gas/
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
CommitLineData
252b5132 1/* tc-mips.c -- assemble code for a MIPS chip.
81912461 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
e407c74b 3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
c67a084a 4 Free Software Foundation, Inc.
252b5132
RH
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 Support.
9
10 This file is part of GAS.
11
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
ec2655a6 14 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
15 any later version.
16
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 02110-1301, USA. */
252b5132
RH
26
27#include "as.h"
28#include "config.h"
29#include "subsegs.h"
3882b010 30#include "safe-ctype.h"
252b5132 31
252b5132
RH
32#include "opcode/mips.h"
33#include "itbl-ops.h"
c5dd6aab 34#include "dwarf2dbg.h"
5862107c 35#include "dw2gencfi.h"
252b5132 36
42429eac
RS
37/* Check assumptions made in this file. */
38typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
39typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
40
252b5132
RH
41#ifdef DEBUG
42#define DBG(x) printf x
43#else
44#define DBG(x)
45#endif
46
9e12b7a2
RS
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
252b5132 50/* Clean up namespace so we can include obj-elf.h too. */
17a2f251
TS
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
252b5132
RH
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
252b5132
RH
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
252b5132 70
252b5132 71#include "elf/mips.h"
252b5132
RH
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
ecb4347a
DJ
78int mips_flag_mdebug = -1;
79
dcd410fe
RO
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
84int mips_flag_pdr = FALSE;
85#else
86int mips_flag_pdr = TRUE;
87#endif
88
252b5132
RH
89#include "ecoff.h"
90
252b5132 91static char *mips_regmask_frag;
252b5132 92
85b51719 93#define ZERO 0
741fe287 94#define ATREG 1
df58fc94
RS
95#define S0 16
96#define S7 23
252b5132
RH
97#define TREG 24
98#define PIC_CALL_REG 25
99#define KT0 26
100#define KT1 27
101#define GP 28
102#define SP 29
103#define FP 30
104#define RA 31
105
106#define ILLEGAL_REG (32)
107
741fe287
MR
108#define AT mips_opts.at
109
252b5132
RH
110extern int target_big_endian;
111
252b5132 112/* The name of the readonly data section. */
e8044f35 113#define RDATA_SECTION_NAME ".rodata"
252b5132 114
a4e06468
RS
115/* Ways in which an instruction can be "appended" to the output. */
116enum append_method {
117 /* Just add it normally. */
118 APPEND_ADD,
119
120 /* Add it normally and then add a nop. */
121 APPEND_ADD_WITH_NOP,
122
123 /* Turn an instruction with a delay slot into a "compact" version. */
124 APPEND_ADD_COMPACT,
125
126 /* Insert the instruction before the last one. */
127 APPEND_SWAP
128};
129
47e39b9d
RS
130/* Information about an instruction, including its format, operands
131 and fixups. */
132struct mips_cl_insn
133{
134 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
135 const struct mips_opcode *insn_mo;
136
47e39b9d 137 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
5c04167a
RS
138 a copy of INSN_MO->match with the operands filled in. If we have
139 decided to use an extended MIPS16 instruction, this includes the
140 extension. */
47e39b9d
RS
141 unsigned long insn_opcode;
142
143 /* The frag that contains the instruction. */
144 struct frag *frag;
145
146 /* The offset into FRAG of the first instruction byte. */
147 long where;
148
149 /* The relocs associated with the instruction, if any. */
150 fixS *fixp[3];
151
a38419a5
RS
152 /* True if this entry cannot be moved from its current position. */
153 unsigned int fixed_p : 1;
47e39b9d 154
708587a4 155 /* True if this instruction occurred in a .set noreorder block. */
47e39b9d
RS
156 unsigned int noreorder_p : 1;
157
2fa15973
RS
158 /* True for mips16 instructions that jump to an absolute address. */
159 unsigned int mips16_absolute_jump_p : 1;
15be625d
CM
160
161 /* True if this instruction is complete. */
162 unsigned int complete_p : 1;
e407c74b
NC
163
164 /* True if this instruction is cleared from history by unconditional
165 branch. */
166 unsigned int cleared_p : 1;
47e39b9d
RS
167};
168
a325df1d
TS
169/* The ABI to use. */
170enum mips_abi_level
171{
172 NO_ABI = 0,
173 O32_ABI,
174 O64_ABI,
175 N32_ABI,
176 N64_ABI,
177 EABI_ABI
178};
179
180/* MIPS ABI we are using for this output file. */
316f5878 181static enum mips_abi_level mips_abi = NO_ABI;
a325df1d 182
143d77c5
EC
183/* Whether or not we have code that can call pic code. */
184int mips_abicalls = FALSE;
185
aa6975fb
ILT
186/* Whether or not we have code which can be put into a shared
187 library. */
188static bfd_boolean mips_in_shared = TRUE;
189
252b5132
RH
190/* This is the set of options which may be modified by the .set
191 pseudo-op. We use a struct so that .set push and .set pop are more
192 reliable. */
193
e972090a
NC
194struct mips_set_options
195{
252b5132
RH
196 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
197 if it has not been initialized. Changed by `.set mipsN', and the
198 -mipsN command line option, and the default CPU. */
199 int isa;
846ef2d0
RS
200 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
201 <asename>', by command line options, and based on the default
202 architecture. */
203 int ase;
252b5132
RH
204 /* Whether we are assembling for the mips16 processor. 0 if we are
205 not, 1 if we are, and -1 if the value has not been initialized.
206 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
207 -nomips16 command line options, and the default CPU. */
208 int mips16;
df58fc94
RS
209 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
210 1 if we are, and -1 if the value has not been initialized. Changed
211 by `.set micromips' and `.set nomicromips', and the -mmicromips
212 and -mno-micromips command line options, and the default CPU. */
213 int micromips;
252b5132
RH
214 /* Non-zero if we should not reorder instructions. Changed by `.set
215 reorder' and `.set noreorder'. */
216 int noreorder;
741fe287
MR
217 /* Non-zero if we should not permit the register designated "assembler
218 temporary" to be used in instructions. The value is the register
219 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
220 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
221 unsigned int at;
252b5132
RH
222 /* Non-zero if we should warn when a macro instruction expands into
223 more than one machine instruction. Changed by `.set nomacro' and
224 `.set macro'. */
225 int warn_about_macros;
226 /* Non-zero if we should not move instructions. Changed by `.set
227 move', `.set volatile', `.set nomove', and `.set novolatile'. */
228 int nomove;
229 /* Non-zero if we should not optimize branches by moving the target
230 of the branch into the delay slot. Actually, we don't perform
231 this optimization anyhow. Changed by `.set bopt' and `.set
232 nobopt'. */
233 int nobopt;
234 /* Non-zero if we should not autoextend mips16 instructions.
235 Changed by `.set autoextend' and `.set noautoextend'. */
236 int noautoextend;
833794fc
MR
237 /* True if we should only emit 32-bit microMIPS instructions.
238 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
239 and -mno-insn32 command line options. */
240 bfd_boolean insn32;
a325df1d
TS
241 /* Restrict general purpose registers and floating point registers
242 to 32 bit. This is initially determined when -mgp32 or -mfp32
243 is passed but can changed if the assembler code uses .set mipsN. */
244 int gp32;
245 int fp32;
fef14a42
TS
246 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
247 command line option, and the default CPU. */
248 int arch;
aed1a261
RS
249 /* True if ".set sym32" is in effect. */
250 bfd_boolean sym32;
037b32b9
AN
251 /* True if floating-point operations are not allowed. Changed by .set
252 softfloat or .set hardfloat, by command line options -msoft-float or
253 -mhard-float. The default is false. */
254 bfd_boolean soft_float;
255
256 /* True if only single-precision floating-point operations are allowed.
257 Changed by .set singlefloat or .set doublefloat, command-line options
258 -msingle-float or -mdouble-float. The default is false. */
259 bfd_boolean single_float;
252b5132
RH
260};
261
037b32b9
AN
262/* This is the struct we use to hold the current set of options. Note
263 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
264 -1 to indicate that they have not been initialized. */
265
a325df1d 266/* True if -mgp32 was passed. */
a8e8e863 267static int file_mips_gp32 = -1;
a325df1d
TS
268
269/* True if -mfp32 was passed. */
a8e8e863 270static int file_mips_fp32 = -1;
a325df1d 271
037b32b9
AN
272/* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
273static int file_mips_soft_float = 0;
274
275/* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
276static int file_mips_single_float = 0;
252b5132 277
ba92f887
MR
278/* True if -mnan=2008, false if -mnan=legacy. */
279static bfd_boolean mips_flag_nan2008 = FALSE;
280
e972090a
NC
281static struct mips_set_options mips_opts =
282{
846ef2d0 283 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
b015e599 284 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
833794fc
MR
285 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
286 /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
b015e599 287 /* soft_float */ FALSE, /* single_float */ FALSE
e7af610e 288};
252b5132 289
846ef2d0
RS
290/* The set of ASEs that were selected on the command line, either
291 explicitly via ASE options or implicitly through things like -march. */
292static unsigned int file_ase;
293
294/* Which bits of file_ase were explicitly set or cleared by ASE options. */
295static unsigned int file_ase_explicit;
296
252b5132
RH
297/* These variables are filled in with the masks of registers used.
298 The object format code reads them and puts them in the appropriate
299 place. */
300unsigned long mips_gprmask;
301unsigned long mips_cprmask[4];
302
303/* MIPS ISA we are using for this output file. */
e7af610e 304static int file_mips_isa = ISA_UNKNOWN;
252b5132 305
738f4d98 306/* True if any MIPS16 code was produced. */
a4672219
TS
307static int file_ase_mips16;
308
3994f87e
TS
309#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
310 || mips_opts.isa == ISA_MIPS32R2 \
311 || mips_opts.isa == ISA_MIPS64 \
312 || mips_opts.isa == ISA_MIPS64R2)
313
df58fc94
RS
314/* True if any microMIPS code was produced. */
315static int file_ase_micromips;
316
b12dd2e4
CF
317/* True if we want to create R_MIPS_JALR for jalr $25. */
318#ifdef TE_IRIX
1180b5a4 319#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
b12dd2e4 320#else
1180b5a4
RS
321/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
322 because there's no place for any addend, the only acceptable
323 expression is a bare symbol. */
324#define MIPS_JALR_HINT_P(EXPR) \
325 (!HAVE_IN_PLACE_ADDENDS \
326 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
b12dd2e4
CF
327#endif
328
ec68c924 329/* The argument of the -march= flag. The architecture we are assembling. */
fef14a42 330static int file_mips_arch = CPU_UNKNOWN;
316f5878 331static const char *mips_arch_string;
ec68c924
EC
332
333/* The argument of the -mtune= flag. The architecture for which we
334 are optimizing. */
335static int mips_tune = CPU_UNKNOWN;
316f5878 336static const char *mips_tune_string;
ec68c924 337
316f5878 338/* True when generating 32-bit code for a 64-bit processor. */
252b5132
RH
339static int mips_32bitmode = 0;
340
316f5878
RS
341/* True if the given ABI requires 32-bit registers. */
342#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
343
344/* Likewise 64-bit registers. */
707bfff6
TS
345#define ABI_NEEDS_64BIT_REGS(ABI) \
346 ((ABI) == N32_ABI \
347 || (ABI) == N64_ABI \
316f5878
RS
348 || (ABI) == O64_ABI)
349
ad3fea08 350/* Return true if ISA supports 64 bit wide gp registers. */
707bfff6
TS
351#define ISA_HAS_64BIT_REGS(ISA) \
352 ((ISA) == ISA_MIPS3 \
353 || (ISA) == ISA_MIPS4 \
354 || (ISA) == ISA_MIPS5 \
355 || (ISA) == ISA_MIPS64 \
356 || (ISA) == ISA_MIPS64R2)
9ce8a5dd 357
ad3fea08
TS
358/* Return true if ISA supports 64 bit wide float registers. */
359#define ISA_HAS_64BIT_FPRS(ISA) \
360 ((ISA) == ISA_MIPS3 \
361 || (ISA) == ISA_MIPS4 \
362 || (ISA) == ISA_MIPS5 \
363 || (ISA) == ISA_MIPS32R2 \
364 || (ISA) == ISA_MIPS64 \
365 || (ISA) == ISA_MIPS64R2)
366
af7ee8bf
CD
367/* Return true if ISA supports 64-bit right rotate (dror et al.)
368 instructions. */
707bfff6 369#define ISA_HAS_DROR(ISA) \
df58fc94
RS
370 ((ISA) == ISA_MIPS64R2 \
371 || (mips_opts.micromips \
372 && ISA_HAS_64BIT_REGS (ISA)) \
373 )
af7ee8bf
CD
374
375/* Return true if ISA supports 32-bit right rotate (ror et al.)
376 instructions. */
707bfff6
TS
377#define ISA_HAS_ROR(ISA) \
378 ((ISA) == ISA_MIPS32R2 \
379 || (ISA) == ISA_MIPS64R2 \
846ef2d0 380 || (mips_opts.ase & ASE_SMARTMIPS) \
df58fc94
RS
381 || mips_opts.micromips \
382 )
707bfff6 383
7455baf8
TS
384/* Return true if ISA supports single-precision floats in odd registers. */
385#define ISA_HAS_ODD_SINGLE_FPR(ISA) \
386 ((ISA) == ISA_MIPS32 \
387 || (ISA) == ISA_MIPS32R2 \
388 || (ISA) == ISA_MIPS64 \
389 || (ISA) == ISA_MIPS64R2)
af7ee8bf 390
ad3fea08
TS
391/* Return true if ISA supports move to/from high part of a 64-bit
392 floating-point register. */
393#define ISA_HAS_MXHC1(ISA) \
394 ((ISA) == ISA_MIPS32R2 \
395 || (ISA) == ISA_MIPS64R2)
396
e013f690 397#define HAVE_32BIT_GPRS \
ad3fea08 398 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
ca4e0257 399
e013f690 400#define HAVE_32BIT_FPRS \
ad3fea08 401 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
ca4e0257 402
ad3fea08
TS
403#define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
404#define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
ca4e0257 405
316f5878 406#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
e013f690 407
316f5878 408#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
e013f690 409
3b91255e
RS
410/* True if relocations are stored in-place. */
411#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
412
aed1a261
RS
413/* The ABI-derived address size. */
414#define HAVE_64BIT_ADDRESSES \
415 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
416#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
e013f690 417
aed1a261
RS
418/* The size of symbolic constants (i.e., expressions of the form
419 "SYMBOL" or "SYMBOL + OFFSET"). */
420#define HAVE_32BIT_SYMBOLS \
421 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
422#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
ca4e0257 423
b7c7d6c1
TS
424/* Addresses are loaded in different ways, depending on the address size
425 in use. The n32 ABI Documentation also mandates the use of additions
426 with overflow checking, but existing implementations don't follow it. */
f899b4b8 427#define ADDRESS_ADD_INSN \
b7c7d6c1 428 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
f899b4b8
TS
429
430#define ADDRESS_ADDI_INSN \
b7c7d6c1 431 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
f899b4b8
TS
432
433#define ADDRESS_LOAD_INSN \
434 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
435
436#define ADDRESS_STORE_INSN \
437 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
438
a4672219 439/* Return true if the given CPU supports the MIPS16 ASE. */
3396de36
TS
440#define CPU_HAS_MIPS16(cpu) \
441 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
442 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
a4672219 443
2309ddf2 444/* Return true if the given CPU supports the microMIPS ASE. */
df58fc94
RS
445#define CPU_HAS_MICROMIPS(cpu) 0
446
60b63b72
RS
447/* True if CPU has a dror instruction. */
448#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
449
450/* True if CPU has a ror instruction. */
451#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
452
dd6a37e7 453/* True if CPU is in the Octeon family */
432233b3 454#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP || (CPU) == CPU_OCTEON2)
dd6a37e7 455
dd3cbb7e 456/* True if CPU has seq/sne and seqi/snei instructions. */
dd6a37e7 457#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
dd3cbb7e 458
0aa27725
RS
459/* True, if CPU has support for ldc1 and sdc1. */
460#define CPU_HAS_LDC1_SDC1(CPU) \
461 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
462
c8978940
CD
463/* True if mflo and mfhi can be immediately followed by instructions
464 which write to the HI and LO registers.
465
466 According to MIPS specifications, MIPS ISAs I, II, and III need
467 (at least) two instructions between the reads of HI/LO and
468 instructions which write them, and later ISAs do not. Contradicting
469 the MIPS specifications, some MIPS IV processor user manuals (e.g.
470 the UM for the NEC Vr5000) document needing the instructions between
471 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
472 MIPS64 and later ISAs to have the interlocks, plus any specific
473 earlier-ISA CPUs for which CPU documentation declares that the
474 instructions are really interlocked. */
475#define hilo_interlocks \
476 (mips_opts.isa == ISA_MIPS32 \
477 || mips_opts.isa == ISA_MIPS32R2 \
478 || mips_opts.isa == ISA_MIPS64 \
479 || mips_opts.isa == ISA_MIPS64R2 \
480 || mips_opts.arch == CPU_R4010 \
e407c74b 481 || mips_opts.arch == CPU_R5900 \
c8978940
CD
482 || mips_opts.arch == CPU_R10000 \
483 || mips_opts.arch == CPU_R12000 \
3aa3176b
TS
484 || mips_opts.arch == CPU_R14000 \
485 || mips_opts.arch == CPU_R16000 \
c8978940 486 || mips_opts.arch == CPU_RM7000 \
c8978940 487 || mips_opts.arch == CPU_VR5500 \
df58fc94 488 || mips_opts.micromips \
c8978940 489 )
252b5132
RH
490
491/* Whether the processor uses hardware interlocks to protect reads
81912461
ILT
492 from the GPRs after they are loaded from memory, and thus does not
493 require nops to be inserted. This applies to instructions marked
494 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
df58fc94
RS
495 level I and microMIPS mode instructions are always interlocked. */
496#define gpr_interlocks \
497 (mips_opts.isa != ISA_MIPS1 \
498 || mips_opts.arch == CPU_R3900 \
e407c74b 499 || mips_opts.arch == CPU_R5900 \
df58fc94
RS
500 || mips_opts.micromips \
501 )
252b5132 502
81912461
ILT
503/* Whether the processor uses hardware interlocks to avoid delays
504 required by coprocessor instructions, and thus does not require
505 nops to be inserted. This applies to instructions marked
506 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
507 between instructions marked INSN_WRITE_COND_CODE and ones marked
508 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
df58fc94
RS
509 levels I, II, and III and microMIPS mode instructions are always
510 interlocked. */
bdaaa2e1 511/* Itbl support may require additional care here. */
81912461
ILT
512#define cop_interlocks \
513 ((mips_opts.isa != ISA_MIPS1 \
514 && mips_opts.isa != ISA_MIPS2 \
515 && mips_opts.isa != ISA_MIPS3) \
516 || mips_opts.arch == CPU_R4300 \
df58fc94 517 || mips_opts.micromips \
81912461
ILT
518 )
519
520/* Whether the processor uses hardware interlocks to protect reads
521 from coprocessor registers after they are loaded from memory, and
522 thus does not require nops to be inserted. This applies to
523 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
df58fc94
RS
524 requires at MIPS ISA level I and microMIPS mode instructions are
525 always interlocked. */
526#define cop_mem_interlocks \
527 (mips_opts.isa != ISA_MIPS1 \
528 || mips_opts.micromips \
529 )
252b5132 530
6b76fefe
CM
531/* Is this a mfhi or mflo instruction? */
532#define MF_HILO_INSN(PINFO) \
b19e8a9b
AN
533 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
534
df58fc94
RS
535/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
536 has been selected. This implies, in particular, that addresses of text
537 labels have their LSB set. */
538#define HAVE_CODE_COMPRESSION \
539 ((mips_opts.mips16 | mips_opts.micromips) != 0)
540
42429eac
RS
541/* The minimum and maximum signed values that can be stored in a GPR. */
542#define GPR_SMAX ((offsetT) (((valueT) 1 << (HAVE_64BIT_GPRS ? 63 : 31)) - 1))
543#define GPR_SMIN (-GPR_SMAX - 1)
544
252b5132
RH
545/* MIPS PIC level. */
546
a161fe53 547enum mips_pic_level mips_pic;
252b5132 548
c9914766 549/* 1 if we should generate 32 bit offsets from the $gp register in
252b5132 550 SVR4_PIC mode. Currently has no meaning in other modes. */
c9914766 551static int mips_big_got = 0;
252b5132
RH
552
553/* 1 if trap instructions should used for overflow rather than break
554 instructions. */
c9914766 555static int mips_trap = 0;
252b5132 556
119d663a 557/* 1 if double width floating point constants should not be constructed
b6ff326e 558 by assembling two single width halves into two single width floating
119d663a
NC
559 point registers which just happen to alias the double width destination
560 register. On some architectures this aliasing can be disabled by a bit
d547a75e 561 in the status register, and the setting of this bit cannot be determined
119d663a
NC
562 automatically at assemble time. */
563static int mips_disable_float_construction;
564
252b5132
RH
565/* Non-zero if any .set noreorder directives were used. */
566
567static int mips_any_noreorder;
568
6b76fefe
CM
569/* Non-zero if nops should be inserted when the register referenced in
570 an mfhi/mflo instruction is read in the next two instructions. */
571static int mips_7000_hilo_fix;
572
02ffd3e4 573/* The size of objects in the small data section. */
156c2f8b 574static unsigned int g_switch_value = 8;
252b5132
RH
575/* Whether the -G option was used. */
576static int g_switch_seen = 0;
577
578#define N_RMASK 0xc4
579#define N_VFP 0xd4
580
581/* If we can determine in advance that GP optimization won't be
582 possible, we can skip the relaxation stuff that tries to produce
583 GP-relative references. This makes delay slot optimization work
584 better.
585
586 This function can only provide a guess, but it seems to work for
fba2b7f9
GK
587 gcc output. It needs to guess right for gcc, otherwise gcc
588 will put what it thinks is a GP-relative instruction in a branch
589 delay slot.
252b5132
RH
590
591 I don't know if a fix is needed for the SVR4_PIC mode. I've only
592 fixed it for the non-PIC mode. KR 95/04/07 */
17a2f251 593static int nopic_need_relax (symbolS *, int);
252b5132
RH
594
595/* handle of the OPCODE hash table */
596static struct hash_control *op_hash = NULL;
597
598/* The opcode hash table we use for the mips16. */
599static struct hash_control *mips16_op_hash = NULL;
600
df58fc94
RS
601/* The opcode hash table we use for the microMIPS ASE. */
602static struct hash_control *micromips_op_hash = NULL;
603
252b5132
RH
604/* This array holds the chars that always start a comment. If the
605 pre-processor is disabled, these aren't very useful */
606const char comment_chars[] = "#";
607
608/* This array holds the chars that only start a comment at the beginning of
609 a line. If the line seems to have the form '# 123 filename'
610 .line and .file directives will appear in the pre-processed output */
611/* Note that input_file.c hand checks for '#' at the beginning of the
612 first line of the input file. This is because the compiler outputs
bdaaa2e1 613 #NO_APP at the beginning of its output. */
252b5132
RH
614/* Also note that C style comments are always supported. */
615const char line_comment_chars[] = "#";
616
bdaaa2e1 617/* This array holds machine specific line separator characters. */
63a0b638 618const char line_separator_chars[] = ";";
252b5132
RH
619
620/* Chars that can be used to separate mant from exp in floating point nums */
621const char EXP_CHARS[] = "eE";
622
623/* Chars that mean this number is a floating point constant */
624/* As in 0f12.456 */
625/* or 0d1.2345e12 */
626const char FLT_CHARS[] = "rRsSfFdDxXpP";
627
628/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
629 changed in read.c . Ideally it shouldn't have to know about it at all,
630 but nothing is ideal around here.
631 */
632
e3de51ce
RS
633/* Types of printf format used for instruction-related error messages.
634 "I" means int ("%d") and "S" means string ("%s"). */
635enum mips_insn_error_format {
636 ERR_FMT_PLAIN,
637 ERR_FMT_I,
638 ERR_FMT_SS,
639};
640
641/* Information about an error that was found while assembling the current
642 instruction. */
643struct mips_insn_error {
644 /* We sometimes need to match an instruction against more than one
645 opcode table entry. Errors found during this matching are reported
646 against a particular syntactic argument rather than against the
647 instruction as a whole. We grade these messages so that errors
648 against argument N have a greater priority than an error against
649 any argument < N, since the former implies that arguments up to N
650 were acceptable and that the opcode entry was therefore a closer match.
651 If several matches report an error against the same argument,
652 we only use that error if it is the same in all cases.
653
654 min_argnum is the minimum argument number for which an error message
655 should be accepted. It is 0 if MSG is against the instruction as
656 a whole. */
657 int min_argnum;
658
659 /* The printf()-style message, including its format and arguments. */
660 enum mips_insn_error_format format;
661 const char *msg;
662 union {
663 int i;
664 const char *ss[2];
665 } u;
666};
667
668/* The error that should be reported for the current instruction. */
669static struct mips_insn_error insn_error;
252b5132
RH
670
671static int auto_align = 1;
672
673/* When outputting SVR4 PIC code, the assembler needs to know the
674 offset in the stack frame from which to restore the $gp register.
675 This is set by the .cprestore pseudo-op, and saved in this
676 variable. */
677static offsetT mips_cprestore_offset = -1;
678
67c1ffbe 679/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
6478892d 680 more optimizations, it can use a register value instead of a memory-saved
956cd1d6 681 offset and even an other register than $gp as global pointer. */
6478892d
TS
682static offsetT mips_cpreturn_offset = -1;
683static int mips_cpreturn_register = -1;
684static int mips_gp_register = GP;
def2e0dd 685static int mips_gprel_offset = 0;
6478892d 686
7a621144
DJ
687/* Whether mips_cprestore_offset has been set in the current function
688 (or whether it has already been warned about, if not). */
689static int mips_cprestore_valid = 0;
690
252b5132
RH
691/* This is the register which holds the stack frame, as set by the
692 .frame pseudo-op. This is needed to implement .cprestore. */
693static int mips_frame_reg = SP;
694
7a621144
DJ
695/* Whether mips_frame_reg has been set in the current function
696 (or whether it has already been warned about, if not). */
697static int mips_frame_reg_valid = 0;
698
252b5132
RH
699/* To output NOP instructions correctly, we need to keep information
700 about the previous two instructions. */
701
702/* Whether we are optimizing. The default value of 2 means to remove
703 unneeded NOPs and swap branch instructions when possible. A value
704 of 1 means to not swap branches. A value of 0 means to always
705 insert NOPs. */
706static int mips_optimize = 2;
707
708/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
709 equivalent to seeing no -g option at all. */
710static int mips_debug = 0;
711
7d8e00cf
RS
712/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
713#define MAX_VR4130_NOPS 4
714
715/* The maximum number of NOPs needed to fill delay slots. */
716#define MAX_DELAY_NOPS 2
717
718/* The maximum number of NOPs needed for any purpose. */
719#define MAX_NOPS 4
71400594
RS
720
721/* A list of previous instructions, with index 0 being the most recent.
722 We need to look back MAX_NOPS instructions when filling delay slots
723 or working around processor errata. We need to look back one
724 instruction further if we're thinking about using history[0] to
725 fill a branch delay slot. */
726static struct mips_cl_insn history[1 + MAX_NOPS];
252b5132 727
fc76e730 728/* Arrays of operands for each instruction. */
14daeee3 729#define MAX_OPERANDS 6
fc76e730
RS
730struct mips_operand_array {
731 const struct mips_operand *operand[MAX_OPERANDS];
732};
733static struct mips_operand_array *mips_operands;
734static struct mips_operand_array *mips16_operands;
735static struct mips_operand_array *micromips_operands;
736
1e915849 737/* Nop instructions used by emit_nop. */
df58fc94
RS
738static struct mips_cl_insn nop_insn;
739static struct mips_cl_insn mips16_nop_insn;
740static struct mips_cl_insn micromips_nop16_insn;
741static struct mips_cl_insn micromips_nop32_insn;
1e915849
RS
742
743/* The appropriate nop for the current mode. */
833794fc
MR
744#define NOP_INSN (mips_opts.mips16 \
745 ? &mips16_nop_insn \
746 : (mips_opts.micromips \
747 ? (mips_opts.insn32 \
748 ? &micromips_nop32_insn \
749 : &micromips_nop16_insn) \
750 : &nop_insn))
df58fc94
RS
751
752/* The size of NOP_INSN in bytes. */
833794fc
MR
753#define NOP_INSN_SIZE ((mips_opts.mips16 \
754 || (mips_opts.micromips && !mips_opts.insn32)) \
755 ? 2 : 4)
252b5132 756
252b5132
RH
757/* If this is set, it points to a frag holding nop instructions which
758 were inserted before the start of a noreorder section. If those
759 nops turn out to be unnecessary, the size of the frag can be
760 decreased. */
761static fragS *prev_nop_frag;
762
763/* The number of nop instructions we created in prev_nop_frag. */
764static int prev_nop_frag_holds;
765
766/* The number of nop instructions that we know we need in
bdaaa2e1 767 prev_nop_frag. */
252b5132
RH
768static int prev_nop_frag_required;
769
770/* The number of instructions we've seen since prev_nop_frag. */
771static int prev_nop_frag_since;
772
e8044f35
RS
773/* Relocations against symbols are sometimes done in two parts, with a HI
774 relocation and a LO relocation. Each relocation has only 16 bits of
775 space to store an addend. This means that in order for the linker to
776 handle carries correctly, it must be able to locate both the HI and
777 the LO relocation. This means that the relocations must appear in
778 order in the relocation table.
252b5132
RH
779
780 In order to implement this, we keep track of each unmatched HI
781 relocation. We then sort them so that they immediately precede the
bdaaa2e1 782 corresponding LO relocation. */
252b5132 783
e972090a
NC
784struct mips_hi_fixup
785{
252b5132
RH
786 /* Next HI fixup. */
787 struct mips_hi_fixup *next;
788 /* This fixup. */
789 fixS *fixp;
790 /* The section this fixup is in. */
791 segT seg;
792};
793
794/* The list of unmatched HI relocs. */
795
796static struct mips_hi_fixup *mips_hi_fixup_list;
797
64bdfcaf
RS
798/* The frag containing the last explicit relocation operator.
799 Null if explicit relocations have not been used. */
800
801static fragS *prev_reloc_op_frag;
802
252b5132
RH
803/* Map mips16 register numbers to normal MIPS register numbers. */
804
e972090a
NC
805static const unsigned int mips16_to_32_reg_map[] =
806{
252b5132
RH
807 16, 17, 2, 3, 4, 5, 6, 7
808};
60b63b72 809
df58fc94
RS
810/* Map microMIPS register numbers to normal MIPS register numbers. */
811
df58fc94 812#define micromips_to_32_reg_d_map mips16_to_32_reg_map
df58fc94
RS
813
814/* The microMIPS registers with type h. */
e76ff5ab 815static const unsigned int micromips_to_32_reg_h_map1[] =
df58fc94
RS
816{
817 5, 5, 6, 4, 4, 4, 4, 4
818};
e76ff5ab 819static const unsigned int micromips_to_32_reg_h_map2[] =
df58fc94
RS
820{
821 6, 7, 7, 21, 22, 5, 6, 7
822};
823
df58fc94
RS
824/* The microMIPS registers with type m. */
825static const unsigned int micromips_to_32_reg_m_map[] =
826{
827 0, 17, 2, 3, 16, 18, 19, 20
828};
829
830#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
831
71400594
RS
832/* Classifies the kind of instructions we're interested in when
833 implementing -mfix-vr4120. */
c67a084a
NC
834enum fix_vr4120_class
835{
71400594
RS
836 FIX_VR4120_MACC,
837 FIX_VR4120_DMACC,
838 FIX_VR4120_MULT,
839 FIX_VR4120_DMULT,
840 FIX_VR4120_DIV,
841 FIX_VR4120_MTHILO,
842 NUM_FIX_VR4120_CLASSES
843};
844
c67a084a
NC
845/* ...likewise -mfix-loongson2f-jump. */
846static bfd_boolean mips_fix_loongson2f_jump;
847
848/* ...likewise -mfix-loongson2f-nop. */
849static bfd_boolean mips_fix_loongson2f_nop;
850
851/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
852static bfd_boolean mips_fix_loongson2f;
853
71400594
RS
854/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
855 there must be at least one other instruction between an instruction
856 of type X and an instruction of type Y. */
857static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
858
859/* True if -mfix-vr4120 is in force. */
d766e8ec 860static int mips_fix_vr4120;
4a6a3df4 861
7d8e00cf
RS
862/* ...likewise -mfix-vr4130. */
863static int mips_fix_vr4130;
864
6a32d874
CM
865/* ...likewise -mfix-24k. */
866static int mips_fix_24k;
867
d954098f
DD
868/* ...likewise -mfix-cn63xxp1 */
869static bfd_boolean mips_fix_cn63xxp1;
870
4a6a3df4
AO
871/* We don't relax branches by default, since this causes us to expand
872 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
873 fail to compute the offset before expanding the macro to the most
874 efficient expansion. */
875
876static int mips_relax_branch;
252b5132 877\f
4d7206a2
RS
878/* The expansion of many macros depends on the type of symbol that
879 they refer to. For example, when generating position-dependent code,
880 a macro that refers to a symbol may have two different expansions,
881 one which uses GP-relative addresses and one which uses absolute
882 addresses. When generating SVR4-style PIC, a macro may have
883 different expansions for local and global symbols.
884
885 We handle these situations by generating both sequences and putting
886 them in variant frags. In position-dependent code, the first sequence
887 will be the GP-relative one and the second sequence will be the
888 absolute one. In SVR4 PIC, the first sequence will be for global
889 symbols and the second will be for local symbols.
890
584892a6
RS
891 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
892 SECOND are the lengths of the two sequences in bytes. These fields
893 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
894 the subtype has the following flags:
4d7206a2 895
584892a6
RS
896 RELAX_USE_SECOND
897 Set if it has been decided that we should use the second
898 sequence instead of the first.
899
900 RELAX_SECOND_LONGER
901 Set in the first variant frag if the macro's second implementation
902 is longer than its first. This refers to the macro as a whole,
903 not an individual relaxation.
904
905 RELAX_NOMACRO
906 Set in the first variant frag if the macro appeared in a .set nomacro
907 block and if one alternative requires a warning but the other does not.
908
909 RELAX_DELAY_SLOT
910 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
911 delay slot.
4d7206a2 912
df58fc94
RS
913 RELAX_DELAY_SLOT_16BIT
914 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
915 16-bit instruction.
916
917 RELAX_DELAY_SLOT_SIZE_FIRST
918 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
919 the macro is of the wrong size for the branch delay slot.
920
921 RELAX_DELAY_SLOT_SIZE_SECOND
922 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
923 the macro is of the wrong size for the branch delay slot.
924
4d7206a2
RS
925 The frag's "opcode" points to the first fixup for relaxable code.
926
927 Relaxable macros are generated using a sequence such as:
928
929 relax_start (SYMBOL);
930 ... generate first expansion ...
931 relax_switch ();
932 ... generate second expansion ...
933 relax_end ();
934
935 The code and fixups for the unwanted alternative are discarded
936 by md_convert_frag. */
584892a6 937#define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
4d7206a2 938
584892a6
RS
939#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
940#define RELAX_SECOND(X) ((X) & 0xff)
941#define RELAX_USE_SECOND 0x10000
942#define RELAX_SECOND_LONGER 0x20000
943#define RELAX_NOMACRO 0x40000
944#define RELAX_DELAY_SLOT 0x80000
df58fc94
RS
945#define RELAX_DELAY_SLOT_16BIT 0x100000
946#define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
947#define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
252b5132 948
4a6a3df4
AO
949/* Branch without likely bit. If label is out of range, we turn:
950
951 beq reg1, reg2, label
952 delay slot
953
954 into
955
956 bne reg1, reg2, 0f
957 nop
958 j label
959 0: delay slot
960
961 with the following opcode replacements:
962
963 beq <-> bne
964 blez <-> bgtz
965 bltz <-> bgez
966 bc1f <-> bc1t
967
968 bltzal <-> bgezal (with jal label instead of j label)
969
970 Even though keeping the delay slot instruction in the delay slot of
971 the branch would be more efficient, it would be very tricky to do
972 correctly, because we'd have to introduce a variable frag *after*
973 the delay slot instruction, and expand that instead. Let's do it
974 the easy way for now, even if the branch-not-taken case now costs
975 one additional instruction. Out-of-range branches are not supposed
976 to be common, anyway.
977
978 Branch likely. If label is out of range, we turn:
979
980 beql reg1, reg2, label
981 delay slot (annulled if branch not taken)
982
983 into
984
985 beql reg1, reg2, 1f
986 nop
987 beql $0, $0, 2f
988 nop
989 1: j[al] label
990 delay slot (executed only if branch taken)
991 2:
992
993 It would be possible to generate a shorter sequence by losing the
994 likely bit, generating something like:
b34976b6 995
4a6a3df4
AO
996 bne reg1, reg2, 0f
997 nop
998 j[al] label
999 delay slot (executed only if branch taken)
1000 0:
1001
1002 beql -> bne
1003 bnel -> beq
1004 blezl -> bgtz
1005 bgtzl -> blez
1006 bltzl -> bgez
1007 bgezl -> bltz
1008 bc1fl -> bc1t
1009 bc1tl -> bc1f
1010
1011 bltzall -> bgezal (with jal label instead of j label)
1012 bgezall -> bltzal (ditto)
1013
1014
1015 but it's not clear that it would actually improve performance. */
66b3e8da
MR
1016#define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1017 ((relax_substateT) \
1018 (0xc0000000 \
1019 | ((at) & 0x1f) \
1020 | ((toofar) ? 0x20 : 0) \
1021 | ((link) ? 0x40 : 0) \
1022 | ((likely) ? 0x80 : 0) \
1023 | ((uncond) ? 0x100 : 0)))
4a6a3df4 1024#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
66b3e8da
MR
1025#define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1026#define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1027#define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1028#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1029#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
4a6a3df4 1030
252b5132
RH
1031/* For mips16 code, we use an entirely different form of relaxation.
1032 mips16 supports two versions of most instructions which take
1033 immediate values: a small one which takes some small value, and a
1034 larger one which takes a 16 bit value. Since branches also follow
1035 this pattern, relaxing these values is required.
1036
1037 We can assemble both mips16 and normal MIPS code in a single
1038 object. Therefore, we need to support this type of relaxation at
1039 the same time that we support the relaxation described above. We
1040 use the high bit of the subtype field to distinguish these cases.
1041
1042 The information we store for this type of relaxation is the
1043 argument code found in the opcode file for this relocation, whether
1044 the user explicitly requested a small or extended form, and whether
1045 the relocation is in a jump or jal delay slot. That tells us the
1046 size of the value, and how it should be stored. We also store
1047 whether the fragment is considered to be extended or not. We also
1048 store whether this is known to be a branch to a different section,
1049 whether we have tried to relax this frag yet, and whether we have
1050 ever extended a PC relative fragment because of a shift count. */
1051#define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1052 (0x80000000 \
1053 | ((type) & 0xff) \
1054 | ((small) ? 0x100 : 0) \
1055 | ((ext) ? 0x200 : 0) \
1056 | ((dslot) ? 0x400 : 0) \
1057 | ((jal_dslot) ? 0x800 : 0))
4a6a3df4 1058#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
252b5132
RH
1059#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1060#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1061#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1062#define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1063#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1064#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1065#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1066#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1067#define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1068#define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1069#define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
885add95 1070
df58fc94
RS
1071/* For microMIPS code, we use relaxation similar to one we use for
1072 MIPS16 code. Some instructions that take immediate values support
1073 two encodings: a small one which takes some small value, and a
1074 larger one which takes a 16 bit value. As some branches also follow
1075 this pattern, relaxing these values is required.
1076
1077 We can assemble both microMIPS and normal MIPS code in a single
1078 object. Therefore, we need to support this type of relaxation at
1079 the same time that we support the relaxation described above. We
1080 use one of the high bits of the subtype field to distinguish these
1081 cases.
1082
1083 The information we store for this type of relaxation is the argument
1084 code found in the opcode file for this relocation, the register
40209cad
MR
1085 selected as the assembler temporary, whether the branch is
1086 unconditional, whether it is compact, whether it stores the link
1087 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1088 branches to a sequence of instructions is enabled, and whether the
1089 displacement of a branch is too large to fit as an immediate argument
1090 of a 16-bit and a 32-bit branch, respectively. */
1091#define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1092 relax32, toofar16, toofar32) \
1093 (0x40000000 \
1094 | ((type) & 0xff) \
1095 | (((at) & 0x1f) << 8) \
1096 | ((uncond) ? 0x2000 : 0) \
1097 | ((compact) ? 0x4000 : 0) \
1098 | ((link) ? 0x8000 : 0) \
1099 | ((relax32) ? 0x10000 : 0) \
1100 | ((toofar16) ? 0x20000 : 0) \
1101 | ((toofar32) ? 0x40000 : 0))
df58fc94
RS
1102#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1103#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1104#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
40209cad
MR
1105#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1106#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1107#define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1108#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1109
1110#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1111#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1112#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1113#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1114#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1115#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
df58fc94 1116
43c0598f
RS
1117/* Sign-extend 16-bit value X. */
1118#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1119
885add95
CD
1120/* Is the given value a sign-extended 32-bit value? */
1121#define IS_SEXT_32BIT_NUM(x) \
1122 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1123 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1124
1125/* Is the given value a sign-extended 16-bit value? */
1126#define IS_SEXT_16BIT_NUM(x) \
1127 (((x) &~ (offsetT) 0x7fff) == 0 \
1128 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1129
df58fc94
RS
1130/* Is the given value a sign-extended 12-bit value? */
1131#define IS_SEXT_12BIT_NUM(x) \
1132 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1133
7f3c4072
CM
1134/* Is the given value a sign-extended 9-bit value? */
1135#define IS_SEXT_9BIT_NUM(x) \
1136 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1137
2051e8c4
MR
1138/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1139#define IS_ZEXT_32BIT_NUM(x) \
1140 (((x) &~ (offsetT) 0xffffffff) == 0 \
1141 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1142
bf12938e
RS
1143/* Extract bits MASK << SHIFT from STRUCT and shift them right
1144 SHIFT places. */
1145#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1146 (((STRUCT) >> (SHIFT)) & (MASK))
1147
bf12938e 1148/* Extract the operand given by FIELD from mips_cl_insn INSN. */
df58fc94
RS
1149#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1150 (!(MICROMIPS) \
1151 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1152 : EXTRACT_BITS ((INSN).insn_opcode, \
1153 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
bf12938e
RS
1154#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1155 EXTRACT_BITS ((INSN).insn_opcode, \
1156 MIPS16OP_MASK_##FIELD, \
1157 MIPS16OP_SH_##FIELD)
5c04167a
RS
1158
1159/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1160#define MIPS16_EXTEND (0xf000U << 16)
4d7206a2 1161\f
df58fc94
RS
1162/* Whether or not we are emitting a branch-likely macro. */
1163static bfd_boolean emit_branch_likely_macro = FALSE;
1164
4d7206a2
RS
1165/* Global variables used when generating relaxable macros. See the
1166 comment above RELAX_ENCODE for more details about how relaxation
1167 is used. */
1168static struct {
1169 /* 0 if we're not emitting a relaxable macro.
1170 1 if we're emitting the first of the two relaxation alternatives.
1171 2 if we're emitting the second alternative. */
1172 int sequence;
1173
1174 /* The first relaxable fixup in the current frag. (In other words,
1175 the first fixup that refers to relaxable code.) */
1176 fixS *first_fixup;
1177
1178 /* sizes[0] says how many bytes of the first alternative are stored in
1179 the current frag. Likewise sizes[1] for the second alternative. */
1180 unsigned int sizes[2];
1181
1182 /* The symbol on which the choice of sequence depends. */
1183 symbolS *symbol;
1184} mips_relax;
252b5132 1185\f
584892a6
RS
1186/* Global variables used to decide whether a macro needs a warning. */
1187static struct {
1188 /* True if the macro is in a branch delay slot. */
1189 bfd_boolean delay_slot_p;
1190
df58fc94
RS
1191 /* Set to the length in bytes required if the macro is in a delay slot
1192 that requires a specific length of instruction, otherwise zero. */
1193 unsigned int delay_slot_length;
1194
584892a6
RS
1195 /* For relaxable macros, sizes[0] is the length of the first alternative
1196 in bytes and sizes[1] is the length of the second alternative.
1197 For non-relaxable macros, both elements give the length of the
1198 macro in bytes. */
1199 unsigned int sizes[2];
1200
df58fc94
RS
1201 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1202 instruction of the first alternative in bytes and first_insn_sizes[1]
1203 is the length of the first instruction of the second alternative.
1204 For non-relaxable macros, both elements give the length of the first
1205 instruction in bytes.
1206
1207 Set to zero if we haven't yet seen the first instruction. */
1208 unsigned int first_insn_sizes[2];
1209
1210 /* For relaxable macros, insns[0] is the number of instructions for the
1211 first alternative and insns[1] is the number of instructions for the
1212 second alternative.
1213
1214 For non-relaxable macros, both elements give the number of
1215 instructions for the macro. */
1216 unsigned int insns[2];
1217
584892a6
RS
1218 /* The first variant frag for this macro. */
1219 fragS *first_frag;
1220} mips_macro_warning;
1221\f
252b5132
RH
1222/* Prototypes for static functions. */
1223
252b5132
RH
1224enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1225
b34976b6 1226static void append_insn
df58fc94
RS
1227 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1228 bfd_boolean expansionp);
7d10b47d 1229static void mips_no_prev_insn (void);
c67a084a 1230static void macro_build (expressionS *, const char *, const char *, ...);
b34976b6 1231static void mips16_macro_build
03ea81db 1232 (expressionS *, const char *, const char *, va_list *);
67c0d1eb 1233static void load_register (int, expressionS *, int);
584892a6
RS
1234static void macro_start (void);
1235static void macro_end (void);
833794fc 1236static void macro (struct mips_cl_insn *ip, char *str);
17a2f251 1237static void mips16_macro (struct mips_cl_insn * ip);
17a2f251
TS
1238static void mips_ip (char *str, struct mips_cl_insn * ip);
1239static void mips16_ip (char *str, struct mips_cl_insn * ip);
b34976b6 1240static void mips16_immed
43c0598f
RS
1241 (char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1242 unsigned int, unsigned long *);
5e0116d5 1243static size_t my_getSmallExpression
17a2f251
TS
1244 (expressionS *, bfd_reloc_code_real_type *, char *);
1245static void my_getExpression (expressionS *, char *);
1246static void s_align (int);
1247static void s_change_sec (int);
1248static void s_change_section (int);
1249static void s_cons (int);
1250static void s_float_cons (int);
1251static void s_mips_globl (int);
1252static void s_option (int);
1253static void s_mipsset (int);
1254static void s_abicalls (int);
1255static void s_cpload (int);
1256static void s_cpsetup (int);
1257static void s_cplocal (int);
1258static void s_cprestore (int);
1259static void s_cpreturn (int);
741d6ea8
JM
1260static void s_dtprelword (int);
1261static void s_dtpreldword (int);
d0f13682
CLT
1262static void s_tprelword (int);
1263static void s_tpreldword (int);
17a2f251
TS
1264static void s_gpvalue (int);
1265static void s_gpword (int);
1266static void s_gpdword (int);
a3f278e2 1267static void s_ehword (int);
17a2f251
TS
1268static void s_cpadd (int);
1269static void s_insn (int);
ba92f887 1270static void s_nan (int);
17a2f251
TS
1271static void md_obj_begin (void);
1272static void md_obj_end (void);
1273static void s_mips_ent (int);
1274static void s_mips_end (int);
1275static void s_mips_frame (int);
1276static void s_mips_mask (int reg_type);
1277static void s_mips_stab (int);
1278static void s_mips_weakext (int);
1279static void s_mips_file (int);
1280static void s_mips_loc (int);
1281static bfd_boolean pic_need_relax (symbolS *, asection *);
4a6a3df4 1282static int relaxed_branch_length (fragS *, asection *, int);
df58fc94
RS
1283static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1284static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
e7af610e
NC
1285
1286/* Table and functions used to map between CPU/ISA names, and
1287 ISA levels, and CPU numbers. */
1288
e972090a
NC
1289struct mips_cpu_info
1290{
e7af610e 1291 const char *name; /* CPU or ISA name. */
d16afab6
RS
1292 int flags; /* MIPS_CPU_* flags. */
1293 int ase; /* Set of ASEs implemented by the CPU. */
e7af610e
NC
1294 int isa; /* ISA level. */
1295 int cpu; /* CPU number (default CPU if ISA). */
1296};
1297
ad3fea08 1298#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
ad3fea08 1299
17a2f251
TS
1300static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1301static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1302static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
252b5132 1303\f
c31f3936
RS
1304/* Command-line options. */
1305const char *md_shortopts = "O::g::G:";
1306
1307enum options
1308 {
1309 OPTION_MARCH = OPTION_MD_BASE,
1310 OPTION_MTUNE,
1311 OPTION_MIPS1,
1312 OPTION_MIPS2,
1313 OPTION_MIPS3,
1314 OPTION_MIPS4,
1315 OPTION_MIPS5,
1316 OPTION_MIPS32,
1317 OPTION_MIPS64,
1318 OPTION_MIPS32R2,
1319 OPTION_MIPS64R2,
1320 OPTION_MIPS16,
1321 OPTION_NO_MIPS16,
1322 OPTION_MIPS3D,
1323 OPTION_NO_MIPS3D,
1324 OPTION_MDMX,
1325 OPTION_NO_MDMX,
1326 OPTION_DSP,
1327 OPTION_NO_DSP,
1328 OPTION_MT,
1329 OPTION_NO_MT,
1330 OPTION_VIRT,
1331 OPTION_NO_VIRT,
1332 OPTION_SMARTMIPS,
1333 OPTION_NO_SMARTMIPS,
1334 OPTION_DSPR2,
1335 OPTION_NO_DSPR2,
1336 OPTION_EVA,
1337 OPTION_NO_EVA,
1338 OPTION_MICROMIPS,
1339 OPTION_NO_MICROMIPS,
1340 OPTION_MCU,
1341 OPTION_NO_MCU,
1342 OPTION_COMPAT_ARCH_BASE,
1343 OPTION_M4650,
1344 OPTION_NO_M4650,
1345 OPTION_M4010,
1346 OPTION_NO_M4010,
1347 OPTION_M4100,
1348 OPTION_NO_M4100,
1349 OPTION_M3900,
1350 OPTION_NO_M3900,
1351 OPTION_M7000_HILO_FIX,
1352 OPTION_MNO_7000_HILO_FIX,
1353 OPTION_FIX_24K,
1354 OPTION_NO_FIX_24K,
1355 OPTION_FIX_LOONGSON2F_JUMP,
1356 OPTION_NO_FIX_LOONGSON2F_JUMP,
1357 OPTION_FIX_LOONGSON2F_NOP,
1358 OPTION_NO_FIX_LOONGSON2F_NOP,
1359 OPTION_FIX_VR4120,
1360 OPTION_NO_FIX_VR4120,
1361 OPTION_FIX_VR4130,
1362 OPTION_NO_FIX_VR4130,
1363 OPTION_FIX_CN63XXP1,
1364 OPTION_NO_FIX_CN63XXP1,
1365 OPTION_TRAP,
1366 OPTION_BREAK,
1367 OPTION_EB,
1368 OPTION_EL,
1369 OPTION_FP32,
1370 OPTION_GP32,
1371 OPTION_CONSTRUCT_FLOATS,
1372 OPTION_NO_CONSTRUCT_FLOATS,
1373 OPTION_FP64,
1374 OPTION_GP64,
1375 OPTION_RELAX_BRANCH,
1376 OPTION_NO_RELAX_BRANCH,
833794fc
MR
1377 OPTION_INSN32,
1378 OPTION_NO_INSN32,
c31f3936
RS
1379 OPTION_MSHARED,
1380 OPTION_MNO_SHARED,
1381 OPTION_MSYM32,
1382 OPTION_MNO_SYM32,
1383 OPTION_SOFT_FLOAT,
1384 OPTION_HARD_FLOAT,
1385 OPTION_SINGLE_FLOAT,
1386 OPTION_DOUBLE_FLOAT,
1387 OPTION_32,
c31f3936
RS
1388 OPTION_CALL_SHARED,
1389 OPTION_CALL_NONPIC,
1390 OPTION_NON_SHARED,
1391 OPTION_XGOT,
1392 OPTION_MABI,
1393 OPTION_N32,
1394 OPTION_64,
1395 OPTION_MDEBUG,
1396 OPTION_NO_MDEBUG,
1397 OPTION_PDR,
1398 OPTION_NO_PDR,
1399 OPTION_MVXWORKS_PIC,
ba92f887 1400 OPTION_NAN,
c31f3936
RS
1401 OPTION_END_OF_ENUM
1402 };
1403
1404struct option md_longopts[] =
1405{
1406 /* Options which specify architecture. */
1407 {"march", required_argument, NULL, OPTION_MARCH},
1408 {"mtune", required_argument, NULL, OPTION_MTUNE},
1409 {"mips0", no_argument, NULL, OPTION_MIPS1},
1410 {"mips1", no_argument, NULL, OPTION_MIPS1},
1411 {"mips2", no_argument, NULL, OPTION_MIPS2},
1412 {"mips3", no_argument, NULL, OPTION_MIPS3},
1413 {"mips4", no_argument, NULL, OPTION_MIPS4},
1414 {"mips5", no_argument, NULL, OPTION_MIPS5},
1415 {"mips32", no_argument, NULL, OPTION_MIPS32},
1416 {"mips64", no_argument, NULL, OPTION_MIPS64},
1417 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1418 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1419
1420 /* Options which specify Application Specific Extensions (ASEs). */
1421 {"mips16", no_argument, NULL, OPTION_MIPS16},
1422 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1423 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1424 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1425 {"mdmx", no_argument, NULL, OPTION_MDMX},
1426 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1427 {"mdsp", no_argument, NULL, OPTION_DSP},
1428 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1429 {"mmt", no_argument, NULL, OPTION_MT},
1430 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1431 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1432 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1433 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1434 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1435 {"meva", no_argument, NULL, OPTION_EVA},
1436 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1437 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1438 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1439 {"mmcu", no_argument, NULL, OPTION_MCU},
1440 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1441 {"mvirt", no_argument, NULL, OPTION_VIRT},
1442 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1443
1444 /* Old-style architecture options. Don't add more of these. */
1445 {"m4650", no_argument, NULL, OPTION_M4650},
1446 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1447 {"m4010", no_argument, NULL, OPTION_M4010},
1448 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1449 {"m4100", no_argument, NULL, OPTION_M4100},
1450 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1451 {"m3900", no_argument, NULL, OPTION_M3900},
1452 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1453
1454 /* Options which enable bug fixes. */
1455 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1456 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1457 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1458 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1459 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1460 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1461 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1462 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1463 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1464 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1465 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1466 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1467 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1468 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1469 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1470
1471 /* Miscellaneous options. */
1472 {"trap", no_argument, NULL, OPTION_TRAP},
1473 {"no-break", no_argument, NULL, OPTION_TRAP},
1474 {"break", no_argument, NULL, OPTION_BREAK},
1475 {"no-trap", no_argument, NULL, OPTION_BREAK},
1476 {"EB", no_argument, NULL, OPTION_EB},
1477 {"EL", no_argument, NULL, OPTION_EL},
1478 {"mfp32", no_argument, NULL, OPTION_FP32},
1479 {"mgp32", no_argument, NULL, OPTION_GP32},
1480 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1481 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1482 {"mfp64", no_argument, NULL, OPTION_FP64},
1483 {"mgp64", no_argument, NULL, OPTION_GP64},
1484 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1485 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
833794fc
MR
1486 {"minsn32", no_argument, NULL, OPTION_INSN32},
1487 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
c31f3936
RS
1488 {"mshared", no_argument, NULL, OPTION_MSHARED},
1489 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1490 {"msym32", no_argument, NULL, OPTION_MSYM32},
1491 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1492 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1493 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1494 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1495 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1496
1497 /* Strictly speaking this next option is ELF specific,
1498 but we allow it for other ports as well in order to
1499 make testing easier. */
1500 {"32", no_argument, NULL, OPTION_32},
1501
1502 /* ELF-specific options. */
c31f3936
RS
1503 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1504 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1505 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1506 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1507 {"xgot", no_argument, NULL, OPTION_XGOT},
1508 {"mabi", required_argument, NULL, OPTION_MABI},
1509 {"n32", no_argument, NULL, OPTION_N32},
1510 {"64", no_argument, NULL, OPTION_64},
1511 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1512 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1513 {"mpdr", no_argument, NULL, OPTION_PDR},
1514 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1515 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
ba92f887 1516 {"mnan", required_argument, NULL, OPTION_NAN},
c31f3936
RS
1517
1518 {NULL, no_argument, NULL, 0}
1519};
1520size_t md_longopts_size = sizeof (md_longopts);
1521\f
c6278170
RS
1522/* Information about either an Application Specific Extension or an
1523 optional architecture feature that, for simplicity, we treat in the
1524 same way as an ASE. */
1525struct mips_ase
1526{
1527 /* The name of the ASE, used in both the command-line and .set options. */
1528 const char *name;
1529
1530 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1531 and 64-bit architectures, the flags here refer to the subset that
1532 is available on both. */
1533 unsigned int flags;
1534
1535 /* The ASE_* flag used for instructions that are available on 64-bit
1536 architectures but that are not included in FLAGS. */
1537 unsigned int flags64;
1538
1539 /* The command-line options that turn the ASE on and off. */
1540 int option_on;
1541 int option_off;
1542
1543 /* The minimum required architecture revisions for MIPS32, MIPS64,
1544 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1545 int mips32_rev;
1546 int mips64_rev;
1547 int micromips32_rev;
1548 int micromips64_rev;
1549};
1550
1551/* A table of all supported ASEs. */
1552static const struct mips_ase mips_ases[] = {
1553 { "dsp", ASE_DSP, ASE_DSP64,
1554 OPTION_DSP, OPTION_NO_DSP,
1555 2, 2, 2, 2 },
1556
1557 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1558 OPTION_DSPR2, OPTION_NO_DSPR2,
1559 2, 2, 2, 2 },
1560
1561 { "eva", ASE_EVA, 0,
1562 OPTION_EVA, OPTION_NO_EVA,
1563 2, 2, 2, 2 },
1564
1565 { "mcu", ASE_MCU, 0,
1566 OPTION_MCU, OPTION_NO_MCU,
1567 2, 2, 2, 2 },
1568
1569 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1570 { "mdmx", ASE_MDMX, 0,
1571 OPTION_MDMX, OPTION_NO_MDMX,
1572 -1, 1, -1, -1 },
1573
1574 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1575 { "mips3d", ASE_MIPS3D, 0,
1576 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1577 2, 1, -1, -1 },
1578
1579 { "mt", ASE_MT, 0,
1580 OPTION_MT, OPTION_NO_MT,
1581 2, 2, -1, -1 },
1582
1583 { "smartmips", ASE_SMARTMIPS, 0,
1584 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1585 1, -1, -1, -1 },
1586
1587 { "virt", ASE_VIRT, ASE_VIRT64,
1588 OPTION_VIRT, OPTION_NO_VIRT,
1589 2, 2, 2, 2 }
1590};
1591
1592/* The set of ASEs that require -mfp64. */
1593#define FP64_ASES (ASE_MIPS3D | ASE_MDMX)
1594
1595/* Groups of ASE_* flags that represent different revisions of an ASE. */
1596static const unsigned int mips_ase_groups[] = {
1597 ASE_DSP | ASE_DSPR2
1598};
1599\f
252b5132
RH
1600/* Pseudo-op table.
1601
1602 The following pseudo-ops from the Kane and Heinrich MIPS book
1603 should be defined here, but are currently unsupported: .alias,
1604 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1605
1606 The following pseudo-ops from the Kane and Heinrich MIPS book are
1607 specific to the type of debugging information being generated, and
1608 should be defined by the object format: .aent, .begin, .bend,
1609 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1610 .vreg.
1611
1612 The following pseudo-ops from the Kane and Heinrich MIPS book are
1613 not MIPS CPU specific, but are also not specific to the object file
1614 format. This file is probably the best place to define them, but
d84bcf09 1615 they are not currently supported: .asm0, .endr, .lab, .struct. */
252b5132 1616
e972090a
NC
1617static const pseudo_typeS mips_pseudo_table[] =
1618{
beae10d5 1619 /* MIPS specific pseudo-ops. */
252b5132
RH
1620 {"option", s_option, 0},
1621 {"set", s_mipsset, 0},
1622 {"rdata", s_change_sec, 'r'},
1623 {"sdata", s_change_sec, 's'},
1624 {"livereg", s_ignore, 0},
1625 {"abicalls", s_abicalls, 0},
1626 {"cpload", s_cpload, 0},
6478892d
TS
1627 {"cpsetup", s_cpsetup, 0},
1628 {"cplocal", s_cplocal, 0},
252b5132 1629 {"cprestore", s_cprestore, 0},
6478892d 1630 {"cpreturn", s_cpreturn, 0},
741d6ea8
JM
1631 {"dtprelword", s_dtprelword, 0},
1632 {"dtpreldword", s_dtpreldword, 0},
d0f13682
CLT
1633 {"tprelword", s_tprelword, 0},
1634 {"tpreldword", s_tpreldword, 0},
6478892d 1635 {"gpvalue", s_gpvalue, 0},
252b5132 1636 {"gpword", s_gpword, 0},
10181a0d 1637 {"gpdword", s_gpdword, 0},
a3f278e2 1638 {"ehword", s_ehword, 0},
252b5132
RH
1639 {"cpadd", s_cpadd, 0},
1640 {"insn", s_insn, 0},
ba92f887 1641 {"nan", s_nan, 0},
252b5132 1642
beae10d5 1643 /* Relatively generic pseudo-ops that happen to be used on MIPS
252b5132 1644 chips. */
38a57ae7 1645 {"asciiz", stringer, 8 + 1},
252b5132
RH
1646 {"bss", s_change_sec, 'b'},
1647 {"err", s_err, 0},
1648 {"half", s_cons, 1},
1649 {"dword", s_cons, 3},
1650 {"weakext", s_mips_weakext, 0},
7c752c2a
TS
1651 {"origin", s_org, 0},
1652 {"repeat", s_rept, 0},
252b5132 1653
998b3c36
MR
1654 /* For MIPS this is non-standard, but we define it for consistency. */
1655 {"sbss", s_change_sec, 'B'},
1656
beae10d5 1657 /* These pseudo-ops are defined in read.c, but must be overridden
252b5132
RH
1658 here for one reason or another. */
1659 {"align", s_align, 0},
1660 {"byte", s_cons, 0},
1661 {"data", s_change_sec, 'd'},
1662 {"double", s_float_cons, 'd'},
1663 {"float", s_float_cons, 'f'},
1664 {"globl", s_mips_globl, 0},
1665 {"global", s_mips_globl, 0},
1666 {"hword", s_cons, 1},
1667 {"int", s_cons, 2},
1668 {"long", s_cons, 2},
1669 {"octa", s_cons, 4},
1670 {"quad", s_cons, 3},
cca86cc8 1671 {"section", s_change_section, 0},
252b5132
RH
1672 {"short", s_cons, 1},
1673 {"single", s_float_cons, 'f'},
754e2bb9 1674 {"stabd", s_mips_stab, 'd'},
252b5132 1675 {"stabn", s_mips_stab, 'n'},
754e2bb9 1676 {"stabs", s_mips_stab, 's'},
252b5132
RH
1677 {"text", s_change_sec, 't'},
1678 {"word", s_cons, 2},
add56521 1679
add56521 1680 { "extern", ecoff_directive_extern, 0},
add56521 1681
43841e91 1682 { NULL, NULL, 0 },
252b5132
RH
1683};
1684
e972090a
NC
1685static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1686{
beae10d5
KH
1687 /* These pseudo-ops should be defined by the object file format.
