5132
RH
9985 case M_SW_AB:
9986 s = "sw";
df58fc94
RS
9987 fmt = "t,o(b)";
9988 goto ld_st;
252b5132 9989 case M_SWC0_AB:
df58fc94 9990 gas_assert (!mips_opts.micromips);
252b5132 9991 s = "swc0";
df58fc94 9992 fmt = "E,o(b)";
bdaaa2e1 9993 /* Itbl support may require additional care here. */
252b5132 9994 coproc = 1;
df58fc94 9995 goto ld_st;
252b5132
RH
9996 case M_SWC1_AB:
9997 s = "swc1";
df58fc94 9998 fmt = "T,o(b)";
bdaaa2e1 9999 /* Itbl support may require additional care here. */
252b5132 10000 coproc = 1;
df58fc94 10001 goto ld_st;
252b5132
RH
10002 case M_SWC2_AB:
10003 s = "swc2";
df58fc94 10004 fmt = COP12_FMT;
7f3c4072 10005 offbits = (mips_opts.micromips ? 12 : 16);
bdaaa2e1 10006 /* Itbl support may require additional care here. */
252b5132 10007 coproc = 1;
df58fc94 10008 goto ld_st;
252b5132 10009 case M_SWC3_AB:
df58fc94 10010 gas_assert (!mips_opts.micromips);
252b5132 10011 s = "swc3";
df58fc94 10012 fmt = "E,o(b)";
bdaaa2e1 10013 /* Itbl support may require additional care here. */
252b5132 10014 coproc = 1;
df58fc94 10015 goto ld_st;
252b5132
RH
10016 case M_SWL_AB:
10017 s = "swl";
df58fc94 10018 fmt = MEM12_FMT;
7f3c4072 10019 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 10020 goto ld_st;
252b5132
RH
10021 case M_SWR_AB:
10022 s = "swr";
df58fc94 10023 fmt = MEM12_FMT;
7f3c4072 10024 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 10025 goto ld_st;
252b5132
RH
10026 case M_SC_AB:
10027 s = "sc";
df58fc94 10028 fmt = MEM12_FMT;
7f3c4072 10029 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 10030 goto ld_st;
252b5132
RH
10031 case M_SCD_AB:
10032 s = "scd";
df58fc94 10033 fmt = MEM12_FMT;
7f3c4072 10034 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 10035 goto ld_st;
d43b4baf
TS
10036 case M_CACHE_AB:
10037 s = "cache";
df58fc94 10038 fmt = mips_opts.micromips ? "k,~(b)" : "k,o(b)";
7f3c4072
CM
10039 offbits = (mips_opts.micromips ? 12 : 16);
10040 goto ld_st;
10041 case M_CACHEE_AB:
7f3c4072
CM
10042 s = "cachee";
10043 fmt = "k,+j(b)";
10044 offbits = 9;
df58fc94 10045 goto ld_st;
3eebd5eb
MR
10046 case M_PREF_AB:
10047 s = "pref";
df58fc94 10048 fmt = !mips_opts.micromips ? "k,o(b)" : "k,~(b)";
7f3c4072
CM
10049 offbits = (mips_opts.micromips ? 12 : 16);
10050 goto ld_st;
10051 case M_PREFE_AB:
7f3c4072
CM
10052 s = "prefe";
10053 fmt = "k,+j(b)";
10054 offbits = 9;
df58fc94 10055 goto ld_st;
252b5132 10056 case M_SDC1_AB:
252b5132 10057 s = "sdc1";
df58fc94 10058 fmt = "T,o(b)";
252b5132 10059 coproc = 1;
bdaaa2e1 10060 /* Itbl support may require additional care here. */
df58fc94 10061 goto ld_st;
252b5132
RH
10062 case M_SDC2_AB:
10063 s = "sdc2";
df58fc94 10064 fmt = COP12_FMT;
7f3c4072 10065 offbits = (mips_opts.micromips ? 12 : 16);
c77c0862
RS
10066 /* Itbl support may require additional care here. */
10067 coproc = 1;
10068 goto ld_st;
10069 case M_SQC2_AB:
c77c0862
RS
10070 s = "sqc2";
10071 fmt = "E,o(b)";
bdaaa2e1 10072 /* Itbl support may require additional care here. */
252b5132 10073 coproc = 1;
df58fc94 10074 goto ld_st;
252b5132 10075 case M_SDC3_AB:
df58fc94 10076 gas_assert (!mips_opts.micromips);
252b5132 10077 s = "sdc3";
df58fc94 10078 fmt = "E,o(b)";
bdaaa2e1 10079 /* Itbl support may require additional care here. */
252b5132 10080 coproc = 1;
df58fc94 10081 goto ld_st;
252b5132
RH
10082 case M_SDL_AB:
10083 s = "sdl";
df58fc94 10084 fmt = MEM12_FMT;
7f3c4072 10085 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 10086 goto ld_st;
252b5132
RH
10087 case M_SDR_AB:
10088 s = "sdr";
df58fc94 10089 fmt = MEM12_FMT;
7f3c4072 10090 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
10091 goto ld_st;
10092 case M_SWP_AB:
df58fc94
RS
10093 gas_assert (mips_opts.micromips);
10094 s = "swp";
10095 fmt = "t,~(b)";
7f3c4072 10096 offbits = 12;
df58fc94
RS
10097 goto ld_st;
10098 case M_SDP_AB:
df58fc94
RS
10099 gas_assert (mips_opts.micromips);
10100 s = "sdp";
10101 fmt = "t,~(b)";
7f3c4072 10102 offbits = 12;
df58fc94
RS
10103 goto ld_st;
10104 case M_SWM_AB:
df58fc94
RS
10105 gas_assert (mips_opts.micromips);
10106 s = "swm";
10107 fmt = "n,~(b)";
7f3c4072 10108 offbits = 12;
df58fc94
RS
10109 goto ld_st;
10110 case M_SDM_AB:
df58fc94
RS
10111 gas_assert (mips_opts.micromips);
10112 s = "sdm";
10113 fmt = "n,~(b)";
7f3c4072 10114 offbits = 12;
df58fc94
RS
10115
10116 ld_st:
8fc2e39e 10117 tempreg = AT;
df58fc94 10118 ld_noat:
f2ae14a1
RS
10119 if (small_offset_p (0, align, 16))
10120 {
10121 /* The first case exists for M_LD_AB and M_SD_AB, which are
10122 macros for o32 but which should act like normal instructions
10123 otherwise. */
10124 if (offbits == 16)
10125 macro_build (&offset_expr, s, fmt, treg, -1, offset_reloc[0],
10126 offset_reloc[1], offset_reloc[2], breg);
10127 else if (small_offset_p (0, align, offbits))
10128 {
10129 if (offbits == 0)
10130 macro_build (NULL, s, fmt, treg, breg);
10131 else
10132 macro_build (NULL, s, fmt, treg,
c8276761 10133 (int) offset_expr.X_add_number, breg);
f2ae14a1
RS
10134 }
10135 else
10136 {
10137 if (tempreg == AT)
10138 used_at = 1;
10139 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10140 tempreg, breg, -1, offset_reloc[0],
10141 offset_reloc[1], offset_reloc[2]);
10142 if (offbits == 0)
10143 macro_build (NULL, s, fmt, treg, tempreg);
10144 else
c8276761 10145 macro_build (NULL, s, fmt, treg, 0, tempreg);
f2ae14a1
RS
10146 }
10147 break;
10148 }
10149
10150 if (tempreg == AT)
10151 used_at = 1;
10152
252b5132
RH
10153 if (offset_expr.X_op != O_constant
10154 && offset_expr.X_op != O_symbol)
10155 {
f71d0d44 10156 as_bad (_("Expression too complex"));
252b5132
RH
10157 offset_expr.X_op = O_constant;
10158 }
10159
2051e8c4
MR
10160 if (HAVE_32BIT_ADDRESSES
10161 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
10162 {
10163 char value [32];
10164
10165 sprintf_vma (value, offset_expr.X_add_number);
20e1fcfd 10166 as_bad (_("Number (0x%s) larger than 32 bits"), value);
55e08f71 10167 }
2051e8c4 10168
252b5132
RH
10169 /* A constant expression in PIC code can be handled just as it
10170 is in non PIC code. */
aed1a261
RS
10171 if (offset_expr.X_op == O_constant)
10172 {
f2ae14a1
RS
10173 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
10174 offbits == 0 ? 16 : offbits);
10175 offset_expr.X_add_number -= expr1.X_add_number;
df58fc94 10176
f2ae14a1
RS
10177 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
10178 if (breg != 0)
10179 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10180 tempreg, tempreg, breg);
7f3c4072 10181 if (offbits == 0)
dd6a37e7 10182 {
f2ae14a1 10183 if (offset_expr.X_add_number != 0)
dd6a37e7 10184 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
f2ae14a1 10185 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
dd6a37e7
AP
10186 macro_build (NULL, s, fmt, treg, tempreg);
10187 }
7f3c4072 10188 else if (offbits == 16)
f2ae14a1 10189 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, tempreg);
df58fc94 10190 else
f2ae14a1 10191 macro_build (NULL, s, fmt, treg,
c8276761 10192 (int) offset_expr.X_add_number, tempreg);
df58fc94 10193 }
7f3c4072 10194 else if (offbits != 16)
df58fc94 10195 {
7f3c4072
CM
10196 /* The offset field is too narrow to be used for a low-part
10197 relocation, so load the whole address into the auxillary
f2ae14a1
RS
10198 register. */
10199 load_address (tempreg, &offset_expr, &used_at);
10200 if (breg != 0)
10201 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10202 tempreg, tempreg, breg);
7f3c4072 10203 if (offbits == 0)
dd6a37e7
AP
10204 macro_build (NULL, s, fmt, treg, tempreg);
10205 else
c8276761 10206 macro_build (NULL, s, fmt, treg, 0, tempreg);
aed1a261
RS
10207 }
10208 else if (mips_pic == NO_PIC)
252b5132
RH
10209 {
10210 /* If this is a reference to a GP relative symbol, and there
10211 is no base register, we want
cdf6fd85 10212 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
252b5132
RH
10213 Otherwise, if there is no base register, we want
10214 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10215 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
10216 If we have a constant, we need two instructions anyhow,
10217 so we always use the latter form.
10218
10219 If we have a base register, and this is a reference to a
10220 GP relative symbol, we want
10221 addu $tempreg,$breg,$gp
cdf6fd85 10222 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
252b5132
RH
10223 Otherwise we want
10224 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10225 addu $tempreg,$tempreg,$breg
10226 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245 10227 With a constant we always use the latter case.
76b3015f 10228
d6bc6245
TS
10229 With 64bit address space and no base register and $at usable,
10230 we want
10231 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10232 lui $at,<sym> (BFD_RELOC_HI16_S)
10233 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10234 dsll32 $tempreg,0
10235 daddu $tempreg,$at
10236 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
10237 If we have a base register, we want
10238 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10239 lui $at,<sym> (BFD_RELOC_HI16_S)
10240 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10241 daddu $at,$breg
10242 dsll32 $tempreg,0
10243 daddu $tempreg,$at
10244 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
10245
10246 Without $at we can't generate the optimal path for superscalar
10247 processors here since this would require two temporary registers.
10248 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10249 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10250 dsll $tempreg,16
10251 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10252 dsll $tempreg,16
10253 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
10254 If we have a base register, we want
10255 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10256 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10257 dsll $tempreg,16
10258 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10259 dsll $tempreg,16
10260 daddu $tempreg,$tempreg,$breg
10261 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6373ee54 10262
6caf9ef4 10263 For GP relative symbols in 64bit address space we can use
aed1a261
RS
10264 the same sequence as in 32bit address space. */
10265 if (HAVE_64BIT_SYMBOLS)
d6bc6245 10266 {
aed1a261 10267 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4
TS
10268 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10269 {
10270 relax_start (offset_expr.X_add_symbol);
10271 if (breg == 0)
10272 {
10273 macro_build (&offset_expr, s, fmt, treg,
10274 BFD_RELOC_GPREL16, mips_gp_register);
10275 }
10276 else
10277 {
10278 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10279 tempreg, breg, mips_gp_register);
10280 macro_build (&offset_expr, s, fmt, treg,
10281 BFD_RELOC_GPREL16, tempreg);
10282 }
10283 relax_switch ();
10284 }
d6bc6245 10285
741fe287 10286 if (used_at == 0 && mips_opts.at)
d6bc6245 10287 {
df58fc94 10288 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb 10289 BFD_RELOC_MIPS_HIGHEST);
df58fc94 10290 macro_build (&offset_expr, "lui", LUI_FMT, AT,
67c0d1eb
RS
10291 BFD_RELOC_HI16_S);
10292 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
10293 tempreg, BFD_RELOC_MIPS_HIGHER);
d6bc6245 10294 if (breg != 0)
67c0d1eb 10295 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
df58fc94 10296 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb
RS
10297 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10298 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
10299 tempreg);
d6bc6245
TS
10300 used_at = 1;
10301 }
10302 else
10303 {
df58fc94 10304 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb
RS
10305 BFD_RELOC_MIPS_HIGHEST);
10306 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
10307 tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 10308 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb
RS
10309 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
10310 tempreg, BFD_RELOC_HI16_S);
df58fc94 10311 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
d6bc6245 10312 if (breg != 0)
67c0d1eb 10313 macro_build (NULL, "daddu", "d,v,t",
17a2f251 10314 tempreg, tempreg, breg);
67c0d1eb 10315 macro_build (&offset_expr, s, fmt, treg,
17a2f251 10316 BFD_RELOC_LO16, tempreg);
d6bc6245 10317 }
6caf9ef4
TS
10318
10319 if (mips_relax.sequence)
10320 relax_end ();
8fc2e39e 10321 break;
d6bc6245 10322 }
256ab948 10323
252b5132
RH
10324 if (breg == 0)
10325 {
67c0d1eb 10326 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 10327 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 10328 {
4d7206a2 10329 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10330 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
10331 mips_gp_register);
4d7206a2 10332 relax_switch ();
252b5132 10333 }
67c0d1eb
RS
10334 macro_build_lui (&offset_expr, tempreg);
10335 macro_build (&offset_expr, s, fmt, treg,
17a2f251 10336 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
10337 if (mips_relax.sequence)
10338 relax_end ();
252b5132
RH
10339 }
10340 else
10341 {
67c0d1eb 10342 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 10343 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 10344 {
4d7206a2 10345 relax_start (offset_expr.X_add_symbol);
67c0d1eb 10346 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10347 tempreg, breg, mips_gp_register);
67c0d1eb 10348 macro_build (&offset_expr, s, fmt, treg,
17a2f251 10349 BFD_RELOC_GPREL16, tempreg);
4d7206a2 10350 relax_switch ();
252b5132 10351 }
67c0d1eb
RS
10352 macro_build_lui (&offset_expr, tempreg);
10353 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10354 tempreg, tempreg, breg);
67c0d1eb 10355 macro_build (&offset_expr, s, fmt, treg,
17a2f251 10356 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
10357 if (mips_relax.sequence)
10358 relax_end ();
252b5132
RH
10359 }
10360 }
0a44bf69 10361 else if (!mips_big_got)
252b5132 10362 {
ed6fb7bd 10363 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
f9419b05 10364
252b5132
RH
10365 /* If this is a reference to an external symbol, we want
10366 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10367 nop
10368 <op> $treg,0($tempreg)
10369 Otherwise we want
10370 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10371 nop
10372 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10373 <op> $treg,0($tempreg)
f5040a92
AO
10374
10375 For NewABI, we want
10376 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10377 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
10378
252b5132
RH
10379 If there is a base register, we add it to $tempreg before
10380 the <op>. If there is a constant, we stick it in the
10381 <op> instruction. We don't handle constants larger than
10382 16 bits, because we have no way to load the upper 16 bits
10383 (actually, we could handle them for the subset of cases
10384 in which we are not using $at). */
9c2799c2 10385 gas_assert (offset_expr.X_op == O_symbol);
f5040a92
AO
10386 if (HAVE_NEWABI)
10387 {
67c0d1eb
RS
10388 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10389 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 10390 if (breg != 0)
67c0d1eb 10391 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10392 tempreg, tempreg, breg);
67c0d1eb 10393 macro_build (&offset_expr, s, fmt, treg,
17a2f251 10394 BFD_RELOC_MIPS_GOT_OFST, tempreg);
f5040a92
AO
10395 break;
10396 }
252b5132
RH
10397 expr1.X_add_number = offset_expr.X_add_number;
10398 offset_expr.X_add_number = 0;
10399 if (expr1.X_add_number < -0x8000
10400 || expr1.X_add_number >= 0x8000)
10401 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb
RS
10402 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10403 lw_reloc_type, mips_gp_register);
269137b2 10404 load_delay_nop ();
4d7206a2
RS
10405 relax_start (offset_expr.X_add_symbol);
10406 relax_switch ();
67c0d1eb
RS
10407 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10408 tempreg, BFD_RELOC_LO16);
4d7206a2 10409 relax_end ();
252b5132 10410 if (breg != 0)
67c0d1eb 10411 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10412 tempreg, tempreg, breg);
67c0d1eb 10413 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
252b5132 10414 }
0a44bf69 10415 else if (mips_big_got && !HAVE_NEWABI)
252b5132 10416 {
67c0d1eb 10417 int gpdelay;
252b5132
RH
10418
10419 /* If this is a reference to an external symbol, we want
10420 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10421 addu $tempreg,$tempreg,$gp
10422 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10423 <op> $treg,0($tempreg)
10424 Otherwise we want
10425 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10426 nop
10427 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10428 <op> $treg,0($tempreg)
10429 If there is a base register, we add it to $tempreg before
10430 the <op>. If there is a constant, we stick it in the
10431 <op> instruction. We don't handle constants larger than
10432 16 bits, because we have no way to load the upper 16 bits
10433 (actually, we could handle them for the subset of cases
f5040a92 10434 in which we are not using $at). */
9c2799c2 10435 gas_assert (offset_expr.X_op == O_symbol);
252b5132
RH
10436 expr1.X_add_number = offset_expr.X_add_number;
10437 offset_expr.X_add_number = 0;
10438 if (expr1.X_add_number < -0x8000
10439 || expr1.X_add_number >= 0x8000)
10440 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 10441 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 10442 relax_start (offset_expr.X_add_symbol);
df58fc94 10443 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 10444 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
10445 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
10446 mips_gp_register);
10447 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10448 BFD_RELOC_MIPS_GOT_LO16, tempreg);
4d7206a2 10449 relax_switch ();
67c0d1eb
RS
10450 if (gpdelay)
10451 macro_build (NULL, "nop", "");
10452 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10453 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 10454 load_delay_nop ();
67c0d1eb
RS
10455 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10456 tempreg, BFD_RELOC_LO16);
4d7206a2
RS
10457 relax_end ();
10458
252b5132 10459 if (breg != 0)
67c0d1eb 10460 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10461 tempreg, tempreg, breg);
67c0d1eb 10462 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
252b5132 10463 }
0a44bf69 10464 else if (mips_big_got && HAVE_NEWABI)
f5040a92 10465 {
f5040a92
AO
10466 /* If this is a reference to an external symbol, we want
10467 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10468 add $tempreg,$tempreg,$gp
10469 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10470 <op> $treg,<ofst>($tempreg)
10471 Otherwise, for local symbols, we want:
10472 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10473 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9c2799c2 10474 gas_assert (offset_expr.X_op == O_symbol);
4d7206a2 10475 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10476 offset_expr.X_add_number = 0;
10477 if (expr1.X_add_number < -0x8000
10478 || expr1.X_add_number >= 0x8000)
10479 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4d7206a2 10480 relax_start (offset_expr.X_add_symbol);
df58fc94 10481 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 10482 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
10483 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
10484 mips_gp_register);
10485 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10486 BFD_RELOC_MIPS_GOT_LO16, tempreg);
f5040a92 10487 if (breg != 0)
67c0d1eb 10488 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10489 tempreg, tempreg, breg);
67c0d1eb 10490 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
684022ea 10491
4d7206a2 10492 relax_switch ();
f5040a92 10493 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
10494 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10495 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 10496 if (breg != 0)
67c0d1eb 10497 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10498 tempreg, tempreg, breg);
67c0d1eb 10499 macro_build (&offset_expr, s, fmt, treg,
17a2f251 10500 BFD_RELOC_MIPS_GOT_OFST, tempreg);
4d7206a2 10501 relax_end ();
f5040a92 10502 }
252b5132
RH
10503 else
10504 abort ();
10505
252b5132
RH
10506 break;
10507
833794fc
MR
10508 case M_JRADDIUSP:
10509 gas_assert (mips_opts.micromips);
10510 gas_assert (mips_opts.insn32);
10511 start_noreorder ();
10512 macro_build (NULL, "jr", "s", RA);
10513 expr1.X_add_number = EXTRACT_OPERAND (1, IMMP, *ip) << 2;
10514 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
10515 end_noreorder ();
10516 break;
10517
10518 case M_JRC:
10519 gas_assert (mips_opts.micromips);
10520 gas_assert (mips_opts.insn32);
10521 macro_build (NULL, "jr", "s", sreg);
10522 if (mips_opts.noreorder)
10523 macro_build (NULL, "nop", "");
10524 break;
10525
252b5132
RH
10526 case M_LI:
10527 case M_LI_S:
67c0d1eb 10528 load_register (treg, &imm_expr, 0);
8fc2e39e 10529 break;
252b5132
RH
10530
10531 case M_DLI:
67c0d1eb 10532 load_register (treg, &imm_expr, 1);
8fc2e39e 10533 break;
252b5132
RH
10534
10535 case M_LI_SS:
10536 if (imm_expr.X_op == O_constant)
10537 {
8fc2e39e 10538 used_at = 1;
67c0d1eb
RS
10539 load_register (AT, &imm_expr, 0);
10540 macro_build (NULL, "mtc1", "t,G", AT, treg);
252b5132
RH
10541 break;
10542 }
10543 else
10544 {
9c2799c2 10545 gas_assert (offset_expr.X_op == O_symbol
90ecf173
MR
10546 && strcmp (segment_name (S_GET_SEGMENT
10547 (offset_expr.X_add_symbol)),
10548 ".lit4") == 0
10549 && offset_expr.X_add_number == 0);
67c0d1eb 10550 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
17a2f251 10551 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8fc2e39e 10552 break;
252b5132
RH
10553 }
10554
10555 case M_LI_D:
ca4e0257
RS
10556 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
10557 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
10558 order 32 bits of the value and the low order 32 bits are either
10559 zero or in OFFSET_EXPR. */
252b5132
RH
10560 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
10561 {
ca4e0257 10562 if (HAVE_64BIT_GPRS)
67c0d1eb 10563 load_register (treg, &imm_expr, 1);
252b5132
RH
10564 else
10565 {
10566 int hreg, lreg;
10567
10568 if (target_big_endian)
10569 {
10570 hreg = treg;
10571 lreg = treg + 1;
10572 }
10573 else
10574 {
10575 hreg = treg + 1;
10576 lreg = treg;
10577 }
10578
10579 if (hreg <= 31)
67c0d1eb 10580 load_register (hreg, &imm_expr, 0);
252b5132
RH
10581 if (lreg <= 31)
10582 {
10583 if (offset_expr.X_op == O_absent)
67c0d1eb 10584 move_register (lreg, 0);
252b5132
RH
10585 else
10586 {
9c2799c2 10587 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 10588 load_register (lreg, &offset_expr, 0);
252b5132
RH
10589 }
10590 }
10591 }
8fc2e39e 10592 break;
252b5132
RH
10593 }
10594
10595 /* We know that sym is in the .rdata section. First we get the
10596 upper 16 bits of the address. */
10597 if (mips_pic == NO_PIC)
10598 {
67c0d1eb 10599 macro_build_lui (&offset_expr, AT);
8fc2e39e 10600 used_at = 1;
252b5132 10601 }
0a44bf69 10602 else
252b5132 10603 {
67c0d1eb
RS
10604 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
10605 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8fc2e39e 10606 used_at = 1;
252b5132 10607 }
bdaaa2e1 10608
252b5132 10609 /* Now we load the register(s). */
ca4e0257 10610 if (HAVE_64BIT_GPRS)
8fc2e39e
TS
10611 {
10612 used_at = 1;
10613 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
10614 }
252b5132
RH
10615 else
10616 {
8fc2e39e 10617 used_at = 1;
67c0d1eb 10618 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
f9419b05 10619 if (treg != RA)
252b5132
RH
10620 {
10621 /* FIXME: How in the world do we deal with the possible
10622 overflow here? */
10623 offset_expr.X_add_number += 4;
67c0d1eb 10624 macro_build (&offset_expr, "lw", "t,o(b)",
17a2f251 10625 treg + 1, BFD_RELOC_LO16, AT);
252b5132
RH
10626 }
10627 }
252b5132
RH
10628 break;
10629
10630 case M_LI_DD:
ca4e0257
RS
10631 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
10632 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
10633 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
10634 the value and the low order 32 bits are either zero or in
10635 OFFSET_EXPR. */
252b5132
RH
10636 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
10637 {
8fc2e39e 10638 used_at = 1;
67c0d1eb 10639 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
ca4e0257
RS
10640 if (HAVE_64BIT_FPRS)
10641 {
9c2799c2 10642 gas_assert (HAVE_64BIT_GPRS);
67c0d1eb 10643 macro_build (NULL, "dmtc1", "t,S", AT, treg);
ca4e0257 10644 }
252b5132
RH
10645 else
10646 {
67c0d1eb 10647 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
252b5132 10648 if (offset_expr.X_op == O_absent)
67c0d1eb 10649 macro_build (NULL, "mtc1", "t,G", 0, treg);
252b5132
RH
10650 else
10651 {
9c2799c2 10652 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb
RS
10653 load_register (AT, &offset_expr, 0);
10654 macro_build (NULL, "mtc1", "t,G", AT, treg);
252b5132
RH
10655 }
10656 }
10657 break;
10658 }
10659
9c2799c2 10660 gas_assert (offset_expr.X_op == O_symbol
90ecf173 10661 && offset_expr.X_add_number == 0);
252b5132
RH
10662 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
10663 if (strcmp (s, ".lit8") == 0)
f2ae14a1
RS
10664 {
10665 breg = mips_gp_register;
10666 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
10667 offset_reloc[1] = BFD_RELOC_UNUSED;
10668 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132
RH
10669 }
10670 else
10671 {
9c2799c2 10672 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8fc2e39e 10673 used_at = 1;
0a44bf69 10674 if (mips_pic != NO_PIC)
67c0d1eb
RS
10675 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
10676 BFD_RELOC_MIPS_GOT16, mips_gp_register);
252b5132
RH
10677 else
10678 {
10679 /* FIXME: This won't work for a 64 bit address. */
67c0d1eb 10680 macro_build_lui (&offset_expr, AT);
252b5132 10681 }
bdaaa2e1 10682
252b5132 10683 breg = AT;
f2ae14a1
RS
10684 offset_reloc[0] = BFD_RELOC_LO16;
10685 offset_reloc[1] = BFD_RELOC_UNUSED;
10686 offset_reloc[2] = BFD_RELOC_UNUSED;
10687 }
10688 align = 8;
10689 /* Fall through */
c4a68bea 10690
252b5132
RH
10691 case M_L_DAB:
10692 /*
10693 * The MIPS assembler seems to check for X_add_number not
10694 * being double aligned and generating:
10695 * lui at,%hi(foo+1)
10696 * addu at,at,v1
10697 * addiu at,at,%lo(foo+1)
10698 * lwc1 f2,0(at)
10699 * lwc1 f3,4(at)
10700 * But, the resulting address is the same after relocation so why
10701 * generate the extra instruction?
10702 */
bdaaa2e1 10703 /* Itbl support may require additional care here. */
252b5132 10704 coproc = 1;
df58fc94 10705 fmt = "T,o(b)";
0aa27725 10706 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
10707 {
10708 s = "ldc1";
df58fc94 10709 goto ld_st;
252b5132 10710 }
252b5132 10711 s = "lwc1";
252b5132
RH
10712 goto ldd_std;
10713
10714 case M_S_DAB:
df58fc94
RS
10715 gas_assert (!mips_opts.micromips);
10716 /* Itbl support may require additional care here. */
10717 coproc = 1;
10718 fmt = "T,o(b)";
0aa27725 10719 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
10720 {
10721 s = "sdc1";
df58fc94 10722 goto ld_st;
252b5132 10723 }
252b5132 10724 s = "swc1";
252b5132
RH
10725 goto ldd_std;
10726
e407c74b
NC
10727 case M_LQ_AB:
10728 fmt = "t,o(b)";
10729 s = "lq";
10730 goto ld;
10731
10732 case M_SQ_AB:
10733 fmt = "t,o(b)";
10734 s = "sq";
10735 goto ld_st;
10736
252b5132 10737 case M_LD_AB:
df58fc94 10738 fmt = "t,o(b)";
ca4e0257 10739 if (HAVE_64BIT_GPRS)
252b5132
RH
10740 {
10741 s = "ld";
10742 goto ld;
10743 }
252b5132 10744 s = "lw";
252b5132
RH
10745 goto ldd_std;
10746
10747 case M_SD_AB:
df58fc94 10748 fmt = "t,o(b)";
ca4e0257 10749 if (HAVE_64BIT_GPRS)
252b5132
RH
10750 {
10751 s = "sd";
df58fc94 10752 goto ld_st;
252b5132 10753 }
252b5132 10754 s = "sw";
252b5132
RH
10755
10756 ldd_std:
f2ae14a1
RS
10757 /* Even on a big endian machine $fn comes before $fn+1. We have
10758 to adjust when loading from memory. We set coproc if we must
10759 load $fn+1 first. */
10760 /* Itbl support may require additional care here. */
10761 if (!target_big_endian)
10762 coproc = 0;
10763
10764 if (small_offset_p (0, align, 16))
10765 {
10766 ep = &offset_expr;
10767 if (!small_offset_p (4, align, 16))
10768 {
10769 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
10770 -1, offset_reloc[0], offset_reloc[1],
10771 offset_reloc[2]);
10772 expr1.X_add_number = 0;
10773 ep = &expr1;
10774 breg = AT;
10775 used_at = 1;
10776 offset_reloc[0] = BFD_RELOC_LO16;
10777 offset_reloc[1] = BFD_RELOC_UNUSED;
10778 offset_reloc[2] = BFD_RELOC_UNUSED;
10779 }
10780 if (strcmp (s, "lw") == 0 && treg == breg)
10781 {
10782 ep->X_add_number += 4;
10783 macro_build (ep, s, fmt, treg + 1, -1, offset_reloc[0],
10784 offset_reloc[1], offset_reloc[2], breg);
10785 ep->X_add_number -= 4;
10786 macro_build (ep, s, fmt, treg, -1, offset_reloc[0],
10787 offset_reloc[1], offset_reloc[2], breg);
10788 }
10789 else
10790 {
10791 macro_build (ep, s, fmt, coproc ? treg + 1 : treg, -1,
10792 offset_reloc[0], offset_reloc[1], offset_reloc[2],
10793 breg);
10794 ep->X_add_number += 4;
10795 macro_build (ep, s, fmt, coproc ? treg : treg + 1, -1,
10796 offset_reloc[0], offset_reloc[1], offset_reloc[2],
10797 breg);
10798 }
10799 break;
10800 }
10801
252b5132
RH
10802 if (offset_expr.X_op != O_symbol
10803 && offset_expr.X_op != O_constant)
10804 {
f71d0d44 10805 as_bad (_("Expression too complex"));
252b5132
RH
10806 offset_expr.X_op = O_constant;
10807 }
10808
2051e8c4
MR
10809 if (HAVE_32BIT_ADDRESSES
10810 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
10811 {
10812 char value [32];
10813
10814 sprintf_vma (value, offset_expr.X_add_number);
20e1fcfd 10815 as_bad (_("Number (0x%s) larger than 32 bits"), value);
55e08f71 10816 }
2051e8c4 10817
90ecf173 10818 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
252b5132
RH
10819 {
10820 /* If this is a reference to a GP relative symbol, we want
cdf6fd85
TS
10821 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
10822 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
252b5132
RH
10823 If we have a base register, we use this
10824 addu $at,$breg,$gp
cdf6fd85
TS
10825 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
10826 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
252b5132
RH
10827 If this is not a GP relative symbol, we want
10828 lui $at,<sym> (BFD_RELOC_HI16_S)
10829 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
10830 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
10831 If there is a base register, we add it to $at after the
10832 lui instruction. If there is a constant, we always use
10833 the last case. */
39a59cf8
MR
10834 if (offset_expr.X_op == O_symbol
10835 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 10836 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 10837 {
4d7206a2 10838 relax_start (offset_expr.X_add_symbol);
252b5132
RH
10839 if (breg == 0)
10840 {
c9914766 10841 tempreg = mips_gp_register;
252b5132
RH
10842 }
10843 else
10844 {
67c0d1eb 10845 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10846 AT, breg, mips_gp_register);
252b5132 10847 tempreg = AT;
252b5132
RH
10848 used_at = 1;
10849 }
10850
beae10d5 10851 /* Itbl support may require additional care here. */
67c0d1eb 10852 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
17a2f251 10853 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
10854 offset_expr.X_add_number += 4;
10855
10856 /* Set mips_optimize to 2 to avoid inserting an
10857 undesired nop. */
10858 hold_mips_optimize = mips_optimize;
10859 mips_optimize = 2;
beae10d5 10860 /* Itbl support may require additional care here. */
67c0d1eb 10861 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
17a2f251 10862 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
10863 mips_optimize = hold_mips_optimize;
10864
4d7206a2 10865 relax_switch ();
252b5132 10866
0970e49e 10867 offset_expr.X_add_number -= 4;
252b5132 10868 }
8fc2e39e 10869 used_at = 1;
f2ae14a1
RS
10870 if (offset_high_part (offset_expr.X_add_number, 16)
10871 != offset_high_part (offset_expr.X_add_number + 4, 16))
10872 {
10873 load_address (AT, &offset_expr, &used_at);
10874 offset_expr.X_op = O_constant;
10875 offset_expr.X_add_number = 0;
10876 }
10877 else
10878 macro_build_lui (&offset_expr, AT);
252b5132 10879 if (breg != 0)
67c0d1eb 10880 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 10881 /* Itbl support may require additional care here. */
67c0d1eb 10882 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
17a2f251 10883 BFD_RELOC_LO16, AT);
252b5132
RH
10884 /* FIXME: How do we handle overflow here? */
10885 offset_expr.X_add_number += 4;
beae10d5 10886 /* Itbl support may require additional care here. */
67c0d1eb 10887 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
17a2f251 10888 BFD_RELOC_LO16, AT);
4d7206a2
RS
10889 if (mips_relax.sequence)
10890 relax_end ();
bdaaa2e1 10891 }
0a44bf69 10892 else if (!mips_big_got)
252b5132 10893 {
252b5132
RH
10894 /* If this is a reference to an external symbol, we want
10895 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10896 nop
10897 <op> $treg,0($at)
10898 <op> $treg+1,4($at)
10899 Otherwise we want
10900 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10901 nop
10902 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
10903 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
10904 If there is a base register we add it to $at before the
10905 lwc1 instructions. If there is a constant we include it
10906 in the lwc1 instructions. */
10907 used_at = 1;
10908 expr1.X_add_number = offset_expr.X_add_number;
252b5132
RH
10909 if (expr1.X_add_number < -0x8000
10910 || expr1.X_add_number >= 0x8000 - 4)
10911 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 10912 load_got_offset (AT, &offset_expr);
269137b2 10913 load_delay_nop ();
252b5132 10914 if (breg != 0)
67c0d1eb 10915 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
252b5132
RH
10916
10917 /* Set mips_optimize to 2 to avoid inserting an undesired
10918 nop. */
10919 hold_mips_optimize = mips_optimize;
10920 mips_optimize = 2;
4d7206a2 10921
beae10d5 10922 /* Itbl support may require additional care here. */
4d7206a2 10923 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10924 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
10925 BFD_RELOC_LO16, AT);
4d7206a2 10926 expr1.X_add_number += 4;
67c0d1eb
RS
10927 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
10928 BFD_RELOC_LO16, AT);
4d7206a2 10929 relax_switch ();
67c0d1eb
RS
10930 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
10931 BFD_RELOC_LO16, AT);
4d7206a2 10932 offset_expr.X_add_number += 4;
67c0d1eb
RS
10933 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
10934 BFD_RELOC_LO16, AT);
4d7206a2 10935 relax_end ();
252b5132 10936
4d7206a2 10937 mips_optimize = hold_mips_optimize;
252b5132 10938 }
0a44bf69 10939 else if (mips_big_got)
252b5132 10940 {
67c0d1eb 10941 int gpdelay;
252b5132
RH
10942
10943 /* If this is a reference to an external symbol, we want
10944 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10945 addu $at,$at,$gp
10946 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
10947 nop
10948 <op> $treg,0($at)
10949 <op> $treg+1,4($at)
10950 Otherwise we want
10951 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10952 nop
10953 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
10954 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
10955 If there is a base register we add it to $at before the
10956 lwc1 instructions. If there is a constant we include it
10957 in the lwc1 instructions. */
10958 used_at = 1;
10959 expr1.X_add_number = offset_expr.X_add_number;
10960 offset_expr.X_add_number = 0;
10961 if (expr1.X_add_number < -0x8000
10962 || expr1.X_add_number >= 0x8000 - 4)
10963 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 10964 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 10965 relax_start (offset_expr.X_add_symbol);
df58fc94 10966 macro_build (&offset_expr, "lui", LUI_FMT,
67c0d1eb
RS
10967 AT, BFD_RELOC_MIPS_GOT_HI16);
10968 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10969 AT, AT, mips_gp_register);
67c0d1eb 10970 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 10971 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
269137b2 10972 load_delay_nop ();
252b5132 10973 if (breg != 0)
67c0d1eb 10974 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 10975 /* Itbl support may require additional care here. */
67c0d1eb 10976 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
17a2f251 10977 BFD_RELOC_LO16, AT);
252b5132
RH
10978 expr1.X_add_number += 4;
10979
10980 /* Set mips_optimize to 2 to avoid inserting an undesired
10981 nop. */
10982 hold_mips_optimize = mips_optimize;
10983 mips_optimize = 2;
beae10d5 10984 /* Itbl support may require additional care here. */
67c0d1eb 10985 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
17a2f251 10986 BFD_RELOC_LO16, AT);
252b5132
RH
10987 mips_optimize = hold_mips_optimize;
10988 expr1.X_add_number -= 4;
10989
4d7206a2
RS
10990 relax_switch ();
10991 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
10992 if (gpdelay)
10993 macro_build (NULL, "nop", "");
10994 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
10995 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 10996 load_delay_nop ();
252b5132 10997 if (breg != 0)
67c0d1eb 10998 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 10999 /* Itbl support may require additional care here. */
67c0d1eb
RS
11000 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
11001 BFD_RELOC_LO16, AT);
4d7206a2 11002 offset_expr.X_add_number += 4;
252b5132
RH
11003
11004 /* Set mips_optimize to 2 to avoid inserting an undesired
11005 nop. */
11006 hold_mips_optimize = mips_optimize;
11007 mips_optimize = 2;
beae10d5 11008 /* Itbl support may require additional care here. */
67c0d1eb
RS
11009 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
11010 BFD_RELOC_LO16, AT);
252b5132 11011 mips_optimize = hold_mips_optimize;
4d7206a2 11012 relax_end ();
252b5132 11013 }
252b5132
RH
11014 else
11015 abort ();
11016
252b5132 11017 break;
dd6a37e7
AP
11018
11019 case M_SAA_AB:
dd6a37e7 11020 s = "saa";
7f3c4072 11021 offbits = 0;
dd6a37e7
AP
11022 fmt = "t,(b)";
11023 goto ld_st;
11024 case M_SAAD_AB:
dd6a37e7 11025 s = "saad";
7f3c4072 11026 offbits = 0;
dd6a37e7
AP
11027 fmt = "t,(b)";
11028 goto ld_st;
11029
252b5132
RH
11030 /* New code added to support COPZ instructions.
