x86: Add -Wl,--no-as-needed to some TLS tests
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
CommitLineData
252b5132 1/* tc-mips.c -- assemble code for a MIPS chip.
2571583a 2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
ec2655a6 12 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
252b5132
RH
24
25#include "as.h"
26#include "config.h"
27#include "subsegs.h"
3882b010 28#include "safe-ctype.h"
252b5132 29
252b5132
RH
30#include "opcode/mips.h"
31#include "itbl-ops.h"
c5dd6aab 32#include "dwarf2dbg.h"
5862107c 33#include "dw2gencfi.h"
252b5132 34
42429eac
RS
35/* Check assumptions made in this file. */
36typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
252b5132
RH
39#ifdef DEBUG
40#define DBG(x) printf x
41#else
42#define DBG(x)
43#endif
44
263b2574 45#define streq(a, b) (strcmp (a, b) == 0)
46
9e12b7a2
RS
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
252b5132 50/* Clean up namespace so we can include obj-elf.h too. */
17a2f251
TS
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
252b5132
RH
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
252b5132
RH
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
252b5132 70
252b5132 71#include "elf/mips.h"
252b5132
RH
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
ecb4347a
DJ
78int mips_flag_mdebug = -1;
79
dcd410fe
RO
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
84int mips_flag_pdr = FALSE;
85#else
86int mips_flag_pdr = TRUE;
87#endif
88
252b5132
RH
89#include "ecoff.h"
90
252b5132 91static char *mips_regmask_frag;
351cdf24 92static char *mips_flags_frag;
252b5132 93
85b51719 94#define ZERO 0
741fe287 95#define ATREG 1
df58fc94
RS
96#define S0 16
97#define S7 23
252b5132
RH
98#define TREG 24
99#define PIC_CALL_REG 25
100#define KT0 26
101#define KT1 27
102#define GP 28
103#define SP 29
104#define FP 30
105#define RA 31
106
107#define ILLEGAL_REG (32)
108
741fe287
MR
109#define AT mips_opts.at
110
252b5132
RH
111extern int target_big_endian;
112
252b5132 113/* The name of the readonly data section. */
e8044f35 114#define RDATA_SECTION_NAME ".rodata"
252b5132 115
a4e06468
RS
116/* Ways in which an instruction can be "appended" to the output. */
117enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129};
130
47e39b9d
RS
131/* Information about an instruction, including its format, operands
132 and fixups. */
133struct mips_cl_insn
134{
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
47e39b9d 138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
5c04167a
RS
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
47e39b9d
RS
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
a38419a5
RS
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
47e39b9d 155
708587a4 156 /* True if this instruction occurred in a .set noreorder block. */
47e39b9d
RS
157 unsigned int noreorder_p : 1;
158
2fa15973
RS
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
15be625d
CM
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
e407c74b
NC
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
47e39b9d
RS
168};
169
a325df1d
TS
170/* The ABI to use. */
171enum mips_abi_level
172{
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179};
180
181/* MIPS ABI we are using for this output file. */
316f5878 182static enum mips_abi_level mips_abi = NO_ABI;
a325df1d 183
143d77c5
EC
184/* Whether or not we have code that can call pic code. */
185int mips_abicalls = FALSE;
186
aa6975fb
ILT
187/* Whether or not we have code which can be put into a shared
188 library. */
189static bfd_boolean mips_in_shared = TRUE;
190
252b5132
RH
191/* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
e972090a
NC
195struct mips_set_options
196{
252b5132
RH
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
846ef2d0
RS
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
252b5132
RH
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
df58fc94
RS
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
252b5132
RH
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
741fe287
MR
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
252b5132
RH
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
833794fc
MR
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
a325df1d
TS
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
bad1aba3 245 int gp;
0b35dfee 246 int fp;
fef14a42
TS
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
aed1a261
RS
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
037b32b9
AN
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
351cdf24
MF
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
252b5132
RH
265};
266
919731af 267/* Specifies whether module level options have been checked yet. */
268static bfd_boolean file_mips_opts_checked = FALSE;
269
7361da2c
AB
270/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274static int mips_nan2008 = -1;
a325df1d 275
0b35dfee 276/* This is the struct we use to hold the module level set of options.
bad1aba3 277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
0b35dfee 278 fp fields to -1 to indicate that they have not been initialized. */
037b32b9 279
0b35dfee 280static struct mips_set_options file_mips_opts =
281{
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
0b35dfee 287};
252b5132 288
0b35dfee 289/* This is similar to file_mips_opts, but for the current set of options. */
ba92f887 290
e972090a
NC
291static struct mips_set_options mips_opts =
292{
846ef2d0 293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
b015e599 294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
833794fc 295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
e7af610e 298};
252b5132 299
846ef2d0
RS
300/* Which bits of file_ase were explicitly set or cleared by ASE options. */
301static unsigned int file_ase_explicit;
302
252b5132
RH
303/* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306unsigned long mips_gprmask;
307unsigned long mips_cprmask[4];
308
738f4d98 309/* True if any MIPS16 code was produced. */
a4672219
TS
310static int file_ase_mips16;
311
3994f87e
TS
312#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
3994f87e 316 || mips_opts.isa == ISA_MIPS64 \
ae52f483
AB
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
3994f87e 320
df58fc94
RS
321/* True if any microMIPS code was produced. */
322static int file_ase_micromips;
323
b12dd2e4
CF
324/* True if we want to create R_MIPS_JALR for jalr $25. */
325#ifdef TE_IRIX
1180b5a4 326#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
b12dd2e4 327#else
1180b5a4
RS
328/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331#define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
b12dd2e4
CF
334#endif
335
ec68c924 336/* The argument of the -march= flag. The architecture we are assembling. */
316f5878 337static const char *mips_arch_string;
ec68c924
EC
338
339/* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341static int mips_tune = CPU_UNKNOWN;
316f5878 342static const char *mips_tune_string;
ec68c924 343
316f5878 344/* True when generating 32-bit code for a 64-bit processor. */
252b5132
RH
345static int mips_32bitmode = 0;
346
316f5878
RS
347/* True if the given ABI requires 32-bit registers. */
348#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350/* Likewise 64-bit registers. */
707bfff6 351#define ABI_NEEDS_64BIT_REGS(ABI) \
134c0c8b 352 ((ABI) == N32_ABI \
707bfff6 353 || (ABI) == N64_ABI \
316f5878
RS
354 || (ABI) == O64_ABI)
355
7361da2c
AB
356#define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
ad3fea08 360/* Return true if ISA supports 64 bit wide gp registers. */
707bfff6
TS
361#define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
ae52f483
AB
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
9ce8a5dd 370
ad3fea08
TS
371/* Return true if ISA supports 64 bit wide float registers. */
372#define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
ae52f483
AB
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
7361da2c 379 || (ISA) == ISA_MIPS32R6 \
ad3fea08 380 || (ISA) == ISA_MIPS64 \
ae52f483
AB
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
ad3fea08 385
af7ee8bf
CD
386/* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
707bfff6 388#define ISA_HAS_DROR(ISA) \
df58fc94 389 ((ISA) == ISA_MIPS64R2 \
ae52f483
AB
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
7361da2c 392 || (ISA) == ISA_MIPS64R6 \
df58fc94
RS
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
af7ee8bf
CD
396
397/* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
707bfff6
TS
399#define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
7361da2c 403 || (ISA) == ISA_MIPS32R6 \
707bfff6 404 || (ISA) == ISA_MIPS64R2 \
ae52f483
AB
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
7361da2c 407 || (ISA) == ISA_MIPS64R6 \
846ef2d0 408 || (mips_opts.ase & ASE_SMARTMIPS) \
df58fc94
RS
409 || mips_opts.micromips \
410 )
707bfff6 411
7455baf8 412/* Return true if ISA supports single-precision floats in odd registers. */
351cdf24
MF
413#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
7361da2c 418 || (ISA) == ISA_MIPS32R6 \
351cdf24
MF
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
7361da2c 423 || (ISA) == ISA_MIPS64R6 \
351cdf24
MF
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
af7ee8bf 426
ad3fea08
TS
427/* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429#define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
7361da2c
AB
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439/* Return true if ISA supports legacy NAN. */
440#define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
ae52f483
AB
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
ad3fea08 454
bad1aba3 455#define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
ca4e0257 459
bad1aba3 460#define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
ca4e0257 464
316f5878 465#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
e013f690 466
316f5878 467#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
e013f690 468
3b91255e
RS
469/* True if relocations are stored in-place. */
470#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
aed1a261
RS
472/* The ABI-derived address size. */
473#define HAVE_64BIT_ADDRESSES \
bad1aba3 474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
aed1a261 475#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
e013f690 476
aed1a261
RS
477/* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479#define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
ca4e0257 482
b7c7d6c1
TS
483/* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
f899b4b8 486#define ADDRESS_ADD_INSN \
b7c7d6c1 487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
f899b4b8
TS
488
489#define ADDRESS_ADDI_INSN \
b7c7d6c1 490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
f899b4b8
TS
491
492#define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495#define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
a4672219 498/* Return true if the given CPU supports the MIPS16 ASE. */
3396de36
TS
499#define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
a4672219 502
2309ddf2 503/* Return true if the given CPU supports the microMIPS ASE. */
df58fc94
RS
504#define CPU_HAS_MICROMIPS(cpu) 0
505
60b63b72
RS
506/* True if CPU has a dror instruction. */
507#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509/* True if CPU has a ror instruction. */
510#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
dd6a37e7 512/* True if CPU is in the Octeon family */
2c629856
N
513#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
dd6a37e7 515
dd3cbb7e 516/* True if CPU has seq/sne and seqi/snei instructions. */
dd6a37e7 517#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
dd3cbb7e 518
0aa27725
RS
519/* True, if CPU has support for ldc1 and sdc1. */
520#define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
c8978940
CD
523/* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535#define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
7361da2c 540 || mips_opts.isa == ISA_MIPS32R6 \
c8978940
CD
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
ae52f483
AB
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
7361da2c 545 || mips_opts.isa == ISA_MIPS64R6 \
c8978940 546 || mips_opts.arch == CPU_R4010 \
e407c74b 547 || mips_opts.arch == CPU_R5900 \
c8978940
CD
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
3aa3176b
TS
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
c8978940 552 || mips_opts.arch == CPU_RM7000 \
c8978940 553 || mips_opts.arch == CPU_VR5500 \
df58fc94 554 || mips_opts.micromips \
c8978940 555 )
252b5132
RH
556
557/* Whether the processor uses hardware interlocks to protect reads
81912461
ILT
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
67dc82bc 560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
df58fc94
RS
561 level I and microMIPS mode instructions are always interlocked. */
562#define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
e407c74b 565 || mips_opts.arch == CPU_R5900 \
df58fc94
RS
566 || mips_opts.micromips \
567 )
252b5132 568
81912461
ILT
569/* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
43885403
MF
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
81912461 574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
df58fc94
RS
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
bdaaa2e1 577/* Itbl support may require additional care here. */
81912461
ILT
578#define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
df58fc94 583 || mips_opts.micromips \
81912461
ILT
584 )
585
586/* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
df58fc94
RS
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592#define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
252b5132 596
6b76fefe
CM
597/* Is this a mfhi or mflo instruction? */
598#define MF_HILO_INSN(PINFO) \
b19e8a9b
AN
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
df58fc94
RS
601/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604#define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
42429eac 607/* The minimum and maximum signed values that can be stored in a GPR. */
bad1aba3 608#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
42429eac
RS
609#define GPR_SMIN (-GPR_SMAX - 1)
610
252b5132
RH
611/* MIPS PIC level. */
612
a161fe53 613enum mips_pic_level mips_pic;
252b5132 614
c9914766 615/* 1 if we should generate 32 bit offsets from the $gp register in
252b5132 616 SVR4_PIC mode. Currently has no meaning in other modes. */
c9914766 617static int mips_big_got = 0;
252b5132
RH
618
619/* 1 if trap instructions should used for overflow rather than break
620 instructions. */
c9914766 621static int mips_trap = 0;
252b5132 622
119d663a 623/* 1 if double width floating point constants should not be constructed
b6ff326e 624 by assembling two single width halves into two single width floating
119d663a
NC
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
d547a75e 627 in the status register, and the setting of this bit cannot be determined
119d663a
NC
628 automatically at assemble time. */
629static int mips_disable_float_construction;
630
252b5132
RH
631/* Non-zero if any .set noreorder directives were used. */
632
633static int mips_any_noreorder;
634
6b76fefe
CM
635/* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637static int mips_7000_hilo_fix;
638
02ffd3e4 639/* The size of objects in the small data section. */
156c2f8b 640static unsigned int g_switch_value = 8;
252b5132
RH
641/* Whether the -G option was used. */
642static int g_switch_seen = 0;
643
644#define N_RMASK 0xc4
645#define N_VFP 0xd4
646
647/* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
fba2b7f9
GK
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
252b5132
RH
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
17a2f251 659static int nopic_need_relax (symbolS *, int);
252b5132
RH
660
661/* handle of the OPCODE hash table */
662static struct hash_control *op_hash = NULL;
663
664/* The opcode hash table we use for the mips16. */
665static struct hash_control *mips16_op_hash = NULL;
666
df58fc94
RS
667/* The opcode hash table we use for the microMIPS ASE. */
668static struct hash_control *micromips_op_hash = NULL;
669
252b5132
RH
670/* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672const char comment_chars[] = "#";
673
674/* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677/* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
bdaaa2e1 679 #NO_APP at the beginning of its output. */
252b5132
RH
680/* Also note that C style comments are always supported. */
681const char line_comment_chars[] = "#";
682
bdaaa2e1 683/* This array holds machine specific line separator characters. */
63a0b638 684const char line_separator_chars[] = ";";
252b5132
RH
685
686/* Chars that can be used to separate mant from exp in floating point nums */
687const char EXP_CHARS[] = "eE";
688
689/* Chars that mean this number is a floating point constant */
690/* As in 0f12.456 */
691/* or 0d1.2345e12 */
692const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
e3de51ce
RS
699/* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705};
706
707/* Information about an error that was found while assembling the current
708 instruction. */
709struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732};
733
734/* The error that should be reported for the current instruction. */
735static struct mips_insn_error insn_error;
252b5132
RH
736
737static int auto_align = 1;
738
739/* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743static offsetT mips_cprestore_offset = -1;
744
67c1ffbe 745/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
6478892d 746 more optimizations, it can use a register value instead of a memory-saved
956cd1d6 747 offset and even an other register than $gp as global pointer. */
6478892d
TS
748static offsetT mips_cpreturn_offset = -1;
749static int mips_cpreturn_register = -1;
750static int mips_gp_register = GP;
def2e0dd 751static int mips_gprel_offset = 0;
6478892d 752
7a621144
DJ
753/* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755static int mips_cprestore_valid = 0;
756
252b5132
RH
757/* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759static int mips_frame_reg = SP;
760
7a621144
DJ
761/* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763static int mips_frame_reg_valid = 0;
764
252b5132
RH
765/* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768/* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772static int mips_optimize = 2;
773
774/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776static int mips_debug = 0;
777
7d8e00cf
RS
778/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779#define MAX_VR4130_NOPS 4
780
781/* The maximum number of NOPs needed to fill delay slots. */
782#define MAX_DELAY_NOPS 2
783
784/* The maximum number of NOPs needed for any purpose. */
785#define MAX_NOPS 4
71400594
RS
786
787/* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792static struct mips_cl_insn history[1 + MAX_NOPS];
252b5132 793
fc76e730 794/* Arrays of operands for each instruction. */
14daeee3 795#define MAX_OPERANDS 6
fc76e730
RS
796struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798};
799static struct mips_operand_array *mips_operands;
800static struct mips_operand_array *mips16_operands;
801static struct mips_operand_array *micromips_operands;
802
1e915849 803/* Nop instructions used by emit_nop. */
df58fc94
RS
804static struct mips_cl_insn nop_insn;
805static struct mips_cl_insn mips16_nop_insn;
806static struct mips_cl_insn micromips_nop16_insn;
807static struct mips_cl_insn micromips_nop32_insn;
1e915849
RS
808
809/* The appropriate nop for the current mode. */
833794fc
MR
810#define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
df58fc94
RS
817
818/* The size of NOP_INSN in bytes. */
833794fc
MR
819#define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
252b5132 822
252b5132
RH
823/* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827static fragS *prev_nop_frag;
828
829/* The number of nop instructions we created in prev_nop_frag. */
830static int prev_nop_frag_holds;
831
832/* The number of nop instructions that we know we need in
bdaaa2e1 833 prev_nop_frag. */
252b5132
RH
834static int prev_nop_frag_required;
835
836/* The number of instructions we've seen since prev_nop_frag. */
837static int prev_nop_frag_since;
838
e8044f35
RS
839/* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
252b5132
RH
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
bdaaa2e1 848 corresponding LO relocation. */
252b5132 849
e972090a
NC
850struct mips_hi_fixup
851{
252b5132
RH
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858};
859
860/* The list of unmatched HI relocs. */
861
862static struct mips_hi_fixup *mips_hi_fixup_list;
863
64bdfcaf
RS
864/* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867static fragS *prev_reloc_op_frag;
868
252b5132
RH
869/* Map mips16 register numbers to normal MIPS register numbers. */
870
e972090a
NC
871static const unsigned int mips16_to_32_reg_map[] =
872{
252b5132
RH
873 16, 17, 2, 3, 4, 5, 6, 7
874};
60b63b72 875
df58fc94
RS
876/* Map microMIPS register numbers to normal MIPS register numbers. */
877
df58fc94 878#define micromips_to_32_reg_d_map mips16_to_32_reg_map
df58fc94
RS
879
880/* The microMIPS registers with type h. */
e76ff5ab 881static const unsigned int micromips_to_32_reg_h_map1[] =
df58fc94
RS
882{
883 5, 5, 6, 4, 4, 4, 4, 4
884};
e76ff5ab 885static const unsigned int micromips_to_32_reg_h_map2[] =
df58fc94
RS
886{
887 6, 7, 7, 21, 22, 5, 6, 7
888};
889
df58fc94
RS
890/* The microMIPS registers with type m. */
891static const unsigned int micromips_to_32_reg_m_map[] =
892{
893 0, 17, 2, 3, 16, 18, 19, 20
894};
895
896#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
71400594
RS
898/* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
c67a084a
NC
900enum fix_vr4120_class
901{
71400594
RS
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909};
910
c67a084a
NC
911/* ...likewise -mfix-loongson2f-jump. */
912static bfd_boolean mips_fix_loongson2f_jump;
913
914/* ...likewise -mfix-loongson2f-nop. */
915static bfd_boolean mips_fix_loongson2f_nop;
916
917/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918static bfd_boolean mips_fix_loongson2f;
919
71400594
RS
920/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925/* True if -mfix-vr4120 is in force. */
d766e8ec 926static int mips_fix_vr4120;
4a6a3df4 927
7d8e00cf
RS
928/* ...likewise -mfix-vr4130. */
929static int mips_fix_vr4130;
930
6a32d874
CM
931/* ...likewise -mfix-24k. */
932static int mips_fix_24k;
933
a8d14a88
CM
934/* ...likewise -mfix-rm7000 */
935static int mips_fix_rm7000;
936
d954098f
DD
937/* ...likewise -mfix-cn63xxp1 */
938static bfd_boolean mips_fix_cn63xxp1;
939
4a6a3df4
AO
940/* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945static int mips_relax_branch;
8b10b0b3
MR
946
947/* TRUE if checks are suppressed for invalid branches between ISA modes.
948 Needed for broken assembly produced by some GCC versions and some
949 sloppy code out there, where branches to data labels are present. */
950static bfd_boolean mips_ignore_branch_isa;
252b5132 951\f
4d7206a2
RS
952/* The expansion of many macros depends on the type of symbol that
953 they refer to. For example, when generating position-dependent code,
954 a macro that refers to a symbol may have two different expansions,
955 one which uses GP-relative addresses and one which uses absolute
956 addresses. When generating SVR4-style PIC, a macro may have
957 different expansions for local and global symbols.
958
959 We handle these situations by generating both sequences and putting
960 them in variant frags. In position-dependent code, the first sequence
961 will be the GP-relative one and the second sequence will be the
962 absolute one. In SVR4 PIC, the first sequence will be for global
963 symbols and the second will be for local symbols.
964
584892a6
RS
965 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
966 SECOND are the lengths of the two sequences in bytes. These fields
967 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
968 the subtype has the following flags:
4d7206a2 969
ce8ad872
MR
970 RELAX_PIC
971 Set if generating PIC code.
972
584892a6
RS
973 RELAX_USE_SECOND
974 Set if it has been decided that we should use the second
975 sequence instead of the first.
976
977 RELAX_SECOND_LONGER
978 Set in the first variant frag if the macro's second implementation
979 is longer than its first. This refers to the macro as a whole,
980 not an individual relaxation.
981
982 RELAX_NOMACRO
983 Set in the first variant frag if the macro appeared in a .set nomacro
984 block and if one alternative requires a warning but the other does not.
985
986 RELAX_DELAY_SLOT
987 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
988 delay slot.
4d7206a2 989
df58fc94
RS
990 RELAX_DELAY_SLOT_16BIT
991 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
992 16-bit instruction.
993
994 RELAX_DELAY_SLOT_SIZE_FIRST
995 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
996 the macro is of the wrong size for the branch delay slot.
997
998 RELAX_DELAY_SLOT_SIZE_SECOND
999 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1000 the macro is of the wrong size for the branch delay slot.
1001
4d7206a2
RS
1002 The frag's "opcode" points to the first fixup for relaxable code.
1003
1004 Relaxable macros are generated using a sequence such as:
1005
1006 relax_start (SYMBOL);
1007 ... generate first expansion ...
1008 relax_switch ();
1009 ... generate second expansion ...
1010 relax_end ();
1011
1012 The code and fixups for the unwanted alternative are discarded
1013 by md_convert_frag. */
ce8ad872
MR
1014#define RELAX_ENCODE(FIRST, SECOND, PIC) \
1015 (((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
4d7206a2 1016
584892a6
RS
1017#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1018#define RELAX_SECOND(X) ((X) & 0xff)
ce8ad872
MR
1019#define RELAX_PIC(X) (((X) & 0x10000) != 0)
1020#define RELAX_USE_SECOND 0x20000
1021#define RELAX_SECOND_LONGER 0x40000
1022#define RELAX_NOMACRO 0x80000
1023#define RELAX_DELAY_SLOT 0x100000
1024#define RELAX_DELAY_SLOT_16BIT 0x200000
1025#define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
1026#define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
252b5132 1027
4a6a3df4
AO
1028/* Branch without likely bit. If label is out of range, we turn:
1029
134c0c8b 1030 beq reg1, reg2, label
4a6a3df4
AO
1031 delay slot
1032
1033 into
1034
1035 bne reg1, reg2, 0f
1036 nop
1037 j label
1038 0: delay slot
1039
1040 with the following opcode replacements:
1041
1042 beq <-> bne
1043 blez <-> bgtz
1044 bltz <-> bgez
1045 bc1f <-> bc1t
1046
1047 bltzal <-> bgezal (with jal label instead of j label)
1048
1049 Even though keeping the delay slot instruction in the delay slot of
1050 the branch would be more efficient, it would be very tricky to do
1051 correctly, because we'd have to introduce a variable frag *after*
1052 the delay slot instruction, and expand that instead. Let's do it
1053 the easy way for now, even if the branch-not-taken case now costs
1054 one additional instruction. Out-of-range branches are not supposed
1055 to be common, anyway.
1056
1057 Branch likely. If label is out of range, we turn:
1058
1059 beql reg1, reg2, label
1060 delay slot (annulled if branch not taken)
1061
1062 into
1063
1064 beql reg1, reg2, 1f
1065 nop
1066 beql $0, $0, 2f
1067 nop
1068 1: j[al] label
1069 delay slot (executed only if branch taken)
1070 2:
1071
1072 It would be possible to generate a shorter sequence by losing the
1073 likely bit, generating something like:
b34976b6 1074
4a6a3df4
AO
1075 bne reg1, reg2, 0f
1076 nop
1077 j[al] label
1078 delay slot (executed only if branch taken)
1079 0:
1080
1081 beql -> bne
1082 bnel -> beq
1083 blezl -> bgtz
1084 bgtzl -> blez
1085 bltzl -> bgez
1086 bgezl -> bltz
1087 bc1fl -> bc1t
1088 bc1tl -> bc1f
1089
1090 bltzall -> bgezal (with jal label instead of j label)
1091 bgezall -> bltzal (ditto)
1092
1093
1094 but it's not clear that it would actually improve performance. */
ce8ad872
MR
1095#define RELAX_BRANCH_ENCODE(at, pic, \
1096 uncond, likely, link, toofar) \
66b3e8da
MR
1097 ((relax_substateT) \
1098 (0xc0000000 \
1099 | ((at) & 0x1f) \
ce8ad872
MR
1100 | ((pic) ? 0x20 : 0) \
1101 | ((toofar) ? 0x40 : 0) \
1102 | ((link) ? 0x80 : 0) \
1103 | ((likely) ? 0x100 : 0) \
1104 | ((uncond) ? 0x200 : 0)))
4a6a3df4 1105#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
ce8ad872
MR
1106#define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
1107#define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
1108#define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
1109#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
1110#define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
66b3e8da 1111#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
4a6a3df4 1112
252b5132
RH
1113/* For mips16 code, we use an entirely different form of relaxation.
1114 mips16 supports two versions of most instructions which take
1115 immediate values: a small one which takes some small value, and a
1116 larger one which takes a 16 bit value. Since branches also follow
1117 this pattern, relaxing these values is required.
1118
1119 We can assemble both mips16 and normal MIPS code in a single
1120 object. Therefore, we need to support this type of relaxation at
1121 the same time that we support the relaxation described above. We
1122 use the high bit of the subtype field to distinguish these cases.
1123
1124 The information we store for this type of relaxation is the
1125 argument code found in the opcode file for this relocation, whether
1126 the user explicitly requested a small or extended form, and whether
1127 the relocation is in a jump or jal delay slot. That tells us the
1128 size of the value, and how it should be stored. We also store
1129 whether the fragment is considered to be extended or not. We also
1130 store whether this is known to be a branch to a different section,
1131 whether we have tried to relax this frag yet, and whether we have
1132 ever extended a PC relative fragment because of a shift count. */
1133#define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1134 (0x80000000 \
1135 | ((type) & 0xff) \
1136 | ((small) ? 0x100 : 0) \
1137 | ((ext) ? 0x200 : 0) \
1138 | ((dslot) ? 0x400 : 0) \
1139 | ((jal_dslot) ? 0x800 : 0))
4a6a3df4 1140#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
252b5132
RH
1141#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1142#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1143#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1144#define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1145#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1146#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1147#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1148#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1425c41d
MR
1149#define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x2000) != 0)
1150#define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x2000)
1151#define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x2000)
885add95 1152
df58fc94
RS
1153/* For microMIPS code, we use relaxation similar to one we use for
1154 MIPS16 code. Some instructions that take immediate values support
1155 two encodings: a small one which takes some small value, and a
1156 larger one which takes a 16 bit value. As some branches also follow
1157 this pattern, relaxing these values is required.
1158
1159 We can assemble both microMIPS and normal MIPS code in a single
1160 object. Therefore, we need to support this type of relaxation at
1161 the same time that we support the relaxation described above. We
1162 use one of the high bits of the subtype field to distinguish these
1163 cases.
1164
1165 The information we store for this type of relaxation is the argument
1166 code found in the opcode file for this relocation, the register
8484fb75
MR
1167 selected as the assembler temporary, whether in the 32-bit
1168 instruction mode, whether the branch is unconditional, whether it is
7bd374a4
MR
1169 compact, whether there is no delay-slot instruction available to fill
1170 in, whether it stores the link address implicitly in $ra, whether
1171 relaxation of out-of-range 32-bit branches to a sequence of
8484fb75
MR
1172 instructions is enabled, and whether the displacement of a branch is
1173 too large to fit as an immediate argument of a 16-bit and a 32-bit
1174 branch, respectively. */
ce8ad872 1175#define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
7bd374a4 1176 uncond, compact, link, nods, \
40209cad
MR
1177 relax32, toofar16, toofar32) \
1178 (0x40000000 \
1179 | ((type) & 0xff) \
1180 | (((at) & 0x1f) << 8) \
8484fb75 1181 | ((insn32) ? 0x2000 : 0) \
ce8ad872
MR
1182 | ((pic) ? 0x4000 : 0) \
1183 | ((uncond) ? 0x8000 : 0) \
1184 | ((compact) ? 0x10000 : 0) \
1185 | ((link) ? 0x20000 : 0) \
1186 | ((nods) ? 0x40000 : 0) \
1187 | ((relax32) ? 0x80000 : 0) \
1188 | ((toofar16) ? 0x100000 : 0) \
1189 | ((toofar32) ? 0x200000 : 0))
df58fc94
RS
1190#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1191#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1192#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
8484fb75 1193#define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
ce8ad872
MR
1194#define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
1195#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
1196#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
1197#define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
1198#define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
1199#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
1200
1201#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
1202#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
1203#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
1204#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
1205#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
1206#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
df58fc94 1207
43c0598f
RS
1208/* Sign-extend 16-bit value X. */
1209#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1210
885add95
CD
1211/* Is the given value a sign-extended 32-bit value? */
1212#define IS_SEXT_32BIT_NUM(x) \
1213 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1214 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1215
1216/* Is the given value a sign-extended 16-bit value? */
1217#define IS_SEXT_16BIT_NUM(x) \
1218 (((x) &~ (offsetT) 0x7fff) == 0 \
1219 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1220
df58fc94
RS
1221/* Is the given value a sign-extended 12-bit value? */
1222#define IS_SEXT_12BIT_NUM(x) \
1223 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1224
7f3c4072
CM
1225/* Is the given value a sign-extended 9-bit value? */
1226#define IS_SEXT_9BIT_NUM(x) \
1227 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1228
2051e8c4
MR
1229/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1230#define IS_ZEXT_32BIT_NUM(x) \
1231 (((x) &~ (offsetT) 0xffffffff) == 0 \
1232 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1233
bf12938e
RS
1234/* Extract bits MASK << SHIFT from STRUCT and shift them right
1235 SHIFT places. */
1236#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1237 (((STRUCT) >> (SHIFT)) & (MASK))
1238
bf12938e 1239/* Extract the operand given by FIELD from mips_cl_insn INSN. */
df58fc94
RS
1240#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1241 (!(MICROMIPS) \
1242 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1243 : EXTRACT_BITS ((INSN).insn_opcode, \
1244 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
bf12938e
RS
1245#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1246 EXTRACT_BITS ((INSN).insn_opcode, \
1247 MIPS16OP_MASK_##FIELD, \
1248 MIPS16OP_SH_##FIELD)
5c04167a
RS
1249
1250/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1251#define MIPS16_EXTEND (0xf000U << 16)
4d7206a2 1252\f
df58fc94
RS
1253/* Whether or not we are emitting a branch-likely macro. */
1254static bfd_boolean emit_branch_likely_macro = FALSE;
1255
4d7206a2
RS
1256/* Global variables used when generating relaxable macros. See the
1257 comment above RELAX_ENCODE for more details about how relaxation
1258 is used. */
1259static struct {
1260 /* 0 if we're not emitting a relaxable macro.
1261 1 if we're emitting the first of the two relaxation alternatives.
1262 2 if we're emitting the second alternative. */
1263 int sequence;
1264
1265 /* The first relaxable fixup in the current frag. (In other words,
1266 the first fixup that refers to relaxable code.) */
1267 fixS *first_fixup;
1268
1269 /* sizes[0] says how many bytes of the first alternative are stored in
1270 the current frag. Likewise sizes[1] for the second alternative. */
1271 unsigned int sizes[2];
1272
1273 /* The symbol on which the choice of sequence depends. */
1274 symbolS *symbol;
1275} mips_relax;
252b5132 1276\f
584892a6
RS
1277/* Global variables used to decide whether a macro needs a warning. */
1278static struct {
1279 /* True if the macro is in a branch delay slot. */
1280 bfd_boolean delay_slot_p;
1281
df58fc94
RS
1282 /* Set to the length in bytes required if the macro is in a delay slot
1283 that requires a specific length of instruction, otherwise zero. */
1284 unsigned int delay_slot_length;
1285
584892a6
RS
1286 /* For relaxable macros, sizes[0] is the length of the first alternative
1287 in bytes and sizes[1] is the length of the second alternative.
1288 For non-relaxable macros, both elements give the length of the
1289 macro in bytes. */
1290 unsigned int sizes[2];
1291
df58fc94
RS
1292 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1293 instruction of the first alternative in bytes and first_insn_sizes[1]
1294 is the length of the first instruction of the second alternative.
1295 For non-relaxable macros, both elements give the length of the first
1296 instruction in bytes.
1297
1298 Set to zero if we haven't yet seen the first instruction. */
1299 unsigned int first_insn_sizes[2];
1300
1301 /* For relaxable macros, insns[0] is the number of instructions for the
1302 first alternative and insns[1] is the number of instructions for the
1303 second alternative.
1304
1305 For non-relaxable macros, both elements give the number of
1306 instructions for the macro. */
1307 unsigned int insns[2];
1308
584892a6
RS
1309 /* The first variant frag for this macro. */
1310 fragS *first_frag;
1311} mips_macro_warning;
1312\f
252b5132
RH
1313/* Prototypes for static functions. */
1314
252b5132
RH
1315enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1316
b34976b6 1317static void append_insn
df58fc94
RS
1318 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1319 bfd_boolean expansionp);
7d10b47d 1320static void mips_no_prev_insn (void);
c67a084a 1321static void macro_build (expressionS *, const char *, const char *, ...);
b34976b6 1322static void mips16_macro_build
03ea81db 1323 (expressionS *, const char *, const char *, va_list *);
67c0d1eb 1324static void load_register (int, expressionS *, int);
584892a6
RS
1325static void macro_start (void);
1326static void macro_end (void);
833794fc 1327static void macro (struct mips_cl_insn *ip, char *str);
17a2f251 1328static void mips16_macro (struct mips_cl_insn * ip);
17a2f251
TS
1329static void mips_ip (char *str, struct mips_cl_insn * ip);
1330static void mips16_ip (char *str, struct mips_cl_insn * ip);
b34976b6 1331static void mips16_immed
3b4dbbbf 1332 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
43c0598f 1333 unsigned int, unsigned long *);
5e0116d5 1334static size_t my_getSmallExpression
17a2f251
TS
1335 (expressionS *, bfd_reloc_code_real_type *, char *);
1336static void my_getExpression (expressionS *, char *);
1337static void s_align (int);
1338static void s_change_sec (int);
1339static void s_change_section (int);
1340static void s_cons (int);
1341static void s_float_cons (int);
1342static void s_mips_globl (int);
1343static void s_option (int);
1344static void s_mipsset (int);
1345static void s_abicalls (int);
1346static void s_cpload (int);
1347static void s_cpsetup (int);
1348static void s_cplocal (int);
1349static void s_cprestore (int);
1350static void s_cpreturn (int);
741d6ea8
JM
1351static void s_dtprelword (int);
1352static void s_dtpreldword (int);
d0f13682
CLT
1353static void s_tprelword (int);
1354static void s_tpreldword (int);
17a2f251
TS
1355static void s_gpvalue (int);
1356static void s_gpword (int);
1357static void s_gpdword (int);
a3f278e2 1358static void s_ehword (int);
17a2f251
TS
1359static void s_cpadd (int);
1360static void s_insn (int);
ba92f887 1361static void s_nan (int);
919731af 1362static void s_module (int);
17a2f251
TS
1363static void s_mips_ent (int);
1364static void s_mips_end (int);
1365static void s_mips_frame (int);
1366static void s_mips_mask (int reg_type);
1367static void s_mips_stab (int);
1368static void s_mips_weakext (int);
1369static void s_mips_file (int);
1370static void s_mips_loc (int);
9e009953 1371static bfd_boolean pic_need_relax (symbolS *);
4a6a3df4 1372static int relaxed_branch_length (fragS *, asection *, int);
df58fc94
RS
1373static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1374static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
919731af 1375static void file_mips_check_options (void);
e7af610e
NC
1376
1377/* Table and functions used to map between CPU/ISA names, and
1378 ISA levels, and CPU numbers. */
1379
e972090a
NC
1380struct mips_cpu_info
1381{
e7af610e 1382 const char *name; /* CPU or ISA name. */
d16afab6
RS
1383 int flags; /* MIPS_CPU_* flags. */
1384 int ase; /* Set of ASEs implemented by the CPU. */
e7af610e
NC
1385 int isa; /* ISA level. */
1386 int cpu; /* CPU number (default CPU if ISA). */
1387};
1388
ad3fea08 1389#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
ad3fea08 1390
17a2f251
TS
1391static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1392static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1393static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
252b5132 1394\f
c31f3936
RS
1395/* Command-line options. */
1396const char *md_shortopts = "O::g::G:";
1397
1398enum options
1399 {
1400 OPTION_MARCH = OPTION_MD_BASE,
1401 OPTION_MTUNE,
1402 OPTION_MIPS1,
1403 OPTION_MIPS2,
1404 OPTION_MIPS3,
1405 OPTION_MIPS4,
1406 OPTION_MIPS5,
1407 OPTION_MIPS32,
1408 OPTION_MIPS64,
1409 OPTION_MIPS32R2,
ae52f483
AB
1410 OPTION_MIPS32R3,
1411 OPTION_MIPS32R5,
7361da2c 1412 OPTION_MIPS32R6,
c31f3936 1413 OPTION_MIPS64R2,
ae52f483
AB
1414 OPTION_MIPS64R3,
1415 OPTION_MIPS64R5,
7361da2c 1416 OPTION_MIPS64R6,
c31f3936
RS
1417 OPTION_MIPS16,
1418 OPTION_NO_MIPS16,
1419 OPTION_MIPS3D,
1420 OPTION_NO_MIPS3D,
1421 OPTION_MDMX,
1422 OPTION_NO_MDMX,
1423 OPTION_DSP,
1424 OPTION_NO_DSP,
1425 OPTION_MT,
1426 OPTION_NO_MT,
1427 OPTION_VIRT,
1428 OPTION_NO_VIRT,
56d438b1
CF
1429 OPTION_MSA,
1430 OPTION_NO_MSA,
c31f3936
RS
1431 OPTION_SMARTMIPS,
1432 OPTION_NO_SMARTMIPS,
1433 OPTION_DSPR2,
1434 OPTION_NO_DSPR2,
8f4f9071
MF
1435 OPTION_DSPR3,
1436 OPTION_NO_DSPR3,
c31f3936
RS
1437 OPTION_EVA,
1438 OPTION_NO_EVA,
7d64c587
AB
1439 OPTION_XPA,
1440 OPTION_NO_XPA,
c31f3936
RS
1441 OPTION_MICROMIPS,
1442 OPTION_NO_MICROMIPS,
1443 OPTION_MCU,
1444 OPTION_NO_MCU,
1445 OPTION_COMPAT_ARCH_BASE,
1446 OPTION_M4650,
1447 OPTION_NO_M4650,
1448 OPTION_M4010,
1449 OPTION_NO_M4010,
1450 OPTION_M4100,
1451 OPTION_NO_M4100,
1452 OPTION_M3900,
1453 OPTION_NO_M3900,
1454 OPTION_M7000_HILO_FIX,
1455 OPTION_MNO_7000_HILO_FIX,
1456 OPTION_FIX_24K,
1457 OPTION_NO_FIX_24K,
a8d14a88
CM
1458 OPTION_FIX_RM7000,
1459 OPTION_NO_FIX_RM7000,
c31f3936
RS
1460 OPTION_FIX_LOONGSON2F_JUMP,
1461 OPTION_NO_FIX_LOONGSON2F_JUMP,
1462 OPTION_FIX_LOONGSON2F_NOP,
1463 OPTION_NO_FIX_LOONGSON2F_NOP,
1464 OPTION_FIX_VR4120,
1465 OPTION_NO_FIX_VR4120,
1466 OPTION_FIX_VR4130,
1467 OPTION_NO_FIX_VR4130,
1468 OPTION_FIX_CN63XXP1,
1469 OPTION_NO_FIX_CN63XXP1,
1470 OPTION_TRAP,
1471 OPTION_BREAK,
1472 OPTION_EB,
1473 OPTION_EL,
1474 OPTION_FP32,
1475 OPTION_GP32,
1476 OPTION_CONSTRUCT_FLOATS,
1477 OPTION_NO_CONSTRUCT_FLOATS,
1478 OPTION_FP64,
351cdf24 1479 OPTION_FPXX,
c31f3936
RS
1480 OPTION_GP64,
1481 OPTION_RELAX_BRANCH,
1482 OPTION_NO_RELAX_BRANCH,
8b10b0b3
MR
1483 OPTION_IGNORE_BRANCH_ISA,
1484 OPTION_NO_IGNORE_BRANCH_ISA,
833794fc
MR
1485 OPTION_INSN32,
1486 OPTION_NO_INSN32,
c31f3936
RS
1487 OPTION_MSHARED,
1488 OPTION_MNO_SHARED,
1489 OPTION_MSYM32,
1490 OPTION_MNO_SYM32,
1491 OPTION_SOFT_FLOAT,
1492 OPTION_HARD_FLOAT,
1493 OPTION_SINGLE_FLOAT,
1494 OPTION_DOUBLE_FLOAT,
1495 OPTION_32,
c31f3936
RS
1496 OPTION_CALL_SHARED,
1497 OPTION_CALL_NONPIC,
1498 OPTION_NON_SHARED,
1499 OPTION_XGOT,
1500 OPTION_MABI,
1501 OPTION_N32,
1502 OPTION_64,
1503 OPTION_MDEBUG,
1504 OPTION_NO_MDEBUG,
1505 OPTION_PDR,
1506 OPTION_NO_PDR,
1507 OPTION_MVXWORKS_PIC,
ba92f887 1508 OPTION_NAN,
351cdf24
MF
1509 OPTION_ODD_SPREG,
1510 OPTION_NO_ODD_SPREG,
c31f3936
RS
1511 OPTION_END_OF_ENUM
1512 };
1513
1514struct option md_longopts[] =
1515{
1516 /* Options which specify architecture. */
1517 {"march", required_argument, NULL, OPTION_MARCH},
1518 {"mtune", required_argument, NULL, OPTION_MTUNE},
1519 {"mips0", no_argument, NULL, OPTION_MIPS1},
1520 {"mips1", no_argument, NULL, OPTION_MIPS1},
1521 {"mips2", no_argument, NULL, OPTION_MIPS2},
1522 {"mips3", no_argument, NULL, OPTION_MIPS3},
1523 {"mips4", no_argument, NULL, OPTION_MIPS4},
1524 {"mips5", no_argument, NULL, OPTION_MIPS5},
1525 {"mips32", no_argument, NULL, OPTION_MIPS32},
1526 {"mips64", no_argument, NULL, OPTION_MIPS64},
1527 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
ae52f483
AB
1528 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1529 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
7361da2c 1530 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
c31f3936 1531 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
ae52f483
AB
1532 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1533 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
7361da2c 1534 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
c31f3936
RS
1535
1536 /* Options which specify Application Specific Extensions (ASEs). */
1537 {"mips16", no_argument, NULL, OPTION_MIPS16},
1538 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1539 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1540 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1541 {"mdmx", no_argument, NULL, OPTION_MDMX},
1542 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1543 {"mdsp", no_argument, NULL, OPTION_DSP},
1544 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1545 {"mmt", no_argument, NULL, OPTION_MT},
1546 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1547 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1548 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1549 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1550 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
8f4f9071
MF
1551 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1552 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
c31f3936
RS
1553 {"meva", no_argument, NULL, OPTION_EVA},
1554 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1555 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1556 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1557 {"mmcu", no_argument, NULL, OPTION_MCU},
1558 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1559 {"mvirt", no_argument, NULL, OPTION_VIRT},
1560 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
56d438b1
CF
1561 {"mmsa", no_argument, NULL, OPTION_MSA},
1562 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
7d64c587
AB
1563 {"mxpa", no_argument, NULL, OPTION_XPA},
1564 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
c31f3936
RS
1565
1566 /* Old-style architecture options. Don't add more of these. */
1567 {"m4650", no_argument, NULL, OPTION_M4650},
1568 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1569 {"m4010", no_argument, NULL, OPTION_M4010},
1570 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1571 {"m4100", no_argument, NULL, OPTION_M4100},
1572 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1573 {"m3900", no_argument, NULL, OPTION_M3900},
1574 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1575
1576 /* Options which enable bug fixes. */
1577 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1578 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1579 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1580 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1581 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1582 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1583 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1584 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1585 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1586 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1587 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1588 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1589 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
a8d14a88
CM
1590 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1591 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
c31f3936
RS
1592 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1593 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1594
1595 /* Miscellaneous options. */
1596 {"trap", no_argument, NULL, OPTION_TRAP},
1597 {"no-break", no_argument, NULL, OPTION_TRAP},
1598 {"break", no_argument, NULL, OPTION_BREAK},
1599 {"no-trap", no_argument, NULL, OPTION_BREAK},
1600 {"EB", no_argument, NULL, OPTION_EB},
1601 {"EL", no_argument, NULL, OPTION_EL},
1602 {"mfp32", no_argument, NULL, OPTION_FP32},
1603 {"mgp32", no_argument, NULL, OPTION_GP32},
1604 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1605 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1606 {"mfp64", no_argument, NULL, OPTION_FP64},
351cdf24 1607 {"mfpxx", no_argument, NULL, OPTION_FPXX},
c31f3936
RS
1608 {"mgp64", no_argument, NULL, OPTION_GP64},
1609 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1610 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
8b10b0b3
MR
1611 {"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
1612 {"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
833794fc
MR
1613 {"minsn32", no_argument, NULL, OPTION_INSN32},
1614 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
c31f3936
RS
1615 {"mshared", no_argument, NULL, OPTION_MSHARED},
1616 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1617 {"msym32", no_argument, NULL, OPTION_MSYM32},
1618 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1619 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1620 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1621 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1622 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
351cdf24
MF
1623 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1624 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
c31f3936
RS
1625
1626 /* Strictly speaking this next option is ELF specific,
1627 but we allow it for other ports as well in order to
1628 make testing easier. */
1629 {"32", no_argument, NULL, OPTION_32},
1630
1631 /* ELF-specific options. */
c31f3936
RS
1632 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1633 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1634 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1635 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1636 {"xgot", no_argument, NULL, OPTION_XGOT},
1637 {"mabi", required_argument, NULL, OPTION_MABI},
1638 {"n32", no_argument, NULL, OPTION_N32},
1639 {"64", no_argument, NULL, OPTION_64},
1640 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1641 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1642 {"mpdr", no_argument, NULL, OPTION_PDR},
1643 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1644 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
ba92f887 1645 {"mnan", required_argument, NULL, OPTION_NAN},
c31f3936
RS
1646
1647 {NULL, no_argument, NULL, 0}
1648};
1649size_t md_longopts_size = sizeof (md_longopts);
1650\f
c6278170
RS
1651/* Information about either an Application Specific Extension or an
1652 optional architecture feature that, for simplicity, we treat in the
1653 same way as an ASE. */
1654struct mips_ase
1655{
1656 /* The name of the ASE, used in both the command-line and .set options. */
1657 const char *name;
1658
1659 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1660 and 64-bit architectures, the flags here refer to the subset that
1661 is available on both. */
1662 unsigned int flags;
1663
1664 /* The ASE_* flag used for instructions that are available on 64-bit
1665 architectures but that are not included in FLAGS. */
1666 unsigned int flags64;
1667
1668 /* The command-line options that turn the ASE on and off. */
1669 int option_on;
1670 int option_off;
1671
1672 /* The minimum required architecture revisions for MIPS32, MIPS64,
1673 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1674 int mips32_rev;
1675 int mips64_rev;
1676 int micromips32_rev;
1677 int micromips64_rev;
7361da2c
AB
1678
1679 /* The architecture where the ASE was removed or -1 if the extension has not
1680 been removed. */
1681 int rem_rev;
c6278170
RS
1682};
1683
1684/* A table of all supported ASEs. */
1685static const struct mips_ase mips_ases[] = {
1686 { "dsp", ASE_DSP, ASE_DSP64,
1687 OPTION_DSP, OPTION_NO_DSP,
7361da2c
AB
1688 2, 2, 2, 2,
1689 -1 },
c6278170
RS
1690
1691 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1692 OPTION_DSPR2, OPTION_NO_DSPR2,
7361da2c
AB
1693 2, 2, 2, 2,
1694 -1 },
c6278170 1695
8f4f9071
MF
1696 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1697 OPTION_DSPR3, OPTION_NO_DSPR3,
1698 6, 6, -1, -1,
1699 -1 },
1700
c6278170
RS
1701 { "eva", ASE_EVA, 0,
1702 OPTION_EVA, OPTION_NO_EVA,
7361da2c
AB
1703 2, 2, 2, 2,
1704 -1 },
c6278170
RS
1705
1706 { "mcu", ASE_MCU, 0,
1707 OPTION_MCU, OPTION_NO_MCU,
7361da2c
AB
1708 2, 2, 2, 2,
1709 -1 },
c6278170
RS
1710
1711 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1712 { "mdmx", ASE_MDMX, 0,
1713 OPTION_MDMX, OPTION_NO_MDMX,
7361da2c
AB
1714 -1, 1, -1, -1,
1715 6 },
c6278170
RS
1716
1717 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1718 { "mips3d", ASE_MIPS3D, 0,
1719 OPTION_MIPS3D, OPTION_NO_MIPS3D,
7361da2c
AB
1720 2, 1, -1, -1,
1721 6 },
c6278170
RS
1722
1723 { "mt", ASE_MT, 0,
1724 OPTION_MT, OPTION_NO_MT,
7361da2c
AB
1725 2, 2, -1, -1,
1726 -1 },
c6278170
RS
1727
1728 { "smartmips", ASE_SMARTMIPS, 0,
1729 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
7361da2c
AB
1730 1, -1, -1, -1,
1731 6 },
c6278170
RS
1732
1733 { "virt", ASE_VIRT, ASE_VIRT64,
1734 OPTION_VIRT, OPTION_NO_VIRT,
7361da2c
AB
1735 2, 2, 2, 2,
1736 -1 },
56d438b1
CF
1737
1738 { "msa", ASE_MSA, ASE_MSA64,
1739 OPTION_MSA, OPTION_NO_MSA,
7361da2c
AB
1740 2, 2, 2, 2,
1741 -1 },
7d64c587
AB
1742
1743 { "xpa", ASE_XPA, 0,
1744 OPTION_XPA, OPTION_NO_XPA,
7361da2c
AB
1745 2, 2, -1, -1,
1746 -1 },
c6278170
RS
1747};
1748
1749/* The set of ASEs that require -mfp64. */
82bda27b 1750#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
c6278170
RS
1751
1752/* Groups of ASE_* flags that represent different revisions of an ASE. */
1753static const unsigned int mips_ase_groups[] = {
8f4f9071 1754 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
c6278170
RS
1755};
1756\f
252b5132
RH
1757/* Pseudo-op table.
1758
1759 The following pseudo-ops from the Kane and Heinrich MIPS book
1760 should be defined here, but are currently unsupported: .alias,
1761 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1762
1763 The following pseudo-ops from the Kane and Heinrich MIPS book are
1764 specific to the type of debugging information being generated, and
1765 should be defined by the object format: .aent, .begin, .bend,
1766 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1767 .vreg.
1768
1769 The following pseudo-ops from the Kane and Heinrich MIPS book are
1770 not MIPS CPU specific, but are also not specific to the object file
1771 format. This file is probably the best place to define them, but
d84bcf09 1772 they are not currently supported: .asm0, .endr, .lab, .struct. */
252b5132 1773
e972090a
NC
1774static const pseudo_typeS mips_pseudo_table[] =
1775{
beae10d5 1776 /* MIPS specific pseudo-ops. */
252b5132
RH
1777 {"option", s_option, 0},
1778 {"set", s_mipsset, 0},
1779 {"rdata", s_change_sec, 'r'},
1780 {"sdata", s_change_sec, 's'},
1781 {"livereg", s_ignore, 0},
1782 {"abicalls", s_abicalls, 0},
1783 {"cpload", s_cpload, 0},
6478892d
TS
1784 {"cpsetup", s_cpsetup, 0},
1785 {"cplocal", s_cplocal, 0},
252b5132 1786 {"cprestore", s_cprestore, 0},
6478892d 1787 {"cpreturn", s_cpreturn, 0},
741d6ea8
JM
1788 {"dtprelword", s_dtprelword, 0},
1789 {"dtpreldword", s_dtpreldword, 0},
d0f13682
CLT
1790 {"tprelword", s_tprelword, 0},
1791 {"tpreldword", s_tpreldword, 0},
6478892d 1792 {"gpvalue", s_gpvalue, 0},
252b5132 1793 {"gpword", s_gpword, 0},
10181a0d 1794 {"gpdword", s_gpdword, 0},
a3f278e2 1795 {"ehword", s_ehword, 0},
252b5132
RH
1796 {"cpadd", s_cpadd, 0},
1797 {"insn", s_insn, 0},
ba92f887 1798 {"nan", s_nan, 0},
919731af 1799 {"module", s_module, 0},
252b5132 1800
beae10d5 1801 /* Relatively generic pseudo-ops that happen to be used on MIPS
252b5132 1802 chips. */
38a57ae7 1803 {"asciiz", stringer, 8 + 1},
252b5132
RH
1804 {"bss", s_change_sec, 'b'},
1805 {"err", s_err, 0},
1806 {"half", s_cons, 1},
1807 {"dword", s_cons, 3},
1808 {"weakext", s_mips_weakext, 0},
7c752c2a
TS
1809 {"origin", s_org, 0},
1810 {"repeat", s_rept, 0},
252b5132 1811
998b3c36
MR
1812 /* For MIPS this is non-standard, but we define it for consistency. */
1813 {"sbss", s_change_sec, 'B'},
1814
beae10d5 1815 /* These pseudo-ops are defined in read.c, but must be overridden
252b5132
RH
1816 here for one reason or another. */
1817 {"align", s_align, 0},
1818 {"byte", s_cons, 0},
1819 {"data", s_change_sec, 'd'},
1820 {"double", s_float_cons, 'd'},
1821 {"float", s_float_cons, 'f'},
1822 {"globl", s_mips_globl, 0},
1823 {"global", s_mips_globl, 0},
1824 {"hword", s_cons, 1},
1825 {"int", s_cons, 2},
1826 {"long", s_cons, 2},
1827 {"octa", s_cons, 4},
1828 {"quad", s_cons, 3},
cca86cc8 1829 {"section", s_change_section, 0},
252b5132
RH
1830 {"short", s_cons, 1},
1831 {"single", s_float_cons, 'f'},
754e2bb9 1832 {"stabd", s_mips_stab, 'd'},
252b5132 1833 {"stabn", s_mips_stab, 'n'},
754e2bb9 1834 {"stabs", s_mips_stab, 's'},
252b5132
RH
1835 {"text", s_change_sec, 't'},
1836 {"word", s_cons, 2},
add56521 1837
add56521 1838 { "extern", ecoff_directive_extern, 0},
add56521 1839
43841e91 1840 { NULL, NULL, 0 },
252b5132
RH
1841};
1842
e972090a
NC
1843static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1844{
beae10d5
KH
1845 /* These pseudo-ops should be defined by the object file format.
1846 However, a.out doesn't support them, so we have versions here. */
252b5132
RH
1847 {"aent", s_mips_ent, 1},
1848 {"bgnb", s_ignore, 0},
1849 {"end", s_mips_end, 0},
1850 {"endb", s_ignore, 0},
1851 {"ent", s_mips_ent, 0},
c5dd6aab 1852 {"file", s_mips_file, 0},
252b5132
RH
1853 {"fmask", s_mips_mask, 'F'},
1854 {"frame", s_mips_frame, 0},
c5dd6aab 1855 {"loc", s_mips_loc, 0},
252b5132
RH
1856 {"mask", s_mips_mask, 'R'},
1857 {"verstamp", s_ignore, 0},
43841e91 1858 { NULL, NULL, 0 },
252b5132
RH
1859};
1860
3ae8dd8d
MR
1861/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1862 purpose of the `.dc.a' internal pseudo-op. */
1863
1864int
1865mips_address_bytes (void)
1866{
919731af 1867 file_mips_check_options ();
3ae8dd8d
MR
1868 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1869}
1870
17a2f251 1871extern void pop_insert (const pseudo_typeS *);
252b5132
RH
1872
1873void
17a2f251 1874mips_pop_insert (void)
252b5132
RH
1875{
1876 pop_insert (mips_pseudo_table);
1877 if (! ECOFF_DEBUGGING)
1878 pop_insert (mips_nonecoff_pseudo_table);
1879}
1880\f
1881/* Symbols labelling the current insn. */
1882
e972090a
NC
1883struct insn_label_list
1884{
252b5132
RH
1885 struct insn_label_list *next;
1886 symbolS *label;
1887};
1888
252b5132 1889static struct insn_label_list *free_insn_labels;
742a56fe 1890#define label_list tc_segment_info_data.labels
252b5132 1891
17a2f251 1892static void mips_clear_insn_labels (void);
df58fc94
RS
1893static void mips_mark_labels (void);
1894static void mips_compressed_mark_labels (void);
252b5132
RH
1895
1896static inline void
17a2f251 1897mips_clear_insn_labels (void)
252b5132 1898{
ed9e98c2 1899 struct insn_label_list **pl;
a8dbcb85 1900 segment_info_type *si;
252b5132 1901
a8dbcb85
TS
1902 if (now_seg)
1903 {
1904 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1905 ;
3739860c 1906
a8dbcb85
TS
1907 si = seg_info (now_seg);
1908 *pl = si->label_list;
1909 si->label_list = NULL;
1910 }
252b5132 1911}
a8dbcb85 1912
df58fc94
RS
1913/* Mark instruction labels in MIPS16/microMIPS mode. */
1914
1915static inline void
1916mips_mark_labels (void)
1917{
1918 if (HAVE_CODE_COMPRESSION)
1919 mips_compressed_mark_labels ();
1920}
252b5132
RH
1921\f
1922static char *expr_end;
1923
e423441d 1924/* An expression in a macro instruction. This is set by mips_ip and
b0e6f033 1925 mips16_ip and when populated is always an O_constant. */
252b5132
RH
1926
1927static expressionS imm_expr;
252b5132 1928
77bd4346
RS
1929/* The relocatable field in an instruction and the relocs associated
1930 with it. These variables are used for instructions like LUI and
1931 JAL as well as true offsets. They are also used for address
1932 operands in macros. */
252b5132 1933
77bd4346 1934static expressionS offset_expr;
f6688943
TS
1935static bfd_reloc_code_real_type offset_reloc[3]
1936 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 1937
df58fc94
RS
1938/* This is set to the resulting size of the instruction to be produced
1939 by mips16_ip if an explicit extension is used or by mips_ip if an
1940 explicit size is supplied. */
252b5132 1941
df58fc94 1942static unsigned int forced_insn_length;
252b5132 1943
e1b47bd5
RS
1944/* True if we are assembling an instruction. All dot symbols defined during
1945 this time should be treated as code labels. */
1946
1947static bfd_boolean mips_assembling_insn;
1948
ecb4347a
DJ
1949/* The pdr segment for per procedure frame/regmask info. Not used for
1950 ECOFF debugging. */
252b5132
RH
1951
1952static segT pdr_seg;
252b5132 1953
e013f690
TS
1954/* The default target format to use. */
1955
aeffff67
RS
1956#if defined (TE_FreeBSD)
1957#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1958#elif defined (TE_TMIPS)
1959#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1960#else
1961#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1962#endif
1963
e013f690 1964const char *
17a2f251 1965mips_target_format (void)
e013f690
TS
1966{
1967 switch (OUTPUT_FLAVOR)
1968 {
e013f690 1969 case bfd_target_elf_flavour:
0a44bf69
RS
1970#ifdef TE_VXWORKS
1971 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1972 return (target_big_endian
1973 ? "elf32-bigmips-vxworks"
1974 : "elf32-littlemips-vxworks");
1975#endif
e013f690 1976 return (target_big_endian
cfe86eaa 1977 ? (HAVE_64BIT_OBJECTS
aeffff67 1978 ? ELF_TARGET ("elf64-", "big")
cfe86eaa 1979 : (HAVE_NEWABI
aeffff67
RS
1980 ? ELF_TARGET ("elf32-n", "big")
1981 : ELF_TARGET ("elf32-", "big")))
cfe86eaa 1982 : (HAVE_64BIT_OBJECTS
aeffff67 1983 ? ELF_TARGET ("elf64-", "little")
cfe86eaa 1984 : (HAVE_NEWABI
aeffff67
RS
1985 ? ELF_TARGET ("elf32-n", "little")
1986 : ELF_TARGET ("elf32-", "little"))));
e013f690
TS
1987 default:
1988 abort ();
1989 return NULL;
1990 }
1991}
1992
c6278170
RS
1993/* Return the ISA revision that is currently in use, or 0 if we are
1994 generating code for MIPS V or below. */
1995
1996static int
1997mips_isa_rev (void)
1998{
1999 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
2000 return 2;
2001
ae52f483
AB
2002 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
2003 return 3;
2004
2005 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
2006 return 5;
2007
7361da2c
AB
2008 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
2009 return 6;
2010
c6278170
RS
2011 /* microMIPS implies revision 2 or above. */
2012 if (mips_opts.micromips)
2013 return 2;
2014
2015 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2016 return 1;
2017
2018 return 0;
2019}
2020
2021/* Return the mask of all ASEs that are revisions of those in FLAGS. */
2022
2023static unsigned int
2024mips_ase_mask (unsigned int flags)
2025{
2026 unsigned int i;
2027
2028 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2029 if (flags & mips_ase_groups[i])
2030 flags |= mips_ase_groups[i];
2031 return flags;
2032}
2033
2034/* Check whether the current ISA supports ASE. Issue a warning if
2035 appropriate. */
2036
2037static void
2038mips_check_isa_supports_ase (const struct mips_ase *ase)
2039{
2040 const char *base;
2041 int min_rev, size;
2042 static unsigned int warned_isa;
2043 static unsigned int warned_fp32;
2044
2045 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2046 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2047 else
2048 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2049 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2050 && (warned_isa & ase->flags) != ase->flags)
2051 {
2052 warned_isa |= ase->flags;
2053 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2054 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2055 if (min_rev < 0)
1661c76c 2056 as_warn (_("the %d-bit %s architecture does not support the"
c6278170
RS
2057 " `%s' extension"), size, base, ase->name);
2058 else
1661c76c 2059 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
c6278170
RS
2060 ase->name, base, size, min_rev);
2061 }
7361da2c
AB
2062 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2063 && (warned_isa & ase->flags) != ase->flags)
2064 {
2065 warned_isa |= ase->flags;
2066 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2067 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2068 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2069 ase->name, base, size, ase->rem_rev);
2070 }
2071
c6278170 2072 if ((ase->flags & FP64_ASES)
0b35dfee 2073 && mips_opts.fp != 64
c6278170
RS
2074 && (warned_fp32 & ase->flags) != ase->flags)
2075 {
2076 warned_fp32 |= ase->flags;
1661c76c 2077 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
c6278170
RS
2078 }
2079}
2080
2081/* Check all enabled ASEs to see whether they are supported by the
2082 chosen architecture. */
2083
2084static void
2085mips_check_isa_supports_ases (void)
2086{
2087 unsigned int i, mask;
2088
2089 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2090 {
2091 mask = mips_ase_mask (mips_ases[i].flags);
2092 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2093 mips_check_isa_supports_ase (&mips_ases[i]);
2094 }
2095}
2096
2097/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2098 that were affected. */
2099
2100static unsigned int
919731af 2101mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2102 bfd_boolean enabled_p)
c6278170
RS
2103{
2104 unsigned int mask;
2105
2106 mask = mips_ase_mask (ase->flags);
919731af 2107 opts->ase &= ~mask;
c6278170 2108 if (enabled_p)
919731af 2109 opts->ase |= ase->flags;
c6278170
RS
2110 return mask;
2111}
2112
2113/* Return the ASE called NAME, or null if none. */
2114
2115static const struct mips_ase *
2116mips_lookup_ase (const char *name)
2117{
2118 unsigned int i;
2119
2120 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2121 if (strcmp (name, mips_ases[i].name) == 0)
2122 return &mips_ases[i];
2123 return NULL;
2124}
2125
df58fc94 2126/* Return the length of a microMIPS instruction in bytes. If bits of
100b4f2e
MR
2127 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2128 otherwise it is a 32-bit instruction. */
df58fc94
RS
2129
2130static inline unsigned int
2131micromips_insn_length (const struct mips_opcode *mo)
2132{
7fd53920 2133 return mips_opcode_32bit_p (mo) ? 4 : 2;
df58fc94
RS
2134}
2135
5c04167a
RS
2136/* Return the length of MIPS16 instruction OPCODE. */
2137
2138static inline unsigned int
2139mips16_opcode_length (unsigned long opcode)
2140{
2141 return (opcode >> 16) == 0 ? 2 : 4;
2142}
2143
1e915849
RS
2144/* Return the length of instruction INSN. */
2145
2146static inline unsigned int
2147insn_length (const struct mips_cl_insn *insn)
2148{
df58fc94
RS
2149 if (mips_opts.micromips)
2150 return micromips_insn_length (insn->insn_mo);
2151 else if (mips_opts.mips16)
5c04167a 2152 return mips16_opcode_length (insn->insn_opcode);
df58fc94 2153 else
1e915849 2154 return 4;
1e915849
RS
2155}
2156
2157/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2158
2159static void
2160create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2161{
2162 size_t i;
2163
2164 insn->insn_mo = mo;
1e915849
RS
2165 insn->insn_opcode = mo->match;
2166 insn->frag = NULL;
2167 insn->where = 0;
2168 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2169 insn->fixp[i] = NULL;
2170 insn->fixed_p = (mips_opts.noreorder > 0);
2171 insn->noreorder_p = (mips_opts.noreorder > 0);
2172 insn->mips16_absolute_jump_p = 0;
15be625d 2173 insn->complete_p = 0;
e407c74b 2174 insn->cleared_p = 0;
1e915849
RS
2175}
2176
fc76e730
RS
2177/* Get a list of all the operands in INSN. */
2178
2179static const struct mips_operand_array *
2180insn_operands (const struct mips_cl_insn *insn)
2181{
2182 if (insn->insn_mo >= &mips_opcodes[0]
2183 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2184 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2185
2186 if (insn->insn_mo >= &mips16_opcodes[0]
2187 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2188 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2189
2190 if (insn->insn_mo >= &micromips_opcodes[0]
2191 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2192 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2193
2194 abort ();
2195}
2196
2197/* Get a description of operand OPNO of INSN. */
2198
2199static const struct mips_operand *
2200insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2201{
2202 const struct mips_operand_array *operands;
2203
2204 operands = insn_operands (insn);
2205 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2206 abort ();
2207 return operands->operand[opno];
2208}
2209
e077a1c8
RS
2210/* Install UVAL as the value of OPERAND in INSN. */
2211
2212static inline void
2213insn_insert_operand (struct mips_cl_insn *insn,
2214 const struct mips_operand *operand, unsigned int uval)
2215{
2216 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2217}
2218
fc76e730
RS
2219/* Extract the value of OPERAND from INSN. */
2220
2221static inline unsigned
2222insn_extract_operand (const struct mips_cl_insn *insn,
2223 const struct mips_operand *operand)
2224{
2225 return mips_extract_operand (operand, insn->insn_opcode);
2226}
2227
df58fc94 2228/* Record the current MIPS16/microMIPS mode in now_seg. */
742a56fe
RS
2229
2230static void
df58fc94 2231mips_record_compressed_mode (void)
742a56fe
RS
2232{
2233 segment_info_type *si;
2234
2235 si = seg_info (now_seg);
2236 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2237 si->tc_segment_info_data.mips16 = mips_opts.mips16;
df58fc94
RS
2238 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2239 si->tc_segment_info_data.micromips = mips_opts.micromips;
742a56fe
RS
2240}
2241
4d68580a
RS
2242/* Read a standard MIPS instruction from BUF. */
2243
2244static unsigned long
2245read_insn (char *buf)
2246{
2247 if (target_big_endian)
2248 return bfd_getb32 ((bfd_byte *) buf);
2249 else
2250 return bfd_getl32 ((bfd_byte *) buf);
2251}
2252
2253/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2254 the next byte. */
2255
2256static char *
2257write_insn (char *buf, unsigned int insn)
2258{
2259 md_number_to_chars (buf, insn, 4);
2260 return buf + 4;
2261}
2262
2263/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2264 has length LENGTH. */
2265
2266static unsigned long
2267read_compressed_insn (char *buf, unsigned int length)
2268{
2269 unsigned long insn;
2270 unsigned int i;
2271
2272 insn = 0;
2273 for (i = 0; i < length; i += 2)
2274 {
2275 insn <<= 16;
2276 if (target_big_endian)
2277 insn |= bfd_getb16 ((char *) buf);
2278 else
2279 insn |= bfd_getl16 ((char *) buf);
2280 buf += 2;
2281 }
2282 return insn;
2283}
2284
5c04167a
RS
2285/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2286 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2287
2288static char *
2289write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2290{
2291 unsigned int i;
2292
2293 for (i = 0; i < length; i += 2)
2294 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2295 return buf + length;
2296}
2297
1e915849
RS
2298/* Install INSN at the location specified by its "frag" and "where" fields. */
2299
2300static void
2301install_insn (const struct mips_cl_insn *insn)
2302{
2303 char *f = insn->frag->fr_literal + insn->where;
5c04167a
RS
2304 if (HAVE_CODE_COMPRESSION)
2305 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1e915849 2306 else
4d68580a 2307 write_insn (f, insn->insn_opcode);
df58fc94 2308 mips_record_compressed_mode ();
1e915849
RS
2309}
2310
2311/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2312 and install the opcode in the new location. */
2313
2314static void
2315move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2316{
2317 size_t i;
2318
2319 insn->frag = frag;
2320 insn->where = where;
2321 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2322 if (insn->fixp[i] != NULL)
2323 {
2324 insn->fixp[i]->fx_frag = frag;
2325 insn->fixp[i]->fx_where = where;
2326 }
2327 install_insn (insn);
2328}
2329
2330/* Add INSN to the end of the output. */
2331
2332static void
2333add_fixed_insn (struct mips_cl_insn *insn)
2334{
2335 char *f = frag_more (insn_length (insn));
2336 move_insn (insn, frag_now, f - frag_now->fr_literal);
2337}
2338
2339/* Start a variant frag and move INSN to the start of the variant part,
2340 marking it as fixed. The other arguments are as for frag_var. */
2341
2342static void
2343add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2344 relax_substateT subtype, symbolS *symbol, offsetT offset)
2345{
2346 frag_grow (max_chars);
2347 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2348 insn->fixed_p = 1;
2349 frag_var (rs_machine_dependent, max_chars, var,
2350 subtype, symbol, offset, NULL);
2351}
2352
2353/* Insert N copies of INSN into the history buffer, starting at
2354 position FIRST. Neither FIRST nor N need to be clipped. */
2355
2356static void
2357insert_into_history (unsigned int first, unsigned int n,
2358 const struct mips_cl_insn *insn)
2359{
2360 if (mips_relax.sequence != 2)
2361 {
2362 unsigned int i;
2363
2364 for (i = ARRAY_SIZE (history); i-- > first;)
2365 if (i >= first + n)
2366 history[i] = history[i - n];
2367 else
2368 history[i] = *insn;
2369 }
2370}
2371
e3de51ce
RS
2372/* Clear the error in insn_error. */
2373
2374static void
2375clear_insn_error (void)
2376{
2377 memset (&insn_error, 0, sizeof (insn_error));
2378}
2379
2380/* Possibly record error message MSG for the current instruction.
2381 If the error is about a particular argument, ARGNUM is the 1-based
2382 number of that argument, otherwise it is 0. FORMAT is the format
2383 of MSG. Return true if MSG was used, false if the current message
2384 was kept. */
2385
2386static bfd_boolean
2387set_insn_error_format (int argnum, enum mips_insn_error_format format,
2388 const char *msg)
2389{
2390 if (argnum == 0)
2391 {
2392 /* Give priority to errors against specific arguments, and to
2393 the first whole-instruction message. */
2394 if (insn_error.msg)
2395 return FALSE;
2396 }
2397 else
2398 {
2399 /* Keep insn_error if it is against a later argument. */
2400 if (argnum < insn_error.min_argnum)
2401 return FALSE;
2402
2403 /* If both errors are against the same argument but are different,
2404 give up on reporting a specific error for this argument.
2405 See the comment about mips_insn_error for details. */
2406 if (argnum == insn_error.min_argnum
2407 && insn_error.msg
2408 && strcmp (insn_error.msg, msg) != 0)
2409 {
2410 insn_error.msg = 0;
2411 insn_error.min_argnum += 1;
2412 return FALSE;
2413 }
2414 }
2415 insn_error.min_argnum = argnum;
2416 insn_error.format = format;
2417 insn_error.msg = msg;
2418 return TRUE;
2419}
2420
2421/* Record an instruction error with no % format fields. ARGNUM and MSG are
2422 as for set_insn_error_format. */
2423
2424static void
2425set_insn_error (int argnum, const char *msg)
2426{
2427 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2428}
2429
2430/* Record an instruction error with one %d field I. ARGNUM and MSG are
2431 as for set_insn_error_format. */
2432
2433static void
2434set_insn_error_i (int argnum, const char *msg, int i)
2435{
2436 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2437 insn_error.u.i = i;
2438}
2439
2440/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2441 are as for set_insn_error_format. */
2442
2443static void
2444set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2445{
2446 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2447 {
2448 insn_error.u.ss[0] = s1;
2449 insn_error.u.ss[1] = s2;
2450 }
2451}
2452
2453/* Report the error in insn_error, which is against assembly code STR. */
2454
2455static void
2456report_insn_error (const char *str)
2457{
e1fa0163 2458 const char *msg = concat (insn_error.msg, " `%s'", NULL);
e3de51ce 2459
e3de51ce
RS
2460 switch (insn_error.format)
2461 {
2462 case ERR_FMT_PLAIN:
2463 as_bad (msg, str);
2464 break;
2465
2466 case ERR_FMT_I:
2467 as_bad (msg, insn_error.u.i, str);
2468 break;
2469
2470 case ERR_FMT_SS:
2471 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2472 break;
2473 }
e1fa0163
NC
2474
2475 free ((char *) msg);
e3de51ce
RS
2476}
2477
71400594
RS
2478/* Initialize vr4120_conflicts. There is a bit of duplication here:
2479 the idea is to make it obvious at a glance that each errata is
2480 included. */
2481
2482static void
2483init_vr4120_conflicts (void)
2484{
2485#define CONFLICT(FIRST, SECOND) \
2486 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2487
2488 /* Errata 21 - [D]DIV[U] after [D]MACC */
2489 CONFLICT (MACC, DIV);
2490 CONFLICT (DMACC, DIV);
2491
2492 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2493 CONFLICT (DMULT, DMULT);
2494 CONFLICT (DMULT, DMACC);
2495 CONFLICT (DMACC, DMULT);
2496 CONFLICT (DMACC, DMACC);
2497
2498 /* Errata 24 - MT{LO,HI} after [D]MACC */
2499 CONFLICT (MACC, MTHILO);
2500 CONFLICT (DMACC, MTHILO);
2501
2502 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2503 instruction is executed immediately after a MACC or DMACC
2504 instruction, the result of [either instruction] is incorrect." */
2505 CONFLICT (MACC, MULT);
2506 CONFLICT (MACC, DMULT);
2507 CONFLICT (DMACC, MULT);
2508 CONFLICT (DMACC, DMULT);
2509
2510 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2511 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2512 DDIV or DDIVU instruction, the result of the MACC or
2513 DMACC instruction is incorrect.". */
2514 CONFLICT (DMULT, MACC);
2515 CONFLICT (DMULT, DMACC);
2516 CONFLICT (DIV, MACC);
2517 CONFLICT (DIV, DMACC);
2518
2519#undef CONFLICT
2520}
2521
707bfff6
TS
2522struct regname {
2523 const char *name;
2524 unsigned int num;
2525};
2526
14daeee3 2527#define RNUM_MASK 0x00000ff
56d438b1 2528#define RTYPE_MASK 0x0ffff00
14daeee3
RS
2529#define RTYPE_NUM 0x0000100
2530#define RTYPE_FPU 0x0000200
2531#define RTYPE_FCC 0x0000400
2532#define RTYPE_VEC 0x0000800
2533#define RTYPE_GP 0x0001000
2534#define RTYPE_CP0 0x0002000
2535#define RTYPE_PC 0x0004000
2536#define RTYPE_ACC 0x0008000
2537#define RTYPE_CCC 0x0010000
2538#define RTYPE_VI 0x0020000
2539#define RTYPE_VF 0x0040000
2540#define RTYPE_R5900_I 0x0080000
2541#define RTYPE_R5900_Q 0x0100000
2542#define RTYPE_R5900_R 0x0200000
2543#define RTYPE_R5900_ACC 0x0400000
56d438b1 2544#define RTYPE_MSA 0x0800000
14daeee3 2545#define RWARN 0x8000000
707bfff6
TS
2546
2547#define GENERIC_REGISTER_NUMBERS \
2548 {"$0", RTYPE_NUM | 0}, \
2549 {"$1", RTYPE_NUM | 1}, \
2550 {"$2", RTYPE_NUM | 2}, \
2551 {"$3", RTYPE_NUM | 3}, \
2552 {"$4", RTYPE_NUM | 4}, \
2553 {"$5", RTYPE_NUM | 5}, \
2554 {"$6", RTYPE_NUM | 6}, \
2555 {"$7", RTYPE_NUM | 7}, \
2556 {"$8", RTYPE_NUM | 8}, \
2557 {"$9", RTYPE_NUM | 9}, \
2558 {"$10", RTYPE_NUM | 10}, \
2559 {"$11", RTYPE_NUM | 11}, \
2560 {"$12", RTYPE_NUM | 12}, \
2561 {"$13", RTYPE_NUM | 13}, \
2562 {"$14", RTYPE_NUM | 14}, \
2563 {"$15", RTYPE_NUM | 15}, \
2564 {"$16", RTYPE_NUM | 16}, \
2565 {"$17", RTYPE_NUM | 17}, \
2566 {"$18", RTYPE_NUM | 18}, \
2567 {"$19", RTYPE_NUM | 19}, \
2568 {"$20", RTYPE_NUM | 20}, \
2569 {"$21", RTYPE_NUM | 21}, \
2570 {"$22", RTYPE_NUM | 22}, \
2571 {"$23", RTYPE_NUM | 23}, \
2572 {"$24", RTYPE_NUM | 24}, \
2573 {"$25", RTYPE_NUM | 25}, \
2574 {"$26", RTYPE_NUM | 26}, \
2575 {"$27", RTYPE_NUM | 27}, \
2576 {"$28", RTYPE_NUM | 28}, \
2577 {"$29", RTYPE_NUM | 29}, \
2578 {"$30", RTYPE_NUM | 30}, \
3739860c 2579 {"$31", RTYPE_NUM | 31}
707bfff6
TS
2580
2581#define FPU_REGISTER_NAMES \
2582 {"$f0", RTYPE_FPU | 0}, \
2583 {"$f1", RTYPE_FPU | 1}, \
2584 {"$f2", RTYPE_FPU | 2}, \
2585 {"$f3", RTYPE_FPU | 3}, \
2586 {"$f4", RTYPE_FPU | 4}, \
2587 {"$f5", RTYPE_FPU | 5}, \
2588 {"$f6", RTYPE_FPU | 6}, \
2589 {"$f7", RTYPE_FPU | 7}, \
2590 {"$f8", RTYPE_FPU | 8}, \
2591 {"$f9", RTYPE_FPU | 9}, \
2592 {"$f10", RTYPE_FPU | 10}, \
2593 {"$f11", RTYPE_FPU | 11}, \
2594 {"$f12", RTYPE_FPU | 12}, \
2595 {"$f13", RTYPE_FPU | 13}, \
2596 {"$f14", RTYPE_FPU | 14}, \
2597 {"$f15", RTYPE_FPU | 15}, \
2598 {"$f16", RTYPE_FPU | 16}, \
2599 {"$f17", RTYPE_FPU | 17}, \
2600 {"$f18", RTYPE_FPU | 18}, \
2601 {"$f19", RTYPE_FPU | 19}, \
2602 {"$f20", RTYPE_FPU | 20}, \
2603 {"$f21", RTYPE_FPU | 21}, \
2604 {"$f22", RTYPE_FPU | 22}, \
2605 {"$f23", RTYPE_FPU | 23}, \
2606 {"$f24", RTYPE_FPU | 24}, \
2607 {"$f25", RTYPE_FPU | 25}, \
2608 {"$f26", RTYPE_FPU | 26}, \
2609 {"$f27", RTYPE_FPU | 27}, \
2610 {"$f28", RTYPE_FPU | 28}, \
2611 {"$f29", RTYPE_FPU | 29}, \
2612 {"$f30", RTYPE_FPU | 30}, \
2613 {"$f31", RTYPE_FPU | 31}
2614
2615#define FPU_CONDITION_CODE_NAMES \
2616 {"$fcc0", RTYPE_FCC | 0}, \
2617 {"$fcc1", RTYPE_FCC | 1}, \
2618 {"$fcc2", RTYPE_FCC | 2}, \
2619 {"$fcc3", RTYPE_FCC | 3}, \
2620 {"$fcc4", RTYPE_FCC | 4}, \
2621 {"$fcc5", RTYPE_FCC | 5}, \
2622 {"$fcc6", RTYPE_FCC | 6}, \
2623 {"$fcc7", RTYPE_FCC | 7}
2624
2625#define COPROC_CONDITION_CODE_NAMES \
2626 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2627 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2628 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2629 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2630 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2631 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2632 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2633 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2634
2635#define N32N64_SYMBOLIC_REGISTER_NAMES \
2636 {"$a4", RTYPE_GP | 8}, \
2637 {"$a5", RTYPE_GP | 9}, \
2638 {"$a6", RTYPE_GP | 10}, \
2639 {"$a7", RTYPE_GP | 11}, \
2640 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2641 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2642 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2643 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2644 {"$t0", RTYPE_GP | 12}, \
2645 {"$t1", RTYPE_GP | 13}, \
2646 {"$t2", RTYPE_GP | 14}, \
2647 {"$t3", RTYPE_GP | 15}
2648
2649#define O32_SYMBOLIC_REGISTER_NAMES \
2650 {"$t0", RTYPE_GP | 8}, \
2651 {"$t1", RTYPE_GP | 9}, \
2652 {"$t2", RTYPE_GP | 10}, \
2653 {"$t3", RTYPE_GP | 11}, \
2654 {"$t4", RTYPE_GP | 12}, \
2655 {"$t5", RTYPE_GP | 13}, \
2656 {"$t6", RTYPE_GP | 14}, \
2657 {"$t7", RTYPE_GP | 15}, \
2658 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2659 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2660 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
3739860c 2661 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
707bfff6
TS
2662
2663/* Remaining symbolic register names */
2664#define SYMBOLIC_REGISTER_NAMES \
2665 {"$zero", RTYPE_GP | 0}, \
2666 {"$at", RTYPE_GP | 1}, \
2667 {"$AT", RTYPE_GP | 1}, \
2668 {"$v0", RTYPE_GP | 2}, \
2669 {"$v1", RTYPE_GP | 3}, \
2670 {"$a0", RTYPE_GP | 4}, \
2671 {"$a1", RTYPE_GP | 5}, \
2672 {"$a2", RTYPE_GP | 6}, \
2673 {"$a3", RTYPE_GP | 7}, \
2674 {"$s0", RTYPE_GP | 16}, \
2675 {"$s1", RTYPE_GP | 17}, \
2676 {"$s2", RTYPE_GP | 18}, \
2677 {"$s3", RTYPE_GP | 19}, \
2678 {"$s4", RTYPE_GP | 20}, \
2679 {"$s5", RTYPE_GP | 21}, \
2680 {"$s6", RTYPE_GP | 22}, \
2681 {"$s7", RTYPE_GP | 23}, \
2682 {"$t8", RTYPE_GP | 24}, \
2683 {"$t9", RTYPE_GP | 25}, \
2684 {"$k0", RTYPE_GP | 26}, \
2685 {"$kt0", RTYPE_GP | 26}, \
2686 {"$k1", RTYPE_GP | 27}, \
2687 {"$kt1", RTYPE_GP | 27}, \
2688 {"$gp", RTYPE_GP | 28}, \
2689 {"$sp", RTYPE_GP | 29}, \
2690 {"$s8", RTYPE_GP | 30}, \
2691 {"$fp", RTYPE_GP | 30}, \
2692 {"$ra", RTYPE_GP | 31}
2693
2694#define MIPS16_SPECIAL_REGISTER_NAMES \
2695 {"$pc", RTYPE_PC | 0}
2696
2697#define MDMX_VECTOR_REGISTER_NAMES \
2698 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2699 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2700 {"$v2", RTYPE_VEC | 2}, \
2701 {"$v3", RTYPE_VEC | 3}, \
2702 {"$v4", RTYPE_VEC | 4}, \
2703 {"$v5", RTYPE_VEC | 5}, \
2704 {"$v6", RTYPE_VEC | 6}, \
2705 {"$v7", RTYPE_VEC | 7}, \
2706 {"$v8", RTYPE_VEC | 8}, \
2707 {"$v9", RTYPE_VEC | 9}, \
2708 {"$v10", RTYPE_VEC | 10}, \
2709 {"$v11", RTYPE_VEC | 11}, \
2710 {"$v12", RTYPE_VEC | 12}, \
2711 {"$v13", RTYPE_VEC | 13}, \
2712 {"$v14", RTYPE_VEC | 14}, \
2713 {"$v15", RTYPE_VEC | 15}, \
2714 {"$v16", RTYPE_VEC | 16}, \
2715 {"$v17", RTYPE_VEC | 17}, \
2716 {"$v18", RTYPE_VEC | 18}, \
2717 {"$v19", RTYPE_VEC | 19}, \
2718 {"$v20", RTYPE_VEC | 20}, \
2719 {"$v21", RTYPE_VEC | 21}, \
2720 {"$v22", RTYPE_VEC | 22}, \
2721 {"$v23", RTYPE_VEC | 23}, \
2722 {"$v24", RTYPE_VEC | 24}, \
2723 {"$v25", RTYPE_VEC | 25}, \
2724 {"$v26", RTYPE_VEC | 26}, \
2725 {"$v27", RTYPE_VEC | 27}, \
2726 {"$v28", RTYPE_VEC | 28}, \
2727 {"$v29", RTYPE_VEC | 29}, \
2728 {"$v30", RTYPE_VEC | 30}, \
2729 {"$v31", RTYPE_VEC | 31}
2730
14daeee3
RS
2731#define R5900_I_NAMES \
2732 {"$I", RTYPE_R5900_I | 0}
2733
2734#define R5900_Q_NAMES \
2735 {"$Q", RTYPE_R5900_Q | 0}
2736
2737#define R5900_R_NAMES \
2738 {"$R", RTYPE_R5900_R | 0}
2739
2740#define R5900_ACC_NAMES \
2741 {"$ACC", RTYPE_R5900_ACC | 0 }
2742
707bfff6
TS
2743#define MIPS_DSP_ACCUMULATOR_NAMES \
2744 {"$ac0", RTYPE_ACC | 0}, \
2745 {"$ac1", RTYPE_ACC | 1}, \
2746 {"$ac2", RTYPE_ACC | 2}, \
2747 {"$ac3", RTYPE_ACC | 3}
2748
2749static const struct regname reg_names[] = {
2750 GENERIC_REGISTER_NUMBERS,
2751 FPU_REGISTER_NAMES,
2752 FPU_CONDITION_CODE_NAMES,
2753 COPROC_CONDITION_CODE_NAMES,
2754
2755 /* The $txx registers depends on the abi,
2756 these will be added later into the symbol table from
3739860c 2757 one of the tables below once mips_abi is set after
707bfff6
TS
2758 parsing of arguments from the command line. */
2759 SYMBOLIC_REGISTER_NAMES,
2760
2761 MIPS16_SPECIAL_REGISTER_NAMES,
2762 MDMX_VECTOR_REGISTER_NAMES,
14daeee3
RS
2763 R5900_I_NAMES,
2764 R5900_Q_NAMES,
2765 R5900_R_NAMES,
2766 R5900_ACC_NAMES,
707bfff6
TS
2767 MIPS_DSP_ACCUMULATOR_NAMES,
2768 {0, 0}
2769};
2770
2771static const struct regname reg_names_o32[] = {
2772 O32_SYMBOLIC_REGISTER_NAMES,
2773 {0, 0}
2774};
2775
2776static const struct regname reg_names_n32n64[] = {
2777 N32N64_SYMBOLIC_REGISTER_NAMES,
2778 {0, 0}
2779};
2780
a92713e6
RS
2781/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2782 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2783 of these register symbols, return the associated vector register,
2784 otherwise return SYMVAL itself. */
df58fc94 2785
a92713e6
RS
2786static unsigned int
2787mips_prefer_vec_regno (unsigned int symval)
707bfff6 2788{
a92713e6
RS
2789 if ((symval & -2) == (RTYPE_GP | 2))
2790 return RTYPE_VEC | (symval & 1);
2791 return symval;
2792}
2793
14daeee3
RS
2794/* Return true if string [S, E) is a valid register name, storing its
2795 symbol value in *SYMVAL_PTR if so. */
a92713e6
RS
2796
2797static bfd_boolean
14daeee3 2798mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
a92713e6 2799{
707bfff6 2800 char save_c;
14daeee3 2801 symbolS *symbol;
707bfff6
TS
2802
2803 /* Terminate name. */
2804 save_c = *e;
2805 *e = '\0';
2806
a92713e6
RS
2807 /* Look up the name. */
2808 symbol = symbol_find (s);
2809 *e = save_c;
2810
2811 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2812 return FALSE;
2813
14daeee3
RS
2814 *symval_ptr = S_GET_VALUE (symbol);
2815 return TRUE;
2816}
2817
2818/* Return true if the string at *SPTR is a valid register name. Allow it
2819 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2820 is nonnull.