1688 However, a.out doesn't support them, so we have versions here. */
252b5132
RH
1689 {"aent", s_mips_ent, 1},
1690 {"bgnb", s_ignore, 0},
1691 {"end", s_mips_end, 0},
1692 {"endb", s_ignore, 0},
1693 {"ent", s_mips_ent, 0},
c5dd6aab 1694 {"file", s_mips_file, 0},
252b5132
RH
1695 {"fmask", s_mips_mask, 'F'},
1696 {"frame", s_mips_frame, 0},
c5dd6aab 1697 {"loc", s_mips_loc, 0},
252b5132
RH
1698 {"mask", s_mips_mask, 'R'},
1699 {"verstamp", s_ignore, 0},
43841e91 1700 { NULL, NULL, 0 },
252b5132
RH
1701};
1702
3ae8dd8d
MR
1703/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1704 purpose of the `.dc.a' internal pseudo-op. */
1705
1706int
1707mips_address_bytes (void)
1708{
1709 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1710}
1711
17a2f251 1712extern void pop_insert (const pseudo_typeS *);
252b5132
RH
1713
1714void
17a2f251 1715mips_pop_insert (void)
252b5132
RH
1716{
1717 pop_insert (mips_pseudo_table);
1718 if (! ECOFF_DEBUGGING)
1719 pop_insert (mips_nonecoff_pseudo_table);
1720}
1721\f
1722/* Symbols labelling the current insn. */
1723
e972090a
NC
1724struct insn_label_list
1725{
252b5132
RH
1726 struct insn_label_list *next;
1727 symbolS *label;
1728};
1729
252b5132 1730static struct insn_label_list *free_insn_labels;
742a56fe 1731#define label_list tc_segment_info_data.labels
252b5132 1732
17a2f251 1733static void mips_clear_insn_labels (void);
df58fc94
RS
1734static void mips_mark_labels (void);
1735static void mips_compressed_mark_labels (void);
252b5132
RH
1736
1737static inline void
17a2f251 1738mips_clear_insn_labels (void)
252b5132
RH
1739{
1740 register struct insn_label_list **pl;
a8dbcb85 1741 segment_info_type *si;
252b5132 1742
a8dbcb85
TS
1743 if (now_seg)
1744 {
1745 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1746 ;
1747
1748 si = seg_info (now_seg);
1749 *pl = si->label_list;
1750 si->label_list = NULL;
1751 }
252b5132 1752}
a8dbcb85 1753
df58fc94
RS
1754/* Mark instruction labels in MIPS16/microMIPS mode. */
1755
1756static inline void
1757mips_mark_labels (void)
1758{
1759 if (HAVE_CODE_COMPRESSION)
1760 mips_compressed_mark_labels ();
1761}
252b5132
RH
1762\f
1763static char *expr_end;
1764
e423441d 1765/* An expression in a macro instruction. This is set by mips_ip and
b0e6f033 1766 mips16_ip and when populated is always an O_constant. */
252b5132
RH
1767
1768static expressionS imm_expr;
252b5132 1769
77bd4346
RS
1770/* The relocatable field in an instruction and the relocs associated
1771 with it. These variables are used for instructions like LUI and
1772 JAL as well as true offsets. They are also used for address
1773 operands in macros. */
252b5132 1774
77bd4346 1775static expressionS offset_expr;
f6688943
TS
1776static bfd_reloc_code_real_type offset_reloc[3]
1777 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 1778
df58fc94
RS
1779/* This is set to the resulting size of the instruction to be produced
1780 by mips16_ip if an explicit extension is used or by mips_ip if an
1781 explicit size is supplied. */
252b5132 1782
df58fc94 1783static unsigned int forced_insn_length;
252b5132 1784
e1b47bd5
RS
1785/* True if we are assembling an instruction. All dot symbols defined during
1786 this time should be treated as code labels. */
1787
1788static bfd_boolean mips_assembling_insn;
1789
ecb4347a
DJ
1790/* The pdr segment for per procedure frame/regmask info. Not used for
1791 ECOFF debugging. */
252b5132
RH
1792
1793static segT pdr_seg;
252b5132 1794
e013f690
TS
1795/* The default target format to use. */
1796
aeffff67
RS
1797#if defined (TE_FreeBSD)
1798#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1799#elif defined (TE_TMIPS)
1800#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1801#else
1802#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1803#endif
1804
e013f690 1805const char *
17a2f251 1806mips_target_format (void)
e013f690
TS
1807{
1808 switch (OUTPUT_FLAVOR)
1809 {
e013f690 1810 case bfd_target_elf_flavour:
0a44bf69
RS
1811#ifdef TE_VXWORKS
1812 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1813 return (target_big_endian
1814 ? "elf32-bigmips-vxworks"
1815 : "elf32-littlemips-vxworks");
1816#endif
e013f690 1817 return (target_big_endian
cfe86eaa 1818 ? (HAVE_64BIT_OBJECTS
aeffff67 1819 ? ELF_TARGET ("elf64-", "big")
cfe86eaa 1820 : (HAVE_NEWABI
aeffff67
RS
1821 ? ELF_TARGET ("elf32-n", "big")
1822 : ELF_TARGET ("elf32-", "big")))
cfe86eaa 1823 : (HAVE_64BIT_OBJECTS
aeffff67 1824 ? ELF_TARGET ("elf64-", "little")
cfe86eaa 1825 : (HAVE_NEWABI
aeffff67
RS
1826 ? ELF_TARGET ("elf32-n", "little")
1827 : ELF_TARGET ("elf32-", "little"))));
e013f690
TS
1828 default:
1829 abort ();
1830 return NULL;
1831 }
1832}
1833
c6278170
RS
1834/* Return the ISA revision that is currently in use, or 0 if we are
1835 generating code for MIPS V or below. */
1836
1837static int
1838mips_isa_rev (void)
1839{
1840 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1841 return 2;
1842
1843 /* microMIPS implies revision 2 or above. */
1844 if (mips_opts.micromips)
1845 return 2;
1846
1847 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1848 return 1;
1849
1850 return 0;
1851}
1852
1853/* Return the mask of all ASEs that are revisions of those in FLAGS. */
1854
1855static unsigned int
1856mips_ase_mask (unsigned int flags)
1857{
1858 unsigned int i;
1859
1860 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1861 if (flags & mips_ase_groups[i])
1862 flags |= mips_ase_groups[i];
1863 return flags;
1864}
1865
1866/* Check whether the current ISA supports ASE. Issue a warning if
1867 appropriate. */
1868
1869static void
1870mips_check_isa_supports_ase (const struct mips_ase *ase)
1871{
1872 const char *base;
1873 int min_rev, size;
1874 static unsigned int warned_isa;
1875 static unsigned int warned_fp32;
1876
1877 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
1878 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
1879 else
1880 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
1881 if ((min_rev < 0 || mips_isa_rev () < min_rev)
1882 && (warned_isa & ase->flags) != ase->flags)
1883 {
1884 warned_isa |= ase->flags;
1885 base = mips_opts.micromips ? "microMIPS" : "MIPS";
1886 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
1887 if (min_rev < 0)
1888 as_warn (_("The %d-bit %s architecture does not support the"
1889 " `%s' extension"), size, base, ase->name);
1890 else
1891 as_warn (_("The `%s' extension requires %s%d revision %d or greater"),
1892 ase->name, base, size, min_rev);
1893 }
1894 if ((ase->flags & FP64_ASES)
1895 && mips_opts.fp32
1896 && (warned_fp32 & ase->flags) != ase->flags)
1897 {
1898 warned_fp32 |= ase->flags;
1899 as_warn (_("The `%s' extension requires 64-bit FPRs"), ase->name);
1900 }
1901}
1902
1903/* Check all enabled ASEs to see whether they are supported by the
1904 chosen architecture. */
1905
1906static void
1907mips_check_isa_supports_ases (void)
1908{
1909 unsigned int i, mask;
1910
1911 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
1912 {
1913 mask = mips_ase_mask (mips_ases[i].flags);
1914 if ((mips_opts.ase & mask) == mips_ases[i].flags)
1915 mips_check_isa_supports_ase (&mips_ases[i]);
1916 }
1917}
1918
1919/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
1920 that were affected. */
1921
1922static unsigned int
1923mips_set_ase (const struct mips_ase *ase, bfd_boolean enabled_p)
1924{
1925 unsigned int mask;
1926
1927 mask = mips_ase_mask (ase->flags);
1928 mips_opts.ase &= ~mask;
1929 if (enabled_p)
1930 mips_opts.ase |= ase->flags;
1931 return mask;
1932}
1933
1934/* Return the ASE called NAME, or null if none. */
1935
1936static const struct mips_ase *
1937mips_lookup_ase (const char *name)
1938{
1939 unsigned int i;
1940
1941 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
1942 if (strcmp (name, mips_ases[i].name) == 0)
1943 return &mips_ases[i];
1944 return NULL;
1945}
1946
df58fc94
RS
1947/* Return the length of a microMIPS instruction in bytes. If bits of
1948 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
1949 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
1950 major opcode) will require further modifications to the opcode
1951 table. */
1952
1953static inline unsigned int
1954micromips_insn_length (const struct mips_opcode *mo)
1955{
1956 return (mo->mask >> 16) == 0 ? 2 : 4;
1957}
1958
5c04167a
RS
1959/* Return the length of MIPS16 instruction OPCODE. */
1960
1961static inline unsigned int
1962mips16_opcode_length (unsigned long opcode)
1963{
1964 return (opcode >> 16) == 0 ? 2 : 4;
1965}
1966
1e915849
RS
1967/* Return the length of instruction INSN. */
1968
1969static inline unsigned int
1970insn_length (const struct mips_cl_insn *insn)
1971{
df58fc94
RS
1972 if (mips_opts.micromips)
1973 return micromips_insn_length (insn->insn_mo);
1974 else if (mips_opts.mips16)
5c04167a 1975 return mips16_opcode_length (insn->insn_opcode);
df58fc94 1976 else
1e915849 1977 return 4;
1e915849
RS
1978}
1979
1980/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1981
1982static void
1983create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1984{
1985 size_t i;
1986
1987 insn->insn_mo = mo;
1e915849
RS
1988 insn->insn_opcode = mo->match;
1989 insn->frag = NULL;
1990 insn->where = 0;
1991 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1992 insn->fixp[i] = NULL;
1993 insn->fixed_p = (mips_opts.noreorder > 0);
1994 insn->noreorder_p = (mips_opts.noreorder > 0);
1995 insn->mips16_absolute_jump_p = 0;
15be625d 1996 insn->complete_p = 0;
e407c74b 1997 insn->cleared_p = 0;
1e915849
RS
1998}
1999
fc76e730
RS
2000/* Get a list of all the operands in INSN. */
2001
2002static const struct mips_operand_array *
2003insn_operands (const struct mips_cl_insn *insn)
2004{
2005 if (insn->insn_mo >= &mips_opcodes[0]
2006 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2007 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2008
2009 if (insn->insn_mo >= &mips16_opcodes[0]
2010 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2011 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2012
2013 if (insn->insn_mo >= &micromips_opcodes[0]
2014 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2015 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2016
2017 abort ();
2018}
2019
2020/* Get a description of operand OPNO of INSN. */
2021
2022static const struct mips_operand *
2023insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2024{
2025 const struct mips_operand_array *operands;
2026
2027 operands = insn_operands (insn);
2028 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2029 abort ();
2030 return operands->operand[opno];
2031}
2032
e077a1c8
RS
2033/* Install UVAL as the value of OPERAND in INSN. */
2034
2035static inline void
2036insn_insert_operand (struct mips_cl_insn *insn,
2037 const struct mips_operand *operand, unsigned int uval)
2038{
2039 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2040}
2041
fc76e730
RS
2042/* Extract the value of OPERAND from INSN. */
2043
2044static inline unsigned
2045insn_extract_operand (const struct mips_cl_insn *insn,
2046 const struct mips_operand *operand)
2047{
2048 return mips_extract_operand (operand, insn->insn_opcode);
2049}
2050
df58fc94 2051/* Record the current MIPS16/microMIPS mode in now_seg. */
742a56fe
RS
2052
2053static void
df58fc94 2054mips_record_compressed_mode (void)
742a56fe
RS
2055{
2056 segment_info_type *si;
2057
2058 si = seg_info (now_seg);
2059 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2060 si->tc_segment_info_data.mips16 = mips_opts.mips16;
df58fc94
RS
2061 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2062 si->tc_segment_info_data.micromips = mips_opts.micromips;
742a56fe
RS
2063}
2064
4d68580a
RS
2065/* Read a standard MIPS instruction from BUF. */
2066
2067static unsigned long
2068read_insn (char *buf)
2069{
2070 if (target_big_endian)
2071 return bfd_getb32 ((bfd_byte *) buf);
2072 else
2073 return bfd_getl32 ((bfd_byte *) buf);
2074}
2075
2076/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2077 the next byte. */
2078
2079static char *
2080write_insn (char *buf, unsigned int insn)
2081{
2082 md_number_to_chars (buf, insn, 4);
2083 return buf + 4;
2084}
2085
2086/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2087 has length LENGTH. */
2088
2089static unsigned long
2090read_compressed_insn (char *buf, unsigned int length)
2091{
2092 unsigned long insn;
2093 unsigned int i;
2094
2095 insn = 0;
2096 for (i = 0; i < length; i += 2)
2097 {
2098 insn <<= 16;
2099 if (target_big_endian)
2100 insn |= bfd_getb16 ((char *) buf);
2101 else
2102 insn |= bfd_getl16 ((char *) buf);
2103 buf += 2;
2104 }
2105 return insn;
2106}
2107
5c04167a
RS
2108/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2109 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2110
2111static char *
2112write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2113{
2114 unsigned int i;
2115
2116 for (i = 0; i < length; i += 2)
2117 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2118 return buf + length;
2119}
2120
1e915849
RS
2121/* Install INSN at the location specified by its "frag" and "where" fields. */
2122
2123static void
2124install_insn (const struct mips_cl_insn *insn)
2125{
2126 char *f = insn->frag->fr_literal + insn->where;
5c04167a
RS
2127 if (HAVE_CODE_COMPRESSION)
2128 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1e915849 2129 else
4d68580a 2130 write_insn (f, insn->insn_opcode);
df58fc94 2131 mips_record_compressed_mode ();
1e915849
RS
2132}
2133
2134/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2135 and install the opcode in the new location. */
2136
2137static void
2138move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2139{
2140 size_t i;
2141
2142 insn->frag = frag;
2143 insn->where = where;
2144 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2145 if (insn->fixp[i] != NULL)
2146 {
2147 insn->fixp[i]->fx_frag = frag;
2148 insn->fixp[i]->fx_where = where;
2149 }
2150 install_insn (insn);
2151}
2152
2153/* Add INSN to the end of the output. */
2154
2155static void
2156add_fixed_insn (struct mips_cl_insn *insn)
2157{
2158 char *f = frag_more (insn_length (insn));
2159 move_insn (insn, frag_now, f - frag_now->fr_literal);
2160}
2161
2162/* Start a variant frag and move INSN to the start of the variant part,
2163 marking it as fixed. The other arguments are as for frag_var. */
2164
2165static void
2166add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2167 relax_substateT subtype, symbolS *symbol, offsetT offset)
2168{
2169 frag_grow (max_chars);
2170 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2171 insn->fixed_p = 1;
2172 frag_var (rs_machine_dependent, max_chars, var,
2173 subtype, symbol, offset, NULL);
2174}
2175
2176/* Insert N copies of INSN into the history buffer, starting at
2177 position FIRST. Neither FIRST nor N need to be clipped. */
2178
2179static void
2180insert_into_history (unsigned int first, unsigned int n,
2181 const struct mips_cl_insn *insn)
2182{
2183 if (mips_relax.sequence != 2)
2184 {
2185 unsigned int i;
2186
2187 for (i = ARRAY_SIZE (history); i-- > first;)
2188 if (i >= first + n)
2189 history[i] = history[i - n];
2190 else
2191 history[i] = *insn;
2192 }
2193}
2194
e3de51ce
RS
2195/* Clear the error in insn_error. */
2196
2197static void
2198clear_insn_error (void)
2199{
2200 memset (&insn_error, 0, sizeof (insn_error));
2201}
2202
2203/* Possibly record error message MSG for the current instruction.
2204 If the error is about a particular argument, ARGNUM is the 1-based
2205 number of that argument, otherwise it is 0. FORMAT is the format
2206 of MSG. Return true if MSG was used, false if the current message
2207 was kept. */
2208
2209static bfd_boolean
2210set_insn_error_format (int argnum, enum mips_insn_error_format format,
2211 const char *msg)
2212{
2213 if (argnum == 0)
2214 {
2215 /* Give priority to errors against specific arguments, and to
2216 the first whole-instruction message. */
2217 if (insn_error.msg)
2218 return FALSE;
2219 }
2220 else
2221 {
2222 /* Keep insn_error if it is against a later argument. */
2223 if (argnum < insn_error.min_argnum)
2224 return FALSE;
2225
2226 /* If both errors are against the same argument but are different,
2227 give up on reporting a specific error for this argument.
2228 See the comment about mips_insn_error for details. */
2229 if (argnum == insn_error.min_argnum
2230 && insn_error.msg
2231 && strcmp (insn_error.msg, msg) != 0)
2232 {
2233 insn_error.msg = 0;
2234 insn_error.min_argnum += 1;
2235 return FALSE;
2236 }
2237 }
2238 insn_error.min_argnum = argnum;
2239 insn_error.format = format;
2240 insn_error.msg = msg;
2241 return TRUE;
2242}
2243
2244/* Record an instruction error with no % format fields. ARGNUM and MSG are
2245 as for set_insn_error_format. */
2246
2247static void
2248set_insn_error (int argnum, const char *msg)
2249{
2250 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2251}
2252
2253/* Record an instruction error with one %d field I. ARGNUM and MSG are
2254 as for set_insn_error_format. */
2255
2256static void
2257set_insn_error_i (int argnum, const char *msg, int i)
2258{
2259 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2260 insn_error.u.i = i;
2261}
2262
2263/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2264 are as for set_insn_error_format. */
2265
2266static void
2267set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2268{
2269 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2270 {
2271 insn_error.u.ss[0] = s1;
2272 insn_error.u.ss[1] = s2;
2273 }
2274}
2275
2276/* Report the error in insn_error, which is against assembly code STR. */
2277
2278static void
2279report_insn_error (const char *str)
2280{
2281 const char *msg;
2282
2283 msg = ACONCAT ((insn_error.msg, " `%s'", NULL));
2284 switch (insn_error.format)
2285 {
2286 case ERR_FMT_PLAIN:
2287 as_bad (msg, str);
2288 break;
2289
2290 case ERR_FMT_I:
2291 as_bad (msg, insn_error.u.i, str);
2292 break;
2293
2294 case ERR_FMT_SS:
2295 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2296 break;
2297 }
2298}
2299
71400594
RS
2300/* Initialize vr4120_conflicts. There is a bit of duplication here:
2301 the idea is to make it obvious at a glance that each errata is
2302 included. */
2303
2304static void
2305init_vr4120_conflicts (void)
2306{
2307#define CONFLICT(FIRST, SECOND) \
2308 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2309
2310 /* Errata 21 - [D]DIV[U] after [D]MACC */
2311 CONFLICT (MACC, DIV);
2312 CONFLICT (DMACC, DIV);
2313
2314 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2315 CONFLICT (DMULT, DMULT);
2316 CONFLICT (DMULT, DMACC);
2317 CONFLICT (DMACC, DMULT);
2318 CONFLICT (DMACC, DMACC);
2319
2320 /* Errata 24 - MT{LO,HI} after [D]MACC */
2321 CONFLICT (MACC, MTHILO);
2322 CONFLICT (DMACC, MTHILO);
2323
2324 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2325 instruction is executed immediately after a MACC or DMACC
2326 instruction, the result of [either instruction] is incorrect." */
2327 CONFLICT (MACC, MULT);
2328 CONFLICT (MACC, DMULT);
2329 CONFLICT (DMACC, MULT);
2330 CONFLICT (DMACC, DMULT);
2331
2332 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2333 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2334 DDIV or DDIVU instruction, the result of the MACC or
2335 DMACC instruction is incorrect.". */
2336 CONFLICT (DMULT, MACC);
2337 CONFLICT (DMULT, DMACC);
2338 CONFLICT (DIV, MACC);
2339 CONFLICT (DIV, DMACC);
2340
2341#undef CONFLICT
2342}
2343
707bfff6
TS
2344struct regname {
2345 const char *name;
2346 unsigned int num;
2347};
2348
14daeee3
RS
2349#define RNUM_MASK 0x00000ff
2350#define RTYPE_MASK 0x0efff00
2351#define RTYPE_NUM 0x0000100
2352#define RTYPE_FPU 0x0000200
2353#define RTYPE_FCC 0x0000400
2354#define RTYPE_VEC 0x0000800
2355#define RTYPE_GP 0x0001000
2356#define RTYPE_CP0 0x0002000
2357#define RTYPE_PC 0x0004000
2358#define RTYPE_ACC 0x0008000
2359#define RTYPE_CCC 0x0010000
2360#define RTYPE_VI 0x0020000
2361#define RTYPE_VF 0x0040000
2362#define RTYPE_R5900_I 0x0080000
2363#define RTYPE_R5900_Q 0x0100000
2364#define RTYPE_R5900_R 0x0200000
2365#define RTYPE_R5900_ACC 0x0400000
2366#define RWARN 0x8000000
707bfff6
TS
2367
2368#define GENERIC_REGISTER_NUMBERS \
2369 {"$0", RTYPE_NUM | 0}, \
2370 {"$1", RTYPE_NUM | 1}, \
2371 {"$2", RTYPE_NUM | 2}, \
2372 {"$3", RTYPE_NUM | 3}, \
2373 {"$4", RTYPE_NUM | 4}, \
2374 {"$5", RTYPE_NUM | 5}, \
2375 {"$6", RTYPE_NUM | 6}, \
2376 {"$7", RTYPE_NUM | 7}, \
2377 {"$8", RTYPE_NUM | 8}, \
2378 {"$9", RTYPE_NUM | 9}, \
2379 {"$10", RTYPE_NUM | 10}, \
2380 {"$11", RTYPE_NUM | 11}, \
2381 {"$12", RTYPE_NUM | 12}, \
2382 {"$13", RTYPE_NUM | 13}, \
2383 {"$14", RTYPE_NUM | 14}, \
2384 {"$15", RTYPE_NUM | 15}, \
2385 {"$16", RTYPE_NUM | 16}, \
2386 {"$17", RTYPE_NUM | 17}, \
2387 {"$18", RTYPE_NUM | 18}, \
2388 {"$19", RTYPE_NUM | 19}, \
2389 {"$20", RTYPE_NUM | 20}, \
2390 {"$21", RTYPE_NUM | 21}, \
2391 {"$22", RTYPE_NUM | 22}, \
2392 {"$23", RTYPE_NUM | 23}, \
2393 {"$24", RTYPE_NUM | 24}, \
2394 {"$25", RTYPE_NUM | 25}, \
2395 {"$26", RTYPE_NUM | 26}, \
2396 {"$27", RTYPE_NUM | 27}, \
2397 {"$28", RTYPE_NUM | 28}, \
2398 {"$29", RTYPE_NUM | 29}, \
2399 {"$30", RTYPE_NUM | 30}, \
2400 {"$31", RTYPE_NUM | 31}
2401
2402#define FPU_REGISTER_NAMES \
2403 {"$f0", RTYPE_FPU | 0}, \
2404 {"$f1", RTYPE_FPU | 1}, \
2405 {"$f2", RTYPE_FPU | 2}, \
2406 {"$f3", RTYPE_FPU | 3}, \
2407 {"$f4", RTYPE_FPU | 4}, \
2408 {"$f5", RTYPE_FPU | 5}, \
2409 {"$f6", RTYPE_FPU | 6}, \
2410 {"$f7", RTYPE_FPU | 7}, \
2411 {"$f8", RTYPE_FPU | 8}, \
2412 {"$f9", RTYPE_FPU | 9}, \
2413 {"$f10", RTYPE_FPU | 10}, \
2414 {"$f11", RTYPE_FPU | 11}, \
2415 {"$f12", RTYPE_FPU | 12}, \
2416 {"$f13", RTYPE_FPU | 13}, \
2417 {"$f14", RTYPE_FPU | 14}, \
2418 {"$f15", RTYPE_FPU | 15}, \
2419 {"$f16", RTYPE_FPU | 16}, \
2420 {"$f17", RTYPE_FPU | 17}, \
2421 {"$f18", RTYPE_FPU | 18}, \
2422 {"$f19", RTYPE_FPU | 19}, \
2423 {"$f20", RTYPE_FPU | 20}, \
2424 {"$f21", RTYPE_FPU | 21}, \
2425 {"$f22", RTYPE_FPU | 22}, \
2426 {"$f23", RTYPE_FPU | 23}, \
2427 {"$f24", RTYPE_FPU | 24}, \
2428 {"$f25", RTYPE_FPU | 25}, \
2429 {"$f26", RTYPE_FPU | 26}, \
2430 {"$f27", RTYPE_FPU | 27}, \
2431 {"$f28", RTYPE_FPU | 28}, \
2432 {"$f29", RTYPE_FPU | 29}, \
2433 {"$f30", RTYPE_FPU | 30}, \
2434 {"$f31", RTYPE_FPU | 31}
2435
2436#define FPU_CONDITION_CODE_NAMES \
2437 {"$fcc0", RTYPE_FCC | 0}, \
2438 {"$fcc1", RTYPE_FCC | 1}, \
2439 {"$fcc2", RTYPE_FCC | 2}, \
2440 {"$fcc3", RTYPE_FCC | 3}, \
2441 {"$fcc4", RTYPE_FCC | 4}, \
2442 {"$fcc5", RTYPE_FCC | 5}, \
2443 {"$fcc6", RTYPE_FCC | 6}, \
2444 {"$fcc7", RTYPE_FCC | 7}
2445
2446#define COPROC_CONDITION_CODE_NAMES \
2447 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2448 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2449 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2450 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2451 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2452 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2453 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2454 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2455
2456#define N32N64_SYMBOLIC_REGISTER_NAMES \
2457 {"$a4", RTYPE_GP | 8}, \
2458 {"$a5", RTYPE_GP | 9}, \
2459 {"$a6", RTYPE_GP | 10}, \
2460 {"$a7", RTYPE_GP | 11}, \
2461 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2462 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2463 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2464 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2465 {"$t0", RTYPE_GP | 12}, \
2466 {"$t1", RTYPE_GP | 13}, \
2467 {"$t2", RTYPE_GP | 14}, \
2468 {"$t3", RTYPE_GP | 15}
2469
2470#define O32_SYMBOLIC_REGISTER_NAMES \
2471 {"$t0", RTYPE_GP | 8}, \
2472 {"$t1", RTYPE_GP | 9}, \
2473 {"$t2", RTYPE_GP | 10}, \
2474 {"$t3", RTYPE_GP | 11}, \
2475 {"$t4", RTYPE_GP | 12}, \
2476 {"$t5", RTYPE_GP | 13}, \
2477 {"$t6", RTYPE_GP | 14}, \
2478 {"$t7", RTYPE_GP | 15}, \
2479 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2480 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2481 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2482 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2483
2484/* Remaining symbolic register names */
2485#define SYMBOLIC_REGISTER_NAMES \
2486 {"$zero", RTYPE_GP | 0}, \
2487 {"$at", RTYPE_GP | 1}, \
2488 {"$AT", RTYPE_GP | 1}, \
2489 {"$v0", RTYPE_GP | 2}, \
2490 {"$v1", RTYPE_GP | 3}, \
2491 {"$a0", RTYPE_GP | 4}, \
2492 {"$a1", RTYPE_GP | 5}, \
2493 {"$a2", RTYPE_GP | 6}, \
2494 {"$a3", RTYPE_GP | 7}, \
2495 {"$s0", RTYPE_GP | 16}, \
2496 {"$s1", RTYPE_GP | 17}, \
2497 {"$s2", RTYPE_GP | 18}, \
2498 {"$s3", RTYPE_GP | 19}, \
2499 {"$s4", RTYPE_GP | 20}, \
2500 {"$s5", RTYPE_GP | 21}, \
2501 {"$s6", RTYPE_GP | 22}, \
2502 {"$s7", RTYPE_GP | 23}, \
2503 {"$t8", RTYPE_GP | 24}, \
2504 {"$t9", RTYPE_GP | 25}, \
2505 {"$k0", RTYPE_GP | 26}, \
2506 {"$kt0", RTYPE_GP | 26}, \
2507 {"$k1", RTYPE_GP | 27}, \
2508 {"$kt1", RTYPE_GP | 27}, \
2509 {"$gp", RTYPE_GP | 28}, \
2510 {"$sp", RTYPE_GP | 29}, \
2511 {"$s8", RTYPE_GP | 30}, \
2512 {"$fp", RTYPE_GP | 30}, \
2513 {"$ra", RTYPE_GP | 31}
2514
2515#define MIPS16_SPECIAL_REGISTER_NAMES \
2516 {"$pc", RTYPE_PC | 0}
2517
2518#define MDMX_VECTOR_REGISTER_NAMES \
2519 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2520 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2521 {"$v2", RTYPE_VEC | 2}, \
2522 {"$v3", RTYPE_VEC | 3}, \
2523 {"$v4", RTYPE_VEC | 4}, \
2524 {"$v5", RTYPE_VEC | 5}, \
2525 {"$v6", RTYPE_VEC | 6}, \
2526 {"$v7", RTYPE_VEC | 7}, \
2527 {"$v8", RTYPE_VEC | 8}, \
2528 {"$v9", RTYPE_VEC | 9}, \
2529 {"$v10", RTYPE_VEC | 10}, \
2530 {"$v11", RTYPE_VEC | 11}, \
2531 {"$v12", RTYPE_VEC | 12}, \
2532 {"$v13", RTYPE_VEC | 13}, \
2533 {"$v14", RTYPE_VEC | 14}, \
2534 {"$v15", RTYPE_VEC | 15}, \
2535 {"$v16", RTYPE_VEC | 16}, \
2536 {"$v17", RTYPE_VEC | 17}, \
2537 {"$v18", RTYPE_VEC | 18}, \
2538 {"$v19", RTYPE_VEC | 19}, \
2539 {"$v20", RTYPE_VEC | 20}, \
2540 {"$v21", RTYPE_VEC | 21}, \
2541 {"$v22", RTYPE_VEC | 22}, \
2542 {"$v23", RTYPE_VEC | 23}, \
2543 {"$v24", RTYPE_VEC | 24}, \
2544 {"$v25", RTYPE_VEC | 25}, \
2545 {"$v26", RTYPE_VEC | 26}, \
2546 {"$v27", RTYPE_VEC | 27}, \
2547 {"$v28", RTYPE_VEC | 28}, \
2548 {"$v29", RTYPE_VEC | 29}, \
2549 {"$v30", RTYPE_VEC | 30}, \
2550 {"$v31", RTYPE_VEC | 31}
2551
14daeee3
RS
2552#define R5900_I_NAMES \
2553 {"$I", RTYPE_R5900_I | 0}
2554
2555#define R5900_Q_NAMES \
2556 {"$Q", RTYPE_R5900_Q | 0}
2557
2558#define R5900_R_NAMES \
2559 {"$R", RTYPE_R5900_R | 0}
2560
2561#define R5900_ACC_NAMES \
2562 {"$ACC", RTYPE_R5900_ACC | 0 }
2563
707bfff6
TS
2564#define MIPS_DSP_ACCUMULATOR_NAMES \
2565 {"$ac0", RTYPE_ACC | 0}, \
2566 {"$ac1", RTYPE_ACC | 1}, \
2567 {"$ac2", RTYPE_ACC | 2}, \
2568 {"$ac3", RTYPE_ACC | 3}
2569
2570static const struct regname reg_names[] = {
2571 GENERIC_REGISTER_NUMBERS,
2572 FPU_REGISTER_NAMES,
2573 FPU_CONDITION_CODE_NAMES,
2574 COPROC_CONDITION_CODE_NAMES,
2575
2576 /* The $txx registers depends on the abi,
2577 these will be added later into the symbol table from
2578 one of the tables below once mips_abi is set after
2579 parsing of arguments from the command line. */
2580 SYMBOLIC_REGISTER_NAMES,
2581
2582 MIPS16_SPECIAL_REGISTER_NAMES,
2583 MDMX_VECTOR_REGISTER_NAMES,
14daeee3
RS
2584 R5900_I_NAMES,
2585 R5900_Q_NAMES,
2586 R5900_R_NAMES,
2587 R5900_ACC_NAMES,
707bfff6
TS
2588 MIPS_DSP_ACCUMULATOR_NAMES,
2589 {0, 0}
2590};
2591
2592static const struct regname reg_names_o32[] = {
2593 O32_SYMBOLIC_REGISTER_NAMES,
2594 {0, 0}
2595};
2596
2597static const struct regname reg_names_n32n64[] = {
2598 N32N64_SYMBOLIC_REGISTER_NAMES,
2599 {0, 0}
2600};
2601
a92713e6
RS
2602/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2603 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2604 of these register symbols, return the associated vector register,
2605 otherwise return SYMVAL itself. */
df58fc94 2606
a92713e6
RS
2607static unsigned int
2608mips_prefer_vec_regno (unsigned int symval)
707bfff6 2609{
a92713e6
RS
2610 if ((symval & -2) == (RTYPE_GP | 2))
2611 return RTYPE_VEC | (symval & 1);
2612 return symval;
2613}
2614
14daeee3
RS
2615/* Return true if string [S, E) is a valid register name, storing its
2616 symbol value in *SYMVAL_PTR if so. */
a92713e6
RS
2617
2618static bfd_boolean
14daeee3 2619mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
a92713e6 2620{
707bfff6 2621 char save_c;
14daeee3 2622 symbolS *symbol;
707bfff6
TS
2623
2624 /* Terminate name. */
2625 save_c = *e;
2626 *e = '\0';
2627
a92713e6
RS
2628 /* Look up the name. */
2629 symbol = symbol_find (s);
2630 *e = save_c;
2631
2632 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2633 return FALSE;
2634
14daeee3
RS
2635 *symval_ptr = S_GET_VALUE (symbol);
2636 return TRUE;
2637}
2638
2639/* Return true if the string at *SPTR is a valid register name. Allow it
2640 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2641 is nonnull.
2642
2643 When returning true, move *SPTR past the register, store the
2644 register's symbol value in *SYMVAL_PTR and the channel mask in
2645 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2646 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2647 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2648
2649static bfd_boolean
2650mips_parse_register (char **sptr, unsigned int *symval_ptr,
2651 unsigned int *channels_ptr)
2652{
2653 char *s, *e, *m;
2654 const char *q;
2655 unsigned int channels, symval, bit;
2656
2657 /* Find end of name. */
2658 s = e = *sptr;
2659 if (is_name_beginner (*e))
2660 ++e;
2661 while (is_part_of_name (*e))
2662 ++e;
2663
2664 channels = 0;
2665 if (!mips_parse_register_1 (s, e, &symval))
2666 {
2667 if (!channels_ptr)
2668 return FALSE;
2669
2670 /* Eat characters from the end of the string that are valid
2671 channel suffixes. The preceding register must be $ACC or
2672 end with a digit, so there is no ambiguity. */
2673 bit = 1;
2674 m = e;
2675 for (q = "wzyx"; *q; q++, bit <<= 1)
2676 if (m > s && m[-1] == *q)
2677 {
2678 --m;
2679 channels |= bit;
2680 }
2681
2682 if (channels == 0
2683 || !mips_parse_register_1 (s, m, &symval)
2684 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2685 return FALSE;
2686 }
2687
a92713e6 2688 *sptr = e;
14daeee3
RS
2689 *symval_ptr = symval;
2690 if (channels_ptr)
2691 *channels_ptr = channels;
a92713e6
RS
2692 return TRUE;
2693}
2694
2695/* Check if SPTR points at a valid register specifier according to TYPES.
2696 If so, then return 1, advance S to consume the specifier and store
2697 the register's number in REGNOP, otherwise return 0. */
2698
2699static int
2700reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2701{
2702 unsigned int regno;
2703
14daeee3 2704 if (mips_parse_register (s, &regno, NULL))
707bfff6 2705 {
a92713e6
RS
2706 if (types & RTYPE_VEC)
2707 regno = mips_prefer_vec_regno (regno);
2708 if (regno & types)
2709 regno &= RNUM_MASK;
2710 else
2711 regno = ~0;
707bfff6 2712 }
a92713e6 2713 else
707bfff6 2714 {
a92713e6
RS
2715 if (types & RWARN)
2716 as_warn (_("Unrecognized register name `%s'"), *s);
2717 regno = ~0;
707bfff6 2718 }
707bfff6 2719 if (regnop)
a92713e6
RS
2720 *regnop = regno;
2721 return regno <= RNUM_MASK;
707bfff6
TS
2722}
2723
14daeee3
RS
2724/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2725 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2726
2727static char *
2728mips_parse_vu0_channels (char *s, unsigned int *channels)
2729{
2730 unsigned int i;
2731
2732 *channels = 0;
2733 for (i = 0; i < 4; i++)
2734 if (*s == "xyzw"[i])
2735 {
2736 *channels |= 1 << (3 - i);
2737 ++s;
2738 }
2739 return s;
2740}
2741
a92713e6
RS
2742/* Token types for parsed operand lists. */
2743enum mips_operand_token_type {
2744 /* A plain register, e.g. $f2. */
2745 OT_REG,
df58fc94 2746
14daeee3
RS
2747 /* A 4-bit XYZW channel mask. */
2748 OT_CHANNELS,
2749
a92713e6
RS
2750 /* An element of a vector, e.g. $v0[1]. */
2751 OT_REG_ELEMENT,
df58fc94 2752
a92713e6
RS
2753 /* A continuous range of registers, e.g. $s0-$s4. */
2754 OT_REG_RANGE,
2755
2756 /* A (possibly relocated) expression. */
2757 OT_INTEGER,
2758
2759 /* A floating-point value. */
2760 OT_FLOAT,
2761
2762 /* A single character. This can be '(', ')' or ',', but '(' only appears
2763 before OT_REGs. */
2764 OT_CHAR,
2765
14daeee3
RS
2766 /* A doubled character, either "--" or "++". */
2767 OT_DOUBLE_CHAR,
2768
a92713e6
RS
2769 /* The end of the operand list. */
2770 OT_END
2771};
2772
2773/* A parsed operand token. */
2774struct mips_operand_token
2775{
2776 /* The type of token. */
2777 enum mips_operand_token_type type;
2778 union
2779 {
2780 /* The register symbol value for an OT_REG. */
2781 unsigned int regno;
2782
14daeee3
RS
2783 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2784 unsigned int channels;
2785
a92713e6
RS
2786 /* The register symbol value and index for an OT_REG_ELEMENT. */
2787 struct {
2788 unsigned int regno;
2789 addressT index;
2790 } reg_element;
2791
2792 /* The two register symbol values involved in an OT_REG_RANGE. */
2793 struct {
2794 unsigned int regno1;
2795 unsigned int regno2;
2796 } reg_range;
2797
2798 /* The value of an OT_INTEGER. The value is represented as an
2799 expression and the relocation operators that were applied to
2800 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2801 relocation operators were used. */
2802 struct {
2803 expressionS value;
2804 bfd_reloc_code_real_type relocs[3];
2805 } integer;
2806
2807 /* The binary data for an OT_FLOAT constant, and the number of bytes
2808 in the constant. */
2809 struct {
2810 unsigned char data[8];
2811 int length;
2812 } flt;
2813
14daeee3 2814 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
a92713e6
RS
2815 char ch;
2816 } u;
2817};
2818
2819/* An obstack used to construct lists of mips_operand_tokens. */
2820static struct obstack mips_operand_tokens;
2821
2822/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2823
2824static void
2825mips_add_token (struct mips_operand_token *token,
2826 enum mips_operand_token_type type)
2827{
2828 token->type = type;
2829 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2830}
2831
2832/* Check whether S is '(' followed by a register name. Add OT_CHAR
2833 and OT_REG tokens for them if so, and return a pointer to the first
2834 unconsumed character. Return null otherwise. */
2835
2836static char *
2837mips_parse_base_start (char *s)
2838{
2839 struct mips_operand_token token;
14daeee3
RS
2840 unsigned int regno, channels;
2841 bfd_boolean decrement_p;
df58fc94 2842
a92713e6
RS
2843 if (*s != '(')
2844 return 0;
2845
2846 ++s;
2847 SKIP_SPACE_TABS (s);
14daeee3
RS
2848
2849 /* Only match "--" as part of a base expression. In other contexts "--X"
2850 is a double negative. */
2851 decrement_p = (s[0] == '-' && s[1] == '-');
2852 if (decrement_p)
2853 {
2854 s += 2;
2855 SKIP_SPACE_TABS (s);
2856 }
2857
2858 /* Allow a channel specifier because that leads to better error messages
2859 than treating something like "$vf0x++" as an expression. */
2860 if (!mips_parse_register (&s, &regno, &channels))
a92713e6
RS
2861 return 0;
2862
2863 token.u.ch = '(';
2864 mips_add_token (&token, OT_CHAR);
2865
14daeee3
RS
2866 if (decrement_p)
2867 {
2868 token.u.ch = '-';
2869 mips_add_token (&token, OT_DOUBLE_CHAR);
2870 }
2871
a92713e6
RS
2872 token.u.regno = regno;
2873 mips_add_token (&token, OT_REG);
2874
14daeee3
RS
2875 if (channels)
2876 {
2877 token.u.channels = channels;
2878 mips_add_token (&token, OT_CHANNELS);
2879 }
2880
2881 /* For consistency, only match "++" as part of base expressions too. */
2882 SKIP_SPACE_TABS (s);
2883 if (s[0] == '+' && s[1] == '+')
2884 {
2885 s += 2;
2886 token.u.ch = '+';
2887 mips_add_token (&token, OT_DOUBLE_CHAR);
2888 }
2889
a92713e6
RS
2890 return s;
2891}
2892
2893/* Parse one or more tokens from S. Return a pointer to the first
2894 unconsumed character on success. Return null if an error was found
2895 and store the error text in insn_error. FLOAT_FORMAT is as for
2896 mips_parse_arguments. */
2897
2898static char *
2899mips_parse_argument_token (char *s, char float_format)
2900{
2901 char *end, *save_in, *err;
14daeee3 2902 unsigned int regno1, regno2, channels;
a92713e6
RS
2903 struct mips_operand_token token;
2904
2905 /* First look for "($reg", since we want to treat that as an
2906 OT_CHAR and OT_REG rather than an expression. */
2907 end = mips_parse_base_start (s);
2908 if (end)
2909 return end;
2910
2911 /* Handle other characters that end up as OT_CHARs. */
2912 if (*s == ')' || *s == ',')
2913 {
2914 token.u.ch = *s;
2915 mips_add_token (&token, OT_CHAR);
2916 ++s;
2917 return s;
2918 }
2919
2920 /* Handle tokens that start with a register. */
14daeee3 2921 if (mips_parse_register (&s, &regno1, &channels))
df58fc94 2922 {
14daeee3
RS
2923 if (channels)
2924 {
2925 /* A register and a VU0 channel suffix. */
2926 token.u.regno = regno1;
2927 mips_add_token (&token, OT_REG);
2928
2929 token.u.channels = channels;
2930 mips_add_token (&token, OT_CHANNELS);
2931 return s;
2932 }
2933
a92713e6
RS
2934 SKIP_SPACE_TABS (s);
2935 if (*s == '-')
df58fc94 2936 {
a92713e6
RS
2937 /* A register range. */
2938 ++s;
2939 SKIP_SPACE_TABS (s);
14daeee3 2940 if (!mips_parse_register (&s, &regno2, NULL))
a92713e6 2941 {
e3de51ce 2942 set_insn_error (0, _("Invalid register range"));
a92713e6
RS
2943 return 0;
2944 }
df58fc94 2945
a92713e6
RS
2946 token.u.reg_range.regno1 = regno1;
2947 token.u.reg_range.regno2 = regno2;
2948 mips_add_token (&token, OT_REG_RANGE);
2949 return s;
2950 }
2951 else if (*s == '[')
df58fc94 2952 {
a92713e6
RS
2953 /* A vector element. */
2954 expressionS element;
2955
2956 ++s;
2957 SKIP_SPACE_TABS (s);
2958 my_getExpression (&element, s);
2959 if (element.X_op != O_constant)
2960 {
e3de51ce 2961 set_insn_error (0, _("Vector element must be constant"));
a92713e6
RS
2962 return 0;
2963 }
2964 s = expr_end;
2965 SKIP_SPACE_TABS (s);
2966 if (*s != ']')
2967 {
e3de51ce 2968 set_insn_error (0, _("Missing `]'"));
a92713e6
RS
2969 return 0;
2970 }
2971 ++s;
2972
2973 token.u.reg_element.regno = regno1;
2974 token.u.reg_element.index = element.X_add_number;
2975 mips_add_token (&token, OT_REG_ELEMENT);
2976 return s;
df58fc94 2977 }
df58fc94 2978
a92713e6
RS
2979 /* Looks like just a plain register. */
2980 token.u.regno = regno1;
2981 mips_add_token (&token, OT_REG);
2982 return s;
df58fc94
RS
2983 }
2984
a92713e6
RS
2985 if (float_format)
2986 {
2987 /* First try to treat expressions as floats. */
2988 save_in = input_line_pointer;
2989 input_line_pointer = s;
2990 err = md_atof (float_format, (char *) token.u.flt.data,
2991 &token.u.flt.length);
2992 end = input_line_pointer;
2993 input_line_pointer = save_in;
2994 if (err && *err)
2995 {
e3de51ce 2996 set_insn_error (0, err);
a92713e6
RS
2997 return 0;
2998 }
2999 if (s != end)
3000 {
3001 mips_add_token (&token, OT_FLOAT);
3002 return end;
3003 }
3004 }
3005
3006 /* Treat everything else as an integer expression. */
3007 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3008 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3009 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3010 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3011 s = expr_end;
3012 mips_add_token (&token, OT_INTEGER);
3013 return s;
3014}
3015
3016/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3017 if expressions should be treated as 32-bit floating-point constants,
3018 'd' if they should be treated as 64-bit floating-point constants,
3019 or 0 if they should be treated as integer expressions (the usual case).
3020
3021 Return a list of tokens on success, otherwise return 0. The caller
3022 must obstack_free the list after use. */
3023
3024static struct mips_operand_token *
3025mips_parse_arguments (char *s, char float_format)
3026{
3027 struct mips_operand_token token;
3028
3029 SKIP_SPACE_TABS (s);
3030 while (*s)
3031 {
3032 s = mips_parse_argument_token (s, float_format);
3033 if (!s)
3034 {
3035 obstack_free (&mips_operand_tokens,
3036 obstack_finish (&mips_operand_tokens));
3037 return 0;
3038 }
3039 SKIP_SPACE_TABS (s);
3040 }
3041 mips_add_token (&token, OT_END);
3042 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
df58fc94
RS
3043}
3044
d301a56b
RS
3045/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3046 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
037b32b9
AN
3047
3048static bfd_boolean
f79e2745 3049is_opcode_valid (const struct mips_opcode *mo)
037b32b9
AN
3050{
3051 int isa = mips_opts.isa;
846ef2d0 3052 int ase = mips_opts.ase;
037b32b9 3053 int fp_s, fp_d;
c6278170 3054 unsigned int i;
037b32b9 3055
c6278170
RS
3056 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3057 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3058 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3059 ase |= mips_ases[i].flags64;
037b32b9 3060
d301a56b 3061 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
037b32b9
AN
3062 return FALSE;
3063
3064 /* Check whether the instruction or macro requires single-precision or
3065 double-precision floating-point support. Note that this information is
3066 stored differently in the opcode table for insns and macros. */
3067 if (mo->pinfo == INSN_MACRO)
3068 {
3069 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3070 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3071 }
3072 else
3073 {
3074 fp_s = mo->pinfo & FP_S;
3075 fp_d = mo->pinfo & FP_D;
3076 }
3077
3078 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3079 return FALSE;
3080
3081 if (fp_s && mips_opts.soft_float)
3082 return FALSE;
3083
3084 return TRUE;
3085}
3086
3087/* Return TRUE if the MIPS16 opcode MO is valid on the currently
3088 selected ISA and architecture. */
3089
3090static bfd_boolean
3091is_opcode_valid_16 (const struct mips_opcode *mo)
3092{
d301a56b 3093 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
037b32b9
AN
3094}
3095
df58fc94
RS
3096/* Return TRUE if the size of the microMIPS opcode MO matches one
3097 explicitly requested. Always TRUE in the standard MIPS mode. */
3098
3099static bfd_boolean
3100is_size_valid (const struct mips_opcode *mo)
3101{
3102 if (!mips_opts.micromips)
3103 return TRUE;
3104
833794fc
MR
3105 if (mips_opts.insn32)
3106 {
3107 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3108 return FALSE;
3109 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3110 return FALSE;
3111 }
df58fc94
RS
3112 if (!forced_insn_length)
3113 return TRUE;
3114 if (mo->pinfo == INSN_MACRO)
3115 return FALSE;
3116 return forced_insn_length == micromips_insn_length (mo);
3117}
3118
3119/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
e64af278
MR
3120 of the preceding instruction. Always TRUE in the standard MIPS mode.
3121
3122 We don't accept macros in 16-bit delay slots to avoid a case where
3123 a macro expansion fails because it relies on a preceding 32-bit real
3124 instruction to have matched and does not handle the operands correctly.
3125 The only macros that may expand to 16-bit instructions are JAL that
3126 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3127 and BGT (that likewise cannot be placed in a delay slot) that decay to
3128 a NOP. In all these cases the macros precede any corresponding real
3129 instruction definitions in the opcode table, so they will match in the
3130 second pass where the size of the delay slot is ignored and therefore
3131 produce correct code. */
df58fc94
RS
3132
3133static bfd_boolean
3134is_delay_slot_valid (const struct mips_opcode *mo)
3135{
3136 if (!mips_opts.micromips)
3137 return TRUE;
3138
3139 if (mo->pinfo == INSN_MACRO)
c06dec14 3140 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
df58fc94
RS
3141 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3142 && micromips_insn_length (mo) != 4)
3143 return FALSE;
3144 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3145 && micromips_insn_length (mo) != 2)
3146 return FALSE;
3147
3148 return TRUE;
3149}
3150
fc76e730
RS
3151/* For consistency checking, verify that all bits of OPCODE are specified
3152 either by the match/mask part of the instruction definition, or by the
3153 operand list. Also build up a list of operands in OPERANDS.
3154
3155 INSN_BITS says which bits of the instruction are significant.
3156 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3157 provides the mips_operand description of each operand. DECODE_OPERAND
3158 is null for MIPS16 instructions. */
ab902481
RS
3159
3160static int
3161validate_mips_insn (const struct mips_opcode *opcode,
3162 unsigned long insn_bits,
fc76e730
RS
3163 const struct mips_operand *(*decode_operand) (const char *),
3164 struct mips_operand_array *operands)
ab902481
RS
3165{
3166 const char *s;
fc76e730 3167 unsigned long used_bits, doubled, undefined, opno, mask;
ab902481
RS
3168 const struct mips_operand *operand;
3169
fc76e730
RS
3170 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3171 if ((mask & opcode->match) != opcode->match)
ab902481
RS
3172 {
3173 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3174 opcode->name, opcode->args);
3175 return 0;
3176 }
3177 used_bits = 0;
fc76e730 3178 opno = 0;
14daeee3
RS
3179 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3180 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
ab902481
RS
3181 for (s = opcode->args; *s; ++s)
3182 switch (*s)
3183 {
3184 case ',':
3185 case '(':
3186 case ')':
3187 break;
3188
14daeee3
RS
3189 case '#':
3190 s++;
3191 break;
3192
ab902481 3193 default:
fc76e730
RS
3194 if (!decode_operand)
3195 operand = decode_mips16_operand (*s, FALSE);
3196 else
3197 operand = decode_operand (s);
3198 if (!operand && opcode->pinfo != INSN_MACRO)
ab902481
RS
3199 {
3200 as_bad (_("internal: unknown operand type: %s %s"),
3201 opcode->name, opcode->args);
3202 return 0;
3203 }
fc76e730
RS
3204 gas_assert (opno < MAX_OPERANDS);
3205 operands->operand[opno] = operand;
14daeee3 3206 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
fc76e730 3207 {
14daeee3 3208 used_bits = mips_insert_operand (operand, used_bits, -1);
fc76e730
RS
3209 if (operand->type == OP_MDMX_IMM_REG)
3210 /* Bit 5 is the format selector (OB vs QH). The opcode table
3211 has separate entries for each format. */
3212 used_bits &= ~(1 << (operand->lsb + 5));
3213 if (operand->type == OP_ENTRY_EXIT_LIST)
3214 used_bits &= ~(mask & 0x700);
3215 }
ab902481 3216 /* Skip prefix characters. */
fc76e730 3217 if (decode_operand && (*s == '+' || *s == 'm'))
ab902481 3218 ++s;
fc76e730 3219 opno += 1;
ab902481
RS
3220 break;
3221 }
fc76e730 3222 doubled = used_bits & mask & insn_bits;
ab902481
RS
3223 if (doubled)
3224 {
3225 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3226 " %s %s"), doubled, opcode->name, opcode->args);
3227 return 0;
3228 }
fc76e730 3229 used_bits |= mask;
ab902481 3230 undefined = ~used_bits & insn_bits;
fc76e730 3231 if (opcode->pinfo != INSN_MACRO && undefined)
ab902481
RS
3232 {
3233 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3234 undefined, opcode->name, opcode->args);
3235 return 0;
3236 }
3237 used_bits &= ~insn_bits;
3238 if (used_bits)
3239 {
3240 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3241 used_bits, opcode->name, opcode->args);
3242 return 0;
3243 }
3244 return 1;
3245}
3246
fc76e730
RS
3247/* The MIPS16 version of validate_mips_insn. */
3248
3249static int
3250validate_mips16_insn (const struct mips_opcode *opcode,
3251 struct mips_operand_array *operands)
3252{
3253 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3254 {
3255 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3256 instruction. Use TMP to describe the full instruction. */
3257 struct mips_opcode tmp;
3258
3259 tmp = *opcode;
3260 tmp.match <<= 16;
3261 tmp.mask <<= 16;
3262 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3263 }
3264 return validate_mips_insn (opcode, 0xffff, 0, operands);
3265}
3266
ab902481
RS
3267/* The microMIPS version of validate_mips_insn. */
3268
3269static int
fc76e730
RS
3270validate_micromips_insn (const struct mips_opcode *opc,
3271 struct mips_operand_array *operands)
ab902481
RS
3272{
3273 unsigned long insn_bits;
3274 unsigned long major;
3275 unsigned int length;
3276
fc76e730
RS
3277 if (opc->pinfo == INSN_MACRO)
3278 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3279 operands);
3280
ab902481
RS
3281 length = micromips_insn_length (opc);
3282 if (length != 2 && length != 4)
3283 {
3284 as_bad (_("Internal error: bad microMIPS opcode (incorrect length: %u): "
3285 "%s %s"), length, opc->name, opc->args);
3286 return 0;
3287 }
3288 major = opc->match >> (10 + 8 * (length - 2));
3289 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3290 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3291 {
3292 as_bad (_("Internal error: bad microMIPS opcode "
3293 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3294 return 0;
3295 }
3296
3297 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3298 insn_bits = 1 << 4 * length;
3299 insn_bits <<= 4 * length;
3300 insn_bits -= 1;
fc76e730
RS
3301 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3302 operands);
ab902481
RS
3303}
3304
707bfff6
TS
3305/* This function is called once, at assembler startup time. It should set up
3306 all the tables, etc. that the MD part of the assembler will need. */
156c2f8b 3307
252b5132 3308void
17a2f251 3309md_begin (void)
252b5132 3310{
3994f87e 3311 const char *retval = NULL;
156c2f8b 3312 int i = 0;
252b5132 3313 int broken = 0;
1f25f5d3 3314
0a44bf69
RS
3315 if (mips_pic != NO_PIC)
3316 {
3317 if (g_switch_seen && g_switch_value != 0)
3318 as_bad (_("-G may not be used in position-independent code"));
3319 g_switch_value = 0;
3320 }
3321
fef14a42 3322 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
252b5132
RH
3323 as_warn (_("Could not set architecture and machine"));
3324
252b5132
RH
3325 op_hash = hash_new ();
3326
fc76e730 3327 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
252b5132
RH
3328 for (i = 0; i < NUMOPCODES;)
3329 {
3330 const char *name = mips_opcodes[i].name;
3331
17a2f251 3332 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
252b5132
RH
3333 if (retval != NULL)
3334 {
3335 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3336 mips_opcodes[i].name, retval);
3337 /* Probably a memory allocation problem? Give up now. */
3338 as_fatal (_("Broken assembler. No assembly attempted."));
3339 }
3340 do
3341 {
fc76e730
RS
3342 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3343 decode_mips_operand, &mips_operands[i]))
3344 broken = 1;
3345 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
252b5132 3346 {
fc76e730
RS
3347 create_insn (&nop_insn, mips_opcodes + i);
3348 if (mips_fix_loongson2f_nop)
3349 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3350 nop_insn.fixed_p = 1;
252b5132
RH
3351 }
3352 ++i;
3353 }
3354 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3355 }
3356
3357 mips16_op_hash = hash_new ();
fc76e730
RS
3358 mips16_operands = XCNEWVEC (struct mips_operand_array,
3359 bfd_mips16_num_opcodes);
252b5132
RH
3360
3361 i = 0;
3362 while (i < bfd_mips16_num_opcodes)
3363 {
3364 const char *name = mips16_opcodes[i].name;
3365
17a2f251 3366 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
252b5132
RH
3367 if (retval != NULL)
3368 as_fatal (_("internal: can't hash `%s': %s"),
3369 mips16_opcodes[i].name, retval);
3370 do
3371 {
fc76e730
RS
3372 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3373 broken = 1;
1e915849
RS
3374 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3375 {
3376 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3377 mips16_nop_insn.fixed_p = 1;
3378 }
252b5132
RH
3379 ++i;
3380 }
3381 while (i < bfd_mips16_num_opcodes
3382 && strcmp (mips16_opcodes[i].name, name) == 0);
3383 }
3384
df58fc94 3385 micromips_op_hash = hash_new ();
fc76e730
RS
3386 micromips_operands = XCNEWVEC (struct mips_operand_array,
3387 bfd_micromips_num_opcodes);
df58fc94
RS
3388
3389 i = 0;
3390 while (i < bfd_micromips_num_opcodes)
3391 {
3392 const char *name = micromips_opcodes[i].name;
3393
3394 retval = hash_insert (micromips_op_hash, name,
3395 (void *) &micromips_opcodes[i]);
3396 if (retval != NULL)
3397 as_fatal (_("internal: can't hash `%s': %s"),
3398 micromips_opcodes[i].name, retval);
3399 do
fc76e730
RS
3400 {
3401 struct mips_cl_insn *micromips_nop_insn;
3402
3403 if (!validate_micromips_insn (&micromips_opcodes[i],
3404 &micromips_operands[i]))
3405 broken = 1;
3406
3407 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3408 {
3409 if (micromips_insn_length (micromips_opcodes + i) == 2)
3410 micromips_nop_insn = &micromips_nop16_insn;
3411 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3412 micromips_nop_insn = &micromips_nop32_insn;
3413 else
3414 continue;
3415
3416 if (micromips_nop_insn->insn_mo == NULL
3417 && strcmp (name, "nop") == 0)
3418 {
3419 create_insn (micromips_nop_insn, micromips_opcodes + i);
3420 micromips_nop_insn->fixed_p = 1;
3421 }
3422 }
3423 }
df58fc94
RS
3424 while (++i < bfd_micromips_num_opcodes
3425 && strcmp (micromips_opcodes[i].name, name) == 0);
3426 }
3427
252b5132
RH
3428 if (broken)
3429 as_fatal (_("Broken assembler. No assembly attempted."));
3430
3431 /* We add all the general register names to the symbol table. This
3432 helps us detect invalid uses of them. */
707bfff6
TS
3433 for (i = 0; reg_names[i].name; i++)
3434 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
8fc4ee9b 3435 reg_names[i].num, /* & RNUM_MASK, */
707bfff6
TS
3436 &zero_address_frag));
3437 if (HAVE_NEWABI)
3438 for (i = 0; reg_names_n32n64[i].name; i++)
3439 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
8fc4ee9b 3440 reg_names_n32n64[i].num, /* & RNUM_MASK, */
252b5132 3441 &zero_address_frag));
707bfff6
TS
3442 else
3443 for (i = 0; reg_names_o32[i].name; i++)
3444 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
8fc4ee9b 3445 reg_names_o32[i].num, /* & RNUM_MASK, */
6047c971 3446 &zero_address_frag));
6047c971 3447
14daeee3
RS
3448 for (i = 0; i < 32; i++)
3449 {
3450 char regname[7];
3451
3452 /* R5900 VU0 floating-point register. */
3453 regname[sizeof (rename) - 1] = 0;
3454 snprintf (regname, sizeof (regname) - 1, "$vf%d", i);
3455 symbol_table_insert (symbol_new (regname, reg_section,
3456 RTYPE_VF | i, &zero_address_frag));
3457
3458 /* R5900 VU0 integer register. */
3459 snprintf (regname, sizeof (regname) - 1, "$vi%d", i);
3460 symbol_table_insert (symbol_new (regname, reg_section,
3461 RTYPE_VI | i, &zero_address_frag));
3462
3463 }
3464
a92713e6
RS
3465 obstack_init (&mips_operand_tokens);
3466
7d10b47d 3467 mips_no_prev_insn ();
252b5132
RH
3468
3469 mips_gprmask = 0;
3470 mips_cprmask[0] = 0;
3471 mips_cprmask[1] = 0;
3472 mips_cprmask[2] = 0;
3473 mips_cprmask[3] = 0;
3474
3475 /* set the default alignment for the text section (2**2) */
3476 record_alignment (text_section, 2);
3477
4d0d148d 3478 bfd_set_gp_size (stdoutput, g_switch_value);
252b5132 3479
f3ded42a
RS
3480 /* On a native system other than VxWorks, sections must be aligned
3481 to 16 byte boundaries. When configured for an embedded ELF
3482 target, we don't bother. */
3483 if (strncmp (TARGET_OS, "elf", 3) != 0
3484 && strncmp (TARGET_OS, "vxworks", 7) != 0)
252b5132 3485 {
f3ded42a
RS
3486 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3487 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3488 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3489 }
252b5132 3490
f3ded42a
RS
3491 /* Create a .reginfo section for register masks and a .mdebug
3492 section for debugging information. */
3493 {
3494 segT seg;
3495 subsegT subseg;
3496 flagword flags;
3497 segT sec;
3498
3499 seg = now_seg;
3500 subseg = now_subseg;
3501
3502 /* The ABI says this section should be loaded so that the
3503 running program can access it. However, we don't load it
3504 if we are configured for an embedded target */
3505 flags = SEC_READONLY | SEC_DATA;
3506 if (strncmp (TARGET_OS, "elf", 3) != 0)
3507 flags |= SEC_ALLOC | SEC_LOAD;
3508
3509 if (mips_abi != N64_ABI)
252b5132 3510 {
f3ded42a 3511 sec = subseg_new (".reginfo", (subsegT) 0);
bdaaa2e1 3512
f3ded42a
RS
3513 bfd_set_section_flags (stdoutput, sec, flags);
3514 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
252b5132 3515
f3ded42a
RS
3516 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3517 }
3518 else
3519 {
3520 /* The 64-bit ABI uses a .MIPS.options section rather than
3521 .reginfo section. */
3522 sec = subseg_new (".MIPS.options", (subsegT) 0);
3523 bfd_set_section_flags (stdoutput, sec, flags);
3524 bfd_set_section_alignment (stdoutput, sec, 3);
252b5132 3525
f3ded42a
RS
3526 /* Set up the option header. */
3527 {
3528 Elf_Internal_Options opthdr;
3529 char *f;
3530
3531 opthdr.kind = ODK_REGINFO;
3532 opthdr.size = (sizeof (Elf_External_Options)
3533 + sizeof (Elf64_External_RegInfo));
3534 opthdr.section = 0;
3535 opthdr.info = 0;
3536 f = frag_more (sizeof (Elf_External_Options));
3537 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3538 (Elf_External_Options *) f);
3539
3540 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3541 }
3542 }
252b5132 3543
f3ded42a
RS
3544 if (ECOFF_DEBUGGING)
3545 {
3546 sec = subseg_new (".mdebug", (subsegT) 0);
3547 (void) bfd_set_section_flags (stdoutput, sec,
3548 SEC_HAS_CONTENTS | SEC_READONLY);
3549 (void) bfd_set_section_alignment (stdoutput, sec, 2);
252b5132 3550 }
f3ded42a
RS
3551 else if (mips_flag_pdr)
3552 {
3553 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3554 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3555 SEC_READONLY | SEC_RELOC
3556 | SEC_DEBUGGING);
3557 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3558 }
3559
3560 subseg_set (seg, subseg);
3561 }
252b5132
RH
3562
3563 if (! ECOFF_DEBUGGING)
3564 md_obj_begin ();
71400594
RS
3565
3566 if (mips_fix_vr4120)
3567 init_vr4120_conflicts ();
252b5132
RH
3568}
3569
3570void
17a2f251 3571md_mips_end (void)
252b5132 3572{
02b1ab82 3573 mips_emit_delays ();
252b5132
RH
3574 if (! ECOFF_DEBUGGING)
3575 md_obj_end ();
3576}
3577
3578void
17a2f251 3579md_assemble (char *str)
252b5132
RH
3580{
3581 struct mips_cl_insn insn;
f6688943
TS
3582 bfd_reloc_code_real_type unused_reloc[3]
3583 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132
RH
3584
3585 imm_expr.X_op = O_absent;
252b5132 3586 offset_expr.X_op = O_absent;
f6688943
TS
3587 offset_reloc[0] = BFD_RELOC_UNUSED;
3588 offset_reloc[1] = BFD_RELOC_UNUSED;
3589 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132 3590
e1b47bd5
RS
3591 mips_mark_labels ();
3592 mips_assembling_insn = TRUE;
e3de51ce 3593 clear_insn_error ();
e1b47bd5 3594
252b5132
RH
3595 if (mips_opts.mips16)
3596 mips16_ip (str, &insn);
3597 else
3598 {
3599 mips_ip (str, &insn);
beae10d5
KH
3600 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
3601 str, insn.insn_opcode));
252b5132
RH
3602 }
3603
e3de51ce
RS
3604 if (insn_error.msg)
3605 report_insn_error (str);
e1b47bd5 3606 else if (insn.insn_mo->pinfo == INSN_MACRO)
252b5132 3607 {
584892a6 3608 macro_start ();
252b5132
RH
3609 if (mips_opts.mips16)
3610 mips16_macro (&insn);
3611 else
833794fc 3612 macro (&insn, str);
584892a6 3613 macro_end ();
252b5132
RH
3614 }
3615 else
3616 {
77bd4346 3617 if (offset_expr.X_op != O_absent)
df58fc94 3618 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
252b5132 3619 else
df58fc94 3620 append_insn (&insn, NULL, unused_reloc, FALSE);
252b5132 3621 }
e1b47bd5
RS
3622
3623 mips_assembling_insn = FALSE;
252b5132
RH
3624}
3625
738e5348
RS
3626/* Convenience functions for abstracting away the differences between
3627 MIPS16 and non-MIPS16 relocations. */
3628
3629static inline bfd_boolean
3630mips16_reloc_p (bfd_reloc_code_real_type reloc)
3631{
3632 switch (reloc)
3633 {
3634 case BFD_RELOC_MIPS16_JMP:
3635 case BFD_RELOC_MIPS16_GPREL:
3636 case BFD_RELOC_MIPS16_GOT16:
3637 case BFD_RELOC_MIPS16_CALL16:
3638 case BFD_RELOC_MIPS16_HI16_S:
3639 case BFD_RELOC_MIPS16_HI16:
3640 case BFD_RELOC_MIPS16_LO16:
3641 return TRUE;
3642
3643 default:
3644 return FALSE;
3645 }
3646}
3647
df58fc94
RS
3648static inline bfd_boolean
3649micromips_reloc_p (bfd_reloc_code_real_type reloc)
3650{
3651 switch (reloc)
3652 {
3653 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
3654 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
3655 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
3656 case BFD_RELOC_MICROMIPS_GPREL16:
3657 case BFD_RELOC_MICROMIPS_JMP:
3658 case BFD_RELOC_MICROMIPS_HI16:
3659 case BFD_RELOC_MICROMIPS_HI16_S:
3660 case BFD_RELOC_MICROMIPS_LO16:
3661 case BFD_RELOC_MICROMIPS_LITERAL:
3662 case BFD_RELOC_MICROMIPS_GOT16:
3663 case BFD_RELOC_MICROMIPS_CALL16:
3664 case BFD_RELOC_MICROMIPS_GOT_HI16:
3665 case BFD_RELOC_MICROMIPS_GOT_LO16:
3666 case BFD_RELOC_MICROMIPS_CALL_HI16:
3667 case BFD_RELOC_MICROMIPS_CALL_LO16:
3668 case BFD_RELOC_MICROMIPS_SUB:
3669 case BFD_RELOC_MICROMIPS_GOT_PAGE:
3670 case BFD_RELOC_MICROMIPS_GOT_OFST:
3671 case BFD_RELOC_MICROMIPS_GOT_DISP:
3672 case BFD_RELOC_MICROMIPS_HIGHEST:
3673 case BFD_RELOC_MICROMIPS_HIGHER:
3674 case BFD_RELOC_MICROMIPS_SCN_DISP:
3675 case BFD_RELOC_MICROMIPS_JALR:
3676 return TRUE;
3677
3678 default:
3679 return FALSE;
3680 }
3681}
3682
2309ddf2
MR
3683static inline bfd_boolean
3684jmp_reloc_p (bfd_reloc_code_real_type reloc)
3685{
3686 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
3687}
3688
738e5348
RS
3689static inline bfd_boolean
3690got16_reloc_p (bfd_reloc_code_real_type reloc)
3691{
2309ddf2 3692 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
df58fc94 3693 || reloc == BFD_RELOC_MICROMIPS_GOT16);
738e5348
RS
3694}
3695
3696static inline bfd_boolean
3697hi16_reloc_p (bfd_reloc_code_real_type reloc)
3698{
2309ddf2 3699 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
df58fc94 3700 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
738e5348
RS
3701}
3702
3703static inline bfd_boolean
3704lo16_reloc_p (bfd_reloc_code_real_type reloc)
3705{
2309ddf2 3706 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
df58fc94
RS
3707 || reloc == BFD_RELOC_MICROMIPS_LO16);
3708}
3709
df58fc94
RS
3710static inline bfd_boolean
3711jalr_reloc_p (bfd_reloc_code_real_type reloc)
3712{
2309ddf2 3713 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
738e5348
RS
3714}
3715
f2ae14a1
RS
3716static inline bfd_boolean
3717gprel16_reloc_p (bfd_reloc_code_real_type reloc)
3718{
3719 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
3720 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
3721}
3722
2de39019
CM
3723/* Return true if RELOC is a PC-relative relocation that does not have
3724 full address range. */
3725
3726static inline bfd_boolean
3727limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
3728{
3729 switch (reloc)
3730 {
3731 case BFD_RELOC_16_PCREL_S2:
3732 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
3733 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
3734 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
3735 return TRUE;
3736
b47468a6
CM
3737 case BFD_RELOC_32_PCREL:
3738 return HAVE_64BIT_ADDRESSES;
3739
2de39019
CM
3740 default:
3741 return FALSE;
3742 }
3743}
b47468a6 3744
5919d012 3745/* Return true if the given relocation might need a matching %lo().