11031 This code builds table entries out of the macros in mip_opcodes.
11032 R4000 uses interlocks to handle coproc delays.
11033 Other chips (like the R3000) require nops to be inserted for delays.
11034
f72c8c98 11035 FIXME: Currently, we require that the user handle delays.
252b5132
RH
11036 In order to fill delay slots for non-interlocked chips,
11037 we must have a way to specify delays based on the coprocessor.
11038 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
11039 What are the side-effects of the cop instruction?
11040 What cache support might we have and what are its effects?
11041 Both coprocessor & memory require delays. how long???
bdaaa2e1 11042 What registers are read/set/modified?
252b5132
RH
11043
11044 If an itbl is provided to interpret cop instructions,
bdaaa2e1 11045 this knowledge can be encoded in the itbl spec. */
252b5132
RH
11046
11047 case M_COP0:
11048 s = "c0";
11049 goto copz;
11050 case M_COP1:
11051 s = "c1";
11052 goto copz;
11053 case M_COP2:
11054 s = "c2";
11055 goto copz;
11056 case M_COP3:
11057 s = "c3";
11058 copz:
df58fc94 11059 gas_assert (!mips_opts.micromips);
252b5132
RH
11060 /* For now we just do C (same as Cz). The parameter will be
11061 stored in insn_opcode by mips_ip. */
c8276761 11062 macro_build (NULL, s, "C", (int) ip->insn_opcode);
8fc2e39e 11063 break;
252b5132 11064
ea1fb5dc 11065 case M_MOVE:
67c0d1eb 11066 move_register (dreg, sreg);
8fc2e39e 11067 break;
ea1fb5dc 11068
833794fc
MR
11069 case M_MOVEP:
11070 gas_assert (mips_opts.micromips);
11071 gas_assert (mips_opts.insn32);
e76ff5ab
RS
11072 dreg = micromips_to_32_reg_h_map1[EXTRACT_OPERAND (1, MH, *ip)];
11073 breg = micromips_to_32_reg_h_map2[EXTRACT_OPERAND (1, MH, *ip)];
833794fc
MR
11074 sreg = micromips_to_32_reg_m_map[EXTRACT_OPERAND (1, MM, *ip)];
11075 treg = micromips_to_32_reg_n_map[EXTRACT_OPERAND (1, MN, *ip)];
11076 move_register (dreg, sreg);
11077 move_register (breg, treg);
11078 break;
11079
252b5132
RH
11080 case M_DMUL:
11081 dbl = 1;
11082 case M_MUL:
e407c74b
NC
11083 if (mips_opts.arch == CPU_R5900)
11084 {
11085 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", dreg, sreg, treg);
11086 }
11087 else
11088 {
67c0d1eb 11089 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
df58fc94 11090 macro_build (NULL, "mflo", MFHL_FMT, dreg);
e407c74b 11091 }
8fc2e39e 11092 break;
252b5132
RH
11093
11094 case M_DMUL_I:
11095 dbl = 1;
11096 case M_MUL_I:
11097 /* The MIPS assembler some times generates shifts and adds. I'm
11098 not trying to be that fancy. GCC should do this for us
11099 anyway. */
8fc2e39e 11100 used_at = 1;
67c0d1eb
RS
11101 load_register (AT, &imm_expr, dbl);
11102 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
df58fc94 11103 macro_build (NULL, "mflo", MFHL_FMT, dreg);
252b5132
RH
11104 break;
11105
11106 case M_DMULO_I:
11107 dbl = 1;
11108 case M_MULO_I:
11109 imm = 1;
11110 goto do_mulo;
11111
11112 case M_DMULO:
11113 dbl = 1;
11114 case M_MULO:
11115 do_mulo:
7d10b47d 11116 start_noreorder ();
8fc2e39e 11117 used_at = 1;
252b5132 11118 if (imm)
67c0d1eb
RS
11119 load_register (AT, &imm_expr, dbl);
11120 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
df58fc94
RS
11121 macro_build (NULL, "mflo", MFHL_FMT, dreg);
11122 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, dreg, dreg, RA);
11123 macro_build (NULL, "mfhi", MFHL_FMT, AT);
252b5132 11124 if (mips_trap)
df58fc94 11125 macro_build (NULL, "tne", TRAP_FMT, dreg, AT, 6);
252b5132
RH
11126 else
11127 {
df58fc94
RS
11128 if (mips_opts.micromips)
11129 micromips_label_expr (&label_expr);
11130 else
11131 label_expr.X_add_number = 8;
11132 macro_build (&label_expr, "beq", "s,t,p", dreg, AT);
a605d2b3 11133 macro_build (NULL, "nop", "");
df58fc94
RS
11134 macro_build (NULL, "break", BRK_FMT, 6);
11135 if (mips_opts.micromips)
11136 micromips_add_label ();
252b5132 11137 }
7d10b47d 11138 end_noreorder ();
df58fc94 11139 macro_build (NULL, "mflo", MFHL_FMT, dreg);
252b5132
RH
11140 break;
11141
11142 case M_DMULOU_I:
11143 dbl = 1;
11144 case M_MULOU_I:
11145 imm = 1;
11146 goto do_mulou;
11147
11148 case M_DMULOU:
11149 dbl = 1;
11150 case M_MULOU:
11151 do_mulou:
7d10b47d 11152 start_noreorder ();
8fc2e39e 11153 used_at = 1;
252b5132 11154 if (imm)
67c0d1eb
RS
11155 load_register (AT, &imm_expr, dbl);
11156 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
17a2f251 11157 sreg, imm ? AT : treg);
df58fc94
RS
11158 macro_build (NULL, "mfhi", MFHL_FMT, AT);
11159 macro_build (NULL, "mflo", MFHL_FMT, dreg);
252b5132 11160 if (mips_trap)
df58fc94 11161 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
252b5132
RH
11162 else
11163 {
df58fc94
RS
11164 if (mips_opts.micromips)
11165 micromips_label_expr (&label_expr);
11166 else
11167 label_expr.X_add_number = 8;
11168 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
a605d2b3 11169 macro_build (NULL, "nop", "");
df58fc94
RS
11170 macro_build (NULL, "break", BRK_FMT, 6);
11171 if (mips_opts.micromips)
11172 micromips_add_label ();
252b5132 11173 }
7d10b47d 11174 end_noreorder ();
252b5132
RH
11175 break;
11176
771c7ce4 11177 case M_DROL:
fef14a42 11178 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
11179 {
11180 if (dreg == sreg)
11181 {
11182 tempreg = AT;
11183 used_at = 1;
11184 }
11185 else
11186 {
11187 tempreg = dreg;
82dd0097 11188 }
67c0d1eb
RS
11189 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
11190 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
8fc2e39e 11191 break;
82dd0097 11192 }
8fc2e39e 11193 used_at = 1;
c80c840e 11194 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
67c0d1eb
RS
11195 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
11196 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
11197 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
771c7ce4
TS
11198 break;
11199
252b5132 11200 case M_ROL:
fef14a42 11201 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097
CD
11202 {
11203 if (dreg == sreg)
11204 {
11205 tempreg = AT;
11206 used_at = 1;
11207 }
11208 else
11209 {
11210 tempreg = dreg;
82dd0097 11211 }
67c0d1eb
RS
11212 macro_build (NULL, "negu", "d,w", tempreg, treg);
11213 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
8fc2e39e 11214 break;
82dd0097 11215 }
8fc2e39e 11216 used_at = 1;
c80c840e 11217 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
67c0d1eb
RS
11218 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
11219 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
11220 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
252b5132
RH
11221 break;
11222
771c7ce4
TS
11223 case M_DROL_I:
11224 {
11225 unsigned int rot;
91d6fa6a
NC
11226 char *l;
11227 char *rr;
771c7ce4
TS
11228
11229 if (imm_expr.X_op != O_constant)
82dd0097 11230 as_bad (_("Improper rotate count"));
771c7ce4 11231 rot = imm_expr.X_add_number & 0x3f;
fef14a42 11232 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
60b63b72
RS
11233 {
11234 rot = (64 - rot) & 0x3f;
11235 if (rot >= 32)
df58fc94 11236 macro_build (NULL, "dror32", SHFT_FMT, dreg, sreg, rot - 32);
60b63b72 11237 else
df58fc94 11238 macro_build (NULL, "dror", SHFT_FMT, dreg, sreg, rot);
8fc2e39e 11239 break;
60b63b72 11240 }
483fc7cd 11241 if (rot == 0)
483fc7cd 11242 {
df58fc94 11243 macro_build (NULL, "dsrl", SHFT_FMT, dreg, sreg, 0);
8fc2e39e 11244 break;
483fc7cd 11245 }
82dd0097 11246 l = (rot < 0x20) ? "dsll" : "dsll32";
91d6fa6a 11247 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
82dd0097 11248 rot &= 0x1f;
8fc2e39e 11249 used_at = 1;
df58fc94
RS
11250 macro_build (NULL, l, SHFT_FMT, AT, sreg, rot);
11251 macro_build (NULL, rr, SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
67c0d1eb 11252 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
771c7ce4
TS
11253 }
11254 break;
11255
252b5132 11256 case M_ROL_I:
771c7ce4
TS
11257 {
11258 unsigned int rot;
11259
11260 if (imm_expr.X_op != O_constant)
82dd0097 11261 as_bad (_("Improper rotate count"));
771c7ce4 11262 rot = imm_expr.X_add_number & 0x1f;
fef14a42 11263 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
60b63b72 11264 {
df58fc94 11265 macro_build (NULL, "ror", SHFT_FMT, dreg, sreg, (32 - rot) & 0x1f);
8fc2e39e 11266 break;
60b63b72 11267 }
483fc7cd 11268 if (rot == 0)
483fc7cd 11269 {
df58fc94 11270 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, 0);
8fc2e39e 11271 break;
483fc7cd 11272 }
8fc2e39e 11273 used_at = 1;
df58fc94
RS
11274 macro_build (NULL, "sll", SHFT_FMT, AT, sreg, rot);
11275 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
67c0d1eb 11276 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
771c7ce4
TS
11277 }
11278 break;
11279
11280 case M_DROR:
fef14a42 11281 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 11282 {
67c0d1eb 11283 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
8fc2e39e 11284 break;
82dd0097 11285 }
8fc2e39e 11286 used_at = 1;
c80c840e 11287 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
67c0d1eb
RS
11288 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
11289 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
11290 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
252b5132
RH
11291 break;
11292
11293 case M_ROR:
fef14a42 11294 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 11295 {
67c0d1eb 11296 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
8fc2e39e 11297 break;
82dd0097 11298 }
8fc2e39e 11299 used_at = 1;
c80c840e 11300 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
67c0d1eb
RS
11301 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
11302 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
11303 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
252b5132
RH
11304 break;
11305
771c7ce4
TS
11306 case M_DROR_I:
11307 {
11308 unsigned int rot;
91d6fa6a
NC
11309 char *l;
11310 char *rr;
771c7ce4
TS
11311
11312 if (imm_expr.X_op != O_constant)
82dd0097 11313 as_bad (_("Improper rotate count"));
771c7ce4 11314 rot = imm_expr.X_add_number & 0x3f;
fef14a42 11315 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
11316 {
11317 if (rot >= 32)
df58fc94 11318 macro_build (NULL, "dror32", SHFT_FMT, dreg, sreg, rot - 32);
82dd0097 11319 else
df58fc94 11320 macro_build (NULL, "dror", SHFT_FMT, dreg, sreg, rot);
8fc2e39e 11321 break;
82dd0097 11322 }
483fc7cd 11323 if (rot == 0)
483fc7cd 11324 {
df58fc94 11325 macro_build (NULL, "dsrl", SHFT_FMT, dreg, sreg, 0);
8fc2e39e 11326 break;
483fc7cd 11327 }
91d6fa6a 11328 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
82dd0097
CD
11329 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
11330 rot &= 0x1f;
8fc2e39e 11331 used_at = 1;
df58fc94
RS
11332 macro_build (NULL, rr, SHFT_FMT, AT, sreg, rot);
11333 macro_build (NULL, l, SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
67c0d1eb 11334 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
771c7ce4
TS
11335 }
11336 break;
11337
252b5132 11338 case M_ROR_I:
771c7ce4
TS
11339 {
11340 unsigned int rot;
11341
11342 if (imm_expr.X_op != O_constant)
82dd0097 11343 as_bad (_("Improper rotate count"));
771c7ce4 11344 rot = imm_expr.X_add_number & 0x1f;
fef14a42 11345 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 11346 {
df58fc94 11347 macro_build (NULL, "ror", SHFT_FMT, dreg, sreg, rot);
8fc2e39e 11348 break;
82dd0097 11349 }
483fc7cd 11350 if (rot == 0)
483fc7cd 11351 {
df58fc94 11352 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, 0);
8fc2e39e 11353 break;
483fc7cd 11354 }
8fc2e39e 11355 used_at = 1;
df58fc94
RS
11356 macro_build (NULL, "srl", SHFT_FMT, AT, sreg, rot);
11357 macro_build (NULL, "sll", SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
67c0d1eb 11358 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
771c7ce4 11359 }
252b5132
RH
11360 break;
11361
252b5132
RH
11362 case M_SEQ:
11363 if (sreg == 0)
67c0d1eb 11364 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
252b5132 11365 else if (treg == 0)
67c0d1eb 11366 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
252b5132
RH
11367 else
11368 {
67c0d1eb
RS
11369 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
11370 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
252b5132 11371 }
8fc2e39e 11372 break;
252b5132
RH
11373
11374 case M_SEQ_I:
11375 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
11376 {
67c0d1eb 11377 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
8fc2e39e 11378 break;
252b5132
RH
11379 }
11380 if (sreg == 0)
11381 {
11382 as_warn (_("Instruction %s: result is always false"),
11383 ip->insn_mo->name);
67c0d1eb 11384 move_register (dreg, 0);
8fc2e39e 11385 break;
252b5132 11386 }
dd3cbb7e
NC
11387 if (CPU_HAS_SEQ (mips_opts.arch)
11388 && -512 <= imm_expr.X_add_number
11389 && imm_expr.X_add_number < 512)
11390 {
11391 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
750bdd57 11392 (int) imm_expr.X_add_number);
dd3cbb7e
NC
11393 break;
11394 }
252b5132
RH
11395 if (imm_expr.X_op == O_constant
11396 && imm_expr.X_add_number >= 0
11397 && imm_expr.X_add_number < 0x10000)
11398 {
67c0d1eb 11399 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
252b5132
RH
11400 }
11401 else if (imm_expr.X_op == O_constant
11402 && imm_expr.X_add_number > -0x8000
11403 && imm_expr.X_add_number < 0)
11404 {
11405 imm_expr.X_add_number = -imm_expr.X_add_number;
67c0d1eb 11406 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
17a2f251 11407 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
252b5132 11408 }
dd3cbb7e
NC
11409 else if (CPU_HAS_SEQ (mips_opts.arch))
11410 {
11411 used_at = 1;
11412 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11413 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
11414 break;
11415 }
252b5132
RH
11416 else
11417 {
67c0d1eb
RS
11418 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11419 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
252b5132
RH
11420 used_at = 1;
11421 }
67c0d1eb 11422 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
8fc2e39e 11423 break;
252b5132
RH
11424
11425 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
11426 s = "slt";
11427 goto sge;
11428 case M_SGEU:
11429 s = "sltu";
11430 sge:
67c0d1eb
RS
11431 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
11432 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
8fc2e39e 11433 break;
252b5132
RH
11434
11435 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
11436 case M_SGEU_I:
11437 if (imm_expr.X_op == O_constant
11438 && imm_expr.X_add_number >= -0x8000
11439 && imm_expr.X_add_number < 0x8000)
11440 {
67c0d1eb
RS
11441 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
11442 dreg, sreg, BFD_RELOC_LO16);
252b5132
RH
11443 }
11444 else
11445 {
67c0d1eb
RS
11446 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11447 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
11448 dreg, sreg, AT);
252b5132
RH
11449 used_at = 1;
11450 }
67c0d1eb 11451 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
8fc2e39e 11452 break;
252b5132
RH
11453
11454 case M_SGT: /* sreg > treg <==> treg < sreg */
11455 s = "slt";
11456 goto sgt;
11457 case M_SGTU:
11458 s = "sltu";
11459 sgt:
67c0d1eb 11460 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
8fc2e39e 11461 break;
252b5132
RH
11462
11463 case M_SGT_I: /* sreg > I <==> I < sreg */
11464 s = "slt";
11465 goto sgti;
11466 case M_SGTU_I:
11467 s = "sltu";
11468 sgti:
8fc2e39e 11469 used_at = 1;
67c0d1eb
RS
11470 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11471 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
252b5132
RH
11472 break;
11473
2396cfb9 11474 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
252b5132
RH
11475 s = "slt";
11476 goto sle;
11477 case M_SLEU:
11478 s = "sltu";
11479 sle:
67c0d1eb
RS
11480 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
11481 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
8fc2e39e 11482 break;
252b5132 11483
2396cfb9 11484 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
252b5132
RH
11485 s = "slt";
11486 goto slei;
11487 case M_SLEU_I:
11488 s = "sltu";
11489 slei:
8fc2e39e 11490 used_at = 1;
67c0d1eb
RS
11491 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11492 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
11493 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
252b5132
RH
11494 break;
11495
11496 case M_SLT_I:
11497 if (imm_expr.X_op == O_constant
11498 && imm_expr.X_add_number >= -0x8000
11499 && imm_expr.X_add_number < 0x8000)
11500 {
67c0d1eb 11501 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
8fc2e39e 11502 break;
252b5132 11503 }
8fc2e39e 11504 used_at = 1;
67c0d1eb
RS
11505 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11506 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
252b5132
RH
11507 break;
11508
11509 case M_SLTU_I:
11510 if (imm_expr.X_op == O_constant
11511 && imm_expr.X_add_number >= -0x8000
11512 && imm_expr.X_add_number < 0x8000)
11513 {
67c0d1eb 11514 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
17a2f251 11515 BFD_RELOC_LO16);
8fc2e39e 11516 break;
252b5132 11517 }
8fc2e39e 11518 used_at = 1;
67c0d1eb
RS
11519 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11520 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
252b5132
RH
11521 break;
11522
11523 case M_SNE:
11524 if (sreg == 0)
67c0d1eb 11525 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
252b5132 11526 else if (treg == 0)
67c0d1eb 11527 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
252b5132
RH
11528 else
11529 {
67c0d1eb
RS
11530 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
11531 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
252b5132 11532 }
8fc2e39e 11533 break;
252b5132
RH
11534
11535 case M_SNE_I:
11536 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
11537 {
67c0d1eb 11538 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
8fc2e39e 11539 break;
252b5132
RH
11540 }
11541 if (sreg == 0)
11542 {
11543 as_warn (_("Instruction %s: result is always true"),
11544 ip->insn_mo->name);
67c0d1eb
RS
11545 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
11546 dreg, 0, BFD_RELOC_LO16);
8fc2e39e 11547 break;
252b5132 11548 }
dd3cbb7e
NC
11549 if (CPU_HAS_SEQ (mips_opts.arch)
11550 && -512 <= imm_expr.X_add_number
11551 && imm_expr.X_add_number < 512)
11552 {
11553 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
750bdd57 11554 (int) imm_expr.X_add_number);
dd3cbb7e
NC
11555 break;
11556 }
252b5132
RH
11557 if (imm_expr.X_op == O_constant
11558 && imm_expr.X_add_number >= 0
11559 && imm_expr.X_add_number < 0x10000)
11560 {
67c0d1eb 11561 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
252b5132
RH
11562 }
11563 else if (imm_expr.X_op == O_constant
11564 && imm_expr.X_add_number > -0x8000
11565 && imm_expr.X_add_number < 0)
11566 {
11567 imm_expr.X_add_number = -imm_expr.X_add_number;
67c0d1eb 11568 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
17a2f251 11569 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
252b5132 11570 }
dd3cbb7e
NC
11571 else if (CPU_HAS_SEQ (mips_opts.arch))
11572 {
11573 used_at = 1;
11574 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11575 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
11576 break;
11577 }
252b5132
RH
11578 else
11579 {
67c0d1eb
RS
11580 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11581 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
252b5132
RH
11582 used_at = 1;
11583 }
67c0d1eb 11584 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
8fc2e39e 11585 break;
252b5132 11586
df58fc94
RS
11587 case M_SUB_I:
11588 s = "addi";
11589 s2 = "sub";
11590 goto do_subi;
11591 case M_SUBU_I:
11592 s = "addiu";
11593 s2 = "subu";
11594 goto do_subi;
252b5132
RH
11595 case M_DSUB_I:
11596 dbl = 1;
df58fc94
RS
11597 s = "daddi";
11598 s2 = "dsub";
11599 if (!mips_opts.micromips)
11600 goto do_subi;
252b5132 11601 if (imm_expr.X_op == O_constant
df58fc94
RS
11602 && imm_expr.X_add_number > -0x200
11603 && imm_expr.X_add_number <= 0x200)
252b5132 11604 {
df58fc94 11605 macro_build (NULL, s, "t,r,.", dreg, sreg, -imm_expr.X_add_number);
8fc2e39e 11606 break;
252b5132 11607 }
df58fc94 11608 goto do_subi_i;
252b5132
RH
11609 case M_DSUBU_I:
11610 dbl = 1;
df58fc94
RS
11611 s = "daddiu";
11612 s2 = "dsubu";
11613 do_subi:
252b5132
RH
11614 if (imm_expr.X_op == O_constant
11615 && imm_expr.X_add_number > -0x8000
11616 && imm_expr.X_add_number <= 0x8000)
11617 {
11618 imm_expr.X_add_number = -imm_expr.X_add_number;
df58fc94 11619 macro_build (&imm_expr, s, "t,r,j", dreg, sreg, BFD_RELOC_LO16);
8fc2e39e 11620 break;
252b5132 11621 }
df58fc94 11622 do_subi_i:
8fc2e39e 11623 used_at = 1;
67c0d1eb 11624 load_register (AT, &imm_expr, dbl);
df58fc94 11625 macro_build (NULL, s2, "d,v,t", dreg, sreg, AT);
252b5132
RH
11626 break;
11627
11628 case M_TEQ_I:
11629 s = "teq";
11630 goto trap;
11631 case M_TGE_I:
11632 s = "tge";
11633 goto trap;
11634 case M_TGEU_I:
11635 s = "tgeu";
11636 goto trap;
11637 case M_TLT_I:
11638 s = "tlt";
11639 goto trap;
11640 case M_TLTU_I:
11641 s = "tltu";
11642 goto trap;
11643 case M_TNE_I:
11644 s = "tne";
11645 trap:
8fc2e39e 11646 used_at = 1;
67c0d1eb
RS
11647 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11648 macro_build (NULL, s, "s,t", sreg, AT);
252b5132
RH
11649 break;
11650
252b5132 11651 case M_TRUNCWS:
43841e91 11652 case M_TRUNCWD:
df58fc94 11653 gas_assert (!mips_opts.micromips);
0aa27725 11654 gas_assert (mips_opts.isa == ISA_MIPS1);
8fc2e39e 11655 used_at = 1;
252b5132
RH
11656 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
11657 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
11658
11659 /*
11660 * Is the double cfc1 instruction a bug in the mips assembler;
11661 * or is there a reason for it?
11662 */
7d10b47d 11663 start_noreorder ();
67c0d1eb
RS
11664 macro_build (NULL, "cfc1", "t,G", treg, RA);
11665 macro_build (NULL, "cfc1", "t,G", treg, RA);
11666 macro_build (NULL, "nop", "");
252b5132 11667 expr1.X_add_number = 3;
67c0d1eb 11668 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
252b5132 11669 expr1.X_add_number = 2;
67c0d1eb
RS
11670 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
11671 macro_build (NULL, "ctc1", "t,G", AT, RA);
11672 macro_build (NULL, "nop", "");
11673 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
11674 dreg, sreg);
11675 macro_build (NULL, "ctc1", "t,G", treg, RA);
11676 macro_build (NULL, "nop", "");
7d10b47d 11677 end_noreorder ();
252b5132
RH
11678 break;
11679
f2ae14a1 11680 case M_ULH_AB:
252b5132 11681 s = "lb";
df58fc94
RS
11682 s2 = "lbu";
11683 off = 1;
11684 goto uld_st;
f2ae14a1 11685 case M_ULHU_AB:
252b5132 11686 s = "lbu";
df58fc94
RS
11687 s2 = "lbu";
11688 off = 1;
11689 goto uld_st;
f2ae14a1 11690 case M_ULW_AB:
df58fc94
RS
11691 s = "lwl";
11692 s2 = "lwr";
7f3c4072 11693 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11694 off = 3;
11695 goto uld_st;
f2ae14a1 11696 case M_ULD_AB:
252b5132
RH
11697 s = "ldl";
11698 s2 = "ldr";
7f3c4072 11699 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 11700 off = 7;
df58fc94 11701 goto uld_st;
f2ae14a1 11702 case M_USH_AB:
df58fc94
RS
11703 s = "sb";
11704 s2 = "sb";
11705 off = 1;
11706 ust = 1;
11707 goto uld_st;
f2ae14a1 11708 case M_USW_AB:
df58fc94
RS
11709 s = "swl";
11710 s2 = "swr";
7f3c4072 11711 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 11712 off = 3;
df58fc94
RS
11713 ust = 1;
11714 goto uld_st;
f2ae14a1 11715 case M_USD_AB:
df58fc94
RS
11716 s = "sdl";
11717 s2 = "sdr";
7f3c4072 11718 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11719 off = 7;
11720 ust = 1;
11721
11722 uld_st:
f2ae14a1 11723 large_offset = !small_offset_p (off, align, offbits);
df58fc94
RS
11724 ep = &offset_expr;
11725 expr1.X_add_number = 0;
f2ae14a1 11726 if (large_offset)
df58fc94
RS
11727 {
11728 used_at = 1;
11729 tempreg = AT;
f2ae14a1
RS
11730 if (small_offset_p (0, align, 16))
11731 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
11732 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
11733 else
11734 {
11735 load_address (tempreg, ep, &used_at);
11736 if (breg != 0)
11737 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11738 tempreg, tempreg, breg);
11739 }
11740 offset_reloc[0] = BFD_RELOC_LO16;
11741 offset_reloc[1] = BFD_RELOC_UNUSED;
11742 offset_reloc[2] = BFD_RELOC_UNUSED;
df58fc94
RS
11743 breg = tempreg;
11744 tempreg = treg;
11745 ep = &expr1;
11746 }
11747 else if (!ust && treg == breg)
8fc2e39e
TS
11748 {
11749 used_at = 1;
11750 tempreg = AT;
11751 }
252b5132 11752 else
df58fc94 11753 tempreg = treg;
af22f5b2 11754
df58fc94
RS
11755 if (off == 1)
11756 goto ulh_sh;
252b5132 11757
90ecf173 11758 if (!target_big_endian)
df58fc94 11759 ep->X_add_number += off;
f2ae14a1 11760 if (offbits == 12)
c8276761 11761 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
11762 else
11763 macro_build (ep, s, "t,o(b)", tempreg, -1,
11764 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94 11765
90ecf173 11766 if (!target_big_endian)
df58fc94 11767 ep->X_add_number -= off;
252b5132 11768 else
df58fc94 11769 ep->X_add_number += off;
f2ae14a1 11770 if (offbits == 12)
df58fc94 11771 macro_build (NULL, s2, "t,~(b)",
c8276761 11772 tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
11773 else
11774 macro_build (ep, s2, "t,o(b)", tempreg, -1,
11775 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 11776
df58fc94
RS
11777 /* If necessary, move the result in tempreg to the final destination. */
11778 if (!ust && treg != tempreg)
11779 {
11780 /* Protect second load's delay slot. */
11781 load_delay_nop ();
11782 move_register (treg, tempreg);
11783 }
8fc2e39e 11784 break;
252b5132 11785
df58fc94 11786 ulh_sh:
d6bc6245 11787 used_at = 1;
df58fc94
RS
11788 if (target_big_endian == ust)
11789 ep->X_add_number += off;
f2ae14a1
RS
11790 tempreg = ust || large_offset ? treg : AT;
11791 macro_build (ep, s, "t,o(b)", tempreg, -1,
11792 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94
RS
11793
11794 /* For halfword transfers we need a temporary register to shuffle
11795 bytes. Unfortunately for M_USH_A we have none available before
11796 the next store as AT holds the base address. We deal with this
11797 case by clobbering TREG and then restoring it as with ULH. */
f2ae14a1 11798 tempreg = ust == large_offset ? treg : AT;
df58fc94
RS
11799 if (ust)
11800 macro_build (NULL, "srl", SHFT_FMT, tempreg, treg, 8);
11801
11802 if (target_big_endian == ust)
11803 ep->X_add_number -= off;
252b5132 11804 else
df58fc94 11805 ep->X_add_number += off;
f2ae14a1
RS
11806 macro_build (ep, s2, "t,o(b)", tempreg, -1,
11807 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 11808
df58fc94 11809 /* For M_USH_A re-retrieve the LSB. */
f2ae14a1 11810 if (ust && large_offset)
df58fc94
RS
11811 {
11812 if (target_big_endian)
11813 ep->X_add_number += off;
11814 else
11815 ep->X_add_number -= off;
f2ae14a1
RS
11816 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
11817 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
df58fc94
RS
11818 }
11819 /* For ULH and M_USH_A OR the LSB in. */
f2ae14a1 11820 if (!ust || large_offset)
df58fc94 11821 {
f2ae14a1 11822 tempreg = !large_offset ? AT : treg;
df58fc94
RS
11823 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
11824 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
11825 }
252b5132
RH
11826 break;
11827
11828 default:
11829 /* FIXME: Check if this is one of the itbl macros, since they
bdaaa2e1 11830 are added dynamically. */
252b5132
RH
11831 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
11832 break;
11833 }
741fe287 11834 if (!mips_opts.at && used_at)
8fc2e39e 11835 as_bad (_("Macro used $at after \".set noat\""));
252b5132
RH
11836}
11837
11838/* Implement macros in mips16 mode. */
11839
11840static void
17a2f251 11841mips16_macro (struct mips_cl_insn *ip)
252b5132
RH
11842{
11843 int mask;
11844 int xreg, yreg, zreg, tmp;
252b5132
RH
11845 expressionS expr1;
11846 int dbl;
11847 const char *s, *s2, *s3;
11848
11849 mask = ip->insn_mo->mask;
11850
bf12938e
RS
11851 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
11852 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
11853 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
252b5132 11854
252b5132
RH
11855 expr1.X_op = O_constant;
11856 expr1.X_op_symbol = NULL;
11857 expr1.X_add_symbol = NULL;
11858 expr1.X_add_number = 1;
11859
11860 dbl = 0;
11861
11862 switch (mask)
11863 {
11864 default:
b37df7c4 11865 abort ();
252b5132
RH
11866
11867 case M_DDIV_3:
11868 dbl = 1;
11869 case M_DIV_3:
11870 s = "mflo";
11871 goto do_div3;
11872 case M_DREM_3:
11873 dbl = 1;
11874 case M_REM_3:
11875 s = "mfhi";
11876 do_div3:
7d10b47d 11877 start_noreorder ();
67c0d1eb 11878 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
252b5132 11879 expr1.X_add_number = 2;
67c0d1eb
RS
11880 macro_build (&expr1, "bnez", "x,p", yreg);
11881 macro_build (NULL, "break", "6", 7);
bdaaa2e1 11882
252b5132
RH
11883 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
11884 since that causes an overflow. We should do that as well,
11885 but I don't see how to do the comparisons without a temporary
11886 register. */
7d10b47d 11887 end_noreorder ();
67c0d1eb 11888 macro_build (NULL, s, "x", zreg);
252b5132
RH
11889 break;
11890
11891 case M_DIVU_3:
11892 s = "divu";
11893 s2 = "mflo";
11894 goto do_divu3;
11895 case M_REMU_3:
11896 s = "divu";
11897 s2 = "mfhi";
11898 goto do_divu3;
11899 case M_DDIVU_3:
11900 s = "ddivu";
11901 s2 = "mflo";
11902 goto do_divu3;
11903 case M_DREMU_3:
11904 s = "ddivu";
11905 s2 = "mfhi";
11906 do_divu3:
7d10b47d 11907 start_noreorder ();
67c0d1eb 11908 macro_build (NULL, s, "0,x,y", xreg, yreg);
252b5132 11909 expr1.X_add_number = 2;
67c0d1eb
RS
11910 macro_build (&expr1, "bnez", "x,p", yreg);
11911 macro_build (NULL, "break", "6", 7);
7d10b47d 11912 end_noreorder ();
67c0d1eb 11913 macro_build (NULL, s2, "x", zreg);
252b5132
RH
11914 break;
11915
11916 case M_DMUL:
11917 dbl = 1;
11918 case M_MUL:
67c0d1eb
RS
11919 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
11920 macro_build (NULL, "mflo", "x", zreg);
8fc2e39e 11921 break;
252b5132
RH
11922
11923 case M_DSUBU_I:
11924 dbl = 1;
11925 goto do_subu;
11926 case M_SUBU_I:
11927 do_subu:
11928 if (imm_expr.X_op != O_constant)
11929 as_bad (_("Unsupported large constant"));
11930 imm_expr.X_add_number = -imm_expr.X_add_number;
67c0d1eb 11931 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
252b5132
RH
11932 break;
11933
11934 case M_SUBU_I_2:
11935 if (imm_expr.X_op != O_constant)
11936 as_bad (_("Unsupported large constant"));
11937 imm_expr.X_add_number = -imm_expr.X_add_number;
67c0d1eb 11938 macro_build (&imm_expr, "addiu", "x,k", xreg);
252b5132
RH
11939 break;
11940
11941 case M_DSUBU_I_2:
11942 if (imm_expr.X_op != O_constant)
11943 as_bad (_("Unsupported large constant"));
11944 imm_expr.X_add_number = -imm_expr.X_add_number;
67c0d1eb 11945 macro_build (&imm_expr, "daddiu", "y,j", yreg);
252b5132
RH
11946 break;
11947
11948 case M_BEQ:
11949 s = "cmp";
11950 s2 = "bteqz";
11951 goto do_branch;
11952 case M_BNE:
11953 s = "cmp";
11954 s2 = "btnez";
11955 goto do_branch;
11956 case M_BLT:
11957 s = "slt";
11958 s2 = "btnez";
11959 goto do_branch;
11960 case M_BLTU:
11961 s = "sltu";
11962 s2 = "btnez";
11963 goto do_branch;
11964 case M_BLE:
11965 s = "slt";
11966 s2 = "bteqz";
11967 goto do_reverse_branch;
11968 case M_BLEU:
11969 s = "sltu";
11970 s2 = "bteqz";
11971 goto do_reverse_branch;
11972 case M_BGE:
11973 s = "slt";
11974 s2 = "bteqz";
11975 goto do_branch;
11976 case M_BGEU:
11977 s = "sltu";
11978 s2 = "bteqz";
11979 goto do_branch;
11980 case M_BGT:
11981 s = "slt";
11982 s2 = "btnez";
11983 goto do_reverse_branch;
11984 case M_BGTU:
11985 s = "sltu";
11986 s2 = "btnez";
11987
11988 do_reverse_branch:
11989 tmp = xreg;
11990 xreg = yreg;
11991 yreg = tmp;
11992
11993 do_branch:
67c0d1eb
RS
11994 macro_build (NULL, s, "x,y", xreg, yreg);
11995 macro_build (&offset_expr, s2, "p");
252b5132
RH
11996 break;
11997
11998 case M_BEQ_I:
11999 s = "cmpi";
12000 s2 = "bteqz";
12001 s3 = "x,U";
12002 goto do_branch_i;
12003 case M_BNE_I:
12004 s = "cmpi";
12005 s2 = "btnez";
12006 s3 = "x,U";
12007 goto do_branch_i;
12008 case M_BLT_I:
12009 s = "slti";
12010 s2 = "btnez";
12011 s3 = "x,8";
12012 goto do_branch_i;
12013 case M_BLTU_I:
12014 s = "sltiu";
12015 s2 = "btnez";
12016 s3 = "x,8";
12017 goto do_branch_i;
12018 case M_BLE_I:
12019 s = "slti";
12020 s2 = "btnez";
12021 s3 = "x,8";
12022 goto do_addone_branch_i;
12023 case M_BLEU_I:
12024 s = "sltiu";
12025 s2 = "btnez";
12026 s3 = "x,8";
12027 goto do_addone_branch_i;
12028 case M_BGE_I:
12029 s = "slti";
12030 s2 = "bteqz";
12031 s3 = "x,8";
12032 goto do_branch_i;
12033 case M_BGEU_I:
12034 s = "sltiu";
12035 s2 = "bteqz";
12036 s3 = "x,8";
12037 goto do_branch_i;
12038 case M_BGT_I:
12039 s = "slti";
12040 s2 = "bteqz";
12041 s3 = "x,8";
12042 goto do_addone_branch_i;
12043 case M_BGTU_I:
12044 s = "sltiu";
12045 s2 = "bteqz";
12046 s3 = "x,8";
12047
12048 do_addone_branch_i:
12049 if (imm_expr.X_op != O_constant)
12050 as_bad (_("Unsupported large constant"));
12051 ++imm_expr.X_add_number;
12052
12053 do_branch_i:
67c0d1eb
RS
12054 macro_build (&imm_expr, s, s3, xreg);
12055 macro_build (&offset_expr, s2, "p");
252b5132
RH
12056 break;
12057
12058 case M_ABS:
12059 expr1.X_add_number = 0;
67c0d1eb 12060 macro_build (&expr1, "slti", "x,8", yreg);
252b5132 12061 if (xreg != yreg)
0acfaea6 12062 macro_build (NULL, "move", "y,X", xreg, mips16_to_32_reg_map[yreg]);
252b5132 12063 expr1.X_add_number = 2;
67c0d1eb
RS
12064 macro_build (&expr1, "bteqz", "p");
12065 macro_build (NULL, "neg", "x,w", xreg, xreg);
0acfaea6 12066 break;
252b5132
RH
12067 }
12068}
12069
77bd4346
RS
12070/* Assemble an instruction into its binary format. If the instruction
12071 is a macro, set imm_expr, imm2_expr and offset_expr to the values
12072 associated with "I", "+I" and "A" operands respectively. Otherwise
12073 store the value of the relocatable field (if any) in offset_expr.