2821
2822 When returning true, move *SPTR past the register, store the
2823 register's symbol value in *SYMVAL_PTR and the channel mask in
2824 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2825 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2826 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2827
2828static bfd_boolean
2829mips_parse_register (char **sptr, unsigned int *symval_ptr,
2830 unsigned int *channels_ptr)
2831{
2832 char *s, *e, *m;
2833 const char *q;
2834 unsigned int channels, symval, bit;
2835
2836 /* Find end of name. */
2837 s = e = *sptr;
2838 if (is_name_beginner (*e))
2839 ++e;
2840 while (is_part_of_name (*e))
2841 ++e;
2842
2843 channels = 0;
2844 if (!mips_parse_register_1 (s, e, &symval))
2845 {
2846 if (!channels_ptr)
2847 return FALSE;
2848
2849 /* Eat characters from the end of the string that are valid
2850 channel suffixes. The preceding register must be $ACC or
2851 end with a digit, so there is no ambiguity. */
2852 bit = 1;
2853 m = e;
2854 for (q = "wzyx"; *q; q++, bit <<= 1)
2855 if (m > s && m[-1] == *q)
2856 {
2857 --m;
2858 channels |= bit;
2859 }
2860
2861 if (channels == 0
2862 || !mips_parse_register_1 (s, m, &symval)
2863 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2864 return FALSE;
2865 }
2866
a92713e6 2867 *sptr = e;
14daeee3
RS
2868 *symval_ptr = symval;
2869 if (channels_ptr)
2870 *channels_ptr = channels;
a92713e6
RS
2871 return TRUE;
2872}
2873
2874/* Check if SPTR points at a valid register specifier according to TYPES.
2875 If so, then return 1, advance S to consume the specifier and store
2876 the register's number in REGNOP, otherwise return 0. */
2877
2878static int
2879reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2880{
2881 unsigned int regno;
2882
14daeee3 2883 if (mips_parse_register (s, &regno, NULL))
707bfff6 2884 {
a92713e6
RS
2885 if (types & RTYPE_VEC)
2886 regno = mips_prefer_vec_regno (regno);
2887 if (regno & types)
2888 regno &= RNUM_MASK;
2889 else
2890 regno = ~0;
707bfff6 2891 }
a92713e6 2892 else
707bfff6 2893 {
a92713e6 2894 if (types & RWARN)
1661c76c 2895 as_warn (_("unrecognized register name `%s'"), *s);
a92713e6 2896 regno = ~0;
707bfff6 2897 }
707bfff6 2898 if (regnop)
a92713e6
RS
2899 *regnop = regno;
2900 return regno <= RNUM_MASK;
707bfff6
TS
2901}
2902
14daeee3
RS
2903/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2904 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2905
2906static char *
2907mips_parse_vu0_channels (char *s, unsigned int *channels)
2908{
2909 unsigned int i;
2910
2911 *channels = 0;
2912 for (i = 0; i < 4; i++)
2913 if (*s == "xyzw"[i])
2914 {
2915 *channels |= 1 << (3 - i);
2916 ++s;
2917 }
2918 return s;
2919}
2920
a92713e6
RS
2921/* Token types for parsed operand lists. */
2922enum mips_operand_token_type {
2923 /* A plain register, e.g. $f2. */
2924 OT_REG,
df58fc94 2925
14daeee3
RS
2926 /* A 4-bit XYZW channel mask. */
2927 OT_CHANNELS,
2928
56d438b1
CF
2929 /* A constant vector index, e.g. [1]. */
2930 OT_INTEGER_INDEX,
2931
2932 /* A register vector index, e.g. [$2]. */
2933 OT_REG_INDEX,
df58fc94 2934
a92713e6
RS
2935 /* A continuous range of registers, e.g. $s0-$s4. */
2936 OT_REG_RANGE,
2937
2938 /* A (possibly relocated) expression. */
2939 OT_INTEGER,
2940
2941 /* A floating-point value. */
2942 OT_FLOAT,
2943
2944 /* A single character. This can be '(', ')' or ',', but '(' only appears
2945 before OT_REGs. */
2946 OT_CHAR,
2947
14daeee3
RS
2948 /* A doubled character, either "--" or "++". */
2949 OT_DOUBLE_CHAR,
2950
a92713e6
RS
2951 /* The end of the operand list. */
2952 OT_END
2953};
2954
2955/* A parsed operand token. */
2956struct mips_operand_token
2957{
2958 /* The type of token. */
2959 enum mips_operand_token_type type;
2960 union
2961 {
56d438b1 2962 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
a92713e6
RS
2963 unsigned int regno;
2964
14daeee3
RS
2965 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2966 unsigned int channels;
2967
56d438b1
CF
2968 /* The integer value of an OT_INTEGER_INDEX. */
2969 addressT index;
a92713e6
RS
2970
2971 /* The two register symbol values involved in an OT_REG_RANGE. */
2972 struct {
2973 unsigned int regno1;
2974 unsigned int regno2;
2975 } reg_range;
2976
2977 /* The value of an OT_INTEGER. The value is represented as an
2978 expression and the relocation operators that were applied to
2979 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2980 relocation operators were used. */
2981 struct {
2982 expressionS value;
2983 bfd_reloc_code_real_type relocs[3];
2984 } integer;
2985
2986 /* The binary data for an OT_FLOAT constant, and the number of bytes
2987 in the constant. */
2988 struct {
2989 unsigned char data[8];
2990 int length;
2991 } flt;
2992
14daeee3 2993 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
a92713e6
RS
2994 char ch;
2995 } u;
2996};
2997
2998/* An obstack used to construct lists of mips_operand_tokens. */
2999static struct obstack mips_operand_tokens;
3000
3001/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
3002
3003static void
3004mips_add_token (struct mips_operand_token *token,
3005 enum mips_operand_token_type type)
3006{
3007 token->type = type;
3008 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
3009}
3010
3011/* Check whether S is '(' followed by a register name. Add OT_CHAR
3012 and OT_REG tokens for them if so, and return a pointer to the first
3013 unconsumed character. Return null otherwise. */
3014
3015static char *
3016mips_parse_base_start (char *s)
3017{
3018 struct mips_operand_token token;
14daeee3
RS
3019 unsigned int regno, channels;
3020 bfd_boolean decrement_p;
df58fc94 3021
a92713e6
RS
3022 if (*s != '(')
3023 return 0;
3024
3025 ++s;
3026 SKIP_SPACE_TABS (s);
14daeee3
RS
3027
3028 /* Only match "--" as part of a base expression. In other contexts "--X"
3029 is a double negative. */
3030 decrement_p = (s[0] == '-' && s[1] == '-');
3031 if (decrement_p)
3032 {
3033 s += 2;
3034 SKIP_SPACE_TABS (s);
3035 }
3036
3037 /* Allow a channel specifier because that leads to better error messages
3038 than treating something like "$vf0x++" as an expression. */
3039 if (!mips_parse_register (&s, &regno, &channels))
a92713e6
RS
3040 return 0;
3041
3042 token.u.ch = '(';
3043 mips_add_token (&token, OT_CHAR);
3044
14daeee3
RS
3045 if (decrement_p)
3046 {
3047 token.u.ch = '-';
3048 mips_add_token (&token, OT_DOUBLE_CHAR);
3049 }
3050
a92713e6
RS
3051 token.u.regno = regno;
3052 mips_add_token (&token, OT_REG);
3053
14daeee3
RS
3054 if (channels)
3055 {
3056 token.u.channels = channels;
3057 mips_add_token (&token, OT_CHANNELS);
3058 }
3059
3060 /* For consistency, only match "++" as part of base expressions too. */
3061 SKIP_SPACE_TABS (s);
3062 if (s[0] == '+' && s[1] == '+')
3063 {
3064 s += 2;
3065 token.u.ch = '+';
3066 mips_add_token (&token, OT_DOUBLE_CHAR);
3067 }
3068
a92713e6
RS
3069 return s;
3070}
3071
3072/* Parse one or more tokens from S. Return a pointer to the first
3073 unconsumed character on success. Return null if an error was found
3074 and store the error text in insn_error. FLOAT_FORMAT is as for
3075 mips_parse_arguments. */
3076
3077static char *
3078mips_parse_argument_token (char *s, char float_format)
3079{
6d4af3c2
AM
3080 char *end, *save_in;
3081 const char *err;
14daeee3 3082 unsigned int regno1, regno2, channels;
a92713e6
RS
3083 struct mips_operand_token token;
3084
3085 /* First look for "($reg", since we want to treat that as an
3086 OT_CHAR and OT_REG rather than an expression. */
3087 end = mips_parse_base_start (s);
3088 if (end)
3089 return end;
3090
3091 /* Handle other characters that end up as OT_CHARs. */
3092 if (*s == ')' || *s == ',')
3093 {
3094 token.u.ch = *s;
3095 mips_add_token (&token, OT_CHAR);
3096 ++s;
3097 return s;
3098 }
3099
3100 /* Handle tokens that start with a register. */
14daeee3 3101 if (mips_parse_register (&s, &regno1, &channels))
df58fc94 3102 {
14daeee3
RS
3103 if (channels)
3104 {
3105 /* A register and a VU0 channel suffix. */
3106 token.u.regno = regno1;
3107 mips_add_token (&token, OT_REG);
3108
3109 token.u.channels = channels;
3110 mips_add_token (&token, OT_CHANNELS);
3111 return s;
3112 }
3113
a92713e6
RS
3114 SKIP_SPACE_TABS (s);
3115 if (*s == '-')
df58fc94 3116 {
a92713e6
RS
3117 /* A register range. */
3118 ++s;
3119 SKIP_SPACE_TABS (s);
14daeee3 3120 if (!mips_parse_register (&s, &regno2, NULL))
a92713e6 3121 {
1661c76c 3122 set_insn_error (0, _("invalid register range"));
a92713e6
RS
3123 return 0;
3124 }
df58fc94 3125
a92713e6
RS
3126 token.u.reg_range.regno1 = regno1;
3127 token.u.reg_range.regno2 = regno2;
3128 mips_add_token (&token, OT_REG_RANGE);
3129 return s;
3130 }
a92713e6 3131
56d438b1
CF
3132 /* Add the register itself. */
3133 token.u.regno = regno1;
3134 mips_add_token (&token, OT_REG);
3135
3136 /* Check for a vector index. */
3137 if (*s == '[')
3138 {
a92713e6
RS
3139 ++s;
3140 SKIP_SPACE_TABS (s);
56d438b1
CF
3141 if (mips_parse_register (&s, &token.u.regno, NULL))
3142 mips_add_token (&token, OT_REG_INDEX);
3143 else
a92713e6 3144 {
56d438b1
CF
3145 expressionS element;
3146
3147 my_getExpression (&element, s);
3148 if (element.X_op != O_constant)
3149 {
3150 set_insn_error (0, _("vector element must be constant"));
3151 return 0;
3152 }
3153 s = expr_end;
3154 token.u.index = element.X_add_number;
3155 mips_add_token (&token, OT_INTEGER_INDEX);
a92713e6 3156 }
a92713e6
RS
3157 SKIP_SPACE_TABS (s);
3158 if (*s != ']')
3159 {
1661c76c 3160 set_insn_error (0, _("missing `]'"));
a92713e6
RS
3161 return 0;
3162 }
3163 ++s;
df58fc94 3164 }
a92713e6 3165 return s;
df58fc94
RS
3166 }
3167
a92713e6
RS
3168 if (float_format)
3169 {
3170 /* First try to treat expressions as floats. */
3171 save_in = input_line_pointer;
3172 input_line_pointer = s;
3173 err = md_atof (float_format, (char *) token.u.flt.data,
3174 &token.u.flt.length);
3175 end = input_line_pointer;
3176 input_line_pointer = save_in;
3177 if (err && *err)
3178 {
e3de51ce 3179 set_insn_error (0, err);
a92713e6
RS
3180 return 0;
3181 }
3182 if (s != end)
3183 {
3184 mips_add_token (&token, OT_FLOAT);
3185 return end;
3186 }
3187 }
3188
3189 /* Treat everything else as an integer expression. */
3190 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3191 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3192 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3193 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3194 s = expr_end;
3195 mips_add_token (&token, OT_INTEGER);
3196 return s;
3197}
3198
3199/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3200 if expressions should be treated as 32-bit floating-point constants,
3201 'd' if they should be treated as 64-bit floating-point constants,
3202 or 0 if they should be treated as integer expressions (the usual case).
3203
3204 Return a list of tokens on success, otherwise return 0. The caller
3205 must obstack_free the list after use. */
3206
3207static struct mips_operand_token *
3208mips_parse_arguments (char *s, char float_format)
3209{
3210 struct mips_operand_token token;
3211
3212 SKIP_SPACE_TABS (s);
3213 while (*s)
3214 {
3215 s = mips_parse_argument_token (s, float_format);
3216 if (!s)
3217 {
3218 obstack_free (&mips_operand_tokens,
3219 obstack_finish (&mips_operand_tokens));
3220 return 0;
3221 }
3222 SKIP_SPACE_TABS (s);
3223 }
3224 mips_add_token (&token, OT_END);
3225 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
df58fc94
RS
3226}
3227
d301a56b
RS
3228/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3229 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
037b32b9
AN
3230
3231static bfd_boolean
f79e2745 3232is_opcode_valid (const struct mips_opcode *mo)
037b32b9
AN
3233{
3234 int isa = mips_opts.isa;
846ef2d0 3235 int ase = mips_opts.ase;
037b32b9 3236 int fp_s, fp_d;
c6278170 3237 unsigned int i;
037b32b9 3238
be0fcbee 3239 if (ISA_HAS_64BIT_REGS (isa))
c6278170
RS
3240 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3241 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3242 ase |= mips_ases[i].flags64;
037b32b9 3243
d301a56b 3244 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
037b32b9
AN
3245 return FALSE;
3246
3247 /* Check whether the instruction or macro requires single-precision or
3248 double-precision floating-point support. Note that this information is
3249 stored differently in the opcode table for insns and macros. */
3250 if (mo->pinfo == INSN_MACRO)
3251 {
3252 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3253 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3254 }
3255 else
3256 {
3257 fp_s = mo->pinfo & FP_S;
3258 fp_d = mo->pinfo & FP_D;
3259 }
3260
3261 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3262 return FALSE;
3263
3264 if (fp_s && mips_opts.soft_float)
3265 return FALSE;
3266
3267 return TRUE;
3268}
3269
3270/* Return TRUE if the MIPS16 opcode MO is valid on the currently
3271 selected ISA and architecture. */
3272
3273static bfd_boolean
3274is_opcode_valid_16 (const struct mips_opcode *mo)
3275{
d301a56b 3276 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
037b32b9
AN
3277}
3278
df58fc94 3279/* Return TRUE if the size of the microMIPS opcode MO matches one
7fd53920
MR
3280 explicitly requested. Always TRUE in the standard MIPS mode.
3281 Use is_size_valid_16 for MIPS16 opcodes. */
df58fc94
RS
3282
3283static bfd_boolean
3284is_size_valid (const struct mips_opcode *mo)
3285{
3286 if (!mips_opts.micromips)
3287 return TRUE;
3288
833794fc
MR
3289 if (mips_opts.insn32)
3290 {
3291 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3292 return FALSE;
3293 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3294 return FALSE;
3295 }
df58fc94
RS
3296 if (!forced_insn_length)
3297 return TRUE;
3298 if (mo->pinfo == INSN_MACRO)
3299 return FALSE;
3300 return forced_insn_length == micromips_insn_length (mo);
3301}
3302
7fd53920
MR
3303/* Return TRUE if the size of the MIPS16 opcode MO matches one
3304 explicitly requested. */
3305
3306static bfd_boolean
3307is_size_valid_16 (const struct mips_opcode *mo)
3308{
3309 if (!forced_insn_length)
3310 return TRUE;
3311 if (mo->pinfo == INSN_MACRO)
3312 return FALSE;
3313 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3314 return FALSE;
0674ee5d
MR
3315 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3316 return FALSE;
7fd53920
MR
3317 return TRUE;
3318}
3319
df58fc94 3320/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
e64af278
MR
3321 of the preceding instruction. Always TRUE in the standard MIPS mode.
3322
3323 We don't accept macros in 16-bit delay slots to avoid a case where
3324 a macro expansion fails because it relies on a preceding 32-bit real
3325 instruction to have matched and does not handle the operands correctly.
3326 The only macros that may expand to 16-bit instructions are JAL that
3327 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3328 and BGT (that likewise cannot be placed in a delay slot) that decay to
3329 a NOP. In all these cases the macros precede any corresponding real
3330 instruction definitions in the opcode table, so they will match in the
3331 second pass where the size of the delay slot is ignored and therefore
3332 produce correct code. */
df58fc94
RS
3333
3334static bfd_boolean
3335is_delay_slot_valid (const struct mips_opcode *mo)
3336{
3337 if (!mips_opts.micromips)
3338 return TRUE;
3339
3340 if (mo->pinfo == INSN_MACRO)
c06dec14 3341 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
df58fc94
RS
3342 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3343 && micromips_insn_length (mo) != 4)
3344 return FALSE;
3345 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3346 && micromips_insn_length (mo) != 2)
3347 return FALSE;
3348
3349 return TRUE;
3350}
3351
fc76e730
RS
3352/* For consistency checking, verify that all bits of OPCODE are specified
3353 either by the match/mask part of the instruction definition, or by the
3354 operand list. Also build up a list of operands in OPERANDS.
3355
3356 INSN_BITS says which bits of the instruction are significant.
3357 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3358 provides the mips_operand description of each operand. DECODE_OPERAND
3359 is null for MIPS16 instructions. */
ab902481
RS
3360
3361static int
3362validate_mips_insn (const struct mips_opcode *opcode,
3363 unsigned long insn_bits,
fc76e730
RS
3364 const struct mips_operand *(*decode_operand) (const char *),
3365 struct mips_operand_array *operands)
ab902481
RS
3366{
3367 const char *s;
fc76e730 3368 unsigned long used_bits, doubled, undefined, opno, mask;
ab902481
RS
3369 const struct mips_operand *operand;
3370
fc76e730
RS
3371 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3372 if ((mask & opcode->match) != opcode->match)
ab902481
RS
3373 {
3374 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3375 opcode->name, opcode->args);
3376 return 0;
3377 }
3378 used_bits = 0;
fc76e730 3379 opno = 0;
14daeee3
RS
3380 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3381 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
ab902481
RS
3382 for (s = opcode->args; *s; ++s)
3383 switch (*s)
3384 {
3385 case ',':
3386 case '(':
3387 case ')':
3388 break;
3389
14daeee3
RS
3390 case '#':
3391 s++;
3392 break;
3393
ab902481 3394 default:
fc76e730 3395 if (!decode_operand)
7fd53920 3396 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
fc76e730
RS
3397 else
3398 operand = decode_operand (s);
3399 if (!operand && opcode->pinfo != INSN_MACRO)
ab902481
RS
3400 {
3401 as_bad (_("internal: unknown operand type: %s %s"),
3402 opcode->name, opcode->args);
3403 return 0;
3404 }
fc76e730
RS
3405 gas_assert (opno < MAX_OPERANDS);
3406 operands->operand[opno] = operand;
14daeee3 3407 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
fc76e730 3408 {
14daeee3 3409 used_bits = mips_insert_operand (operand, used_bits, -1);
fc76e730
RS
3410 if (operand->type == OP_MDMX_IMM_REG)
3411 /* Bit 5 is the format selector (OB vs QH). The opcode table
3412 has separate entries for each format. */
3413 used_bits &= ~(1 << (operand->lsb + 5));
3414 if (operand->type == OP_ENTRY_EXIT_LIST)
3415 used_bits &= ~(mask & 0x700);
3416 }
ab902481 3417 /* Skip prefix characters. */
7361da2c 3418 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
ab902481 3419 ++s;
fc76e730 3420 opno += 1;
ab902481
RS
3421 break;
3422 }
fc76e730 3423 doubled = used_bits & mask & insn_bits;
ab902481
RS
3424 if (doubled)
3425 {
3426 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3427 " %s %s"), doubled, opcode->name, opcode->args);
3428 return 0;
3429 }
fc76e730 3430 used_bits |= mask;
ab902481 3431 undefined = ~used_bits & insn_bits;
fc76e730 3432 if (opcode->pinfo != INSN_MACRO && undefined)
ab902481
RS
3433 {
3434 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3435 undefined, opcode->name, opcode->args);
3436 return 0;
3437 }
3438 used_bits &= ~insn_bits;
3439 if (used_bits)
3440 {
3441 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3442 used_bits, opcode->name, opcode->args);
3443 return 0;
3444 }
3445 return 1;
3446}
3447
fc76e730
RS
3448/* The MIPS16 version of validate_mips_insn. */
3449
3450static int
3451validate_mips16_insn (const struct mips_opcode *opcode,
3452 struct mips_operand_array *operands)
3453{
7fd53920 3454 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
fc76e730 3455
7fd53920 3456 return validate_mips_insn (opcode, insn_bits, 0, operands);
fc76e730
RS
3457}
3458
ab902481
RS
3459/* The microMIPS version of validate_mips_insn. */
3460
3461static int
fc76e730
RS
3462validate_micromips_insn (const struct mips_opcode *opc,
3463 struct mips_operand_array *operands)
ab902481
RS
3464{
3465 unsigned long insn_bits;
3466 unsigned long major;
3467 unsigned int length;
3468
fc76e730
RS
3469 if (opc->pinfo == INSN_MACRO)
3470 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3471 operands);
3472
ab902481
RS
3473 length = micromips_insn_length (opc);
3474 if (length != 2 && length != 4)
3475 {
1661c76c 3476 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
ab902481
RS
3477 "%s %s"), length, opc->name, opc->args);
3478 return 0;
3479 }
3480 major = opc->match >> (10 + 8 * (length - 2));
3481 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3482 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3483 {
1661c76c 3484 as_bad (_("internal error: bad microMIPS opcode "
ab902481
RS
3485 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3486 return 0;
3487 }
3488
3489 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3490 insn_bits = 1 << 4 * length;
3491 insn_bits <<= 4 * length;
3492 insn_bits -= 1;
fc76e730
RS
3493 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3494 operands);
ab902481
RS
3495}
3496
707bfff6
TS
3497/* This function is called once, at assembler startup time. It should set up
3498 all the tables, etc. that the MD part of the assembler will need. */
156c2f8b 3499
252b5132 3500void
17a2f251 3501md_begin (void)
252b5132 3502{
3994f87e 3503 const char *retval = NULL;
156c2f8b 3504 int i = 0;
252b5132 3505 int broken = 0;
1f25f5d3 3506
0a44bf69
RS
3507 if (mips_pic != NO_PIC)
3508 {
3509 if (g_switch_seen && g_switch_value != 0)
3510 as_bad (_("-G may not be used in position-independent code"));
3511 g_switch_value = 0;
3512 }
00acd688
CM
3513 else if (mips_abicalls)
3514 {
3515 if (g_switch_seen && g_switch_value != 0)
3516 as_bad (_("-G may not be used with abicalls"));
3517 g_switch_value = 0;
3518 }
0a44bf69 3519
0b35dfee 3520 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
1661c76c 3521 as_warn (_("could not set architecture and machine"));
252b5132 3522
252b5132
RH
3523 op_hash = hash_new ();
3524
fc76e730 3525 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
252b5132
RH
3526 for (i = 0; i < NUMOPCODES;)
3527 {
3528 const char *name = mips_opcodes[i].name;
3529
17a2f251 3530 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
252b5132
RH
3531 if (retval != NULL)
3532 {
3533 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3534 mips_opcodes[i].name, retval);
3535 /* Probably a memory allocation problem? Give up now. */
1661c76c 3536 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3537 }
3538 do
3539 {
fc76e730
RS
3540 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3541 decode_mips_operand, &mips_operands[i]))
3542 broken = 1;
3543 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
252b5132 3544 {
fc76e730
RS
3545 create_insn (&nop_insn, mips_opcodes + i);
3546 if (mips_fix_loongson2f_nop)
3547 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3548 nop_insn.fixed_p = 1;
252b5132
RH
3549 }
3550 ++i;
3551 }
3552 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3553 }
3554
3555 mips16_op_hash = hash_new ();
fc76e730
RS
3556 mips16_operands = XCNEWVEC (struct mips_operand_array,
3557 bfd_mips16_num_opcodes);
252b5132
RH
3558
3559 i = 0;
3560 while (i < bfd_mips16_num_opcodes)
3561 {
3562 const char *name = mips16_opcodes[i].name;
3563
17a2f251 3564 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
252b5132
RH
3565 if (retval != NULL)
3566 as_fatal (_("internal: can't hash `%s': %s"),
3567 mips16_opcodes[i].name, retval);
3568 do
3569 {
fc76e730
RS
3570 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3571 broken = 1;
1e915849
RS
3572 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3573 {
3574 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3575 mips16_nop_insn.fixed_p = 1;
3576 }
252b5132
RH
3577 ++i;
3578 }
3579 while (i < bfd_mips16_num_opcodes
3580 && strcmp (mips16_opcodes[i].name, name) == 0);
3581 }
3582
df58fc94 3583 micromips_op_hash = hash_new ();
fc76e730
RS
3584 micromips_operands = XCNEWVEC (struct mips_operand_array,
3585 bfd_micromips_num_opcodes);
df58fc94
RS
3586
3587 i = 0;
3588 while (i < bfd_micromips_num_opcodes)
3589 {
3590 const char *name = micromips_opcodes[i].name;
3591
3592 retval = hash_insert (micromips_op_hash, name,
3593 (void *) &micromips_opcodes[i]);
3594 if (retval != NULL)
3595 as_fatal (_("internal: can't hash `%s': %s"),
3596 micromips_opcodes[i].name, retval);
3597 do
fc76e730
RS
3598 {
3599 struct mips_cl_insn *micromips_nop_insn;
3600
3601 if (!validate_micromips_insn (&micromips_opcodes[i],
3602 &micromips_operands[i]))
3603 broken = 1;
3604
3605 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3606 {
3607 if (micromips_insn_length (micromips_opcodes + i) == 2)
3608 micromips_nop_insn = &micromips_nop16_insn;
3609 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3610 micromips_nop_insn = &micromips_nop32_insn;
3611 else
3612 continue;
3613
3614 if (micromips_nop_insn->insn_mo == NULL
3615 && strcmp (name, "nop") == 0)
3616 {
3617 create_insn (micromips_nop_insn, micromips_opcodes + i);
3618 micromips_nop_insn->fixed_p = 1;
3619 }
3620 }
3621 }
df58fc94
RS
3622 while (++i < bfd_micromips_num_opcodes
3623 && strcmp (micromips_opcodes[i].name, name) == 0);
3624 }
3625
252b5132 3626 if (broken)
1661c76c 3627 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3628
3629 /* We add all the general register names to the symbol table. This
3630 helps us detect invalid uses of them. */
3739860c 3631 for (i = 0; reg_names[i].name; i++)
707bfff6 3632 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
8fc4ee9b 3633 reg_names[i].num, /* & RNUM_MASK, */
707bfff6
TS
3634 &zero_address_frag));
3635 if (HAVE_NEWABI)
3739860c 3636 for (i = 0; reg_names_n32n64[i].name; i++)
707bfff6 3637 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
8fc4ee9b 3638 reg_names_n32n64[i].num, /* & RNUM_MASK, */
252b5132 3639 &zero_address_frag));
707bfff6 3640 else
3739860c 3641 for (i = 0; reg_names_o32[i].name; i++)
707bfff6 3642 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
8fc4ee9b 3643 reg_names_o32[i].num, /* & RNUM_MASK, */
6047c971 3644 &zero_address_frag));
6047c971 3645
14daeee3
RS
3646 for (i = 0; i < 32; i++)
3647 {
92fce9bd 3648 char regname[6];
14daeee3
RS
3649
3650 /* R5900 VU0 floating-point register. */
92fce9bd 3651 sprintf (regname, "$vf%d", i);
14daeee3
RS
3652 symbol_table_insert (symbol_new (regname, reg_section,
3653 RTYPE_VF | i, &zero_address_frag));
3654
3655 /* R5900 VU0 integer register. */
92fce9bd 3656 sprintf (regname, "$vi%d", i);
14daeee3
RS
3657 symbol_table_insert (symbol_new (regname, reg_section,
3658 RTYPE_VI | i, &zero_address_frag));
3659
56d438b1 3660 /* MSA register. */
92fce9bd 3661 sprintf (regname, "$w%d", i);
56d438b1
CF
3662 symbol_table_insert (symbol_new (regname, reg_section,
3663 RTYPE_MSA | i, &zero_address_frag));
14daeee3
RS
3664 }
3665
a92713e6
RS
3666 obstack_init (&mips_operand_tokens);
3667
7d10b47d 3668 mips_no_prev_insn ();
252b5132
RH
3669
3670 mips_gprmask = 0;
3671 mips_cprmask[0] = 0;
3672 mips_cprmask[1] = 0;
3673 mips_cprmask[2] = 0;
3674 mips_cprmask[3] = 0;
3675
3676 /* set the default alignment for the text section (2**2) */
3677 record_alignment (text_section, 2);
3678
4d0d148d 3679 bfd_set_gp_size (stdoutput, g_switch_value);
252b5132 3680
f3ded42a
RS
3681 /* On a native system other than VxWorks, sections must be aligned
3682 to 16 byte boundaries. When configured for an embedded ELF
3683 target, we don't bother. */
3684 if (strncmp (TARGET_OS, "elf", 3) != 0
3685 && strncmp (TARGET_OS, "vxworks", 7) != 0)
252b5132 3686 {
f3ded42a
RS
3687 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3688 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3689 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3690 }
252b5132 3691
f3ded42a
RS
3692 /* Create a .reginfo section for register masks and a .mdebug
3693 section for debugging information. */
3694 {
3695 segT seg;
3696 subsegT subseg;
3697 flagword flags;
3698 segT sec;
3699
3700 seg = now_seg;
3701 subseg = now_subseg;
3702
3703 /* The ABI says this section should be loaded so that the
3704 running program can access it. However, we don't load it
3705 if we are configured for an embedded target */
3706 flags = SEC_READONLY | SEC_DATA;
3707 if (strncmp (TARGET_OS, "elf", 3) != 0)
3708 flags |= SEC_ALLOC | SEC_LOAD;
3709
3710 if (mips_abi != N64_ABI)
252b5132 3711 {
f3ded42a 3712 sec = subseg_new (".reginfo", (subsegT) 0);
bdaaa2e1 3713
f3ded42a
RS
3714 bfd_set_section_flags (stdoutput, sec, flags);
3715 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
252b5132 3716
f3ded42a
RS
3717 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3718 }
3719 else
3720 {
3721 /* The 64-bit ABI uses a .MIPS.options section rather than
3722 .reginfo section. */
3723 sec = subseg_new (".MIPS.options", (subsegT) 0);
3724 bfd_set_section_flags (stdoutput, sec, flags);
3725 bfd_set_section_alignment (stdoutput, sec, 3);
252b5132 3726
f3ded42a
RS
3727 /* Set up the option header. */
3728 {
3729 Elf_Internal_Options opthdr;
3730 char *f;
3731
3732 opthdr.kind = ODK_REGINFO;
3733 opthdr.size = (sizeof (Elf_External_Options)
3734 + sizeof (Elf64_External_RegInfo));
3735 opthdr.section = 0;
3736 opthdr.info = 0;
3737 f = frag_more (sizeof (Elf_External_Options));
3738 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3739 (Elf_External_Options *) f);
3740
3741 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3742 }
3743 }
252b5132 3744
351cdf24
MF
3745 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3746 bfd_set_section_flags (stdoutput, sec,
3747 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3748 bfd_set_section_alignment (stdoutput, sec, 3);
3749 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3750
f3ded42a
RS
3751 if (ECOFF_DEBUGGING)
3752 {
3753 sec = subseg_new (".mdebug", (subsegT) 0);
3754 (void) bfd_set_section_flags (stdoutput, sec,
3755 SEC_HAS_CONTENTS | SEC_READONLY);
3756 (void) bfd_set_section_alignment (stdoutput, sec, 2);
252b5132 3757 }
f3ded42a
RS
3758 else if (mips_flag_pdr)
3759 {
3760 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3761 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3762 SEC_READONLY | SEC_RELOC
3763 | SEC_DEBUGGING);
3764 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3765 }
3766
3767 subseg_set (seg, subseg);
3768 }
252b5132 3769
71400594
RS
3770 if (mips_fix_vr4120)
3771 init_vr4120_conflicts ();
252b5132
RH
3772}
3773
351cdf24
MF
3774static inline void
3775fpabi_incompatible_with (int fpabi, const char *what)
3776{
3777 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3778 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3779}
3780
3781static inline void
3782fpabi_requires (int fpabi, const char *what)
3783{
3784 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3785 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3786}
3787
3788/* Check -mabi and register sizes against the specified FP ABI. */
3789static void
3790check_fpabi (int fpabi)
3791{
351cdf24
MF
3792 switch (fpabi)
3793 {
3794 case Val_GNU_MIPS_ABI_FP_DOUBLE:
ea79f94a
MF
3795 if (file_mips_opts.soft_float)
3796 fpabi_incompatible_with (fpabi, "softfloat");
3797 else if (file_mips_opts.single_float)
3798 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3799 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3800 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3801 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3802 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
351cdf24
MF
3803 break;
3804
3805 case Val_GNU_MIPS_ABI_FP_XX:
3806 if (mips_abi != O32_ABI)
3807 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3808 else if (file_mips_opts.soft_float)
3809 fpabi_incompatible_with (fpabi, "softfloat");
3810 else if (file_mips_opts.single_float)
3811 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3812 else if (file_mips_opts.fp != 0)
3813 fpabi_requires (fpabi, "fp=xx");
351cdf24
MF
3814 break;
3815
3816 case Val_GNU_MIPS_ABI_FP_64A:
3817 case Val_GNU_MIPS_ABI_FP_64:
3818 if (mips_abi != O32_ABI)
3819 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3820 else if (file_mips_opts.soft_float)
3821 fpabi_incompatible_with (fpabi, "softfloat");
3822 else if (file_mips_opts.single_float)
3823 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3824 else if (file_mips_opts.fp != 64)
3825 fpabi_requires (fpabi, "fp=64");
3826 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3827 fpabi_incompatible_with (fpabi, "nooddspreg");
3828 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3829 fpabi_requires (fpabi, "nooddspreg");
351cdf24
MF
3830 break;
3831
3832 case Val_GNU_MIPS_ABI_FP_SINGLE:
3833 if (file_mips_opts.soft_float)
3834 fpabi_incompatible_with (fpabi, "softfloat");
3835 else if (!file_mips_opts.single_float)
3836 fpabi_requires (fpabi, "singlefloat");
3837 break;
3838
3839 case Val_GNU_MIPS_ABI_FP_SOFT:
3840 if (!file_mips_opts.soft_float)
3841 fpabi_requires (fpabi, "softfloat");
3842 break;
3843
3844 case Val_GNU_MIPS_ABI_FP_OLD_64:
3845 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3846 Tag_GNU_MIPS_ABI_FP, fpabi);
3847 break;
3848
3350cc01
CM
3849 case Val_GNU_MIPS_ABI_FP_NAN2008:
3850 /* Silently ignore compatibility value. */
3851 break;
3852
351cdf24
MF
3853 default:
3854 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3855 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3856 break;
3857 }
351cdf24
MF
3858}
3859
919731af 3860/* Perform consistency checks on the current options. */
3861
3862static void
3863mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3864{
3865 /* Check the size of integer registers agrees with the ABI and ISA. */
3866 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3867 as_bad (_("`gp=64' used with a 32-bit processor"));
3868 else if (abi_checks
3869 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3870 as_bad (_("`gp=32' used with a 64-bit ABI"));
3871 else if (abi_checks
3872 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3873 as_bad (_("`gp=64' used with a 32-bit ABI"));
3874
3875 /* Check the size of the float registers agrees with the ABI and ISA. */
3876 switch (opts->fp)
3877 {
351cdf24
MF
3878 case 0:
3879 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3880 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3881 else if (opts->single_float == 1)
3882 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3883 break;
919731af 3884 case 64:
3885 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3886 as_bad (_("`fp=64' used with a 32-bit fpu"));
3887 else if (abi_checks
3888 && ABI_NEEDS_32BIT_REGS (mips_abi)
3889 && !ISA_HAS_MXHC1 (opts->isa))
3890 as_warn (_("`fp=64' used with a 32-bit ABI"));
3891 break;
3892 case 32:
3893 if (abi_checks
3894 && ABI_NEEDS_64BIT_REGS (mips_abi))
3895 as_warn (_("`fp=32' used with a 64-bit ABI"));
5f4678bb 3896 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
7361da2c 3897 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
919731af 3898 break;
3899 default:
3900 as_bad (_("Unknown size of floating point registers"));
3901 break;
3902 }
3903
351cdf24
MF
3904 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3905 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3906
919731af 3907 if (opts->micromips == 1 && opts->mips16 == 1)
1357373c 3908 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
5f4678bb 3909 else if (ISA_IS_R6 (opts->isa)
7361da2c
AB
3910 && (opts->micromips == 1
3911 || opts->mips16 == 1))
1357373c 3912 as_fatal (_("`%s' cannot be used with `%s'"),
7361da2c 3913 opts->micromips ? "micromips" : "mips16",
5f4678bb 3914 mips_cpu_info_from_isa (opts->isa)->name);
7361da2c
AB
3915
3916 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3917 as_fatal (_("branch relaxation is not supported in `%s'"),
3918 mips_cpu_info_from_isa (opts->isa)->name);
919731af 3919}
3920
3921/* Perform consistency checks on the module level options exactly once.
3922 This is a deferred check that happens:
3923 at the first .set directive
3924 or, at the first pseudo op that generates code (inc .dc.a)
3925 or, at the first instruction
3926 or, at the end. */
3927
3928static void
3929file_mips_check_options (void)
3930{
3931 const struct mips_cpu_info *arch_info = 0;
3932
3933 if (file_mips_opts_checked)
3934 return;
3935
3936 /* The following code determines the register size.
3937 Similar code was added to GCC 3.3 (see override_options() in
3938 config/mips/mips.c). The GAS and GCC code should be kept in sync
3939 as much as possible. */
3940
3941 if (file_mips_opts.gp < 0)
3942 {
3943 /* Infer the integer register size from the ABI and processor.
3944 Restrict ourselves to 32-bit registers if that's all the
3945 processor has, or if the ABI cannot handle 64-bit registers. */
3946 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3947 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3948 ? 32 : 64;
3949 }
3950
3951 if (file_mips_opts.fp < 0)
3952 {
3953 /* No user specified float register size.
3954 ??? GAS treats single-float processors as though they had 64-bit
3955 float registers (although it complains when double-precision
3956 instructions are used). As things stand, saying they have 32-bit
3957 registers would lead to spurious "register must be even" messages.
3958 So here we assume float registers are never smaller than the
3959 integer ones. */
3960 if (file_mips_opts.gp == 64)
3961 /* 64-bit integer registers implies 64-bit float registers. */
3962 file_mips_opts.fp = 64;
3963 else if ((file_mips_opts.ase & FP64_ASES)
3964 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3965 /* Handle ASEs that require 64-bit float registers, if possible. */
3966 file_mips_opts.fp = 64;
7361da2c
AB
3967 else if (ISA_IS_R6 (mips_opts.isa))
3968 /* R6 implies 64-bit float registers. */
3969 file_mips_opts.fp = 64;
919731af 3970 else
3971 /* 32-bit float registers. */
3972 file_mips_opts.fp = 32;
3973 }
3974
3975 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3976
351cdf24
MF
3977 /* Disable operations on odd-numbered floating-point registers by default
3978 when using the FPXX ABI. */
3979 if (file_mips_opts.oddspreg < 0)
3980 {
3981 if (file_mips_opts.fp == 0)
3982 file_mips_opts.oddspreg = 0;
3983 else
3984 file_mips_opts.oddspreg = 1;
3985 }
3986
919731af 3987 /* End of GCC-shared inference code. */
3988
3989 /* This flag is set when we have a 64-bit capable CPU but use only
3990 32-bit wide registers. Note that EABI does not use it. */
3991 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3992 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3993 || mips_abi == O32_ABI))
3994 mips_32bitmode = 1;
3995
3996 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3997 as_bad (_("trap exception not supported at ISA 1"));
3998
3999 /* If the selected architecture includes support for ASEs, enable
4000 generation of code for them. */
4001 if (file_mips_opts.mips16 == -1)
4002 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
4003 if (file_mips_opts.micromips == -1)
4004 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
4005 ? 1 : 0;
4006
7361da2c
AB
4007 if (mips_nan2008 == -1)
4008 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
4009 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
4010 as_fatal (_("`%s' does not support legacy NaN"),
4011 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
4012
919731af 4013 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4014 being selected implicitly. */
4015 if (file_mips_opts.fp != 64)
4016 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
4017
4018 /* If the user didn't explicitly select or deselect a particular ASE,
4019 use the default setting for the CPU. */
4020 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4021
4022 /* Set up the current options. These may change throughout assembly. */
4023 mips_opts = file_mips_opts;
4024
4025 mips_check_isa_supports_ases ();
4026 mips_check_options (&file_mips_opts, TRUE);
4027 file_mips_opts_checked = TRUE;
4028
4029 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4030 as_warn (_("could not set architecture and machine"));
4031}
4032
252b5132 4033void
17a2f251 4034md_assemble (char *str)
252b5132
RH
4035{
4036 struct mips_cl_insn insn;
f6688943
TS
4037 bfd_reloc_code_real_type unused_reloc[3]
4038 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 4039
919731af 4040 file_mips_check_options ();
4041
252b5132 4042 imm_expr.X_op = O_absent;
252b5132 4043 offset_expr.X_op = O_absent;
f6688943
TS
4044 offset_reloc[0] = BFD_RELOC_UNUSED;
4045 offset_reloc[1] = BFD_RELOC_UNUSED;
4046 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132 4047
e1b47bd5
RS
4048 mips_mark_labels ();
4049 mips_assembling_insn = TRUE;
e3de51ce 4050 clear_insn_error ();
e1b47bd5 4051
252b5132
RH
4052 if (mips_opts.mips16)
4053 mips16_ip (str, &insn);
4054 else
4055 {
4056 mips_ip (str, &insn);
beae10d5
KH
4057 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4058 str, insn.insn_opcode));
252b5132
RH
4059 }
4060
e3de51ce
RS
4061 if (insn_error.msg)
4062 report_insn_error (str);
e1b47bd5 4063 else if (insn.insn_mo->pinfo == INSN_MACRO)
252b5132 4064 {
584892a6 4065 macro_start ();
252b5132
RH
4066 if (mips_opts.mips16)
4067 mips16_macro (&insn);
4068 else
833794fc 4069 macro (&insn, str);
584892a6 4070 macro_end ();
252b5132
RH
4071 }
4072 else
4073 {
77bd4346 4074 if (offset_expr.X_op != O_absent)
df58fc94 4075 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
252b5132 4076 else
df58fc94 4077 append_insn (&insn, NULL, unused_reloc, FALSE);
252b5132 4078 }
e1b47bd5
RS
4079
4080 mips_assembling_insn = FALSE;
252b5132
RH
4081}
4082
738e5348
RS
4083/* Convenience functions for abstracting away the differences between
4084 MIPS16 and non-MIPS16 relocations. */
4085
4086static inline bfd_boolean
4087mips16_reloc_p (bfd_reloc_code_real_type reloc)
4088{
4089 switch (reloc)
4090 {
4091 case BFD_RELOC_MIPS16_JMP:
4092 case BFD_RELOC_MIPS16_GPREL:
4093 case BFD_RELOC_MIPS16_GOT16:
4094 case BFD_RELOC_MIPS16_CALL16:
4095 case BFD_RELOC_MIPS16_HI16_S:
4096 case BFD_RELOC_MIPS16_HI16:
4097 case BFD_RELOC_MIPS16_LO16:
c9775dde 4098 case BFD_RELOC_MIPS16_16_PCREL_S1:
738e5348
RS
4099 return TRUE;
4100
4101 default:
4102 return FALSE;
4103 }
4104}
4105
df58fc94
RS
4106static inline bfd_boolean
4107micromips_reloc_p (bfd_reloc_code_real_type reloc)
4108{
4109 switch (reloc)
4110 {
4111 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4112 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4113 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4114 case BFD_RELOC_MICROMIPS_GPREL16:
4115 case BFD_RELOC_MICROMIPS_JMP:
4116 case BFD_RELOC_MICROMIPS_HI16:
4117 case BFD_RELOC_MICROMIPS_HI16_S:
4118 case BFD_RELOC_MICROMIPS_LO16:
4119 case BFD_RELOC_MICROMIPS_LITERAL:
4120 case BFD_RELOC_MICROMIPS_GOT16:
4121 case BFD_RELOC_MICROMIPS_CALL16:
4122 case BFD_RELOC_MICROMIPS_GOT_HI16:
4123 case BFD_RELOC_MICROMIPS_GOT_LO16:
4124 case BFD_RELOC_MICROMIPS_CALL_HI16:
4125 case BFD_RELOC_MICROMIPS_CALL_LO16:
4126 case BFD_RELOC_MICROMIPS_SUB:
4127 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4128 case BFD_RELOC_MICROMIPS_GOT_OFST:
4129 case BFD_RELOC_MICROMIPS_GOT_DISP:
4130 case BFD_RELOC_MICROMIPS_HIGHEST:
4131 case BFD_RELOC_MICROMIPS_HIGHER:
4132 case BFD_RELOC_MICROMIPS_SCN_DISP:
4133 case BFD_RELOC_MICROMIPS_JALR:
4134 return TRUE;
4135
4136 default:
4137 return FALSE;
4138 }
4139}
4140
2309ddf2
MR
4141static inline bfd_boolean
4142jmp_reloc_p (bfd_reloc_code_real_type reloc)
4143{
4144 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4145}
4146
0e9c5a5c
MR
4147static inline bfd_boolean
4148b_reloc_p (bfd_reloc_code_real_type reloc)
4149{
4150 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4151 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4152 || reloc == BFD_RELOC_16_PCREL_S2
c9775dde 4153 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
0e9c5a5c
MR
4154 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4155 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4156 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4157}
4158
738e5348
RS
4159static inline bfd_boolean
4160got16_reloc_p (bfd_reloc_code_real_type reloc)
4161{
2309ddf2 4162 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
df58fc94 4163 || reloc == BFD_RELOC_MICROMIPS_GOT16);
738e5348
RS
4164}
4165
4166static inline bfd_boolean
4167hi16_reloc_p (bfd_reloc_code_real_type reloc)
4168{
2309ddf2 4169 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
df58fc94 4170 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
738e5348
RS
4171}
4172
4173static inline bfd_boolean
4174lo16_reloc_p (bfd_reloc_code_real_type reloc)
4175{
2309ddf2 4176 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
df58fc94
RS
4177 || reloc == BFD_RELOC_MICROMIPS_LO16);
4178}
4179
df58fc94
RS
4180static inline bfd_boolean
4181jalr_reloc_p (bfd_reloc_code_real_type reloc)
4182{
2309ddf2 4183 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
738e5348
RS
4184}
4185
f2ae14a1
RS
4186static inline bfd_boolean
4187gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4188{
4189 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4190 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4191}
4192
2de39019
CM
4193/* Return true if RELOC is a PC-relative relocation that does not have
4194 full address range. */
4195
4196static inline bfd_boolean
4197limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4198{
4199 switch (reloc)
4200 {
4201 case BFD_RELOC_16_PCREL_S2:
c9775dde 4202 case BFD_RELOC_MIPS16_16_PCREL_S1:
2de39019
CM
4203 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4204 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4205 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
7361da2c
AB
4206 case BFD_RELOC_MIPS_21_PCREL_S2:
4207 case BFD_RELOC_MIPS_26_PCREL_S2:
4208 case BFD_RELOC_MIPS_18_PCREL_S3:
4209 case BFD_RELOC_MIPS_19_PCREL_S2:
2de39019
CM
4210 return TRUE;
4211
b47468a6 4212 case BFD_RELOC_32_PCREL:
7361da2c
AB
4213 case BFD_RELOC_HI16_S_PCREL:
4214 case BFD_RELOC_LO16_PCREL:
b47468a6
CM
4215 return HAVE_64BIT_ADDRESSES;
4216
2de39019
CM
4217 default:
4218 return FALSE;
4219 }
4220}
b47468a6 4221
5919d012 4222/* Return true if the given relocation might need a matching %lo().
0a44bf69
RS
4223 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4224 need a matching %lo() when applied to local symbols. */
5919d012
RS
4225
4226static inline bfd_boolean
17a2f251 4227reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
5919d012 4228{
3b91255e 4229 return (HAVE_IN_PLACE_ADDENDS
738e5348 4230 && (hi16_reloc_p (reloc)
0a44bf69
RS
4231 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4232 all GOT16 relocations evaluate to "G". */
738e5348
RS
4233 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4234}
4235
4236/* Return the type of %lo() reloc needed by RELOC, given that
4237 reloc_needs_lo_p. */
4238
4239static inline bfd_reloc_code_real_type
4240matching_lo_reloc (bfd_reloc_code_real_type reloc)
4241{
df58fc94
RS
4242 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4243 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4244 : BFD_RELOC_LO16));
5919d012
RS
4245}
4246
4247/* Return true if the given fixup is followed by a matching R_MIPS_LO16
4248 relocation. */
4249
4250static inline bfd_boolean
17a2f251 4251fixup_has_matching_lo_p (fixS *fixp)
5919d012
RS
4252{
4253 return (fixp->fx_next != NULL
738e5348 4254 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
5919d012
RS
4255 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4256 && fixp->fx_offset == fixp->fx_next->fx_offset);
4257}
4258
462427c4
RS
4259/* Move all labels in LABELS to the current insertion point. TEXT_P
4260 says whether the labels refer to text or data. */
404a8071
RS
4261
4262static void
462427c4 4263mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
404a8071
RS
4264{
4265 struct insn_label_list *l;
4266 valueT val;
4267
462427c4 4268 for (l = labels; l != NULL; l = l->next)
404a8071 4269 {
9c2799c2 4270 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
404a8071
RS
4271 symbol_set_frag (l->label, frag_now);
4272 val = (valueT) frag_now_fix ();
df58fc94 4273 /* MIPS16/microMIPS text labels are stored as odd. */
462427c4 4274 if (text_p && HAVE_CODE_COMPRESSION)
404a8071
RS
4275 ++val;
4276 S_SET_VALUE (l->label, val);
4277 }
4278}
4279
462427c4
RS
4280/* Move all labels in insn_labels to the current insertion point
4281 and treat them as text labels. */
4282
4283static void
4284mips_move_text_labels (void)
4285{
4286 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4287}
4288
9e009953
MR
4289/* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4290
5f0fe04b
TS
4291static bfd_boolean
4292s_is_linkonce (symbolS *sym, segT from_seg)
4293{
4294 bfd_boolean linkonce = FALSE;
4295 segT symseg = S_GET_SEGMENT (sym);
4296
4297 if (symseg != from_seg && !S_IS_LOCAL (sym))
4298 {
4299 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4300 linkonce = TRUE;
5f0fe04b
TS
4301 /* The GNU toolchain uses an extension for ELF: a section
4302 beginning with the magic string .gnu.linkonce is a
4303 linkonce section. */
4304 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4305 sizeof ".gnu.linkonce" - 1) == 0)
4306 linkonce = TRUE;
5f0fe04b
TS
4307 }
4308 return linkonce;
4309}
4310
e1b47bd5 4311/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
df58fc94
RS
4312 linker to handle them specially, such as generating jalx instructions
4313 when needed. We also make them odd for the duration of the assembly,
4314 in order to generate the right sort of code. We will make them even
252b5132
RH
4315 in the adjust_symtab routine, while leaving them marked. This is
4316 convenient for the debugger and the disassembler. The linker knows
4317 to make them odd again. */
4318
4319static void
e1b47bd5 4320mips_compressed_mark_label (symbolS *label)
252b5132 4321{
df58fc94 4322 gas_assert (HAVE_CODE_COMPRESSION);
a8dbcb85 4323
f3ded42a
RS
4324 if (mips_opts.mips16)
4325 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4326 else
4327 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
e1b47bd5
RS
4328 if ((S_GET_VALUE (label) & 1) == 0
4329 /* Don't adjust the address if the label is global or weak, or
4330 in a link-once section, since we'll be emitting symbol reloc
4331 references to it which will be patched up by the linker, and
4332 the final value of the symbol may or may not be MIPS16/microMIPS. */
4333 && !S_IS_WEAK (label)
4334 && !S_IS_EXTERNAL (label)
4335 && !s_is_linkonce (label, now_seg))
4336 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4337}
4338
4339/* Mark preceding MIPS16 or microMIPS instruction labels. */
4340
4341static void
4342mips_compressed_mark_labels (void)
4343{
4344 struct insn_label_list *l;
4345
4346 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4347 mips_compressed_mark_label (l->label);
252b5132
RH
4348}
4349
4d7206a2
RS
4350/* End the current frag. Make it a variant frag and record the
4351 relaxation info. */
4352
4353static void
4354relax_close_frag (void)
4355{
584892a6 4356 mips_macro_warning.first_frag = frag_now;
4d7206a2 4357 frag_var (rs_machine_dependent, 0, 0,
ce8ad872
MR
4358 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
4359 mips_pic != NO_PIC),
4d7206a2
RS
4360 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4361
4362 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4363 mips_relax.first_fixup = 0;
4364}
4365
4366/* Start a new relaxation sequence whose expansion depends on SYMBOL.
4367 See the comment above RELAX_ENCODE for more details. */
4368
4369static void
4370relax_start (symbolS *symbol)
4371{
9c2799c2 4372 gas_assert (mips_relax.sequence == 0);
4d7206a2
RS
4373 mips_relax.sequence = 1;
4374 mips_relax.symbol = symbol;
4375}
4376
4377/* Start generating the second version of a relaxable sequence.
4378 See the comment above RELAX_ENCODE for more details. */
252b5132
RH
4379
4380static void
4d7206a2
RS
4381relax_switch (void)
4382{
9c2799c2 4383 gas_assert (mips_relax.sequence == 1);
4d7206a2
RS
4384 mips_relax.sequence = 2;
4385}
4386
4387/* End the current relaxable sequence. */
4388
4389static void
4390relax_end (void)
4391{
9c2799c2 4392 gas_assert (mips_relax.sequence == 2);
4d7206a2
RS
4393 relax_close_frag ();
4394 mips_relax.sequence = 0;
4395}
4396
11625dd8
RS
4397/* Return true if IP is a delayed branch or jump. */
4398
4399static inline bfd_boolean
4400delayed_branch_p (const struct mips_cl_insn *ip)
4401{
4402 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4403 | INSN_COND_BRANCH_DELAY
4404 | INSN_COND_BRANCH_LIKELY)) != 0;
4405}
4406
4407/* Return true if IP is a compact branch or jump. */
4408
4409static inline bfd_boolean
4410compact_branch_p (const struct mips_cl_insn *ip)
4411{
26545944
RS
4412 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4413 | INSN2_COND_BRANCH)) != 0;
11625dd8
RS
4414}
4415
4416/* Return true if IP is an unconditional branch or jump. */
4417
4418static inline bfd_boolean
4419uncond_branch_p (const struct mips_cl_insn *ip)
4420{
4421 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
26545944 4422 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
11625dd8
RS
4423}
4424
4425/* Return true if IP is a branch-likely instruction. */
4426
4427static inline bfd_boolean
4428branch_likely_p (const struct mips_cl_insn *ip)
4429{
4430 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4431}
4432
14fe068b
RS
4433/* Return the type of nop that should be used to fill the delay slot
4434 of delayed branch IP. */
4435
4436static struct mips_cl_insn *
4437get_delay_slot_nop (const struct mips_cl_insn *ip)
4438{
4439 if (mips_opts.micromips
4440 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4441 return &micromips_nop32_insn;
4442 return NOP_INSN;
4443}
4444
fc76e730
RS
4445/* Return a mask that has bit N set if OPCODE reads the register(s)
4446 in operand N. */
df58fc94
RS
4447
4448static unsigned int
fc76e730 4449insn_read_mask (const struct mips_opcode *opcode)
df58fc94 4450{
fc76e730
RS
4451 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4452}
df58fc94 4453
fc76e730
RS
4454/* Return a mask that has bit N set if OPCODE writes to the register(s)
4455 in operand N. */
4456
4457static unsigned int
4458insn_write_mask (const struct mips_opcode *opcode)
4459{
4460 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4461}
4462
4463/* Return a mask of the registers specified by operand OPERAND of INSN.
4464 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4465 is set. */
4466
4467static unsigned int
4468operand_reg_mask (const struct mips_cl_insn *insn,
4469 const struct mips_operand *operand,
4470 unsigned int type_mask)
4471{
4472 unsigned int uval, vsel;
4473
4474 switch (operand->type)
df58fc94 4475 {
fc76e730
RS
4476 case OP_INT:
4477 case OP_MAPPED_INT:
4478 case OP_MSB:
4479 case OP_PCREL:
4480 case OP_PERF_REG:
4481 case OP_ADDIUSP_INT:
4482 case OP_ENTRY_EXIT_LIST:
4483 case OP_REPEAT_DEST_REG:
4484 case OP_REPEAT_PREV_REG:
4485 case OP_PC:
14daeee3
RS
4486 case OP_VU0_SUFFIX:
4487 case OP_VU0_MATCH_SUFFIX:
56d438b1 4488 case OP_IMM_INDEX:
fc76e730
RS
4489 abort ();
4490
4491 case OP_REG:
0f35dbc4 4492 case OP_OPTIONAL_REG:
fc76e730
RS
4493 {
4494 const struct mips_reg_operand *reg_op;
4495
4496 reg_op = (const struct mips_reg_operand *) operand;
4497 if (!(type_mask & (1 << reg_op->reg_type)))
4498 return 0;
4499 uval = insn_extract_operand (insn, operand);
4500 return 1 << mips_decode_reg_operand (reg_op, uval);
4501 }
4502
4503 case OP_REG_PAIR:
4504 {
4505 const struct mips_reg_pair_operand *pair_op;
4506
4507 pair_op = (const struct mips_reg_pair_operand *) operand;
4508 if (!(type_mask & (1 << pair_op->reg_type)))
4509 return 0;
4510 uval = insn_extract_operand (insn, operand);
4511 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4512 }
4513
4514 case OP_CLO_CLZ_DEST:
4515 if (!(type_mask & (1 << OP_REG_GP)))
4516 return 0;
4517 uval = insn_extract_operand (insn, operand);
4518 return (1 << (uval & 31)) | (1 << (uval >> 5));
4519
7361da2c
AB
4520 case OP_SAME_RS_RT:
4521 if (!(type_mask & (1 << OP_REG_GP)))
4522 return 0;
4523 uval = insn_extract_operand (insn, operand);
4524 gas_assert ((uval & 31) == (uval >> 5));
4525 return 1 << (uval & 31);
4526
4527 case OP_CHECK_PREV:
4528 case OP_NON_ZERO_REG:
4529 if (!(type_mask & (1 << OP_REG_GP)))
4530 return 0;
4531 uval = insn_extract_operand (insn, operand);
4532 return 1 << (uval & 31);
4533
fc76e730
RS
4534 case OP_LWM_SWM_LIST:
4535 abort ();
4536
4537 case OP_SAVE_RESTORE_LIST:
4538 abort ();
4539
4540 case OP_MDMX_IMM_REG:
4541 if (!(type_mask & (1 << OP_REG_VEC)))
4542 return 0;
4543 uval = insn_extract_operand (insn, operand);
4544 vsel = uval >> 5;
4545 if ((vsel & 0x18) == 0x18)
4546 return 0;
4547 return 1 << (uval & 31);
56d438b1
CF
4548
4549 case OP_REG_INDEX:
4550 if (!(type_mask & (1 << OP_REG_GP)))
4551 return 0;
4552 return 1 << insn_extract_operand (insn, operand);
df58fc94 4553 }
fc76e730
RS
4554 abort ();
4555}
4556
4557/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4558 where bit N of OPNO_MASK is set if operand N should be included.
4559 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4560 is set. */
4561
4562static unsigned int
4563insn_reg_mask (const struct mips_cl_insn *insn,
4564 unsigned int type_mask, unsigned int opno_mask)
4565{
4566 unsigned int opno, reg_mask;
4567
4568 opno = 0;
4569 reg_mask = 0;
4570 while (opno_mask != 0)
4571 {
4572 if (opno_mask & 1)
4573 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4574 opno_mask >>= 1;
4575 opno += 1;
4576 }
4577 return reg_mask;
df58fc94
RS
4578}
4579
4c260379
RS
4580/* Return the mask of core registers that IP reads. */
4581
4582static unsigned int
4583gpr_read_mask (const struct mips_cl_insn *ip)
4584{
4585 unsigned long pinfo, pinfo2;
4586 unsigned int mask;
4587
fc76e730 4588 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4c260379
RS
4589 pinfo = ip->insn_mo->pinfo;
4590 pinfo2 = ip->insn_mo->pinfo2;
fc76e730 4591 if (pinfo & INSN_UDI)
4c260379 4592 {
fc76e730
RS
4593 /* UDI instructions have traditionally been assumed to read RS
4594 and RT. */
4595 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4596 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4c260379 4597 }
fc76e730
RS
4598 if (pinfo & INSN_READ_GPR_24)
4599 mask |= 1 << 24;
4600 if (pinfo2 & INSN2_READ_GPR_16)
4601 mask |= 1 << 16;
4602 if (pinfo2 & INSN2_READ_SP)
4603 mask |= 1 << SP;
26545944 4604 if (pinfo2 & INSN2_READ_GPR_31)
fc76e730 4605 mask |= 1 << 31;
fe35f09f
RS
4606 /* Don't include register 0. */
4607 return mask & ~1;
4c260379
RS
4608}
4609
4610/* Return the mask of core registers that IP writes. */
4611
4612static unsigned int
4613gpr_write_mask (const struct mips_cl_insn *ip)
4614{
4615 unsigned long pinfo, pinfo2;
4616 unsigned int mask;
4617
fc76e730 4618 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4c260379
RS
4619 pinfo = ip->insn_mo->pinfo;
4620 pinfo2 = ip->insn_mo->pinfo2;
fc76e730
RS
4621 if (pinfo & INSN_WRITE_GPR_24)
4622 mask |= 1 << 24;
4623 if (pinfo & INSN_WRITE_GPR_31)
4624 mask |= 1 << 31;
4625 if (pinfo & INSN_UDI)
4626 /* UDI instructions have traditionally been assumed to write to RD. */
4627 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4628 if (pinfo2 & INSN2_WRITE_SP)
4629 mask |= 1 << SP;
fe35f09f
RS
4630 /* Don't include register 0. */
4631 return mask & ~1;
4c260379
RS
4632}
4633
4634/* Return the mask of floating-point registers that IP reads. */
4635
4636static unsigned int
4637fpr_read_mask (const struct mips_cl_insn *ip)
4638{
fc76e730 4639 unsigned long pinfo;
4c260379
RS
4640 unsigned int mask;
4641
9d5de888
CF
4642 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4643 | (1 << OP_REG_MSA)),
fc76e730 4644 insn_read_mask (ip->insn_mo));
4c260379 4645 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4646 /* Conservatively treat all operands to an FP_D instruction are doubles.
4647 (This is overly pessimistic for things like cvt.d.s.) */
bad1aba3 4648 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4649 mask |= mask << 1;
4650 return mask;
4651}
4652
4653/* Return the mask of floating-point registers that IP writes. */
4654
4655static unsigned int
4656fpr_write_mask (const struct mips_cl_insn *ip)
4657{
fc76e730 4658 unsigned long pinfo;
4c260379
RS
4659 unsigned int mask;
4660
9d5de888
CF
4661 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4662 | (1 << OP_REG_MSA)),
fc76e730 4663 insn_write_mask (ip->insn_mo));
4c260379 4664 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4665 /* Conservatively treat all operands to an FP_D instruction are doubles.
4666 (This is overly pessimistic for things like cvt.s.d.) */
bad1aba3 4667 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4668 mask |= mask << 1;
4669 return mask;
4670}
4671
a1d78564
RS
4672/* Operand OPNUM of INSN is an odd-numbered floating-point register.
4673 Check whether that is allowed. */
4674
4675static bfd_boolean
4676mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4677{
4678 const char *s = insn->name;
351cdf24
MF
4679 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4680 || FPR_SIZE == 64)
4681 && mips_opts.oddspreg;
a1d78564
RS
4682
4683 if (insn->pinfo == INSN_MACRO)
4684 /* Let a macro pass, we'll catch it later when it is expanded. */
4685 return TRUE;
4686
351cdf24
MF
4687 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4688 otherwise it depends on oddspreg. */
4689 if ((insn->pinfo & FP_S)
4690 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
43885403 4691 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
351cdf24 4692 return FPR_SIZE == 32 || oddspreg;
a1d78564 4693
351cdf24
MF
4694 /* Allow odd registers for single-precision ops and double-precision if the
4695 floating-point registers are 64-bit wide. */
4696 switch (insn->pinfo & (FP_S | FP_D))
4697 {
4698 case FP_S:
4699 case 0:
4700 return oddspreg;
4701 case FP_D:
4702 return FPR_SIZE == 64;
4703 default:
4704 break;
a1d78564
RS
4705 }
4706
351cdf24
MF
4707 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4708 s = strchr (insn->name, '.');
4709 if (s != NULL && opnum == 2)
4710 s = strchr (s + 1, '.');
4711 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4712 return oddspreg;
a1d78564 4713
351cdf24 4714 return FPR_SIZE == 64;
a1d78564
RS
4715}
4716
a1d78564
RS
4717/* Information about an instruction argument that we're trying to match. */
4718struct mips_arg_info
4719{
4720 /* The instruction so far. */
4721 struct mips_cl_insn *insn;
4722
a92713e6
RS
4723 /* The first unconsumed operand token. */
4724 struct mips_operand_token *token;
4725
a1d78564
RS
4726 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4727 int opnum;
4728
4729 /* The 1-based argument number, for error reporting. This does not
4730 count elided optional registers, etc.. */
4731 int argnum;
4732
4733 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4734 unsigned int last_regno;
4735
4736 /* If the first operand was an OP_REG, this is the register that it
4737 specified, otherwise it is ILLEGAL_REG. */
4738 unsigned int dest_regno;
4739
4740 /* The value of the last OP_INT operand. Only used for OP_MSB,
4741 where it gives the lsb position. */
4742 unsigned int last_op_int;
4743
60f20e8b 4744 /* If true, match routines should assume that no later instruction
2b0f3761 4745 alternative matches and should therefore be as accommodating as
60f20e8b
RS
4746 possible. Match routines should not report errors if something
4747 is only invalid for !LAX_MATCH. */
4748 bfd_boolean lax_match;
a1d78564 4749
a1d78564
RS
4750 /* True if a reference to the current AT register was seen. */
4751 bfd_boolean seen_at;
4752};
4753
1a00e612
RS
4754/* Record that the argument is out of range. */
4755
4756static void
4757match_out_of_range (struct mips_arg_info *arg)
4758{
4759 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4760}
4761
4762/* Record that the argument isn't constant but needs to be. */
4763
4764static void
4765match_not_constant (struct mips_arg_info *arg)
4766{
4767 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4768 arg->argnum);
4769}
4770
a92713e6
RS
4771/* Try to match an OT_CHAR token for character CH. Consume the token
4772 and return true on success, otherwise return false. */
a1d78564 4773
a92713e6
RS
4774static bfd_boolean
4775match_char (struct mips_arg_info *arg, char ch)
a1d78564 4776{
a92713e6
RS
4777 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4778 {
4779 ++arg->token;
4780 if (ch == ',')
4781 arg->argnum += 1;
4782 return TRUE;
4783 }
4784 return FALSE;
4785}
a1d78564 4786
a92713e6
RS
4787/* Try to get an expression from the next tokens in ARG. Consume the
4788 tokens and return true on success, storing the expression value in
4789 VALUE and relocation types in R. */
4790
4791static bfd_boolean
4792match_expression (struct mips_arg_info *arg, expressionS *value,
4793 bfd_reloc_code_real_type *r)
4794{
d436c1c2
RS
4795 /* If the next token is a '(' that was parsed as being part of a base
4796 expression, assume we have an elided offset. The later match will fail
4797 if this turns out to be wrong. */
4798 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
a1d78564 4799 {
d436c1c2
RS
4800 value->X_op = O_constant;
4801 value->X_add_number = 0;
4802 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
a92713e6
RS
4803 return TRUE;
4804 }
4805
d436c1c2
RS
4806 /* Reject register-based expressions such as "0+$2" and "(($2))".
4807 For plain registers the default error seems more appropriate. */
4808 if (arg->token->type == OT_INTEGER
4809 && arg->token->u.integer.value.X_op == O_register)
a92713e6 4810 {
d436c1c2
RS
4811 set_insn_error (arg->argnum, _("register value used as expression"));
4812 return FALSE;
a1d78564 4813 }
d436c1c2
RS
4814
4815 if (arg->token->type == OT_INTEGER)
a92713e6 4816 {
d436c1c2
RS
4817 *value = arg->token->u.integer.value;
4818 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4819 ++arg->token;
4820 return TRUE;
a92713e6 4821 }
a92713e6 4822
d436c1c2
RS
4823 set_insn_error_i
4824 (arg->argnum, _("operand %d must be an immediate expression"),
4825 arg->argnum);
4826 return FALSE;
a92713e6
RS
4827}
4828
4829/* Try to get a constant expression from the next tokens in ARG. Consume
4830 the tokens and return return true on success, storing the constant value
4831 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4832 error. */
4833
4834static bfd_boolean
1a00e612 4835match_const_int (struct mips_arg_info *arg, offsetT *value)
a92713e6
RS
4836{
4837 expressionS ex;
4838 bfd_reloc_code_real_type r[3];
a1d78564 4839
a92713e6
RS
4840 if (!match_expression (arg, &ex, r))
4841 return FALSE;
4842
4843 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
a1d78564
RS
4844 *value = ex.X_add_number;
4845 else
4846 {
1a00e612
RS
4847 match_not_constant (arg);
4848 return FALSE;
a1d78564 4849 }
a92713e6 4850 return TRUE;
a1d78564
RS
4851}
4852
4853/* Return the RTYPE_* flags for a register operand of type TYPE that
4854 appears in instruction OPCODE. */
4855
4856static unsigned int
4857convert_reg_type (const struct mips_opcode *opcode,
4858 enum mips_reg_operand_type type)
4859{
4860 switch (type)
4861 {
4862 case OP_REG_GP:
4863 return RTYPE_NUM | RTYPE_GP;
4864
4865 case OP_REG_FP:
4866 /* Allow vector register names for MDMX if the instruction is a 64-bit
4867 FPR load, store or move (including moves to and from GPRs). */
4868 if ((mips_opts.ase & ASE_MDMX)
4869 && (opcode->pinfo & FP_D)
43885403 4870 && (opcode->pinfo & (INSN_COPROC_MOVE
a1d78564 4871 | INSN_COPROC_MEMORY_DELAY
43885403 4872 | INSN_LOAD_COPROC
67dc82bc 4873 | INSN_LOAD_MEMORY
a1d78564
RS
4874 | INSN_STORE_MEMORY)))
4875 return RTYPE_FPU | RTYPE_VEC;
4876 return RTYPE_FPU;
4877
4878 case OP_REG_CCC:
4879 if (opcode->pinfo & (FP_D | FP_S))
4880 return RTYPE_CCC | RTYPE_FCC;
4881 return RTYPE_CCC;
4882
4883 case OP_REG_VEC:
4884 if (opcode->membership & INSN_5400)
4885 return RTYPE_FPU;
4886 return RTYPE_FPU | RTYPE_VEC;
4887
4888 case OP_REG_ACC:
4889 return RTYPE_ACC;
4890
4891 case OP_REG_COPRO:
4892 if (opcode->name[strlen (opcode->name) - 1] == '0')
4893 return RTYPE_NUM | RTYPE_CP0;
4894 return RTYPE_NUM;
4895
4896 case OP_REG_HW:
4897 return RTYPE_NUM;
14daeee3
RS
4898
4899 case OP_REG_VI:
4900 return RTYPE_NUM | RTYPE_VI;
4901
4902 case OP_REG_VF:
4903 return RTYPE_NUM | RTYPE_VF;
4904
4905 case OP_REG_R5900_I:
4906 return RTYPE_R5900_I;
4907
4908 case OP_REG_R5900_Q:
4909 return RTYPE_R5900_Q;
4910
4911 case OP_REG_R5900_R:
4912 return RTYPE_R5900_R;
4913
4914 case OP_REG_R5900_ACC:
4915 return RTYPE_R5900_ACC;
56d438b1
CF
4916
4917 case OP_REG_MSA:
4918 return RTYPE_MSA;
4919
4920 case OP_REG_MSA_CTRL:
4921 return RTYPE_NUM;
a1d78564
RS
4922 }
4923 abort ();
4924}
4925
4926/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4927
4928static void
4929check_regno (struct mips_arg_info *arg,
4930 enum mips_reg_operand_type type, unsigned int regno)
4931{
4932 if (AT && type == OP_REG_GP && regno == AT)
4933 arg->seen_at = TRUE;
4934
4935 if (type == OP_REG_FP
4936 && (regno & 1) != 0
a1d78564 4937 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
351cdf24
MF
4938 {
4939 /* This was a warning prior to introducing O32 FPXX and FP64 support
4940 so maintain a warning for FP32 but raise an error for the new
4941 cases. */
4942 if (FPR_SIZE == 32)
4943 as_warn (_("float register should be even, was %d"), regno);
4944 else
4945 as_bad (_("float register should be even, was %d"), regno);
4946 }
a1d78564
RS
4947
4948 if (type == OP_REG_CCC)
4949 {
4950 const char *name;
4951 size_t length;
4952
4953 name = arg->insn->insn_mo->name;
4954 length = strlen (name);
4955 if ((regno & 1) != 0
4956 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4957 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
1661c76c 4958 as_warn (_("condition code register should be even for %s, was %d"),
a1d78564
RS
4959 name, regno);
4960
4961 if ((regno & 3) != 0
4962 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
1661c76c 4963 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
a1d78564
RS
4964 name, regno);
4965 }
4966}
4967
a92713e6
RS
4968/* ARG is a register with symbol value SYMVAL. Try to interpret it as
4969 a register of type TYPE. Return true on success, storing the register
4970 number in *REGNO and warning about any dubious uses. */
4971
4972static bfd_boolean
4973match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4974 unsigned int symval, unsigned int *regno)
4975{
4976 if (type == OP_REG_VEC)
4977 symval = mips_prefer_vec_regno (symval);
4978 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4979 return FALSE;
4980
4981 *regno = symval & RNUM_MASK;
4982 check_regno (arg, type, *regno);
4983 return TRUE;
4984}
4985
4986/* Try to interpret the next token in ARG as a register of type TYPE.
4987 Consume the token and return true on success, storing the register
4988 number in *REGNO. Return false on failure. */
4989
4990static bfd_boolean
4991match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4992 unsigned int *regno)
4993{
4994 if (arg->token->type == OT_REG
4995 && match_regno (arg, type, arg->token->u.regno, regno))
4996 {
4997 ++arg->token;
4998 return TRUE;
4999 }
5000 return FALSE;
5001}
5002
5003/* Try to interpret the next token in ARG as a range of registers of type TYPE.