0a44bf69
RS
3746 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
3747 need a matching %lo() when applied to local symbols. */
5919d012
RS
3748
3749static inline bfd_boolean
17a2f251 3750reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
5919d012 3751{
3b91255e 3752 return (HAVE_IN_PLACE_ADDENDS
738e5348 3753 && (hi16_reloc_p (reloc)
0a44bf69
RS
3754 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
3755 all GOT16 relocations evaluate to "G". */
738e5348
RS
3756 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
3757}
3758
3759/* Return the type of %lo() reloc needed by RELOC, given that
3760 reloc_needs_lo_p. */
3761
3762static inline bfd_reloc_code_real_type
3763matching_lo_reloc (bfd_reloc_code_real_type reloc)
3764{
df58fc94
RS
3765 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
3766 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
3767 : BFD_RELOC_LO16));
5919d012
RS
3768}
3769
3770/* Return true if the given fixup is followed by a matching R_MIPS_LO16
3771 relocation. */
3772
3773static inline bfd_boolean
17a2f251 3774fixup_has_matching_lo_p (fixS *fixp)
5919d012
RS
3775{
3776 return (fixp->fx_next != NULL
738e5348 3777 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
5919d012
RS
3778 && fixp->fx_addsy == fixp->fx_next->fx_addsy
3779 && fixp->fx_offset == fixp->fx_next->fx_offset);
3780}
3781
462427c4
RS
3782/* Move all labels in LABELS to the current insertion point. TEXT_P
3783 says whether the labels refer to text or data. */
404a8071
RS
3784
3785static void
462427c4 3786mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
404a8071
RS
3787{
3788 struct insn_label_list *l;
3789 valueT val;
3790
462427c4 3791 for (l = labels; l != NULL; l = l->next)
404a8071 3792 {
9c2799c2 3793 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
404a8071
RS
3794 symbol_set_frag (l->label, frag_now);
3795 val = (valueT) frag_now_fix ();
df58fc94 3796 /* MIPS16/microMIPS text labels are stored as odd. */
462427c4 3797 if (text_p && HAVE_CODE_COMPRESSION)
404a8071
RS
3798 ++val;
3799 S_SET_VALUE (l->label, val);
3800 }
3801}
3802
462427c4
RS
3803/* Move all labels in insn_labels to the current insertion point
3804 and treat them as text labels. */
3805
3806static void
3807mips_move_text_labels (void)
3808{
3809 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
3810}
3811
5f0fe04b
TS
3812static bfd_boolean
3813s_is_linkonce (symbolS *sym, segT from_seg)
3814{
3815 bfd_boolean linkonce = FALSE;
3816 segT symseg = S_GET_SEGMENT (sym);
3817
3818 if (symseg != from_seg && !S_IS_LOCAL (sym))
3819 {
3820 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
3821 linkonce = TRUE;
5f0fe04b
TS
3822 /* The GNU toolchain uses an extension for ELF: a section
3823 beginning with the magic string .gnu.linkonce is a
3824 linkonce section. */
3825 if (strncmp (segment_name (symseg), ".gnu.linkonce",
3826 sizeof ".gnu.linkonce" - 1) == 0)
3827 linkonce = TRUE;
5f0fe04b
TS
3828 }
3829 return linkonce;
3830}
3831
e1b47bd5 3832/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
df58fc94
RS
3833 linker to handle them specially, such as generating jalx instructions
3834 when needed. We also make them odd for the duration of the assembly,
3835 in order to generate the right sort of code. We will make them even
252b5132
RH
3836 in the adjust_symtab routine, while leaving them marked. This is
3837 convenient for the debugger and the disassembler. The linker knows
3838 to make them odd again. */
3839
3840static void
e1b47bd5 3841mips_compressed_mark_label (symbolS *label)
252b5132 3842{
df58fc94 3843 gas_assert (HAVE_CODE_COMPRESSION);
a8dbcb85 3844
f3ded42a
RS
3845 if (mips_opts.mips16)
3846 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
3847 else
3848 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
e1b47bd5
RS
3849 if ((S_GET_VALUE (label) & 1) == 0
3850 /* Don't adjust the address if the label is global or weak, or
3851 in a link-once section, since we'll be emitting symbol reloc
3852 references to it which will be patched up by the linker, and
3853 the final value of the symbol may or may not be MIPS16/microMIPS. */
3854 && !S_IS_WEAK (label)
3855 && !S_IS_EXTERNAL (label)
3856 && !s_is_linkonce (label, now_seg))
3857 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
3858}
3859
3860/* Mark preceding MIPS16 or microMIPS instruction labels. */
3861
3862static void
3863mips_compressed_mark_labels (void)
3864{
3865 struct insn_label_list *l;
3866
3867 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
3868 mips_compressed_mark_label (l->label);
252b5132
RH
3869}
3870
4d7206a2
RS
3871/* End the current frag. Make it a variant frag and record the
3872 relaxation info. */
3873
3874static void
3875relax_close_frag (void)
3876{
584892a6 3877 mips_macro_warning.first_frag = frag_now;
4d7206a2 3878 frag_var (rs_machine_dependent, 0, 0,
584892a6 3879 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4d7206a2
RS
3880 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
3881
3882 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
3883 mips_relax.first_fixup = 0;
3884}
3885
3886/* Start a new relaxation sequence whose expansion depends on SYMBOL.
3887 See the comment above RELAX_ENCODE for more details. */
3888
3889static void
3890relax_start (symbolS *symbol)
3891{
9c2799c2 3892 gas_assert (mips_relax.sequence == 0);
4d7206a2
RS
3893 mips_relax.sequence = 1;
3894 mips_relax.symbol = symbol;
3895}
3896
3897/* Start generating the second version of a relaxable sequence.
3898 See the comment above RELAX_ENCODE for more details. */
252b5132
RH
3899
3900static void
4d7206a2
RS
3901relax_switch (void)
3902{
9c2799c2 3903 gas_assert (mips_relax.sequence == 1);
4d7206a2
RS
3904 mips_relax.sequence = 2;
3905}
3906
3907/* End the current relaxable sequence. */
3908
3909static void
3910relax_end (void)
3911{
9c2799c2 3912 gas_assert (mips_relax.sequence == 2);
4d7206a2
RS
3913 relax_close_frag ();
3914 mips_relax.sequence = 0;
3915}
3916
11625dd8
RS
3917/* Return true if IP is a delayed branch or jump. */
3918
3919static inline bfd_boolean
3920delayed_branch_p (const struct mips_cl_insn *ip)
3921{
3922 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
3923 | INSN_COND_BRANCH_DELAY
3924 | INSN_COND_BRANCH_LIKELY)) != 0;
3925}
3926
3927/* Return true if IP is a compact branch or jump. */
3928
3929static inline bfd_boolean
3930compact_branch_p (const struct mips_cl_insn *ip)
3931{
26545944
RS
3932 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
3933 | INSN2_COND_BRANCH)) != 0;
11625dd8
RS
3934}
3935
3936/* Return true if IP is an unconditional branch or jump. */
3937
3938static inline bfd_boolean
3939uncond_branch_p (const struct mips_cl_insn *ip)
3940{
3941 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
26545944 3942 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
11625dd8
RS
3943}
3944
3945/* Return true if IP is a branch-likely instruction. */
3946
3947static inline bfd_boolean
3948branch_likely_p (const struct mips_cl_insn *ip)
3949{
3950 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
3951}
3952
14fe068b
RS
3953/* Return the type of nop that should be used to fill the delay slot
3954 of delayed branch IP. */
3955
3956static struct mips_cl_insn *
3957get_delay_slot_nop (const struct mips_cl_insn *ip)
3958{
3959 if (mips_opts.micromips
3960 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
3961 return &micromips_nop32_insn;
3962 return NOP_INSN;
3963}
3964
fc76e730
RS
3965/* Return a mask that has bit N set if OPCODE reads the register(s)
3966 in operand N. */
df58fc94
RS
3967
3968static unsigned int
fc76e730 3969insn_read_mask (const struct mips_opcode *opcode)
df58fc94 3970{
fc76e730
RS
3971 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
3972}
df58fc94 3973
fc76e730
RS
3974/* Return a mask that has bit N set if OPCODE writes to the register(s)
3975 in operand N. */
3976
3977static unsigned int
3978insn_write_mask (const struct mips_opcode *opcode)
3979{
3980 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
3981}
3982
3983/* Return a mask of the registers specified by operand OPERAND of INSN.
3984 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
3985 is set. */
3986
3987static unsigned int
3988operand_reg_mask (const struct mips_cl_insn *insn,
3989 const struct mips_operand *operand,
3990 unsigned int type_mask)
3991{
3992 unsigned int uval, vsel;
3993
3994 switch (operand->type)
df58fc94 3995 {
fc76e730
RS
3996 case OP_INT:
3997 case OP_MAPPED_INT:
3998 case OP_MSB:
3999 case OP_PCREL:
4000 case OP_PERF_REG:
4001 case OP_ADDIUSP_INT:
4002 case OP_ENTRY_EXIT_LIST:
4003 case OP_REPEAT_DEST_REG:
4004 case OP_REPEAT_PREV_REG:
4005 case OP_PC:
14daeee3
RS
4006 case OP_VU0_SUFFIX:
4007 case OP_VU0_MATCH_SUFFIX:
fc76e730
RS
4008 abort ();
4009
4010 case OP_REG:
0f35dbc4 4011 case OP_OPTIONAL_REG:
fc76e730
RS
4012 {
4013 const struct mips_reg_operand *reg_op;
4014
4015 reg_op = (const struct mips_reg_operand *) operand;
4016 if (!(type_mask & (1 << reg_op->reg_type)))
4017 return 0;
4018 uval = insn_extract_operand (insn, operand);
4019 return 1 << mips_decode_reg_operand (reg_op, uval);
4020 }
4021
4022 case OP_REG_PAIR:
4023 {
4024 const struct mips_reg_pair_operand *pair_op;
4025
4026 pair_op = (const struct mips_reg_pair_operand *) operand;
4027 if (!(type_mask & (1 << pair_op->reg_type)))
4028 return 0;
4029 uval = insn_extract_operand (insn, operand);
4030 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4031 }
4032
4033 case OP_CLO_CLZ_DEST:
4034 if (!(type_mask & (1 << OP_REG_GP)))
4035 return 0;
4036 uval = insn_extract_operand (insn, operand);
4037 return (1 << (uval & 31)) | (1 << (uval >> 5));
4038
4039 case OP_LWM_SWM_LIST:
4040 abort ();
4041
4042 case OP_SAVE_RESTORE_LIST:
4043 abort ();
4044
4045 case OP_MDMX_IMM_REG:
4046 if (!(type_mask & (1 << OP_REG_VEC)))
4047 return 0;
4048 uval = insn_extract_operand (insn, operand);
4049 vsel = uval >> 5;
4050 if ((vsel & 0x18) == 0x18)
4051 return 0;
4052 return 1 << (uval & 31);
df58fc94 4053 }
fc76e730
RS
4054 abort ();
4055}
4056
4057/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4058 where bit N of OPNO_MASK is set if operand N should be included.
4059 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4060 is set. */
4061
4062static unsigned int
4063insn_reg_mask (const struct mips_cl_insn *insn,
4064 unsigned int type_mask, unsigned int opno_mask)
4065{
4066 unsigned int opno, reg_mask;
4067
4068 opno = 0;
4069 reg_mask = 0;
4070 while (opno_mask != 0)
4071 {
4072 if (opno_mask & 1)
4073 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4074 opno_mask >>= 1;
4075 opno += 1;
4076 }
4077 return reg_mask;
df58fc94
RS
4078}
4079
4c260379
RS
4080/* Return the mask of core registers that IP reads. */
4081
4082static unsigned int
4083gpr_read_mask (const struct mips_cl_insn *ip)
4084{
4085 unsigned long pinfo, pinfo2;
4086 unsigned int mask;
4087
fc76e730 4088 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4c260379
RS
4089 pinfo = ip->insn_mo->pinfo;
4090 pinfo2 = ip->insn_mo->pinfo2;
fc76e730 4091 if (pinfo & INSN_UDI)
4c260379 4092 {
fc76e730
RS
4093 /* UDI instructions have traditionally been assumed to read RS
4094 and RT. */
4095 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4096 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4c260379 4097 }
fc76e730
RS
4098 if (pinfo & INSN_READ_GPR_24)
4099 mask |= 1 << 24;
4100 if (pinfo2 & INSN2_READ_GPR_16)
4101 mask |= 1 << 16;
4102 if (pinfo2 & INSN2_READ_SP)
4103 mask |= 1 << SP;
26545944 4104 if (pinfo2 & INSN2_READ_GPR_31)
fc76e730 4105 mask |= 1 << 31;
fe35f09f
RS
4106 /* Don't include register 0. */
4107 return mask & ~1;
4c260379
RS
4108}
4109
4110/* Return the mask of core registers that IP writes. */
4111
4112static unsigned int
4113gpr_write_mask (const struct mips_cl_insn *ip)
4114{
4115 unsigned long pinfo, pinfo2;
4116 unsigned int mask;
4117
fc76e730 4118 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4c260379
RS
4119 pinfo = ip->insn_mo->pinfo;
4120 pinfo2 = ip->insn_mo->pinfo2;
fc76e730
RS
4121 if (pinfo & INSN_WRITE_GPR_24)
4122 mask |= 1 << 24;
4123 if (pinfo & INSN_WRITE_GPR_31)
4124 mask |= 1 << 31;
4125 if (pinfo & INSN_UDI)
4126 /* UDI instructions have traditionally been assumed to write to RD. */
4127 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4128 if (pinfo2 & INSN2_WRITE_SP)
4129 mask |= 1 << SP;
fe35f09f
RS
4130 /* Don't include register 0. */
4131 return mask & ~1;
4c260379
RS
4132}
4133
4134/* Return the mask of floating-point registers that IP reads. */
4135
4136static unsigned int
4137fpr_read_mask (const struct mips_cl_insn *ip)
4138{
fc76e730 4139 unsigned long pinfo;
4c260379
RS
4140 unsigned int mask;
4141
fc76e730
RS
4142 mask = insn_reg_mask (ip, (1 << OP_REG_FP) | (1 << OP_REG_VEC),
4143 insn_read_mask (ip->insn_mo));
4c260379 4144 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4145 /* Conservatively treat all operands to an FP_D instruction are doubles.
4146 (This is overly pessimistic for things like cvt.d.s.) */
4147 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
4148 mask |= mask << 1;
4149 return mask;
4150}
4151
4152/* Return the mask of floating-point registers that IP writes. */
4153
4154static unsigned int
4155fpr_write_mask (const struct mips_cl_insn *ip)
4156{
fc76e730 4157 unsigned long pinfo;
4c260379
RS
4158 unsigned int mask;
4159
fc76e730
RS
4160 mask = insn_reg_mask (ip, (1 << OP_REG_FP) | (1 << OP_REG_VEC),
4161 insn_write_mask (ip->insn_mo));
4c260379 4162 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4163 /* Conservatively treat all operands to an FP_D instruction are doubles.
4164 (This is overly pessimistic for things like cvt.s.d.) */
4165 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
4166 mask |= mask << 1;
4167 return mask;
4168}
4169
a1d78564
RS
4170/* Operand OPNUM of INSN is an odd-numbered floating-point register.
4171 Check whether that is allowed. */
4172
4173static bfd_boolean
4174mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4175{
4176 const char *s = insn->name;
4177
4178 if (insn->pinfo == INSN_MACRO)
4179 /* Let a macro pass, we'll catch it later when it is expanded. */
4180 return TRUE;
4181
4182 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa) || mips_opts.arch == CPU_R5900)
4183 {
4184 /* Allow odd registers for single-precision ops. */
4185 switch (insn->pinfo & (FP_S | FP_D))
4186 {
4187 case FP_S:
4188 case 0:
4189 return TRUE;
4190 case FP_D:
4191 return FALSE;
4192 default:
4193 break;
4194 }
4195
4196 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4197 s = strchr (insn->name, '.');
4198 if (s != NULL && opnum == 2)
4199 s = strchr (s + 1, '.');
4200 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
4201 }
4202
4203 /* Single-precision coprocessor loads and moves are OK too. */
4204 if ((insn->pinfo & FP_S)
4205 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
4206 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
4207 return TRUE;
4208
4209 return FALSE;
4210}
4211
a1d78564
RS
4212/* Information about an instruction argument that we're trying to match. */
4213struct mips_arg_info
4214{
4215 /* The instruction so far. */
4216 struct mips_cl_insn *insn;
4217
a92713e6
RS
4218 /* The first unconsumed operand token. */
4219 struct mips_operand_token *token;
4220
a1d78564
RS
4221 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4222 int opnum;
4223
4224 /* The 1-based argument number, for error reporting. This does not
4225 count elided optional registers, etc.. */
4226 int argnum;
4227
4228 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4229 unsigned int last_regno;
4230
4231 /* If the first operand was an OP_REG, this is the register that it
4232 specified, otherwise it is ILLEGAL_REG. */
4233 unsigned int dest_regno;
4234
4235 /* The value of the last OP_INT operand. Only used for OP_MSB,
4236 where it gives the lsb position. */
4237 unsigned int last_op_int;
4238
60f20e8b
RS
4239 /* If true, match routines should assume that no later instruction
4240 alternative matches and should therefore be as accomodating as
4241 possible. Match routines should not report errors if something
4242 is only invalid for !LAX_MATCH. */
4243 bfd_boolean lax_match;
a1d78564 4244
a1d78564
RS
4245 /* True if a reference to the current AT register was seen. */
4246 bfd_boolean seen_at;
4247};
4248
1a00e612
RS
4249/* Record that the argument is out of range. */
4250
4251static void
4252match_out_of_range (struct mips_arg_info *arg)
4253{
4254 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4255}
4256
4257/* Record that the argument isn't constant but needs to be. */
4258
4259static void
4260match_not_constant (struct mips_arg_info *arg)
4261{
4262 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4263 arg->argnum);
4264}
4265
a92713e6
RS
4266/* Try to match an OT_CHAR token for character CH. Consume the token
4267 and return true on success, otherwise return false. */
a1d78564 4268
a92713e6
RS
4269static bfd_boolean
4270match_char (struct mips_arg_info *arg, char ch)
a1d78564 4271{
a92713e6
RS
4272 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4273 {
4274 ++arg->token;
4275 if (ch == ',')
4276 arg->argnum += 1;
4277 return TRUE;
4278 }
4279 return FALSE;
4280}
a1d78564 4281
a92713e6
RS
4282/* Try to get an expression from the next tokens in ARG. Consume the
4283 tokens and return true on success, storing the expression value in
4284 VALUE and relocation types in R. */
4285
4286static bfd_boolean
4287match_expression (struct mips_arg_info *arg, expressionS *value,
4288 bfd_reloc_code_real_type *r)
4289{
d436c1c2
RS
4290 /* If the next token is a '(' that was parsed as being part of a base
4291 expression, assume we have an elided offset. The later match will fail
4292 if this turns out to be wrong. */
4293 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
a1d78564 4294 {
d436c1c2
RS
4295 value->X_op = O_constant;
4296 value->X_add_number = 0;
4297 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
a92713e6
RS
4298 return TRUE;
4299 }
4300
d436c1c2
RS
4301 /* Reject register-based expressions such as "0+$2" and "(($2))".
4302 For plain registers the default error seems more appropriate. */
4303 if (arg->token->type == OT_INTEGER
4304 && arg->token->u.integer.value.X_op == O_register)
a92713e6 4305 {
d436c1c2
RS
4306 set_insn_error (arg->argnum, _("register value used as expression"));
4307 return FALSE;
a1d78564 4308 }
d436c1c2
RS
4309
4310 if (arg->token->type == OT_INTEGER)
a92713e6 4311 {
d436c1c2
RS
4312 *value = arg->token->u.integer.value;
4313 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4314 ++arg->token;
4315 return TRUE;
a92713e6 4316 }
a92713e6 4317
d436c1c2
RS
4318 set_insn_error_i
4319 (arg->argnum, _("operand %d must be an immediate expression"),
4320 arg->argnum);
4321 return FALSE;
a92713e6
RS
4322}
4323
4324/* Try to get a constant expression from the next tokens in ARG. Consume
4325 the tokens and return return true on success, storing the constant value
4326 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4327 error. */
4328
4329static bfd_boolean
1a00e612 4330match_const_int (struct mips_arg_info *arg, offsetT *value)
a92713e6
RS
4331{
4332 expressionS ex;
4333 bfd_reloc_code_real_type r[3];
a1d78564 4334
a92713e6
RS
4335 if (!match_expression (arg, &ex, r))
4336 return FALSE;
4337
4338 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
a1d78564
RS
4339 *value = ex.X_add_number;
4340 else
4341 {
1a00e612
RS
4342 match_not_constant (arg);
4343 return FALSE;
a1d78564 4344 }
a92713e6 4345 return TRUE;
a1d78564
RS
4346}
4347
4348/* Return the RTYPE_* flags for a register operand of type TYPE that
4349 appears in instruction OPCODE. */
4350
4351static unsigned int
4352convert_reg_type (const struct mips_opcode *opcode,
4353 enum mips_reg_operand_type type)
4354{
4355 switch (type)
4356 {
4357 case OP_REG_GP:
4358 return RTYPE_NUM | RTYPE_GP;
4359
4360 case OP_REG_FP:
4361 /* Allow vector register names for MDMX if the instruction is a 64-bit
4362 FPR load, store or move (including moves to and from GPRs). */
4363 if ((mips_opts.ase & ASE_MDMX)
4364 && (opcode->pinfo & FP_D)
4365 && (opcode->pinfo & (INSN_COPROC_MOVE_DELAY
4366 | INSN_COPROC_MEMORY_DELAY
4367 | INSN_LOAD_COPROC_DELAY
4368 | INSN_LOAD_MEMORY_DELAY
4369 | INSN_STORE_MEMORY)))
4370 return RTYPE_FPU | RTYPE_VEC;
4371 return RTYPE_FPU;
4372
4373 case OP_REG_CCC:
4374 if (opcode->pinfo & (FP_D | FP_S))
4375 return RTYPE_CCC | RTYPE_FCC;
4376 return RTYPE_CCC;
4377
4378 case OP_REG_VEC:
4379 if (opcode->membership & INSN_5400)
4380 return RTYPE_FPU;
4381 return RTYPE_FPU | RTYPE_VEC;
4382
4383 case OP_REG_ACC:
4384 return RTYPE_ACC;
4385
4386 case OP_REG_COPRO:
4387 if (opcode->name[strlen (opcode->name) - 1] == '0')
4388 return RTYPE_NUM | RTYPE_CP0;
4389 return RTYPE_NUM;
4390
4391 case OP_REG_HW:
4392 return RTYPE_NUM;
14daeee3
RS
4393
4394 case OP_REG_VI:
4395 return RTYPE_NUM | RTYPE_VI;
4396
4397 case OP_REG_VF:
4398 return RTYPE_NUM | RTYPE_VF;
4399
4400 case OP_REG_R5900_I:
4401 return RTYPE_R5900_I;
4402
4403 case OP_REG_R5900_Q:
4404 return RTYPE_R5900_Q;
4405
4406 case OP_REG_R5900_R:
4407 return RTYPE_R5900_R;
4408
4409 case OP_REG_R5900_ACC:
4410 return RTYPE_R5900_ACC;
a1d78564
RS
4411 }
4412 abort ();
4413}
4414
4415/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4416
4417static void
4418check_regno (struct mips_arg_info *arg,
4419 enum mips_reg_operand_type type, unsigned int regno)
4420{
4421 if (AT && type == OP_REG_GP && regno == AT)
4422 arg->seen_at = TRUE;
4423
4424 if (type == OP_REG_FP
4425 && (regno & 1) != 0
4426 && HAVE_32BIT_FPRS
4427 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4428 as_warn (_("Float register should be even, was %d"), regno);
4429
4430 if (type == OP_REG_CCC)
4431 {
4432 const char *name;
4433 size_t length;
4434
4435 name = arg->insn->insn_mo->name;
4436 length = strlen (name);
4437 if ((regno & 1) != 0
4438 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4439 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4440 as_warn (_("Condition code register should be even for %s, was %d"),
4441 name, regno);
4442
4443 if ((regno & 3) != 0
4444 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4445 as_warn (_("Condition code register should be 0 or 4 for %s, was %d"),
4446 name, regno);
4447 }
4448}
4449
a92713e6
RS
4450/* ARG is a register with symbol value SYMVAL. Try to interpret it as
4451 a register of type TYPE. Return true on success, storing the register
4452 number in *REGNO and warning about any dubious uses. */
4453
4454static bfd_boolean
4455match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4456 unsigned int symval, unsigned int *regno)
4457{
4458 if (type == OP_REG_VEC)
4459 symval = mips_prefer_vec_regno (symval);
4460 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4461 return FALSE;
4462
4463 *regno = symval & RNUM_MASK;
4464 check_regno (arg, type, *regno);
4465 return TRUE;
4466}
4467
4468/* Try to interpret the next token in ARG as a register of type TYPE.
4469 Consume the token and return true on success, storing the register
4470 number in *REGNO. Return false on failure. */
4471
4472static bfd_boolean
4473match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4474 unsigned int *regno)
4475{
4476 if (arg->token->type == OT_REG
4477 && match_regno (arg, type, arg->token->u.regno, regno))
4478 {
4479 ++arg->token;
4480 return TRUE;
4481 }
4482 return FALSE;
4483}
4484
4485/* Try to interpret the next token in ARG as a range of registers of type TYPE.
4486 Consume the token and return true on success, storing the register numbers
4487 in *REGNO1 and *REGNO2. Return false on failure. */
4488
4489static bfd_boolean
4490match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4491 unsigned int *regno1, unsigned int *regno2)
4492{
4493 if (match_reg (arg, type, regno1))
4494 {
4495 *regno2 = *regno1;
4496 return TRUE;
4497 }
4498 if (arg->token->type == OT_REG_RANGE
4499 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4500 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4501 && *regno1 <= *regno2)
4502 {
4503 ++arg->token;
4504 return TRUE;
4505 }
4506 return FALSE;
4507}
4508
a1d78564
RS
4509/* OP_INT matcher. */
4510
a92713e6 4511static bfd_boolean
a1d78564 4512match_int_operand (struct mips_arg_info *arg,
a92713e6 4513 const struct mips_operand *operand_base)
a1d78564
RS
4514{
4515 const struct mips_int_operand *operand;
3ccad066 4516 unsigned int uval;
a1d78564
RS
4517 int min_val, max_val, factor;
4518 offsetT sval;
a1d78564
RS
4519
4520 operand = (const struct mips_int_operand *) operand_base;
4521 factor = 1 << operand->shift;
3ccad066
RS
4522 min_val = mips_int_operand_min (operand);
4523 max_val = mips_int_operand_max (operand);
a1d78564 4524
d436c1c2
RS
4525 if (operand_base->lsb == 0
4526 && operand_base->size == 16
4527 && operand->shift == 0
4528 && operand->bias == 0
4529 && (operand->max_val == 32767 || operand->max_val == 65535))
a1d78564
RS
4530 {
4531 /* The operand can be relocated. */
a92713e6
RS
4532 if (!match_expression (arg, &offset_expr, offset_reloc))
4533 return FALSE;
4534
4535 if (offset_reloc[0] != BFD_RELOC_UNUSED)
a1d78564
RS
4536 /* Relocation operators were used. Accept the arguent and
4537 leave the relocation value in offset_expr and offset_relocs
4538 for the caller to process. */
a92713e6
RS
4539 return TRUE;
4540
4541 if (offset_expr.X_op != O_constant)
a1d78564 4542 {
60f20e8b
RS
4543 /* Accept non-constant operands if no later alternative matches,
4544 leaving it for the caller to process. */
4545 if (!arg->lax_match)
4546 return FALSE;
a92713e6
RS
4547 offset_reloc[0] = BFD_RELOC_LO16;
4548 return TRUE;
a1d78564 4549 }
a92713e6 4550
a1d78564
RS
4551 /* Clear the global state; we're going to install the operand
4552 ourselves. */
a92713e6 4553 sval = offset_expr.X_add_number;
a1d78564 4554 offset_expr.X_op = O_absent;
60f20e8b
RS
4555
4556 /* For compatibility with older assemblers, we accept
4557 0x8000-0xffff as signed 16-bit numbers when only
4558 signed numbers are allowed. */
4559 if (sval > max_val)
4560 {
4561 max_val = ((1 << operand_base->size) - 1) << operand->shift;
4562 if (!arg->lax_match && sval <= max_val)
4563 return FALSE;
4564 }
a1d78564
RS
4565 }
4566 else
4567 {
1a00e612 4568 if (!match_const_int (arg, &sval))
a92713e6 4569 return FALSE;
a1d78564
RS
4570 }
4571
4572 arg->last_op_int = sval;
4573
1a00e612 4574 if (sval < min_val || sval > max_val || sval % factor)
a1d78564 4575 {
1a00e612
RS
4576 match_out_of_range (arg);
4577 return FALSE;
a1d78564
RS
4578 }
4579
4580 uval = (unsigned int) sval >> operand->shift;
4581 uval -= operand->bias;
4582
4583 /* Handle -mfix-cn63xxp1. */
4584 if (arg->opnum == 1
4585 && mips_fix_cn63xxp1
4586 && !mips_opts.micromips
4587 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
4588 switch (uval)
4589 {
4590 case 5:
4591 case 25:
4592 case 26:
4593 case 27:
4594 case 28:
4595 case 29:
4596 case 30:
4597 case 31:
4598 /* These are ok. */
4599 break;
4600
4601 default:
4602 /* The rest must be changed to 28. */
4603 uval = 28;
4604 break;
4605 }
4606
4607 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 4608 return TRUE;
a1d78564
RS
4609}
4610
4611/* OP_MAPPED_INT matcher. */
4612
a92713e6 4613static bfd_boolean
a1d78564 4614match_mapped_int_operand (struct mips_arg_info *arg,
a92713e6 4615 const struct mips_operand *operand_base)
a1d78564
RS
4616{
4617 const struct mips_mapped_int_operand *operand;
4618 unsigned int uval, num_vals;
4619 offsetT sval;
4620
4621 operand = (const struct mips_mapped_int_operand *) operand_base;
1a00e612 4622 if (!match_const_int (arg, &sval))
a92713e6 4623 return FALSE;
a1d78564
RS
4624
4625 num_vals = 1 << operand_base->size;
4626 for (uval = 0; uval < num_vals; uval++)
4627 if (operand->int_map[uval] == sval)
4628 break;
4629 if (uval == num_vals)
1a00e612
RS
4630 {
4631 match_out_of_range (arg);
4632 return FALSE;
4633 }
a1d78564
RS
4634
4635 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 4636 return TRUE;
a1d78564
RS
4637}
4638
4639/* OP_MSB matcher. */
4640
a92713e6 4641static bfd_boolean
a1d78564 4642match_msb_operand (struct mips_arg_info *arg,
a92713e6 4643 const struct mips_operand *operand_base)
a1d78564
RS
4644{
4645 const struct mips_msb_operand *operand;
4646 int min_val, max_val, max_high;
4647 offsetT size, sval, high;
4648
4649 operand = (const struct mips_msb_operand *) operand_base;
4650 min_val = operand->bias;
4651 max_val = min_val + (1 << operand_base->size) - 1;
4652 max_high = operand->opsize;
4653
1a00e612 4654 if (!match_const_int (arg, &size))
a92713e6 4655 return FALSE;
a1d78564
RS
4656
4657 high = size + arg->last_op_int;
4658 sval = operand->add_lsb ? high : size;
4659
4660 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
4661 {
1a00e612
RS
4662 match_out_of_range (arg);
4663 return FALSE;
a1d78564
RS
4664 }
4665 insn_insert_operand (arg->insn, operand_base, sval - min_val);
a92713e6 4666 return TRUE;
a1d78564
RS
4667}
4668
4669/* OP_REG matcher. */
4670
a92713e6 4671static bfd_boolean
a1d78564 4672match_reg_operand (struct mips_arg_info *arg,
a92713e6 4673 const struct mips_operand *operand_base)
a1d78564
RS
4674{
4675 const struct mips_reg_operand *operand;
a92713e6 4676 unsigned int regno, uval, num_vals;
a1d78564
RS
4677
4678 operand = (const struct mips_reg_operand *) operand_base;
a92713e6
RS
4679 if (!match_reg (arg, operand->reg_type, &regno))
4680 return FALSE;
a1d78564
RS
4681
4682 if (operand->reg_map)
4683 {
4684 num_vals = 1 << operand->root.size;
4685 for (uval = 0; uval < num_vals; uval++)
4686 if (operand->reg_map[uval] == regno)
4687 break;
4688 if (num_vals == uval)
a92713e6 4689 return FALSE;
a1d78564
RS
4690 }
4691 else
4692 uval = regno;
4693
a1d78564
RS
4694 arg->last_regno = regno;
4695 if (arg->opnum == 1)
4696 arg->dest_regno = regno;
4697 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 4698 return TRUE;
a1d78564
RS
4699}
4700
4701/* OP_REG_PAIR matcher. */
4702
a92713e6 4703static bfd_boolean
a1d78564 4704match_reg_pair_operand (struct mips_arg_info *arg,
a92713e6 4705 const struct mips_operand *operand_base)
a1d78564
RS
4706{
4707 const struct mips_reg_pair_operand *operand;
a92713e6 4708 unsigned int regno1, regno2, uval, num_vals;
a1d78564
RS
4709
4710 operand = (const struct mips_reg_pair_operand *) operand_base;
a92713e6
RS
4711 if (!match_reg (arg, operand->reg_type, &regno1)
4712 || !match_char (arg, ',')
4713 || !match_reg (arg, operand->reg_type, &regno2))
4714 return FALSE;
a1d78564
RS
4715
4716 num_vals = 1 << operand_base->size;
4717 for (uval = 0; uval < num_vals; uval++)
4718 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
4719 break;
4720 if (uval == num_vals)
a92713e6 4721 return FALSE;
a1d78564 4722
a1d78564 4723 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 4724 return TRUE;
a1d78564
RS
4725}
4726
4727/* OP_PCREL matcher. The caller chooses the relocation type. */
4728
a92713e6
RS
4729static bfd_boolean
4730match_pcrel_operand (struct mips_arg_info *arg)
a1d78564 4731{
a92713e6
RS
4732 bfd_reloc_code_real_type r[3];
4733
4734 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
a1d78564
RS
4735}
4736
4737/* OP_PERF_REG matcher. */
4738
a92713e6 4739static bfd_boolean
a1d78564 4740match_perf_reg_operand (struct mips_arg_info *arg,
a92713e6 4741 const struct mips_operand *operand)
a1d78564
RS
4742{
4743 offsetT sval;
4744
1a00e612 4745 if (!match_const_int (arg, &sval))
a92713e6 4746 return FALSE;
a1d78564
RS
4747
4748 if (sval != 0
4749 && (sval != 1
4750 || (mips_opts.arch == CPU_R5900
4751 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
4752 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
4753 {
1a00e612
RS
4754 set_insn_error (arg->argnum, _("invalid performance register"));
4755 return FALSE;
a1d78564
RS
4756 }
4757
4758 insn_insert_operand (arg->insn, operand, sval);
a92713e6 4759 return TRUE;
a1d78564
RS
4760}
4761
4762/* OP_ADDIUSP matcher. */
4763
a92713e6 4764static bfd_boolean
a1d78564 4765match_addiusp_operand (struct mips_arg_info *arg,
a92713e6 4766 const struct mips_operand *operand)
a1d78564
RS
4767{
4768 offsetT sval;
4769 unsigned int uval;
4770
1a00e612 4771 if (!match_const_int (arg, &sval))
a92713e6 4772 return FALSE;
a1d78564
RS
4773
4774 if (sval % 4)
1a00e612
RS
4775 {
4776 match_out_of_range (arg);
4777 return FALSE;
4778 }
a1d78564
RS
4779
4780 sval /= 4;
4781 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
1a00e612
RS
4782 {
4783 match_out_of_range (arg);
4784 return FALSE;
4785 }
a1d78564
RS
4786
4787 uval = (unsigned int) sval;
4788 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
4789 insn_insert_operand (arg->insn, operand, uval);
a92713e6 4790 return TRUE;
a1d78564
RS
4791}
4792
4793/* OP_CLO_CLZ_DEST matcher. */
4794
a92713e6 4795static bfd_boolean
a1d78564 4796match_clo_clz_dest_operand (struct mips_arg_info *arg,
a92713e6 4797 const struct mips_operand *operand)
a1d78564
RS
4798{
4799 unsigned int regno;
4800
a92713e6
RS
4801 if (!match_reg (arg, OP_REG_GP, &regno))
4802 return FALSE;
a1d78564 4803
a1d78564 4804 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
a92713e6 4805 return TRUE;
a1d78564
RS
4806}
4807
4808/* OP_LWM_SWM_LIST matcher. */
4809
a92713e6 4810static bfd_boolean
a1d78564 4811match_lwm_swm_list_operand (struct mips_arg_info *arg,
a92713e6 4812 const struct mips_operand *operand)
a1d78564 4813{
a92713e6
RS
4814 unsigned int reglist, sregs, ra, regno1, regno2;
4815 struct mips_arg_info reset;
a1d78564 4816
a92713e6
RS
4817 reglist = 0;
4818 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
4819 return FALSE;
4820 do
4821 {
4822 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
4823 {
4824 reglist |= 1 << FP;
4825 regno2 = S7;
4826 }
4827 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
4828 reset = *arg;
4829 }
4830 while (match_char (arg, ',')
4831 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
4832 *arg = reset;
a1d78564
RS
4833
4834 if (operand->size == 2)
4835 {
4836 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
4837
4838 s0, ra
4839 s0, s1, ra, s2, s3
4840 s0-s2, ra
4841
4842 and any permutations of these. */
4843 if ((reglist & 0xfff1ffff) != 0x80010000)
a92713e6 4844 return FALSE;
a1d78564
RS
4845
4846 sregs = (reglist >> 17) & 7;
4847 ra = 0;
4848 }
4849 else
4850 {
4851 /* The list must include at least one of ra and s0-sN,
4852 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
4853 which are $23 and $30 respectively.) E.g.:
4854
4855 ra
4856 s0
4857 ra, s0, s1, s2
4858 s0-s8
4859 s0-s5, ra
4860
4861 and any permutations of these. */
4862 if ((reglist & 0x3f00ffff) != 0)
a92713e6 4863 return FALSE;
a1d78564
RS
4864
4865 ra = (reglist >> 27) & 0x10;
4866 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
4867 }
4868 sregs += 1;
4869 if ((sregs & -sregs) != sregs)
a92713e6 4870 return FALSE;
a1d78564
RS
4871
4872 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
a92713e6 4873 return TRUE;
a1d78564
RS
4874}
4875
364215c8
RS
4876/* OP_ENTRY_EXIT_LIST matcher. */
4877
a92713e6 4878static unsigned int
364215c8 4879match_entry_exit_operand (struct mips_arg_info *arg,
a92713e6 4880 const struct mips_operand *operand)
364215c8
RS
4881{
4882 unsigned int mask;
4883 bfd_boolean is_exit;
4884
4885 /* The format is the same for both ENTRY and EXIT, but the constraints
4886 are different. */
4887 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
4888 mask = (is_exit ? 7 << 3 : 0);
a92713e6 4889 do
364215c8
RS
4890 {
4891 unsigned int regno1, regno2;
4892 bfd_boolean is_freg;
4893
a92713e6 4894 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
364215c8 4895 is_freg = FALSE;
a92713e6 4896 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
364215c8
RS
4897 is_freg = TRUE;
4898 else
a92713e6 4899 return FALSE;
364215c8
RS
4900
4901 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
4902 {
4903 mask &= ~(7 << 3);
4904 mask |= (5 + regno2) << 3;
4905 }
4906 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
4907 mask |= (regno2 - 3) << 3;
4908 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
4909 mask |= (regno2 - 15) << 1;
4910 else if (regno1 == RA && regno2 == RA)
4911 mask |= 1;
4912 else
a92713e6 4913 return FALSE;
364215c8 4914 }
a92713e6
RS
4915 while (match_char (arg, ','));
4916
364215c8 4917 insn_insert_operand (arg->insn, operand, mask);
a92713e6 4918 return TRUE;
364215c8
RS
4919}
4920
4921/* OP_SAVE_RESTORE_LIST matcher. */
4922
a92713e6
RS
4923static bfd_boolean
4924match_save_restore_list_operand (struct mips_arg_info *arg)
364215c8
RS
4925{
4926 unsigned int opcode, args, statics, sregs;
4927 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
364215c8 4928 offsetT frame_size;
364215c8 4929
364215c8
RS
4930 opcode = arg->insn->insn_opcode;
4931 frame_size = 0;
4932 num_frame_sizes = 0;
4933 args = 0;
4934 statics = 0;
4935 sregs = 0;
a92713e6 4936 do
364215c8
RS
4937 {
4938 unsigned int regno1, regno2;
4939
a92713e6 4940 if (arg->token->type == OT_INTEGER)
364215c8
RS
4941 {
4942 /* Handle the frame size. */
1a00e612 4943 if (!match_const_int (arg, &frame_size))
a92713e6 4944 return FALSE;
364215c8 4945 num_frame_sizes += 1;
364215c8
RS
4946 }
4947 else
4948 {
a92713e6
RS
4949 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
4950 return FALSE;
364215c8
RS
4951
4952 while (regno1 <= regno2)
4953 {
4954 if (regno1 >= 4 && regno1 <= 7)
4955 {
4956 if (num_frame_sizes == 0)
4957 /* args $a0-$a3 */
4958 args |= 1 << (regno1 - 4);
4959 else
4960 /* statics $a0-$a3 */
4961 statics |= 1 << (regno1 - 4);
4962 }
4963 else if (regno1 >= 16 && regno1 <= 23)
4964 /* $s0-$s7 */
4965 sregs |= 1 << (regno1 - 16);
4966 else if (regno1 == 30)
4967 /* $s8 */
4968 sregs |= 1 << 8;
4969 else if (regno1 == 31)
4970 /* Add $ra to insn. */
4971 opcode |= 0x40;
4972 else
a92713e6 4973 return FALSE;
364215c8
RS
4974 regno1 += 1;
4975 if (regno1 == 24)
4976 regno1 = 30;
4977 }
4978 }
364215c8 4979 }
a92713e6 4980 while (match_char (arg, ','));
364215c8
RS
4981
4982 /* Encode args/statics combination. */
4983 if (args & statics)
a92713e6 4984 return FALSE;
364215c8
RS
4985 else if (args == 0xf)
4986 /* All $a0-$a3 are args. */
4987 opcode |= MIPS16_ALL_ARGS << 16;
4988 else if (statics == 0xf)
4989 /* All $a0-$a3 are statics. */
4990 opcode |= MIPS16_ALL_STATICS << 16;
4991 else
4992 {
4993 /* Count arg registers. */
4994 num_args = 0;
4995 while (args & 0x1)
4996 {
4997 args >>= 1;
4998 num_args += 1;
4999 }
5000 if (args != 0)
a92713e6 5001 return FALSE;
364215c8
RS
5002
5003 /* Count static registers. */
5004 num_statics = 0;
5005 while (statics & 0x8)
5006 {
5007 statics = (statics << 1) & 0xf;
5008 num_statics += 1;
5009 }
5010 if (statics != 0)
a92713e6 5011 return FALSE;
364215c8
RS
5012
5013 /* Encode args/statics. */
5014 opcode |= ((num_args << 2) | num_statics) << 16;
5015 }
5016
5017 /* Encode $s0/$s1. */
5018 if (sregs & (1 << 0)) /* $s0 */
5019 opcode |= 0x20;
5020 if (sregs & (1 << 1)) /* $s1 */
5021 opcode |= 0x10;
5022 sregs >>= 2;
5023
5024 /* Encode $s2-$s8. */
5025 num_sregs = 0;
5026 while (sregs & 1)
5027 {
5028 sregs >>= 1;
5029 num_sregs += 1;
5030 }
5031 if (sregs != 0)
a92713e6 5032 return FALSE;
364215c8
RS
5033 opcode |= num_sregs << 24;
5034
5035 /* Encode frame size. */
5036 if (num_frame_sizes == 0)
1a00e612
RS
5037 {
5038 set_insn_error (arg->argnum, _("missing frame size"));
5039 return FALSE;
5040 }
5041 if (num_frame_sizes > 1)
5042 {
5043 set_insn_error (arg->argnum, _("frame size specified twice"));
5044 return FALSE;
5045 }
5046 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5047 {
5048 set_insn_error (arg->argnum, _("invalid frame size"));
5049 return FALSE;
5050 }
5051 if (frame_size != 128 || (opcode >> 16) != 0)
364215c8
RS
5052 {
5053 frame_size /= 8;
5054 opcode |= (((frame_size & 0xf0) << 16)
5055 | (frame_size & 0x0f));
5056 }
5057
364215c8
RS
5058 /* Finally build the instruction. */
5059 if ((opcode >> 16) != 0 || frame_size == 0)
5060 opcode |= MIPS16_EXTEND;
5061 arg->insn->insn_opcode = opcode;
a92713e6 5062 return TRUE;
364215c8
RS
5063}
5064
a1d78564
RS
5065/* OP_MDMX_IMM_REG matcher. */
5066
a92713e6 5067static bfd_boolean
a1d78564 5068match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
a92713e6 5069 const struct mips_operand *operand)
a1d78564 5070{
a92713e6 5071 unsigned int regno, uval;
a1d78564
RS
5072 bfd_boolean is_qh;
5073 const struct mips_opcode *opcode;
5074
5075 /* The mips_opcode records whether this is an octobyte or quadhalf
5076 instruction. Start out with that bit in place. */
5077 opcode = arg->insn->insn_mo;
5078 uval = mips_extract_operand (operand, opcode->match);
5079 is_qh = (uval != 0);
5080
a92713e6 5081 if (arg->token->type == OT_REG || arg->token->type == OT_REG_ELEMENT)
a1d78564
RS
5082 {
5083 if ((opcode->membership & INSN_5400)
5084 && strcmp (opcode->name, "rzu.ob") == 0)
5085 {
1a00e612
RS
5086 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5087 arg->argnum);
5088 return FALSE;
a1d78564
RS
5089 }
5090
5091 /* Check whether this is a vector register or a broadcast of
5092 a single element. */
a92713e6 5093 if (arg->token->type == OT_REG_ELEMENT)
a1d78564 5094 {
a92713e6
RS
5095 if (!match_regno (arg, OP_REG_VEC, arg->token->u.reg_element.regno,
5096 &regno))
5097 return FALSE;
5098 if (arg->token->u.reg_element.index > (is_qh ? 3 : 7))
a1d78564 5099 {
1a00e612
RS
5100 set_insn_error (arg->argnum, _("invalid element selector"));
5101 return FALSE;
a1d78564 5102 }
a1d78564 5103 else
a92713e6 5104 uval |= arg->token->u.reg_element.index << (is_qh ? 2 : 1) << 5;
a1d78564
RS
5105 }
5106 else
5107 {
5108 /* A full vector. */
5109 if ((opcode->membership & INSN_5400)
5110 && (strcmp (opcode->name, "sll.ob") == 0
5111 || strcmp (opcode->name, "srl.ob") == 0))
5112 {
1a00e612
RS
5113 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5114 arg->argnum);
5115 return FALSE;
a1d78564
RS
5116 }
5117
a92713e6
RS
5118 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5119 return FALSE;
a1d78564
RS
5120 if (is_qh)
5121 uval |= MDMX_FMTSEL_VEC_QH << 5;
5122 else
5123 uval |= MDMX_FMTSEL_VEC_OB << 5;
5124 }
a1d78564 5125 uval |= regno;
a92713e6 5126 ++arg->token;
a1d78564
RS
5127 }
5128 else
5129 {
5130 offsetT sval;
5131
1a00e612 5132 if (!match_const_int (arg, &sval))
a92713e6 5133 return FALSE;
a1d78564
RS
5134 if (sval < 0 || sval > 31)
5135 {
1a00e612
RS
5136 match_out_of_range (arg);
5137 return FALSE;
a1d78564
RS
5138 }
5139 uval |= (sval & 31);
5140 if (is_qh)
5141 uval |= MDMX_FMTSEL_IMM_QH << 5;
5142 else
5143 uval |= MDMX_FMTSEL_IMM_OB << 5;
5144 }
5145 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5146 return TRUE;
a1d78564
RS
5147}
5148
5149/* OP_PC matcher. */
5150
a92713e6
RS
5151static bfd_boolean
5152match_pc_operand (struct mips_arg_info *arg)
a1d78564 5153{
a92713e6
RS
5154 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5155 {
5156 ++arg->token;
5157 return TRUE;
5158 }
5159 return FALSE;
a1d78564
RS
5160}
5161
5162/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5163 register that we need to match. */
5164
a92713e6
RS
5165static bfd_boolean
5166match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
a1d78564
RS
5167{
5168 unsigned int regno;
5169
a92713e6 5170 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
a1d78564
RS
5171}
5172
89565f1b
RS
5173/* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5174 the length of the value in bytes (4 for float, 8 for double) and
5175 USING_GPRS says whether the destination is a GPR rather than an FPR.
5176
5177 Return the constant in IMM and OFFSET as follows:
5178
5179 - If the constant should be loaded via memory, set IMM to O_absent and
5180 OFFSET to the memory address.
5181
5182 - Otherwise, if the constant should be loaded into two 32-bit registers,
5183 set IMM to the O_constant to load into the high register and OFFSET
5184 to the corresponding value for the low register.
5185
5186 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5187
5188 These constants only appear as the last operand in an instruction,
5189 and every instruction that accepts them in any variant accepts them
5190 in all variants. This means we don't have to worry about backing out
5191 any changes if the instruction does not match. We just match
5192 unconditionally and report an error if the constant is invalid. */
5193
a92713e6
RS
5194static bfd_boolean
5195match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5196 expressionS *offset, int length, bfd_boolean using_gprs)
89565f1b 5197{
a92713e6 5198 char *p;
89565f1b
RS
5199 segT seg, new_seg;
5200 subsegT subseg;
5201 const char *newname;
a92713e6 5202 unsigned char *data;
89565f1b
RS
5203
5204 /* Where the constant is placed is based on how the MIPS assembler
5205 does things:
5206
5207 length == 4 && using_gprs -- immediate value only
5208 length == 8 && using_gprs -- .rdata or immediate value
5209 length == 4 && !using_gprs -- .lit4 or immediate value
5210 length == 8 && !using_gprs -- .lit8 or immediate value
5211
5212 The .lit4 and .lit8 sections are only used if permitted by the
5213 -G argument. */
a92713e6 5214 if (arg->token->type != OT_FLOAT)
1a00e612
RS
5215 {
5216 set_insn_error (arg->argnum, _("floating-point expression required"));
5217 return FALSE;
5218 }
a92713e6
RS
5219
5220 gas_assert (arg->token->u.flt.length == length);
5221 data = arg->token->u.flt.data;
5222 ++arg->token;
89565f1b
RS
5223
5224 /* Handle 32-bit constants for which an immediate value is best. */
5225 if (length == 4
5226 && (using_gprs
5227 || g_switch_value < 4
5228 || (data[0] == 0 && data[1] == 0)
5229 || (data[2] == 0 && data[3] == 0)))
5230 {
5231 imm->X_op = O_constant;
5232 if (!target_big_endian)
5233 imm->X_add_number = bfd_getl32 (data);
5234 else
5235 imm->X_add_number = bfd_getb32 (data);
5236 offset->X_op = O_absent;
a92713e6 5237 return TRUE;
89565f1b
RS
5238 }
5239
5240 /* Handle 64-bit constants for which an immediate value is best. */
5241 if (length == 8
5242 && !mips_disable_float_construction
5243 /* Constants can only be constructed in GPRs and copied
5244 to FPRs if the GPRs are at least as wide as the FPRs.
5245 Force the constant into memory if we are using 64-bit FPRs
5246 but the GPRs are only 32 bits wide. */
5247 /* ??? No longer true with the addition of MTHC1, but this
5248 is legacy code... */
5249 && (using_gprs || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
5250 && ((data[0] == 0 && data[1] == 0)
5251 || (data[2] == 0 && data[3] == 0))
5252 && ((data[4] == 0 && data[5] == 0)
5253 || (data[6] == 0 && data[7] == 0)))
5254 {
5255 /* The value is simple enough to load with a couple of instructions.
5256 If using 32-bit registers, set IMM to the high order 32 bits and
5257 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5258 64 bit constant. */
5259 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
5260 {
5261 imm->X_op = O_constant;
5262 offset->X_op = O_constant;
5263 if (!target_big_endian)
5264 {
5265 imm->X_add_number = bfd_getl32 (data + 4);
5266 offset->X_add_number = bfd_getl32 (data);
5267 }
5268 else
5269 {
5270 imm->X_add_number = bfd_getb32 (data);
5271 offset->X_add_number = bfd_getb32 (data + 4);
5272 }
5273 if (offset->X_add_number == 0)
5274 offset->X_op = O_absent;
5275 }
5276 else
5277 {
5278 imm->X_op = O_constant;
5279 if (!target_big_endian)
5280 imm->X_add_number = bfd_getl64 (data);
5281 else
5282 imm->X_add_number = bfd_getb64 (data);
5283 offset->X_op = O_absent;
5284 }
a92713e6 5285 return TRUE;
89565f1b
RS
5286 }
5287
5288 /* Switch to the right section. */
5289 seg = now_seg;
5290 subseg = now_subseg;
5291 if (length == 4)
5292 {
5293 gas_assert (!using_gprs && g_switch_value >= 4);
5294 newname = ".lit4";
5295 }
5296 else
5297 {
5298 if (using_gprs || g_switch_value < 8)
5299 newname = RDATA_SECTION_NAME;
5300 else
5301 newname = ".lit8";
5302 }
5303
5304 new_seg = subseg_new (newname, (subsegT) 0);
5305 bfd_set_section_flags (stdoutput, new_seg,
5306 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5307 frag_align (length == 4 ? 2 : 3, 0, 0);
5308 if (strncmp (TARGET_OS, "elf", 3) != 0)
5309 record_alignment (new_seg, 4);
5310 else
5311 record_alignment (new_seg, length == 4 ? 2 : 3);
5312 if (seg == now_seg)
5313 as_bad (_("Can't use floating point insn in this section"));
5314
5315 /* Set the argument to the current address in the section. */
5316 imm->X_op = O_absent;
5317 offset->X_op = O_symbol;
5318 offset->X_add_symbol = symbol_temp_new_now ();
5319 offset->X_add_number = 0;
5320
5321 /* Put the floating point number into the section. */
5322 p = frag_more (length);
5323 memcpy (p, data, length);
5324
5325 /* Switch back to the original section. */
5326 subseg_set (seg, subseg);
a92713e6 5327 return TRUE;
89565f1b
RS
5328}
5329
14daeee3
RS
5330/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5331 them. */
5332
5333static bfd_boolean
5334match_vu0_suffix_operand (struct mips_arg_info *arg,
5335 const struct mips_operand *operand,
5336 bfd_boolean match_p)
5337{
5338 unsigned int uval;
5339
5340 /* The operand can be an XYZW mask or a single 2-bit channel index
5341 (with X being 0). */
5342 gas_assert (operand->size == 2 || operand->size == 4);
5343
ee5734f0 5344 /* The suffix can be omitted when it is already part of the opcode. */
14daeee3 5345 if (arg->token->type != OT_CHANNELS)
ee5734f0 5346 return match_p;
14daeee3
RS
5347
5348 uval = arg->token->u.channels;
5349 if (operand->size == 2)
5350 {
5351 /* Check that a single bit is set and convert it into a 2-bit index. */
5352 if ((uval & -uval) != uval)
5353 return FALSE;
5354 uval = 4 - ffs (uval);
5355 }
5356
5357 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5358 return FALSE;
5359
5360 ++arg->token;
5361 if (!match_p)
5362 insn_insert_operand (arg->insn, operand, uval);
5363 return TRUE;
5364}
5365
a1d78564
RS
5366/* S is the text seen for ARG. Match it against OPERAND. Return the end
5367 of the argument text if the match is successful, otherwise return null. */
5368
a92713e6 5369static bfd_boolean
a1d78564 5370match_operand (struct mips_arg_info *arg,
a92713e6 5371 const struct mips_operand *operand)
a1d78564
RS
5372{
5373 switch (operand->type)
5374 {
5375 case OP_INT:
a92713e6 5376 return match_int_operand (arg, operand);
a1d78564
RS
5377
5378 case OP_MAPPED_INT:
a92713e6 5379 return match_mapped_int_operand (arg, operand);
a1d78564
RS
5380
5381 case OP_MSB:
a92713e6 5382 return match_msb_operand (arg, operand);
a1d78564
RS
5383
5384 case OP_REG:
0f35dbc4 5385 case OP_OPTIONAL_REG:
a92713e6 5386 return match_reg_operand (arg, operand);
a1d78564
RS
5387
5388 case OP_REG_PAIR:
a92713e6 5389 return match_reg_pair_operand (arg, operand);
a1d78564
RS
5390
5391 case OP_PCREL:
a92713e6 5392 return match_pcrel_operand (arg);
a1d78564
RS
5393
5394 case OP_PERF_REG:
a92713e6 5395 return match_perf_reg_operand (arg, operand);
a1d78564
RS
5396
5397 case OP_ADDIUSP_INT:
a92713e6 5398 return match_addiusp_operand (arg, operand);
a1d78564
RS
5399
5400 case OP_CLO_CLZ_DEST:
a92713e6 5401 return match_clo_clz_dest_operand (arg, operand);
a1d78564
RS
5402
5403 case OP_LWM_SWM_LIST:
a92713e6 5404 return match_lwm_swm_list_operand (arg, operand);
a1d78564
RS
5405
5406 case OP_ENTRY_EXIT_LIST:
a92713e6 5407 return match_entry_exit_operand (arg, operand);
364215c8 5408
a1d78564 5409 case OP_SAVE_RESTORE_LIST:
a92713e6 5410 return match_save_restore_list_operand (arg);
a1d78564
RS
5411
5412 case OP_MDMX_IMM_REG:
a92713e6 5413 return match_mdmx_imm_reg_operand (arg, operand);
a1d78564
RS
5414
5415 case OP_REPEAT_DEST_REG:
a92713e6 5416 return match_tied_reg_operand (arg, arg->dest_regno);
a1d78564
RS
5417
5418 case OP_REPEAT_PREV_REG:
a92713e6 5419 return match_tied_reg_operand (arg, arg->last_regno);
a1d78564
RS
5420
5421 case OP_PC:
a92713e6 5422 return match_pc_operand (arg);
14daeee3
RS
5423
5424 case OP_VU0_SUFFIX:
5425 return match_vu0_suffix_operand (arg, operand, FALSE);
5426
5427 case OP_VU0_MATCH_SUFFIX:
5428 return match_vu0_suffix_operand (arg, operand, TRUE);
a1d78564
RS
5429 }
5430 abort ();
5431}
5432
5433/* ARG is the state after successfully matching an instruction.