12074 In both cases set offset_reloc to the relocation operators applied
12075 to offset_expr. */
252b5132
RH
12076
12077static void
17a2f251 12078mips_ip (char *str, struct mips_cl_insn *ip)
252b5132 12079{
df58fc94
RS
12080 bfd_boolean wrong_delay_slot_insns = FALSE;
12081 bfd_boolean need_delay_slot_ok = TRUE;
12082 struct mips_opcode *firstinsn = NULL;
12083 const struct mips_opcode *past;
12084 struct hash_control *hash;
252b5132 12085 const char *args;
43841e91 12086 char c = 0;
252b5132 12087 struct mips_opcode *insn;
df58fc94 12088 long opend;
a40bc9dd 12089 char *name;
df58fc94 12090 char *dot;
a92713e6 12091 char format;
a40bc9dd 12092 long end;
9e12b7a2
RS
12093 const struct mips_operand *operand;
12094 struct mips_arg_info arg;
a92713e6
RS
12095 struct mips_operand_token *tokens;
12096 bfd_boolean optional_reg;
252b5132
RH
12097
12098 insn_error = NULL;
12099
df58fc94
RS
12100 if (mips_opts.micromips)
12101 {
12102 hash = micromips_op_hash;
12103 past = &micromips_opcodes[bfd_micromips_num_opcodes];
12104 }
12105 else
12106 {
12107 hash = op_hash;
12108 past = &mips_opcodes[NUMOPCODES];
12109 }
12110 forced_insn_length = 0;
252b5132 12111 insn = NULL;
252b5132 12112
df58fc94 12113 /* We first try to match an instruction up to a space or to the end. */
a40bc9dd
RS
12114 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
12115 continue;
bdaaa2e1 12116
a40bc9dd
RS
12117 /* Make a copy of the instruction so that we can fiddle with it. */
12118 name = alloca (end + 1);
12119 memcpy (name, str, end);
12120 name[end] = '\0';
252b5132 12121
df58fc94
RS
12122 for (;;)
12123 {
12124 insn = (struct mips_opcode *) hash_find (hash, name);
12125
12126 if (insn != NULL || !mips_opts.micromips)
12127 break;
12128 if (forced_insn_length)
12129 break;
12130
12131 /* See if there's an instruction size override suffix,
12132 either `16' or `32', at the end of the mnemonic proper,
12133 that defines the operation, i.e. before the first `.'
12134 character if any. Strip it and retry. */
12135 dot = strchr (name, '.');
12136 opend = dot != NULL ? dot - name : end;
12137 if (opend < 3)
12138 break;
12139 if (name[opend - 2] == '1' && name[opend - 1] == '6')
12140 forced_insn_length = 2;
12141 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
12142 forced_insn_length = 4;
12143 else
12144 break;
12145 memcpy (name + opend - 2, name + opend, end - opend + 1);
12146 }
252b5132
RH
12147 if (insn == NULL)
12148 {
a40bc9dd
RS
12149 insn_error = _("Unrecognized opcode");
12150 return;
252b5132
RH
12151 }
12152
a92713e6
RS
12153 if (strcmp (name, "li.s") == 0)
12154 format = 'f';
12155 else if (strcmp (name, "li.d") == 0)
12156 format = 'd';
12157 else
12158 format = 0;
12159 tokens = mips_parse_arguments (str + end, format);
12160 if (!tokens)
12161 return;
12162
df58fc94
RS
12163 /* For microMIPS instructions placed in a fixed-length branch delay slot
12164 we make up to two passes over the relevant fragment of the opcode
12165 table. First we try instructions that meet the delay slot's length
12166 requirement. If none matched, then we retry with the remaining ones
12167 and if one matches, then we use it and then issue an appropriate
12168 warning later on. */
252b5132
RH
12169 for (;;)
12170 {
df58fc94
RS
12171 bfd_boolean delay_slot_ok;
12172 bfd_boolean size_ok;
b34976b6 12173 bfd_boolean ok;
9e12b7a2 12174 bfd_boolean more_alts;
252b5132 12175
a40bc9dd 12176 gas_assert (strcmp (insn->name, name) == 0);
252b5132 12177
f79e2745 12178 ok = is_opcode_valid (insn);
df58fc94
RS
12179 size_ok = is_size_valid (insn);
12180 delay_slot_ok = is_delay_slot_valid (insn);
12181 if (!delay_slot_ok && !wrong_delay_slot_insns)
252b5132 12182 {
df58fc94
RS
12183 firstinsn = insn;
12184 wrong_delay_slot_insns = TRUE;
12185 }
9e12b7a2
RS
12186 more_alts = (insn + 1 < past
12187 && strcmp (insn[0].name, insn[1].name) == 0);
df58fc94
RS
12188 if (!ok || !size_ok || delay_slot_ok != need_delay_slot_ok)
12189 {
12190 static char buf[256];
12191
9e12b7a2 12192 if (more_alts)
252b5132
RH
12193 {
12194 ++insn;
12195 continue;
12196 }
df58fc94 12197 if (wrong_delay_slot_insns && need_delay_slot_ok)
beae10d5 12198 {
df58fc94
RS
12199 gas_assert (firstinsn);
12200 need_delay_slot_ok = FALSE;
12201 past = insn + 1;
12202 insn = firstinsn;
12203 continue;
252b5132 12204 }
df58fc94 12205
a92713e6 12206 obstack_free (&mips_operand_tokens, tokens);
df58fc94
RS
12207 if (insn_error)
12208 return;
12209
12210 if (!ok)
7bd942df 12211 sprintf (buf, _("Opcode not supported on this processor: %s (%s)"),
df58fc94
RS
12212 mips_cpu_info_from_arch (mips_opts.arch)->name,
12213 mips_cpu_info_from_isa (mips_opts.isa)->name);
833794fc
MR
12214 else if (mips_opts.insn32)
12215 sprintf (buf, _("Opcode not supported in the `insn32' mode"));
df58fc94
RS
12216 else
12217 sprintf (buf, _("Unrecognized %u-bit version of microMIPS opcode"),
12218 8 * forced_insn_length);
12219 insn_error = buf;
12220
12221 return;
252b5132
RH
12222 }
12223
f2ae14a1
RS
12224 imm_expr.X_op = O_absent;
12225 imm2_expr.X_op = O_absent;
12226 offset_expr.X_op = O_absent;
f2ae14a1
RS
12227 offset_reloc[0] = BFD_RELOC_UNUSED;
12228 offset_reloc[1] = BFD_RELOC_UNUSED;
12229 offset_reloc[2] = BFD_RELOC_UNUSED;
12230
1e915849 12231 create_insn (ip, insn);
268f6bed 12232 insn_error = NULL;
9e12b7a2
RS
12233 memset (&arg, 0, sizeof (arg));
12234 arg.insn = ip;
a92713e6 12235 arg.token = tokens;
9e12b7a2
RS
12236 arg.argnum = 1;
12237 arg.last_regno = ILLEGAL_REG;
12238 arg.dest_regno = ILLEGAL_REG;
12239 arg.soft_match = (more_alts
12240 || (wrong_delay_slot_insns && need_delay_slot_ok));
252b5132
RH
12241 for (args = insn->args;; ++args)
12242 {
a92713e6 12243 if (arg.token->type == OT_END)
252b5132 12244 {
9e12b7a2
RS
12245 /* Handle unary instructions in which only one operand is given.
12246 The source is then the same as the destination. */
12247 if (arg.opnum == 1 && *args == ',')
12248 switch (args[1])
12249 {
12250 case 'r':
12251 case 'v':
12252 case 'w':
12253 case 'W':
12254 case 'V':
a92713e6 12255 arg.token = tokens;
9e12b7a2 12256 arg.argnum = 1;
9e12b7a2
RS
12257 continue;
12258 }
74cd071d 12259
9e12b7a2
RS
12260 /* Treat elided base registers as $0. */
12261 if (strcmp (args, "(b)") == 0)
12262 args += 3;
74cd071d 12263
9e12b7a2
RS
12264 /* Fail the match if there were too few operands. */
12265 if (*args)
12266 break;
74cd071d 12267
9e12b7a2
RS
12268 /* Successful match. */
12269 if (arg.dest_regno == arg.last_regno
12270 && strncmp (ip->insn_mo->name, "jalr", 4) == 0)
74cd071d 12271 {
9e12b7a2
RS
12272 if (arg.opnum == 2)
12273 as_bad (_("Source and destination must be different"));
12274 else if (arg.last_regno == 31)
12275 as_bad (_("A destination register must be supplied"));
74cd071d 12276 }
9e12b7a2 12277 check_completed_insn (&arg);
a92713e6 12278 obstack_free (&mips_operand_tokens, tokens);
9e12b7a2
RS
12279 return;
12280 }
74cd071d 12281
9e12b7a2
RS
12282 /* Fail the match if the line has too many operands. */
12283 if (*args == 0)
12284 break;
12285
12286 /* Handle characters that need to match exactly. */
12287 if (*args == '(' || *args == ')' || *args == ',')
12288 {
a92713e6
RS
12289 if (match_char (&arg, *args))
12290 continue;
12291 break;
9e12b7a2 12292 }
74cd071d 12293
9e12b7a2
RS
12294 /* Handle special macro operands. Work out the properties of
12295 other operands. */
12296 arg.opnum += 1;
9e12b7a2 12297 arg.lax_max = FALSE;
a92713e6 12298 optional_reg = FALSE;
9e12b7a2
RS
12299 switch (*args)
12300 {
12301 case '+':
12302 switch (args[1])
74cd071d 12303 {
9e12b7a2
RS
12304 case '1':
12305 case '2':
12306 case '3':
12307 case '4':
12308 case 'B':
12309 case 'C':
12310 case 'F':
12311 case 'G':
12312 case 'H':
12313 case 'J':
12314 case 'Q':
12315 case 'S':
12316 case 's':
12317 /* If these integer forms come last, there is no other
12318 form of the instruction that could match. Prefer to
12319 give detailed error messages where possible. */
12320 if (args[2] == 0)
12321 arg.soft_match = FALSE;
12322 break;
12323
12324 case 'I':
12325 /* "+I" is like "I", except that imm2_expr is used. */
a92713e6
RS
12326 if (match_const_int (&arg, &imm2_expr.X_add_number, 0))
12327 imm2_expr.X_op = O_constant;
12328 else
12329 insn_error = _("absolute expression required");
9e12b7a2
RS
12330 if (HAVE_32BIT_GPRS)
12331 normalize_constant_expr (&imm2_expr);
9e12b7a2 12332 ++args;
74cd071d 12333 continue;
9e12b7a2
RS
12334
12335 case 'i':
12336 *offset_reloc = BFD_RELOC_MIPS_JMP;
12337 break;
74cd071d 12338 }
74cd071d
CF
12339 break;
12340
9e12b7a2
RS
12341 case '\'':
12342 case ':':
12343 case '@':
12344 case '^':
12345 case '$':
12346 case '\\':
12347 case '%':
12348 case '|':
03f66e8a 12349 case '0':
9e12b7a2
RS
12350 case '1':
12351 case '2':
12352 case '3':
12353 case '4':
12354 case '5':
12355 case '6':
12356 case '8':
12357 case 'B':
12358 case 'C':
12359 case 'J':
12360 case 'O':
12361 case 'P':
12362 case 'Q':
12363 case 'c':
12364 case 'h':
12365 case 'q':
12366 /* If these integer forms come last, there is no other
12367 form of the instruction that could match. Prefer to
12368 give detailed error messages where possible. */
12369 if (args[1] == 0)
12370 arg.soft_match = FALSE;
12371 break;
74cd071d 12372
9e12b7a2
RS
12373 case 'r':
12374 case 'v':
12375 case 'w':
12376 case 'W':
12377 case 'V':
12378 /* We have already matched a comma by this point, so the register
12379 is only optional if there is another operand to come. */
12380 gas_assert (arg.opnum == 2);
a92713e6 12381 optional_reg = (args[1] == ',');
9e12b7a2 12382 break;
ef2e4d86 12383
9e12b7a2 12384 case 'I':
a92713e6
RS
12385 if (match_const_int (&arg, &imm_expr.X_add_number, 0))
12386 imm_expr.X_op = O_constant;
12387 else
9e12b7a2
RS
12388 insn_error = _("absolute expression required");
12389 if (HAVE_32BIT_GPRS)
12390 normalize_constant_expr (&imm_expr);
ef2e4d86
CF
12391 continue;
12392
9e12b7a2 12393 case 'A':
a92713e6 12394 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
ef2e4d86 12395 {
9e12b7a2
RS
12396 /* Assume that the offset has been elided and that what
12397 we saw was a base register. The match will fail later
12398 if that assumption turns out to be wrong. */
12399 offset_expr.X_op = O_constant;
12400 offset_expr.X_add_number = 0;
ef2e4d86 12401 }
a92713e6
RS
12402 else if (match_expression (&arg, &offset_expr, offset_reloc))
12403 normalize_address_expr (&offset_expr);
ef2e4d86 12404 else
a92713e6 12405 insn_error = _("absolute expression required");
9e12b7a2 12406 continue;
ef2e4d86 12407
9e12b7a2 12408 case 'F':
a92713e6
RS
12409 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
12410 8, TRUE))
12411 insn_error = _("floating-point expression required");
89565f1b
RS
12412 continue;
12413
9e12b7a2 12414 case 'L':
a92713e6
RS
12415 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
12416 8, FALSE))
12417 insn_error = _("floating-point expression required");
89565f1b 12418 continue;
90ecf173 12419
89565f1b 12420 case 'f':
a92713e6
RS
12421 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
12422 4, TRUE))
12423 insn_error = _("floating-point expression required");
89565f1b 12424 continue;
b015e599 12425
89565f1b 12426 case 'l':
a92713e6
RS
12427 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
12428 4, FALSE))
12429 insn_error = _("floating-point expression required");
9e12b7a2 12430 continue;
252b5132 12431
9e12b7a2
RS
12432 /* ??? This is the traditional behavior, but is flaky if
12433 there are alternative versions of the same instruction
12434 for different subarchitectures. The next alternative
12435 might not be suitable. */
12436 case 'j':
12437 /* For compatibility with older assemblers, we accept
12438 0x8000-0xffff as signed 16-bit numbers when only
12439 signed numbers are allowed. */
12440 arg.lax_max = !more_alts;
12441 case 'i':
12442 /* Only accept non-constant operands if this is the
12443 final alternative. Later alternatives might include
12444 a macro implementation. */
12445 arg.allow_nonconst = !more_alts;
12446 break;
252b5132 12447
9e12b7a2
RS
12448 case 'u':
12449 /* There are no macro implementations for out-of-range values. */
12450 arg.allow_nonconst = TRUE;
12451 break;
60b63b72 12452
9e12b7a2
RS
12453 case 'o':
12454 /* There should always be a macro implementation. */
12455 arg.allow_nonconst = FALSE;
12456 break;
df58fc94 12457
9e12b7a2
RS
12458 case 'p':
12459 *offset_reloc = BFD_RELOC_16_PCREL_S2;
12460 break;
df58fc94 12461
9e12b7a2
RS
12462 case 'a':
12463 *offset_reloc = BFD_RELOC_MIPS_JMP;
df58fc94 12464 break;
60b63b72 12465
9e12b7a2 12466 case 'm':
df58fc94 12467 gas_assert (mips_opts.micromips);
9e12b7a2
RS
12468 c = args[1];
12469 switch (c)
12470 {
12471 case 't':
12472 case 'c':
12473 case 'e':
12474 /* We have already matched a comma by this point,
12475 so the register is only optional if there is another
12476 operand to come. */
12477 gas_assert (arg.opnum == 2);
a92713e6 12478 optional_reg = (args[2] == ',');
df58fc94
RS
12479 break;
12480
9e12b7a2
RS
12481 case 'D':
12482 case 'E':
12483 if (!forced_insn_length)
12484 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
12485 else if (c == 'D')
12486 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
12487 else
12488 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
df58fc94 12489 break;
9e12b7a2
RS
12490 }
12491 break;
12492 }
df58fc94 12493
9e12b7a2
RS
12494 operand = (mips_opts.micromips
12495 ? decode_micromips_operand (args)
12496 : decode_mips_operand (args));
12497 if (!operand)
12498 abort ();
df58fc94 12499
a92713e6
RS
12500 if (optional_reg
12501 && (arg.token[0].type != OT_REG
12502 || arg.token[1].type == OT_END))
9e12b7a2
RS
12503 {
12504 /* Assume that the register has been elided and is the
12505 same as the first operand. */
a92713e6 12506 arg.token = tokens;
9e12b7a2 12507 arg.argnum = 1;
9e12b7a2 12508 }
a92713e6
RS
12509
12510 if (!match_operand (&arg, operand))
9e12b7a2 12511 break;
60b63b72 12512
9e12b7a2
RS
12513 /* Skip prefixes. */
12514 if (*args == '+' || *args == 'm')
12515 args++;
60b63b72 12516
9e12b7a2 12517 continue;
252b5132
RH
12518 }
12519 /* Args don't match. */
df58fc94 12520 insn_error = _("Illegal operands");
9e12b7a2 12521 if (more_alts)
252b5132
RH
12522 {
12523 ++insn;
252b5132
RH
12524 continue;
12525 }
9e12b7a2 12526 if (wrong_delay_slot_insns && need_delay_slot_ok)
df58fc94
RS
12527 {
12528 gas_assert (firstinsn);
12529 need_delay_slot_ok = FALSE;
12530 past = insn + 1;
12531 insn = firstinsn;
12532 continue;
12533 }
a92713e6 12534 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
12535 return;
12536 }
12537}
12538
77bd4346
RS
12539/* As for mips_ip, but used when assembling MIPS16 code.
12540 Also set forced_insn_length to the resulting instruction size in
12541 bytes if the user explicitly requested a small or extended instruction. */
252b5132
RH
12542
12543static void
17a2f251 12544mips16_ip (char *str, struct mips_cl_insn *ip)
252b5132
RH
12545{
12546 char *s;
12547 const char *args;
12548 struct mips_opcode *insn;
364215c8
RS
12549 const struct mips_operand *operand;
12550 const struct mips_operand *ext_operand;
12551 struct mips_arg_info arg;
a92713e6
RS
12552 struct mips_operand_token *tokens;
12553 bfd_boolean optional_reg;
252b5132
RH
12554
12555 insn_error = NULL;
12556
df58fc94 12557 forced_insn_length = 0;
252b5132 12558
3882b010 12559 for (s = str; ISLOWER (*s); ++s)
252b5132
RH
12560 ;
12561 switch (*s)
12562 {
12563 case '\0':
12564 break;
12565
12566 case ' ':
12567 *s++ = '\0';
12568 break;
12569
12570 case '.':
12571 if (s[1] == 't' && s[2] == ' ')
12572 {
12573 *s = '\0';
df58fc94 12574 forced_insn_length = 2;
252b5132
RH
12575 s += 3;
12576 break;
12577 }
12578 else if (s[1] == 'e' && s[2] == ' ')
12579 {
12580 *s = '\0';
df58fc94 12581 forced_insn_length = 4;
252b5132
RH
12582 s += 3;
12583 break;
12584 }
12585 /* Fall through. */
12586 default:
12587 insn_error = _("unknown opcode");
12588 return;
12589 }
12590
df58fc94
RS
12591 if (mips_opts.noautoextend && !forced_insn_length)
12592 forced_insn_length = 2;
252b5132
RH
12593
12594 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
12595 {
12596 insn_error = _("unrecognized opcode");
12597 return;
12598 }
12599
a92713e6
RS
12600 tokens = mips_parse_arguments (s, 0);
12601 if (!tokens)
12602 return;
12603
252b5132
RH
12604 for (;;)
12605 {
9b3f89ee 12606 bfd_boolean ok;
364215c8 12607 bfd_boolean more_alts;
77bd4346 12608 char relax_char;
9b3f89ee 12609
9c2799c2 12610 gas_assert (strcmp (insn->name, str) == 0);
252b5132 12611
037b32b9 12612 ok = is_opcode_valid_16 (insn);
364215c8
RS
12613 more_alts = (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
12614 && strcmp (insn[0].name, insn[1].name) == 0);
9b3f89ee
TS
12615 if (! ok)
12616 {
364215c8 12617 if (more_alts)
9b3f89ee
TS
12618 {
12619 ++insn;
12620 continue;
12621 }
12622 else
12623 {
12624 if (!insn_error)
12625 {
12626 static char buf[100];
12627 sprintf (buf,
7bd942df 12628 _("Opcode not supported on this processor: %s (%s)"),
9b3f89ee
TS
12629 mips_cpu_info_from_arch (mips_opts.arch)->name,
12630 mips_cpu_info_from_isa (mips_opts.isa)->name);
12631 insn_error = buf;
12632 }
a92713e6 12633 obstack_free (&mips_operand_tokens, tokens);
9b3f89ee
TS
12634 return;
12635 }
12636 }
12637
1e915849 12638 create_insn (ip, insn);
252b5132 12639 imm_expr.X_op = O_absent;
5f74bc13 12640 imm2_expr.X_op = O_absent;
252b5132 12641 offset_expr.X_op = O_absent;
f6688943
TS
12642 offset_reloc[0] = BFD_RELOC_UNUSED;
12643 offset_reloc[1] = BFD_RELOC_UNUSED;
12644 offset_reloc[2] = BFD_RELOC_UNUSED;
77bd4346 12645 relax_char = 0;
364215c8
RS
12646
12647 memset (&arg, 0, sizeof (arg));
12648 arg.insn = ip;
a92713e6 12649 arg.token = tokens;
364215c8
RS
12650 arg.argnum = 1;
12651 arg.last_regno = ILLEGAL_REG;
12652 arg.dest_regno = ILLEGAL_REG;
12653 arg.soft_match = more_alts;
12654 relax_char = 0;
252b5132
RH
12655 for (args = insn->args; 1; ++args)
12656 {
12657 int c;
12658
a92713e6 12659 if (arg.token->type == OT_END)
252b5132 12660 {
364215c8 12661 offsetT value;
252b5132 12662
364215c8
RS
12663 /* Handle unary instructions in which only one operand is given.
12664 The source is then the same as the destination. */
12665 if (arg.opnum == 1 && *args == ',')
12666 switch (args[1])
12667 {
12668 case 'v':
12669 case 'w':
a92713e6 12670 arg.token = tokens;
364215c8 12671 arg.argnum = 1;
364215c8
RS
12672 continue;
12673 }
252b5132 12674
364215c8
RS
12675 /* Fail the match if there were too few operands. */
12676 if (*args)
12677 break;
252b5132 12678
364215c8
RS
12679 /* Successful match. Stuff the immediate value in now, if
12680 we can. */
12681 if (insn->pinfo == INSN_MACRO)
252b5132 12682 {
0acfaea6 12683 gas_assert (relax_char == 0 || relax_char == 'p');
364215c8 12684 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
252b5132 12685 }
364215c8
RS
12686 else if (relax_char
12687 && offset_expr.X_op == O_constant
12688 && calculate_reloc (*offset_reloc,
12689 offset_expr.X_add_number,
12690 &value))
252b5132 12691 {
364215c8
RS
12692 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
12693 forced_insn_length, &ip->insn_opcode);
12694 offset_expr.X_op = O_absent;
12695 *offset_reloc = BFD_RELOC_UNUSED;
252b5132 12696 }
364215c8 12697 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
252b5132 12698 {
364215c8
RS
12699 if (forced_insn_length == 2)
12700 as_bad (_("invalid unextended operand value"));
12701 forced_insn_length = 4;
12702 ip->insn_opcode |= MIPS16_EXTEND;
252b5132 12703 }
364215c8
RS
12704 else if (relax_char)
12705 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
252b5132 12706
364215c8 12707 check_completed_insn (&arg);
a92713e6 12708 obstack_free (&mips_operand_tokens, tokens);
364215c8
RS
12709 return;
12710 }
252b5132 12711
364215c8
RS
12712 /* Fail the match if the line has too many operands. */
12713 if (*args == 0)
12714 break;
252b5132 12715
364215c8
RS
12716 /* Handle characters that need to match exactly. */
12717 if (*args == '(' || *args == ')' || *args == ',')
12718 {
a92713e6
RS
12719 if (match_char (&arg, *args))
12720 continue;
12721 break;
364215c8 12722 }
252b5132 12723
364215c8 12724 arg.opnum += 1;
a92713e6 12725 optional_reg = FALSE;
364215c8
RS
12726 c = *args;
12727 switch (c)
12728 {
12729 case 'v':
12730 case 'w':
a92713e6 12731 optional_reg = (args[1] == ',');
252b5132
RH
12732 break;
12733
252b5132
RH
12734 case 'p':
12735 case 'q':
12736 case 'A':
12737 case 'B':
12738 case 'E':
77bd4346 12739 relax_char = c;
364215c8 12740 break;
252b5132 12741
cc537e56 12742 case 'I':
a92713e6
RS
12743 if (match_const_int (&arg, &imm_expr.X_add_number, 0))
12744 imm_expr.X_op = O_constant;
12745 else
cc537e56
RS
12746 insn_error = _("absolute expression required");
12747 if (HAVE_32BIT_GPRS)
12748 normalize_constant_expr (&imm_expr);
cc537e56
RS
12749 continue;
12750
364215c8 12751 case 'a':
27c5c572 12752 case 'i':
f6688943 12753 *offset_reloc = BFD_RELOC_MIPS16_JMP;
252b5132 12754 ip->insn_opcode <<= 16;
364215c8
RS
12755 break;
12756 }
0499d65b 12757
364215c8
RS
12758 operand = decode_mips16_operand (c, FALSE);
12759 if (!operand)
12760 abort ();
0499d65b 12761
364215c8
RS
12762 /* '6' is a special case. It is used for BREAK and SDBBP,
12763 whose operands are only meaningful to the software that decodes
12764 them. This means that there is no architectural reason why
12765 they cannot be prefixed by EXTEND, but in practice,
12766 exception handlers will only look at the instruction
12767 itself. We therefore allow '6' to be extended when
12768 disassembling but not when assembling. */
12769 if (operand->type != OP_PCREL && c != '6')
12770 {
12771 ext_operand = decode_mips16_operand (c, TRUE);
12772 if (operand != ext_operand)
252b5132 12773 {
a92713e6 12774 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
364215c8 12775 {
a92713e6
RS
12776 offset_expr.X_op = O_constant;
12777 offset_expr.X_add_number = 0;
12778 relax_char = c;
12779 continue;
364215c8 12780 }
a92713e6
RS
12781
12782 /* We need the OT_INTEGER check because some MIPS16
12783 immediate variants are listed before the register ones. */
12784 if (arg.token->type != OT_INTEGER
12785 || !match_expression (&arg, &offset_expr, offset_reloc))
12786 break;
12787
364215c8
RS
12788 /* '8' is used for SLTI(U) and has traditionally not
12789 been allowed to take relocation operators. */
a92713e6
RS
12790 if (offset_reloc[0] != BFD_RELOC_UNUSED
12791 && (ext_operand->size != 16 || c == '8'))
364215c8 12792 break;
a92713e6 12793
364215c8
RS
12794 relax_char = c;
12795 continue;
252b5132 12796 }
364215c8 12797 }
252b5132 12798
a92713e6
RS
12799 if (optional_reg
12800 && (arg.token[0].type != OT_REG
12801 || arg.token[1].type == OT_END))
364215c8
RS
12802 {
12803 /* Assume that the register has been elided and is the
12804 same as the first operand. */
a92713e6 12805 arg.token = tokens;
364215c8 12806 arg.argnum = 1;
252b5132 12807 }
a92713e6
RS
12808
12809 if (!match_operand (&arg, operand))
364215c8
RS
12810 break;
12811 continue;
252b5132
RH
12812 }
12813
12814 /* Args don't match. */
364215c8 12815 if (more_alts)
252b5132
RH
12816 {
12817 ++insn;
252b5132
RH
12818 continue;
12819 }
12820
12821 insn_error = _("illegal operands");
12822
a92713e6 12823 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
12824 return;
12825 }
12826}
12827
b886a2ab
RS
12828/* Marshal immediate value VAL for an extended MIPS16 instruction.
12829 NBITS is the number of significant bits in VAL. */
12830
12831static unsigned long
12832mips16_immed_extend (offsetT val, unsigned int nbits)
12833{
12834 int extval;
12835 if (nbits == 16)
12836 {
12837 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
12838 val &= 0x1f;
12839 }
12840 else if (nbits == 15)
12841 {
12842 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
12843 val &= 0xf;
12844 }
12845 else
12846 {
12847 extval = ((val & 0x1f) << 6) | (val & 0x20);
12848 val = 0;
12849 }
12850 return (extval << 16) | val;
12851}
12852
3ccad066
RS
12853/* Like decode_mips16_operand, but require the operand to be defined and
12854 require it to be an integer. */
12855
12856static const struct mips_int_operand *
12857mips16_immed_operand (int type, bfd_boolean extended_p)
12858{
12859 const struct mips_operand *operand;
12860
12861 operand = decode_mips16_operand (type, extended_p);
12862 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
12863 abort ();
12864 return (const struct mips_int_operand *) operand;
12865}
12866
12867/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
12868
12869static bfd_boolean
12870mips16_immed_in_range_p (const struct mips_int_operand *operand,
12871 bfd_reloc_code_real_type reloc, offsetT sval)
12872{
12873 int min_val, max_val;
12874
12875 min_val = mips_int_operand_min (operand);
12876 max_val = mips_int_operand_max (operand);
12877 if (reloc != BFD_RELOC_UNUSED)
12878 {
12879 if (min_val < 0)
12880 sval = SEXT_16BIT (sval);
12881 else
12882 sval &= 0xffff;
12883 }
12884
12885 return (sval >= min_val
12886 && sval <= max_val
12887 && (sval & ((1 << operand->shift) - 1)) == 0);
12888}
12889
5c04167a
RS
12890/* Install immediate value VAL into MIPS16 instruction *INSN,
12891 extending it if necessary. The instruction in *INSN may
12892 already be extended.