5004 Consume the token and return true on success, storing the register numbers
5005 in *REGNO1 and *REGNO2. Return false on failure. */
5006
5007static bfd_boolean
5008match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5009 unsigned int *regno1, unsigned int *regno2)
5010{
5011 if (match_reg (arg, type, regno1))
5012 {
5013 *regno2 = *regno1;
5014 return TRUE;
5015 }
5016 if (arg->token->type == OT_REG_RANGE
5017 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
5018 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
5019 && *regno1 <= *regno2)
5020 {
5021 ++arg->token;
5022 return TRUE;
5023 }
5024 return FALSE;
5025}
5026
a1d78564
RS
5027/* OP_INT matcher. */
5028
a92713e6 5029static bfd_boolean
a1d78564 5030match_int_operand (struct mips_arg_info *arg,
a92713e6 5031 const struct mips_operand *operand_base)
a1d78564
RS
5032{
5033 const struct mips_int_operand *operand;
3ccad066 5034 unsigned int uval;
a1d78564
RS
5035 int min_val, max_val, factor;
5036 offsetT sval;
a1d78564
RS
5037
5038 operand = (const struct mips_int_operand *) operand_base;
5039 factor = 1 << operand->shift;
3ccad066
RS
5040 min_val = mips_int_operand_min (operand);
5041 max_val = mips_int_operand_max (operand);
a1d78564 5042
d436c1c2
RS
5043 if (operand_base->lsb == 0
5044 && operand_base->size == 16
5045 && operand->shift == 0
5046 && operand->bias == 0
5047 && (operand->max_val == 32767 || operand->max_val == 65535))
a1d78564
RS
5048 {
5049 /* The operand can be relocated. */
a92713e6
RS
5050 if (!match_expression (arg, &offset_expr, offset_reloc))
5051 return FALSE;
5052
5053 if (offset_reloc[0] != BFD_RELOC_UNUSED)
33eaf5de 5054 /* Relocation operators were used. Accept the argument and
a1d78564
RS
5055 leave the relocation value in offset_expr and offset_relocs
5056 for the caller to process. */
a92713e6
RS
5057 return TRUE;
5058
5059 if (offset_expr.X_op != O_constant)
a1d78564 5060 {
60f20e8b
RS
5061 /* Accept non-constant operands if no later alternative matches,
5062 leaving it for the caller to process. */
5063 if (!arg->lax_match)
5064 return FALSE;
a92713e6
RS
5065 offset_reloc[0] = BFD_RELOC_LO16;
5066 return TRUE;
a1d78564 5067 }
a92713e6 5068
a1d78564
RS
5069 /* Clear the global state; we're going to install the operand
5070 ourselves. */
a92713e6 5071 sval = offset_expr.X_add_number;
a1d78564 5072 offset_expr.X_op = O_absent;
60f20e8b
RS
5073
5074 /* For compatibility with older assemblers, we accept
5075 0x8000-0xffff as signed 16-bit numbers when only
5076 signed numbers are allowed. */
5077 if (sval > max_val)
5078 {
5079 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5080 if (!arg->lax_match && sval <= max_val)
5081 return FALSE;
5082 }
a1d78564
RS
5083 }
5084 else
5085 {
1a00e612 5086 if (!match_const_int (arg, &sval))
a92713e6 5087 return FALSE;
a1d78564
RS
5088 }
5089
5090 arg->last_op_int = sval;
5091
1a00e612 5092 if (sval < min_val || sval > max_val || sval % factor)
a1d78564 5093 {
1a00e612
RS
5094 match_out_of_range (arg);
5095 return FALSE;
a1d78564
RS
5096 }
5097
5098 uval = (unsigned int) sval >> operand->shift;
5099 uval -= operand->bias;
5100
5101 /* Handle -mfix-cn63xxp1. */
5102 if (arg->opnum == 1
5103 && mips_fix_cn63xxp1
5104 && !mips_opts.micromips
5105 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5106 switch (uval)
5107 {
5108 case 5:
5109 case 25:
5110 case 26:
5111 case 27:
5112 case 28:
5113 case 29:
5114 case 30:
5115 case 31:
5116 /* These are ok. */
5117 break;
5118
5119 default:
5120 /* The rest must be changed to 28. */
5121 uval = 28;
5122 break;
5123 }
5124
5125 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5126 return TRUE;
a1d78564
RS
5127}
5128
5129/* OP_MAPPED_INT matcher. */
5130
a92713e6 5131static bfd_boolean
a1d78564 5132match_mapped_int_operand (struct mips_arg_info *arg,
a92713e6 5133 const struct mips_operand *operand_base)
a1d78564
RS
5134{
5135 const struct mips_mapped_int_operand *operand;
5136 unsigned int uval, num_vals;
5137 offsetT sval;
5138
5139 operand = (const struct mips_mapped_int_operand *) operand_base;
1a00e612 5140 if (!match_const_int (arg, &sval))
a92713e6 5141 return FALSE;
a1d78564
RS
5142
5143 num_vals = 1 << operand_base->size;
5144 for (uval = 0; uval < num_vals; uval++)
5145 if (operand->int_map[uval] == sval)
5146 break;
5147 if (uval == num_vals)
1a00e612
RS
5148 {
5149 match_out_of_range (arg);
5150 return FALSE;
5151 }
a1d78564
RS
5152
5153 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5154 return TRUE;
a1d78564
RS
5155}
5156
5157/* OP_MSB matcher. */
5158
a92713e6 5159static bfd_boolean
a1d78564 5160match_msb_operand (struct mips_arg_info *arg,
a92713e6 5161 const struct mips_operand *operand_base)
a1d78564
RS
5162{
5163 const struct mips_msb_operand *operand;
5164 int min_val, max_val, max_high;
5165 offsetT size, sval, high;
5166
5167 operand = (const struct mips_msb_operand *) operand_base;
5168 min_val = operand->bias;
5169 max_val = min_val + (1 << operand_base->size) - 1;
5170 max_high = operand->opsize;
5171
1a00e612 5172 if (!match_const_int (arg, &size))
a92713e6 5173 return FALSE;
a1d78564
RS
5174
5175 high = size + arg->last_op_int;
5176 sval = operand->add_lsb ? high : size;
5177
5178 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5179 {
1a00e612
RS
5180 match_out_of_range (arg);
5181 return FALSE;
a1d78564
RS
5182 }
5183 insn_insert_operand (arg->insn, operand_base, sval - min_val);
a92713e6 5184 return TRUE;
a1d78564
RS
5185}
5186
5187/* OP_REG matcher. */
5188
a92713e6 5189static bfd_boolean
a1d78564 5190match_reg_operand (struct mips_arg_info *arg,
a92713e6 5191 const struct mips_operand *operand_base)
a1d78564
RS
5192{
5193 const struct mips_reg_operand *operand;
a92713e6 5194 unsigned int regno, uval, num_vals;
a1d78564
RS
5195
5196 operand = (const struct mips_reg_operand *) operand_base;
a92713e6
RS
5197 if (!match_reg (arg, operand->reg_type, &regno))
5198 return FALSE;
a1d78564
RS
5199
5200 if (operand->reg_map)
5201 {
5202 num_vals = 1 << operand->root.size;
5203 for (uval = 0; uval < num_vals; uval++)
5204 if (operand->reg_map[uval] == regno)
5205 break;
5206 if (num_vals == uval)
a92713e6 5207 return FALSE;
a1d78564
RS
5208 }
5209 else
5210 uval = regno;
5211
a1d78564
RS
5212 arg->last_regno = regno;
5213 if (arg->opnum == 1)
5214 arg->dest_regno = regno;
5215 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5216 return TRUE;
a1d78564
RS
5217}
5218
5219/* OP_REG_PAIR matcher. */
5220
a92713e6 5221static bfd_boolean
a1d78564 5222match_reg_pair_operand (struct mips_arg_info *arg,
a92713e6 5223 const struct mips_operand *operand_base)
a1d78564
RS
5224{
5225 const struct mips_reg_pair_operand *operand;
a92713e6 5226 unsigned int regno1, regno2, uval, num_vals;
a1d78564
RS
5227
5228 operand = (const struct mips_reg_pair_operand *) operand_base;
a92713e6
RS
5229 if (!match_reg (arg, operand->reg_type, &regno1)
5230 || !match_char (arg, ',')
5231 || !match_reg (arg, operand->reg_type, &regno2))
5232 return FALSE;
a1d78564
RS
5233
5234 num_vals = 1 << operand_base->size;
5235 for (uval = 0; uval < num_vals; uval++)
5236 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5237 break;
5238 if (uval == num_vals)
a92713e6 5239 return FALSE;
a1d78564 5240
a1d78564 5241 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5242 return TRUE;
a1d78564
RS
5243}
5244
5245/* OP_PCREL matcher. The caller chooses the relocation type. */
5246
a92713e6
RS
5247static bfd_boolean
5248match_pcrel_operand (struct mips_arg_info *arg)
a1d78564 5249{
a92713e6
RS
5250 bfd_reloc_code_real_type r[3];
5251
5252 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
a1d78564
RS
5253}
5254
5255/* OP_PERF_REG matcher. */
5256
a92713e6 5257static bfd_boolean
a1d78564 5258match_perf_reg_operand (struct mips_arg_info *arg,
a92713e6 5259 const struct mips_operand *operand)
a1d78564
RS
5260{
5261 offsetT sval;
5262
1a00e612 5263 if (!match_const_int (arg, &sval))
a92713e6 5264 return FALSE;
a1d78564
RS
5265
5266 if (sval != 0
5267 && (sval != 1
5268 || (mips_opts.arch == CPU_R5900
5269 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5270 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5271 {
1a00e612
RS
5272 set_insn_error (arg->argnum, _("invalid performance register"));
5273 return FALSE;
a1d78564
RS
5274 }
5275
5276 insn_insert_operand (arg->insn, operand, sval);
a92713e6 5277 return TRUE;
a1d78564
RS
5278}
5279
5280/* OP_ADDIUSP matcher. */
5281
a92713e6 5282static bfd_boolean
a1d78564 5283match_addiusp_operand (struct mips_arg_info *arg,
a92713e6 5284 const struct mips_operand *operand)
a1d78564
RS
5285{
5286 offsetT sval;
5287 unsigned int uval;
5288
1a00e612 5289 if (!match_const_int (arg, &sval))
a92713e6 5290 return FALSE;
a1d78564
RS
5291
5292 if (sval % 4)
1a00e612
RS
5293 {
5294 match_out_of_range (arg);
5295 return FALSE;
5296 }
a1d78564
RS
5297
5298 sval /= 4;
5299 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
1a00e612
RS
5300 {
5301 match_out_of_range (arg);
5302 return FALSE;
5303 }
a1d78564
RS
5304
5305 uval = (unsigned int) sval;
5306 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5307 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5308 return TRUE;
a1d78564
RS
5309}
5310
5311/* OP_CLO_CLZ_DEST matcher. */
5312
a92713e6 5313static bfd_boolean
a1d78564 5314match_clo_clz_dest_operand (struct mips_arg_info *arg,
a92713e6 5315 const struct mips_operand *operand)
a1d78564
RS
5316{
5317 unsigned int regno;
5318
a92713e6
RS
5319 if (!match_reg (arg, OP_REG_GP, &regno))
5320 return FALSE;
a1d78564 5321
a1d78564 5322 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
a92713e6 5323 return TRUE;
a1d78564
RS
5324}
5325
7361da2c
AB
5326/* OP_CHECK_PREV matcher. */
5327
5328static bfd_boolean
5329match_check_prev_operand (struct mips_arg_info *arg,
5330 const struct mips_operand *operand_base)
5331{
5332 const struct mips_check_prev_operand *operand;
5333 unsigned int regno;
5334
5335 operand = (const struct mips_check_prev_operand *) operand_base;
5336
5337 if (!match_reg (arg, OP_REG_GP, &regno))
5338 return FALSE;
5339
5340 if (!operand->zero_ok && regno == 0)
5341 return FALSE;
5342
5343 if ((operand->less_than_ok && regno < arg->last_regno)
5344 || (operand->greater_than_ok && regno > arg->last_regno)
5345 || (operand->equal_ok && regno == arg->last_regno))
5346 {
5347 arg->last_regno = regno;
5348 insn_insert_operand (arg->insn, operand_base, regno);
5349 return TRUE;
5350 }
5351
5352 return FALSE;
5353}
5354
5355/* OP_SAME_RS_RT matcher. */
5356
5357static bfd_boolean
5358match_same_rs_rt_operand (struct mips_arg_info *arg,
5359 const struct mips_operand *operand)
5360{
5361 unsigned int regno;
5362
5363 if (!match_reg (arg, OP_REG_GP, &regno))
5364 return FALSE;
5365
5366 if (regno == 0)
5367 {
5368 set_insn_error (arg->argnum, _("the source register must not be $0"));
5369 return FALSE;
5370 }
5371
5372 arg->last_regno = regno;
5373
5374 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5375 return TRUE;
5376}
5377
a1d78564
RS
5378/* OP_LWM_SWM_LIST matcher. */
5379
a92713e6 5380static bfd_boolean
a1d78564 5381match_lwm_swm_list_operand (struct mips_arg_info *arg,
a92713e6 5382 const struct mips_operand *operand)
a1d78564 5383{
a92713e6
RS
5384 unsigned int reglist, sregs, ra, regno1, regno2;
5385 struct mips_arg_info reset;
a1d78564 5386
a92713e6
RS
5387 reglist = 0;
5388 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5389 return FALSE;
5390 do
5391 {
5392 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5393 {
5394 reglist |= 1 << FP;
5395 regno2 = S7;
5396 }
5397 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5398 reset = *arg;
5399 }
5400 while (match_char (arg, ',')
5401 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5402 *arg = reset;
a1d78564
RS
5403
5404 if (operand->size == 2)
5405 {
5406 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5407
5408 s0, ra
5409 s0, s1, ra, s2, s3
5410 s0-s2, ra
5411
5412 and any permutations of these. */
5413 if ((reglist & 0xfff1ffff) != 0x80010000)
a92713e6 5414 return FALSE;
a1d78564
RS
5415
5416 sregs = (reglist >> 17) & 7;
5417 ra = 0;
5418 }
5419 else
5420 {
5421 /* The list must include at least one of ra and s0-sN,
5422 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5423 which are $23 and $30 respectively.) E.g.:
5424
5425 ra
5426 s0
5427 ra, s0, s1, s2
5428 s0-s8
5429 s0-s5, ra
5430
5431 and any permutations of these. */
5432 if ((reglist & 0x3f00ffff) != 0)
a92713e6 5433 return FALSE;
a1d78564
RS
5434
5435 ra = (reglist >> 27) & 0x10;
5436 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5437 }
5438 sregs += 1;
5439 if ((sregs & -sregs) != sregs)
a92713e6 5440 return FALSE;
a1d78564
RS
5441
5442 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
a92713e6 5443 return TRUE;
a1d78564
RS
5444}
5445
364215c8
RS
5446/* OP_ENTRY_EXIT_LIST matcher. */
5447
a92713e6 5448static unsigned int
364215c8 5449match_entry_exit_operand (struct mips_arg_info *arg,
a92713e6 5450 const struct mips_operand *operand)
364215c8
RS
5451{
5452 unsigned int mask;
5453 bfd_boolean is_exit;
5454
5455 /* The format is the same for both ENTRY and EXIT, but the constraints
5456 are different. */
5457 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5458 mask = (is_exit ? 7 << 3 : 0);
a92713e6 5459 do
364215c8
RS
5460 {
5461 unsigned int regno1, regno2;
5462 bfd_boolean is_freg;
5463
a92713e6 5464 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
364215c8 5465 is_freg = FALSE;
a92713e6 5466 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
364215c8
RS
5467 is_freg = TRUE;
5468 else
a92713e6 5469 return FALSE;
364215c8
RS
5470
5471 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5472 {
5473 mask &= ~(7 << 3);
5474 mask |= (5 + regno2) << 3;
5475 }
5476 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5477 mask |= (regno2 - 3) << 3;
5478 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5479 mask |= (regno2 - 15) << 1;
5480 else if (regno1 == RA && regno2 == RA)
5481 mask |= 1;
5482 else
a92713e6 5483 return FALSE;
364215c8 5484 }
a92713e6
RS
5485 while (match_char (arg, ','));
5486
364215c8 5487 insn_insert_operand (arg->insn, operand, mask);
a92713e6 5488 return TRUE;
364215c8
RS
5489}
5490
5491/* OP_SAVE_RESTORE_LIST matcher. */
5492
a92713e6
RS
5493static bfd_boolean
5494match_save_restore_list_operand (struct mips_arg_info *arg)
364215c8
RS
5495{
5496 unsigned int opcode, args, statics, sregs;
5497 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
364215c8 5498 offsetT frame_size;
364215c8 5499
364215c8
RS
5500 opcode = arg->insn->insn_opcode;
5501 frame_size = 0;
5502 num_frame_sizes = 0;
5503 args = 0;
5504 statics = 0;
5505 sregs = 0;
a92713e6 5506 do
364215c8
RS
5507 {
5508 unsigned int regno1, regno2;
5509
a92713e6 5510 if (arg->token->type == OT_INTEGER)
364215c8
RS
5511 {
5512 /* Handle the frame size. */
1a00e612 5513 if (!match_const_int (arg, &frame_size))
a92713e6 5514 return FALSE;
364215c8 5515 num_frame_sizes += 1;
364215c8
RS
5516 }
5517 else
5518 {
a92713e6
RS
5519 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5520 return FALSE;
364215c8
RS
5521
5522 while (regno1 <= regno2)
5523 {
5524 if (regno1 >= 4 && regno1 <= 7)
5525 {
5526 if (num_frame_sizes == 0)
5527 /* args $a0-$a3 */
5528 args |= 1 << (regno1 - 4);
5529 else
5530 /* statics $a0-$a3 */
5531 statics |= 1 << (regno1 - 4);
5532 }
5533 else if (regno1 >= 16 && regno1 <= 23)
5534 /* $s0-$s7 */
5535 sregs |= 1 << (regno1 - 16);
5536 else if (regno1 == 30)
5537 /* $s8 */
5538 sregs |= 1 << 8;
5539 else if (regno1 == 31)
5540 /* Add $ra to insn. */
5541 opcode |= 0x40;
5542 else
a92713e6 5543 return FALSE;
364215c8
RS
5544 regno1 += 1;
5545 if (regno1 == 24)
5546 regno1 = 30;
5547 }
5548 }
364215c8 5549 }
a92713e6 5550 while (match_char (arg, ','));
364215c8
RS
5551
5552 /* Encode args/statics combination. */
5553 if (args & statics)
a92713e6 5554 return FALSE;
364215c8
RS
5555 else if (args == 0xf)
5556 /* All $a0-$a3 are args. */
5557 opcode |= MIPS16_ALL_ARGS << 16;
5558 else if (statics == 0xf)
5559 /* All $a0-$a3 are statics. */
5560 opcode |= MIPS16_ALL_STATICS << 16;
5561 else
5562 {
5563 /* Count arg registers. */
5564 num_args = 0;
5565 while (args & 0x1)
5566 {
5567 args >>= 1;
5568 num_args += 1;
5569 }
5570 if (args != 0)
a92713e6 5571 return FALSE;
364215c8
RS
5572
5573 /* Count static registers. */
5574 num_statics = 0;
5575 while (statics & 0x8)
5576 {
5577 statics = (statics << 1) & 0xf;
5578 num_statics += 1;
5579 }
5580 if (statics != 0)
a92713e6 5581 return FALSE;
364215c8
RS
5582
5583 /* Encode args/statics. */
5584 opcode |= ((num_args << 2) | num_statics) << 16;
5585 }
5586
5587 /* Encode $s0/$s1. */
5588 if (sregs & (1 << 0)) /* $s0 */
5589 opcode |= 0x20;
5590 if (sregs & (1 << 1)) /* $s1 */
5591 opcode |= 0x10;
5592 sregs >>= 2;
5593
5594 /* Encode $s2-$s8. */
5595 num_sregs = 0;
5596 while (sregs & 1)
5597 {
5598 sregs >>= 1;
5599 num_sregs += 1;
5600 }
5601 if (sregs != 0)
a92713e6 5602 return FALSE;
364215c8
RS
5603 opcode |= num_sregs << 24;
5604
5605 /* Encode frame size. */
5606 if (num_frame_sizes == 0)
1a00e612
RS
5607 {
5608 set_insn_error (arg->argnum, _("missing frame size"));
5609 return FALSE;
5610 }
5611 if (num_frame_sizes > 1)
5612 {
5613 set_insn_error (arg->argnum, _("frame size specified twice"));
5614 return FALSE;
5615 }
5616 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5617 {
5618 set_insn_error (arg->argnum, _("invalid frame size"));
5619 return FALSE;
5620 }
5621 if (frame_size != 128 || (opcode >> 16) != 0)
364215c8
RS
5622 {
5623 frame_size /= 8;
5624 opcode |= (((frame_size & 0xf0) << 16)
5625 | (frame_size & 0x0f));
5626 }
5627
364215c8
RS
5628 /* Finally build the instruction. */
5629 if ((opcode >> 16) != 0 || frame_size == 0)
5630 opcode |= MIPS16_EXTEND;
5631 arg->insn->insn_opcode = opcode;
a92713e6 5632 return TRUE;
364215c8
RS
5633}
5634
a1d78564
RS
5635/* OP_MDMX_IMM_REG matcher. */
5636
a92713e6 5637static bfd_boolean
a1d78564 5638match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
a92713e6 5639 const struct mips_operand *operand)
a1d78564 5640{
a92713e6 5641 unsigned int regno, uval;
a1d78564
RS
5642 bfd_boolean is_qh;
5643 const struct mips_opcode *opcode;
5644
5645 /* The mips_opcode records whether this is an octobyte or quadhalf
5646 instruction. Start out with that bit in place. */
5647 opcode = arg->insn->insn_mo;
5648 uval = mips_extract_operand (operand, opcode->match);
5649 is_qh = (uval != 0);
5650
56d438b1 5651 if (arg->token->type == OT_REG)
a1d78564
RS
5652 {
5653 if ((opcode->membership & INSN_5400)
5654 && strcmp (opcode->name, "rzu.ob") == 0)
5655 {
1a00e612
RS
5656 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5657 arg->argnum);
5658 return FALSE;
a1d78564
RS
5659 }
5660
56d438b1
CF
5661 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5662 return FALSE;
5663 ++arg->token;
5664
a1d78564
RS
5665 /* Check whether this is a vector register or a broadcast of
5666 a single element. */
56d438b1 5667 if (arg->token->type == OT_INTEGER_INDEX)
a1d78564 5668 {
56d438b1 5669 if (arg->token->u.index > (is_qh ? 3 : 7))
a1d78564 5670 {
1a00e612
RS
5671 set_insn_error (arg->argnum, _("invalid element selector"));
5672 return FALSE;
a1d78564 5673 }
56d438b1
CF
5674 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5675 ++arg->token;
a1d78564
RS
5676 }
5677 else
5678 {
5679 /* A full vector. */
5680 if ((opcode->membership & INSN_5400)
5681 && (strcmp (opcode->name, "sll.ob") == 0
5682 || strcmp (opcode->name, "srl.ob") == 0))
5683 {
1a00e612
RS
5684 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5685 arg->argnum);
5686 return FALSE;
a1d78564
RS
5687 }
5688
5689 if (is_qh)
5690 uval |= MDMX_FMTSEL_VEC_QH << 5;
5691 else
5692 uval |= MDMX_FMTSEL_VEC_OB << 5;
5693 }
a1d78564
RS
5694 uval |= regno;
5695 }
5696 else
5697 {
5698 offsetT sval;
5699
1a00e612 5700 if (!match_const_int (arg, &sval))
a92713e6 5701 return FALSE;
a1d78564
RS
5702 if (sval < 0 || sval > 31)
5703 {
1a00e612
RS
5704 match_out_of_range (arg);
5705 return FALSE;
a1d78564
RS
5706 }
5707 uval |= (sval & 31);
5708 if (is_qh)
5709 uval |= MDMX_FMTSEL_IMM_QH << 5;
5710 else
5711 uval |= MDMX_FMTSEL_IMM_OB << 5;
5712 }
5713 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5714 return TRUE;
a1d78564
RS
5715}
5716
56d438b1
CF
5717/* OP_IMM_INDEX matcher. */
5718
5719static bfd_boolean
5720match_imm_index_operand (struct mips_arg_info *arg,
5721 const struct mips_operand *operand)
5722{
5723 unsigned int max_val;
5724
5725 if (arg->token->type != OT_INTEGER_INDEX)
5726 return FALSE;
5727
5728 max_val = (1 << operand->size) - 1;
5729 if (arg->token->u.index > max_val)
5730 {
5731 match_out_of_range (arg);
5732 return FALSE;
5733 }
5734 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5735 ++arg->token;
5736 return TRUE;
5737}
5738
5739/* OP_REG_INDEX matcher. */
5740
5741static bfd_boolean
5742match_reg_index_operand (struct mips_arg_info *arg,
5743 const struct mips_operand *operand)
5744{
5745 unsigned int regno;
5746
5747 if (arg->token->type != OT_REG_INDEX)
5748 return FALSE;
5749
5750 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5751 return FALSE;
5752
5753 insn_insert_operand (arg->insn, operand, regno);
5754 ++arg->token;
5755 return TRUE;
5756}
5757
a1d78564
RS
5758/* OP_PC matcher. */
5759
a92713e6
RS
5760static bfd_boolean
5761match_pc_operand (struct mips_arg_info *arg)
a1d78564 5762{
a92713e6
RS
5763 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5764 {
5765 ++arg->token;
5766 return TRUE;
5767 }
5768 return FALSE;
a1d78564
RS
5769}
5770
7361da2c
AB
5771/* OP_NON_ZERO_REG matcher. */
5772
5773static bfd_boolean
5774match_non_zero_reg_operand (struct mips_arg_info *arg,
5775 const struct mips_operand *operand)
5776{
5777 unsigned int regno;
5778
5779 if (!match_reg (arg, OP_REG_GP, &regno))
5780 return FALSE;
5781
5782 if (regno == 0)
5783 return FALSE;
5784
5785 arg->last_regno = regno;
5786 insn_insert_operand (arg->insn, operand, regno);
5787 return TRUE;
5788}
5789
a1d78564
RS
5790/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5791 register that we need to match. */
5792
a92713e6
RS
5793static bfd_boolean
5794match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
a1d78564
RS
5795{
5796 unsigned int regno;
5797
a92713e6 5798 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
a1d78564
RS
5799}
5800
89565f1b
RS
5801/* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5802 the length of the value in bytes (4 for float, 8 for double) and
5803 USING_GPRS says whether the destination is a GPR rather than an FPR.
5804
5805 Return the constant in IMM and OFFSET as follows:
5806
5807 - If the constant should be loaded via memory, set IMM to O_absent and
5808 OFFSET to the memory address.
5809
5810 - Otherwise, if the constant should be loaded into two 32-bit registers,
5811 set IMM to the O_constant to load into the high register and OFFSET
5812 to the corresponding value for the low register.
5813
5814 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5815
5816 These constants only appear as the last operand in an instruction,
5817 and every instruction that accepts them in any variant accepts them
5818 in all variants. This means we don't have to worry about backing out
5819 any changes if the instruction does not match. We just match
5820 unconditionally and report an error if the constant is invalid. */
5821
a92713e6
RS
5822static bfd_boolean
5823match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5824 expressionS *offset, int length, bfd_boolean using_gprs)
89565f1b 5825{
a92713e6 5826 char *p;
89565f1b
RS
5827 segT seg, new_seg;
5828 subsegT subseg;
5829 const char *newname;
a92713e6 5830 unsigned char *data;
89565f1b
RS
5831
5832 /* Where the constant is placed is based on how the MIPS assembler
5833 does things:
5834
5835 length == 4 && using_gprs -- immediate value only
5836 length == 8 && using_gprs -- .rdata or immediate value
5837 length == 4 && !using_gprs -- .lit4 or immediate value
5838 length == 8 && !using_gprs -- .lit8 or immediate value
5839
5840 The .lit4 and .lit8 sections are only used if permitted by the
5841 -G argument. */
a92713e6 5842 if (arg->token->type != OT_FLOAT)
1a00e612
RS
5843 {
5844 set_insn_error (arg->argnum, _("floating-point expression required"));
5845 return FALSE;
5846 }
a92713e6
RS
5847
5848 gas_assert (arg->token->u.flt.length == length);
5849 data = arg->token->u.flt.data;
5850 ++arg->token;
89565f1b
RS
5851
5852 /* Handle 32-bit constants for which an immediate value is best. */
5853 if (length == 4
5854 && (using_gprs
5855 || g_switch_value < 4
5856 || (data[0] == 0 && data[1] == 0)
5857 || (data[2] == 0 && data[3] == 0)))
5858 {
5859 imm->X_op = O_constant;
5860 if (!target_big_endian)
5861 imm->X_add_number = bfd_getl32 (data);
5862 else
5863 imm->X_add_number = bfd_getb32 (data);
5864 offset->X_op = O_absent;
a92713e6 5865 return TRUE;
89565f1b
RS
5866 }
5867
5868 /* Handle 64-bit constants for which an immediate value is best. */
5869 if (length == 8
5870 && !mips_disable_float_construction
351cdf24
MF
5871 /* Constants can only be constructed in GPRs and copied to FPRs if the
5872 GPRs are at least as wide as the FPRs or MTHC1 is available.
5873 Unlike most tests for 32-bit floating-point registers this check
5874 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5875 permit 64-bit moves without MXHC1.
5876 Force the constant into memory otherwise. */
5877 && (using_gprs
5878 || GPR_SIZE == 64
5879 || ISA_HAS_MXHC1 (mips_opts.isa)
5880 || FPR_SIZE == 32)
89565f1b
RS
5881 && ((data[0] == 0 && data[1] == 0)
5882 || (data[2] == 0 && data[3] == 0))
5883 && ((data[4] == 0 && data[5] == 0)
5884 || (data[6] == 0 && data[7] == 0)))
5885 {
5886 /* The value is simple enough to load with a couple of instructions.
5887 If using 32-bit registers, set IMM to the high order 32 bits and
5888 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5889 64 bit constant. */
351cdf24 5890 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
89565f1b
RS
5891 {
5892 imm->X_op = O_constant;
5893 offset->X_op = O_constant;
5894 if (!target_big_endian)
5895 {
5896 imm->X_add_number = bfd_getl32 (data + 4);
5897 offset->X_add_number = bfd_getl32 (data);
5898 }
5899 else
5900 {
5901 imm->X_add_number = bfd_getb32 (data);
5902 offset->X_add_number = bfd_getb32 (data + 4);
5903 }
5904 if (offset->X_add_number == 0)
5905 offset->X_op = O_absent;
5906 }
5907 else
5908 {
5909 imm->X_op = O_constant;
5910 if (!target_big_endian)
5911 imm->X_add_number = bfd_getl64 (data);
5912 else
5913 imm->X_add_number = bfd_getb64 (data);
5914 offset->X_op = O_absent;
5915 }
a92713e6 5916 return TRUE;
89565f1b
RS
5917 }
5918
5919 /* Switch to the right section. */
5920 seg = now_seg;
5921 subseg = now_subseg;
5922 if (length == 4)
5923 {
5924 gas_assert (!using_gprs && g_switch_value >= 4);
5925 newname = ".lit4";
5926 }
5927 else
5928 {
5929 if (using_gprs || g_switch_value < 8)
5930 newname = RDATA_SECTION_NAME;
5931 else
5932 newname = ".lit8";
5933 }
5934
5935 new_seg = subseg_new (newname, (subsegT) 0);
5936 bfd_set_section_flags (stdoutput, new_seg,
5937 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5938 frag_align (length == 4 ? 2 : 3, 0, 0);
5939 if (strncmp (TARGET_OS, "elf", 3) != 0)
5940 record_alignment (new_seg, 4);
5941 else
5942 record_alignment (new_seg, length == 4 ? 2 : 3);
5943 if (seg == now_seg)
1661c76c 5944 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
89565f1b
RS
5945
5946 /* Set the argument to the current address in the section. */
5947 imm->X_op = O_absent;
5948 offset->X_op = O_symbol;
5949 offset->X_add_symbol = symbol_temp_new_now ();
5950 offset->X_add_number = 0;
5951
5952 /* Put the floating point number into the section. */
5953 p = frag_more (length);
5954 memcpy (p, data, length);
5955
5956 /* Switch back to the original section. */
5957 subseg_set (seg, subseg);
a92713e6 5958 return TRUE;
89565f1b
RS
5959}
5960
14daeee3
RS
5961/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5962 them. */
5963
5964static bfd_boolean
5965match_vu0_suffix_operand (struct mips_arg_info *arg,
5966 const struct mips_operand *operand,
5967 bfd_boolean match_p)
5968{
5969 unsigned int uval;
5970
5971 /* The operand can be an XYZW mask or a single 2-bit channel index
5972 (with X being 0). */
5973 gas_assert (operand->size == 2 || operand->size == 4);
5974
ee5734f0 5975 /* The suffix can be omitted when it is already part of the opcode. */
14daeee3 5976 if (arg->token->type != OT_CHANNELS)
ee5734f0 5977 return match_p;
14daeee3
RS
5978
5979 uval = arg->token->u.channels;
5980 if (operand->size == 2)
5981 {
5982 /* Check that a single bit is set and convert it into a 2-bit index. */
5983 if ((uval & -uval) != uval)
5984 return FALSE;
5985 uval = 4 - ffs (uval);
5986 }
5987
5988 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5989 return FALSE;
5990
5991 ++arg->token;
5992 if (!match_p)
5993 insn_insert_operand (arg->insn, operand, uval);
5994 return TRUE;
5995}
5996
a1d78564
RS
5997/* S is the text seen for ARG. Match it against OPERAND. Return the end
5998 of the argument text if the match is successful, otherwise return null. */
5999
a92713e6 6000static bfd_boolean
a1d78564 6001match_operand (struct mips_arg_info *arg,
a92713e6 6002 const struct mips_operand *operand)
a1d78564
RS
6003{
6004 switch (operand->type)
6005 {
6006 case OP_INT:
a92713e6 6007 return match_int_operand (arg, operand);
a1d78564
RS
6008
6009 case OP_MAPPED_INT:
a92713e6 6010 return match_mapped_int_operand (arg, operand);
a1d78564
RS
6011
6012 case OP_MSB:
a92713e6 6013 return match_msb_operand (arg, operand);
a1d78564
RS
6014
6015 case OP_REG:
0f35dbc4 6016 case OP_OPTIONAL_REG:
a92713e6 6017 return match_reg_operand (arg, operand);
a1d78564
RS
6018
6019 case OP_REG_PAIR:
a92713e6 6020 return match_reg_pair_operand (arg, operand);
a1d78564
RS
6021
6022 case OP_PCREL:
a92713e6 6023 return match_pcrel_operand (arg);
a1d78564
RS
6024
6025 case OP_PERF_REG:
a92713e6 6026 return match_perf_reg_operand (arg, operand);
a1d78564
RS
6027
6028 case OP_ADDIUSP_INT:
a92713e6 6029 return match_addiusp_operand (arg, operand);
a1d78564
RS
6030
6031 case OP_CLO_CLZ_DEST:
a92713e6 6032 return match_clo_clz_dest_operand (arg, operand);
a1d78564
RS
6033
6034 case OP_LWM_SWM_LIST:
a92713e6 6035 return match_lwm_swm_list_operand (arg, operand);
a1d78564
RS
6036
6037 case OP_ENTRY_EXIT_LIST:
a92713e6 6038 return match_entry_exit_operand (arg, operand);
364215c8 6039
a1d78564 6040 case OP_SAVE_RESTORE_LIST:
a92713e6 6041 return match_save_restore_list_operand (arg);
a1d78564
RS
6042
6043 case OP_MDMX_IMM_REG:
a92713e6 6044 return match_mdmx_imm_reg_operand (arg, operand);
a1d78564
RS
6045
6046 case OP_REPEAT_DEST_REG:
a92713e6 6047 return match_tied_reg_operand (arg, arg->dest_regno);
a1d78564
RS
6048
6049 case OP_REPEAT_PREV_REG:
a92713e6 6050 return match_tied_reg_operand (arg, arg->last_regno);
a1d78564
RS
6051
6052 case OP_PC:
a92713e6 6053 return match_pc_operand (arg);
14daeee3
RS
6054
6055 case OP_VU0_SUFFIX:
6056 return match_vu0_suffix_operand (arg, operand, FALSE);
6057
6058 case OP_VU0_MATCH_SUFFIX:
6059 return match_vu0_suffix_operand (arg, operand, TRUE);
56d438b1
CF
6060
6061 case OP_IMM_INDEX:
6062 return match_imm_index_operand (arg, operand);
6063
6064 case OP_REG_INDEX:
6065 return match_reg_index_operand (arg, operand);
7361da2c
AB
6066
6067 case OP_SAME_RS_RT:
6068 return match_same_rs_rt_operand (arg, operand);
6069
6070 case OP_CHECK_PREV:
6071 return match_check_prev_operand (arg, operand);
6072
6073 case OP_NON_ZERO_REG:
6074 return match_non_zero_reg_operand (arg, operand);
a1d78564
RS
6075 }
6076 abort ();
6077}
6078
6079/* ARG is the state after successfully matching an instruction.
6080 Issue any queued-up warnings. */
6081
6082static void
6083check_completed_insn (struct mips_arg_info *arg)
6084{
6085 if (arg->seen_at)
6086 {
6087 if (AT == ATREG)
1661c76c 6088 as_warn (_("used $at without \".set noat\""));
a1d78564 6089 else
1661c76c 6090 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
a1d78564
RS
6091 }
6092}
a1d78564 6093
85fcb30f
RS
6094/* Return true if modifying general-purpose register REG needs a delay. */
6095
6096static bfd_boolean
6097reg_needs_delay (unsigned int reg)
6098{
6099 unsigned long prev_pinfo;
6100
6101 prev_pinfo = history[0].insn_mo->pinfo;
6102 if (!mips_opts.noreorder
67dc82bc 6103 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
43885403 6104 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
85fcb30f
RS
6105 && (gpr_write_mask (&history[0]) & (1 << reg)))
6106 return TRUE;
6107
6108 return FALSE;
6109}
6110
71400594
RS
6111/* Classify an instruction according to the FIX_VR4120_* enumeration.
6112 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6113 by VR4120 errata. */
4d7206a2 6114
71400594
RS
6115static unsigned int
6116classify_vr4120_insn (const char *name)
252b5132 6117{
71400594
RS
6118 if (strncmp (name, "macc", 4) == 0)
6119 return FIX_VR4120_MACC;
6120 if (strncmp (name, "dmacc", 5) == 0)
6121 return FIX_VR4120_DMACC;
6122 if (strncmp (name, "mult", 4) == 0)
6123 return FIX_VR4120_MULT;
6124 if (strncmp (name, "dmult", 5) == 0)
6125 return FIX_VR4120_DMULT;
6126 if (strstr (name, "div"))
6127 return FIX_VR4120_DIV;
6128 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6129 return FIX_VR4120_MTHILO;
6130 return NUM_FIX_VR4120_CLASSES;
6131}
252b5132 6132
a8d14a88
CM
6133#define INSN_ERET 0x42000018
6134#define INSN_DERET 0x4200001f
6135#define INSN_DMULT 0x1c
6136#define INSN_DMULTU 0x1d
ff239038 6137
71400594
RS
6138/* Return the number of instructions that must separate INSN1 and INSN2,
6139 where INSN1 is the earlier instruction. Return the worst-case value
6140 for any INSN2 if INSN2 is null. */
252b5132 6141
71400594
RS
6142static unsigned int
6143insns_between (const struct mips_cl_insn *insn1,
6144 const struct mips_cl_insn *insn2)
6145{
6146 unsigned long pinfo1, pinfo2;
4c260379 6147 unsigned int mask;
71400594 6148
85fcb30f
RS
6149 /* If INFO2 is null, pessimistically assume that all flags are set for
6150 the second instruction. */
71400594
RS
6151 pinfo1 = insn1->insn_mo->pinfo;
6152 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
252b5132 6153
71400594
RS
6154 /* For most targets, write-after-read dependencies on the HI and LO
6155 registers must be separated by at least two instructions. */
6156 if (!hilo_interlocks)
252b5132 6157 {
71400594
RS
6158 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6159 return 2;
6160 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6161 return 2;
6162 }
6163
6164 /* If we're working around r7000 errata, there must be two instructions
6165 between an mfhi or mflo and any instruction that uses the result. */
6166 if (mips_7000_hilo_fix
df58fc94 6167 && !mips_opts.micromips
71400594 6168 && MF_HILO_INSN (pinfo1)
85fcb30f 6169 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
71400594
RS
6170 return 2;
6171
ff239038
CM
6172 /* If we're working around 24K errata, one instruction is required
6173 if an ERET or DERET is followed by a branch instruction. */
df58fc94 6174 if (mips_fix_24k && !mips_opts.micromips)
ff239038
CM
6175 {
6176 if (insn1->insn_opcode == INSN_ERET
6177 || insn1->insn_opcode == INSN_DERET)
6178 {
6179 if (insn2 == NULL
6180 || insn2->insn_opcode == INSN_ERET
6181 || insn2->insn_opcode == INSN_DERET
11625dd8 6182 || delayed_branch_p (insn2))
ff239038
CM
6183 return 1;
6184 }
6185 }
6186
a8d14a88
CM
6187 /* If we're working around PMC RM7000 errata, there must be three
6188 nops between a dmult and a load instruction. */
6189 if (mips_fix_rm7000 && !mips_opts.micromips)
6190 {
6191 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6192 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6193 {
6194 if (pinfo2 & INSN_LOAD_MEMORY)
6195 return 3;
6196 }
6197 }
6198
71400594
RS
6199 /* If working around VR4120 errata, check for combinations that need
6200 a single intervening instruction. */
df58fc94 6201 if (mips_fix_vr4120 && !mips_opts.micromips)
71400594
RS
6202 {
6203 unsigned int class1, class2;
252b5132 6204
71400594
RS
6205 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6206 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
252b5132 6207 {
71400594
RS
6208 if (insn2 == NULL)
6209 return 1;
6210 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6211 if (vr4120_conflicts[class1] & (1 << class2))
6212 return 1;
252b5132 6213 }
71400594
RS
6214 }
6215
df58fc94 6216 if (!HAVE_CODE_COMPRESSION)
71400594
RS
6217 {
6218 /* Check for GPR or coprocessor load delays. All such delays
6219 are on the RT register. */
6220 /* Itbl support may require additional care here. */
67dc82bc 6221 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
43885403 6222 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
252b5132 6223 {
85fcb30f 6224 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
71400594
RS
6225 return 1;
6226 }
6227
6228 /* Check for generic coprocessor hazards.
6229
6230 This case is not handled very well. There is no special
6231 knowledge of CP0 handling, and the coprocessors other than
6232 the floating point unit are not distinguished at all. */
6233 /* Itbl support may require additional care here. FIXME!
6234 Need to modify this to include knowledge about
6235 user specified delays! */
43885403 6236 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
71400594
RS
6237 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6238 {
6239 /* Handle cases where INSN1 writes to a known general coprocessor
6240 register. There must be a one instruction delay before INSN2
6241 if INSN2 reads that register, otherwise no delay is needed. */
4c260379
RS
6242 mask = fpr_write_mask (insn1);
6243 if (mask != 0)
252b5132 6244 {
4c260379 6245 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
71400594 6246 return 1;
252b5132
RH
6247 }
6248 else
6249 {
71400594
RS
6250 /* Read-after-write dependencies on the control registers
6251 require a two-instruction gap. */
6252 if ((pinfo1 & INSN_WRITE_COND_CODE)
6253 && (pinfo2 & INSN_READ_COND_CODE))
6254 return 2;
6255
6256 /* We don't know exactly what INSN1 does. If INSN2 is
6257 also a coprocessor instruction, assume there must be
6258 a one instruction gap. */
6259 if (pinfo2 & INSN_COP)
6260 return 1;
252b5132
RH
6261 }
6262 }
6b76fefe 6263
71400594
RS
6264 /* Check for read-after-write dependencies on the coprocessor
6265 control registers in cases where INSN1 does not need a general
6266 coprocessor delay. This means that INSN1 is a floating point
6267 comparison instruction. */
6268 /* Itbl support may require additional care here. */
6269 else if (!cop_interlocks
6270 && (pinfo1 & INSN_WRITE_COND_CODE)
6271 && (pinfo2 & INSN_READ_COND_CODE))
6272 return 1;
6273 }
6b76fefe 6274
7361da2c
AB
6275 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6276 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6277 and pause. */
6278 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6279 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6280 || (insn2 && delayed_branch_p (insn2))))
6281 return 1;
6282
71400594
RS
6283 return 0;
6284}
6b76fefe 6285
7d8e00cf
RS
6286/* Return the number of nops that would be needed to work around the
6287 VR4130 mflo/mfhi errata if instruction INSN immediately followed
932d1a1b
RS
6288 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6289 that are contained within the first IGNORE instructions of HIST. */
7d8e00cf
RS
6290
6291static int
932d1a1b 6292nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
7d8e00cf
RS
6293 const struct mips_cl_insn *insn)
6294{
4c260379
RS
6295 int i, j;
6296 unsigned int mask;
7d8e00cf
RS
6297
6298 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6299 are not affected by the errata. */
6300 if (insn != 0
6301 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6302 || strcmp (insn->insn_mo->name, "mtlo") == 0
6303 || strcmp (insn->insn_mo->name, "mthi") == 0))
6304 return 0;
6305
6306 /* Search for the first MFLO or MFHI. */
6307 for (i = 0; i < MAX_VR4130_NOPS; i++)
91d6fa6a 6308 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
7d8e00cf
RS
6309 {
6310 /* Extract the destination register. */
4c260379 6311 mask = gpr_write_mask (&hist[i]);
7d8e00cf
RS
6312
6313 /* No nops are needed if INSN reads that register. */
4c260379 6314 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
7d8e00cf
RS
6315 return 0;
6316
6317 /* ...or if any of the intervening instructions do. */
6318 for (j = 0; j < i; j++)
4c260379 6319 if (gpr_read_mask (&hist[j]) & mask)
7d8e00cf
RS
6320 return 0;
6321
932d1a1b
RS
6322 if (i >= ignore)
6323 return MAX_VR4130_NOPS - i;
7d8e00cf
RS
6324 }
6325 return 0;
6326}
6327
134c0c8b
MR
6328#define BASE_REG_EQ(INSN1, INSN2) \
6329 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
15be625d
CM
6330 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6331
6332/* Return the minimum alignment for this store instruction. */
6333
6334static int
6335fix_24k_align_to (const struct mips_opcode *mo)
6336{
6337 if (strcmp (mo->name, "sh") == 0)
6338 return 2;
6339
6340 if (strcmp (mo->name, "swc1") == 0
6341 || strcmp (mo->name, "swc2") == 0
6342 || strcmp (mo->name, "sw") == 0
6343 || strcmp (mo->name, "sc") == 0
6344 || strcmp (mo->name, "s.s") == 0)
6345 return 4;
6346
6347 if (strcmp (mo->name, "sdc1") == 0
6348 || strcmp (mo->name, "sdc2") == 0
6349 || strcmp (mo->name, "s.d") == 0)
6350 return 8;
6351
6352 /* sb, swl, swr */
6353 return 1;
6354}
6355
6356struct fix_24k_store_info
6357 {
6358 /* Immediate offset, if any, for this store instruction. */
6359 short off;
6360 /* Alignment required by this store instruction. */
6361 int align_to;
6362 /* True for register offsets. */
6363 int register_offset;
6364 };
6365
6366/* Comparison function used by qsort. */
6367
6368static int
6369fix_24k_sort (const void *a, const void *b)
6370{
6371 const struct fix_24k_store_info *pos1 = a;
6372 const struct fix_24k_store_info *pos2 = b;
6373
6374 return (pos1->off - pos2->off);
6375}
6376
6377/* INSN is a store instruction. Try to record the store information
6378 in STINFO. Return false if the information isn't known. */
6379
6380static bfd_boolean
6381fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
ab9794cf 6382 const struct mips_cl_insn *insn)
15be625d
CM
6383{
6384 /* The instruction must have a known offset. */
6385 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6386 return FALSE;
6387
6388 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6389 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6390 return TRUE;
6391}
6392
932d1a1b
RS
6393/* Return the number of nops that would be needed to work around the 24k
6394 "lost data on stores during refill" errata if instruction INSN
6395 immediately followed the 2 instructions described by HIST.
6396 Ignore hazards that are contained within the first IGNORE
6397 instructions of HIST.
6398
6399 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6400 for the data cache refills and store data. The following describes
6401 the scenario where the store data could be lost.
6402
6403 * A data cache miss, due to either a load or a store, causing fill
6404 data to be supplied by the memory subsystem
6405 * The first three doublewords of fill data are returned and written
6406 into the cache
6407 * A sequence of four stores occurs in consecutive cycles around the
6408 final doubleword of the fill:
6409 * Store A
6410 * Store B
6411 * Store C
6412 * Zero, One or more instructions
6413 * Store D
6414
6415 The four stores A-D must be to different doublewords of the line that
6416 is being filled. The fourth instruction in the sequence above permits
6417 the fill of the final doubleword to be transferred from the FSB into
6418 the cache. In the sequence above, the stores may be either integer
6419 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6420 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6421 different doublewords on the line. If the floating point unit is
6422 running in 1:2 mode, it is not possible to create the sequence above
6423 using only floating point store instructions.
15be625d
CM
6424
6425 In this case, the cache line being filled is incorrectly marked
6426 invalid, thereby losing the data from any store to the line that
6427 occurs between the original miss and the completion of the five
6428 cycle sequence shown above.
6429
932d1a1b 6430 The workarounds are:
15be625d 6431
932d1a1b
RS
6432 * Run the data cache in write-through mode.
6433 * Insert a non-store instruction between
6434 Store A and Store B or Store B and Store C. */
3739860c 6435
15be625d 6436static int
932d1a1b 6437nops_for_24k (int ignore, const struct mips_cl_insn *hist,
15be625d
CM
6438 const struct mips_cl_insn *insn)
6439{
6440 struct fix_24k_store_info pos[3];
6441 int align, i, base_offset;
6442
932d1a1b
RS
6443 if (ignore >= 2)
6444 return 0;
6445
ab9794cf
RS
6446 /* If the previous instruction wasn't a store, there's nothing to
6447 worry about. */
15be625d
CM
6448 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6449 return 0;
6450
ab9794cf
RS
6451 /* If the instructions after the previous one are unknown, we have
6452 to assume the worst. */
6453 if (!insn)
15be625d
CM
6454 return 1;
6455
ab9794cf
RS
6456 /* Check whether we are dealing with three consecutive stores. */
6457 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6458 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
15be625d
CM
6459 return 0;
6460
6461 /* If we don't know the relationship between the store addresses,
6462 assume the worst. */
ab9794cf 6463 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
15be625d
CM
6464 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6465 return 1;
6466
6467 if (!fix_24k_record_store_info (&pos[0], insn)
6468 || !fix_24k_record_store_info (&pos[1], &hist[0])
6469 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6470 return 1;
6471
6472 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6473
6474 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6475 X bytes and such that the base register + X is known to be aligned
6476 to align bytes. */
6477
6478 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6479 align = 8;
6480 else
6481 {
6482 align = pos[0].align_to;
6483 base_offset = pos[0].off;
6484 for (i = 1; i < 3; i++)
6485 if (align < pos[i].align_to)
6486 {
6487 align = pos[i].align_to;
6488 base_offset = pos[i].off;
6489 }
6490 for (i = 0; i < 3; i++)
6491 pos[i].off -= base_offset;
6492 }
6493
6494 pos[0].off &= ~align + 1;
6495 pos[1].off &= ~align + 1;
6496 pos[2].off &= ~align + 1;
6497
6498 /* If any two stores write to the same chunk, they also write to the
6499 same doubleword. The offsets are still sorted at this point. */
6500 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6501 return 0;
6502
6503 /* A range of at least 9 bytes is needed for the stores to be in
6504 non-overlapping doublewords. */
6505 if (pos[2].off - pos[0].off <= 8)
6506 return 0;
6507
6508 if (pos[2].off - pos[1].off >= 24
6509 || pos[1].off - pos[0].off >= 24
6510 || pos[2].off - pos[0].off >= 32)
6511 return 0;
6512
6513 return 1;
6514}
6515
71400594 6516/* Return the number of nops that would be needed if instruction INSN
91d6fa6a 6517 immediately followed the MAX_NOPS instructions given by HIST,
932d1a1b
RS
6518 where HIST[0] is the most recent instruction. Ignore hazards
6519 between INSN and the first IGNORE instructions in HIST.
6520
6521 If INSN is null, return the worse-case number of nops for any
6522 instruction. */
bdaaa2e1 6523
71400594 6524static int
932d1a1b 6525nops_for_insn (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6526 const struct mips_cl_insn *insn)
6527{
6528 int i, nops, tmp_nops;
bdaaa2e1 6529
71400594 6530 nops = 0;
932d1a1b 6531 for (i = ignore; i < MAX_DELAY_NOPS; i++)
65b02341 6532 {
91d6fa6a 6533 tmp_nops = insns_between (hist + i, insn) - i;
65b02341
RS
6534 if (tmp_nops > nops)
6535 nops = tmp_nops;
6536 }
7d8e00cf 6537
df58fc94 6538 if (mips_fix_vr4130 && !mips_opts.micromips)
7d8e00cf 6539 {
932d1a1b 6540 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
7d8e00cf
RS
6541 if (tmp_nops > nops)
6542 nops = tmp_nops;
6543 }
6544
df58fc94 6545 if (mips_fix_24k && !mips_opts.micromips)
15be625d 6546 {
932d1a1b 6547 tmp_nops = nops_for_24k (ignore, hist, insn);
15be625d
CM
6548 if (tmp_nops > nops)
6549 nops = tmp_nops;
6550 }
6551
71400594
RS
6552 return nops;
6553}
252b5132 6554
71400594 6555/* The variable arguments provide NUM_INSNS extra instructions that
91d6fa6a 6556 might be added to HIST. Return the largest number of nops that
932d1a1b
RS
6557 would be needed after the extended sequence, ignoring hazards
6558 in the first IGNORE instructions. */
252b5132 6559
71400594 6560static int
932d1a1b
RS
6561nops_for_sequence (int num_insns, int ignore,
6562 const struct mips_cl_insn *hist, ...)
71400594
RS
6563{
6564 va_list args;
6565 struct mips_cl_insn buffer[MAX_NOPS];
6566 struct mips_cl_insn *cursor;
6567 int nops;
6568
91d6fa6a 6569 va_start (args, hist);
71400594 6570 cursor = buffer + num_insns;
91d6fa6a 6571 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
71400594
RS
6572 while (cursor > buffer)
6573 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6574
932d1a1b 6575 nops = nops_for_insn (ignore, buffer, NULL);
71400594
RS
6576 va_end (args);
6577 return nops;
6578}
252b5132 6579
71400594
RS
6580/* Like nops_for_insn, but if INSN is a branch, take into account the
6581 worst-case delay for the branch target. */
252b5132 6582
71400594 6583static int
932d1a1b 6584nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6585 const struct mips_cl_insn *insn)
6586{
6587 int nops, tmp_nops;
60b63b72 6588
932d1a1b 6589 nops = nops_for_insn (ignore, hist, insn);
11625dd8 6590 if (delayed_branch_p (insn))
71400594 6591 {
932d1a1b 6592 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
14fe068b 6593 hist, insn, get_delay_slot_nop (insn));
71400594
RS
6594 if (tmp_nops > nops)
6595 nops = tmp_nops;
6596 }
11625dd8 6597 else if (compact_branch_p (insn))
71400594 6598 {
932d1a1b 6599 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
71400594
RS
6600 if (tmp_nops > nops)
6601 nops = tmp_nops;
6602 }
6603 return nops;
6604}
6605
c67a084a
NC
6606/* Fix NOP issue: Replace nops by "or at,at,zero". */
6607
6608static void
6609fix_loongson2f_nop (struct mips_cl_insn * ip)
6610{
df58fc94 6611 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6612 if (strcmp (ip->insn_mo->name, "nop") == 0)
6613 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6614}
6615
6616/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6617 jr target pc &= 'hffff_ffff_cfff_ffff. */
6618
6619static void
6620fix_loongson2f_jump (struct mips_cl_insn * ip)
6621{
df58fc94 6622 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6623 if (strcmp (ip->insn_mo->name, "j") == 0
6624 || strcmp (ip->insn_mo->name, "jr") == 0
6625 || strcmp (ip->insn_mo->name, "jalr") == 0)
6626 {
6627 int sreg;
6628 expressionS ep;
6629
6630 if (! mips_opts.at)
6631 return;
6632
df58fc94 6633 sreg = EXTRACT_OPERAND (0, RS, *ip);
c67a084a
NC
6634 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6635 return;
6636
6637 ep.X_op = O_constant;
6638 ep.X_add_number = 0xcfff0000;
6639 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6640 ep.X_add_number = 0xffff;
6641 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6642 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6643 }
6644}
6645
6646static void
6647fix_loongson2f (struct mips_cl_insn * ip)
6648{
6649 if (mips_fix_loongson2f_nop)
6650 fix_loongson2f_nop (ip);
6651
6652 if (mips_fix_loongson2f_jump)
6653 fix_loongson2f_jump (ip);
6654}
6655
a4e06468
RS
6656/* IP is a branch that has a delay slot, and we need to fill it
6657 automatically. Return true if we can do that by swapping IP
e407c74b
NC
6658 with the previous instruction.
6659 ADDRESS_EXPR is an operand of the instruction to be used with
6660 RELOC_TYPE. */
a4e06468
RS
6661
6662static bfd_boolean
e407c74b 6663can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6664 bfd_reloc_code_real_type *reloc_type)
a4e06468 6665{
2b0c8b40 6666 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
a4e06468 6667 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
9d5de888 6668 unsigned int fpr_read, prev_fpr_write;
a4e06468
RS
6669
6670 /* -O2 and above is required for this optimization. */
6671 if (mips_optimize < 2)
6672 return FALSE;
6673
6674 /* If we have seen .set volatile or .set nomove, don't optimize. */
6675 if (mips_opts.nomove)
6676 return FALSE;
6677
6678 /* We can't swap if the previous instruction's position is fixed. */
6679 if (history[0].fixed_p)
6680 return FALSE;
6681
6682 /* If the previous previous insn was in a .set noreorder, we can't
6683 swap. Actually, the MIPS assembler will swap in this situation.
6684 However, gcc configured -with-gnu-as will generate code like
6685
6686 .set noreorder
6687 lw $4,XXX
6688 .set reorder
6689 INSN
6690 bne $4,$0,foo
6691
6692 in which we can not swap the bne and INSN. If gcc is not configured
6693 -with-gnu-as, it does not output the .set pseudo-ops. */
6694 if (history[1].noreorder_p)
6695 return FALSE;
6696
87333bb7
MR
6697 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6698 This means that the previous instruction was a 4-byte one anyhow. */
a4e06468
RS
6699 if (mips_opts.mips16 && history[0].fixp[0])
6700 return FALSE;
6701
6702 /* If the branch is itself the target of a branch, we can not swap.
6703 We cheat on this; all we check for is whether there is a label on
6704 this instruction. If there are any branches to anything other than
6705 a label, users must use .set noreorder. */
6706 if (seg_info (now_seg)->label_list)
6707 return FALSE;
6708
6709 /* If the previous instruction is in a variant frag other than this
2309ddf2 6710 branch's one, we cannot do the swap. This does not apply to
9301f9c3
MR
6711 MIPS16 code, which uses variant frags for different purposes. */
6712 if (!mips_opts.mips16
a4e06468
RS
6713 && history[0].frag
6714 && history[0].frag->fr_type == rs_machine_dependent)
6715 return FALSE;
6716
bcd530a7
RS
6717 /* We do not swap with instructions that cannot architecturally
6718 be placed in a branch delay slot, such as SYNC or ERET. We
6719 also refrain from swapping with a trap instruction, since it
6720 complicates trap handlers to have the trap instruction be in
6721 a delay slot. */
a4e06468 6722 prev_pinfo = history[0].insn_mo->pinfo;
bcd530a7 6723 if (prev_pinfo & INSN_NO_DELAY_SLOT)
a4e06468
RS
6724 return FALSE;
6725
6726 /* Check for conflicts between the branch and the instructions
6727 before the candidate delay slot. */
6728 if (nops_for_insn (0, history + 1, ip) > 0)
6729 return FALSE;
6730
6731 /* Check for conflicts between the swapped sequence and the
6732 target of the branch. */
6733 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6734 return FALSE;
6735
6736 /* If the branch reads a register that the previous
6737 instruction sets, we can not swap. */
6738 gpr_read = gpr_read_mask (ip);
6739 prev_gpr_write = gpr_write_mask (&history[0]);
6740 if (gpr_read & prev_gpr_write)
6741 return FALSE;
6742
9d5de888
CF
6743 fpr_read = fpr_read_mask (ip);
6744 prev_fpr_write = fpr_write_mask (&history[0]);
6745 if (fpr_read & prev_fpr_write)
6746 return FALSE;
6747
a4e06468
RS
6748 /* If the branch writes a register that the previous
6749 instruction sets, we can not swap. */
6750 gpr_write = gpr_write_mask (ip);
6751 if (gpr_write & prev_gpr_write)
6752 return FALSE;
6753
6754 /* If the branch writes a register that the previous
6755 instruction reads, we can not swap. */
6756 prev_gpr_read = gpr_read_mask (&history[0]);
6757 if (gpr_write & prev_gpr_read)
6758 return FALSE;
6759
6760 /* If one instruction sets a condition code and the
6761 other one uses a condition code, we can not swap. */
6762 pinfo = ip->insn_mo->pinfo;
6763 if ((pinfo & INSN_READ_COND_CODE)
6764 && (prev_pinfo & INSN_WRITE_COND_CODE))
6765 return FALSE;
6766 if ((pinfo & INSN_WRITE_COND_CODE)
6767 && (prev_pinfo & INSN_READ_COND_CODE))
6768 return FALSE;
6769
6770 /* If the previous instruction uses the PC, we can not swap. */
2b0c8b40 6771 prev_pinfo2 = history[0].insn_mo->pinfo2;
26545944 6772 if (prev_pinfo2 & INSN2_READ_PC)
2b0c8b40 6773 return FALSE;
a4e06468 6774
df58fc94
RS
6775 /* If the previous instruction has an incorrect size for a fixed
6776 branch delay slot in microMIPS mode, we cannot swap. */
2309ddf2
MR
6777 pinfo2 = ip->insn_mo->pinfo2;
6778 if (mips_opts.micromips
6779 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6780 && insn_length (history) != 2)
6781 return FALSE;
6782 if (mips_opts.micromips
6783 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6784 && insn_length (history) != 4)
6785 return FALSE;
6786
e407c74b
NC
6787 /* On R5900 short loops need to be fixed by inserting a nop in
6788 the branch delay slots.
6789 A short loop can be terminated too early. */
6790 if (mips_opts.arch == CPU_R5900
6791 /* Check if instruction has a parameter, ignore "j $31". */
6792 && (address_expr != NULL)
6793 /* Parameter must be 16 bit. */
6794 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6795 /* Branch to same segment. */
41065f5e 6796 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
e407c74b 6797 /* Branch to same code fragment. */
41065f5e 6798 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
e407c74b 6799 /* Can only calculate branch offset if value is known. */
41065f5e 6800 && symbol_constant_p (address_expr->X_add_symbol)
e407c74b
NC
6801 /* Check if branch is really conditional. */
6802 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6803 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6804 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6805 {
6806 int distance;
6807 /* Check if loop is shorter than 6 instructions including
6808 branch and delay slot. */
41065f5e 6809 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
e407c74b
NC
6810 if (distance <= 20)
6811 {
6812 int i;
6813 int rv;
6814
6815 rv = FALSE;
6816 /* When the loop includes branches or jumps,
6817 it is not a short loop. */
6818 for (i = 0; i < (distance / 4); i++)
6819 {
6820 if ((history[i].cleared_p)
41065f5e 6821 || delayed_branch_p (&history[i]))
e407c74b
NC
6822 {
6823 rv = TRUE;
6824 break;
6825 }
6826 }
6827 if (rv == FALSE)
6828 {
6829 /* Insert nop after branch to fix short loop. */
6830 return FALSE;
6831 }
6832 }
6833 }
6834
a4e06468
RS
6835 return TRUE;
6836}
6837
e407c74b
NC
6838/* Decide how we should add IP to the instruction stream.
6839 ADDRESS_EXPR is an operand of the instruction to be used with
6840 RELOC_TYPE. */
a4e06468
RS
6841
6842static enum append_method
e407c74b 6843get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6844 bfd_reloc_code_real_type *reloc_type)
a4e06468 6845{
a4e06468
RS
6846 /* The relaxed version of a macro sequence must be inherently
6847 hazard-free. */
6848 if (mips_relax.sequence == 2)
6849 return APPEND_ADD;
6850
3b821a28 6851 /* We must not dabble with instructions in a ".set noreorder" block. */
a4e06468
RS
6852 if (mips_opts.noreorder)
6853 return APPEND_ADD;
6854
6855 /* Otherwise, it's our responsibility to fill branch delay slots. */
11625dd8 6856 if (delayed_branch_p (ip))
a4e06468 6857 {
e407c74b
NC
6858 if (!branch_likely_p (ip)
6859 && can_swap_branch_p (ip, address_expr, reloc_type))
a4e06468
RS
6860 return APPEND_SWAP;
6861
6862 if (mips_opts.mips16
6863 && ISA_SUPPORTS_MIPS16E
fc76e730 6864 && gpr_read_mask (ip) != 0)
a4e06468
RS
6865 return APPEND_ADD_COMPACT;
6866
7bd374a4
MR
6867 if (mips_opts.micromips
6868 && ((ip->insn_opcode & 0xffe0) == 0x4580
6869 || (!forced_insn_length
6870 && ((ip->insn_opcode & 0xfc00) == 0xcc00
6871 || (ip->insn_opcode & 0xdc00) == 0x8c00))
6872 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
6873 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
6874 return APPEND_ADD_COMPACT;
6875
a4e06468
RS
6876 return APPEND_ADD_WITH_NOP;
6877 }
6878
a4e06468
RS
6879 return APPEND_ADD;
6880}
6881
7bd374a4
MR
6882/* IP is an instruction whose opcode we have just changed, END points
6883 to the end of the opcode table processed. Point IP->insn_mo to the
6884 new opcode's definition. */
ceb94aa5
RS
6885
6886static void
7bd374a4 6887find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
ceb94aa5 6888{
7bd374a4 6889 const struct mips_opcode *mo;
ceb94aa5 6890
ceb94aa5 6891 for (mo = ip->insn_mo; mo < end; mo++)
7bd374a4
MR
6892 if (mo->pinfo != INSN_MACRO
6893 && (ip->insn_opcode & mo->mask) == mo->match)
ceb94aa5
RS
6894 {
6895 ip->insn_mo = mo;
6896 return;
6897 }
6898 abort ();
6899}
6900
7bd374a4
MR
6901/* IP is a MIPS16 instruction whose opcode we have just changed.
6902 Point IP->insn_mo to the new opcode's definition. */
6903
6904static void
6905find_altered_mips16_opcode (struct mips_cl_insn *ip)
6906{
6907 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
6908}
6909
6910/* IP is a microMIPS instruction whose opcode we have just changed.
6911 Point IP->insn_mo to the new opcode's definition. */
6912
6913static void
6914find_altered_micromips_opcode (struct mips_cl_insn *ip)
6915{
6916 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
6917}
6918
df58fc94
RS
6919/* For microMIPS macros, we need to generate a local number label
6920 as the target of branches. */
6921#define MICROMIPS_LABEL_CHAR '\037'
6922static unsigned long micromips_target_label;
6923static char micromips_target_name[32];
6924
6925static char *
6926micromips_label_name (void)
6927{
6928 char *p = micromips_target_name;
6929 char symbol_name_temporary[24];
6930 unsigned long l;
6931 int i;
6932
6933 if (*p)
6934 return p;
6935
6936 i = 0;
6937 l = micromips_target_label;
6938#ifdef LOCAL_LABEL_PREFIX
6939 *p++ = LOCAL_LABEL_PREFIX;
6940#endif
6941 *p++ = 'L';
6942 *p++ = MICROMIPS_LABEL_CHAR;
6943 do
6944 {
6945 symbol_name_temporary[i++] = l % 10 + '0';
6946 l /= 10;
6947 }
6948 while (l != 0);
6949 while (i > 0)
6950 *p++ = symbol_name_temporary[--i];
6951 *p = '\0';
6952
6953 return micromips_target_name;
6954}
6955
6956static void
6957micromips_label_expr (expressionS *label_expr)
6958{
6959 label_expr->X_op = O_symbol;
6960 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6961 label_expr->X_add_number = 0;
6962}
6963
6964static void
6965micromips_label_inc (void)
6966{
6967 micromips_target_label++;
6968 *micromips_target_name = '\0';
6969}
6970
6971static void
6972micromips_add_label (void)
6973{
6974 symbolS *s;
6975
6976 s = colon (micromips_label_name ());
6977 micromips_label_inc ();
f3ded42a 6978 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
df58fc94
RS
6979}
6980
6981/* If assembling microMIPS code, then return the microMIPS reloc
6982 corresponding to the requested one if any. Otherwise return
6983 the reloc unchanged. */
6984
6985static bfd_reloc_code_real_type
6986micromips_map_reloc (bfd_reloc_code_real_type reloc)
6987{
6988 static const bfd_reloc_code_real_type relocs[][2] =
6989 {
6990 /* Keep sorted incrementally by the left-hand key. */
6991 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6992 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6993 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6994 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6995 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6996 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6997 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6998 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6999 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
7000 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
7001 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
7002 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
7003 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
7004 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
7005 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
7006 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
7007 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
7008 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
7009 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
7010 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
7011 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
7012 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
7013 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
7014 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
7015 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
7016 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
7017 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
7018 };
7019 bfd_reloc_code_real_type r;
7020 size_t i;
7021
7022 if (!mips_opts.micromips)
7023 return reloc;
7024 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7025 {
7026 r = relocs[i][0];
7027 if (r > reloc)
7028 return reloc;
7029 if (r == reloc)
7030 return relocs[i][1];
7031 }
7032 return reloc;
7033}
7034
b886a2ab
RS
7035/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7036 Return true on success, storing the resolved value in RESULT. */
7037
7038static bfd_boolean
7039calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7040 offsetT *result)
7041{
7042 switch (reloc)
7043 {
7044 case BFD_RELOC_MIPS_HIGHEST:
7045 case BFD_RELOC_MICROMIPS_HIGHEST:
7046 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7047 return TRUE;
7048
7049 case BFD_RELOC_MIPS_HIGHER:
7050 case BFD_RELOC_MICROMIPS_HIGHER:
7051 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7052 return TRUE;
7053
7054 case BFD_RELOC_HI16_S:
41947d9e 7055 case BFD_RELOC_HI16_S_PCREL:
b886a2ab
RS
7056 case BFD_RELOC_MICROMIPS_HI16_S:
7057 case BFD_RELOC_MIPS16_HI16_S:
7058 *result = ((operand + 0x8000) >> 16) & 0xffff;
7059 return TRUE;
7060
7061 case BFD_RELOC_HI16:
7062 case BFD_RELOC_MICROMIPS_HI16:
7063 case BFD_RELOC_MIPS16_HI16:
7064 *result = (operand >> 16) & 0xffff;
7065 return TRUE;
7066
7067 case BFD_RELOC_LO16:
41947d9e 7068 case BFD_RELOC_LO16_PCREL:
b886a2ab
RS
7069 case BFD_RELOC_MICROMIPS_LO16:
7070 case BFD_RELOC_MIPS16_LO16:
7071 *result = operand & 0xffff;
7072 return TRUE;
7073
7074 case BFD_RELOC_UNUSED:
7075 *result = operand;
7076 return TRUE;
7077
7078 default:
7079 return FALSE;
7080 }
7081}
7082
71400594
RS
7083/* Output an instruction. IP is the instruction information.
7084 ADDRESS_EXPR is an operand of the instruction to be used with
df58fc94
RS
7085 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7086 a macro expansion. */
71400594
RS
7087
7088static void
7089append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
df58fc94 7090 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
71400594 7091{
14fe068b 7092 unsigned long prev_pinfo2, pinfo;
71400594 7093 bfd_boolean relaxed_branch = FALSE;
a4e06468 7094 enum append_method method;
2309ddf2 7095 bfd_boolean relax32;
2b0c8b40 7096 int branch_disp;
71400594 7097
2309ddf2 7098 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
c67a084a
NC
7099 fix_loongson2f (ip);
7100
738f4d98 7101 file_ase_mips16 |= mips_opts.mips16;
df58fc94 7102 file_ase_micromips |= mips_opts.micromips;
738f4d98 7103
df58fc94 7104 prev_pinfo2 = history[0].insn_mo->pinfo2;
71400594 7105 pinfo = ip->insn_mo->pinfo;
df58fc94 7106
7bd374a4
MR
7107 /* Don't raise alarm about `nods' frags as they'll fill in the right
7108 kind of nop in relaxation if required. */
df58fc94
RS
7109 if (mips_opts.micromips
7110 && !expansionp
7bd374a4
MR
7111 && !(history[0].frag
7112 && history[0].frag->fr_type == rs_machine_dependent
7113 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7114 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
df58fc94
RS
7115 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7116 && micromips_insn_length (ip->insn_mo) != 2)
7117 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7118 && micromips_insn_length (ip->insn_mo) != 4)))
1661c76c 7119 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
df58fc94 7120 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
71400594 7121
15be625d
CM
7122 if (address_expr == NULL)
7123 ip->complete_p = 1;
b886a2ab
RS
7124 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7125 && reloc_type[1] == BFD_RELOC_UNUSED
7126 && reloc_type[2] == BFD_RELOC_UNUSED
15be625d
CM
7127 && address_expr->X_op == O_constant)
7128 {
15be625d
CM
7129 switch (*reloc_type)
7130 {
15be625d 7131 case BFD_RELOC_MIPS_JMP:
df58fc94
RS
7132 {
7133 int shift;
7134
17c6c9d9
MR
7135 /* Shift is 2, unusually, for microMIPS JALX. */
7136 shift = (mips_opts.micromips
7137 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
df58fc94
RS
7138 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7139 as_bad (_("jump to misaligned address (0x%lx)"),
7140 (unsigned long) address_expr->X_add_number);
7141 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7142 & 0x3ffffff);
335574df 7143 ip->complete_p = 1;
df58fc94 7144 }
15be625d
CM
7145 break;
7146
7147 case BFD_RELOC_MIPS16_JMP:
7148 if ((address_expr->X_add_number & 3) != 0)
7149 as_bad (_("jump to misaligned address (0x%lx)"),
7150 (unsigned long) address_expr->X_add_number);
7151 ip->insn_opcode |=
7152 (((address_expr->X_add_number & 0x7c0000) << 3)
7153 | ((address_expr->X_add_number & 0xf800000) >> 7)
7154 | ((address_expr->X_add_number & 0x3fffc) >> 2));
335574df 7155 ip->complete_p = 1;
15be625d
CM
7156 break;
7157
7158 case BFD_RELOC_16_PCREL_S2:
df58fc94
RS
7159 {
7160 int shift;
7161
7162 shift = mips_opts.micromips ? 1 : 2;
7163 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7164 as_bad (_("branch to misaligned address (0x%lx)"),
7165 (unsigned long) address_expr->X_add_number);
7166 if (!mips_relax_branch)
7167 {
7168 if ((address_expr->X_add_number + (1 << (shift + 15)))
7169 & ~((1 << (shift + 16)) - 1))
7170 as_bad (_("branch address range overflow (0x%lx)"),
7171 (unsigned long) address_expr->X_add_number);
7172 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7173 & 0xffff);
7174 }
df58fc94 7175 }
15be625d
CM
7176 break;
7177
7361da2c
AB
7178 case BFD_RELOC_MIPS_21_PCREL_S2:
7179 {
7180 int shift;
7181
7182 shift = 2;
7183 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7184 as_bad (_("branch to misaligned address (0x%lx)"),
7185 (unsigned long) address_expr->X_add_number);
7186 if ((address_expr->X_add_number + (1 << (shift + 20)))
7187 & ~((1 << (shift + 21)) - 1))
7188 as_bad (_("branch address range overflow (0x%lx)"),
7189 (unsigned long) address_expr->X_add_number);
7190 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7191 & 0x1fffff);
7192 }
7193 break;
7194
7195 case BFD_RELOC_MIPS_26_PCREL_S2:
7196 {
7197 int shift;
7198
7199 shift = 2;
7200 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7201 as_bad (_("branch to misaligned address (0x%lx)"),
7202 (unsigned long) address_expr->X_add_number);
7203 if ((address_expr->X_add_number + (1 << (shift + 25)))
7204 & ~((1 << (shift + 26)) - 1))
7205 as_bad (_("branch address range overflow (0x%lx)"),
7206 (unsigned long) address_expr->X_add_number);
7207 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7208 & 0x3ffffff);
7209 }
7210 break;
7211
15be625d 7212 default:
b886a2ab
RS
7213 {
7214 offsetT value;
7215
7216 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7217 &value))
7218 {
7219 ip->insn_opcode |= value & 0xffff;
7220 ip->complete_p = 1;
7221 }
7222 }
7223 break;
7224 }
15be625d
CM
7225 }
7226
71400594
RS
7227 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7228 {
7229 /* There are a lot of optimizations we could do that we don't.
7230 In particular, we do not, in general, reorder instructions.
7231 If you use gcc with optimization, it will reorder
7232 instructions and generally do much more optimization then we
7233 do here; repeating all that work in the assembler would only
7234 benefit hand written assembly code, and does not seem worth
7235 it. */
7236 int nops = (mips_optimize == 0
932d1a1b
RS
7237 ? nops_for_insn (0, history, NULL)
7238 : nops_for_insn_or_target (0, history, ip));
71400594 7239 if (nops > 0)
252b5132
RH
7240 {
7241 fragS *old_frag;
7242 unsigned long old_frag_offset;
7243 int i;
252b5132
RH
7244
7245 old_frag = frag_now;
7246 old_frag_offset = frag_now_fix ();
7247
7248 for (i = 0; i < nops; i++)
14fe068b
RS
7249 add_fixed_insn (NOP_INSN);
7250 insert_into_history (0, nops, NOP_INSN);
252b5132
RH
7251
7252 if (listing)
7253 {
7254 listing_prev_line ();
7255 /* We may be at the start of a variant frag. In case we
7256 are, make sure there is enough space for the frag
7257 after the frags created by listing_prev_line. The
7258 argument to frag_grow here must be at least as large
7259 as the argument to all other calls to frag_grow in
7260 this file. We don't have to worry about being in the
7261 middle of a variant frag, because the variants insert
7262 all needed nop instructions themselves. */
7263 frag_grow (40);
7264 }
7265
462427c4 7266 mips_move_text_labels ();
252b5132
RH
7267
7268#ifndef NO_ECOFF_DEBUGGING
7269 if (ECOFF_DEBUGGING)
7270 ecoff_fix_loc (old_frag, old_frag_offset);
7271#endif
7272 }
71400594
RS
7273 }
7274 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7275 {
932d1a1b
RS
7276 int nops;
7277
7278 /* Work out how many nops in prev_nop_frag are needed by IP,
7279 ignoring hazards generated by the first prev_nop_frag_since
7280 instructions. */
7281 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
9c2799c2 7282 gas_assert (nops <= prev_nop_frag_holds);
252b5132 7283
71400594
RS
7284 /* Enforce NOPS as a minimum. */
7285 if (nops > prev_nop_frag_required)
7286 prev_nop_frag_required = nops;
252b5132 7287
71400594
RS
7288 if (prev_nop_frag_holds == prev_nop_frag_required)
7289 {
7290 /* Settle for the current number of nops. Update the history
7291 accordingly (for the benefit of any future .set reorder code). */
7292 prev_nop_frag = NULL;
7293 insert_into_history (prev_nop_frag_since,
7294 prev_nop_frag_holds, NOP_INSN);
7295 }
7296 else
7297 {
7298 /* Allow this instruction to replace one of the nops that was
7299 tentatively added to prev_nop_frag. */
df58fc94 7300 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
71400594
RS
7301 prev_nop_frag_holds--;
7302 prev_nop_frag_since++;
252b5132
RH
7303 }
7304 }
7305
e407c74b 7306 method = get_append_method (ip, address_expr, reloc_type);
2b0c8b40 7307 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
a4e06468 7308
e410add4
RS
7309 dwarf2_emit_insn (0);
7310 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7311 so "move" the instruction address accordingly.
7312
7313 Also, it doesn't seem appropriate for the assembler to reorder .loc
7314 entries. If this instruction is a branch that we are going to swap
7315 with the previous instruction, the two instructions should be
7316 treated as a unit, and the debug information for both instructions
7317 should refer to the start of the branch sequence. Using the
7318 current position is certainly wrong when swapping a 32-bit branch
7319 and a 16-bit delay slot, since the current position would then be
7320 in the middle of a branch. */
7321 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
58e2ea4d 7322
df58fc94
RS
7323 relax32 = (mips_relax_branch
7324 /* Don't try branch relaxation within .set nomacro, or within
7325 .set noat if we use $at for PIC computations. If it turns
7326 out that the branch was out-of-range, we'll get an error. */
7327 && !mips_opts.warn_about_macros
7328 && (mips_opts.at || mips_pic == NO_PIC)
3bf0dbfb
MR
7329 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7330 as they have no complementing branches. */
7331 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
df58fc94
RS
7332
7333 if (!HAVE_CODE_COMPRESSION
7334 && address_expr
7335 && relax32
0b25d3e6 7336 && *reloc_type == BFD_RELOC_16_PCREL_S2
11625dd8 7337 && delayed_branch_p (ip))
4a6a3df4 7338 {
895921c9 7339 relaxed_branch = TRUE;
1e915849
RS
7340 add_relaxed_insn (ip, (relaxed_branch_length
7341 (NULL, NULL,
11625dd8
RS
7342 uncond_branch_p (ip) ? -1
7343 : branch_likely_p (ip) ? 1
1e915849
RS
7344 : 0)), 4,
7345 RELAX_BRANCH_ENCODE
ce8ad872 7346 (AT, mips_pic != NO_PIC,
11625dd8
RS
7347 uncond_branch_p (ip),
7348 branch_likely_p (ip),
1e915849
RS
7349 pinfo & INSN_WRITE_GPR_31,
7350 0),
7351 address_expr->X_add_symbol,
7352 address_expr->X_add_number);
4a6a3df4
AO
7353 *reloc_type = BFD_RELOC_UNUSED;
7354 }
df58fc94
RS
7355 else if (mips_opts.micromips
7356 && address_expr
7357 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7358 || *reloc_type > BFD_RELOC_UNUSED)
40209cad
MR
7359 && (delayed_branch_p (ip) || compact_branch_p (ip))
7360 /* Don't try branch relaxation when users specify
7361 16-bit/32-bit instructions. */
7362 && !forced_insn_length)
df58fc94 7363 {
7bd374a4
MR
7364 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7365 && *reloc_type > BFD_RELOC_UNUSED);
df58fc94 7366 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
11625dd8 7367 int uncond = uncond_branch_p (ip) ? -1 : 0;
7bd374a4
MR
7368 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7369 int nods = method == APPEND_ADD_WITH_NOP;
df58fc94 7370 int al = pinfo & INSN_WRITE_GPR_31;
7bd374a4 7371 int length32 = nods ? 8 : 4;
df58fc94
RS
7372
7373 gas_assert (address_expr != NULL);
7374 gas_assert (!mips_relax.sequence);
7375
2b0c8b40 7376 relaxed_branch = TRUE;
7bd374a4
MR
7377 if (nods)
7378 method = APPEND_ADD;
7379 if (relax32)
7380 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7381 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
8484fb75 7382 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
ce8ad872 7383 mips_pic != NO_PIC,
7bd374a4 7384 uncond, compact, al, nods,
40209cad 7385 relax32, 0, 0),
df58fc94
RS
7386 address_expr->X_add_symbol,
7387 address_expr->X_add_number);
7388 *reloc_type = BFD_RELOC_UNUSED;
7389 }
7390 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
252b5132 7391 {
7fd53920
MR
7392 bfd_boolean require_unextended;
7393 bfd_boolean require_extended;
88a7ef16
MR
7394 symbolS *symbol;
7395 offsetT offset;
7396
7fd53920
MR
7397 if (forced_insn_length != 0)
7398 {
7399 require_unextended = forced_insn_length == 2;
7400 require_extended = forced_insn_length == 4;
7401 }
7402 else
7403 {
7404 require_unextended = (mips_opts.noautoextend
7405 && !mips_opcode_32bit_p (ip->insn_mo));
7406 require_extended = 0;
7407 }
7408
252b5132 7409 /* We need to set up a variant frag. */
df58fc94 7410 gas_assert (address_expr != NULL);
88a7ef16
MR
7411 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7412 symbol created by `make_expr_symbol' may not get a necessary
7413 external relocation produced. */
7414 if (address_expr->X_op == O_symbol)
7415 {
7416 symbol = address_expr->X_add_symbol;
7417 offset = address_expr->X_add_number;
7418 }
7419 else
7420 {
7421 symbol = make_expr_symbol (address_expr);
7422 offset = 0;
7423 }
1e915849
RS
7424 add_relaxed_insn (ip, 4, 0,
7425 RELAX_MIPS16_ENCODE
7426 (*reloc_type - BFD_RELOC_UNUSED,
7fd53920 7427 require_unextended, require_extended,
11625dd8 7428 delayed_branch_p (&history[0]),
1e915849 7429 history[0].mips16_absolute_jump_p),
88a7ef16 7430 symbol, offset);
252b5132 7431 }
5c04167a 7432 else if (mips_opts.mips16 && insn_length (ip) == 2)
9497f5ac 7433 {
11625dd8 7434 if (!delayed_branch_p (ip))
b8ee1a6e
DU
7435 /* Make sure there is enough room to swap this instruction with
7436 a following jump instruction. */
7437 frag_grow (6);
1e915849 7438 add_fixed_insn (ip);
252b5132
RH
7439 }
7440 else
7441 {
7442 if (mips_opts.mips16
7443 && mips_opts.noreorder
11625dd8 7444 && delayed_branch_p (&history[0]))
252b5132
RH
7445 as_warn (_("extended instruction in delay slot"));
7446
4d7206a2
RS
7447 if (mips_relax.sequence)
7448 {
7449 /* If we've reached the end of this frag, turn it into a variant
7450 frag and record the information for the instructions we've
7451 written so far. */
7452 if (frag_room () < 4)
7453 relax_close_frag ();
df58fc94 7454 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4d7206a2
RS
7455 }
7456
584892a6 7457 if (mips_relax.sequence != 2)
df58fc94
RS
7458 {
7459 if (mips_macro_warning.first_insn_sizes[0] == 0)
7460 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7461 mips_macro_warning.sizes[0] += insn_length (ip);
7462 mips_macro_warning.insns[0]++;
7463 }
584892a6 7464 if (mips_relax.sequence != 1)
df58fc94
RS
7465 {
7466 if (mips_macro_warning.first_insn_sizes[1] == 0)
7467 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7468 mips_macro_warning.sizes[1] += insn_length (ip);
7469 mips_macro_warning.insns[1]++;
7470 }
584892a6 7471
1e915849
RS
7472 if (mips_opts.mips16)
7473 {
7474 ip->fixed_p = 1;
7475 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7476 }
7477 add_fixed_insn (ip);
252b5132
RH
7478 }
7479
9fe77896 7480 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
252b5132 7481 {
df58fc94 7482 bfd_reloc_code_real_type final_type[3];
2309ddf2 7483 reloc_howto_type *howto0;
9fe77896
RS
7484 reloc_howto_type *howto;
7485 int i;
34ce925e 7486
df58fc94
RS
7487 /* Perform any necessary conversion to microMIPS relocations
7488 and find out how many relocations there actually are. */
7489 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7490 final_type[i] = micromips_map_reloc (reloc_type[i]);
7491
9fe77896
RS
7492 /* In a compound relocation, it is the final (outermost)
7493 operator that determines the relocated field. */
2309ddf2 7494 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
e8044f35
RS
7495 if (!howto)
7496 abort ();
2309ddf2
MR
7497
7498 if (i > 1)
7499 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
9fe77896
RS
7500 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7501 bfd_get_reloc_size (howto),
7502 address_expr,
2309ddf2
MR
7503 howto0 && howto0->pc_relative,
7504 final_type[0]);
ce8ad872
MR
7505 /* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
7506 ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
9fe77896
RS
7507
7508 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2309ddf2 7509 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
9fe77896
RS
7510 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7511
7512 /* These relocations can have an addend that won't fit in
7513 4 octets for 64bit assembly. */
bad1aba3 7514 if (GPR_SIZE == 64
9fe77896
RS
7515 && ! howto->partial_inplace
7516 && (reloc_type[0] == BFD_RELOC_16
7517 || reloc_type[0] == BFD_RELOC_32
7518 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7519 || reloc_type[0] == BFD_RELOC_GPREL16
7520 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7521 || reloc_type[0] == BFD_RELOC_GPREL32
7522 || reloc_type[0] == BFD_RELOC_64
7523 || reloc_type[0] == BFD_RELOC_CTOR
7524 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7525 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7526 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7527 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7528 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7529 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7530 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7531 || hi16_reloc_p (reloc_type[0])
7532 || lo16_reloc_p (reloc_type[0])))
7533 ip->fixp[0]->fx_no_overflow = 1;
7534
ddaf2c41
MR
7535 /* These relocations can have an addend that won't fit in 2 octets. */
7536 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7537 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7538 ip->fixp[0]->fx_no_overflow = 1;
7539
9fe77896
RS
7540 if (mips_relax.sequence)
7541 {
7542 if (mips_relax.first_fixup == 0)
7543 mips_relax.first_fixup = ip->fixp[0];
7544 }
7545 else if (reloc_needs_lo_p (*reloc_type))
7546 {
7547 struct mips_hi_fixup *hi_fixup;
7548
7549 /* Reuse the last entry if it already has a matching %lo. */
7550 hi_fixup = mips_hi_fixup_list;
7551 if (hi_fixup == 0
7552 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4d7206a2 7553 {
325801bd 7554 hi_fixup = XNEW (struct mips_hi_fixup);
9fe77896
RS
7555 hi_fixup->next = mips_hi_fixup_list;
7556 mips_hi_fixup_list = hi_fixup;
4d7206a2 7557 }
9fe77896
RS
7558 hi_fixup->fixp = ip->fixp[0];
7559 hi_fixup->seg = now_seg;
7560 }
252b5132 7561
9fe77896
RS
7562 /* Add fixups for the second and third relocations, if given.