5434 Issue any queued-up warnings. */
5435
5436static void
5437check_completed_insn (struct mips_arg_info *arg)
5438{
5439 if (arg->seen_at)
5440 {
5441 if (AT == ATREG)
5442 as_warn (_("Used $at without \".set noat\""));
5443 else
5444 as_warn (_("Used $%u with \".set at=$%u\""), AT, AT);
5445 }
5446}
a1d78564 5447
85fcb30f
RS
5448/* Return true if modifying general-purpose register REG needs a delay. */
5449
5450static bfd_boolean
5451reg_needs_delay (unsigned int reg)
5452{
5453 unsigned long prev_pinfo;
5454
5455 prev_pinfo = history[0].insn_mo->pinfo;
5456 if (!mips_opts.noreorder
5457 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY) && !gpr_interlocks)
5458 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY) && !cop_interlocks))
5459 && (gpr_write_mask (&history[0]) & (1 << reg)))
5460 return TRUE;
5461
5462 return FALSE;
5463}
5464
71400594
RS
5465/* Classify an instruction according to the FIX_VR4120_* enumeration.
5466 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
5467 by VR4120 errata. */
4d7206a2 5468
71400594
RS
5469static unsigned int
5470classify_vr4120_insn (const char *name)
252b5132 5471{
71400594
RS
5472 if (strncmp (name, "macc", 4) == 0)
5473 return FIX_VR4120_MACC;
5474 if (strncmp (name, "dmacc", 5) == 0)
5475 return FIX_VR4120_DMACC;
5476 if (strncmp (name, "mult", 4) == 0)
5477 return FIX_VR4120_MULT;
5478 if (strncmp (name, "dmult", 5) == 0)
5479 return FIX_VR4120_DMULT;
5480 if (strstr (name, "div"))
5481 return FIX_VR4120_DIV;
5482 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
5483 return FIX_VR4120_MTHILO;
5484 return NUM_FIX_VR4120_CLASSES;
5485}
252b5132 5486
ff239038
CM
5487#define INSN_ERET 0x42000018
5488#define INSN_DERET 0x4200001f
5489
71400594
RS
5490/* Return the number of instructions that must separate INSN1 and INSN2,
5491 where INSN1 is the earlier instruction. Return the worst-case value
5492 for any INSN2 if INSN2 is null. */
252b5132 5493
71400594
RS
5494static unsigned int
5495insns_between (const struct mips_cl_insn *insn1,
5496 const struct mips_cl_insn *insn2)
5497{
5498 unsigned long pinfo1, pinfo2;
4c260379 5499 unsigned int mask;
71400594 5500
85fcb30f
RS
5501 /* If INFO2 is null, pessimistically assume that all flags are set for
5502 the second instruction. */
71400594
RS
5503 pinfo1 = insn1->insn_mo->pinfo;
5504 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
252b5132 5505
71400594
RS
5506 /* For most targets, write-after-read dependencies on the HI and LO
5507 registers must be separated by at least two instructions. */
5508 if (!hilo_interlocks)
252b5132 5509 {
71400594
RS
5510 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
5511 return 2;
5512 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
5513 return 2;
5514 }
5515
5516 /* If we're working around r7000 errata, there must be two instructions
5517 between an mfhi or mflo and any instruction that uses the result. */
5518 if (mips_7000_hilo_fix
df58fc94 5519 && !mips_opts.micromips
71400594 5520 && MF_HILO_INSN (pinfo1)
85fcb30f 5521 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
71400594
RS
5522 return 2;
5523
ff239038
CM
5524 /* If we're working around 24K errata, one instruction is required
5525 if an ERET or DERET is followed by a branch instruction. */
df58fc94 5526 if (mips_fix_24k && !mips_opts.micromips)
ff239038
CM
5527 {
5528 if (insn1->insn_opcode == INSN_ERET
5529 || insn1->insn_opcode == INSN_DERET)
5530 {
5531 if (insn2 == NULL
5532 || insn2->insn_opcode == INSN_ERET
5533 || insn2->insn_opcode == INSN_DERET
11625dd8 5534 || delayed_branch_p (insn2))
ff239038
CM
5535 return 1;
5536 }
5537 }
5538
71400594
RS
5539 /* If working around VR4120 errata, check for combinations that need
5540 a single intervening instruction. */
df58fc94 5541 if (mips_fix_vr4120 && !mips_opts.micromips)
71400594
RS
5542 {
5543 unsigned int class1, class2;
252b5132 5544
71400594
RS
5545 class1 = classify_vr4120_insn (insn1->insn_mo->name);
5546 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
252b5132 5547 {
71400594
RS
5548 if (insn2 == NULL)
5549 return 1;
5550 class2 = classify_vr4120_insn (insn2->insn_mo->name);
5551 if (vr4120_conflicts[class1] & (1 << class2))
5552 return 1;
252b5132 5553 }
71400594
RS
5554 }
5555
df58fc94 5556 if (!HAVE_CODE_COMPRESSION)
71400594
RS
5557 {
5558 /* Check for GPR or coprocessor load delays. All such delays
5559 are on the RT register. */
5560 /* Itbl support may require additional care here. */
5561 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
5562 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
252b5132 5563 {
85fcb30f 5564 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
71400594
RS
5565 return 1;
5566 }
5567
5568 /* Check for generic coprocessor hazards.
5569
5570 This case is not handled very well. There is no special
5571 knowledge of CP0 handling, and the coprocessors other than
5572 the floating point unit are not distinguished at all. */
5573 /* Itbl support may require additional care here. FIXME!
5574 Need to modify this to include knowledge about
5575 user specified delays! */
5576 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
5577 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
5578 {
5579 /* Handle cases where INSN1 writes to a known general coprocessor
5580 register. There must be a one instruction delay before INSN2
5581 if INSN2 reads that register, otherwise no delay is needed. */
4c260379
RS
5582 mask = fpr_write_mask (insn1);
5583 if (mask != 0)
252b5132 5584 {
4c260379 5585 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
71400594 5586 return 1;
252b5132
RH
5587 }
5588 else
5589 {
71400594
RS
5590 /* Read-after-write dependencies on the control registers
5591 require a two-instruction gap. */
5592 if ((pinfo1 & INSN_WRITE_COND_CODE)
5593 && (pinfo2 & INSN_READ_COND_CODE))
5594 return 2;
5595
5596 /* We don't know exactly what INSN1 does. If INSN2 is
5597 also a coprocessor instruction, assume there must be
5598 a one instruction gap. */
5599 if (pinfo2 & INSN_COP)
5600 return 1;
252b5132
RH
5601 }
5602 }
6b76fefe 5603
71400594
RS
5604 /* Check for read-after-write dependencies on the coprocessor
5605 control registers in cases where INSN1 does not need a general
5606 coprocessor delay. This means that INSN1 is a floating point
5607 comparison instruction. */
5608 /* Itbl support may require additional care here. */
5609 else if (!cop_interlocks
5610 && (pinfo1 & INSN_WRITE_COND_CODE)
5611 && (pinfo2 & INSN_READ_COND_CODE))
5612 return 1;
5613 }
6b76fefe 5614
71400594
RS
5615 return 0;
5616}
6b76fefe 5617
7d8e00cf
RS
5618/* Return the number of nops that would be needed to work around the
5619 VR4130 mflo/mfhi errata if instruction INSN immediately followed
932d1a1b
RS
5620 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
5621 that are contained within the first IGNORE instructions of HIST. */
7d8e00cf
RS
5622
5623static int
932d1a1b 5624nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
7d8e00cf
RS
5625 const struct mips_cl_insn *insn)
5626{
4c260379
RS
5627 int i, j;
5628 unsigned int mask;
7d8e00cf
RS
5629
5630 /* Check if the instruction writes to HI or LO. MTHI and MTLO
5631 are not affected by the errata. */
5632 if (insn != 0
5633 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
5634 || strcmp (insn->insn_mo->name, "mtlo") == 0
5635 || strcmp (insn->insn_mo->name, "mthi") == 0))
5636 return 0;
5637
5638 /* Search for the first MFLO or MFHI. */
5639 for (i = 0; i < MAX_VR4130_NOPS; i++)
91d6fa6a 5640 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
7d8e00cf
RS
5641 {
5642 /* Extract the destination register. */
4c260379 5643 mask = gpr_write_mask (&hist[i]);
7d8e00cf
RS
5644
5645 /* No nops are needed if INSN reads that register. */
4c260379 5646 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
7d8e00cf
RS
5647 return 0;
5648
5649 /* ...or if any of the intervening instructions do. */
5650 for (j = 0; j < i; j++)
4c260379 5651 if (gpr_read_mask (&hist[j]) & mask)
7d8e00cf
RS
5652 return 0;
5653
932d1a1b
RS
5654 if (i >= ignore)
5655 return MAX_VR4130_NOPS - i;
7d8e00cf
RS
5656 }
5657 return 0;
5658}
5659
15be625d
CM
5660#define BASE_REG_EQ(INSN1, INSN2) \
5661 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
5662 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
5663
5664/* Return the minimum alignment for this store instruction. */
5665
5666static int
5667fix_24k_align_to (const struct mips_opcode *mo)
5668{
5669 if (strcmp (mo->name, "sh") == 0)
5670 return 2;
5671
5672 if (strcmp (mo->name, "swc1") == 0
5673 || strcmp (mo->name, "swc2") == 0
5674 || strcmp (mo->name, "sw") == 0
5675 || strcmp (mo->name, "sc") == 0
5676 || strcmp (mo->name, "s.s") == 0)
5677 return 4;
5678
5679 if (strcmp (mo->name, "sdc1") == 0
5680 || strcmp (mo->name, "sdc2") == 0
5681 || strcmp (mo->name, "s.d") == 0)
5682 return 8;
5683
5684 /* sb, swl, swr */
5685 return 1;
5686}
5687
5688struct fix_24k_store_info
5689 {
5690 /* Immediate offset, if any, for this store instruction. */
5691 short off;
5692 /* Alignment required by this store instruction. */
5693 int align_to;
5694 /* True for register offsets. */
5695 int register_offset;
5696 };
5697
5698/* Comparison function used by qsort. */
5699
5700static int
5701fix_24k_sort (const void *a, const void *b)
5702{
5703 const struct fix_24k_store_info *pos1 = a;
5704 const struct fix_24k_store_info *pos2 = b;
5705
5706 return (pos1->off - pos2->off);
5707}
5708
5709/* INSN is a store instruction. Try to record the store information
5710 in STINFO. Return false if the information isn't known. */
5711
5712static bfd_boolean
5713fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
ab9794cf 5714 const struct mips_cl_insn *insn)
15be625d
CM
5715{
5716 /* The instruction must have a known offset. */
5717 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
5718 return FALSE;
5719
5720 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
5721 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
5722 return TRUE;
5723}
5724
932d1a1b
RS
5725/* Return the number of nops that would be needed to work around the 24k
5726 "lost data on stores during refill" errata if instruction INSN
5727 immediately followed the 2 instructions described by HIST.
5728 Ignore hazards that are contained within the first IGNORE
5729 instructions of HIST.
5730
5731 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
5732 for the data cache refills and store data. The following describes
5733 the scenario where the store data could be lost.
5734
5735 * A data cache miss, due to either a load or a store, causing fill
5736 data to be supplied by the memory subsystem
5737 * The first three doublewords of fill data are returned and written
5738 into the cache
5739 * A sequence of four stores occurs in consecutive cycles around the
5740 final doubleword of the fill:
5741 * Store A
5742 * Store B
5743 * Store C
5744 * Zero, One or more instructions
5745 * Store D
5746
5747 The four stores A-D must be to different doublewords of the line that
5748 is being filled. The fourth instruction in the sequence above permits
5749 the fill of the final doubleword to be transferred from the FSB into
5750 the cache. In the sequence above, the stores may be either integer
5751 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
5752 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
5753 different doublewords on the line. If the floating point unit is
5754 running in 1:2 mode, it is not possible to create the sequence above
5755 using only floating point store instructions.
15be625d
CM
5756
5757 In this case, the cache line being filled is incorrectly marked
5758 invalid, thereby losing the data from any store to the line that
5759 occurs between the original miss and the completion of the five
5760 cycle sequence shown above.
5761
932d1a1b 5762 The workarounds are:
15be625d 5763
932d1a1b
RS
5764 * Run the data cache in write-through mode.
5765 * Insert a non-store instruction between
5766 Store A and Store B or Store B and Store C. */
15be625d
CM
5767
5768static int
932d1a1b 5769nops_for_24k (int ignore, const struct mips_cl_insn *hist,
15be625d
CM
5770 const struct mips_cl_insn *insn)
5771{
5772 struct fix_24k_store_info pos[3];
5773 int align, i, base_offset;
5774
932d1a1b
RS
5775 if (ignore >= 2)
5776 return 0;
5777
ab9794cf
RS
5778 /* If the previous instruction wasn't a store, there's nothing to
5779 worry about. */
15be625d
CM
5780 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
5781 return 0;
5782
ab9794cf
RS
5783 /* If the instructions after the previous one are unknown, we have
5784 to assume the worst. */
5785 if (!insn)
15be625d
CM
5786 return 1;
5787
ab9794cf
RS
5788 /* Check whether we are dealing with three consecutive stores. */
5789 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
5790 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
15be625d
CM
5791 return 0;
5792
5793 /* If we don't know the relationship between the store addresses,
5794 assume the worst. */
ab9794cf 5795 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
15be625d
CM
5796 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
5797 return 1;
5798
5799 if (!fix_24k_record_store_info (&pos[0], insn)
5800 || !fix_24k_record_store_info (&pos[1], &hist[0])
5801 || !fix_24k_record_store_info (&pos[2], &hist[1]))
5802 return 1;
5803
5804 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
5805
5806 /* Pick a value of ALIGN and X such that all offsets are adjusted by
5807 X bytes and such that the base register + X is known to be aligned
5808 to align bytes. */
5809
5810 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
5811 align = 8;
5812 else
5813 {
5814 align = pos[0].align_to;
5815 base_offset = pos[0].off;
5816 for (i = 1; i < 3; i++)
5817 if (align < pos[i].align_to)
5818 {
5819 align = pos[i].align_to;
5820 base_offset = pos[i].off;
5821 }
5822 for (i = 0; i < 3; i++)
5823 pos[i].off -= base_offset;
5824 }
5825
5826 pos[0].off &= ~align + 1;
5827 pos[1].off &= ~align + 1;
5828 pos[2].off &= ~align + 1;
5829
5830 /* If any two stores write to the same chunk, they also write to the
5831 same doubleword. The offsets are still sorted at this point. */
5832 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
5833 return 0;
5834
5835 /* A range of at least 9 bytes is needed for the stores to be in
5836 non-overlapping doublewords. */
5837 if (pos[2].off - pos[0].off <= 8)
5838 return 0;
5839
5840 if (pos[2].off - pos[1].off >= 24
5841 || pos[1].off - pos[0].off >= 24
5842 || pos[2].off - pos[0].off >= 32)
5843 return 0;
5844
5845 return 1;
5846}
5847
71400594 5848/* Return the number of nops that would be needed if instruction INSN
91d6fa6a 5849 immediately followed the MAX_NOPS instructions given by HIST,
932d1a1b
RS
5850 where HIST[0] is the most recent instruction. Ignore hazards
5851 between INSN and the first IGNORE instructions in HIST.
5852
5853 If INSN is null, return the worse-case number of nops for any
5854 instruction. */
bdaaa2e1 5855
71400594 5856static int
932d1a1b 5857nops_for_insn (int ignore, const struct mips_cl_insn *hist,
71400594
RS
5858 const struct mips_cl_insn *insn)
5859{
5860 int i, nops, tmp_nops;
bdaaa2e1 5861
71400594 5862 nops = 0;
932d1a1b 5863 for (i = ignore; i < MAX_DELAY_NOPS; i++)
65b02341 5864 {
91d6fa6a 5865 tmp_nops = insns_between (hist + i, insn) - i;
65b02341
RS
5866 if (tmp_nops > nops)
5867 nops = tmp_nops;
5868 }
7d8e00cf 5869
df58fc94 5870 if (mips_fix_vr4130 && !mips_opts.micromips)
7d8e00cf 5871 {
932d1a1b 5872 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
7d8e00cf
RS
5873 if (tmp_nops > nops)
5874 nops = tmp_nops;
5875 }
5876
df58fc94 5877 if (mips_fix_24k && !mips_opts.micromips)
15be625d 5878 {
932d1a1b 5879 tmp_nops = nops_for_24k (ignore, hist, insn);
15be625d
CM
5880 if (tmp_nops > nops)
5881 nops = tmp_nops;
5882 }
5883
71400594
RS
5884 return nops;
5885}
252b5132 5886
71400594 5887/* The variable arguments provide NUM_INSNS extra instructions that
91d6fa6a 5888 might be added to HIST. Return the largest number of nops that
932d1a1b
RS
5889 would be needed after the extended sequence, ignoring hazards
5890 in the first IGNORE instructions. */
252b5132 5891
71400594 5892static int
932d1a1b
RS
5893nops_for_sequence (int num_insns, int ignore,
5894 const struct mips_cl_insn *hist, ...)
71400594
RS
5895{
5896 va_list args;
5897 struct mips_cl_insn buffer[MAX_NOPS];
5898 struct mips_cl_insn *cursor;
5899 int nops;
5900
91d6fa6a 5901 va_start (args, hist);
71400594 5902 cursor = buffer + num_insns;
91d6fa6a 5903 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
71400594
RS
5904 while (cursor > buffer)
5905 *--cursor = *va_arg (args, const struct mips_cl_insn *);
5906
932d1a1b 5907 nops = nops_for_insn (ignore, buffer, NULL);
71400594
RS
5908 va_end (args);
5909 return nops;
5910}
252b5132 5911
71400594
RS
5912/* Like nops_for_insn, but if INSN is a branch, take into account the
5913 worst-case delay for the branch target. */
252b5132 5914
71400594 5915static int
932d1a1b 5916nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
71400594
RS
5917 const struct mips_cl_insn *insn)
5918{
5919 int nops, tmp_nops;
60b63b72 5920
932d1a1b 5921 nops = nops_for_insn (ignore, hist, insn);
11625dd8 5922 if (delayed_branch_p (insn))
71400594 5923 {
932d1a1b 5924 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
14fe068b 5925 hist, insn, get_delay_slot_nop (insn));
71400594
RS
5926 if (tmp_nops > nops)
5927 nops = tmp_nops;
5928 }
11625dd8 5929 else if (compact_branch_p (insn))
71400594 5930 {
932d1a1b 5931 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
71400594
RS
5932 if (tmp_nops > nops)
5933 nops = tmp_nops;
5934 }
5935 return nops;
5936}
5937
c67a084a
NC
5938/* Fix NOP issue: Replace nops by "or at,at,zero". */
5939
5940static void
5941fix_loongson2f_nop (struct mips_cl_insn * ip)
5942{
df58fc94 5943 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
5944 if (strcmp (ip->insn_mo->name, "nop") == 0)
5945 ip->insn_opcode = LOONGSON2F_NOP_INSN;
5946}
5947
5948/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
5949 jr target pc &= 'hffff_ffff_cfff_ffff. */
5950
5951static void
5952fix_loongson2f_jump (struct mips_cl_insn * ip)
5953{
df58fc94 5954 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
5955 if (strcmp (ip->insn_mo->name, "j") == 0
5956 || strcmp (ip->insn_mo->name, "jr") == 0
5957 || strcmp (ip->insn_mo->name, "jalr") == 0)
5958 {
5959 int sreg;
5960 expressionS ep;
5961
5962 if (! mips_opts.at)
5963 return;
5964
df58fc94 5965 sreg = EXTRACT_OPERAND (0, RS, *ip);
c67a084a
NC
5966 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
5967 return;
5968
5969 ep.X_op = O_constant;
5970 ep.X_add_number = 0xcfff0000;
5971 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
5972 ep.X_add_number = 0xffff;
5973 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
5974 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
5975 }
5976}
5977
5978static void
5979fix_loongson2f (struct mips_cl_insn * ip)
5980{
5981 if (mips_fix_loongson2f_nop)
5982 fix_loongson2f_nop (ip);
5983
5984 if (mips_fix_loongson2f_jump)
5985 fix_loongson2f_jump (ip);
5986}
5987
a4e06468
RS
5988/* IP is a branch that has a delay slot, and we need to fill it
5989 automatically. Return true if we can do that by swapping IP
e407c74b
NC
5990 with the previous instruction.
5991 ADDRESS_EXPR is an operand of the instruction to be used with
5992 RELOC_TYPE. */
a4e06468
RS
5993
5994static bfd_boolean
e407c74b 5995can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 5996 bfd_reloc_code_real_type *reloc_type)
a4e06468 5997{
2b0c8b40 5998 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
a4e06468
RS
5999 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6000
6001 /* -O2 and above is required for this optimization. */
6002 if (mips_optimize < 2)
6003 return FALSE;
6004
6005 /* If we have seen .set volatile or .set nomove, don't optimize. */
6006 if (mips_opts.nomove)
6007 return FALSE;
6008
6009 /* We can't swap if the previous instruction's position is fixed. */
6010 if (history[0].fixed_p)
6011 return FALSE;
6012
6013 /* If the previous previous insn was in a .set noreorder, we can't
6014 swap. Actually, the MIPS assembler will swap in this situation.
6015 However, gcc configured -with-gnu-as will generate code like
6016
6017 .set noreorder
6018 lw $4,XXX
6019 .set reorder
6020 INSN
6021 bne $4,$0,foo
6022
6023 in which we can not swap the bne and INSN. If gcc is not configured
6024 -with-gnu-as, it does not output the .set pseudo-ops. */
6025 if (history[1].noreorder_p)
6026 return FALSE;
6027
87333bb7
MR
6028 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6029 This means that the previous instruction was a 4-byte one anyhow. */
a4e06468
RS
6030 if (mips_opts.mips16 && history[0].fixp[0])
6031 return FALSE;
6032
6033 /* If the branch is itself the target of a branch, we can not swap.
6034 We cheat on this; all we check for is whether there is a label on
6035 this instruction. If there are any branches to anything other than
6036 a label, users must use .set noreorder. */
6037 if (seg_info (now_seg)->label_list)
6038 return FALSE;
6039
6040 /* If the previous instruction is in a variant frag other than this
2309ddf2 6041 branch's one, we cannot do the swap. This does not apply to
9301f9c3
MR
6042 MIPS16 code, which uses variant frags for different purposes. */
6043 if (!mips_opts.mips16
a4e06468
RS
6044 && history[0].frag
6045 && history[0].frag->fr_type == rs_machine_dependent)
6046 return FALSE;
6047
bcd530a7
RS
6048 /* We do not swap with instructions that cannot architecturally
6049 be placed in a branch delay slot, such as SYNC or ERET. We
6050 also refrain from swapping with a trap instruction, since it
6051 complicates trap handlers to have the trap instruction be in
6052 a delay slot. */
a4e06468 6053 prev_pinfo = history[0].insn_mo->pinfo;
bcd530a7 6054 if (prev_pinfo & INSN_NO_DELAY_SLOT)
a4e06468
RS
6055 return FALSE;
6056
6057 /* Check for conflicts between the branch and the instructions
6058 before the candidate delay slot. */
6059 if (nops_for_insn (0, history + 1, ip) > 0)
6060 return FALSE;
6061
6062 /* Check for conflicts between the swapped sequence and the
6063 target of the branch. */
6064 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6065 return FALSE;
6066
6067 /* If the branch reads a register that the previous
6068 instruction sets, we can not swap. */
6069 gpr_read = gpr_read_mask (ip);
6070 prev_gpr_write = gpr_write_mask (&history[0]);
6071 if (gpr_read & prev_gpr_write)
6072 return FALSE;
6073
6074 /* If the branch writes a register that the previous
6075 instruction sets, we can not swap. */
6076 gpr_write = gpr_write_mask (ip);
6077 if (gpr_write & prev_gpr_write)
6078 return FALSE;
6079
6080 /* If the branch writes a register that the previous
6081 instruction reads, we can not swap. */
6082 prev_gpr_read = gpr_read_mask (&history[0]);
6083 if (gpr_write & prev_gpr_read)
6084 return FALSE;
6085
6086 /* If one instruction sets a condition code and the
6087 other one uses a condition code, we can not swap. */
6088 pinfo = ip->insn_mo->pinfo;
6089 if ((pinfo & INSN_READ_COND_CODE)
6090 && (prev_pinfo & INSN_WRITE_COND_CODE))
6091 return FALSE;
6092 if ((pinfo & INSN_WRITE_COND_CODE)
6093 && (prev_pinfo & INSN_READ_COND_CODE))
6094 return FALSE;
6095
6096 /* If the previous instruction uses the PC, we can not swap. */
2b0c8b40 6097 prev_pinfo2 = history[0].insn_mo->pinfo2;
26545944 6098 if (prev_pinfo2 & INSN2_READ_PC)
2b0c8b40 6099 return FALSE;
a4e06468 6100
df58fc94
RS
6101 /* If the previous instruction has an incorrect size for a fixed
6102 branch delay slot in microMIPS mode, we cannot swap. */
2309ddf2
MR
6103 pinfo2 = ip->insn_mo->pinfo2;
6104 if (mips_opts.micromips
6105 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6106 && insn_length (history) != 2)
6107 return FALSE;
6108 if (mips_opts.micromips
6109 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6110 && insn_length (history) != 4)
6111 return FALSE;
6112
e407c74b
NC
6113 /* On R5900 short loops need to be fixed by inserting a nop in
6114 the branch delay slots.
6115 A short loop can be terminated too early. */
6116 if (mips_opts.arch == CPU_R5900
6117 /* Check if instruction has a parameter, ignore "j $31". */
6118 && (address_expr != NULL)
6119 /* Parameter must be 16 bit. */
6120 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6121 /* Branch to same segment. */
6122 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
6123 /* Branch to same code fragment. */
6124 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
6125 /* Can only calculate branch offset if value is known. */
6126 && symbol_constant_p(address_expr->X_add_symbol)
6127 /* Check if branch is really conditional. */
6128 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6129 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6130 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6131 {
6132 int distance;
6133 /* Check if loop is shorter than 6 instructions including
6134 branch and delay slot. */
6135 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
6136 if (distance <= 20)
6137 {
6138 int i;
6139 int rv;
6140
6141 rv = FALSE;
6142 /* When the loop includes branches or jumps,
6143 it is not a short loop. */
6144 for (i = 0; i < (distance / 4); i++)
6145 {
6146 if ((history[i].cleared_p)
6147 || delayed_branch_p(&history[i]))
6148 {
6149 rv = TRUE;
6150 break;
6151 }
6152 }
6153 if (rv == FALSE)
6154 {
6155 /* Insert nop after branch to fix short loop. */
6156 return FALSE;
6157 }
6158 }
6159 }
6160
a4e06468
RS
6161 return TRUE;
6162}
6163
e407c74b
NC
6164/* Decide how we should add IP to the instruction stream.
6165 ADDRESS_EXPR is an operand of the instruction to be used with
6166 RELOC_TYPE. */
a4e06468
RS
6167
6168static enum append_method
e407c74b 6169get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6170 bfd_reloc_code_real_type *reloc_type)
a4e06468 6171{
a4e06468
RS
6172 /* The relaxed version of a macro sequence must be inherently
6173 hazard-free. */
6174 if (mips_relax.sequence == 2)
6175 return APPEND_ADD;
6176
6177 /* We must not dabble with instructions in a ".set norerorder" block. */
6178 if (mips_opts.noreorder)
6179 return APPEND_ADD;
6180
6181 /* Otherwise, it's our responsibility to fill branch delay slots. */
11625dd8 6182 if (delayed_branch_p (ip))
a4e06468 6183 {
e407c74b
NC
6184 if (!branch_likely_p (ip)
6185 && can_swap_branch_p (ip, address_expr, reloc_type))
a4e06468
RS
6186 return APPEND_SWAP;
6187
6188 if (mips_opts.mips16
6189 && ISA_SUPPORTS_MIPS16E
fc76e730 6190 && gpr_read_mask (ip) != 0)
a4e06468
RS
6191 return APPEND_ADD_COMPACT;
6192
6193 return APPEND_ADD_WITH_NOP;
6194 }
6195
a4e06468
RS
6196 return APPEND_ADD;
6197}
6198
ceb94aa5
RS
6199/* IP is a MIPS16 instruction whose opcode we have just changed.
6200 Point IP->insn_mo to the new opcode's definition. */
6201
6202static void
6203find_altered_mips16_opcode (struct mips_cl_insn *ip)
6204{
6205 const struct mips_opcode *mo, *end;
6206
6207 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6208 for (mo = ip->insn_mo; mo < end; mo++)
6209 if ((ip->insn_opcode & mo->mask) == mo->match)
6210 {
6211 ip->insn_mo = mo;
6212 return;
6213 }
6214 abort ();
6215}
6216
df58fc94
RS
6217/* For microMIPS macros, we need to generate a local number label
6218 as the target of branches. */
6219#define MICROMIPS_LABEL_CHAR '\037'
6220static unsigned long micromips_target_label;
6221static char micromips_target_name[32];
6222
6223static char *
6224micromips_label_name (void)
6225{
6226 char *p = micromips_target_name;
6227 char symbol_name_temporary[24];
6228 unsigned long l;
6229 int i;
6230
6231 if (*p)
6232 return p;
6233
6234 i = 0;
6235 l = micromips_target_label;
6236#ifdef LOCAL_LABEL_PREFIX
6237 *p++ = LOCAL_LABEL_PREFIX;
6238#endif
6239 *p++ = 'L';
6240 *p++ = MICROMIPS_LABEL_CHAR;
6241 do
6242 {
6243 symbol_name_temporary[i++] = l % 10 + '0';
6244 l /= 10;
6245 }
6246 while (l != 0);
6247 while (i > 0)
6248 *p++ = symbol_name_temporary[--i];
6249 *p = '\0';
6250
6251 return micromips_target_name;
6252}
6253
6254static void
6255micromips_label_expr (expressionS *label_expr)
6256{
6257 label_expr->X_op = O_symbol;
6258 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6259 label_expr->X_add_number = 0;
6260}
6261
6262static void
6263micromips_label_inc (void)
6264{
6265 micromips_target_label++;
6266 *micromips_target_name = '\0';
6267}
6268
6269static void
6270micromips_add_label (void)
6271{
6272 symbolS *s;
6273
6274 s = colon (micromips_label_name ());
6275 micromips_label_inc ();
f3ded42a 6276 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
df58fc94
RS
6277}
6278
6279/* If assembling microMIPS code, then return the microMIPS reloc
6280 corresponding to the requested one if any. Otherwise return
6281 the reloc unchanged. */
6282
6283static bfd_reloc_code_real_type
6284micromips_map_reloc (bfd_reloc_code_real_type reloc)
6285{
6286 static const bfd_reloc_code_real_type relocs[][2] =
6287 {
6288 /* Keep sorted incrementally by the left-hand key. */
6289 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6290 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6291 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6292 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6293 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6294 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6295 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6296 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6297 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6298 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6299 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6300 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6301 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6302 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6303 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6304 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6305 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6306 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6307 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6308 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6309 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6310 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6311 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6312 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6313 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6314 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6315 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6316 };
6317 bfd_reloc_code_real_type r;
6318 size_t i;
6319
6320 if (!mips_opts.micromips)
6321 return reloc;
6322 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6323 {
6324 r = relocs[i][0];
6325 if (r > reloc)
6326 return reloc;
6327 if (r == reloc)
6328 return relocs[i][1];
6329 }
6330 return reloc;
6331}
6332
b886a2ab
RS
6333/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6334 Return true on success, storing the resolved value in RESULT. */
6335
6336static bfd_boolean
6337calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6338 offsetT *result)
6339{
6340 switch (reloc)
6341 {
6342 case BFD_RELOC_MIPS_HIGHEST:
6343 case BFD_RELOC_MICROMIPS_HIGHEST:
6344 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6345 return TRUE;
6346
6347 case BFD_RELOC_MIPS_HIGHER:
6348 case BFD_RELOC_MICROMIPS_HIGHER:
6349 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6350 return TRUE;
6351
6352 case BFD_RELOC_HI16_S:
6353 case BFD_RELOC_MICROMIPS_HI16_S:
6354 case BFD_RELOC_MIPS16_HI16_S:
6355 *result = ((operand + 0x8000) >> 16) & 0xffff;
6356 return TRUE;
6357
6358 case BFD_RELOC_HI16:
6359 case BFD_RELOC_MICROMIPS_HI16:
6360 case BFD_RELOC_MIPS16_HI16:
6361 *result = (operand >> 16) & 0xffff;
6362 return TRUE;
6363
6364 case BFD_RELOC_LO16:
6365 case BFD_RELOC_MICROMIPS_LO16:
6366 case BFD_RELOC_MIPS16_LO16:
6367 *result = operand & 0xffff;
6368 return TRUE;
6369
6370 case BFD_RELOC_UNUSED:
6371 *result = operand;
6372 return TRUE;
6373
6374 default:
6375 return FALSE;
6376 }
6377}
6378
71400594
RS
6379/* Output an instruction. IP is the instruction information.
6380 ADDRESS_EXPR is an operand of the instruction to be used with
df58fc94
RS
6381 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6382 a macro expansion. */
71400594
RS
6383
6384static void
6385append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
df58fc94 6386 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
71400594 6387{
14fe068b 6388 unsigned long prev_pinfo2, pinfo;
71400594 6389 bfd_boolean relaxed_branch = FALSE;
a4e06468 6390 enum append_method method;
2309ddf2 6391 bfd_boolean relax32;
2b0c8b40 6392 int branch_disp;
71400594 6393
2309ddf2 6394 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
c67a084a
NC
6395 fix_loongson2f (ip);
6396
738f4d98 6397 file_ase_mips16 |= mips_opts.mips16;
df58fc94 6398 file_ase_micromips |= mips_opts.micromips;
738f4d98 6399
df58fc94 6400 prev_pinfo2 = history[0].insn_mo->pinfo2;
71400594 6401 pinfo = ip->insn_mo->pinfo;
df58fc94
RS
6402
6403 if (mips_opts.micromips
6404 && !expansionp
6405 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
6406 && micromips_insn_length (ip->insn_mo) != 2)
6407 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
6408 && micromips_insn_length (ip->insn_mo) != 4)))
6409 as_warn (_("Wrong size instruction in a %u-bit branch delay slot"),
6410 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
71400594 6411
15be625d
CM
6412 if (address_expr == NULL)
6413 ip->complete_p = 1;
b886a2ab
RS
6414 else if (reloc_type[0] <= BFD_RELOC_UNUSED
6415 && reloc_type[1] == BFD_RELOC_UNUSED
6416 && reloc_type[2] == BFD_RELOC_UNUSED
15be625d
CM
6417 && address_expr->X_op == O_constant)
6418 {
15be625d
CM
6419 switch (*reloc_type)
6420 {
15be625d 6421 case BFD_RELOC_MIPS_JMP:
df58fc94
RS
6422 {
6423 int shift;
6424
6425 shift = mips_opts.micromips ? 1 : 2;
6426 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
6427 as_bad (_("jump to misaligned address (0x%lx)"),
6428 (unsigned long) address_expr->X_add_number);
6429 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
6430 & 0x3ffffff);
335574df 6431 ip->complete_p = 1;
df58fc94 6432 }
15be625d
CM
6433 break;
6434
6435 case BFD_RELOC_MIPS16_JMP:
6436 if ((address_expr->X_add_number & 3) != 0)
6437 as_bad (_("jump to misaligned address (0x%lx)"),
6438 (unsigned long) address_expr->X_add_number);
6439 ip->insn_opcode |=
6440 (((address_expr->X_add_number & 0x7c0000) << 3)
6441 | ((address_expr->X_add_number & 0xf800000) >> 7)
6442 | ((address_expr->X_add_number & 0x3fffc) >> 2));
335574df 6443 ip->complete_p = 1;
15be625d
CM
6444 break;
6445
6446 case BFD_RELOC_16_PCREL_S2:
df58fc94
RS
6447 {
6448 int shift;
6449
6450 shift = mips_opts.micromips ? 1 : 2;
6451 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
6452 as_bad (_("branch to misaligned address (0x%lx)"),
6453 (unsigned long) address_expr->X_add_number);
6454 if (!mips_relax_branch)
6455 {
6456 if ((address_expr->X_add_number + (1 << (shift + 15)))
6457 & ~((1 << (shift + 16)) - 1))
6458 as_bad (_("branch address range overflow (0x%lx)"),
6459 (unsigned long) address_expr->X_add_number);
6460 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
6461 & 0xffff);
6462 }
df58fc94 6463 }
15be625d
CM
6464 break;
6465
6466 default:
b886a2ab
RS
6467 {
6468 offsetT value;
6469
6470 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
6471 &value))
6472 {
6473 ip->insn_opcode |= value & 0xffff;
6474 ip->complete_p = 1;
6475 }
6476 }
6477 break;
6478 }
15be625d
CM
6479 }
6480
71400594
RS
6481 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
6482 {
6483 /* There are a lot of optimizations we could do that we don't.
6484 In particular, we do not, in general, reorder instructions.
6485 If you use gcc with optimization, it will reorder
6486 instructions and generally do much more optimization then we
6487 do here; repeating all that work in the assembler would only
6488 benefit hand written assembly code, and does not seem worth
6489 it. */
6490 int nops = (mips_optimize == 0
932d1a1b
RS
6491 ? nops_for_insn (0, history, NULL)
6492 : nops_for_insn_or_target (0, history, ip));
71400594 6493 if (nops > 0)
252b5132
RH
6494 {
6495 fragS *old_frag;
6496 unsigned long old_frag_offset;
6497 int i;
252b5132
RH
6498
6499 old_frag = frag_now;
6500 old_frag_offset = frag_now_fix ();
6501
6502 for (i = 0; i < nops; i++)
14fe068b
RS
6503 add_fixed_insn (NOP_INSN);
6504 insert_into_history (0, nops, NOP_INSN);
252b5132
RH
6505
6506 if (listing)
6507 {
6508 listing_prev_line ();
6509 /* We may be at the start of a variant frag. In case we
6510 are, make sure there is enough space for the frag
6511 after the frags created by listing_prev_line. The
6512 argument to frag_grow here must be at least as large
6513 as the argument to all other calls to frag_grow in
6514 this file. We don't have to worry about being in the
6515 middle of a variant frag, because the variants insert
6516 all needed nop instructions themselves. */
6517 frag_grow (40);
6518 }
6519
462427c4 6520 mips_move_text_labels ();
252b5132
RH
6521
6522#ifndef NO_ECOFF_DEBUGGING
6523 if (ECOFF_DEBUGGING)
6524 ecoff_fix_loc (old_frag, old_frag_offset);
6525#endif
6526 }
71400594
RS
6527 }
6528 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
6529 {
932d1a1b
RS
6530 int nops;
6531
6532 /* Work out how many nops in prev_nop_frag are needed by IP,
6533 ignoring hazards generated by the first prev_nop_frag_since
6534 instructions. */
6535 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
9c2799c2 6536 gas_assert (nops <= prev_nop_frag_holds);
252b5132 6537
71400594
RS
6538 /* Enforce NOPS as a minimum. */
6539 if (nops > prev_nop_frag_required)
6540 prev_nop_frag_required = nops;
252b5132 6541
71400594
RS
6542 if (prev_nop_frag_holds == prev_nop_frag_required)
6543 {
6544 /* Settle for the current number of nops. Update the history
6545 accordingly (for the benefit of any future .set reorder code). */
6546 prev_nop_frag = NULL;
6547 insert_into_history (prev_nop_frag_since,
6548 prev_nop_frag_holds, NOP_INSN);
6549 }
6550 else
6551 {
6552 /* Allow this instruction to replace one of the nops that was
6553 tentatively added to prev_nop_frag. */
df58fc94 6554 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
71400594
RS
6555 prev_nop_frag_holds--;
6556 prev_nop_frag_since++;
252b5132
RH
6557 }
6558 }
6559
e407c74b 6560 method = get_append_method (ip, address_expr, reloc_type);
2b0c8b40 6561 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
a4e06468 6562
e410add4
RS
6563 dwarf2_emit_insn (0);
6564 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
6565 so "move" the instruction address accordingly.
6566
6567 Also, it doesn't seem appropriate for the assembler to reorder .loc
6568 entries. If this instruction is a branch that we are going to swap
6569 with the previous instruction, the two instructions should be
6570 treated as a unit, and the debug information for both instructions
6571 should refer to the start of the branch sequence. Using the
6572 current position is certainly wrong when swapping a 32-bit branch
6573 and a 16-bit delay slot, since the current position would then be
6574 in the middle of a branch. */
6575 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
58e2ea4d 6576
df58fc94
RS
6577 relax32 = (mips_relax_branch
6578 /* Don't try branch relaxation within .set nomacro, or within
6579 .set noat if we use $at for PIC computations. If it turns
6580 out that the branch was out-of-range, we'll get an error. */
6581 && !mips_opts.warn_about_macros
6582 && (mips_opts.at || mips_pic == NO_PIC)
3bf0dbfb
MR
6583 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
6584 as they have no complementing branches. */
6585 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
df58fc94
RS
6586
6587 if (!HAVE_CODE_COMPRESSION
6588 && address_expr
6589 && relax32
0b25d3e6 6590 && *reloc_type == BFD_RELOC_16_PCREL_S2
11625dd8 6591 && delayed_branch_p (ip))
4a6a3df4 6592 {
895921c9 6593 relaxed_branch = TRUE;
1e915849
RS
6594 add_relaxed_insn (ip, (relaxed_branch_length
6595 (NULL, NULL,
11625dd8
RS
6596 uncond_branch_p (ip) ? -1
6597 : branch_likely_p (ip) ? 1
1e915849
RS
6598 : 0)), 4,
6599 RELAX_BRANCH_ENCODE
66b3e8da 6600 (AT,
11625dd8
RS
6601 uncond_branch_p (ip),
6602 branch_likely_p (ip),
1e915849
RS
6603 pinfo & INSN_WRITE_GPR_31,
6604 0),
6605 address_expr->X_add_symbol,
6606 address_expr->X_add_number);
4a6a3df4
AO
6607 *reloc_type = BFD_RELOC_UNUSED;
6608 }
df58fc94
RS
6609 else if (mips_opts.micromips
6610 && address_expr
6611 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
6612 || *reloc_type > BFD_RELOC_UNUSED)
40209cad
MR
6613 && (delayed_branch_p (ip) || compact_branch_p (ip))
6614 /* Don't try branch relaxation when users specify
6615 16-bit/32-bit instructions. */
6616 && !forced_insn_length)
df58fc94
RS
6617 {
6618 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
6619 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
11625dd8
RS
6620 int uncond = uncond_branch_p (ip) ? -1 : 0;
6621 int compact = compact_branch_p (ip);
df58fc94
RS
6622 int al = pinfo & INSN_WRITE_GPR_31;
6623 int length32;
6624
6625 gas_assert (address_expr != NULL);
6626 gas_assert (!mips_relax.sequence);
6627
2b0c8b40 6628 relaxed_branch = TRUE;
df58fc94
RS
6629 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
6630 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
40209cad
MR
6631 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
6632 relax32, 0, 0),
df58fc94
RS
6633 address_expr->X_add_symbol,
6634 address_expr->X_add_number);
6635 *reloc_type = BFD_RELOC_UNUSED;
6636 }
6637 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
252b5132
RH
6638 {
6639 /* We need to set up a variant frag. */
df58fc94 6640 gas_assert (address_expr != NULL);
1e915849
RS
6641 add_relaxed_insn (ip, 4, 0,
6642 RELAX_MIPS16_ENCODE
6643 (*reloc_type - BFD_RELOC_UNUSED,
df58fc94 6644 forced_insn_length == 2, forced_insn_length == 4,
11625dd8 6645 delayed_branch_p (&history[0]),
1e915849
RS
6646 history[0].mips16_absolute_jump_p),
6647 make_expr_symbol (address_expr), 0);
252b5132 6648 }
5c04167a 6649 else if (mips_opts.mips16 && insn_length (ip) == 2)
9497f5ac 6650 {
11625dd8 6651 if (!delayed_branch_p (ip))
b8ee1a6e
DU
6652 /* Make sure there is enough room to swap this instruction with
6653 a following jump instruction. */
6654 frag_grow (6);
1e915849 6655 add_fixed_insn (ip);
252b5132
RH
6656 }
6657 else
6658 {
6659 if (mips_opts.mips16
6660 && mips_opts.noreorder
11625dd8 6661 && delayed_branch_p (&history[0]))
252b5132
RH
6662 as_warn (_("extended instruction in delay slot"));
6663
4d7206a2
RS
6664 if (mips_relax.sequence)
6665 {
6666 /* If we've reached the end of this frag, turn it into a variant
6667 frag and record the information for the instructions we've
6668 written so far. */
6669 if (frag_room () < 4)
6670 relax_close_frag ();
df58fc94 6671 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4d7206a2
RS
6672 }
6673
584892a6 6674 if (mips_relax.sequence != 2)
df58fc94
RS
6675 {
6676 if (mips_macro_warning.first_insn_sizes[0] == 0)
6677 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
6678 mips_macro_warning.sizes[0] += insn_length (ip);
6679 mips_macro_warning.insns[0]++;
6680 }
584892a6 6681 if (mips_relax.sequence != 1)
df58fc94
RS
6682 {
6683 if (mips_macro_warning.first_insn_sizes[1] == 0)
6684 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
6685 mips_macro_warning.sizes[1] += insn_length (ip);
6686 mips_macro_warning.insns[1]++;
6687 }
584892a6 6688
1e915849
RS
6689 if (mips_opts.mips16)
6690 {
6691 ip->fixed_p = 1;
6692 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
6693 }
6694 add_fixed_insn (ip);
252b5132
RH
6695 }
6696
9fe77896 6697 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
252b5132 6698 {
df58fc94 6699 bfd_reloc_code_real_type final_type[3];
2309ddf2 6700 reloc_howto_type *howto0;
9fe77896
RS
6701 reloc_howto_type *howto;
6702 int i;
34ce925e 6703
df58fc94
RS
6704 /* Perform any necessary conversion to microMIPS relocations
6705 and find out how many relocations there actually are. */
6706 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
6707 final_type[i] = micromips_map_reloc (reloc_type[i]);
6708
9fe77896
RS
6709 /* In a compound relocation, it is the final (outermost)
6710 operator that determines the relocated field. */
2309ddf2 6711 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
e8044f35
RS
6712 if (!howto)
6713 abort ();
2309ddf2
MR
6714
6715 if (i > 1)
6716 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
9fe77896
RS
6717 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
6718 bfd_get_reloc_size (howto),
6719 address_expr,
2309ddf2
MR
6720 howto0 && howto0->pc_relative,
6721 final_type[0]);
9fe77896
RS
6722
6723 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2309ddf2 6724 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
9fe77896
RS
6725 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
6726
6727 /* These relocations can have an addend that won't fit in
6728 4 octets for 64bit assembly. */
6729 if (HAVE_64BIT_GPRS
6730 && ! howto->partial_inplace
6731 && (reloc_type[0] == BFD_RELOC_16
6732 || reloc_type[0] == BFD_RELOC_32
6733 || reloc_type[0] == BFD_RELOC_MIPS_JMP
6734 || reloc_type[0] == BFD_RELOC_GPREL16
6735 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
6736 || reloc_type[0] == BFD_RELOC_GPREL32
6737 || reloc_type[0] == BFD_RELOC_64
6738 || reloc_type[0] == BFD_RELOC_CTOR
6739 || reloc_type[0] == BFD_RELOC_MIPS_SUB
6740 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
6741 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
6742 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
6743 || reloc_type[0] == BFD_RELOC_MIPS_REL16
6744 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
6745 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
6746 || hi16_reloc_p (reloc_type[0])
6747 || lo16_reloc_p (reloc_type[0])))
6748 ip->fixp[0]->fx_no_overflow = 1;
6749
ddaf2c41
MR
6750 /* These relocations can have an addend that won't fit in 2 octets. */
6751 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
6752 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
6753 ip->fixp[0]->fx_no_overflow = 1;
6754
9fe77896
RS
6755 if (mips_relax.sequence)
6756 {
6757 if (mips_relax.first_fixup == 0)
6758 mips_relax.first_fixup = ip->fixp[0];
6759 }
6760 else if (reloc_needs_lo_p (*reloc_type))
6761 {
6762 struct mips_hi_fixup *hi_fixup;
6763
6764 /* Reuse the last entry if it already has a matching %lo. */
6765 hi_fixup = mips_hi_fixup_list;
6766 if (hi_fixup == 0
6767 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4d7206a2 6768 {
9fe77896
RS
6769 hi_fixup = ((struct mips_hi_fixup *)
6770 xmalloc (sizeof (struct mips_hi_fixup)));
6771 hi_fixup->next = mips_hi_fixup_list;
6772 mips_hi_fixup_list = hi_fixup;
4d7206a2 6773 }
9fe77896
RS
6774 hi_fixup->fixp = ip->fixp[0];
6775 hi_fixup->seg = now_seg;
6776 }
252b5132 6777
9fe77896
RS
6778 /* Add fixups for the second and third relocations, if given.
6779 Note that the ABI allows the second relocation to be
6780 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
6781 moment we only use RSS_UNDEF, but we could add support
6782 for the others if it ever becomes necessary. */
6783 for (i = 1; i < 3; i++)
6784 if (reloc_type[i] != BFD_RELOC_UNUSED)
6785 {
6786 ip->fixp[i] = fix_new (ip->frag, ip->where,
6787 ip->fixp[0]->fx_size, NULL, 0,
df58fc94 6788 FALSE, final_type[i]);
f6688943 6789
9fe77896
RS
6790 /* Use fx_tcbit to mark compound relocs. */
6791 ip->fixp[0]->fx_tcbit = 1;
6792 ip->fixp[i]->fx_tcbit = 1;
6793 }
252b5132 6794 }
1e915849 6795 install_insn (ip);
252b5132
RH
6796
6797 /* Update the register mask information. */
4c260379
RS
6798 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
6799 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
252b5132 6800
a4e06468 6801 switch (method)
252b5132 6802 {
a4e06468
RS
6803 case APPEND_ADD:
6804 insert_into_history (0, 1, ip);
6805 break;
6806
6807 case APPEND_ADD_WITH_NOP:
14fe068b
RS
6808 {
6809 struct mips_cl_insn *nop;
6810
6811 insert_into_history (0, 1, ip);
6812 nop = get_delay_slot_nop (ip);
6813 add_fixed_insn (nop);
6814 insert_into_history (0, 1, nop);
6815 if (mips_relax.sequence)
6816 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
6817 }
a4e06468
RS
6818 break;
6819
6820 case APPEND_ADD_COMPACT:
6821 /* Convert MIPS16 jr/jalr into a "compact" jump. */
6822 gas_assert (mips_opts.mips16);
6823 ip->insn_opcode |= 0x0080;
6824 find_altered_mips16_opcode (ip);
6825 install_insn (ip);
6826 insert_into_history (0, 1, ip);
6827 break;
6828
6829 case APPEND_SWAP:
6830 {
6831 struct mips_cl_insn delay = history[0];
6832 if (mips_opts.mips16)
6833 {
6834 know (delay.frag == ip->frag);
6835 move_insn (ip, delay.frag, delay.where);
6836 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
6837 }
464ab0e5 6838 else if (relaxed_branch || delay.frag != ip->frag)
a4e06468
RS
6839 {
6840 /* Add the delay slot instruction to the end of the
6841 current frag and shrink the fixed part of the
6842 original frag. If the branch occupies the tail of
6843 the latter, move it backwards to cover the gap. */
2b0c8b40 6844 delay.frag->fr_fix -= branch_disp;
a4e06468 6845 if (delay.frag == ip->frag)
2b0c8b40 6846 move_insn (ip, ip->frag, ip->where - branch_disp);
a4e06468
RS
6847 add_fixed_insn (&delay);
6848 }
6849 else
6850 {
2b0c8b40
MR
6851 move_insn (&delay, ip->frag,
6852 ip->where - branch_disp + insn_length (ip));
a4e06468
RS
6853 move_insn (ip, history[0].frag, history[0].where);
6854 }
6855 history[0] = *ip;
6856 delay.fixed_p = 1;
6857 insert_into_history (0, 1, &delay);
6858 }
6859 break;
252b5132
RH
6860 }
6861
13408f1e 6862 /* If we have just completed an unconditional branch, clear the history. */
11625dd8
RS
6863 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
6864 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
e407c74b
NC
6865 {
6866 unsigned int i;
6867
79850f26 6868 mips_no_prev_insn ();
13408f1e 6869
e407c74b 6870 for (i = 0; i < ARRAY_SIZE (history); i++)
79850f26 6871 history[i].cleared_p = 1;
e407c74b
NC
6872 }
6873
df58fc94
RS
6874 /* We need to emit a label at the end of branch-likely macros. */
6875 if (emit_branch_likely_macro)
6876 {
6877 emit_branch_likely_macro = FALSE;
6878 micromips_add_label ();
6879 }
6880
252b5132
RH
6881 /* We just output an insn, so the next one doesn't have a label. */
6882 mips_clear_insn_labels ();
252b5132
RH
6883}
6884
e407c74b
NC
6885/* Forget that there was any previous instruction or label.
6886 When BRANCH is true, the branch history is also flushed. */
252b5132
RH
6887
6888static void
7d10b47d 6889mips_no_prev_insn (void)
252b5132 6890{
7d10b47d
RS
6891 prev_nop_frag = NULL;
6892 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
252b5132
RH
6893 mips_clear_insn_labels ();
6894}
6895
7d10b47d
RS
6896/* This function must be called before we emit something other than
6897 instructions. It is like mips_no_prev_insn except that it inserts
6898 any NOPS that might be needed by previous instructions. */
252b5132 6899
7d10b47d
RS
6900void
6901mips_emit_delays (void)
252b5132
RH
6902{
6903 if (! mips_opts.noreorder)
6904 {
932d1a1b 6905 int nops = nops_for_insn (0, history, NULL);
252b5132
RH
6906 if (nops > 0)
6907 {
7d10b47d
RS
6908 while (nops-- > 0)
6909 add_fixed_insn (NOP_INSN);
462427c4 6910 mips_move_text_labels ();
7d10b47d
RS
6911 }
6912 }
6913 mips_no_prev_insn ();
6914}
6915
6916/* Start a (possibly nested) noreorder block. */
6917
6918static void
6919start_noreorder (void)
6920{
6921 if (mips_opts.noreorder == 0)
6922 {
6923 unsigned int i;
6924 int nops;
6925
6926 /* None of the instructions before the .set noreorder can be moved. */
6927 for (i = 0; i < ARRAY_SIZE (history); i++)
6928 history[i].fixed_p = 1;
6929
6930 /* Insert any nops that might be needed between the .set noreorder
6931 block and the previous instructions. We will later remove any
6932 nops that turn out not to be needed. */
932d1a1b 6933 nops = nops_for_insn (0, history, NULL);
7d10b47d
RS
6934 if (nops > 0)
6935 {
6936 if (mips_optimize != 0)
252b5132
RH
6937 {
6938 /* Record the frag which holds the nop instructions, so
6939 that we can remove them if we don't need them. */
df58fc94 6940 frag_grow (nops * NOP_INSN_SIZE);
252b5132
RH
6941 prev_nop_frag = frag_now;
6942 prev_nop_frag_holds = nops;
6943 prev_nop_frag_required = 0;
6944 prev_nop_frag_since = 0;
6945 }
6946
6947 for (; nops > 0; --nops)
1e915849 6948 add_fixed_insn (NOP_INSN);
252b5132 6949
7d10b47d
RS
6950 /* Move on to a new frag, so that it is safe to simply
6951 decrease the size of prev_nop_frag. */
6952 frag_wane (frag_now);
6953 frag_new (0);
462427c4 6954 mips_move_text_labels ();
252b5132 6955 }
df58fc94 6956 mips_mark_labels ();
7d10b47d 6957 mips_clear_insn_labels ();
252b5132 6958 }
7d10b47d
RS
6959 mips_opts.noreorder++;
6960 mips_any_noreorder = 1;
6961}
252b5132 6962
7d10b47d 6963/* End a nested noreorder block. */
252b5132 6964
7d10b47d
RS
6965static void
6966end_noreorder (void)
6967{
6968 mips_opts.noreorder--;
6969 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
6970 {
6971 /* Commit to inserting prev_nop_frag_required nops and go back to
6972 handling nop insertion the .set reorder way. */
6973 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
df58fc94 6974 * NOP_INSN_SIZE);
7d10b47d
RS
6975 insert_into_history (prev_nop_frag_since,
6976 prev_nop_frag_required, NOP_INSN);
6977 prev_nop_frag = NULL;
6978 }
252b5132
RH
6979}
6980
97d87491
RS
6981/* Sign-extend 32-bit mode constants that have bit 31 set and all
6982 higher bits unset. */
6983
6984static void
6985normalize_constant_expr (expressionS *ex)
6986{
6987 if (ex->X_op == O_constant
6988 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
6989 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
6990 - 0x80000000);
6991}
6992
6993/* Sign-extend 32-bit mode address offsets that have bit 31 set and
6994 all higher bits unset. */
6995
6996static void
6997normalize_address_expr (expressionS *ex)
6998{
6999 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7000 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7001 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7002 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7003 - 0x80000000);
7004}
7005
7006/* Try to match TOKENS against OPCODE, storing the result in INSN.
7007 Return true if the match was successful.
7008
7009 OPCODE_EXTRA is a value that should be ORed into the opcode
7010 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7011 there are more alternatives after OPCODE and SOFT_MATCH is
7012 as for mips_arg_info. */
7013
7014static bfd_boolean
7015match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7016 struct mips_operand_token *tokens, unsigned int opcode_extra,
60f20e8b 7017 bfd_boolean lax_match, bfd_boolean complete_p)
97d87491
RS
7018{
7019 const char *args;
7020 struct mips_arg_info arg;
7021 const struct mips_operand *operand;
7022 char c;
7023
7024 imm_expr.X_op = O_absent;
97d87491
RS
7025 offset_expr.X_op = O_absent;
7026 offset_reloc[0] = BFD_RELOC_UNUSED;
7027 offset_reloc[1] = BFD_RELOC_UNUSED;
7028 offset_reloc[2] = BFD_RELOC_UNUSED;
7029
7030 create_insn (insn, opcode);
60f20e8b
RS
7031 /* When no opcode suffix is specified, assume ".xyzw". */
7032 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7033 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7034 else
7035 insn->insn_opcode |= opcode_extra;
97d87491
RS
7036 memset (&arg, 0, sizeof (arg));
7037 arg.insn = insn;
7038 arg.token = tokens;
7039 arg.argnum = 1;
7040 arg.last_regno = ILLEGAL_REG;
7041 arg.dest_regno = ILLEGAL_REG;
60f20e8b 7042 arg.lax_match = lax_match;
97d87491
RS
7043 for (args = opcode->args;; ++args)
7044 {
7045 if (arg.token->type == OT_END)
7046 {
7047 /* Handle unary instructions in which only one operand is given.