12893
43c0598f
RS
12894 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
12895 if none. In the former case, VAL is a 16-bit number with no
12896 defined signedness.
12897
12898 TYPE is the type of the immediate field. USER_INSN_LENGTH
12899 is the length that the user requested, or 0 if none. */
252b5132
RH
12900
12901static void
43c0598f
RS
12902mips16_immed (char *file, unsigned int line, int type,
12903 bfd_reloc_code_real_type reloc, offsetT val,
5c04167a 12904 unsigned int user_insn_length, unsigned long *insn)
252b5132 12905{
3ccad066
RS
12906 const struct mips_int_operand *operand;
12907 unsigned int uval, length;
252b5132 12908
3ccad066
RS
12909 operand = mips16_immed_operand (type, FALSE);
12910 if (!mips16_immed_in_range_p (operand, reloc, val))
5c04167a
RS
12911 {
12912 /* We need an extended instruction. */
12913 if (user_insn_length == 2)
12914 as_bad_where (file, line, _("invalid unextended operand value"));
12915 else
12916 *insn |= MIPS16_EXTEND;
12917 }
12918 else if (user_insn_length == 4)
12919 {
12920 /* The operand doesn't force an unextended instruction to be extended.
12921 Warn if the user wanted an extended instruction anyway. */
12922 *insn |= MIPS16_EXTEND;
12923 as_warn_where (file, line,
12924 _("extended operand requested but not required"));
12925 }
252b5132 12926
3ccad066
RS
12927 length = mips16_opcode_length (*insn);
12928 if (length == 4)
252b5132 12929 {
3ccad066
RS
12930 operand = mips16_immed_operand (type, TRUE);
12931 if (!mips16_immed_in_range_p (operand, reloc, val))
12932 as_bad_where (file, line,
12933 _("operand value out of range for instruction"));
252b5132 12934 }
3ccad066
RS
12935 uval = ((unsigned int) val >> operand->shift) - operand->bias;
12936 if (length == 2)
12937 *insn = mips_insert_operand (&operand->root, *insn, uval);
252b5132 12938 else
3ccad066 12939 *insn |= mips16_immed_extend (uval, operand->root.size);
252b5132
RH
12940}
12941\f
d6f16593 12942struct percent_op_match
ad8d3bb3 12943{
5e0116d5
RS
12944 const char *str;
12945 bfd_reloc_code_real_type reloc;
d6f16593
MR
12946};
12947
12948static const struct percent_op_match mips_percent_op[] =
ad8d3bb3 12949{
5e0116d5 12950 {"%lo", BFD_RELOC_LO16},
5e0116d5
RS
12951 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
12952 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
12953 {"%call16", BFD_RELOC_MIPS_CALL16},
12954 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
12955 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
12956 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
12957 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
12958 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
12959 {"%got", BFD_RELOC_MIPS_GOT16},
12960 {"%gp_rel", BFD_RELOC_GPREL16},
12961 {"%half", BFD_RELOC_16},
12962 {"%highest", BFD_RELOC_MIPS_HIGHEST},
12963 {"%higher", BFD_RELOC_MIPS_HIGHER},
12964 {"%neg", BFD_RELOC_MIPS_SUB},
3f98094e
DJ
12965 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
12966 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
12967 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
12968 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
12969 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
12970 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
12971 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
5e0116d5 12972 {"%hi", BFD_RELOC_HI16_S}
ad8d3bb3
TS
12973};
12974
d6f16593
MR
12975static const struct percent_op_match mips16_percent_op[] =
12976{
12977 {"%lo", BFD_RELOC_MIPS16_LO16},
12978 {"%gprel", BFD_RELOC_MIPS16_GPREL},
738e5348
RS
12979 {"%got", BFD_RELOC_MIPS16_GOT16},
12980 {"%call16", BFD_RELOC_MIPS16_CALL16},
d0f13682
CLT
12981 {"%hi", BFD_RELOC_MIPS16_HI16_S},
12982 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
12983 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
12984 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
12985 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
12986 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
12987 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
12988 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
d6f16593
MR
12989};
12990
252b5132 12991
5e0116d5
RS
12992/* Return true if *STR points to a relocation operator. When returning true,
12993 move *STR over the operator and store its relocation code in *RELOC.
12994 Leave both *STR and *RELOC alone when returning false. */
12995
12996static bfd_boolean
17a2f251 12997parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
252b5132 12998{
d6f16593
MR
12999 const struct percent_op_match *percent_op;
13000 size_t limit, i;
13001
13002 if (mips_opts.mips16)
13003 {
13004 percent_op = mips16_percent_op;
13005 limit = ARRAY_SIZE (mips16_percent_op);
13006 }
13007 else
13008 {
13009 percent_op = mips_percent_op;
13010 limit = ARRAY_SIZE (mips_percent_op);
13011 }
76b3015f 13012
d6f16593 13013 for (i = 0; i < limit; i++)
5e0116d5 13014 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
394f9b3a 13015 {
3f98094e
DJ
13016 int len = strlen (percent_op[i].str);
13017
13018 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13019 continue;
13020
5e0116d5
RS
13021 *str += strlen (percent_op[i].str);
13022 *reloc = percent_op[i].reloc;
394f9b3a 13023
5e0116d5
RS
13024 /* Check whether the output BFD supports this relocation.
13025 If not, issue an error and fall back on something safe. */
13026 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
394f9b3a 13027 {
20203fb9 13028 as_bad (_("relocation %s isn't supported by the current ABI"),
5e0116d5 13029 percent_op[i].str);
01a3f561 13030 *reloc = BFD_RELOC_UNUSED;
394f9b3a 13031 }
5e0116d5 13032 return TRUE;
394f9b3a 13033 }
5e0116d5 13034 return FALSE;
394f9b3a 13035}
ad8d3bb3 13036
ad8d3bb3 13037
5e0116d5
RS
13038/* Parse string STR as a 16-bit relocatable operand. Store the
13039 expression in *EP and the relocations in the array starting
13040 at RELOC. Return the number of relocation operators used.
ad8d3bb3 13041
01a3f561 13042 On exit, EXPR_END points to the first character after the expression. */
ad8d3bb3 13043
5e0116d5 13044static size_t
17a2f251
TS
13045my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13046 char *str)
ad8d3bb3 13047{
5e0116d5
RS
13048 bfd_reloc_code_real_type reversed_reloc[3];
13049 size_t reloc_index, i;
09b8f35a
RS
13050 int crux_depth, str_depth;
13051 char *crux;
5e0116d5
RS
13052
13053 /* Search for the start of the main expression, recoding relocations
09b8f35a
RS
13054 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13055 of the main expression and with CRUX_DEPTH containing the number
13056 of open brackets at that point. */
13057 reloc_index = -1;
13058 str_depth = 0;
13059 do
fb1b3232 13060 {
09b8f35a
RS
13061 reloc_index++;
13062 crux = str;
13063 crux_depth = str_depth;
13064
13065 /* Skip over whitespace and brackets, keeping count of the number
13066 of brackets. */
13067 while (*str == ' ' || *str == '\t' || *str == '(')
13068 if (*str++ == '(')
13069 str_depth++;
5e0116d5 13070 }
09b8f35a
RS
13071 while (*str == '%'
13072 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13073 && parse_relocation (&str, &reversed_reloc[reloc_index]));
ad8d3bb3 13074
09b8f35a 13075 my_getExpression (ep, crux);
5e0116d5 13076 str = expr_end;
394f9b3a 13077
5e0116d5 13078 /* Match every open bracket. */
09b8f35a 13079 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
5e0116d5 13080 if (*str++ == ')')
09b8f35a 13081 crux_depth--;
394f9b3a 13082
09b8f35a 13083 if (crux_depth > 0)
20203fb9 13084 as_bad (_("unclosed '('"));
394f9b3a 13085
5e0116d5 13086 expr_end = str;
252b5132 13087
01a3f561 13088 if (reloc_index != 0)
64bdfcaf
RS
13089 {
13090 prev_reloc_op_frag = frag_now;
13091 for (i = 0; i < reloc_index; i++)
13092 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13093 }
fb1b3232 13094
5e0116d5 13095 return reloc_index;
252b5132
RH
13096}
13097
13098static void
17a2f251 13099my_getExpression (expressionS *ep, char *str)
252b5132
RH
13100{
13101 char *save_in;
13102
13103 save_in = input_line_pointer;
13104 input_line_pointer = str;
13105 expression (ep);
13106 expr_end = input_line_pointer;
13107 input_line_pointer = save_in;
252b5132
RH
13108}
13109
252b5132 13110char *
17a2f251 13111md_atof (int type, char *litP, int *sizeP)
252b5132 13112{
499ac353 13113 return ieee_md_atof (type, litP, sizeP, target_big_endian);
252b5132
RH
13114}
13115
13116void
17a2f251 13117md_number_to_chars (char *buf, valueT val, int n)
252b5132
RH
13118{
13119 if (target_big_endian)
13120 number_to_chars_bigendian (buf, val, n);
13121 else
13122 number_to_chars_littleendian (buf, val, n);
13123}
13124\f
e013f690
TS
13125static int support_64bit_objects(void)
13126{
13127 const char **list, **l;
aa3d8fdf 13128 int yes;
e013f690
TS
13129
13130 list = bfd_target_list ();
13131 for (l = list; *l != NULL; l++)
aeffff67
RS
13132 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
13133 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
e013f690 13134 break;
aa3d8fdf 13135 yes = (*l != NULL);
e013f690 13136 free (list);
aa3d8fdf 13137 return yes;
e013f690
TS
13138}
13139
316f5878
RS
13140/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
13141 NEW_VALUE. Warn if another value was already specified. Note:
13142 we have to defer parsing the -march and -mtune arguments in order
13143 to handle 'from-abi' correctly, since the ABI might be specified
13144 in a later argument. */
13145
13146static void
17a2f251 13147mips_set_option_string (const char **string_ptr, const char *new_value)
316f5878
RS
13148{
13149 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
13150 as_warn (_("A different %s was already specified, is now %s"),
13151 string_ptr == &mips_arch_string ? "-march" : "-mtune",
13152 new_value);
13153
13154 *string_ptr = new_value;
13155}
13156
252b5132 13157int
17a2f251 13158md_parse_option (int c, char *arg)
252b5132 13159{
c6278170
RS
13160 unsigned int i;
13161
13162 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
13163 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
13164 {
13165 file_ase_explicit |= mips_set_ase (&mips_ases[i],
13166 c == mips_ases[i].option_on);
13167 return 1;
13168 }
13169
252b5132
RH
13170 switch (c)
13171 {
119d663a
NC
13172 case OPTION_CONSTRUCT_FLOATS:
13173 mips_disable_float_construction = 0;
13174 break;
bdaaa2e1 13175
119d663a
NC
13176 case OPTION_NO_CONSTRUCT_FLOATS:
13177 mips_disable_float_construction = 1;
13178 break;
bdaaa2e1 13179
252b5132
RH
13180 case OPTION_TRAP:
13181 mips_trap = 1;
13182 break;
13183
13184 case OPTION_BREAK:
13185 mips_trap = 0;
13186 break;
13187
13188 case OPTION_EB:
13189 target_big_endian = 1;
13190 break;
13191
13192 case OPTION_EL:
13193 target_big_endian = 0;
13194 break;
13195
13196 case 'O':
4ffff32f
TS
13197 if (arg == NULL)
13198 mips_optimize = 1;
13199 else if (arg[0] == '0')
13200 mips_optimize = 0;
13201 else if (arg[0] == '1')
252b5132
RH
13202 mips_optimize = 1;
13203 else
13204 mips_optimize = 2;
13205 break;
13206
13207 case 'g':
13208 if (arg == NULL)
13209 mips_debug = 2;
13210 else
13211 mips_debug = atoi (arg);
252b5132
RH
13212 break;
13213
13214 case OPTION_MIPS1:
316f5878 13215 file_mips_isa = ISA_MIPS1;
252b5132
RH
13216 break;
13217
13218 case OPTION_MIPS2:
316f5878 13219 file_mips_isa = ISA_MIPS2;
252b5132
RH
13220 break;
13221
13222 case OPTION_MIPS3:
316f5878 13223 file_mips_isa = ISA_MIPS3;
252b5132
RH
13224 break;
13225
13226 case OPTION_MIPS4:
316f5878 13227 file_mips_isa = ISA_MIPS4;
e7af610e
NC
13228 break;
13229
84ea6cf2 13230 case OPTION_MIPS5:
316f5878 13231 file_mips_isa = ISA_MIPS5;
84ea6cf2
NC
13232 break;
13233
e7af610e 13234 case OPTION_MIPS32:
316f5878 13235 file_mips_isa = ISA_MIPS32;
252b5132
RH
13236 break;
13237
af7ee8bf
CD
13238 case OPTION_MIPS32R2:
13239 file_mips_isa = ISA_MIPS32R2;
13240 break;
13241
5f74bc13
CD
13242 case OPTION_MIPS64R2:
13243 file_mips_isa = ISA_MIPS64R2;
13244 break;
13245
84ea6cf2 13246 case OPTION_MIPS64:
316f5878 13247 file_mips_isa = ISA_MIPS64;
84ea6cf2
NC
13248 break;
13249
ec68c924 13250 case OPTION_MTUNE:
316f5878
RS
13251 mips_set_option_string (&mips_tune_string, arg);
13252 break;
ec68c924 13253
316f5878
RS
13254 case OPTION_MARCH:
13255 mips_set_option_string (&mips_arch_string, arg);
252b5132
RH
13256 break;
13257
13258 case OPTION_M4650:
316f5878
RS
13259 mips_set_option_string (&mips_arch_string, "4650");
13260 mips_set_option_string (&mips_tune_string, "4650");
252b5132
RH
13261 break;
13262
13263 case OPTION_NO_M4650:
13264 break;
13265
13266 case OPTION_M4010:
316f5878
RS
13267 mips_set_option_string (&mips_arch_string, "4010");
13268 mips_set_option_string (&mips_tune_string, "4010");
252b5132
RH
13269 break;
13270
13271 case OPTION_NO_M4010:
13272 break;
13273
13274 case OPTION_M4100:
316f5878
RS
13275 mips_set_option_string (&mips_arch_string, "4100");
13276 mips_set_option_string (&mips_tune_string, "4100");
252b5132
RH
13277 break;
13278
13279 case OPTION_NO_M4100:
13280 break;
13281
252b5132 13282 case OPTION_M3900:
316f5878
RS
13283 mips_set_option_string (&mips_arch_string, "3900");
13284 mips_set_option_string (&mips_tune_string, "3900");
252b5132 13285 break;
bdaaa2e1 13286
252b5132
RH
13287 case OPTION_NO_M3900:
13288 break;
13289
df58fc94
RS
13290 case OPTION_MICROMIPS:
13291 if (mips_opts.mips16 == 1)
13292 {
13293 as_bad (_("-mmicromips cannot be used with -mips16"));
13294 return 0;
13295 }
13296 mips_opts.micromips = 1;
13297 mips_no_prev_insn ();
13298 break;
13299
13300 case OPTION_NO_MICROMIPS:
13301 mips_opts.micromips = 0;
13302 mips_no_prev_insn ();
13303 break;
13304
252b5132 13305 case OPTION_MIPS16:
df58fc94
RS
13306 if (mips_opts.micromips == 1)
13307 {
13308 as_bad (_("-mips16 cannot be used with -micromips"));
13309 return 0;
13310 }
252b5132 13311 mips_opts.mips16 = 1;
7d10b47d 13312 mips_no_prev_insn ();
252b5132
RH
13313 break;
13314
13315 case OPTION_NO_MIPS16:
13316 mips_opts.mips16 = 0;
7d10b47d 13317 mips_no_prev_insn ();
252b5132
RH
13318 break;
13319
6a32d874
CM
13320 case OPTION_FIX_24K:
13321 mips_fix_24k = 1;
13322 break;
13323
13324 case OPTION_NO_FIX_24K:
13325 mips_fix_24k = 0;
13326 break;
13327
c67a084a
NC
13328 case OPTION_FIX_LOONGSON2F_JUMP:
13329 mips_fix_loongson2f_jump = TRUE;
13330 break;
13331
13332 case OPTION_NO_FIX_LOONGSON2F_JUMP:
13333 mips_fix_loongson2f_jump = FALSE;
13334 break;
13335
13336 case OPTION_FIX_LOONGSON2F_NOP:
13337 mips_fix_loongson2f_nop = TRUE;
13338 break;
13339
13340 case OPTION_NO_FIX_LOONGSON2F_NOP:
13341 mips_fix_loongson2f_nop = FALSE;
13342 break;
13343
d766e8ec
RS
13344 case OPTION_FIX_VR4120:
13345 mips_fix_vr4120 = 1;
60b63b72
RS
13346 break;
13347
d766e8ec
RS
13348 case OPTION_NO_FIX_VR4120:
13349 mips_fix_vr4120 = 0;
60b63b72
RS
13350 break;
13351
7d8e00cf
RS
13352 case OPTION_FIX_VR4130:
13353 mips_fix_vr4130 = 1;
13354 break;
13355
13356 case OPTION_NO_FIX_VR4130:
13357 mips_fix_vr4130 = 0;
13358 break;
13359
d954098f
DD
13360 case OPTION_FIX_CN63XXP1:
13361 mips_fix_cn63xxp1 = TRUE;
13362 break;
13363
13364 case OPTION_NO_FIX_CN63XXP1:
13365 mips_fix_cn63xxp1 = FALSE;
13366 break;
13367
4a6a3df4
AO
13368 case OPTION_RELAX_BRANCH:
13369 mips_relax_branch = 1;
13370 break;
13371
13372 case OPTION_NO_RELAX_BRANCH:
13373 mips_relax_branch = 0;
13374 break;
13375
833794fc
MR
13376 case OPTION_INSN32:
13377 mips_opts.insn32 = TRUE;
13378 break;
13379
13380 case OPTION_NO_INSN32:
13381 mips_opts.insn32 = FALSE;
13382 break;
13383
aa6975fb
ILT
13384 case OPTION_MSHARED:
13385 mips_in_shared = TRUE;
13386 break;
13387
13388 case OPTION_MNO_SHARED:
13389 mips_in_shared = FALSE;
13390 break;
13391
aed1a261
RS
13392 case OPTION_MSYM32:
13393 mips_opts.sym32 = TRUE;
13394 break;
13395
13396 case OPTION_MNO_SYM32:
13397 mips_opts.sym32 = FALSE;
13398 break;
13399
252b5132
RH
13400 /* When generating ELF code, we permit -KPIC and -call_shared to
13401 select SVR4_PIC, and -non_shared to select no PIC. This is
13402 intended to be compatible with Irix 5. */
13403 case OPTION_CALL_SHARED:
252b5132 13404 mips_pic = SVR4_PIC;
143d77c5 13405 mips_abicalls = TRUE;
252b5132
RH
13406 break;
13407
861fb55a 13408 case OPTION_CALL_NONPIC:
861fb55a
DJ
13409 mips_pic = NO_PIC;
13410 mips_abicalls = TRUE;
13411 break;
13412
252b5132 13413 case OPTION_NON_SHARED:
252b5132 13414 mips_pic = NO_PIC;
143d77c5 13415 mips_abicalls = FALSE;
252b5132
RH
13416 break;
13417
44075ae2
TS
13418 /* The -xgot option tells the assembler to use 32 bit offsets
13419 when accessing the got in SVR4_PIC mode. It is for Irix
252b5132
RH
13420 compatibility. */
13421 case OPTION_XGOT:
13422 mips_big_got = 1;
13423 break;
13424
13425 case 'G':
6caf9ef4
TS
13426 g_switch_value = atoi (arg);
13427 g_switch_seen = 1;
252b5132
RH
13428 break;
13429
34ba82a8
TS
13430 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
13431 and -mabi=64. */
252b5132 13432 case OPTION_32:
f3ded42a 13433 mips_abi = O32_ABI;
252b5132
RH
13434 break;
13435
e013f690 13436 case OPTION_N32:
316f5878 13437 mips_abi = N32_ABI;
e013f690 13438 break;
252b5132 13439
e013f690 13440 case OPTION_64:
316f5878 13441 mips_abi = N64_ABI;
f43abd2b 13442 if (!support_64bit_objects())
e013f690 13443 as_fatal (_("No compiled in support for 64 bit object file format"));
252b5132
RH
13444 break;
13445
c97ef257 13446 case OPTION_GP32:
a325df1d 13447 file_mips_gp32 = 1;
c97ef257
AH
13448 break;
13449
13450 case OPTION_GP64:
a325df1d 13451 file_mips_gp32 = 0;
c97ef257 13452 break;
252b5132 13453
ca4e0257 13454 case OPTION_FP32:
a325df1d 13455 file_mips_fp32 = 1;
316f5878
RS
13456 break;
13457
13458 case OPTION_FP64:
13459 file_mips_fp32 = 0;
ca4e0257
RS
13460 break;
13461
037b32b9
AN
13462 case OPTION_SINGLE_FLOAT:
13463 file_mips_single_float = 1;
13464 break;
13465
13466 case OPTION_DOUBLE_FLOAT:
13467 file_mips_single_float = 0;
13468 break;
13469
13470 case OPTION_SOFT_FLOAT:
13471 file_mips_soft_float = 1;
13472 break;
13473
13474 case OPTION_HARD_FLOAT:
13475 file_mips_soft_float = 0;
13476 break;
13477
252b5132 13478 case OPTION_MABI:
e013f690 13479 if (strcmp (arg, "32") == 0)
316f5878 13480 mips_abi = O32_ABI;
e013f690 13481 else if (strcmp (arg, "o64") == 0)
316f5878 13482 mips_abi = O64_ABI;
e013f690 13483 else if (strcmp (arg, "n32") == 0)
316f5878 13484 mips_abi = N32_ABI;
e013f690
TS
13485 else if (strcmp (arg, "64") == 0)
13486 {
316f5878 13487 mips_abi = N64_ABI;
e013f690
TS
13488 if (! support_64bit_objects())
13489 as_fatal (_("No compiled in support for 64 bit object file "
13490 "format"));
13491 }
13492 else if (strcmp (arg, "eabi") == 0)
316f5878 13493 mips_abi = EABI_ABI;
e013f690 13494 else
da0e507f
TS
13495 {
13496 as_fatal (_("invalid abi -mabi=%s"), arg);
13497 return 0;
13498 }
252b5132
RH
13499 break;
13500
6b76fefe 13501 case OPTION_M7000_HILO_FIX:
b34976b6 13502 mips_7000_hilo_fix = TRUE;
6b76fefe
CM
13503 break;
13504
9ee72ff1 13505 case OPTION_MNO_7000_HILO_FIX:
b34976b6 13506 mips_7000_hilo_fix = FALSE;
6b76fefe
CM
13507 break;
13508
ecb4347a 13509 case OPTION_MDEBUG:
b34976b6 13510 mips_flag_mdebug = TRUE;
ecb4347a
DJ
13511 break;
13512
13513 case OPTION_NO_MDEBUG:
b34976b6 13514 mips_flag_mdebug = FALSE;
ecb4347a 13515 break;
dcd410fe
RO
13516
13517 case OPTION_PDR:
13518 mips_flag_pdr = TRUE;
13519 break;
13520
13521 case OPTION_NO_PDR:
13522 mips_flag_pdr = FALSE;
13523 break;
0a44bf69
RS
13524
13525 case OPTION_MVXWORKS_PIC:
13526 mips_pic = VXWORKS_PIC;
13527 break;
ecb4347a 13528
ba92f887
MR
13529 case OPTION_NAN:
13530 if (strcmp (arg, "2008") == 0)
13531 mips_flag_nan2008 = TRUE;
13532 else if (strcmp (arg, "legacy") == 0)
13533 mips_flag_nan2008 = FALSE;
13534 else
13535 {
13536 as_fatal (_("Invalid NaN setting -mnan=%s"), arg);
13537 return 0;
13538 }
13539 break;
13540
252b5132
RH
13541 default:
13542 return 0;
13543 }
13544
c67a084a
NC
13545 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
13546
252b5132
RH
13547 return 1;
13548}
316f5878
RS
13549\f
13550/* Set up globals to generate code for the ISA or processor
13551 described by INFO. */
252b5132 13552
252b5132 13553static void
17a2f251 13554mips_set_architecture (const struct mips_cpu_info *info)
252b5132 13555{
316f5878 13556 if (info != 0)
252b5132 13557 {
fef14a42
TS
13558 file_mips_arch = info->cpu;
13559 mips_opts.arch = info->cpu;
316f5878 13560 mips_opts.isa = info->isa;
252b5132 13561 }
252b5132
RH
13562}
13563
252b5132 13564
316f5878 13565/* Likewise for tuning. */
252b5132 13566
316f5878 13567static void
17a2f251 13568mips_set_tune (const struct mips_cpu_info *info)
316f5878
RS
13569{
13570 if (info != 0)
fef14a42 13571 mips_tune = info->cpu;
316f5878 13572}
80cc45a5 13573
34ba82a8 13574
252b5132 13575void
17a2f251 13576mips_after_parse_args (void)
e9670677 13577{
fef14a42
TS
13578 const struct mips_cpu_info *arch_info = 0;
13579 const struct mips_cpu_info *tune_info = 0;
13580
e9670677 13581 /* GP relative stuff not working for PE */
6caf9ef4 13582 if (strncmp (TARGET_OS, "pe", 2) == 0)
e9670677 13583 {
6caf9ef4 13584 if (g_switch_seen && g_switch_value != 0)
e9670677
MR
13585 as_bad (_("-G not supported in this configuration."));
13586 g_switch_value = 0;
13587 }
13588
cac012d6
AO
13589 if (mips_abi == NO_ABI)
13590 mips_abi = MIPS_DEFAULT_ABI;
13591
22923709
RS
13592 /* The following code determines the architecture and register size.
13593 Similar code was added to GCC 3.3 (see override_options() in
13594 config/mips/mips.c). The GAS and GCC code should be kept in sync
13595 as much as possible. */
e9670677 13596
316f5878 13597 if (mips_arch_string != 0)
fef14a42 13598 arch_info = mips_parse_cpu ("-march", mips_arch_string);
e9670677 13599
316f5878 13600 if (file_mips_isa != ISA_UNKNOWN)
e9670677 13601 {
316f5878 13602 /* Handle -mipsN. At this point, file_mips_isa contains the
fef14a42 13603 ISA level specified by -mipsN, while arch_info->isa contains
316f5878 13604 the -march selection (if any). */
fef14a42 13605 if (arch_info != 0)
e9670677 13606 {
316f5878
RS
13607 /* -march takes precedence over -mipsN, since it is more descriptive.
13608 There's no harm in specifying both as long as the ISA levels
13609 are the same. */
fef14a42 13610 if (file_mips_isa != arch_info->isa)
316f5878
RS
13611 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
13612 mips_cpu_info_from_isa (file_mips_isa)->name,
fef14a42 13613 mips_cpu_info_from_isa (arch_info->isa)->name);
e9670677 13614 }
316f5878 13615 else
fef14a42 13616 arch_info = mips_cpu_info_from_isa (file_mips_isa);
e9670677
MR
13617 }
13618
fef14a42 13619 if (arch_info == 0)
95bfe26e
MF
13620 {
13621 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
13622 gas_assert (arch_info);
13623 }
e9670677 13624
fef14a42 13625 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
20203fb9 13626 as_bad (_("-march=%s is not compatible with the selected ABI"),
fef14a42
TS
13627 arch_info->name);
13628
13629 mips_set_architecture (arch_info);
13630
13631 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
13632 if (mips_tune_string != 0)
13633 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
e9670677 13634
fef14a42
TS
13635 if (tune_info == 0)
13636 mips_set_tune (arch_info);
13637 else
13638 mips_set_tune (tune_info);
e9670677 13639
316f5878 13640 if (file_mips_gp32 >= 0)
e9670677 13641 {
316f5878
RS
13642 /* The user specified the size of the integer registers. Make sure
13643 it agrees with the ABI and ISA. */
13644 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
13645 as_bad (_("-mgp64 used with a 32-bit processor"));
13646 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
13647 as_bad (_("-mgp32 used with a 64-bit ABI"));
13648 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
13649 as_bad (_("-mgp64 used with a 32-bit ABI"));
e9670677
MR
13650 }
13651 else
13652 {
316f5878
RS
13653 /* Infer the integer register size from the ABI and processor.
13654 Restrict ourselves to 32-bit registers if that's all the
13655 processor has, or if the ABI cannot handle 64-bit registers. */
13656 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
13657 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
e9670677
MR
13658 }
13659
ad3fea08
TS
13660 switch (file_mips_fp32)
13661 {
13662 default:
13663 case -1:
13664 /* No user specified float register size.
13665 ??? GAS treats single-float processors as though they had 64-bit
13666 float registers (although it complains when double-precision
13667 instructions are used). As things stand, saying they have 32-bit
13668 registers would lead to spurious "register must be even" messages.
13669 So here we assume float registers are never smaller than the
13670 integer ones. */
13671 if (file_mips_gp32 == 0)
13672 /* 64-bit integer registers implies 64-bit float registers. */
13673 file_mips_fp32 = 0;
c6278170 13674 else if ((mips_opts.ase & FP64_ASES)
ad3fea08
TS
13675 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
13676 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
13677 file_mips_fp32 = 0;
13678 else
13679 /* 32-bit float registers. */
13680 file_mips_fp32 = 1;
13681 break;
13682
13683 /* The user specified the size of the float registers. Check if it
13684 agrees with the ABI and ISA. */
13685 case 0:
13686 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
13687 as_bad (_("-mfp64 used with a 32-bit fpu"));
13688 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
13689 && !ISA_HAS_MXHC1 (mips_opts.isa))
13690 as_warn (_("-mfp64 used with a 32-bit ABI"));
13691 break;
13692 case 1:
13693 if (ABI_NEEDS_64BIT_REGS (mips_abi))
13694 as_warn (_("-mfp32 used with a 64-bit ABI"));
13695 break;
13696 }
e9670677 13697
316f5878 13698 /* End of GCC-shared inference code. */
e9670677 13699
17a2f251
TS
13700 /* This flag is set when we have a 64-bit capable CPU but use only
13701 32-bit wide registers. Note that EABI does not use it. */
13702 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
13703 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
13704 || mips_abi == O32_ABI))
316f5878 13705 mips_32bitmode = 1;
e9670677
MR
13706
13707 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
13708 as_bad (_("trap exception not supported at ISA 1"));
13709
e9670677
MR
13710 /* If the selected architecture includes support for ASEs, enable
13711 generation of code for them. */
a4672219 13712 if (mips_opts.mips16 == -1)
fef14a42 13713 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
df58fc94
RS
13714 if (mips_opts.micromips == -1)
13715 mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_arch)) ? 1 : 0;
846ef2d0
RS
13716
13717 /* MIPS3D and MDMX require 64-bit FPRs, so -mfp32 should stop those
13718 ASEs from being selected implicitly. */
13719 if (file_mips_fp32 == 1)
13720 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX;
13721
13722 /* If the user didn't explicitly select or deselect a particular ASE,
13723 use the default setting for the CPU. */
13724 mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
13725
e9670677 13726 file_mips_isa = mips_opts.isa;
846ef2d0 13727 file_ase = mips_opts.ase;
e9670677
MR
13728 mips_opts.gp32 = file_mips_gp32;
13729 mips_opts.fp32 = file_mips_fp32;
037b32b9
AN
13730 mips_opts.soft_float = file_mips_soft_float;
13731 mips_opts.single_float = file_mips_single_float;
e9670677 13732
c6278170
RS
13733 mips_check_isa_supports_ases ();
13734
ecb4347a 13735 if (mips_flag_mdebug < 0)
e8044f35 13736 mips_flag_mdebug = 0;
e9670677
MR
13737}
13738\f
13739void
17a2f251 13740mips_init_after_args (void)
252b5132
RH
13741{
13742 /* initialize opcodes */
13743 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
beae10d5 13744 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
252b5132
RH
13745}
13746
13747long
17a2f251 13748md_pcrel_from (fixS *fixP)
252b5132 13749{
a7ebbfdf
TS
13750 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
13751 switch (fixP->fx_r_type)
13752 {
df58fc94
RS
13753 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
13754 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
13755 /* Return the address of the delay slot. */
13756 return addr + 2;
13757
13758 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
13759 case BFD_RELOC_MICROMIPS_JMP:
a7ebbfdf
TS
13760 case BFD_RELOC_16_PCREL_S2:
13761 case BFD_RELOC_MIPS_JMP:
13762 /* Return the address of the delay slot. */
13763 return addr + 4;
df58fc94 13764
b47468a6
CM
13765 case BFD_RELOC_32_PCREL:
13766 return addr;
13767
a7ebbfdf 13768 default:
58ea3d6a 13769 /* We have no relocation type for PC relative MIPS16 instructions. */
64817874
TS
13770 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
13771 as_bad_where (fixP->fx_file, fixP->fx_line,
13772 _("PC relative MIPS16 instruction references a different section"));
a7ebbfdf
TS
13773 return addr;
13774 }
252b5132
RH
13775}
13776
252b5132
RH
13777/* This is called before the symbol table is processed. In order to
13778 work with gcc when using mips-tfile, we must keep all local labels.
13779 However, in other cases, we want to discard them. If we were
13780 called with -g, but we didn't see any debugging information, it may
13781 mean that gcc is smuggling debugging information through to
13782 mips-tfile, in which case we must generate all local labels. */
13783
13784void
17a2f251 13785mips_frob_file_before_adjust (void)
252b5132
RH
13786{
13787#ifndef NO_ECOFF_DEBUGGING
13788 if (ECOFF_DEBUGGING
13789 && mips_debug != 0
13790 && ! ecoff_debugging_seen)
13791 flag_keep_locals = 1;
13792#endif
13793}
13794
3b91255e 13795/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
55cf6793 13796 the corresponding LO16 reloc. This is called before md_apply_fix and
3b91255e
RS
13797 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
13798 relocation operators.
13799
13800 For our purposes, a %lo() expression matches a %got() or %hi()
13801 expression if:
13802
13803 (a) it refers to the same symbol; and
13804 (b) the offset applied in the %lo() expression is no lower than
13805 the offset applied in the %got() or %hi().
13806
13807 (b) allows us to cope with code like:
13808
13809 lui $4,%hi(foo)
13810 lh $4,%lo(foo+2)($4)
13811
13812 ...which is legal on RELA targets, and has a well-defined behaviour
13813 if the user knows that adding 2 to "foo" will not induce a carry to
13814 the high 16 bits.
13815
13816 When several %lo()s match a particular %got() or %hi(), we use the
13817 following rules to distinguish them:
13818
13819 (1) %lo()s with smaller offsets are a better match than %lo()s with
13820 higher offsets.
13821
13822 (2) %lo()s with no matching %got() or %hi() are better than those
13823 that already have a matching %got() or %hi().
13824
13825 (3) later %lo()s are better than earlier %lo()s.
13826
13827 These rules are applied in order.
13828
13829 (1) means, among other things, that %lo()s with identical offsets are
13830 chosen if they exist.
13831
13832 (2) means that we won't associate several high-part relocations with
13833 the same low-part relocation unless there's no alternative. Having
13834 several high parts for the same low part is a GNU extension; this rule
13835 allows careful users to avoid it.
13836
13837 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
13838 with the last high-part relocation being at the front of the list.
13839 It therefore makes sense to choose the last matching low-part
13840 relocation, all other things being equal. It's also easier
13841 to code that way. */
252b5132
RH
13842
13843void
17a2f251 13844mips_frob_file (void)
252b5132
RH
13845{
13846 struct mips_hi_fixup *l;
35903be0 13847 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
252b5132
RH
13848
13849 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
13850 {
13851 segment_info_type *seginfo;
3b91255e
RS
13852 bfd_boolean matched_lo_p;
13853 fixS **hi_pos, **lo_pos, **pos;
252b5132 13854
9c2799c2 13855 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
252b5132 13856
5919d012 13857 /* If a GOT16 relocation turns out to be against a global symbol,
b886a2ab
RS
13858 there isn't supposed to be a matching LO. Ignore %gots against
13859 constants; we'll report an error for those later. */
738e5348 13860 if (got16_reloc_p (l->fixp->fx_r_type)
b886a2ab
RS
13861 && !(l->fixp->fx_addsy
13862 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
5919d012
RS
13863 continue;
13864
13865 /* Check quickly whether the next fixup happens to be a matching %lo. */
13866 if (fixup_has_matching_lo_p (l->fixp))
252b5132
RH
13867 continue;
13868
252b5132 13869 seginfo = seg_info (l->seg);
252b5132 13870
3b91255e
RS
13871 /* Set HI_POS to the position of this relocation in the chain.