7563 Note that the ABI allows the second relocation to be
7564 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7565 moment we only use RSS_UNDEF, but we could add support
7566 for the others if it ever becomes necessary. */
7567 for (i = 1; i < 3; i++)
7568 if (reloc_type[i] != BFD_RELOC_UNUSED)
7569 {
7570 ip->fixp[i] = fix_new (ip->frag, ip->where,
7571 ip->fixp[0]->fx_size, NULL, 0,
df58fc94 7572 FALSE, final_type[i]);
f6688943 7573
9fe77896
RS
7574 /* Use fx_tcbit to mark compound relocs. */
7575 ip->fixp[0]->fx_tcbit = 1;
7576 ip->fixp[i]->fx_tcbit = 1;
7577 }
252b5132 7578 }
252b5132
RH
7579
7580 /* Update the register mask information. */
4c260379
RS
7581 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7582 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
252b5132 7583
a4e06468 7584 switch (method)
252b5132 7585 {
a4e06468
RS
7586 case APPEND_ADD:
7587 insert_into_history (0, 1, ip);
7588 break;
7589
7590 case APPEND_ADD_WITH_NOP:
14fe068b
RS
7591 {
7592 struct mips_cl_insn *nop;
7593
7594 insert_into_history (0, 1, ip);
7595 nop = get_delay_slot_nop (ip);
7596 add_fixed_insn (nop);
7597 insert_into_history (0, 1, nop);
7598 if (mips_relax.sequence)
7599 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7600 }
a4e06468
RS
7601 break;
7602
7603 case APPEND_ADD_COMPACT:
7604 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7bd374a4
MR
7605 if (mips_opts.mips16)
7606 {
7607 ip->insn_opcode |= 0x0080;
7608 find_altered_mips16_opcode (ip);
7609 }
7610 /* Convert microMIPS instructions. */
7611 else if (mips_opts.micromips)
7612 {
7613 /* jr16->jrc */
7614 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7615 ip->insn_opcode |= 0x0020;
7616 /* b16->bc */
7617 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7618 ip->insn_opcode = 0x40e00000;
7619 /* beqz16->beqzc, bnez16->bnezc */
7620 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7621 {
7622 unsigned long regno;
7623
7624 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7625 regno &= MICROMIPSOP_MASK_MD;
7626 regno = micromips_to_32_reg_d_map[regno];
7627 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7628 | (regno << MICROMIPSOP_SH_RS)
7629 | 0x40a00000) ^ 0x00400000;
7630 }
7631 /* beqz->beqzc, bnez->bnezc */
7632 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7633 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7634 | ((ip->insn_opcode >> 7) & 0x00400000)
7635 | 0x40a00000) ^ 0x00400000;
7636 /* beq $0->beqzc, bne $0->bnezc */
7637 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7638 ip->insn_opcode = (((ip->insn_opcode >>
7639 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7640 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7641 | ((ip->insn_opcode >> 7) & 0x00400000)
7642 | 0x40a00000) ^ 0x00400000;
7643 else
7644 abort ();
7645 find_altered_micromips_opcode (ip);
7646 }
7647 else
7648 abort ();
a4e06468
RS
7649 install_insn (ip);
7650 insert_into_history (0, 1, ip);
7651 break;
7652
7653 case APPEND_SWAP:
7654 {
7655 struct mips_cl_insn delay = history[0];
99e7978b
MF
7656
7657 if (relaxed_branch || delay.frag != ip->frag)
a4e06468
RS
7658 {
7659 /* Add the delay slot instruction to the end of the
7660 current frag and shrink the fixed part of the
7661 original frag. If the branch occupies the tail of
7662 the latter, move it backwards to cover the gap. */
2b0c8b40 7663 delay.frag->fr_fix -= branch_disp;
a4e06468 7664 if (delay.frag == ip->frag)
2b0c8b40 7665 move_insn (ip, ip->frag, ip->where - branch_disp);
a4e06468
RS
7666 add_fixed_insn (&delay);
7667 }
7668 else
7669 {
5e35670b
MR
7670 /* If this is not a relaxed branch and we are in the
7671 same frag, then just swap the instructions. */
7672 move_insn (ip, delay.frag, delay.where);
7673 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
a4e06468
RS
7674 }
7675 history[0] = *ip;
7676 delay.fixed_p = 1;
7677 insert_into_history (0, 1, &delay);
7678 }
7679 break;
252b5132
RH
7680 }
7681
13408f1e 7682 /* If we have just completed an unconditional branch, clear the history. */
11625dd8
RS
7683 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7684 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
e407c74b
NC
7685 {
7686 unsigned int i;
7687
79850f26 7688 mips_no_prev_insn ();
13408f1e 7689
e407c74b 7690 for (i = 0; i < ARRAY_SIZE (history); i++)
79850f26 7691 history[i].cleared_p = 1;
e407c74b
NC
7692 }
7693
df58fc94
RS
7694 /* We need to emit a label at the end of branch-likely macros. */
7695 if (emit_branch_likely_macro)
7696 {
7697 emit_branch_likely_macro = FALSE;
7698 micromips_add_label ();
7699 }
7700
252b5132
RH
7701 /* We just output an insn, so the next one doesn't have a label. */
7702 mips_clear_insn_labels ();
252b5132
RH
7703}
7704
e407c74b
NC
7705/* Forget that there was any previous instruction or label.
7706 When BRANCH is true, the branch history is also flushed. */
252b5132
RH
7707
7708static void
7d10b47d 7709mips_no_prev_insn (void)
252b5132 7710{
7d10b47d
RS
7711 prev_nop_frag = NULL;
7712 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
252b5132
RH
7713 mips_clear_insn_labels ();
7714}
7715
7d10b47d
RS
7716/* This function must be called before we emit something other than
7717 instructions. It is like mips_no_prev_insn except that it inserts
7718 any NOPS that might be needed by previous instructions. */
252b5132 7719
7d10b47d
RS
7720void
7721mips_emit_delays (void)
252b5132
RH
7722{
7723 if (! mips_opts.noreorder)
7724 {
932d1a1b 7725 int nops = nops_for_insn (0, history, NULL);
252b5132
RH
7726 if (nops > 0)
7727 {
7d10b47d
RS
7728 while (nops-- > 0)
7729 add_fixed_insn (NOP_INSN);
462427c4 7730 mips_move_text_labels ();
7d10b47d
RS
7731 }
7732 }
7733 mips_no_prev_insn ();
7734}
7735
7736/* Start a (possibly nested) noreorder block. */
7737
7738static void
7739start_noreorder (void)
7740{
7741 if (mips_opts.noreorder == 0)
7742 {
7743 unsigned int i;
7744 int nops;
7745
7746 /* None of the instructions before the .set noreorder can be moved. */
7747 for (i = 0; i < ARRAY_SIZE (history); i++)
7748 history[i].fixed_p = 1;
7749
7750 /* Insert any nops that might be needed between the .set noreorder
7751 block and the previous instructions. We will later remove any
7752 nops that turn out not to be needed. */
932d1a1b 7753 nops = nops_for_insn (0, history, NULL);
7d10b47d
RS
7754 if (nops > 0)
7755 {
7756 if (mips_optimize != 0)
252b5132
RH
7757 {
7758 /* Record the frag which holds the nop instructions, so
7759 that we can remove them if we don't need them. */
df58fc94 7760 frag_grow (nops * NOP_INSN_SIZE);
252b5132
RH
7761 prev_nop_frag = frag_now;
7762 prev_nop_frag_holds = nops;
7763 prev_nop_frag_required = 0;
7764 prev_nop_frag_since = 0;
7765 }
7766
7767 for (; nops > 0; --nops)
1e915849 7768 add_fixed_insn (NOP_INSN);
252b5132 7769
7d10b47d
RS
7770 /* Move on to a new frag, so that it is safe to simply
7771 decrease the size of prev_nop_frag. */
7772 frag_wane (frag_now);
7773 frag_new (0);
462427c4 7774 mips_move_text_labels ();
252b5132 7775 }
df58fc94 7776 mips_mark_labels ();
7d10b47d 7777 mips_clear_insn_labels ();
252b5132 7778 }
7d10b47d
RS
7779 mips_opts.noreorder++;
7780 mips_any_noreorder = 1;
7781}
252b5132 7782
7d10b47d 7783/* End a nested noreorder block. */
252b5132 7784
7d10b47d
RS
7785static void
7786end_noreorder (void)
7787{
7788 mips_opts.noreorder--;
7789 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7790 {
7791 /* Commit to inserting prev_nop_frag_required nops and go back to
7792 handling nop insertion the .set reorder way. */
7793 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
df58fc94 7794 * NOP_INSN_SIZE);
7d10b47d
RS
7795 insert_into_history (prev_nop_frag_since,
7796 prev_nop_frag_required, NOP_INSN);
7797 prev_nop_frag = NULL;
7798 }
252b5132
RH
7799}
7800
97d87491
RS
7801/* Sign-extend 32-bit mode constants that have bit 31 set and all
7802 higher bits unset. */
7803
7804static void
7805normalize_constant_expr (expressionS *ex)
7806{
7807 if (ex->X_op == O_constant
7808 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7809 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7810 - 0x80000000);
7811}
7812
7813/* Sign-extend 32-bit mode address offsets that have bit 31 set and
7814 all higher bits unset. */
7815
7816static void
7817normalize_address_expr (expressionS *ex)
7818{
7819 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7820 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7821 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7822 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7823 - 0x80000000);
7824}
7825
7826/* Try to match TOKENS against OPCODE, storing the result in INSN.
7827 Return true if the match was successful.
7828
7829 OPCODE_EXTRA is a value that should be ORed into the opcode
7830 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7831 there are more alternatives after OPCODE and SOFT_MATCH is
7832 as for mips_arg_info. */
7833
7834static bfd_boolean
7835match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7836 struct mips_operand_token *tokens, unsigned int opcode_extra,
60f20e8b 7837 bfd_boolean lax_match, bfd_boolean complete_p)
97d87491
RS
7838{
7839 const char *args;
7840 struct mips_arg_info arg;
7841 const struct mips_operand *operand;
7842 char c;
7843
7844 imm_expr.X_op = O_absent;
97d87491
RS
7845 offset_expr.X_op = O_absent;
7846 offset_reloc[0] = BFD_RELOC_UNUSED;
7847 offset_reloc[1] = BFD_RELOC_UNUSED;
7848 offset_reloc[2] = BFD_RELOC_UNUSED;
7849
7850 create_insn (insn, opcode);
60f20e8b
RS
7851 /* When no opcode suffix is specified, assume ".xyzw". */
7852 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7853 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7854 else
7855 insn->insn_opcode |= opcode_extra;
97d87491
RS
7856 memset (&arg, 0, sizeof (arg));
7857 arg.insn = insn;
7858 arg.token = tokens;
7859 arg.argnum = 1;
7860 arg.last_regno = ILLEGAL_REG;
7861 arg.dest_regno = ILLEGAL_REG;
60f20e8b 7862 arg.lax_match = lax_match;
97d87491
RS
7863 for (args = opcode->args;; ++args)
7864 {
7865 if (arg.token->type == OT_END)
7866 {
7867 /* Handle unary instructions in which only one operand is given.
7868 The source is then the same as the destination. */
7869 if (arg.opnum == 1 && *args == ',')
7870 {
7871 operand = (mips_opts.micromips
7872 ? decode_micromips_operand (args + 1)
7873 : decode_mips_operand (args + 1));
7874 if (operand && mips_optional_operand_p (operand))
7875 {
7876 arg.token = tokens;
7877 arg.argnum = 1;
7878 continue;
7879 }
7880 }
7881
7882 /* Treat elided base registers as $0. */
7883 if (strcmp (args, "(b)") == 0)
7884 args += 3;
7885
7886 if (args[0] == '+')
7887 switch (args[1])
7888 {
7889 case 'K':
7890 case 'N':
7891 /* The register suffix is optional. */
7892 args += 2;
7893 break;
7894 }
7895
7896 /* Fail the match if there were too few operands. */
7897 if (*args)
7898 return FALSE;
7899
7900 /* Successful match. */
60f20e8b
RS
7901 if (!complete_p)
7902 return TRUE;
e3de51ce 7903 clear_insn_error ();
97d87491
RS
7904 if (arg.dest_regno == arg.last_regno
7905 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7906 {
7907 if (arg.opnum == 2)
e3de51ce 7908 set_insn_error
1661c76c 7909 (0, _("source and destination must be different"));
97d87491 7910 else if (arg.last_regno == 31)
e3de51ce 7911 set_insn_error
1661c76c 7912 (0, _("a destination register must be supplied"));
97d87491 7913 }
173d3447
CF
7914 else if (arg.last_regno == 31
7915 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7916 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7917 set_insn_error (0, _("the source register must not be $31"));
97d87491
RS
7918 check_completed_insn (&arg);
7919 return TRUE;
7920 }
7921
7922 /* Fail the match if the line has too many operands. */
7923 if (*args == 0)
7924 return FALSE;
7925
7926 /* Handle characters that need to match exactly. */
7927 if (*args == '(' || *args == ')' || *args == ',')
7928 {
7929 if (match_char (&arg, *args))
7930 continue;
7931 return FALSE;
7932 }
7933 if (*args == '#')
7934 {
7935 ++args;
7936 if (arg.token->type == OT_DOUBLE_CHAR
7937 && arg.token->u.ch == *args)
7938 {
7939 ++arg.token;
7940 continue;
7941 }
7942 return FALSE;
7943 }
7944
7945 /* Handle special macro operands. Work out the properties of
7946 other operands. */
7947 arg.opnum += 1;
97d87491
RS
7948 switch (*args)
7949 {
7361da2c
AB
7950 case '-':
7951 switch (args[1])
7952 {
7953 case 'A':
7954 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7955 break;
7956
7957 case 'B':
7958 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7959 break;
7960 }
7961 break;
7962
97d87491
RS
7963 case '+':
7964 switch (args[1])
7965 {
97d87491
RS
7966 case 'i':
7967 *offset_reloc = BFD_RELOC_MIPS_JMP;
7968 break;
7361da2c
AB
7969
7970 case '\'':
7971 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7972 break;
7973
7974 case '\"':
7975 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7976 break;
97d87491
RS
7977 }
7978 break;
7979
97d87491 7980 case 'I':
1a00e612
RS
7981 if (!match_const_int (&arg, &imm_expr.X_add_number))
7982 return FALSE;
7983 imm_expr.X_op = O_constant;
bad1aba3 7984 if (GPR_SIZE == 32)
97d87491
RS
7985 normalize_constant_expr (&imm_expr);
7986 continue;
7987
7988 case 'A':
7989 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7990 {
7991 /* Assume that the offset has been elided and that what
7992 we saw was a base register. The match will fail later
7993 if that assumption turns out to be wrong. */
7994 offset_expr.X_op = O_constant;
7995 offset_expr.X_add_number = 0;
7996 }
97d87491 7997 else
1a00e612
RS
7998 {
7999 if (!match_expression (&arg, &offset_expr, offset_reloc))
8000 return FALSE;
8001 normalize_address_expr (&offset_expr);
8002 }
97d87491
RS
8003 continue;
8004
8005 case 'F':
8006 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8007 8, TRUE))
1a00e612 8008 return FALSE;
97d87491
RS
8009 continue;
8010
8011 case 'L':
8012 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8013 8, FALSE))
1a00e612 8014 return FALSE;
97d87491
RS
8015 continue;
8016
8017 case 'f':
8018 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8019 4, TRUE))
1a00e612 8020 return FALSE;
97d87491
RS
8021 continue;
8022
8023 case 'l':
8024 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8025 4, FALSE))
1a00e612 8026 return FALSE;
97d87491
RS
8027 continue;
8028
97d87491
RS
8029 case 'p':
8030 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8031 break;
8032
8033 case 'a':
8034 *offset_reloc = BFD_RELOC_MIPS_JMP;
8035 break;
8036
8037 case 'm':
8038 gas_assert (mips_opts.micromips);
8039 c = args[1];
8040 switch (c)
8041 {
8042 case 'D':
8043 case 'E':
8044 if (!forced_insn_length)
8045 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8046 else if (c == 'D')
8047 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8048 else
8049 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8050 break;
8051 }
8052 break;
8053 }
8054
8055 operand = (mips_opts.micromips
8056 ? decode_micromips_operand (args)
8057 : decode_mips_operand (args));
8058 if (!operand)
8059 abort ();
8060
8061 /* Skip prefixes. */
7361da2c 8062 if (*args == '+' || *args == 'm' || *args == '-')
97d87491
RS
8063 args++;
8064
8065 if (mips_optional_operand_p (operand)
8066 && args[1] == ','
8067 && (arg.token[0].type != OT_REG
8068 || arg.token[1].type == OT_END))
8069 {
8070 /* Assume that the register has been elided and is the
8071 same as the first operand. */
8072 arg.token = tokens;
8073 arg.argnum = 1;
8074 }
8075
8076 if (!match_operand (&arg, operand))
8077 return FALSE;
8078 }
8079}
8080
8081/* Like match_insn, but for MIPS16. */
8082
8083static bfd_boolean
8084match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
1a00e612 8085 struct mips_operand_token *tokens)
97d87491
RS
8086{
8087 const char *args;
8088 const struct mips_operand *operand;
8089 const struct mips_operand *ext_operand;
7fd53920 8090 int required_insn_length;
97d87491
RS
8091 struct mips_arg_info arg;
8092 int relax_char;
8093
7fd53920
MR
8094 if (forced_insn_length)
8095 required_insn_length = forced_insn_length;
8096 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8097 required_insn_length = 2;
8098 else
8099 required_insn_length = 0;
8100
97d87491
RS
8101 create_insn (insn, opcode);
8102 imm_expr.X_op = O_absent;
97d87491
RS
8103 offset_expr.X_op = O_absent;
8104 offset_reloc[0] = BFD_RELOC_UNUSED;
8105 offset_reloc[1] = BFD_RELOC_UNUSED;
8106 offset_reloc[2] = BFD_RELOC_UNUSED;
8107 relax_char = 0;
8108
8109 memset (&arg, 0, sizeof (arg));
8110 arg.insn = insn;
8111 arg.token = tokens;
8112 arg.argnum = 1;
8113 arg.last_regno = ILLEGAL_REG;
8114 arg.dest_regno = ILLEGAL_REG;
97d87491
RS
8115 relax_char = 0;
8116 for (args = opcode->args;; ++args)
8117 {
8118 int c;
8119
8120 if (arg.token->type == OT_END)
8121 {
8122 offsetT value;
8123
8124 /* Handle unary instructions in which only one operand is given.
8125 The source is then the same as the destination. */
8126 if (arg.opnum == 1 && *args == ',')
8127 {
8128 operand = decode_mips16_operand (args[1], FALSE);
8129 if (operand && mips_optional_operand_p (operand))
8130 {
8131 arg.token = tokens;
8132 arg.argnum = 1;
8133 continue;
8134 }
8135 }
8136
8137 /* Fail the match if there were too few operands. */
8138 if (*args)
8139 return FALSE;
8140
8141 /* Successful match. Stuff the immediate value in now, if
8142 we can. */
e3de51ce 8143 clear_insn_error ();
97d87491
RS
8144 if (opcode->pinfo == INSN_MACRO)
8145 {
8146 gas_assert (relax_char == 0 || relax_char == 'p');
8147 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8148 }
8149 else if (relax_char
8150 && offset_expr.X_op == O_constant
8151 && calculate_reloc (*offset_reloc,
8152 offset_expr.X_add_number,
8153 &value))
8154 {
8155 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7fd53920 8156 required_insn_length, &insn->insn_opcode);
97d87491
RS
8157 offset_expr.X_op = O_absent;
8158 *offset_reloc = BFD_RELOC_UNUSED;
8159 }
8160 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8161 {
7fd53920 8162 if (required_insn_length == 2)
e3de51ce 8163 set_insn_error (0, _("invalid unextended operand value"));
1da43acc
MR
8164 else
8165 {
8166 forced_insn_length = 4;
8167 insn->insn_opcode |= MIPS16_EXTEND;
8168 }
97d87491
RS
8169 }
8170 else if (relax_char)
8171 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8172
8173 check_completed_insn (&arg);
8174 return TRUE;
8175 }
8176
8177 /* Fail the match if the line has too many operands. */
8178 if (*args == 0)
8179 return FALSE;
8180
8181 /* Handle characters that need to match exactly. */
8182 if (*args == '(' || *args == ')' || *args == ',')
8183 {
8184 if (match_char (&arg, *args))
8185 continue;
8186 return FALSE;
8187 }
8188
8189 arg.opnum += 1;
8190 c = *args;
8191 switch (c)
8192 {
8193 case 'p':
8194 case 'q':
8195 case 'A':
8196 case 'B':
8197 case 'E':
8198 relax_char = c;
8199 break;
8200
8201 case 'I':
1a00e612
RS
8202 if (!match_const_int (&arg, &imm_expr.X_add_number))
8203 return FALSE;
8204 imm_expr.X_op = O_constant;
bad1aba3 8205 if (GPR_SIZE == 32)
97d87491
RS
8206 normalize_constant_expr (&imm_expr);
8207 continue;
8208
8209 case 'a':
8210 case 'i':
8211 *offset_reloc = BFD_RELOC_MIPS16_JMP;
97d87491
RS
8212 break;
8213 }
8214
7fd53920 8215 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
97d87491
RS
8216 if (!operand)
8217 abort ();
8218
b2805ed5 8219 if (operand->type != OP_PCREL)
97d87491
RS
8220 {
8221 ext_operand = decode_mips16_operand (c, TRUE);
8222 if (operand != ext_operand)
8223 {
8224 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8225 {
8226 offset_expr.X_op = O_constant;
8227 offset_expr.X_add_number = 0;
8228 relax_char = c;
8229 continue;
8230 }
8231
8232 /* We need the OT_INTEGER check because some MIPS16
8233 immediate variants are listed before the register ones. */
8234 if (arg.token->type != OT_INTEGER
8235 || !match_expression (&arg, &offset_expr, offset_reloc))
8236 return FALSE;
8237
8238 /* '8' is used for SLTI(U) and has traditionally not
8239 been allowed to take relocation operators. */
8240 if (offset_reloc[0] != BFD_RELOC_UNUSED
8241 && (ext_operand->size != 16 || c == '8'))
8242 return FALSE;
8243
8244 relax_char = c;
8245 continue;
8246 }
8247 }
8248
8249 if (mips_optional_operand_p (operand)
8250 && args[1] == ','
8251 && (arg.token[0].type != OT_REG
8252 || arg.token[1].type == OT_END))
8253 {
8254 /* Assume that the register has been elided and is the
8255 same as the first operand. */
8256 arg.token = tokens;
8257 arg.argnum = 1;
8258 }
8259
8260 if (!match_operand (&arg, operand))
8261 return FALSE;
8262 }
8263}
8264
60f20e8b
RS
8265/* Record that the current instruction is invalid for the current ISA. */
8266
8267static void
8268match_invalid_for_isa (void)
8269{
8270 set_insn_error_ss
1661c76c 8271 (0, _("opcode not supported on this processor: %s (%s)"),
60f20e8b
RS
8272 mips_cpu_info_from_arch (mips_opts.arch)->name,
8273 mips_cpu_info_from_isa (mips_opts.isa)->name);
8274}
8275
8276/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8277 Return true if a definite match or failure was found, storing any match
8278 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8279 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8280 tried and failed to match under normal conditions and now want to try a
8281 more relaxed match. */
8282
8283static bfd_boolean
8284match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8285 const struct mips_opcode *past, struct mips_operand_token *tokens,
8286 int opcode_extra, bfd_boolean lax_match)
8287{
8288 const struct mips_opcode *opcode;
8289 const struct mips_opcode *invalid_delay_slot;
8290 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8291
8292 /* Search for a match, ignoring alternatives that don't satisfy the
8293 current ISA or forced_length. */
8294 invalid_delay_slot = 0;
8295 seen_valid_for_isa = FALSE;
8296 seen_valid_for_size = FALSE;
8297 opcode = first;
8298 do
8299 {
8300 gas_assert (strcmp (opcode->name, first->name) == 0);
8301 if (is_opcode_valid (opcode))
8302 {
8303 seen_valid_for_isa = TRUE;
8304 if (is_size_valid (opcode))
8305 {
8306 bfd_boolean delay_slot_ok;
8307
8308 seen_valid_for_size = TRUE;
8309 delay_slot_ok = is_delay_slot_valid (opcode);
8310 if (match_insn (insn, opcode, tokens, opcode_extra,
8311 lax_match, delay_slot_ok))
8312 {
8313 if (!delay_slot_ok)
8314 {
8315 if (!invalid_delay_slot)
8316 invalid_delay_slot = opcode;
8317 }
8318 else
8319 return TRUE;
8320 }
8321 }
8322 }
8323 ++opcode;
8324 }
8325 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8326
8327 /* If the only matches we found had the wrong length for the delay slot,
8328 pick the first such match. We'll issue an appropriate warning later. */
8329 if (invalid_delay_slot)
8330 {
8331 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8332 lax_match, TRUE))
8333 return TRUE;
8334 abort ();
8335 }
8336
8337 /* Handle the case where we didn't try to match an instruction because
8338 all the alternatives were incompatible with the current ISA. */
8339 if (!seen_valid_for_isa)
8340 {
8341 match_invalid_for_isa ();
8342 return TRUE;
8343 }
8344
8345 /* Handle the case where we didn't try to match an instruction because
8346 all the alternatives were of the wrong size. */
8347 if (!seen_valid_for_size)
8348 {
8349 if (mips_opts.insn32)
1661c76c 8350 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
60f20e8b
RS
8351 else
8352 set_insn_error_i
1661c76c 8353 (0, _("unrecognized %d-bit version of microMIPS opcode"),
60f20e8b
RS
8354 8 * forced_insn_length);
8355 return TRUE;
8356 }
8357
8358 return FALSE;
8359}
8360
8361/* Like match_insns, but for MIPS16. */
8362
8363static bfd_boolean
8364match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8365 struct mips_operand_token *tokens)
8366{
8367 const struct mips_opcode *opcode;
8368 bfd_boolean seen_valid_for_isa;
7fd53920 8369 bfd_boolean seen_valid_for_size;
60f20e8b
RS
8370
8371 /* Search for a match, ignoring alternatives that don't satisfy the
8372 current ISA. There are no separate entries for extended forms so
8373 we deal with forced_length later. */
8374 seen_valid_for_isa = FALSE;
7fd53920 8375 seen_valid_for_size = FALSE;
60f20e8b
RS
8376 opcode = first;
8377 do
8378 {
8379 gas_assert (strcmp (opcode->name, first->name) == 0);
8380 if (is_opcode_valid_16 (opcode))
8381 {
8382 seen_valid_for_isa = TRUE;
7fd53920
MR
8383 if (is_size_valid_16 (opcode))
8384 {
8385 seen_valid_for_size = TRUE;
8386 if (match_mips16_insn (insn, opcode, tokens))
8387 return TRUE;
8388 }
60f20e8b
RS
8389 }
8390 ++opcode;
8391 }
8392 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8393 && strcmp (opcode->name, first->name) == 0);
8394
8395 /* Handle the case where we didn't try to match an instruction because
8396 all the alternatives were incompatible with the current ISA. */
8397 if (!seen_valid_for_isa)
8398 {
8399 match_invalid_for_isa ();
8400 return TRUE;
8401 }
8402
7fd53920
MR
8403 /* Handle the case where we didn't try to match an instruction because
8404 all the alternatives were of the wrong size. */
8405 if (!seen_valid_for_size)
8406 {
8407 if (forced_insn_length == 2)
8408 set_insn_error
8409 (0, _("unrecognized unextended version of MIPS16 opcode"));
8410 else
8411 set_insn_error
8412 (0, _("unrecognized extended version of MIPS16 opcode"));
8413 return TRUE;
8414 }
8415
60f20e8b
RS
8416 return FALSE;
8417}
8418
584892a6
RS
8419/* Set up global variables for the start of a new macro. */
8420
8421static void
8422macro_start (void)
8423{
8424 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
df58fc94
RS
8425 memset (&mips_macro_warning.first_insn_sizes, 0,
8426 sizeof (mips_macro_warning.first_insn_sizes));
8427 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
584892a6 8428 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
11625dd8 8429 && delayed_branch_p (&history[0]));
7bd374a4
MR
8430 if (history[0].frag
8431 && history[0].frag->fr_type == rs_machine_dependent
8432 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8433 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8434 mips_macro_warning.delay_slot_length = 0;
8435 else
8436 switch (history[0].insn_mo->pinfo2
8437 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8438 {
8439 case INSN2_BRANCH_DELAY_32BIT:
8440 mips_macro_warning.delay_slot_length = 4;
8441 break;
8442 case INSN2_BRANCH_DELAY_16BIT:
8443 mips_macro_warning.delay_slot_length = 2;
8444 break;
8445 default:
8446 mips_macro_warning.delay_slot_length = 0;
8447 break;
8448 }
df58fc94 8449 mips_macro_warning.first_frag = NULL;
584892a6
RS
8450}
8451
df58fc94
RS
8452/* Given that a macro is longer than one instruction or of the wrong size,
8453 return the appropriate warning for it. Return null if no warning is
8454 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8455 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8456 and RELAX_NOMACRO. */
584892a6
RS
8457
8458static const char *
8459macro_warning (relax_substateT subtype)
8460{
8461 if (subtype & RELAX_DELAY_SLOT)
1661c76c 8462 return _("macro instruction expanded into multiple instructions"
584892a6
RS
8463 " in a branch delay slot");
8464 else if (subtype & RELAX_NOMACRO)
1661c76c 8465 return _("macro instruction expanded into multiple instructions");
df58fc94
RS
8466 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8467 | RELAX_DELAY_SLOT_SIZE_SECOND))
8468 return ((subtype & RELAX_DELAY_SLOT_16BIT)
1661c76c 8469 ? _("macro instruction expanded into a wrong size instruction"
df58fc94 8470 " in a 16-bit branch delay slot")
1661c76c 8471 : _("macro instruction expanded into a wrong size instruction"
df58fc94 8472 " in a 32-bit branch delay slot"));
584892a6
RS
8473 else
8474 return 0;
8475}
8476
8477/* Finish up a macro. Emit warnings as appropriate. */
8478
8479static void
8480macro_end (void)
8481{
df58fc94
RS
8482 /* Relaxation warning flags. */
8483 relax_substateT subtype = 0;
8484
8485 /* Check delay slot size requirements. */
8486 if (mips_macro_warning.delay_slot_length == 2)
8487 subtype |= RELAX_DELAY_SLOT_16BIT;
8488 if (mips_macro_warning.delay_slot_length != 0)
584892a6 8489 {
df58fc94
RS
8490 if (mips_macro_warning.delay_slot_length
8491 != mips_macro_warning.first_insn_sizes[0])
8492 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8493 if (mips_macro_warning.delay_slot_length
8494 != mips_macro_warning.first_insn_sizes[1])
8495 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8496 }
584892a6 8497
df58fc94
RS
8498 /* Check instruction count requirements. */
8499 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8500 {
8501 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
584892a6
RS
8502 subtype |= RELAX_SECOND_LONGER;
8503 if (mips_opts.warn_about_macros)
8504 subtype |= RELAX_NOMACRO;
8505 if (mips_macro_warning.delay_slot_p)
8506 subtype |= RELAX_DELAY_SLOT;
df58fc94 8507 }
584892a6 8508
df58fc94
RS
8509 /* If both alternatives fail to fill a delay slot correctly,
8510 emit the warning now. */
8511 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8512 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8513 {
8514 relax_substateT s;
8515 const char *msg;
8516
8517 s = subtype & (RELAX_DELAY_SLOT_16BIT
8518 | RELAX_DELAY_SLOT_SIZE_FIRST
8519 | RELAX_DELAY_SLOT_SIZE_SECOND);
8520 msg = macro_warning (s);
8521 if (msg != NULL)
8522 as_warn ("%s", msg);
8523 subtype &= ~s;
8524 }
8525
8526 /* If both implementations are longer than 1 instruction, then emit the
8527 warning now. */
8528 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8529 {
8530 relax_substateT s;
8531 const char *msg;
8532
8533 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8534 msg = macro_warning (s);
8535 if (msg != NULL)
8536 as_warn ("%s", msg);
8537 subtype &= ~s;
584892a6 8538 }
df58fc94
RS
8539
8540 /* If any flags still set, then one implementation might need a warning
8541 and the other either will need one of a different kind or none at all.
8542 Pass any remaining flags over to relaxation. */
8543 if (mips_macro_warning.first_frag != NULL)
8544 mips_macro_warning.first_frag->fr_subtype |= subtype;
584892a6
RS
8545}
8546
df58fc94
RS
8547/* Instruction operand formats used in macros that vary between
8548 standard MIPS and microMIPS code. */
8549
833794fc 8550static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
df58fc94
RS
8551static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8552static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8553static const char * const lui_fmt[2] = { "t,u", "s,u" };
8554static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
833794fc 8555static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
df58fc94
RS
8556static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8557static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8558
833794fc 8559#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7361da2c
AB
8560#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8561 : cop12_fmt[mips_opts.micromips])
df58fc94
RS
8562#define JALR_FMT (jalr_fmt[mips_opts.micromips])
8563#define LUI_FMT (lui_fmt[mips_opts.micromips])
8564#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7361da2c
AB
8565#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8566 : mem12_fmt[mips_opts.micromips])
833794fc 8567#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
8568#define SHFT_FMT (shft_fmt[mips_opts.micromips])
8569#define TRAP_FMT (trap_fmt[mips_opts.micromips])
8570
6e1304d8
RS
8571/* Read a macro's relocation codes from *ARGS and store them in *R.
8572 The first argument in *ARGS will be either the code for a single
8573 relocation or -1 followed by the three codes that make up a
8574 composite relocation. */
8575
8576static void
8577macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8578{
8579 int i, next;
8580
8581 next = va_arg (*args, int);
8582 if (next >= 0)
8583 r[0] = (bfd_reloc_code_real_type) next;
8584 else
f2ae14a1
RS
8585 {
8586 for (i = 0; i < 3; i++)
8587 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8588 /* This function is only used for 16-bit relocation fields.
8589 To make the macro code simpler, treat an unrelocated value
8590 in the same way as BFD_RELOC_LO16. */
8591 if (r[0] == BFD_RELOC_UNUSED)
8592 r[0] = BFD_RELOC_LO16;
8593 }
6e1304d8
RS
8594}
8595
252b5132
RH
8596/* Build an instruction created by a macro expansion. This is passed
8597 a pointer to the count of instructions created so far, an
8598 expression, the name of the instruction to build, an operand format
8599 string, and corresponding arguments. */
8600
252b5132 8601static void
67c0d1eb 8602macro_build (expressionS *ep, const char *name, const char *fmt, ...)
252b5132 8603{
df58fc94 8604 const struct mips_opcode *mo = NULL;
f6688943 8605 bfd_reloc_code_real_type r[3];
df58fc94 8606 const struct mips_opcode *amo;
e077a1c8 8607 const struct mips_operand *operand;
df58fc94
RS
8608 struct hash_control *hash;
8609 struct mips_cl_insn insn;
252b5132 8610 va_list args;
e077a1c8 8611 unsigned int uval;
252b5132 8612
252b5132 8613 va_start (args, fmt);
252b5132 8614
252b5132
RH
8615 if (mips_opts.mips16)
8616 {
03ea81db 8617 mips16_macro_build (ep, name, fmt, &args);
252b5132
RH
8618 va_end (args);
8619 return;
8620 }
8621
f6688943
TS
8622 r[0] = BFD_RELOC_UNUSED;
8623 r[1] = BFD_RELOC_UNUSED;
8624 r[2] = BFD_RELOC_UNUSED;
df58fc94
RS
8625 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8626 amo = (struct mips_opcode *) hash_find (hash, name);
8627 gas_assert (amo);
8628 gas_assert (strcmp (name, amo->name) == 0);
1e915849 8629
df58fc94 8630 do
8b082fb1
TS
8631 {
8632 /* Search until we get a match for NAME. It is assumed here that
df58fc94 8633 macros will never generate MDMX, MIPS-3D, or MT instructions.
33eaf5de 8634 We try to match an instruction that fulfills the branch delay
df58fc94
RS
8635 slot instruction length requirement (if any) of the previous
8636 instruction. While doing this we record the first instruction
8637 seen that matches all the other conditions and use it anyway
8638 if the requirement cannot be met; we will issue an appropriate
8639 warning later on. */
8640 if (strcmp (fmt, amo->args) == 0
8641 && amo->pinfo != INSN_MACRO
8642 && is_opcode_valid (amo)
8643 && is_size_valid (amo))
8644 {
8645 if (is_delay_slot_valid (amo))
8646 {
8647 mo = amo;
8648 break;
8649 }
8650 else if (!mo)
8651 mo = amo;
8652 }
8b082fb1 8653
df58fc94
RS
8654 ++amo;
8655 gas_assert (amo->name);
252b5132 8656 }
df58fc94 8657 while (strcmp (name, amo->name) == 0);
252b5132 8658
df58fc94 8659 gas_assert (mo);
1e915849 8660 create_insn (&insn, mo);
e077a1c8 8661 for (; *fmt; ++fmt)
252b5132 8662 {
e077a1c8 8663 switch (*fmt)
252b5132 8664 {
252b5132
RH
8665 case ',':
8666 case '(':
8667 case ')':
252b5132 8668 case 'z':
e077a1c8 8669 break;
252b5132
RH
8670
8671 case 'i':
8672 case 'j':
6e1304d8 8673 macro_read_relocs (&args, r);
9c2799c2 8674 gas_assert (*r == BFD_RELOC_GPREL16
e391c024
RS
8675 || *r == BFD_RELOC_MIPS_HIGHER
8676 || *r == BFD_RELOC_HI16_S
8677 || *r == BFD_RELOC_LO16
8678 || *r == BFD_RELOC_MIPS_GOT_OFST);
e077a1c8 8679 break;
e391c024
RS
8680
8681 case 'o':
8682 macro_read_relocs (&args, r);
e077a1c8 8683 break;
252b5132
RH
8684
8685 case 'u':
6e1304d8 8686 macro_read_relocs (&args, r);
9c2799c2 8687 gas_assert (ep != NULL
90ecf173
MR
8688 && (ep->X_op == O_constant
8689 || (ep->X_op == O_symbol
8690 && (*r == BFD_RELOC_MIPS_HIGHEST
8691 || *r == BFD_RELOC_HI16_S
8692 || *r == BFD_RELOC_HI16
8693 || *r == BFD_RELOC_GPREL16
8694 || *r == BFD_RELOC_MIPS_GOT_HI16
8695 || *r == BFD_RELOC_MIPS_CALL_HI16))));
e077a1c8 8696 break;
252b5132
RH
8697
8698 case 'p':
9c2799c2 8699 gas_assert (ep != NULL);
bad36eac 8700
252b5132
RH
8701 /*
8702 * This allows macro() to pass an immediate expression for
8703 * creating short branches without creating a symbol.
bad36eac
DJ
8704 *
8705 * We don't allow branch relaxation for these branches, as
8706 * they should only appear in ".set nomacro" anyway.
252b5132
RH
8707 */
8708 if (ep->X_op == O_constant)
8709 {
df58fc94
RS
8710 /* For microMIPS we always use relocations for branches.
8711 So we should not resolve immediate values. */
8712 gas_assert (!mips_opts.micromips);
8713
bad36eac
DJ
8714 if ((ep->X_add_number & 3) != 0)
8715 as_bad (_("branch to misaligned address (0x%lx)"),
8716 (unsigned long) ep->X_add_number);
8717 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8718 as_bad (_("branch address range overflow (0x%lx)"),
8719 (unsigned long) ep->X_add_number);
252b5132
RH
8720 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8721 ep = NULL;
8722 }
8723 else
0b25d3e6 8724 *r = BFD_RELOC_16_PCREL_S2;
e077a1c8 8725 break;
252b5132
RH
8726
8727 case 'a':
9c2799c2 8728 gas_assert (ep != NULL);
f6688943 8729 *r = BFD_RELOC_MIPS_JMP;
e077a1c8 8730 break;
d43b4baf 8731
252b5132 8732 default:
e077a1c8
RS
8733 operand = (mips_opts.micromips
8734 ? decode_micromips_operand (fmt)
8735 : decode_mips_operand (fmt));
8736 if (!operand)
8737 abort ();
8738
8739 uval = va_arg (args, int);
8740 if (operand->type == OP_CLO_CLZ_DEST)
8741 uval |= (uval << 5);
8742 insn_insert_operand (&insn, operand, uval);
8743
7361da2c 8744 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
e077a1c8
RS
8745 ++fmt;
8746 break;
252b5132 8747 }
252b5132
RH
8748 }
8749 va_end (args);
9c2799c2 8750 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8751
df58fc94 8752 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8753}
8754
8755static void
67c0d1eb 8756mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
03ea81db 8757 va_list *args)
252b5132 8758{
1e915849 8759 struct mips_opcode *mo;
252b5132 8760 struct mips_cl_insn insn;
e077a1c8 8761 const struct mips_operand *operand;
f6688943
TS
8762 bfd_reloc_code_real_type r[3]
8763 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 8764
1e915849 8765 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9c2799c2
NC
8766 gas_assert (mo);
8767 gas_assert (strcmp (name, mo->name) == 0);
252b5132 8768
1e915849 8769 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
252b5132 8770 {
1e915849 8771 ++mo;
9c2799c2
NC
8772 gas_assert (mo->name);
8773 gas_assert (strcmp (name, mo->name) == 0);
252b5132
RH
8774 }
8775
1e915849 8776 create_insn (&insn, mo);
e077a1c8 8777 for (; *fmt; ++fmt)
252b5132
RH
8778 {
8779 int c;
8780
e077a1c8 8781 c = *fmt;
252b5132
RH
8782 switch (c)
8783 {
252b5132
RH
8784 case ',':
8785 case '(':
8786 case ')':
e077a1c8 8787 break;
252b5132 8788
d8722d76 8789 case '.':
252b5132
RH
8790 case 'S':
8791 case 'P':
8792 case 'R':
e077a1c8 8793 break;
252b5132
RH
8794
8795 case '<':
252b5132 8796 case '5':
d8722d76 8797 case 'F':
252b5132
RH
8798 case 'H':
8799 case 'W':
8800 case 'D':
8801 case 'j':
8802 case '8':
8803 case 'V':
8804 case 'C':
8805 case 'U':
8806 case 'k':
8807 case 'K':
8808 case 'p':
8809 case 'q':
8810 {
b886a2ab
RS
8811 offsetT value;
8812
9c2799c2 8813 gas_assert (ep != NULL);
252b5132
RH
8814
8815 if (ep->X_op != O_constant)
874e8986 8816 *r = (int) BFD_RELOC_UNUSED + c;
b886a2ab 8817 else if (calculate_reloc (*r, ep->X_add_number, &value))
252b5132 8818 {
b886a2ab 8819 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
252b5132 8820 ep = NULL;
f6688943 8821 *r = BFD_RELOC_UNUSED;
252b5132
RH
8822 }
8823 }
e077a1c8 8824 break;
252b5132 8825
e077a1c8
RS
8826 default:
8827 operand = decode_mips16_operand (c, FALSE);
8828 if (!operand)
8829 abort ();
252b5132 8830
4a06e5a2 8831 insn_insert_operand (&insn, operand, va_arg (*args, int));
e077a1c8
RS
8832 break;
8833 }
252b5132
RH
8834 }
8835
9c2799c2 8836 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8837
df58fc94 8838 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8839}
8840
438c16b8
TS
8841/*
8842 * Generate a "jalr" instruction with a relocation hint to the called
8843 * function. This occurs in NewABI PIC code.
8844 */
8845static void
df58fc94 8846macro_build_jalr (expressionS *ep, int cprestore)
438c16b8 8847{
df58fc94
RS
8848 static const bfd_reloc_code_real_type jalr_relocs[2]
8849 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8850 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8851 const char *jalr;
685736be 8852 char *f = NULL;
b34976b6 8853
1180b5a4 8854 if (MIPS_JALR_HINT_P (ep))
f21f8242 8855 {
cc3d92a5 8856 frag_grow (8);
f21f8242
AO
8857 f = frag_more (0);
8858 }
2906b037 8859 if (mips_opts.micromips)
df58fc94 8860 {
833794fc
MR
8861 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8862 ? "jalr" : "jalrs");
e64af278 8863 if (MIPS_JALR_HINT_P (ep)
833794fc 8864 || mips_opts.insn32
e64af278 8865 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
8866 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8867 else
8868 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8869 }
2906b037
MR
8870 else
8871 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
1180b5a4 8872 if (MIPS_JALR_HINT_P (ep))
df58fc94 8873 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
438c16b8
TS
8874}
8875
252b5132
RH
8876/*
8877 * Generate a "lui" instruction.
8878 */
8879static void
67c0d1eb 8880macro_build_lui (expressionS *ep, int regnum)
252b5132 8881{
9c2799c2 8882 gas_assert (! mips_opts.mips16);
252b5132 8883
df58fc94 8884 if (ep->X_op != O_constant)
252b5132 8885 {
9c2799c2 8886 gas_assert (ep->X_op == O_symbol);
bbe506e8
TS
8887 /* _gp_disp is a special case, used from s_cpload.
8888 __gnu_local_gp is used if mips_no_shared. */
9c2799c2 8889 gas_assert (mips_pic == NO_PIC
78e1bb40 8890 || (! HAVE_NEWABI
aa6975fb
ILT
8891 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8892 || (! mips_in_shared
bbe506e8
TS
8893 && strcmp (S_GET_NAME (ep->X_add_symbol),
8894 "__gnu_local_gp") == 0));
252b5132
RH
8895 }
8896
df58fc94 8897 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
252b5132
RH
8898}
8899
885add95
CD
8900/* Generate a sequence of instructions to do a load or store from a constant
8901 offset off of a base register (breg) into/from a target register (treg),
8902 using AT if necessary. */
8903static void
67c0d1eb
RS
8904macro_build_ldst_constoffset (expressionS *ep, const char *op,
8905 int treg, int breg, int dbl)
885add95 8906{
9c2799c2 8907 gas_assert (ep->X_op == O_constant);
885add95 8908
256ab948 8909 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8910 if (!dbl)
8911 normalize_constant_expr (ep);
256ab948 8912
67c1ffbe 8913 /* Right now, this routine can only handle signed 32-bit constants. */
ecd13cd3 8914 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
885add95
CD
8915 as_warn (_("operand overflow"));
8916
8917 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8918 {
8919 /* Signed 16-bit offset will fit in the op. Easy! */
67c0d1eb 8920 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
885add95
CD
8921 }
8922 else
8923 {
8924 /* 32-bit offset, need multiple instructions and AT, like:
8925 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8926 addu $tempreg,$tempreg,$breg
8927 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8928 to handle the complete offset. */
67c0d1eb
RS
8929 macro_build_lui (ep, AT);
8930 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8931 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
885add95 8932
741fe287 8933 if (!mips_opts.at)
1661c76c 8934 as_bad (_("macro used $at after \".set noat\""));
885add95
CD
8935 }
8936}
8937
252b5132
RH
8938/* set_at()
8939 * Generates code to set the $at register to true (one)
8940 * if reg is less than the immediate expression.
8941 */
8942static void
67c0d1eb 8943set_at (int reg, int unsignedp)
252b5132 8944{
b0e6f033 8945 if (imm_expr.X_add_number >= -0x8000
252b5132 8946 && imm_expr.X_add_number < 0x8000)
67c0d1eb
RS
8947 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8948 AT, reg, BFD_RELOC_LO16);
252b5132
RH
8949 else
8950 {
bad1aba3 8951 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 8952 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
252b5132
RH
8953 }
8954}
8955
252b5132
RH
8956/* Count the leading zeroes by performing a binary chop. This is a
8957 bulky bit of source, but performance is a LOT better for the
8958 majority of values than a simple loop to count the bits:
8959 for (lcnt = 0; (lcnt < 32); lcnt++)
8960 if ((v) & (1 << (31 - lcnt)))
8961 break;
8962 However it is not code size friendly, and the gain will drop a bit
8963 on certain cached systems.
8964*/
8965#define COUNT_TOP_ZEROES(v) \
8966 (((v) & ~0xffff) == 0 \
8967 ? ((v) & ~0xff) == 0 \
8968 ? ((v) & ~0xf) == 0 \
8969 ? ((v) & ~0x3) == 0 \
8970 ? ((v) & ~0x1) == 0 \
8971 ? !(v) \
8972 ? 32 \
8973 : 31 \
8974 : 30 \
8975 : ((v) & ~0x7) == 0 \
8976 ? 29 \
8977 : 28 \
8978 : ((v) & ~0x3f) == 0 \
8979 ? ((v) & ~0x1f) == 0 \
8980 ? 27 \
8981 : 26 \
8982 : ((v) & ~0x7f) == 0 \
8983 ? 25 \
8984 : 24 \
8985 : ((v) & ~0xfff) == 0 \
8986 ? ((v) & ~0x3ff) == 0 \
8987 ? ((v) & ~0x1ff) == 0 \
8988 ? 23 \
8989 : 22 \
8990 : ((v) & ~0x7ff) == 0 \
8991 ? 21 \
8992 : 20 \
8993 : ((v) & ~0x3fff) == 0 \
8994 ? ((v) & ~0x1fff) == 0 \
8995 ? 19 \
8996 : 18 \
8997 : ((v) & ~0x7fff) == 0 \
8998 ? 17 \
8999 : 16 \
9000 : ((v) & ~0xffffff) == 0 \
9001 ? ((v) & ~0xfffff) == 0 \
9002 ? ((v) & ~0x3ffff) == 0 \
9003 ? ((v) & ~0x1ffff) == 0 \
9004 ? 15 \
9005 : 14 \
9006 : ((v) & ~0x7ffff) == 0 \
9007 ? 13 \
9008 : 12 \
9009 : ((v) & ~0x3fffff) == 0 \
9010 ? ((v) & ~0x1fffff) == 0 \
9011 ? 11 \
9012 : 10 \
9013 : ((v) & ~0x7fffff) == 0 \
9014 ? 9 \
9015 : 8 \
9016 : ((v) & ~0xfffffff) == 0 \
9017 ? ((v) & ~0x3ffffff) == 0 \
9018 ? ((v) & ~0x1ffffff) == 0 \
9019 ? 7 \
9020 : 6 \
9021 : ((v) & ~0x7ffffff) == 0 \
9022 ? 5 \
9023 : 4 \
9024 : ((v) & ~0x3fffffff) == 0 \
9025 ? ((v) & ~0x1fffffff) == 0 \
9026 ? 3 \
9027 : 2 \
9028 : ((v) & ~0x7fffffff) == 0 \
9029 ? 1 \
9030 : 0)
9031
9032/* load_register()
67c1ffbe 9033 * This routine generates the least number of instructions necessary to load
252b5132
RH
9034 * an absolute expression value into a register.
9035 */
9036static void
67c0d1eb 9037load_register (int reg, expressionS *ep, int dbl)
252b5132
RH
9038{
9039 int freg;
9040 expressionS hi32, lo32;
9041
9042 if (ep->X_op != O_big)
9043 {
9c2799c2 9044 gas_assert (ep->X_op == O_constant);
256ab948
TS
9045
9046 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
9047 if (!dbl)
9048 normalize_constant_expr (ep);
256ab948
TS
9049
9050 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
252b5132
RH
9051 {
9052 /* We can handle 16 bit signed values with an addiu to
9053 $zero. No need to ever use daddiu here, since $zero and
9054 the result are always correct in 32 bit mode. */
67c0d1eb 9055 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9056 return;
9057 }
9058 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9059 {
9060 /* We can handle 16 bit unsigned values with an ori to
9061 $zero. */
67c0d1eb 9062 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9063 return;
9064 }
256ab948 9065 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
252b5132
RH
9066 {
9067 /* 32 bit values require an lui. */
df58fc94 9068 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 9069 if ((ep->X_add_number & 0xffff) != 0)
67c0d1eb 9070 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
252b5132
RH
9071 return;
9072 }
9073 }
9074
9075 /* The value is larger than 32 bits. */
9076
bad1aba3 9077 if (!dbl || GPR_SIZE == 32)
252b5132 9078 {
55e08f71
NC
9079 char value[32];
9080
9081 sprintf_vma (value, ep->X_add_number);
1661c76c 9082 as_bad (_("number (0x%s) larger than 32 bits"), value);
67c0d1eb 9083 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9084 return;
9085 }
9086
9087 if (ep->X_op != O_big)
9088 {
9089 hi32 = *ep;
9090 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9091 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9092 hi32.X_add_number &= 0xffffffff;
9093 lo32 = *ep;
9094 lo32.X_add_number &= 0xffffffff;
9095 }
9096 else
9097 {
9c2799c2 9098 gas_assert (ep->X_add_number > 2);
252b5132
RH
9099 if (ep->X_add_number == 3)
9100 generic_bignum[3] = 0;
9101 else if (ep->X_add_number > 4)
1661c76c 9102 as_bad (_("number larger than 64 bits"));
252b5132
RH
9103 lo32.X_op = O_constant;
9104 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9105 hi32.X_op = O_constant;
9106 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9107 }
9108
9109 if (hi32.X_add_number == 0)
9110 freg = 0;
9111 else
9112 {
9113 int shift, bit;
9114 unsigned long hi, lo;
9115
956cd1d6 9116 if (hi32.X_add_number == (offsetT) 0xffffffff)
beae10d5
KH
9117 {
9118 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9119 {
67c0d1eb 9120 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9121 return;
9122 }
9123 if (lo32.X_add_number & 0x80000000)
9124 {
df58fc94 9125 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 9126 if (lo32.X_add_number & 0xffff)
67c0d1eb 9127 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
beae10d5
KH
9128 return;
9129 }
9130 }
252b5132
RH
9131
9132 /* Check for 16bit shifted constant. We know that hi32 is
9133 non-zero, so start the mask on the first bit of the hi32
9134 value. */
9135 shift = 17;
9136 do
beae10d5
KH
9137 {
9138 unsigned long himask, lomask;
9139
9140 if (shift < 32)
9141 {
9142 himask = 0xffff >> (32 - shift);
9143 lomask = (0xffff << shift) & 0xffffffff;
9144 }
9145 else
9146 {
9147 himask = 0xffff << (shift - 32);
9148 lomask = 0;
9149 }
9150 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9151 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9152 {
9153 expressionS tmp;
9154
9155 tmp.X_op = O_constant;
9156 if (shift < 32)
9157 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9158 | (lo32.X_add_number >> shift));
9159 else
9160 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
67c0d1eb 9161 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
df58fc94 9162 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9163 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9164 return;
9165 }
f9419b05 9166 ++shift;
beae10d5
KH
9167 }
9168 while (shift <= (64 - 16));
252b5132
RH
9169
9170 /* Find the bit number of the lowest one bit, and store the
9171 shifted value in hi/lo. */
9172 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9173 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9174 if (lo != 0)
9175 {
9176 bit = 0;
9177 while ((lo & 1) == 0)
9178 {
9179 lo >>= 1;
9180 ++bit;
9181 }
9182 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9183 hi >>= bit;
9184 }
9185 else
9186 {
9187 bit = 32;
9188 while ((hi & 1) == 0)
9189 {
9190 hi >>= 1;
9191 ++bit;
9192 }
9193 lo = hi;
9194 hi = 0;
9195 }
9196
9197 /* Optimize if the shifted value is a (power of 2) - 1. */
9198 if ((hi == 0 && ((lo + 1) & lo) == 0)
9199 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
beae10d5
KH
9200 {
9201 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
252b5132 9202 if (shift != 0)
beae10d5 9203 {
252b5132
RH
9204 expressionS tmp;
9205
9206 /* This instruction will set the register to be all
9207 ones. */
beae10d5
KH
9208 tmp.X_op = O_constant;
9209 tmp.X_add_number = (offsetT) -1;
67c0d1eb 9210 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9211 if (bit != 0)
9212 {
9213 bit += shift;
df58fc94 9214 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9215 reg, reg, (bit >= 32) ? bit - 32 : bit);
beae10d5 9216 }
df58fc94 9217 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
67c0d1eb 9218 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9219 return;
9220 }
9221 }
252b5132
RH
9222
9223 /* Sign extend hi32 before calling load_register, because we can
9224 generally get better code when we load a sign extended value. */
9225 if ((hi32.X_add_number & 0x80000000) != 0)
beae10d5 9226 hi32.X_add_number |= ~(offsetT) 0xffffffff;
67c0d1eb 9227 load_register (reg, &hi32, 0);
252b5132
RH
9228 freg = reg;
9229 }
9230 if ((lo32.X_add_number & 0xffff0000) == 0)
9231 {
9232 if (freg != 0)
9233 {
df58fc94 9234 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
252b5132
RH
9235 freg = reg;
9236 }
9237 }
9238 else
9239 {
9240 expressionS mid16;
9241
956cd1d6 9242 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
beae10d5 9243 {
df58fc94
RS
9244 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9245 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
beae10d5
KH
9246 return;
9247 }
252b5132
RH
9248
9249 if (freg != 0)
9250 {
df58fc94 9251 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
252b5132
RH
9252 freg = reg;
9253 }
9254 mid16 = lo32;
9255 mid16.X_add_number >>= 16;
67c0d1eb 9256 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
df58fc94 9257 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
252b5132
RH
9258 freg = reg;
9259 }
9260 if ((lo32.X_add_number & 0xffff) != 0)
67c0d1eb 9261 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
252b5132
RH
9262}
9263
269137b2
TS
9264static inline void
9265load_delay_nop (void)
9266{
9267 if (!gpr_interlocks)
9268 macro_build (NULL, "nop", "");
9269}
9270
252b5132
RH
9271/* Load an address into a register. */
9272
9273static void
67c0d1eb 9274load_address (int reg, expressionS *ep, int *used_at)
252b5132 9275{
252b5132
RH
9276 if (ep->X_op != O_constant
9277 && ep->X_op != O_symbol)
9278 {
9279 as_bad (_("expression too complex"));
9280 ep->X_op = O_constant;
9281 }
9282
9283 if (ep->X_op == O_constant)
9284 {
67c0d1eb 9285 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
252b5132
RH
9286 return;
9287 }
9288
9289 if (mips_pic == NO_PIC)
9290 {
9291 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 9292 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
9293 Otherwise we want
9294 lui $reg,<sym> (BFD_RELOC_HI16_S)
9295 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
d6bc6245 9296 If we have an addend, we always use the latter form.
76b3015f 9297
d6bc6245
TS
9298 With 64bit address space and a usable $at we want
9299 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9300 lui $at,<sym> (BFD_RELOC_HI16_S)
9301 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9302 daddiu $at,<sym> (BFD_RELOC_LO16)
9303 dsll32 $reg,0
3a482fd5 9304 daddu $reg,$reg,$at
76b3015f 9305
c03099e6 9306 If $at is already in use, we use a path which is suboptimal
d6bc6245
TS
9307 on superscalar processors.
9308 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9309 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9310 dsll $reg,16
9311 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9312 dsll $reg,16
9313 daddiu $reg,<sym> (BFD_RELOC_LO16)
6caf9ef4
TS
9314
9315 For GP relative symbols in 64bit address space we can use
9316 the same sequence as in 32bit address space. */
aed1a261 9317 if (HAVE_64BIT_SYMBOLS)
d6bc6245 9318 {
6caf9ef4
TS
9319 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9320 && !nopic_need_relax (ep->X_add_symbol, 1))
9321 {
9322 relax_start (ep->X_add_symbol);
9323 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9324 mips_gp_register, BFD_RELOC_GPREL16);
9325 relax_switch ();
9326 }
d6bc6245 9327
741fe287 9328 if (*used_at == 0 && mips_opts.at)
d6bc6245 9329 {
df58fc94
RS
9330 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9331 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
67c0d1eb
RS
9332 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9333 BFD_RELOC_MIPS_HIGHER);
9334 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
df58fc94 9335 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
67c0d1eb 9336 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
d6bc6245
TS
9337 *used_at = 1;
9338 }
9339 else
9340 {
df58fc94 9341 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb
RS
9342 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9343 BFD_RELOC_MIPS_HIGHER);
df58fc94 9344 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9345 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
df58fc94 9346 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9347 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
d6bc6245 9348 }
6caf9ef4
TS
9349
9350 if (mips_relax.sequence)
9351 relax_end ();
d6bc6245 9352 }
252b5132
RH
9353 else
9354 {
d6bc6245 9355 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 9356 && !nopic_need_relax (ep->X_add_symbol, 1))
d6bc6245 9357 {
4d7206a2 9358 relax_start (ep->X_add_symbol);
67c0d1eb 9359 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
17a2f251 9360 mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 9361 relax_switch ();
d6bc6245 9362 }
67c0d1eb
RS
9363 macro_build_lui (ep, reg);
9364 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9365 reg, reg, BFD_RELOC_LO16);
4d7206a2
RS
9366 if (mips_relax.sequence)
9367 relax_end ();
d6bc6245 9368 }
252b5132 9369 }
0a44bf69 9370 else if (!mips_big_got)
252b5132
RH
9371 {
9372 expressionS ex;
9373
9374 /* If this is a reference to an external symbol, we want
9375 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9376 Otherwise we want
9377 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9378 nop
9379 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
f5040a92
AO
9380 If there is a constant, it must be added in after.
9381
ed6fb7bd 9382 If we have NewABI, we want
f5040a92
AO
9383 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9384 unless we're referencing a global symbol with a non-zero
9385 offset, in which case cst must be added separately. */
ed6fb7bd
SC
9386 if (HAVE_NEWABI)
9387 {
f5040a92
AO
9388 if (ep->X_add_number)
9389 {
4d7206a2 9390 ex.X_add_number = ep->X_add_number;
f5040a92 9391 ep->X_add_number = 0;
4d7206a2 9392 relax_start (ep->X_add_symbol);
67c0d1eb
RS
9393 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9394 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9395 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9396 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9397 ex.X_op = O_constant;
67c0d1eb 9398 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9399 reg, reg, BFD_RELOC_LO16);
f5040a92 9400 ep->X_add_number = ex.X_add_number;
4d7206a2 9401 relax_switch ();
f5040a92 9402 }
67c0d1eb 9403 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9404 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2
RS
9405 if (mips_relax.sequence)
9406 relax_end ();
ed6fb7bd
SC
9407 }
9408 else
9409 {
f5040a92
AO
9410 ex.X_add_number = ep->X_add_number;
9411 ep->X_add_number = 0;
67c0d1eb
RS
9412 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9413 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9414 load_delay_nop ();
4d7206a2
RS
9415 relax_start (ep->X_add_symbol);
9416 relax_switch ();
67c0d1eb 9417 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9418 BFD_RELOC_LO16);
4d7206a2 9419 relax_end ();
ed6fb7bd 9420
f5040a92
AO
9421 if (ex.X_add_number != 0)
9422 {
9423 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9424 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9425 ex.X_op = O_constant;
67c0d1eb 9426 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9427 reg, reg, BFD_RELOC_LO16);
f5040a92 9428 }
252b5132
RH
9429 }
9430 }
0a44bf69 9431 else if (mips_big_got)
252b5132
RH
9432 {
9433 expressionS ex;
252b5132
RH
9434
9435 /* This is the large GOT case. If this is a reference to an
9436 external symbol, we want
9437 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9438 addu $reg,$reg,$gp
9439 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
f5040a92
AO
9440
9441 Otherwise, for a reference to a local symbol in old ABI, we want
252b5132
RH
9442 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9443 nop
9444 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
684022ea 9445 If there is a constant, it must be added in after.
f5040a92
AO
9446
9447 In the NewABI, for local symbols, with or without offsets, we want:
438c16b8
TS
9448 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9449 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 9450 */
438c16b8
TS
9451 if (HAVE_NEWABI)
9452 {
4d7206a2 9453 ex.X_add_number = ep->X_add_number;
f5040a92 9454 ep->X_add_number = 0;
4d7206a2 9455 relax_start (ep->X_add_symbol);
df58fc94 9456 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9457 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9458 reg, reg, mips_gp_register);
9459 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9460 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
f5040a92
AO
9461 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9462 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9463 else if (ex.X_add_number)
9464 {
9465 ex.X_op = O_constant;
67c0d1eb
RS
9466 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9467 BFD_RELOC_LO16);
f5040a92
AO
9468 }
9469
9470 ep->X_add_number = ex.X_add_number;
4d7206a2 9471 relax_switch ();
67c0d1eb 9472 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9473 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
67c0d1eb
RS
9474 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9475 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 9476 relax_end ();
438c16b8 9477 }
252b5132 9478 else
438c16b8 9479 {
f5040a92
AO
9480 ex.X_add_number = ep->X_add_number;
9481 ep->X_add_number = 0;
4d7206a2 9482 relax_start (ep->X_add_symbol);
df58fc94 9483 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9484 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9485 reg, reg, mips_gp_register);
9486 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9487 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4d7206a2
RS
9488 relax_switch ();
9489 if (reg_needs_delay (mips_gp_register))
438c16b8
TS
9490 {
9491 /* We need a nop before loading from $gp. This special
9492 check is required because the lui which starts the main
9493 instruction stream does not refer to $gp, and so will not
9494 insert the nop which may be required. */
67c0d1eb 9495 macro_build (NULL, "nop", "");
438c16b8 9496 }
67c0d1eb 9497 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9498 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9499 load_delay_nop ();
67c0d1eb 9500 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9501 BFD_RELOC_LO16);
4d7206a2 9502 relax_end ();
438c16b8 9503
f5040a92
AO
9504 if (ex.X_add_number != 0)
9505 {
9506 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9507 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9508 ex.X_op = O_constant;
67c0d1eb
RS
9509 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9510 BFD_RELOC_LO16);
f5040a92 9511 }
252b5132
RH
9512 }
9513 }
252b5132
RH
9514 else
9515 abort ();
8fc2e39e 9516
741fe287 9517 if (!mips_opts.at && *used_at == 1)
1661c76c 9518 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
9519}
9520
ea1fb5dc
RS
9521/* Move the contents of register SOURCE into register DEST. */
9522
9523static void
67c0d1eb 9524move_register (int dest, int source)
ea1fb5dc 9525{
df58fc94
RS
9526 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9527 instruction specifically requires a 32-bit one. */
9528 if (mips_opts.micromips
833794fc 9529 && !mips_opts.insn32
df58fc94 9530 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7951ca42 9531 macro_build (NULL, "move", "mp,mj", dest, source);
df58fc94 9532 else
40fc1451 9533 macro_build (NULL, "or", "d,v,t", dest, source, 0);
ea1fb5dc
RS
9534}
9535
4d7206a2 9536/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
f6a22291
MR
9537 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9538 The two alternatives are:
4d7206a2 9539
33eaf5de 9540 Global symbol Local symbol
4d7206a2
RS
9541 ------------- ------------
9542 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9543 ... ...
9544 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9545
9546 load_got_offset emits the first instruction and add_got_offset
f6a22291
MR
9547 emits the second for a 16-bit offset or add_got_offset_hilo emits
9548 a sequence to add a 32-bit offset using a scratch register. */
4d7206a2
RS
9549
9550static void
67c0d1eb 9551load_got_offset (int dest, expressionS *local)
4d7206a2
RS
9552{
9553 expressionS global;
9554
9555 global = *local;
9556 global.X_add_number = 0;
9557
9558 relax_start (local->X_add_symbol);
67c0d1eb
RS
9559 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9560 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2 9561 relax_switch ();
67c0d1eb
RS
9562 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9563 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2
RS
9564 relax_end ();
9565}
9566
9567static void
67c0d1eb 9568add_got_offset (int dest, expressionS *local)
4d7206a2
RS
9569{
9570 expressionS global;
9571
9572 global.X_op = O_constant;
9573 global.X_op_symbol = NULL;
9574 global.X_add_symbol = NULL;
9575 global.X_add_number = local->X_add_number;
9576
9577 relax_start (local->X_add_symbol);
67c0d1eb 9578 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4d7206a2
RS
9579 dest, dest, BFD_RELOC_LO16);
9580 relax_switch ();
67c0d1eb 9581 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4d7206a2
RS
9582 relax_end ();
9583}
9584
f6a22291
MR
9585static void
9586add_got_offset_hilo (int dest, expressionS *local, int tmp)
9587{
9588 expressionS global;
9589 int hold_mips_optimize;
9590
9591 global.X_op = O_constant;
9592 global.X_op_symbol = NULL;
9593 global.X_add_symbol = NULL;
9594 global.X_add_number = local->X_add_number;
9595
9596 relax_start (local->X_add_symbol);
9597 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9598 relax_switch ();
9599 /* Set mips_optimize around the lui instruction to avoid
9600 inserting an unnecessary nop after the lw. */
9601 hold_mips_optimize = mips_optimize;
9602 mips_optimize = 2;
9603 macro_build_lui (&global, tmp);
9604 mips_optimize = hold_mips_optimize;
9605 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9606 relax_end ();
9607
9608 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9609}
9610
df58fc94
RS
9611/* Emit a sequence of instructions to emulate a branch likely operation.
9612 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9613 is its complementing branch with the original condition negated.
9614 CALL is set if the original branch specified the link operation.
9615 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9616
9617 Code like this is produced in the noreorder mode:
9618
9619 BRNEG <args>, 1f
9620 nop
9621 b <sym>
9622 delay slot (executed only if branch taken)
9623 1:
9624
9625 or, if CALL is set:
9626
9627 BRNEG <args>, 1f
9628 nop
9629 bal <sym>
9630 delay slot (executed only if branch taken)
9631 1:
9632
9633 In the reorder mode the delay slot would be filled with a nop anyway,
9634 so code produced is simply:
9635
9636 BR <args>, <sym>
9637 nop
9638
9639 This function is used when producing code for the microMIPS ASE that
9640 does not implement branch likely instructions in hardware. */
9641
9642static void
9643macro_build_branch_likely (const char *br, const char *brneg,
9644 int call, expressionS *ep, const char *fmt,
9645 unsigned int sreg, unsigned int treg)
9646{
9647 int noreorder = mips_opts.noreorder;
9648 expressionS expr1;
9649
9650 gas_assert (mips_opts.micromips);
9651 start_noreorder ();
9652 if (noreorder)
9653 {
9654 micromips_label_expr (&expr1);
9655 macro_build (&expr1, brneg, fmt, sreg, treg);
9656 macro_build (NULL, "nop", "");
9657 macro_build (ep, call ? "bal" : "b", "p");
9658
9659 /* Set to true so that append_insn adds a label. */
9660 emit_branch_likely_macro = TRUE;
9661 }
9662 else
9663 {
9664 macro_build (ep, br, fmt, sreg, treg);
9665 macro_build (NULL, "nop", "");
9666 }
9667 end_noreorder ();
9668}
9669
9670/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9671 the condition code tested. EP specifies the branch target. */
9672
9673static void
9674macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9675{
9676 const int call = 0;
9677 const char *brneg;
9678 const char *br;
9679
9680 switch (type)
9681 {
9682 case M_BC1FL:
9683 br = "bc1f";
9684 brneg = "bc1t";
9685 break;
9686 case M_BC1TL:
9687 br = "bc1t";
9688 brneg = "bc1f";
9689 break;
9690 case M_BC2FL:
9691 br = "bc2f";
9692 brneg = "bc2t";
9693 break;
9694 case M_BC2TL:
9695 br = "bc2t";
9696 brneg = "bc2f";
9697 break;
9698 default:
9699 abort ();
9700 }
9701 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9702}
9703
9704/* Emit a two-argument branch macro specified by TYPE, using SREG as
9705 the register tested. EP specifies the branch target. */
9706
9707static void
9708macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9709{
9710 const char *brneg = NULL;
9711 const char *br;
9712 int call = 0;
9713
9714 switch (type)
9715 {
9716 case M_BGEZ:
9717 br = "bgez";
9718 break;
9719 case M_BGEZL:
9720 br = mips_opts.micromips ? "bgez" : "bgezl";
9721 brneg = "bltz";
9722 break;
9723 case M_BGEZALL:
9724 gas_assert (mips_opts.micromips);
833794fc 9725 br = mips_opts.insn32 ? "bgezal" : "bgezals";
df58fc94
RS
9726 brneg = "bltz";
9727 call = 1;
9728 break;
9729 case M_BGTZ:
9730 br = "bgtz";
9731 break;
9732 case M_BGTZL:
9733 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9734 brneg = "blez";
9735 break;
9736 case M_BLEZ:
9737 br = "blez";
9738 break;
9739 case M_BLEZL:
9740 br = mips_opts.micromips ? "blez" : "blezl";
9741 brneg = "bgtz";
9742 break;
9743 case M_BLTZ:
9744 br = "bltz";
9745 break;
9746 case M_BLTZL:
9747 br = mips_opts.micromips ? "bltz" : "bltzl";
9748 brneg = "bgez";
9749 break;
9750 case M_BLTZALL:
9751 gas_assert (mips_opts.micromips);
833794fc 9752 br = mips_opts.insn32 ? "bltzal" : "bltzals";
df58fc94
RS
9753 brneg = "bgez";
9754 call = 1;
9755 break;
9756 default:
9757 abort ();
9758 }
9759 if (mips_opts.micromips && brneg)
9760 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9761 else
9762 macro_build (ep, br, "s,p", sreg);
9763}
9764
9765/* Emit a three-argument branch macro specified by TYPE, using SREG and
9766 TREG as the registers tested. EP specifies the branch target. */
9767
9768static void
9769macro_build_branch_rsrt (int type, expressionS *ep,
9770 unsigned int sreg, unsigned int treg)
9771{
9772 const char *brneg = NULL;
9773 const int call = 0;
9774 const char *br;
9775
9776 switch (type)
9777 {
9778 case M_BEQ:
9779 case M_BEQ_I:
9780 br = "beq";
9781 break;
9782 case M_BEQL:
9783 case M_BEQL_I:
9784 br = mips_opts.micromips ? "beq" : "beql";
9785 brneg = "bne";
9786 break;
9787 case M_BNE:
9788 case M_BNE_I:
9789 br = "bne";
9790 break;
9791 case M_BNEL:
9792 case M_BNEL_I:
9793 br = mips_opts.micromips ? "bne" : "bnel";
9794 brneg = "beq";
9795 break;
9796 default:
9797 abort ();
9798 }
9799 if (mips_opts.micromips && brneg)
9800 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9801 else
9802 macro_build (ep, br, "s,t,p", sreg, treg);
9803}
9804
f2ae14a1
RS
9805/* Return the high part that should be loaded in order to make the low
9806 part of VALUE accessible using an offset of OFFBITS bits. */
9807
9808static offsetT
9809offset_high_part (offsetT value, unsigned int offbits)
9810{
9811 offsetT bias;
9812 addressT low_mask;
9813
9814 if (offbits == 0)
9815 return value;
9816 bias = 1 << (offbits - 1);
9817 low_mask = bias * 2 - 1;
9818 return (value + bias) & ~low_mask;
9819}
9820
9821/* Return true if the value stored in offset_expr and offset_reloc
9822 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9823 amount that the caller wants to add without inducing overflow
9824 and ALIGN is the known alignment of the value in bytes. */
9825
9826static bfd_boolean
9827small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9828{
9829 if (offbits == 16)
9830 {
9831 /* Accept any relocation operator if overflow isn't a concern. */
9832 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9833 return TRUE;
9834
9835 /* These relocations are guaranteed not to overflow in correct links. */
9836 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9837 || gprel16_reloc_p (*offset_reloc))
9838 return TRUE;
9839 }
9840 if (offset_expr.X_op == O_constant
9841 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9842 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9843 return TRUE;
9844 return FALSE;
9845}
9846
252b5132
RH
9847/*
9848 * Build macros
9849 * This routine implements the seemingly endless macro or synthesized
9850 * instructions and addressing modes in the mips assembly language. Many
9851 * of these macros are simple and are similar to each other. These could
67c1ffbe 9852 * probably be handled by some kind of table or grammar approach instead of
252b5132
RH
9853 * this verbose method. Others are not simple macros but are more like
9854 * optimizing code generation.
9855 * One interesting optimization is when several store macros appear
67c1ffbe 9856 * consecutively that would load AT with the upper half of the same address.
2b0f3761 9857 * The ensuing load upper instructions are omitted. This implies some kind
252b5132
RH
9858 * of global optimization. We currently only optimize within a single macro.
9859 * For many of the load and store macros if the address is specified as a
9860 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9861 * first load register 'at' with zero and use it as the base register. The
9862 * mips assembler simply uses register $zero. Just one tiny optimization
9863 * we're missing.