7048 The source is then the same as the destination. */
7049 if (arg.opnum == 1 && *args == ',')
7050 {
7051 operand = (mips_opts.micromips
7052 ? decode_micromips_operand (args + 1)
7053 : decode_mips_operand (args + 1));
7054 if (operand && mips_optional_operand_p (operand))
7055 {
7056 arg.token = tokens;
7057 arg.argnum = 1;
7058 continue;
7059 }
7060 }
7061
7062 /* Treat elided base registers as $0. */
7063 if (strcmp (args, "(b)") == 0)
7064 args += 3;
7065
7066 if (args[0] == '+')
7067 switch (args[1])
7068 {
7069 case 'K':
7070 case 'N':
7071 /* The register suffix is optional. */
7072 args += 2;
7073 break;
7074 }
7075
7076 /* Fail the match if there were too few operands. */
7077 if (*args)
7078 return FALSE;
7079
7080 /* Successful match. */
60f20e8b
RS
7081 if (!complete_p)
7082 return TRUE;
e3de51ce 7083 clear_insn_error ();
97d87491
RS
7084 if (arg.dest_regno == arg.last_regno
7085 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7086 {
7087 if (arg.opnum == 2)
e3de51ce
RS
7088 set_insn_error
7089 (0, _("Source and destination must be different"));
97d87491 7090 else if (arg.last_regno == 31)
e3de51ce
RS
7091 set_insn_error
7092 (0, _("A destination register must be supplied"));
97d87491
RS
7093 }
7094 check_completed_insn (&arg);
7095 return TRUE;
7096 }
7097
7098 /* Fail the match if the line has too many operands. */
7099 if (*args == 0)
7100 return FALSE;
7101
7102 /* Handle characters that need to match exactly. */
7103 if (*args == '(' || *args == ')' || *args == ',')
7104 {
7105 if (match_char (&arg, *args))
7106 continue;
7107 return FALSE;
7108 }
7109 if (*args == '#')
7110 {
7111 ++args;
7112 if (arg.token->type == OT_DOUBLE_CHAR
7113 && arg.token->u.ch == *args)
7114 {
7115 ++arg.token;
7116 continue;
7117 }
7118 return FALSE;
7119 }
7120
7121 /* Handle special macro operands. Work out the properties of
7122 other operands. */
7123 arg.opnum += 1;
97d87491
RS
7124 switch (*args)
7125 {
7126 case '+':
7127 switch (args[1])
7128 {
97d87491
RS
7129 case 'i':
7130 *offset_reloc = BFD_RELOC_MIPS_JMP;
7131 break;
7132 }
7133 break;
7134
97d87491 7135 case 'I':
1a00e612
RS
7136 if (!match_const_int (&arg, &imm_expr.X_add_number))
7137 return FALSE;
7138 imm_expr.X_op = O_constant;
97d87491
RS
7139 if (HAVE_32BIT_GPRS)
7140 normalize_constant_expr (&imm_expr);
7141 continue;
7142
7143 case 'A':
7144 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7145 {
7146 /* Assume that the offset has been elided and that what
7147 we saw was a base register. The match will fail later
7148 if that assumption turns out to be wrong. */
7149 offset_expr.X_op = O_constant;
7150 offset_expr.X_add_number = 0;
7151 }
97d87491 7152 else
1a00e612
RS
7153 {
7154 if (!match_expression (&arg, &offset_expr, offset_reloc))
7155 return FALSE;
7156 normalize_address_expr (&offset_expr);
7157 }
97d87491
RS
7158 continue;
7159
7160 case 'F':
7161 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7162 8, TRUE))
1a00e612 7163 return FALSE;
97d87491
RS
7164 continue;
7165
7166 case 'L':
7167 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7168 8, FALSE))
1a00e612 7169 return FALSE;
97d87491
RS
7170 continue;
7171
7172 case 'f':
7173 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7174 4, TRUE))
1a00e612 7175 return FALSE;
97d87491
RS
7176 continue;
7177
7178 case 'l':
7179 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7180 4, FALSE))
1a00e612 7181 return FALSE;
97d87491
RS
7182 continue;
7183
97d87491
RS
7184 case 'p':
7185 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7186 break;
7187
7188 case 'a':
7189 *offset_reloc = BFD_RELOC_MIPS_JMP;
7190 break;
7191
7192 case 'm':
7193 gas_assert (mips_opts.micromips);
7194 c = args[1];
7195 switch (c)
7196 {
7197 case 'D':
7198 case 'E':
7199 if (!forced_insn_length)
7200 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7201 else if (c == 'D')
7202 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7203 else
7204 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7205 break;
7206 }
7207 break;
7208 }
7209
7210 operand = (mips_opts.micromips
7211 ? decode_micromips_operand (args)
7212 : decode_mips_operand (args));
7213 if (!operand)
7214 abort ();
7215
7216 /* Skip prefixes. */
7217 if (*args == '+' || *args == 'm')
7218 args++;
7219
7220 if (mips_optional_operand_p (operand)
7221 && args[1] == ','
7222 && (arg.token[0].type != OT_REG
7223 || arg.token[1].type == OT_END))
7224 {
7225 /* Assume that the register has been elided and is the
7226 same as the first operand. */
7227 arg.token = tokens;
7228 arg.argnum = 1;
7229 }
7230
7231 if (!match_operand (&arg, operand))
7232 return FALSE;
7233 }
7234}
7235
7236/* Like match_insn, but for MIPS16. */
7237
7238static bfd_boolean
7239match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
1a00e612 7240 struct mips_operand_token *tokens)
97d87491
RS
7241{
7242 const char *args;
7243 const struct mips_operand *operand;
7244 const struct mips_operand *ext_operand;
7245 struct mips_arg_info arg;
7246 int relax_char;
7247
7248 create_insn (insn, opcode);
7249 imm_expr.X_op = O_absent;
97d87491
RS
7250 offset_expr.X_op = O_absent;
7251 offset_reloc[0] = BFD_RELOC_UNUSED;
7252 offset_reloc[1] = BFD_RELOC_UNUSED;
7253 offset_reloc[2] = BFD_RELOC_UNUSED;
7254 relax_char = 0;
7255
7256 memset (&arg, 0, sizeof (arg));
7257 arg.insn = insn;
7258 arg.token = tokens;
7259 arg.argnum = 1;
7260 arg.last_regno = ILLEGAL_REG;
7261 arg.dest_regno = ILLEGAL_REG;
97d87491
RS
7262 relax_char = 0;
7263 for (args = opcode->args;; ++args)
7264 {
7265 int c;
7266
7267 if (arg.token->type == OT_END)
7268 {
7269 offsetT value;
7270
7271 /* Handle unary instructions in which only one operand is given.
7272 The source is then the same as the destination. */
7273 if (arg.opnum == 1 && *args == ',')
7274 {
7275 operand = decode_mips16_operand (args[1], FALSE);
7276 if (operand && mips_optional_operand_p (operand))
7277 {
7278 arg.token = tokens;
7279 arg.argnum = 1;
7280 continue;
7281 }
7282 }
7283
7284 /* Fail the match if there were too few operands. */
7285 if (*args)
7286 return FALSE;
7287
7288 /* Successful match. Stuff the immediate value in now, if
7289 we can. */
e3de51ce 7290 clear_insn_error ();
97d87491
RS
7291 if (opcode->pinfo == INSN_MACRO)
7292 {
7293 gas_assert (relax_char == 0 || relax_char == 'p');
7294 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7295 }
7296 else if (relax_char
7297 && offset_expr.X_op == O_constant
7298 && calculate_reloc (*offset_reloc,
7299 offset_expr.X_add_number,
7300 &value))
7301 {
7302 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7303 forced_insn_length, &insn->insn_opcode);
7304 offset_expr.X_op = O_absent;
7305 *offset_reloc = BFD_RELOC_UNUSED;
7306 }
7307 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7308 {
7309 if (forced_insn_length == 2)
e3de51ce 7310 set_insn_error (0, _("invalid unextended operand value"));
97d87491
RS
7311 forced_insn_length = 4;
7312 insn->insn_opcode |= MIPS16_EXTEND;
7313 }
7314 else if (relax_char)
7315 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7316
7317 check_completed_insn (&arg);
7318 return TRUE;
7319 }
7320
7321 /* Fail the match if the line has too many operands. */
7322 if (*args == 0)
7323 return FALSE;
7324
7325 /* Handle characters that need to match exactly. */
7326 if (*args == '(' || *args == ')' || *args == ',')
7327 {
7328 if (match_char (&arg, *args))
7329 continue;
7330 return FALSE;
7331 }
7332
7333 arg.opnum += 1;
7334 c = *args;
7335 switch (c)
7336 {
7337 case 'p':
7338 case 'q':
7339 case 'A':
7340 case 'B':
7341 case 'E':
7342 relax_char = c;
7343 break;
7344
7345 case 'I':
1a00e612
RS
7346 if (!match_const_int (&arg, &imm_expr.X_add_number))
7347 return FALSE;
7348 imm_expr.X_op = O_constant;
97d87491
RS
7349 if (HAVE_32BIT_GPRS)
7350 normalize_constant_expr (&imm_expr);
7351 continue;
7352
7353 case 'a':
7354 case 'i':
7355 *offset_reloc = BFD_RELOC_MIPS16_JMP;
7356 insn->insn_opcode <<= 16;
7357 break;
7358 }
7359
7360 operand = decode_mips16_operand (c, FALSE);
7361 if (!operand)
7362 abort ();
7363
7364 /* '6' is a special case. It is used for BREAK and SDBBP,
7365 whose operands are only meaningful to the software that decodes
7366 them. This means that there is no architectural reason why
7367 they cannot be prefixed by EXTEND, but in practice,
7368 exception handlers will only look at the instruction
7369 itself. We therefore allow '6' to be extended when
7370 disassembling but not when assembling. */
7371 if (operand->type != OP_PCREL && c != '6')
7372 {
7373 ext_operand = decode_mips16_operand (c, TRUE);
7374 if (operand != ext_operand)
7375 {
7376 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7377 {
7378 offset_expr.X_op = O_constant;
7379 offset_expr.X_add_number = 0;
7380 relax_char = c;
7381 continue;
7382 }
7383
7384 /* We need the OT_INTEGER check because some MIPS16
7385 immediate variants are listed before the register ones. */
7386 if (arg.token->type != OT_INTEGER
7387 || !match_expression (&arg, &offset_expr, offset_reloc))
7388 return FALSE;
7389
7390 /* '8' is used for SLTI(U) and has traditionally not
7391 been allowed to take relocation operators. */
7392 if (offset_reloc[0] != BFD_RELOC_UNUSED
7393 && (ext_operand->size != 16 || c == '8'))
7394 return FALSE;
7395
7396 relax_char = c;
7397 continue;
7398 }
7399 }
7400
7401 if (mips_optional_operand_p (operand)
7402 && args[1] == ','
7403 && (arg.token[0].type != OT_REG
7404 || arg.token[1].type == OT_END))
7405 {
7406 /* Assume that the register has been elided and is the
7407 same as the first operand. */
7408 arg.token = tokens;
7409 arg.argnum = 1;
7410 }
7411
7412 if (!match_operand (&arg, operand))
7413 return FALSE;
7414 }
7415}
7416
60f20e8b
RS
7417/* Record that the current instruction is invalid for the current ISA. */
7418
7419static void
7420match_invalid_for_isa (void)
7421{
7422 set_insn_error_ss
7423 (0, _("Opcode not supported on this processor: %s (%s)"),
7424 mips_cpu_info_from_arch (mips_opts.arch)->name,
7425 mips_cpu_info_from_isa (mips_opts.isa)->name);
7426}
7427
7428/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
7429 Return true if a definite match or failure was found, storing any match
7430 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
7431 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
7432 tried and failed to match under normal conditions and now want to try a
7433 more relaxed match. */
7434
7435static bfd_boolean
7436match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
7437 const struct mips_opcode *past, struct mips_operand_token *tokens,
7438 int opcode_extra, bfd_boolean lax_match)
7439{
7440 const struct mips_opcode *opcode;
7441 const struct mips_opcode *invalid_delay_slot;
7442 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
7443
7444 /* Search for a match, ignoring alternatives that don't satisfy the
7445 current ISA or forced_length. */
7446 invalid_delay_slot = 0;
7447 seen_valid_for_isa = FALSE;
7448 seen_valid_for_size = FALSE;
7449 opcode = first;
7450 do
7451 {
7452 gas_assert (strcmp (opcode->name, first->name) == 0);
7453 if (is_opcode_valid (opcode))
7454 {
7455 seen_valid_for_isa = TRUE;
7456 if (is_size_valid (opcode))
7457 {
7458 bfd_boolean delay_slot_ok;
7459
7460 seen_valid_for_size = TRUE;
7461 delay_slot_ok = is_delay_slot_valid (opcode);
7462 if (match_insn (insn, opcode, tokens, opcode_extra,
7463 lax_match, delay_slot_ok))
7464 {
7465 if (!delay_slot_ok)
7466 {
7467 if (!invalid_delay_slot)
7468 invalid_delay_slot = opcode;
7469 }
7470 else
7471 return TRUE;
7472 }
7473 }
7474 }
7475 ++opcode;
7476 }
7477 while (opcode < past && strcmp (opcode->name, first->name) == 0);
7478
7479 /* If the only matches we found had the wrong length for the delay slot,
7480 pick the first such match. We'll issue an appropriate warning later. */
7481 if (invalid_delay_slot)
7482 {
7483 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
7484 lax_match, TRUE))
7485 return TRUE;
7486 abort ();
7487 }
7488
7489 /* Handle the case where we didn't try to match an instruction because
7490 all the alternatives were incompatible with the current ISA. */
7491 if (!seen_valid_for_isa)
7492 {
7493 match_invalid_for_isa ();
7494 return TRUE;
7495 }
7496
7497 /* Handle the case where we didn't try to match an instruction because
7498 all the alternatives were of the wrong size. */
7499 if (!seen_valid_for_size)
7500 {
7501 if (mips_opts.insn32)
7502 set_insn_error (0, _("Opcode not supported in the `insn32' mode"));
7503 else
7504 set_insn_error_i
7505 (0, _("Unrecognized %d-bit version of microMIPS opcode"),
7506 8 * forced_insn_length);
7507 return TRUE;
7508 }
7509
7510 return FALSE;
7511}
7512
7513/* Like match_insns, but for MIPS16. */
7514
7515static bfd_boolean
7516match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
7517 struct mips_operand_token *tokens)
7518{
7519 const struct mips_opcode *opcode;
7520 bfd_boolean seen_valid_for_isa;
7521
7522 /* Search for a match, ignoring alternatives that don't satisfy the
7523 current ISA. There are no separate entries for extended forms so
7524 we deal with forced_length later. */
7525 seen_valid_for_isa = FALSE;
7526 opcode = first;
7527 do
7528 {
7529 gas_assert (strcmp (opcode->name, first->name) == 0);
7530 if (is_opcode_valid_16 (opcode))
7531 {
7532 seen_valid_for_isa = TRUE;
7533 if (match_mips16_insn (insn, opcode, tokens))
7534 return TRUE;
7535 }
7536 ++opcode;
7537 }
7538 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
7539 && strcmp (opcode->name, first->name) == 0);
7540
7541 /* Handle the case where we didn't try to match an instruction because
7542 all the alternatives were incompatible with the current ISA. */
7543 if (!seen_valid_for_isa)
7544 {
7545 match_invalid_for_isa ();
7546 return TRUE;
7547 }
7548
7549 return FALSE;
7550}
7551
584892a6
RS
7552/* Set up global variables for the start of a new macro. */
7553
7554static void
7555macro_start (void)
7556{
7557 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
df58fc94
RS
7558 memset (&mips_macro_warning.first_insn_sizes, 0,
7559 sizeof (mips_macro_warning.first_insn_sizes));
7560 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
584892a6 7561 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
11625dd8 7562 && delayed_branch_p (&history[0]));
df58fc94
RS
7563 switch (history[0].insn_mo->pinfo2
7564 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
7565 {
7566 case INSN2_BRANCH_DELAY_32BIT:
7567 mips_macro_warning.delay_slot_length = 4;
7568 break;
7569 case INSN2_BRANCH_DELAY_16BIT:
7570 mips_macro_warning.delay_slot_length = 2;
7571 break;
7572 default:
7573 mips_macro_warning.delay_slot_length = 0;
7574 break;
7575 }
7576 mips_macro_warning.first_frag = NULL;
584892a6
RS
7577}
7578
df58fc94
RS
7579/* Given that a macro is longer than one instruction or of the wrong size,
7580 return the appropriate warning for it. Return null if no warning is
7581 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
7582 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
7583 and RELAX_NOMACRO. */
584892a6
RS
7584
7585static const char *
7586macro_warning (relax_substateT subtype)
7587{
7588 if (subtype & RELAX_DELAY_SLOT)
7589 return _("Macro instruction expanded into multiple instructions"
7590 " in a branch delay slot");
7591 else if (subtype & RELAX_NOMACRO)
7592 return _("Macro instruction expanded into multiple instructions");
df58fc94
RS
7593 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
7594 | RELAX_DELAY_SLOT_SIZE_SECOND))
7595 return ((subtype & RELAX_DELAY_SLOT_16BIT)
7596 ? _("Macro instruction expanded into a wrong size instruction"
7597 " in a 16-bit branch delay slot")
7598 : _("Macro instruction expanded into a wrong size instruction"
7599 " in a 32-bit branch delay slot"));
584892a6
RS
7600 else
7601 return 0;
7602}
7603
7604/* Finish up a macro. Emit warnings as appropriate. */
7605
7606static void
7607macro_end (void)
7608{
df58fc94
RS
7609 /* Relaxation warning flags. */
7610 relax_substateT subtype = 0;
7611
7612 /* Check delay slot size requirements. */
7613 if (mips_macro_warning.delay_slot_length == 2)
7614 subtype |= RELAX_DELAY_SLOT_16BIT;
7615 if (mips_macro_warning.delay_slot_length != 0)
584892a6 7616 {
df58fc94
RS
7617 if (mips_macro_warning.delay_slot_length
7618 != mips_macro_warning.first_insn_sizes[0])
7619 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
7620 if (mips_macro_warning.delay_slot_length
7621 != mips_macro_warning.first_insn_sizes[1])
7622 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
7623 }
584892a6 7624
df58fc94
RS
7625 /* Check instruction count requirements. */
7626 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
7627 {
7628 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
584892a6
RS
7629 subtype |= RELAX_SECOND_LONGER;
7630 if (mips_opts.warn_about_macros)
7631 subtype |= RELAX_NOMACRO;
7632 if (mips_macro_warning.delay_slot_p)
7633 subtype |= RELAX_DELAY_SLOT;
df58fc94 7634 }
584892a6 7635
df58fc94
RS
7636 /* If both alternatives fail to fill a delay slot correctly,
7637 emit the warning now. */
7638 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
7639 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
7640 {
7641 relax_substateT s;
7642 const char *msg;
7643
7644 s = subtype & (RELAX_DELAY_SLOT_16BIT
7645 | RELAX_DELAY_SLOT_SIZE_FIRST
7646 | RELAX_DELAY_SLOT_SIZE_SECOND);
7647 msg = macro_warning (s);
7648 if (msg != NULL)
7649 as_warn ("%s", msg);
7650 subtype &= ~s;
7651 }
7652
7653 /* If both implementations are longer than 1 instruction, then emit the
7654 warning now. */
7655 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
7656 {
7657 relax_substateT s;
7658 const char *msg;
7659
7660 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
7661 msg = macro_warning (s);
7662 if (msg != NULL)
7663 as_warn ("%s", msg);
7664 subtype &= ~s;
584892a6 7665 }
df58fc94
RS
7666
7667 /* If any flags still set, then one implementation might need a warning
7668 and the other either will need one of a different kind or none at all.
7669 Pass any remaining flags over to relaxation. */
7670 if (mips_macro_warning.first_frag != NULL)
7671 mips_macro_warning.first_frag->fr_subtype |= subtype;
584892a6
RS
7672}
7673
df58fc94
RS
7674/* Instruction operand formats used in macros that vary between
7675 standard MIPS and microMIPS code. */
7676
833794fc 7677static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
df58fc94
RS
7678static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
7679static const char * const jalr_fmt[2] = { "d,s", "t,s" };
7680static const char * const lui_fmt[2] = { "t,u", "s,u" };
7681static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
833794fc 7682static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
df58fc94
RS
7683static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
7684static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
7685
833794fc 7686#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
7687#define COP12_FMT (cop12_fmt[mips_opts.micromips])
7688#define JALR_FMT (jalr_fmt[mips_opts.micromips])
7689#define LUI_FMT (lui_fmt[mips_opts.micromips])
7690#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
833794fc 7691#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
7692#define SHFT_FMT (shft_fmt[mips_opts.micromips])
7693#define TRAP_FMT (trap_fmt[mips_opts.micromips])
7694
6e1304d8
RS
7695/* Read a macro's relocation codes from *ARGS and store them in *R.
7696 The first argument in *ARGS will be either the code for a single
7697 relocation or -1 followed by the three codes that make up a
7698 composite relocation. */
7699
7700static void
7701macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
7702{
7703 int i, next;
7704
7705 next = va_arg (*args, int);
7706 if (next >= 0)
7707 r[0] = (bfd_reloc_code_real_type) next;
7708 else
f2ae14a1
RS
7709 {
7710 for (i = 0; i < 3; i++)
7711 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
7712 /* This function is only used for 16-bit relocation fields.
7713 To make the macro code simpler, treat an unrelocated value
7714 in the same way as BFD_RELOC_LO16. */
7715 if (r[0] == BFD_RELOC_UNUSED)
7716 r[0] = BFD_RELOC_LO16;
7717 }
6e1304d8
RS
7718}
7719
252b5132
RH
7720/* Build an instruction created by a macro expansion. This is passed
7721 a pointer to the count of instructions created so far, an
7722 expression, the name of the instruction to build, an operand format
7723 string, and corresponding arguments. */
7724
252b5132 7725static void
67c0d1eb 7726macro_build (expressionS *ep, const char *name, const char *fmt, ...)
252b5132 7727{
df58fc94 7728 const struct mips_opcode *mo = NULL;
f6688943 7729 bfd_reloc_code_real_type r[3];
df58fc94 7730 const struct mips_opcode *amo;
e077a1c8 7731 const struct mips_operand *operand;
df58fc94
RS
7732 struct hash_control *hash;
7733 struct mips_cl_insn insn;
252b5132 7734 va_list args;
e077a1c8 7735 unsigned int uval;
252b5132 7736
252b5132 7737 va_start (args, fmt);
252b5132 7738
252b5132
RH
7739 if (mips_opts.mips16)
7740 {
03ea81db 7741 mips16_macro_build (ep, name, fmt, &args);
252b5132
RH
7742 va_end (args);
7743 return;
7744 }
7745
f6688943
TS
7746 r[0] = BFD_RELOC_UNUSED;
7747 r[1] = BFD_RELOC_UNUSED;
7748 r[2] = BFD_RELOC_UNUSED;
df58fc94
RS
7749 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
7750 amo = (struct mips_opcode *) hash_find (hash, name);
7751 gas_assert (amo);
7752 gas_assert (strcmp (name, amo->name) == 0);
1e915849 7753
df58fc94 7754 do
8b082fb1
TS
7755 {
7756 /* Search until we get a match for NAME. It is assumed here that
df58fc94
RS
7757 macros will never generate MDMX, MIPS-3D, or MT instructions.
7758 We try to match an instruction that fulfils the branch delay
7759 slot instruction length requirement (if any) of the previous
7760 instruction. While doing this we record the first instruction
7761 seen that matches all the other conditions and use it anyway
7762 if the requirement cannot be met; we will issue an appropriate
7763 warning later on. */
7764 if (strcmp (fmt, amo->args) == 0
7765 && amo->pinfo != INSN_MACRO
7766 && is_opcode_valid (amo)
7767 && is_size_valid (amo))
7768 {
7769 if (is_delay_slot_valid (amo))
7770 {
7771 mo = amo;
7772 break;
7773 }
7774 else if (!mo)
7775 mo = amo;
7776 }
8b082fb1 7777
df58fc94
RS
7778 ++amo;
7779 gas_assert (amo->name);
252b5132 7780 }
df58fc94 7781 while (strcmp (name, amo->name) == 0);
252b5132 7782
df58fc94 7783 gas_assert (mo);
1e915849 7784 create_insn (&insn, mo);
e077a1c8 7785 for (; *fmt; ++fmt)
252b5132 7786 {
e077a1c8 7787 switch (*fmt)
252b5132 7788 {
252b5132
RH
7789 case ',':
7790 case '(':
7791 case ')':
252b5132 7792 case 'z':
e077a1c8 7793 break;
252b5132
RH
7794
7795 case 'i':
7796 case 'j':
6e1304d8 7797 macro_read_relocs (&args, r);
9c2799c2 7798 gas_assert (*r == BFD_RELOC_GPREL16
e391c024
RS
7799 || *r == BFD_RELOC_MIPS_HIGHER
7800 || *r == BFD_RELOC_HI16_S
7801 || *r == BFD_RELOC_LO16
7802 || *r == BFD_RELOC_MIPS_GOT_OFST);
e077a1c8 7803 break;
e391c024
RS
7804
7805 case 'o':
7806 macro_read_relocs (&args, r);
e077a1c8 7807 break;
252b5132
RH
7808
7809 case 'u':
6e1304d8 7810 macro_read_relocs (&args, r);
9c2799c2 7811 gas_assert (ep != NULL
90ecf173
MR
7812 && (ep->X_op == O_constant
7813 || (ep->X_op == O_symbol
7814 && (*r == BFD_RELOC_MIPS_HIGHEST
7815 || *r == BFD_RELOC_HI16_S
7816 || *r == BFD_RELOC_HI16
7817 || *r == BFD_RELOC_GPREL16
7818 || *r == BFD_RELOC_MIPS_GOT_HI16
7819 || *r == BFD_RELOC_MIPS_CALL_HI16))));
e077a1c8 7820 break;
252b5132
RH
7821
7822 case 'p':
9c2799c2 7823 gas_assert (ep != NULL);
bad36eac 7824
252b5132
RH
7825 /*
7826 * This allows macro() to pass an immediate expression for
7827 * creating short branches without creating a symbol.
bad36eac
DJ
7828 *
7829 * We don't allow branch relaxation for these branches, as
7830 * they should only appear in ".set nomacro" anyway.
252b5132
RH
7831 */
7832 if (ep->X_op == O_constant)
7833 {
df58fc94
RS
7834 /* For microMIPS we always use relocations for branches.
7835 So we should not resolve immediate values. */
7836 gas_assert (!mips_opts.micromips);
7837
bad36eac
DJ
7838 if ((ep->X_add_number & 3) != 0)
7839 as_bad (_("branch to misaligned address (0x%lx)"),
7840 (unsigned long) ep->X_add_number);
7841 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
7842 as_bad (_("branch address range overflow (0x%lx)"),
7843 (unsigned long) ep->X_add_number);
252b5132
RH
7844 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
7845 ep = NULL;
7846 }
7847 else
0b25d3e6 7848 *r = BFD_RELOC_16_PCREL_S2;
e077a1c8 7849 break;
252b5132
RH
7850
7851 case 'a':
9c2799c2 7852 gas_assert (ep != NULL);
f6688943 7853 *r = BFD_RELOC_MIPS_JMP;
e077a1c8 7854 break;
d43b4baf 7855
252b5132 7856 default:
e077a1c8
RS
7857 operand = (mips_opts.micromips
7858 ? decode_micromips_operand (fmt)
7859 : decode_mips_operand (fmt));
7860 if (!operand)
7861 abort ();
7862
7863 uval = va_arg (args, int);
7864 if (operand->type == OP_CLO_CLZ_DEST)
7865 uval |= (uval << 5);
7866 insn_insert_operand (&insn, operand, uval);
7867
7868 if (*fmt == '+' || *fmt == 'm')
7869 ++fmt;
7870 break;
252b5132 7871 }
252b5132
RH
7872 }
7873 va_end (args);
9c2799c2 7874 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 7875
df58fc94 7876 append_insn (&insn, ep, r, TRUE);
252b5132
RH
7877}
7878
7879static void
67c0d1eb 7880mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
03ea81db 7881 va_list *args)
252b5132 7882{
1e915849 7883 struct mips_opcode *mo;
252b5132 7884 struct mips_cl_insn insn;
e077a1c8 7885 const struct mips_operand *operand;
f6688943
TS
7886 bfd_reloc_code_real_type r[3]
7887 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 7888
1e915849 7889 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9c2799c2
NC
7890 gas_assert (mo);
7891 gas_assert (strcmp (name, mo->name) == 0);
252b5132 7892
1e915849 7893 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
252b5132 7894 {
1e915849 7895 ++mo;
9c2799c2
NC
7896 gas_assert (mo->name);
7897 gas_assert (strcmp (name, mo->name) == 0);
252b5132
RH
7898 }
7899
1e915849 7900 create_insn (&insn, mo);
e077a1c8 7901 for (; *fmt; ++fmt)
252b5132
RH
7902 {
7903 int c;
7904
e077a1c8 7905 c = *fmt;
252b5132
RH
7906 switch (c)
7907 {
252b5132
RH
7908 case ',':
7909 case '(':
7910 case ')':
e077a1c8 7911 break;
252b5132
RH
7912
7913 case '0':
7914 case 'S':
7915 case 'P':
7916 case 'R':
e077a1c8 7917 break;
252b5132
RH
7918
7919 case '<':
7920 case '>':
7921 case '4':
7922 case '5':
7923 case 'H':
7924 case 'W':
7925 case 'D':
7926 case 'j':
7927 case '8':
7928 case 'V':
7929 case 'C':
7930 case 'U':
7931 case 'k':
7932 case 'K':
7933 case 'p':
7934 case 'q':
7935 {
b886a2ab
RS
7936 offsetT value;
7937
9c2799c2 7938 gas_assert (ep != NULL);
252b5132
RH
7939
7940 if (ep->X_op != O_constant)
874e8986 7941 *r = (int) BFD_RELOC_UNUSED + c;
b886a2ab 7942 else if (calculate_reloc (*r, ep->X_add_number, &value))
252b5132 7943 {
b886a2ab 7944 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
252b5132 7945 ep = NULL;
f6688943 7946 *r = BFD_RELOC_UNUSED;
252b5132
RH
7947 }
7948 }
e077a1c8 7949 break;
252b5132 7950
e077a1c8
RS
7951 default:
7952 operand = decode_mips16_operand (c, FALSE);
7953 if (!operand)
7954 abort ();
252b5132 7955
4a06e5a2 7956 insn_insert_operand (&insn, operand, va_arg (*args, int));
e077a1c8
RS
7957 break;
7958 }
252b5132
RH
7959 }
7960
9c2799c2 7961 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 7962
df58fc94 7963 append_insn (&insn, ep, r, TRUE);
252b5132
RH
7964}
7965
438c16b8
TS
7966/*
7967 * Generate a "jalr" instruction with a relocation hint to the called
7968 * function. This occurs in NewABI PIC code.
7969 */
7970static void
df58fc94 7971macro_build_jalr (expressionS *ep, int cprestore)
438c16b8 7972{
df58fc94
RS
7973 static const bfd_reloc_code_real_type jalr_relocs[2]
7974 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
7975 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
7976 const char *jalr;
685736be 7977 char *f = NULL;
b34976b6 7978
1180b5a4 7979 if (MIPS_JALR_HINT_P (ep))
f21f8242 7980 {
cc3d92a5 7981 frag_grow (8);
f21f8242
AO
7982 f = frag_more (0);
7983 }
2906b037 7984 if (mips_opts.micromips)
df58fc94 7985 {
833794fc
MR
7986 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
7987 ? "jalr" : "jalrs");
e64af278 7988 if (MIPS_JALR_HINT_P (ep)
833794fc 7989 || mips_opts.insn32
e64af278 7990 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
7991 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
7992 else
7993 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
7994 }
2906b037
MR
7995 else
7996 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
1180b5a4 7997 if (MIPS_JALR_HINT_P (ep))
df58fc94 7998 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
438c16b8
TS
7999}
8000
252b5132
RH
8001/*
8002 * Generate a "lui" instruction.
8003 */
8004static void
67c0d1eb 8005macro_build_lui (expressionS *ep, int regnum)
252b5132 8006{
9c2799c2 8007 gas_assert (! mips_opts.mips16);
252b5132 8008
df58fc94 8009 if (ep->X_op != O_constant)
252b5132 8010 {
9c2799c2 8011 gas_assert (ep->X_op == O_symbol);
bbe506e8
TS
8012 /* _gp_disp is a special case, used from s_cpload.
8013 __gnu_local_gp is used if mips_no_shared. */
9c2799c2 8014 gas_assert (mips_pic == NO_PIC
78e1bb40 8015 || (! HAVE_NEWABI
aa6975fb
ILT
8016 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8017 || (! mips_in_shared
bbe506e8
TS
8018 && strcmp (S_GET_NAME (ep->X_add_symbol),
8019 "__gnu_local_gp") == 0));
252b5132
RH
8020 }
8021
df58fc94 8022 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
252b5132
RH
8023}
8024
885add95
CD
8025/* Generate a sequence of instructions to do a load or store from a constant
8026 offset off of a base register (breg) into/from a target register (treg),
8027 using AT if necessary. */
8028static void
67c0d1eb
RS
8029macro_build_ldst_constoffset (expressionS *ep, const char *op,
8030 int treg, int breg, int dbl)
885add95 8031{
9c2799c2 8032 gas_assert (ep->X_op == O_constant);
885add95 8033
256ab948 8034 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8035 if (!dbl)
8036 normalize_constant_expr (ep);
256ab948 8037
67c1ffbe 8038 /* Right now, this routine can only handle signed 32-bit constants. */
ecd13cd3 8039 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
885add95
CD
8040 as_warn (_("operand overflow"));
8041
8042 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8043 {
8044 /* Signed 16-bit offset will fit in the op. Easy! */
67c0d1eb 8045 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
885add95
CD
8046 }
8047 else
8048 {
8049 /* 32-bit offset, need multiple instructions and AT, like:
8050 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8051 addu $tempreg,$tempreg,$breg
8052 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8053 to handle the complete offset. */
67c0d1eb
RS
8054 macro_build_lui (ep, AT);
8055 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8056 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
885add95 8057
741fe287 8058 if (!mips_opts.at)
8fc2e39e 8059 as_bad (_("Macro used $at after \".set noat\""));
885add95
CD
8060 }
8061}
8062
252b5132
RH
8063/* set_at()
8064 * Generates code to set the $at register to true (one)
8065 * if reg is less than the immediate expression.
8066 */
8067static void
67c0d1eb 8068set_at (int reg, int unsignedp)
252b5132 8069{
b0e6f033 8070 if (imm_expr.X_add_number >= -0x8000
252b5132 8071 && imm_expr.X_add_number < 0x8000)
67c0d1eb
RS
8072 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8073 AT, reg, BFD_RELOC_LO16);
252b5132
RH
8074 else
8075 {
67c0d1eb
RS
8076 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
8077 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
252b5132
RH
8078 }
8079}
8080
252b5132
RH
8081/* Count the leading zeroes by performing a binary chop. This is a
8082 bulky bit of source, but performance is a LOT better for the
8083 majority of values than a simple loop to count the bits:
8084 for (lcnt = 0; (lcnt < 32); lcnt++)
8085 if ((v) & (1 << (31 - lcnt)))
8086 break;
8087 However it is not code size friendly, and the gain will drop a bit
8088 on certain cached systems.
8089*/
8090#define COUNT_TOP_ZEROES(v) \
8091 (((v) & ~0xffff) == 0 \
8092 ? ((v) & ~0xff) == 0 \
8093 ? ((v) & ~0xf) == 0 \
8094 ? ((v) & ~0x3) == 0 \
8095 ? ((v) & ~0x1) == 0 \
8096 ? !(v) \
8097 ? 32 \
8098 : 31 \
8099 : 30 \
8100 : ((v) & ~0x7) == 0 \
8101 ? 29 \
8102 : 28 \
8103 : ((v) & ~0x3f) == 0 \
8104 ? ((v) & ~0x1f) == 0 \
8105 ? 27 \
8106 : 26 \
8107 : ((v) & ~0x7f) == 0 \
8108 ? 25 \
8109 : 24 \
8110 : ((v) & ~0xfff) == 0 \
8111 ? ((v) & ~0x3ff) == 0 \
8112 ? ((v) & ~0x1ff) == 0 \
8113 ? 23 \
8114 : 22 \
8115 : ((v) & ~0x7ff) == 0 \
8116 ? 21 \
8117 : 20 \
8118 : ((v) & ~0x3fff) == 0 \
8119 ? ((v) & ~0x1fff) == 0 \
8120 ? 19 \
8121 : 18 \
8122 : ((v) & ~0x7fff) == 0 \
8123 ? 17 \
8124 : 16 \
8125 : ((v) & ~0xffffff) == 0 \
8126 ? ((v) & ~0xfffff) == 0 \
8127 ? ((v) & ~0x3ffff) == 0 \
8128 ? ((v) & ~0x1ffff) == 0 \
8129 ? 15 \
8130 : 14 \
8131 : ((v) & ~0x7ffff) == 0 \
8132 ? 13 \
8133 : 12 \
8134 : ((v) & ~0x3fffff) == 0 \
8135 ? ((v) & ~0x1fffff) == 0 \
8136 ? 11 \
8137 : 10 \
8138 : ((v) & ~0x7fffff) == 0 \
8139 ? 9 \
8140 : 8 \
8141 : ((v) & ~0xfffffff) == 0 \
8142 ? ((v) & ~0x3ffffff) == 0 \
8143 ? ((v) & ~0x1ffffff) == 0 \
8144 ? 7 \
8145 : 6 \
8146 : ((v) & ~0x7ffffff) == 0 \
8147 ? 5 \
8148 : 4 \
8149 : ((v) & ~0x3fffffff) == 0 \
8150 ? ((v) & ~0x1fffffff) == 0 \
8151 ? 3 \
8152 : 2 \
8153 : ((v) & ~0x7fffffff) == 0 \
8154 ? 1 \
8155 : 0)
8156
8157/* load_register()
67c1ffbe 8158 * This routine generates the least number of instructions necessary to load
252b5132
RH
8159 * an absolute expression value into a register.
8160 */
8161static void
67c0d1eb 8162load_register (int reg, expressionS *ep, int dbl)
252b5132
RH
8163{
8164 int freg;
8165 expressionS hi32, lo32;
8166
8167 if (ep->X_op != O_big)
8168 {
9c2799c2 8169 gas_assert (ep->X_op == O_constant);
256ab948
TS
8170
8171 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8172 if (!dbl)
8173 normalize_constant_expr (ep);
256ab948
TS
8174
8175 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
252b5132
RH
8176 {
8177 /* We can handle 16 bit signed values with an addiu to
8178 $zero. No need to ever use daddiu here, since $zero and
8179 the result are always correct in 32 bit mode. */
67c0d1eb 8180 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8181 return;
8182 }
8183 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8184 {
8185 /* We can handle 16 bit unsigned values with an ori to
8186 $zero. */
67c0d1eb 8187 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8188 return;
8189 }
256ab948 8190 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
252b5132
RH
8191 {
8192 /* 32 bit values require an lui. */
df58fc94 8193 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 8194 if ((ep->X_add_number & 0xffff) != 0)
67c0d1eb 8195 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
252b5132
RH
8196 return;
8197 }
8198 }
8199
8200 /* The value is larger than 32 bits. */
8201
2051e8c4 8202 if (!dbl || HAVE_32BIT_GPRS)
252b5132 8203 {
55e08f71
NC
8204 char value[32];
8205
8206 sprintf_vma (value, ep->X_add_number);
20e1fcfd 8207 as_bad (_("Number (0x%s) larger than 32 bits"), value);
67c0d1eb 8208 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8209 return;
8210 }
8211
8212 if (ep->X_op != O_big)
8213 {
8214 hi32 = *ep;
8215 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8216 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8217 hi32.X_add_number &= 0xffffffff;
8218 lo32 = *ep;
8219 lo32.X_add_number &= 0xffffffff;
8220 }
8221 else
8222 {
9c2799c2 8223 gas_assert (ep->X_add_number > 2);
252b5132
RH
8224 if (ep->X_add_number == 3)
8225 generic_bignum[3] = 0;
8226 else if (ep->X_add_number > 4)
8227 as_bad (_("Number larger than 64 bits"));
8228 lo32.X_op = O_constant;
8229 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8230 hi32.X_op = O_constant;
8231 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8232 }
8233
8234 if (hi32.X_add_number == 0)
8235 freg = 0;
8236 else
8237 {
8238 int shift, bit;
8239 unsigned long hi, lo;
8240
956cd1d6 8241 if (hi32.X_add_number == (offsetT) 0xffffffff)
beae10d5
KH
8242 {
8243 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8244 {
67c0d1eb 8245 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
8246 return;
8247 }
8248 if (lo32.X_add_number & 0x80000000)
8249 {
df58fc94 8250 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 8251 if (lo32.X_add_number & 0xffff)
67c0d1eb 8252 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
beae10d5
KH
8253 return;
8254 }
8255 }
252b5132
RH
8256
8257 /* Check for 16bit shifted constant. We know that hi32 is
8258 non-zero, so start the mask on the first bit of the hi32
8259 value. */
8260 shift = 17;
8261 do
beae10d5
KH
8262 {
8263 unsigned long himask, lomask;
8264
8265 if (shift < 32)
8266 {
8267 himask = 0xffff >> (32 - shift);
8268 lomask = (0xffff << shift) & 0xffffffff;
8269 }
8270 else
8271 {
8272 himask = 0xffff << (shift - 32);
8273 lomask = 0;
8274 }
8275 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8276 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8277 {
8278 expressionS tmp;
8279
8280 tmp.X_op = O_constant;
8281 if (shift < 32)
8282 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8283 | (lo32.X_add_number >> shift));
8284 else
8285 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
67c0d1eb 8286 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
df58fc94 8287 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 8288 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
8289 return;
8290 }
f9419b05 8291 ++shift;
beae10d5
KH
8292 }
8293 while (shift <= (64 - 16));
252b5132
RH
8294
8295 /* Find the bit number of the lowest one bit, and store the
8296 shifted value in hi/lo. */
8297 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8298 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8299 if (lo != 0)
8300 {
8301 bit = 0;
8302 while ((lo & 1) == 0)
8303 {
8304 lo >>= 1;
8305 ++bit;
8306 }
8307 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8308 hi >>= bit;
8309 }
8310 else
8311 {
8312 bit = 32;
8313 while ((hi & 1) == 0)
8314 {
8315 hi >>= 1;
8316 ++bit;
8317 }
8318 lo = hi;
8319 hi = 0;
8320 }
8321
8322 /* Optimize if the shifted value is a (power of 2) - 1. */
8323 if ((hi == 0 && ((lo + 1) & lo) == 0)
8324 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
beae10d5
KH
8325 {
8326 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
252b5132 8327 if (shift != 0)
beae10d5 8328 {
252b5132
RH
8329 expressionS tmp;
8330
8331 /* This instruction will set the register to be all
8332 ones. */
beae10d5
KH
8333 tmp.X_op = O_constant;
8334 tmp.X_add_number = (offsetT) -1;
67c0d1eb 8335 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
8336 if (bit != 0)
8337 {
8338 bit += shift;
df58fc94 8339 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 8340 reg, reg, (bit >= 32) ? bit - 32 : bit);
beae10d5 8341 }
df58fc94 8342 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
67c0d1eb 8343 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
8344 return;
8345 }
8346 }
252b5132
RH
8347
8348 /* Sign extend hi32 before calling load_register, because we can
8349 generally get better code when we load a sign extended value. */
8350 if ((hi32.X_add_number & 0x80000000) != 0)
beae10d5 8351 hi32.X_add_number |= ~(offsetT) 0xffffffff;
67c0d1eb 8352 load_register (reg, &hi32, 0);
252b5132
RH
8353 freg = reg;
8354 }
8355 if ((lo32.X_add_number & 0xffff0000) == 0)
8356 {
8357 if (freg != 0)
8358 {
df58fc94 8359 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
252b5132
RH
8360 freg = reg;
8361 }
8362 }
8363 else
8364 {
8365 expressionS mid16;
8366
956cd1d6 8367 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
beae10d5 8368 {
df58fc94
RS
8369 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8370 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
beae10d5
KH
8371 return;
8372 }
252b5132
RH
8373
8374 if (freg != 0)
8375 {
df58fc94 8376 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
252b5132
RH
8377 freg = reg;
8378 }
8379 mid16 = lo32;
8380 mid16.X_add_number >>= 16;
67c0d1eb 8381 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
df58fc94 8382 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
252b5132
RH
8383 freg = reg;
8384 }
8385 if ((lo32.X_add_number & 0xffff) != 0)
67c0d1eb 8386 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
252b5132
RH
8387}
8388
269137b2
TS
8389static inline void
8390load_delay_nop (void)
8391{
8392 if (!gpr_interlocks)
8393 macro_build (NULL, "nop", "");
8394}
8395
252b5132
RH
8396/* Load an address into a register. */
8397
8398static void
67c0d1eb 8399load_address (int reg, expressionS *ep, int *used_at)
252b5132 8400{
252b5132
RH
8401 if (ep->X_op != O_constant
8402 && ep->X_op != O_symbol)
8403 {
8404 as_bad (_("expression too complex"));
8405 ep->X_op = O_constant;
8406 }
8407
8408 if (ep->X_op == O_constant)
8409 {
67c0d1eb 8410 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
252b5132
RH
8411 return;
8412 }
8413
8414 if (mips_pic == NO_PIC)
8415 {
8416 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 8417 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
8418 Otherwise we want
8419 lui $reg,<sym> (BFD_RELOC_HI16_S)
8420 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
d6bc6245 8421 If we have an addend, we always use the latter form.
76b3015f 8422
d6bc6245
TS
8423 With 64bit address space and a usable $at we want
8424 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8425 lui $at,<sym> (BFD_RELOC_HI16_S)
8426 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
8427 daddiu $at,<sym> (BFD_RELOC_LO16)
8428 dsll32 $reg,0
3a482fd5 8429 daddu $reg,$reg,$at
76b3015f 8430
c03099e6 8431 If $at is already in use, we use a path which is suboptimal
d6bc6245
TS
8432 on superscalar processors.
8433 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8434 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
8435 dsll $reg,16
8436 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
8437 dsll $reg,16
8438 daddiu $reg,<sym> (BFD_RELOC_LO16)
6caf9ef4
TS
8439
8440 For GP relative symbols in 64bit address space we can use
8441 the same sequence as in 32bit address space. */
aed1a261 8442 if (HAVE_64BIT_SYMBOLS)
d6bc6245 8443 {
6caf9ef4
TS
8444 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
8445 && !nopic_need_relax (ep->X_add_symbol, 1))
8446 {
8447 relax_start (ep->X_add_symbol);
8448 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
8449 mips_gp_register, BFD_RELOC_GPREL16);
8450 relax_switch ();
8451 }
d6bc6245 8452
741fe287 8453 if (*used_at == 0 && mips_opts.at)
d6bc6245 8454 {
df58fc94
RS
8455 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
8456 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
67c0d1eb
RS
8457 macro_build (ep, "daddiu", "t,r,j", reg, reg,
8458 BFD_RELOC_MIPS_HIGHER);
8459 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
df58fc94 8460 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
67c0d1eb 8461 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
d6bc6245
TS
8462 *used_at = 1;
8463 }
8464 else
8465 {
df58fc94 8466 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb
RS
8467 macro_build (ep, "daddiu", "t,r,j", reg, reg,
8468 BFD_RELOC_MIPS_HIGHER);
df58fc94 8469 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 8470 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
df58fc94 8471 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 8472 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
d6bc6245 8473 }
6caf9ef4
TS
8474
8475 if (mips_relax.sequence)
8476 relax_end ();
d6bc6245 8477 }
252b5132
RH
8478 else
8479 {
d6bc6245 8480 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 8481 && !nopic_need_relax (ep->X_add_symbol, 1))
d6bc6245 8482 {
4d7206a2 8483 relax_start (ep->X_add_symbol);
67c0d1eb 8484 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
17a2f251 8485 mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 8486 relax_switch ();
d6bc6245 8487 }
67c0d1eb
RS
8488 macro_build_lui (ep, reg);
8489 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
8490 reg, reg, BFD_RELOC_LO16);
4d7206a2
RS
8491 if (mips_relax.sequence)
8492 relax_end ();
d6bc6245 8493 }
252b5132 8494 }
0a44bf69 8495 else if (!mips_big_got)
252b5132
RH
8496 {
8497 expressionS ex;
8498
8499 /* If this is a reference to an external symbol, we want
8500 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8501 Otherwise we want
8502 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8503 nop
8504 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
f5040a92
AO
8505 If there is a constant, it must be added in after.
8506
ed6fb7bd 8507 If we have NewABI, we want
f5040a92
AO
8508 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
8509 unless we're referencing a global symbol with a non-zero
8510 offset, in which case cst must be added separately. */
ed6fb7bd
SC
8511 if (HAVE_NEWABI)
8512 {
f5040a92
AO
8513 if (ep->X_add_number)
8514 {
4d7206a2 8515 ex.X_add_number = ep->X_add_number;
f5040a92 8516 ep->X_add_number = 0;
4d7206a2 8517 relax_start (ep->X_add_symbol);
67c0d1eb
RS
8518 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
8519 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
8520 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
8521 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8522 ex.X_op = O_constant;
67c0d1eb 8523 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 8524 reg, reg, BFD_RELOC_LO16);
f5040a92 8525 ep->X_add_number = ex.X_add_number;
4d7206a2 8526 relax_switch ();
f5040a92 8527 }
67c0d1eb 8528 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 8529 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2
RS
8530 if (mips_relax.sequence)
8531 relax_end ();
ed6fb7bd
SC
8532 }
8533 else
8534 {
f5040a92
AO
8535 ex.X_add_number = ep->X_add_number;
8536 ep->X_add_number = 0;
67c0d1eb
RS
8537 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
8538 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 8539 load_delay_nop ();
4d7206a2
RS
8540 relax_start (ep->X_add_symbol);
8541 relax_switch ();
67c0d1eb 8542 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 8543 BFD_RELOC_LO16);
4d7206a2 8544 relax_end ();
ed6fb7bd 8545
f5040a92
AO
8546 if (ex.X_add_number != 0)
8547 {
8548 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
8549 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8550 ex.X_op = O_constant;
67c0d1eb 8551 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 8552 reg, reg, BFD_RELOC_LO16);
f5040a92 8553 }
252b5132
RH
8554 }
8555 }
0a44bf69 8556 else if (mips_big_got)
252b5132
RH
8557 {
8558 expressionS ex;
252b5132
RH
8559
8560 /* This is the large GOT case. If this is a reference to an
8561 external symbol, we want
8562 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
8563 addu $reg,$reg,$gp
8564 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
f5040a92
AO
8565
8566 Otherwise, for a reference to a local symbol in old ABI, we want
252b5132
RH
8567 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8568 nop
8569 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
684022ea 8570 If there is a constant, it must be added in after.
f5040a92
AO
8571
8572 In the NewABI, for local symbols, with or without offsets, we want:
438c16b8
TS
8573 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
8574 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 8575 */
438c16b8
TS
8576 if (HAVE_NEWABI)
8577 {
4d7206a2 8578 ex.X_add_number = ep->X_add_number;
f5040a92 8579 ep->X_add_number = 0;
4d7206a2 8580 relax_start (ep->X_add_symbol);
df58fc94 8581 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
8582 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8583 reg, reg, mips_gp_register);
8584 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
8585 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
f5040a92
AO
8586 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
8587 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8588 else if (ex.X_add_number)
8589 {
8590 ex.X_op = O_constant;
67c0d1eb
RS
8591 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
8592 BFD_RELOC_LO16);
f5040a92
AO
8593 }
8594
8595 ep->X_add_number = ex.X_add_number;
4d7206a2 8596 relax_switch ();
67c0d1eb 8597 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 8598 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
67c0d1eb
RS
8599 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
8600 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 8601 relax_end ();
438c16b8 8602 }
252b5132 8603 else
438c16b8 8604 {
f5040a92
AO
8605 ex.X_add_number = ep->X_add_number;
8606 ep->X_add_number = 0;
4d7206a2 8607 relax_start (ep->X_add_symbol);
df58fc94 8608 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
8609 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8610 reg, reg, mips_gp_register);
8611 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
8612 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4d7206a2
RS
8613 relax_switch ();
8614 if (reg_needs_delay (mips_gp_register))
438c16b8
TS
8615 {
8616 /* We need a nop before loading from $gp. This special
8617 check is required because the lui which starts the main
8618 instruction stream does not refer to $gp, and so will not
8619 insert the nop which may be required. */
67c0d1eb 8620 macro_build (NULL, "nop", "");
438c16b8 8621 }
67c0d1eb 8622 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 8623 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 8624 load_delay_nop ();
67c0d1eb 8625 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 8626 BFD_RELOC_LO16);
4d7206a2 8627 relax_end ();
438c16b8 8628
f5040a92
AO
8629 if (ex.X_add_number != 0)
8630 {
8631 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
8632 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8633 ex.X_op = O_constant;
67c0d1eb
RS
8634 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
8635 BFD_RELOC_LO16);
f5040a92 8636 }
252b5132
RH
8637 }
8638 }
252b5132
RH
8639 else
8640 abort ();
8fc2e39e 8641
741fe287 8642 if (!mips_opts.at && *used_at == 1)
8fc2e39e 8643 as_bad (_("Macro used $at after \".set noat\""));
252b5132
RH
8644}
8645
ea1fb5dc
RS
8646/* Move the contents of register SOURCE into register DEST. */
8647
8648static void
67c0d1eb 8649move_register (int dest, int source)
ea1fb5dc 8650{
df58fc94
RS
8651 /* Prefer to use a 16-bit microMIPS instruction unless the previous
8652 instruction specifically requires a 32-bit one. */
8653 if (mips_opts.micromips
833794fc 8654 && !mips_opts.insn32
df58fc94 8655 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7951ca42 8656 macro_build (NULL, "move", "mp,mj", dest, source);
df58fc94
RS
8657 else
8658 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
8659 dest, source, 0);
ea1fb5dc
RS
8660}
8661
4d7206a2 8662/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
f6a22291
MR
8663 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
8664 The two alternatives are:
4d7206a2
RS
8665
8666 Global symbol Local sybmol
8667 ------------- ------------
8668 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
8669 ... ...
8670 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
8671
8672 load_got_offset emits the first instruction and add_got_offset
f6a22291
MR
8673 emits the second for a 16-bit offset or add_got_offset_hilo emits
8674 a sequence to add a 32-bit offset using a scratch register. */
4d7206a2
RS
8675
8676static void
67c0d1eb 8677load_got_offset (int dest, expressionS *local)
4d7206a2
RS
8678{
8679 expressionS global;
8680
8681 global = *local;
8682 global.X_add_number = 0;
8683
8684 relax_start (local->X_add_symbol);
67c0d1eb
RS
8685 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
8686 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2 8687 relax_switch ();
67c0d1eb
RS
8688 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
8689 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2
RS
8690 relax_end ();
8691}
8692
8693static void
67c0d1eb 8694add_got_offset (int dest, expressionS *local)
4d7206a2
RS
8695{
8696 expressionS global;
8697
8698 global.X_op = O_constant;
8699 global.X_op_symbol = NULL;
8700 global.X_add_symbol = NULL;
8701 global.X_add_number = local->X_add_number;
8702
8703 relax_start (local->X_add_symbol);
67c0d1eb 8704 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4d7206a2
RS
8705 dest, dest, BFD_RELOC_LO16);
8706 relax_switch ();
67c0d1eb 8707 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4d7206a2
RS
8708 relax_end ();
8709}
8710
f6a22291
MR
8711static void
8712add_got_offset_hilo (int dest, expressionS *local, int tmp)
8713{
8714 expressionS global;
8715 int hold_mips_optimize;
8716
8717 global.X_op = O_constant;
8718 global.X_op_symbol = NULL;
8719 global.X_add_symbol = NULL;
8720 global.X_add_number = local->X_add_number;
8721
8722 relax_start (local->X_add_symbol);
8723 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
8724 relax_switch ();
8725 /* Set mips_optimize around the lui instruction to avoid
8726 inserting an unnecessary nop after the lw. */
8727 hold_mips_optimize = mips_optimize;
8728 mips_optimize = 2;
8729 macro_build_lui (&global, tmp);
8730 mips_optimize = hold_mips_optimize;
8731 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
8732 relax_end ();
8733
8734 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
8735}
8736
df58fc94
RS
8737/* Emit a sequence of instructions to emulate a branch likely operation.
8738 BR is an ordinary branch corresponding to one to be emulated. BRNEG
8739 is its complementing branch with the original condition negated.
8740 CALL is set if the original branch specified the link operation.
8741 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
8742
8743 Code like this is produced in the noreorder mode:
8744
8745 BRNEG <args>, 1f
8746 nop
8747 b <sym>
8748 delay slot (executed only if branch taken)
8749 1:
8750
8751 or, if CALL is set:
8752
8753 BRNEG <args>, 1f
8754 nop
8755 bal <sym>
8756 delay slot (executed only if branch taken)
8757 1:
8758
8759 In the reorder mode the delay slot would be filled with a nop anyway,
8760 so code produced is simply:
8761
8762 BR <args>, <sym>
8763 nop
8764
8765 This function is used when producing code for the microMIPS ASE that
8766 does not implement branch likely instructions in hardware. */
8767
8768static void
8769macro_build_branch_likely (const char *br, const char *brneg,
8770 int call, expressionS *ep, const char *fmt,
8771 unsigned int sreg, unsigned int treg)
8772{
8773 int noreorder = mips_opts.noreorder;
8774 expressionS expr1;
8775
8776 gas_assert (mips_opts.micromips);
8777 start_noreorder ();
8778 if (noreorder)
8779 {
8780 micromips_label_expr (&expr1);
8781 macro_build (&expr1, brneg, fmt, sreg, treg);
8782 macro_build (NULL, "nop", "");
8783 macro_build (ep, call ? "bal" : "b", "p");
8784
8785 /* Set to true so that append_insn adds a label. */
8786 emit_branch_likely_macro = TRUE;
8787 }
8788 else
8789 {
8790 macro_build (ep, br, fmt, sreg, treg);
8791 macro_build (NULL, "nop", "");
8792 }
8793 end_noreorder ();
8794}
8795
8796/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
8797 the condition code tested. EP specifies the branch target. */
8798
8799static void
8800macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
8801{
8802 const int call = 0;
8803 const char *brneg;
8804 const char *br;
8805
8806 switch (type)
8807 {
8808 case M_BC1FL:
8809 br = "bc1f";
8810 brneg = "bc1t";
8811 break;
8812 case M_BC1TL:
8813 br = "bc1t";
8814 brneg = "bc1f";
8815 break;
8816 case M_BC2FL:
8817 br = "bc2f";
8818 brneg = "bc2t";
8819 break;
8820 case M_BC2TL:
8821 br = "bc2t";
8822 brneg = "bc2f";
8823 break;
8824 default:
8825 abort ();
8826 }
8827 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
8828}
8829
8830/* Emit a two-argument branch macro specified by TYPE, using SREG as
8831 the register tested. EP specifies the branch target. */
8832
8833static void
8834macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
8835{
8836 const char *brneg = NULL;
8837 const char *br;
8838 int call = 0;
8839
8840 switch (type)
8841 {
8842 case M_BGEZ:
8843 br = "bgez";
8844 break;
8845 case M_BGEZL:
8846 br = mips_opts.micromips ? "bgez" : "bgezl";
8847 brneg = "bltz";
8848 break;
8849 case M_BGEZALL:
8850 gas_assert (mips_opts.micromips);
833794fc 8851 br = mips_opts.insn32 ? "bgezal" : "bgezals";
df58fc94
RS
8852 brneg = "bltz";
8853 call = 1;
8854 break;
8855 case M_BGTZ:
8856 br = "bgtz";
8857 break;
8858 case M_BGTZL:
8859 br = mips_opts.micromips ? "bgtz" : "bgtzl";
8860 brneg = "blez";
8861 break;
8862 case M_BLEZ:
8863 br = "blez";
8864 break;
8865 case M_BLEZL:
8866 br = mips_opts.micromips ? "blez" : "blezl";
8867 brneg = "bgtz";
8868 break;
8869 case M_BLTZ:
8870 br = "bltz";
8871 break;
8872 case M_BLTZL:
8873 br = mips_opts.micromips ? "bltz" : "bltzl";
8874 brneg = "bgez";
8875 break;
8876 case M_BLTZALL:
8877 gas_assert (mips_opts.micromips);
833794fc 8878 br = mips_opts.insn32 ? "bltzal" : "bltzals";
df58fc94
RS
8879 brneg = "bgez";
8880 call = 1;
8881 break;
8882 default:
8883 abort ();
8884 }
8885 if (mips_opts.micromips && brneg)
8886 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
8887 else
8888 macro_build (ep, br, "s,p", sreg);
8889}
8890
8891/* Emit a three-argument branch macro specified by TYPE, using SREG and
8892 TREG as the registers tested. EP specifies the branch target. */
8893
8894static void
8895macro_build_branch_rsrt (int type, expressionS *ep,
8896 unsigned int sreg, unsigned int treg)
8897{
8898 const char *brneg = NULL;
8899 const int call = 0;
8900 const char *br;
8901
8902 switch (type)
8903 {
8904 case M_BEQ:
8905 case M_BEQ_I:
8906 br = "beq";
8907 break;
8908 case M_BEQL:
8909 case M_BEQL_I:
8910 br = mips_opts.micromips ? "beq" : "beql";
8911 brneg = "bne";
8912 break;
8913 case M_BNE:
8914 case M_BNE_I:
8915 br = "bne";
8916 break;
8917 case M_BNEL:
8918 case M_BNEL_I:
8919 br = mips_opts.micromips ? "bne" : "bnel";
8920 brneg = "beq";
8921 break;
8922 default:
8923 abort ();
8924 }
8925 if (mips_opts.micromips && brneg)
8926 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
8927 else
8928 macro_build (ep, br, "s,t,p", sreg, treg);
8929}
8930
f2ae14a1
RS
8931/* Return the high part that should be loaded in order to make the low
8932 part of VALUE accessible using an offset of OFFBITS bits. */
8933
8934static offsetT
8935offset_high_part (offsetT value, unsigned int offbits)
8936{
8937 offsetT bias;
8938 addressT low_mask;
8939
8940 if (offbits == 0)
8941 return value;
8942 bias = 1 << (offbits - 1);
8943 low_mask = bias * 2 - 1;
8944 return (value + bias) & ~low_mask;
8945}
8946
8947/* Return true if the value stored in offset_expr and offset_reloc
8948 fits into a signed offset of OFFBITS bits. RANGE is the maximum
8949 amount that the caller wants to add without inducing overflow
8950 and ALIGN is the known alignment of the value in bytes. */
8951
8952static bfd_boolean
8953small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
8954{
8955 if (offbits == 16)
8956 {
8957 /* Accept any relocation operator if overflow isn't a concern. */
8958 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
8959 return TRUE;
8960
8961 /* These relocations are guaranteed not to overflow in correct links. */
8962 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
8963 || gprel16_reloc_p (*offset_reloc))
8964 return TRUE;
8965 }
8966 if (offset_expr.X_op == O_constant
8967 && offset_high_part (offset_expr.X_add_number, offbits) == 0
8968 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
8969 return TRUE;
8970 return FALSE;
8971}
8972
252b5132
RH
8973/*
8974 * Build macros
8975 * This routine implements the seemingly endless macro or synthesized
8976 * instructions and addressing modes in the mips assembly language. Many
8977 * of these macros are simple and are similar to each other. These could
67c1ffbe 8978 * probably be handled by some kind of table or grammar approach instead of
252b5132
RH
8979 * this verbose method. Others are not simple macros but are more like
8980 * optimizing code generation.
8981 * One interesting optimization is when several store macros appear
67c1ffbe 8982 * consecutively that would load AT with the upper half of the same address.
252b5132
RH
8983 * The ensuing load upper instructions are ommited. This implies some kind
8984 * of global optimization. We currently only optimize within a single macro.
8985 * For many of the load and store macros if the address is specified as a
8986 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
8987 * first load register 'at' with zero and use it as the base register. The
8988 * mips assembler simply uses register $zero. Just one tiny optimization
8989 * we're missing.