13872 Set LO_POS to the position of the chosen low-part relocation.
13873 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
13874 relocation that matches an immediately-preceding high-part
13875 relocation. */
13876 hi_pos = NULL;
13877 lo_pos = NULL;
13878 matched_lo_p = FALSE;
738e5348 13879 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
35903be0 13880
3b91255e
RS
13881 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
13882 {
13883 if (*pos == l->fixp)
13884 hi_pos = pos;
13885
35903be0 13886 if ((*pos)->fx_r_type == looking_for_rtype
30cfc97a 13887 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
3b91255e
RS
13888 && (*pos)->fx_offset >= l->fixp->fx_offset
13889 && (lo_pos == NULL
13890 || (*pos)->fx_offset < (*lo_pos)->fx_offset
13891 || (!matched_lo_p
13892 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
13893 lo_pos = pos;
13894
13895 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
13896 && fixup_has_matching_lo_p (*pos));
13897 }
13898
13899 /* If we found a match, remove the high-part relocation from its
13900 current position and insert it before the low-part relocation.
13901 Make the offsets match so that fixup_has_matching_lo_p()
13902 will return true.
13903
13904 We don't warn about unmatched high-part relocations since some
13905 versions of gcc have been known to emit dead "lui ...%hi(...)"
13906 instructions. */
13907 if (lo_pos != NULL)
13908 {
13909 l->fixp->fx_offset = (*lo_pos)->fx_offset;
13910 if (l->fixp->fx_next != *lo_pos)
252b5132 13911 {
3b91255e
RS
13912 *hi_pos = l->fixp->fx_next;
13913 l->fixp->fx_next = *lo_pos;
13914 *lo_pos = l->fixp;
252b5132 13915 }
252b5132
RH
13916 }
13917 }
13918}
13919
252b5132 13920int
17a2f251 13921mips_force_relocation (fixS *fixp)
252b5132 13922{
ae6063d4 13923 if (generic_force_reloc (fixp))
252b5132
RH
13924 return 1;
13925
df58fc94
RS
13926 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
13927 so that the linker relaxation can update targets. */
13928 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
13929 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
13930 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
13931 return 1;
13932
3e722fb5 13933 return 0;
252b5132
RH
13934}
13935
b886a2ab
RS
13936/* Read the instruction associated with RELOC from BUF. */
13937
13938static unsigned int
13939read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
13940{
13941 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
13942 return read_compressed_insn (buf, 4);
13943 else
13944 return read_insn (buf);
13945}
13946
13947/* Write instruction INSN to BUF, given that it has been relocated
13948 by RELOC. */
13949
13950static void
13951write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
13952 unsigned long insn)
13953{
13954 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
13955 write_compressed_insn (buf, insn, 4);
13956 else
13957 write_insn (buf, insn);
13958}
13959
252b5132
RH
13960/* Apply a fixup to the object file. */
13961
94f592af 13962void
55cf6793 13963md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 13964{
4d68580a 13965 char *buf;
b886a2ab 13966 unsigned long insn;
a7ebbfdf 13967 reloc_howto_type *howto;
252b5132 13968
a7ebbfdf
TS
13969 /* We ignore generic BFD relocations we don't know about. */
13970 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
13971 if (! howto)
13972 return;
65551fa4 13973
df58fc94
RS
13974 gas_assert (fixP->fx_size == 2
13975 || fixP->fx_size == 4
90ecf173
MR
13976 || fixP->fx_r_type == BFD_RELOC_16
13977 || fixP->fx_r_type == BFD_RELOC_64
13978 || fixP->fx_r_type == BFD_RELOC_CTOR
13979 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
df58fc94 13980 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
90ecf173
MR
13981 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
13982 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
13983 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
252b5132 13984
4d68580a 13985 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 13986
df58fc94
RS
13987 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2
13988 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
13989 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6
CM
13990 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
13991 || fixP->fx_r_type == BFD_RELOC_32_PCREL);
b1dca8ee
RS
13992
13993 /* Don't treat parts of a composite relocation as done. There are two
13994 reasons for this:
13995
13996 (1) The second and third parts will be against 0 (RSS_UNDEF) but
13997 should nevertheless be emitted if the first part is.
13998
13999 (2) In normal usage, composite relocations are never assembly-time
14000 constants. The easiest way of dealing with the pathological
14001 exceptions is to generate a relocation against STN_UNDEF and
14002 leave everything up to the linker. */
3994f87e 14003 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
252b5132
RH
14004 fixP->fx_done = 1;
14005
14006 switch (fixP->fx_r_type)
14007 {
3f98094e
DJ
14008 case BFD_RELOC_MIPS_TLS_GD:
14009 case BFD_RELOC_MIPS_TLS_LDM:
741d6ea8
JM
14010 case BFD_RELOC_MIPS_TLS_DTPREL32:
14011 case BFD_RELOC_MIPS_TLS_DTPREL64:
3f98094e
DJ
14012 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14013 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14014 case BFD_RELOC_MIPS_TLS_GOTTPREL:
d0f13682
CLT
14015 case BFD_RELOC_MIPS_TLS_TPREL32:
14016 case BFD_RELOC_MIPS_TLS_TPREL64:
3f98094e
DJ
14017 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14018 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
df58fc94
RS
14019 case BFD_RELOC_MICROMIPS_TLS_GD:
14020 case BFD_RELOC_MICROMIPS_TLS_LDM:
14021 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14022 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14023 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14024 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14025 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
d0f13682
CLT
14026 case BFD_RELOC_MIPS16_TLS_GD:
14027 case BFD_RELOC_MIPS16_TLS_LDM:
14028 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14029 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14030 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14031 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14032 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
b886a2ab
RS
14033 if (!fixP->fx_addsy)
14034 {
14035 as_bad_where (fixP->fx_file, fixP->fx_line,
14036 _("TLS relocation against a constant"));
14037 break;
14038 }
3f98094e
DJ
14039 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14040 /* fall through */
14041
252b5132 14042 case BFD_RELOC_MIPS_JMP:
e369bcce
TS
14043 case BFD_RELOC_MIPS_SHIFT5:
14044 case BFD_RELOC_MIPS_SHIFT6:
14045 case BFD_RELOC_MIPS_GOT_DISP:
14046 case BFD_RELOC_MIPS_GOT_PAGE:
14047 case BFD_RELOC_MIPS_GOT_OFST:
14048 case BFD_RELOC_MIPS_SUB:
14049 case BFD_RELOC_MIPS_INSERT_A:
14050 case BFD_RELOC_MIPS_INSERT_B:
14051 case BFD_RELOC_MIPS_DELETE:
14052 case BFD_RELOC_MIPS_HIGHEST:
14053 case BFD_RELOC_MIPS_HIGHER:
14054 case BFD_RELOC_MIPS_SCN_DISP:
14055 case BFD_RELOC_MIPS_REL16:
14056 case BFD_RELOC_MIPS_RELGOT:
14057 case BFD_RELOC_MIPS_JALR:
252b5132
RH
14058 case BFD_RELOC_HI16:
14059 case BFD_RELOC_HI16_S:
b886a2ab 14060 case BFD_RELOC_LO16:
cdf6fd85 14061 case BFD_RELOC_GPREL16:
252b5132
RH
14062 case BFD_RELOC_MIPS_LITERAL:
14063 case BFD_RELOC_MIPS_CALL16:
14064 case BFD_RELOC_MIPS_GOT16:
cdf6fd85 14065 case BFD_RELOC_GPREL32:
252b5132
RH
14066 case BFD_RELOC_MIPS_GOT_HI16:
14067 case BFD_RELOC_MIPS_GOT_LO16:
14068 case BFD_RELOC_MIPS_CALL_HI16:
14069 case BFD_RELOC_MIPS_CALL_LO16:
14070 case BFD_RELOC_MIPS16_GPREL:
738e5348
RS
14071 case BFD_RELOC_MIPS16_GOT16:
14072 case BFD_RELOC_MIPS16_CALL16:
d6f16593
MR
14073 case BFD_RELOC_MIPS16_HI16:
14074 case BFD_RELOC_MIPS16_HI16_S:
b886a2ab 14075 case BFD_RELOC_MIPS16_LO16:
252b5132 14076 case BFD_RELOC_MIPS16_JMP:
df58fc94
RS
14077 case BFD_RELOC_MICROMIPS_JMP:
14078 case BFD_RELOC_MICROMIPS_GOT_DISP:
14079 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14080 case BFD_RELOC_MICROMIPS_GOT_OFST:
14081 case BFD_RELOC_MICROMIPS_SUB:
14082 case BFD_RELOC_MICROMIPS_HIGHEST:
14083 case BFD_RELOC_MICROMIPS_HIGHER:
14084 case BFD_RELOC_MICROMIPS_SCN_DISP:
14085 case BFD_RELOC_MICROMIPS_JALR:
14086 case BFD_RELOC_MICROMIPS_HI16:
14087 case BFD_RELOC_MICROMIPS_HI16_S:
b886a2ab 14088 case BFD_RELOC_MICROMIPS_LO16:
df58fc94
RS
14089 case BFD_RELOC_MICROMIPS_GPREL16:
14090 case BFD_RELOC_MICROMIPS_LITERAL:
14091 case BFD_RELOC_MICROMIPS_CALL16:
14092 case BFD_RELOC_MICROMIPS_GOT16:
14093 case BFD_RELOC_MICROMIPS_GOT_HI16:
14094 case BFD_RELOC_MICROMIPS_GOT_LO16:
14095 case BFD_RELOC_MICROMIPS_CALL_HI16:
14096 case BFD_RELOC_MICROMIPS_CALL_LO16:
067ec077 14097 case BFD_RELOC_MIPS_EH:
b886a2ab
RS
14098 if (fixP->fx_done)
14099 {
14100 offsetT value;
14101
14102 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14103 {
14104 insn = read_reloc_insn (buf, fixP->fx_r_type);
14105 if (mips16_reloc_p (fixP->fx_r_type))
14106 insn |= mips16_immed_extend (value, 16);
14107 else
14108 insn |= (value & 0xffff);
14109 write_reloc_insn (buf, fixP->fx_r_type, insn);
14110 }
14111 else
14112 as_bad_where (fixP->fx_file, fixP->fx_line,
14113 _("Unsupported constant in relocation"));
14114 }
252b5132
RH
14115 break;
14116
252b5132
RH
14117 case BFD_RELOC_64:
14118 /* This is handled like BFD_RELOC_32, but we output a sign
14119 extended value if we are only 32 bits. */
3e722fb5 14120 if (fixP->fx_done)
252b5132
RH
14121 {
14122 if (8 <= sizeof (valueT))
4d68580a 14123 md_number_to_chars (buf, *valP, 8);
252b5132
RH
14124 else
14125 {
a7ebbfdf 14126 valueT hiv;
252b5132 14127
a7ebbfdf 14128 if ((*valP & 0x80000000) != 0)
252b5132
RH
14129 hiv = 0xffffffff;
14130 else
14131 hiv = 0;
4d68580a
RS
14132 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14133 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
252b5132
RH
14134 }
14135 }
14136 break;
14137
056350c6 14138 case BFD_RELOC_RVA:
252b5132 14139 case BFD_RELOC_32:
b47468a6 14140 case BFD_RELOC_32_PCREL:
252b5132
RH
14141 case BFD_RELOC_16:
14142 /* If we are deleting this reloc entry, we must fill in the
54f4ddb3
TS
14143 value now. This can happen if we have a .word which is not
14144 resolved when it appears but is later defined. */
252b5132 14145 if (fixP->fx_done)
4d68580a 14146 md_number_to_chars (buf, *valP, fixP->fx_size);
252b5132
RH
14147 break;
14148
252b5132 14149 case BFD_RELOC_16_PCREL_S2:
a7ebbfdf 14150 if ((*valP & 0x3) != 0)
cb56d3d3 14151 as_bad_where (fixP->fx_file, fixP->fx_line,
bad36eac 14152 _("Branch to misaligned address (%lx)"), (long) *valP);
cb56d3d3 14153
54f4ddb3
TS
14154 /* We need to save the bits in the instruction since fixup_segment()
14155 might be deleting the relocation entry (i.e., a branch within
14156 the current segment). */
a7ebbfdf 14157 if (! fixP->fx_done)
bb2d6cd7 14158 break;
252b5132 14159
54f4ddb3 14160 /* Update old instruction data. */
4d68580a 14161 insn = read_insn (buf);
252b5132 14162
a7ebbfdf
TS
14163 if (*valP + 0x20000 <= 0x3ffff)
14164 {
14165 insn |= (*valP >> 2) & 0xffff;
4d68580a 14166 write_insn (buf, insn);
a7ebbfdf
TS
14167 }
14168 else if (mips_pic == NO_PIC
14169 && fixP->fx_done
14170 && fixP->fx_frag->fr_address >= text_section->vma
14171 && (fixP->fx_frag->fr_address
587aac4e 14172 < text_section->vma + bfd_get_section_size (text_section))
a7ebbfdf
TS
14173 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
14174 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
14175 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
252b5132
RH
14176 {
14177 /* The branch offset is too large. If this is an
14178 unconditional branch, and we are not generating PIC code,
14179 we can convert it to an absolute jump instruction. */
a7ebbfdf
TS
14180 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
14181 insn = 0x0c000000; /* jal */
252b5132 14182 else
a7ebbfdf
TS
14183 insn = 0x08000000; /* j */
14184 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
14185 fixP->fx_done = 0;
14186 fixP->fx_addsy = section_symbol (text_section);
14187 *valP += md_pcrel_from (fixP);
4d68580a 14188 write_insn (buf, insn);
a7ebbfdf
TS
14189 }
14190 else
14191 {
14192 /* If we got here, we have branch-relaxation disabled,
14193 and there's nothing we can do to fix this instruction
14194 without turning it into a longer sequence. */
14195 as_bad_where (fixP->fx_file, fixP->fx_line,
14196 _("Branch out of range"));
252b5132 14197 }
252b5132
RH
14198 break;
14199
df58fc94
RS
14200 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14201 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14202 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14203 /* We adjust the offset back to even. */
14204 if ((*valP & 0x1) != 0)
14205 --(*valP);
14206
14207 if (! fixP->fx_done)
14208 break;
14209
14210 /* Should never visit here, because we keep the relocation. */
14211 abort ();
14212 break;
14213
252b5132
RH
14214 case BFD_RELOC_VTABLE_INHERIT:
14215 fixP->fx_done = 0;
14216 if (fixP->fx_addsy
14217 && !S_IS_DEFINED (fixP->fx_addsy)
14218 && !S_IS_WEAK (fixP->fx_addsy))
14219 S_SET_WEAK (fixP->fx_addsy);
14220 break;
14221
14222 case BFD_RELOC_VTABLE_ENTRY:
14223 fixP->fx_done = 0;
14224 break;
14225
14226 default:
b37df7c4 14227 abort ();
252b5132 14228 }
a7ebbfdf
TS
14229
14230 /* Remember value for tc_gen_reloc. */
14231 fixP->fx_addnumber = *valP;
252b5132
RH
14232}
14233
252b5132 14234static symbolS *
17a2f251 14235get_symbol (void)
252b5132
RH
14236{
14237 int c;
14238 char *name;
14239 symbolS *p;
14240
14241 name = input_line_pointer;
14242 c = get_symbol_end ();
14243 p = (symbolS *) symbol_find_or_make (name);
14244 *input_line_pointer = c;
14245 return p;
14246}
14247
742a56fe
RS
14248/* Align the current frag to a given power of two. If a particular
14249 fill byte should be used, FILL points to an integer that contains
14250 that byte, otherwise FILL is null.
14251
462427c4
RS
14252 This function used to have the comment:
14253
14254 The MIPS assembler also automatically adjusts any preceding label.
14255
14256 The implementation therefore applied the adjustment to a maximum of
14257 one label. However, other label adjustments are applied to batches
14258 of labels, and adjusting just one caused problems when new labels
14259 were added for the sake of debugging or unwind information.
14260 We therefore adjust all preceding labels (given as LABELS) instead. */
252b5132
RH
14261
14262static void
462427c4 14263mips_align (int to, int *fill, struct insn_label_list *labels)
252b5132 14264{
7d10b47d 14265 mips_emit_delays ();
df58fc94 14266 mips_record_compressed_mode ();
742a56fe
RS
14267 if (fill == NULL && subseg_text_p (now_seg))
14268 frag_align_code (to, 0);
14269 else
14270 frag_align (to, fill ? *fill : 0, 0);
252b5132 14271 record_alignment (now_seg, to);
462427c4 14272 mips_move_labels (labels, FALSE);
252b5132
RH
14273}
14274
14275/* Align to a given power of two. .align 0 turns off the automatic
14276 alignment used by the data creating pseudo-ops. */
14277
14278static void
17a2f251 14279s_align (int x ATTRIBUTE_UNUSED)
252b5132 14280{
742a56fe 14281 int temp, fill_value, *fill_ptr;
49954fb4 14282 long max_alignment = 28;
252b5132 14283
54f4ddb3 14284 /* o Note that the assembler pulls down any immediately preceding label
252b5132 14285 to the aligned address.
54f4ddb3 14286 o It's not documented but auto alignment is reinstated by
252b5132 14287 a .align pseudo instruction.
54f4ddb3 14288 o Note also that after auto alignment is turned off the mips assembler
252b5132 14289 issues an error on attempt to assemble an improperly aligned data item.
54f4ddb3 14290 We don't. */
252b5132
RH
14291
14292 temp = get_absolute_expression ();
14293 if (temp > max_alignment)
14294 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
14295 else if (temp < 0)
14296 {
14297 as_warn (_("Alignment negative: 0 assumed."));
14298 temp = 0;
14299 }
14300 if (*input_line_pointer == ',')
14301 {
f9419b05 14302 ++input_line_pointer;
742a56fe
RS
14303 fill_value = get_absolute_expression ();
14304 fill_ptr = &fill_value;
252b5132
RH
14305 }
14306 else
742a56fe 14307 fill_ptr = 0;
252b5132
RH
14308 if (temp)
14309 {
a8dbcb85
TS
14310 segment_info_type *si = seg_info (now_seg);
14311 struct insn_label_list *l = si->label_list;
54f4ddb3 14312 /* Auto alignment should be switched on by next section change. */
252b5132 14313 auto_align = 1;
462427c4 14314 mips_align (temp, fill_ptr, l);
252b5132
RH
14315 }
14316 else
14317 {
14318 auto_align = 0;
14319 }
14320
14321 demand_empty_rest_of_line ();
14322}
14323
252b5132 14324static void
17a2f251 14325s_change_sec (int sec)
252b5132
RH
14326{
14327 segT seg;
14328
252b5132
RH
14329 /* The ELF backend needs to know that we are changing sections, so
14330 that .previous works correctly. We could do something like check
b6ff326e 14331 for an obj_section_change_hook macro, but that might be confusing
252b5132
RH
14332 as it would not be appropriate to use it in the section changing
14333 functions in read.c, since obj-elf.c intercepts those. FIXME:
14334 This should be cleaner, somehow. */
f3ded42a 14335 obj_elf_section_change_hook ();
252b5132 14336
7d10b47d 14337 mips_emit_delays ();
6a32d874 14338
252b5132
RH
14339 switch (sec)
14340 {
14341 case 't':
14342 s_text (0);
14343 break;
14344 case 'd':
14345 s_data (0);
14346 break;
14347 case 'b':
14348 subseg_set (bss_section, (subsegT) get_absolute_expression ());
14349 demand_empty_rest_of_line ();
14350 break;
14351
14352 case 'r':
4d0d148d
TS
14353 seg = subseg_new (RDATA_SECTION_NAME,
14354 (subsegT) get_absolute_expression ());
f3ded42a
RS
14355 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
14356 | SEC_READONLY | SEC_RELOC
14357 | SEC_DATA));
14358 if (strncmp (TARGET_OS, "elf", 3) != 0)
14359 record_alignment (seg, 4);
4d0d148d 14360 demand_empty_rest_of_line ();
252b5132
RH
14361 break;
14362
14363 case 's':
4d0d148d 14364 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
f3ded42a
RS
14365 bfd_set_section_flags (stdoutput, seg,
14366 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
14367 if (strncmp (TARGET_OS, "elf", 3) != 0)
14368 record_alignment (seg, 4);
4d0d148d
TS
14369 demand_empty_rest_of_line ();
14370 break;
998b3c36
MR
14371
14372 case 'B':
14373 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
f3ded42a
RS
14374 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
14375 if (strncmp (TARGET_OS, "elf", 3) != 0)
14376 record_alignment (seg, 4);
998b3c36
MR
14377 demand_empty_rest_of_line ();
14378 break;
252b5132
RH
14379 }
14380
14381 auto_align = 1;
14382}
b34976b6 14383
cca86cc8 14384void
17a2f251 14385s_change_section (int ignore ATTRIBUTE_UNUSED)
cca86cc8 14386{
cca86cc8
SC
14387 char *section_name;
14388 char c;
684022ea 14389 char next_c = 0;
cca86cc8
SC
14390 int section_type;
14391 int section_flag;
14392 int section_entry_size;
14393 int section_alignment;
b34976b6 14394
cca86cc8
SC
14395 section_name = input_line_pointer;
14396 c = get_symbol_end ();
a816d1ed
AO
14397 if (c)
14398 next_c = *(input_line_pointer + 1);
cca86cc8 14399
4cf0dd0d
TS
14400 /* Do we have .section Name<,"flags">? */
14401 if (c != ',' || (c == ',' && next_c == '"'))
cca86cc8 14402 {
4cf0dd0d
TS
14403 /* just after name is now '\0'. */
14404 *input_line_pointer = c;
cca86cc8
SC
14405 input_line_pointer = section_name;
14406 obj_elf_section (ignore);
14407 return;
14408 }
14409 input_line_pointer++;
14410
14411 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
14412 if (c == ',')
14413 section_type = get_absolute_expression ();
14414 else
14415 section_type = 0;
14416 if (*input_line_pointer++ == ',')
14417 section_flag = get_absolute_expression ();
14418 else
14419 section_flag = 0;
14420 if (*input_line_pointer++ == ',')
14421 section_entry_size = get_absolute_expression ();
14422 else
14423 section_entry_size = 0;
14424 if (*input_line_pointer++ == ',')
14425 section_alignment = get_absolute_expression ();
14426 else
14427 section_alignment = 0;
87975d2a
AM
14428 /* FIXME: really ignore? */
14429 (void) section_alignment;
cca86cc8 14430
a816d1ed
AO
14431 section_name = xstrdup (section_name);
14432
8ab8a5c8
RS
14433 /* When using the generic form of .section (as implemented by obj-elf.c),
14434 there's no way to set the section type to SHT_MIPS_DWARF. Users have
14435 traditionally had to fall back on the more common @progbits instead.
14436
14437 There's nothing really harmful in this, since bfd will correct
14438 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
708587a4 14439 means that, for backwards compatibility, the special_section entries
8ab8a5c8
RS
14440 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
14441
14442 Even so, we shouldn't force users of the MIPS .section syntax to
14443 incorrectly label the sections as SHT_PROGBITS. The best compromise
14444 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
14445 generic type-checking code. */
14446 if (section_type == SHT_MIPS_DWARF)
14447 section_type = SHT_PROGBITS;
14448
cca86cc8
SC
14449 obj_elf_change_section (section_name, section_type, section_flag,
14450 section_entry_size, 0, 0, 0);
a816d1ed
AO
14451
14452 if (now_seg->name != section_name)
14453 free (section_name);
cca86cc8 14454}
252b5132
RH
14455
14456void
17a2f251 14457mips_enable_auto_align (void)
252b5132
RH
14458{
14459 auto_align = 1;
14460}
14461
14462static void
17a2f251 14463s_cons (int log_size)
252b5132 14464{
a8dbcb85
TS
14465 segment_info_type *si = seg_info (now_seg);
14466 struct insn_label_list *l = si->label_list;
252b5132 14467
7d10b47d 14468 mips_emit_delays ();
252b5132 14469 if (log_size > 0 && auto_align)
462427c4 14470 mips_align (log_size, 0, l);
252b5132 14471 cons (1 << log_size);
a1facbec 14472 mips_clear_insn_labels ();
252b5132
RH
14473}
14474
14475static void
17a2f251 14476s_float_cons (int type)
252b5132 14477{
a8dbcb85
TS
14478 segment_info_type *si = seg_info (now_seg);
14479 struct insn_label_list *l = si->label_list;
252b5132 14480
7d10b47d 14481 mips_emit_delays ();
252b5132
RH
14482
14483 if (auto_align)
49309057
ILT
14484 {
14485 if (type == 'd')
462427c4 14486 mips_align (3, 0, l);
49309057 14487 else
462427c4 14488 mips_align (2, 0, l);
49309057 14489 }
252b5132 14490
252b5132 14491 float_cons (type);
a1facbec 14492 mips_clear_insn_labels ();
252b5132
RH
14493}
14494
14495/* Handle .globl. We need to override it because on Irix 5 you are
14496 permitted to say
14497 .globl foo .text
14498 where foo is an undefined symbol, to mean that foo should be
14499 considered to be the address of a function. */
14500
14501static void
17a2f251 14502s_mips_globl (int x ATTRIBUTE_UNUSED)
252b5132
RH
14503{
14504 char *name;
14505 int c;
14506 symbolS *symbolP;
14507 flagword flag;
14508
8a06b769 14509 do
252b5132 14510 {
8a06b769 14511 name = input_line_pointer;
252b5132 14512 c = get_symbol_end ();
8a06b769
TS
14513 symbolP = symbol_find_or_make (name);
14514 S_SET_EXTERNAL (symbolP);
14515
252b5132 14516 *input_line_pointer = c;
8a06b769 14517 SKIP_WHITESPACE ();
252b5132 14518
8a06b769
TS
14519 /* On Irix 5, every global symbol that is not explicitly labelled as
14520 being a function is apparently labelled as being an object. */
14521 flag = BSF_OBJECT;
252b5132 14522
8a06b769
TS
14523 if (!is_end_of_line[(unsigned char) *input_line_pointer]
14524 && (*input_line_pointer != ','))
14525 {
14526 char *secname;
14527 asection *sec;
14528
14529 secname = input_line_pointer;
14530 c = get_symbol_end ();
14531 sec = bfd_get_section_by_name (stdoutput, secname);
14532 if (sec == NULL)
14533 as_bad (_("%s: no such section"), secname);
14534 *input_line_pointer = c;
14535
14536 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
14537 flag = BSF_FUNCTION;
14538 }
14539
14540 symbol_get_bfdsym (symbolP)->flags |= flag;
14541
14542 c = *input_line_pointer;
14543 if (c == ',')
14544 {
14545 input_line_pointer++;
14546 SKIP_WHITESPACE ();
14547 if (is_end_of_line[(unsigned char) *input_line_pointer])
14548 c = '\n';
14549 }
14550 }
14551 while (c == ',');
252b5132 14552
252b5132
RH
14553 demand_empty_rest_of_line ();
14554}
14555
14556static void
17a2f251 14557s_option (int x ATTRIBUTE_UNUSED)
252b5132
RH
14558{
14559 char *opt;
14560 char c;
14561
14562 opt = input_line_pointer;
14563 c = get_symbol_end ();
14564
14565 if (*opt == 'O')
14566 {
14567 /* FIXME: What does this mean? */
14568 }
14569 else if (strncmp (opt, "pic", 3) == 0)
14570 {
14571 int i;
14572
14573 i = atoi (opt + 3);
14574 if (i == 0)
14575 mips_pic = NO_PIC;
14576 else if (i == 2)
143d77c5 14577 {
8b828383 14578 mips_pic = SVR4_PIC;
143d77c5
EC
14579 mips_abicalls = TRUE;
14580 }
252b5132
RH
14581 else
14582 as_bad (_(".option pic%d not supported"), i);
14583
4d0d148d 14584 if (mips_pic == SVR4_PIC)
252b5132
RH
14585 {
14586 if (g_switch_seen && g_switch_value != 0)
14587 as_warn (_("-G may not be used with SVR4 PIC code"));
14588 g_switch_value = 0;
14589 bfd_set_gp_size (stdoutput, 0);
14590 }
14591 }
14592 else
14593 as_warn (_("Unrecognized option \"%s\""), opt);
14594
14595 *input_line_pointer = c;
14596 demand_empty_rest_of_line ();
14597}
14598
14599/* This structure is used to hold a stack of .set values. */
14600
e972090a
NC
14601struct mips_option_stack
14602{
252b5132
RH
14603 struct mips_option_stack *next;
14604 struct mips_set_options options;
14605};
14606
14607static struct mips_option_stack *mips_opts_stack;
14608
14609/* Handle the .set pseudo-op. */
14610
14611static void
17a2f251 14612s_mipsset (int x ATTRIBUTE_UNUSED)
252b5132
RH
14613{
14614 char *name = input_line_pointer, ch;
c6278170 14615 const struct mips_ase *ase;
252b5132
RH
14616
14617 while (!is_end_of_line[(unsigned char) *input_line_pointer])
f9419b05 14618 ++input_line_pointer;
252b5132
RH
14619 ch = *input_line_pointer;
14620 *input_line_pointer = '\0';
14621
14622 if (strcmp (name, "reorder") == 0)
14623 {
7d10b47d
RS
14624 if (mips_opts.noreorder)
14625 end_noreorder ();
252b5132
RH
14626 }
14627 else if (strcmp (name, "noreorder") == 0)
14628 {
7d10b47d
RS
14629 if (!mips_opts.noreorder)
14630 start_noreorder ();
252b5132 14631 }
741fe287
MR
14632 else if (strncmp (name, "at=", 3) == 0)
14633 {
14634 char *s = name + 3;
14635
14636 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
14637 as_bad (_("Unrecognized register name `%s'"), s);
14638 }
252b5132
RH
14639 else if (strcmp (name, "at") == 0)
14640 {
741fe287 14641 mips_opts.at = ATREG;
252b5132
RH
14642 }
14643 else if (strcmp (name, "noat") == 0)
14644 {
741fe287 14645 mips_opts.at = ZERO;
252b5132
RH
14646 }
14647 else if (strcmp (name, "macro") == 0)
14648 {
14649 mips_opts.warn_about_macros = 0;
14650 }
14651 else if (strcmp (name, "nomacro") == 0)
14652 {
14653 if (mips_opts.noreorder == 0)
14654 as_bad (_("`noreorder' must be set before `nomacro'"));
14655 mips_opts.warn_about_macros = 1;
14656 }
14657 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
14658 {
14659 mips_opts.nomove = 0;
14660 }
14661 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
14662 {
14663 mips_opts.nomove = 1;
14664 }
14665 else if (strcmp (name, "bopt") == 0)
14666 {
14667 mips_opts.nobopt = 0;
14668 }
14669 else if (strcmp (name, "nobopt") == 0)
14670 {
14671 mips_opts.nobopt = 1;
14672 }
ad3fea08
TS
14673 else if (strcmp (name, "gp=default") == 0)
14674 mips_opts.gp32 = file_mips_gp32;
14675 else if (strcmp (name, "gp=32") == 0)
14676 mips_opts.gp32 = 1;
14677 else if (strcmp (name, "gp=64") == 0)
14678 {
14679 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
20203fb9 14680 as_warn (_("%s isa does not support 64-bit registers"),
ad3fea08
TS
14681 mips_cpu_info_from_isa (mips_opts.isa)->name);
14682 mips_opts.gp32 = 0;
14683 }
14684 else if (strcmp (name, "fp=default") == 0)
14685 mips_opts.fp32 = file_mips_fp32;
14686 else if (strcmp (name, "fp=32") == 0)
14687 mips_opts.fp32 = 1;
14688 else if (strcmp (name, "fp=64") == 0)
14689 {
14690 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
20203fb9 14691 as_warn (_("%s isa does not support 64-bit floating point registers"),
ad3fea08
TS
14692 mips_cpu_info_from_isa (mips_opts.isa)->name);
14693 mips_opts.fp32 = 0;
14694 }
037b32b9
AN
14695 else if (strcmp (name, "softfloat") == 0)
14696 mips_opts.soft_float = 1;
14697 else if (strcmp (name, "hardfloat") == 0)
14698 mips_opts.soft_float = 0;
14699 else if (strcmp (name, "singlefloat") == 0)
14700 mips_opts.single_float = 1;
14701 else if (strcmp (name, "doublefloat") == 0)
14702 mips_opts.single_float = 0;
252b5132
RH
14703 else if (strcmp (name, "mips16") == 0
14704 || strcmp (name, "MIPS-16") == 0)
df58fc94
RS
14705 {
14706 if (mips_opts.micromips == 1)
14707 as_fatal (_("`mips16' cannot be used with `micromips'"));
14708 mips_opts.mips16 = 1;
14709 }
252b5132
RH
14710 else if (strcmp (name, "nomips16") == 0
14711 || strcmp (name, "noMIPS-16") == 0)
14712 mips_opts.mips16 = 0;
df58fc94
RS
14713 else if (strcmp (name, "micromips") == 0)
14714 {
14715 if (mips_opts.mips16 == 1)
14716 as_fatal (_("`micromips' cannot be used with `mips16'"));
14717 mips_opts.micromips = 1;
14718 }
14719 else if (strcmp (name, "nomicromips") == 0)
14720 mips_opts.micromips = 0;
c6278170
RS
14721 else if (name[0] == 'n'
14722 && name[1] == 'o'
14723 && (ase = mips_lookup_ase (name + 2)))
14724 mips_set_ase (ase, FALSE);
14725 else if ((ase = mips_lookup_ase (name)))
14726 mips_set_ase (ase, TRUE);
1a2c1fad 14727 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
252b5132 14728 {
af7ee8bf 14729 int reset = 0;
252b5132 14730
1a2c1fad
CD
14731 /* Permit the user to change the ISA and architecture on the fly.