9864 */
9865static void
833794fc 9866macro (struct mips_cl_insn *ip, char *str)
252b5132 9867{
c0ebe874
RS
9868 const struct mips_operand_array *operands;
9869 unsigned int breg, i;
741fe287 9870 unsigned int tempreg;
252b5132 9871 int mask;
43841e91 9872 int used_at = 0;
df58fc94 9873 expressionS label_expr;
252b5132 9874 expressionS expr1;
df58fc94 9875 expressionS *ep;
252b5132
RH
9876 const char *s;
9877 const char *s2;
9878 const char *fmt;
9879 int likely = 0;
252b5132 9880 int coproc = 0;
7f3c4072 9881 int offbits = 16;
1abe91b1 9882 int call = 0;
df58fc94
RS
9883 int jals = 0;
9884 int dbl = 0;
9885 int imm = 0;
9886 int ust = 0;
9887 int lp = 0;
f2ae14a1 9888 bfd_boolean large_offset;
252b5132 9889 int off;
252b5132 9890 int hold_mips_optimize;
f2ae14a1 9891 unsigned int align;
c0ebe874 9892 unsigned int op[MAX_OPERANDS];
252b5132 9893
9c2799c2 9894 gas_assert (! mips_opts.mips16);
252b5132 9895
c0ebe874
RS
9896 operands = insn_operands (ip);
9897 for (i = 0; i < MAX_OPERANDS; i++)
9898 if (operands->operand[i])
9899 op[i] = insn_extract_operand (ip, operands->operand[i]);
9900 else
9901 op[i] = -1;
9902
252b5132
RH
9903 mask = ip->insn_mo->mask;
9904
df58fc94
RS
9905 label_expr.X_op = O_constant;
9906 label_expr.X_op_symbol = NULL;
9907 label_expr.X_add_symbol = NULL;
9908 label_expr.X_add_number = 0;
9909
252b5132
RH
9910 expr1.X_op = O_constant;
9911 expr1.X_op_symbol = NULL;
9912 expr1.X_add_symbol = NULL;
9913 expr1.X_add_number = 1;
f2ae14a1 9914 align = 1;
252b5132
RH
9915
9916 switch (mask)
9917 {
9918 case M_DABS:
9919 dbl = 1;
1a0670f3 9920 /* Fall through. */
252b5132 9921 case M_ABS:
df58fc94
RS
9922 /* bgez $a0,1f
9923 move v0,$a0
9924 sub v0,$zero,$a0
9925 1:
9926 */
252b5132 9927
7d10b47d 9928 start_noreorder ();
252b5132 9929
df58fc94
RS
9930 if (mips_opts.micromips)
9931 micromips_label_expr (&label_expr);
9932 else
9933 label_expr.X_add_number = 8;
c0ebe874
RS
9934 macro_build (&label_expr, "bgez", "s,p", op[1]);
9935 if (op[0] == op[1])
a605d2b3 9936 macro_build (NULL, "nop", "");
252b5132 9937 else
c0ebe874
RS
9938 move_register (op[0], op[1]);
9939 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
df58fc94
RS
9940 if (mips_opts.micromips)
9941 micromips_add_label ();
252b5132 9942
7d10b47d 9943 end_noreorder ();
8fc2e39e 9944 break;
252b5132
RH
9945
9946 case M_ADD_I:
9947 s = "addi";
9948 s2 = "add";
9949 goto do_addi;
9950 case M_ADDU_I:
9951 s = "addiu";
9952 s2 = "addu";
9953 goto do_addi;
9954 case M_DADD_I:
9955 dbl = 1;
9956 s = "daddi";
9957 s2 = "dadd";
df58fc94
RS
9958 if (!mips_opts.micromips)
9959 goto do_addi;
b0e6f033 9960 if (imm_expr.X_add_number >= -0x200
df58fc94
RS
9961 && imm_expr.X_add_number < 0x200)
9962 {
b0e6f033
RS
9963 macro_build (NULL, s, "t,r,.", op[0], op[1],
9964 (int) imm_expr.X_add_number);
df58fc94
RS
9965 break;
9966 }
9967 goto do_addi_i;
252b5132
RH
9968 case M_DADDU_I:
9969 dbl = 1;
9970 s = "daddiu";
9971 s2 = "daddu";
9972 do_addi:
b0e6f033 9973 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
9974 && imm_expr.X_add_number < 0x8000)
9975 {
c0ebe874 9976 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 9977 break;
252b5132 9978 }
df58fc94 9979 do_addi_i:
8fc2e39e 9980 used_at = 1;
67c0d1eb 9981 load_register (AT, &imm_expr, dbl);
c0ebe874 9982 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9983 break;
9984
9985 case M_AND_I:
9986 s = "andi";
9987 s2 = "and";
9988 goto do_bit;
9989 case M_OR_I:
9990 s = "ori";
9991 s2 = "or";
9992 goto do_bit;
9993 case M_NOR_I:
9994 s = "";
9995 s2 = "nor";
9996 goto do_bit;
9997 case M_XOR_I:
9998 s = "xori";
9999 s2 = "xor";
10000 do_bit:
b0e6f033 10001 if (imm_expr.X_add_number >= 0
252b5132
RH
10002 && imm_expr.X_add_number < 0x10000)
10003 {
10004 if (mask != M_NOR_I)
c0ebe874 10005 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
10006 else
10007 {
67c0d1eb 10008 macro_build (&imm_expr, "ori", "t,r,i",
c0ebe874
RS
10009 op[0], op[1], BFD_RELOC_LO16);
10010 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
252b5132 10011 }
8fc2e39e 10012 break;
252b5132
RH
10013 }
10014
8fc2e39e 10015 used_at = 1;
bad1aba3 10016 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 10017 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
10018 break;
10019
8b082fb1
TS
10020 case M_BALIGN:
10021 switch (imm_expr.X_add_number)
10022 {
10023 case 0:
10024 macro_build (NULL, "nop", "");
10025 break;
10026 case 2:
c0ebe874 10027 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
8b082fb1 10028 break;
03f66e8a
MR
10029 case 1:
10030 case 3:
c0ebe874 10031 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
90ecf173 10032 (int) imm_expr.X_add_number);
8b082fb1 10033 break;
03f66e8a
MR
10034 default:
10035 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10036 (unsigned long) imm_expr.X_add_number);
10037 break;
8b082fb1
TS
10038 }
10039 break;
10040
df58fc94
RS
10041 case M_BC1FL:
10042 case M_BC1TL:
10043 case M_BC2FL:
10044 case M_BC2TL:
10045 gas_assert (mips_opts.micromips);
10046 macro_build_branch_ccl (mask, &offset_expr,
10047 EXTRACT_OPERAND (1, BCC, *ip));
10048 break;
10049
252b5132 10050 case M_BEQ_I:
252b5132 10051 case M_BEQL_I:
252b5132 10052 case M_BNE_I:
252b5132 10053 case M_BNEL_I:
b0e6f033 10054 if (imm_expr.X_add_number == 0)
c0ebe874 10055 op[1] = 0;
df58fc94 10056 else
252b5132 10057 {
c0ebe874 10058 op[1] = AT;
df58fc94 10059 used_at = 1;
bad1aba3 10060 load_register (op[1], &imm_expr, GPR_SIZE == 64);
252b5132 10061 }
df58fc94
RS
10062 /* Fall through. */
10063 case M_BEQL:
10064 case M_BNEL:
c0ebe874 10065 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
252b5132
RH
10066 break;
10067
10068 case M_BGEL:
10069 likely = 1;
1a0670f3 10070 /* Fall through. */
252b5132 10071 case M_BGE:
c0ebe874
RS
10072 if (op[1] == 0)
10073 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10074 else if (op[0] == 0)
10075 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
df58fc94 10076 else
252b5132 10077 {
df58fc94 10078 used_at = 1;
c0ebe874 10079 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10080 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10081 &offset_expr, AT, ZERO);
252b5132 10082 }
df58fc94
RS
10083 break;
10084
10085 case M_BGEZL:
10086 case M_BGEZALL:
10087 case M_BGTZL:
10088 case M_BLEZL:
10089 case M_BLTZL:
10090 case M_BLTZALL:
c0ebe874 10091 macro_build_branch_rs (mask, &offset_expr, op[0]);
252b5132
RH
10092 break;
10093
10094 case M_BGTL_I:
10095 likely = 1;
1a0670f3 10096 /* Fall through. */
252b5132 10097 case M_BGT_I:
90ecf173 10098 /* Check for > max integer. */
b0e6f033 10099 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
10100 {
10101 do_false:
90ecf173 10102 /* Result is always false. */
252b5132 10103 if (! likely)
a605d2b3 10104 macro_build (NULL, "nop", "");
252b5132 10105 else
df58fc94 10106 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8fc2e39e 10107 break;
252b5132 10108 }
f9419b05 10109 ++imm_expr.X_add_number;
252b5132
RH
10110 /* FALLTHROUGH */
10111 case M_BGE_I:
10112 case M_BGEL_I:
10113 if (mask == M_BGEL_I)
10114 likely = 1;
b0e6f033 10115 if (imm_expr.X_add_number == 0)
252b5132 10116 {
df58fc94 10117 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
c0ebe874 10118 &offset_expr, op[0]);
8fc2e39e 10119 break;
252b5132 10120 }
b0e6f033 10121 if (imm_expr.X_add_number == 1)
252b5132 10122 {
df58fc94 10123 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
c0ebe874 10124 &offset_expr, op[0]);
8fc2e39e 10125 break;
252b5132 10126 }
b0e6f033 10127 if (imm_expr.X_add_number <= GPR_SMIN)
252b5132
RH
10128 {
10129 do_true:
10130 /* result is always true */
1661c76c 10131 as_warn (_("branch %s is always true"), ip->insn_mo->name);
67c0d1eb 10132 macro_build (&offset_expr, "b", "p");
8fc2e39e 10133 break;
252b5132 10134 }
8fc2e39e 10135 used_at = 1;
c0ebe874 10136 set_at (op[0], 0);
df58fc94
RS
10137 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10138 &offset_expr, AT, ZERO);
252b5132
RH
10139 break;
10140
10141 case M_BGEUL:
10142 likely = 1;
1a0670f3 10143 /* Fall through. */
252b5132 10144 case M_BGEU:
c0ebe874 10145 if (op[1] == 0)
252b5132 10146 goto do_true;
c0ebe874 10147 else if (op[0] == 0)
df58fc94 10148 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10149 &offset_expr, ZERO, op[1]);
df58fc94 10150 else
252b5132 10151 {
df58fc94 10152 used_at = 1;
c0ebe874 10153 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10154 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10155 &offset_expr, AT, ZERO);
252b5132 10156 }
252b5132
RH
10157 break;
10158
10159 case M_BGTUL_I:
10160 likely = 1;
1a0670f3 10161 /* Fall through. */
252b5132 10162 case M_BGTU_I:
c0ebe874 10163 if (op[0] == 0
bad1aba3 10164 || (GPR_SIZE == 32
f01dc953 10165 && imm_expr.X_add_number == -1))
252b5132 10166 goto do_false;
f9419b05 10167 ++imm_expr.X_add_number;
252b5132
RH
10168 /* FALLTHROUGH */
10169 case M_BGEU_I:
10170 case M_BGEUL_I:
10171 if (mask == M_BGEUL_I)
10172 likely = 1;
b0e6f033 10173 if (imm_expr.X_add_number == 0)
252b5132 10174 goto do_true;
b0e6f033 10175 else if (imm_expr.X_add_number == 1)
df58fc94 10176 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10177 &offset_expr, op[0], ZERO);
df58fc94 10178 else
252b5132 10179 {
df58fc94 10180 used_at = 1;
c0ebe874 10181 set_at (op[0], 1);
df58fc94
RS
10182 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10183 &offset_expr, AT, ZERO);
252b5132 10184 }
252b5132
RH
10185 break;
10186
10187 case M_BGTL:
10188 likely = 1;
1a0670f3 10189 /* Fall through. */
252b5132 10190 case M_BGT:
c0ebe874
RS
10191 if (op[1] == 0)
10192 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10193 else if (op[0] == 0)
10194 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
df58fc94 10195 else
252b5132 10196 {
df58fc94 10197 used_at = 1;
c0ebe874 10198 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10199 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10200 &offset_expr, AT, ZERO);
252b5132 10201 }
252b5132
RH
10202 break;
10203
10204 case M_BGTUL:
10205 likely = 1;
1a0670f3 10206 /* Fall through. */
252b5132 10207 case M_BGTU:
c0ebe874 10208 if (op[1] == 0)
df58fc94 10209 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874
RS
10210 &offset_expr, op[0], ZERO);
10211 else if (op[0] == 0)
df58fc94
RS
10212 goto do_false;
10213 else
252b5132 10214 {
df58fc94 10215 used_at = 1;
c0ebe874 10216 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10217 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10218 &offset_expr, AT, ZERO);
252b5132 10219 }
252b5132
RH
10220 break;
10221
10222 case M_BLEL:
10223 likely = 1;
1a0670f3 10224 /* Fall through. */
252b5132 10225 case M_BLE:
c0ebe874
RS
10226 if (op[1] == 0)
10227 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10228 else if (op[0] == 0)
10229 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
df58fc94 10230 else
252b5132 10231 {
df58fc94 10232 used_at = 1;
c0ebe874 10233 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10234 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10235 &offset_expr, AT, ZERO);
252b5132 10236 }
252b5132
RH
10237 break;
10238
10239 case M_BLEL_I:
10240 likely = 1;
1a0670f3 10241 /* Fall through. */
252b5132 10242 case M_BLE_I:
b0e6f033 10243 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132 10244 goto do_true;
f9419b05 10245 ++imm_expr.X_add_number;
252b5132
RH
10246 /* FALLTHROUGH */
10247 case M_BLT_I:
10248 case M_BLTL_I:
10249 if (mask == M_BLTL_I)
10250 likely = 1;
b0e6f033 10251 if (imm_expr.X_add_number == 0)
c0ebe874 10252 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
b0e6f033 10253 else if (imm_expr.X_add_number == 1)
c0ebe874 10254 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
df58fc94 10255 else
252b5132 10256 {
df58fc94 10257 used_at = 1;
c0ebe874 10258 set_at (op[0], 0);
df58fc94
RS
10259 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10260 &offset_expr, AT, ZERO);
252b5132 10261 }
252b5132
RH
10262 break;
10263
10264 case M_BLEUL:
10265 likely = 1;
1a0670f3 10266 /* Fall through. */
252b5132 10267 case M_BLEU:
c0ebe874 10268 if (op[1] == 0)
df58fc94 10269 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874
RS
10270 &offset_expr, op[0], ZERO);
10271 else if (op[0] == 0)
df58fc94
RS
10272 goto do_true;
10273 else
252b5132 10274 {
df58fc94 10275 used_at = 1;
c0ebe874 10276 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10277 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10278 &offset_expr, AT, ZERO);
252b5132 10279 }
252b5132
RH
10280 break;
10281
10282 case M_BLEUL_I:
10283 likely = 1;
1a0670f3 10284 /* Fall through. */
252b5132 10285 case M_BLEU_I:
c0ebe874 10286 if (op[0] == 0
bad1aba3 10287 || (GPR_SIZE == 32
f01dc953 10288 && imm_expr.X_add_number == -1))
252b5132 10289 goto do_true;
f9419b05 10290 ++imm_expr.X_add_number;
252b5132
RH
10291 /* FALLTHROUGH */
10292 case M_BLTU_I:
10293 case M_BLTUL_I:
10294 if (mask == M_BLTUL_I)
10295 likely = 1;
b0e6f033 10296 if (imm_expr.X_add_number == 0)
252b5132 10297 goto do_false;
b0e6f033 10298 else if (imm_expr.X_add_number == 1)
df58fc94 10299 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10300 &offset_expr, op[0], ZERO);
df58fc94 10301 else
252b5132 10302 {
df58fc94 10303 used_at = 1;
c0ebe874 10304 set_at (op[0], 1);
df58fc94
RS
10305 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10306 &offset_expr, AT, ZERO);
252b5132 10307 }
252b5132
RH
10308 break;
10309
10310 case M_BLTL:
10311 likely = 1;
1a0670f3 10312 /* Fall through. */
252b5132 10313 case M_BLT:
c0ebe874
RS
10314 if (op[1] == 0)
10315 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10316 else if (op[0] == 0)
10317 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
df58fc94 10318 else
252b5132 10319 {
df58fc94 10320 used_at = 1;
c0ebe874 10321 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10322 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10323 &offset_expr, AT, ZERO);
252b5132 10324 }
252b5132
RH
10325 break;
10326
10327 case M_BLTUL:
10328 likely = 1;
1a0670f3 10329 /* Fall through. */
252b5132 10330 case M_BLTU:
c0ebe874 10331 if (op[1] == 0)
252b5132 10332 goto do_false;
c0ebe874 10333 else if (op[0] == 0)
df58fc94 10334 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10335 &offset_expr, ZERO, op[1]);
df58fc94 10336 else
252b5132 10337 {
df58fc94 10338 used_at = 1;
c0ebe874 10339 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10340 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10341 &offset_expr, AT, ZERO);
252b5132 10342 }
252b5132
RH
10343 break;
10344
10345 case M_DDIV_3:
10346 dbl = 1;
1a0670f3 10347 /* Fall through. */
252b5132
RH
10348 case M_DIV_3:
10349 s = "mflo";
10350 goto do_div3;
10351 case M_DREM_3:
10352 dbl = 1;
1a0670f3 10353 /* Fall through. */
252b5132
RH
10354 case M_REM_3:
10355 s = "mfhi";
10356 do_div3:
c0ebe874 10357 if (op[2] == 0)
252b5132 10358 {
1661c76c 10359 as_warn (_("divide by zero"));
252b5132 10360 if (mips_trap)
df58fc94 10361 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10362 else
df58fc94 10363 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10364 break;
252b5132
RH
10365 }
10366
7d10b47d 10367 start_noreorder ();
252b5132
RH
10368 if (mips_trap)
10369 {
c0ebe874
RS
10370 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10371 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
252b5132
RH
10372 }
10373 else
10374 {
df58fc94
RS
10375 if (mips_opts.micromips)
10376 micromips_label_expr (&label_expr);
10377 else
10378 label_expr.X_add_number = 8;
c0ebe874
RS
10379 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10380 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
df58fc94
RS
10381 macro_build (NULL, "break", BRK_FMT, 7);
10382 if (mips_opts.micromips)
10383 micromips_add_label ();
252b5132
RH
10384 }
10385 expr1.X_add_number = -1;
8fc2e39e 10386 used_at = 1;
f6a22291 10387 load_register (AT, &expr1, dbl);
df58fc94
RS
10388 if (mips_opts.micromips)
10389 micromips_label_expr (&label_expr);
10390 else
10391 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
c0ebe874 10392 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
252b5132
RH
10393 if (dbl)
10394 {
10395 expr1.X_add_number = 1;
f6a22291 10396 load_register (AT, &expr1, dbl);
df58fc94 10397 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
252b5132
RH
10398 }
10399 else
10400 {
10401 expr1.X_add_number = 0x80000000;
df58fc94 10402 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
252b5132
RH
10403 }
10404 if (mips_trap)
10405 {
c0ebe874 10406 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
252b5132
RH
10407 /* We want to close the noreorder block as soon as possible, so
10408 that later insns are available for delay slot filling. */
7d10b47d 10409 end_noreorder ();
252b5132
RH
10410 }
10411 else
10412 {
df58fc94
RS
10413 if (mips_opts.micromips)
10414 micromips_label_expr (&label_expr);
10415 else
10416 label_expr.X_add_number = 8;
c0ebe874 10417 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
a605d2b3 10418 macro_build (NULL, "nop", "");
252b5132
RH
10419
10420 /* We want to close the noreorder block as soon as possible, so
10421 that later insns are available for delay slot filling. */
7d10b47d 10422 end_noreorder ();
252b5132 10423
df58fc94 10424 macro_build (NULL, "break", BRK_FMT, 6);
252b5132 10425 }
df58fc94
RS
10426 if (mips_opts.micromips)
10427 micromips_add_label ();
c0ebe874 10428 macro_build (NULL, s, MFHL_FMT, op[0]);
252b5132
RH
10429 break;
10430
10431 case M_DIV_3I:
10432 s = "div";
10433 s2 = "mflo";
10434 goto do_divi;
10435 case M_DIVU_3I:
10436 s = "divu";
10437 s2 = "mflo";
10438 goto do_divi;
10439 case M_REM_3I:
10440 s = "div";
10441 s2 = "mfhi";
10442 goto do_divi;
10443 case M_REMU_3I:
10444 s = "divu";
10445 s2 = "mfhi";
10446 goto do_divi;
10447 case M_DDIV_3I:
10448 dbl = 1;
10449 s = "ddiv";
10450 s2 = "mflo";
10451 goto do_divi;
10452 case M_DDIVU_3I:
10453 dbl = 1;
10454 s = "ddivu";
10455 s2 = "mflo";
10456 goto do_divi;
10457 case M_DREM_3I:
10458 dbl = 1;
10459 s = "ddiv";
10460 s2 = "mfhi";
10461 goto do_divi;
10462 case M_DREMU_3I:
10463 dbl = 1;
10464 s = "ddivu";
10465 s2 = "mfhi";
10466 do_divi:
b0e6f033 10467 if (imm_expr.X_add_number == 0)
252b5132 10468 {
1661c76c 10469 as_warn (_("divide by zero"));
252b5132 10470 if (mips_trap)
df58fc94 10471 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10472 else
df58fc94 10473 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10474 break;
252b5132 10475 }
b0e6f033 10476 if (imm_expr.X_add_number == 1)
252b5132
RH
10477 {
10478 if (strcmp (s2, "mflo") == 0)
c0ebe874 10479 move_register (op[0], op[1]);
252b5132 10480 else
c0ebe874 10481 move_register (op[0], ZERO);
8fc2e39e 10482 break;
252b5132 10483 }
b0e6f033 10484 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
252b5132
RH
10485 {
10486 if (strcmp (s2, "mflo") == 0)
c0ebe874 10487 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
252b5132 10488 else
c0ebe874 10489 move_register (op[0], ZERO);
8fc2e39e 10490 break;
252b5132
RH
10491 }
10492
8fc2e39e 10493 used_at = 1;
67c0d1eb 10494 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
10495 macro_build (NULL, s, "z,s,t", op[1], AT);
10496 macro_build (NULL, s2, MFHL_FMT, op[0]);
252b5132
RH
10497 break;
10498
10499 case M_DIVU_3:
10500 s = "divu";
10501 s2 = "mflo";
10502 goto do_divu3;
10503 case M_REMU_3:
10504 s = "divu";
10505 s2 = "mfhi";
10506 goto do_divu3;
10507 case M_DDIVU_3:
10508 s = "ddivu";
10509 s2 = "mflo";
10510 goto do_divu3;
10511 case M_DREMU_3:
10512 s = "ddivu";
10513 s2 = "mfhi";
10514 do_divu3:
7d10b47d 10515 start_noreorder ();
252b5132
RH
10516 if (mips_trap)
10517 {
c0ebe874
RS
10518 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10519 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10520 /* We want to close the noreorder block as soon as possible, so
10521 that later insns are available for delay slot filling. */
7d10b47d 10522 end_noreorder ();
252b5132
RH
10523 }
10524 else
10525 {
df58fc94
RS
10526 if (mips_opts.micromips)
10527 micromips_label_expr (&label_expr);
10528 else
10529 label_expr.X_add_number = 8;
c0ebe874
RS
10530 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10531 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10532
10533 /* We want to close the noreorder block as soon as possible, so
10534 that later insns are available for delay slot filling. */
7d10b47d 10535 end_noreorder ();
df58fc94
RS
10536 macro_build (NULL, "break", BRK_FMT, 7);
10537 if (mips_opts.micromips)
10538 micromips_add_label ();
252b5132 10539 }
c0ebe874 10540 macro_build (NULL, s2, MFHL_FMT, op[0]);
8fc2e39e 10541 break;
252b5132 10542
1abe91b1
MR
10543 case M_DLCA_AB:
10544 dbl = 1;
1a0670f3 10545 /* Fall through. */
1abe91b1
MR
10546 case M_LCA_AB:
10547 call = 1;
10548 goto do_la;
252b5132
RH
10549 case M_DLA_AB:
10550 dbl = 1;
1a0670f3 10551 /* Fall through. */
252b5132 10552 case M_LA_AB:
1abe91b1 10553 do_la:
252b5132
RH
10554 /* Load the address of a symbol into a register. If breg is not
10555 zero, we then add a base register to it. */
10556
c0ebe874 10557 breg = op[2];
bad1aba3 10558 if (dbl && GPR_SIZE == 32)
ece794d9
MF
10559 as_warn (_("dla used to load 32-bit register; recommend using la "
10560 "instead"));
3bec30a8 10561
90ecf173 10562 if (!dbl && HAVE_64BIT_OBJECTS)
ece794d9
MF
10563 as_warn (_("la used to load 64-bit address; recommend using dla "
10564 "instead"));
3bec30a8 10565
f2ae14a1 10566 if (small_offset_p (0, align, 16))
0c11417f 10567 {
c0ebe874 10568 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
f2ae14a1 10569 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8fc2e39e 10570 break;
0c11417f
MR
10571 }
10572
c0ebe874 10573 if (mips_opts.at && (op[0] == breg))
afdbd6d0
CD
10574 {
10575 tempreg = AT;
10576 used_at = 1;
10577 }
10578 else
c0ebe874 10579 tempreg = op[0];
afdbd6d0 10580
252b5132
RH
10581 if (offset_expr.X_op != O_symbol
10582 && offset_expr.X_op != O_constant)
10583 {
1661c76c 10584 as_bad (_("expression too complex"));
252b5132
RH
10585 offset_expr.X_op = O_constant;
10586 }
10587
252b5132 10588 if (offset_expr.X_op == O_constant)
aed1a261 10589 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
252b5132
RH
10590 else if (mips_pic == NO_PIC)
10591 {
d6bc6245 10592 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 10593 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
10594 Otherwise we want
10595 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10596 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10597 If we have a constant, we need two instructions anyhow,
d6bc6245 10598 so we may as well always use the latter form.
76b3015f 10599
6caf9ef4
TS
10600 With 64bit address space and a usable $at we want
10601 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10602 lui $at,<sym> (BFD_RELOC_HI16_S)
10603 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10604 daddiu $at,<sym> (BFD_RELOC_LO16)
10605 dsll32 $tempreg,0
10606 daddu $tempreg,$tempreg,$at
10607
10608 If $at is already in use, we use a path which is suboptimal
10609 on superscalar processors.
10610 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10611 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10612 dsll $tempreg,16
10613 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10614 dsll $tempreg,16
10615 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10616
10617 For GP relative symbols in 64bit address space we can use
10618 the same sequence as in 32bit address space. */
aed1a261 10619 if (HAVE_64BIT_SYMBOLS)
252b5132 10620 {
6caf9ef4
TS
10621 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10622 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10623 {
10624 relax_start (offset_expr.X_add_symbol);
10625 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10626 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10627 relax_switch ();
10628 }
d6bc6245 10629
741fe287 10630 if (used_at == 0 && mips_opts.at)
98d3f06f 10631 {
df58fc94 10632 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10633 tempreg, BFD_RELOC_MIPS_HIGHEST);
df58fc94 10634 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10635 AT, BFD_RELOC_HI16_S);
67c0d1eb 10636 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10637 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
67c0d1eb 10638 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10639 AT, AT, BFD_RELOC_LO16);
df58fc94 10640 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 10641 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
98d3f06f
KH
10642 used_at = 1;
10643 }
10644 else
10645 {
df58fc94 10646 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10647 tempreg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb 10648 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10649 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 10650 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10651 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10652 tempreg, tempreg, BFD_RELOC_HI16_S);
df58fc94 10653 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10654 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10655 tempreg, tempreg, BFD_RELOC_LO16);
98d3f06f 10656 }
6caf9ef4
TS
10657
10658 if (mips_relax.sequence)
10659 relax_end ();
98d3f06f
KH
10660 }
10661 else
10662 {
10663 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 10664 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
98d3f06f 10665 {
4d7206a2 10666 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10667 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10668 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 10669 relax_switch ();
98d3f06f 10670 }
6943caf0 10671 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
1661c76c 10672 as_bad (_("offset too large"));
67c0d1eb
RS
10673 macro_build_lui (&offset_expr, tempreg);
10674 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10675 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2
RS
10676 if (mips_relax.sequence)
10677 relax_end ();
98d3f06f 10678 }
252b5132 10679 }
0a44bf69 10680 else if (!mips_big_got && !HAVE_NEWABI)
252b5132 10681 {
9117d219
NC
10682 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10683
252b5132
RH
10684 /* If this is a reference to an external symbol, and there
10685 is no constant, we want
10686 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
1abe91b1 10687 or for lca or if tempreg is PIC_CALL_REG
9117d219 10688 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
252b5132
RH
10689 For a local symbol, we want
10690 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10691 nop
10692 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10693
10694 If we have a small constant, and this is a reference to
10695 an external symbol, we want
10696 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10697 nop
10698 addiu $tempreg,$tempreg,<constant>
10699 For a local symbol, we want the same instruction
10700 sequence, but we output a BFD_RELOC_LO16 reloc on the
10701 addiu instruction.
10702
10703 If we have a large constant, and this is a reference to
10704 an external symbol, we want
10705 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10706 lui $at,<hiconstant>
10707 addiu $at,$at,<loconstant>
10708 addu $tempreg,$tempreg,$at
10709 For a local symbol, we want the same instruction
10710 sequence, but we output a BFD_RELOC_LO16 reloc on the
ed6fb7bd 10711 addiu instruction.
ed6fb7bd
SC
10712 */
10713
4d7206a2 10714 if (offset_expr.X_add_number == 0)
252b5132 10715 {
0a44bf69
RS
10716 if (mips_pic == SVR4_PIC
10717 && breg == 0
10718 && (call || tempreg == PIC_CALL_REG))
4d7206a2
RS
10719 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10720
10721 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10722 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10723 lw_reloc_type, mips_gp_register);
4d7206a2 10724 if (breg != 0)
252b5132
RH
10725 {
10726 /* We're going to put in an addu instruction using
10727 tempreg, so we may as well insert the nop right
10728 now. */
269137b2 10729 load_delay_nop ();
252b5132 10730 }
4d7206a2 10731 relax_switch ();
67c0d1eb
RS
10732 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10733 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 10734 load_delay_nop ();
67c0d1eb
RS
10735 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10736 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2 10737 relax_end ();
252b5132
RH
10738 /* FIXME: If breg == 0, and the next instruction uses
10739 $tempreg, then if this variant case is used an extra
10740 nop will be generated. */
10741 }
4d7206a2
RS
10742 else if (offset_expr.X_add_number >= -0x8000
10743 && offset_expr.X_add_number < 0x8000)
252b5132 10744 {
67c0d1eb 10745 load_got_offset (tempreg, &offset_expr);
269137b2 10746 load_delay_nop ();
67c0d1eb 10747 add_got_offset (tempreg, &offset_expr);
252b5132
RH
10748 }
10749 else
10750 {
4d7206a2
RS
10751 expr1.X_add_number = offset_expr.X_add_number;
10752 offset_expr.X_add_number =
43c0598f 10753 SEXT_16BIT (offset_expr.X_add_number);
67c0d1eb 10754 load_got_offset (tempreg, &offset_expr);
f6a22291 10755 offset_expr.X_add_number = expr1.X_add_number;
252b5132
RH
10756 /* If we are going to add in a base register, and the
10757 target register and the base register are the same,
10758 then we are using AT as a temporary register. Since
10759 we want to load the constant into AT, we add our
10760 current AT (from the global offset table) and the
10761 register into the register now, and pretend we were
10762 not using a base register. */
c0ebe874 10763 if (breg == op[0])
252b5132 10764 {
269137b2 10765 load_delay_nop ();
67c0d1eb 10766 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10767 op[0], AT, breg);
252b5132 10768 breg = 0;
c0ebe874 10769 tempreg = op[0];
252b5132 10770 }
f6a22291 10771 add_got_offset_hilo (tempreg, &offset_expr, AT);
252b5132
RH
10772 used_at = 1;
10773 }
10774 }
0a44bf69 10775 else if (!mips_big_got && HAVE_NEWABI)
f5040a92 10776 {
67c0d1eb 10777 int add_breg_early = 0;
f5040a92
AO
10778
10779 /* If this is a reference to an external, and there is no
10780 constant, or local symbol (*), with or without a
10781 constant, we want
10782 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
1abe91b1 10783 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10784 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10785
10786 If we have a small constant, and this is a reference to
10787 an external symbol, we want
10788 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10789 addiu $tempreg,$tempreg,<constant>
10790
10791 If we have a large constant, and this is a reference to
10792 an external symbol, we want
10793 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10794 lui $at,<hiconstant>
10795 addiu $at,$at,<loconstant>
10796 addu $tempreg,$tempreg,$at
10797
10798 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10799 local symbols, even though it introduces an additional
10800 instruction. */
10801
f5040a92
AO
10802 if (offset_expr.X_add_number)
10803 {
4d7206a2 10804 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10805 offset_expr.X_add_number = 0;
10806
4d7206a2 10807 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10808 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10809 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10810
10811 if (expr1.X_add_number >= -0x8000
10812 && expr1.X_add_number < 0x8000)
10813 {
67c0d1eb
RS
10814 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10815 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10816 }
ecd13cd3 10817 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10818 {
c0ebe874
RS
10819 unsigned int dreg;
10820
f5040a92
AO
10821 /* If we are going to add in a base register, and the
10822 target register and the base register are the same,
10823 then we are using AT as a temporary register. Since
10824 we want to load the constant into AT, we add our
10825 current AT (from the global offset table) and the
10826 register into the register now, and pretend we were
10827 not using a base register. */
c0ebe874 10828 if (breg != op[0])
f5040a92
AO
10829 dreg = tempreg;
10830 else
10831 {
9c2799c2 10832 gas_assert (tempreg == AT);
67c0d1eb 10833 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10834 op[0], AT, breg);
10835 dreg = op[0];
67c0d1eb 10836 add_breg_early = 1;
f5040a92
AO
10837 }
10838
f6a22291 10839 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10840 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10841 dreg, dreg, AT);
f5040a92 10842
f5040a92
AO
10843 used_at = 1;
10844 }
10845 else
10846 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10847
4d7206a2 10848 relax_switch ();
f5040a92
AO
10849 offset_expr.X_add_number = expr1.X_add_number;
10850
67c0d1eb
RS
10851 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10852 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10853 if (add_breg_early)
f5040a92 10854 {
67c0d1eb 10855 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10856 op[0], tempreg, breg);
f5040a92 10857 breg = 0;
c0ebe874 10858 tempreg = op[0];
f5040a92 10859 }
4d7206a2 10860 relax_end ();
f5040a92 10861 }
4d7206a2 10862 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
f5040a92 10863 {
4d7206a2 10864 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10865 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10866 BFD_RELOC_MIPS_CALL16, mips_gp_register);
4d7206a2 10867 relax_switch ();
67c0d1eb
RS
10868 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10869 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2 10870 relax_end ();
f5040a92 10871 }
4d7206a2 10872 else
f5040a92 10873 {
67c0d1eb
RS
10874 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10875 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10876 }
10877 }
0a44bf69 10878 else if (mips_big_got && !HAVE_NEWABI)
252b5132 10879 {
67c0d1eb 10880 int gpdelay;
9117d219
NC
10881 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10882 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
ed6fb7bd 10883 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
252b5132
RH
10884
10885 /* This is the large GOT case. If this is a reference to an
10886 external symbol, and there is no constant, we want
10887 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10888 addu $tempreg,$tempreg,$gp
10889 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10890 or for lca or if tempreg is PIC_CALL_REG
9117d219
NC
10891 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10892 addu $tempreg,$tempreg,$gp
10893 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
252b5132
RH
10894 For a local symbol, we want
10895 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10896 nop
10897 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10898
10899 If we have a small constant, and this is a reference to
10900 an external symbol, we want
10901 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10902 addu $tempreg,$tempreg,$gp
10903 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10904 nop
10905 addiu $tempreg,$tempreg,<constant>
10906 For a local symbol, we want
10907 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10908 nop
10909 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10910
10911 If we have a large constant, and this is a reference to
10912 an external symbol, we want
10913 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10914 addu $tempreg,$tempreg,$gp
10915 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10916 lui $at,<hiconstant>
10917 addiu $at,$at,<loconstant>
10918 addu $tempreg,$tempreg,$at
10919 For a local symbol, we want
10920 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10921 lui $at,<hiconstant>
10922 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10923 addu $tempreg,$tempreg,$at
f5040a92 10924 */
438c16b8 10925
252b5132
RH
10926 expr1.X_add_number = offset_expr.X_add_number;
10927 offset_expr.X_add_number = 0;
4d7206a2 10928 relax_start (offset_expr.X_add_symbol);
67c0d1eb 10929 gpdelay = reg_needs_delay (mips_gp_register);
1abe91b1
MR
10930 if (expr1.X_add_number == 0 && breg == 0
10931 && (call || tempreg == PIC_CALL_REG))
9117d219
NC
10932 {
10933 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10934 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10935 }
df58fc94 10936 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10937 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10938 tempreg, tempreg, mips_gp_register);
67c0d1eb 10939 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 10940 tempreg, lw_reloc_type, tempreg);
252b5132
RH
10941 if (expr1.X_add_number == 0)
10942 {
67c0d1eb 10943 if (breg != 0)
252b5132
RH
10944 {
10945 /* We're going to put in an addu instruction using
10946 tempreg, so we may as well insert the nop right
10947 now. */
269137b2 10948 load_delay_nop ();
252b5132 10949 }
252b5132
RH
10950 }
10951 else if (expr1.X_add_number >= -0x8000
10952 && expr1.X_add_number < 0x8000)
10953 {
269137b2 10954 load_delay_nop ();
67c0d1eb 10955 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10956 tempreg, tempreg, BFD_RELOC_LO16);
252b5132
RH
10957 }
10958 else
10959 {
c0ebe874
RS
10960 unsigned int dreg;
10961
252b5132
RH
10962 /* If we are going to add in a base register, and the
10963 target register and the base register are the same,
10964 then we are using AT as a temporary register. Since
10965 we want to load the constant into AT, we add our
10966 current AT (from the global offset table) and the
10967 register into the register now, and pretend we were
10968 not using a base register. */
c0ebe874 10969 if (breg != op[0])
67c0d1eb 10970 dreg = tempreg;
252b5132
RH
10971 else
10972 {
9c2799c2 10973 gas_assert (tempreg == AT);
269137b2 10974 load_delay_nop ();
67c0d1eb 10975 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10976 op[0], AT, breg);
10977 dreg = op[0];
252b5132
RH
10978 }
10979
f6a22291 10980 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10981 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
252b5132 10982
252b5132
RH
10983 used_at = 1;
10984 }
43c0598f 10985 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
4d7206a2 10986 relax_switch ();
252b5132 10987
67c0d1eb 10988 if (gpdelay)
252b5132
RH
10989 {
10990 /* This is needed because this instruction uses $gp, but
f5040a92 10991 the first instruction on the main stream does not. */
67c0d1eb 10992 macro_build (NULL, "nop", "");
252b5132 10993 }
ed6fb7bd 10994
67c0d1eb
RS
10995 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10996 local_reloc_type, mips_gp_register);
f5040a92 10997 if (expr1.X_add_number >= -0x8000
252b5132
RH
10998 && expr1.X_add_number < 0x8000)
10999 {
269137b2 11000 load_delay_nop ();
67c0d1eb
RS
11001 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11002 tempreg, tempreg, BFD_RELOC_LO16);
252b5132 11003 /* FIXME: If add_number is 0, and there was no base
f5040a92
AO
11004 register, the external symbol case ended with a load,
11005 so if the symbol turns out to not be external, and
11006 the next instruction uses tempreg, an unnecessary nop
11007 will be inserted. */
252b5132
RH
11008 }
11009 else
11010 {
c0ebe874 11011 if (breg == op[0])
252b5132
RH
11012 {
11013 /* We must add in the base register now, as in the
f5040a92 11014 external symbol case. */
9c2799c2 11015 gas_assert (tempreg == AT);
269137b2 11016 load_delay_nop ();
67c0d1eb 11017 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11018 op[0], AT, breg);
11019 tempreg = op[0];
252b5132 11020 /* We set breg to 0 because we have arranged to add
f5040a92 11021 it in in both cases. */
252b5132
RH
11022 breg = 0;
11023 }
11024
67c0d1eb
RS
11025 macro_build_lui (&expr1, AT);
11026 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11027 AT, AT, BFD_RELOC_LO16);
67c0d1eb 11028 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11029 tempreg, tempreg, AT);
8fc2e39e 11030 used_at = 1;
252b5132 11031 }
4d7206a2 11032 relax_end ();
252b5132 11033 }
0a44bf69 11034 else if (mips_big_got && HAVE_NEWABI)
f5040a92 11035 {
f5040a92
AO
11036 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11037 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
67c0d1eb 11038 int add_breg_early = 0;
f5040a92
AO
11039
11040 /* This is the large GOT case. If this is a reference to an
11041 external symbol, and there is no constant, we want
11042 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11043 add $tempreg,$tempreg,$gp
11044 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 11045 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
11046 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11047 add $tempreg,$tempreg,$gp
11048 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11049
11050 If we have a small constant, and this is a reference to
11051 an external symbol, we want
11052 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11053 add $tempreg,$tempreg,$gp
11054 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11055 addi $tempreg,$tempreg,<constant>
11056
11057 If we have a large constant, and this is a reference to
11058 an external symbol, we want
11059 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11060 addu $tempreg,$tempreg,$gp
11061 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11062 lui $at,<hiconstant>
11063 addi $at,$at,<loconstant>
11064 add $tempreg,$tempreg,$at
11065
11066 If we have NewABI, and we know it's a local symbol, we want
11067 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11068 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11069 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11070
4d7206a2 11071 relax_start (offset_expr.X_add_symbol);
f5040a92 11072
4d7206a2 11073 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11074 offset_expr.X_add_number = 0;
11075
1abe91b1
MR
11076 if (expr1.X_add_number == 0 && breg == 0
11077 && (call || tempreg == PIC_CALL_REG))
f5040a92
AO
11078 {
11079 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11080 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11081 }
df58fc94 11082 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 11083 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11084 tempreg, tempreg, mips_gp_register);
67c0d1eb
RS
11085 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11086 tempreg, lw_reloc_type, tempreg);
f5040a92
AO
11087
11088 if (expr1.X_add_number == 0)
4d7206a2 11089 ;
f5040a92
AO
11090 else if (expr1.X_add_number >= -0x8000
11091 && expr1.X_add_number < 0x8000)
11092 {
67c0d1eb 11093 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11094 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 11095 }
ecd13cd3 11096 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 11097 {
c0ebe874
RS
11098 unsigned int dreg;
11099
f5040a92
AO
11100 /* If we are going to add in a base register, and the
11101 target register and the base register are the same,
11102 then we are using AT as a temporary register. Since
11103 we want to load the constant into AT, we add our
11104 current AT (from the global offset table) and the
11105 register into the register now, and pretend we were
11106 not using a base register. */
c0ebe874 11107 if (breg != op[0])
f5040a92
AO
11108 dreg = tempreg;
11109 else
11110 {
9c2799c2 11111 gas_assert (tempreg == AT);
67c0d1eb 11112 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11113 op[0], AT, breg);
11114 dreg = op[0];
67c0d1eb 11115 add_breg_early = 1;
f5040a92
AO
11116 }
11117
f6a22291 11118 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 11119 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
f5040a92 11120
f5040a92
AO
11121 used_at = 1;
11122 }
11123 else
11124 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11125
4d7206a2 11126 relax_switch ();
f5040a92 11127 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
11128 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11129 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11130 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11131 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11132 if (add_breg_early)
f5040a92 11133 {
67c0d1eb 11134 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 11135 op[0], tempreg, breg);
f5040a92 11136 breg = 0;
c0ebe874 11137 tempreg = op[0];
f5040a92 11138 }
4d7206a2 11139 relax_end ();
f5040a92 11140 }
252b5132
RH
11141 else
11142 abort ();
11143
11144 if (breg != 0)
c0ebe874 11145 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
252b5132
RH
11146 break;
11147
52b6b6b9 11148 case M_MSGSND:
df58fc94 11149 gas_assert (!mips_opts.micromips);
c0ebe874 11150 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
c7af4273 11151 break;
52b6b6b9
JM
11152
11153 case M_MSGLD:
df58fc94 11154 gas_assert (!mips_opts.micromips);
c8276761 11155 macro_build (NULL, "c2", "C", 0x02);
c7af4273 11156 break;
52b6b6b9
JM
11157
11158 case M_MSGLD_T:
df58fc94 11159 gas_assert (!mips_opts.micromips);
c0ebe874 11160 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
c7af4273 11161 break;
52b6b6b9
JM
11162
11163 case M_MSGWAIT:
df58fc94 11164 gas_assert (!mips_opts.micromips);
52b6b6b9 11165 macro_build (NULL, "c2", "C", 3);
c7af4273 11166 break;
52b6b6b9
JM
11167
11168 case M_MSGWAIT_T:
df58fc94 11169 gas_assert (!mips_opts.micromips);
c0ebe874 11170 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
c7af4273 11171 break;
52b6b6b9 11172
252b5132
RH
11173 case M_J_A:
11174 /* The j instruction may not be used in PIC code, since it
11175 requires an absolute address. We convert it to a b
11176 instruction. */
11177 if (mips_pic == NO_PIC)
67c0d1eb 11178 macro_build (&offset_expr, "j", "a");
252b5132 11179 else
67c0d1eb 11180 macro_build (&offset_expr, "b", "p");
8fc2e39e 11181 break;
252b5132
RH
11182
11183 /* The jal instructions must be handled as macros because when
11184 generating PIC code they expand to multi-instruction
11185 sequences. Normally they are simple instructions. */
df58fc94 11186 case M_JALS_1:
c0ebe874
RS
11187 op[1] = op[0];
11188 op[0] = RA;
df58fc94
RS
11189 /* Fall through. */
11190 case M_JALS_2:
11191 gas_assert (mips_opts.micromips);
833794fc
MR
11192 if (mips_opts.insn32)
11193 {
1661c76c 11194 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11195 break;
11196 }
df58fc94
RS
11197 jals = 1;
11198 goto jal;
252b5132 11199 case M_JAL_1:
c0ebe874
RS
11200 op[1] = op[0];
11201 op[0] = RA;
252b5132
RH
11202 /* Fall through. */
11203 case M_JAL_2:
df58fc94 11204 jal:
3e722fb5 11205 if (mips_pic == NO_PIC)
df58fc94
RS
11206 {
11207 s = jals ? "jalrs" : "jalr";
e64af278 11208 if (mips_opts.micromips
833794fc 11209 && !mips_opts.insn32
c0ebe874 11210 && op[0] == RA
e64af278 11211 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11212 macro_build (NULL, s, "mj", op[1]);
df58fc94 11213 else
c0ebe874 11214 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
df58fc94 11215 }
0a44bf69 11216 else
252b5132 11217 {
df58fc94
RS
11218 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11219 && mips_cprestore_offset >= 0);
11220
c0ebe874 11221 if (op[1] != PIC_CALL_REG)
252b5132 11222 as_warn (_("MIPS PIC call to register other than $25"));
bdaaa2e1 11223
833794fc
MR
11224 s = ((mips_opts.micromips
11225 && !mips_opts.insn32
11226 && (!mips_opts.noreorder || cprestore))
df58fc94 11227 ? "jalrs" : "jalr");
e64af278 11228 if (mips_opts.micromips
833794fc 11229 && !mips_opts.insn32
c0ebe874 11230 && op[0] == RA
e64af278 11231 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11232 macro_build (NULL, s, "mj", op[1]);
df58fc94 11233 else
c0ebe874 11234 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
0a44bf69 11235 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
252b5132 11236 {
6478892d 11237 if (mips_cprestore_offset < 0)
1661c76c 11238 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11239 else
11240 {
90ecf173 11241 if (!mips_frame_reg_valid)
7a621144 11242 {
1661c76c 11243 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11244 /* Quiet this warning. */
11245 mips_frame_reg_valid = 1;
11246 }
90ecf173 11247 if (!mips_cprestore_valid)
7a621144 11248 {
1661c76c 11249 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11250 /* Quiet this warning. */
11251 mips_cprestore_valid = 1;
11252 }
d3fca0b5
MR
11253 if (mips_opts.noreorder)
11254 macro_build (NULL, "nop", "");
6478892d 11255 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11256 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11257 mips_gp_register,
256ab948
TS
11258 mips_frame_reg,
11259 HAVE_64BIT_ADDRESSES);
6478892d 11260 }
252b5132
RH
11261 }
11262 }
252b5132 11263
8fc2e39e 11264 break;
252b5132 11265
df58fc94
RS
11266 case M_JALS_A:
11267 gas_assert (mips_opts.micromips);
833794fc
MR
11268 if (mips_opts.insn32)
11269 {
1661c76c 11270 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11271 break;
11272 }
df58fc94
RS
11273 jals = 1;
11274 /* Fall through. */
252b5132
RH
11275 case M_JAL_A:
11276 if (mips_pic == NO_PIC)
df58fc94 11277 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
252b5132
RH
11278 else if (mips_pic == SVR4_PIC)
11279 {
11280 /* If this is a reference to an external symbol, and we are
11281 using a small GOT, we want
11282 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11283 nop
f9419b05 11284 jalr $ra,$25
252b5132
RH
11285 nop
11286 lw $gp,cprestore($sp)
11287 The cprestore value is set using the .cprestore
11288 pseudo-op. If we are using a big GOT, we want
11289 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11290 addu $25,$25,$gp
11291 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11292 nop
f9419b05 11293 jalr $ra,$25
252b5132
RH
11294 nop
11295 lw $gp,cprestore($sp)
11296 If the symbol is not external, we want
11297 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11298 nop
11299 addiu $25,$25,<sym> (BFD_RELOC_LO16)
f9419b05 11300 jalr $ra,$25
252b5132 11301 nop
438c16b8 11302 lw $gp,cprestore($sp)
f5040a92
AO
11303
11304 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11305 sequences above, minus nops, unless the symbol is local,
11306 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11307 GOT_DISP. */
438c16b8 11308 if (HAVE_NEWABI)
252b5132 11309 {
90ecf173 11310 if (!mips_big_got)
f5040a92 11311 {
4d7206a2 11312 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11313 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11314 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
f5040a92 11315 mips_gp_register);
4d7206a2 11316 relax_switch ();
67c0d1eb
RS
11317 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11318 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
4d7206a2
RS
11319 mips_gp_register);
11320 relax_end ();
f5040a92
AO
11321 }
11322 else
11323 {
4d7206a2 11324 relax_start (offset_expr.X_add_symbol);
df58fc94 11325 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11326 BFD_RELOC_MIPS_CALL_HI16);
11327 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11328 PIC_CALL_REG, mips_gp_register);
11329 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11330 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11331 PIC_CALL_REG);
4d7206a2 11332 relax_switch ();
67c0d1eb
RS
11333 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11334 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11335 mips_gp_register);
11336 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11337 PIC_CALL_REG, PIC_CALL_REG,
17a2f251 11338 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 11339 relax_end ();
f5040a92 11340 }
684022ea 11341
df58fc94 11342 macro_build_jalr (&offset_expr, 0);
252b5132
RH
11343 }
11344 else
11345 {
4d7206a2 11346 relax_start (offset_expr.X_add_symbol);
90ecf173 11347 if (!mips_big_got)
438c16b8 11348 {
67c0d1eb
RS
11349 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11350 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
17a2f251 11351 mips_gp_register);
269137b2 11352 load_delay_nop ();
4d7206a2 11353 relax_switch ();
438c16b8 11354 }
252b5132 11355 else
252b5132 11356 {
67c0d1eb
RS
11357 int gpdelay;
11358
11359 gpdelay = reg_needs_delay (mips_gp_register);
df58fc94 11360 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11361 BFD_RELOC_MIPS_CALL_HI16);
11362 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11363 PIC_CALL_REG, mips_gp_register);
11364 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11365 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11366 PIC_CALL_REG);
269137b2 11367 load_delay_nop ();
4d7206a2 11368 relax_switch ();
67c0d1eb
RS
11369 if (gpdelay)
11370 macro_build (NULL, "nop", "");
252b5132 11371 }
67c0d1eb
RS
11372 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11373 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
4d7206a2 11374 mips_gp_register);
269137b2 11375 load_delay_nop ();
67c0d1eb
RS
11376 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11377 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
4d7206a2 11378 relax_end ();
df58fc94 11379 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
438c16b8 11380
6478892d 11381 if (mips_cprestore_offset < 0)
1661c76c 11382 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11383 else
11384 {
90ecf173 11385 if (!mips_frame_reg_valid)
7a621144 11386 {
1661c76c 11387 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11388 /* Quiet this warning. */
11389 mips_frame_reg_valid = 1;
11390 }
90ecf173 11391 if (!mips_cprestore_valid)
7a621144 11392 {
1661c76c 11393 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11394 /* Quiet this warning. */
11395 mips_cprestore_valid = 1;
11396 }
6478892d 11397 if (mips_opts.noreorder)
67c0d1eb 11398 macro_build (NULL, "nop", "");
6478892d 11399 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11400 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11401 mips_gp_register,
256ab948
TS
11402 mips_frame_reg,
11403 HAVE_64BIT_ADDRESSES);
6478892d 11404 }
252b5132
RH
11405 }
11406 }
0a44bf69 11407 else if (mips_pic == VXWORKS_PIC)
1661c76c 11408 as_bad (_("non-PIC jump used in PIC library"));
252b5132
RH
11409 else
11410 abort ();
11411
8fc2e39e 11412 break;
252b5132 11413
7f3c4072 11414 case M_LBUE_AB:
7f3c4072
CM
11415 s = "lbue";
11416 fmt = "t,+j(b)";
11417 offbits = 9;
11418 goto ld_st;
11419 case M_LHUE_AB:
7f3c4072
CM
11420 s = "lhue";
11421 fmt = "t,+j(b)";
11422 offbits = 9;
11423 goto ld_st;
11424 case M_LBE_AB:
7f3c4072
CM
11425 s = "lbe";
11426 fmt = "t,+j(b)";
11427 offbits = 9;
11428 goto ld_st;
11429 case M_LHE_AB:
7f3c4072
CM
11430 s = "lhe";
11431 fmt = "t,+j(b)";
11432 offbits = 9;
11433 goto ld_st;
11434 case M_LLE_AB:
7f3c4072
CM
11435 s = "lle";
11436 fmt = "t,+j(b)";
11437 offbits = 9;
11438 goto ld_st;
11439 case M_LWE_AB:
7f3c4072
CM
11440 s = "lwe";
11441 fmt = "t,+j(b)";
11442 offbits = 9;
11443 goto ld_st;
11444 case M_LWLE_AB:
7f3c4072
CM
11445 s = "lwle";
11446 fmt = "t,+j(b)";
11447 offbits = 9;
11448 goto ld_st;
11449 case M_LWRE_AB:
7f3c4072
CM
11450 s = "lwre";
11451 fmt = "t,+j(b)";
11452 offbits = 9;
11453 goto ld_st;
11454 case M_SBE_AB:
7f3c4072
CM
11455 s = "sbe";
11456 fmt = "t,+j(b)";
11457 offbits = 9;
11458 goto ld_st;
11459 case M_SCE_AB:
7f3c4072
CM
11460 s = "sce";
11461 fmt = "t,+j(b)";
11462 offbits = 9;
11463 goto ld_st;
11464 case M_SHE_AB:
7f3c4072
CM
11465 s = "she";
11466 fmt = "t,+j(b)";
11467 offbits = 9;
11468 goto ld_st;
11469 case M_SWE_AB:
7f3c4072
CM
11470 s = "swe";
11471 fmt = "t,+j(b)";
11472 offbits = 9;
11473 goto ld_st;
11474 case M_SWLE_AB:
7f3c4072
CM
11475 s = "swle";
11476 fmt = "t,+j(b)";
11477 offbits = 9;
11478 goto ld_st;
11479 case M_SWRE_AB:
7f3c4072
CM
11480 s = "swre";
11481 fmt = "t,+j(b)";
11482 offbits = 9;
11483 goto ld_st;
dec0624d 11484 case M_ACLR_AB:
dec0624d 11485 s = "aclr";
dec0624d 11486 fmt = "\\,~(b)";
7f3c4072 11487 offbits = 12;
dec0624d
MR
11488 goto ld_st;
11489 case M_ASET_AB:
dec0624d 11490 s = "aset";
dec0624d 11491 fmt = "\\,~(b)";
7f3c4072 11492 offbits = 12;
dec0624d 11493 goto ld_st;
252b5132
RH
11494 case M_LB_AB:
11495 s = "lb";
df58fc94 11496 fmt = "t,o(b)";
252b5132
RH
11497 goto ld;
11498 case M_LBU_AB:
11499 s = "lbu";
df58fc94 11500 fmt = "t,o(b)";
252b5132
RH
11501 goto ld;
11502 case M_LH_AB:
11503 s = "lh";
df58fc94 11504 fmt = "t,o(b)";
252b5132
RH
11505 goto ld;
11506 case M_LHU_AB:
11507 s = "lhu";
df58fc94 11508 fmt = "t,o(b)";
252b5132
RH
11509 goto ld;
11510 case M_LW_AB:
11511 s = "lw";
df58fc94 11512 fmt = "t,o(b)";
252b5132
RH
11513 goto ld;
11514 case M_LWC0_AB:
df58fc94 11515 gas_assert (!mips_opts.micromips);
252b5132 11516 s = "lwc0";
df58fc94 11517 fmt = "E,o(b)";
bdaaa2e1 11518 /* Itbl support may require additional care here. */
252b5132 11519 coproc = 1;
df58fc94 11520 goto ld_st;
252b5132
RH
11521 case M_LWC1_AB:
11522 s = "lwc1";
df58fc94 11523 fmt = "T,o(b)";
bdaaa2e1 11524 /* Itbl support may require additional care here. */
252b5132 11525 coproc = 1;
df58fc94 11526 goto ld_st;
252b5132
RH
11527 case M_LWC2_AB:
11528 s = "lwc2";
df58fc94 11529 fmt = COP12_FMT;
7361da2c
AB
11530 offbits = (mips_opts.micromips ? 12
11531 : ISA_IS_R6 (mips_opts.isa) ? 11
11532 : 16);
bdaaa2e1 11533 /* Itbl support may require additional care here. */
252b5132 11534 coproc = 1;
df58fc94 11535 goto ld_st;
252b5132 11536 case M_LWC3_AB:
df58fc94 11537 gas_assert (!mips_opts.micromips);
252b5132 11538 s = "lwc3";
df58fc94 11539 fmt = "E,o(b)";
bdaaa2e1 11540 /* Itbl support may require additional care here. */
252b5132 11541 coproc = 1;
df58fc94 11542 goto ld_st;
252b5132
RH
11543 case M_LWL_AB:
11544 s = "lwl";
df58fc94 11545 fmt = MEM12_FMT;
7f3c4072 11546 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11547 goto ld_st;
252b5132
RH
11548 case M_LWR_AB:
11549 s = "lwr";
df58fc94 11550 fmt = MEM12_FMT;
7f3c4072 11551 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11552 goto ld_st;
252b5132 11553 case M_LDC1_AB:
252b5132 11554 s = "ldc1";
df58fc94 11555 fmt = "T,o(b)";
bdaaa2e1 11556 /* Itbl support may require additional care here. */
252b5132 11557 coproc = 1;
df58fc94 11558 goto ld_st;
252b5132
RH
11559 case M_LDC2_AB:
11560 s = "ldc2";
df58fc94 11561 fmt = COP12_FMT;
7361da2c
AB
11562 offbits = (mips_opts.micromips ? 12
11563 : ISA_IS_R6 (mips_opts.isa) ? 11
11564 : 16);
bdaaa2e1 11565 /* Itbl support may require additional care here. */
252b5132 11566 coproc = 1;
df58fc94 11567 goto ld_st;
c77c0862 11568 case M_LQC2_AB:
c77c0862 11569 s = "lqc2";
14daeee3 11570 fmt = "+7,o(b)";
c77c0862
RS
11571 /* Itbl support may require additional care here. */
11572 coproc = 1;
11573 goto ld_st;
252b5132
RH
11574 case M_LDC3_AB:
11575 s = "ldc3";
df58fc94 11576 fmt = "E,o(b)";
bdaaa2e1 11577 /* Itbl support may require additional care here. */
252b5132 11578 coproc = 1;
df58fc94 11579 goto ld_st;
252b5132
RH
11580 case M_LDL_AB:
11581 s = "ldl";
df58fc94 11582 fmt = MEM12_FMT;
7f3c4072 11583 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11584 goto ld_st;
252b5132
RH
11585 case M_LDR_AB:
11586 s = "ldr";
df58fc94 11587 fmt = MEM12_FMT;
7f3c4072 11588 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11589 goto ld_st;
252b5132
RH
11590 case M_LL_AB:
11591 s = "ll";
7361da2c
AB
11592 fmt = LL_SC_FMT;
11593 offbits = (mips_opts.micromips ? 12
11594 : ISA_IS_R6 (mips_opts.isa) ? 9
11595 : 16);
252b5132
RH
11596 goto ld;
11597 case M_LLD_AB:
11598 s = "lld";
7361da2c
AB
11599 fmt = LL_SC_FMT;
11600 offbits = (mips_opts.micromips ? 12
11601 : ISA_IS_R6 (mips_opts.isa) ? 9
11602 : 16);
252b5132
RH
11603 goto ld;
11604 case M_LWU_AB:
11605 s = "lwu";
df58fc94 11606 fmt = MEM12_FMT;
7f3c4072 11607 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11608 goto ld;
11609 case M_LWP_AB:
df58fc94
RS
11610 gas_assert (mips_opts.micromips);
11611 s = "lwp";
11612 fmt = "t,~(b)";
7f3c4072 11613 offbits = 12;
df58fc94
RS
11614 lp = 1;
11615 goto ld;
11616 case M_LDP_AB:
df58fc94
RS
11617 gas_assert (mips_opts.micromips);
11618 s = "ldp";
11619 fmt = "t,~(b)";
7f3c4072 11620 offbits = 12;
df58fc94
RS
11621 lp = 1;
11622 goto ld;
11623 case M_LWM_AB:
df58fc94
RS
11624 gas_assert (mips_opts.micromips);
11625 s = "lwm";
11626 fmt = "n,~(b)";
7f3c4072 11627 offbits = 12;
df58fc94
RS
11628 goto ld_st;
11629 case M_LDM_AB:
df58fc94
RS
11630 gas_assert (mips_opts.micromips);
11631 s = "ldm";
11632 fmt = "n,~(b)";
7f3c4072 11633 offbits = 12;
df58fc94
RS
11634 goto ld_st;
11635
252b5132 11636 ld:
f19ccbda 11637 /* We don't want to use $0 as tempreg. */
c0ebe874 11638 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
df58fc94 11639 goto ld_st;
252b5132 11640 else
c0ebe874 11641 tempreg = op[0] + lp;
df58fc94
RS
11642 goto ld_noat;
11643
252b5132
RH
11644 case M_SB_AB:
11645 s = "sb";
df58fc94
RS
11646 fmt = "t,o(b)";
11647 goto ld_st;
252b5132
RH
11648 case M_SH_AB:
11649 s = "sh";
df58fc94
RS
11650 fmt = "t,o(b)";
11651 goto ld_st;
252b5132
RH
11652 case M_SW_AB:
11653 s = "sw";
df58fc94
RS
11654 fmt = "t,o(b)";
11655 goto ld_st;
252b5132 11656 case M_SWC0_AB:
df58fc94 11657 gas_assert (!mips_opts.micromips);
252b5132 11658 s = "swc0";
df58fc94 11659 fmt = "E,o(b)";
bdaaa2e1 11660 /* Itbl support may require additional care here. */
252b5132 11661 coproc = 1;
df58fc94 11662 goto ld_st;
252b5132
RH
11663 case M_SWC1_AB:
11664 s = "swc1";
df58fc94 11665 fmt = "T,o(b)";
bdaaa2e1 11666 /* Itbl support may require additional care here. */
252b5132 11667 coproc = 1;
df58fc94 11668 goto ld_st;
252b5132
RH
11669 case M_SWC2_AB:
11670 s = "swc2";
df58fc94 11671 fmt = COP12_FMT;
7361da2c
AB
11672 offbits = (mips_opts.micromips ? 12
11673 : ISA_IS_R6 (mips_opts.isa) ? 11
11674 : 16);
bdaaa2e1 11675 /* Itbl support may require additional care here. */
252b5132 11676 coproc = 1;
df58fc94 11677 goto ld_st;
252b5132 11678 case M_SWC3_AB:
df58fc94 11679 gas_assert (!mips_opts.micromips);
252b5132 11680 s = "swc3";
df58fc94 11681 fmt = "E,o(b)";
bdaaa2e1 11682 /* Itbl support may require additional care here. */
252b5132 11683 coproc = 1;
df58fc94 11684 goto ld_st;
252b5132
RH
11685 case M_SWL_AB:
11686 s = "swl";
df58fc94 11687 fmt = MEM12_FMT;
7f3c4072 11688 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11689 goto ld_st;
252b5132
RH
11690 case M_SWR_AB:
11691 s = "swr";
df58fc94 11692 fmt = MEM12_FMT;
7f3c4072 11693 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11694 goto ld_st;
252b5132
RH
11695 case M_SC_AB:
11696 s = "sc";
7361da2c
AB
11697 fmt = LL_SC_FMT;
11698 offbits = (mips_opts.micromips ? 12
11699 : ISA_IS_R6 (mips_opts.isa) ? 9
11700 : 16);
df58fc94 11701 goto ld_st;
252b5132
RH
11702 case M_SCD_AB:
11703 s = "scd";
7361da2c
AB
11704 fmt = LL_SC_FMT;
11705 offbits = (mips_opts.micromips ? 12
11706 : ISA_IS_R6 (mips_opts.isa) ? 9
11707 : 16);
df58fc94 11708 goto ld_st;
d43b4baf
TS
11709 case M_CACHE_AB:
11710 s = "cache";
7361da2c
AB
11711 fmt = (mips_opts.micromips ? "k,~(b)"
11712 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11713 : "k,o(b)");
11714 offbits = (mips_opts.micromips ? 12
11715 : ISA_IS_R6 (mips_opts.isa) ? 9
11716 : 16);
7f3c4072
CM
11717 goto ld_st;
11718 case M_CACHEE_AB:
7f3c4072
CM
11719 s = "cachee";
11720 fmt = "k,+j(b)";
11721 offbits = 9;
df58fc94 11722 goto ld_st;
3eebd5eb
MR
11723 case M_PREF_AB:
11724 s = "pref";
7361da2c
AB
11725 fmt = (mips_opts.micromips ? "k,~(b)"
11726 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11727 : "k,o(b)");
11728 offbits = (mips_opts.micromips ? 12
11729 : ISA_IS_R6 (mips_opts.isa) ? 9
11730 : 16);
7f3c4072
CM
11731 goto ld_st;
11732 case M_PREFE_AB:
7f3c4072
CM
11733 s = "prefe";
11734 fmt = "k,+j(b)";
11735 offbits = 9;
df58fc94 11736 goto ld_st;
252b5132 11737 case M_SDC1_AB:
252b5132 11738 s = "sdc1";
df58fc94 11739 fmt = "T,o(b)";
252b5132 11740 coproc = 1;
bdaaa2e1 11741 /* Itbl support may require additional care here. */
df58fc94 11742 goto ld_st;
252b5132
RH
11743 case M_SDC2_AB:
11744 s = "sdc2";
df58fc94 11745 fmt = COP12_FMT;
7361da2c
AB
11746 offbits = (mips_opts.micromips ? 12
11747 : ISA_IS_R6 (mips_opts.isa) ? 11
11748 : 16);
c77c0862
RS
11749 /* Itbl support may require additional care here. */
11750 coproc = 1;
11751 goto ld_st;
11752 case M_SQC2_AB:
c77c0862 11753 s = "sqc2";
14daeee3 11754 fmt = "+7,o(b)";
bdaaa2e1 11755 /* Itbl support may require additional care here. */
252b5132 11756 coproc = 1;
df58fc94 11757 goto ld_st;
252b5132 11758 case M_SDC3_AB:
df58fc94 11759 gas_assert (!mips_opts.micromips);
252b5132 11760 s = "sdc3";
df58fc94 11761 fmt = "E,o(b)";
bdaaa2e1 11762 /* Itbl support may require additional care here. */
252b5132 11763 coproc = 1;
df58fc94 11764 goto ld_st;
252b5132
RH
11765 case M_SDL_AB:
11766 s = "sdl";
df58fc94 11767 fmt = MEM12_FMT;
7f3c4072 11768 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11769 goto ld_st;
252b5132
RH
11770 case M_SDR_AB:
11771 s = "sdr";
df58fc94 11772 fmt = MEM12_FMT;
7f3c4072 11773 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11774 goto ld_st;
11775 case M_SWP_AB:
df58fc94
RS
11776 gas_assert (mips_opts.micromips);
11777 s = "swp";
11778 fmt = "t,~(b)";
7f3c4072 11779 offbits = 12;
df58fc94
RS
11780 goto ld_st;
11781 case M_SDP_AB:
df58fc94
RS
11782 gas_assert (mips_opts.micromips);
11783 s = "sdp";
11784 fmt = "t,~(b)";
7f3c4072 11785 offbits = 12;
df58fc94
RS
11786 goto ld_st;
11787 case M_SWM_AB:
df58fc94
RS
11788 gas_assert (mips_opts.micromips);
11789 s = "swm";
11790 fmt = "n,~(b)";
7f3c4072 11791 offbits = 12;
df58fc94
RS
11792 goto ld_st;
11793 case M_SDM_AB:
df58fc94
RS
11794 gas_assert (mips_opts.micromips);
11795 s = "sdm";
11796 fmt = "n,~(b)";
7f3c4072 11797 offbits = 12;
df58fc94
RS
11798
11799 ld_st:
8fc2e39e 11800 tempreg = AT;
df58fc94 11801 ld_noat:
c0ebe874 11802 breg = op[2];
f2ae14a1
RS
11803 if (small_offset_p (0, align, 16))
11804 {
11805 /* The first case exists for M_LD_AB and M_SD_AB, which are
11806 macros for o32 but which should act like normal instructions
11807 otherwise. */
11808 if (offbits == 16)
c0ebe874 11809 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
11810 offset_reloc[1], offset_reloc[2], breg);
11811 else if (small_offset_p (0, align, offbits))
11812 {
11813 if (offbits == 0)
c0ebe874 11814 macro_build (NULL, s, fmt, op[0], breg);
f2ae14a1 11815 else
c0ebe874 11816 macro_build (NULL, s, fmt, op[0],
c8276761 11817 (int) offset_expr.X_add_number, breg);
f2ae14a1
RS
11818 }
11819 else
11820 {
11821 if (tempreg == AT)
11822 used_at = 1;
11823 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11824 tempreg, breg, -1, offset_reloc[0],
11825 offset_reloc[1], offset_reloc[2]);
11826 if (offbits == 0)
c0ebe874 11827 macro_build (NULL, s, fmt, op[0], tempreg);
f2ae14a1 11828 else
c0ebe874 11829 macro_build (NULL, s, fmt, op[0], 0, tempreg);
f2ae14a1
RS
11830 }
11831 break;
11832 }
11833
11834 if (tempreg == AT)
11835 used_at = 1;
11836
252b5132
RH
11837 if (offset_expr.X_op != O_constant
11838 && offset_expr.X_op != O_symbol)
11839 {
1661c76c 11840 as_bad (_("expression too complex"));
252b5132
RH
11841 offset_expr.X_op = O_constant;
11842 }
11843
2051e8c4
MR
11844 if (HAVE_32BIT_ADDRESSES
11845 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
11846 {
11847 char value [32];
11848
11849 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 11850 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 11851 }
2051e8c4 11852
252b5132
RH
11853 /* A constant expression in PIC code can be handled just as it
11854 is in non PIC code. */
aed1a261
RS
11855 if (offset_expr.X_op == O_constant)
11856 {
f2ae14a1
RS
11857 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11858 offbits == 0 ? 16 : offbits);
11859 offset_expr.X_add_number -= expr1.X_add_number;
df58fc94 11860
f2ae14a1
RS
11861 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11862 if (breg != 0)
11863 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11864 tempreg, tempreg, breg);
7f3c4072 11865 if (offbits == 0)
dd6a37e7 11866 {
f2ae14a1 11867 if (offset_expr.X_add_number != 0)
dd6a37e7 11868 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
f2ae14a1 11869 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
c0ebe874 11870 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11871 }
7f3c4072 11872 else if (offbits == 16)
c0ebe874 11873 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
df58fc94 11874 else
c0ebe874 11875 macro_build (NULL, s, fmt, op[0],
c8276761 11876 (int) offset_expr.X_add_number, tempreg);
df58fc94 11877 }
7f3c4072 11878 else if (offbits != 16)
df58fc94 11879 {
7f3c4072 11880 /* The offset field is too narrow to be used for a low-part
2b0f3761 11881 relocation, so load the whole address into the auxiliary
f2ae14a1
RS
11882 register. */
11883 load_address (tempreg, &offset_expr, &used_at);
11884 if (breg != 0)
11885 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11886 tempreg, tempreg, breg);
7f3c4072 11887 if (offbits == 0)
c0ebe874 11888 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11889 else
c0ebe874 11890 macro_build (NULL, s, fmt, op[0], 0, tempreg);
aed1a261
RS
11891 }
11892 else if (mips_pic == NO_PIC)
252b5132
RH
11893 {
11894 /* If this is a reference to a GP relative symbol, and there
11895 is no base register, we want
c0ebe874 11896 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
252b5132
RH
11897 Otherwise, if there is no base register, we want
11898 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
c0ebe874 11899 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
252b5132
RH
11900 If we have a constant, we need two instructions anyhow,
11901 so we always use the latter form.
11902
11903 If we have a base register, and this is a reference to a
11904 GP relative symbol, we want
11905 addu $tempreg,$breg,$gp
c0ebe874 11906 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
252b5132
RH
11907 Otherwise we want
11908 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11909 addu $tempreg,$tempreg,$breg
c0ebe874 11910 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245 11911 With a constant we always use the latter case.
76b3015f 11912
d6bc6245
TS
11913 With 64bit address space and no base register and $at usable,
11914 we want
11915 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11916 lui $at,<sym> (BFD_RELOC_HI16_S)
11917 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11918 dsll32 $tempreg,0
11919 daddu $tempreg,$at
c0ebe874 11920 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11921 If we have a base register, we want
11922 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11923 lui $at,<sym> (BFD_RELOC_HI16_S)
11924 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11925 daddu $at,$breg
11926 dsll32 $tempreg,0
11927 daddu $tempreg,$at
c0ebe874 11928 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11929
11930 Without $at we can't generate the optimal path for superscalar
11931 processors here since this would require two temporary registers.
11932 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11933 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11934 dsll $tempreg,16
11935 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11936 dsll $tempreg,16
c0ebe874 11937 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11938 If we have a base register, we want
11939 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11940 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11941 dsll $tempreg,16
11942 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11943 dsll $tempreg,16
11944 daddu $tempreg,$tempreg,$breg
c0ebe874 11945 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
6373ee54 11946
6caf9ef4 11947 For GP relative symbols in 64bit address space we can use
aed1a261
RS
11948 the same sequence as in 32bit address space. */
11949 if (HAVE_64BIT_SYMBOLS)
d6bc6245 11950 {
aed1a261 11951 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4
TS
11952 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11953 {
11954 relax_start (offset_expr.X_add_symbol);
11955 if (breg == 0)
11956 {
c0ebe874 11957 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11958 BFD_RELOC_GPREL16, mips_gp_register);
11959 }
11960 else
11961 {
11962 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11963 tempreg, breg, mips_gp_register);
c0ebe874 11964 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11965 BFD_RELOC_GPREL16, tempreg);
11966 }
11967 relax_switch ();
11968 }
d6bc6245 11969
741fe287 11970 if (used_at == 0 && mips_opts.at)
d6bc6245 11971 {
df58fc94 11972 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb 11973 BFD_RELOC_MIPS_HIGHEST);
df58fc94 11974 macro_build (&offset_expr, "lui", LUI_FMT, AT,
67c0d1eb
RS
11975 BFD_RELOC_HI16_S);
11976 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11977 tempreg, BFD_RELOC_MIPS_HIGHER);
d6bc6245 11978 if (breg != 0)
67c0d1eb 11979 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
df58fc94 11980 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 11981 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
c0ebe874 11982 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
67c0d1eb 11983 tempreg);
d6bc6245
TS
11984 used_at = 1;
11985 }
11986 else
11987 {
df58fc94 11988 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb
RS
11989 BFD_RELOC_MIPS_HIGHEST);
11990 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11991 tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 11992 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb
RS
11993 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11994 tempreg, BFD_RELOC_HI16_S);
df58fc94 11995 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
d6bc6245 11996 if (breg != 0)
67c0d1eb 11997 macro_build (NULL, "daddu", "d,v,t",
17a2f251 11998 tempreg, tempreg, breg);
c0ebe874 11999 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12000 BFD_RELOC_LO16, tempreg);
d6bc6245 12001 }
6caf9ef4
TS
12002
12003 if (mips_relax.sequence)
12004 relax_end ();
8fc2e39e 12005 break;
d6bc6245 12006 }
256ab948 12007
252b5132
RH
12008 if (breg == 0)
12009 {
67c0d1eb 12010 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12011 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12012 {
4d7206a2 12013 relax_start (offset_expr.X_add_symbol);
c0ebe874 12014 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
67c0d1eb 12015 mips_gp_register);
4d7206a2 12016 relax_switch ();
252b5132 12017 }
67c0d1eb 12018 macro_build_lui (&offset_expr, tempreg);
c0ebe874 12019 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12020 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
12021 if (mips_relax.sequence)
12022 relax_end ();
252b5132
RH
12023 }
12024 else
12025 {
67c0d1eb 12026 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12027 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12028 {
4d7206a2 12029 relax_start (offset_expr.X_add_symbol);
67c0d1eb 12030 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12031 tempreg, breg, mips_gp_register);
c0ebe874 12032 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12033 BFD_RELOC_GPREL16, tempreg);
4d7206a2 12034 relax_switch ();
252b5132 12035 }
67c0d1eb
RS
12036 macro_build_lui (&offset_expr, tempreg);
12037 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12038 tempreg, tempreg, breg);
c0ebe874 12039 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12040 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
12041 if (mips_relax.sequence)
12042 relax_end ();
252b5132
RH
12043 }
12044 }
0a44bf69 12045 else if (!mips_big_got)
252b5132 12046 {
ed6fb7bd 12047 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
f9419b05 12048
252b5132
RH
12049 /* If this is a reference to an external symbol, we want
12050 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12051 nop
c0ebe874 12052 <op> op[0],0($tempreg)
252b5132
RH
12053 Otherwise we want
12054 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12055 nop
12056 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 12057 <op> op[0],0($tempreg)
f5040a92
AO
12058
12059 For NewABI, we want
12060 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 12061 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 12062
252b5132
RH
12063 If there is a base register, we add it to $tempreg before
12064 the <op>. If there is a constant, we stick it in the
12065 <op> instruction. We don't handle constants larger than
12066 16 bits, because we have no way to load the upper 16 bits
12067 (actually, we could handle them for the subset of cases
12068 in which we are not using $at). */
9c2799c2 12069 gas_assert (offset_expr.X_op == O_symbol);
f5040a92
AO
12070 if (HAVE_NEWABI)
12071 {
67c0d1eb
RS
12072 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12073 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 12074 if (breg != 0)
67c0d1eb 12075 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12076 tempreg, tempreg, breg);
c0ebe874 12077 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12078 BFD_RELOC_MIPS_GOT_OFST, tempreg);
f5040a92
AO
12079 break;
12080 }
252b5132
RH
12081 expr1.X_add_number = offset_expr.X_add_number;
12082 offset_expr.X_add_number = 0;
12083 if (expr1.X_add_number < -0x8000
12084 || expr1.X_add_number >= 0x8000)
12085 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb
RS
12086 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12087 lw_reloc_type, mips_gp_register);
269137b2 12088 load_delay_nop ();
4d7206a2
RS
12089 relax_start (offset_expr.X_add_symbol);
12090 relax_switch ();
67c0d1eb
RS
12091 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12092 tempreg, BFD_RELOC_LO16);
4d7206a2 12093 relax_end ();
252b5132 12094 if (breg != 0)
67c0d1eb 12095 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12096 tempreg, tempreg, breg);
c0ebe874 12097 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 12098 }
0a44bf69 12099 else if (mips_big_got && !HAVE_NEWABI)
252b5132 12100 {
67c0d1eb 12101 int gpdelay;
252b5132
RH
12102
12103 /* If this is a reference to an external symbol, we want
12104 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12105 addu $tempreg,$tempreg,$gp
12106 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 12107 <op> op[0],0($tempreg)
252b5132
RH
12108 Otherwise we want
12109 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12110 nop
12111 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 12112 <op> op[0],0($tempreg)
252b5132
RH
12113 If there is a base register, we add it to $tempreg before
12114 the <op>. If there is a constant, we stick it in the
12115 <op> instruction. We don't handle constants larger than
12116 16 bits, because we have no way to load the upper 16 bits
12117 (actually, we could handle them for the subset of cases
f5040a92 12118 in which we are not using $at). */
9c2799c2 12119 gas_assert (offset_expr.X_op == O_symbol);
252b5132
RH
12120 expr1.X_add_number = offset_expr.X_add_number;
12121 offset_expr.X_add_number = 0;
12122 if (expr1.X_add_number < -0x8000
12123 || expr1.X_add_number >= 0x8000)
12124 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12125 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12126 relax_start (offset_expr.X_add_symbol);
df58fc94 12127 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 12128 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
12129 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12130 mips_gp_register);
12131 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12132 BFD_RELOC_MIPS_GOT_LO16, tempreg);
4d7206a2 12133 relax_switch ();
67c0d1eb
RS
12134 if (gpdelay)
12135 macro_build (NULL, "nop", "");
12136 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12137 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12138 load_delay_nop ();
67c0d1eb
RS
12139 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12140 tempreg, BFD_RELOC_LO16);
4d7206a2
RS
12141 relax_end ();
12142
252b5132 12143 if (breg != 0)
67c0d1eb 12144 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12145 tempreg, tempreg, breg);
c0ebe874 12146 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 12147 }
0a44bf69 12148 else if (mips_big_got && HAVE_NEWABI)
f5040a92 12149 {
f5040a92
AO
12150 /* If this is a reference to an external symbol, we want
12151 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12152 add $tempreg,$tempreg,$gp
12153 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 12154 <op> op[0],<ofst>($tempreg)
f5040a92
AO
12155 Otherwise, for local symbols, we want:
12156 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 12157 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9c2799c2 12158 gas_assert (offset_expr.X_op == O_symbol);
4d7206a2 12159 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
12160 offset_expr.X_add_number = 0;
12161 if (expr1.X_add_number < -0x8000
12162 || expr1.X_add_number >= 0x8000)
12163 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4d7206a2 12164 relax_start (offset_expr.X_add_symbol);
df58fc94 12165 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 12166 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
12167 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12168 mips_gp_register);
12169 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12170 BFD_RELOC_MIPS_GOT_LO16, tempreg);
f5040a92 12171 if (breg != 0)
67c0d1eb 12172 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12173 tempreg, tempreg, breg);
c0ebe874 12174 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
684022ea 12175
4d7206a2 12176 relax_switch ();
f5040a92 12177 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12178 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12179 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 12180 if (breg != 0)
67c0d1eb 12181 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12182 tempreg, tempreg, breg);
c0ebe874 12183 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12184 BFD_RELOC_MIPS_GOT_OFST, tempreg);
4d7206a2 12185 relax_end ();
f5040a92 12186 }
252b5132
RH
12187 else
12188 abort ();
12189
252b5132
RH
12190 break;
12191
833794fc
MR
12192 case M_JRADDIUSP:
12193 gas_assert (mips_opts.micromips);
12194 gas_assert (mips_opts.insn32);
12195 start_noreorder ();
12196 macro_build (NULL, "jr", "s", RA);
c0ebe874 12197 expr1.X_add_number = op[0] << 2;
833794fc
MR
12198 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12199 end_noreorder ();
12200 break;
12201
12202 case M_JRC:
12203 gas_assert (mips_opts.micromips);
12204 gas_assert (mips_opts.insn32);
c0ebe874 12205 macro_build (NULL, "jr", "s", op[0]);
833794fc
MR
12206 if (mips_opts.noreorder)
12207 macro_build (NULL, "nop", "");
12208 break;
12209
252b5132
RH
12210 case M_LI:
12211 case M_LI_S:
c0ebe874 12212 load_register (op[0], &imm_expr, 0);
8fc2e39e 12213 break;
252b5132
RH
12214
12215 case M_DLI:
c0ebe874 12216 load_register (op[0], &imm_expr, 1);
8fc2e39e 12217 break;
252b5132
RH
12218
12219 case M_LI_SS:
12220 if (imm_expr.X_op == O_constant)
12221 {
8fc2e39e 12222 used_at = 1;
67c0d1eb 12223 load_register (AT, &imm_expr, 0);
c0ebe874 12224 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12225 break;
12226 }
12227 else
12228 {
b0e6f033
RS
12229 gas_assert (imm_expr.X_op == O_absent
12230 && offset_expr.X_op == O_symbol
90ecf173
MR
12231 && strcmp (segment_name (S_GET_SEGMENT
12232 (offset_expr.X_add_symbol)),
12233 ".lit4") == 0
12234 && offset_expr.X_add_number == 0);
c0ebe874 12235 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
17a2f251 12236 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8fc2e39e 12237 break;
252b5132
RH
12238 }
12239
12240 case M_LI_D:
ca4e0257
RS
12241 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12242 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12243 order 32 bits of the value and the low order 32 bits are either
12244 zero or in OFFSET_EXPR. */
b0e6f033 12245 if (imm_expr.X_op == O_constant)
252b5132 12246 {
bad1aba3 12247 if (GPR_SIZE == 64)
c0ebe874 12248 load_register (op[0], &imm_expr, 1);
252b5132
RH
12249 else
12250 {
12251 int hreg, lreg;
12252
12253 if (target_big_endian)
12254 {
c0ebe874
RS
12255 hreg = op[0];
12256 lreg = op[0] + 1;
252b5132
RH
12257 }
12258 else
12259 {
c0ebe874
RS
12260 hreg = op[0] + 1;
12261 lreg = op[0];
252b5132
RH
12262 }
12263
12264 if (hreg <= 31)
67c0d1eb 12265 load_register (hreg, &imm_expr, 0);
252b5132
RH
12266 if (lreg <= 31)
12267 {
12268 if (offset_expr.X_op == O_absent)
67c0d1eb 12269 move_register (lreg, 0);
252b5132
RH
12270 else
12271 {
9c2799c2 12272 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12273 load_register (lreg, &offset_expr, 0);
252b5132
RH
12274 }
12275 }
12276 }
8fc2e39e 12277 break;
252b5132 12278 }
b0e6f033 12279 gas_assert (imm_expr.X_op == O_absent);
252b5132
RH
12280
12281 /* We know that sym is in the .rdata section. First we get the
12282 upper 16 bits of the address. */
12283 if (mips_pic == NO_PIC)
12284 {
67c0d1eb 12285 macro_build_lui (&offset_expr, AT);
8fc2e39e 12286 used_at = 1;
252b5132 12287 }
0a44bf69 12288 else
252b5132 12289 {
67c0d1eb
RS
12290 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12291 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8fc2e39e 12292 used_at = 1;
252b5132 12293 }
bdaaa2e1 12294
252b5132 12295 /* Now we load the register(s). */
bad1aba3 12296 if (GPR_SIZE == 64)
8fc2e39e
TS
12297 {
12298 used_at = 1;
c0ebe874
RS
12299 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12300 BFD_RELOC_LO16, AT);
8fc2e39e 12301 }
252b5132
RH
12302 else
12303 {
8fc2e39e 12304 used_at = 1;
c0ebe874
RS
12305 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12306 BFD_RELOC_LO16, AT);
12307 if (op[0] != RA)
252b5132
RH
12308 {
12309 /* FIXME: How in the world do we deal with the possible
12310 overflow here? */
12311 offset_expr.X_add_number += 4;
67c0d1eb 12312 macro_build (&offset_expr, "lw", "t,o(b)",
c0ebe874 12313 op[0] + 1, BFD_RELOC_LO16, AT);
252b5132
RH
12314 }
12315 }
252b5132
RH
12316 break;
12317
12318 case M_LI_DD:
ca4e0257
RS
12319 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12320 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12321 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12322 the value and the low order 32 bits are either zero or in
12323 OFFSET_EXPR. */
b0e6f033 12324 if (imm_expr.X_op == O_constant)
252b5132 12325 {
8fc2e39e 12326 used_at = 1;
bad1aba3 12327 load_register (AT, &imm_expr, FPR_SIZE == 64);
351cdf24
MF
12328 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12329 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
252b5132
RH
12330 else
12331 {
351cdf24
MF
12332 if (ISA_HAS_MXHC1 (mips_opts.isa))
12333 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12334 else if (FPR_SIZE != 32)
12335 as_bad (_("Unable to generate `%s' compliant code "
12336 "without mthc1"),
12337 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12338 else
12339 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
252b5132 12340 if (offset_expr.X_op == O_absent)
c0ebe874 12341 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
252b5132
RH
12342 else
12343 {
9c2799c2 12344 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12345 load_register (AT, &offset_expr, 0);
c0ebe874 12346 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12347 }
12348 }
12349 break;
12350 }
12351
b0e6f033
RS
12352 gas_assert (imm_expr.X_op == O_absent
12353 && offset_expr.X_op == O_symbol
90ecf173 12354 && offset_expr.X_add_number == 0);
252b5132
RH
12355 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12356 if (strcmp (s, ".lit8") == 0)
134c0c8b
MR
12357 {
12358 op[2] = mips_gp_register;
f2ae14a1
RS
12359 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12360 offset_reloc[1] = BFD_RELOC_UNUSED;
12361 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132
RH
12362 }
12363 else
12364 {
9c2799c2 12365 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8fc2e39e 12366 used_at = 1;
0a44bf69 12367 if (mips_pic != NO_PIC)
67c0d1eb
RS
12368 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12369 BFD_RELOC_MIPS_GOT16, mips_gp_register);
252b5132
RH
12370 else
12371 {
12372 /* FIXME: This won't work for a 64 bit address. */
67c0d1eb 12373 macro_build_lui (&offset_expr, AT);
252b5132 12374 }
bdaaa2e1 12375
c0ebe874 12376 op[2] = AT;
f2ae14a1
RS
12377 offset_reloc[0] = BFD_RELOC_LO16;
12378 offset_reloc[1] = BFD_RELOC_UNUSED;
12379 offset_reloc[2] = BFD_RELOC_UNUSED;
134c0c8b 12380 }
f2ae14a1
RS
12381 align = 8;
12382 /* Fall through */
c4a68bea 12383
252b5132
RH
12384 case M_L_DAB:
12385 /*
12386 * The MIPS assembler seems to check for X_add_number not
12387 * being double aligned and generating:
12388 * lui at,%hi(foo+1)
12389 * addu at,at,v1
12390 * addiu at,at,%lo(foo+1)
12391 * lwc1 f2,0(at)
12392 * lwc1 f3,4(at)
12393 * But, the resulting address is the same after relocation so why
12394 * generate the extra instruction?