8990 */
8991static void
833794fc 8992macro (struct mips_cl_insn *ip, char *str)
252b5132 8993{
c0ebe874
RS
8994 const struct mips_operand_array *operands;
8995 unsigned int breg, i;
741fe287 8996 unsigned int tempreg;
252b5132 8997 int mask;
43841e91 8998 int used_at = 0;
df58fc94 8999 expressionS label_expr;
252b5132 9000 expressionS expr1;
df58fc94 9001 expressionS *ep;
252b5132
RH
9002 const char *s;
9003 const char *s2;
9004 const char *fmt;
9005 int likely = 0;
252b5132 9006 int coproc = 0;
7f3c4072 9007 int offbits = 16;
1abe91b1 9008 int call = 0;
df58fc94
RS
9009 int jals = 0;
9010 int dbl = 0;
9011 int imm = 0;
9012 int ust = 0;
9013 int lp = 0;
f2ae14a1 9014 bfd_boolean large_offset;
252b5132 9015 int off;
252b5132 9016 int hold_mips_optimize;
f2ae14a1 9017 unsigned int align;
c0ebe874 9018 unsigned int op[MAX_OPERANDS];
252b5132 9019
9c2799c2 9020 gas_assert (! mips_opts.mips16);
252b5132 9021
c0ebe874
RS
9022 operands = insn_operands (ip);
9023 for (i = 0; i < MAX_OPERANDS; i++)
9024 if (operands->operand[i])
9025 op[i] = insn_extract_operand (ip, operands->operand[i]);
9026 else
9027 op[i] = -1;
9028
252b5132
RH
9029 mask = ip->insn_mo->mask;
9030
df58fc94
RS
9031 label_expr.X_op = O_constant;
9032 label_expr.X_op_symbol = NULL;
9033 label_expr.X_add_symbol = NULL;
9034 label_expr.X_add_number = 0;
9035
252b5132
RH
9036 expr1.X_op = O_constant;
9037 expr1.X_op_symbol = NULL;
9038 expr1.X_add_symbol = NULL;
9039 expr1.X_add_number = 1;
f2ae14a1 9040 align = 1;
252b5132
RH
9041
9042 switch (mask)
9043 {
9044 case M_DABS:
9045 dbl = 1;
9046 case M_ABS:
df58fc94
RS
9047 /* bgez $a0,1f
9048 move v0,$a0
9049 sub v0,$zero,$a0
9050 1:
9051 */
252b5132 9052
7d10b47d 9053 start_noreorder ();
252b5132 9054
df58fc94
RS
9055 if (mips_opts.micromips)
9056 micromips_label_expr (&label_expr);
9057 else
9058 label_expr.X_add_number = 8;
c0ebe874
RS
9059 macro_build (&label_expr, "bgez", "s,p", op[1]);
9060 if (op[0] == op[1])
a605d2b3 9061 macro_build (NULL, "nop", "");
252b5132 9062 else
c0ebe874
RS
9063 move_register (op[0], op[1]);
9064 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
df58fc94
RS
9065 if (mips_opts.micromips)
9066 micromips_add_label ();
252b5132 9067
7d10b47d 9068 end_noreorder ();
8fc2e39e 9069 break;
252b5132
RH
9070
9071 case M_ADD_I:
9072 s = "addi";
9073 s2 = "add";
9074 goto do_addi;
9075 case M_ADDU_I:
9076 s = "addiu";
9077 s2 = "addu";
9078 goto do_addi;
9079 case M_DADD_I:
9080 dbl = 1;
9081 s = "daddi";
9082 s2 = "dadd";
df58fc94
RS
9083 if (!mips_opts.micromips)
9084 goto do_addi;
b0e6f033 9085 if (imm_expr.X_add_number >= -0x200
df58fc94
RS
9086 && imm_expr.X_add_number < 0x200)
9087 {
b0e6f033
RS
9088 macro_build (NULL, s, "t,r,.", op[0], op[1],
9089 (int) imm_expr.X_add_number);
df58fc94
RS
9090 break;
9091 }
9092 goto do_addi_i;
252b5132
RH
9093 case M_DADDU_I:
9094 dbl = 1;
9095 s = "daddiu";
9096 s2 = "daddu";
9097 do_addi:
b0e6f033 9098 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
9099 && imm_expr.X_add_number < 0x8000)
9100 {
c0ebe874 9101 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 9102 break;
252b5132 9103 }
df58fc94 9104 do_addi_i:
8fc2e39e 9105 used_at = 1;
67c0d1eb 9106 load_register (AT, &imm_expr, dbl);
c0ebe874 9107 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9108 break;
9109
9110 case M_AND_I:
9111 s = "andi";
9112 s2 = "and";
9113 goto do_bit;
9114 case M_OR_I:
9115 s = "ori";
9116 s2 = "or";
9117 goto do_bit;
9118 case M_NOR_I:
9119 s = "";
9120 s2 = "nor";
9121 goto do_bit;
9122 case M_XOR_I:
9123 s = "xori";
9124 s2 = "xor";
9125 do_bit:
b0e6f033 9126 if (imm_expr.X_add_number >= 0
252b5132
RH
9127 && imm_expr.X_add_number < 0x10000)
9128 {
9129 if (mask != M_NOR_I)
c0ebe874 9130 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
9131 else
9132 {
67c0d1eb 9133 macro_build (&imm_expr, "ori", "t,r,i",
c0ebe874
RS
9134 op[0], op[1], BFD_RELOC_LO16);
9135 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
252b5132 9136 }
8fc2e39e 9137 break;
252b5132
RH
9138 }
9139
8fc2e39e 9140 used_at = 1;
67c0d1eb 9141 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
c0ebe874 9142 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9143 break;
9144
8b082fb1
TS
9145 case M_BALIGN:
9146 switch (imm_expr.X_add_number)
9147 {
9148 case 0:
9149 macro_build (NULL, "nop", "");
9150 break;
9151 case 2:
c0ebe874 9152 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
8b082fb1 9153 break;
03f66e8a
MR
9154 case 1:
9155 case 3:
c0ebe874 9156 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
90ecf173 9157 (int) imm_expr.X_add_number);
8b082fb1 9158 break;
03f66e8a
MR
9159 default:
9160 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9161 (unsigned long) imm_expr.X_add_number);
9162 break;
8b082fb1
TS
9163 }
9164 break;
9165
df58fc94
RS
9166 case M_BC1FL:
9167 case M_BC1TL:
9168 case M_BC2FL:
9169 case M_BC2TL:
9170 gas_assert (mips_opts.micromips);
9171 macro_build_branch_ccl (mask, &offset_expr,
9172 EXTRACT_OPERAND (1, BCC, *ip));
9173 break;
9174
252b5132 9175 case M_BEQ_I:
252b5132 9176 case M_BEQL_I:
252b5132 9177 case M_BNE_I:
252b5132 9178 case M_BNEL_I:
b0e6f033 9179 if (imm_expr.X_add_number == 0)
c0ebe874 9180 op[1] = 0;
df58fc94 9181 else
252b5132 9182 {
c0ebe874 9183 op[1] = AT;
df58fc94 9184 used_at = 1;
c0ebe874 9185 load_register (op[1], &imm_expr, HAVE_64BIT_GPRS);
252b5132 9186 }
df58fc94
RS
9187 /* Fall through. */
9188 case M_BEQL:
9189 case M_BNEL:
c0ebe874 9190 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
252b5132
RH
9191 break;
9192
9193 case M_BGEL:
9194 likely = 1;
9195 case M_BGE:
c0ebe874
RS
9196 if (op[1] == 0)
9197 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9198 else if (op[0] == 0)
9199 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
df58fc94 9200 else
252b5132 9201 {
df58fc94 9202 used_at = 1;
c0ebe874 9203 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9204 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9205 &offset_expr, AT, ZERO);
252b5132 9206 }
df58fc94
RS
9207 break;
9208
9209 case M_BGEZL:
9210 case M_BGEZALL:
9211 case M_BGTZL:
9212 case M_BLEZL:
9213 case M_BLTZL:
9214 case M_BLTZALL:
c0ebe874 9215 macro_build_branch_rs (mask, &offset_expr, op[0]);
252b5132
RH
9216 break;
9217
9218 case M_BGTL_I:
9219 likely = 1;
9220 case M_BGT_I:
90ecf173 9221 /* Check for > max integer. */
b0e6f033 9222 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
9223 {
9224 do_false:
90ecf173 9225 /* Result is always false. */
252b5132 9226 if (! likely)
a605d2b3 9227 macro_build (NULL, "nop", "");
252b5132 9228 else
df58fc94 9229 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8fc2e39e 9230 break;
252b5132 9231 }
f9419b05 9232 ++imm_expr.X_add_number;
252b5132
RH
9233 /* FALLTHROUGH */
9234 case M_BGE_I:
9235 case M_BGEL_I:
9236 if (mask == M_BGEL_I)
9237 likely = 1;
b0e6f033 9238 if (imm_expr.X_add_number == 0)
252b5132 9239 {
df58fc94 9240 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
c0ebe874 9241 &offset_expr, op[0]);
8fc2e39e 9242 break;
252b5132 9243 }
b0e6f033 9244 if (imm_expr.X_add_number == 1)
252b5132 9245 {
df58fc94 9246 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
c0ebe874 9247 &offset_expr, op[0]);
8fc2e39e 9248 break;
252b5132 9249 }
b0e6f033 9250 if (imm_expr.X_add_number <= GPR_SMIN)
252b5132
RH
9251 {
9252 do_true:
9253 /* result is always true */
9254 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
67c0d1eb 9255 macro_build (&offset_expr, "b", "p");
8fc2e39e 9256 break;
252b5132 9257 }
8fc2e39e 9258 used_at = 1;
c0ebe874 9259 set_at (op[0], 0);
df58fc94
RS
9260 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9261 &offset_expr, AT, ZERO);
252b5132
RH
9262 break;
9263
9264 case M_BGEUL:
9265 likely = 1;
9266 case M_BGEU:
c0ebe874 9267 if (op[1] == 0)
252b5132 9268 goto do_true;
c0ebe874 9269 else if (op[0] == 0)
df58fc94 9270 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 9271 &offset_expr, ZERO, op[1]);
df58fc94 9272 else
252b5132 9273 {
df58fc94 9274 used_at = 1;
c0ebe874 9275 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9276 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9277 &offset_expr, AT, ZERO);
252b5132 9278 }
252b5132
RH
9279 break;
9280
9281 case M_BGTUL_I:
9282 likely = 1;
9283 case M_BGTU_I:
c0ebe874 9284 if (op[0] == 0
ca4e0257 9285 || (HAVE_32BIT_GPRS
f01dc953 9286 && imm_expr.X_add_number == -1))
252b5132 9287 goto do_false;
f9419b05 9288 ++imm_expr.X_add_number;
252b5132
RH
9289 /* FALLTHROUGH */
9290 case M_BGEU_I:
9291 case M_BGEUL_I:
9292 if (mask == M_BGEUL_I)
9293 likely = 1;
b0e6f033 9294 if (imm_expr.X_add_number == 0)
252b5132 9295 goto do_true;
b0e6f033 9296 else if (imm_expr.X_add_number == 1)
df58fc94 9297 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 9298 &offset_expr, op[0], ZERO);
df58fc94 9299 else
252b5132 9300 {
df58fc94 9301 used_at = 1;
c0ebe874 9302 set_at (op[0], 1);
df58fc94
RS
9303 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9304 &offset_expr, AT, ZERO);
252b5132 9305 }
252b5132
RH
9306 break;
9307
9308 case M_BGTL:
9309 likely = 1;
9310 case M_BGT:
c0ebe874
RS
9311 if (op[1] == 0)
9312 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9313 else if (op[0] == 0)
9314 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
df58fc94 9315 else
252b5132 9316 {
df58fc94 9317 used_at = 1;
c0ebe874 9318 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
9319 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9320 &offset_expr, AT, ZERO);
252b5132 9321 }
252b5132
RH
9322 break;
9323
9324 case M_BGTUL:
9325 likely = 1;
9326 case M_BGTU:
c0ebe874 9327 if (op[1] == 0)
df58fc94 9328 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874
RS
9329 &offset_expr, op[0], ZERO);
9330 else if (op[0] == 0)
df58fc94
RS
9331 goto do_false;
9332 else
252b5132 9333 {
df58fc94 9334 used_at = 1;
c0ebe874 9335 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
9336 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9337 &offset_expr, AT, ZERO);
252b5132 9338 }
252b5132
RH
9339 break;
9340
9341 case M_BLEL:
9342 likely = 1;
9343 case M_BLE:
c0ebe874
RS
9344 if (op[1] == 0)
9345 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
9346 else if (op[0] == 0)
9347 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
df58fc94 9348 else
252b5132 9349 {
df58fc94 9350 used_at = 1;
c0ebe874 9351 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
9352 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9353 &offset_expr, AT, ZERO);
252b5132 9354 }
252b5132
RH
9355 break;
9356
9357 case M_BLEL_I:
9358 likely = 1;
9359 case M_BLE_I:
b0e6f033 9360 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132 9361 goto do_true;
f9419b05 9362 ++imm_expr.X_add_number;
252b5132
RH
9363 /* FALLTHROUGH */
9364 case M_BLT_I:
9365 case M_BLTL_I:
9366 if (mask == M_BLTL_I)
9367 likely = 1;
b0e6f033 9368 if (imm_expr.X_add_number == 0)
c0ebe874 9369 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
b0e6f033 9370 else if (imm_expr.X_add_number == 1)
c0ebe874 9371 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
df58fc94 9372 else
252b5132 9373 {
df58fc94 9374 used_at = 1;
c0ebe874 9375 set_at (op[0], 0);
df58fc94
RS
9376 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9377 &offset_expr, AT, ZERO);
252b5132 9378 }
252b5132
RH
9379 break;
9380
9381 case M_BLEUL:
9382 likely = 1;
9383 case M_BLEU:
c0ebe874 9384 if (op[1] == 0)
df58fc94 9385 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874
RS
9386 &offset_expr, op[0], ZERO);
9387 else if (op[0] == 0)
df58fc94
RS
9388 goto do_true;
9389 else
252b5132 9390 {
df58fc94 9391 used_at = 1;
c0ebe874 9392 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
9393 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9394 &offset_expr, AT, ZERO);
252b5132 9395 }
252b5132
RH
9396 break;
9397
9398 case M_BLEUL_I:
9399 likely = 1;
9400 case M_BLEU_I:
c0ebe874 9401 if (op[0] == 0
ca4e0257 9402 || (HAVE_32BIT_GPRS
f01dc953 9403 && imm_expr.X_add_number == -1))
252b5132 9404 goto do_true;
f9419b05 9405 ++imm_expr.X_add_number;
252b5132
RH
9406 /* FALLTHROUGH */
9407 case M_BLTU_I:
9408 case M_BLTUL_I:
9409 if (mask == M_BLTUL_I)
9410 likely = 1;
b0e6f033 9411 if (imm_expr.X_add_number == 0)
252b5132 9412 goto do_false;
b0e6f033 9413 else if (imm_expr.X_add_number == 1)
df58fc94 9414 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 9415 &offset_expr, op[0], ZERO);
df58fc94 9416 else
252b5132 9417 {
df58fc94 9418 used_at = 1;
c0ebe874 9419 set_at (op[0], 1);
df58fc94
RS
9420 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9421 &offset_expr, AT, ZERO);
252b5132 9422 }
252b5132
RH
9423 break;
9424
9425 case M_BLTL:
9426 likely = 1;
9427 case M_BLT:
c0ebe874
RS
9428 if (op[1] == 0)
9429 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
9430 else if (op[0] == 0)
9431 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
df58fc94 9432 else
252b5132 9433 {
df58fc94 9434 used_at = 1;
c0ebe874 9435 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9436 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9437 &offset_expr, AT, ZERO);
252b5132 9438 }
252b5132
RH
9439 break;
9440
9441 case M_BLTUL:
9442 likely = 1;
9443 case M_BLTU:
c0ebe874 9444 if (op[1] == 0)
252b5132 9445 goto do_false;
c0ebe874 9446 else if (op[0] == 0)
df58fc94 9447 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 9448 &offset_expr, ZERO, op[1]);
df58fc94 9449 else
252b5132 9450 {
df58fc94 9451 used_at = 1;
c0ebe874 9452 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9453 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9454 &offset_expr, AT, ZERO);
252b5132 9455 }
252b5132
RH
9456 break;
9457
9458 case M_DDIV_3:
9459 dbl = 1;
9460 case M_DIV_3:
9461 s = "mflo";
9462 goto do_div3;
9463 case M_DREM_3:
9464 dbl = 1;
9465 case M_REM_3:
9466 s = "mfhi";
9467 do_div3:
c0ebe874 9468 if (op[2] == 0)
252b5132
RH
9469 {
9470 as_warn (_("Divide by zero."));
9471 if (mips_trap)
df58fc94 9472 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 9473 else
df58fc94 9474 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 9475 break;
252b5132
RH
9476 }
9477
7d10b47d 9478 start_noreorder ();
252b5132
RH
9479 if (mips_trap)
9480 {
c0ebe874
RS
9481 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
9482 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
252b5132
RH
9483 }
9484 else
9485 {
df58fc94
RS
9486 if (mips_opts.micromips)
9487 micromips_label_expr (&label_expr);
9488 else
9489 label_expr.X_add_number = 8;
c0ebe874
RS
9490 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
9491 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
df58fc94
RS
9492 macro_build (NULL, "break", BRK_FMT, 7);
9493 if (mips_opts.micromips)
9494 micromips_add_label ();
252b5132
RH
9495 }
9496 expr1.X_add_number = -1;
8fc2e39e 9497 used_at = 1;
f6a22291 9498 load_register (AT, &expr1, dbl);
df58fc94
RS
9499 if (mips_opts.micromips)
9500 micromips_label_expr (&label_expr);
9501 else
9502 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
c0ebe874 9503 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
252b5132
RH
9504 if (dbl)
9505 {
9506 expr1.X_add_number = 1;
f6a22291 9507 load_register (AT, &expr1, dbl);
df58fc94 9508 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
252b5132
RH
9509 }
9510 else
9511 {
9512 expr1.X_add_number = 0x80000000;
df58fc94 9513 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
252b5132
RH
9514 }
9515 if (mips_trap)
9516 {
c0ebe874 9517 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
252b5132
RH
9518 /* We want to close the noreorder block as soon as possible, so
9519 that later insns are available for delay slot filling. */
7d10b47d 9520 end_noreorder ();
252b5132
RH
9521 }
9522 else
9523 {
df58fc94
RS
9524 if (mips_opts.micromips)
9525 micromips_label_expr (&label_expr);
9526 else
9527 label_expr.X_add_number = 8;
c0ebe874 9528 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
a605d2b3 9529 macro_build (NULL, "nop", "");
252b5132
RH
9530
9531 /* We want to close the noreorder block as soon as possible, so
9532 that later insns are available for delay slot filling. */
7d10b47d 9533 end_noreorder ();
252b5132 9534
df58fc94 9535 macro_build (NULL, "break", BRK_FMT, 6);
252b5132 9536 }
df58fc94
RS
9537 if (mips_opts.micromips)
9538 micromips_add_label ();
c0ebe874 9539 macro_build (NULL, s, MFHL_FMT, op[0]);
252b5132
RH
9540 break;
9541
9542 case M_DIV_3I:
9543 s = "div";
9544 s2 = "mflo";
9545 goto do_divi;
9546 case M_DIVU_3I:
9547 s = "divu";
9548 s2 = "mflo";
9549 goto do_divi;
9550 case M_REM_3I:
9551 s = "div";
9552 s2 = "mfhi";
9553 goto do_divi;
9554 case M_REMU_3I:
9555 s = "divu";
9556 s2 = "mfhi";
9557 goto do_divi;
9558 case M_DDIV_3I:
9559 dbl = 1;
9560 s = "ddiv";
9561 s2 = "mflo";
9562 goto do_divi;
9563 case M_DDIVU_3I:
9564 dbl = 1;
9565 s = "ddivu";
9566 s2 = "mflo";
9567 goto do_divi;
9568 case M_DREM_3I:
9569 dbl = 1;
9570 s = "ddiv";
9571 s2 = "mfhi";
9572 goto do_divi;
9573 case M_DREMU_3I:
9574 dbl = 1;
9575 s = "ddivu";
9576 s2 = "mfhi";
9577 do_divi:
b0e6f033 9578 if (imm_expr.X_add_number == 0)
252b5132
RH
9579 {
9580 as_warn (_("Divide by zero."));
9581 if (mips_trap)
df58fc94 9582 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 9583 else
df58fc94 9584 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 9585 break;
252b5132 9586 }
b0e6f033 9587 if (imm_expr.X_add_number == 1)
252b5132
RH
9588 {
9589 if (strcmp (s2, "mflo") == 0)
c0ebe874 9590 move_register (op[0], op[1]);
252b5132 9591 else
c0ebe874 9592 move_register (op[0], ZERO);
8fc2e39e 9593 break;
252b5132 9594 }
b0e6f033 9595 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
252b5132
RH
9596 {
9597 if (strcmp (s2, "mflo") == 0)
c0ebe874 9598 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
252b5132 9599 else
c0ebe874 9600 move_register (op[0], ZERO);
8fc2e39e 9601 break;
252b5132
RH
9602 }
9603
8fc2e39e 9604 used_at = 1;
67c0d1eb 9605 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
9606 macro_build (NULL, s, "z,s,t", op[1], AT);
9607 macro_build (NULL, s2, MFHL_FMT, op[0]);
252b5132
RH
9608 break;
9609
9610 case M_DIVU_3:
9611 s = "divu";
9612 s2 = "mflo";
9613 goto do_divu3;
9614 case M_REMU_3:
9615 s = "divu";
9616 s2 = "mfhi";
9617 goto do_divu3;
9618 case M_DDIVU_3:
9619 s = "ddivu";
9620 s2 = "mflo";
9621 goto do_divu3;
9622 case M_DREMU_3:
9623 s = "ddivu";
9624 s2 = "mfhi";
9625 do_divu3:
7d10b47d 9626 start_noreorder ();
252b5132
RH
9627 if (mips_trap)
9628 {
c0ebe874
RS
9629 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
9630 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
9631 /* We want to close the noreorder block as soon as possible, so
9632 that later insns are available for delay slot filling. */
7d10b47d 9633 end_noreorder ();
252b5132
RH
9634 }
9635 else
9636 {
df58fc94
RS
9637 if (mips_opts.micromips)
9638 micromips_label_expr (&label_expr);
9639 else
9640 label_expr.X_add_number = 8;
c0ebe874
RS
9641 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
9642 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
9643
9644 /* We want to close the noreorder block as soon as possible, so
9645 that later insns are available for delay slot filling. */
7d10b47d 9646 end_noreorder ();
df58fc94
RS
9647 macro_build (NULL, "break", BRK_FMT, 7);
9648 if (mips_opts.micromips)
9649 micromips_add_label ();
252b5132 9650 }
c0ebe874 9651 macro_build (NULL, s2, MFHL_FMT, op[0]);
8fc2e39e 9652 break;
252b5132 9653
1abe91b1
MR
9654 case M_DLCA_AB:
9655 dbl = 1;
9656 case M_LCA_AB:
9657 call = 1;
9658 goto do_la;
252b5132
RH
9659 case M_DLA_AB:
9660 dbl = 1;
9661 case M_LA_AB:
1abe91b1 9662 do_la:
252b5132
RH
9663 /* Load the address of a symbol into a register. If breg is not
9664 zero, we then add a base register to it. */
9665
c0ebe874 9666 breg = op[2];
3bec30a8
TS
9667 if (dbl && HAVE_32BIT_GPRS)
9668 as_warn (_("dla used to load 32-bit register"));
9669
90ecf173 9670 if (!dbl && HAVE_64BIT_OBJECTS)
3bec30a8
TS
9671 as_warn (_("la used to load 64-bit address"));
9672
f2ae14a1 9673 if (small_offset_p (0, align, 16))
0c11417f 9674 {
c0ebe874 9675 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
f2ae14a1 9676 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8fc2e39e 9677 break;
0c11417f
MR
9678 }
9679
c0ebe874 9680 if (mips_opts.at && (op[0] == breg))
afdbd6d0
CD
9681 {
9682 tempreg = AT;
9683 used_at = 1;
9684 }
9685 else
c0ebe874 9686 tempreg = op[0];
afdbd6d0 9687
252b5132
RH
9688 if (offset_expr.X_op != O_symbol
9689 && offset_expr.X_op != O_constant)
9690 {
f71d0d44 9691 as_bad (_("Expression too complex"));
252b5132
RH
9692 offset_expr.X_op = O_constant;
9693 }
9694
252b5132 9695 if (offset_expr.X_op == O_constant)
aed1a261 9696 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
252b5132
RH
9697 else if (mips_pic == NO_PIC)
9698 {
d6bc6245 9699 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 9700 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
9701 Otherwise we want
9702 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
9703 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
9704 If we have a constant, we need two instructions anyhow,
d6bc6245 9705 so we may as well always use the latter form.
76b3015f 9706
6caf9ef4
TS
9707 With 64bit address space and a usable $at we want
9708 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9709 lui $at,<sym> (BFD_RELOC_HI16_S)
9710 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
9711 daddiu $at,<sym> (BFD_RELOC_LO16)
9712 dsll32 $tempreg,0
9713 daddu $tempreg,$tempreg,$at
9714
9715 If $at is already in use, we use a path which is suboptimal
9716 on superscalar processors.
9717 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9718 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
9719 dsll $tempreg,16
9720 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
9721 dsll $tempreg,16
9722 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
9723
9724 For GP relative symbols in 64bit address space we can use
9725 the same sequence as in 32bit address space. */
aed1a261 9726 if (HAVE_64BIT_SYMBOLS)
252b5132 9727 {
6caf9ef4
TS
9728 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
9729 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
9730 {
9731 relax_start (offset_expr.X_add_symbol);
9732 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9733 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
9734 relax_switch ();
9735 }
d6bc6245 9736
741fe287 9737 if (used_at == 0 && mips_opts.at)
98d3f06f 9738 {
df58fc94 9739 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 9740 tempreg, BFD_RELOC_MIPS_HIGHEST);
df58fc94 9741 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 9742 AT, BFD_RELOC_HI16_S);
67c0d1eb 9743 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 9744 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
67c0d1eb 9745 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 9746 AT, AT, BFD_RELOC_LO16);
df58fc94 9747 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 9748 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
98d3f06f
KH
9749 used_at = 1;
9750 }
9751 else
9752 {
df58fc94 9753 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 9754 tempreg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb 9755 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 9756 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 9757 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 9758 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 9759 tempreg, tempreg, BFD_RELOC_HI16_S);
df58fc94 9760 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 9761 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 9762 tempreg, tempreg, BFD_RELOC_LO16);
98d3f06f 9763 }
6caf9ef4
TS
9764
9765 if (mips_relax.sequence)
9766 relax_end ();
98d3f06f
KH
9767 }
9768 else
9769 {
9770 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 9771 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
98d3f06f 9772 {
4d7206a2 9773 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
9774 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9775 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 9776 relax_switch ();
98d3f06f 9777 }
6943caf0 9778 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
f71d0d44 9779 as_bad (_("Offset too large"));
67c0d1eb
RS
9780 macro_build_lui (&offset_expr, tempreg);
9781 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9782 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2
RS
9783 if (mips_relax.sequence)
9784 relax_end ();
98d3f06f 9785 }
252b5132 9786 }
0a44bf69 9787 else if (!mips_big_got && !HAVE_NEWABI)
252b5132 9788 {
9117d219
NC
9789 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
9790
252b5132
RH
9791 /* If this is a reference to an external symbol, and there
9792 is no constant, we want
9793 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
1abe91b1 9794 or for lca or if tempreg is PIC_CALL_REG
9117d219 9795 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
252b5132
RH
9796 For a local symbol, we want
9797 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9798 nop
9799 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
9800
9801 If we have a small constant, and this is a reference to
9802 an external symbol, we want
9803 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9804 nop
9805 addiu $tempreg,$tempreg,<constant>
9806 For a local symbol, we want the same instruction
9807 sequence, but we output a BFD_RELOC_LO16 reloc on the
9808 addiu instruction.
9809
9810 If we have a large constant, and this is a reference to
9811 an external symbol, we want
9812 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9813 lui $at,<hiconstant>
9814 addiu $at,$at,<loconstant>
9815 addu $tempreg,$tempreg,$at
9816 For a local symbol, we want the same instruction
9817 sequence, but we output a BFD_RELOC_LO16 reloc on the
ed6fb7bd 9818 addiu instruction.
ed6fb7bd
SC
9819 */
9820
4d7206a2 9821 if (offset_expr.X_add_number == 0)
252b5132 9822 {
0a44bf69
RS
9823 if (mips_pic == SVR4_PIC
9824 && breg == 0
9825 && (call || tempreg == PIC_CALL_REG))
4d7206a2
RS
9826 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
9827
9828 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
9829 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9830 lw_reloc_type, mips_gp_register);
4d7206a2 9831 if (breg != 0)
252b5132
RH
9832 {
9833 /* We're going to put in an addu instruction using
9834 tempreg, so we may as well insert the nop right
9835 now. */
269137b2 9836 load_delay_nop ();
252b5132 9837 }
4d7206a2 9838 relax_switch ();
67c0d1eb
RS
9839 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9840 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9841 load_delay_nop ();
67c0d1eb
RS
9842 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9843 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2 9844 relax_end ();
252b5132
RH
9845 /* FIXME: If breg == 0, and the next instruction uses
9846 $tempreg, then if this variant case is used an extra
9847 nop will be generated. */
9848 }
4d7206a2
RS
9849 else if (offset_expr.X_add_number >= -0x8000
9850 && offset_expr.X_add_number < 0x8000)
252b5132 9851 {
67c0d1eb 9852 load_got_offset (tempreg, &offset_expr);
269137b2 9853 load_delay_nop ();
67c0d1eb 9854 add_got_offset (tempreg, &offset_expr);
252b5132
RH
9855 }
9856 else
9857 {
4d7206a2
RS
9858 expr1.X_add_number = offset_expr.X_add_number;
9859 offset_expr.X_add_number =
43c0598f 9860 SEXT_16BIT (offset_expr.X_add_number);
67c0d1eb 9861 load_got_offset (tempreg, &offset_expr);
f6a22291 9862 offset_expr.X_add_number = expr1.X_add_number;
252b5132
RH
9863 /* If we are going to add in a base register, and the
9864 target register and the base register are the same,
9865 then we are using AT as a temporary register. Since
9866 we want to load the constant into AT, we add our
9867 current AT (from the global offset table) and the
9868 register into the register now, and pretend we were
9869 not using a base register. */
c0ebe874 9870 if (breg == op[0])
252b5132 9871 {
269137b2 9872 load_delay_nop ();
67c0d1eb 9873 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 9874 op[0], AT, breg);
252b5132 9875 breg = 0;
c0ebe874 9876 tempreg = op[0];
252b5132 9877 }
f6a22291 9878 add_got_offset_hilo (tempreg, &offset_expr, AT);
252b5132
RH
9879 used_at = 1;
9880 }
9881 }
0a44bf69 9882 else if (!mips_big_got && HAVE_NEWABI)
f5040a92 9883 {
67c0d1eb 9884 int add_breg_early = 0;
f5040a92
AO
9885
9886 /* If this is a reference to an external, and there is no
9887 constant, or local symbol (*), with or without a
9888 constant, we want
9889 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
1abe91b1 9890 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
9891 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
9892
9893 If we have a small constant, and this is a reference to
9894 an external symbol, we want
9895 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9896 addiu $tempreg,$tempreg,<constant>
9897
9898 If we have a large constant, and this is a reference to
9899 an external symbol, we want
9900 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9901 lui $at,<hiconstant>
9902 addiu $at,$at,<loconstant>
9903 addu $tempreg,$tempreg,$at
9904
9905 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
9906 local symbols, even though it introduces an additional
9907 instruction. */
9908
f5040a92
AO
9909 if (offset_expr.X_add_number)
9910 {
4d7206a2 9911 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
9912 offset_expr.X_add_number = 0;
9913
4d7206a2 9914 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
9915 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9916 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9917
9918 if (expr1.X_add_number >= -0x8000
9919 && expr1.X_add_number < 0x8000)
9920 {
67c0d1eb
RS
9921 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
9922 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 9923 }
ecd13cd3 9924 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 9925 {
c0ebe874
RS
9926 unsigned int dreg;
9927
f5040a92
AO
9928 /* If we are going to add in a base register, and the
9929 target register and the base register are the same,
9930 then we are using AT as a temporary register. Since
9931 we want to load the constant into AT, we add our
9932 current AT (from the global offset table) and the
9933 register into the register now, and pretend we were
9934 not using a base register. */
c0ebe874 9935 if (breg != op[0])
f5040a92
AO
9936 dreg = tempreg;
9937 else
9938 {
9c2799c2 9939 gas_assert (tempreg == AT);
67c0d1eb 9940 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
9941 op[0], AT, breg);
9942 dreg = op[0];
67c0d1eb 9943 add_breg_early = 1;
f5040a92
AO
9944 }
9945
f6a22291 9946 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 9947 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 9948 dreg, dreg, AT);
f5040a92 9949
f5040a92
AO
9950 used_at = 1;
9951 }
9952 else
9953 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
9954
4d7206a2 9955 relax_switch ();
f5040a92
AO
9956 offset_expr.X_add_number = expr1.X_add_number;
9957
67c0d1eb
RS
9958 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9959 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9960 if (add_breg_early)
f5040a92 9961 {
67c0d1eb 9962 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 9963 op[0], tempreg, breg);
f5040a92 9964 breg = 0;
c0ebe874 9965 tempreg = op[0];
f5040a92 9966 }
4d7206a2 9967 relax_end ();
f5040a92 9968 }
4d7206a2 9969 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
f5040a92 9970 {
4d7206a2 9971 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
9972 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9973 BFD_RELOC_MIPS_CALL16, mips_gp_register);
4d7206a2 9974 relax_switch ();
67c0d1eb
RS
9975 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9976 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2 9977 relax_end ();
f5040a92 9978 }
4d7206a2 9979 else
f5040a92 9980 {
67c0d1eb
RS
9981 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9982 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9983 }
9984 }
0a44bf69 9985 else if (mips_big_got && !HAVE_NEWABI)
252b5132 9986 {
67c0d1eb 9987 int gpdelay;
9117d219
NC
9988 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
9989 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
ed6fb7bd 9990 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
252b5132
RH
9991
9992 /* This is the large GOT case. If this is a reference to an
9993 external symbol, and there is no constant, we want
9994 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9995 addu $tempreg,$tempreg,$gp
9996 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 9997 or for lca or if tempreg is PIC_CALL_REG
9117d219
NC
9998 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
9999 addu $tempreg,$tempreg,$gp
10000 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
252b5132
RH
10001 For a local symbol, we want
10002 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10003 nop
10004 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10005
10006 If we have a small constant, and this is a reference to
10007 an external symbol, we want
10008 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10009 addu $tempreg,$tempreg,$gp
10010 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10011 nop
10012 addiu $tempreg,$tempreg,<constant>
10013 For a local symbol, we want
10014 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10015 nop
10016 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10017
10018 If we have a large constant, and this is a reference to
10019 an external symbol, we want
10020 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10021 addu $tempreg,$tempreg,$gp
10022 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10023 lui $at,<hiconstant>
10024 addiu $at,$at,<loconstant>
10025 addu $tempreg,$tempreg,$at
10026 For a local symbol, we want
10027 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10028 lui $at,<hiconstant>
10029 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10030 addu $tempreg,$tempreg,$at
f5040a92 10031 */
438c16b8 10032
252b5132
RH
10033 expr1.X_add_number = offset_expr.X_add_number;
10034 offset_expr.X_add_number = 0;
4d7206a2 10035 relax_start (offset_expr.X_add_symbol);
67c0d1eb 10036 gpdelay = reg_needs_delay (mips_gp_register);
1abe91b1
MR
10037 if (expr1.X_add_number == 0 && breg == 0
10038 && (call || tempreg == PIC_CALL_REG))
9117d219
NC
10039 {
10040 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10041 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10042 }
df58fc94 10043 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10044 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10045 tempreg, tempreg, mips_gp_register);
67c0d1eb 10046 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 10047 tempreg, lw_reloc_type, tempreg);
252b5132
RH
10048 if (expr1.X_add_number == 0)
10049 {
67c0d1eb 10050 if (breg != 0)
252b5132
RH
10051 {
10052 /* We're going to put in an addu instruction using
10053 tempreg, so we may as well insert the nop right
10054 now. */
269137b2 10055 load_delay_nop ();
252b5132 10056 }
252b5132
RH
10057 }
10058 else if (expr1.X_add_number >= -0x8000
10059 && expr1.X_add_number < 0x8000)
10060 {
269137b2 10061 load_delay_nop ();
67c0d1eb 10062 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10063 tempreg, tempreg, BFD_RELOC_LO16);
252b5132
RH
10064 }
10065 else
10066 {
c0ebe874
RS
10067 unsigned int dreg;
10068
252b5132
RH
10069 /* If we are going to add in a base register, and the
10070 target register and the base register are the same,
10071 then we are using AT as a temporary register. Since
10072 we want to load the constant into AT, we add our
10073 current AT (from the global offset table) and the
10074 register into the register now, and pretend we were
10075 not using a base register. */
c0ebe874 10076 if (breg != op[0])
67c0d1eb 10077 dreg = tempreg;
252b5132
RH
10078 else
10079 {
9c2799c2 10080 gas_assert (tempreg == AT);
269137b2 10081 load_delay_nop ();
67c0d1eb 10082 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10083 op[0], AT, breg);
10084 dreg = op[0];
252b5132
RH
10085 }
10086
f6a22291 10087 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10088 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
252b5132 10089
252b5132
RH
10090 used_at = 1;
10091 }
43c0598f 10092 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
4d7206a2 10093 relax_switch ();
252b5132 10094
67c0d1eb 10095 if (gpdelay)
252b5132
RH
10096 {
10097 /* This is needed because this instruction uses $gp, but
f5040a92 10098 the first instruction on the main stream does not. */
67c0d1eb 10099 macro_build (NULL, "nop", "");
252b5132 10100 }
ed6fb7bd 10101
67c0d1eb
RS
10102 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10103 local_reloc_type, mips_gp_register);
f5040a92 10104 if (expr1.X_add_number >= -0x8000
252b5132
RH
10105 && expr1.X_add_number < 0x8000)
10106 {
269137b2 10107 load_delay_nop ();
67c0d1eb
RS
10108 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10109 tempreg, tempreg, BFD_RELOC_LO16);
252b5132 10110 /* FIXME: If add_number is 0, and there was no base
f5040a92
AO
10111 register, the external symbol case ended with a load,
10112 so if the symbol turns out to not be external, and
10113 the next instruction uses tempreg, an unnecessary nop
10114 will be inserted. */
252b5132
RH
10115 }
10116 else
10117 {
c0ebe874 10118 if (breg == op[0])
252b5132
RH
10119 {
10120 /* We must add in the base register now, as in the
f5040a92 10121 external symbol case. */
9c2799c2 10122 gas_assert (tempreg == AT);
269137b2 10123 load_delay_nop ();
67c0d1eb 10124 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10125 op[0], AT, breg);
10126 tempreg = op[0];
252b5132 10127 /* We set breg to 0 because we have arranged to add
f5040a92 10128 it in in both cases. */
252b5132
RH
10129 breg = 0;
10130 }
10131
67c0d1eb
RS
10132 macro_build_lui (&expr1, AT);
10133 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10134 AT, AT, BFD_RELOC_LO16);
67c0d1eb 10135 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10136 tempreg, tempreg, AT);
8fc2e39e 10137 used_at = 1;
252b5132 10138 }
4d7206a2 10139 relax_end ();
252b5132 10140 }
0a44bf69 10141 else if (mips_big_got && HAVE_NEWABI)
f5040a92 10142 {
f5040a92
AO
10143 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10144 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
67c0d1eb 10145 int add_breg_early = 0;
f5040a92
AO
10146
10147 /* This is the large GOT case. If this is a reference to an
10148 external symbol, and there is no constant, we want
10149 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10150 add $tempreg,$tempreg,$gp
10151 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10152 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10153 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10154 add $tempreg,$tempreg,$gp
10155 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10156
10157 If we have a small constant, and this is a reference to
10158 an external symbol, we want
10159 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10160 add $tempreg,$tempreg,$gp
10161 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10162 addi $tempreg,$tempreg,<constant>
10163
10164 If we have a large constant, and this is a reference to
10165 an external symbol, we want
10166 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10167 addu $tempreg,$tempreg,$gp
10168 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10169 lui $at,<hiconstant>
10170 addi $at,$at,<loconstant>
10171 add $tempreg,$tempreg,$at
10172
10173 If we have NewABI, and we know it's a local symbol, we want
10174 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10175 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10176 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10177
4d7206a2 10178 relax_start (offset_expr.X_add_symbol);
f5040a92 10179
4d7206a2 10180 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10181 offset_expr.X_add_number = 0;
10182
1abe91b1
MR
10183 if (expr1.X_add_number == 0 && breg == 0
10184 && (call || tempreg == PIC_CALL_REG))
f5040a92
AO
10185 {
10186 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10187 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10188 }
df58fc94 10189 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10190 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10191 tempreg, tempreg, mips_gp_register);
67c0d1eb
RS
10192 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10193 tempreg, lw_reloc_type, tempreg);
f5040a92
AO
10194
10195 if (expr1.X_add_number == 0)
4d7206a2 10196 ;
f5040a92
AO
10197 else if (expr1.X_add_number >= -0x8000
10198 && expr1.X_add_number < 0x8000)
10199 {
67c0d1eb 10200 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10201 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10202 }
ecd13cd3 10203 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10204 {
c0ebe874
RS
10205 unsigned int dreg;
10206
f5040a92
AO
10207 /* If we are going to add in a base register, and the
10208 target register and the base register are the same,
10209 then we are using AT as a temporary register. Since
10210 we want to load the constant into AT, we add our
10211 current AT (from the global offset table) and the
10212 register into the register now, and pretend we were
10213 not using a base register. */
c0ebe874 10214 if (breg != op[0])
f5040a92
AO
10215 dreg = tempreg;
10216 else
10217 {
9c2799c2 10218 gas_assert (tempreg == AT);
67c0d1eb 10219 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10220 op[0], AT, breg);
10221 dreg = op[0];
67c0d1eb 10222 add_breg_early = 1;
f5040a92
AO
10223 }
10224
f6a22291 10225 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10226 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
f5040a92 10227
f5040a92
AO
10228 used_at = 1;
10229 }
10230 else
10231 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10232
4d7206a2 10233 relax_switch ();
f5040a92 10234 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
10235 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10236 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10237 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10238 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10239 if (add_breg_early)
f5040a92 10240 {
67c0d1eb 10241 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10242 op[0], tempreg, breg);
f5040a92 10243 breg = 0;
c0ebe874 10244 tempreg = op[0];
f5040a92 10245 }
4d7206a2 10246 relax_end ();
f5040a92 10247 }
252b5132
RH
10248 else
10249 abort ();
10250
10251 if (breg != 0)
c0ebe874 10252 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
252b5132
RH
10253 break;
10254
52b6b6b9 10255 case M_MSGSND:
df58fc94 10256 gas_assert (!mips_opts.micromips);
c0ebe874 10257 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
c7af4273 10258 break;
52b6b6b9
JM
10259
10260 case M_MSGLD:
df58fc94 10261 gas_assert (!mips_opts.micromips);
c8276761 10262 macro_build (NULL, "c2", "C", 0x02);
c7af4273 10263 break;
52b6b6b9
JM
10264
10265 case M_MSGLD_T:
df58fc94 10266 gas_assert (!mips_opts.micromips);
c0ebe874 10267 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
c7af4273 10268 break;
52b6b6b9
JM
10269
10270 case M_MSGWAIT:
df58fc94 10271 gas_assert (!mips_opts.micromips);
52b6b6b9 10272 macro_build (NULL, "c2", "C", 3);
c7af4273 10273 break;
52b6b6b9
JM
10274
10275 case M_MSGWAIT_T:
df58fc94 10276 gas_assert (!mips_opts.micromips);
c0ebe874 10277 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
c7af4273 10278 break;
52b6b6b9 10279
252b5132
RH
10280 case M_J_A:
10281 /* The j instruction may not be used in PIC code, since it
10282 requires an absolute address. We convert it to a b
10283 instruction. */
10284 if (mips_pic == NO_PIC)
67c0d1eb 10285 macro_build (&offset_expr, "j", "a");
252b5132 10286 else
67c0d1eb 10287 macro_build (&offset_expr, "b", "p");
8fc2e39e 10288 break;
252b5132
RH
10289
10290 /* The jal instructions must be handled as macros because when
10291 generating PIC code they expand to multi-instruction
10292 sequences. Normally they are simple instructions. */
df58fc94 10293 case M_JALS_1:
c0ebe874
RS
10294 op[1] = op[0];
10295 op[0] = RA;
df58fc94
RS
10296 /* Fall through. */
10297 case M_JALS_2:
10298 gas_assert (mips_opts.micromips);
833794fc
MR
10299 if (mips_opts.insn32)
10300 {
10301 as_bad (_("Opcode not supported in the `insn32' mode `%s'"), str);
10302 break;
10303 }
df58fc94
RS
10304 jals = 1;
10305 goto jal;
252b5132 10306 case M_JAL_1:
c0ebe874
RS
10307 op[1] = op[0];
10308 op[0] = RA;
252b5132
RH
10309 /* Fall through. */
10310 case M_JAL_2:
df58fc94 10311 jal:
3e722fb5 10312 if (mips_pic == NO_PIC)
df58fc94
RS
10313 {
10314 s = jals ? "jalrs" : "jalr";
e64af278 10315 if (mips_opts.micromips
833794fc 10316 && !mips_opts.insn32
c0ebe874 10317 && op[0] == RA
e64af278 10318 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 10319 macro_build (NULL, s, "mj", op[1]);
df58fc94 10320 else
c0ebe874 10321 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
df58fc94 10322 }
0a44bf69 10323 else
252b5132 10324 {
df58fc94
RS
10325 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
10326 && mips_cprestore_offset >= 0);
10327
c0ebe874 10328 if (op[1] != PIC_CALL_REG)
252b5132 10329 as_warn (_("MIPS PIC call to register other than $25"));
bdaaa2e1 10330
833794fc
MR
10331 s = ((mips_opts.micromips
10332 && !mips_opts.insn32
10333 && (!mips_opts.noreorder || cprestore))
df58fc94 10334 ? "jalrs" : "jalr");
e64af278 10335 if (mips_opts.micromips
833794fc 10336 && !mips_opts.insn32
c0ebe874 10337 && op[0] == RA
e64af278 10338 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 10339 macro_build (NULL, s, "mj", op[1]);
df58fc94 10340 else
c0ebe874 10341 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
0a44bf69 10342 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
252b5132 10343 {
6478892d
TS
10344 if (mips_cprestore_offset < 0)
10345 as_warn (_("No .cprestore pseudo-op used in PIC code"));
10346 else
10347 {
90ecf173 10348 if (!mips_frame_reg_valid)
7a621144
DJ
10349 {
10350 as_warn (_("No .frame pseudo-op used in PIC code"));
10351 /* Quiet this warning. */
10352 mips_frame_reg_valid = 1;
10353 }
90ecf173 10354 if (!mips_cprestore_valid)
7a621144
DJ
10355 {
10356 as_warn (_("No .cprestore pseudo-op used in PIC code"));
10357 /* Quiet this warning. */
10358 mips_cprestore_valid = 1;
10359 }
d3fca0b5
MR
10360 if (mips_opts.noreorder)
10361 macro_build (NULL, "nop", "");
6478892d 10362 expr1.X_add_number = mips_cprestore_offset;
67c0d1eb 10363 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 10364 mips_gp_register,
256ab948
TS
10365 mips_frame_reg,
10366 HAVE_64BIT_ADDRESSES);
6478892d 10367 }
252b5132
RH
10368 }
10369 }
252b5132 10370
8fc2e39e 10371 break;
252b5132 10372
df58fc94
RS
10373 case M_JALS_A:
10374 gas_assert (mips_opts.micromips);
833794fc
MR
10375 if (mips_opts.insn32)
10376 {
10377 as_bad (_("Opcode not supported in the `insn32' mode `%s'"), str);
10378 break;
10379 }
df58fc94
RS
10380 jals = 1;
10381 /* Fall through. */
252b5132
RH
10382 case M_JAL_A:
10383 if (mips_pic == NO_PIC)
df58fc94 10384 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
252b5132
RH
10385 else if (mips_pic == SVR4_PIC)
10386 {
10387 /* If this is a reference to an external symbol, and we are
10388 using a small GOT, we want
10389 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10390 nop
f9419b05 10391 jalr $ra,$25
252b5132
RH
10392 nop
10393 lw $gp,cprestore($sp)
10394 The cprestore value is set using the .cprestore
10395 pseudo-op. If we are using a big GOT, we want
10396 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10397 addu $25,$25,$gp
10398 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
10399 nop
f9419b05 10400 jalr $ra,$25
252b5132
RH
10401 nop
10402 lw $gp,cprestore($sp)
10403 If the symbol is not external, we want
10404 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10405 nop
10406 addiu $25,$25,<sym> (BFD_RELOC_LO16)
f9419b05 10407 jalr $ra,$25
252b5132 10408 nop
438c16b8 10409 lw $gp,cprestore($sp)
f5040a92
AO
10410
10411 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
10412 sequences above, minus nops, unless the symbol is local,
10413 which enables us to use GOT_PAGE/GOT_OFST (big got) or
10414 GOT_DISP. */
438c16b8 10415 if (HAVE_NEWABI)
252b5132 10416 {
90ecf173 10417 if (!mips_big_got)
f5040a92 10418 {
4d7206a2 10419 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10420 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10421 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
f5040a92 10422 mips_gp_register);
4d7206a2 10423 relax_switch ();
67c0d1eb
RS
10424 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10425 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
4d7206a2
RS
10426 mips_gp_register);
10427 relax_end ();
f5040a92
AO
10428 }
10429 else
10430 {
4d7206a2 10431 relax_start (offset_expr.X_add_symbol);
df58fc94 10432 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
10433 BFD_RELOC_MIPS_CALL_HI16);
10434 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
10435 PIC_CALL_REG, mips_gp_register);
10436 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10437 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
10438 PIC_CALL_REG);
4d7206a2 10439 relax_switch ();
67c0d1eb
RS
10440 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10441 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
10442 mips_gp_register);
10443 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10444 PIC_CALL_REG, PIC_CALL_REG,
17a2f251 10445 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 10446 relax_end ();
f5040a92 10447 }
684022ea 10448
df58fc94 10449 macro_build_jalr (&offset_expr, 0);
252b5132
RH
10450 }
10451 else
10452 {
4d7206a2 10453 relax_start (offset_expr.X_add_symbol);
90ecf173 10454 if (!mips_big_got)
438c16b8 10455 {
67c0d1eb
RS
10456 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10457 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
17a2f251 10458 mips_gp_register);
269137b2 10459 load_delay_nop ();
4d7206a2 10460 relax_switch ();
438c16b8 10461 }
252b5132 10462 else
252b5132 10463 {
67c0d1eb
RS
10464 int gpdelay;
10465
10466 gpdelay = reg_needs_delay (mips_gp_register);
df58fc94 10467 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
10468 BFD_RELOC_MIPS_CALL_HI16);
10469 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
10470 PIC_CALL_REG, mips_gp_register);
10471 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10472 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
10473 PIC_CALL_REG);
269137b2 10474 load_delay_nop ();
4d7206a2 10475 relax_switch ();
67c0d1eb
RS
10476 if (gpdelay)
10477 macro_build (NULL, "nop", "");
252b5132 10478 }
67c0d1eb
RS
10479 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10480 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
4d7206a2 10481 mips_gp_register);
269137b2 10482 load_delay_nop ();
67c0d1eb
RS
10483 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10484 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
4d7206a2 10485 relax_end ();
df58fc94 10486 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
438c16b8 10487
6478892d
TS
10488 if (mips_cprestore_offset < 0)
10489 as_warn (_("No .cprestore pseudo-op used in PIC code"));
10490 else
10491 {
90ecf173 10492 if (!mips_frame_reg_valid)
7a621144
DJ
10493 {
10494 as_warn (_("No .frame pseudo-op used in PIC code"));
10495 /* Quiet this warning. */
10496 mips_frame_reg_valid = 1;
10497 }
90ecf173 10498 if (!mips_cprestore_valid)
7a621144
DJ
10499 {
10500 as_warn (_("No .cprestore pseudo-op used in PIC code"));
10501 /* Quiet this warning. */
10502 mips_cprestore_valid = 1;
10503 }
6478892d 10504 if (mips_opts.noreorder)
67c0d1eb 10505 macro_build (NULL, "nop", "");
6478892d 10506 expr1.X_add_number = mips_cprestore_offset;
67c0d1eb 10507 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 10508 mips_gp_register,
256ab948
TS
10509 mips_frame_reg,
10510 HAVE_64BIT_ADDRESSES);
6478892d 10511 }
252b5132
RH
10512 }
10513 }
0a44bf69
RS
10514 else if (mips_pic == VXWORKS_PIC)
10515 as_bad (_("Non-PIC jump used in PIC library"));
252b5132
RH
10516 else
10517 abort ();
10518
8fc2e39e 10519 break;
252b5132 10520
7f3c4072 10521 case M_LBUE_AB:
7f3c4072
CM
10522 s = "lbue";
10523 fmt = "t,+j(b)";
10524 offbits = 9;
10525 goto ld_st;
10526 case M_LHUE_AB:
7f3c4072
CM
10527 s = "lhue";
10528 fmt = "t,+j(b)";
10529 offbits = 9;
10530 goto ld_st;
10531 case M_LBE_AB:
7f3c4072
CM
10532 s = "lbe";
10533 fmt = "t,+j(b)";
10534 offbits = 9;
10535 goto ld_st;
10536 case M_LHE_AB:
7f3c4072
CM
10537 s = "lhe";
10538 fmt = "t,+j(b)";
10539 offbits = 9;
10540 goto ld_st;
10541 case M_LLE_AB:
7f3c4072
CM
10542 s = "lle";
10543 fmt = "t,+j(b)";
10544 offbits = 9;
10545 goto ld_st;
10546 case M_LWE_AB:
7f3c4072
CM
10547 s = "lwe";
10548 fmt = "t,+j(b)";
10549 offbits = 9;
10550 goto ld_st;
10551 case M_LWLE_AB:
7f3c4072
CM
10552 s = "lwle";
10553 fmt = "t,+j(b)";
10554 offbits = 9;
10555 goto ld_st;
10556 case M_LWRE_AB:
7f3c4072
CM
10557 s = "lwre";
10558 fmt = "t,+j(b)";
10559 offbits = 9;
10560 goto ld_st;
10561 case M_SBE_AB:
7f3c4072
CM
10562 s = "sbe";
10563 fmt = "t,+j(b)";
10564 offbits = 9;
10565 goto ld_st;
10566 case M_SCE_AB:
7f3c4072
CM
10567 s = "sce";
10568 fmt = "t,+j(b)";
10569 offbits = 9;
10570 goto ld_st;
10571 case M_SHE_AB:
7f3c4072
CM
10572 s = "she";
10573 fmt = "t,+j(b)";
10574 offbits = 9;
10575 goto ld_st;
10576 case M_SWE_AB:
7f3c4072
CM
10577 s = "swe";
10578 fmt = "t,+j(b)";
10579 offbits = 9;
10580 goto ld_st;
10581 case M_SWLE_AB:
7f3c4072
CM
10582 s = "swle";
10583 fmt = "t,+j(b)";
10584 offbits = 9;
10585 goto ld_st;
10586 case M_SWRE_AB:
7f3c4072
CM
10587 s = "swre";
10588 fmt = "t,+j(b)";
10589 offbits = 9;
10590 goto ld_st;
dec0624d 10591 case M_ACLR_AB:
dec0624d 10592 s = "aclr";
dec0624d 10593 fmt = "\\,~(b)";
7f3c4072 10594 offbits = 12;
dec0624d
MR
10595 goto ld_st;
10596 case M_ASET_AB:
dec0624d 10597 s = "aset";
dec0624d 10598 fmt = "\\,~(b)";
7f3c4072 10599 offbits = 12;
dec0624d 10600 goto ld_st;
252b5132
RH
10601 case M_LB_AB:
10602 s = "lb";
df58fc94 10603 fmt = "t,o(b)";
252b5132
RH
10604 goto ld;
10605 case M_LBU_AB:
10606 s = "lbu";
df58fc94 10607 fmt = "t,o(b)";
252b5132
RH
10608 goto ld;
10609 case M_LH_AB:
10610 s = "lh";
df58fc94 10611 fmt = "t,o(b)";
252b5132
RH
10612 goto ld;
10613 case M_LHU_AB:
10614 s = "lhu";
df58fc94 10615 fmt = "t,o(b)";
252b5132
RH
10616 goto ld;
10617 case M_LW_AB:
10618 s = "lw";
df58fc94 10619 fmt = "t,o(b)";
252b5132
RH
10620 goto ld;
10621 case M_LWC0_AB:
df58fc94 10622 gas_assert (!mips_opts.micromips);
252b5132 10623 s = "lwc0";
df58fc94 10624 fmt = "E,o(b)";
bdaaa2e1 10625 /* Itbl support may require additional care here. */
252b5132 10626 coproc = 1;
df58fc94 10627 goto ld_st;
252b5132
RH
10628 case M_LWC1_AB:
10629 s = "lwc1";
df58fc94 10630 fmt = "T,o(b)";
bdaaa2e1 10631 /* Itbl support may require additional care here. */
252b5132 10632 coproc = 1;
df58fc94 10633 goto ld_st;
252b5132
RH
10634 case M_LWC2_AB:
10635 s = "lwc2";
df58fc94 10636 fmt = COP12_FMT;
7f3c4072 10637 offbits = (mips_opts.micromips ? 12 : 16);
bdaaa2e1 10638 /* Itbl support may require additional care here. */
252b5132 10639 coproc = 1;
df58fc94 10640 goto ld_st;
252b5132 10641 case M_LWC3_AB:
df58fc94 10642 gas_assert (!mips_opts.micromips);
252b5132 10643 s = "lwc3";
df58fc94 10644 fmt = "E,o(b)";
bdaaa2e1 10645 /* Itbl support may require additional care here. */
252b5132 10646 coproc = 1;
df58fc94 10647 goto ld_st;
252b5132
RH
10648 case M_LWL_AB:
10649 s = "lwl";
df58fc94 10650 fmt = MEM12_FMT;
7f3c4072 10651 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 10652 goto ld_st;
252b5132
RH
10653 case M_LWR_AB:
10654 s = "lwr";
df58fc94 10655 fmt = MEM12_FMT;
7f3c4072 10656 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 10657 goto ld_st;
252b5132 10658 case M_LDC1_AB:
252b5132 10659 s = "ldc1";
df58fc94 10660 fmt = "T,o(b)";
bdaaa2e1 10661 /* Itbl support may require additional care here. */
252b5132 10662 coproc = 1;
df58fc94 10663 goto ld_st;
252b5132
RH
10664 case M_LDC2_AB:
10665 s = "ldc2";
df58fc94 10666 fmt = COP12_FMT;
7f3c4072 10667 offbits = (mips_opts.micromips ? 12 : 16);
bdaaa2e1 10668 /* Itbl support may require additional care here. */
252b5132 10669 coproc = 1;
df58fc94 10670 goto ld_st;
c77c0862 10671 case M_LQC2_AB:
c77c0862 10672 s = "lqc2";
14daeee3 10673 fmt = "+7,o(b)";
c77c0862
RS
10674 /* Itbl support may require additional care here. */
10675 coproc = 1;
10676 goto ld_st;
252b5132
RH
10677 case M_LDC3_AB:
10678 s = "ldc3";
df58fc94 10679 fmt = "E,o(b)";
bdaaa2e1 10680 /* Itbl support may require additional care here. */
252b5132 10681 coproc = 1;
df58fc94 10682 goto ld_st;
252b5132
RH
10683 case M_LDL_AB:
10684 s = "ldl";
df58fc94 10685 fmt = MEM12_FMT;
7f3c4072 10686 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 10687 goto ld_st;
252b5132
RH
10688 case M_LDR_AB:
10689 s = "ldr";
df58fc94 10690 fmt = MEM12_FMT;
7f3c4072 10691 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 10692 goto ld_st;
252b5132
RH
10693 case M_LL_AB:
10694 s = "ll";
df58fc94 10695 fmt = MEM12_FMT;
7f3c4072 10696 offbits = (mips_opts.micromips ? 12 : 16);
252b5132
RH
10697 goto ld;
10698 case M_LLD_AB:
10699 s = "lld";
df58fc94 10700 fmt = MEM12_FMT;
7f3c4072 10701 offbits = (mips_opts.micromips ? 12 : 16);
252b5132
RH
10702 goto ld;
10703 case M_LWU_AB:
10704 s = "lwu";
df58fc94 10705 fmt = MEM12_FMT;
7f3c4072 10706 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
10707 goto ld;
10708 case M_LWP_AB:
df58fc94
RS
10709 gas_assert (mips_opts.micromips);
10710 s = "lwp";
10711 fmt = "t,~(b)";
7f3c4072 10712 offbits = 12;
df58fc94
RS
10713 lp = 1;
10714 goto ld;
10715 case M_LDP_AB:
df58fc94
RS
10716 gas_assert (mips_opts.micromips);
10717 s = "ldp";
10718 fmt = "t,~(b)";
7f3c4072 10719 offbits = 12;
df58fc94
RS
10720 lp = 1;
10721 goto ld;
10722 case M_LWM_AB:
df58fc94
RS
10723 gas_assert (mips_opts.micromips);
10724 s = "lwm";
10725 fmt = "n,~(b)";
7f3c4072 10726 offbits = 12;
df58fc94
RS
10727 goto ld_st;
10728 case M_LDM_AB:
df58fc94
RS
10729 gas_assert (mips_opts.micromips);
10730 s = "ldm";
10731 fmt = "n,~(b)";
7f3c4072 10732 offbits = 12;
df58fc94
RS
10733 goto ld_st;
10734
252b5132 10735 ld:
f19ccbda 10736 /* We don't want to use $0 as tempreg. */
c0ebe874 10737 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
df58fc94 10738 goto ld_st;
252b5132 10739 else
c0ebe874 10740 tempreg = op[0] + lp;
df58fc94
RS
10741 goto ld_noat;
10742
252b5132
RH
10743 case M_SB_AB:
10744 s = "sb";
df58fc94
RS
10745 fmt = "t,o(b)";
10746 goto ld_st;
252b5132
RH
10747 case M_SH_AB:
10748 s = "sh";
df58fc94
RS
10749 fmt = "t,o(b)";
10750 goto ld_st;
252b5132
RH
10751 case M_SW_AB:
10752 s = "sw";
df58fc94
RS
10753 fmt = "t,o(b)";
10754 goto ld_st;
252b5132 10755 case M_SWC0_AB:
df58fc94 10756 gas_assert (!mips_opts.micromips);
252b5132 10757 s = "swc0";
df58fc94 10758 fmt = "E,o(b)";
bdaaa2e1 10759 /* Itbl support may require additional care here. */
252b5132 10760 coproc = 1;
df58fc94 10761 goto ld_st;
252b5132
RH
10762 case M_SWC1_AB:
10763 s = "swc1";
df58fc94 10764 fmt = "T,o(b)";
bdaaa2e1 10765 /* Itbl support may require additional care here. */
252b5132 10766 coproc = 1;
df58fc94 10767 goto ld_st;
252b5132
RH
10768 case M_SWC2_AB:
10769 s = "swc2";
df58fc94 10770 fmt = COP12_FMT;
7f3c4072 10771 offbits = (mips_opts.micromips ? 12 : 16);
bdaaa2e1 10772 /* Itbl support may require additional care here. */
252b5132 10773 coproc = 1;
df58fc94 10774 goto ld_st;
252b5132 10775 case M_SWC3_AB:
df58fc94 10776 gas_assert (!mips_opts.micromips);
252b5132 10777 s = "swc3";
df58fc94 10778 fmt = "E,o(b)";
bdaaa2e1 10779 /* Itbl support may require additional care here. */
252b5132 10780 coproc = 1;
df58fc94 10781 goto ld_st;
252b5132
RH
10782 case M_SWL_AB:
10783 s = "swl";
df58fc94 10784 fmt = MEM12_FMT;
7f3c4072 10785 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 10786 goto ld_st;
252b5132
RH
10787 case M_SWR_AB:
10788 s = "swr";
df58fc94 10789 fmt = MEM12_FMT;
7f3c4072 10790 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 10791 goto ld_st;
252b5132
RH
10792 case M_SC_AB:
10793 s = "sc";
df58fc94 10794 fmt = MEM12_FMT;
7f3c4072 10795 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 10796 goto ld_st;
252b5132
RH
10797 case M_SCD_AB:
10798 s = "scd";
df58fc94 10799 fmt = MEM12_FMT;
7f3c4072 10800 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 10801 goto ld_st;
d43b4baf
TS
10802 case M_CACHE_AB:
10803 s = "cache";
df58fc94 10804 fmt = mips_opts.micromips ? "k,~(b)" : "k,o(b)";
7f3c4072
CM
10805 offbits = (mips_opts.micromips ? 12 : 16);
10806 goto ld_st;
10807 case M_CACHEE_AB:
7f3c4072
CM
10808 s = "cachee";
10809 fmt = "k,+j(b)";
10810 offbits = 9;
df58fc94 10811 goto ld_st;
3eebd5eb
MR
10812 case M_PREF_AB:
10813 s = "pref";
df58fc94 10814 fmt = !mips_opts.micromips ? "k,o(b)" : "k,~(b)";
7f3c4072
CM
10815 offbits = (mips_opts.micromips ? 12 : 16);
10816 goto ld_st;
10817 case M_PREFE_AB:
7f3c4072
CM
10818 s = "prefe";
10819 fmt = "k,+j(b)";
10820 offbits = 9;
df58fc94 10821 goto ld_st;
252b5132 10822 case M_SDC1_AB:
252b5132 10823 s = "sdc1";
df58fc94 10824 fmt = "T,o(b)";
252b5132 10825 coproc = 1;
bdaaa2e1 10826 /* Itbl support may require additional care here. */
df58fc94 10827 goto ld_st;
252b5132
RH
10828 case M_SDC2_AB:
10829 s = "sdc2";
df58fc94 10830 fmt = COP12_FMT;
7f3c4072 10831 offbits = (mips_opts.micromips ? 12 : 16);
c77c0862
RS
10832 /* Itbl support may require additional care here. */
10833 coproc = 1;
10834 goto ld_st;
10835 case M_SQC2_AB:
c77c0862 10836 s = "sqc2";
14daeee3 10837 fmt = "+7,o(b)";
bdaaa2e1 10838 /* Itbl support may require additional care here. */
252b5132 10839 coproc = 1;
df58fc94 10840 goto ld_st;
252b5132 10841 case M_SDC3_AB:
df58fc94 10842 gas_assert (!mips_opts.micromips);
252b5132 10843 s = "sdc3";
df58fc94 10844 fmt = "E,o(b)";
bdaaa2e1 10845 /* Itbl support may require additional care here. */
252b5132 10846 coproc = 1;
df58fc94 10847 goto ld_st;
252b5132
RH
10848 case M_SDL_AB:
10849 s = "sdl";
df58fc94 10850 fmt = MEM12_FMT;
7f3c4072 10851 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 10852 goto ld_st;
252b5132
RH
10853 case M_SDR_AB:
10854 s = "sdr";
df58fc94 10855 fmt = MEM12_FMT;
7f3c4072 10856 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
10857 goto ld_st;
10858 case M_SWP_AB:
df58fc94
RS
10859 gas_assert (mips_opts.micromips);
10860 s = "swp";
10861 fmt = "t,~(b)";
7f3c4072 10862 offbits = 12;
df58fc94
RS
10863 goto ld_st;
10864 case M_SDP_AB:
df58fc94
RS
10865 gas_assert (mips_opts.micromips);
10866 s = "sdp";
10867 fmt = "t,~(b)";
7f3c4072 10868 offbits = 12;
df58fc94
RS
10869 goto ld_st;
10870 case M_SWM_AB:
df58fc94
RS
10871 gas_assert (mips_opts.micromips);
10872 s = "swm";
10873 fmt = "n,~(b)";
7f3c4072 10874 offbits = 12;
df58fc94
RS
10875 goto ld_st;
10876 case M_SDM_AB:
df58fc94
RS
10877 gas_assert (mips_opts.micromips);
10878 s = "sdm";
10879 fmt = "n,~(b)";
7f3c4072 10880 offbits = 12;
df58fc94
RS
10881
10882 ld_st:
8fc2e39e 10883 tempreg = AT;
df58fc94 10884 ld_noat:
c0ebe874 10885 breg = op[2];
f2ae14a1
RS
10886 if (small_offset_p (0, align, 16))
10887 {
10888 /* The first case exists for M_LD_AB and M_SD_AB, which are
10889 macros for o32 but which should act like normal instructions
10890 otherwise. */
10891 if (offbits == 16)
c0ebe874 10892 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
10893 offset_reloc[1], offset_reloc[2], breg);
10894 else if (small_offset_p (0, align, offbits))
10895 {
10896 if (offbits == 0)
c0ebe874 10897 macro_build (NULL, s, fmt, op[0], breg);
f2ae14a1 10898 else
c0ebe874 10899 macro_build (NULL, s, fmt, op[0],
c8276761 10900 (int) offset_expr.X_add_number, breg);
f2ae14a1
RS
10901 }
10902 else
10903 {
10904 if (tempreg == AT)
10905 used_at = 1;
10906 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10907 tempreg, breg, -1, offset_reloc[0],
10908 offset_reloc[1], offset_reloc[2]);
10909 if (offbits == 0)
c0ebe874 10910 macro_build (NULL, s, fmt, op[0], tempreg);
f2ae14a1 10911 else
c0ebe874 10912 macro_build (NULL, s, fmt, op[0], 0, tempreg);
f2ae14a1
RS
10913 }
10914 break;
10915 }
10916
10917 if (tempreg == AT)
10918 used_at = 1;
10919
252b5132
RH
10920 if (offset_expr.X_op != O_constant
10921 && offset_expr.X_op != O_symbol)
10922 {
f71d0d44 10923 as_bad (_("Expression too complex"));
252b5132
RH
10924 offset_expr.X_op = O_constant;
10925 }
10926
2051e8c4
MR
10927 if (HAVE_32BIT_ADDRESSES
10928 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
10929 {
10930 char value [32];
10931
10932 sprintf_vma (value, offset_expr.X_add_number);
20e1fcfd 10933 as_bad (_("Number (0x%s) larger than 32 bits"), value);
55e08f71 10934 }
2051e8c4 10935
252b5132
RH
10936 /* A constant expression in PIC code can be handled just as it
10937 is in non PIC code. */
aed1a261
RS
10938 if (offset_expr.X_op == O_constant)
10939 {
f2ae14a1
RS
10940 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
10941 offbits == 0 ? 16 : offbits);
10942 offset_expr.X_add_number -= expr1.X_add_number;
df58fc94 10943
f2ae14a1
RS
10944 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
10945 if (breg != 0)
10946 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10947 tempreg, tempreg, breg);
7f3c4072 10948 if (offbits == 0)
dd6a37e7 10949 {
f2ae14a1 10950 if (offset_expr.X_add_number != 0)
dd6a37e7 10951 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
f2ae14a1 10952 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
c0ebe874 10953 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 10954 }
7f3c4072 10955 else if (offbits == 16)
c0ebe874 10956 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
df58fc94 10957 else
c0ebe874 10958 macro_build (NULL, s, fmt, op[0],
c8276761 10959 (int) offset_expr.X_add_number, tempreg);
df58fc94 10960 }
7f3c4072 10961 else if (offbits != 16)
df58fc94 10962 {
7f3c4072
CM
10963 /* The offset field is too narrow to be used for a low-part
10964 relocation, so load the whole address into the auxillary
f2ae14a1
RS
10965 register. */
10966 load_address (tempreg, &offset_expr, &used_at);
10967 if (breg != 0)
10968 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10969 tempreg, tempreg, breg);
7f3c4072 10970 if (offbits == 0)
c0ebe874 10971 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 10972 else
c0ebe874 10973 macro_build (NULL, s, fmt, op[0], 0, tempreg);
aed1a261
RS
10974 }
10975 else if (mips_pic == NO_PIC)
252b5132
RH
10976 {
10977 /* If this is a reference to a GP relative symbol, and there
10978 is no base register, we want
c0ebe874 10979 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
252b5132
RH
10980 Otherwise, if there is no base register, we want
10981 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
c0ebe874 10982 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
252b5132
RH
10983 If we have a constant, we need two instructions anyhow,
10984 so we always use the latter form.