14732 Needless to say, misuse can cause serious problems. */
81a21e38 14733 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
af7ee8bf
CD
14734 {
14735 reset = 1;
14736 mips_opts.isa = file_mips_isa;
1a2c1fad 14737 mips_opts.arch = file_mips_arch;
1a2c1fad
CD
14738 }
14739 else if (strncmp (name, "arch=", 5) == 0)
14740 {
14741 const struct mips_cpu_info *p;
14742
14743 p = mips_parse_cpu("internal use", name + 5);
14744 if (!p)
14745 as_bad (_("unknown architecture %s"), name + 5);
14746 else
14747 {
14748 mips_opts.arch = p->cpu;
14749 mips_opts.isa = p->isa;
14750 }
14751 }
81a21e38
TS
14752 else if (strncmp (name, "mips", 4) == 0)
14753 {
14754 const struct mips_cpu_info *p;
14755
14756 p = mips_parse_cpu("internal use", name);
14757 if (!p)
14758 as_bad (_("unknown ISA level %s"), name + 4);
14759 else
14760 {
14761 mips_opts.arch = p->cpu;
14762 mips_opts.isa = p->isa;
14763 }
14764 }
af7ee8bf 14765 else
81a21e38 14766 as_bad (_("unknown ISA or architecture %s"), name);
af7ee8bf
CD
14767
14768 switch (mips_opts.isa)
98d3f06f
KH
14769 {
14770 case 0:
98d3f06f 14771 break;
af7ee8bf
CD
14772 case ISA_MIPS1:
14773 case ISA_MIPS2:
14774 case ISA_MIPS32:
14775 case ISA_MIPS32R2:
98d3f06f
KH
14776 mips_opts.gp32 = 1;
14777 mips_opts.fp32 = 1;
14778 break;
af7ee8bf
CD
14779 case ISA_MIPS3:
14780 case ISA_MIPS4:
14781 case ISA_MIPS5:
14782 case ISA_MIPS64:
5f74bc13 14783 case ISA_MIPS64R2:
98d3f06f 14784 mips_opts.gp32 = 0;
e407c74b
NC
14785 if (mips_opts.arch == CPU_R5900)
14786 {
14787 mips_opts.fp32 = 1;
14788 }
14789 else
14790 {
98d3f06f 14791 mips_opts.fp32 = 0;
e407c74b 14792 }
98d3f06f
KH
14793 break;
14794 default:
14795 as_bad (_("unknown ISA level %s"), name + 4);
14796 break;
14797 }
af7ee8bf 14798 if (reset)
98d3f06f 14799 {
af7ee8bf
CD
14800 mips_opts.gp32 = file_mips_gp32;
14801 mips_opts.fp32 = file_mips_fp32;
98d3f06f 14802 }
252b5132
RH
14803 }
14804 else if (strcmp (name, "autoextend") == 0)
14805 mips_opts.noautoextend = 0;
14806 else if (strcmp (name, "noautoextend") == 0)
14807 mips_opts.noautoextend = 1;
833794fc
MR
14808 else if (strcmp (name, "insn32") == 0)
14809 mips_opts.insn32 = TRUE;
14810 else if (strcmp (name, "noinsn32") == 0)
14811 mips_opts.insn32 = FALSE;
252b5132
RH
14812 else if (strcmp (name, "push") == 0)
14813 {
14814 struct mips_option_stack *s;
14815
14816 s = (struct mips_option_stack *) xmalloc (sizeof *s);
14817 s->next = mips_opts_stack;
14818 s->options = mips_opts;
14819 mips_opts_stack = s;
14820 }
14821 else if (strcmp (name, "pop") == 0)
14822 {
14823 struct mips_option_stack *s;
14824
14825 s = mips_opts_stack;
14826 if (s == NULL)
14827 as_bad (_(".set pop with no .set push"));
14828 else
14829 {
14830 /* If we're changing the reorder mode we need to handle
14831 delay slots correctly. */
14832 if (s->options.noreorder && ! mips_opts.noreorder)
7d10b47d 14833 start_noreorder ();
252b5132 14834 else if (! s->options.noreorder && mips_opts.noreorder)
7d10b47d 14835 end_noreorder ();
252b5132
RH
14836
14837 mips_opts = s->options;
14838 mips_opts_stack = s->next;
14839 free (s);
14840 }
14841 }
aed1a261
RS
14842 else if (strcmp (name, "sym32") == 0)
14843 mips_opts.sym32 = TRUE;
14844 else if (strcmp (name, "nosym32") == 0)
14845 mips_opts.sym32 = FALSE;
e6559e01
JM
14846 else if (strchr (name, ','))
14847 {
14848 /* Generic ".set" directive; use the generic handler. */
14849 *input_line_pointer = ch;
14850 input_line_pointer = name;
14851 s_set (0);
14852 return;
14853 }
252b5132
RH
14854 else
14855 {
14856 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
14857 }
c6278170 14858 mips_check_isa_supports_ases ();
252b5132
RH
14859 *input_line_pointer = ch;
14860 demand_empty_rest_of_line ();
14861}
14862
14863/* Handle the .abicalls pseudo-op. I believe this is equivalent to
14864 .option pic2. It means to generate SVR4 PIC calls. */
14865
14866static void
17a2f251 14867s_abicalls (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
14868{
14869 mips_pic = SVR4_PIC;
143d77c5 14870 mips_abicalls = TRUE;
4d0d148d
TS
14871
14872 if (g_switch_seen && g_switch_value != 0)
14873 as_warn (_("-G may not be used with SVR4 PIC code"));
14874 g_switch_value = 0;
14875
252b5132
RH
14876 bfd_set_gp_size (stdoutput, 0);
14877 demand_empty_rest_of_line ();
14878}
14879
14880/* Handle the .cpload pseudo-op. This is used when generating SVR4
14881 PIC code. It sets the $gp register for the function based on the
14882 function address, which is in the register named in the argument.
14883 This uses a relocation against _gp_disp, which is handled specially
14884 by the linker. The result is:
14885 lui $gp,%hi(_gp_disp)
14886 addiu $gp,$gp,%lo(_gp_disp)
14887 addu $gp,$gp,.cpload argument
aa6975fb
ILT
14888 The .cpload argument is normally $25 == $t9.
14889
14890 The -mno-shared option changes this to:
bbe506e8
TS
14891 lui $gp,%hi(__gnu_local_gp)
14892 addiu $gp,$gp,%lo(__gnu_local_gp)
aa6975fb
ILT
14893 and the argument is ignored. This saves an instruction, but the
14894 resulting code is not position independent; it uses an absolute
bbe506e8
TS
14895 address for __gnu_local_gp. Thus code assembled with -mno-shared
14896 can go into an ordinary executable, but not into a shared library. */
252b5132
RH
14897
14898static void
17a2f251 14899s_cpload (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
14900{
14901 expressionS ex;
aa6975fb
ILT
14902 int reg;
14903 int in_shared;
252b5132 14904
6478892d
TS
14905 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
14906 .cpload is ignored. */
14907 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
14908 {
14909 s_ignore (0);
14910 return;
14911 }
14912
a276b80c
MR
14913 if (mips_opts.mips16)
14914 {
14915 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
14916 ignore_rest_of_line ();
14917 return;
14918 }
14919
d3ecfc59 14920 /* .cpload should be in a .set noreorder section. */
252b5132
RH
14921 if (mips_opts.noreorder == 0)
14922 as_warn (_(".cpload not in noreorder section"));
14923
aa6975fb
ILT
14924 reg = tc_get_register (0);
14925
14926 /* If we need to produce a 64-bit address, we are better off using
14927 the default instruction sequence. */
aed1a261 14928 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
aa6975fb 14929
252b5132 14930 ex.X_op = O_symbol;
bbe506e8
TS
14931 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
14932 "__gnu_local_gp");
252b5132
RH
14933 ex.X_op_symbol = NULL;
14934 ex.X_add_number = 0;
14935
14936 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
49309057 14937 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
252b5132 14938
8a75745d
MR
14939 mips_mark_labels ();
14940 mips_assembling_insn = TRUE;
14941
584892a6 14942 macro_start ();
67c0d1eb
RS
14943 macro_build_lui (&ex, mips_gp_register);
14944 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17a2f251 14945 mips_gp_register, BFD_RELOC_LO16);
aa6975fb
ILT
14946 if (in_shared)
14947 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
14948 mips_gp_register, reg);
584892a6 14949 macro_end ();
252b5132 14950
8a75745d 14951 mips_assembling_insn = FALSE;
252b5132
RH
14952 demand_empty_rest_of_line ();
14953}
14954
6478892d
TS
14955/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
14956 .cpsetup $reg1, offset|$reg2, label
14957
14958 If offset is given, this results in:
14959 sd $gp, offset($sp)
956cd1d6 14960 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
14961 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
14962 daddu $gp, $gp, $reg1
6478892d
TS
14963
14964 If $reg2 is given, this results in:
14965 daddu $reg2, $gp, $0
956cd1d6 14966 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
14967 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
14968 daddu $gp, $gp, $reg1
aa6975fb
ILT
14969 $reg1 is normally $25 == $t9.
14970
14971 The -mno-shared option replaces the last three instructions with
14972 lui $gp,%hi(_gp)
54f4ddb3 14973 addiu $gp,$gp,%lo(_gp) */
aa6975fb 14974
6478892d 14975static void
17a2f251 14976s_cpsetup (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
14977{
14978 expressionS ex_off;
14979 expressionS ex_sym;
14980 int reg1;
6478892d 14981
8586fc66 14982 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
6478892d
TS
14983 We also need NewABI support. */
14984 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
14985 {
14986 s_ignore (0);
14987 return;
14988 }
14989
a276b80c
MR
14990 if (mips_opts.mips16)
14991 {
14992 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
14993 ignore_rest_of_line ();
14994 return;
14995 }
14996
6478892d
TS
14997 reg1 = tc_get_register (0);
14998 SKIP_WHITESPACE ();
14999 if (*input_line_pointer != ',')
15000 {
15001 as_bad (_("missing argument separator ',' for .cpsetup"));
15002 return;
15003 }
15004 else
80245285 15005 ++input_line_pointer;
6478892d
TS
15006 SKIP_WHITESPACE ();
15007 if (*input_line_pointer == '$')
80245285
TS
15008 {
15009 mips_cpreturn_register = tc_get_register (0);
15010 mips_cpreturn_offset = -1;
15011 }
6478892d 15012 else
80245285
TS
15013 {
15014 mips_cpreturn_offset = get_absolute_expression ();
15015 mips_cpreturn_register = -1;
15016 }
6478892d
TS
15017 SKIP_WHITESPACE ();
15018 if (*input_line_pointer != ',')
15019 {
15020 as_bad (_("missing argument separator ',' for .cpsetup"));
15021 return;
15022 }
15023 else
f9419b05 15024 ++input_line_pointer;
6478892d 15025 SKIP_WHITESPACE ();
f21f8242 15026 expression (&ex_sym);
6478892d 15027
8a75745d
MR
15028 mips_mark_labels ();
15029 mips_assembling_insn = TRUE;
15030
584892a6 15031 macro_start ();
6478892d
TS
15032 if (mips_cpreturn_register == -1)
15033 {
15034 ex_off.X_op = O_constant;
15035 ex_off.X_add_symbol = NULL;
15036 ex_off.X_op_symbol = NULL;
15037 ex_off.X_add_number = mips_cpreturn_offset;
15038
67c0d1eb 15039 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17a2f251 15040 BFD_RELOC_LO16, SP);
6478892d
TS
15041 }
15042 else
67c0d1eb 15043 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
17a2f251 15044 mips_gp_register, 0);
6478892d 15045
aed1a261 15046 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
aa6975fb 15047 {
df58fc94 15048 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
aa6975fb
ILT
15049 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
15050 BFD_RELOC_HI16_S);
15051
15052 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
15053 mips_gp_register, -1, BFD_RELOC_GPREL16,
15054 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
15055
15056 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
15057 mips_gp_register, reg1);
15058 }
15059 else
15060 {
15061 expressionS ex;
15062
15063 ex.X_op = O_symbol;
4184909a 15064 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
aa6975fb
ILT
15065 ex.X_op_symbol = NULL;
15066 ex.X_add_number = 0;
6e1304d8 15067
aa6975fb
ILT
15068 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15069 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15070
15071 macro_build_lui (&ex, mips_gp_register);
15072 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15073 mips_gp_register, BFD_RELOC_LO16);
15074 }
f21f8242 15075
584892a6 15076 macro_end ();
6478892d 15077
8a75745d 15078 mips_assembling_insn = FALSE;
6478892d
TS
15079 demand_empty_rest_of_line ();
15080}
15081
15082static void
17a2f251 15083s_cplocal (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
15084{
15085 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
54f4ddb3 15086 .cplocal is ignored. */
6478892d
TS
15087 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15088 {
15089 s_ignore (0);
15090 return;
15091 }
15092
a276b80c
MR
15093 if (mips_opts.mips16)
15094 {
15095 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
15096 ignore_rest_of_line ();
15097 return;
15098 }
15099
6478892d 15100 mips_gp_register = tc_get_register (0);
85b51719 15101 demand_empty_rest_of_line ();
6478892d
TS
15102}
15103
252b5132
RH
15104/* Handle the .cprestore pseudo-op. This stores $gp into a given
15105 offset from $sp. The offset is remembered, and after making a PIC
15106 call $gp is restored from that location. */
15107
15108static void
17a2f251 15109s_cprestore (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15110{
15111 expressionS ex;
252b5132 15112
6478892d 15113 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
c9914766 15114 .cprestore is ignored. */
6478892d 15115 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
15116 {
15117 s_ignore (0);
15118 return;
15119 }
15120
a276b80c
MR
15121 if (mips_opts.mips16)
15122 {
15123 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
15124 ignore_rest_of_line ();
15125 return;
15126 }
15127
252b5132 15128 mips_cprestore_offset = get_absolute_expression ();
7a621144 15129 mips_cprestore_valid = 1;
252b5132
RH
15130
15131 ex.X_op = O_constant;
15132 ex.X_add_symbol = NULL;
15133 ex.X_op_symbol = NULL;
15134 ex.X_add_number = mips_cprestore_offset;
15135
8a75745d
MR
15136 mips_mark_labels ();
15137 mips_assembling_insn = TRUE;
15138
584892a6 15139 macro_start ();
67c0d1eb
RS
15140 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
15141 SP, HAVE_64BIT_ADDRESSES);
584892a6 15142 macro_end ();
252b5132 15143
8a75745d 15144 mips_assembling_insn = FALSE;
252b5132
RH
15145 demand_empty_rest_of_line ();
15146}
15147
6478892d 15148/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
67c1ffbe 15149 was given in the preceding .cpsetup, it results in:
6478892d 15150 ld $gp, offset($sp)
76b3015f 15151
6478892d 15152 If a register $reg2 was given there, it results in:
54f4ddb3
TS
15153 daddu $gp, $reg2, $0 */
15154
6478892d 15155static void
17a2f251 15156s_cpreturn (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
15157{
15158 expressionS ex;
6478892d
TS
15159
15160 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
15161 We also need NewABI support. */
15162 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15163 {
15164 s_ignore (0);
15165 return;
15166 }
15167
a276b80c
MR
15168 if (mips_opts.mips16)
15169 {
15170 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
15171 ignore_rest_of_line ();
15172 return;
15173 }
15174
8a75745d
MR
15175 mips_mark_labels ();
15176 mips_assembling_insn = TRUE;
15177
584892a6 15178 macro_start ();
6478892d
TS
15179 if (mips_cpreturn_register == -1)
15180 {
15181 ex.X_op = O_constant;
15182 ex.X_add_symbol = NULL;
15183 ex.X_op_symbol = NULL;
15184 ex.X_add_number = mips_cpreturn_offset;
15185
67c0d1eb 15186 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
6478892d
TS
15187 }
15188 else
67c0d1eb 15189 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
17a2f251 15190 mips_cpreturn_register, 0);
584892a6 15191 macro_end ();
6478892d 15192
8a75745d 15193 mips_assembling_insn = FALSE;
6478892d
TS
15194 demand_empty_rest_of_line ();
15195}
15196
d0f13682
CLT
15197/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
15198 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
15199 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
15200 debug information or MIPS16 TLS. */
741d6ea8
JM
15201
15202static void
d0f13682
CLT
15203s_tls_rel_directive (const size_t bytes, const char *dirstr,
15204 bfd_reloc_code_real_type rtype)
741d6ea8
JM
15205{
15206 expressionS ex;
15207 char *p;
15208
15209 expression (&ex);
15210
15211 if (ex.X_op != O_symbol)
15212 {
d0f13682 15213 as_bad (_("Unsupported use of %s"), dirstr);
741d6ea8
JM
15214 ignore_rest_of_line ();
15215 }
15216
15217 p = frag_more (bytes);
15218 md_number_to_chars (p, 0, bytes);
d0f13682 15219 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
741d6ea8 15220 demand_empty_rest_of_line ();
de64cffd 15221 mips_clear_insn_labels ();
741d6ea8
JM
15222}
15223
15224/* Handle .dtprelword. */
15225
15226static void
15227s_dtprelword (int ignore ATTRIBUTE_UNUSED)
15228{
d0f13682 15229 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
741d6ea8
JM
15230}
15231
15232/* Handle .dtpreldword. */
15233
15234static void
15235s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
15236{
d0f13682
CLT
15237 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
15238}
15239
15240/* Handle .tprelword. */
15241
15242static void
15243s_tprelword (int ignore ATTRIBUTE_UNUSED)
15244{
15245 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
15246}
15247
15248/* Handle .tpreldword. */
15249
15250static void
15251s_tpreldword (int ignore ATTRIBUTE_UNUSED)
15252{
15253 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
741d6ea8
JM
15254}
15255
6478892d
TS
15256/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
15257 code. It sets the offset to use in gp_rel relocations. */
15258
15259static void
17a2f251 15260s_gpvalue (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
15261{
15262 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
15263 We also need NewABI support. */
15264 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15265 {
15266 s_ignore (0);
15267 return;
15268 }
15269
def2e0dd 15270 mips_gprel_offset = get_absolute_expression ();
6478892d
TS
15271
15272 demand_empty_rest_of_line ();
15273}
15274
252b5132
RH
15275/* Handle the .gpword pseudo-op. This is used when generating PIC
15276 code. It generates a 32 bit GP relative reloc. */
15277
15278static void
17a2f251 15279s_gpword (int ignore ATTRIBUTE_UNUSED)
252b5132 15280{
a8dbcb85
TS
15281 segment_info_type *si;
15282 struct insn_label_list *l;
252b5132
RH
15283 expressionS ex;
15284 char *p;
15285
15286 /* When not generating PIC code, this is treated as .word. */
15287 if (mips_pic != SVR4_PIC)
15288 {
15289 s_cons (2);
15290 return;
15291 }
15292
a8dbcb85
TS
15293 si = seg_info (now_seg);
15294 l = si->label_list;
7d10b47d 15295 mips_emit_delays ();
252b5132 15296 if (auto_align)
462427c4 15297 mips_align (2, 0, l);
252b5132
RH
15298
15299 expression (&ex);
a1facbec 15300 mips_clear_insn_labels ();
252b5132
RH
15301
15302 if (ex.X_op != O_symbol || ex.X_add_number != 0)
15303 {
15304 as_bad (_("Unsupported use of .gpword"));
15305 ignore_rest_of_line ();
15306 }
15307
15308 p = frag_more (4);
17a2f251 15309 md_number_to_chars (p, 0, 4);
b34976b6 15310 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
cdf6fd85 15311 BFD_RELOC_GPREL32);
252b5132
RH
15312
15313 demand_empty_rest_of_line ();
15314}
15315
10181a0d 15316static void
17a2f251 15317s_gpdword (int ignore ATTRIBUTE_UNUSED)
10181a0d 15318{
a8dbcb85
TS
15319 segment_info_type *si;
15320 struct insn_label_list *l;
10181a0d
AO
15321 expressionS ex;
15322 char *p;
15323
15324 /* When not generating PIC code, this is treated as .dword. */
15325 if (mips_pic != SVR4_PIC)
15326 {
15327 s_cons (3);
15328 return;
15329 }
15330
a8dbcb85
TS
15331 si = seg_info (now_seg);
15332 l = si->label_list;
7d10b47d 15333 mips_emit_delays ();
10181a0d 15334 if (auto_align)
462427c4 15335 mips_align (3, 0, l);
10181a0d
AO
15336
15337 expression (&ex);
a1facbec 15338 mips_clear_insn_labels ();
10181a0d
AO
15339
15340 if (ex.X_op != O_symbol || ex.X_add_number != 0)
15341 {
15342 as_bad (_("Unsupported use of .gpdword"));
15343 ignore_rest_of_line ();
15344 }
15345
15346 p = frag_more (8);
17a2f251 15347 md_number_to_chars (p, 0, 8);
a105a300 15348 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
6e1304d8 15349 BFD_RELOC_GPREL32)->fx_tcbit = 1;
10181a0d
AO
15350
15351 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
6e1304d8
RS
15352 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
15353 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
10181a0d
AO
15354
15355 demand_empty_rest_of_line ();
15356}
15357
a3f278e2
CM
15358/* Handle the .ehword pseudo-op. This is used when generating unwinding
15359 tables. It generates a R_MIPS_EH reloc. */
15360
15361static void
15362s_ehword (int ignore ATTRIBUTE_UNUSED)
15363{
15364 expressionS ex;
15365 char *p;
15366
15367 mips_emit_delays ();
15368
15369 expression (&ex);
15370 mips_clear_insn_labels ();
15371
15372 if (ex.X_op != O_symbol || ex.X_add_number != 0)
15373 {
15374 as_bad (_("Unsupported use of .ehword"));
15375 ignore_rest_of_line ();
15376 }
15377
15378 p = frag_more (4);
15379 md_number_to_chars (p, 0, 4);
15380 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
15381 BFD_RELOC_MIPS_EH);
15382
15383 demand_empty_rest_of_line ();
15384}
15385
252b5132
RH
15386/* Handle the .cpadd pseudo-op. This is used when dealing with switch
15387 tables in SVR4 PIC code. */
15388
15389static void
17a2f251 15390s_cpadd (int ignore ATTRIBUTE_UNUSED)
252b5132 15391{
252b5132
RH
15392 int reg;
15393
10181a0d
AO
15394 /* This is ignored when not generating SVR4 PIC code. */
15395 if (mips_pic != SVR4_PIC)
252b5132
RH
15396 {
15397 s_ignore (0);
15398 return;
15399 }
15400
8a75745d
MR
15401 mips_mark_labels ();
15402 mips_assembling_insn = TRUE;
15403
252b5132 15404 /* Add $gp to the register named as an argument. */
584892a6 15405 macro_start ();
252b5132 15406 reg = tc_get_register (0);
67c0d1eb 15407 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
584892a6 15408 macro_end ();
252b5132 15409
8a75745d 15410 mips_assembling_insn = FALSE;
bdaaa2e1 15411 demand_empty_rest_of_line ();
252b5132
RH
15412}
15413
15414/* Handle the .insn pseudo-op. This marks instruction labels in
df58fc94 15415 mips16/micromips mode. This permits the linker to handle them specially,
252b5132
RH
15416 such as generating jalx instructions when needed. We also make
15417 them odd for the duration of the assembly, in order to generate the
15418 right sort of code. We will make them even in the adjust_symtab
15419 routine, while leaving them marked. This is convenient for the
15420 debugger and the disassembler. The linker knows to make them odd
15421 again. */
15422
15423static void
17a2f251 15424s_insn (int ignore ATTRIBUTE_UNUSED)
252b5132 15425{
df58fc94 15426 mips_mark_labels ();
252b5132
RH
15427
15428 demand_empty_rest_of_line ();
15429}
15430
ba92f887
MR
15431/* Handle the .nan pseudo-op. */
15432
15433static void
15434s_nan (int ignore ATTRIBUTE_UNUSED)
15435{
15436 static const char str_legacy[] = "legacy";
15437 static const char str_2008[] = "2008";
15438 size_t i;
15439
15440 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
15441
15442 if (i == sizeof (str_2008) - 1
15443 && memcmp (input_line_pointer, str_2008, i) == 0)
15444 mips_flag_nan2008 = TRUE;
15445 else if (i == sizeof (str_legacy) - 1
15446 && memcmp (input_line_pointer, str_legacy, i) == 0)
15447 mips_flag_nan2008 = FALSE;
15448 else
15449 as_bad (_("Bad .nan directive"));
15450
15451 input_line_pointer += i;
15452 demand_empty_rest_of_line ();
15453}
15454
754e2bb9
RS
15455/* Handle a .stab[snd] directive. Ideally these directives would be
15456 implemented in a transparent way, so that removing them would not
15457 have any effect on the generated instructions. However, s_stab
15458 internally changes the section, so in practice we need to decide
15459 now whether the preceding label marks compressed code. We do not
15460 support changing the compression mode of a label after a .stab*
15461 directive, such as in:
15462
15463 foo:
15464 .stabs ...
15465 .set mips16
15466
15467 so the current mode wins. */
252b5132
RH
15468
15469static void
17a2f251 15470s_mips_stab (int type)
252b5132 15471{
754e2bb9 15472 mips_mark_labels ();
252b5132
RH
15473 s_stab (type);
15474}
15475
54f4ddb3 15476/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
252b5132
RH
15477
15478static void
17a2f251 15479s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15480{
15481 char *name;
15482 int c;
15483 symbolS *symbolP;
15484 expressionS exp;
15485
15486 name = input_line_pointer;
15487 c = get_symbol_end ();
15488 symbolP = symbol_find_or_make (name);
15489 S_SET_WEAK (symbolP);
15490 *input_line_pointer = c;
15491
15492 SKIP_WHITESPACE ();
15493
15494 if (! is_end_of_line[(unsigned char) *input_line_pointer])
15495 {
15496 if (S_IS_DEFINED (symbolP))
15497 {
20203fb9 15498 as_bad (_("ignoring attempt to redefine symbol %s"),
252b5132
RH
15499 S_GET_NAME (symbolP));
15500 ignore_rest_of_line ();
15501 return;
15502 }
bdaaa2e1 15503
252b5132
RH
15504 if (*input_line_pointer == ',')
15505 {
15506 ++input_line_pointer;
15507 SKIP_WHITESPACE ();
15508 }
bdaaa2e1 15509
252b5132
RH
15510 expression (&exp);
15511 if (exp.X_op != O_symbol)
15512 {
20203fb9 15513 as_bad (_("bad .weakext directive"));
98d3f06f 15514 ignore_rest_of_line ();
252b5132
RH
15515 return;
15516 }
49309057 15517 symbol_set_value_expression (symbolP, &exp);
252b5132
RH
15518 }
15519
15520 demand_empty_rest_of_line ();
15521}
15522
15523/* Parse a register string into a number. Called from the ECOFF code
15524 to parse .frame. The argument is non-zero if this is the frame
15525 register, so that we can record it in mips_frame_reg. */
15526
15527int
17a2f251 15528tc_get_register (int frame)
252b5132 15529{
707bfff6 15530 unsigned int reg;
252b5132
RH
15531
15532 SKIP_WHITESPACE ();
707bfff6
TS
15533 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
15534 reg = 0;
252b5132 15535 if (frame)
7a621144
DJ
15536 {
15537 mips_frame_reg = reg != 0 ? reg : SP;
15538 mips_frame_reg_valid = 1;
15539 mips_cprestore_valid = 0;
15540 }
252b5132
RH
15541 return reg;
15542}
15543
15544valueT
17a2f251 15545md_section_align (asection *seg, valueT addr)
252b5132
RH
15546{
15547 int align = bfd_get_section_alignment (stdoutput, seg);
15548
f3ded42a
RS
15549 /* We don't need to align ELF sections to the full alignment.
15550 However, Irix 5 may prefer that we align them at least to a 16
15551 byte boundary. We don't bother to align the sections if we
15552 are targeted for an embedded system. */
15553 if (strncmp (TARGET_OS, "elf", 3) == 0)
15554 return addr;
15555 if (align > 4)
15556 align = 4;
252b5132
RH
15557
15558 return ((addr + (1 << align) - 1) & (-1 << align));
15559}
15560
15561/* Utility routine, called from above as well. If called while the
15562 input file is still being read, it's only an approximation. (For
15563 example, a symbol may later become defined which appeared to be
15564 undefined earlier.) */
15565
15566static int
17a2f251 15567nopic_need_relax (symbolS *sym, int before_relaxing)
252b5132
RH
15568{
15569 if (sym == 0)
15570 return 0;
15571
4d0d148d 15572 if (g_switch_value > 0)
252b5132
RH
15573 {
15574 const char *symname;
15575 int change;
15576
c9914766 15577 /* Find out whether this symbol can be referenced off the $gp
252b5132
RH
15578 register. It can be if it is smaller than the -G size or if
15579 it is in the .sdata or .sbss section. Certain symbols can
c9914766 15580 not be referenced off the $gp, although it appears as though
252b5132
RH
15581 they can. */
15582 symname = S_GET_NAME (sym);
15583 if (symname != (const char *) NULL
15584 && (strcmp (symname, "eprol") == 0
15585 || strcmp (symname, "etext") == 0
15586 || strcmp (symname, "_gp") == 0
15587 || strcmp (symname, "edata") == 0
15588 || strcmp (symname, "_fbss") == 0
15589 || strcmp (symname, "_fdata") == 0
15590 || strcmp (symname, "_ftext") == 0
15591 || strcmp (symname, "end") == 0
15592 || strcmp (symname, "_gp_disp") == 0))
15593 change = 1;
15594 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
15595 && (0
15596#ifndef NO_ECOFF_DEBUGGING
49309057
ILT
15597 || (symbol_get_obj (sym)->ecoff_extern_size != 0
15598 && (symbol_get_obj (sym)->ecoff_extern_size
15599 <= g_switch_value))
252b5132
RH
15600#endif
15601 /* We must defer this decision until after the whole
15602 file has been read, since there might be a .extern
15603 after the first use of this symbol. */
15604 || (before_relaxing
15605#ifndef NO_ECOFF_DEBUGGING
49309057 15606 && symbol_get_obj (sym)->ecoff_extern_size == 0
252b5132
RH
15607#endif
15608 && S_GET_VALUE (sym) == 0)
15609 || (S_GET_VALUE (sym) != 0
15610 && S_GET_VALUE (sym) <= g_switch_value)))
15611 change = 0;
15612 else
15613 {
15614 const char *segname;
15615
15616 segname = segment_name (S_GET_SEGMENT (sym));
9c2799c2 15617 gas_assert (strcmp (segname, ".lit8") != 0
252b5132
RH
15618 && strcmp (segname, ".lit4") != 0);
15619 change = (strcmp (segname, ".sdata") != 0
fba2b7f9
GK
15620 && strcmp (segname, ".sbss") != 0
15621 && strncmp (segname, ".sdata.", 7) != 0
d4dc2f22
TS
15622 && strncmp (segname, ".sbss.", 6) != 0
15623 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
fba2b7f9 15624 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
252b5132
RH
15625 }
15626 return change;
15627 }
15628 else
c9914766 15629 /* We are not optimizing for the $gp register. */
252b5132
RH
15630 return 1;
15631}
15632
5919d012
RS
15633
15634/* Return true if the given symbol should be considered local for SVR4 PIC. */
15635
15636static bfd_boolean
17a2f251 15637pic_need_relax (symbolS *sym, asection *segtype)
5919d012
RS
15638{
15639 asection *symsec;
5919d012
RS
15640
15641 /* Handle the case of a symbol equated to another symbol. */
15642 while (symbol_equated_reloc_p (sym))
15643 {
15644 symbolS *n;
15645
5f0fe04b 15646 /* It's possible to get a loop here in a badly written program. */
5919d012
RS
15647 n = symbol_get_value_expression (sym)->X_add_symbol;
15648 if (n == sym)
15649 break;
15650 sym = n;
15651 }
15652
df1f3cda
DD
15653 if (symbol_section_p (sym))
15654 return TRUE;
15655
5919d012
RS
15656 symsec = S_GET_SEGMENT (sym);
15657
5919d012 15658 /* This must duplicate the test in adjust_reloc_syms. */
45dfa85a
AM
15659 return (!bfd_is_und_section (symsec)
15660 && !bfd_is_abs_section (symsec)
5f0fe04b
TS
15661 && !bfd_is_com_section (symsec)
15662 && !s_is_linkonce (sym, segtype)
5919d012 15663 /* A global or weak symbol is treated as external. */
f3ded42a 15664 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
5919d012
RS
15665}
15666
15667
252b5132
RH
15668/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
15669 extended opcode. SEC is the section the frag is in. */
15670
15671static int
17a2f251 15672mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
252b5132
RH
15673{
15674 int type;
3ccad066 15675 const struct mips_int_operand *operand;
252b5132 15676 offsetT val;
252b5132 15677 segT symsec;
98aa84af 15678 fragS *sym_frag;
252b5132
RH
15679
15680 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
15681 return 0;
15682 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
15683 return 1;
15684
15685 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 15686 operand = mips16_immed_operand (type, FALSE);
252b5132 15687
98aa84af 15688 sym_frag = symbol_get_frag (fragp->fr_symbol);
ac62c346 15689 val = S_GET_VALUE (fragp->fr_symbol);
98aa84af 15690 symsec = S_GET_SEGMENT (fragp->fr_symbol);
252b5132 15691
3ccad066 15692 if (operand->root.type == OP_PCREL)
252b5132 15693 {
3ccad066 15694 const struct mips_pcrel_operand *pcrel_op;
252b5132 15695 addressT addr;
3ccad066 15696 offsetT maxtiny;
252b5132
RH
15697
15698 /* We won't have the section when we are called from
15699 mips_relax_frag. However, we will always have been called
15700 from md_estimate_size_before_relax first. If this is a
15701 branch to a different section, we mark it as such. If SEC is
15702 NULL, and the frag is not marked, then it must be a branch to
15703 the same section. */
3ccad066 15704 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
15705 if (sec == NULL)
15706 {
15707 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
15708 return 1;
15709 }
15710 else
15711 {
98aa84af 15712 /* Must have been called from md_estimate_size_before_relax. */
252b5132
RH
15713 if (symsec != sec)
15714 {
15715 fragp->fr_subtype =
15716 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
15717
15718 /* FIXME: We should support this, and let the linker
15719 catch branches and loads that are out of range. */
15720 as_bad_where (fragp->fr_file, fragp->fr_line,
15721 _("unsupported PC relative reference to different section"));
15722
15723 return 1;
15724 }
98aa84af
AM
15725 if (fragp != sym_frag && sym_frag->fr_address == 0)
15726 /* Assume non-extended on the first relaxation pass.
15727 The address we have calculated will be bogus if this is
15728 a forward branch to another frag, as the forward frag
15729 will have fr_address == 0. */
15730 return 0;
252b5132
RH
15731 }
15732
15733 /* In this case, we know for sure that the symbol fragment is in
98aa84af
AM
15734 the same section. If the relax_marker of the symbol fragment
15735 differs from the relax_marker of this fragment, we have not
15736 yet adjusted the symbol fragment fr_address. We want to add
252b5132
RH
15737 in STRETCH in order to get a better estimate of the address.