12395 */
bdaaa2e1 12396 /* Itbl support may require additional care here. */
252b5132 12397 coproc = 1;
df58fc94 12398 fmt = "T,o(b)";
0aa27725 12399 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12400 {
12401 s = "ldc1";
df58fc94 12402 goto ld_st;
252b5132 12403 }
252b5132 12404 s = "lwc1";
252b5132
RH
12405 goto ldd_std;
12406
12407 case M_S_DAB:
df58fc94
RS
12408 gas_assert (!mips_opts.micromips);
12409 /* Itbl support may require additional care here. */
12410 coproc = 1;
12411 fmt = "T,o(b)";
0aa27725 12412 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12413 {
12414 s = "sdc1";
df58fc94 12415 goto ld_st;
252b5132 12416 }
252b5132 12417 s = "swc1";
252b5132
RH
12418 goto ldd_std;
12419
e407c74b
NC
12420 case M_LQ_AB:
12421 fmt = "t,o(b)";
12422 s = "lq";
12423 goto ld;
12424
12425 case M_SQ_AB:
12426 fmt = "t,o(b)";
12427 s = "sq";
12428 goto ld_st;
12429
252b5132 12430 case M_LD_AB:
df58fc94 12431 fmt = "t,o(b)";
bad1aba3 12432 if (GPR_SIZE == 64)
252b5132
RH
12433 {
12434 s = "ld";
12435 goto ld;
12436 }
252b5132 12437 s = "lw";
252b5132
RH
12438 goto ldd_std;
12439
12440 case M_SD_AB:
df58fc94 12441 fmt = "t,o(b)";
bad1aba3 12442 if (GPR_SIZE == 64)
252b5132
RH
12443 {
12444 s = "sd";
df58fc94 12445 goto ld_st;
252b5132 12446 }
252b5132 12447 s = "sw";
252b5132
RH
12448
12449 ldd_std:
f2ae14a1
RS
12450 /* Even on a big endian machine $fn comes before $fn+1. We have
12451 to adjust when loading from memory. We set coproc if we must
12452 load $fn+1 first. */
12453 /* Itbl support may require additional care here. */
12454 if (!target_big_endian)
12455 coproc = 0;
12456
c0ebe874 12457 breg = op[2];
f2ae14a1
RS
12458 if (small_offset_p (0, align, 16))
12459 {
12460 ep = &offset_expr;
12461 if (!small_offset_p (4, align, 16))
12462 {
12463 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12464 -1, offset_reloc[0], offset_reloc[1],
12465 offset_reloc[2]);
12466 expr1.X_add_number = 0;
12467 ep = &expr1;
12468 breg = AT;
12469 used_at = 1;
12470 offset_reloc[0] = BFD_RELOC_LO16;
12471 offset_reloc[1] = BFD_RELOC_UNUSED;
12472 offset_reloc[2] = BFD_RELOC_UNUSED;
12473 }
c0ebe874 12474 if (strcmp (s, "lw") == 0 && op[0] == breg)
f2ae14a1
RS
12475 {
12476 ep->X_add_number += 4;
c0ebe874 12477 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
f2ae14a1
RS
12478 offset_reloc[1], offset_reloc[2], breg);
12479 ep->X_add_number -= 4;
c0ebe874 12480 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12481 offset_reloc[1], offset_reloc[2], breg);
12482 }
12483 else
12484 {
c0ebe874 12485 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
f2ae14a1
RS
12486 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12487 breg);
12488 ep->X_add_number += 4;
c0ebe874 12489 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
f2ae14a1
RS
12490 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12491 breg);
12492 }
12493 break;
12494 }
12495
252b5132
RH
12496 if (offset_expr.X_op != O_symbol
12497 && offset_expr.X_op != O_constant)
12498 {
1661c76c 12499 as_bad (_("expression too complex"));
252b5132
RH
12500 offset_expr.X_op = O_constant;
12501 }
12502
2051e8c4
MR
12503 if (HAVE_32BIT_ADDRESSES
12504 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
12505 {
12506 char value [32];
12507
12508 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 12509 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 12510 }
2051e8c4 12511
90ecf173 12512 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
252b5132
RH
12513 {
12514 /* If this is a reference to a GP relative symbol, we want
c0ebe874
RS
12515 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12516 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
252b5132
RH
12517 If we have a base register, we use this
12518 addu $at,$breg,$gp
c0ebe874
RS
12519 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12520 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
252b5132
RH
12521 If this is not a GP relative symbol, we want
12522 lui $at,<sym> (BFD_RELOC_HI16_S)
c0ebe874
RS
12523 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12524 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12525 If there is a base register, we add it to $at after the
12526 lui instruction. If there is a constant, we always use
12527 the last case. */
39a59cf8
MR
12528 if (offset_expr.X_op == O_symbol
12529 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12530 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12531 {
4d7206a2 12532 relax_start (offset_expr.X_add_symbol);
252b5132
RH
12533 if (breg == 0)
12534 {
c9914766 12535 tempreg = mips_gp_register;
252b5132
RH
12536 }
12537 else
12538 {
67c0d1eb 12539 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12540 AT, breg, mips_gp_register);
252b5132 12541 tempreg = AT;
252b5132
RH
12542 used_at = 1;
12543 }
12544
beae10d5 12545 /* Itbl support may require additional care here. */
c0ebe874 12546 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12547 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12548 offset_expr.X_add_number += 4;
12549
12550 /* Set mips_optimize to 2 to avoid inserting an
12551 undesired nop. */
12552 hold_mips_optimize = mips_optimize;
12553 mips_optimize = 2;
beae10d5 12554 /* Itbl support may require additional care here. */
c0ebe874 12555 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12556 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12557 mips_optimize = hold_mips_optimize;
12558
4d7206a2 12559 relax_switch ();
252b5132 12560
0970e49e 12561 offset_expr.X_add_number -= 4;
252b5132 12562 }
8fc2e39e 12563 used_at = 1;
f2ae14a1
RS
12564 if (offset_high_part (offset_expr.X_add_number, 16)
12565 != offset_high_part (offset_expr.X_add_number + 4, 16))
12566 {
12567 load_address (AT, &offset_expr, &used_at);
12568 offset_expr.X_op = O_constant;
12569 offset_expr.X_add_number = 0;
12570 }
12571 else
12572 macro_build_lui (&offset_expr, AT);
252b5132 12573 if (breg != 0)
67c0d1eb 12574 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12575 /* Itbl support may require additional care here. */
c0ebe874 12576 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12577 BFD_RELOC_LO16, AT);
252b5132
RH
12578 /* FIXME: How do we handle overflow here? */
12579 offset_expr.X_add_number += 4;
beae10d5 12580 /* Itbl support may require additional care here. */
c0ebe874 12581 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12582 BFD_RELOC_LO16, AT);
4d7206a2
RS
12583 if (mips_relax.sequence)
12584 relax_end ();
bdaaa2e1 12585 }
0a44bf69 12586 else if (!mips_big_got)
252b5132 12587 {
252b5132
RH
12588 /* If this is a reference to an external symbol, we want
12589 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12590 nop
c0ebe874
RS
12591 <op> op[0],0($at)
12592 <op> op[0]+1,4($at)
252b5132
RH
12593 Otherwise we want
12594 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12595 nop
c0ebe874
RS
12596 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12597 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12598 If there is a base register we add it to $at before the
12599 lwc1 instructions. If there is a constant we include it
12600 in the lwc1 instructions. */
12601 used_at = 1;
12602 expr1.X_add_number = offset_expr.X_add_number;
252b5132
RH
12603 if (expr1.X_add_number < -0x8000
12604 || expr1.X_add_number >= 0x8000 - 4)
12605 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12606 load_got_offset (AT, &offset_expr);
269137b2 12607 load_delay_nop ();
252b5132 12608 if (breg != 0)
67c0d1eb 12609 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
252b5132
RH
12610
12611 /* Set mips_optimize to 2 to avoid inserting an undesired
12612 nop. */
12613 hold_mips_optimize = mips_optimize;
12614 mips_optimize = 2;
4d7206a2 12615
beae10d5 12616 /* Itbl support may require additional care here. */
4d7206a2 12617 relax_start (offset_expr.X_add_symbol);
c0ebe874 12618 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12619 BFD_RELOC_LO16, AT);
4d7206a2 12620 expr1.X_add_number += 4;
c0ebe874 12621 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12622 BFD_RELOC_LO16, AT);
4d7206a2 12623 relax_switch ();
c0ebe874 12624 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12625 BFD_RELOC_LO16, AT);
4d7206a2 12626 offset_expr.X_add_number += 4;
c0ebe874 12627 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12628 BFD_RELOC_LO16, AT);
4d7206a2 12629 relax_end ();
252b5132 12630
4d7206a2 12631 mips_optimize = hold_mips_optimize;
252b5132 12632 }
0a44bf69 12633 else if (mips_big_got)
252b5132 12634 {
67c0d1eb 12635 int gpdelay;
252b5132
RH
12636
12637 /* If this is a reference to an external symbol, we want
12638 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12639 addu $at,$at,$gp
12640 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12641 nop
c0ebe874
RS
12642 <op> op[0],0($at)
12643 <op> op[0]+1,4($at)
252b5132
RH
12644 Otherwise we want
12645 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12646 nop
c0ebe874
RS
12647 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12648 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12649 If there is a base register we add it to $at before the
12650 lwc1 instructions. If there is a constant we include it
12651 in the lwc1 instructions. */
12652 used_at = 1;
12653 expr1.X_add_number = offset_expr.X_add_number;
12654 offset_expr.X_add_number = 0;
12655 if (expr1.X_add_number < -0x8000
12656 || expr1.X_add_number >= 0x8000 - 4)
12657 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12658 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12659 relax_start (offset_expr.X_add_symbol);
df58fc94 12660 macro_build (&offset_expr, "lui", LUI_FMT,
67c0d1eb
RS
12661 AT, BFD_RELOC_MIPS_GOT_HI16);
12662 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12663 AT, AT, mips_gp_register);
67c0d1eb 12664 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 12665 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
269137b2 12666 load_delay_nop ();
252b5132 12667 if (breg != 0)
67c0d1eb 12668 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12669 /* Itbl support may require additional care here. */
c0ebe874 12670 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12671 BFD_RELOC_LO16, AT);
252b5132
RH
12672 expr1.X_add_number += 4;
12673
12674 /* Set mips_optimize to 2 to avoid inserting an undesired
12675 nop. */
12676 hold_mips_optimize = mips_optimize;
12677 mips_optimize = 2;
beae10d5 12678 /* Itbl support may require additional care here. */
c0ebe874 12679 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12680 BFD_RELOC_LO16, AT);
252b5132
RH
12681 mips_optimize = hold_mips_optimize;
12682 expr1.X_add_number -= 4;
12683
4d7206a2
RS
12684 relax_switch ();
12685 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12686 if (gpdelay)
12687 macro_build (NULL, "nop", "");
12688 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12689 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12690 load_delay_nop ();
252b5132 12691 if (breg != 0)
67c0d1eb 12692 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12693 /* Itbl support may require additional care here. */
c0ebe874 12694 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12695 BFD_RELOC_LO16, AT);
4d7206a2 12696 offset_expr.X_add_number += 4;
252b5132
RH
12697
12698 /* Set mips_optimize to 2 to avoid inserting an undesired
12699 nop. */
12700 hold_mips_optimize = mips_optimize;
12701 mips_optimize = 2;
beae10d5 12702 /* Itbl support may require additional care here. */
c0ebe874 12703 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12704 BFD_RELOC_LO16, AT);
252b5132 12705 mips_optimize = hold_mips_optimize;
4d7206a2 12706 relax_end ();
252b5132 12707 }
252b5132
RH
12708 else
12709 abort ();
12710
252b5132 12711 break;
3739860c 12712
dd6a37e7 12713 case M_SAA_AB:
dd6a37e7 12714 s = "saa";
0db377d0 12715 goto saa_saad;
dd6a37e7 12716 case M_SAAD_AB:
dd6a37e7 12717 s = "saad";
0db377d0
MR
12718 saa_saad:
12719 gas_assert (!mips_opts.micromips);
7f3c4072 12720 offbits = 0;
dd6a37e7
AP
12721 fmt = "t,(b)";
12722 goto ld_st;
12723
252b5132
RH
12724 /* New code added to support COPZ instructions.
12725 This code builds table entries out of the macros in mip_opcodes.
12726 R4000 uses interlocks to handle coproc delays.
12727 Other chips (like the R3000) require nops to be inserted for delays.
12728
f72c8c98 12729 FIXME: Currently, we require that the user handle delays.
252b5132
RH
12730 In order to fill delay slots for non-interlocked chips,
12731 we must have a way to specify delays based on the coprocessor.
12732 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12733 What are the side-effects of the cop instruction?
12734 What cache support might we have and what are its effects?
12735 Both coprocessor & memory require delays. how long???
bdaaa2e1 12736 What registers are read/set/modified?
252b5132
RH
12737
12738 If an itbl is provided to interpret cop instructions,
bdaaa2e1 12739 this knowledge can be encoded in the itbl spec. */
252b5132
RH
12740
12741 case M_COP0:
12742 s = "c0";
12743 goto copz;
12744 case M_COP1:
12745 s = "c1";
12746 goto copz;
12747 case M_COP2:
12748 s = "c2";
12749 goto copz;
12750 case M_COP3:
12751 s = "c3";
12752 copz:
df58fc94 12753 gas_assert (!mips_opts.micromips);
252b5132
RH
12754 /* For now we just do C (same as Cz). The parameter will be
12755 stored in insn_opcode by mips_ip. */
c8276761 12756 macro_build (NULL, s, "C", (int) ip->insn_opcode);
8fc2e39e 12757 break;
252b5132 12758
ea1fb5dc 12759 case M_MOVE:
c0ebe874 12760 move_register (op[0], op[1]);
8fc2e39e 12761 break;
ea1fb5dc 12762
833794fc
MR
12763 case M_MOVEP:
12764 gas_assert (mips_opts.micromips);
12765 gas_assert (mips_opts.insn32);
c0ebe874
RS
12766 move_register (micromips_to_32_reg_h_map1[op[0]],
12767 micromips_to_32_reg_m_map[op[1]]);
12768 move_register (micromips_to_32_reg_h_map2[op[0]],
12769 micromips_to_32_reg_n_map[op[2]]);
833794fc
MR
12770 break;
12771
252b5132
RH
12772 case M_DMUL:
12773 dbl = 1;
1a0670f3 12774 /* Fall through. */
252b5132 12775 case M_MUL:
e407c74b 12776 if (mips_opts.arch == CPU_R5900)
c0ebe874
RS
12777 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12778 op[2]);
e407c74b
NC
12779 else
12780 {
c0ebe874
RS
12781 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12782 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
e407c74b 12783 }
8fc2e39e 12784 break;
252b5132
RH
12785
12786 case M_DMUL_I:
12787 dbl = 1;
1a0670f3 12788 /* Fall through. */
252b5132
RH
12789 case M_MUL_I:
12790 /* The MIPS assembler some times generates shifts and adds. I'm
12791 not trying to be that fancy. GCC should do this for us
12792 anyway. */
8fc2e39e 12793 used_at = 1;
67c0d1eb 12794 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12795 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12796 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12797 break;
12798
12799 case M_DMULO_I:
12800 dbl = 1;
1a0670f3 12801 /* Fall through. */
252b5132
RH
12802 case M_MULO_I:
12803 imm = 1;
12804 goto do_mulo;
12805
12806 case M_DMULO:
12807 dbl = 1;
1a0670f3 12808 /* Fall through. */
252b5132
RH
12809 case M_MULO:
12810 do_mulo:
7d10b47d 12811 start_noreorder ();
8fc2e39e 12812 used_at = 1;
252b5132 12813 if (imm)
67c0d1eb 12814 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12815 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12816 op[1], imm ? AT : op[2]);
12817 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12818 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
df58fc94 12819 macro_build (NULL, "mfhi", MFHL_FMT, AT);
252b5132 12820 if (mips_trap)
c0ebe874 12821 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
252b5132
RH
12822 else
12823 {
df58fc94
RS
12824 if (mips_opts.micromips)
12825 micromips_label_expr (&label_expr);
12826 else
12827 label_expr.X_add_number = 8;
c0ebe874 12828 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
a605d2b3 12829 macro_build (NULL, "nop", "");
df58fc94
RS
12830 macro_build (NULL, "break", BRK_FMT, 6);
12831 if (mips_opts.micromips)
12832 micromips_add_label ();
252b5132 12833 }
7d10b47d 12834 end_noreorder ();
c0ebe874 12835 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12836 break;
12837
12838 case M_DMULOU_I:
12839 dbl = 1;
1a0670f3 12840 /* Fall through. */
252b5132
RH
12841 case M_MULOU_I:
12842 imm = 1;
12843 goto do_mulou;
12844
12845 case M_DMULOU:
12846 dbl = 1;
1a0670f3 12847 /* Fall through. */
252b5132
RH
12848 case M_MULOU:
12849 do_mulou:
7d10b47d 12850 start_noreorder ();
8fc2e39e 12851 used_at = 1;
252b5132 12852 if (imm)
67c0d1eb
RS
12853 load_register (AT, &imm_expr, dbl);
12854 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
c0ebe874 12855 op[1], imm ? AT : op[2]);
df58fc94 12856 macro_build (NULL, "mfhi", MFHL_FMT, AT);
c0ebe874 12857 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132 12858 if (mips_trap)
df58fc94 12859 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
252b5132
RH
12860 else
12861 {
df58fc94
RS
12862 if (mips_opts.micromips)
12863 micromips_label_expr (&label_expr);
12864 else
12865 label_expr.X_add_number = 8;
12866 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
a605d2b3 12867 macro_build (NULL, "nop", "");
df58fc94
RS
12868 macro_build (NULL, "break", BRK_FMT, 6);
12869 if (mips_opts.micromips)
12870 micromips_add_label ();
252b5132 12871 }
7d10b47d 12872 end_noreorder ();
252b5132
RH
12873 break;
12874
771c7ce4 12875 case M_DROL:
fef14a42 12876 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12877 {
c0ebe874 12878 if (op[0] == op[1])
82dd0097
CD
12879 {
12880 tempreg = AT;
12881 used_at = 1;
12882 }
12883 else
c0ebe874
RS
12884 tempreg = op[0];
12885 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12886 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12887 break;
82dd0097 12888 }
8fc2e39e 12889 used_at = 1;
c0ebe874
RS
12890 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12891 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12892 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12893 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12894 break;
12895
252b5132 12896 case M_ROL:
fef14a42 12897 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12898 {
c0ebe874 12899 if (op[0] == op[1])
82dd0097
CD
12900 {
12901 tempreg = AT;
12902 used_at = 1;
12903 }
12904 else
c0ebe874
RS
12905 tempreg = op[0];
12906 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12907 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12908 break;
82dd0097 12909 }
8fc2e39e 12910 used_at = 1;
c0ebe874
RS
12911 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12912 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12913 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12914 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12915 break;
12916
771c7ce4
TS
12917 case M_DROL_I:
12918 {
12919 unsigned int rot;
e0471c16
TS
12920 const char *l;
12921 const char *rr;
771c7ce4 12922
771c7ce4 12923 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12924 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
60b63b72
RS
12925 {
12926 rot = (64 - rot) & 0x3f;
12927 if (rot >= 32)
c0ebe874 12928 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
60b63b72 12929 else
c0ebe874 12930 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12931 break;
60b63b72 12932 }
483fc7cd 12933 if (rot == 0)
483fc7cd 12934 {
c0ebe874 12935 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12936 break;
483fc7cd 12937 }
82dd0097 12938 l = (rot < 0x20) ? "dsll" : "dsll32";
91d6fa6a 12939 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
82dd0097 12940 rot &= 0x1f;
8fc2e39e 12941 used_at = 1;
c0ebe874
RS
12942 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12943 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12944 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12945 }
12946 break;
12947
252b5132 12948 case M_ROL_I:
771c7ce4
TS
12949 {
12950 unsigned int rot;
12951
771c7ce4 12952 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12953 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
60b63b72 12954 {
c0ebe874
RS
12955 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12956 (32 - rot) & 0x1f);
8fc2e39e 12957 break;
60b63b72 12958 }
483fc7cd 12959 if (rot == 0)
483fc7cd 12960 {
c0ebe874 12961 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12962 break;
483fc7cd 12963 }
8fc2e39e 12964 used_at = 1;
c0ebe874
RS
12965 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12966 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12967 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12968 }
12969 break;
12970
12971 case M_DROR:
fef14a42 12972 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12973 {
c0ebe874 12974 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12975 break;
82dd0097 12976 }
8fc2e39e 12977 used_at = 1;
c0ebe874
RS
12978 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12979 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12980 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12981 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12982 break;
12983
12984 case M_ROR:
fef14a42 12985 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12986 {
c0ebe874 12987 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12988 break;
82dd0097 12989 }
8fc2e39e 12990 used_at = 1;
c0ebe874
RS
12991 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12992 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12993 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12994 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12995 break;
12996
771c7ce4
TS
12997 case M_DROR_I:
12998 {
12999 unsigned int rot;
e0471c16
TS
13000 const char *l;
13001 const char *rr;
771c7ce4 13002
771c7ce4 13003 rot = imm_expr.X_add_number & 0x3f;
fef14a42 13004 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
13005 {
13006 if (rot >= 32)
c0ebe874 13007 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
82dd0097 13008 else
c0ebe874 13009 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 13010 break;
82dd0097 13011 }
483fc7cd 13012 if (rot == 0)
483fc7cd 13013 {
c0ebe874 13014 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13015 break;
483fc7cd 13016 }
91d6fa6a 13017 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
82dd0097
CD
13018 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
13019 rot &= 0x1f;
8fc2e39e 13020 used_at = 1;
c0ebe874
RS
13021 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
13022 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13023 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
13024 }
13025 break;
13026
252b5132 13027 case M_ROR_I:
771c7ce4
TS
13028 {
13029 unsigned int rot;
13030
771c7ce4 13031 rot = imm_expr.X_add_number & 0x1f;
fef14a42 13032 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 13033 {
c0ebe874 13034 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 13035 break;
82dd0097 13036 }
483fc7cd 13037 if (rot == 0)
483fc7cd 13038 {
c0ebe874 13039 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13040 break;
483fc7cd 13041 }
8fc2e39e 13042 used_at = 1;
c0ebe874
RS
13043 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13044 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13045 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4 13046 }
252b5132
RH
13047 break;
13048
252b5132 13049 case M_SEQ:
c0ebe874
RS
13050 if (op[1] == 0)
13051 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13052 else if (op[2] == 0)
13053 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
13054 else
13055 {
c0ebe874
RS
13056 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13057 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
252b5132 13058 }
8fc2e39e 13059 break;
252b5132
RH
13060
13061 case M_SEQ_I:
b0e6f033 13062 if (imm_expr.X_add_number == 0)
252b5132 13063 {
c0ebe874 13064 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13065 break;
252b5132 13066 }
c0ebe874 13067 if (op[1] == 0)
252b5132 13068 {
1661c76c 13069 as_warn (_("instruction %s: result is always false"),
252b5132 13070 ip->insn_mo->name);
c0ebe874 13071 move_register (op[0], 0);
8fc2e39e 13072 break;
252b5132 13073 }
dd3cbb7e
NC
13074 if (CPU_HAS_SEQ (mips_opts.arch)
13075 && -512 <= imm_expr.X_add_number
13076 && imm_expr.X_add_number < 512)
13077 {
c0ebe874 13078 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
750bdd57 13079 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13080 break;
13081 }
b0e6f033 13082 if (imm_expr.X_add_number >= 0
252b5132 13083 && imm_expr.X_add_number < 0x10000)
c0ebe874 13084 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
b0e6f033 13085 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13086 && imm_expr.X_add_number < 0)
13087 {
13088 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13089 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13090 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13091 }
dd3cbb7e
NC
13092 else if (CPU_HAS_SEQ (mips_opts.arch))
13093 {
13094 used_at = 1;
bad1aba3 13095 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13096 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13097 break;
13098 }
252b5132
RH
13099 else
13100 {
bad1aba3 13101 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13102 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13103 used_at = 1;
13104 }
c0ebe874 13105 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13106 break;
252b5132 13107
c0ebe874 13108 case M_SGE: /* X >= Y <==> not (X < Y) */
252b5132
RH
13109 s = "slt";
13110 goto sge;
13111 case M_SGEU:
13112 s = "sltu";
13113 sge:
c0ebe874
RS
13114 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13115 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13116 break;
252b5132 13117
c0ebe874 13118 case M_SGE_I: /* X >= I <==> not (X < I) */
252b5132 13119 case M_SGEU_I:
b0e6f033 13120 if (imm_expr.X_add_number >= -0x8000
252b5132 13121 && imm_expr.X_add_number < 0x8000)
c0ebe874
RS
13122 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13123 op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
13124 else
13125 {
bad1aba3 13126 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 13127 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
c0ebe874 13128 op[0], op[1], AT);
252b5132
RH
13129 used_at = 1;
13130 }
c0ebe874 13131 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13132 break;
252b5132 13133
c0ebe874 13134 case M_SGT: /* X > Y <==> Y < X */
252b5132
RH
13135 s = "slt";
13136 goto sgt;
13137 case M_SGTU:
13138 s = "sltu";
13139 sgt:
c0ebe874 13140 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
8fc2e39e 13141 break;
252b5132 13142
c0ebe874 13143 case M_SGT_I: /* X > I <==> I < X */
252b5132
RH
13144 s = "slt";
13145 goto sgti;
13146 case M_SGTU_I:
13147 s = "sltu";
13148 sgti:
8fc2e39e 13149 used_at = 1;
bad1aba3 13150 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13151 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
252b5132
RH
13152 break;
13153
c0ebe874 13154 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
252b5132
RH
13155 s = "slt";
13156 goto sle;
13157 case M_SLEU:
13158 s = "sltu";
13159 sle:
c0ebe874
RS
13160 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13161 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13162 break;
252b5132 13163
c0ebe874 13164 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
252b5132
RH
13165 s = "slt";
13166 goto slei;
13167 case M_SLEU_I:
13168 s = "sltu";
13169 slei:
8fc2e39e 13170 used_at = 1;
bad1aba3 13171 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874
RS
13172 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13173 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
252b5132
RH
13174 break;
13175
13176 case M_SLT_I:
b0e6f033 13177 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
13178 && imm_expr.X_add_number < 0x8000)
13179 {
c0ebe874
RS
13180 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13181 BFD_RELOC_LO16);
8fc2e39e 13182 break;
252b5132 13183 }
8fc2e39e 13184 used_at = 1;
bad1aba3 13185 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13186 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
252b5132
RH
13187 break;
13188
13189 case M_SLTU_I:
b0e6f033 13190 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
13191 && imm_expr.X_add_number < 0x8000)
13192 {
c0ebe874 13193 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
17a2f251 13194 BFD_RELOC_LO16);
8fc2e39e 13195 break;
252b5132 13196 }
8fc2e39e 13197 used_at = 1;
bad1aba3 13198 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13199 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
252b5132
RH
13200 break;
13201
13202 case M_SNE:
c0ebe874
RS
13203 if (op[1] == 0)
13204 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13205 else if (op[2] == 0)
13206 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
252b5132
RH
13207 else
13208 {
c0ebe874
RS
13209 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13210 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
252b5132 13211 }
8fc2e39e 13212 break;
252b5132
RH
13213
13214 case M_SNE_I:
b0e6f033 13215 if (imm_expr.X_add_number == 0)
252b5132 13216 {
c0ebe874 13217 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
8fc2e39e 13218 break;
252b5132 13219 }
c0ebe874 13220 if (op[1] == 0)
252b5132 13221 {
1661c76c 13222 as_warn (_("instruction %s: result is always true"),
252b5132 13223 ip->insn_mo->name);
bad1aba3 13224 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
c0ebe874 13225 op[0], 0, BFD_RELOC_LO16);
8fc2e39e 13226 break;
252b5132 13227 }
dd3cbb7e
NC
13228 if (CPU_HAS_SEQ (mips_opts.arch)
13229 && -512 <= imm_expr.X_add_number
13230 && imm_expr.X_add_number < 512)
13231 {
c0ebe874 13232 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
750bdd57 13233 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13234 break;
13235 }
b0e6f033 13236 if (imm_expr.X_add_number >= 0
252b5132
RH
13237 && imm_expr.X_add_number < 0x10000)
13238 {
c0ebe874
RS
13239 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13240 BFD_RELOC_LO16);
252b5132 13241 }
b0e6f033 13242 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13243 && imm_expr.X_add_number < 0)
13244 {
13245 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13246 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13247 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13248 }
dd3cbb7e
NC
13249 else if (CPU_HAS_SEQ (mips_opts.arch))
13250 {
13251 used_at = 1;
bad1aba3 13252 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13253 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13254 break;
13255 }
252b5132
RH
13256 else
13257 {
bad1aba3 13258 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13259 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13260 used_at = 1;
13261 }
c0ebe874 13262 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
8fc2e39e 13263 break;
252b5132 13264
df58fc94
RS
13265 case M_SUB_I:
13266 s = "addi";
13267 s2 = "sub";
13268 goto do_subi;
13269 case M_SUBU_I:
13270 s = "addiu";
13271 s2 = "subu";
13272 goto do_subi;
252b5132
RH
13273 case M_DSUB_I:
13274 dbl = 1;
df58fc94
RS
13275 s = "daddi";
13276 s2 = "dsub";
13277 if (!mips_opts.micromips)
13278 goto do_subi;
b0e6f033 13279 if (imm_expr.X_add_number > -0x200
df58fc94 13280 && imm_expr.X_add_number <= 0x200)
252b5132 13281 {
b0e6f033
RS
13282 macro_build (NULL, s, "t,r,.", op[0], op[1],
13283 (int) -imm_expr.X_add_number);
8fc2e39e 13284 break;
252b5132 13285 }
df58fc94 13286 goto do_subi_i;
252b5132
RH
13287 case M_DSUBU_I:
13288 dbl = 1;
df58fc94
RS
13289 s = "daddiu";
13290 s2 = "dsubu";
13291 do_subi:
b0e6f033 13292 if (imm_expr.X_add_number > -0x8000
252b5132
RH
13293 && imm_expr.X_add_number <= 0x8000)
13294 {
13295 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13296 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13297 break;
252b5132 13298 }
df58fc94 13299 do_subi_i:
8fc2e39e 13300 used_at = 1;
67c0d1eb 13301 load_register (AT, &imm_expr, dbl);
c0ebe874 13302 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
13303 break;
13304
13305 case M_TEQ_I:
13306 s = "teq";
13307 goto trap;
13308 case M_TGE_I:
13309 s = "tge";
13310 goto trap;
13311 case M_TGEU_I:
13312 s = "tgeu";
13313 goto trap;
13314 case M_TLT_I:
13315 s = "tlt";
13316 goto trap;
13317 case M_TLTU_I:
13318 s = "tltu";
13319 goto trap;
13320 case M_TNE_I:
13321 s = "tne";
13322 trap:
8fc2e39e 13323 used_at = 1;
bad1aba3 13324 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13325 macro_build (NULL, s, "s,t", op[0], AT);
252b5132
RH
13326 break;
13327
252b5132 13328 case M_TRUNCWS:
43841e91 13329 case M_TRUNCWD:
df58fc94 13330 gas_assert (!mips_opts.micromips);
0aa27725 13331 gas_assert (mips_opts.isa == ISA_MIPS1);
8fc2e39e 13332 used_at = 1;
252b5132
RH
13333
13334 /*
13335 * Is the double cfc1 instruction a bug in the mips assembler;
13336 * or is there a reason for it?
13337 */
7d10b47d 13338 start_noreorder ();
c0ebe874
RS
13339 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13340 macro_build (NULL, "cfc1", "t,G", op[2], RA);
67c0d1eb 13341 macro_build (NULL, "nop", "");
252b5132 13342 expr1.X_add_number = 3;
c0ebe874 13343 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
252b5132 13344 expr1.X_add_number = 2;
67c0d1eb
RS
13345 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13346 macro_build (NULL, "ctc1", "t,G", AT, RA);
13347 macro_build (NULL, "nop", "");
13348 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
c0ebe874
RS
13349 op[0], op[1]);
13350 macro_build (NULL, "ctc1", "t,G", op[2], RA);
67c0d1eb 13351 macro_build (NULL, "nop", "");
7d10b47d 13352 end_noreorder ();
252b5132
RH
13353 break;
13354
f2ae14a1 13355 case M_ULH_AB:
252b5132 13356 s = "lb";
df58fc94
RS
13357 s2 = "lbu";
13358 off = 1;
13359 goto uld_st;
f2ae14a1 13360 case M_ULHU_AB:
252b5132 13361 s = "lbu";
df58fc94
RS
13362 s2 = "lbu";
13363 off = 1;
13364 goto uld_st;
f2ae14a1 13365 case M_ULW_AB:
df58fc94
RS
13366 s = "lwl";
13367 s2 = "lwr";
7f3c4072 13368 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13369 off = 3;
13370 goto uld_st;
f2ae14a1 13371 case M_ULD_AB:
252b5132
RH
13372 s = "ldl";
13373 s2 = "ldr";
7f3c4072 13374 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13375 off = 7;
df58fc94 13376 goto uld_st;
f2ae14a1 13377 case M_USH_AB:
df58fc94
RS
13378 s = "sb";
13379 s2 = "sb";
13380 off = 1;
13381 ust = 1;
13382 goto uld_st;
f2ae14a1 13383 case M_USW_AB:
df58fc94
RS
13384 s = "swl";
13385 s2 = "swr";
7f3c4072 13386 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13387 off = 3;
df58fc94
RS
13388 ust = 1;
13389 goto uld_st;
f2ae14a1 13390 case M_USD_AB:
df58fc94
RS
13391 s = "sdl";
13392 s2 = "sdr";
7f3c4072 13393 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13394 off = 7;
13395 ust = 1;
13396
13397 uld_st:
c0ebe874 13398 breg = op[2];
f2ae14a1 13399 large_offset = !small_offset_p (off, align, offbits);
df58fc94
RS
13400 ep = &offset_expr;
13401 expr1.X_add_number = 0;
f2ae14a1 13402 if (large_offset)
df58fc94
RS
13403 {
13404 used_at = 1;
13405 tempreg = AT;
f2ae14a1
RS
13406 if (small_offset_p (0, align, 16))
13407 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13408 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13409 else
13410 {
13411 load_address (tempreg, ep, &used_at);
13412 if (breg != 0)
13413 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13414 tempreg, tempreg, breg);
13415 }
13416 offset_reloc[0] = BFD_RELOC_LO16;
13417 offset_reloc[1] = BFD_RELOC_UNUSED;
13418 offset_reloc[2] = BFD_RELOC_UNUSED;
df58fc94 13419 breg = tempreg;
c0ebe874 13420 tempreg = op[0];
df58fc94
RS
13421 ep = &expr1;
13422 }
c0ebe874 13423 else if (!ust && op[0] == breg)
8fc2e39e
TS
13424 {
13425 used_at = 1;
13426 tempreg = AT;
13427 }
252b5132 13428 else
c0ebe874 13429 tempreg = op[0];
af22f5b2 13430
df58fc94
RS
13431 if (off == 1)
13432 goto ulh_sh;
252b5132 13433
90ecf173 13434 if (!target_big_endian)
df58fc94 13435 ep->X_add_number += off;
f2ae14a1 13436 if (offbits == 12)
c8276761 13437 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13438 else
13439 macro_build (ep, s, "t,o(b)", tempreg, -1,
13440 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94 13441
90ecf173 13442 if (!target_big_endian)
df58fc94 13443 ep->X_add_number -= off;
252b5132 13444 else
df58fc94 13445 ep->X_add_number += off;
f2ae14a1 13446 if (offbits == 12)
df58fc94 13447 macro_build (NULL, s2, "t,~(b)",
c8276761 13448 tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13449 else
13450 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13451 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13452
df58fc94 13453 /* If necessary, move the result in tempreg to the final destination. */
c0ebe874 13454 if (!ust && op[0] != tempreg)
df58fc94
RS
13455 {
13456 /* Protect second load's delay slot. */
13457 load_delay_nop ();
c0ebe874 13458 move_register (op[0], tempreg);
df58fc94 13459 }
8fc2e39e 13460 break;
252b5132 13461
df58fc94 13462 ulh_sh:
d6bc6245 13463 used_at = 1;
df58fc94
RS
13464 if (target_big_endian == ust)
13465 ep->X_add_number += off;
c0ebe874 13466 tempreg = ust || large_offset ? op[0] : AT;
f2ae14a1
RS
13467 macro_build (ep, s, "t,o(b)", tempreg, -1,
13468 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94
RS
13469
13470 /* For halfword transfers we need a temporary register to shuffle
13471 bytes. Unfortunately for M_USH_A we have none available before
13472 the next store as AT holds the base address. We deal with this
13473 case by clobbering TREG and then restoring it as with ULH. */
c0ebe874 13474 tempreg = ust == large_offset ? op[0] : AT;
df58fc94 13475 if (ust)
c0ebe874 13476 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
df58fc94
RS
13477
13478 if (target_big_endian == ust)
13479 ep->X_add_number -= off;
252b5132 13480 else
df58fc94 13481 ep->X_add_number += off;
f2ae14a1
RS
13482 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13483 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13484
df58fc94 13485 /* For M_USH_A re-retrieve the LSB. */
f2ae14a1 13486 if (ust && large_offset)
df58fc94
RS
13487 {
13488 if (target_big_endian)
13489 ep->X_add_number += off;
13490 else
13491 ep->X_add_number -= off;
f2ae14a1
RS
13492 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13493 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
df58fc94
RS
13494 }
13495 /* For ULH and M_USH_A OR the LSB in. */
f2ae14a1 13496 if (!ust || large_offset)
df58fc94 13497 {
c0ebe874 13498 tempreg = !large_offset ? AT : op[0];
df58fc94 13499 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
c0ebe874 13500 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
df58fc94 13501 }
252b5132
RH
13502 break;
13503
13504 default:
13505 /* FIXME: Check if this is one of the itbl macros, since they
bdaaa2e1 13506 are added dynamically. */
1661c76c 13507 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
252b5132
RH
13508 break;
13509 }
741fe287 13510 if (!mips_opts.at && used_at)
1661c76c 13511 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
13512}
13513
13514/* Implement macros in mips16 mode. */
13515
13516static void
17a2f251 13517mips16_macro (struct mips_cl_insn *ip)
252b5132 13518{
c0ebe874 13519 const struct mips_operand_array *operands;
252b5132 13520 int mask;
c0ebe874 13521 int tmp;
252b5132
RH
13522 expressionS expr1;
13523 int dbl;
13524 const char *s, *s2, *s3;
c0ebe874
RS
13525 unsigned int op[MAX_OPERANDS];
13526 unsigned int i;
252b5132
RH
13527
13528 mask = ip->insn_mo->mask;
13529
c0ebe874
RS
13530 operands = insn_operands (ip);
13531 for (i = 0; i < MAX_OPERANDS; i++)
13532 if (operands->operand[i])
13533 op[i] = insn_extract_operand (ip, operands->operand[i]);
13534 else
13535 op[i] = -1;
252b5132 13536
252b5132
RH
13537 expr1.X_op = O_constant;
13538 expr1.X_op_symbol = NULL;
13539 expr1.X_add_symbol = NULL;
13540 expr1.X_add_number = 1;
13541
13542 dbl = 0;
13543
13544 switch (mask)
13545 {
13546 default:
b37df7c4 13547 abort ();
252b5132
RH
13548
13549 case M_DDIV_3:
13550 dbl = 1;
1a0670f3 13551 /* Fall through. */
252b5132
RH
13552 case M_DIV_3:
13553 s = "mflo";
13554 goto do_div3;
13555 case M_DREM_3:
13556 dbl = 1;
1a0670f3 13557 /* Fall through. */
252b5132
RH
13558 case M_REM_3:
13559 s = "mfhi";
13560 do_div3:
7d10b47d 13561 start_noreorder ();
d8722d76 13562 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
252b5132 13563 expr1.X_add_number = 2;
c0ebe874 13564 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13565 macro_build (NULL, "break", "6", 7);
bdaaa2e1 13566
252b5132
RH
13567 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13568 since that causes an overflow. We should do that as well,
13569 but I don't see how to do the comparisons without a temporary
13570 register. */
7d10b47d 13571 end_noreorder ();
c0ebe874 13572 macro_build (NULL, s, "x", op[0]);
252b5132
RH
13573 break;
13574
13575 case M_DIVU_3:
13576 s = "divu";
13577 s2 = "mflo";
13578 goto do_divu3;
13579 case M_REMU_3:
13580 s = "divu";
13581 s2 = "mfhi";
13582 goto do_divu3;
13583 case M_DDIVU_3:
13584 s = "ddivu";
13585 s2 = "mflo";
13586 goto do_divu3;
13587 case M_DREMU_3:
13588 s = "ddivu";
13589 s2 = "mfhi";
13590 do_divu3:
7d10b47d 13591 start_noreorder ();
d8722d76 13592 macro_build (NULL, s, ".,x,y", op[1], op[2]);
252b5132 13593 expr1.X_add_number = 2;
c0ebe874 13594 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13595 macro_build (NULL, "break", "6", 7);
7d10b47d 13596 end_noreorder ();
c0ebe874 13597 macro_build (NULL, s2, "x", op[0]);
252b5132
RH
13598 break;
13599
13600 case M_DMUL:
13601 dbl = 1;
1a0670f3 13602 /* Fall through. */
252b5132 13603 case M_MUL:
c0ebe874
RS
13604 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13605 macro_build (NULL, "mflo", "x", op[0]);
8fc2e39e 13606 break;
252b5132
RH
13607
13608 case M_DSUBU_I:
13609 dbl = 1;
13610 goto do_subu;
13611 case M_SUBU_I:
13612 do_subu:
252b5132 13613 imm_expr.X_add_number = -imm_expr.X_add_number;
d8722d76 13614 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
252b5132
RH
13615 break;
13616
13617 case M_SUBU_I_2:
252b5132 13618 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13619 macro_build (&imm_expr, "addiu", "x,k", op[0]);
252b5132
RH
13620 break;
13621
13622 case M_DSUBU_I_2:
252b5132 13623 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13624 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
252b5132
RH
13625 break;
13626
13627 case M_BEQ:
13628 s = "cmp";
13629 s2 = "bteqz";
13630 goto do_branch;
13631 case M_BNE:
13632 s = "cmp";
13633 s2 = "btnez";
13634 goto do_branch;
13635 case M_BLT:
13636 s = "slt";
13637 s2 = "btnez";
13638 goto do_branch;
13639 case M_BLTU:
13640 s = "sltu";
13641 s2 = "btnez";
13642 goto do_branch;
13643 case M_BLE:
13644 s = "slt";
13645 s2 = "bteqz";
13646 goto do_reverse_branch;
13647 case M_BLEU:
13648 s = "sltu";
13649 s2 = "bteqz";
13650 goto do_reverse_branch;
13651 case M_BGE:
13652 s = "slt";
13653 s2 = "bteqz";
13654 goto do_branch;
13655 case M_BGEU:
13656 s = "sltu";
13657 s2 = "bteqz";
13658 goto do_branch;
13659 case M_BGT:
13660 s = "slt";
13661 s2 = "btnez";
13662 goto do_reverse_branch;
13663 case M_BGTU:
13664 s = "sltu";
13665 s2 = "btnez";
13666
13667 do_reverse_branch:
c0ebe874
RS
13668 tmp = op[1];
13669 op[1] = op[0];
13670 op[0] = tmp;
252b5132
RH
13671
13672 do_branch:
c0ebe874 13673 macro_build (NULL, s, "x,y", op[0], op[1]);
67c0d1eb 13674 macro_build (&offset_expr, s2, "p");
252b5132
RH
13675 break;
13676
13677 case M_BEQ_I:
13678 s = "cmpi";
13679 s2 = "bteqz";
13680 s3 = "x,U";
13681 goto do_branch_i;
13682 case M_BNE_I:
13683 s = "cmpi";
13684 s2 = "btnez";
13685 s3 = "x,U";
13686 goto do_branch_i;
13687 case M_BLT_I:
13688 s = "slti";
13689 s2 = "btnez";
13690 s3 = "x,8";
13691 goto do_branch_i;
13692 case M_BLTU_I:
13693 s = "sltiu";
13694 s2 = "btnez";
13695 s3 = "x,8";
13696 goto do_branch_i;
13697 case M_BLE_I:
13698 s = "slti";
13699 s2 = "btnez";
13700 s3 = "x,8";
13701 goto do_addone_branch_i;
13702 case M_BLEU_I:
13703 s = "sltiu";
13704 s2 = "btnez";
13705 s3 = "x,8";
13706 goto do_addone_branch_i;
13707 case M_BGE_I:
13708 s = "slti";
13709 s2 = "bteqz";
13710 s3 = "x,8";
13711 goto do_branch_i;
13712 case M_BGEU_I:
13713 s = "sltiu";
13714 s2 = "bteqz";
13715 s3 = "x,8";
13716 goto do_branch_i;
13717 case M_BGT_I:
13718 s = "slti";
13719 s2 = "bteqz";
13720 s3 = "x,8";
13721 goto do_addone_branch_i;
13722 case M_BGTU_I:
13723 s = "sltiu";
13724 s2 = "bteqz";
13725 s3 = "x,8";
13726
13727 do_addone_branch_i:
252b5132
RH
13728 ++imm_expr.X_add_number;
13729
13730 do_branch_i:
c0ebe874 13731 macro_build (&imm_expr, s, s3, op[0]);
67c0d1eb 13732 macro_build (&offset_expr, s2, "p");
252b5132
RH
13733 break;
13734
13735 case M_ABS:
13736 expr1.X_add_number = 0;
c0ebe874
RS
13737 macro_build (&expr1, "slti", "x,8", op[1]);
13738 if (op[0] != op[1])
13739 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
252b5132 13740 expr1.X_add_number = 2;
67c0d1eb 13741 macro_build (&expr1, "bteqz", "p");
c0ebe874 13742 macro_build (NULL, "neg", "x,w", op[0], op[0]);
0acfaea6 13743 break;
252b5132
RH
13744 }
13745}
13746
14daeee3
RS
13747/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13748 opcode bits in *OPCODE_EXTRA. */
13749
13750static struct mips_opcode *
13751mips_lookup_insn (struct hash_control *hash, const char *start,
da8bca91 13752 ssize_t length, unsigned int *opcode_extra)
14daeee3
RS
13753{
13754 char *name, *dot, *p;
13755 unsigned int mask, suffix;
da8bca91 13756 ssize_t opend;
14daeee3
RS
13757 struct mips_opcode *insn;
13758
13759 /* Make a copy of the instruction so that we can fiddle with it. */
4ec9d7d5 13760 name = xstrndup (start, length);
14daeee3
RS
13761
13762 /* Look up the instruction as-is. */
13763 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13764 if (insn)
e1fa0163 13765 goto end;
14daeee3
RS
13766
13767 dot = strchr (name, '.');
13768 if (dot && dot[1])
13769 {
13770 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13771 p = mips_parse_vu0_channels (dot + 1, &mask);
13772 if (*p == 0 && mask != 0)
13773 {
13774 *dot = 0;
13775 insn = (struct mips_opcode *) hash_find (hash, name);
13776 *dot = '.';
13777 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13778 {
13779 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
e1fa0163 13780 goto end;
14daeee3
RS
13781 }
13782 }
13783 }
13784
13785 if (mips_opts.micromips)
13786 {
13787 /* See if there's an instruction size override suffix,
13788 either `16' or `32', at the end of the mnemonic proper,
13789 that defines the operation, i.e. before the first `.'
13790 character if any. Strip it and retry. */
13791 opend = dot != NULL ? dot - name : length;
13792 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13793 suffix = 2;
13794 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13795 suffix = 4;
13796 else
13797 suffix = 0;
13798 if (suffix)
13799 {
13800 memcpy (name + opend - 2, name + opend, length - opend + 1);
13801 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13802 if (insn)
14daeee3
RS
13803 {
13804 forced_insn_length = suffix;
e1fa0163 13805 goto end;
14daeee3
RS
13806 }
13807 }
13808 }
13809
e1fa0163
NC
13810 insn = NULL;
13811 end:
13812 free (name);
13813 return insn;
14daeee3
RS
13814}
13815
77bd4346 13816/* Assemble an instruction into its binary format. If the instruction
e423441d
RS
13817 is a macro, set imm_expr and offset_expr to the values associated
13818 with "I" and "A" operands respectively. Otherwise store the value
13819 of the relocatable field (if any) in offset_expr. In both cases
13820 set offset_reloc to the relocation operators applied to offset_expr. */
252b5132
RH
13821
13822static void
60f20e8b 13823mips_ip (char *str, struct mips_cl_insn *insn)
252b5132 13824{
60f20e8b 13825 const struct mips_opcode *first, *past;
df58fc94 13826 struct hash_control *hash;
a92713e6 13827 char format;
14daeee3 13828 size_t end;
a92713e6 13829 struct mips_operand_token *tokens;
14daeee3 13830 unsigned int opcode_extra;
252b5132 13831
df58fc94
RS
13832 if (mips_opts.micromips)
13833 {
13834 hash = micromips_op_hash;
13835 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13836 }
13837 else
13838 {
13839 hash = op_hash;
13840 past = &mips_opcodes[NUMOPCODES];
13841 }
13842 forced_insn_length = 0;
14daeee3 13843 opcode_extra = 0;
252b5132 13844
df58fc94 13845 /* We first try to match an instruction up to a space or to the end. */
a40bc9dd
RS
13846 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13847 continue;
bdaaa2e1 13848
60f20e8b
RS
13849 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13850 if (first == NULL)
252b5132 13851 {
1661c76c 13852 set_insn_error (0, _("unrecognized opcode"));
a40bc9dd 13853 return;
252b5132
RH
13854 }
13855
60f20e8b 13856 if (strcmp (first->name, "li.s") == 0)
a92713e6 13857 format = 'f';
60f20e8b 13858 else if (strcmp (first->name, "li.d") == 0)
a92713e6
RS
13859 format = 'd';
13860 else
13861 format = 0;
13862 tokens = mips_parse_arguments (str + end, format);
13863 if (!tokens)
13864 return;
13865
60f20e8b
RS
13866 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13867 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
1661c76c 13868 set_insn_error (0, _("invalid operands"));
df58fc94 13869
e3de51ce 13870 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13871}
13872
77bd4346
RS
13873/* As for mips_ip, but used when assembling MIPS16 code.
13874 Also set forced_insn_length to the resulting instruction size in
13875 bytes if the user explicitly requested a small or extended instruction. */
252b5132
RH
13876
13877static void
60f20e8b 13878mips16_ip (char *str, struct mips_cl_insn *insn)
252b5132 13879{
1a00e612 13880 char *end, *s, c;
60f20e8b 13881 struct mips_opcode *first;
a92713e6 13882 struct mips_operand_token *tokens;
3fb49709 13883 unsigned int l;
252b5132 13884
3882b010 13885 for (s = str; ISLOWER (*s); ++s)
252b5132 13886 ;
1a00e612
RS
13887 end = s;
13888 c = *end;
3fb49709
MR
13889
13890 l = 0;
1a00e612 13891 switch (c)
252b5132
RH
13892 {
13893 case '\0':
13894 break;
13895
13896 case ' ':
1a00e612 13897 s++;
252b5132
RH
13898 break;
13899
13900 case '.':
3fb49709
MR
13901 s++;
13902 if (*s == 't')
252b5132 13903 {
3fb49709
MR
13904 l = 2;
13905 s++;
252b5132 13906 }
3fb49709 13907 else if (*s == 'e')
252b5132 13908 {
3fb49709
MR
13909 l = 4;
13910 s++;
252b5132 13911 }
3fb49709
MR
13912 if (*s == '\0')
13913 break;
13914 else if (*s++ == ' ')
13915 break;
252b5132
RH
13916 /* Fall through. */
13917 default:
1661c76c 13918 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13919 return;
13920 }
3fb49709 13921 forced_insn_length = l;
252b5132 13922
1a00e612 13923 *end = 0;
60f20e8b 13924 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
1a00e612
RS
13925 *end = c;
13926
60f20e8b 13927 if (!first)
252b5132 13928 {
1661c76c 13929 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13930 return;
13931 }
13932
a92713e6
RS
13933 tokens = mips_parse_arguments (s, 0);
13934 if (!tokens)
13935 return;
13936
60f20e8b 13937 if (!match_mips16_insns (insn, first, tokens))
1661c76c 13938 set_insn_error (0, _("invalid operands"));
252b5132 13939
e3de51ce 13940 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13941}
13942
b886a2ab
RS
13943/* Marshal immediate value VAL for an extended MIPS16 instruction.
13944 NBITS is the number of significant bits in VAL. */
13945
13946static unsigned long
13947mips16_immed_extend (offsetT val, unsigned int nbits)
13948{
13949 int extval;
13950 if (nbits == 16)
13951 {
13952 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13953 val &= 0x1f;
13954 }
13955 else if (nbits == 15)
13956 {
13957 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13958 val &= 0xf;
13959 }
13960 else
13961 {
13962 extval = ((val & 0x1f) << 6) | (val & 0x20);
13963 val = 0;
13964 }
13965 return (extval << 16) | val;
13966}
13967
3ccad066
RS
13968/* Like decode_mips16_operand, but require the operand to be defined and
13969 require it to be an integer. */
13970
13971static const struct mips_int_operand *
13972mips16_immed_operand (int type, bfd_boolean extended_p)
13973{
13974 const struct mips_operand *operand;
13975
13976 operand = decode_mips16_operand (type, extended_p);
13977 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13978 abort ();
13979 return (const struct mips_int_operand *) operand;
13980}
13981
13982/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13983
13984static bfd_boolean
13985mips16_immed_in_range_p (const struct mips_int_operand *operand,
13986 bfd_reloc_code_real_type reloc, offsetT sval)
13987{
13988 int min_val, max_val;
13989
13990 min_val = mips_int_operand_min (operand);
13991 max_val = mips_int_operand_max (operand);
13992 if (reloc != BFD_RELOC_UNUSED)
13993 {
13994 if (min_val < 0)
13995 sval = SEXT_16BIT (sval);
13996 else
13997 sval &= 0xffff;
13998 }
13999
14000 return (sval >= min_val
14001 && sval <= max_val
14002 && (sval & ((1 << operand->shift) - 1)) == 0);
14003}
14004
5c04167a
RS
14005/* Install immediate value VAL into MIPS16 instruction *INSN,
14006 extending it if necessary. The instruction in *INSN may
14007 already be extended.
14008
43c0598f
RS
14009 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14010 if none. In the former case, VAL is a 16-bit number with no
14011 defined signedness.
14012
14013 TYPE is the type of the immediate field. USER_INSN_LENGTH
14014 is the length that the user requested, or 0 if none. */
252b5132
RH
14015
14016static void
3b4dbbbf 14017mips16_immed (const char *file, unsigned int line, int type,
43c0598f 14018 bfd_reloc_code_real_type reloc, offsetT val,
5c04167a 14019 unsigned int user_insn_length, unsigned long *insn)
252b5132 14020{
3ccad066
RS
14021 const struct mips_int_operand *operand;
14022 unsigned int uval, length;
252b5132 14023
3ccad066
RS
14024 operand = mips16_immed_operand (type, FALSE);
14025 if (!mips16_immed_in_range_p (operand, reloc, val))
5c04167a
RS
14026 {
14027 /* We need an extended instruction. */
14028 if (user_insn_length == 2)
14029 as_bad_where (file, line, _("invalid unextended operand value"));
14030 else
14031 *insn |= MIPS16_EXTEND;
14032 }
14033 else if (user_insn_length == 4)
14034 {
14035 /* The operand doesn't force an unextended instruction to be extended.
14036 Warn if the user wanted an extended instruction anyway. */
14037 *insn |= MIPS16_EXTEND;
14038 as_warn_where (file, line,
14039 _("extended operand requested but not required"));
14040 }
252b5132 14041
3ccad066
RS
14042 length = mips16_opcode_length (*insn);
14043 if (length == 4)
252b5132 14044 {
3ccad066
RS
14045 operand = mips16_immed_operand (type, TRUE);
14046 if (!mips16_immed_in_range_p (operand, reloc, val))
14047 as_bad_where (file, line,
14048 _("operand value out of range for instruction"));
252b5132 14049 }
3ccad066 14050 uval = ((unsigned int) val >> operand->shift) - operand->bias;
bdd15286 14051 if (length == 2 || operand->root.lsb != 0)
3ccad066 14052 *insn = mips_insert_operand (&operand->root, *insn, uval);
252b5132 14053 else
3ccad066 14054 *insn |= mips16_immed_extend (uval, operand->root.size);
252b5132
RH
14055}
14056\f
d6f16593 14057struct percent_op_match
ad8d3bb3 14058{
5e0116d5
RS
14059 const char *str;
14060 bfd_reloc_code_real_type reloc;
d6f16593
MR
14061};
14062
14063static const struct percent_op_match mips_percent_op[] =
ad8d3bb3 14064{
5e0116d5 14065 {"%lo", BFD_RELOC_LO16},
5e0116d5
RS
14066 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14067 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14068 {"%call16", BFD_RELOC_MIPS_CALL16},
14069 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14070 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14071 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14072 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14073 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14074 {"%got", BFD_RELOC_MIPS_GOT16},
14075 {"%gp_rel", BFD_RELOC_GPREL16},
14076 {"%half", BFD_RELOC_16},
14077 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14078 {"%higher", BFD_RELOC_MIPS_HIGHER},
14079 {"%neg", BFD_RELOC_MIPS_SUB},
3f98094e
DJ
14080 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14081 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14082 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14083 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14084 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14085 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14086 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
7361da2c
AB
14087 {"%hi", BFD_RELOC_HI16_S},
14088 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14089 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
ad8d3bb3
TS
14090};
14091
d6f16593
MR
14092static const struct percent_op_match mips16_percent_op[] =
14093{
14094 {"%lo", BFD_RELOC_MIPS16_LO16},
14095 {"%gprel", BFD_RELOC_MIPS16_GPREL},
738e5348
RS
14096 {"%got", BFD_RELOC_MIPS16_GOT16},
14097 {"%call16", BFD_RELOC_MIPS16_CALL16},
d0f13682
CLT
14098 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14099 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14100 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14101 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14102 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14103 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14104 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14105 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
d6f16593
MR
14106};
14107
252b5132 14108
5e0116d5
RS
14109/* Return true if *STR points to a relocation operator. When returning true,
14110 move *STR over the operator and store its relocation code in *RELOC.
14111 Leave both *STR and *RELOC alone when returning false. */
14112
14113static bfd_boolean
17a2f251 14114parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
252b5132 14115{
d6f16593
MR
14116 const struct percent_op_match *percent_op;
14117 size_t limit, i;
14118
14119 if (mips_opts.mips16)
14120 {
14121 percent_op = mips16_percent_op;
14122 limit = ARRAY_SIZE (mips16_percent_op);
14123 }
14124 else
14125 {
14126 percent_op = mips_percent_op;
14127 limit = ARRAY_SIZE (mips_percent_op);
14128 }
76b3015f 14129
d6f16593 14130 for (i = 0; i < limit; i++)
5e0116d5 14131 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
394f9b3a 14132 {
3f98094e
DJ
14133 int len = strlen (percent_op[i].str);
14134
14135 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14136 continue;
14137
5e0116d5
RS
14138 *str += strlen (percent_op[i].str);
14139 *reloc = percent_op[i].reloc;
394f9b3a 14140
5e0116d5
RS
14141 /* Check whether the output BFD supports this relocation.
14142 If not, issue an error and fall back on something safe. */
14143 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
394f9b3a 14144 {
20203fb9 14145 as_bad (_("relocation %s isn't supported by the current ABI"),
5e0116d5 14146 percent_op[i].str);
01a3f561 14147 *reloc = BFD_RELOC_UNUSED;
394f9b3a 14148 }
5e0116d5 14149 return TRUE;
394f9b3a 14150 }
5e0116d5 14151 return FALSE;
394f9b3a 14152}
ad8d3bb3 14153
ad8d3bb3 14154
5e0116d5
RS
14155/* Parse string STR as a 16-bit relocatable operand. Store the
14156 expression in *EP and the relocations in the array starting
14157 at RELOC. Return the number of relocation operators used.
ad8d3bb3 14158
01a3f561 14159 On exit, EXPR_END points to the first character after the expression. */
ad8d3bb3 14160
5e0116d5 14161static size_t
17a2f251
TS
14162my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14163 char *str)
ad8d3bb3 14164{
5e0116d5
RS
14165 bfd_reloc_code_real_type reversed_reloc[3];
14166 size_t reloc_index, i;
09b8f35a
RS
14167 int crux_depth, str_depth;
14168 char *crux;
5e0116d5
RS
14169
14170 /* Search for the start of the main expression, recoding relocations
09b8f35a
RS
14171 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14172 of the main expression and with CRUX_DEPTH containing the number
14173 of open brackets at that point. */
14174 reloc_index = -1;
14175 str_depth = 0;
14176 do
fb1b3232 14177 {
09b8f35a
RS
14178 reloc_index++;
14179 crux = str;
14180 crux_depth = str_depth;
14181
14182 /* Skip over whitespace and brackets, keeping count of the number
14183 of brackets. */
14184 while (*str == ' ' || *str == '\t' || *str == '(')
14185 if (*str++ == '(')
14186 str_depth++;
5e0116d5 14187 }
09b8f35a
RS
14188 while (*str == '%'
14189 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14190 && parse_relocation (&str, &reversed_reloc[reloc_index]));
ad8d3bb3 14191
09b8f35a 14192 my_getExpression (ep, crux);
5e0116d5 14193 str = expr_end;
394f9b3a 14194
5e0116d5 14195 /* Match every open bracket. */
09b8f35a 14196 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
5e0116d5 14197 if (*str++ == ')')
09b8f35a 14198 crux_depth--;
394f9b3a 14199
09b8f35a 14200 if (crux_depth > 0)
20203fb9 14201 as_bad (_("unclosed '('"));
394f9b3a 14202
5e0116d5 14203 expr_end = str;
252b5132 14204
01a3f561 14205 if (reloc_index != 0)
64bdfcaf
RS
14206 {
14207 prev_reloc_op_frag = frag_now;
14208 for (i = 0; i < reloc_index; i++)
14209 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14210 }
fb1b3232 14211
5e0116d5 14212 return reloc_index;
252b5132
RH
14213}
14214
14215static void
17a2f251 14216my_getExpression (expressionS *ep, char *str)
252b5132
RH
14217{
14218 char *save_in;
14219
14220 save_in = input_line_pointer;
14221 input_line_pointer = str;
14222 expression (ep);
14223 expr_end = input_line_pointer;
14224 input_line_pointer = save_in;
252b5132
RH
14225}
14226
6d4af3c2 14227const char *
17a2f251 14228md_atof (int type, char *litP, int *sizeP)
252b5132 14229{
499ac353 14230 return ieee_md_atof (type, litP, sizeP, target_big_endian);
252b5132
RH
14231}
14232
14233void
17a2f251 14234md_number_to_chars (char *buf, valueT val, int n)
252b5132
RH
14235{
14236 if (target_big_endian)
14237 number_to_chars_bigendian (buf, val, n);
14238 else
14239 number_to_chars_littleendian (buf, val, n);
14240}
14241\f
e013f690
TS
14242static int support_64bit_objects(void)
14243{
14244 const char **list, **l;
aa3d8fdf 14245 int yes;
e013f690
TS
14246
14247 list = bfd_target_list ();
14248 for (l = list; *l != NULL; l++)
aeffff67
RS
14249 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14250 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
e013f690 14251 break;
aa3d8fdf 14252 yes = (*l != NULL);
e013f690 14253 free (list);
aa3d8fdf 14254 return yes;
e013f690
TS
14255}
14256
316f5878
RS
14257/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14258 NEW_VALUE. Warn if another value was already specified. Note:
14259 we have to defer parsing the -march and -mtune arguments in order
14260 to handle 'from-abi' correctly, since the ABI might be specified
14261 in a later argument. */
14262
14263static void
17a2f251 14264mips_set_option_string (const char **string_ptr, const char *new_value)
316f5878
RS
14265{
14266 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
1661c76c 14267 as_warn (_("a different %s was already specified, is now %s"),
316f5878
RS
14268 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14269 new_value);
14270
14271 *string_ptr = new_value;
14272}
14273
252b5132 14274int
17b9d67d 14275md_parse_option (int c, const char *arg)
252b5132 14276{
c6278170
RS
14277 unsigned int i;
14278
14279 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14280 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14281 {
919731af 14282 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c6278170
RS
14283 c == mips_ases[i].option_on);
14284 return 1;
14285 }
14286
252b5132
RH
14287 switch (c)
14288 {
119d663a
NC
14289 case OPTION_CONSTRUCT_FLOATS:
14290 mips_disable_float_construction = 0;
14291 break;
bdaaa2e1 14292
119d663a
NC
14293 case OPTION_NO_CONSTRUCT_FLOATS:
14294 mips_disable_float_construction = 1;
14295 break;
bdaaa2e1 14296
252b5132
RH
14297 case OPTION_TRAP:
14298 mips_trap = 1;
14299 break;
14300
14301 case OPTION_BREAK:
14302 mips_trap = 0;
14303 break;
14304
14305 case OPTION_EB:
14306 target_big_endian = 1;
14307 break;
14308
14309 case OPTION_EL:
14310 target_big_endian = 0;
14311 break;
14312
14313 case 'O':
4ffff32f
TS
14314 if (arg == NULL)
14315 mips_optimize = 1;
14316 else if (arg[0] == '0')
14317 mips_optimize = 0;
14318 else if (arg[0] == '1')
252b5132
RH
14319 mips_optimize = 1;
14320 else
14321 mips_optimize = 2;
14322 break;
14323
14324 case 'g':
14325 if (arg == NULL)
14326 mips_debug = 2;
14327 else
14328 mips_debug = atoi (arg);
252b5132
RH
14329 break;
14330
14331 case OPTION_MIPS1:
0b35dfee 14332 file_mips_opts.isa = ISA_MIPS1;
252b5132
RH
14333 break;
14334
14335 case OPTION_MIPS2:
0b35dfee 14336 file_mips_opts.isa = ISA_MIPS2;
252b5132
RH
14337 break;
14338
14339 case OPTION_MIPS3:
0b35dfee 14340 file_mips_opts.isa = ISA_MIPS3;
252b5132
RH
14341 break;
14342
14343 case OPTION_MIPS4:
0b35dfee 14344 file_mips_opts.isa = ISA_MIPS4;
e7af610e
NC
14345 break;
14346
84ea6cf2 14347 case OPTION_MIPS5:
0b35dfee 14348 file_mips_opts.isa = ISA_MIPS5;
84ea6cf2
NC
14349 break;
14350
e7af610e 14351 case OPTION_MIPS32:
0b35dfee 14352 file_mips_opts.isa = ISA_MIPS32;
252b5132
RH
14353 break;
14354
af7ee8bf 14355 case OPTION_MIPS32R2:
0b35dfee 14356 file_mips_opts.isa = ISA_MIPS32R2;
af7ee8bf
CD
14357 break;
14358
ae52f483 14359 case OPTION_MIPS32R3:
0ae19f05 14360 file_mips_opts.isa = ISA_MIPS32R3;
ae52f483
AB
14361 break;
14362
14363 case OPTION_MIPS32R5:
0ae19f05 14364 file_mips_opts.isa = ISA_MIPS32R5;
ae52f483
AB
14365 break;
14366
7361da2c
AB
14367 case OPTION_MIPS32R6:
14368 file_mips_opts.isa = ISA_MIPS32R6;
14369 break;
14370
5f74bc13 14371 case OPTION_MIPS64R2:
0b35dfee 14372 file_mips_opts.isa = ISA_MIPS64R2;
5f74bc13
CD
14373 break;
14374
ae52f483 14375 case OPTION_MIPS64R3:
0ae19f05 14376 file_mips_opts.isa = ISA_MIPS64R3;
ae52f483
AB
14377 break;
14378
14379 case OPTION_MIPS64R5:
0ae19f05 14380 file_mips_opts.isa = ISA_MIPS64R5;
ae52f483
AB
14381 break;
14382
7361da2c
AB
14383 case OPTION_MIPS64R6:
14384 file_mips_opts.isa = ISA_MIPS64R6;
14385 break;
14386
84ea6cf2 14387 case OPTION_MIPS64:
0b35dfee 14388 file_mips_opts.isa = ISA_MIPS64;
84ea6cf2
NC
14389 break;
14390
ec68c924 14391 case OPTION_MTUNE:
316f5878
RS
14392 mips_set_option_string (&mips_tune_string, arg);
14393 break;
ec68c924 14394
316f5878
RS
14395 case OPTION_MARCH:
14396 mips_set_option_string (&mips_arch_string, arg);
252b5132
RH
14397 break;
14398
14399 case OPTION_M4650:
316f5878
RS
14400 mips_set_option_string (&mips_arch_string, "4650");
14401 mips_set_option_string (&mips_tune_string, "4650");
252b5132
RH
14402 break;
14403
14404 case OPTION_NO_M4650:
14405 break;
14406
14407 case OPTION_M4010:
316f5878
RS
14408 mips_set_option_string (&mips_arch_string, "4010");
14409 mips_set_option_string (&mips_tune_string, "4010");
252b5132
RH
14410 break;
14411
14412 case OPTION_NO_M4010:
14413 break;
14414
14415 case OPTION_M4100:
316f5878
RS
14416 mips_set_option_string (&mips_arch_string, "4100");
14417 mips_set_option_string (&mips_tune_string, "4100");
252b5132
RH
14418 break;
14419
14420 case OPTION_NO_M4100:
14421 break;
14422
252b5132 14423 case OPTION_M3900:
316f5878
RS
14424 mips_set_option_string (&mips_arch_string, "3900");
14425 mips_set_option_string (&mips_tune_string, "3900");
252b5132 14426 break;
bdaaa2e1 14427
252b5132
RH
14428 case OPTION_NO_M3900:
14429 break;
14430
df58fc94 14431 case OPTION_MICROMIPS:
919731af 14432 if (file_mips_opts.mips16 == 1)
df58fc94
RS
14433 {
14434 as_bad (_("-mmicromips cannot be used with -mips16"));
14435 return 0;
14436 }
919731af 14437 file_mips_opts.micromips = 1;
df58fc94
RS
14438 mips_no_prev_insn ();
14439 break;
14440
14441 case OPTION_NO_MICROMIPS:
919731af 14442 file_mips_opts.micromips = 0;
df58fc94
RS
14443 mips_no_prev_insn ();
14444 break;
14445
252b5132 14446 case OPTION_MIPS16:
919731af 14447 if (file_mips_opts.micromips == 1)
df58fc94
RS
14448 {
14449 as_bad (_("-mips16 cannot be used with -micromips"));
14450 return 0;
14451 }
919731af 14452 file_mips_opts.mips16 = 1;
7d10b47d 14453 mips_no_prev_insn ();
252b5132
RH
14454 break;
14455
14456 case OPTION_NO_MIPS16:
919731af 14457 file_mips_opts.mips16 = 0;
7d10b47d 14458 mips_no_prev_insn ();
252b5132
RH
14459 break;
14460
6a32d874
CM
14461 case OPTION_FIX_24K:
14462 mips_fix_24k = 1;
14463 break;
14464
14465 case OPTION_NO_FIX_24K:
14466 mips_fix_24k = 0;
14467 break;
14468
a8d14a88
CM
14469 case OPTION_FIX_RM7000:
14470 mips_fix_rm7000 = 1;
14471 break;
14472
14473 case OPTION_NO_FIX_RM7000:
14474 mips_fix_rm7000 = 0;
14475 break;
14476
c67a084a
NC
14477 case OPTION_FIX_LOONGSON2F_JUMP:
14478 mips_fix_loongson2f_jump = TRUE;
14479 break;
14480
14481 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14482 mips_fix_loongson2f_jump = FALSE;
14483 break;
14484
14485 case OPTION_FIX_LOONGSON2F_NOP:
14486 mips_fix_loongson2f_nop = TRUE;
14487 break;
14488
14489 case OPTION_NO_FIX_LOONGSON2F_NOP:
14490 mips_fix_loongson2f_nop = FALSE;
14491 break;
14492
d766e8ec
RS
14493 case OPTION_FIX_VR4120:
14494 mips_fix_vr4120 = 1;
60b63b72
RS
14495 break;
14496
d766e8ec
RS
14497 case OPTION_NO_FIX_VR4120:
14498 mips_fix_vr4120 = 0;
60b63b72
RS
14499 break;
14500
7d8e00cf
RS
14501 case OPTION_FIX_VR4130:
14502 mips_fix_vr4130 = 1;
14503 break;
14504
14505 case OPTION_NO_FIX_VR4130:
14506 mips_fix_vr4130 = 0;
14507 break;
14508
d954098f
DD
14509 case OPTION_FIX_CN63XXP1:
14510 mips_fix_cn63xxp1 = TRUE;
14511 break;
14512
14513 case OPTION_NO_FIX_CN63XXP1:
14514 mips_fix_cn63xxp1 = FALSE;
14515 break;
14516
4a6a3df4
AO
14517 case OPTION_RELAX_BRANCH:
14518 mips_relax_branch = 1;
14519 break;
14520
14521 case OPTION_NO_RELAX_BRANCH:
14522 mips_relax_branch = 0;
14523 break;
14524
8b10b0b3
MR
14525 case OPTION_IGNORE_BRANCH_ISA:
14526 mips_ignore_branch_isa = TRUE;
14527 break;
14528
14529 case OPTION_NO_IGNORE_BRANCH_ISA:
14530 mips_ignore_branch_isa = FALSE;
14531 break;
14532
833794fc 14533 case OPTION_INSN32:
919731af 14534 file_mips_opts.insn32 = TRUE;
833794fc
MR
14535 break;
14536
14537 case OPTION_NO_INSN32:
919731af 14538 file_mips_opts.insn32 = FALSE;
833794fc
MR
14539 break;
14540
aa6975fb
ILT
14541 case OPTION_MSHARED:
14542 mips_in_shared = TRUE;
14543 break;
14544
14545 case OPTION_MNO_SHARED:
14546 mips_in_shared = FALSE;
14547 break;
14548
aed1a261 14549 case OPTION_MSYM32:
919731af 14550 file_mips_opts.sym32 = TRUE;
aed1a261
RS
14551 break;
14552
14553 case OPTION_MNO_SYM32:
919731af 14554 file_mips_opts.sym32 = FALSE;
aed1a261
RS
14555 break;
14556
252b5132
RH
14557 /* When generating ELF code, we permit -KPIC and -call_shared to
14558 select SVR4_PIC, and -non_shared to select no PIC. This is
14559 intended to be compatible with Irix 5. */
14560 case OPTION_CALL_SHARED:
252b5132 14561 mips_pic = SVR4_PIC;
143d77c5 14562 mips_abicalls = TRUE;
252b5132
RH
14563 break;
14564
861fb55a 14565 case OPTION_CALL_NONPIC:
861fb55a
DJ
14566 mips_pic = NO_PIC;
14567 mips_abicalls = TRUE;
14568 break;
14569
252b5132 14570 case OPTION_NON_SHARED:
252b5132 14571 mips_pic = NO_PIC;
143d77c5 14572 mips_abicalls = FALSE;
252b5132
RH
14573 break;
14574
44075ae2
TS
14575 /* The -xgot option tells the assembler to use 32 bit offsets
14576 when accessing the got in SVR4_PIC mode. It is for Irix
252b5132
RH
14577 compatibility. */
14578 case OPTION_XGOT:
14579 mips_big_got = 1;
14580 break;
14581
14582 case 'G':
6caf9ef4
TS
14583 g_switch_value = atoi (arg);
14584 g_switch_seen = 1;
252b5132
RH
14585 break;
14586
34ba82a8
TS
14587 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14588 and -mabi=64. */
252b5132 14589 case OPTION_32:
f3ded42a 14590 mips_abi = O32_ABI;
252b5132
RH
14591 break;
14592
e013f690 14593 case OPTION_N32:
316f5878 14594 mips_abi = N32_ABI;
e013f690 14595 break;
252b5132 14596
e013f690 14597 case OPTION_64:
316f5878 14598 mips_abi = N64_ABI;
f43abd2b 14599 if (!support_64bit_objects())
1661c76c 14600 as_fatal (_("no compiled in support for 64 bit object file format"));
252b5132
RH
14601 break;
14602
c97ef257 14603 case OPTION_GP32:
bad1aba3 14604 file_mips_opts.gp = 32;
c97ef257
AH
14605 break;
14606
14607 case OPTION_GP64:
bad1aba3 14608 file_mips_opts.gp = 64;
c97ef257 14609 break;
252b5132 14610
ca4e0257 14611 case OPTION_FP32:
0b35dfee 14612 file_mips_opts.fp = 32;
316f5878
RS
14613 break;
14614
351cdf24
MF
14615 case OPTION_FPXX:
14616 file_mips_opts.fp = 0;
14617 break;
14618
316f5878 14619 case OPTION_FP64:
0b35dfee 14620 file_mips_opts.fp = 64;
ca4e0257
RS
14621 break;
14622
351cdf24
MF
14623 case OPTION_ODD_SPREG:
14624 file_mips_opts.oddspreg = 1;
14625 break;
14626
14627 case OPTION_NO_ODD_SPREG:
14628 file_mips_opts.oddspreg = 0;
14629 break;
14630
037b32b9 14631 case OPTION_SINGLE_FLOAT:
0b35dfee 14632 file_mips_opts.single_float = 1;
037b32b9
AN
14633 break;
14634
14635 case OPTION_DOUBLE_FLOAT:
0b35dfee 14636 file_mips_opts.single_float = 0;
037b32b9
AN
14637 break;
14638
14639 case OPTION_SOFT_FLOAT:
0b35dfee 14640 file_mips_opts.soft_float = 1;
037b32b9
AN
14641 break;
14642
14643 case OPTION_HARD_FLOAT:
0b35dfee 14644 file_mips_opts.soft_float = 0;
037b32b9
AN
14645 break;
14646
252b5132 14647 case OPTION_MABI:
e013f690 14648 if (strcmp (arg, "32") == 0)
316f5878 14649 mips_abi = O32_ABI;
e013f690 14650 else if (strcmp (arg, "o64") == 0)
316f5878 14651 mips_abi = O64_ABI;
e013f690 14652 else if (strcmp (arg, "n32") == 0)
316f5878 14653 mips_abi = N32_ABI;
e013f690
TS
14654 else if (strcmp (arg, "64") == 0)
14655 {
316f5878 14656 mips_abi = N64_ABI;
e013f690 14657 if (! support_64bit_objects())
1661c76c 14658 as_fatal (_("no compiled in support for 64 bit object file "
e013f690
TS
14659 "format"));
14660 }
14661 else if (strcmp (arg, "eabi") == 0)
316f5878 14662 mips_abi = EABI_ABI;
e013f690 14663 else
da0e507f
TS
14664 {
14665 as_fatal (_("invalid abi -mabi=%s"), arg);
14666 return 0;
14667 }
252b5132
RH
14668 break;
14669
6b76fefe 14670 case OPTION_M7000_HILO_FIX:
b34976b6 14671 mips_7000_hilo_fix = TRUE;
6b76fefe
CM
14672 break;
14673
9ee72ff1 14674 case OPTION_MNO_7000_HILO_FIX:
b34976b6 14675 mips_7000_hilo_fix = FALSE;
6b76fefe
CM
14676 break;
14677
ecb4347a 14678 case OPTION_MDEBUG:
b34976b6 14679 mips_flag_mdebug = TRUE;
ecb4347a
DJ
14680 break;
14681
14682 case OPTION_NO_MDEBUG:
b34976b6 14683 mips_flag_mdebug = FALSE;
ecb4347a 14684 break;
dcd410fe
RO
14685
14686 case OPTION_PDR:
14687 mips_flag_pdr = TRUE;
14688 break;
14689
14690 case OPTION_NO_PDR:
14691 mips_flag_pdr = FALSE;
14692 break;
0a44bf69
RS
14693
14694 case OPTION_MVXWORKS_PIC:
14695 mips_pic = VXWORKS_PIC;
14696 break;
ecb4347a 14697
ba92f887
MR
14698 case OPTION_NAN:
14699 if (strcmp (arg, "2008") == 0)
7361da2c 14700 mips_nan2008 = 1;
ba92f887 14701 else if (strcmp (arg, "legacy") == 0)
7361da2c 14702 mips_nan2008 = 0;
ba92f887
MR
14703 else
14704 {
1661c76c 14705 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
ba92f887
MR
14706 return 0;
14707 }
14708 break;
14709
252b5132
RH
14710 default:
14711 return 0;
14712 }
14713
c67a084a
NC
14714 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14715
252b5132
RH
14716 return 1;
14717}
316f5878 14718\f
919731af 14719/* Set up globals to tune for the ISA or processor described by INFO. */
252b5132 14720
316f5878 14721static void
17a2f251 14722mips_set_tune (const struct mips_cpu_info *info)
316f5878
RS
14723{
14724 if (info != 0)
fef14a42 14725 mips_tune = info->cpu;
316f5878 14726}
80cc45a5 14727
34ba82a8 14728
252b5132 14729void
17a2f251 14730mips_after_parse_args (void)
e9670677 14731{
fef14a42
TS
14732 const struct mips_cpu_info *arch_info = 0;
14733 const struct mips_cpu_info *tune_info = 0;
14734
e9670677 14735 /* GP relative stuff not working for PE */
6caf9ef4 14736 if (strncmp (TARGET_OS, "pe", 2) == 0)
e9670677 14737 {
6caf9ef4 14738 if (g_switch_seen && g_switch_value != 0)
1661c76c 14739 as_bad (_("-G not supported in this configuration"));
e9670677
MR
14740 g_switch_value = 0;
14741 }
14742
cac012d6
AO
14743 if (mips_abi == NO_ABI)
14744 mips_abi = MIPS_DEFAULT_ABI;
14745
919731af 14746 /* The following code determines the architecture.
22923709
RS
14747 Similar code was added to GCC 3.3 (see override_options() in
14748 config/mips/mips.c). The GAS and GCC code should be kept in sync
14749 as much as possible. */
e9670677 14750
316f5878 14751 if (mips_arch_string != 0)
fef14a42 14752 arch_info = mips_parse_cpu ("-march", mips_arch_string);
e9670677 14753
0b35dfee 14754 if (file_mips_opts.isa != ISA_UNKNOWN)
e9670677 14755 {
0b35dfee 14756 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
fef14a42 14757 ISA level specified by -mipsN, while arch_info->isa contains
316f5878 14758 the -march selection (if any). */
fef14a42 14759 if (arch_info != 0)
e9670677 14760 {
316f5878
RS
14761 /* -march takes precedence over -mipsN, since it is more descriptive.
14762 There's no harm in specifying both as long as the ISA levels
14763 are the same. */
0b35dfee 14764 if (file_mips_opts.isa != arch_info->isa)
1661c76c
RS
14765 as_bad (_("-%s conflicts with the other architecture options,"
14766 " which imply -%s"),
0b35dfee 14767 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
fef14a42 14768 mips_cpu_info_from_isa (arch_info->isa)->name);
e9670677 14769 }
316f5878 14770 else
0b35dfee 14771 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
e9670677
MR
14772 }
14773
fef14a42 14774 if (arch_info == 0)
95bfe26e
MF
14775 {
14776 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14777 gas_assert (arch_info);
14778 }
e9670677 14779
fef14a42 14780 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
20203fb9 14781 as_bad (_("-march=%s is not compatible with the selected ABI"),
fef14a42
TS
14782 arch_info->name);
14783
919731af 14784 file_mips_opts.arch = arch_info->cpu;
14785 file_mips_opts.isa = arch_info->isa;
14786
14787 /* Set up initial mips_opts state. */
14788 mips_opts = file_mips_opts;
14789
14790 /* The register size inference code is now placed in
14791 file_mips_check_options. */
fef14a42 14792
0b35dfee 14793 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14794 processor. */
fef14a42
TS
14795 if (mips_tune_string != 0)
14796 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
e9670677 14797
fef14a42
TS
14798 if (tune_info == 0)
14799 mips_set_tune (arch_info);
14800 else
14801 mips_set_tune (tune_info);
e9670677 14802
ecb4347a 14803 if (mips_flag_mdebug < 0)
e8044f35 14804 mips_flag_mdebug = 0;
e9670677
MR
14805}
14806\f
14807void
17a2f251 14808mips_init_after_args (void)
252b5132
RH
14809{
14810 /* initialize opcodes */
14811 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
beae10d5 14812 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
252b5132
RH
14813}
14814
14815long
17a2f251 14816md_pcrel_from (fixS *fixP)
252b5132 14817{
a7ebbfdf
TS
14818 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14819 switch (fixP->fx_r_type)
14820 {
df58fc94
RS
14821 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14822 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14823 /* Return the address of the delay slot. */
14824 return addr + 2;
14825
14826 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14827 case BFD_RELOC_MICROMIPS_JMP:
c9775dde 14828 case BFD_RELOC_MIPS16_16_PCREL_S1:
a7ebbfdf 14829 case BFD_RELOC_16_PCREL_S2:
7361da2c
AB
14830 case BFD_RELOC_MIPS_21_PCREL_S2:
14831 case BFD_RELOC_MIPS_26_PCREL_S2:
a7ebbfdf
TS
14832 case BFD_RELOC_MIPS_JMP:
14833 /* Return the address of the delay slot. */
14834 return addr + 4;
df58fc94 14835
51f6035b
MR
14836 case BFD_RELOC_MIPS_18_PCREL_S3:
14837 /* Return the aligned address of the doubleword containing
14838 the instruction. */
14839 return addr & ~7;
14840
a7ebbfdf
TS
14841 default:
14842 return addr;
14843 }
252b5132
RH
14844}
14845
252b5132
RH
14846/* This is called before the symbol table is processed. In order to
14847 work with gcc when using mips-tfile, we must keep all local labels.
14848 However, in other cases, we want to discard them. If we were
14849 called with -g, but we didn't see any debugging information, it may
14850 mean that gcc is smuggling debugging information through to
14851 mips-tfile, in which case we must generate all local labels. */
14852
14853void
17a2f251 14854mips_frob_file_before_adjust (void)
252b5132
RH
14855{
14856#ifndef NO_ECOFF_DEBUGGING
14857 if (ECOFF_DEBUGGING
14858 && mips_debug != 0
14859 && ! ecoff_debugging_seen)
14860 flag_keep_locals = 1;
14861#endif
14862}
14863
3b91255e 14864/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
55cf6793 14865 the corresponding LO16 reloc. This is called before md_apply_fix and
3b91255e
RS
14866 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14867 relocation operators.
14868
14869 For our purposes, a %lo() expression matches a %got() or %hi()
14870 expression if:
14871
14872 (a) it refers to the same symbol; and
14873 (b) the offset applied in the %lo() expression is no lower than
14874 the offset applied in the %got() or %hi().
14875
14876 (b) allows us to cope with code like:
14877
14878 lui $4,%hi(foo)
14879 lh $4,%lo(foo+2)($4)
14880
14881 ...which is legal on RELA targets, and has a well-defined behaviour
14882 if the user knows that adding 2 to "foo" will not induce a carry to
14883 the high 16 bits.
14884
14885 When several %lo()s match a particular %got() or %hi(), we use the
14886 following rules to distinguish them:
14887
14888 (1) %lo()s with smaller offsets are a better match than %lo()s with
14889 higher offsets.
14890
14891 (2) %lo()s with no matching %got() or %hi() are better than those
14892 that already have a matching %got() or %hi().
14893
14894 (3) later %lo()s are better than earlier %lo()s.
14895
14896 These rules are applied in order.
14897
14898 (1) means, among other things, that %lo()s with identical offsets are
14899 chosen if they exist.
14900
14901 (2) means that we won't associate several high-part relocations with
14902 the same low-part relocation unless there's no alternative. Having
14903 several high parts for the same low part is a GNU extension; this rule
14904 allows careful users to avoid it.
14905
14906 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14907 with the last high-part relocation being at the front of the list.
14908 It therefore makes sense to choose the last matching low-part
14909 relocation, all other things being equal. It's also easier
14910 to code that way. */
252b5132
RH
14911
14912void
17a2f251 14913mips_frob_file (void)
252b5132
RH
14914{
14915 struct mips_hi_fixup *l;
35903be0 14916 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
252b5132
RH
14917
14918 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14919 {
14920 segment_info_type *seginfo;
3b91255e
RS
14921 bfd_boolean matched_lo_p;
14922 fixS **hi_pos, **lo_pos, **pos;
252b5132 14923
9c2799c2 14924 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
252b5132 14925
5919d012 14926 /* If a GOT16 relocation turns out to be against a global symbol,
b886a2ab
RS
14927 there isn't supposed to be a matching LO. Ignore %gots against
14928 constants; we'll report an error for those later. */
738e5348 14929 if (got16_reloc_p (l->fixp->fx_r_type)
b886a2ab 14930 && !(l->fixp->fx_addsy
9e009953 14931 && pic_need_relax (l->fixp->fx_addsy)))
5919d012
RS
14932 continue;
14933
14934 /* Check quickly whether the next fixup happens to be a matching %lo. */
14935 if (fixup_has_matching_lo_p (l->fixp))
252b5132
RH
14936 continue;
14937
252b5132 14938 seginfo = seg_info (l->seg);
252b5132 14939
3b91255e
RS
14940 /* Set HI_POS to the position of this relocation in the chain.