10985
10986 If we have a base register, and this is a reference to a
10987 GP relative symbol, we want
10988 addu $tempreg,$breg,$gp
c0ebe874 10989 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
252b5132
RH
10990 Otherwise we want
10991 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10992 addu $tempreg,$tempreg,$breg
c0ebe874 10993 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245 10994 With a constant we always use the latter case.
76b3015f 10995
d6bc6245
TS
10996 With 64bit address space and no base register and $at usable,
10997 we want
10998 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10999 lui $at,<sym> (BFD_RELOC_HI16_S)
11000 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11001 dsll32 $tempreg,0
11002 daddu $tempreg,$at
c0ebe874 11003 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11004 If we have a base register, we want
11005 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11006 lui $at,<sym> (BFD_RELOC_HI16_S)
11007 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11008 daddu $at,$breg
11009 dsll32 $tempreg,0
11010 daddu $tempreg,$at
c0ebe874 11011 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11012
11013 Without $at we can't generate the optimal path for superscalar
11014 processors here since this would require two temporary registers.
11015 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11016 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11017 dsll $tempreg,16
11018 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11019 dsll $tempreg,16
c0ebe874 11020 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11021 If we have a base register, we want
11022 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11023 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11024 dsll $tempreg,16
11025 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11026 dsll $tempreg,16
11027 daddu $tempreg,$tempreg,$breg
c0ebe874 11028 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
6373ee54 11029
6caf9ef4 11030 For GP relative symbols in 64bit address space we can use
aed1a261
RS
11031 the same sequence as in 32bit address space. */
11032 if (HAVE_64BIT_SYMBOLS)
d6bc6245 11033 {
aed1a261 11034 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4
TS
11035 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11036 {
11037 relax_start (offset_expr.X_add_symbol);
11038 if (breg == 0)
11039 {
c0ebe874 11040 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11041 BFD_RELOC_GPREL16, mips_gp_register);
11042 }
11043 else
11044 {
11045 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11046 tempreg, breg, mips_gp_register);
c0ebe874 11047 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11048 BFD_RELOC_GPREL16, tempreg);
11049 }
11050 relax_switch ();
11051 }
d6bc6245 11052
741fe287 11053 if (used_at == 0 && mips_opts.at)
d6bc6245 11054 {
df58fc94 11055 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb 11056 BFD_RELOC_MIPS_HIGHEST);
df58fc94 11057 macro_build (&offset_expr, "lui", LUI_FMT, AT,
67c0d1eb
RS
11058 BFD_RELOC_HI16_S);
11059 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11060 tempreg, BFD_RELOC_MIPS_HIGHER);
d6bc6245 11061 if (breg != 0)
67c0d1eb 11062 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
df58fc94 11063 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 11064 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
c0ebe874 11065 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
67c0d1eb 11066 tempreg);
d6bc6245
TS
11067 used_at = 1;
11068 }
11069 else
11070 {
df58fc94 11071 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb
RS
11072 BFD_RELOC_MIPS_HIGHEST);
11073 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11074 tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 11075 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb
RS
11076 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11077 tempreg, BFD_RELOC_HI16_S);
df58fc94 11078 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
d6bc6245 11079 if (breg != 0)
67c0d1eb 11080 macro_build (NULL, "daddu", "d,v,t",
17a2f251 11081 tempreg, tempreg, breg);
c0ebe874 11082 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11083 BFD_RELOC_LO16, tempreg);
d6bc6245 11084 }
6caf9ef4
TS
11085
11086 if (mips_relax.sequence)
11087 relax_end ();
8fc2e39e 11088 break;
d6bc6245 11089 }
256ab948 11090
252b5132
RH
11091 if (breg == 0)
11092 {
67c0d1eb 11093 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11094 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11095 {
4d7206a2 11096 relax_start (offset_expr.X_add_symbol);
c0ebe874 11097 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
67c0d1eb 11098 mips_gp_register);
4d7206a2 11099 relax_switch ();
252b5132 11100 }
67c0d1eb 11101 macro_build_lui (&offset_expr, tempreg);
c0ebe874 11102 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11103 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11104 if (mips_relax.sequence)
11105 relax_end ();
252b5132
RH
11106 }
11107 else
11108 {
67c0d1eb 11109 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11110 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11111 {
4d7206a2 11112 relax_start (offset_expr.X_add_symbol);
67c0d1eb 11113 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11114 tempreg, breg, mips_gp_register);
c0ebe874 11115 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11116 BFD_RELOC_GPREL16, tempreg);
4d7206a2 11117 relax_switch ();
252b5132 11118 }
67c0d1eb
RS
11119 macro_build_lui (&offset_expr, tempreg);
11120 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11121 tempreg, tempreg, breg);
c0ebe874 11122 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11123 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11124 if (mips_relax.sequence)
11125 relax_end ();
252b5132
RH
11126 }
11127 }
0a44bf69 11128 else if (!mips_big_got)
252b5132 11129 {
ed6fb7bd 11130 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
f9419b05 11131
252b5132
RH
11132 /* If this is a reference to an external symbol, we want
11133 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11134 nop
c0ebe874 11135 <op> op[0],0($tempreg)
252b5132
RH
11136 Otherwise we want
11137 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11138 nop
11139 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 11140 <op> op[0],0($tempreg)
f5040a92
AO
11141
11142 For NewABI, we want
11143 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 11144 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 11145
252b5132
RH
11146 If there is a base register, we add it to $tempreg before
11147 the <op>. If there is a constant, we stick it in the
11148 <op> instruction. We don't handle constants larger than
11149 16 bits, because we have no way to load the upper 16 bits
11150 (actually, we could handle them for the subset of cases
11151 in which we are not using $at). */
9c2799c2 11152 gas_assert (offset_expr.X_op == O_symbol);
f5040a92
AO
11153 if (HAVE_NEWABI)
11154 {
67c0d1eb
RS
11155 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11156 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 11157 if (breg != 0)
67c0d1eb 11158 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11159 tempreg, tempreg, breg);
c0ebe874 11160 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11161 BFD_RELOC_MIPS_GOT_OFST, tempreg);
f5040a92
AO
11162 break;
11163 }
252b5132
RH
11164 expr1.X_add_number = offset_expr.X_add_number;
11165 offset_expr.X_add_number = 0;
11166 if (expr1.X_add_number < -0x8000
11167 || expr1.X_add_number >= 0x8000)
11168 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb
RS
11169 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11170 lw_reloc_type, mips_gp_register);
269137b2 11171 load_delay_nop ();
4d7206a2
RS
11172 relax_start (offset_expr.X_add_symbol);
11173 relax_switch ();
67c0d1eb
RS
11174 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11175 tempreg, BFD_RELOC_LO16);
4d7206a2 11176 relax_end ();
252b5132 11177 if (breg != 0)
67c0d1eb 11178 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11179 tempreg, tempreg, breg);
c0ebe874 11180 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 11181 }
0a44bf69 11182 else if (mips_big_got && !HAVE_NEWABI)
252b5132 11183 {
67c0d1eb 11184 int gpdelay;
252b5132
RH
11185
11186 /* If this is a reference to an external symbol, we want
11187 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11188 addu $tempreg,$tempreg,$gp
11189 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 11190 <op> op[0],0($tempreg)
252b5132
RH
11191 Otherwise we want
11192 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11193 nop
11194 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 11195 <op> op[0],0($tempreg)
252b5132
RH
11196 If there is a base register, we add it to $tempreg before
11197 the <op>. If there is a constant, we stick it in the
11198 <op> instruction. We don't handle constants larger than
11199 16 bits, because we have no way to load the upper 16 bits
11200 (actually, we could handle them for the subset of cases
f5040a92 11201 in which we are not using $at). */
9c2799c2 11202 gas_assert (offset_expr.X_op == O_symbol);
252b5132
RH
11203 expr1.X_add_number = offset_expr.X_add_number;
11204 offset_expr.X_add_number = 0;
11205 if (expr1.X_add_number < -0x8000
11206 || expr1.X_add_number >= 0x8000)
11207 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 11208 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 11209 relax_start (offset_expr.X_add_symbol);
df58fc94 11210 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 11211 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
11212 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11213 mips_gp_register);
11214 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11215 BFD_RELOC_MIPS_GOT_LO16, tempreg);
4d7206a2 11216 relax_switch ();
67c0d1eb
RS
11217 if (gpdelay)
11218 macro_build (NULL, "nop", "");
11219 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11220 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 11221 load_delay_nop ();
67c0d1eb
RS
11222 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11223 tempreg, BFD_RELOC_LO16);
4d7206a2
RS
11224 relax_end ();
11225
252b5132 11226 if (breg != 0)
67c0d1eb 11227 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11228 tempreg, tempreg, breg);
c0ebe874 11229 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 11230 }
0a44bf69 11231 else if (mips_big_got && HAVE_NEWABI)
f5040a92 11232 {
f5040a92
AO
11233 /* If this is a reference to an external symbol, we want
11234 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11235 add $tempreg,$tempreg,$gp
11236 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 11237 <op> op[0],<ofst>($tempreg)
f5040a92
AO
11238 Otherwise, for local symbols, we want:
11239 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 11240 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9c2799c2 11241 gas_assert (offset_expr.X_op == O_symbol);
4d7206a2 11242 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11243 offset_expr.X_add_number = 0;
11244 if (expr1.X_add_number < -0x8000
11245 || expr1.X_add_number >= 0x8000)
11246 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4d7206a2 11247 relax_start (offset_expr.X_add_symbol);
df58fc94 11248 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 11249 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
11250 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11251 mips_gp_register);
11252 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11253 BFD_RELOC_MIPS_GOT_LO16, tempreg);
f5040a92 11254 if (breg != 0)
67c0d1eb 11255 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11256 tempreg, tempreg, breg);
c0ebe874 11257 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
684022ea 11258
4d7206a2 11259 relax_switch ();
f5040a92 11260 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
11261 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11262 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 11263 if (breg != 0)
67c0d1eb 11264 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11265 tempreg, tempreg, breg);
c0ebe874 11266 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11267 BFD_RELOC_MIPS_GOT_OFST, tempreg);
4d7206a2 11268 relax_end ();
f5040a92 11269 }
252b5132
RH
11270 else
11271 abort ();
11272
252b5132
RH
11273 break;
11274
833794fc
MR
11275 case M_JRADDIUSP:
11276 gas_assert (mips_opts.micromips);
11277 gas_assert (mips_opts.insn32);
11278 start_noreorder ();
11279 macro_build (NULL, "jr", "s", RA);
c0ebe874 11280 expr1.X_add_number = op[0] << 2;
833794fc
MR
11281 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11282 end_noreorder ();
11283 break;
11284
11285 case M_JRC:
11286 gas_assert (mips_opts.micromips);
11287 gas_assert (mips_opts.insn32);
c0ebe874 11288 macro_build (NULL, "jr", "s", op[0]);
833794fc
MR
11289 if (mips_opts.noreorder)
11290 macro_build (NULL, "nop", "");
11291 break;
11292
252b5132
RH
11293 case M_LI:
11294 case M_LI_S:
c0ebe874 11295 load_register (op[0], &imm_expr, 0);
8fc2e39e 11296 break;
252b5132
RH
11297
11298 case M_DLI:
c0ebe874 11299 load_register (op[0], &imm_expr, 1);
8fc2e39e 11300 break;
252b5132
RH
11301
11302 case M_LI_SS:
11303 if (imm_expr.X_op == O_constant)
11304 {
8fc2e39e 11305 used_at = 1;
67c0d1eb 11306 load_register (AT, &imm_expr, 0);
c0ebe874 11307 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
11308 break;
11309 }
11310 else
11311 {
b0e6f033
RS
11312 gas_assert (imm_expr.X_op == O_absent
11313 && offset_expr.X_op == O_symbol
90ecf173
MR
11314 && strcmp (segment_name (S_GET_SEGMENT
11315 (offset_expr.X_add_symbol)),
11316 ".lit4") == 0
11317 && offset_expr.X_add_number == 0);
c0ebe874 11318 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
17a2f251 11319 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8fc2e39e 11320 break;
252b5132
RH
11321 }
11322
11323 case M_LI_D:
ca4e0257
RS
11324 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
11325 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
11326 order 32 bits of the value and the low order 32 bits are either
11327 zero or in OFFSET_EXPR. */
b0e6f033 11328 if (imm_expr.X_op == O_constant)
252b5132 11329 {
ca4e0257 11330 if (HAVE_64BIT_GPRS)
c0ebe874 11331 load_register (op[0], &imm_expr, 1);
252b5132
RH
11332 else
11333 {
11334 int hreg, lreg;
11335
11336 if (target_big_endian)
11337 {
c0ebe874
RS
11338 hreg = op[0];
11339 lreg = op[0] + 1;
252b5132
RH
11340 }
11341 else
11342 {
c0ebe874
RS
11343 hreg = op[0] + 1;
11344 lreg = op[0];
252b5132
RH
11345 }
11346
11347 if (hreg <= 31)
67c0d1eb 11348 load_register (hreg, &imm_expr, 0);
252b5132
RH
11349 if (lreg <= 31)
11350 {
11351 if (offset_expr.X_op == O_absent)
67c0d1eb 11352 move_register (lreg, 0);
252b5132
RH
11353 else
11354 {
9c2799c2 11355 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 11356 load_register (lreg, &offset_expr, 0);
252b5132
RH
11357 }
11358 }
11359 }
8fc2e39e 11360 break;
252b5132 11361 }
b0e6f033 11362 gas_assert (imm_expr.X_op == O_absent);
252b5132
RH
11363
11364 /* We know that sym is in the .rdata section. First we get the
11365 upper 16 bits of the address. */
11366 if (mips_pic == NO_PIC)
11367 {
67c0d1eb 11368 macro_build_lui (&offset_expr, AT);
8fc2e39e 11369 used_at = 1;
252b5132 11370 }
0a44bf69 11371 else
252b5132 11372 {
67c0d1eb
RS
11373 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
11374 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8fc2e39e 11375 used_at = 1;
252b5132 11376 }
bdaaa2e1 11377
252b5132 11378 /* Now we load the register(s). */
ca4e0257 11379 if (HAVE_64BIT_GPRS)
8fc2e39e
TS
11380 {
11381 used_at = 1;
c0ebe874
RS
11382 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
11383 BFD_RELOC_LO16, AT);
8fc2e39e 11384 }
252b5132
RH
11385 else
11386 {
8fc2e39e 11387 used_at = 1;
c0ebe874
RS
11388 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
11389 BFD_RELOC_LO16, AT);
11390 if (op[0] != RA)
252b5132
RH
11391 {
11392 /* FIXME: How in the world do we deal with the possible
11393 overflow here? */
11394 offset_expr.X_add_number += 4;
67c0d1eb 11395 macro_build (&offset_expr, "lw", "t,o(b)",
c0ebe874 11396 op[0] + 1, BFD_RELOC_LO16, AT);
252b5132
RH
11397 }
11398 }
252b5132
RH
11399 break;
11400
11401 case M_LI_DD:
ca4e0257
RS
11402 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
11403 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
11404 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
11405 the value and the low order 32 bits are either zero or in
11406 OFFSET_EXPR. */
b0e6f033 11407 if (imm_expr.X_op == O_constant)
252b5132 11408 {
8fc2e39e 11409 used_at = 1;
67c0d1eb 11410 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
ca4e0257
RS
11411 if (HAVE_64BIT_FPRS)
11412 {
9c2799c2 11413 gas_assert (HAVE_64BIT_GPRS);
c0ebe874 11414 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
ca4e0257 11415 }
252b5132
RH
11416 else
11417 {
c0ebe874 11418 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
252b5132 11419 if (offset_expr.X_op == O_absent)
c0ebe874 11420 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
252b5132
RH
11421 else
11422 {
9c2799c2 11423 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 11424 load_register (AT, &offset_expr, 0);
c0ebe874 11425 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
11426 }
11427 }
11428 break;
11429 }
11430
b0e6f033
RS
11431 gas_assert (imm_expr.X_op == O_absent
11432 && offset_expr.X_op == O_symbol
90ecf173 11433 && offset_expr.X_add_number == 0);
252b5132
RH
11434 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
11435 if (strcmp (s, ".lit8") == 0)
f2ae14a1 11436 {
c0ebe874 11437 op[2] = mips_gp_register;
f2ae14a1
RS
11438 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
11439 offset_reloc[1] = BFD_RELOC_UNUSED;
11440 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132
RH
11441 }
11442 else
11443 {
9c2799c2 11444 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8fc2e39e 11445 used_at = 1;
0a44bf69 11446 if (mips_pic != NO_PIC)
67c0d1eb
RS
11447 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
11448 BFD_RELOC_MIPS_GOT16, mips_gp_register);
252b5132
RH
11449 else
11450 {
11451 /* FIXME: This won't work for a 64 bit address. */
67c0d1eb 11452 macro_build_lui (&offset_expr, AT);
252b5132 11453 }
bdaaa2e1 11454
c0ebe874 11455 op[2] = AT;
f2ae14a1
RS
11456 offset_reloc[0] = BFD_RELOC_LO16;
11457 offset_reloc[1] = BFD_RELOC_UNUSED;
11458 offset_reloc[2] = BFD_RELOC_UNUSED;
11459 }
11460 align = 8;
11461 /* Fall through */
c4a68bea 11462
252b5132
RH
11463 case M_L_DAB:
11464 /*
11465 * The MIPS assembler seems to check for X_add_number not
11466 * being double aligned and generating:
11467 * lui at,%hi(foo+1)
11468 * addu at,at,v1
11469 * addiu at,at,%lo(foo+1)
11470 * lwc1 f2,0(at)
11471 * lwc1 f3,4(at)
11472 * But, the resulting address is the same after relocation so why
11473 * generate the extra instruction?
11474 */
bdaaa2e1 11475 /* Itbl support may require additional care here. */
252b5132 11476 coproc = 1;
df58fc94 11477 fmt = "T,o(b)";
0aa27725 11478 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
11479 {
11480 s = "ldc1";
df58fc94 11481 goto ld_st;
252b5132 11482 }
252b5132 11483 s = "lwc1";
252b5132
RH
11484 goto ldd_std;
11485
11486 case M_S_DAB:
df58fc94
RS
11487 gas_assert (!mips_opts.micromips);
11488 /* Itbl support may require additional care here. */
11489 coproc = 1;
11490 fmt = "T,o(b)";
0aa27725 11491 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
11492 {
11493 s = "sdc1";
df58fc94 11494 goto ld_st;
252b5132 11495 }
252b5132 11496 s = "swc1";
252b5132
RH
11497 goto ldd_std;
11498
e407c74b
NC
11499 case M_LQ_AB:
11500 fmt = "t,o(b)";
11501 s = "lq";
11502 goto ld;
11503
11504 case M_SQ_AB:
11505 fmt = "t,o(b)";
11506 s = "sq";
11507 goto ld_st;
11508
252b5132 11509 case M_LD_AB:
df58fc94 11510 fmt = "t,o(b)";
ca4e0257 11511 if (HAVE_64BIT_GPRS)
252b5132
RH
11512 {
11513 s = "ld";
11514 goto ld;
11515 }
252b5132 11516 s = "lw";
252b5132
RH
11517 goto ldd_std;
11518
11519 case M_SD_AB:
df58fc94 11520 fmt = "t,o(b)";
ca4e0257 11521 if (HAVE_64BIT_GPRS)
252b5132
RH
11522 {
11523 s = "sd";
df58fc94 11524 goto ld_st;
252b5132 11525 }
252b5132 11526 s = "sw";
252b5132
RH
11527
11528 ldd_std:
f2ae14a1
RS
11529 /* Even on a big endian machine $fn comes before $fn+1. We have
11530 to adjust when loading from memory. We set coproc if we must
11531 load $fn+1 first. */
11532 /* Itbl support may require additional care here. */
11533 if (!target_big_endian)
11534 coproc = 0;
11535
c0ebe874 11536 breg = op[2];
f2ae14a1
RS
11537 if (small_offset_p (0, align, 16))
11538 {
11539 ep = &offset_expr;
11540 if (!small_offset_p (4, align, 16))
11541 {
11542 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
11543 -1, offset_reloc[0], offset_reloc[1],
11544 offset_reloc[2]);
11545 expr1.X_add_number = 0;
11546 ep = &expr1;
11547 breg = AT;
11548 used_at = 1;
11549 offset_reloc[0] = BFD_RELOC_LO16;
11550 offset_reloc[1] = BFD_RELOC_UNUSED;
11551 offset_reloc[2] = BFD_RELOC_UNUSED;
11552 }
c0ebe874 11553 if (strcmp (s, "lw") == 0 && op[0] == breg)
f2ae14a1
RS
11554 {
11555 ep->X_add_number += 4;
c0ebe874 11556 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
f2ae14a1
RS
11557 offset_reloc[1], offset_reloc[2], breg);
11558 ep->X_add_number -= 4;
c0ebe874 11559 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
11560 offset_reloc[1], offset_reloc[2], breg);
11561 }
11562 else
11563 {
c0ebe874 11564 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
f2ae14a1
RS
11565 offset_reloc[0], offset_reloc[1], offset_reloc[2],
11566 breg);
11567 ep->X_add_number += 4;
c0ebe874 11568 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
f2ae14a1
RS
11569 offset_reloc[0], offset_reloc[1], offset_reloc[2],
11570 breg);
11571 }
11572 break;
11573 }
11574
252b5132
RH
11575 if (offset_expr.X_op != O_symbol
11576 && offset_expr.X_op != O_constant)
11577 {
f71d0d44 11578 as_bad (_("Expression too complex"));
252b5132
RH
11579 offset_expr.X_op = O_constant;
11580 }
11581
2051e8c4
MR
11582 if (HAVE_32BIT_ADDRESSES
11583 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
11584 {
11585 char value [32];
11586
11587 sprintf_vma (value, offset_expr.X_add_number);
20e1fcfd 11588 as_bad (_("Number (0x%s) larger than 32 bits"), value);
55e08f71 11589 }
2051e8c4 11590
90ecf173 11591 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
252b5132
RH
11592 {
11593 /* If this is a reference to a GP relative symbol, we want
c0ebe874
RS
11594 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11595 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
252b5132
RH
11596 If we have a base register, we use this
11597 addu $at,$breg,$gp
c0ebe874
RS
11598 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
11599 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
252b5132
RH
11600 If this is not a GP relative symbol, we want
11601 lui $at,<sym> (BFD_RELOC_HI16_S)
c0ebe874
RS
11602 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
11603 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
11604 If there is a base register, we add it to $at after the
11605 lui instruction. If there is a constant, we always use
11606 the last case. */
39a59cf8
MR
11607 if (offset_expr.X_op == O_symbol
11608 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11609 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11610 {
4d7206a2 11611 relax_start (offset_expr.X_add_symbol);
252b5132
RH
11612 if (breg == 0)
11613 {
c9914766 11614 tempreg = mips_gp_register;
252b5132
RH
11615 }
11616 else
11617 {
67c0d1eb 11618 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11619 AT, breg, mips_gp_register);
252b5132 11620 tempreg = AT;
252b5132
RH
11621 used_at = 1;
11622 }
11623
beae10d5 11624 /* Itbl support may require additional care here. */
c0ebe874 11625 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 11626 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
11627 offset_expr.X_add_number += 4;
11628
11629 /* Set mips_optimize to 2 to avoid inserting an
11630 undesired nop. */
11631 hold_mips_optimize = mips_optimize;
11632 mips_optimize = 2;
beae10d5 11633 /* Itbl support may require additional care here. */
c0ebe874 11634 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 11635 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
11636 mips_optimize = hold_mips_optimize;
11637
4d7206a2 11638 relax_switch ();
252b5132 11639
0970e49e 11640 offset_expr.X_add_number -= 4;
252b5132 11641 }
8fc2e39e 11642 used_at = 1;
f2ae14a1
RS
11643 if (offset_high_part (offset_expr.X_add_number, 16)
11644 != offset_high_part (offset_expr.X_add_number + 4, 16))
11645 {
11646 load_address (AT, &offset_expr, &used_at);
11647 offset_expr.X_op = O_constant;
11648 offset_expr.X_add_number = 0;
11649 }
11650 else
11651 macro_build_lui (&offset_expr, AT);
252b5132 11652 if (breg != 0)
67c0d1eb 11653 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 11654 /* Itbl support may require additional care here. */
c0ebe874 11655 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 11656 BFD_RELOC_LO16, AT);
252b5132
RH
11657 /* FIXME: How do we handle overflow here? */
11658 offset_expr.X_add_number += 4;
beae10d5 11659 /* Itbl support may require additional care here. */
c0ebe874 11660 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 11661 BFD_RELOC_LO16, AT);
4d7206a2
RS
11662 if (mips_relax.sequence)
11663 relax_end ();
bdaaa2e1 11664 }
0a44bf69 11665 else if (!mips_big_got)
252b5132 11666 {
252b5132
RH
11667 /* If this is a reference to an external symbol, we want
11668 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11669 nop
c0ebe874
RS
11670 <op> op[0],0($at)
11671 <op> op[0]+1,4($at)
252b5132
RH
11672 Otherwise we want
11673 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11674 nop
c0ebe874
RS
11675 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
11676 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
11677 If there is a base register we add it to $at before the
11678 lwc1 instructions. If there is a constant we include it
11679 in the lwc1 instructions. */
11680 used_at = 1;
11681 expr1.X_add_number = offset_expr.X_add_number;
252b5132
RH
11682 if (expr1.X_add_number < -0x8000
11683 || expr1.X_add_number >= 0x8000 - 4)
11684 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 11685 load_got_offset (AT, &offset_expr);
269137b2 11686 load_delay_nop ();
252b5132 11687 if (breg != 0)
67c0d1eb 11688 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
252b5132
RH
11689
11690 /* Set mips_optimize to 2 to avoid inserting an undesired
11691 nop. */
11692 hold_mips_optimize = mips_optimize;
11693 mips_optimize = 2;
4d7206a2 11694
beae10d5 11695 /* Itbl support may require additional care here. */
4d7206a2 11696 relax_start (offset_expr.X_add_symbol);
c0ebe874 11697 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 11698 BFD_RELOC_LO16, AT);
4d7206a2 11699 expr1.X_add_number += 4;
c0ebe874 11700 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 11701 BFD_RELOC_LO16, AT);
4d7206a2 11702 relax_switch ();
c0ebe874 11703 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 11704 BFD_RELOC_LO16, AT);
4d7206a2 11705 offset_expr.X_add_number += 4;
c0ebe874 11706 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 11707 BFD_RELOC_LO16, AT);
4d7206a2 11708 relax_end ();
252b5132 11709
4d7206a2 11710 mips_optimize = hold_mips_optimize;
252b5132 11711 }
0a44bf69 11712 else if (mips_big_got)
252b5132 11713 {
67c0d1eb 11714 int gpdelay;
252b5132
RH
11715
11716 /* If this is a reference to an external symbol, we want
11717 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11718 addu $at,$at,$gp
11719 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
11720 nop
c0ebe874
RS
11721 <op> op[0],0($at)
11722 <op> op[0]+1,4($at)
252b5132
RH
11723 Otherwise we want
11724 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11725 nop
c0ebe874
RS
11726 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
11727 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
11728 If there is a base register we add it to $at before the
11729 lwc1 instructions. If there is a constant we include it
11730 in the lwc1 instructions. */
11731 used_at = 1;
11732 expr1.X_add_number = offset_expr.X_add_number;
11733 offset_expr.X_add_number = 0;
11734 if (expr1.X_add_number < -0x8000
11735 || expr1.X_add_number >= 0x8000 - 4)
11736 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 11737 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 11738 relax_start (offset_expr.X_add_symbol);
df58fc94 11739 macro_build (&offset_expr, "lui", LUI_FMT,
67c0d1eb
RS
11740 AT, BFD_RELOC_MIPS_GOT_HI16);
11741 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11742 AT, AT, mips_gp_register);
67c0d1eb 11743 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 11744 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
269137b2 11745 load_delay_nop ();
252b5132 11746 if (breg != 0)
67c0d1eb 11747 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 11748 /* Itbl support may require additional care here. */
c0ebe874 11749 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 11750 BFD_RELOC_LO16, AT);
252b5132
RH
11751 expr1.X_add_number += 4;
11752
11753 /* Set mips_optimize to 2 to avoid inserting an undesired
11754 nop. */
11755 hold_mips_optimize = mips_optimize;
11756 mips_optimize = 2;
beae10d5 11757 /* Itbl support may require additional care here. */
c0ebe874 11758 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 11759 BFD_RELOC_LO16, AT);
252b5132
RH
11760 mips_optimize = hold_mips_optimize;
11761 expr1.X_add_number -= 4;
11762
4d7206a2
RS
11763 relax_switch ();
11764 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
11765 if (gpdelay)
11766 macro_build (NULL, "nop", "");
11767 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
11768 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 11769 load_delay_nop ();
252b5132 11770 if (breg != 0)
67c0d1eb 11771 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 11772 /* Itbl support may require additional care here. */
c0ebe874 11773 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 11774 BFD_RELOC_LO16, AT);
4d7206a2 11775 offset_expr.X_add_number += 4;
252b5132
RH
11776
11777 /* Set mips_optimize to 2 to avoid inserting an undesired
11778 nop. */
11779 hold_mips_optimize = mips_optimize;
11780 mips_optimize = 2;
beae10d5 11781 /* Itbl support may require additional care here. */
c0ebe874 11782 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 11783 BFD_RELOC_LO16, AT);
252b5132 11784 mips_optimize = hold_mips_optimize;
4d7206a2 11785 relax_end ();
252b5132 11786 }
252b5132
RH
11787 else
11788 abort ();
11789
252b5132 11790 break;
dd6a37e7
AP
11791
11792 case M_SAA_AB:
dd6a37e7 11793 s = "saa";
7f3c4072 11794 offbits = 0;
dd6a37e7
AP
11795 fmt = "t,(b)";
11796 goto ld_st;
11797 case M_SAAD_AB:
dd6a37e7 11798 s = "saad";
7f3c4072 11799 offbits = 0;
dd6a37e7
AP
11800 fmt = "t,(b)";
11801 goto ld_st;
11802
252b5132
RH
11803 /* New code added to support COPZ instructions.
11804 This code builds table entries out of the macros in mip_opcodes.
11805 R4000 uses interlocks to handle coproc delays.
11806 Other chips (like the R3000) require nops to be inserted for delays.
11807
f72c8c98 11808 FIXME: Currently, we require that the user handle delays.
252b5132
RH
11809 In order to fill delay slots for non-interlocked chips,
11810 we must have a way to specify delays based on the coprocessor.
11811 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
11812 What are the side-effects of the cop instruction?
11813 What cache support might we have and what are its effects?
11814 Both coprocessor & memory require delays. how long???
bdaaa2e1 11815 What registers are read/set/modified?
252b5132
RH
11816
11817 If an itbl is provided to interpret cop instructions,
bdaaa2e1 11818 this knowledge can be encoded in the itbl spec. */
252b5132
RH
11819
11820 case M_COP0:
11821 s = "c0";
11822 goto copz;
11823 case M_COP1:
11824 s = "c1";
11825 goto copz;
11826 case M_COP2:
11827 s = "c2";
11828 goto copz;
11829 case M_COP3:
11830 s = "c3";
11831 copz:
df58fc94 11832 gas_assert (!mips_opts.micromips);
252b5132
RH
11833 /* For now we just do C (same as Cz). The parameter will be
11834 stored in insn_opcode by mips_ip. */
c8276761 11835 macro_build (NULL, s, "C", (int) ip->insn_opcode);
8fc2e39e 11836 break;
252b5132 11837
ea1fb5dc 11838 case M_MOVE:
c0ebe874 11839 move_register (op[0], op[1]);
8fc2e39e 11840 break;
ea1fb5dc 11841
833794fc
MR
11842 case M_MOVEP:
11843 gas_assert (mips_opts.micromips);
11844 gas_assert (mips_opts.insn32);
c0ebe874
RS
11845 move_register (micromips_to_32_reg_h_map1[op[0]],
11846 micromips_to_32_reg_m_map[op[1]]);
11847 move_register (micromips_to_32_reg_h_map2[op[0]],
11848 micromips_to_32_reg_n_map[op[2]]);
833794fc
MR
11849 break;
11850
252b5132
RH
11851 case M_DMUL:
11852 dbl = 1;
11853 case M_MUL:
e407c74b 11854 if (mips_opts.arch == CPU_R5900)
c0ebe874
RS
11855 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
11856 op[2]);
e407c74b
NC
11857 else
11858 {
c0ebe874
RS
11859 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
11860 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
e407c74b 11861 }
8fc2e39e 11862 break;
252b5132
RH
11863
11864 case M_DMUL_I:
11865 dbl = 1;
11866 case M_MUL_I:
11867 /* The MIPS assembler some times generates shifts and adds. I'm
11868 not trying to be that fancy. GCC should do this for us
11869 anyway. */
8fc2e39e 11870 used_at = 1;
67c0d1eb 11871 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
11872 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
11873 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
11874 break;
11875
11876 case M_DMULO_I:
11877 dbl = 1;
11878 case M_MULO_I:
11879 imm = 1;
11880 goto do_mulo;
11881
11882 case M_DMULO:
11883 dbl = 1;
11884 case M_MULO:
11885 do_mulo:
7d10b47d 11886 start_noreorder ();
8fc2e39e 11887 used_at = 1;
252b5132 11888 if (imm)
67c0d1eb 11889 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
11890 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
11891 op[1], imm ? AT : op[2]);
11892 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
11893 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
df58fc94 11894 macro_build (NULL, "mfhi", MFHL_FMT, AT);
252b5132 11895 if (mips_trap)
c0ebe874 11896 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
252b5132
RH
11897 else
11898 {
df58fc94
RS
11899 if (mips_opts.micromips)
11900 micromips_label_expr (&label_expr);
11901 else
11902 label_expr.X_add_number = 8;
c0ebe874 11903 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
a605d2b3 11904 macro_build (NULL, "nop", "");
df58fc94
RS
11905 macro_build (NULL, "break", BRK_FMT, 6);
11906 if (mips_opts.micromips)
11907 micromips_add_label ();
252b5132 11908 }
7d10b47d 11909 end_noreorder ();
c0ebe874 11910 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
11911 break;
11912
11913 case M_DMULOU_I:
11914 dbl = 1;
11915 case M_MULOU_I:
11916 imm = 1;
11917 goto do_mulou;
11918
11919 case M_DMULOU:
11920 dbl = 1;
11921 case M_MULOU:
11922 do_mulou:
7d10b47d 11923 start_noreorder ();
8fc2e39e 11924 used_at = 1;
252b5132 11925 if (imm)
67c0d1eb
RS
11926 load_register (AT, &imm_expr, dbl);
11927 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
c0ebe874 11928 op[1], imm ? AT : op[2]);
df58fc94 11929 macro_build (NULL, "mfhi", MFHL_FMT, AT);
c0ebe874 11930 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132 11931 if (mips_trap)
df58fc94 11932 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
252b5132
RH
11933 else
11934 {
df58fc94
RS
11935 if (mips_opts.micromips)
11936 micromips_label_expr (&label_expr);
11937 else
11938 label_expr.X_add_number = 8;
11939 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
a605d2b3 11940 macro_build (NULL, "nop", "");
df58fc94
RS
11941 macro_build (NULL, "break", BRK_FMT, 6);
11942 if (mips_opts.micromips)
11943 micromips_add_label ();
252b5132 11944 }
7d10b47d 11945 end_noreorder ();
252b5132
RH
11946 break;
11947
771c7ce4 11948 case M_DROL:
fef14a42 11949 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 11950 {
c0ebe874 11951 if (op[0] == op[1])
82dd0097
CD
11952 {
11953 tempreg = AT;
11954 used_at = 1;
11955 }
11956 else
c0ebe874
RS
11957 tempreg = op[0];
11958 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
11959 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 11960 break;
82dd0097 11961 }
8fc2e39e 11962 used_at = 1;
c0ebe874
RS
11963 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
11964 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
11965 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
11966 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
11967 break;
11968
252b5132 11969 case M_ROL:
fef14a42 11970 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 11971 {
c0ebe874 11972 if (op[0] == op[1])
82dd0097
CD
11973 {
11974 tempreg = AT;
11975 used_at = 1;
11976 }
11977 else
c0ebe874
RS
11978 tempreg = op[0];
11979 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
11980 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 11981 break;
82dd0097 11982 }
8fc2e39e 11983 used_at = 1;
c0ebe874
RS
11984 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
11985 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
11986 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
11987 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
11988 break;
11989
771c7ce4
TS
11990 case M_DROL_I:
11991 {
11992 unsigned int rot;
91d6fa6a
NC
11993 char *l;
11994 char *rr;
771c7ce4 11995
771c7ce4 11996 rot = imm_expr.X_add_number & 0x3f;
fef14a42 11997 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
60b63b72
RS
11998 {
11999 rot = (64 - rot) & 0x3f;
12000 if (rot >= 32)
c0ebe874 12001 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
60b63b72 12002 else
c0ebe874 12003 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12004 break;
60b63b72 12005 }
483fc7cd 12006 if (rot == 0)
483fc7cd 12007 {
c0ebe874 12008 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12009 break;
483fc7cd 12010 }
82dd0097 12011 l = (rot < 0x20) ? "dsll" : "dsll32";
91d6fa6a 12012 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
82dd0097 12013 rot &= 0x1f;
8fc2e39e 12014 used_at = 1;
c0ebe874
RS
12015 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12016 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12017 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12018 }
12019 break;
12020
252b5132 12021 case M_ROL_I:
771c7ce4
TS
12022 {
12023 unsigned int rot;
12024
771c7ce4 12025 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12026 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
60b63b72 12027 {
c0ebe874
RS
12028 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12029 (32 - rot) & 0x1f);
8fc2e39e 12030 break;
60b63b72 12031 }
483fc7cd 12032 if (rot == 0)
483fc7cd 12033 {
c0ebe874 12034 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12035 break;
483fc7cd 12036 }
8fc2e39e 12037 used_at = 1;
c0ebe874
RS
12038 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12039 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12040 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12041 }
12042 break;
12043
12044 case M_DROR:
fef14a42 12045 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12046 {
c0ebe874 12047 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12048 break;
82dd0097 12049 }
8fc2e39e 12050 used_at = 1;
c0ebe874
RS
12051 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12052 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12053 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12054 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12055 break;
12056
12057 case M_ROR:
fef14a42 12058 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12059 {
c0ebe874 12060 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12061 break;
82dd0097 12062 }
8fc2e39e 12063 used_at = 1;
c0ebe874
RS
12064 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12065 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12066 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12067 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12068 break;
12069
771c7ce4
TS
12070 case M_DROR_I:
12071 {
12072 unsigned int rot;
91d6fa6a
NC
12073 char *l;
12074 char *rr;
771c7ce4 12075
771c7ce4 12076 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12077 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
12078 {
12079 if (rot >= 32)
c0ebe874 12080 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
82dd0097 12081 else
c0ebe874 12082 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12083 break;
82dd0097 12084 }
483fc7cd 12085 if (rot == 0)
483fc7cd 12086 {
c0ebe874 12087 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12088 break;
483fc7cd 12089 }
91d6fa6a 12090 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
82dd0097
CD
12091 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12092 rot &= 0x1f;
8fc2e39e 12093 used_at = 1;
c0ebe874
RS
12094 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12095 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12096 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12097 }
12098 break;
12099
252b5132 12100 case M_ROR_I:
771c7ce4
TS
12101 {
12102 unsigned int rot;
12103
771c7ce4 12104 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12105 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12106 {
c0ebe874 12107 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12108 break;
82dd0097 12109 }
483fc7cd 12110 if (rot == 0)
483fc7cd 12111 {
c0ebe874 12112 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12113 break;
483fc7cd 12114 }
8fc2e39e 12115 used_at = 1;
c0ebe874
RS
12116 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12117 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12118 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4 12119 }
252b5132
RH
12120 break;
12121
252b5132 12122 case M_SEQ:
c0ebe874
RS
12123 if (op[1] == 0)
12124 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12125 else if (op[2] == 0)
12126 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
12127 else
12128 {
c0ebe874
RS
12129 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12130 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
252b5132 12131 }
8fc2e39e 12132 break;
252b5132
RH
12133
12134 case M_SEQ_I:
b0e6f033 12135 if (imm_expr.X_add_number == 0)
252b5132 12136 {
c0ebe874 12137 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 12138 break;
252b5132 12139 }
c0ebe874 12140 if (op[1] == 0)
252b5132
RH
12141 {
12142 as_warn (_("Instruction %s: result is always false"),
12143 ip->insn_mo->name);
c0ebe874 12144 move_register (op[0], 0);
8fc2e39e 12145 break;
252b5132 12146 }
dd3cbb7e
NC
12147 if (CPU_HAS_SEQ (mips_opts.arch)
12148 && -512 <= imm_expr.X_add_number
12149 && imm_expr.X_add_number < 512)
12150 {
c0ebe874 12151 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
750bdd57 12152 (int) imm_expr.X_add_number);
dd3cbb7e
NC
12153 break;
12154 }
b0e6f033 12155 if (imm_expr.X_add_number >= 0
252b5132 12156 && imm_expr.X_add_number < 0x10000)
c0ebe874 12157 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
b0e6f033 12158 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
12159 && imm_expr.X_add_number < 0)
12160 {
12161 imm_expr.X_add_number = -imm_expr.X_add_number;
67c0d1eb 12162 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
c0ebe874 12163 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 12164 }
dd3cbb7e
NC
12165 else if (CPU_HAS_SEQ (mips_opts.arch))
12166 {
12167 used_at = 1;
12168 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
c0ebe874 12169 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
12170 break;
12171 }
252b5132
RH
12172 else
12173 {
67c0d1eb 12174 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
c0ebe874 12175 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
12176 used_at = 1;
12177 }
c0ebe874 12178 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12179 break;
252b5132 12180
c0ebe874 12181 case M_SGE: /* X >= Y <==> not (X < Y) */
252b5132
RH
12182 s = "slt";
12183 goto sge;
12184 case M_SGEU:
12185 s = "sltu";
12186 sge:
c0ebe874
RS
12187 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12188 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12189 break;
252b5132 12190
c0ebe874 12191 case M_SGE_I: /* X >= I <==> not (X < I) */
252b5132 12192 case M_SGEU_I:
b0e6f033 12193 if (imm_expr.X_add_number >= -0x8000
252b5132 12194 && imm_expr.X_add_number < 0x8000)
c0ebe874
RS
12195 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12196 op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
12197 else
12198 {
67c0d1eb
RS
12199 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12200 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
c0ebe874 12201 op[0], op[1], AT);
252b5132
RH
12202 used_at = 1;
12203 }
c0ebe874 12204 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12205 break;
252b5132 12206
c0ebe874 12207 case M_SGT: /* X > Y <==> Y < X */
252b5132
RH
12208 s = "slt";
12209 goto sgt;
12210 case M_SGTU:
12211 s = "sltu";
12212 sgt:
c0ebe874 12213 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
8fc2e39e 12214 break;
252b5132 12215
c0ebe874 12216 case M_SGT_I: /* X > I <==> I < X */
252b5132
RH
12217 s = "slt";
12218 goto sgti;
12219 case M_SGTU_I:
12220 s = "sltu";
12221 sgti:
8fc2e39e 12222 used_at = 1;
67c0d1eb 12223 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
c0ebe874 12224 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
252b5132
RH
12225 break;
12226
c0ebe874 12227 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
252b5132
RH
12228 s = "slt";
12229 goto sle;
12230 case M_SLEU:
12231 s = "sltu";
12232 sle:
c0ebe874
RS
12233 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12234 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12235 break;
252b5132 12236
c0ebe874 12237 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
252b5132
RH
12238 s = "slt";
12239 goto slei;
12240 case M_SLEU_I:
12241 s = "sltu";
12242 slei:
8fc2e39e 12243 used_at = 1;
67c0d1eb 12244 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
c0ebe874
RS
12245 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12246 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
252b5132
RH
12247 break;
12248
12249 case M_SLT_I:
b0e6f033 12250 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
12251 && imm_expr.X_add_number < 0x8000)
12252 {
c0ebe874
RS
12253 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12254 BFD_RELOC_LO16);
8fc2e39e 12255 break;
252b5132 12256 }
8fc2e39e 12257 used_at = 1;
67c0d1eb 12258 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
c0ebe874 12259 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
252b5132
RH
12260 break;
12261
12262 case M_SLTU_I:
b0e6f033 12263 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
12264 && imm_expr.X_add_number < 0x8000)
12265 {
c0ebe874 12266 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
17a2f251 12267 BFD_RELOC_LO16);
8fc2e39e 12268 break;
252b5132 12269 }
8fc2e39e 12270 used_at = 1;
67c0d1eb 12271 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
c0ebe874 12272 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
252b5132
RH
12273 break;
12274
12275 case M_SNE:
c0ebe874
RS
12276 if (op[1] == 0)
12277 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12278 else if (op[2] == 0)
12279 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
252b5132
RH
12280 else
12281 {
c0ebe874
RS
12282 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12283 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
252b5132 12284 }
8fc2e39e 12285 break;
252b5132
RH
12286
12287 case M_SNE_I:
b0e6f033 12288 if (imm_expr.X_add_number == 0)
252b5132 12289 {
c0ebe874 12290 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
8fc2e39e 12291 break;
252b5132 12292 }
c0ebe874 12293 if (op[1] == 0)
252b5132
RH
12294 {
12295 as_warn (_("Instruction %s: result is always true"),
12296 ip->insn_mo->name);
67c0d1eb 12297 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
c0ebe874 12298 op[0], 0, BFD_RELOC_LO16);
8fc2e39e 12299 break;
252b5132 12300 }
dd3cbb7e
NC
12301 if (CPU_HAS_SEQ (mips_opts.arch)
12302 && -512 <= imm_expr.X_add_number
12303 && imm_expr.X_add_number < 512)
12304 {
c0ebe874 12305 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
750bdd57 12306 (int) imm_expr.X_add_number);
dd3cbb7e
NC
12307 break;
12308 }
b0e6f033 12309 if (imm_expr.X_add_number >= 0
252b5132
RH
12310 && imm_expr.X_add_number < 0x10000)
12311 {
c0ebe874
RS
12312 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
12313 BFD_RELOC_LO16);
252b5132 12314 }
b0e6f033 12315 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
12316 && imm_expr.X_add_number < 0)
12317 {
12318 imm_expr.X_add_number = -imm_expr.X_add_number;
67c0d1eb 12319 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
c0ebe874 12320 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 12321 }
dd3cbb7e
NC
12322 else if (CPU_HAS_SEQ (mips_opts.arch))
12323 {
12324 used_at = 1;
12325 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
c0ebe874 12326 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
12327 break;
12328 }
252b5132
RH
12329 else
12330 {
67c0d1eb 12331 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
c0ebe874 12332 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
12333 used_at = 1;
12334 }
c0ebe874 12335 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
8fc2e39e 12336 break;
252b5132 12337
df58fc94
RS
12338 case M_SUB_I:
12339 s = "addi";
12340 s2 = "sub";
12341 goto do_subi;
12342 case M_SUBU_I:
12343 s = "addiu";
12344 s2 = "subu";
12345 goto do_subi;
252b5132
RH
12346 case M_DSUB_I:
12347 dbl = 1;
df58fc94
RS
12348 s = "daddi";
12349 s2 = "dsub";
12350 if (!mips_opts.micromips)
12351 goto do_subi;
b0e6f033 12352 if (imm_expr.X_add_number > -0x200
df58fc94 12353 && imm_expr.X_add_number <= 0x200)
252b5132 12354 {
b0e6f033
RS
12355 macro_build (NULL, s, "t,r,.", op[0], op[1],
12356 (int) -imm_expr.X_add_number);
8fc2e39e 12357 break;
252b5132 12358 }
df58fc94 12359 goto do_subi_i;
252b5132
RH
12360 case M_DSUBU_I:
12361 dbl = 1;
df58fc94
RS
12362 s = "daddiu";
12363 s2 = "dsubu";
12364 do_subi:
b0e6f033 12365 if (imm_expr.X_add_number > -0x8000
252b5132
RH
12366 && imm_expr.X_add_number <= 0x8000)
12367 {
12368 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 12369 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 12370 break;
252b5132 12371 }
df58fc94 12372 do_subi_i:
8fc2e39e 12373 used_at = 1;
67c0d1eb 12374 load_register (AT, &imm_expr, dbl);
c0ebe874 12375 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
12376 break;
12377
12378 case M_TEQ_I:
12379 s = "teq";
12380 goto trap;
12381 case M_TGE_I:
12382 s = "tge";
12383 goto trap;
12384 case M_TGEU_I:
12385 s = "tgeu";
12386 goto trap;
12387 case M_TLT_I:
12388 s = "tlt";
12389 goto trap;
12390 case M_TLTU_I:
12391 s = "tltu";
12392 goto trap;
12393 case M_TNE_I:
12394 s = "tne";
12395 trap:
8fc2e39e 12396 used_at = 1;
67c0d1eb 12397 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
c0ebe874 12398 macro_build (NULL, s, "s,t", op[0], AT);
252b5132
RH
12399 break;
12400
252b5132 12401 case M_TRUNCWS:
43841e91 12402 case M_TRUNCWD:
df58fc94 12403 gas_assert (!mips_opts.micromips);
0aa27725 12404 gas_assert (mips_opts.isa == ISA_MIPS1);
8fc2e39e 12405 used_at = 1;
252b5132
RH
12406
12407 /*
12408 * Is the double cfc1 instruction a bug in the mips assembler;
12409 * or is there a reason for it?