15738 This particularly matters because of the shift bits. */
15739 if (stretch != 0
98aa84af 15740 && sym_frag->relax_marker != fragp->relax_marker)
252b5132
RH
15741 {
15742 fragS *f;
15743
15744 /* Adjust stretch for any alignment frag. Note that if have
15745 been expanding the earlier code, the symbol may be
15746 defined in what appears to be an earlier frag. FIXME:
15747 This doesn't handle the fr_subtype field, which specifies
15748 a maximum number of bytes to skip when doing an
15749 alignment. */
98aa84af 15750 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
252b5132
RH
15751 {
15752 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
15753 {
15754 if (stretch < 0)
15755 stretch = - ((- stretch)
15756 & ~ ((1 << (int) f->fr_offset) - 1));
15757 else
15758 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
15759 if (stretch == 0)
15760 break;
15761 }
15762 }
15763 if (f != NULL)
15764 val += stretch;
15765 }
15766
15767 addr = fragp->fr_address + fragp->fr_fix;
15768
15769 /* The base address rules are complicated. The base address of
15770 a branch is the following instruction. The base address of a
15771 PC relative load or add is the instruction itself, but if it
15772 is in a delay slot (in which case it can not be extended) use
15773 the address of the instruction whose delay slot it is in. */
3ccad066 15774 if (pcrel_op->include_isa_bit)
252b5132
RH
15775 {
15776 addr += 2;
15777
15778 /* If we are currently assuming that this frag should be
15779 extended, then, the current address is two bytes
bdaaa2e1 15780 higher. */
252b5132
RH
15781 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
15782 addr += 2;
15783
15784 /* Ignore the low bit in the target, since it will be set
15785 for a text label. */
3ccad066 15786 val &= -2;
252b5132
RH
15787 }
15788 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
15789 addr -= 4;
15790 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
15791 addr -= 2;
15792
3ccad066 15793 val -= addr & -(1 << pcrel_op->align_log2);
252b5132
RH
15794
15795 /* If any of the shifted bits are set, we must use an extended
15796 opcode. If the address depends on the size of this
15797 instruction, this can lead to a loop, so we arrange to always
15798 use an extended opcode. We only check this when we are in
15799 the main relaxation loop, when SEC is NULL. */
3ccad066 15800 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
252b5132
RH
15801 {
15802 fragp->fr_subtype =
15803 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
15804 return 1;
15805 }
15806
15807 /* If we are about to mark a frag as extended because the value
3ccad066
RS
15808 is precisely the next value above maxtiny, then there is a
15809 chance of an infinite loop as in the following code:
252b5132
RH
15810 la $4,foo
15811 .skip 1020
15812 .align 2
15813 foo:
15814 In this case when the la is extended, foo is 0x3fc bytes
15815 away, so the la can be shrunk, but then foo is 0x400 away, so
15816 the la must be extended. To avoid this loop, we mark the
15817 frag as extended if it was small, and is about to become
3ccad066
RS
15818 extended with the next value above maxtiny. */
15819 maxtiny = mips_int_operand_max (operand);
15820 if (val == maxtiny + (1 << operand->shift)
252b5132
RH
15821 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
15822 && sec == NULL)
15823 {
15824 fragp->fr_subtype =
15825 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
15826 return 1;
15827 }
15828 }
15829 else if (symsec != absolute_section && sec != NULL)
15830 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
15831
3ccad066 15832 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
252b5132
RH
15833}
15834
4a6a3df4
AO
15835/* Compute the length of a branch sequence, and adjust the
15836 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
15837 worst-case length is computed, with UPDATE being used to indicate
15838 whether an unconditional (-1), branch-likely (+1) or regular (0)
15839 branch is to be computed. */
15840static int
17a2f251 15841relaxed_branch_length (fragS *fragp, asection *sec, int update)
4a6a3df4 15842{
b34976b6 15843 bfd_boolean toofar;
4a6a3df4
AO
15844 int length;
15845
15846 if (fragp
15847 && S_IS_DEFINED (fragp->fr_symbol)
15848 && sec == S_GET_SEGMENT (fragp->fr_symbol))
15849 {
15850 addressT addr;
15851 offsetT val;
15852
15853 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
15854
15855 addr = fragp->fr_address + fragp->fr_fix + 4;
15856
15857 val -= addr;
15858
15859 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
15860 }
15861 else if (fragp)
15862 /* If the symbol is not defined or it's in a different segment,
15863 assume the user knows what's going on and emit a short
15864 branch. */
b34976b6 15865 toofar = FALSE;
4a6a3df4 15866 else
b34976b6 15867 toofar = TRUE;
4a6a3df4
AO
15868
15869 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
15870 fragp->fr_subtype
66b3e8da
MR
15871 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
15872 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
4a6a3df4
AO
15873 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
15874 RELAX_BRANCH_LINK (fragp->fr_subtype),
15875 toofar);
15876
15877 length = 4;
15878 if (toofar)
15879 {
15880 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
15881 length += 8;
15882
15883 if (mips_pic != NO_PIC)
15884 {
15885 /* Additional space for PIC loading of target address. */
15886 length += 8;
15887 if (mips_opts.isa == ISA_MIPS1)
15888 /* Additional space for $at-stabilizing nop. */
15889 length += 4;
15890 }
15891
15892 /* If branch is conditional. */
15893 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
15894 length += 8;
15895 }
b34976b6 15896
4a6a3df4
AO
15897 return length;
15898}
15899
df58fc94
RS
15900/* Compute the length of a branch sequence, and adjust the
15901 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
15902 worst-case length is computed, with UPDATE being used to indicate
15903 whether an unconditional (-1), or regular (0) branch is to be
15904 computed. */
15905
15906static int
15907relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
15908{
15909 bfd_boolean toofar;
15910 int length;
15911
15912 if (fragp
15913 && S_IS_DEFINED (fragp->fr_symbol)
15914 && sec == S_GET_SEGMENT (fragp->fr_symbol))
15915 {
15916 addressT addr;
15917 offsetT val;
15918
15919 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
15920 /* Ignore the low bit in the target, since it will be set
15921 for a text label. */
15922 if ((val & 1) != 0)
15923 --val;
15924
15925 addr = fragp->fr_address + fragp->fr_fix + 4;
15926
15927 val -= addr;
15928
15929 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
15930 }
15931 else if (fragp)
15932 /* If the symbol is not defined or it's in a different segment,
15933 assume the user knows what's going on and emit a short
15934 branch. */
15935 toofar = FALSE;
15936 else
15937 toofar = TRUE;
15938
15939 if (fragp && update
15940 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
15941 fragp->fr_subtype = (toofar
15942 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
15943 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
15944
15945 length = 4;
15946 if (toofar)
15947 {
15948 bfd_boolean compact_known = fragp != NULL;
15949 bfd_boolean compact = FALSE;
15950 bfd_boolean uncond;
15951
15952 if (compact_known)
15953 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
15954 if (fragp)
15955 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
15956 else
15957 uncond = update < 0;
15958
15959 /* If label is out of range, we turn branch <br>:
15960
15961 <br> label # 4 bytes
15962 0:
15963
15964 into:
15965
15966 j label # 4 bytes
15967 nop # 2 bytes if compact && !PIC
15968 0:
15969 */
15970 if (mips_pic == NO_PIC && (!compact_known || compact))
15971 length += 2;
15972
15973 /* If assembling PIC code, we further turn:
15974
15975 j label # 4 bytes
15976
15977 into:
15978
15979 lw/ld at, %got(label)(gp) # 4 bytes
15980 d/addiu at, %lo(label) # 4 bytes
15981 jr/c at # 2 bytes
15982 */
15983 if (mips_pic != NO_PIC)
15984 length += 6;
15985
15986 /* If branch <br> is conditional, we prepend negated branch <brneg>:
15987
15988 <brneg> 0f # 4 bytes
15989 nop # 2 bytes if !compact
15990 */
15991 if (!uncond)
15992 length += (compact_known && compact) ? 4 : 6;
15993 }
15994
15995 return length;
15996}
15997
15998/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
15999 bit accordingly. */
16000
16001static int
16002relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16003{
16004 bfd_boolean toofar;
16005
df58fc94
RS
16006 if (fragp
16007 && S_IS_DEFINED (fragp->fr_symbol)
16008 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16009 {
16010 addressT addr;
16011 offsetT val;
16012 int type;
16013
16014 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16015 /* Ignore the low bit in the target, since it will be set
16016 for a text label. */
16017 if ((val & 1) != 0)
16018 --val;
16019
16020 /* Assume this is a 2-byte branch. */
16021 addr = fragp->fr_address + fragp->fr_fix + 2;
16022
16023 /* We try to avoid the infinite loop by not adding 2 more bytes for
16024 long branches. */
16025
16026 val -= addr;
16027
16028 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16029 if (type == 'D')
16030 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
16031 else if (type == 'E')
16032 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
16033 else
16034 abort ();
16035 }
16036 else
16037 /* If the symbol is not defined or it's in a different segment,
16038 we emit a normal 32-bit branch. */
16039 toofar = TRUE;
16040
16041 if (fragp && update
16042 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16043 fragp->fr_subtype
16044 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
16045 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
16046
16047 if (toofar)
16048 return 4;
16049
16050 return 2;
16051}
16052
252b5132
RH
16053/* Estimate the size of a frag before relaxing. Unless this is the
16054 mips16, we are not really relaxing here, and the final size is
16055 encoded in the subtype information. For the mips16, we have to
16056 decide whether we are using an extended opcode or not. */
16057
252b5132 16058int
17a2f251 16059md_estimate_size_before_relax (fragS *fragp, asection *segtype)
252b5132 16060{
5919d012 16061 int change;
252b5132 16062
4a6a3df4
AO
16063 if (RELAX_BRANCH_P (fragp->fr_subtype))
16064 {
16065
b34976b6
AM
16066 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
16067
4a6a3df4
AO
16068 return fragp->fr_var;
16069 }
16070
252b5132 16071 if (RELAX_MIPS16_P (fragp->fr_subtype))
177b4a6a
AO
16072 /* We don't want to modify the EXTENDED bit here; it might get us
16073 into infinite loops. We change it only in mips_relax_frag(). */
16074 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
252b5132 16075
df58fc94
RS
16076 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
16077 {
16078 int length = 4;
16079
16080 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
16081 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
16082 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
16083 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
16084 fragp->fr_var = length;
16085
16086 return length;
16087 }
16088
252b5132 16089 if (mips_pic == NO_PIC)
5919d012 16090 change = nopic_need_relax (fragp->fr_symbol, 0);
252b5132 16091 else if (mips_pic == SVR4_PIC)
5919d012 16092 change = pic_need_relax (fragp->fr_symbol, segtype);
0a44bf69
RS
16093 else if (mips_pic == VXWORKS_PIC)
16094 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
16095 change = 0;
252b5132
RH
16096 else
16097 abort ();
16098
16099 if (change)
16100 {
4d7206a2 16101 fragp->fr_subtype |= RELAX_USE_SECOND;
4d7206a2 16102 return -RELAX_FIRST (fragp->fr_subtype);
252b5132 16103 }
4d7206a2
RS
16104 else
16105 return -RELAX_SECOND (fragp->fr_subtype);
252b5132
RH
16106}
16107
16108/* This is called to see whether a reloc against a defined symbol
de7e6852 16109 should be converted into a reloc against a section. */
252b5132
RH
16110
16111int
17a2f251 16112mips_fix_adjustable (fixS *fixp)
252b5132 16113{
252b5132
RH
16114 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
16115 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
16116 return 0;
a161fe53 16117
252b5132
RH
16118 if (fixp->fx_addsy == NULL)
16119 return 1;
a161fe53 16120
de7e6852
RS
16121 /* If symbol SYM is in a mergeable section, relocations of the form
16122 SYM + 0 can usually be made section-relative. The mergeable data
16123 is then identified by the section offset rather than by the symbol.
16124
16125 However, if we're generating REL LO16 relocations, the offset is split
16126 between the LO16 and parterning high part relocation. The linker will
16127 need to recalculate the complete offset in order to correctly identify
16128 the merge data.
16129
16130 The linker has traditionally not looked for the parterning high part
16131 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
16132 placed anywhere. Rather than break backwards compatibility by changing
16133 this, it seems better not to force the issue, and instead keep the
16134 original symbol. This will work with either linker behavior. */
738e5348 16135 if ((lo16_reloc_p (fixp->fx_r_type)
704803a9 16136 || reloc_needs_lo_p (fixp->fx_r_type))
de7e6852
RS
16137 && HAVE_IN_PLACE_ADDENDS
16138 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
16139 return 0;
16140
ce70d90a 16141 /* There is no place to store an in-place offset for JALR relocations.
2de39019
CM
16142 Likewise an in-range offset of limited PC-relative relocations may
16143 overflow the in-place relocatable field if recalculated against the
16144 start address of the symbol's containing section. */
ce70d90a 16145 if (HAVE_IN_PLACE_ADDENDS
2de39019
CM
16146 && (limited_pcrel_reloc_p (fixp->fx_r_type)
16147 || jalr_reloc_p (fixp->fx_r_type)))
1180b5a4
RS
16148 return 0;
16149
b314ec0e
RS
16150 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
16151 to a floating-point stub. The same is true for non-R_MIPS16_26
16152 relocations against MIPS16 functions; in this case, the stub becomes
16153 the function's canonical address.
16154
16155 Floating-point stubs are stored in unique .mips16.call.* or
16156 .mips16.fn.* sections. If a stub T for function F is in section S,
16157 the first relocation in section S must be against F; this is how the
16158 linker determines the target function. All relocations that might
16159 resolve to T must also be against F. We therefore have the following
16160 restrictions, which are given in an intentionally-redundant way:
16161
16162 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
16163 symbols.
16164
16165 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
16166 if that stub might be used.
16167
16168 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
16169 symbols.
16170
16171 4. We cannot reduce a stub's relocations against MIPS16 symbols if
16172 that stub might be used.
16173
16174 There is a further restriction:
16175
df58fc94
RS
16176 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
16177 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
16178 targets with in-place addends; the relocation field cannot
b314ec0e
RS
16179 encode the low bit.
16180
df58fc94
RS
16181 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
16182 against a MIPS16 symbol. We deal with (5) by by not reducing any
16183 such relocations on REL targets.
b314ec0e
RS
16184
16185 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
16186 relocation against some symbol R, no relocation against R may be
16187 reduced. (Note that this deals with (2) as well as (1) because
16188 relocations against global symbols will never be reduced on ELF
16189 targets.) This approach is a little simpler than trying to detect
16190 stub sections, and gives the "all or nothing" per-symbol consistency
16191 that we have for MIPS16 symbols. */
f3ded42a 16192 if (fixp->fx_subsy == NULL
30c09090 16193 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
df58fc94
RS
16194 || *symbol_get_tc (fixp->fx_addsy)
16195 || (HAVE_IN_PLACE_ADDENDS
16196 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
16197 && jmp_reloc_p (fixp->fx_r_type))))
252b5132 16198 return 0;
a161fe53 16199
252b5132
RH
16200 return 1;
16201}
16202
16203/* Translate internal representation of relocation info to BFD target
16204 format. */
16205
16206arelent **
17a2f251 16207tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
16208{
16209 static arelent *retval[4];
16210 arelent *reloc;
16211 bfd_reloc_code_real_type code;
16212
4b0cff4e
TS
16213 memset (retval, 0, sizeof(retval));
16214 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
49309057
ILT
16215 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
16216 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
16217 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
16218
bad36eac
DJ
16219 if (fixp->fx_pcrel)
16220 {
df58fc94
RS
16221 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
16222 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
16223 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6
CM
16224 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
16225 || fixp->fx_r_type == BFD_RELOC_32_PCREL);
bad36eac
DJ
16226
16227 /* At this point, fx_addnumber is "symbol offset - pcrel address".
16228 Relocations want only the symbol offset. */
16229 reloc->addend = fixp->fx_addnumber + reloc->address;
bad36eac
DJ
16230 }
16231 else
16232 reloc->addend = fixp->fx_addnumber;
252b5132 16233
438c16b8
TS
16234 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
16235 entry to be used in the relocation's section offset. */
16236 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
252b5132
RH
16237 {
16238 reloc->address = reloc->addend;
16239 reloc->addend = 0;
16240 }
16241
252b5132 16242 code = fixp->fx_r_type;
252b5132 16243
bad36eac 16244 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
252b5132
RH
16245 if (reloc->howto == NULL)
16246 {
16247 as_bad_where (fixp->fx_file, fixp->fx_line,
16248 _("Can not represent %s relocation in this object file format"),
16249 bfd_get_reloc_code_name (code));
16250 retval[0] = NULL;
16251 }
16252
16253 return retval;
16254}
16255
16256/* Relax a machine dependent frag. This returns the amount by which
16257 the current size of the frag should change. */
16258
16259int
17a2f251 16260mips_relax_frag (asection *sec, fragS *fragp, long stretch)
252b5132 16261{
4a6a3df4
AO
16262 if (RELAX_BRANCH_P (fragp->fr_subtype))
16263 {
16264 offsetT old_var = fragp->fr_var;
b34976b6
AM
16265
16266 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
4a6a3df4
AO
16267
16268 return fragp->fr_var - old_var;
16269 }
16270
df58fc94
RS
16271 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
16272 {
16273 offsetT old_var = fragp->fr_var;
16274 offsetT new_var = 4;
16275
16276 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
16277 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
16278 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
16279 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
16280 fragp->fr_var = new_var;
16281
16282 return new_var - old_var;
16283 }
16284
252b5132
RH
16285 if (! RELAX_MIPS16_P (fragp->fr_subtype))
16286 return 0;
16287
c4e7957c 16288 if (mips16_extended_frag (fragp, NULL, stretch))
252b5132
RH
16289 {
16290 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16291 return 0;
16292 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
16293 return 2;
16294 }
16295 else
16296 {
16297 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16298 return 0;
16299 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
16300 return -2;
16301 }
16302
16303 return 0;
16304}
16305
16306/* Convert a machine dependent frag. */
16307
16308void
17a2f251 16309md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
252b5132 16310{
4a6a3df4
AO
16311 if (RELAX_BRANCH_P (fragp->fr_subtype))
16312 {
4d68580a 16313 char *buf;
4a6a3df4
AO
16314 unsigned long insn;
16315 expressionS exp;
16316 fixS *fixp;
b34976b6 16317
4d68580a
RS
16318 buf = fragp->fr_literal + fragp->fr_fix;
16319 insn = read_insn (buf);
b34976b6 16320
4a6a3df4
AO
16321 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16322 {
16323 /* We generate a fixup instead of applying it right now
16324 because, if there are linker relaxations, we're going to
16325 need the relocations. */
16326 exp.X_op = O_symbol;
16327 exp.X_add_symbol = fragp->fr_symbol;
16328 exp.X_add_number = fragp->fr_offset;
16329
4d68580a
RS
16330 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
16331 BFD_RELOC_16_PCREL_S2);
4a6a3df4
AO
16332 fixp->fx_file = fragp->fr_file;
16333 fixp->fx_line = fragp->fr_line;
b34976b6 16334
4d68580a 16335 buf = write_insn (buf, insn);
4a6a3df4
AO
16336 }
16337 else
16338 {
16339 int i;
16340
16341 as_warn_where (fragp->fr_file, fragp->fr_line,
5c4f07ba 16342 _("Relaxed out-of-range branch into a jump"));
4a6a3df4
AO
16343
16344 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
16345 goto uncond;
16346
16347 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
16348 {
16349 /* Reverse the branch. */
16350 switch ((insn >> 28) & 0xf)
16351 {
16352 case 4:
3bf0dbfb
MR
16353 /* bc[0-3][tf]l? instructions can have the condition
16354 reversed by tweaking a single TF bit, and their
16355 opcodes all have 0x4???????. */
16356 gas_assert ((insn & 0xf3e00000) == 0x41000000);
4a6a3df4
AO
16357 insn ^= 0x00010000;
16358 break;
16359
16360 case 0:
16361 /* bltz 0x04000000 bgez 0x04010000
54f4ddb3 16362 bltzal 0x04100000 bgezal 0x04110000 */
9c2799c2 16363 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
4a6a3df4
AO
16364 insn ^= 0x00010000;
16365 break;
b34976b6 16366
4a6a3df4
AO
16367 case 1:
16368 /* beq 0x10000000 bne 0x14000000
54f4ddb3 16369 blez 0x18000000 bgtz 0x1c000000 */
4a6a3df4
AO
16370 insn ^= 0x04000000;
16371 break;
16372
16373 default:
16374 abort ();
16375 }
16376 }
16377
16378 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
16379 {
16380 /* Clear the and-link bit. */
9c2799c2 16381 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
4a6a3df4 16382
54f4ddb3
TS
16383 /* bltzal 0x04100000 bgezal 0x04110000
16384 bltzall 0x04120000 bgezall 0x04130000 */
4a6a3df4
AO
16385 insn &= ~0x00100000;
16386 }
16387
16388 /* Branch over the branch (if the branch was likely) or the
16389 full jump (not likely case). Compute the offset from the
16390 current instruction to branch to. */
16391 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
16392 i = 16;
16393 else
16394 {
16395 /* How many bytes in instructions we've already emitted? */
4d68580a 16396 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
16397 /* How many bytes in instructions from here to the end? */
16398 i = fragp->fr_var - i;
16399 }
16400 /* Convert to instruction count. */
16401 i >>= 2;
16402 /* Branch counts from the next instruction. */
b34976b6 16403 i--;
4a6a3df4
AO
16404 insn |= i;
16405 /* Branch over the jump. */
4d68580a 16406 buf = write_insn (buf, insn);
4a6a3df4 16407
54f4ddb3 16408 /* nop */
4d68580a 16409 buf = write_insn (buf, 0);
4a6a3df4
AO
16410
16411 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
16412 {
16413 /* beql $0, $0, 2f */
16414 insn = 0x50000000;
16415 /* Compute the PC offset from the current instruction to
16416 the end of the variable frag. */
16417 /* How many bytes in instructions we've already emitted? */
4d68580a 16418 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
16419 /* How many bytes in instructions from here to the end? */
16420 i = fragp->fr_var - i;
16421 /* Convert to instruction count. */
16422 i >>= 2;
16423 /* Don't decrement i, because we want to branch over the
16424 delay slot. */
4a6a3df4 16425 insn |= i;
4a6a3df4 16426
4d68580a
RS
16427 buf = write_insn (buf, insn);
16428 buf = write_insn (buf, 0);
4a6a3df4
AO
16429 }
16430
16431 uncond:
16432 if (mips_pic == NO_PIC)
16433 {
16434 /* j or jal. */
16435 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
16436 ? 0x0c000000 : 0x08000000);
16437 exp.X_op = O_symbol;
16438 exp.X_add_symbol = fragp->fr_symbol;
16439 exp.X_add_number = fragp->fr_offset;
16440
4d68580a
RS
16441 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
16442 FALSE, BFD_RELOC_MIPS_JMP);
4a6a3df4
AO
16443 fixp->fx_file = fragp->fr_file;
16444 fixp->fx_line = fragp->fr_line;
16445
4d68580a 16446 buf = write_insn (buf, insn);
4a6a3df4
AO
16447 }
16448 else
16449 {
66b3e8da
MR
16450 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
16451
4a6a3df4 16452 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
66b3e8da
MR
16453 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
16454 insn |= at << OP_SH_RT;
4a6a3df4
AO
16455 exp.X_op = O_symbol;
16456 exp.X_add_symbol = fragp->fr_symbol;
16457 exp.X_add_number = fragp->fr_offset;
16458
16459 if (fragp->fr_offset)
16460 {
16461 exp.X_add_symbol = make_expr_symbol (&exp);
16462 exp.X_add_number = 0;
16463 }
16464
4d68580a
RS
16465 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
16466 FALSE, BFD_RELOC_MIPS_GOT16);
4a6a3df4
AO
16467 fixp->fx_file = fragp->fr_file;
16468 fixp->fx_line = fragp->fr_line;
16469
4d68580a 16470 buf = write_insn (buf, insn);
b34976b6 16471
4a6a3df4 16472 if (mips_opts.isa == ISA_MIPS1)
4d68580a
RS
16473 /* nop */
16474 buf = write_insn (buf, 0);
4a6a3df4
AO
16475
16476 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
66b3e8da
MR
16477 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
16478 insn |= at << OP_SH_RS | at << OP_SH_RT;
4a6a3df4 16479
4d68580a
RS
16480 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
16481 FALSE, BFD_RELOC_LO16);
4a6a3df4
AO
16482 fixp->fx_file = fragp->fr_file;
16483 fixp->fx_line = fragp->fr_line;
b34976b6 16484
4d68580a 16485 buf = write_insn (buf, insn);
4a6a3df4
AO
16486
16487 /* j(al)r $at. */
16488 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
66b3e8da 16489 insn = 0x0000f809;
4a6a3df4 16490 else
66b3e8da
MR
16491 insn = 0x00000008;
16492 insn |= at << OP_SH_RS;
4a6a3df4 16493
4d68580a 16494 buf = write_insn (buf, insn);
4a6a3df4
AO
16495 }
16496 }
16497
4a6a3df4 16498 fragp->fr_fix += fragp->fr_var;
4d68580a 16499 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
4a6a3df4
AO
16500 return;
16501 }
16502
df58fc94
RS
16503 /* Relax microMIPS branches. */
16504 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
16505 {
4d68580a 16506 char *buf = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
16507 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16508 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
16509 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
2309ddf2 16510 bfd_boolean short_ds;
df58fc94
RS
16511 unsigned long insn;
16512 expressionS exp;
16513 fixS *fixp;
16514
16515 exp.X_op = O_symbol;
16516 exp.X_add_symbol = fragp->fr_symbol;
16517 exp.X_add_number = fragp->fr_offset;
16518
16519 fragp->fr_fix += fragp->fr_var;
16520
16521 /* Handle 16-bit branches that fit or are forced to fit. */
16522 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16523 {
16524 /* We generate a fixup instead of applying it right now,
16525 because if there is linker relaxation, we're going to
16526 need the relocations. */
16527 if (type == 'D')
4d68580a 16528 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
16529 BFD_RELOC_MICROMIPS_10_PCREL_S1);
16530 else if (type == 'E')
4d68580a 16531 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
16532 BFD_RELOC_MICROMIPS_7_PCREL_S1);
16533 else
16534 abort ();
16535
16536 fixp->fx_file = fragp->fr_file;
16537 fixp->fx_line = fragp->fr_line;
16538
16539 /* These relocations can have an addend that won't fit in
16540 2 octets. */
16541 fixp->fx_no_overflow = 1;
16542
16543 return;
16544 }
16545
2309ddf2 16546 /* Handle 32-bit branches that fit or are forced to fit. */
df58fc94
RS
16547 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
16548 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16549 {
16550 /* We generate a fixup instead of applying it right now,
16551 because if there is linker relaxation, we're going to
16552 need the relocations. */
4d68580a
RS
16553 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
16554 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
16555 fixp->fx_file = fragp->fr_file;
16556 fixp->fx_line = fragp->fr_line;
16557
16558 if (type == 0)
16559 return;
16560 }
16561
16562 /* Relax 16-bit branches to 32-bit branches. */
16563 if (type != 0)
16564 {
4d68580a 16565 insn = read_compressed_insn (buf, 2);
df58fc94
RS
16566
16567 if ((insn & 0xfc00) == 0xcc00) /* b16 */
16568 insn = 0x94000000; /* beq */
16569 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
16570 {
16571 unsigned long regno;
16572
16573 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
16574 regno = micromips_to_32_reg_d_map [regno];
16575 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
16576 insn |= regno << MICROMIPSOP_SH_RS;
16577 }
16578 else
16579 abort ();
16580
16581 /* Nothing else to do, just write it out. */
16582 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
16583 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16584 {
4d68580a
RS
16585 buf = write_compressed_insn (buf, insn, 4);
16586 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
16587 return;
16588 }
16589 }
16590 else
4d68580a 16591 insn = read_compressed_insn (buf, 4);
df58fc94
RS
16592
16593 /* Relax 32-bit branches to a sequence of instructions. */
16594 as_warn_where (fragp->fr_file, fragp->fr_line,
16595 _("Relaxed out-of-range branch into a jump"));
16596
2309ddf2
MR
16597 /* Set the short-delay-slot bit. */
16598 short_ds = al && (insn & 0x02000000) != 0;
df58fc94
RS
16599
16600 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
16601 {
16602 symbolS *l;
16603
16604 /* Reverse the branch. */
16605 if ((insn & 0xfc000000) == 0x94000000 /* beq */
16606 || (insn & 0xfc000000) == 0xb4000000) /* bne */
16607 insn ^= 0x20000000;
16608 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
16609 || (insn & 0xffe00000) == 0x40400000 /* bgez */
16610 || (insn & 0xffe00000) == 0x40800000 /* blez */
16611 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
16612 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
16613 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
16614 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
16615 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
16616 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
16617 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
16618 insn ^= 0x00400000;
16619 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
16620 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
16621 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
16622 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
16623 insn ^= 0x00200000;
16624 else
16625 abort ();
16626
16627 if (al)
16628 {
16629 /* Clear the and-link and short-delay-slot bits. */
16630 gas_assert ((insn & 0xfda00000) == 0x40200000);
16631
16632 /* bltzal 0x40200000 bgezal 0x40600000 */
16633 /* bltzals 0x42200000 bgezals 0x42600000 */
16634 insn &= ~0x02200000;
16635 }
16636
16637 /* Make a label at the end for use with the branch. */
16638 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
16639 micromips_label_inc ();
f3ded42a 16640 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
df58fc94
RS
16641
16642 /* Refer to it. */
4d68580a
RS
16643 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
16644 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
16645 fixp->fx_file = fragp->fr_file;
16646 fixp->fx_line = fragp->fr_line;
16647
16648 /* Branch over the jump. */
4d68580a 16649 buf = write_compressed_insn (buf, insn, 4);
df58fc94 16650 if (!compact)
4d68580a
RS
16651 /* nop */
16652 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
16653 }
16654
16655 if (mips_pic == NO_PIC)
16656 {
2309ddf2
MR
16657 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
16658
df58fc94
RS
16659 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
16660 insn = al ? jal : 0xd4000000;
16661
4d68580a
RS
16662 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
16663 BFD_RELOC_MICROMIPS_JMP);
df58fc94
RS
16664 fixp->fx_file = fragp->fr_file;
16665 fixp->fx_line = fragp->fr_line;
16666
4d68580a 16667 buf = write_compressed_insn (buf, insn, 4);
df58fc94 16668 if (compact)
4d68580a
RS
16669 /* nop */
16670 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
16671 }
16672 else
16673 {
16674 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
2309ddf2
MR
16675 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
16676 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
df58fc94
RS
16677
16678 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
16679 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
16680 insn |= at << MICROMIPSOP_SH_RT;
16681
16682 if (exp.X_add_number)
16683 {
16684 exp.X_add_symbol = make_expr_symbol (&exp);
16685 exp.X_add_number = 0;
16686 }
16687
4d68580a
RS
16688 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
16689 BFD_RELOC_MICROMIPS_GOT16);
df58fc94
RS
16690 fixp->fx_file = fragp->fr_file;
16691 fixp->fx_line = fragp->fr_line;
16692
4d68580a 16693 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
16694
16695 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
16696 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
16697 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
16698
4d68580a
RS
16699 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
16700 BFD_RELOC_MICROMIPS_LO16);
df58fc94
RS
16701 fixp->fx_file = fragp->fr_file;
16702 fixp->fx_line = fragp->fr_line;
16703
4d68580a 16704 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
16705
16706 /* jr/jrc/jalr/jalrs $at */
16707 insn = al ? jalr : jr;
16708 insn |= at << MICROMIPSOP_SH_MJ;
16709
4d68580a 16710 buf = write_compressed_insn (buf, insn, 2);
df58fc94
RS
16711 }
16712
4d68580a 16713 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
16714 return;
16715 }
16716
252b5132
RH
16717 if (RELAX_MIPS16_P (fragp->fr_subtype))
16718 {
16719 int type;
3ccad066 16720 const struct mips_int_operand *operand;
252b5132 16721 offsetT val;
5c04167a
RS
16722 char *buf;
16723 unsigned int user_length, length;
252b5132 16724 unsigned long insn;
5c04167a 16725 bfd_boolean ext;
252b5132
RH
16726
16727 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 16728 operand = mips16_immed_operand (type, FALSE);
252b5132 16729
5c04167a 16730 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
5f5f22c0 16731 val = resolve_symbol_value (fragp->fr_symbol);
3ccad066 16732 if (operand->root.type == OP_PCREL)
252b5132 16733 {
3ccad066 16734 const struct mips_pcrel_operand *pcrel_op;
252b5132
RH
16735 addressT addr;
16736
3ccad066 16737 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
16738 addr = fragp->fr_address + fragp->fr_fix;
16739
16740 /* The rules for the base address of a PC relative reloc are
16741 complicated; see mips16_extended_frag. */
3ccad066 16742 if (pcrel_op->include_isa_bit)
252b5132
RH
16743 {
16744 addr += 2;
16745 if (ext)
16746 addr += 2;
16747 /* Ignore the low bit in the target, since it will be
16748 set for a text label. */
3ccad066 16749 val &= -2;
252b5132
RH
16750 }
16751 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16752 addr -= 4;
16753 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16754 addr -= 2;
16755
3ccad066 16756 addr &= -(1 << pcrel_op->align_log2);
252b5132
RH
16757 val -= addr;
16758
16759 /* Make sure the section winds up with the alignment we have
16760 assumed. */
3ccad066
RS
16761 if (operand->shift > 0)
16762 record_alignment (asec, operand->shift);
252b5132
RH
16763 }
16764
16765 if (ext
16766 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
16767 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
16768 as_warn_where (fragp->fr_file, fragp->fr_line,
16769 _("extended instruction in delay slot"));
16770
5c04167a 16771 buf = fragp->fr_literal + fragp->fr_fix;
252b5132 16772
4d68580a 16773 insn = read_compressed_insn (buf, 2);
5c04167a
RS
16774 if (ext)
16775 insn |= MIPS16_EXTEND;
252b5132 16776
5c04167a
RS
16777 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16778 user_length = 4;
16779 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16780 user_length = 2;
16781 else
16782 user_length = 0;
16783
43c0598f 16784 mips16_immed (fragp->fr_file, fragp->fr_line, type,
c150d1d2 16785 BFD_RELOC_UNUSED, val, user_length, &insn);
252b5132 16786
5c04167a
RS
16787 length = (ext ? 4 : 2);
16788 gas_assert (mips16_opcode_length (insn) == length);
16789 write_compressed_insn (buf, insn, length);
16790 fragp->fr_fix += length;
252b5132
RH
16791 }
16792 else
16793 {
df58fc94
RS
16794 relax_substateT subtype = fragp->fr_subtype;
16795 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
16796 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
4d7206a2
RS
16797 int first, second;
16798 fixS *fixp;
252b5132 16799
df58fc94
RS
16800 first = RELAX_FIRST (subtype);
16801 second = RELAX_SECOND (subtype);
4d7206a2 16802 fixp = (fixS *) fragp->fr_opcode;
252b5132 16803
df58fc94
RS
16804 /* If the delay slot chosen does not match the size of the instruction,
16805 then emit a warning. */
16806 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
16807 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
16808 {
16809 relax_substateT s;
16810 const char *msg;
16811
16812 s = subtype & (RELAX_DELAY_SLOT_16BIT
16813 | RELAX_DELAY_SLOT_SIZE_FIRST
16814 | RELAX_DELAY_SLOT_SIZE_SECOND);
16815 msg = macro_warning (s);
16816 if (msg != NULL)
db9b2be4 16817 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94
RS
16818 subtype &= ~s;
16819 }
16820
584892a6 16821 /* Possibly emit a warning if we've chosen the longer option. */
df58fc94 16822 if (use_second == second_longer)
584892a6 16823 {
df58fc94
RS
16824 relax_substateT s;
16825 const char *msg;
16826
16827 s = (subtype
16828 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
16829 msg = macro_warning (s);
16830 if (msg != NULL)
db9b2be4 16831 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94 16832 subtype &= ~s;
584892a6
RS
16833 }
16834
4d7206a2
RS
16835 /* Go through all the fixups for the first sequence. Disable them
16836 (by marking them as done) if we're going to use the second
16837 sequence instead. */
16838 while (fixp
16839 && fixp->fx_frag == fragp
16840 && fixp->fx_where < fragp->fr_fix - second)
16841 {
df58fc94 16842 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
16843 fixp->fx_done = 1;
16844 fixp = fixp->fx_next;
16845 }
252b5132 16846
4d7206a2
RS
16847 /* Go through the fixups for the second sequence. Disable them if
16848 we're going to use the first sequence, otherwise adjust their
16849 addresses to account for the relaxation. */
16850 while (fixp && fixp->fx_frag == fragp)
16851 {
df58fc94 16852 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
16853 fixp->fx_where -= first;
16854 else
16855 fixp->fx_done = 1;
16856 fixp = fixp->fx_next;
16857 }
16858
16859 /* Now modify the frag contents. */
df58fc94 16860 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
16861 {
16862 char *start;
16863
16864 start = fragp->fr_literal + fragp->fr_fix - first - second;
16865 memmove (start, start + first, second);
16866 fragp->fr_fix -= first;
16867 }
16868 else
16869 fragp->fr_fix -= second;
252b5132
RH
16870 }
16871}
16872
252b5132
RH
16873/* This function is called after the relocs have been generated.