14941 Set LO_POS to the position of the chosen low-part relocation.
14942 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14943 relocation that matches an immediately-preceding high-part
14944 relocation. */
14945 hi_pos = NULL;
14946 lo_pos = NULL;
14947 matched_lo_p = FALSE;
738e5348 14948 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
35903be0 14949
3b91255e
RS
14950 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14951 {
14952 if (*pos == l->fixp)
14953 hi_pos = pos;
14954
35903be0 14955 if ((*pos)->fx_r_type == looking_for_rtype
30cfc97a 14956 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
3b91255e
RS
14957 && (*pos)->fx_offset >= l->fixp->fx_offset
14958 && (lo_pos == NULL
14959 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14960 || (!matched_lo_p
14961 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14962 lo_pos = pos;
14963
14964 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14965 && fixup_has_matching_lo_p (*pos));
14966 }
14967
14968 /* If we found a match, remove the high-part relocation from its
14969 current position and insert it before the low-part relocation.
14970 Make the offsets match so that fixup_has_matching_lo_p()
14971 will return true.
14972
14973 We don't warn about unmatched high-part relocations since some
14974 versions of gcc have been known to emit dead "lui ...%hi(...)"
14975 instructions. */
14976 if (lo_pos != NULL)
14977 {
14978 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14979 if (l->fixp->fx_next != *lo_pos)
252b5132 14980 {
3b91255e
RS
14981 *hi_pos = l->fixp->fx_next;
14982 l->fixp->fx_next = *lo_pos;
14983 *lo_pos = l->fixp;
252b5132 14984 }
252b5132
RH
14985 }
14986 }
14987}
14988
252b5132 14989int
17a2f251 14990mips_force_relocation (fixS *fixp)
252b5132 14991{
ae6063d4 14992 if (generic_force_reloc (fixp))
252b5132
RH
14993 return 1;
14994
df58fc94
RS
14995 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14996 so that the linker relaxation can update targets. */
14997 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14998 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14999 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15000 return 1;
15001
5caa2b07
MR
15002 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
15003 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
15004 microMIPS symbols so that we can do cross-mode branch diagnostics
15005 and BAL to JALX conversion by the linker. */
15006 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
9d862524
MR
15007 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15008 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
15009 && fixp->fx_addsy
15010 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
15011 return 1;
15012
7361da2c 15013 /* We want all PC-relative relocations to be kept for R6 relaxation. */
912815f0 15014 if (ISA_IS_R6 (file_mips_opts.isa)
7361da2c
AB
15015 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15016 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15017 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
15018 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
15019 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
15020 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
15021 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
15022 return 1;
15023
3e722fb5 15024 return 0;
252b5132
RH
15025}
15026
b416ba9b
MR
15027/* Implement TC_FORCE_RELOCATION_ABS. */
15028
15029bfd_boolean
15030mips_force_relocation_abs (fixS *fixp)
15031{
15032 if (generic_force_reloc (fixp))
15033 return TRUE;
15034
15035 /* These relocations do not have enough bits in the in-place addend
15036 to hold an arbitrary absolute section's offset. */
15037 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15038 return TRUE;
15039
15040 return FALSE;
15041}
15042
b886a2ab
RS
15043/* Read the instruction associated with RELOC from BUF. */
15044
15045static unsigned int
15046read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15047{
15048 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15049 return read_compressed_insn (buf, 4);
15050 else
15051 return read_insn (buf);
15052}
15053
15054/* Write instruction INSN to BUF, given that it has been relocated
15055 by RELOC. */
15056
15057static void
15058write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15059 unsigned long insn)
15060{
15061 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15062 write_compressed_insn (buf, insn, 4);
15063 else
15064 write_insn (buf, insn);
15065}
15066
9d862524
MR
15067/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15068 to a symbol in another ISA mode, which cannot be converted to JALX. */
15069
15070static bfd_boolean
15071fix_bad_cross_mode_jump_p (fixS *fixP)
15072{
15073 unsigned long opcode;
15074 int other;
15075 char *buf;
15076
15077 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15078 return FALSE;
15079
15080 other = S_GET_OTHER (fixP->fx_addsy);
15081 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15082 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15083 switch (fixP->fx_r_type)
15084 {
15085 case BFD_RELOC_MIPS_JMP:
15086 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15087 case BFD_RELOC_MICROMIPS_JMP:
15088 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15089 default:
15090 return FALSE;
15091 }
15092}
15093
15094/* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15095 jump to a symbol in the same ISA mode. */
15096
15097static bfd_boolean
15098fix_bad_same_mode_jalx_p (fixS *fixP)
15099{
15100 unsigned long opcode;
15101 int other;
15102 char *buf;
15103
15104 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15105 return FALSE;
15106
15107 other = S_GET_OTHER (fixP->fx_addsy);
15108 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15109 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15110 switch (fixP->fx_r_type)
15111 {
15112 case BFD_RELOC_MIPS_JMP:
15113 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15114 case BFD_RELOC_MIPS16_JMP:
15115 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15116 case BFD_RELOC_MICROMIPS_JMP:
15117 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15118 default:
15119 return FALSE;
15120 }
15121}
15122
15123/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15124 to a symbol whose value plus addend is not aligned according to the
15125 ultimate (after linker relaxation) jump instruction's immediate field
15126 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15127 regular MIPS code, to (1 << 2). */
15128
15129static bfd_boolean
15130fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15131{
15132 bfd_boolean micro_to_mips_p;
15133 valueT val;
15134 int other;
15135
15136 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15137 return FALSE;
15138
15139 other = S_GET_OTHER (fixP->fx_addsy);
15140 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15141 val += fixP->fx_offset;
15142 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15143 && !ELF_ST_IS_MICROMIPS (other));
15144 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15145 != ELF_ST_IS_COMPRESSED (other));
15146}
15147
15148/* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15149 to a symbol whose annotation indicates another ISA mode. For absolute
a6ebf616
MR
15150 symbols check the ISA bit instead.
15151
15152 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15153 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15154 MIPS symbols and associated with BAL instructions as these instructions
15155 may be be converted to JALX by the linker. */
9d862524
MR
15156
15157static bfd_boolean
15158fix_bad_cross_mode_branch_p (fixS *fixP)
15159{
15160 bfd_boolean absolute_p;
15161 unsigned long opcode;
15162 asection *symsec;
15163 valueT val;
15164 int other;
15165 char *buf;
15166
8b10b0b3
MR
15167 if (mips_ignore_branch_isa)
15168 return FALSE;
15169
9d862524
MR
15170 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15171 return FALSE;
15172
15173 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15174 absolute_p = bfd_is_abs_section (symsec);
15175
15176 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15177 other = S_GET_OTHER (fixP->fx_addsy);
15178
15179 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15180 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15181 switch (fixP->fx_r_type)
15182 {
15183 case BFD_RELOC_16_PCREL_S2:
a6ebf616
MR
15184 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15185 && opcode != 0x0411);
15186 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15187 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15188 && opcode != 0x4060);
9d862524
MR
15189 case BFD_RELOC_MIPS_21_PCREL_S2:
15190 case BFD_RELOC_MIPS_26_PCREL_S2:
15191 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15192 case BFD_RELOC_MIPS16_16_PCREL_S1:
15193 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15194 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15195 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
9d862524
MR
15196 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15197 default:
15198 abort ();
15199 }
15200}
15201
15202/* Return TRUE if the symbol plus addend associated with a regular MIPS
15203 branch instruction pointed to by FIXP is not aligned according to the
15204 branch instruction's immediate field requirement. We need the addend
15205 to preserve the ISA bit and also the sum must not have bit 2 set. We
15206 must explicitly OR in the ISA bit from symbol annotation as the bit
15207 won't be set in the symbol's value then. */
15208
15209static bfd_boolean
15210fix_bad_misaligned_branch_p (fixS *fixP)
15211{
15212 bfd_boolean absolute_p;
15213 asection *symsec;
15214 valueT isa_bit;
15215 valueT val;
15216 valueT off;
15217 int other;
15218
15219 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15220 return FALSE;
15221
15222 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15223 absolute_p = bfd_is_abs_section (symsec);
15224
15225 val = S_GET_VALUE (fixP->fx_addsy);
15226 other = S_GET_OTHER (fixP->fx_addsy);
15227 off = fixP->fx_offset;
15228
15229 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15230 val |= ELF_ST_IS_COMPRESSED (other);
15231 val += off;
15232 return (val & 0x3) != isa_bit;
15233}
15234
15235/* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15236 and its calculated value VAL. */
15237
15238static void
15239fix_validate_branch (fixS *fixP, valueT val)
15240{
15241 if (fixP->fx_done && (val & 0x3) != 0)
15242 as_bad_where (fixP->fx_file, fixP->fx_line,
15243 _("branch to misaligned address (0x%lx)"),
15244 (long) (val + md_pcrel_from (fixP)));
15245 else if (fix_bad_cross_mode_branch_p (fixP))
15246 as_bad_where (fixP->fx_file, fixP->fx_line,
15247 _("branch to a symbol in another ISA mode"));
15248 else if (fix_bad_misaligned_branch_p (fixP))
15249 as_bad_where (fixP->fx_file, fixP->fx_line,
15250 _("branch to misaligned address (0x%lx)"),
15251 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15252 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15253 as_bad_where (fixP->fx_file, fixP->fx_line,
15254 _("cannot encode misaligned addend "
15255 "in the relocatable field (0x%lx)"),
15256 (long) fixP->fx_offset);
15257}
15258
252b5132
RH
15259/* Apply a fixup to the object file. */
15260
94f592af 15261void
55cf6793 15262md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 15263{
4d68580a 15264 char *buf;
b886a2ab 15265 unsigned long insn;
a7ebbfdf 15266 reloc_howto_type *howto;
252b5132 15267
d56a8dda
RS
15268 if (fixP->fx_pcrel)
15269 switch (fixP->fx_r_type)
15270 {
15271 case BFD_RELOC_16_PCREL_S2:
c9775dde 15272 case BFD_RELOC_MIPS16_16_PCREL_S1:
d56a8dda
RS
15273 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15274 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15275 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15276 case BFD_RELOC_32_PCREL:
7361da2c
AB
15277 case BFD_RELOC_MIPS_21_PCREL_S2:
15278 case BFD_RELOC_MIPS_26_PCREL_S2:
15279 case BFD_RELOC_MIPS_18_PCREL_S3:
15280 case BFD_RELOC_MIPS_19_PCREL_S2:
15281 case BFD_RELOC_HI16_S_PCREL:
15282 case BFD_RELOC_LO16_PCREL:
d56a8dda
RS
15283 break;
15284
15285 case BFD_RELOC_32:
15286 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15287 break;
15288
15289 default:
15290 as_bad_where (fixP->fx_file, fixP->fx_line,
15291 _("PC-relative reference to a different section"));
15292 break;
15293 }
15294
15295 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15296 that have no MIPS ELF equivalent. */
15297 if (fixP->fx_r_type != BFD_RELOC_8)
15298 {
15299 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15300 if (!howto)
15301 return;
15302 }
65551fa4 15303
df58fc94
RS
15304 gas_assert (fixP->fx_size == 2
15305 || fixP->fx_size == 4
d56a8dda 15306 || fixP->fx_r_type == BFD_RELOC_8
90ecf173
MR
15307 || fixP->fx_r_type == BFD_RELOC_16
15308 || fixP->fx_r_type == BFD_RELOC_64
15309 || fixP->fx_r_type == BFD_RELOC_CTOR
15310 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
df58fc94 15311 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
90ecf173
MR
15312 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15313 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2f0c68f2
CM
15314 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15315 || fixP->fx_r_type == BFD_RELOC_NONE);
252b5132 15316
4d68580a 15317 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 15318
b1dca8ee
RS
15319 /* Don't treat parts of a composite relocation as done. There are two
15320 reasons for this:
15321
15322 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15323 should nevertheless be emitted if the first part is.
15324
15325 (2) In normal usage, composite relocations are never assembly-time
15326 constants. The easiest way of dealing with the pathological
15327 exceptions is to generate a relocation against STN_UNDEF and
15328 leave everything up to the linker. */
3994f87e 15329 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
252b5132
RH
15330 fixP->fx_done = 1;
15331
15332 switch (fixP->fx_r_type)
15333 {
3f98094e
DJ
15334 case BFD_RELOC_MIPS_TLS_GD:
15335 case BFD_RELOC_MIPS_TLS_LDM:
741d6ea8
JM
15336 case BFD_RELOC_MIPS_TLS_DTPREL32:
15337 case BFD_RELOC_MIPS_TLS_DTPREL64:
3f98094e
DJ
15338 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15339 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15340 case BFD_RELOC_MIPS_TLS_GOTTPREL:
d0f13682
CLT
15341 case BFD_RELOC_MIPS_TLS_TPREL32:
15342 case BFD_RELOC_MIPS_TLS_TPREL64:
3f98094e
DJ
15343 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15344 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
df58fc94
RS
15345 case BFD_RELOC_MICROMIPS_TLS_GD:
15346 case BFD_RELOC_MICROMIPS_TLS_LDM:
15347 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15348 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15349 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15350 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15351 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
d0f13682
CLT
15352 case BFD_RELOC_MIPS16_TLS_GD:
15353 case BFD_RELOC_MIPS16_TLS_LDM:
15354 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15355 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15356 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15357 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15358 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
4512dafa
MR
15359 if (fixP->fx_addsy)
15360 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15361 else
15362 as_bad_where (fixP->fx_file, fixP->fx_line,
15363 _("TLS relocation against a constant"));
15364 break;
3f98094e 15365
252b5132 15366 case BFD_RELOC_MIPS_JMP:
9d862524
MR
15367 case BFD_RELOC_MIPS16_JMP:
15368 case BFD_RELOC_MICROMIPS_JMP:
15369 {
15370 int shift;
15371
15372 gas_assert (!fixP->fx_done);
15373
15374 /* Shift is 2, unusually, for microMIPS JALX. */
15375 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15376 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15377 shift = 1;
15378 else
15379 shift = 2;
15380
15381 if (fix_bad_cross_mode_jump_p (fixP))
15382 as_bad_where (fixP->fx_file, fixP->fx_line,
15383 _("jump to a symbol in another ISA mode"));
15384 else if (fix_bad_same_mode_jalx_p (fixP))
15385 as_bad_where (fixP->fx_file, fixP->fx_line,
15386 _("JALX to a symbol in the same ISA mode"));
15387 else if (fix_bad_misaligned_jump_p (fixP, shift))
15388 as_bad_where (fixP->fx_file, fixP->fx_line,
15389 _("jump to misaligned address (0x%lx)"),
15390 (long) (S_GET_VALUE (fixP->fx_addsy)
15391 + fixP->fx_offset));
15392 else if (HAVE_IN_PLACE_ADDENDS
15393 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15394 as_bad_where (fixP->fx_file, fixP->fx_line,
15395 _("cannot encode misaligned addend "
15396 "in the relocatable field (0x%lx)"),
15397 (long) fixP->fx_offset);
15398 }
15399 /* Fall through. */
15400
e369bcce
TS
15401 case BFD_RELOC_MIPS_SHIFT5:
15402 case BFD_RELOC_MIPS_SHIFT6:
15403 case BFD_RELOC_MIPS_GOT_DISP:
15404 case BFD_RELOC_MIPS_GOT_PAGE:
15405 case BFD_RELOC_MIPS_GOT_OFST:
15406 case BFD_RELOC_MIPS_SUB:
15407 case BFD_RELOC_MIPS_INSERT_A:
15408 case BFD_RELOC_MIPS_INSERT_B:
15409 case BFD_RELOC_MIPS_DELETE:
15410 case BFD_RELOC_MIPS_HIGHEST:
15411 case BFD_RELOC_MIPS_HIGHER:
15412 case BFD_RELOC_MIPS_SCN_DISP:
15413 case BFD_RELOC_MIPS_REL16:
15414 case BFD_RELOC_MIPS_RELGOT:
15415 case BFD_RELOC_MIPS_JALR:
252b5132
RH
15416 case BFD_RELOC_HI16:
15417 case BFD_RELOC_HI16_S:
b886a2ab 15418 case BFD_RELOC_LO16:
cdf6fd85 15419 case BFD_RELOC_GPREL16:
252b5132
RH
15420 case BFD_RELOC_MIPS_LITERAL:
15421 case BFD_RELOC_MIPS_CALL16:
15422 case BFD_RELOC_MIPS_GOT16:
cdf6fd85 15423 case BFD_RELOC_GPREL32:
252b5132
RH
15424 case BFD_RELOC_MIPS_GOT_HI16:
15425 case BFD_RELOC_MIPS_GOT_LO16:
15426 case BFD_RELOC_MIPS_CALL_HI16:
15427 case BFD_RELOC_MIPS_CALL_LO16:
41947d9e
MR
15428 case BFD_RELOC_HI16_S_PCREL:
15429 case BFD_RELOC_LO16_PCREL:
252b5132 15430 case BFD_RELOC_MIPS16_GPREL:
738e5348
RS
15431 case BFD_RELOC_MIPS16_GOT16:
15432 case BFD_RELOC_MIPS16_CALL16:
d6f16593
MR
15433 case BFD_RELOC_MIPS16_HI16:
15434 case BFD_RELOC_MIPS16_HI16_S:
b886a2ab 15435 case BFD_RELOC_MIPS16_LO16:
df58fc94
RS
15436 case BFD_RELOC_MICROMIPS_GOT_DISP:
15437 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15438 case BFD_RELOC_MICROMIPS_GOT_OFST:
15439 case BFD_RELOC_MICROMIPS_SUB:
15440 case BFD_RELOC_MICROMIPS_HIGHEST:
15441 case BFD_RELOC_MICROMIPS_HIGHER:
15442 case BFD_RELOC_MICROMIPS_SCN_DISP:
15443 case BFD_RELOC_MICROMIPS_JALR:
15444 case BFD_RELOC_MICROMIPS_HI16:
15445 case BFD_RELOC_MICROMIPS_HI16_S:
b886a2ab 15446 case BFD_RELOC_MICROMIPS_LO16:
df58fc94
RS
15447 case BFD_RELOC_MICROMIPS_GPREL16:
15448 case BFD_RELOC_MICROMIPS_LITERAL:
15449 case BFD_RELOC_MICROMIPS_CALL16:
15450 case BFD_RELOC_MICROMIPS_GOT16:
15451 case BFD_RELOC_MICROMIPS_GOT_HI16:
15452 case BFD_RELOC_MICROMIPS_GOT_LO16:
15453 case BFD_RELOC_MICROMIPS_CALL_HI16:
15454 case BFD_RELOC_MICROMIPS_CALL_LO16:
067ec077 15455 case BFD_RELOC_MIPS_EH:
b886a2ab
RS
15456 if (fixP->fx_done)
15457 {
15458 offsetT value;
15459
15460 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15461 {
15462 insn = read_reloc_insn (buf, fixP->fx_r_type);
15463 if (mips16_reloc_p (fixP->fx_r_type))
15464 insn |= mips16_immed_extend (value, 16);
15465 else
15466 insn |= (value & 0xffff);
15467 write_reloc_insn (buf, fixP->fx_r_type, insn);
15468 }
15469 else
15470 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15471 _("unsupported constant in relocation"));
b886a2ab 15472 }
252b5132
RH
15473 break;
15474
252b5132
RH
15475 case BFD_RELOC_64:
15476 /* This is handled like BFD_RELOC_32, but we output a sign
15477 extended value if we are only 32 bits. */
3e722fb5 15478 if (fixP->fx_done)
252b5132
RH
15479 {
15480 if (8 <= sizeof (valueT))
4d68580a 15481 md_number_to_chars (buf, *valP, 8);
252b5132
RH
15482 else
15483 {
a7ebbfdf 15484 valueT hiv;
252b5132 15485
a7ebbfdf 15486 if ((*valP & 0x80000000) != 0)
252b5132
RH
15487 hiv = 0xffffffff;
15488 else
15489 hiv = 0;
4d68580a
RS
15490 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15491 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
252b5132
RH
15492 }
15493 }
15494 break;
15495
056350c6 15496 case BFD_RELOC_RVA:
252b5132 15497 case BFD_RELOC_32:
b47468a6 15498 case BFD_RELOC_32_PCREL:
252b5132 15499 case BFD_RELOC_16:
d56a8dda 15500 case BFD_RELOC_8:
252b5132 15501 /* If we are deleting this reloc entry, we must fill in the
54f4ddb3
TS
15502 value now. This can happen if we have a .word which is not
15503 resolved when it appears but is later defined. */
252b5132 15504 if (fixP->fx_done)
4d68580a 15505 md_number_to_chars (buf, *valP, fixP->fx_size);
252b5132
RH
15506 break;
15507
7361da2c 15508 case BFD_RELOC_MIPS_21_PCREL_S2:
9d862524 15509 fix_validate_branch (fixP, *valP);
41947d9e
MR
15510 if (!fixP->fx_done)
15511 break;
15512
15513 if (*valP + 0x400000 <= 0x7fffff)
15514 {
15515 insn = read_insn (buf);
15516 insn |= (*valP >> 2) & 0x1fffff;
15517 write_insn (buf, insn);
15518 }
15519 else
15520 as_bad_where (fixP->fx_file, fixP->fx_line,
15521 _("branch out of range"));
15522 break;
15523
7361da2c 15524 case BFD_RELOC_MIPS_26_PCREL_S2:
9d862524 15525 fix_validate_branch (fixP, *valP);
41947d9e
MR
15526 if (!fixP->fx_done)
15527 break;
7361da2c 15528
41947d9e
MR
15529 if (*valP + 0x8000000 <= 0xfffffff)
15530 {
15531 insn = read_insn (buf);
15532 insn |= (*valP >> 2) & 0x3ffffff;
15533 write_insn (buf, insn);
15534 }
15535 else
15536 as_bad_where (fixP->fx_file, fixP->fx_line,
15537 _("branch out of range"));
7361da2c
AB
15538 break;
15539
15540 case BFD_RELOC_MIPS_18_PCREL_S3:
717ba204 15541 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
7361da2c 15542 as_bad_where (fixP->fx_file, fixP->fx_line,
0866e94c
MF
15543 _("PC-relative access using misaligned symbol (%lx)"),
15544 (long) S_GET_VALUE (fixP->fx_addsy));
15545 if ((fixP->fx_offset & 0x7) != 0)
15546 as_bad_where (fixP->fx_file, fixP->fx_line,
15547 _("PC-relative access using misaligned offset (%lx)"),
15548 (long) fixP->fx_offset);
41947d9e
MR
15549 if (!fixP->fx_done)
15550 break;
7361da2c 15551
41947d9e
MR
15552 if (*valP + 0x100000 <= 0x1fffff)
15553 {
15554 insn = read_insn (buf);
15555 insn |= (*valP >> 3) & 0x3ffff;
15556 write_insn (buf, insn);
15557 }
15558 else
15559 as_bad_where (fixP->fx_file, fixP->fx_line,
15560 _("PC-relative access out of range"));
7361da2c
AB
15561 break;
15562
15563 case BFD_RELOC_MIPS_19_PCREL_S2:
15564 if ((*valP & 0x3) != 0)
15565 as_bad_where (fixP->fx_file, fixP->fx_line,
15566 _("PC-relative access to misaligned address (%lx)"),
717ba204 15567 (long) *valP);
41947d9e
MR
15568 if (!fixP->fx_done)
15569 break;
7361da2c 15570
41947d9e
MR
15571 if (*valP + 0x100000 <= 0x1fffff)
15572 {
15573 insn = read_insn (buf);
15574 insn |= (*valP >> 2) & 0x7ffff;
15575 write_insn (buf, insn);
15576 }
15577 else
15578 as_bad_where (fixP->fx_file, fixP->fx_line,
15579 _("PC-relative access out of range"));
7361da2c
AB
15580 break;
15581
252b5132 15582 case BFD_RELOC_16_PCREL_S2:
9d862524 15583 fix_validate_branch (fixP, *valP);
cb56d3d3 15584
54f4ddb3
TS
15585 /* We need to save the bits in the instruction since fixup_segment()
15586 might be deleting the relocation entry (i.e., a branch within
15587 the current segment). */
a7ebbfdf 15588 if (! fixP->fx_done)
bb2d6cd7 15589 break;
252b5132 15590
54f4ddb3 15591 /* Update old instruction data. */
4d68580a 15592 insn = read_insn (buf);
252b5132 15593
a7ebbfdf
TS
15594 if (*valP + 0x20000 <= 0x3ffff)
15595 {
15596 insn |= (*valP >> 2) & 0xffff;
4d68580a 15597 write_insn (buf, insn);
a7ebbfdf 15598 }
ce8ad872 15599 else if (fixP->fx_tcbit2
a7ebbfdf
TS
15600 && fixP->fx_done
15601 && fixP->fx_frag->fr_address >= text_section->vma
15602 && (fixP->fx_frag->fr_address
587aac4e 15603 < text_section->vma + bfd_get_section_size (text_section))
a7ebbfdf
TS
15604 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15605 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15606 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
252b5132
RH
15607 {
15608 /* The branch offset is too large. If this is an
15609 unconditional branch, and we are not generating PIC code,
15610 we can convert it to an absolute jump instruction. */
a7ebbfdf
TS
15611 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15612 insn = 0x0c000000; /* jal */
252b5132 15613 else
a7ebbfdf
TS
15614 insn = 0x08000000; /* j */
15615 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15616 fixP->fx_done = 0;
15617 fixP->fx_addsy = section_symbol (text_section);
15618 *valP += md_pcrel_from (fixP);
4d68580a 15619 write_insn (buf, insn);
a7ebbfdf
TS
15620 }
15621 else
15622 {
15623 /* If we got here, we have branch-relaxation disabled,
15624 and there's nothing we can do to fix this instruction
15625 without turning it into a longer sequence. */
15626 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15627 _("branch out of range"));
252b5132 15628 }
252b5132
RH
15629 break;
15630
c9775dde 15631 case BFD_RELOC_MIPS16_16_PCREL_S1:
df58fc94
RS
15632 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15633 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15634 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
96e9ba5f 15635 gas_assert (!fixP->fx_done);
9d862524
MR
15636 if (fix_bad_cross_mode_branch_p (fixP))
15637 as_bad_where (fixP->fx_file, fixP->fx_line,
15638 _("branch to a symbol in another ISA mode"));
15639 else if (fixP->fx_addsy
15640 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15641 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15642 && (fixP->fx_offset & 0x1) != 0)
15643 as_bad_where (fixP->fx_file, fixP->fx_line,
15644 _("branch to misaligned address (0x%lx)"),
15645 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15646 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15647 as_bad_where (fixP->fx_file, fixP->fx_line,
15648 _("cannot encode misaligned addend "
15649 "in the relocatable field (0x%lx)"),
15650 (long) fixP->fx_offset);
df58fc94
RS
15651 break;
15652
252b5132
RH
15653 case BFD_RELOC_VTABLE_INHERIT:
15654 fixP->fx_done = 0;
15655 if (fixP->fx_addsy
15656 && !S_IS_DEFINED (fixP->fx_addsy)
15657 && !S_IS_WEAK (fixP->fx_addsy))
15658 S_SET_WEAK (fixP->fx_addsy);
15659 break;
15660
2f0c68f2 15661 case BFD_RELOC_NONE:
252b5132
RH
15662 case BFD_RELOC_VTABLE_ENTRY:
15663 fixP->fx_done = 0;
15664 break;
15665
15666 default:
b37df7c4 15667 abort ();
252b5132 15668 }
a7ebbfdf
TS
15669
15670 /* Remember value for tc_gen_reloc. */
15671 fixP->fx_addnumber = *valP;
252b5132
RH
15672}
15673
252b5132 15674static symbolS *
17a2f251 15675get_symbol (void)
252b5132
RH
15676{
15677 int c;
15678 char *name;
15679 symbolS *p;
15680
d02603dc 15681 c = get_symbol_name (&name);
252b5132 15682 p = (symbolS *) symbol_find_or_make (name);
d02603dc 15683 (void) restore_line_pointer (c);
252b5132
RH
15684 return p;
15685}
15686
742a56fe
RS
15687/* Align the current frag to a given power of two. If a particular
15688 fill byte should be used, FILL points to an integer that contains
15689 that byte, otherwise FILL is null.
15690
462427c4
RS
15691 This function used to have the comment:
15692
15693 The MIPS assembler also automatically adjusts any preceding label.
15694
15695 The implementation therefore applied the adjustment to a maximum of
15696 one label. However, other label adjustments are applied to batches
15697 of labels, and adjusting just one caused problems when new labels
15698 were added for the sake of debugging or unwind information.
15699 We therefore adjust all preceding labels (given as LABELS) instead. */
252b5132
RH
15700
15701static void
462427c4 15702mips_align (int to, int *fill, struct insn_label_list *labels)
252b5132 15703{
7d10b47d 15704 mips_emit_delays ();
df58fc94 15705 mips_record_compressed_mode ();
742a56fe
RS
15706 if (fill == NULL && subseg_text_p (now_seg))
15707 frag_align_code (to, 0);
15708 else
15709 frag_align (to, fill ? *fill : 0, 0);
252b5132 15710 record_alignment (now_seg, to);
462427c4 15711 mips_move_labels (labels, FALSE);
252b5132
RH
15712}
15713
15714/* Align to a given power of two. .align 0 turns off the automatic
15715 alignment used by the data creating pseudo-ops. */
15716
15717static void
17a2f251 15718s_align (int x ATTRIBUTE_UNUSED)
252b5132 15719{
742a56fe 15720 int temp, fill_value, *fill_ptr;
49954fb4 15721 long max_alignment = 28;
252b5132 15722
54f4ddb3 15723 /* o Note that the assembler pulls down any immediately preceding label
252b5132 15724 to the aligned address.
54f4ddb3 15725 o It's not documented but auto alignment is reinstated by
252b5132 15726 a .align pseudo instruction.
54f4ddb3 15727 o Note also that after auto alignment is turned off the mips assembler
252b5132 15728 issues an error on attempt to assemble an improperly aligned data item.
54f4ddb3 15729 We don't. */
252b5132
RH
15730
15731 temp = get_absolute_expression ();
15732 if (temp > max_alignment)
1661c76c 15733 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
252b5132
RH
15734 else if (temp < 0)
15735 {
1661c76c 15736 as_warn (_("alignment negative, 0 assumed"));
252b5132
RH
15737 temp = 0;
15738 }
15739 if (*input_line_pointer == ',')
15740 {
f9419b05 15741 ++input_line_pointer;
742a56fe
RS
15742 fill_value = get_absolute_expression ();
15743 fill_ptr = &fill_value;
252b5132
RH
15744 }
15745 else
742a56fe 15746 fill_ptr = 0;
252b5132
RH
15747 if (temp)
15748 {
a8dbcb85
TS
15749 segment_info_type *si = seg_info (now_seg);
15750 struct insn_label_list *l = si->label_list;
54f4ddb3 15751 /* Auto alignment should be switched on by next section change. */
252b5132 15752 auto_align = 1;
462427c4 15753 mips_align (temp, fill_ptr, l);
252b5132
RH
15754 }
15755 else
15756 {
15757 auto_align = 0;
15758 }
15759
15760 demand_empty_rest_of_line ();
15761}
15762
252b5132 15763static void
17a2f251 15764s_change_sec (int sec)
252b5132
RH
15765{
15766 segT seg;
15767
252b5132
RH
15768 /* The ELF backend needs to know that we are changing sections, so
15769 that .previous works correctly. We could do something like check
b6ff326e 15770 for an obj_section_change_hook macro, but that might be confusing
252b5132
RH
15771 as it would not be appropriate to use it in the section changing
15772 functions in read.c, since obj-elf.c intercepts those. FIXME:
15773 This should be cleaner, somehow. */
f3ded42a 15774 obj_elf_section_change_hook ();
252b5132 15775
7d10b47d 15776 mips_emit_delays ();
6a32d874 15777
252b5132
RH
15778 switch (sec)
15779 {
15780 case 't':
15781 s_text (0);
15782 break;
15783 case 'd':
15784 s_data (0);
15785 break;
15786 case 'b':
15787 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15788 demand_empty_rest_of_line ();
15789 break;
15790
15791 case 'r':
4d0d148d
TS
15792 seg = subseg_new (RDATA_SECTION_NAME,
15793 (subsegT) get_absolute_expression ());
f3ded42a
RS
15794 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15795 | SEC_READONLY | SEC_RELOC
15796 | SEC_DATA));
15797 if (strncmp (TARGET_OS, "elf", 3) != 0)
15798 record_alignment (seg, 4);
4d0d148d 15799 demand_empty_rest_of_line ();
252b5132
RH
15800 break;
15801
15802 case 's':
4d0d148d 15803 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
f3ded42a
RS
15804 bfd_set_section_flags (stdoutput, seg,
15805 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15806 if (strncmp (TARGET_OS, "elf", 3) != 0)
15807 record_alignment (seg, 4);
4d0d148d
TS
15808 demand_empty_rest_of_line ();
15809 break;
998b3c36
MR
15810
15811 case 'B':
15812 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
f3ded42a
RS
15813 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15814 if (strncmp (TARGET_OS, "elf", 3) != 0)
15815 record_alignment (seg, 4);
998b3c36
MR
15816 demand_empty_rest_of_line ();
15817 break;
252b5132
RH
15818 }
15819
15820 auto_align = 1;
15821}
b34976b6 15822
cca86cc8 15823void
17a2f251 15824s_change_section (int ignore ATTRIBUTE_UNUSED)
cca86cc8 15825{
d02603dc 15826 char *saved_ilp;
cca86cc8 15827 char *section_name;
d02603dc 15828 char c, endc;
684022ea 15829 char next_c = 0;
cca86cc8
SC
15830 int section_type;
15831 int section_flag;
15832 int section_entry_size;
15833 int section_alignment;
b34976b6 15834
d02603dc
NC
15835 saved_ilp = input_line_pointer;
15836 endc = get_symbol_name (&section_name);
15837 c = (endc == '"' ? input_line_pointer[1] : endc);
a816d1ed 15838 if (c)
d02603dc 15839 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
cca86cc8 15840
4cf0dd0d
TS
15841 /* Do we have .section Name<,"flags">? */
15842 if (c != ',' || (c == ',' && next_c == '"'))
cca86cc8 15843 {
d02603dc
NC
15844 /* Just after name is now '\0'. */
15845 (void) restore_line_pointer (endc);
15846 input_line_pointer = saved_ilp;
cca86cc8
SC
15847 obj_elf_section (ignore);
15848 return;
15849 }
d02603dc
NC
15850
15851 section_name = xstrdup (section_name);
15852 c = restore_line_pointer (endc);
15853
cca86cc8
SC
15854 input_line_pointer++;
15855
15856 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15857 if (c == ',')
15858 section_type = get_absolute_expression ();
15859 else
15860 section_type = 0;
d02603dc 15861
cca86cc8
SC
15862 if (*input_line_pointer++ == ',')
15863 section_flag = get_absolute_expression ();
15864 else
15865 section_flag = 0;
d02603dc 15866
cca86cc8
SC
15867 if (*input_line_pointer++ == ',')
15868 section_entry_size = get_absolute_expression ();
15869 else
15870 section_entry_size = 0;
d02603dc 15871
cca86cc8
SC
15872 if (*input_line_pointer++ == ',')
15873 section_alignment = get_absolute_expression ();
15874 else
15875 section_alignment = 0;
d02603dc 15876
87975d2a
AM
15877 /* FIXME: really ignore? */
15878 (void) section_alignment;
cca86cc8 15879
8ab8a5c8
RS
15880 /* When using the generic form of .section (as implemented by obj-elf.c),
15881 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15882 traditionally had to fall back on the more common @progbits instead.
15883
15884 There's nothing really harmful in this, since bfd will correct
15885 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
708587a4 15886 means that, for backwards compatibility, the special_section entries
8ab8a5c8
RS
15887 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15888
15889 Even so, we shouldn't force users of the MIPS .section syntax to
15890 incorrectly label the sections as SHT_PROGBITS. The best compromise
15891 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15892 generic type-checking code. */
15893 if (section_type == SHT_MIPS_DWARF)
15894 section_type = SHT_PROGBITS;
15895
a91e1603 15896 obj_elf_change_section (section_name, section_type, 0, section_flag,
cca86cc8 15897 section_entry_size, 0, 0, 0);
a816d1ed
AO
15898
15899 if (now_seg->name != section_name)
15900 free (section_name);
cca86cc8 15901}
252b5132
RH
15902
15903void
17a2f251 15904mips_enable_auto_align (void)
252b5132
RH
15905{
15906 auto_align = 1;
15907}
15908
15909static void
17a2f251 15910s_cons (int log_size)
252b5132 15911{
a8dbcb85
TS
15912 segment_info_type *si = seg_info (now_seg);
15913 struct insn_label_list *l = si->label_list;
252b5132 15914
7d10b47d 15915 mips_emit_delays ();
252b5132 15916 if (log_size > 0 && auto_align)
462427c4 15917 mips_align (log_size, 0, l);
252b5132 15918 cons (1 << log_size);
a1facbec 15919 mips_clear_insn_labels ();
252b5132
RH
15920}
15921
15922static void
17a2f251 15923s_float_cons (int type)
252b5132 15924{
a8dbcb85
TS
15925 segment_info_type *si = seg_info (now_seg);
15926 struct insn_label_list *l = si->label_list;
252b5132 15927
7d10b47d 15928 mips_emit_delays ();
252b5132
RH
15929
15930 if (auto_align)
49309057
ILT
15931 {
15932 if (type == 'd')
462427c4 15933 mips_align (3, 0, l);
49309057 15934 else
462427c4 15935 mips_align (2, 0, l);
49309057 15936 }
252b5132 15937
252b5132 15938 float_cons (type);
a1facbec 15939 mips_clear_insn_labels ();
252b5132
RH
15940}
15941
15942/* Handle .globl. We need to override it because on Irix 5 you are
15943 permitted to say
15944 .globl foo .text
15945 where foo is an undefined symbol, to mean that foo should be
15946 considered to be the address of a function. */
15947
15948static void
17a2f251 15949s_mips_globl (int x ATTRIBUTE_UNUSED)
252b5132
RH
15950{
15951 char *name;
15952 int c;
15953 symbolS *symbolP;
15954 flagword flag;
15955
8a06b769 15956 do
252b5132 15957 {
d02603dc 15958 c = get_symbol_name (&name);
8a06b769
TS
15959 symbolP = symbol_find_or_make (name);
15960 S_SET_EXTERNAL (symbolP);
15961
252b5132 15962 *input_line_pointer = c;
d02603dc 15963 SKIP_WHITESPACE_AFTER_NAME ();
252b5132 15964
8a06b769
TS
15965 /* On Irix 5, every global symbol that is not explicitly labelled as
15966 being a function is apparently labelled as being an object. */
15967 flag = BSF_OBJECT;
252b5132 15968
8a06b769
TS
15969 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15970 && (*input_line_pointer != ','))
15971 {
15972 char *secname;
15973 asection *sec;
15974
d02603dc 15975 c = get_symbol_name (&secname);
8a06b769
TS
15976 sec = bfd_get_section_by_name (stdoutput, secname);
15977 if (sec == NULL)
15978 as_bad (_("%s: no such section"), secname);
d02603dc 15979 (void) restore_line_pointer (c);
8a06b769
TS
15980
15981 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15982 flag = BSF_FUNCTION;
15983 }
15984
15985 symbol_get_bfdsym (symbolP)->flags |= flag;
15986
15987 c = *input_line_pointer;
15988 if (c == ',')
15989 {
15990 input_line_pointer++;
15991 SKIP_WHITESPACE ();
15992 if (is_end_of_line[(unsigned char) *input_line_pointer])
15993 c = '\n';
15994 }
15995 }
15996 while (c == ',');
252b5132 15997
252b5132
RH
15998 demand_empty_rest_of_line ();
15999}
16000
16001static void
17a2f251 16002s_option (int x ATTRIBUTE_UNUSED)
252b5132
RH
16003{
16004 char *opt;
16005 char c;
16006
d02603dc 16007 c = get_symbol_name (&opt);
252b5132
RH
16008
16009 if (*opt == 'O')
16010 {
16011 /* FIXME: What does this mean? */
16012 }
41a1578e 16013 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
252b5132
RH
16014 {
16015 int i;
16016
16017 i = atoi (opt + 3);
668c5ebc
MR
16018 if (i != 0 && i != 2)
16019 as_bad (_(".option pic%d not supported"), i);
16020 else if (mips_pic == VXWORKS_PIC)
16021 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
16022 else if (i == 0)
252b5132
RH
16023 mips_pic = NO_PIC;
16024 else if (i == 2)
143d77c5 16025 {
8b828383 16026 mips_pic = SVR4_PIC;
143d77c5
EC
16027 mips_abicalls = TRUE;
16028 }
252b5132 16029
4d0d148d 16030 if (mips_pic == SVR4_PIC)
252b5132
RH
16031 {
16032 if (g_switch_seen && g_switch_value != 0)
16033 as_warn (_("-G may not be used with SVR4 PIC code"));
16034 g_switch_value = 0;
16035 bfd_set_gp_size (stdoutput, 0);
16036 }
16037 }
16038 else
1661c76c 16039 as_warn (_("unrecognized option \"%s\""), opt);
252b5132 16040
d02603dc 16041 (void) restore_line_pointer (c);
252b5132
RH
16042 demand_empty_rest_of_line ();
16043}
16044
16045/* This structure is used to hold a stack of .set values. */
16046
e972090a
NC
16047struct mips_option_stack
16048{
252b5132
RH
16049 struct mips_option_stack *next;
16050 struct mips_set_options options;
16051};
16052
16053static struct mips_option_stack *mips_opts_stack;
16054
22522f88
MR
16055/* Return status for .set/.module option handling. */
16056
16057enum code_option_type
16058{
16059 /* Unrecognized option. */
16060 OPTION_TYPE_BAD = -1,
16061
16062 /* Ordinary option. */
16063 OPTION_TYPE_NORMAL,
16064
16065 /* ISA changing option. */
16066 OPTION_TYPE_ISA
16067};
16068
16069/* Handle common .set/.module options. Return status indicating option
16070 type. */
16071
16072static enum code_option_type
919731af 16073parse_code_option (char * name)
252b5132 16074{
22522f88 16075 bfd_boolean isa_set = FALSE;
c6278170 16076 const struct mips_ase *ase;
22522f88 16077
919731af 16078 if (strncmp (name, "at=", 3) == 0)
741fe287
MR
16079 {
16080 char *s = name + 3;
16081
16082 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
1661c76c 16083 as_bad (_("unrecognized register name `%s'"), s);
741fe287 16084 }
252b5132 16085 else if (strcmp (name, "at") == 0)
919731af 16086 mips_opts.at = ATREG;
252b5132 16087 else if (strcmp (name, "noat") == 0)
919731af 16088 mips_opts.at = ZERO;
252b5132 16089 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
919731af 16090 mips_opts.nomove = 0;
252b5132 16091 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
919731af 16092 mips_opts.nomove = 1;
252b5132 16093 else if (strcmp (name, "bopt") == 0)
919731af 16094 mips_opts.nobopt = 0;
252b5132 16095 else if (strcmp (name, "nobopt") == 0)
919731af 16096 mips_opts.nobopt = 1;
ad3fea08 16097 else if (strcmp (name, "gp=32") == 0)
bad1aba3 16098 mips_opts.gp = 32;
ad3fea08 16099 else if (strcmp (name, "gp=64") == 0)
919731af 16100 mips_opts.gp = 64;
ad3fea08 16101 else if (strcmp (name, "fp=32") == 0)
0b35dfee 16102 mips_opts.fp = 32;
351cdf24
MF
16103 else if (strcmp (name, "fp=xx") == 0)
16104 mips_opts.fp = 0;
ad3fea08 16105 else if (strcmp (name, "fp=64") == 0)
919731af 16106 mips_opts.fp = 64;
037b32b9
AN
16107 else if (strcmp (name, "softfloat") == 0)
16108 mips_opts.soft_float = 1;
16109 else if (strcmp (name, "hardfloat") == 0)
16110 mips_opts.soft_float = 0;
16111 else if (strcmp (name, "singlefloat") == 0)
16112 mips_opts.single_float = 1;
16113 else if (strcmp (name, "doublefloat") == 0)
16114 mips_opts.single_float = 0;
351cdf24
MF
16115 else if (strcmp (name, "nooddspreg") == 0)
16116 mips_opts.oddspreg = 0;
16117 else if (strcmp (name, "oddspreg") == 0)
16118 mips_opts.oddspreg = 1;
252b5132
RH
16119 else if (strcmp (name, "mips16") == 0
16120 || strcmp (name, "MIPS-16") == 0)
919731af 16121 mips_opts.mips16 = 1;
252b5132
RH
16122 else if (strcmp (name, "nomips16") == 0
16123 || strcmp (name, "noMIPS-16") == 0)
16124 mips_opts.mips16 = 0;
df58fc94 16125 else if (strcmp (name, "micromips") == 0)
919731af 16126 mips_opts.micromips = 1;
df58fc94
RS
16127 else if (strcmp (name, "nomicromips") == 0)
16128 mips_opts.micromips = 0;
c6278170
RS
16129 else if (name[0] == 'n'
16130 && name[1] == 'o'
16131 && (ase = mips_lookup_ase (name + 2)))
919731af 16132 mips_set_ase (ase, &mips_opts, FALSE);
c6278170 16133 else if ((ase = mips_lookup_ase (name)))
919731af 16134 mips_set_ase (ase, &mips_opts, TRUE);
1a2c1fad 16135 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
252b5132 16136 {
1a2c1fad
CD
16137 /* Permit the user to change the ISA and architecture on the fly.
16138 Needless to say, misuse can cause serious problems. */
919731af 16139 if (strncmp (name, "arch=", 5) == 0)
1a2c1fad
CD
16140 {
16141 const struct mips_cpu_info *p;
16142
919731af 16143 p = mips_parse_cpu ("internal use", name + 5);
1a2c1fad
CD
16144 if (!p)
16145 as_bad (_("unknown architecture %s"), name + 5);
16146 else
16147 {
16148 mips_opts.arch = p->cpu;
16149 mips_opts.isa = p->isa;
22522f88 16150 isa_set = TRUE;
1a2c1fad
CD
16151 }
16152 }
81a21e38
TS
16153 else if (strncmp (name, "mips", 4) == 0)
16154 {
16155 const struct mips_cpu_info *p;
16156
919731af 16157 p = mips_parse_cpu ("internal use", name);
81a21e38
TS
16158 if (!p)
16159 as_bad (_("unknown ISA level %s"), name + 4);
16160 else
16161 {
16162 mips_opts.arch = p->cpu;
16163 mips_opts.isa = p->isa;
22522f88 16164 isa_set = TRUE;
81a21e38
TS
16165 }
16166 }
af7ee8bf 16167 else
81a21e38 16168 as_bad (_("unknown ISA or architecture %s"), name);
252b5132
RH
16169 }
16170 else if (strcmp (name, "autoextend") == 0)
16171 mips_opts.noautoextend = 0;
16172 else if (strcmp (name, "noautoextend") == 0)
16173 mips_opts.noautoextend = 1;
833794fc
MR
16174 else if (strcmp (name, "insn32") == 0)
16175 mips_opts.insn32 = TRUE;
16176 else if (strcmp (name, "noinsn32") == 0)
16177 mips_opts.insn32 = FALSE;
919731af 16178 else if (strcmp (name, "sym32") == 0)
16179 mips_opts.sym32 = TRUE;
16180 else if (strcmp (name, "nosym32") == 0)
16181 mips_opts.sym32 = FALSE;
16182 else
22522f88
MR
16183 return OPTION_TYPE_BAD;
16184
16185 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
919731af 16186}
16187
16188/* Handle the .set pseudo-op. */
16189
16190static void
16191s_mipsset (int x ATTRIBUTE_UNUSED)
16192{
22522f88 16193 enum code_option_type type = OPTION_TYPE_NORMAL;
919731af 16194 char *name = input_line_pointer, ch;
919731af 16195
16196 file_mips_check_options ();
16197
16198 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16199 ++input_line_pointer;
16200 ch = *input_line_pointer;
16201 *input_line_pointer = '\0';
16202
16203 if (strchr (name, ','))
16204 {
16205 /* Generic ".set" directive; use the generic handler. */
16206 *input_line_pointer = ch;
16207 input_line_pointer = name;
16208 s_set (0);
16209 return;
16210 }
16211
16212 if (strcmp (name, "reorder") == 0)
16213 {
16214 if (mips_opts.noreorder)
16215 end_noreorder ();
16216 }
16217 else if (strcmp (name, "noreorder") == 0)
16218 {
16219 if (!mips_opts.noreorder)
16220 start_noreorder ();
16221 }
16222 else if (strcmp (name, "macro") == 0)
16223 mips_opts.warn_about_macros = 0;
16224 else if (strcmp (name, "nomacro") == 0)
16225 {
16226 if (mips_opts.noreorder == 0)
16227 as_bad (_("`noreorder' must be set before `nomacro'"));
16228 mips_opts.warn_about_macros = 1;
16229 }
16230 else if (strcmp (name, "gp=default") == 0)
16231 mips_opts.gp = file_mips_opts.gp;
16232 else if (strcmp (name, "fp=default") == 0)
16233 mips_opts.fp = file_mips_opts.fp;
16234 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16235 {
16236 mips_opts.isa = file_mips_opts.isa;
16237 mips_opts.arch = file_mips_opts.arch;
16238 mips_opts.gp = file_mips_opts.gp;
16239 mips_opts.fp = file_mips_opts.fp;
16240 }
252b5132
RH
16241 else if (strcmp (name, "push") == 0)
16242 {
16243 struct mips_option_stack *s;
16244
325801bd 16245 s = XNEW (struct mips_option_stack);
252b5132
RH
16246 s->next = mips_opts_stack;
16247 s->options = mips_opts;
16248 mips_opts_stack = s;
16249 }
16250 else if (strcmp (name, "pop") == 0)
16251 {
16252 struct mips_option_stack *s;
16253
16254 s = mips_opts_stack;
16255 if (s == NULL)
16256 as_bad (_(".set pop with no .set push"));
16257 else
16258 {
16259 /* If we're changing the reorder mode we need to handle
16260 delay slots correctly. */
16261 if (s->options.noreorder && ! mips_opts.noreorder)
7d10b47d 16262 start_noreorder ();
252b5132 16263 else if (! s->options.noreorder && mips_opts.noreorder)
7d10b47d 16264 end_noreorder ();
252b5132
RH
16265
16266 mips_opts = s->options;
16267 mips_opts_stack = s->next;
16268 free (s);
16269 }
16270 }
22522f88
MR
16271 else
16272 {
16273 type = parse_code_option (name);
16274 if (type == OPTION_TYPE_BAD)
16275 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16276 }
919731af 16277
16278 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16279 registers based on what is supported by the arch/cpu. */
22522f88 16280 if (type == OPTION_TYPE_ISA)
e6559e01 16281 {
919731af 16282 switch (mips_opts.isa)
16283 {
16284 case 0:
16285 break;
16286 case ISA_MIPS1:
351cdf24
MF
16287 /* MIPS I cannot support FPXX. */
16288 mips_opts.fp = 32;
16289 /* fall-through. */
919731af 16290 case ISA_MIPS2:
16291 case ISA_MIPS32:
16292 case ISA_MIPS32R2:
16293 case ISA_MIPS32R3:
16294 case ISA_MIPS32R5:
16295 mips_opts.gp = 32;
351cdf24
MF
16296 if (mips_opts.fp != 0)
16297 mips_opts.fp = 32;
919731af 16298 break;
7361da2c
AB
16299 case ISA_MIPS32R6:
16300 mips_opts.gp = 32;
16301 mips_opts.fp = 64;
16302 break;
919731af 16303 case ISA_MIPS3:
16304 case ISA_MIPS4:
16305 case ISA_MIPS5:
16306 case ISA_MIPS64:
16307 case ISA_MIPS64R2:
16308 case ISA_MIPS64R3:
16309 case ISA_MIPS64R5:
7361da2c 16310 case ISA_MIPS64R6:
919731af 16311 mips_opts.gp = 64;
351cdf24
MF
16312 if (mips_opts.fp != 0)
16313 {
16314 if (mips_opts.arch == CPU_R5900)
16315 mips_opts.fp = 32;
16316 else
16317 mips_opts.fp = 64;
16318 }
919731af 16319 break;
16320 default:
16321 as_bad (_("unknown ISA level %s"), name + 4);
16322 break;
16323 }
e6559e01 16324 }
919731af 16325
16326 mips_check_options (&mips_opts, FALSE);
16327
16328 mips_check_isa_supports_ases ();
16329 *input_line_pointer = ch;
16330 demand_empty_rest_of_line ();
16331}
16332
16333/* Handle the .module pseudo-op. */
16334
16335static void
16336s_module (int ignore ATTRIBUTE_UNUSED)
16337{
16338 char *name = input_line_pointer, ch;
16339
16340 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16341 ++input_line_pointer;
16342 ch = *input_line_pointer;
16343 *input_line_pointer = '\0';
16344
16345 if (!file_mips_opts_checked)
252b5132 16346 {
22522f88 16347 if (parse_code_option (name) == OPTION_TYPE_BAD)
919731af 16348 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16349
16350 /* Update module level settings from mips_opts. */
16351 file_mips_opts = mips_opts;
252b5132 16352 }
919731af 16353 else
16354 as_bad (_(".module is not permitted after generating code"));
16355
252b5132
RH
16356 *input_line_pointer = ch;
16357 demand_empty_rest_of_line ();
16358}
16359
16360/* Handle the .abicalls pseudo-op. I believe this is equivalent to
16361 .option pic2. It means to generate SVR4 PIC calls. */
16362
16363static void
17a2f251 16364s_abicalls (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16365{
16366 mips_pic = SVR4_PIC;
143d77c5 16367 mips_abicalls = TRUE;
4d0d148d
TS
16368
16369 if (g_switch_seen && g_switch_value != 0)
16370 as_warn (_("-G may not be used with SVR4 PIC code"));
16371 g_switch_value = 0;
16372
252b5132
RH
16373 bfd_set_gp_size (stdoutput, 0);
16374 demand_empty_rest_of_line ();
16375}
16376
16377/* Handle the .cpload pseudo-op. This is used when generating SVR4
16378 PIC code. It sets the $gp register for the function based on the
16379 function address, which is in the register named in the argument.
16380 This uses a relocation against _gp_disp, which is handled specially
16381 by the linker. The result is:
16382 lui $gp,%hi(_gp_disp)
16383 addiu $gp,$gp,%lo(_gp_disp)
16384 addu $gp,$gp,.cpload argument
aa6975fb
ILT
16385 The .cpload argument is normally $25 == $t9.
16386
16387 The -mno-shared option changes this to:
bbe506e8
TS
16388 lui $gp,%hi(__gnu_local_gp)
16389 addiu $gp,$gp,%lo(__gnu_local_gp)
aa6975fb
ILT
16390 and the argument is ignored. This saves an instruction, but the
16391 resulting code is not position independent; it uses an absolute
bbe506e8
TS
16392 address for __gnu_local_gp. Thus code assembled with -mno-shared
16393 can go into an ordinary executable, but not into a shared library. */
252b5132
RH
16394
16395static void
17a2f251 16396s_cpload (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16397{
16398 expressionS ex;
aa6975fb
ILT
16399 int reg;
16400 int in_shared;
252b5132 16401
919731af 16402 file_mips_check_options ();
16403
6478892d
TS
16404 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16405 .cpload is ignored. */
16406 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16407 {
16408 s_ignore (0);
16409 return;
16410 }
16411
a276b80c
MR
16412 if (mips_opts.mips16)
16413 {
16414 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16415 ignore_rest_of_line ();
16416 return;
16417 }
16418
d3ecfc59 16419 /* .cpload should be in a .set noreorder section. */
252b5132
RH
16420 if (mips_opts.noreorder == 0)
16421 as_warn (_(".cpload not in noreorder section"));
16422
aa6975fb
ILT
16423 reg = tc_get_register (0);
16424
16425 /* If we need to produce a 64-bit address, we are better off using
16426 the default instruction sequence. */
aed1a261 16427 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
aa6975fb 16428
252b5132 16429 ex.X_op = O_symbol;
bbe506e8
TS
16430 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16431 "__gnu_local_gp");
252b5132
RH
16432 ex.X_op_symbol = NULL;
16433 ex.X_add_number = 0;
16434
16435 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
49309057 16436 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
252b5132 16437
8a75745d
MR
16438 mips_mark_labels ();
16439 mips_assembling_insn = TRUE;
16440
584892a6 16441 macro_start ();
67c0d1eb
RS
16442 macro_build_lui (&ex, mips_gp_register);
16443 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17a2f251 16444 mips_gp_register, BFD_RELOC_LO16);
aa6975fb
ILT
16445 if (in_shared)
16446 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16447 mips_gp_register, reg);
584892a6 16448 macro_end ();
252b5132 16449
8a75745d 16450 mips_assembling_insn = FALSE;
252b5132
RH
16451 demand_empty_rest_of_line ();
16452}
16453
6478892d
TS
16454/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16455 .cpsetup $reg1, offset|$reg2, label
16456
16457 If offset is given, this results in:
16458 sd $gp, offset($sp)
956cd1d6 16459 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
16460 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16461 daddu $gp, $gp, $reg1
6478892d
TS
16462
16463 If $reg2 is given, this results in:
40fc1451 16464 or $reg2, $gp, $0
956cd1d6 16465 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
16466 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16467 daddu $gp, $gp, $reg1
aa6975fb
ILT
16468 $reg1 is normally $25 == $t9.
16469
16470 The -mno-shared option replaces the last three instructions with
16471 lui $gp,%hi(_gp)
54f4ddb3 16472 addiu $gp,$gp,%lo(_gp) */
aa6975fb 16473
6478892d 16474static void
17a2f251 16475s_cpsetup (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16476{
16477 expressionS ex_off;
16478 expressionS ex_sym;
16479 int reg1;
6478892d 16480
919731af 16481 file_mips_check_options ();
16482
8586fc66 16483 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
6478892d
TS
16484 We also need NewABI support. */
16485 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16486 {
16487 s_ignore (0);
16488 return;
16489 }
16490
a276b80c
MR
16491 if (mips_opts.mips16)
16492 {
16493 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16494 ignore_rest_of_line ();
16495 return;
16496 }
16497
6478892d
TS
16498 reg1 = tc_get_register (0);
16499 SKIP_WHITESPACE ();
16500 if (*input_line_pointer != ',')
16501 {
16502 as_bad (_("missing argument separator ',' for .cpsetup"));
16503 return;
16504 }
16505 else
80245285 16506 ++input_line_pointer;
6478892d
TS
16507 SKIP_WHITESPACE ();
16508 if (*input_line_pointer == '$')
80245285
TS
16509 {
16510 mips_cpreturn_register = tc_get_register (0);
16511 mips_cpreturn_offset = -1;
16512 }
6478892d 16513 else
80245285
TS
16514 {
16515 mips_cpreturn_offset = get_absolute_expression ();
16516 mips_cpreturn_register = -1;
16517 }
6478892d
TS
16518 SKIP_WHITESPACE ();
16519 if (*input_line_pointer != ',')
16520 {
16521 as_bad (_("missing argument separator ',' for .cpsetup"));
16522 return;
16523 }
16524 else
f9419b05 16525 ++input_line_pointer;
6478892d 16526 SKIP_WHITESPACE ();
f21f8242 16527 expression (&ex_sym);
6478892d 16528
8a75745d
MR
16529 mips_mark_labels ();
16530 mips_assembling_insn = TRUE;
16531
584892a6 16532 macro_start ();
6478892d
TS
16533 if (mips_cpreturn_register == -1)
16534 {
16535 ex_off.X_op = O_constant;
16536 ex_off.X_add_symbol = NULL;
16537 ex_off.X_op_symbol = NULL;
16538 ex_off.X_add_number = mips_cpreturn_offset;
16539
67c0d1eb 16540 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17a2f251 16541 BFD_RELOC_LO16, SP);
6478892d
TS
16542 }
16543 else
40fc1451 16544 move_register (mips_cpreturn_register, mips_gp_register);
6478892d 16545
aed1a261 16546 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
aa6975fb 16547 {
df58fc94 16548 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
aa6975fb
ILT
16549 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16550 BFD_RELOC_HI16_S);
16551
16552 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16553 mips_gp_register, -1, BFD_RELOC_GPREL16,
16554 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16555
16556 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16557 mips_gp_register, reg1);
16558 }
16559 else
16560 {
16561 expressionS ex;
16562
16563 ex.X_op = O_symbol;
4184909a 16564 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
aa6975fb
ILT
16565 ex.X_op_symbol = NULL;
16566 ex.X_add_number = 0;
6e1304d8 16567
aa6975fb
ILT
16568 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16569 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16570
16571 macro_build_lui (&ex, mips_gp_register);
16572 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16573 mips_gp_register, BFD_RELOC_LO16);
16574 }
f21f8242 16575
584892a6 16576 macro_end ();
6478892d 16577
8a75745d 16578 mips_assembling_insn = FALSE;
6478892d
TS
16579 demand_empty_rest_of_line ();
16580}
16581
16582static void
17a2f251 16583s_cplocal (int ignore ATTRIBUTE_UNUSED)
6478892d 16584{
919731af 16585 file_mips_check_options ();
16586
6478892d 16587 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
54f4ddb3 16588 .cplocal is ignored. */
6478892d
TS
16589 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16590 {
16591 s_ignore (0);
16592 return;
16593 }
16594
a276b80c
MR
16595 if (mips_opts.mips16)
16596 {
16597 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16598 ignore_rest_of_line ();
16599 return;
16600 }
16601
6478892d 16602 mips_gp_register = tc_get_register (0);
85b51719 16603 demand_empty_rest_of_line ();
6478892d
TS
16604}
16605
252b5132
RH
16606/* Handle the .cprestore pseudo-op. This stores $gp into a given
16607 offset from $sp. The offset is remembered, and after making a PIC
16608 call $gp is restored from that location. */
16609
16610static void
17a2f251 16611s_cprestore (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16612{
16613 expressionS ex;
252b5132 16614
919731af 16615 file_mips_check_options ();
16616
6478892d 16617 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
c9914766 16618 .cprestore is ignored. */
6478892d 16619 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16620 {
16621 s_ignore (0);
16622 return;
16623 }
16624
a276b80c
MR
16625 if (mips_opts.mips16)
16626 {
16627 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16628 ignore_rest_of_line ();
16629 return;
16630 }
16631
252b5132 16632 mips_cprestore_offset = get_absolute_expression ();
7a621144 16633 mips_cprestore_valid = 1;
252b5132
RH
16634
16635 ex.X_op = O_constant;
16636 ex.X_add_symbol = NULL;
16637 ex.X_op_symbol = NULL;
16638 ex.X_add_number = mips_cprestore_offset;
16639
8a75745d
MR
16640 mips_mark_labels ();
16641 mips_assembling_insn = TRUE;
16642
584892a6 16643 macro_start ();
67c0d1eb
RS
16644 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16645 SP, HAVE_64BIT_ADDRESSES);
584892a6 16646 macro_end ();
252b5132 16647
8a75745d 16648 mips_assembling_insn = FALSE;
252b5132
RH
16649 demand_empty_rest_of_line ();
16650}
16651
6478892d 16652/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
67c1ffbe 16653 was given in the preceding .cpsetup, it results in:
6478892d 16654 ld $gp, offset($sp)
76b3015f 16655
6478892d 16656 If a register $reg2 was given there, it results in:
40fc1451 16657 or $gp, $reg2, $0 */
54f4ddb3 16658
6478892d 16659static void
17a2f251 16660s_cpreturn (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16661{
16662 expressionS ex;
6478892d 16663
919731af 16664 file_mips_check_options ();
16665
6478892d
TS
16666 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16667 We also need NewABI support. */
16668 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16669 {
16670 s_ignore (0);
16671 return;
16672 }
16673
a276b80c
MR
16674 if (mips_opts.mips16)
16675 {
16676 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16677 ignore_rest_of_line ();
16678 return;
16679 }
16680
8a75745d
MR
16681 mips_mark_labels ();
16682 mips_assembling_insn = TRUE;
16683
584892a6 16684 macro_start ();
6478892d
TS
16685 if (mips_cpreturn_register == -1)
16686 {
16687 ex.X_op = O_constant;
16688 ex.X_add_symbol = NULL;
16689 ex.X_op_symbol = NULL;
16690 ex.X_add_number = mips_cpreturn_offset;
16691
67c0d1eb 16692 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
6478892d
TS
16693 }
16694 else
40fc1451
SD
16695 move_register (mips_gp_register, mips_cpreturn_register);
16696
584892a6 16697 macro_end ();
6478892d 16698
8a75745d 16699 mips_assembling_insn = FALSE;
6478892d
TS
16700 demand_empty_rest_of_line ();
16701}
16702
d0f13682
CLT
16703/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16704 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16705 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16706 debug information or MIPS16 TLS. */
741d6ea8
JM
16707
16708static void
d0f13682
CLT
16709s_tls_rel_directive (const size_t bytes, const char *dirstr,
16710 bfd_reloc_code_real_type rtype)
741d6ea8
JM
16711{
16712 expressionS ex;
16713 char *p;
16714
16715 expression (&ex);
16716
16717 if (ex.X_op != O_symbol)
16718 {
1661c76c 16719 as_bad (_("unsupported use of %s"), dirstr);
741d6ea8
JM
16720 ignore_rest_of_line ();
16721 }
16722
16723 p = frag_more (bytes);
16724 md_number_to_chars (p, 0, bytes);
d0f13682 16725 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
741d6ea8 16726 demand_empty_rest_of_line ();
de64cffd 16727 mips_clear_insn_labels ();
741d6ea8
JM
16728}
16729
16730/* Handle .dtprelword. */
16731
16732static void
16733s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16734{
d0f13682 16735 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
741d6ea8
JM
16736}
16737
16738/* Handle .dtpreldword. */
16739
16740static void
16741s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16742{
d0f13682
CLT
16743 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16744}
16745
16746/* Handle .tprelword. */
16747
16748static void
16749s_tprelword (int ignore ATTRIBUTE_UNUSED)
16750{
16751 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16752}
16753
16754/* Handle .tpreldword. */
16755
16756static void
16757s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16758{
16759 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
741d6ea8
JM
16760}
16761
6478892d
TS
16762/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16763 code. It sets the offset to use in gp_rel relocations. */
16764
16765static void
17a2f251 16766s_gpvalue (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16767{
16768 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16769 We also need NewABI support. */
16770 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16771 {
16772 s_ignore (0);
16773 return;
16774 }
16775
def2e0dd 16776 mips_gprel_offset = get_absolute_expression ();
6478892d
TS
16777
16778 demand_empty_rest_of_line ();
16779}
16780
252b5132
RH
16781/* Handle the .gpword pseudo-op. This is used when generating PIC
16782 code. It generates a 32 bit GP relative reloc. */
16783
16784static void
17a2f251 16785s_gpword (int ignore ATTRIBUTE_UNUSED)
252b5132 16786{
a8dbcb85
TS
16787 segment_info_type *si;
16788 struct insn_label_list *l;
252b5132
RH
16789 expressionS ex;
16790 char *p;
16791
16792 /* When not generating PIC code, this is treated as .word. */
16793 if (mips_pic != SVR4_PIC)
16794 {
16795 s_cons (2);
16796 return;
16797 }
16798
a8dbcb85
TS
16799 si = seg_info (now_seg);
16800 l = si->label_list;
7d10b47d 16801 mips_emit_delays ();
252b5132 16802 if (auto_align)
462427c4 16803 mips_align (2, 0, l);
252b5132
RH
16804
16805 expression (&ex);
a1facbec 16806 mips_clear_insn_labels ();
252b5132
RH
16807
16808 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16809 {
1661c76c 16810 as_bad (_("unsupported use of .gpword"));
252b5132
RH
16811 ignore_rest_of_line ();
16812 }
16813
16814 p = frag_more (4);
17a2f251 16815 md_number_to_chars (p, 0, 4);
b34976b6 16816 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
cdf6fd85 16817 BFD_RELOC_GPREL32);
252b5132
RH
16818
16819 demand_empty_rest_of_line ();
16820}
16821
10181a0d 16822static void
17a2f251 16823s_gpdword (int ignore ATTRIBUTE_UNUSED)
10181a0d 16824{
a8dbcb85
TS
16825 segment_info_type *si;
16826 struct insn_label_list *l;
10181a0d
AO
16827 expressionS ex;
16828 char *p;
16829
16830 /* When not generating PIC code, this is treated as .dword. */
16831 if (mips_pic != SVR4_PIC)
16832 {
16833 s_cons (3);
16834 return;
16835 }
16836
a8dbcb85
TS
16837 si = seg_info (now_seg);
16838 l = si->label_list;
7d10b47d 16839 mips_emit_delays ();
10181a0d 16840 if (auto_align)
462427c4 16841 mips_align (3, 0, l);
10181a0d
AO
16842
16843 expression (&ex);
a1facbec 16844 mips_clear_insn_labels ();
10181a0d
AO
16845
16846 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16847 {
1661c76c 16848 as_bad (_("unsupported use of .gpdword"));
10181a0d
AO
16849 ignore_rest_of_line ();
16850 }
16851
16852 p = frag_more (8);
17a2f251 16853 md_number_to_chars (p, 0, 8);
a105a300 16854 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
6e1304d8 16855 BFD_RELOC_GPREL32)->fx_tcbit = 1;
10181a0d
AO
16856
16857 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
6e1304d8
RS
16858 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16859 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
10181a0d
AO
16860
16861 demand_empty_rest_of_line ();
16862}
16863
a3f278e2
CM
16864/* Handle the .ehword pseudo-op. This is used when generating unwinding
16865 tables. It generates a R_MIPS_EH reloc. */
16866
16867static void
16868s_ehword (int ignore ATTRIBUTE_UNUSED)
16869{
16870 expressionS ex;
16871 char *p;
16872
16873 mips_emit_delays ();
16874
16875 expression (&ex);
16876 mips_clear_insn_labels ();
16877
16878 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16879 {
1661c76c 16880 as_bad (_("unsupported use of .ehword"));
a3f278e2
CM
16881 ignore_rest_of_line ();
16882 }
16883
16884 p = frag_more (4);
16885 md_number_to_chars (p, 0, 4);
16886 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
2f0c68f2 16887 BFD_RELOC_32_PCREL);
a3f278e2
CM
16888
16889 demand_empty_rest_of_line ();
16890}
16891
252b5132
RH
16892/* Handle the .cpadd pseudo-op. This is used when dealing with switch
16893 tables in SVR4 PIC code. */
16894
16895static void
17a2f251 16896s_cpadd (int ignore ATTRIBUTE_UNUSED)
252b5132 16897{
252b5132
RH
16898 int reg;
16899
919731af 16900 file_mips_check_options ();
16901
10181a0d
AO
16902 /* This is ignored when not generating SVR4 PIC code. */
16903 if (mips_pic != SVR4_PIC)
252b5132
RH
16904 {
16905 s_ignore (0);
16906 return;
16907 }
16908
8a75745d
MR
16909 mips_mark_labels ();
16910 mips_assembling_insn = TRUE;
16911
252b5132 16912 /* Add $gp to the register named as an argument. */
584892a6 16913 macro_start ();
252b5132 16914 reg = tc_get_register (0);
67c0d1eb 16915 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
584892a6 16916 macro_end ();
252b5132 16917
8a75745d 16918 mips_assembling_insn = FALSE;
bdaaa2e1 16919 demand_empty_rest_of_line ();
252b5132
RH
16920}
16921
16922/* Handle the .insn pseudo-op. This marks instruction labels in
df58fc94 16923 mips16/micromips mode. This permits the linker to handle them specially,
252b5132
RH
16924 such as generating jalx instructions when needed. We also make
16925 them odd for the duration of the assembly, in order to generate the
16926 right sort of code. We will make them even in the adjust_symtab
16927 routine, while leaving them marked. This is convenient for the
16928 debugger and the disassembler. The linker knows to make them odd
16929 again. */
16930
16931static void
17a2f251 16932s_insn (int ignore ATTRIBUTE_UNUSED)
252b5132 16933{
7bb01e2d
MR
16934 file_mips_check_options ();
16935 file_ase_mips16 |= mips_opts.mips16;
16936 file_ase_micromips |= mips_opts.micromips;
16937
df58fc94 16938 mips_mark_labels ();
252b5132
RH
16939
16940 demand_empty_rest_of_line ();
16941}
16942
ba92f887
MR
16943/* Handle the .nan pseudo-op. */
16944
16945static void
16946s_nan (int ignore ATTRIBUTE_UNUSED)
16947{
16948 static const char str_legacy[] = "legacy";
16949 static const char str_2008[] = "2008";
16950 size_t i;
16951
16952 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16953
16954 if (i == sizeof (str_2008) - 1
16955 && memcmp (input_line_pointer, str_2008, i) == 0)
7361da2c 16956 mips_nan2008 = 1;
ba92f887
MR
16957 else if (i == sizeof (str_legacy) - 1
16958 && memcmp (input_line_pointer, str_legacy, i) == 0)
7361da2c
AB
16959 {
16960 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16961 mips_nan2008 = 0;
16962 else
16963 as_bad (_("`%s' does not support legacy NaN"),
16964 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16965 }
ba92f887 16966 else
1661c76c 16967 as_bad (_("bad .nan directive"));
ba92f887
MR
16968
16969 input_line_pointer += i;
16970 demand_empty_rest_of_line ();
16971}
16972
754e2bb9
RS
16973/* Handle a .stab[snd] directive. Ideally these directives would be
16974 implemented in a transparent way, so that removing them would not
16975 have any effect on the generated instructions. However, s_stab
16976 internally changes the section, so in practice we need to decide
16977 now whether the preceding label marks compressed code. We do not
16978 support changing the compression mode of a label after a .stab*
16979 directive, such as in:
16980
16981 foo:
134c0c8b 16982 .stabs ...
754e2bb9
RS
16983 .set mips16
16984
16985 so the current mode wins. */
252b5132
RH
16986
16987static void
17a2f251 16988s_mips_stab (int type)
252b5132 16989{
754e2bb9 16990 mips_mark_labels ();
252b5132
RH
16991 s_stab (type);
16992}
16993
54f4ddb3 16994/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
252b5132
RH
16995
16996static void
17a2f251 16997s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16998{
16999 char *name;
17000 int c;
17001 symbolS *symbolP;
17002 expressionS exp;
17003
d02603dc 17004 c = get_symbol_name (&name);
252b5132
RH
17005 symbolP = symbol_find_or_make (name);
17006 S_SET_WEAK (symbolP);
17007 *input_line_pointer = c;
17008
d02603dc 17009 SKIP_WHITESPACE_AFTER_NAME ();
252b5132
RH
17010
17011 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17012 {
17013 if (S_IS_DEFINED (symbolP))
17014 {
20203fb9 17015 as_bad (_("ignoring attempt to redefine symbol %s"),
252b5132
RH
17016 S_GET_NAME (symbolP));
17017 ignore_rest_of_line ();
17018 return;
17019 }
bdaaa2e1 17020
252b5132
RH
17021 if (*input_line_pointer == ',')
17022 {
17023 ++input_line_pointer;
17024 SKIP_WHITESPACE ();
17025 }
bdaaa2e1 17026
252b5132
RH
17027 expression (&exp);
17028 if (exp.X_op != O_symbol)
17029 {
20203fb9 17030 as_bad (_("bad .weakext directive"));
98d3f06f 17031 ignore_rest_of_line ();
252b5132
RH
17032 return;
17033 }
49309057 17034 symbol_set_value_expression (symbolP, &exp);
252b5132
RH
17035 }
17036
17037 demand_empty_rest_of_line ();
17038}
17039
17040/* Parse a register string into a number. Called from the ECOFF code
17041 to parse .frame. The argument is non-zero if this is the frame
17042 register, so that we can record it in mips_frame_reg. */
17043
17044int
17a2f251 17045tc_get_register (int frame)
252b5132 17046{
707bfff6 17047 unsigned int reg;
252b5132
RH
17048
17049 SKIP_WHITESPACE ();
707bfff6
TS
17050 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17051 reg = 0;
252b5132 17052 if (frame)
7a621144
DJ
17053 {
17054 mips_frame_reg = reg != 0 ? reg : SP;
17055 mips_frame_reg_valid = 1;
17056 mips_cprestore_valid = 0;
17057 }
252b5132
RH
17058 return reg;
17059}
17060
17061valueT
17a2f251 17062md_section_align (asection *seg, valueT addr)
252b5132
RH
17063{
17064 int align = bfd_get_section_alignment (stdoutput, seg);
17065
f3ded42a
RS
17066 /* We don't need to align ELF sections to the full alignment.