16874 We've been storing mips16 text labels as odd. Here we convert them
16875 back to even for the convenience of the debugger. */
16876
16877void
17a2f251 16878mips_frob_file_after_relocs (void)
252b5132
RH
16879{
16880 asymbol **syms;
16881 unsigned int count, i;
16882
252b5132
RH
16883 syms = bfd_get_outsymbols (stdoutput);
16884 count = bfd_get_symcount (stdoutput);
16885 for (i = 0; i < count; i++, syms++)
df58fc94
RS
16886 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
16887 && ((*syms)->value & 1) != 0)
16888 {
16889 (*syms)->value &= ~1;
16890 /* If the symbol has an odd size, it was probably computed
16891 incorrectly, so adjust that as well. */
16892 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
16893 ++elf_symbol (*syms)->internal_elf_sym.st_size;
16894 }
252b5132
RH
16895}
16896
a1facbec
MR
16897/* This function is called whenever a label is defined, including fake
16898 labels instantiated off the dot special symbol. It is used when
16899 handling branch delays; if a branch has a label, we assume we cannot
16900 move it. This also bumps the value of the symbol by 1 in compressed
16901 code. */
252b5132 16902
e1b47bd5 16903static void
a1facbec 16904mips_record_label (symbolS *sym)
252b5132 16905{
a8dbcb85 16906 segment_info_type *si = seg_info (now_seg);
252b5132
RH
16907 struct insn_label_list *l;
16908
16909 if (free_insn_labels == NULL)
16910 l = (struct insn_label_list *) xmalloc (sizeof *l);
16911 else
16912 {
16913 l = free_insn_labels;
16914 free_insn_labels = l->next;
16915 }
16916
16917 l->label = sym;
a8dbcb85
TS
16918 l->next = si->label_list;
16919 si->label_list = l;
a1facbec 16920}
07a53e5c 16921
a1facbec
MR
16922/* This function is called as tc_frob_label() whenever a label is defined
16923 and adds a DWARF-2 record we only want for true labels. */
16924
16925void
16926mips_define_label (symbolS *sym)
16927{
16928 mips_record_label (sym);
07a53e5c 16929 dwarf2_emit_label (sym);
252b5132 16930}
e1b47bd5
RS
16931
16932/* This function is called by tc_new_dot_label whenever a new dot symbol
16933 is defined. */
16934
16935void
16936mips_add_dot_label (symbolS *sym)
16937{
16938 mips_record_label (sym);
16939 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
16940 mips_compressed_mark_label (sym);
16941}
252b5132 16942\f
252b5132
RH
16943/* Some special processing for a MIPS ELF file. */
16944
16945void
17a2f251 16946mips_elf_final_processing (void)
252b5132
RH
16947{
16948 /* Write out the register information. */
316f5878 16949 if (mips_abi != N64_ABI)
252b5132
RH
16950 {
16951 Elf32_RegInfo s;
16952
16953 s.ri_gprmask = mips_gprmask;
16954 s.ri_cprmask[0] = mips_cprmask[0];
16955 s.ri_cprmask[1] = mips_cprmask[1];
16956 s.ri_cprmask[2] = mips_cprmask[2];
16957 s.ri_cprmask[3] = mips_cprmask[3];
16958 /* The gp_value field is set by the MIPS ELF backend. */
16959
16960 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
16961 ((Elf32_External_RegInfo *)
16962 mips_regmask_frag));
16963 }
16964 else
16965 {
16966 Elf64_Internal_RegInfo s;
16967
16968 s.ri_gprmask = mips_gprmask;
16969 s.ri_pad = 0;
16970 s.ri_cprmask[0] = mips_cprmask[0];
16971 s.ri_cprmask[1] = mips_cprmask[1];
16972 s.ri_cprmask[2] = mips_cprmask[2];
16973 s.ri_cprmask[3] = mips_cprmask[3];
16974 /* The gp_value field is set by the MIPS ELF backend. */
16975
16976 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
16977 ((Elf64_External_RegInfo *)
16978 mips_regmask_frag));
16979 }
16980
16981 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
16982 sort of BFD interface for this. */
16983 if (mips_any_noreorder)
16984 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
16985 if (mips_pic != NO_PIC)
143d77c5 16986 {
8b828383 16987 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
143d77c5
EC
16988 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
16989 }
16990 if (mips_abicalls)
16991 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
252b5132 16992
b015e599
AP
16993 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
16994 defined at present; this might need to change in future. */
a4672219
TS
16995 if (file_ase_mips16)
16996 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
df58fc94
RS
16997 if (file_ase_micromips)
16998 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
846ef2d0 16999 if (file_ase & ASE_MDMX)
deec1734 17000 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
1f25f5d3 17001
bdaaa2e1 17002 /* Set the MIPS ELF ABI flags. */
316f5878 17003 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
252b5132 17004 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
316f5878 17005 else if (mips_abi == O64_ABI)
252b5132 17006 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
316f5878 17007 else if (mips_abi == EABI_ABI)
252b5132 17008 {
316f5878 17009 if (!file_mips_gp32)
252b5132
RH
17010 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
17011 else
17012 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
17013 }
316f5878 17014 else if (mips_abi == N32_ABI)
be00bddd
TS
17015 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
17016
c9914766 17017 /* Nothing to do for N64_ABI. */
252b5132
RH
17018
17019 if (mips_32bitmode)
17020 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
ad3fea08 17021
ba92f887
MR
17022 if (mips_flag_nan2008)
17023 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
17024
ad3fea08
TS
17025#if 0 /* XXX FIXME */
17026 /* 32 bit code with 64 bit FP registers. */
17027 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
17028 elf_elfheader (stdoutput)->e_flags |= ???;
17029#endif
252b5132 17030}
252b5132 17031\f
beae10d5 17032typedef struct proc {
9b2f1d35
EC
17033 symbolS *func_sym;
17034 symbolS *func_end_sym;
beae10d5
KH
17035 unsigned long reg_mask;
17036 unsigned long reg_offset;
17037 unsigned long fpreg_mask;
17038 unsigned long fpreg_offset;
17039 unsigned long frame_offset;
17040 unsigned long frame_reg;
17041 unsigned long pc_reg;
17042} procS;
252b5132
RH
17043
17044static procS cur_proc;
17045static procS *cur_proc_ptr;
17046static int numprocs;
17047
df58fc94
RS
17048/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
17049 as "2", and a normal nop as "0". */
17050
17051#define NOP_OPCODE_MIPS 0
17052#define NOP_OPCODE_MIPS16 1
17053#define NOP_OPCODE_MICROMIPS 2
742a56fe
RS
17054
17055char
17056mips_nop_opcode (void)
17057{
df58fc94
RS
17058 if (seg_info (now_seg)->tc_segment_info_data.micromips)
17059 return NOP_OPCODE_MICROMIPS;
17060 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
17061 return NOP_OPCODE_MIPS16;
17062 else
17063 return NOP_OPCODE_MIPS;
742a56fe
RS
17064}
17065
df58fc94
RS
17066/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
17067 32-bit microMIPS NOPs here (if applicable). */
a19d8eb0 17068
0a9ef439 17069void
17a2f251 17070mips_handle_align (fragS *fragp)
a19d8eb0 17071{
df58fc94 17072 char nop_opcode;
742a56fe 17073 char *p;
c67a084a
NC
17074 int bytes, size, excess;
17075 valueT opcode;
742a56fe 17076
0a9ef439
RH
17077 if (fragp->fr_type != rs_align_code)
17078 return;
17079
742a56fe 17080 p = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
17081 nop_opcode = *p;
17082 switch (nop_opcode)
a19d8eb0 17083 {
df58fc94
RS
17084 case NOP_OPCODE_MICROMIPS:
17085 opcode = micromips_nop32_insn.insn_opcode;
17086 size = 4;
17087 break;
17088 case NOP_OPCODE_MIPS16:
c67a084a
NC
17089 opcode = mips16_nop_insn.insn_opcode;
17090 size = 2;
df58fc94
RS
17091 break;
17092 case NOP_OPCODE_MIPS:
17093 default:
c67a084a
NC
17094 opcode = nop_insn.insn_opcode;
17095 size = 4;
df58fc94 17096 break;
c67a084a 17097 }
a19d8eb0 17098
c67a084a
NC
17099 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
17100 excess = bytes % size;
df58fc94
RS
17101
17102 /* Handle the leading part if we're not inserting a whole number of
17103 instructions, and make it the end of the fixed part of the frag.
17104 Try to fit in a short microMIPS NOP if applicable and possible,
17105 and use zeroes otherwise. */
17106 gas_assert (excess < 4);
17107 fragp->fr_fix += excess;
17108 switch (excess)
c67a084a 17109 {
df58fc94
RS
17110 case 3:
17111 *p++ = '\0';
17112 /* Fall through. */
17113 case 2:
833794fc 17114 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
df58fc94 17115 {
4d68580a 17116 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
df58fc94
RS
17117 break;
17118 }
17119 *p++ = '\0';
17120 /* Fall through. */
17121 case 1:
17122 *p++ = '\0';
17123 /* Fall through. */
17124 case 0:
17125 break;
a19d8eb0 17126 }
c67a084a
NC
17127
17128 md_number_to_chars (p, opcode, size);
17129 fragp->fr_var = size;
a19d8eb0
CP
17130}
17131
252b5132 17132static void
17a2f251 17133md_obj_begin (void)
252b5132
RH
17134{
17135}
17136
17137static void
17a2f251 17138md_obj_end (void)
252b5132 17139{
54f4ddb3 17140 /* Check for premature end, nesting errors, etc. */
252b5132 17141 if (cur_proc_ptr)
9a41af64 17142 as_warn (_("missing .end at end of assembly"));
252b5132
RH
17143}
17144
17145static long
17a2f251 17146get_number (void)
252b5132
RH
17147{
17148 int negative = 0;
17149 long val = 0;
17150
17151 if (*input_line_pointer == '-')
17152 {
17153 ++input_line_pointer;
17154 negative = 1;
17155 }
3882b010 17156 if (!ISDIGIT (*input_line_pointer))
956cd1d6 17157 as_bad (_("expected simple number"));
252b5132
RH
17158 if (input_line_pointer[0] == '0')
17159 {
17160 if (input_line_pointer[1] == 'x')
17161 {
17162 input_line_pointer += 2;
3882b010 17163 while (ISXDIGIT (*input_line_pointer))
252b5132
RH
17164 {
17165 val <<= 4;
17166 val |= hex_value (*input_line_pointer++);
17167 }
17168 return negative ? -val : val;
17169 }
17170 else
17171 {
17172 ++input_line_pointer;
3882b010 17173 while (ISDIGIT (*input_line_pointer))
252b5132
RH
17174 {
17175 val <<= 3;
17176 val |= *input_line_pointer++ - '0';
17177 }
17178 return negative ? -val : val;
17179 }
17180 }
3882b010 17181 if (!ISDIGIT (*input_line_pointer))
252b5132
RH
17182 {
17183 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
17184 *input_line_pointer, *input_line_pointer);
956cd1d6 17185 as_warn (_("invalid number"));
252b5132
RH
17186 return -1;
17187 }
3882b010 17188 while (ISDIGIT (*input_line_pointer))
252b5132
RH
17189 {
17190 val *= 10;
17191 val += *input_line_pointer++ - '0';
17192 }
17193 return negative ? -val : val;
17194}
17195
17196/* The .file directive; just like the usual .file directive, but there
c5dd6aab
DJ
17197 is an initial number which is the ECOFF file index. In the non-ECOFF
17198 case .file implies DWARF-2. */
17199
17200static void
17a2f251 17201s_mips_file (int x ATTRIBUTE_UNUSED)
c5dd6aab 17202{
ecb4347a
DJ
17203 static int first_file_directive = 0;
17204
c5dd6aab
DJ
17205 if (ECOFF_DEBUGGING)
17206 {
17207 get_number ();
17208 s_app_file (0);
17209 }
17210 else
ecb4347a
DJ
17211 {
17212 char *filename;
17213
17214 filename = dwarf2_directive_file (0);
17215
17216 /* Versions of GCC up to 3.1 start files with a ".file"
17217 directive even for stabs output. Make sure that this
17218 ".file" is handled. Note that you need a version of GCC
17219 after 3.1 in order to support DWARF-2 on MIPS. */
17220 if (filename != NULL && ! first_file_directive)
17221 {
17222 (void) new_logical_line (filename, -1);
c04f5787 17223 s_app_file_string (filename, 0);
ecb4347a
DJ
17224 }
17225 first_file_directive = 1;
17226 }
c5dd6aab
DJ
17227}
17228
17229/* The .loc directive, implying DWARF-2. */
252b5132
RH
17230
17231static void
17a2f251 17232s_mips_loc (int x ATTRIBUTE_UNUSED)
252b5132 17233{
c5dd6aab
DJ
17234 if (!ECOFF_DEBUGGING)
17235 dwarf2_directive_loc (0);
252b5132
RH
17236}
17237
252b5132
RH
17238/* The .end directive. */
17239
17240static void
17a2f251 17241s_mips_end (int x ATTRIBUTE_UNUSED)
252b5132
RH
17242{
17243 symbolS *p;
252b5132 17244
7a621144
DJ
17245 /* Following functions need their own .frame and .cprestore directives. */
17246 mips_frame_reg_valid = 0;
17247 mips_cprestore_valid = 0;
17248
252b5132
RH
17249 if (!is_end_of_line[(unsigned char) *input_line_pointer])
17250 {
17251 p = get_symbol ();
17252 demand_empty_rest_of_line ();
17253 }
17254 else
17255 p = NULL;
17256
14949570 17257 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
17258 as_warn (_(".end not in text section"));
17259
17260 if (!cur_proc_ptr)
17261 {
17262 as_warn (_(".end directive without a preceding .ent directive."));
17263 demand_empty_rest_of_line ();
17264 return;
17265 }
17266
17267 if (p != NULL)
17268 {
9c2799c2 17269 gas_assert (S_GET_NAME (p));
9b2f1d35 17270 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
252b5132 17271 as_warn (_(".end symbol does not match .ent symbol."));
ecb4347a
DJ
17272
17273 if (debug_type == DEBUG_STABS)
17274 stabs_generate_asm_endfunc (S_GET_NAME (p),
17275 S_GET_NAME (p));
252b5132
RH
17276 }
17277 else
17278 as_warn (_(".end directive missing or unknown symbol"));
17279
9b2f1d35
EC
17280 /* Create an expression to calculate the size of the function. */
17281 if (p && cur_proc_ptr)
17282 {
17283 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
17284 expressionS *exp = xmalloc (sizeof (expressionS));
17285
17286 obj->size = exp;
17287 exp->X_op = O_subtract;
17288 exp->X_add_symbol = symbol_temp_new_now ();
17289 exp->X_op_symbol = p;
17290 exp->X_add_number = 0;
17291
17292 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
17293 }
17294
ecb4347a 17295 /* Generate a .pdr section. */
f3ded42a 17296 if (!ECOFF_DEBUGGING && mips_flag_pdr)
ecb4347a
DJ
17297 {
17298 segT saved_seg = now_seg;
17299 subsegT saved_subseg = now_subseg;
ecb4347a
DJ
17300 expressionS exp;
17301 char *fragp;
252b5132 17302
252b5132 17303#ifdef md_flush_pending_output
ecb4347a 17304 md_flush_pending_output ();
252b5132
RH
17305#endif
17306
9c2799c2 17307 gas_assert (pdr_seg);
ecb4347a 17308 subseg_set (pdr_seg, 0);
252b5132 17309
ecb4347a
DJ
17310 /* Write the symbol. */
17311 exp.X_op = O_symbol;
17312 exp.X_add_symbol = p;
17313 exp.X_add_number = 0;
17314 emit_expr (&exp, 4);
252b5132 17315
ecb4347a 17316 fragp = frag_more (7 * 4);
252b5132 17317
17a2f251
TS
17318 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
17319 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
17320 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
17321 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
17322 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
17323 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
17324 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
252b5132 17325
ecb4347a
DJ
17326 subseg_set (saved_seg, saved_subseg);
17327 }
252b5132
RH
17328
17329 cur_proc_ptr = NULL;
17330}
17331
17332/* The .aent and .ent directives. */
17333
17334static void
17a2f251 17335s_mips_ent (int aent)
252b5132 17336{
252b5132 17337 symbolS *symbolP;
252b5132
RH
17338
17339 symbolP = get_symbol ();
17340 if (*input_line_pointer == ',')
f9419b05 17341 ++input_line_pointer;
252b5132 17342 SKIP_WHITESPACE ();
3882b010 17343 if (ISDIGIT (*input_line_pointer)
d9a62219 17344 || *input_line_pointer == '-')
874e8986 17345 get_number ();
252b5132 17346
14949570 17347 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
17348 as_warn (_(".ent or .aent not in text section."));
17349
17350 if (!aent && cur_proc_ptr)
9a41af64 17351 as_warn (_("missing .end"));
252b5132
RH
17352
17353 if (!aent)
17354 {
7a621144
DJ
17355 /* This function needs its own .frame and .cprestore directives. */
17356 mips_frame_reg_valid = 0;
17357 mips_cprestore_valid = 0;
17358
252b5132
RH
17359 cur_proc_ptr = &cur_proc;
17360 memset (cur_proc_ptr, '\0', sizeof (procS));
17361
9b2f1d35 17362 cur_proc_ptr->func_sym = symbolP;
252b5132 17363
f9419b05 17364 ++numprocs;
ecb4347a
DJ
17365
17366 if (debug_type == DEBUG_STABS)
17367 stabs_generate_asm_func (S_GET_NAME (symbolP),
17368 S_GET_NAME (symbolP));
252b5132
RH
17369 }
17370
7c0fc524
MR
17371 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
17372
252b5132
RH
17373 demand_empty_rest_of_line ();
17374}
17375
17376/* The .frame directive. If the mdebug section is present (IRIX 5 native)
bdaaa2e1 17377 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
252b5132 17378 s_mips_frame is used so that we can set the PDR information correctly.
bdaaa2e1 17379 We can't use the ecoff routines because they make reference to the ecoff
252b5132
RH
17380 symbol table (in the mdebug section). */
17381
17382static void
17a2f251 17383s_mips_frame (int ignore ATTRIBUTE_UNUSED)
252b5132 17384{
f3ded42a
RS
17385 if (ECOFF_DEBUGGING)
17386 s_ignore (ignore);
17387 else
ecb4347a
DJ
17388 {
17389 long val;
252b5132 17390
ecb4347a
DJ
17391 if (cur_proc_ptr == (procS *) NULL)
17392 {
17393 as_warn (_(".frame outside of .ent"));
17394 demand_empty_rest_of_line ();
17395 return;
17396 }
252b5132 17397
ecb4347a
DJ
17398 cur_proc_ptr->frame_reg = tc_get_register (1);
17399
17400 SKIP_WHITESPACE ();
17401 if (*input_line_pointer++ != ','
17402 || get_absolute_expression_and_terminator (&val) != ',')
17403 {
17404 as_warn (_("Bad .frame directive"));
17405 --input_line_pointer;
17406 demand_empty_rest_of_line ();
17407 return;
17408 }
252b5132 17409
ecb4347a
DJ
17410 cur_proc_ptr->frame_offset = val;
17411 cur_proc_ptr->pc_reg = tc_get_register (0);
252b5132 17412
252b5132 17413 demand_empty_rest_of_line ();
252b5132 17414 }
252b5132
RH
17415}
17416
bdaaa2e1
KH
17417/* The .fmask and .mask directives. If the mdebug section is present
17418 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
252b5132 17419 embedded targets, s_mips_mask is used so that we can set the PDR
bdaaa2e1 17420 information correctly. We can't use the ecoff routines because they
252b5132
RH
17421 make reference to the ecoff symbol table (in the mdebug section). */
17422
17423static void
17a2f251 17424s_mips_mask (int reg_type)
252b5132 17425{
f3ded42a
RS
17426 if (ECOFF_DEBUGGING)
17427 s_ignore (reg_type);
17428 else
252b5132 17429 {
ecb4347a 17430 long mask, off;
252b5132 17431
ecb4347a
DJ
17432 if (cur_proc_ptr == (procS *) NULL)
17433 {
17434 as_warn (_(".mask/.fmask outside of .ent"));
17435 demand_empty_rest_of_line ();
17436 return;
17437 }
252b5132 17438
ecb4347a
DJ
17439 if (get_absolute_expression_and_terminator (&mask) != ',')
17440 {
17441 as_warn (_("Bad .mask/.fmask directive"));
17442 --input_line_pointer;
17443 demand_empty_rest_of_line ();
17444 return;
17445 }
252b5132 17446
ecb4347a
DJ
17447 off = get_absolute_expression ();
17448
17449 if (reg_type == 'F')
17450 {
17451 cur_proc_ptr->fpreg_mask = mask;
17452 cur_proc_ptr->fpreg_offset = off;
17453 }
17454 else
17455 {
17456 cur_proc_ptr->reg_mask = mask;
17457 cur_proc_ptr->reg_offset = off;
17458 }
17459
17460 demand_empty_rest_of_line ();
252b5132 17461 }
252b5132
RH
17462}
17463
316f5878
RS
17464/* A table describing all the processors gas knows about. Names are
17465 matched in the order listed.
e7af610e 17466
316f5878
RS
17467 To ease comparison, please keep this table in the same order as
17468 gcc's mips_cpu_info_table[]. */
e972090a
NC
17469static const struct mips_cpu_info mips_cpu_info_table[] =
17470{
316f5878 17471 /* Entries for generic ISAs */
d16afab6
RS
17472 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
17473 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
17474 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
17475 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
17476 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
17477 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
17478 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17479 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
17480 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
316f5878
RS
17481
17482 /* MIPS I */
d16afab6
RS
17483 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
17484 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
17485 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
316f5878
RS
17486
17487 /* MIPS II */
d16afab6 17488 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
316f5878
RS
17489
17490 /* MIPS III */
d16afab6
RS
17491 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
17492 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
17493 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
17494 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
17495 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
17496 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
17497 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
17498 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
17499 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
17500 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
17501 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
17502 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
17503 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
b15591bb 17504 /* ST Microelectronics Loongson 2E and 2F cores */
d16afab6
RS
17505 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
17506 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
316f5878
RS
17507
17508 /* MIPS IV */
d16afab6
RS
17509 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
17510 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
17511 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
17512 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
17513 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
17514 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
17515 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
17516 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
17517 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
17518 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
17519 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
17520 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
17521 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
17522 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
17523 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
316f5878
RS
17524
17525 /* MIPS 32 */
d16afab6
RS
17526 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
17527 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
17528 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
17529 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
ad3fea08
TS
17530
17531 /* MIPS 32 Release 2 */
d16afab6
RS
17532 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17533 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17534 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17535 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
17536 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17537 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17538 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
17539 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
17540 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
17541 ISA_MIPS32R2, CPU_MIPS32R2 },
17542 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
17543 ISA_MIPS32R2, CPU_MIPS32R2 },
17544 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17545 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17546 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17547 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 17548 /* Deprecated forms of the above. */
d16afab6
RS
17549 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17550 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 17551 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
d16afab6
RS
17552 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17553 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17554 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17555 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 17556 /* Deprecated forms of the above. */
d16afab6
RS
17557 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17558 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 17559 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
d16afab6
RS
17560 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17561 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17562 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17563 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 17564 /* Deprecated forms of the above. */
d16afab6
RS
17565 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17566 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
711eefe4 17567 /* 34Kn is a 34kc without DSP. */
d16afab6 17568 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 17569 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
d16afab6
RS
17570 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17571 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17572 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17573 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17574 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 17575 /* Deprecated forms of the above. */
d16afab6
RS
17576 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17577 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
30f8113a 17578 /* 1004K cores are multiprocessor versions of the 34K. */
d16afab6
RS
17579 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17580 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17581 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17582 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
32b26a03 17583
316f5878 17584 /* MIPS 64 */
d16afab6
RS
17585 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
17586 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
17587 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
17588 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
ad3fea08 17589
c7a23324 17590 /* Broadcom SB-1 CPU core */
d16afab6 17591 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
1e85aad8 17592 /* Broadcom SB-1A CPU core */
d16afab6 17593 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
d051516a 17594
d16afab6 17595 { "loongson3a", 0, 0, ISA_MIPS64, CPU_LOONGSON_3A },
e7af610e 17596
ed163775
MR
17597 /* MIPS 64 Release 2 */
17598
967344c6 17599 /* Cavium Networks Octeon CPU core */
d16afab6
RS
17600 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
17601 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
17602 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
967344c6 17603
52b6b6b9 17604 /* RMI Xlr */
d16afab6 17605 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
52b6b6b9 17606
55a36193
MK
17607 /* Broadcom XLP.
17608 XLP is mostly like XLR, with the prominent exception that it is
17609 MIPS64R2 rather than MIPS64. */
d16afab6 17610 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
55a36193 17611
316f5878 17612 /* End marker */
d16afab6 17613 { NULL, 0, 0, 0, 0 }
316f5878 17614};
e7af610e 17615
84ea6cf2 17616
316f5878
RS
17617/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
17618 with a final "000" replaced by "k". Ignore case.
e7af610e 17619
316f5878 17620 Note: this function is shared between GCC and GAS. */
c6c98b38 17621
b34976b6 17622static bfd_boolean
17a2f251 17623mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
17624{
17625 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
17626 given++, canonical++;
17627
17628 return ((*given == 0 && *canonical == 0)
17629 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
17630}
17631
17632
17633/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
17634 CPU name. We've traditionally allowed a lot of variation here.
17635
17636 Note: this function is shared between GCC and GAS. */
17637
b34976b6 17638static bfd_boolean
17a2f251 17639mips_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
17640{
17641 /* First see if the name matches exactly, or with a final "000"
17642 turned into "k". */
17643 if (mips_strict_matching_cpu_name_p (canonical, given))
b34976b6 17644 return TRUE;
316f5878
RS
17645
17646 /* If not, try comparing based on numerical designation alone.
17647 See if GIVEN is an unadorned number, or 'r' followed by a number. */
17648 if (TOLOWER (*given) == 'r')
17649 given++;
17650 if (!ISDIGIT (*given))
b34976b6 17651 return FALSE;
316f5878
RS
17652
17653 /* Skip over some well-known prefixes in the canonical name,
17654 hoping to find a number there too. */
17655 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
17656 canonical += 2;
17657 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
17658 canonical += 2;
17659 else if (TOLOWER (canonical[0]) == 'r')
17660 canonical += 1;
17661
17662 return mips_strict_matching_cpu_name_p (canonical, given);
17663}
17664
17665
17666/* Parse an option that takes the name of a processor as its argument.
17667 OPTION is the name of the option and CPU_STRING is the argument.
17668 Return the corresponding processor enumeration if the CPU_STRING is
17669 recognized, otherwise report an error and return null.
17670
17671 A similar function exists in GCC. */
e7af610e
NC
17672
17673static const struct mips_cpu_info *
17a2f251 17674mips_parse_cpu (const char *option, const char *cpu_string)
e7af610e 17675{
316f5878 17676 const struct mips_cpu_info *p;
e7af610e 17677
316f5878
RS
17678 /* 'from-abi' selects the most compatible architecture for the given
17679 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
17680 EABIs, we have to decide whether we're using the 32-bit or 64-bit
17681 version. Look first at the -mgp options, if given, otherwise base
17682 the choice on MIPS_DEFAULT_64BIT.
e7af610e 17683
316f5878
RS
17684 Treat NO_ABI like the EABIs. One reason to do this is that the
17685 plain 'mips' and 'mips64' configs have 'from-abi' as their default
17686 architecture. This code picks MIPS I for 'mips' and MIPS III for
17687 'mips64', just as we did in the days before 'from-abi'. */
17688 if (strcasecmp (cpu_string, "from-abi") == 0)
17689 {
17690 if (ABI_NEEDS_32BIT_REGS (mips_abi))
17691 return mips_cpu_info_from_isa (ISA_MIPS1);
17692
17693 if (ABI_NEEDS_64BIT_REGS (mips_abi))
17694 return mips_cpu_info_from_isa (ISA_MIPS3);
17695
17696 if (file_mips_gp32 >= 0)
17697 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
17698
17699 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
17700 ? ISA_MIPS3
17701 : ISA_MIPS1);
17702 }
17703
17704 /* 'default' has traditionally been a no-op. Probably not very useful. */
17705 if (strcasecmp (cpu_string, "default") == 0)
17706 return 0;
17707
17708 for (p = mips_cpu_info_table; p->name != 0; p++)
17709 if (mips_matching_cpu_name_p (p->name, cpu_string))
17710 return p;
17711
20203fb9 17712 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
316f5878 17713 return 0;
e7af610e
NC
17714}
17715
316f5878
RS
17716/* Return the canonical processor information for ISA (a member of the
17717 ISA_MIPS* enumeration). */
17718
e7af610e 17719static const struct mips_cpu_info *
17a2f251 17720mips_cpu_info_from_isa (int isa)
e7af610e
NC
17721{
17722 int i;
17723
17724 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
ad3fea08 17725 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
316f5878 17726 && isa == mips_cpu_info_table[i].isa)
e7af610e
NC
17727 return (&mips_cpu_info_table[i]);
17728
e972090a 17729 return NULL;
e7af610e 17730}
fef14a42
TS
17731
17732static const struct mips_cpu_info *
17a2f251 17733mips_cpu_info_from_arch (int arch)
fef14a42
TS
17734{
17735 int i;
17736
17737 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
17738 if (arch == mips_cpu_info_table[i].cpu)
17739 return (&mips_cpu_info_table[i]);
17740
17741 return NULL;
17742}
316f5878
RS
17743\f
17744static void
17a2f251 17745show (FILE *stream, const char *string, int *col_p, int *first_p)
316f5878
RS
17746{
17747 if (*first_p)
17748 {
17749 fprintf (stream, "%24s", "");
17750 *col_p = 24;
17751 }
17752 else
17753 {
17754 fprintf (stream, ", ");
17755 *col_p += 2;
17756 }
e7af610e 17757
316f5878
RS
17758 if (*col_p + strlen (string) > 72)
17759 {
17760 fprintf (stream, "\n%24s", "");
17761 *col_p = 24;
17762 }
17763
17764 fprintf (stream, "%s", string);
17765 *col_p += strlen (string);
17766
17767 *first_p = 0;
17768}
17769
17770void
17a2f251 17771md_show_usage (FILE *stream)
e7af610e 17772{
316f5878
RS
17773 int column, first;
17774 size_t i;
17775
17776 fprintf (stream, _("\
17777MIPS options:\n\
316f5878
RS
17778-EB generate big endian output\n\
17779-EL generate little endian output\n\
17780-g, -g2 do not remove unneeded NOPs or swap branches\n\
17781-G NUM allow referencing objects up to NUM bytes\n\
17782 implicitly with the gp register [default 8]\n"));
17783 fprintf (stream, _("\
17784-mips1 generate MIPS ISA I instructions\n\
17785-mips2 generate MIPS ISA II instructions\n\
17786-mips3 generate MIPS ISA III instructions\n\
17787-mips4 generate MIPS ISA IV instructions\n\
17788-mips5 generate MIPS ISA V instructions\n\
17789-mips32 generate MIPS32 ISA instructions\n\
af7ee8bf 17790-mips32r2 generate MIPS32 release 2 ISA instructions\n\
316f5878 17791-mips64 generate MIPS64 ISA instructions\n\
5f74bc13 17792-mips64r2 generate MIPS64 release 2 ISA instructions\n\
316f5878
RS
17793-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
17794
17795 first = 1;
e7af610e
NC
17796
17797 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
316f5878
RS
17798 show (stream, mips_cpu_info_table[i].name, &column, &first);
17799 show (stream, "from-abi", &column, &first);
17800 fputc ('\n', stream);
e7af610e 17801
316f5878
RS
17802 fprintf (stream, _("\
17803-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
17804-no-mCPU don't generate code specific to CPU.\n\
17805 For -mCPU and -no-mCPU, CPU must be one of:\n"));
17806
17807 first = 1;
17808
17809 show (stream, "3900", &column, &first);
17810 show (stream, "4010", &column, &first);
17811 show (stream, "4100", &column, &first);
17812 show (stream, "4650", &column, &first);
17813 fputc ('\n', stream);
17814
17815 fprintf (stream, _("\
17816-mips16 generate mips16 instructions\n\
17817-no-mips16 do not generate mips16 instructions\n"));
17818 fprintf (stream, _("\
df58fc94
RS
17819-mmicromips generate microMIPS instructions\n\
17820-mno-micromips do not generate microMIPS instructions\n"));
17821 fprintf (stream, _("\
e16bfa71
TS
17822-msmartmips generate smartmips instructions\n\
17823-mno-smartmips do not generate smartmips instructions\n"));
17824 fprintf (stream, _("\
74cd071d
CF
17825-mdsp generate DSP instructions\n\
17826-mno-dsp do not generate DSP instructions\n"));
17827 fprintf (stream, _("\
8b082fb1
TS
17828-mdspr2 generate DSP R2 instructions\n\
17829-mno-dspr2 do not generate DSP R2 instructions\n"));
17830 fprintf (stream, _("\
ef2e4d86
CF
17831-mmt generate MT instructions\n\
17832-mno-mt do not generate MT instructions\n"));
17833 fprintf (stream, _("\
dec0624d
MR
17834-mmcu generate MCU instructions\n\
17835-mno-mcu do not generate MCU instructions\n"));
17836 fprintf (stream, _("\
b015e599
AP
17837-mvirt generate Virtualization instructions\n\
17838-mno-virt do not generate Virtualization instructions\n"));
17839 fprintf (stream, _("\
833794fc
MR
17840-minsn32 only generate 32-bit microMIPS instructions\n\
17841-mno-insn32 generate all microMIPS instructions\n"));
17842 fprintf (stream, _("\
c67a084a
NC
17843-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
17844-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
d766e8ec 17845-mfix-vr4120 work around certain VR4120 errata\n\
7d8e00cf 17846-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
6a32d874 17847-mfix-24k insert a nop after ERET and DERET instructions\n\
d954098f 17848-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
316f5878
RS
17849-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
17850-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
aed1a261 17851-msym32 assume all symbols have 32-bit values\n\
316f5878
RS
17852-O0 remove unneeded NOPs, do not swap branches\n\
17853-O remove unneeded NOPs and swap branches\n\
316f5878
RS
17854--trap, --no-break trap exception on div by 0 and mult overflow\n\
17855--break, --no-trap break exception on div by 0 and mult overflow\n"));
037b32b9
AN
17856 fprintf (stream, _("\
17857-mhard-float allow floating-point instructions\n\
17858-msoft-float do not allow floating-point instructions\n\
17859-msingle-float only allow 32-bit floating-point operations\n\
17860-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
3bf0dbfb 17861--[no-]construct-floats [dis]allow floating point values to be constructed\n\
ba92f887
MR
17862--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
17863-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
17864
17865 first = 1;
17866
17867 show (stream, "legacy", &column, &first);
17868 show (stream, "2008", &column, &first);
17869
17870 fputc ('\n', stream);
17871
316f5878
RS
17872 fprintf (stream, _("\
17873-KPIC, -call_shared generate SVR4 position independent code\n\
861fb55a 17874-call_nonpic generate non-PIC code that can operate with DSOs\n\
0c000745 17875-mvxworks-pic generate VxWorks position independent code\n\
861fb55a 17876-non_shared do not generate code that can operate with DSOs\n\
316f5878 17877-xgot assume a 32 bit GOT\n\
dcd410fe 17878-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
bbe506e8 17879-mshared, -mno-shared disable/enable .cpload optimization for\n\
d821e36b 17880 position dependent (non shared) code\n\
316f5878
RS
17881-mabi=ABI create ABI conformant object file for:\n"));
17882
17883 first = 1;
17884
17885 show (stream, "32", &column, &first);
17886 show (stream, "o64", &column, &first);
17887 show (stream, "n32", &column, &first);
17888 show (stream, "64", &column, &first);
17889 show (stream, "eabi", &column, &first);
17890
17891 fputc ('\n', stream);
17892
17893 fprintf (stream, _("\
17894-32 create o32 ABI object file (default)\n\
17895-n32 create n32 ABI object file\n\
17896-64 create 64 ABI object file\n"));
e7af610e 17897}
14e777e0 17898
1575952e 17899#ifdef TE_IRIX
14e777e0 17900enum dwarf2_format
413a266c 17901mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
14e777e0 17902{
369943fe 17903 if (HAVE_64BIT_SYMBOLS)
1575952e 17904 return dwarf2_format_64bit_irix;
14e777e0
KB
17905 else
17906 return dwarf2_format_32bit;
17907}
1575952e 17908#endif
73369e65
EC
17909
17910int
17911mips_dwarf2_addr_size (void)
17912{
6b6b3450 17913 if (HAVE_64BIT_OBJECTS)
73369e65 17914 return 8;
73369e65
EC
17915 else
17916 return 4;
17917}
5862107c
EC
17918
17919/* Standard calling conventions leave the CFA at SP on entry. */
17920void
17921mips_cfi_frame_initial_instructions (void)
17922{
17923 cfi_add_CFA_def_cfa_register (SP);
17924}
17925
707bfff6
TS
17926int
17927tc_mips_regname_to_dw2regnum (char *regname)
17928{
17929 unsigned int regnum = -1;
17930 unsigned int reg;
17931
17932 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
17933 regnum = reg;
17934
17935 return regnum;
17936}
This page took 3.704491 seconds and 4 git commands to generate.