17067 However, Irix 5 may prefer that we align them at least to a 16
17068 byte boundary. We don't bother to align the sections if we
17069 are targeted for an embedded system. */
17070 if (strncmp (TARGET_OS, "elf", 3) == 0)
17071 return addr;
17072 if (align > 4)
17073 align = 4;
252b5132 17074
8d3842cd 17075 return ((addr + (1 << align) - 1) & -(1 << align));
252b5132
RH
17076}
17077
17078/* Utility routine, called from above as well. If called while the
17079 input file is still being read, it's only an approximation. (For
17080 example, a symbol may later become defined which appeared to be
17081 undefined earlier.) */
17082
17083static int
17a2f251 17084nopic_need_relax (symbolS *sym, int before_relaxing)
252b5132
RH
17085{
17086 if (sym == 0)
17087 return 0;
17088
4d0d148d 17089 if (g_switch_value > 0)
252b5132
RH
17090 {
17091 const char *symname;
17092 int change;
17093
c9914766 17094 /* Find out whether this symbol can be referenced off the $gp
252b5132
RH
17095 register. It can be if it is smaller than the -G size or if
17096 it is in the .sdata or .sbss section. Certain symbols can
c9914766 17097 not be referenced off the $gp, although it appears as though
252b5132
RH
17098 they can. */
17099 symname = S_GET_NAME (sym);
17100 if (symname != (const char *) NULL
17101 && (strcmp (symname, "eprol") == 0
17102 || strcmp (symname, "etext") == 0
17103 || strcmp (symname, "_gp") == 0
17104 || strcmp (symname, "edata") == 0
17105 || strcmp (symname, "_fbss") == 0
17106 || strcmp (symname, "_fdata") == 0
17107 || strcmp (symname, "_ftext") == 0
17108 || strcmp (symname, "end") == 0
17109 || strcmp (symname, "_gp_disp") == 0))
17110 change = 1;
17111 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17112 && (0
17113#ifndef NO_ECOFF_DEBUGGING
49309057
ILT
17114 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17115 && (symbol_get_obj (sym)->ecoff_extern_size
17116 <= g_switch_value))
252b5132
RH
17117#endif
17118 /* We must defer this decision until after the whole
17119 file has been read, since there might be a .extern
17120 after the first use of this symbol. */
17121 || (before_relaxing
17122#ifndef NO_ECOFF_DEBUGGING
49309057 17123 && symbol_get_obj (sym)->ecoff_extern_size == 0
252b5132
RH
17124#endif
17125 && S_GET_VALUE (sym) == 0)
17126 || (S_GET_VALUE (sym) != 0
17127 && S_GET_VALUE (sym) <= g_switch_value)))
17128 change = 0;
17129 else
17130 {
17131 const char *segname;
17132
17133 segname = segment_name (S_GET_SEGMENT (sym));
9c2799c2 17134 gas_assert (strcmp (segname, ".lit8") != 0
252b5132
RH
17135 && strcmp (segname, ".lit4") != 0);
17136 change = (strcmp (segname, ".sdata") != 0
fba2b7f9
GK
17137 && strcmp (segname, ".sbss") != 0
17138 && strncmp (segname, ".sdata.", 7) != 0
d4dc2f22
TS
17139 && strncmp (segname, ".sbss.", 6) != 0
17140 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
fba2b7f9 17141 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
252b5132
RH
17142 }
17143 return change;
17144 }
17145 else
c9914766 17146 /* We are not optimizing for the $gp register. */
252b5132
RH
17147 return 1;
17148}
17149
5919d012
RS
17150
17151/* Return true if the given symbol should be considered local for SVR4 PIC. */
17152
17153static bfd_boolean
9e009953 17154pic_need_relax (symbolS *sym)
5919d012
RS
17155{
17156 asection *symsec;
5919d012
RS
17157
17158 /* Handle the case of a symbol equated to another symbol. */
17159 while (symbol_equated_reloc_p (sym))
17160 {
17161 symbolS *n;
17162
5f0fe04b 17163 /* It's possible to get a loop here in a badly written program. */
5919d012
RS
17164 n = symbol_get_value_expression (sym)->X_add_symbol;
17165 if (n == sym)
17166 break;
17167 sym = n;
17168 }
17169
df1f3cda
DD
17170 if (symbol_section_p (sym))
17171 return TRUE;
17172
5919d012
RS
17173 symsec = S_GET_SEGMENT (sym);
17174
5919d012 17175 /* This must duplicate the test in adjust_reloc_syms. */
45dfa85a
AM
17176 return (!bfd_is_und_section (symsec)
17177 && !bfd_is_abs_section (symsec)
5f0fe04b 17178 && !bfd_is_com_section (symsec)
5919d012 17179 /* A global or weak symbol is treated as external. */
f3ded42a 17180 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
5919d012 17181}
14f72d45
MR
17182\f
17183/* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
17184 convert a section-relative value VAL to the equivalent PC-relative
17185 value. */
17186
17187static offsetT
17188mips16_pcrel_val (fragS *fragp, const struct mips_pcrel_operand *pcrel_op,
17189 offsetT val, long stretch)
17190{
17191 fragS *sym_frag;
17192 addressT addr;
17193
17194 gas_assert (pcrel_op->root.root.type == OP_PCREL);
17195
17196 sym_frag = symbol_get_frag (fragp->fr_symbol);
17197
17198 /* If the relax_marker of the symbol fragment differs from the
17199 relax_marker of this fragment, we have not yet adjusted the
17200 symbol fragment fr_address. We want to add in STRETCH in
17201 order to get a better estimate of the address. This
17202 particularly matters because of the shift bits. */
17203 if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker)
17204 {
17205 fragS *f;
17206
17207 /* Adjust stretch for any alignment frag. Note that if have
17208 been expanding the earlier code, the symbol may be
17209 defined in what appears to be an earlier frag. FIXME:
17210 This doesn't handle the fr_subtype field, which specifies
17211 a maximum number of bytes to skip when doing an
17212 alignment. */
17213 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17214 {
17215 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17216 {
17217 if (stretch < 0)
17218 stretch = -(-stretch & ~((1 << (int) f->fr_offset) - 1));
17219 else
17220 stretch &= ~((1 << (int) f->fr_offset) - 1);
17221 if (stretch == 0)
17222 break;
17223 }
17224 }
17225 if (f != NULL)
17226 val += stretch;
17227 }
17228
17229 addr = fragp->fr_address + fragp->fr_fix;
17230
17231 /* The base address rules are complicated. The base address of
17232 a branch is the following instruction. The base address of a
17233 PC relative load or add is the instruction itself, but if it
17234 is in a delay slot (in which case it can not be extended) use
17235 the address of the instruction whose delay slot it is in. */
17236 if (pcrel_op->include_isa_bit)
17237 {
17238 addr += 2;
17239
17240 /* If we are currently assuming that this frag should be
17241 extended, then the current address is two bytes higher. */
17242 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17243 addr += 2;
17244
17245 /* Ignore the low bit in the target, since it will be set
17246 for a text label. */
17247 val &= -2;
17248 }
17249 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17250 addr -= 4;
17251 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17252 addr -= 2;
5919d012 17253
14f72d45
MR
17254 val -= addr & -(1 << pcrel_op->align_log2);
17255
17256 return val;
17257}
5919d012 17258
252b5132
RH
17259/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17260 extended opcode. SEC is the section the frag is in. */
17261
17262static int
17a2f251 17263mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
252b5132 17264{
3ccad066 17265 const struct mips_int_operand *operand;
252b5132 17266 offsetT val;
252b5132 17267 segT symsec;
14f72d45 17268 int type;
252b5132
RH
17269
17270 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17271 return 0;
17272 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17273 return 1;
17274
88a7ef16 17275 symsec = S_GET_SEGMENT (fragp->fr_symbol);
252b5132 17276 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 17277 operand = mips16_immed_operand (type, FALSE);
88a7ef16
MR
17278 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17279 || (operand->root.type == OP_PCREL
17280 ? sec != symsec
17281 : !bfd_is_abs_section (symsec)))
17282 return 1;
252b5132 17283
88a7ef16 17284 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
252b5132 17285
3ccad066 17286 if (operand->root.type == OP_PCREL)
252b5132 17287 {
3ccad066 17288 const struct mips_pcrel_operand *pcrel_op;
3ccad066 17289 offsetT maxtiny;
252b5132 17290
1425c41d 17291 if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp->fr_subtype))
88a7ef16 17292 return 1;
252b5132 17293
88a7ef16 17294 pcrel_op = (const struct mips_pcrel_operand *) operand;
14f72d45 17295 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
252b5132
RH
17296
17297 /* If any of the shifted bits are set, we must use an extended
17298 opcode. If the address depends on the size of this
17299 instruction, this can lead to a loop, so we arrange to always
88a7ef16
MR
17300 use an extended opcode. */
17301 if ((val & ((1 << operand->shift) - 1)) != 0)
252b5132
RH
17302 {
17303 fragp->fr_subtype =
1425c41d 17304 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
252b5132
RH
17305 return 1;
17306 }
17307
17308 /* If we are about to mark a frag as extended because the value
3ccad066
RS
17309 is precisely the next value above maxtiny, then there is a
17310 chance of an infinite loop as in the following code:
252b5132
RH
17311 la $4,foo
17312 .skip 1020
17313 .align 2
17314 foo:
17315 In this case when the la is extended, foo is 0x3fc bytes
17316 away, so the la can be shrunk, but then foo is 0x400 away, so
17317 the la must be extended. To avoid this loop, we mark the
17318 frag as extended if it was small, and is about to become
3ccad066
RS
17319 extended with the next value above maxtiny. */
17320 maxtiny = mips_int_operand_max (operand);
17321 if (val == maxtiny + (1 << operand->shift)
88a7ef16 17322 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
252b5132
RH
17323 {
17324 fragp->fr_subtype =
1425c41d 17325 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
252b5132
RH
17326 return 1;
17327 }
17328 }
252b5132 17329
3ccad066 17330 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
252b5132
RH
17331}
17332
4a6a3df4
AO
17333/* Compute the length of a branch sequence, and adjust the
17334 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17335 worst-case length is computed, with UPDATE being used to indicate
17336 whether an unconditional (-1), branch-likely (+1) or regular (0)
17337 branch is to be computed. */
17338static int
17a2f251 17339relaxed_branch_length (fragS *fragp, asection *sec, int update)
4a6a3df4 17340{
b34976b6 17341 bfd_boolean toofar;
4a6a3df4
AO
17342 int length;
17343
17344 if (fragp
17345 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17346 && !S_IS_WEAK (fragp->fr_symbol)
4a6a3df4
AO
17347 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17348 {
17349 addressT addr;
17350 offsetT val;
17351
17352 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17353
17354 addr = fragp->fr_address + fragp->fr_fix + 4;
17355
17356 val -= addr;
17357
17358 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17359 }
4a6a3df4 17360 else
c1f61bd2
MR
17361 /* If the symbol is not defined or it's in a different segment,
17362 we emit the long sequence. */
b34976b6 17363 toofar = TRUE;
4a6a3df4
AO
17364
17365 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17366 fragp->fr_subtype
66b3e8da 17367 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
ce8ad872 17368 RELAX_BRANCH_PIC (fragp->fr_subtype),
66b3e8da 17369 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
4a6a3df4
AO
17370 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17371 RELAX_BRANCH_LINK (fragp->fr_subtype),
17372 toofar);
17373
17374 length = 4;
17375 if (toofar)
17376 {
17377 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17378 length += 8;
17379
ce8ad872 17380 if (!fragp || RELAX_BRANCH_PIC (fragp->fr_subtype))
4a6a3df4
AO
17381 {
17382 /* Additional space for PIC loading of target address. */
17383 length += 8;
17384 if (mips_opts.isa == ISA_MIPS1)
17385 /* Additional space for $at-stabilizing nop. */
17386 length += 4;
17387 }
17388
17389 /* If branch is conditional. */
17390 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17391 length += 8;
17392 }
b34976b6 17393
4a6a3df4
AO
17394 return length;
17395}
17396
7bd374a4
MR
17397/* Get a FRAG's branch instruction delay slot size, either from the
17398 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17399 or SHORT_INSN_SIZE otherwise. */
17400
17401static int
17402frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17403{
17404 char *buf = fragp->fr_literal + fragp->fr_fix;
17405
17406 if (al)
17407 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17408 else
17409 return short_insn_size;
17410}
17411
df58fc94
RS
17412/* Compute the length of a branch sequence, and adjust the
17413 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17414 worst-case length is computed, with UPDATE being used to indicate
17415 whether an unconditional (-1), or regular (0) branch is to be
17416 computed. */
17417
17418static int
17419relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17420{
7bd374a4
MR
17421 bfd_boolean insn32 = TRUE;
17422 bfd_boolean nods = TRUE;
ce8ad872 17423 bfd_boolean pic = TRUE;
7bd374a4
MR
17424 bfd_boolean al = TRUE;
17425 int short_insn_size;
df58fc94
RS
17426 bfd_boolean toofar;
17427 int length;
17428
7bd374a4
MR
17429 if (fragp)
17430 {
17431 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17432 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
ce8ad872 17433 pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
7bd374a4
MR
17434 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17435 }
17436 short_insn_size = insn32 ? 4 : 2;
17437
df58fc94
RS
17438 if (fragp
17439 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17440 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
17441 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17442 {
17443 addressT addr;
17444 offsetT val;
17445
17446 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17447 /* Ignore the low bit in the target, since it will be set
17448 for a text label. */
17449 if ((val & 1) != 0)
17450 --val;
17451
17452 addr = fragp->fr_address + fragp->fr_fix + 4;
17453
17454 val -= addr;
17455
17456 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17457 }
df58fc94 17458 else
c1f61bd2
MR
17459 /* If the symbol is not defined or it's in a different segment,
17460 we emit the long sequence. */
df58fc94
RS
17461 toofar = TRUE;
17462
17463 if (fragp && update
17464 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17465 fragp->fr_subtype = (toofar
17466 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17467 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17468
17469 length = 4;
17470 if (toofar)
17471 {
17472 bfd_boolean compact_known = fragp != NULL;
17473 bfd_boolean compact = FALSE;
17474 bfd_boolean uncond;
17475
df58fc94 17476 if (fragp)
8484fb75
MR
17477 {
17478 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17479 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
8484fb75 17480 }
df58fc94
RS
17481 else
17482 uncond = update < 0;
17483
17484 /* If label is out of range, we turn branch <br>:
17485
17486 <br> label # 4 bytes
17487 0:
17488
17489 into:
17490
17491 j label # 4 bytes
8484fb75
MR
17492 nop # 2/4 bytes if
17493 # compact && (!PIC || insn32)
df58fc94
RS
17494 0:
17495 */
ce8ad872 17496 if ((!pic || insn32) && (!compact_known || compact))
8484fb75 17497 length += short_insn_size;
df58fc94
RS
17498
17499 /* If assembling PIC code, we further turn:
17500
17501 j label # 4 bytes
17502
17503 into:
17504
17505 lw/ld at, %got(label)(gp) # 4 bytes
17506 d/addiu at, %lo(label) # 4 bytes
8484fb75 17507 jr/c at # 2/4 bytes
df58fc94 17508 */
ce8ad872 17509 if (pic)
8484fb75 17510 length += 4 + short_insn_size;
df58fc94 17511
7bd374a4
MR
17512 /* Add an extra nop if the jump has no compact form and we need
17513 to fill the delay slot. */
ce8ad872 17514 if ((!pic || al) && nods)
7bd374a4
MR
17515 length += (fragp
17516 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17517 : short_insn_size);
17518
df58fc94
RS
17519 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17520
17521 <brneg> 0f # 4 bytes
8484fb75 17522 nop # 2/4 bytes if !compact
df58fc94
RS
17523 */
17524 if (!uncond)
8484fb75 17525 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
df58fc94 17526 }
7bd374a4
MR
17527 else if (nods)
17528 {
17529 /* Add an extra nop to fill the delay slot. */
17530 gas_assert (fragp);
17531 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17532 }
df58fc94
RS
17533
17534 return length;
17535}
17536
17537/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17538 bit accordingly. */
17539
17540static int
17541relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17542{
17543 bfd_boolean toofar;
17544
df58fc94
RS
17545 if (fragp
17546 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17547 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
17548 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17549 {
17550 addressT addr;
17551 offsetT val;
17552 int type;
17553
17554 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17555 /* Ignore the low bit in the target, since it will be set
17556 for a text label. */
17557 if ((val & 1) != 0)
17558 --val;
17559
17560 /* Assume this is a 2-byte branch. */
17561 addr = fragp->fr_address + fragp->fr_fix + 2;
17562
17563 /* We try to avoid the infinite loop by not adding 2 more bytes for
17564 long branches. */
17565
17566 val -= addr;
17567
17568 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17569 if (type == 'D')
17570 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17571 else if (type == 'E')
17572 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17573 else
17574 abort ();
17575 }
17576 else
17577 /* If the symbol is not defined or it's in a different segment,
17578 we emit a normal 32-bit branch. */
17579 toofar = TRUE;
17580
17581 if (fragp && update
17582 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17583 fragp->fr_subtype
17584 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17585 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17586
17587 if (toofar)
17588 return 4;
17589
17590 return 2;
17591}
17592
252b5132
RH
17593/* Estimate the size of a frag before relaxing. Unless this is the
17594 mips16, we are not really relaxing here, and the final size is
17595 encoded in the subtype information. For the mips16, we have to
17596 decide whether we are using an extended opcode or not. */
17597
252b5132 17598int
17a2f251 17599md_estimate_size_before_relax (fragS *fragp, asection *segtype)
252b5132 17600{
5919d012 17601 int change;
252b5132 17602
4a6a3df4
AO
17603 if (RELAX_BRANCH_P (fragp->fr_subtype))
17604 {
17605
b34976b6
AM
17606 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17607
4a6a3df4
AO
17608 return fragp->fr_var;
17609 }
17610
252b5132 17611 if (RELAX_MIPS16_P (fragp->fr_subtype))
177b4a6a
AO
17612 /* We don't want to modify the EXTENDED bit here; it might get us
17613 into infinite loops. We change it only in mips_relax_frag(). */
17614 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
252b5132 17615
df58fc94
RS
17616 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17617 {
17618 int length = 4;
17619
17620 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17621 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17622 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17623 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17624 fragp->fr_var = length;
17625
17626 return length;
17627 }
17628
ce8ad872 17629 if (mips_pic == VXWORKS_PIC)
0a44bf69
RS
17630 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17631 change = 0;
ce8ad872
MR
17632 else if (RELAX_PIC (fragp->fr_subtype))
17633 change = pic_need_relax (fragp->fr_symbol);
252b5132 17634 else
ce8ad872 17635 change = nopic_need_relax (fragp->fr_symbol, 0);
252b5132
RH
17636
17637 if (change)
17638 {
4d7206a2 17639 fragp->fr_subtype |= RELAX_USE_SECOND;
4d7206a2 17640 return -RELAX_FIRST (fragp->fr_subtype);
252b5132 17641 }
4d7206a2
RS
17642 else
17643 return -RELAX_SECOND (fragp->fr_subtype);
252b5132
RH
17644}
17645
17646/* This is called to see whether a reloc against a defined symbol
de7e6852 17647 should be converted into a reloc against a section. */
252b5132
RH
17648
17649int
17a2f251 17650mips_fix_adjustable (fixS *fixp)
252b5132 17651{
252b5132
RH
17652 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17653 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17654 return 0;
a161fe53 17655
252b5132
RH
17656 if (fixp->fx_addsy == NULL)
17657 return 1;
a161fe53 17658
2f0c68f2
CM
17659 /* Allow relocs used for EH tables. */
17660 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17661 return 1;
17662
de7e6852
RS
17663 /* If symbol SYM is in a mergeable section, relocations of the form
17664 SYM + 0 can usually be made section-relative. The mergeable data
17665 is then identified by the section offset rather than by the symbol.
17666
17667 However, if we're generating REL LO16 relocations, the offset is split
33eaf5de 17668 between the LO16 and partnering high part relocation. The linker will
de7e6852
RS
17669 need to recalculate the complete offset in order to correctly identify
17670 the merge data.
17671
33eaf5de 17672 The linker has traditionally not looked for the partnering high part
de7e6852
RS
17673 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17674 placed anywhere. Rather than break backwards compatibility by changing
17675 this, it seems better not to force the issue, and instead keep the
17676 original symbol. This will work with either linker behavior. */
738e5348 17677 if ((lo16_reloc_p (fixp->fx_r_type)
704803a9 17678 || reloc_needs_lo_p (fixp->fx_r_type))
de7e6852
RS
17679 && HAVE_IN_PLACE_ADDENDS
17680 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17681 return 0;
17682
97f50151
MR
17683 /* There is no place to store an in-place offset for JALR relocations. */
17684 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17685 return 0;
17686
17687 /* Likewise an in-range offset of limited PC-relative relocations may
2de39019 17688 overflow the in-place relocatable field if recalculated against the
7361da2c
AB
17689 start address of the symbol's containing section.
17690
17691 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17692 section relative to allow linker relaxations to be performed later on. */
97f50151 17693 if (limited_pcrel_reloc_p (fixp->fx_r_type)
912815f0 17694 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
1180b5a4
RS
17695 return 0;
17696
b314ec0e
RS
17697 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17698 to a floating-point stub. The same is true for non-R_MIPS16_26
17699 relocations against MIPS16 functions; in this case, the stub becomes
17700 the function's canonical address.
17701
17702 Floating-point stubs are stored in unique .mips16.call.* or
17703 .mips16.fn.* sections. If a stub T for function F is in section S,
17704 the first relocation in section S must be against F; this is how the
17705 linker determines the target function. All relocations that might
17706 resolve to T must also be against F. We therefore have the following
17707 restrictions, which are given in an intentionally-redundant way:
17708
17709 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17710 symbols.
17711
17712 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17713 if that stub might be used.
17714
17715 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17716 symbols.
17717
17718 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17719 that stub might be used.
17720
17721 There is a further restriction:
17722
df58fc94 17723 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
0e9c5a5c 17724 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
c9775dde
MR
17725 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17726 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17727 against MIPS16 or microMIPS symbols because we need to keep the
17728 MIPS16 or microMIPS symbol for the purpose of mode mismatch
a6ebf616
MR
17729 detection and JAL or BAL to JALX instruction conversion in the
17730 linker.
b314ec0e 17731
df58fc94 17732 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
507dcb32 17733 against a MIPS16 symbol. We deal with (5) by additionally leaving
0e9c5a5c 17734 alone any jump and branch relocations against a microMIPS symbol.
b314ec0e
RS
17735
17736 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17737 relocation against some symbol R, no relocation against R may be
17738 reduced. (Note that this deals with (2) as well as (1) because
17739 relocations against global symbols will never be reduced on ELF
17740 targets.) This approach is a little simpler than trying to detect
17741 stub sections, and gives the "all or nothing" per-symbol consistency
17742 that we have for MIPS16 symbols. */
f3ded42a 17743 if (fixp->fx_subsy == NULL
30c09090 17744 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
44d3da23 17745 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
0e9c5a5c
MR
17746 && (jmp_reloc_p (fixp->fx_r_type)
17747 || b_reloc_p (fixp->fx_r_type)))
44d3da23 17748 || *symbol_get_tc (fixp->fx_addsy)))
252b5132 17749 return 0;
a161fe53 17750
252b5132
RH
17751 return 1;
17752}
17753
17754/* Translate internal representation of relocation info to BFD target
17755 format. */
17756
17757arelent **
17a2f251 17758tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
17759{
17760 static arelent *retval[4];
17761 arelent *reloc;
17762 bfd_reloc_code_real_type code;
17763
4b0cff4e 17764 memset (retval, 0, sizeof(retval));
325801bd
TS
17765 reloc = retval[0] = XCNEW (arelent);
17766 reloc->sym_ptr_ptr = XNEW (asymbol *);
49309057 17767 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
17768 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17769
bad36eac
DJ
17770 if (fixp->fx_pcrel)
17771 {
df58fc94 17772 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
c9775dde 17773 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
df58fc94
RS
17774 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17775 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6 17776 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
7361da2c
AB
17777 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17778 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17779 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17780 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17781 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17782 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17783 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
bad36eac
DJ
17784
17785 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17786 Relocations want only the symbol offset. */
51f6035b
MR
17787 switch (fixp->fx_r_type)
17788 {
17789 case BFD_RELOC_MIPS_18_PCREL_S3:
17790 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17791 break;
17792 default:
17793 reloc->addend = fixp->fx_addnumber + reloc->address;
17794 break;
17795 }
bad36eac 17796 }
17c6c9d9
MR
17797 else if (HAVE_IN_PLACE_ADDENDS
17798 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17799 && (read_compressed_insn (fixp->fx_frag->fr_literal
17800 + fixp->fx_where, 4) >> 26) == 0x3c)
17801 {
17802 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17803 addend accordingly. */
17804 reloc->addend = fixp->fx_addnumber >> 1;
17805 }
bad36eac
DJ
17806 else
17807 reloc->addend = fixp->fx_addnumber;
252b5132 17808
438c16b8
TS
17809 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17810 entry to be used in the relocation's section offset. */
17811 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
252b5132
RH
17812 {
17813 reloc->address = reloc->addend;
17814 reloc->addend = 0;
17815 }
17816
252b5132 17817 code = fixp->fx_r_type;
252b5132 17818
bad36eac 17819 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
252b5132
RH
17820 if (reloc->howto == NULL)
17821 {
17822 as_bad_where (fixp->fx_file, fixp->fx_line,
1661c76c
RS
17823 _("cannot represent %s relocation in this object file"
17824 " format"),
252b5132
RH
17825 bfd_get_reloc_code_name (code));
17826 retval[0] = NULL;
17827 }
17828
17829 return retval;
17830}
17831
17832/* Relax a machine dependent frag. This returns the amount by which
17833 the current size of the frag should change. */
17834
17835int
17a2f251 17836mips_relax_frag (asection *sec, fragS *fragp, long stretch)
252b5132 17837{
4a6a3df4
AO
17838 if (RELAX_BRANCH_P (fragp->fr_subtype))
17839 {
17840 offsetT old_var = fragp->fr_var;
b34976b6
AM
17841
17842 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
4a6a3df4
AO
17843
17844 return fragp->fr_var - old_var;
17845 }
17846
df58fc94
RS
17847 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17848 {
17849 offsetT old_var = fragp->fr_var;
17850 offsetT new_var = 4;
17851
17852 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17853 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17854 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17855 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17856 fragp->fr_var = new_var;
17857
17858 return new_var - old_var;
17859 }
17860
252b5132
RH
17861 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17862 return 0;
17863
88a7ef16 17864 if (mips16_extended_frag (fragp, sec, stretch))
252b5132
RH
17865 {
17866 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17867 return 0;
17868 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17869 return 2;
17870 }
17871 else
17872 {
17873 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17874 return 0;
17875 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17876 return -2;
17877 }
17878
17879 return 0;
17880}
17881
17882/* Convert a machine dependent frag. */
17883
17884void
17a2f251 17885md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
252b5132 17886{
4a6a3df4
AO
17887 if (RELAX_BRANCH_P (fragp->fr_subtype))
17888 {
4d68580a 17889 char *buf;
4a6a3df4
AO
17890 unsigned long insn;
17891 expressionS exp;
17892 fixS *fixp;
b34976b6 17893
4d68580a
RS
17894 buf = fragp->fr_literal + fragp->fr_fix;
17895 insn = read_insn (buf);
b34976b6 17896
4a6a3df4
AO
17897 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17898 {
17899 /* We generate a fixup instead of applying it right now
17900 because, if there are linker relaxations, we're going to
17901 need the relocations. */
17902 exp.X_op = O_symbol;
17903 exp.X_add_symbol = fragp->fr_symbol;
17904 exp.X_add_number = fragp->fr_offset;
17905
4d68580a
RS
17906 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17907 BFD_RELOC_16_PCREL_S2);
4a6a3df4
AO
17908 fixp->fx_file = fragp->fr_file;
17909 fixp->fx_line = fragp->fr_line;
b34976b6 17910
4d68580a 17911 buf = write_insn (buf, insn);
4a6a3df4
AO
17912 }
17913 else
17914 {
17915 int i;
17916
17917 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17918 _("relaxed out-of-range branch into a jump"));
4a6a3df4
AO
17919
17920 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17921 goto uncond;
17922
17923 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17924 {
17925 /* Reverse the branch. */
17926 switch ((insn >> 28) & 0xf)
17927 {
17928 case 4:
56d438b1
CF
17929 if ((insn & 0xff000000) == 0x47000000
17930 || (insn & 0xff600000) == 0x45600000)
17931 {
17932 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17933 reversed by tweaking bit 23. */
17934 insn ^= 0x00800000;
17935 }
17936 else
17937 {
17938 /* bc[0-3][tf]l? instructions can have the condition
17939 reversed by tweaking a single TF bit, and their
17940 opcodes all have 0x4???????. */
17941 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17942 insn ^= 0x00010000;
17943 }
4a6a3df4
AO
17944 break;
17945
17946 case 0:
17947 /* bltz 0x04000000 bgez 0x04010000
54f4ddb3 17948 bltzal 0x04100000 bgezal 0x04110000 */
9c2799c2 17949 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
4a6a3df4
AO
17950 insn ^= 0x00010000;
17951 break;
b34976b6 17952
4a6a3df4
AO
17953 case 1:
17954 /* beq 0x10000000 bne 0x14000000
54f4ddb3 17955 blez 0x18000000 bgtz 0x1c000000 */
4a6a3df4
AO
17956 insn ^= 0x04000000;
17957 break;
17958
17959 default:
17960 abort ();
17961 }
17962 }
17963
17964 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17965 {
17966 /* Clear the and-link bit. */
9c2799c2 17967 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
4a6a3df4 17968
54f4ddb3
TS
17969 /* bltzal 0x04100000 bgezal 0x04110000
17970 bltzall 0x04120000 bgezall 0x04130000 */
4a6a3df4
AO
17971 insn &= ~0x00100000;
17972 }
17973
17974 /* Branch over the branch (if the branch was likely) or the
17975 full jump (not likely case). Compute the offset from the
17976 current instruction to branch to. */
17977 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17978 i = 16;
17979 else
17980 {
17981 /* How many bytes in instructions we've already emitted? */
4d68580a 17982 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17983 /* How many bytes in instructions from here to the end? */
17984 i = fragp->fr_var - i;
17985 }
17986 /* Convert to instruction count. */
17987 i >>= 2;
17988 /* Branch counts from the next instruction. */
b34976b6 17989 i--;
4a6a3df4
AO
17990 insn |= i;
17991 /* Branch over the jump. */
4d68580a 17992 buf = write_insn (buf, insn);
4a6a3df4 17993
54f4ddb3 17994 /* nop */
4d68580a 17995 buf = write_insn (buf, 0);
4a6a3df4
AO
17996
17997 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17998 {
17999 /* beql $0, $0, 2f */
18000 insn = 0x50000000;
18001 /* Compute the PC offset from the current instruction to
18002 the end of the variable frag. */
18003 /* How many bytes in instructions we've already emitted? */
4d68580a 18004 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
18005 /* How many bytes in instructions from here to the end? */
18006 i = fragp->fr_var - i;
18007 /* Convert to instruction count. */
18008 i >>= 2;
18009 /* Don't decrement i, because we want to branch over the
18010 delay slot. */
4a6a3df4 18011 insn |= i;
4a6a3df4 18012
4d68580a
RS
18013 buf = write_insn (buf, insn);
18014 buf = write_insn (buf, 0);
4a6a3df4
AO
18015 }
18016
18017 uncond:
ce8ad872 18018 if (!RELAX_BRANCH_PIC (fragp->fr_subtype))
4a6a3df4
AO
18019 {
18020 /* j or jal. */
18021 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18022 ? 0x0c000000 : 0x08000000);
18023 exp.X_op = O_symbol;
18024 exp.X_add_symbol = fragp->fr_symbol;
18025 exp.X_add_number = fragp->fr_offset;
18026
4d68580a
RS
18027 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18028 FALSE, BFD_RELOC_MIPS_JMP);
4a6a3df4
AO
18029 fixp->fx_file = fragp->fr_file;
18030 fixp->fx_line = fragp->fr_line;
18031
4d68580a 18032 buf = write_insn (buf, insn);
4a6a3df4
AO
18033 }
18034 else
18035 {
66b3e8da
MR
18036 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18037
4a6a3df4 18038 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
66b3e8da
MR
18039 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18040 insn |= at << OP_SH_RT;
4a6a3df4
AO
18041 exp.X_op = O_symbol;
18042 exp.X_add_symbol = fragp->fr_symbol;
18043 exp.X_add_number = fragp->fr_offset;
18044
18045 if (fragp->fr_offset)
18046 {
18047 exp.X_add_symbol = make_expr_symbol (&exp);
18048 exp.X_add_number = 0;
18049 }
18050
4d68580a
RS
18051 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18052 FALSE, BFD_RELOC_MIPS_GOT16);
4a6a3df4
AO
18053 fixp->fx_file = fragp->fr_file;
18054 fixp->fx_line = fragp->fr_line;
18055
4d68580a 18056 buf = write_insn (buf, insn);
b34976b6 18057
4a6a3df4 18058 if (mips_opts.isa == ISA_MIPS1)
4d68580a
RS
18059 /* nop */
18060 buf = write_insn (buf, 0);
4a6a3df4
AO
18061
18062 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
66b3e8da
MR
18063 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18064 insn |= at << OP_SH_RS | at << OP_SH_RT;
4a6a3df4 18065
4d68580a
RS
18066 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18067 FALSE, BFD_RELOC_LO16);
4a6a3df4
AO
18068 fixp->fx_file = fragp->fr_file;
18069 fixp->fx_line = fragp->fr_line;
b34976b6 18070
4d68580a 18071 buf = write_insn (buf, insn);
4a6a3df4
AO
18072
18073 /* j(al)r $at. */
18074 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
66b3e8da 18075 insn = 0x0000f809;
4a6a3df4 18076 else
66b3e8da
MR
18077 insn = 0x00000008;
18078 insn |= at << OP_SH_RS;
4a6a3df4 18079
4d68580a 18080 buf = write_insn (buf, insn);
4a6a3df4
AO
18081 }
18082 }
18083
4a6a3df4 18084 fragp->fr_fix += fragp->fr_var;
4d68580a 18085 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
4a6a3df4
AO
18086 return;
18087 }
18088
df58fc94
RS
18089 /* Relax microMIPS branches. */
18090 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18091 {
4d68580a 18092 char *buf = fragp->fr_literal + fragp->fr_fix;
df58fc94 18093 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
8484fb75 18094 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
7bd374a4 18095 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
ce8ad872 18096 bfd_boolean pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
df58fc94
RS
18097 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18098 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
2309ddf2 18099 bfd_boolean short_ds;
df58fc94
RS
18100 unsigned long insn;
18101 expressionS exp;
18102 fixS *fixp;
18103
18104 exp.X_op = O_symbol;
18105 exp.X_add_symbol = fragp->fr_symbol;
18106 exp.X_add_number = fragp->fr_offset;
18107
18108 fragp->fr_fix += fragp->fr_var;
18109
18110 /* Handle 16-bit branches that fit or are forced to fit. */
18111 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18112 {
18113 /* We generate a fixup instead of applying it right now,
18114 because if there is linker relaxation, we're going to
18115 need the relocations. */
18116 if (type == 'D')
4d68580a 18117 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
18118 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18119 else if (type == 'E')
4d68580a 18120 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
18121 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18122 else
18123 abort ();
18124
18125 fixp->fx_file = fragp->fr_file;
18126 fixp->fx_line = fragp->fr_line;
18127
18128 /* These relocations can have an addend that won't fit in
18129 2 octets. */
18130 fixp->fx_no_overflow = 1;
18131
18132 return;
18133 }
18134
2309ddf2 18135 /* Handle 32-bit branches that fit or are forced to fit. */
df58fc94
RS
18136 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18137 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18138 {
18139 /* We generate a fixup instead of applying it right now,
18140 because if there is linker relaxation, we're going to
18141 need the relocations. */
4d68580a
RS
18142 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18143 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
18144 fixp->fx_file = fragp->fr_file;
18145 fixp->fx_line = fragp->fr_line;
18146
18147 if (type == 0)
7bd374a4
MR
18148 {
18149 insn = read_compressed_insn (buf, 4);
18150 buf += 4;
18151
18152 if (nods)
18153 {
18154 /* Check the short-delay-slot bit. */
18155 if (!al || (insn & 0x02000000) != 0)
18156 buf = write_compressed_insn (buf, 0x0c00, 2);
18157 else
18158 buf = write_compressed_insn (buf, 0x00000000, 4);
18159 }
18160
18161 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18162 return;
18163 }
df58fc94
RS
18164 }
18165
18166 /* Relax 16-bit branches to 32-bit branches. */
18167 if (type != 0)
18168 {
4d68580a 18169 insn = read_compressed_insn (buf, 2);
df58fc94
RS
18170
18171 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18172 insn = 0x94000000; /* beq */
18173 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18174 {
18175 unsigned long regno;
18176
18177 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18178 regno = micromips_to_32_reg_d_map [regno];
18179 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18180 insn |= regno << MICROMIPSOP_SH_RS;
18181 }
18182 else
18183 abort ();
18184
18185 /* Nothing else to do, just write it out. */
18186 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18187 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18188 {
4d68580a 18189 buf = write_compressed_insn (buf, insn, 4);
7bd374a4
MR
18190 if (nods)
18191 buf = write_compressed_insn (buf, 0x0c00, 2);
4d68580a 18192 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
18193 return;
18194 }
18195 }
18196 else
4d68580a 18197 insn = read_compressed_insn (buf, 4);
df58fc94
RS
18198
18199 /* Relax 32-bit branches to a sequence of instructions. */
18200 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 18201 _("relaxed out-of-range branch into a jump"));
df58fc94 18202
2309ddf2 18203 /* Set the short-delay-slot bit. */
7bd374a4 18204 short_ds = !al || (insn & 0x02000000) != 0;
df58fc94
RS
18205
18206 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18207 {
18208 symbolS *l;
18209
18210 /* Reverse the branch. */
18211 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18212 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18213 insn ^= 0x20000000;
18214 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18215 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18216 || (insn & 0xffe00000) == 0x40800000 /* blez */
18217 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18218 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18219 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18220 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18221 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18222 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18223 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18224 insn ^= 0x00400000;
18225 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18226 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18227 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18228 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18229 insn ^= 0x00200000;
56d438b1
CF
18230 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18231 BNZ.df */
18232 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18233 BNZ.V */
18234 insn ^= 0x00800000;
df58fc94
RS
18235 else
18236 abort ();
18237
18238 if (al)
18239 {
18240 /* Clear the and-link and short-delay-slot bits. */
18241 gas_assert ((insn & 0xfda00000) == 0x40200000);
18242
18243 /* bltzal 0x40200000 bgezal 0x40600000 */
18244 /* bltzals 0x42200000 bgezals 0x42600000 */
18245 insn &= ~0x02200000;
18246 }
18247
18248 /* Make a label at the end for use with the branch. */
18249 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18250 micromips_label_inc ();
f3ded42a 18251 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
df58fc94
RS
18252
18253 /* Refer to it. */
4d68580a
RS
18254 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18255 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
18256 fixp->fx_file = fragp->fr_file;
18257 fixp->fx_line = fragp->fr_line;
18258
18259 /* Branch over the jump. */
4d68580a 18260 buf = write_compressed_insn (buf, insn, 4);
8484fb75 18261
df58fc94 18262 if (!compact)
8484fb75
MR
18263 {
18264 /* nop */
18265 if (insn32)
18266 buf = write_compressed_insn (buf, 0x00000000, 4);
18267 else
18268 buf = write_compressed_insn (buf, 0x0c00, 2);
18269 }
df58fc94
RS
18270 }
18271
ce8ad872 18272 if (!pic)
df58fc94 18273 {
7bd374a4
MR
18274 unsigned long jal = (short_ds || nods
18275 ? 0x74000000 : 0xf4000000); /* jal/s */
2309ddf2 18276
df58fc94
RS
18277 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18278 insn = al ? jal : 0xd4000000;
18279
4d68580a
RS
18280 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18281 BFD_RELOC_MICROMIPS_JMP);
df58fc94
RS
18282 fixp->fx_file = fragp->fr_file;
18283 fixp->fx_line = fragp->fr_line;
18284
4d68580a 18285 buf = write_compressed_insn (buf, insn, 4);
8484fb75 18286
7bd374a4 18287 if (compact || nods)
8484fb75
MR
18288 {
18289 /* nop */
18290 if (insn32)
18291 buf = write_compressed_insn (buf, 0x00000000, 4);
18292 else
18293 buf = write_compressed_insn (buf, 0x0c00, 2);
18294 }
df58fc94
RS
18295 }
18296 else
18297 {
18298 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18299
18300 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18301 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18302 insn |= at << MICROMIPSOP_SH_RT;
18303
18304 if (exp.X_add_number)
18305 {
18306 exp.X_add_symbol = make_expr_symbol (&exp);
18307 exp.X_add_number = 0;
18308 }
18309
4d68580a
RS
18310 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18311 BFD_RELOC_MICROMIPS_GOT16);
df58fc94
RS
18312 fixp->fx_file = fragp->fr_file;
18313 fixp->fx_line = fragp->fr_line;
18314
4d68580a 18315 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
18316
18317 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18318 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18319 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18320
4d68580a
RS
18321 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18322 BFD_RELOC_MICROMIPS_LO16);
df58fc94
RS
18323 fixp->fx_file = fragp->fr_file;
18324 fixp->fx_line = fragp->fr_line;
18325
4d68580a 18326 buf = write_compressed_insn (buf, insn, 4);
df58fc94 18327
8484fb75
MR
18328 if (insn32)
18329 {
18330 /* jr/jalr $at */
18331 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18332 insn |= at << MICROMIPSOP_SH_RS;
18333
18334 buf = write_compressed_insn (buf, insn, 4);
df58fc94 18335
7bd374a4 18336 if (compact || nods)
8484fb75
MR
18337 /* nop */
18338 buf = write_compressed_insn (buf, 0x00000000, 4);
18339 }
18340 else
18341 {
18342 /* jr/jrc/jalr/jalrs $at */
18343 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
7bd374a4 18344 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
8484fb75
MR
18345
18346 insn = al ? jalr : jr;
18347 insn |= at << MICROMIPSOP_SH_MJ;
18348
18349 buf = write_compressed_insn (buf, insn, 2);
7bd374a4
MR
18350 if (al && nods)
18351 {
18352 /* nop */
18353 if (short_ds)
18354 buf = write_compressed_insn (buf, 0x0c00, 2);
18355 else
18356 buf = write_compressed_insn (buf, 0x00000000, 4);
18357 }
8484fb75 18358 }
df58fc94
RS
18359 }
18360
4d68580a 18361 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
18362 return;
18363 }
18364
252b5132
RH
18365 if (RELAX_MIPS16_P (fragp->fr_subtype))
18366 {
18367 int type;
3ccad066 18368 const struct mips_int_operand *operand;
252b5132 18369 offsetT val;
5c04167a
RS
18370 char *buf;
18371 unsigned int user_length, length;
9d862524 18372 bfd_boolean need_reloc;
252b5132 18373 unsigned long insn;
5c04167a 18374 bfd_boolean ext;
88a7ef16 18375 segT symsec;
252b5132
RH
18376
18377 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 18378 operand = mips16_immed_operand (type, FALSE);
252b5132 18379
5c04167a 18380 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
88a7ef16 18381 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
9d862524
MR
18382
18383 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18384 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18385 || (operand->root.type == OP_PCREL
18386 ? asec != symsec
18387 : !bfd_is_abs_section (symsec)));
18388
3ccad066 18389 if (operand->root.type == OP_PCREL)
252b5132 18390 {
3ccad066 18391 const struct mips_pcrel_operand *pcrel_op;
252b5132 18392
3ccad066 18393 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132 18394
14f72d45 18395 if (pcrel_op->include_isa_bit && !need_reloc)
252b5132 18396 {
14f72d45
MR
18397 if (!ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18398 as_bad_where (fragp->fr_file, fragp->fr_line,
18399 _("branch to a symbol in another ISA mode"));
18400 else if ((fragp->fr_offset & 0x1) != 0)
18401 as_bad_where (fragp->fr_file, fragp->fr_line,
18402 _("branch to misaligned address (0x%lx)"),
18403 (long) val);
252b5132 18404 }
252b5132 18405
14f72d45 18406 val = mips16_pcrel_val (fragp, pcrel_op, val, 0);
252b5132
RH
18407
18408 /* Make sure the section winds up with the alignment we have
18409 assumed. */
3ccad066
RS
18410 if (operand->shift > 0)
18411 record_alignment (asec, operand->shift);
252b5132
RH
18412 }
18413
18414 if (ext
18415 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18416 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18417 as_warn_where (fragp->fr_file, fragp->fr_line,
18418 _("extended instruction in delay slot"));
18419
5c04167a 18420 buf = fragp->fr_literal + fragp->fr_fix;
252b5132 18421
4d68580a 18422 insn = read_compressed_insn (buf, 2);
5c04167a
RS
18423 if (ext)
18424 insn |= MIPS16_EXTEND;
252b5132 18425
5c04167a
RS
18426 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18427 user_length = 4;
18428 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18429 user_length = 2;
18430 else
18431 user_length = 0;
18432
9d862524 18433 if (need_reloc)
c9775dde
MR
18434 {
18435 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18436 expressionS exp;
18437 fixS *fixp;
18438
18439 switch (type)
18440 {
18441 case 'p':
18442 case 'q':
18443 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18444 break;
18445 default:
18446 as_bad_where (fragp->fr_file, fragp->fr_line,
18447 _("unsupported relocation"));
18448 break;
18449 }
eefc3365
MR
18450 if (reloc == BFD_RELOC_NONE)
18451 ;
18452 else if (ext)
c9775dde 18453 {
c9775dde
MR
18454 exp.X_op = O_symbol;
18455 exp.X_add_symbol = fragp->fr_symbol;
18456 exp.X_add_number = fragp->fr_offset;
18457
adc1273c 18458 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
c9775dde
MR
18459 TRUE, reloc);
18460
18461 fixp->fx_file = fragp->fr_file;
18462 fixp->fx_line = fragp->fr_line;
c9775dde 18463 }
eefc3365
MR
18464 else
18465 as_bad_where (fragp->fr_file, fragp->fr_line,
18466 _("invalid unextended operand value"));
c9775dde 18467 }
88a7ef16
MR
18468 else
18469 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18470 BFD_RELOC_UNUSED, val, user_length, &insn);
252b5132 18471
5c04167a
RS
18472 length = (ext ? 4 : 2);
18473 gas_assert (mips16_opcode_length (insn) == length);
18474 write_compressed_insn (buf, insn, length);
18475 fragp->fr_fix += length;
252b5132
RH
18476 }
18477 else
18478 {
df58fc94
RS
18479 relax_substateT subtype = fragp->fr_subtype;
18480 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18481 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
4d7206a2
RS
18482 int first, second;
18483 fixS *fixp;
252b5132 18484
df58fc94
RS
18485 first = RELAX_FIRST (subtype);
18486 second = RELAX_SECOND (subtype);
4d7206a2 18487 fixp = (fixS *) fragp->fr_opcode;
252b5132 18488
df58fc94
RS
18489 /* If the delay slot chosen does not match the size of the instruction,
18490 then emit a warning. */
18491 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18492 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18493 {
18494 relax_substateT s;
18495 const char *msg;
18496
18497 s = subtype & (RELAX_DELAY_SLOT_16BIT
18498 | RELAX_DELAY_SLOT_SIZE_FIRST
18499 | RELAX_DELAY_SLOT_SIZE_SECOND);
18500 msg = macro_warning (s);
18501 if (msg != NULL)
db9b2be4 18502 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94
RS
18503 subtype &= ~s;
18504 }
18505
584892a6 18506 /* Possibly emit a warning if we've chosen the longer option. */
df58fc94 18507 if (use_second == second_longer)
584892a6 18508 {
df58fc94
RS
18509 relax_substateT s;
18510 const char *msg;
18511
18512 s = (subtype
18513 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18514 msg = macro_warning (s);
18515 if (msg != NULL)
db9b2be4 18516 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94 18517 subtype &= ~s;
584892a6
RS
18518 }
18519
4d7206a2
RS
18520 /* Go through all the fixups for the first sequence. Disable them
18521 (by marking them as done) if we're going to use the second
18522 sequence instead. */
18523 while (fixp
18524 && fixp->fx_frag == fragp
18525 && fixp->fx_where < fragp->fr_fix - second)
18526 {
df58fc94 18527 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18528 fixp->fx_done = 1;
18529 fixp = fixp->fx_next;
18530 }
252b5132 18531
4d7206a2
RS
18532 /* Go through the fixups for the second sequence. Disable them if
18533 we're going to use the first sequence, otherwise adjust their
18534 addresses to account for the relaxation. */
18535 while (fixp && fixp->fx_frag == fragp)
18536 {
df58fc94 18537 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18538 fixp->fx_where -= first;
18539 else
18540 fixp->fx_done = 1;
18541 fixp = fixp->fx_next;
18542 }
18543
18544 /* Now modify the frag contents. */
df58fc94 18545 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18546 {
18547 char *start;
18548
18549 start = fragp->fr_literal + fragp->fr_fix - first - second;
18550 memmove (start, start + first, second);
18551 fragp->fr_fix -= first;
18552 }
18553 else
18554 fragp->fr_fix -= second;
252b5132
RH
18555 }
18556}
18557
252b5132
RH
18558/* This function is called after the relocs have been generated.
18559 We've been storing mips16 text labels as odd. Here we convert them
18560 back to even for the convenience of the debugger. */
18561
18562void
17a2f251 18563mips_frob_file_after_relocs (void)
252b5132
RH
18564{
18565 asymbol **syms;
18566 unsigned int count, i;
18567
252b5132
RH
18568 syms = bfd_get_outsymbols (stdoutput);
18569 count = bfd_get_symcount (stdoutput);
18570 for (i = 0; i < count; i++, syms++)
df58fc94
RS
18571 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18572 && ((*syms)->value & 1) != 0)
18573 {
18574 (*syms)->value &= ~1;
18575 /* If the symbol has an odd size, it was probably computed
18576 incorrectly, so adjust that as well. */
18577 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18578 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18579 }
252b5132
RH
18580}
18581
a1facbec
MR
18582/* This function is called whenever a label is defined, including fake
18583 labels instantiated off the dot special symbol. It is used when
18584 handling branch delays; if a branch has a label, we assume we cannot
18585 move it. This also bumps the value of the symbol by 1 in compressed
18586 code. */
252b5132 18587
e1b47bd5 18588static void
a1facbec 18589mips_record_label (symbolS *sym)
252b5132 18590{
a8dbcb85 18591 segment_info_type *si = seg_info (now_seg);
252b5132
RH
18592 struct insn_label_list *l;
18593
18594 if (free_insn_labels == NULL)
325801bd 18595 l = XNEW (struct insn_label_list);
252b5132
RH
18596 else
18597 {
18598 l = free_insn_labels;
18599 free_insn_labels = l->next;
18600 }
18601
18602 l->label = sym;
a8dbcb85
TS
18603 l->next = si->label_list;
18604 si->label_list = l;
a1facbec 18605}
07a53e5c 18606
a1facbec
MR
18607/* This function is called as tc_frob_label() whenever a label is defined
18608 and adds a DWARF-2 record we only want for true labels. */
18609
18610void
18611mips_define_label (symbolS *sym)
18612{
18613 mips_record_label (sym);
07a53e5c 18614 dwarf2_emit_label (sym);
252b5132 18615}
e1b47bd5
RS
18616
18617/* This function is called by tc_new_dot_label whenever a new dot symbol
18618 is defined. */
18619
18620void
18621mips_add_dot_label (symbolS *sym)
18622{
18623 mips_record_label (sym);
18624 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18625 mips_compressed_mark_label (sym);
18626}
252b5132 18627\f
351cdf24
MF
18628/* Converting ASE flags from internal to .MIPS.abiflags values. */
18629static unsigned int
18630mips_convert_ase_flags (int ase)
18631{
18632 unsigned int ext_ases = 0;
18633
18634 if (ase & ASE_DSP)
18635 ext_ases |= AFL_ASE_DSP;
18636 if (ase & ASE_DSPR2)
18637 ext_ases |= AFL_ASE_DSPR2;
8f4f9071
MF
18638 if (ase & ASE_DSPR3)
18639 ext_ases |= AFL_ASE_DSPR3;
351cdf24
MF
18640 if (ase & ASE_EVA)
18641 ext_ases |= AFL_ASE_EVA;
18642 if (ase & ASE_MCU)
18643 ext_ases |= AFL_ASE_MCU;
18644 if (ase & ASE_MDMX)
18645 ext_ases |= AFL_ASE_MDMX;
18646 if (ase & ASE_MIPS3D)
18647 ext_ases |= AFL_ASE_MIPS3D;
18648 if (ase & ASE_MT)
18649 ext_ases |= AFL_ASE_MT;
18650 if (ase & ASE_SMARTMIPS)
18651 ext_ases |= AFL_ASE_SMARTMIPS;
18652 if (ase & ASE_VIRT)
18653 ext_ases |= AFL_ASE_VIRT;
18654 if (ase & ASE_MSA)
18655 ext_ases |= AFL_ASE_MSA;
18656 if (ase & ASE_XPA)
18657 ext_ases |= AFL_ASE_XPA;
18658
18659 return ext_ases;
18660}
252b5132
RH
18661/* Some special processing for a MIPS ELF file. */
18662
18663void
17a2f251 18664mips_elf_final_processing (void)
252b5132 18665{
351cdf24
MF
18666 int fpabi;
18667 Elf_Internal_ABIFlags_v0 flags;
18668
18669 flags.version = 0;
18670 flags.isa_rev = 0;
18671 switch (file_mips_opts.isa)
18672 {
18673 case INSN_ISA1:
18674 flags.isa_level = 1;
18675 break;
18676 case INSN_ISA2:
18677 flags.isa_level = 2;
18678 break;
18679 case INSN_ISA3:
18680 flags.isa_level = 3;
18681 break;
18682 case INSN_ISA4:
18683 flags.isa_level = 4;
18684 break;
18685 case INSN_ISA5:
18686 flags.isa_level = 5;
18687 break;
18688 case INSN_ISA32:
18689 flags.isa_level = 32;
18690 flags.isa_rev = 1;
18691 break;
18692 case INSN_ISA32R2:
18693 flags.isa_level = 32;
18694 flags.isa_rev = 2;
18695 break;
18696 case INSN_ISA32R3:
18697 flags.isa_level = 32;
18698 flags.isa_rev = 3;
18699 break;
18700 case INSN_ISA32R5:
18701 flags.isa_level = 32;
18702 flags.isa_rev = 5;
18703 break;
09c14161
MF
18704 case INSN_ISA32R6:
18705 flags.isa_level = 32;
18706 flags.isa_rev = 6;
18707 break;
351cdf24
MF
18708 case INSN_ISA64:
18709 flags.isa_level = 64;
18710 flags.isa_rev = 1;
18711 break;
18712 case INSN_ISA64R2:
18713 flags.isa_level = 64;
18714 flags.isa_rev = 2;
18715 break;
18716 case INSN_ISA64R3:
18717 flags.isa_level = 64;
18718 flags.isa_rev = 3;
18719 break;
18720 case INSN_ISA64R5:
18721 flags.isa_level = 64;
18722 flags.isa_rev = 5;
18723 break;
09c14161
MF
18724 case INSN_ISA64R6:
18725 flags.isa_level = 64;
18726 flags.isa_rev = 6;
18727 break;
351cdf24
MF
18728 }
18729
18730 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18731 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18732 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18733 : (file_mips_opts.fp == 64) ? AFL_REG_64
18734 : AFL_REG_32;
18735 flags.cpr2_size = AFL_REG_NONE;
18736 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18737 Tag_GNU_MIPS_ABI_FP);
18738 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18739 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18740 if (file_ase_mips16)
18741 flags.ases |= AFL_ASE_MIPS16;
18742 if (file_ase_micromips)
18743 flags.ases |= AFL_ASE_MICROMIPS;
18744 flags.flags1 = 0;
18745 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18746 || file_mips_opts.fp == 64)
18747 && file_mips_opts.oddspreg)
18748 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18749 flags.flags2 = 0;
18750
18751 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18752 ((Elf_External_ABIFlags_v0 *)
18753 mips_flags_frag));
18754
252b5132 18755 /* Write out the register information. */
316f5878 18756 if (mips_abi != N64_ABI)
252b5132
RH
18757 {
18758 Elf32_RegInfo s;
18759
18760 s.ri_gprmask = mips_gprmask;
18761 s.ri_cprmask[0] = mips_cprmask[0];
18762 s.ri_cprmask[1] = mips_cprmask[1];
18763 s.ri_cprmask[2] = mips_cprmask[2];
18764 s.ri_cprmask[3] = mips_cprmask[3];
18765 /* The gp_value field is set by the MIPS ELF backend. */
18766
18767 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18768 ((Elf32_External_RegInfo *)
18769 mips_regmask_frag));
18770 }
18771 else
18772 {
18773 Elf64_Internal_RegInfo s;
18774
18775 s.ri_gprmask = mips_gprmask;
18776 s.ri_pad = 0;
18777 s.ri_cprmask[0] = mips_cprmask[0];
18778 s.ri_cprmask[1] = mips_cprmask[1];
18779 s.ri_cprmask[2] = mips_cprmask[2];
18780 s.ri_cprmask[3] = mips_cprmask[3];
18781 /* The gp_value field is set by the MIPS ELF backend. */
18782
18783 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18784 ((Elf64_External_RegInfo *)
18785 mips_regmask_frag));
18786 }
18787
18788 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18789 sort of BFD interface for this. */
18790 if (mips_any_noreorder)
18791 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18792 if (mips_pic != NO_PIC)
143d77c5 18793 {
8b828383 18794 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
143d77c5
EC
18795 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18796 }
18797 if (mips_abicalls)
18798 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
252b5132 18799
b015e599
AP
18800 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18801 defined at present; this might need to change in future. */
a4672219
TS
18802 if (file_ase_mips16)
18803 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
df58fc94
RS
18804 if (file_ase_micromips)
18805 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
919731af 18806 if (file_mips_opts.ase & ASE_MDMX)
deec1734 18807 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
1f25f5d3 18808
bdaaa2e1 18809 /* Set the MIPS ELF ABI flags. */
316f5878 18810 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
252b5132 18811 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
316f5878 18812 else if (mips_abi == O64_ABI)
252b5132 18813 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
316f5878 18814 else if (mips_abi == EABI_ABI)
252b5132 18815 {
bad1aba3 18816 if (file_mips_opts.gp == 64)
252b5132
RH
18817 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18818 else
18819 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18820 }
316f5878 18821 else if (mips_abi == N32_ABI)
be00bddd
TS
18822 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18823
c9914766 18824 /* Nothing to do for N64_ABI. */
252b5132
RH
18825
18826 if (mips_32bitmode)
18827 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
ad3fea08 18828
7361da2c 18829 if (mips_nan2008 == 1)
ba92f887
MR
18830 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18831
ad3fea08 18832 /* 32 bit code with 64 bit FP registers. */
351cdf24
MF
18833 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18834 Tag_GNU_MIPS_ABI_FP);
18835 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
f1c38003 18836 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
252b5132 18837}
252b5132 18838\f
beae10d5 18839typedef struct proc {
9b2f1d35
EC
18840 symbolS *func_sym;
18841 symbolS *func_end_sym;
beae10d5
KH
18842 unsigned long reg_mask;
18843 unsigned long reg_offset;
18844 unsigned long fpreg_mask;
18845 unsigned long fpreg_offset;
18846 unsigned long frame_offset;
18847 unsigned long frame_reg;
18848 unsigned long pc_reg;
18849} procS;
252b5132
RH
18850
18851static procS cur_proc;
18852static procS *cur_proc_ptr;
18853static int numprocs;
18854
df58fc94
RS
18855/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18856 as "2", and a normal nop as "0". */
18857
18858#define NOP_OPCODE_MIPS 0
18859#define NOP_OPCODE_MIPS16 1
18860#define NOP_OPCODE_MICROMIPS 2
742a56fe
RS
18861
18862char
18863mips_nop_opcode (void)
18864{
df58fc94
RS
18865 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18866 return NOP_OPCODE_MICROMIPS;
18867 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18868 return NOP_OPCODE_MIPS16;
18869 else
18870 return NOP_OPCODE_MIPS;
742a56fe
RS
18871}
18872
df58fc94
RS
18873/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18874 32-bit microMIPS NOPs here (if applicable). */
a19d8eb0 18875
0a9ef439 18876void
17a2f251 18877mips_handle_align (fragS *fragp)
a19d8eb0 18878{
df58fc94 18879 char nop_opcode;
742a56fe 18880 char *p;
c67a084a
NC
18881 int bytes, size, excess;
18882 valueT opcode;
742a56fe 18883
0a9ef439
RH
18884 if (fragp->fr_type != rs_align_code)
18885 return;
18886
742a56fe 18887 p = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
18888 nop_opcode = *p;
18889 switch (nop_opcode)
a19d8eb0 18890 {
df58fc94
RS
18891 case NOP_OPCODE_MICROMIPS:
18892 opcode = micromips_nop32_insn.insn_opcode;
18893 size = 4;
18894 break;
18895 case NOP_OPCODE_MIPS16:
c67a084a
NC
18896 opcode = mips16_nop_insn.insn_opcode;
18897 size = 2;
df58fc94
RS
18898 break;
18899 case NOP_OPCODE_MIPS:
18900 default:
c67a084a
NC
18901 opcode = nop_insn.insn_opcode;
18902 size = 4;
df58fc94 18903 break;
c67a084a 18904 }
a19d8eb0 18905
c67a084a
NC
18906 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18907 excess = bytes % size;
df58fc94
RS
18908
18909 /* Handle the leading part if we're not inserting a whole number of
18910 instructions, and make it the end of the fixed part of the frag.
18911 Try to fit in a short microMIPS NOP if applicable and possible,
18912 and use zeroes otherwise. */
18913 gas_assert (excess < 4);
18914 fragp->fr_fix += excess;
18915 switch (excess)
c67a084a 18916 {
df58fc94
RS
18917 case 3:
18918 *p++ = '\0';
18919 /* Fall through. */
18920 case 2:
833794fc 18921 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
df58fc94 18922 {
4d68580a 18923 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
df58fc94
RS
18924 break;
18925 }
18926 *p++ = '\0';
18927 /* Fall through. */
18928 case 1:
18929 *p++ = '\0';
18930 /* Fall through. */
18931 case 0:
18932 break;
a19d8eb0 18933 }
c67a084a
NC
18934
18935 md_number_to_chars (p, opcode, size);
18936 fragp->fr_var = size;
a19d8eb0
CP
18937}
18938
252b5132 18939static long
17a2f251 18940get_number (void)
252b5132
RH
18941{
18942 int negative = 0;
18943 long val = 0;
18944
18945 if (*input_line_pointer == '-')
18946 {
18947 ++input_line_pointer;
18948 negative = 1;
18949 }
3882b010 18950 if (!ISDIGIT (*input_line_pointer))
956cd1d6 18951 as_bad (_("expected simple number"));
252b5132
RH
18952 if (input_line_pointer[0] == '0')
18953 {
18954 if (input_line_pointer[1] == 'x')
18955 {
18956 input_line_pointer += 2;
3882b010 18957 while (ISXDIGIT (*input_line_pointer))
252b5132
RH
18958 {
18959 val <<= 4;
18960 val |= hex_value (*input_line_pointer++);
18961 }
18962 return negative ? -val : val;
18963 }
18964 else
18965 {
18966 ++input_line_pointer;
3882b010 18967 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18968 {
18969 val <<= 3;
18970 val |= *input_line_pointer++ - '0';
18971 }
18972 return negative ? -val : val;
18973 }
18974 }
3882b010 18975 if (!ISDIGIT (*input_line_pointer))
252b5132
RH
18976 {
18977 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18978 *input_line_pointer, *input_line_pointer);
956cd1d6 18979 as_warn (_("invalid number"));
252b5132
RH
18980 return -1;
18981 }
3882b010 18982 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18983 {
18984 val *= 10;
18985 val += *input_line_pointer++ - '0';
18986 }
18987 return negative ? -val : val;
18988}
18989
18990/* The .file directive; just like the usual .file directive, but there
c5dd6aab
DJ
18991 is an initial number which is the ECOFF file index. In the non-ECOFF
18992 case .file implies DWARF-2. */
18993
18994static void
17a2f251 18995s_mips_file (int x ATTRIBUTE_UNUSED)
c5dd6aab 18996{
ecb4347a
DJ
18997 static int first_file_directive = 0;
18998
c5dd6aab
DJ
18999 if (ECOFF_DEBUGGING)
19000 {
19001 get_number ();
19002 s_app_file (0);
19003 }
19004 else
ecb4347a
DJ
19005 {
19006 char *filename;
19007
19008 filename = dwarf2_directive_file (0);
19009
19010 /* Versions of GCC up to 3.1 start files with a ".file"
19011 directive even for stabs output. Make sure that this
19012 ".file" is handled. Note that you need a version of GCC
19013 after 3.1 in order to support DWARF-2 on MIPS. */
19014 if (filename != NULL && ! first_file_directive)
19015 {
19016 (void) new_logical_line (filename, -1);
c04f5787 19017 s_app_file_string (filename, 0);
ecb4347a
DJ
19018 }
19019 first_file_directive = 1;
19020 }
c5dd6aab
DJ
19021}
19022
19023/* The .loc directive, implying DWARF-2. */
252b5132
RH
19024
19025static void
17a2f251 19026s_mips_loc (int x ATTRIBUTE_UNUSED)
252b5132 19027{
c5dd6aab
DJ
19028 if (!ECOFF_DEBUGGING)
19029 dwarf2_directive_loc (0);
252b5132
RH
19030}
19031
252b5132
RH
19032/* The .end directive. */
19033
19034static void
17a2f251 19035s_mips_end (int x ATTRIBUTE_UNUSED)
252b5132
RH
19036{
19037 symbolS *p;
252b5132 19038
7a621144
DJ
19039 /* Following functions need their own .frame and .cprestore directives. */
19040 mips_frame_reg_valid = 0;
19041 mips_cprestore_valid = 0;
19042
252b5132
RH
19043 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19044 {
19045 p = get_symbol ();
19046 demand_empty_rest_of_line ();
19047 }
19048 else
19049 p = NULL;
19050
14949570 19051 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
19052 as_warn (_(".end not in text section"));
19053
19054 if (!cur_proc_ptr)
19055 {
1661c76c 19056 as_warn (_(".end directive without a preceding .ent directive"));
252b5132
RH
19057 demand_empty_rest_of_line ();
19058 return;
19059 }
19060
19061 if (p != NULL)
19062 {
9c2799c2 19063 gas_assert (S_GET_NAME (p));
9b2f1d35 19064 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
1661c76c 19065 as_warn (_(".end symbol does not match .ent symbol"));
ecb4347a
DJ
19066
19067 if (debug_type == DEBUG_STABS)
19068 stabs_generate_asm_endfunc (S_GET_NAME (p),
19069 S_GET_NAME (p));
252b5132
RH
19070 }
19071 else
19072 as_warn (_(".end directive missing or unknown symbol"));
19073
9b2f1d35
EC
19074 /* Create an expression to calculate the size of the function. */
19075 if (p && cur_proc_ptr)
19076 {
19077 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
325801bd 19078 expressionS *exp = XNEW (expressionS);
9b2f1d35
EC
19079
19080 obj->size = exp;
19081 exp->X_op = O_subtract;
19082 exp->X_add_symbol = symbol_temp_new_now ();
19083 exp->X_op_symbol = p;
19084 exp->X_add_number = 0;
19085
19086 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19087 }
19088
5ff6a06c
MR
19089#ifdef md_flush_pending_output
19090 md_flush_pending_output ();
19091#endif
19092
ecb4347a 19093 /* Generate a .pdr section. */
f3ded42a 19094 if (!ECOFF_DEBUGGING && mips_flag_pdr)
ecb4347a
DJ
19095 {
19096 segT saved_seg = now_seg;
19097 subsegT saved_subseg = now_subseg;
ecb4347a
DJ
19098 expressionS exp;
19099 char *fragp;
252b5132 19100
9c2799c2 19101 gas_assert (pdr_seg);
ecb4347a 19102 subseg_set (pdr_seg, 0);
252b5132 19103
ecb4347a
DJ
19104 /* Write the symbol. */
19105 exp.X_op = O_symbol;
19106 exp.X_add_symbol = p;
19107 exp.X_add_number = 0;
19108 emit_expr (&exp, 4);
252b5132 19109
ecb4347a 19110 fragp = frag_more (7 * 4);
252b5132 19111
17a2f251
TS
19112 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19113 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19114 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19115 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19116 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19117 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19118 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
252b5132 19119
ecb4347a
DJ
19120 subseg_set (saved_seg, saved_subseg);
19121 }
252b5132
RH
19122
19123 cur_proc_ptr = NULL;
19124}
19125
19126/* The .aent and .ent directives. */
19127
19128static void
17a2f251 19129s_mips_ent (int aent)
252b5132 19130{
252b5132 19131 symbolS *symbolP;
252b5132
RH
19132
19133 symbolP = get_symbol ();
19134 if (*input_line_pointer == ',')
f9419b05 19135 ++input_line_pointer;
252b5132 19136 SKIP_WHITESPACE ();
3882b010 19137 if (ISDIGIT (*input_line_pointer)
d9a62219 19138 || *input_line_pointer == '-')
874e8986 19139 get_number ();
252b5132 19140
14949570 19141 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
1661c76c 19142 as_warn (_(".ent or .aent not in text section"));
252b5132
RH
19143
19144 if (!aent && cur_proc_ptr)
9a41af64 19145 as_warn (_("missing .end"));
252b5132
RH
19146
19147 if (!aent)
19148 {
7a621144
DJ
19149 /* This function needs its own .frame and .cprestore directives. */
19150 mips_frame_reg_valid = 0;
19151 mips_cprestore_valid = 0;
19152
252b5132
RH
19153 cur_proc_ptr = &cur_proc;
19154 memset (cur_proc_ptr, '\0', sizeof (procS));
19155
9b2f1d35 19156 cur_proc_ptr->func_sym = symbolP;
252b5132 19157
f9419b05 19158 ++numprocs;
ecb4347a
DJ
19159
19160 if (debug_type == DEBUG_STABS)
19161 stabs_generate_asm_func (S_GET_NAME (symbolP),
19162 S_GET_NAME (symbolP));
252b5132
RH
19163 }
19164
7c0fc524
MR
19165 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19166
252b5132
RH
19167 demand_empty_rest_of_line ();
19168}
19169
19170/* The .frame directive. If the mdebug section is present (IRIX 5 native)
bdaaa2e1 19171 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
252b5132 19172 s_mips_frame is used so that we can set the PDR information correctly.
bdaaa2e1 19173 We can't use the ecoff routines because they make reference to the ecoff
252b5132
RH
19174 symbol table (in the mdebug section). */
19175
19176static void
17a2f251 19177s_mips_frame (int ignore ATTRIBUTE_UNUSED)
252b5132 19178{
f3ded42a
RS
19179 if (ECOFF_DEBUGGING)
19180 s_ignore (ignore);
19181 else
ecb4347a
DJ
19182 {
19183 long val;
252b5132 19184
ecb4347a
DJ
19185 if (cur_proc_ptr == (procS *) NULL)
19186 {
19187 as_warn (_(".frame outside of .ent"));
19188 demand_empty_rest_of_line ();
19189 return;
19190 }
252b5132 19191
ecb4347a
DJ
19192 cur_proc_ptr->frame_reg = tc_get_register (1);
19193
19194 SKIP_WHITESPACE ();
19195 if (*input_line_pointer++ != ','
19196 || get_absolute_expression_and_terminator (&val) != ',')
19197 {
1661c76c 19198 as_warn (_("bad .frame directive"));
ecb4347a
DJ
19199 --input_line_pointer;
19200 demand_empty_rest_of_line ();
19201 return;
19202 }
252b5132 19203
ecb4347a
DJ
19204 cur_proc_ptr->frame_offset = val;
19205 cur_proc_ptr->pc_reg = tc_get_register (0);
252b5132 19206
252b5132 19207 demand_empty_rest_of_line ();
252b5132 19208 }
252b5132
RH
19209}
19210
bdaaa2e1
KH
19211/* The .fmask and .mask directives. If the mdebug section is present
19212 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
252b5132 19213 embedded targets, s_mips_mask is used so that we can set the PDR
bdaaa2e1 19214 information correctly. We can't use the ecoff routines because they
252b5132
RH
19215 make reference to the ecoff symbol table (in the mdebug section). */
19216
19217static void
17a2f251 19218s_mips_mask (int reg_type)
252b5132 19219{
f3ded42a
RS
19220 if (ECOFF_DEBUGGING)
19221 s_ignore (reg_type);
19222 else
252b5132 19223 {
ecb4347a 19224 long mask, off;
252b5132 19225
ecb4347a
DJ
19226 if (cur_proc_ptr == (procS *) NULL)
19227 {
19228 as_warn (_(".mask/.fmask outside of .ent"));
19229 demand_empty_rest_of_line ();
19230 return;
19231 }
252b5132 19232
ecb4347a
DJ
19233 if (get_absolute_expression_and_terminator (&mask) != ',')
19234 {
1661c76c 19235 as_warn (_("bad .mask/.fmask directive"));
ecb4347a
DJ
19236 --input_line_pointer;
19237 demand_empty_rest_of_line ();
19238 return;
19239 }
252b5132 19240
ecb4347a
DJ
19241 off = get_absolute_expression ();
19242
19243 if (reg_type == 'F')
19244 {
19245 cur_proc_ptr->fpreg_mask = mask;
19246 cur_proc_ptr->fpreg_offset = off;
19247 }
19248 else
19249 {
19250 cur_proc_ptr->reg_mask = mask;
19251 cur_proc_ptr->reg_offset = off;
19252 }
19253
19254 demand_empty_rest_of_line ();
252b5132 19255 }
252b5132
RH
19256}
19257
316f5878
RS
19258/* A table describing all the processors gas knows about. Names are
19259 matched in the order listed.
e7af610e 19260
316f5878
RS
19261 To ease comparison, please keep this table in the same order as
19262 gcc's mips_cpu_info_table[]. */
e972090a
NC
19263static const struct mips_cpu_info mips_cpu_info_table[] =
19264{
316f5878 19265 /* Entries for generic ISAs */
d16afab6
RS
19266 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19267 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19268 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19269 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19270 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19271 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19272 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
ae52f483
AB
19273 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19274 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
7361da2c 19275 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
d16afab6
RS
19276 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19277 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
ae52f483
AB
19278 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19279 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
7361da2c 19280 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
316f5878
RS
19281
19282 /* MIPS I */
d16afab6
RS
19283 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19284 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19285 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
316f5878
RS
19286
19287 /* MIPS II */
d16afab6 19288 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
316f5878
RS
19289
19290 /* MIPS III */
d16afab6
RS
19291 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19292 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19293 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19294 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19295 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19296 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19297 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19298 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19299 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19300 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19301 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19302 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19303 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
b15591bb 19304 /* ST Microelectronics Loongson 2E and 2F cores */
d16afab6
RS
19305 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19306 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
316f5878
RS
19307
19308 /* MIPS IV */
d16afab6
RS
19309 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19310 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19311 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19312 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19313 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19314 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19315 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19316 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19317 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19318 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19319 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19320 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19321 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19322 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19323 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
316f5878
RS
19324
19325 /* MIPS 32 */
d16afab6
RS
19326 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19327 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19328 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19329 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
ad3fea08
TS
19330
19331 /* MIPS 32 Release 2 */
d16afab6
RS
19332 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19333 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19334 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19335 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19336 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19337 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19338 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19339 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19340 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19341 ISA_MIPS32R2, CPU_MIPS32R2 },
19342 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19343 ISA_MIPS32R2, CPU_MIPS32R2 },
19344 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19345 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19346 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19347 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19348 /* Deprecated forms of the above. */
d16afab6
RS
19349 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19350 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19351 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
d16afab6
RS
19352 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19353 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19354 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19355 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19356 /* Deprecated forms of the above. */
d16afab6
RS
19357 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19358 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19359 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
d16afab6
RS
19360 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19361 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19362 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19363 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19364 /* Deprecated forms of the above. */
d16afab6
RS
19365 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19366 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
711eefe4 19367 /* 34Kn is a 34kc without DSP. */
d16afab6 19368 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19369 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
d16afab6
RS
19370 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19371 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19372 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19373 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19374 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19375 /* Deprecated forms of the above. */
d16afab6
RS
19376 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19377 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
30f8113a 19378 /* 1004K cores are multiprocessor versions of the 34K. */
d16afab6
RS
19379 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19380 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19381 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19382 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
77403ce9
RS
19383 /* interaptiv is the new name for 1004kf */
19384 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
c6e5c03a
RS
19385 /* M5100 family */
19386 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19387 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
bbaa46c0 19388 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
134c0c8b 19389 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
32b26a03 19390
316f5878 19391 /* MIPS 64 */
d16afab6
RS
19392 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19393 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19394 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19395 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
ad3fea08 19396
c7a23324 19397 /* Broadcom SB-1 CPU core */
d16afab6 19398 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
1e85aad8 19399 /* Broadcom SB-1A CPU core */
d16afab6 19400 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
3739860c 19401
4ba154f5 19402 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
e7af610e 19403
ed163775
MR
19404 /* MIPS 64 Release 2 */
19405
967344c6 19406 /* Cavium Networks Octeon CPU core */
d16afab6
RS
19407 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19408 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19409 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
2c629856 19410 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
967344c6 19411
52b6b6b9 19412 /* RMI Xlr */
d16afab6 19413 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
52b6b6b9 19414
55a36193
MK
19415 /* Broadcom XLP.
19416 XLP is mostly like XLR, with the prominent exception that it is
19417 MIPS64R2 rather than MIPS64. */
d16afab6 19418 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
55a36193 19419
a4968f42 19420 /* MIPS 64 Release 6 */
7ef0d297 19421 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
a4968f42 19422 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
7ef0d297 19423
316f5878 19424 /* End marker */
d16afab6 19425 { NULL, 0, 0, 0, 0 }
316f5878 19426};
e7af610e 19427
84ea6cf2 19428
316f5878
RS
19429/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19430 with a final "000" replaced by "k". Ignore case.
e7af610e 19431
316f5878 19432 Note: this function is shared between GCC and GAS. */
c6c98b38 19433
b34976b6 19434static bfd_boolean
17a2f251 19435mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
19436{
19437 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19438 given++, canonical++;
19439
19440 return ((*given == 0 && *canonical == 0)
19441 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19442}
19443
19444
19445/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19446 CPU name. We've traditionally allowed a lot of variation here.
19447
19448 Note: this function is shared between GCC and GAS. */
19449
b34976b6 19450static bfd_boolean
17a2f251 19451mips_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
19452{
19453 /* First see if the name matches exactly, or with a final "000"
19454 turned into "k". */
19455 if (mips_strict_matching_cpu_name_p (canonical, given))
b34976b6 19456 return TRUE;
316f5878
RS
19457
19458 /* If not, try comparing based on numerical designation alone.
19459 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19460 if (TOLOWER (*given) == 'r')
19461 given++;
19462 if (!ISDIGIT (*given))
b34976b6 19463 return FALSE;
316f5878
RS
19464
19465 /* Skip over some well-known prefixes in the canonical name,
19466 hoping to find a number there too. */
19467 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19468 canonical += 2;
19469 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19470 canonical += 2;
19471 else if (TOLOWER (canonical[0]) == 'r')
19472 canonical += 1;
19473
19474 return mips_strict_matching_cpu_name_p (canonical, given);
19475}
19476
19477
19478/* Parse an option that takes the name of a processor as its argument.
19479 OPTION is the name of the option and CPU_STRING is the argument.
19480 Return the corresponding processor enumeration if the CPU_STRING is
19481 recognized, otherwise report an error and return null.
19482
19483 A similar function exists in GCC. */
e7af610e
NC
19484
19485static const struct mips_cpu_info *
17a2f251 19486mips_parse_cpu (const char *option, const char *cpu_string)
e7af610e 19487{
316f5878 19488 const struct mips_cpu_info *p;
e7af610e 19489
316f5878
RS
19490 /* 'from-abi' selects the most compatible architecture for the given
19491 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19492 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19493 version. Look first at the -mgp options, if given, otherwise base
19494 the choice on MIPS_DEFAULT_64BIT.
e7af610e 19495
316f5878
RS
19496 Treat NO_ABI like the EABIs. One reason to do this is that the
19497 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19498 architecture. This code picks MIPS I for 'mips' and MIPS III for
19499 'mips64', just as we did in the days before 'from-abi'. */
19500 if (strcasecmp (cpu_string, "from-abi") == 0)
19501 {
19502 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19503 return mips_cpu_info_from_isa (ISA_MIPS1);
19504
19505 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19506 return mips_cpu_info_from_isa (ISA_MIPS3);
19507
bad1aba3 19508 if (file_mips_opts.gp >= 0)
19509 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
0b35dfee 19510 ? ISA_MIPS1 : ISA_MIPS3);
316f5878
RS
19511
19512 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19513 ? ISA_MIPS3
19514 : ISA_MIPS1);
19515 }
19516
19517 /* 'default' has traditionally been a no-op. Probably not very useful. */
19518 if (strcasecmp (cpu_string, "default") == 0)
19519 return 0;
19520
19521 for (p = mips_cpu_info_table; p->name != 0; p++)
19522 if (mips_matching_cpu_name_p (p->name, cpu_string))
19523 return p;
19524
1661c76c 19525 as_bad (_("bad value (%s) for %s"), cpu_string, option);
316f5878 19526 return 0;
e7af610e
NC
19527}
19528
316f5878
RS
19529/* Return the canonical processor information for ISA (a member of the
19530 ISA_MIPS* enumeration). */
19531
e7af610e 19532static const struct mips_cpu_info *
17a2f251 19533mips_cpu_info_from_isa (int isa)
e7af610e
NC
19534{
19535 int i;
19536
19537 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
ad3fea08 19538 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
316f5878 19539 && isa == mips_cpu_info_table[i].isa)
e7af610e
NC
19540 return (&mips_cpu_info_table[i]);
19541
e972090a 19542 return NULL;
e7af610e 19543}
fef14a42
TS
19544
19545static const struct mips_cpu_info *
17a2f251 19546mips_cpu_info_from_arch (int arch)
fef14a42
TS
19547{
19548 int i;
19549
19550 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19551 if (arch == mips_cpu_info_table[i].cpu)
19552 return (&mips_cpu_info_table[i]);
19553
19554 return NULL;
19555}
316f5878
RS
19556\f
19557static void
17a2f251 19558show (FILE *stream, const char *string, int *col_p, int *first_p)
316f5878
RS
19559{
19560 if (*first_p)
19561 {
19562 fprintf (stream, "%24s", "");
19563 *col_p = 24;
19564 }
19565 else
19566 {
19567 fprintf (stream, ", ");
19568 *col_p += 2;
19569 }
e7af610e 19570
316f5878
RS
19571 if (*col_p + strlen (string) > 72)
19572 {
19573 fprintf (stream, "\n%24s", "");
19574 *col_p = 24;
19575 }
19576
19577 fprintf (stream, "%s", string);
19578 *col_p += strlen (string);
19579
19580 *first_p = 0;
19581}
19582
19583void
17a2f251 19584md_show_usage (FILE *stream)
e7af610e 19585{
316f5878
RS
19586 int column, first;
19587 size_t i;
19588
19589 fprintf (stream, _("\
19590MIPS options:\n\
316f5878
RS
19591-EB generate big endian output\n\
19592-EL generate little endian output\n\
19593-g, -g2 do not remove unneeded NOPs or swap branches\n\
19594-G NUM allow referencing objects up to NUM bytes\n\
19595 implicitly with the gp register [default 8]\n"));
19596 fprintf (stream, _("\
19597-mips1 generate MIPS ISA I instructions\n\
19598-mips2 generate MIPS ISA II instructions\n\
19599-mips3 generate MIPS ISA III instructions\n\
19600-mips4 generate MIPS ISA IV instructions\n\
19601-mips5 generate MIPS ISA V instructions\n\
19602-mips32 generate MIPS32 ISA instructions\n\
af7ee8bf 19603-mips32r2 generate MIPS32 release 2 ISA instructions\n\
ae52f483
AB
19604-mips32r3 generate MIPS32 release 3 ISA instructions\n\
19605-mips32r5 generate MIPS32 release 5 ISA instructions\n\
7361da2c 19606-mips32r6 generate MIPS32 release 6 ISA instructions\n\
316f5878 19607-mips64 generate MIPS64 ISA instructions\n\
5f74bc13 19608-mips64r2 generate MIPS64 release 2 ISA instructions\n\
ae52f483
AB
19609-mips64r3 generate MIPS64 release 3 ISA instructions\n\
19610-mips64r5 generate MIPS64 release 5 ISA instructions\n\
7361da2c 19611-mips64r6 generate MIPS64 release 6 ISA instructions\n\
316f5878
RS
19612-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19613
19614 first = 1;
e7af610e
NC
19615
19616 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
316f5878
RS
19617 show (stream, mips_cpu_info_table[i].name, &column, &first);
19618 show (stream, "from-abi", &column, &first);
19619 fputc ('\n', stream);
e7af610e 19620
316f5878
RS
19621 fprintf (stream, _("\
19622-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19623-no-mCPU don't generate code specific to CPU.\n\
19624 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19625
19626 first = 1;
19627
19628 show (stream, "3900", &column, &first);
19629 show (stream, "4010", &column, &first);
19630 show (stream, "4100", &column, &first);
19631 show (stream, "4650", &column, &first);
19632 fputc ('\n', stream);
19633
19634 fprintf (stream, _("\
19635-mips16 generate mips16 instructions\n\
19636-no-mips16 do not generate mips16 instructions\n"));
19637 fprintf (stream, _("\
df58fc94
RS
19638-mmicromips generate microMIPS instructions\n\
19639-mno-micromips do not generate microMIPS instructions\n"));
19640 fprintf (stream, _("\
e16bfa71 19641-msmartmips generate smartmips instructions\n\
3739860c 19642-mno-smartmips do not generate smartmips instructions\n"));
e16bfa71 19643 fprintf (stream, _("\
74cd071d
CF
19644-mdsp generate DSP instructions\n\
19645-mno-dsp do not generate DSP instructions\n"));
19646 fprintf (stream, _("\
8b082fb1
TS
19647-mdspr2 generate DSP R2 instructions\n\
19648-mno-dspr2 do not generate DSP R2 instructions\n"));
19649 fprintf (stream, _("\
8f4f9071
MF
19650-mdspr3 generate DSP R3 instructions\n\
19651-mno-dspr3 do not generate DSP R3 instructions\n"));
19652 fprintf (stream, _("\
ef2e4d86
CF
19653-mmt generate MT instructions\n\
19654-mno-mt do not generate MT instructions\n"));
19655 fprintf (stream, _("\
dec0624d
MR
19656-mmcu generate MCU instructions\n\
19657-mno-mcu do not generate MCU instructions\n"));
19658 fprintf (stream, _("\
56d438b1
CF
19659-mmsa generate MSA instructions\n\
19660-mno-msa do not generate MSA instructions\n"));
19661 fprintf (stream, _("\
7d64c587
AB
19662-mxpa generate eXtended Physical Address (XPA) instructions\n\
19663-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19664 fprintf (stream, _("\
b015e599
AP
19665-mvirt generate Virtualization instructions\n\
19666-mno-virt do not generate Virtualization instructions\n"));
19667 fprintf (stream, _("\
833794fc
MR
19668-minsn32 only generate 32-bit microMIPS instructions\n\
19669-mno-insn32 generate all microMIPS instructions\n"));
19670 fprintf (stream, _("\
c67a084a
NC
19671-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19672-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
d766e8ec 19673-mfix-vr4120 work around certain VR4120 errata\n\
7d8e00cf 19674-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
6a32d874 19675-mfix-24k insert a nop after ERET and DERET instructions\n\
d954098f 19676-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
316f5878
RS
19677-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19678-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
aed1a261 19679-msym32 assume all symbols have 32-bit values\n\
316f5878
RS
19680-O0 remove unneeded NOPs, do not swap branches\n\
19681-O remove unneeded NOPs and swap branches\n\
316f5878
RS
19682--trap, --no-break trap exception on div by 0 and mult overflow\n\
19683--break, --no-trap break exception on div by 0 and mult overflow\n"));
037b32b9
AN
19684 fprintf (stream, _("\
19685-mhard-float allow floating-point instructions\n\
19686-msoft-float do not allow floating-point instructions\n\
19687-msingle-float only allow 32-bit floating-point operations\n\
19688-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
3bf0dbfb 19689--[no-]construct-floats [dis]allow floating point values to be constructed\n\
ba92f887 19690--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
8b10b0b3
MR
19691-mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
19692-mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
ba92f887
MR
19693-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19694
19695 first = 1;
19696
19697 show (stream, "legacy", &column, &first);
19698 show (stream, "2008", &column, &first);
19699
19700 fputc ('\n', stream);
19701
316f5878
RS
19702 fprintf (stream, _("\
19703-KPIC, -call_shared generate SVR4 position independent code\n\
861fb55a 19704-call_nonpic generate non-PIC code that can operate with DSOs\n\
0c000745 19705-mvxworks-pic generate VxWorks position independent code\n\
861fb55a 19706-non_shared do not generate code that can operate with DSOs\n\
316f5878 19707-xgot assume a 32 bit GOT\n\
dcd410fe 19708-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
bbe506e8 19709-mshared, -mno-shared disable/enable .cpload optimization for\n\
d821e36b 19710 position dependent (non shared) code\n\
316f5878
RS
19711-mabi=ABI create ABI conformant object file for:\n"));
19712
19713 first = 1;
19714
19715 show (stream, "32", &column, &first);
19716 show (stream, "o64", &column, &first);
19717 show (stream, "n32", &column, &first);
19718 show (stream, "64", &column, &first);
19719 show (stream, "eabi", &column, &first);
19720
19721 fputc ('\n', stream);
19722
19723 fprintf (stream, _("\
19724-32 create o32 ABI object file (default)\n\
19725-n32 create n32 ABI object file\n\
19726-64 create 64 ABI object file\n"));
e7af610e 19727}
14e777e0 19728
1575952e 19729#ifdef TE_IRIX
14e777e0 19730enum dwarf2_format
413a266c 19731mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
14e777e0 19732{
369943fe 19733 if (HAVE_64BIT_SYMBOLS)
1575952e 19734 return dwarf2_format_64bit_irix;
14e777e0
KB
19735 else
19736 return dwarf2_format_32bit;
19737}
1575952e 19738#endif
73369e65
EC
19739
19740int
19741mips_dwarf2_addr_size (void)
19742{
6b6b3450 19743 if (HAVE_64BIT_OBJECTS)
73369e65 19744 return 8;
73369e65
EC
19745 else
19746 return 4;
19747}
5862107c
EC
19748
19749/* Standard calling conventions leave the CFA at SP on entry. */
19750void
19751mips_cfi_frame_initial_instructions (void)
19752{
19753 cfi_add_CFA_def_cfa_register (SP);
19754}
19755
707bfff6
TS
19756int
19757tc_mips_regname_to_dw2regnum (char *regname)
19758{
19759 unsigned int regnum = -1;
19760 unsigned int reg;
19761
19762 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19763 regnum = reg;
19764
19765 return regnum;
19766}
263b2574 19767
19768/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19769 Given a symbolic attribute NAME, return the proper integer value.
19770 Returns -1 if the attribute is not known. */
19771
19772int
19773mips_convert_symbolic_attribute (const char *name)
19774{
19775 static const struct
19776 {
19777 const char * name;
19778 const int tag;
19779 }
19780 attribute_table[] =
19781 {
19782#define T(tag) {#tag, tag}
19783 T (Tag_GNU_MIPS_ABI_FP),
19784 T (Tag_GNU_MIPS_ABI_MSA),
19785#undef T
19786 };
19787 unsigned int i;
19788
19789 if (name == NULL)
19790 return -1;
19791
19792 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19793 if (streq (name, attribute_table[i].name))
19794 return attribute_table[i].tag;
19795
19796 return -1;
19797}
fd5c94ab
RS
19798
19799void
19800md_mips_end (void)
19801{
351cdf24
MF
19802 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19803
fd5c94ab
RS
19804 mips_emit_delays ();
19805 if (cur_proc_ptr)
19806 as_warn (_("missing .end at end of assembly"));
919731af 19807
19808 /* Just in case no code was emitted, do the consistency check. */
19809 file_mips_check_options ();
351cdf24
MF
19810
19811 /* Set a floating-point ABI if the user did not. */
19812 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19813 {
19814 /* Perform consistency checks on the floating-point ABI. */
19815 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19816 Tag_GNU_MIPS_ABI_FP);
19817 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19818 check_fpabi (fpabi);
19819 }
19820 else
19821 {
19822 /* Soft-float gets precedence over single-float, the two options should
19823 not be used together so this should not matter. */
19824 if (file_mips_opts.soft_float == 1)
19825 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19826 /* Single-float gets precedence over all double_float cases. */
19827 else if (file_mips_opts.single_float == 1)
19828 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19829 else
19830 {
19831 switch (file_mips_opts.fp)
19832 {
19833 case 32:
19834 if (file_mips_opts.gp == 32)
19835 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19836 break;
19837 case 0:
19838 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19839 break;
19840 case 64:
19841 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19842 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19843 else if (file_mips_opts.gp == 32)
19844 fpabi = Val_GNU_MIPS_ABI_FP_64;
19845 else
19846 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19847 break;
19848 }
19849 }
19850
19851 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19852 Tag_GNU_MIPS_ABI_FP, fpabi);
19853 }
fd5c94ab 19854}
2f0c68f2
CM
19855
19856/* Returns the relocation type required for a particular CFI encoding. */
19857
19858bfd_reloc_code_real_type
19859mips_cfi_reloc_for_encoding (int encoding)
19860{
19861 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19862 return BFD_RELOC_32_PCREL;
19863 else return BFD_RELOC_NONE;
19864}
This page took 2.991711 seconds and 4 git commands to generate.