12410 */
7d10b47d 12411 start_noreorder ();
c0ebe874
RS
12412 macro_build (NULL, "cfc1", "t,G", op[2], RA);
12413 macro_build (NULL, "cfc1", "t,G", op[2], RA);
67c0d1eb 12414 macro_build (NULL, "nop", "");
252b5132 12415 expr1.X_add_number = 3;
c0ebe874 12416 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
252b5132 12417 expr1.X_add_number = 2;
67c0d1eb
RS
12418 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
12419 macro_build (NULL, "ctc1", "t,G", AT, RA);
12420 macro_build (NULL, "nop", "");
12421 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
c0ebe874
RS
12422 op[0], op[1]);
12423 macro_build (NULL, "ctc1", "t,G", op[2], RA);
67c0d1eb 12424 macro_build (NULL, "nop", "");
7d10b47d 12425 end_noreorder ();
252b5132
RH
12426 break;
12427
f2ae14a1 12428 case M_ULH_AB:
252b5132 12429 s = "lb";
df58fc94
RS
12430 s2 = "lbu";
12431 off = 1;
12432 goto uld_st;
f2ae14a1 12433 case M_ULHU_AB:
252b5132 12434 s = "lbu";
df58fc94
RS
12435 s2 = "lbu";
12436 off = 1;
12437 goto uld_st;
f2ae14a1 12438 case M_ULW_AB:
df58fc94
RS
12439 s = "lwl";
12440 s2 = "lwr";
7f3c4072 12441 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
12442 off = 3;
12443 goto uld_st;
f2ae14a1 12444 case M_ULD_AB:
252b5132
RH
12445 s = "ldl";
12446 s2 = "ldr";
7f3c4072 12447 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 12448 off = 7;
df58fc94 12449 goto uld_st;
f2ae14a1 12450 case M_USH_AB:
df58fc94
RS
12451 s = "sb";
12452 s2 = "sb";
12453 off = 1;
12454 ust = 1;
12455 goto uld_st;
f2ae14a1 12456 case M_USW_AB:
df58fc94
RS
12457 s = "swl";
12458 s2 = "swr";
7f3c4072 12459 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 12460 off = 3;
df58fc94
RS
12461 ust = 1;
12462 goto uld_st;
f2ae14a1 12463 case M_USD_AB:
df58fc94
RS
12464 s = "sdl";
12465 s2 = "sdr";
7f3c4072 12466 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
12467 off = 7;
12468 ust = 1;
12469
12470 uld_st:
c0ebe874 12471 breg = op[2];
f2ae14a1 12472 large_offset = !small_offset_p (off, align, offbits);
df58fc94
RS
12473 ep = &offset_expr;
12474 expr1.X_add_number = 0;
f2ae14a1 12475 if (large_offset)
df58fc94
RS
12476 {
12477 used_at = 1;
12478 tempreg = AT;
f2ae14a1
RS
12479 if (small_offset_p (0, align, 16))
12480 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
12481 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
12482 else
12483 {
12484 load_address (tempreg, ep, &used_at);
12485 if (breg != 0)
12486 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12487 tempreg, tempreg, breg);
12488 }
12489 offset_reloc[0] = BFD_RELOC_LO16;
12490 offset_reloc[1] = BFD_RELOC_UNUSED;
12491 offset_reloc[2] = BFD_RELOC_UNUSED;
df58fc94 12492 breg = tempreg;
c0ebe874 12493 tempreg = op[0];
df58fc94
RS
12494 ep = &expr1;
12495 }
c0ebe874 12496 else if (!ust && op[0] == breg)
8fc2e39e
TS
12497 {
12498 used_at = 1;
12499 tempreg = AT;
12500 }
252b5132 12501 else
c0ebe874 12502 tempreg = op[0];
af22f5b2 12503
df58fc94
RS
12504 if (off == 1)
12505 goto ulh_sh;
252b5132 12506
90ecf173 12507 if (!target_big_endian)
df58fc94 12508 ep->X_add_number += off;
f2ae14a1 12509 if (offbits == 12)
c8276761 12510 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
12511 else
12512 macro_build (ep, s, "t,o(b)", tempreg, -1,
12513 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94 12514
90ecf173 12515 if (!target_big_endian)
df58fc94 12516 ep->X_add_number -= off;
252b5132 12517 else
df58fc94 12518 ep->X_add_number += off;
f2ae14a1 12519 if (offbits == 12)
df58fc94 12520 macro_build (NULL, s2, "t,~(b)",
c8276761 12521 tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
12522 else
12523 macro_build (ep, s2, "t,o(b)", tempreg, -1,
12524 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 12525
df58fc94 12526 /* If necessary, move the result in tempreg to the final destination. */
c0ebe874 12527 if (!ust && op[0] != tempreg)
df58fc94
RS
12528 {
12529 /* Protect second load's delay slot. */
12530 load_delay_nop ();
c0ebe874 12531 move_register (op[0], tempreg);
df58fc94 12532 }
8fc2e39e 12533 break;
252b5132 12534
df58fc94 12535 ulh_sh:
d6bc6245 12536 used_at = 1;
df58fc94
RS
12537 if (target_big_endian == ust)
12538 ep->X_add_number += off;
c0ebe874 12539 tempreg = ust || large_offset ? op[0] : AT;
f2ae14a1
RS
12540 macro_build (ep, s, "t,o(b)", tempreg, -1,
12541 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94
RS
12542
12543 /* For halfword transfers we need a temporary register to shuffle
12544 bytes. Unfortunately for M_USH_A we have none available before
12545 the next store as AT holds the base address. We deal with this
12546 case by clobbering TREG and then restoring it as with ULH. */
c0ebe874 12547 tempreg = ust == large_offset ? op[0] : AT;
df58fc94 12548 if (ust)
c0ebe874 12549 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
df58fc94
RS
12550
12551 if (target_big_endian == ust)
12552 ep->X_add_number -= off;
252b5132 12553 else
df58fc94 12554 ep->X_add_number += off;
f2ae14a1
RS
12555 macro_build (ep, s2, "t,o(b)", tempreg, -1,
12556 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 12557
df58fc94 12558 /* For M_USH_A re-retrieve the LSB. */
f2ae14a1 12559 if (ust && large_offset)
df58fc94
RS
12560 {
12561 if (target_big_endian)
12562 ep->X_add_number += off;
12563 else
12564 ep->X_add_number -= off;
f2ae14a1
RS
12565 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
12566 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
df58fc94
RS
12567 }
12568 /* For ULH and M_USH_A OR the LSB in. */
f2ae14a1 12569 if (!ust || large_offset)
df58fc94 12570 {
c0ebe874 12571 tempreg = !large_offset ? AT : op[0];
df58fc94 12572 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
c0ebe874 12573 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
df58fc94 12574 }
252b5132
RH
12575 break;
12576
12577 default:
12578 /* FIXME: Check if this is one of the itbl macros, since they
bdaaa2e1 12579 are added dynamically. */
252b5132
RH
12580 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
12581 break;
12582 }
741fe287 12583 if (!mips_opts.at && used_at)
8fc2e39e 12584 as_bad (_("Macro used $at after \".set noat\""));
252b5132
RH
12585}
12586
12587/* Implement macros in mips16 mode. */
12588
12589static void
17a2f251 12590mips16_macro (struct mips_cl_insn *ip)
252b5132 12591{
c0ebe874 12592 const struct mips_operand_array *operands;
252b5132 12593 int mask;
c0ebe874 12594 int tmp;
252b5132
RH
12595 expressionS expr1;
12596 int dbl;
12597 const char *s, *s2, *s3;
c0ebe874
RS
12598 unsigned int op[MAX_OPERANDS];
12599 unsigned int i;
252b5132
RH
12600
12601 mask = ip->insn_mo->mask;
12602
c0ebe874
RS
12603 operands = insn_operands (ip);
12604 for (i = 0; i < MAX_OPERANDS; i++)
12605 if (operands->operand[i])
12606 op[i] = insn_extract_operand (ip, operands->operand[i]);
12607 else
12608 op[i] = -1;
252b5132 12609
252b5132
RH
12610 expr1.X_op = O_constant;
12611 expr1.X_op_symbol = NULL;
12612 expr1.X_add_symbol = NULL;
12613 expr1.X_add_number = 1;
12614
12615 dbl = 0;
12616
12617 switch (mask)
12618 {
12619 default:
b37df7c4 12620 abort ();
252b5132
RH
12621
12622 case M_DDIV_3:
12623 dbl = 1;
12624 case M_DIV_3:
12625 s = "mflo";
12626 goto do_div3;
12627 case M_DREM_3:
12628 dbl = 1;
12629 case M_REM_3:
12630 s = "mfhi";
12631 do_div3:
7d10b47d 12632 start_noreorder ();
c0ebe874 12633 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
252b5132 12634 expr1.X_add_number = 2;
c0ebe874 12635 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 12636 macro_build (NULL, "break", "6", 7);
bdaaa2e1 12637
252b5132
RH
12638 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
12639 since that causes an overflow. We should do that as well,
12640 but I don't see how to do the comparisons without a temporary
12641 register. */
7d10b47d 12642 end_noreorder ();
c0ebe874 12643 macro_build (NULL, s, "x", op[0]);
252b5132
RH
12644 break;
12645
12646 case M_DIVU_3:
12647 s = "divu";
12648 s2 = "mflo";
12649 goto do_divu3;
12650 case M_REMU_3:
12651 s = "divu";
12652 s2 = "mfhi";
12653 goto do_divu3;
12654 case M_DDIVU_3:
12655 s = "ddivu";
12656 s2 = "mflo";
12657 goto do_divu3;
12658 case M_DREMU_3:
12659 s = "ddivu";
12660 s2 = "mfhi";
12661 do_divu3:
7d10b47d 12662 start_noreorder ();
c0ebe874 12663 macro_build (NULL, s, "0,x,y", op[1], op[2]);
252b5132 12664 expr1.X_add_number = 2;
c0ebe874 12665 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 12666 macro_build (NULL, "break", "6", 7);
7d10b47d 12667 end_noreorder ();
c0ebe874 12668 macro_build (NULL, s2, "x", op[0]);
252b5132
RH
12669 break;
12670
12671 case M_DMUL:
12672 dbl = 1;
12673 case M_MUL:
c0ebe874
RS
12674 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
12675 macro_build (NULL, "mflo", "x", op[0]);
8fc2e39e 12676 break;
252b5132
RH
12677
12678 case M_DSUBU_I:
12679 dbl = 1;
12680 goto do_subu;
12681 case M_SUBU_I:
12682 do_subu:
252b5132 12683 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 12684 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
252b5132
RH
12685 break;
12686
12687 case M_SUBU_I_2:
252b5132 12688 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 12689 macro_build (&imm_expr, "addiu", "x,k", op[0]);
252b5132
RH
12690 break;
12691
12692 case M_DSUBU_I_2:
252b5132 12693 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 12694 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
252b5132
RH
12695 break;
12696
12697 case M_BEQ:
12698 s = "cmp";
12699 s2 = "bteqz";
12700 goto do_branch;
12701 case M_BNE:
12702 s = "cmp";
12703 s2 = "btnez";
12704 goto do_branch;
12705 case M_BLT:
12706 s = "slt";
12707 s2 = "btnez";
12708 goto do_branch;
12709 case M_BLTU:
12710 s = "sltu";
12711 s2 = "btnez";
12712 goto do_branch;
12713 case M_BLE:
12714 s = "slt";
12715 s2 = "bteqz";
12716 goto do_reverse_branch;
12717 case M_BLEU:
12718 s = "sltu";
12719 s2 = "bteqz";
12720 goto do_reverse_branch;
12721 case M_BGE:
12722 s = "slt";
12723 s2 = "bteqz";
12724 goto do_branch;
12725 case M_BGEU:
12726 s = "sltu";
12727 s2 = "bteqz";
12728 goto do_branch;
12729 case M_BGT:
12730 s = "slt";
12731 s2 = "btnez";
12732 goto do_reverse_branch;
12733 case M_BGTU:
12734 s = "sltu";
12735 s2 = "btnez";
12736
12737 do_reverse_branch:
c0ebe874
RS
12738 tmp = op[1];
12739 op[1] = op[0];
12740 op[0] = tmp;
252b5132
RH
12741
12742 do_branch:
c0ebe874 12743 macro_build (NULL, s, "x,y", op[0], op[1]);
67c0d1eb 12744 macro_build (&offset_expr, s2, "p");
252b5132
RH
12745 break;
12746
12747 case M_BEQ_I:
12748 s = "cmpi";
12749 s2 = "bteqz";
12750 s3 = "x,U";
12751 goto do_branch_i;
12752 case M_BNE_I:
12753 s = "cmpi";
12754 s2 = "btnez";
12755 s3 = "x,U";
12756 goto do_branch_i;
12757 case M_BLT_I:
12758 s = "slti";
12759 s2 = "btnez";
12760 s3 = "x,8";
12761 goto do_branch_i;
12762 case M_BLTU_I:
12763 s = "sltiu";
12764 s2 = "btnez";
12765 s3 = "x,8";
12766 goto do_branch_i;
12767 case M_BLE_I:
12768 s = "slti";
12769 s2 = "btnez";
12770 s3 = "x,8";
12771 goto do_addone_branch_i;
12772 case M_BLEU_I:
12773 s = "sltiu";
12774 s2 = "btnez";
12775 s3 = "x,8";
12776 goto do_addone_branch_i;
12777 case M_BGE_I:
12778 s = "slti";
12779 s2 = "bteqz";
12780 s3 = "x,8";
12781 goto do_branch_i;
12782 case M_BGEU_I:
12783 s = "sltiu";
12784 s2 = "bteqz";
12785 s3 = "x,8";
12786 goto do_branch_i;
12787 case M_BGT_I:
12788 s = "slti";
12789 s2 = "bteqz";
12790 s3 = "x,8";
12791 goto do_addone_branch_i;
12792 case M_BGTU_I:
12793 s = "sltiu";
12794 s2 = "bteqz";
12795 s3 = "x,8";
12796
12797 do_addone_branch_i:
252b5132
RH
12798 ++imm_expr.X_add_number;
12799
12800 do_branch_i:
c0ebe874 12801 macro_build (&imm_expr, s, s3, op[0]);
67c0d1eb 12802 macro_build (&offset_expr, s2, "p");
252b5132
RH
12803 break;
12804
12805 case M_ABS:
12806 expr1.X_add_number = 0;
c0ebe874
RS
12807 macro_build (&expr1, "slti", "x,8", op[1]);
12808 if (op[0] != op[1])
12809 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
252b5132 12810 expr1.X_add_number = 2;
67c0d1eb 12811 macro_build (&expr1, "bteqz", "p");
c0ebe874 12812 macro_build (NULL, "neg", "x,w", op[0], op[0]);
0acfaea6 12813 break;
252b5132
RH
12814 }
12815}
12816
14daeee3
RS
12817/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
12818 opcode bits in *OPCODE_EXTRA. */
12819
12820static struct mips_opcode *
12821mips_lookup_insn (struct hash_control *hash, const char *start,
da8bca91 12822 ssize_t length, unsigned int *opcode_extra)
14daeee3
RS
12823{
12824 char *name, *dot, *p;
12825 unsigned int mask, suffix;
da8bca91 12826 ssize_t opend;
14daeee3
RS
12827 struct mips_opcode *insn;
12828
12829 /* Make a copy of the instruction so that we can fiddle with it. */
12830 name = alloca (length + 1);
12831 memcpy (name, start, length);
12832 name[length] = '\0';
12833
12834 /* Look up the instruction as-is. */
12835 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 12836 if (insn)
14daeee3
RS
12837 return insn;
12838
12839 dot = strchr (name, '.');
12840 if (dot && dot[1])
12841 {
12842 /* Try to interpret the text after the dot as a VU0 channel suffix. */
12843 p = mips_parse_vu0_channels (dot + 1, &mask);
12844 if (*p == 0 && mask != 0)
12845 {
12846 *dot = 0;
12847 insn = (struct mips_opcode *) hash_find (hash, name);
12848 *dot = '.';
12849 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
12850 {
12851 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
12852 return insn;
12853 }
12854 }
12855 }
12856
12857 if (mips_opts.micromips)
12858 {
12859 /* See if there's an instruction size override suffix,
12860 either `16' or `32', at the end of the mnemonic proper,
12861 that defines the operation, i.e. before the first `.'
12862 character if any. Strip it and retry. */
12863 opend = dot != NULL ? dot - name : length;
12864 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
12865 suffix = 2;
12866 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
12867 suffix = 4;
12868 else
12869 suffix = 0;
12870 if (suffix)
12871 {
12872 memcpy (name + opend - 2, name + opend, length - opend + 1);
12873 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 12874 if (insn)
14daeee3
RS
12875 {
12876 forced_insn_length = suffix;
12877 return insn;
12878 }
12879 }
12880 }
12881
12882 return NULL;
12883}
12884
77bd4346 12885/* Assemble an instruction into its binary format. If the instruction
e423441d
RS
12886 is a macro, set imm_expr and offset_expr to the values associated
12887 with "I" and "A" operands respectively. Otherwise store the value
12888 of the relocatable field (if any) in offset_expr. In both cases
12889 set offset_reloc to the relocation operators applied to offset_expr. */
252b5132
RH
12890
12891static void
60f20e8b 12892mips_ip (char *str, struct mips_cl_insn *insn)
252b5132 12893{
60f20e8b 12894 const struct mips_opcode *first, *past;
df58fc94 12895 struct hash_control *hash;
a92713e6 12896 char format;
14daeee3 12897 size_t end;
a92713e6 12898 struct mips_operand_token *tokens;
14daeee3 12899 unsigned int opcode_extra;
252b5132 12900
df58fc94
RS
12901 if (mips_opts.micromips)
12902 {
12903 hash = micromips_op_hash;
12904 past = &micromips_opcodes[bfd_micromips_num_opcodes];
12905 }
12906 else
12907 {
12908 hash = op_hash;
12909 past = &mips_opcodes[NUMOPCODES];
12910 }
12911 forced_insn_length = 0;
14daeee3 12912 opcode_extra = 0;
252b5132 12913
df58fc94 12914 /* We first try to match an instruction up to a space or to the end. */
a40bc9dd
RS
12915 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
12916 continue;
bdaaa2e1 12917
60f20e8b
RS
12918 first = mips_lookup_insn (hash, str, end, &opcode_extra);
12919 if (first == NULL)
252b5132 12920 {
e3de51ce 12921 set_insn_error (0, _("Unrecognized opcode"));
a40bc9dd 12922 return;
252b5132
RH
12923 }
12924
60f20e8b 12925 if (strcmp (first->name, "li.s") == 0)
a92713e6 12926 format = 'f';
60f20e8b 12927 else if (strcmp (first->name, "li.d") == 0)
a92713e6
RS
12928 format = 'd';
12929 else
12930 format = 0;
12931 tokens = mips_parse_arguments (str + end, format);
12932 if (!tokens)
12933 return;
12934
60f20e8b
RS
12935 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
12936 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
12937 set_insn_error (0, _("Illegal operands"));
df58fc94 12938
e3de51ce 12939 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
12940}
12941
77bd4346
RS
12942/* As for mips_ip, but used when assembling MIPS16 code.
12943 Also set forced_insn_length to the resulting instruction size in
12944 bytes if the user explicitly requested a small or extended instruction. */
252b5132
RH
12945
12946static void
60f20e8b 12947mips16_ip (char *str, struct mips_cl_insn *insn)
252b5132 12948{
1a00e612 12949 char *end, *s, c;
60f20e8b 12950 struct mips_opcode *first;
a92713e6 12951 struct mips_operand_token *tokens;
252b5132 12952
df58fc94 12953 forced_insn_length = 0;
252b5132 12954
3882b010 12955 for (s = str; ISLOWER (*s); ++s)
252b5132 12956 ;
1a00e612
RS
12957 end = s;
12958 c = *end;
12959 switch (c)
252b5132
RH
12960 {
12961 case '\0':
12962 break;
12963
12964 case ' ':
1a00e612 12965 s++;
252b5132
RH
12966 break;
12967
12968 case '.':
12969 if (s[1] == 't' && s[2] == ' ')
12970 {
df58fc94 12971 forced_insn_length = 2;
252b5132
RH
12972 s += 3;
12973 break;
12974 }
12975 else if (s[1] == 'e' && s[2] == ' ')
12976 {
df58fc94 12977 forced_insn_length = 4;
252b5132
RH
12978 s += 3;
12979 break;
12980 }
12981 /* Fall through. */
12982 default:
e3de51ce 12983 set_insn_error (0, _("Unrecognized opcode"));
252b5132
RH
12984 return;
12985 }
12986
df58fc94
RS
12987 if (mips_opts.noautoextend && !forced_insn_length)
12988 forced_insn_length = 2;
252b5132 12989
1a00e612 12990 *end = 0;
60f20e8b 12991 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
1a00e612
RS
12992 *end = c;
12993
60f20e8b 12994 if (!first)
252b5132 12995 {
e3de51ce 12996 set_insn_error (0, _("Unrecognized opcode"));
252b5132
RH
12997 return;
12998 }
12999
a92713e6
RS
13000 tokens = mips_parse_arguments (s, 0);
13001 if (!tokens)
13002 return;
13003
60f20e8b
RS
13004 if (!match_mips16_insns (insn, first, tokens))
13005 set_insn_error (0, _("Illegal operands"));
252b5132 13006
e3de51ce 13007 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13008}
13009
b886a2ab
RS
13010/* Marshal immediate value VAL for an extended MIPS16 instruction.
13011 NBITS is the number of significant bits in VAL. */
13012
13013static unsigned long
13014mips16_immed_extend (offsetT val, unsigned int nbits)
13015{
13016 int extval;
13017 if (nbits == 16)
13018 {
13019 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13020 val &= 0x1f;
13021 }
13022 else if (nbits == 15)
13023 {
13024 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13025 val &= 0xf;
13026 }
13027 else
13028 {
13029 extval = ((val & 0x1f) << 6) | (val & 0x20);
13030 val = 0;
13031 }
13032 return (extval << 16) | val;
13033}
13034
3ccad066
RS
13035/* Like decode_mips16_operand, but require the operand to be defined and
13036 require it to be an integer. */
13037
13038static const struct mips_int_operand *
13039mips16_immed_operand (int type, bfd_boolean extended_p)
13040{
13041 const struct mips_operand *operand;
13042
13043 operand = decode_mips16_operand (type, extended_p);
13044 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13045 abort ();
13046 return (const struct mips_int_operand *) operand;
13047}
13048
13049/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13050
13051static bfd_boolean
13052mips16_immed_in_range_p (const struct mips_int_operand *operand,
13053 bfd_reloc_code_real_type reloc, offsetT sval)
13054{
13055 int min_val, max_val;
13056
13057 min_val = mips_int_operand_min (operand);
13058 max_val = mips_int_operand_max (operand);
13059 if (reloc != BFD_RELOC_UNUSED)
13060 {
13061 if (min_val < 0)
13062 sval = SEXT_16BIT (sval);
13063 else
13064 sval &= 0xffff;
13065 }
13066
13067 return (sval >= min_val
13068 && sval <= max_val
13069 && (sval & ((1 << operand->shift) - 1)) == 0);
13070}
13071
5c04167a
RS
13072/* Install immediate value VAL into MIPS16 instruction *INSN,
13073 extending it if necessary. The instruction in *INSN may
13074 already be extended.
13075
43c0598f
RS
13076 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13077 if none. In the former case, VAL is a 16-bit number with no
13078 defined signedness.
13079
13080 TYPE is the type of the immediate field. USER_INSN_LENGTH
13081 is the length that the user requested, or 0 if none. */
252b5132
RH
13082
13083static void
43c0598f
RS
13084mips16_immed (char *file, unsigned int line, int type,
13085 bfd_reloc_code_real_type reloc, offsetT val,
5c04167a 13086 unsigned int user_insn_length, unsigned long *insn)
252b5132 13087{
3ccad066
RS
13088 const struct mips_int_operand *operand;
13089 unsigned int uval, length;
252b5132 13090
3ccad066
RS
13091 operand = mips16_immed_operand (type, FALSE);
13092 if (!mips16_immed_in_range_p (operand, reloc, val))
5c04167a
RS
13093 {
13094 /* We need an extended instruction. */
13095 if (user_insn_length == 2)
13096 as_bad_where (file, line, _("invalid unextended operand value"));
13097 else
13098 *insn |= MIPS16_EXTEND;
13099 }
13100 else if (user_insn_length == 4)
13101 {
13102 /* The operand doesn't force an unextended instruction to be extended.
13103 Warn if the user wanted an extended instruction anyway. */
13104 *insn |= MIPS16_EXTEND;
13105 as_warn_where (file, line,
13106 _("extended operand requested but not required"));
13107 }
252b5132 13108
3ccad066
RS
13109 length = mips16_opcode_length (*insn);
13110 if (length == 4)
252b5132 13111 {
3ccad066
RS
13112 operand = mips16_immed_operand (type, TRUE);
13113 if (!mips16_immed_in_range_p (operand, reloc, val))
13114 as_bad_where (file, line,
13115 _("operand value out of range for instruction"));
252b5132 13116 }
3ccad066
RS
13117 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13118 if (length == 2)
13119 *insn = mips_insert_operand (&operand->root, *insn, uval);
252b5132 13120 else
3ccad066 13121 *insn |= mips16_immed_extend (uval, operand->root.size);
252b5132
RH
13122}
13123\f
d6f16593 13124struct percent_op_match
ad8d3bb3 13125{
5e0116d5
RS
13126 const char *str;
13127 bfd_reloc_code_real_type reloc;
d6f16593
MR
13128};
13129
13130static const struct percent_op_match mips_percent_op[] =
ad8d3bb3 13131{
5e0116d5 13132 {"%lo", BFD_RELOC_LO16},
5e0116d5
RS
13133 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13134 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13135 {"%call16", BFD_RELOC_MIPS_CALL16},
13136 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13137 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13138 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13139 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13140 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13141 {"%got", BFD_RELOC_MIPS_GOT16},
13142 {"%gp_rel", BFD_RELOC_GPREL16},
13143 {"%half", BFD_RELOC_16},
13144 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13145 {"%higher", BFD_RELOC_MIPS_HIGHER},
13146 {"%neg", BFD_RELOC_MIPS_SUB},
3f98094e
DJ
13147 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13148 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13149 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13150 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13151 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13152 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13153 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
5e0116d5 13154 {"%hi", BFD_RELOC_HI16_S}
ad8d3bb3
TS
13155};
13156
d6f16593
MR
13157static const struct percent_op_match mips16_percent_op[] =
13158{
13159 {"%lo", BFD_RELOC_MIPS16_LO16},
13160 {"%gprel", BFD_RELOC_MIPS16_GPREL},
738e5348
RS
13161 {"%got", BFD_RELOC_MIPS16_GOT16},
13162 {"%call16", BFD_RELOC_MIPS16_CALL16},
d0f13682
CLT
13163 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13164 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13165 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13166 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13167 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13168 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13169 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13170 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
d6f16593
MR
13171};
13172
252b5132 13173
5e0116d5
RS
13174/* Return true if *STR points to a relocation operator. When returning true,
13175 move *STR over the operator and store its relocation code in *RELOC.
13176 Leave both *STR and *RELOC alone when returning false. */
13177
13178static bfd_boolean
17a2f251 13179parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
252b5132 13180{
d6f16593
MR
13181 const struct percent_op_match *percent_op;
13182 size_t limit, i;
13183
13184 if (mips_opts.mips16)
13185 {
13186 percent_op = mips16_percent_op;
13187 limit = ARRAY_SIZE (mips16_percent_op);
13188 }
13189 else
13190 {
13191 percent_op = mips_percent_op;
13192 limit = ARRAY_SIZE (mips_percent_op);
13193 }
76b3015f 13194
d6f16593 13195 for (i = 0; i < limit; i++)
5e0116d5 13196 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
394f9b3a 13197 {
3f98094e
DJ
13198 int len = strlen (percent_op[i].str);
13199
13200 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13201 continue;
13202
5e0116d5
RS
13203 *str += strlen (percent_op[i].str);
13204 *reloc = percent_op[i].reloc;
394f9b3a 13205
5e0116d5
RS
13206 /* Check whether the output BFD supports this relocation.
13207 If not, issue an error and fall back on something safe. */
13208 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
394f9b3a 13209 {
20203fb9 13210 as_bad (_("relocation %s isn't supported by the current ABI"),
5e0116d5 13211 percent_op[i].str);
01a3f561 13212 *reloc = BFD_RELOC_UNUSED;
394f9b3a 13213 }
5e0116d5 13214 return TRUE;
394f9b3a 13215 }
5e0116d5 13216 return FALSE;
394f9b3a 13217}
ad8d3bb3 13218
ad8d3bb3 13219
5e0116d5
RS
13220/* Parse string STR as a 16-bit relocatable operand. Store the
13221 expression in *EP and the relocations in the array starting
13222 at RELOC. Return the number of relocation operators used.
ad8d3bb3 13223
01a3f561 13224 On exit, EXPR_END points to the first character after the expression. */
ad8d3bb3 13225
5e0116d5 13226static size_t
17a2f251
TS
13227my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13228 char *str)
ad8d3bb3 13229{
5e0116d5
RS
13230 bfd_reloc_code_real_type reversed_reloc[3];
13231 size_t reloc_index, i;
09b8f35a
RS
13232 int crux_depth, str_depth;
13233 char *crux;
5e0116d5
RS
13234
13235 /* Search for the start of the main expression, recoding relocations
09b8f35a
RS
13236 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13237 of the main expression and with CRUX_DEPTH containing the number
13238 of open brackets at that point. */
13239 reloc_index = -1;
13240 str_depth = 0;
13241 do
fb1b3232 13242 {
09b8f35a
RS
13243 reloc_index++;
13244 crux = str;
13245 crux_depth = str_depth;
13246
13247 /* Skip over whitespace and brackets, keeping count of the number
13248 of brackets. */
13249 while (*str == ' ' || *str == '\t' || *str == '(')
13250 if (*str++ == '(')
13251 str_depth++;
5e0116d5 13252 }
09b8f35a
RS
13253 while (*str == '%'
13254 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13255 && parse_relocation (&str, &reversed_reloc[reloc_index]));
ad8d3bb3 13256
09b8f35a 13257 my_getExpression (ep, crux);
5e0116d5 13258 str = expr_end;
394f9b3a 13259
5e0116d5 13260 /* Match every open bracket. */
09b8f35a 13261 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
5e0116d5 13262 if (*str++ == ')')
09b8f35a 13263 crux_depth--;
394f9b3a 13264
09b8f35a 13265 if (crux_depth > 0)
20203fb9 13266 as_bad (_("unclosed '('"));
394f9b3a 13267
5e0116d5 13268 expr_end = str;
252b5132 13269
01a3f561 13270 if (reloc_index != 0)
64bdfcaf
RS
13271 {
13272 prev_reloc_op_frag = frag_now;
13273 for (i = 0; i < reloc_index; i++)
13274 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13275 }
fb1b3232 13276
5e0116d5 13277 return reloc_index;
252b5132
RH
13278}
13279
13280static void
17a2f251 13281my_getExpression (expressionS *ep, char *str)
252b5132
RH
13282{
13283 char *save_in;
13284
13285 save_in = input_line_pointer;
13286 input_line_pointer = str;
13287 expression (ep);
13288 expr_end = input_line_pointer;
13289 input_line_pointer = save_in;
252b5132
RH
13290}
13291
252b5132 13292char *
17a2f251 13293md_atof (int type, char *litP, int *sizeP)
252b5132 13294{
499ac353 13295 return ieee_md_atof (type, litP, sizeP, target_big_endian);
252b5132
RH
13296}
13297
13298void
17a2f251 13299md_number_to_chars (char *buf, valueT val, int n)
252b5132
RH
13300{
13301 if (target_big_endian)
13302 number_to_chars_bigendian (buf, val, n);
13303 else
13304 number_to_chars_littleendian (buf, val, n);
13305}
13306\f
e013f690
TS
13307static int support_64bit_objects(void)
13308{
13309 const char **list, **l;
aa3d8fdf 13310 int yes;
e013f690
TS
13311
13312 list = bfd_target_list ();
13313 for (l = list; *l != NULL; l++)
aeffff67
RS
13314 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
13315 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
e013f690 13316 break;
aa3d8fdf 13317 yes = (*l != NULL);
e013f690 13318 free (list);
aa3d8fdf 13319 return yes;
e013f690
TS
13320}
13321
316f5878
RS
13322/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
13323 NEW_VALUE. Warn if another value was already specified. Note:
13324 we have to defer parsing the -march and -mtune arguments in order
13325 to handle 'from-abi' correctly, since the ABI might be specified
13326 in a later argument. */
13327
13328static void
17a2f251 13329mips_set_option_string (const char **string_ptr, const char *new_value)
316f5878
RS
13330{
13331 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
13332 as_warn (_("A different %s was already specified, is now %s"),
13333 string_ptr == &mips_arch_string ? "-march" : "-mtune",
13334 new_value);
13335
13336 *string_ptr = new_value;
13337}
13338
252b5132 13339int
17a2f251 13340md_parse_option (int c, char *arg)
252b5132 13341{
c6278170
RS
13342 unsigned int i;
13343
13344 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
13345 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
13346 {
13347 file_ase_explicit |= mips_set_ase (&mips_ases[i],
13348 c == mips_ases[i].option_on);
13349 return 1;
13350 }
13351
252b5132
RH
13352 switch (c)
13353 {
119d663a
NC
13354 case OPTION_CONSTRUCT_FLOATS:
13355 mips_disable_float_construction = 0;
13356 break;
bdaaa2e1 13357
119d663a
NC
13358 case OPTION_NO_CONSTRUCT_FLOATS:
13359 mips_disable_float_construction = 1;
13360 break;
bdaaa2e1 13361
252b5132
RH
13362 case OPTION_TRAP:
13363 mips_trap = 1;
13364 break;
13365
13366 case OPTION_BREAK:
13367 mips_trap = 0;
13368 break;
13369
13370 case OPTION_EB:
13371 target_big_endian = 1;
13372 break;
13373
13374 case OPTION_EL:
13375 target_big_endian = 0;
13376 break;
13377
13378 case 'O':
4ffff32f
TS
13379 if (arg == NULL)
13380 mips_optimize = 1;
13381 else if (arg[0] == '0')
13382 mips_optimize = 0;
13383 else if (arg[0] == '1')
252b5132
RH
13384 mips_optimize = 1;
13385 else
13386 mips_optimize = 2;
13387 break;
13388
13389 case 'g':
13390 if (arg == NULL)
13391 mips_debug = 2;
13392 else
13393 mips_debug = atoi (arg);
252b5132
RH
13394 break;
13395
13396 case OPTION_MIPS1:
316f5878 13397 file_mips_isa = ISA_MIPS1;
252b5132
RH
13398 break;
13399
13400 case OPTION_MIPS2:
316f5878 13401 file_mips_isa = ISA_MIPS2;
252b5132
RH
13402 break;
13403
13404 case OPTION_MIPS3:
316f5878 13405 file_mips_isa = ISA_MIPS3;
252b5132
RH
13406 break;
13407
13408 case OPTION_MIPS4:
316f5878 13409 file_mips_isa = ISA_MIPS4;
e7af610e
NC
13410 break;
13411
84ea6cf2 13412 case OPTION_MIPS5:
316f5878 13413 file_mips_isa = ISA_MIPS5;
84ea6cf2
NC
13414 break;
13415
e7af610e 13416 case OPTION_MIPS32:
316f5878 13417 file_mips_isa = ISA_MIPS32;
252b5132
RH
13418 break;
13419
af7ee8bf
CD
13420 case OPTION_MIPS32R2:
13421 file_mips_isa = ISA_MIPS32R2;
13422 break;
13423
5f74bc13
CD
13424 case OPTION_MIPS64R2:
13425 file_mips_isa = ISA_MIPS64R2;
13426 break;
13427
84ea6cf2 13428 case OPTION_MIPS64:
316f5878 13429 file_mips_isa = ISA_MIPS64;
84ea6cf2
NC
13430 break;
13431
ec68c924 13432 case OPTION_MTUNE:
316f5878
RS
13433 mips_set_option_string (&mips_tune_string, arg);
13434 break;
ec68c924 13435
316f5878
RS
13436 case OPTION_MARCH:
13437 mips_set_option_string (&mips_arch_string, arg);
252b5132
RH
13438 break;
13439
13440 case OPTION_M4650:
316f5878
RS
13441 mips_set_option_string (&mips_arch_string, "4650");
13442 mips_set_option_string (&mips_tune_string, "4650");
252b5132
RH
13443 break;
13444
13445 case OPTION_NO_M4650:
13446 break;
13447
13448 case OPTION_M4010:
316f5878
RS
13449 mips_set_option_string (&mips_arch_string, "4010");
13450 mips_set_option_string (&mips_tune_string, "4010");
252b5132
RH
13451 break;
13452
13453 case OPTION_NO_M4010:
13454 break;
13455
13456 case OPTION_M4100:
316f5878
RS
13457 mips_set_option_string (&mips_arch_string, "4100");
13458 mips_set_option_string (&mips_tune_string, "4100");
252b5132
RH
13459 break;
13460
13461 case OPTION_NO_M4100:
13462 break;
13463
252b5132 13464 case OPTION_M3900:
316f5878
RS
13465 mips_set_option_string (&mips_arch_string, "3900");
13466 mips_set_option_string (&mips_tune_string, "3900");
252b5132 13467 break;
bdaaa2e1 13468
252b5132
RH
13469 case OPTION_NO_M3900:
13470 break;
13471
df58fc94
RS
13472 case OPTION_MICROMIPS:
13473 if (mips_opts.mips16 == 1)
13474 {
13475 as_bad (_("-mmicromips cannot be used with -mips16"));
13476 return 0;
13477 }
13478 mips_opts.micromips = 1;
13479 mips_no_prev_insn ();
13480 break;
13481
13482 case OPTION_NO_MICROMIPS:
13483 mips_opts.micromips = 0;
13484 mips_no_prev_insn ();
13485 break;
13486
252b5132 13487 case OPTION_MIPS16:
df58fc94
RS
13488 if (mips_opts.micromips == 1)
13489 {
13490 as_bad (_("-mips16 cannot be used with -micromips"));
13491 return 0;
13492 }
252b5132 13493 mips_opts.mips16 = 1;
7d10b47d 13494 mips_no_prev_insn ();
252b5132
RH
13495 break;
13496
13497 case OPTION_NO_MIPS16:
13498 mips_opts.mips16 = 0;
7d10b47d 13499 mips_no_prev_insn ();
252b5132
RH
13500 break;
13501
6a32d874
CM
13502 case OPTION_FIX_24K:
13503 mips_fix_24k = 1;
13504 break;
13505
13506 case OPTION_NO_FIX_24K:
13507 mips_fix_24k = 0;
13508 break;
13509
c67a084a
NC
13510 case OPTION_FIX_LOONGSON2F_JUMP:
13511 mips_fix_loongson2f_jump = TRUE;
13512 break;
13513
13514 case OPTION_NO_FIX_LOONGSON2F_JUMP:
13515 mips_fix_loongson2f_jump = FALSE;
13516 break;
13517
13518 case OPTION_FIX_LOONGSON2F_NOP:
13519 mips_fix_loongson2f_nop = TRUE;
13520 break;
13521
13522 case OPTION_NO_FIX_LOONGSON2F_NOP:
13523 mips_fix_loongson2f_nop = FALSE;
13524 break;
13525
d766e8ec
RS
13526 case OPTION_FIX_VR4120:
13527 mips_fix_vr4120 = 1;
60b63b72
RS
13528 break;
13529
d766e8ec
RS
13530 case OPTION_NO_FIX_VR4120:
13531 mips_fix_vr4120 = 0;
60b63b72
RS
13532 break;
13533
7d8e00cf
RS
13534 case OPTION_FIX_VR4130:
13535 mips_fix_vr4130 = 1;
13536 break;
13537
13538 case OPTION_NO_FIX_VR4130:
13539 mips_fix_vr4130 = 0;
13540 break;
13541
d954098f
DD
13542 case OPTION_FIX_CN63XXP1:
13543 mips_fix_cn63xxp1 = TRUE;
13544 break;
13545
13546 case OPTION_NO_FIX_CN63XXP1:
13547 mips_fix_cn63xxp1 = FALSE;
13548 break;
13549
4a6a3df4
AO
13550 case OPTION_RELAX_BRANCH:
13551 mips_relax_branch = 1;
13552 break;
13553
13554 case OPTION_NO_RELAX_BRANCH:
13555 mips_relax_branch = 0;
13556 break;
13557
833794fc
MR
13558 case OPTION_INSN32:
13559 mips_opts.insn32 = TRUE;
13560 break;
13561
13562 case OPTION_NO_INSN32:
13563 mips_opts.insn32 = FALSE;
13564 break;
13565
aa6975fb
ILT
13566 case OPTION_MSHARED:
13567 mips_in_shared = TRUE;
13568 break;
13569
13570 case OPTION_MNO_SHARED:
13571 mips_in_shared = FALSE;
13572 break;
13573
aed1a261
RS
13574 case OPTION_MSYM32:
13575 mips_opts.sym32 = TRUE;
13576 break;
13577
13578 case OPTION_MNO_SYM32:
13579 mips_opts.sym32 = FALSE;
13580 break;
13581
252b5132
RH
13582 /* When generating ELF code, we permit -KPIC and -call_shared to
13583 select SVR4_PIC, and -non_shared to select no PIC. This is
13584 intended to be compatible with Irix 5. */
13585 case OPTION_CALL_SHARED:
252b5132 13586 mips_pic = SVR4_PIC;
143d77c5 13587 mips_abicalls = TRUE;
252b5132
RH
13588 break;
13589
861fb55a 13590 case OPTION_CALL_NONPIC:
861fb55a
DJ
13591 mips_pic = NO_PIC;
13592 mips_abicalls = TRUE;
13593 break;
13594
252b5132 13595 case OPTION_NON_SHARED:
252b5132 13596 mips_pic = NO_PIC;
143d77c5 13597 mips_abicalls = FALSE;
252b5132
RH
13598 break;
13599
44075ae2
TS
13600 /* The -xgot option tells the assembler to use 32 bit offsets
13601 when accessing the got in SVR4_PIC mode. It is for Irix
252b5132
RH
13602 compatibility. */
13603 case OPTION_XGOT:
13604 mips_big_got = 1;
13605 break;
13606
13607 case 'G':
6caf9ef4
TS
13608 g_switch_value = atoi (arg);
13609 g_switch_seen = 1;
252b5132
RH
13610 break;
13611
34ba82a8
TS
13612 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
13613 and -mabi=64. */
252b5132 13614 case OPTION_32:
f3ded42a 13615 mips_abi = O32_ABI;
252b5132
RH
13616 break;
13617
e013f690 13618 case OPTION_N32:
316f5878 13619 mips_abi = N32_ABI;
e013f690 13620 break;
252b5132 13621
e013f690 13622 case OPTION_64:
316f5878 13623 mips_abi = N64_ABI;
f43abd2b 13624 if (!support_64bit_objects())
e013f690 13625 as_fatal (_("No compiled in support for 64 bit object file format"));
252b5132
RH
13626 break;
13627
c97ef257 13628 case OPTION_GP32:
a325df1d 13629 file_mips_gp32 = 1;
c97ef257
AH
13630 break;
13631
13632 case OPTION_GP64:
a325df1d 13633 file_mips_gp32 = 0;
c97ef257 13634 break;
252b5132 13635
ca4e0257 13636 case OPTION_FP32:
a325df1d 13637 file_mips_fp32 = 1;
316f5878
RS
13638 break;
13639
13640 case OPTION_FP64:
13641 file_mips_fp32 = 0;
ca4e0257
RS
13642 break;
13643
037b32b9
AN
13644 case OPTION_SINGLE_FLOAT:
13645 file_mips_single_float = 1;
13646 break;
13647
13648 case OPTION_DOUBLE_FLOAT:
13649 file_mips_single_float = 0;
13650 break;
13651
13652 case OPTION_SOFT_FLOAT:
13653 file_mips_soft_float = 1;
13654 break;
13655
13656 case OPTION_HARD_FLOAT:
13657 file_mips_soft_float = 0;
13658 break;
13659
252b5132 13660 case OPTION_MABI:
e013f690 13661 if (strcmp (arg, "32") == 0)
316f5878 13662 mips_abi = O32_ABI;
e013f690 13663 else if (strcmp (arg, "o64") == 0)
316f5878 13664 mips_abi = O64_ABI;
e013f690 13665 else if (strcmp (arg, "n32") == 0)
316f5878 13666 mips_abi = N32_ABI;
e013f690
TS
13667 else if (strcmp (arg, "64") == 0)
13668 {
316f5878 13669 mips_abi = N64_ABI;
e013f690
TS
13670 if (! support_64bit_objects())
13671 as_fatal (_("No compiled in support for 64 bit object file "
13672 "format"));
13673 }
13674 else if (strcmp (arg, "eabi") == 0)
316f5878 13675 mips_abi = EABI_ABI;
e013f690 13676 else
da0e507f
TS
13677 {
13678 as_fatal (_("invalid abi -mabi=%s"), arg);
13679 return 0;
13680 }
252b5132
RH
13681 break;
13682
6b76fefe 13683 case OPTION_M7000_HILO_FIX:
b34976b6 13684 mips_7000_hilo_fix = TRUE;
6b76fefe
CM
13685 break;
13686
9ee72ff1 13687 case OPTION_MNO_7000_HILO_FIX:
b34976b6 13688 mips_7000_hilo_fix = FALSE;
6b76fefe
CM
13689 break;
13690
ecb4347a 13691 case OPTION_MDEBUG:
b34976b6 13692 mips_flag_mdebug = TRUE;
ecb4347a
DJ
13693 break;
13694
13695 case OPTION_NO_MDEBUG:
b34976b6 13696 mips_flag_mdebug = FALSE;
ecb4347a 13697 break;
dcd410fe
RO
13698
13699 case OPTION_PDR:
13700 mips_flag_pdr = TRUE;
13701 break;
13702
13703 case OPTION_NO_PDR:
13704 mips_flag_pdr = FALSE;
13705 break;
0a44bf69
RS
13706
13707 case OPTION_MVXWORKS_PIC:
13708 mips_pic = VXWORKS_PIC;
13709 break;
ecb4347a 13710
ba92f887
MR
13711 case OPTION_NAN:
13712 if (strcmp (arg, "2008") == 0)
13713 mips_flag_nan2008 = TRUE;
13714 else if (strcmp (arg, "legacy") == 0)
13715 mips_flag_nan2008 = FALSE;
13716 else
13717 {
13718 as_fatal (_("Invalid NaN setting -mnan=%s"), arg);
13719 return 0;
13720 }
13721 break;
13722
252b5132
RH
13723 default:
13724 return 0;
13725 }
13726
c67a084a
NC
13727 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
13728
252b5132
RH
13729 return 1;
13730}
316f5878
RS
13731\f
13732/* Set up globals to generate code for the ISA or processor
13733 described by INFO. */
252b5132 13734
252b5132 13735static void
17a2f251 13736mips_set_architecture (const struct mips_cpu_info *info)
252b5132 13737{
316f5878 13738 if (info != 0)
252b5132 13739 {
fef14a42
TS
13740 file_mips_arch = info->cpu;
13741 mips_opts.arch = info->cpu;
316f5878 13742 mips_opts.isa = info->isa;
252b5132 13743 }
252b5132
RH
13744}
13745
252b5132 13746
316f5878 13747/* Likewise for tuning. */
252b5132 13748
316f5878 13749static void
17a2f251 13750mips_set_tune (const struct mips_cpu_info *info)
316f5878
RS
13751{
13752 if (info != 0)
fef14a42 13753 mips_tune = info->cpu;
316f5878 13754}
80cc45a5 13755
34ba82a8 13756
252b5132 13757void
17a2f251 13758mips_after_parse_args (void)
e9670677 13759{
fef14a42
TS
13760 const struct mips_cpu_info *arch_info = 0;
13761 const struct mips_cpu_info *tune_info = 0;
13762
e9670677 13763 /* GP relative stuff not working for PE */
6caf9ef4 13764 if (strncmp (TARGET_OS, "pe", 2) == 0)
e9670677 13765 {
6caf9ef4 13766 if (g_switch_seen && g_switch_value != 0)
e9670677
MR
13767 as_bad (_("-G not supported in this configuration."));
13768 g_switch_value = 0;
13769 }
13770
cac012d6
AO
13771 if (mips_abi == NO_ABI)
13772 mips_abi = MIPS_DEFAULT_ABI;
13773
22923709
RS
13774 /* The following code determines the architecture and register size.
13775 Similar code was added to GCC 3.3 (see override_options() in
13776 config/mips/mips.c). The GAS and GCC code should be kept in sync
13777 as much as possible. */
e9670677 13778
316f5878 13779 if (mips_arch_string != 0)
fef14a42 13780 arch_info = mips_parse_cpu ("-march", mips_arch_string);
e9670677 13781
316f5878 13782 if (file_mips_isa != ISA_UNKNOWN)
e9670677 13783 {
316f5878 13784 /* Handle -mipsN. At this point, file_mips_isa contains the
fef14a42 13785 ISA level specified by -mipsN, while arch_info->isa contains
316f5878 13786 the -march selection (if any). */
fef14a42 13787 if (arch_info != 0)
e9670677 13788 {
316f5878
RS
13789 /* -march takes precedence over -mipsN, since it is more descriptive.
13790 There's no harm in specifying both as long as the ISA levels
13791 are the same. */
fef14a42 13792 if (file_mips_isa != arch_info->isa)
316f5878
RS
13793 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
13794 mips_cpu_info_from_isa (file_mips_isa)->name,
fef14a42 13795 mips_cpu_info_from_isa (arch_info->isa)->name);
e9670677 13796 }
316f5878 13797 else
fef14a42 13798 arch_info = mips_cpu_info_from_isa (file_mips_isa);
e9670677
MR
13799 }
13800
fef14a42 13801 if (arch_info == 0)
95bfe26e
MF
13802 {
13803 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
13804 gas_assert (arch_info);
13805 }
e9670677 13806
fef14a42 13807 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
20203fb9 13808 as_bad (_("-march=%s is not compatible with the selected ABI"),
fef14a42
TS
13809 arch_info->name);
13810
13811 mips_set_architecture (arch_info);
13812
13813 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
13814 if (mips_tune_string != 0)
13815 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
e9670677 13816
fef14a42
TS
13817 if (tune_info == 0)
13818 mips_set_tune (arch_info);
13819 else
13820 mips_set_tune (tune_info);
e9670677 13821
316f5878 13822 if (file_mips_gp32 >= 0)
e9670677 13823 {
316f5878
RS
13824 /* The user specified the size of the integer registers. Make sure
13825 it agrees with the ABI and ISA. */
13826 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
13827 as_bad (_("-mgp64 used with a 32-bit processor"));
13828 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
13829 as_bad (_("-mgp32 used with a 64-bit ABI"));
13830 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
13831 as_bad (_("-mgp64 used with a 32-bit ABI"));
e9670677
MR
13832 }
13833 else
13834 {
316f5878
RS
13835 /* Infer the integer register size from the ABI and processor.
13836 Restrict ourselves to 32-bit registers if that's all the
13837 processor has, or if the ABI cannot handle 64-bit registers. */
13838 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
13839 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
e9670677
MR
13840 }
13841
ad3fea08
TS
13842 switch (file_mips_fp32)
13843 {
13844 default:
13845 case -1:
13846 /* No user specified float register size.
13847 ??? GAS treats single-float processors as though they had 64-bit
13848 float registers (although it complains when double-precision
13849 instructions are used). As things stand, saying they have 32-bit
13850 registers would lead to spurious "register must be even" messages.
13851 So here we assume float registers are never smaller than the
13852 integer ones. */
13853 if (file_mips_gp32 == 0)
13854 /* 64-bit integer registers implies 64-bit float registers. */
13855 file_mips_fp32 = 0;
c6278170 13856 else if ((mips_opts.ase & FP64_ASES)
ad3fea08
TS
13857 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
13858 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
13859 file_mips_fp32 = 0;
13860 else
13861 /* 32-bit float registers. */
13862 file_mips_fp32 = 1;
13863 break;
13864
13865 /* The user specified the size of the float registers. Check if it
13866 agrees with the ABI and ISA. */
13867 case 0:
13868 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
13869 as_bad (_("-mfp64 used with a 32-bit fpu"));
13870 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
13871 && !ISA_HAS_MXHC1 (mips_opts.isa))
13872 as_warn (_("-mfp64 used with a 32-bit ABI"));
13873 break;
13874 case 1:
13875 if (ABI_NEEDS_64BIT_REGS (mips_abi))
13876 as_warn (_("-mfp32 used with a 64-bit ABI"));
13877 break;
13878 }
e9670677 13879
316f5878 13880 /* End of GCC-shared inference code. */
e9670677 13881
17a2f251
TS
13882 /* This flag is set when we have a 64-bit capable CPU but use only
13883 32-bit wide registers. Note that EABI does not use it. */
13884 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
13885 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
13886 || mips_abi == O32_ABI))
316f5878 13887 mips_32bitmode = 1;
e9670677
MR
13888
13889 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
13890 as_bad (_("trap exception not supported at ISA 1"));
13891
e9670677
MR
13892 /* If the selected architecture includes support for ASEs, enable
13893 generation of code for them. */
a4672219 13894 if (mips_opts.mips16 == -1)
fef14a42 13895 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
df58fc94
RS
13896 if (mips_opts.micromips == -1)
13897 mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_arch)) ? 1 : 0;
846ef2d0
RS
13898
13899 /* MIPS3D and MDMX require 64-bit FPRs, so -mfp32 should stop those
13900 ASEs from being selected implicitly. */
13901 if (file_mips_fp32 == 1)
13902 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX;
13903
13904 /* If the user didn't explicitly select or deselect a particular ASE,
13905 use the default setting for the CPU. */
13906 mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
13907
e9670677 13908 file_mips_isa = mips_opts.isa;
846ef2d0 13909 file_ase = mips_opts.ase;
e9670677
MR
13910 mips_opts.gp32 = file_mips_gp32;
13911 mips_opts.fp32 = file_mips_fp32;
037b32b9
AN
13912 mips_opts.soft_float = file_mips_soft_float;
13913 mips_opts.single_float = file_mips_single_float;
e9670677 13914
c6278170
RS
13915 mips_check_isa_supports_ases ();
13916
ecb4347a 13917 if (mips_flag_mdebug < 0)
e8044f35 13918 mips_flag_mdebug = 0;
e9670677
MR
13919}
13920\f
13921void
17a2f251 13922mips_init_after_args (void)
252b5132
RH
13923{
13924 /* initialize opcodes */
13925 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
beae10d5 13926 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
252b5132
RH
13927}
13928
13929long
17a2f251 13930md_pcrel_from (fixS *fixP)
252b5132 13931{
a7ebbfdf
TS
13932 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
13933 switch (fixP->fx_r_type)
13934 {
df58fc94
RS
13935 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
13936 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
13937 /* Return the address of the delay slot. */
13938 return addr + 2;
13939
13940 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
13941 case BFD_RELOC_MICROMIPS_JMP:
a7ebbfdf
TS
13942 case BFD_RELOC_16_PCREL_S2:
13943 case BFD_RELOC_MIPS_JMP:
13944 /* Return the address of the delay slot. */
13945 return addr + 4;
df58fc94 13946
b47468a6
CM
13947 case BFD_RELOC_32_PCREL:
13948 return addr;
13949
a7ebbfdf 13950 default:
58ea3d6a 13951 /* We have no relocation type for PC relative MIPS16 instructions. */
64817874
TS
13952 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
13953 as_bad_where (fixP->fx_file, fixP->fx_line,
13954 _("PC relative MIPS16 instruction references a different section"));
a7ebbfdf
TS
13955 return addr;
13956 }
252b5132
RH
13957}
13958
252b5132
RH
13959/* This is called before the symbol table is processed. In order to
13960 work with gcc when using mips-tfile, we must keep all local labels.
13961 However, in other cases, we want to discard them. If we were
13962 called with -g, but we didn't see any debugging information, it may
13963 mean that gcc is smuggling debugging information through to
13964 mips-tfile, in which case we must generate all local labels. */
13965
13966void
17a2f251 13967mips_frob_file_before_adjust (void)
252b5132
RH
13968{
13969#ifndef NO_ECOFF_DEBUGGING
13970 if (ECOFF_DEBUGGING
13971 && mips_debug != 0
13972 && ! ecoff_debugging_seen)
13973 flag_keep_locals = 1;
13974#endif
13975}
13976
3b91255e 13977/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
55cf6793 13978 the corresponding LO16 reloc. This is called before md_apply_fix and
3b91255e
RS
13979 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
13980 relocation operators.
13981
13982 For our purposes, a %lo() expression matches a %got() or %hi()
13983 expression if:
13984
13985 (a) it refers to the same symbol; and
13986 (b) the offset applied in the %lo() expression is no lower than
13987 the offset applied in the %got() or %hi().
13988
13989 (b) allows us to cope with code like:
13990
13991 lui $4,%hi(foo)
13992 lh $4,%lo(foo+2)($4)
13993
13994 ...which is legal on RELA targets, and has a well-defined behaviour
13995 if the user knows that adding 2 to "foo" will not induce a carry to
13996 the high 16 bits.
13997
13998 When several %lo()s match a particular %got() or %hi(), we use the
13999 following rules to distinguish them:
14000
14001 (1) %lo()s with smaller offsets are a better match than %lo()s with
14002 higher offsets.
14003
14004 (2) %lo()s with no matching %got() or %hi() are better than those
14005 that already have a matching %got() or %hi().
14006
14007 (3) later %lo()s are better than earlier %lo()s.
14008
14009 These rules are applied in order.
14010
14011 (1) means, among other things, that %lo()s with identical offsets are
14012 chosen if they exist.
14013
14014 (2) means that we won't associate several high-part relocations with
14015 the same low-part relocation unless there's no alternative. Having
14016 several high parts for the same low part is a GNU extension; this rule
14017 allows careful users to avoid it.
14018
14019 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14020 with the last high-part relocation being at the front of the list.
14021 It therefore makes sense to choose the last matching low-part
14022 relocation, all other things being equal. It's also easier
14023 to code that way. */
252b5132
RH
14024
14025void
17a2f251 14026mips_frob_file (void)
252b5132
RH
14027{
14028 struct mips_hi_fixup *l;
35903be0 14029 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
252b5132
RH
14030
14031 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14032 {
14033 segment_info_type *seginfo;
3b91255e
RS
14034 bfd_boolean matched_lo_p;
14035 fixS **hi_pos, **lo_pos, **pos;
252b5132 14036
9c2799c2 14037 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
252b5132 14038
5919d012 14039 /* If a GOT16 relocation turns out to be against a global symbol,
b886a2ab
RS
14040 there isn't supposed to be a matching LO. Ignore %gots against
14041 constants; we'll report an error for those later. */
738e5348 14042 if (got16_reloc_p (l->fixp->fx_r_type)
b886a2ab
RS
14043 && !(l->fixp->fx_addsy
14044 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
5919d012
RS
14045 continue;
14046
14047 /* Check quickly whether the next fixup happens to be a matching %lo. */
14048 if (fixup_has_matching_lo_p (l->fixp))
252b5132
RH
14049 continue;
14050
252b5132 14051 seginfo = seg_info (l->seg);
252b5132 14052
3b91255e
RS
14053 /* Set HI_POS to the position of this relocation in the chain.
14054 Set LO_POS to the position of the chosen low-part relocation.
14055 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14056 relocation that matches an immediately-preceding high-part
14057 relocation. */
14058 hi_pos = NULL;
14059 lo_pos = NULL;
14060 matched_lo_p = FALSE;
738e5348 14061 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
35903be0 14062
3b91255e
RS
14063 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14064 {
14065 if (*pos == l->fixp)
14066 hi_pos = pos;
14067
35903be0 14068 if ((*pos)->fx_r_type == looking_for_rtype
30cfc97a 14069 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
3b91255e
RS
14070 && (*pos)->fx_offset >= l->fixp->fx_offset
14071 && (lo_pos == NULL
14072 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14073 || (!matched_lo_p
14074 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14075 lo_pos = pos;
14076
14077 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14078 && fixup_has_matching_lo_p (*pos));
14079 }
14080
14081 /* If we found a match, remove the high-part relocation from its
14082 current position and insert it before the low-part relocation.
14083 Make the offsets match so that fixup_has_matching_lo_p()
14084 will return true.
14085
14086 We don't warn about unmatched high-part relocations since some
14087 versions of gcc have been known to emit dead "lui ...%hi(...)"
14088 instructions. */
14089 if (lo_pos != NULL)
14090 {
14091 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14092 if (l->fixp->fx_next != *lo_pos)
252b5132 14093 {
3b91255e
RS
14094 *hi_pos = l->fixp->fx_next;
14095 l->fixp->fx_next = *lo_pos;
14096 *lo_pos = l->fixp;
252b5132 14097 }
252b5132
RH
14098 }
14099 }
14100}
14101
252b5132 14102int
17a2f251 14103mips_force_relocation (fixS *fixp)
252b5132 14104{
ae6063d4 14105 if (generic_force_reloc (fixp))
252b5132
RH
14106 return 1;
14107
df58fc94
RS
14108 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14109 so that the linker relaxation can update targets. */
14110 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14111 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14112 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14113 return 1;
14114
3e722fb5 14115 return 0;
252b5132
RH
14116}
14117
b886a2ab
RS
14118/* Read the instruction associated with RELOC from BUF. */
14119
14120static unsigned int
14121read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14122{
14123 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14124 return read_compressed_insn (buf, 4);
14125 else
14126 return read_insn (buf);
14127}
14128
14129/* Write instruction INSN to BUF, given that it has been relocated
14130 by RELOC. */
14131
14132static void
14133write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14134 unsigned long insn)
14135{
14136 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14137 write_compressed_insn (buf, insn, 4);
14138 else
14139 write_insn (buf, insn);
14140}
14141
252b5132
RH
14142/* Apply a fixup to the object file. */
14143
94f592af 14144void
55cf6793 14145md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 14146{
4d68580a 14147 char *buf;
b886a2ab 14148 unsigned long insn;
a7ebbfdf 14149 reloc_howto_type *howto;
252b5132 14150
a7ebbfdf
TS
14151 /* We ignore generic BFD relocations we don't know about. */
14152 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14153 if (! howto)
14154 return;
65551fa4 14155
df58fc94
RS
14156 gas_assert (fixP->fx_size == 2
14157 || fixP->fx_size == 4
90ecf173
MR
14158 || fixP->fx_r_type == BFD_RELOC_16
14159 || fixP->fx_r_type == BFD_RELOC_64
14160 || fixP->fx_r_type == BFD_RELOC_CTOR
14161 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
df58fc94 14162 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
90ecf173
MR
14163 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14164 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14165 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
252b5132 14166
4d68580a 14167 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 14168
df58fc94
RS
14169 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2
14170 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14171 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6
CM
14172 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
14173 || fixP->fx_r_type == BFD_RELOC_32_PCREL);
b1dca8ee
RS
14174
14175 /* Don't treat parts of a composite relocation as done. There are two
14176 reasons for this:
14177
14178 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14179 should nevertheless be emitted if the first part is.
14180
14181 (2) In normal usage, composite relocations are never assembly-time
14182 constants. The easiest way of dealing with the pathological
14183 exceptions is to generate a relocation against STN_UNDEF and
14184 leave everything up to the linker. */
3994f87e 14185 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
252b5132
RH
14186 fixP->fx_done = 1;
14187
14188 switch (fixP->fx_r_type)
14189 {
3f98094e
DJ
14190 case BFD_RELOC_MIPS_TLS_GD:
14191 case BFD_RELOC_MIPS_TLS_LDM:
741d6ea8
JM
14192 case BFD_RELOC_MIPS_TLS_DTPREL32:
14193 case BFD_RELOC_MIPS_TLS_DTPREL64:
3f98094e
DJ
14194 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14195 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14196 case BFD_RELOC_MIPS_TLS_GOTTPREL:
d0f13682
CLT
14197 case BFD_RELOC_MIPS_TLS_TPREL32:
14198 case BFD_RELOC_MIPS_TLS_TPREL64:
3f98094e
DJ
14199 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14200 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
df58fc94
RS
14201 case BFD_RELOC_MICROMIPS_TLS_GD:
14202 case BFD_RELOC_MICROMIPS_TLS_LDM:
14203 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14204 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14205 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14206 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14207 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
d0f13682
CLT
14208 case BFD_RELOC_MIPS16_TLS_GD:
14209 case BFD_RELOC_MIPS16_TLS_LDM:
14210 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14211 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14212 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14213 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14214 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
b886a2ab
RS
14215 if (!fixP->fx_addsy)
14216 {
14217 as_bad_where (fixP->fx_file, fixP->fx_line,
14218 _("TLS relocation against a constant"));
14219 break;
14220 }
3f98094e
DJ
14221 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14222 /* fall through */
14223
252b5132 14224 case BFD_RELOC_MIPS_JMP:
e369bcce
TS
14225 case BFD_RELOC_MIPS_SHIFT5:
14226 case BFD_RELOC_MIPS_SHIFT6:
14227 case BFD_RELOC_MIPS_GOT_DISP:
14228 case BFD_RELOC_MIPS_GOT_PAGE:
14229 case BFD_RELOC_MIPS_GOT_OFST:
14230 case BFD_RELOC_MIPS_SUB:
14231 case BFD_RELOC_MIPS_INSERT_A:
14232 case BFD_RELOC_MIPS_INSERT_B:
14233 case BFD_RELOC_MIPS_DELETE:
14234 case BFD_RELOC_MIPS_HIGHEST:
14235 case BFD_RELOC_MIPS_HIGHER:
14236 case BFD_RELOC_MIPS_SCN_DISP:
14237 case BFD_RELOC_MIPS_REL16:
14238 case BFD_RELOC_MIPS_RELGOT:
14239 case BFD_RELOC_MIPS_JALR:
252b5132
RH
14240 case BFD_RELOC_HI16:
14241 case BFD_RELOC_HI16_S:
b886a2ab 14242 case BFD_RELOC_LO16:
cdf6fd85 14243 case BFD_RELOC_GPREL16:
252b5132
RH
14244 case BFD_RELOC_MIPS_LITERAL:
14245 case BFD_RELOC_MIPS_CALL16:
14246 case BFD_RELOC_MIPS_GOT16:
cdf6fd85 14247 case BFD_RELOC_GPREL32:
252b5132
RH
14248 case BFD_RELOC_MIPS_GOT_HI16:
14249 case BFD_RELOC_MIPS_GOT_LO16:
14250 case BFD_RELOC_MIPS_CALL_HI16:
14251 case BFD_RELOC_MIPS_CALL_LO16:
14252 case BFD_RELOC_MIPS16_GPREL:
738e5348
RS
14253 case BFD_RELOC_MIPS16_GOT16:
14254 case BFD_RELOC_MIPS16_CALL16:
d6f16593
MR
14255 case BFD_RELOC_MIPS16_HI16:
14256 case BFD_RELOC_MIPS16_HI16_S:
b886a2ab 14257 case BFD_RELOC_MIPS16_LO16:
252b5132 14258 case BFD_RELOC_MIPS16_JMP:
df58fc94
RS
14259 case BFD_RELOC_MICROMIPS_JMP:
14260 case BFD_RELOC_MICROMIPS_GOT_DISP:
14261 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14262 case BFD_RELOC_MICROMIPS_GOT_OFST:
14263 case BFD_RELOC_MICROMIPS_SUB:
14264 case BFD_RELOC_MICROMIPS_HIGHEST:
14265 case BFD_RELOC_MICROMIPS_HIGHER:
14266 case BFD_RELOC_MICROMIPS_SCN_DISP:
14267 case BFD_RELOC_MICROMIPS_JALR:
14268 case BFD_RELOC_MICROMIPS_HI16:
14269 case BFD_RELOC_MICROMIPS_HI16_S:
b886a2ab 14270 case BFD_RELOC_MICROMIPS_LO16:
df58fc94
RS
14271 case BFD_RELOC_MICROMIPS_GPREL16:
14272 case BFD_RELOC_MICROMIPS_LITERAL:
14273 case BFD_RELOC_MICROMIPS_CALL16:
14274 case BFD_RELOC_MICROMIPS_GOT16:
14275 case BFD_RELOC_MICROMIPS_GOT_HI16:
14276 case BFD_RELOC_MICROMIPS_GOT_LO16:
14277 case BFD_RELOC_MICROMIPS_CALL_HI16:
14278 case BFD_RELOC_MICROMIPS_CALL_LO16:
067ec077 14279 case BFD_RELOC_MIPS_EH:
b886a2ab
RS
14280 if (fixP->fx_done)
14281 {
14282 offsetT value;
14283
14284 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14285 {
14286 insn = read_reloc_insn (buf, fixP->fx_r_type);
14287 if (mips16_reloc_p (fixP->fx_r_type))
14288 insn |= mips16_immed_extend (value, 16);
14289 else
14290 insn |= (value & 0xffff);
14291 write_reloc_insn (buf, fixP->fx_r_type, insn);
14292 }
14293 else
14294 as_bad_where (fixP->fx_file, fixP->fx_line,
14295 _("Unsupported constant in relocation"));
14296 }
252b5132
RH
14297 break;
14298
252b5132
RH
14299 case BFD_RELOC_64:
14300 /* This is handled like BFD_RELOC_32, but we output a sign
14301 extended value if we are only 32 bits. */
3e722fb5 14302 if (fixP->fx_done)
252b5132
RH
14303 {
14304 if (8 <= sizeof (valueT))
4d68580a 14305 md_number_to_chars (buf, *valP, 8);
252b5132
RH
14306 else
14307 {
a7ebbfdf 14308 valueT hiv;
252b5132 14309
a7ebbfdf 14310 if ((*valP & 0x80000000) != 0)
252b5132
RH
14311 hiv = 0xffffffff;
14312 else
14313 hiv = 0;
4d68580a
RS
14314 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14315 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
252b5132
RH
14316 }
14317 }
14318 break;
14319
056350c6 14320 case BFD_RELOC_RVA:
252b5132 14321 case BFD_RELOC_32:
b47468a6 14322 case BFD_RELOC_32_PCREL:
252b5132
RH
14323 case BFD_RELOC_16:
14324 /* If we are deleting this reloc entry, we must fill in the
54f4ddb3
TS
14325 value now. This can happen if we have a .word which is not
14326 resolved when it appears but is later defined. */
252b5132 14327 if (fixP->fx_done)
4d68580a 14328 md_number_to_chars (buf, *valP, fixP->fx_size);
252b5132
RH
14329 break;
14330
252b5132 14331 case BFD_RELOC_16_PCREL_S2:
a7ebbfdf 14332 if ((*valP & 0x3) != 0)
cb56d3d3 14333 as_bad_where (fixP->fx_file, fixP->fx_line,
bad36eac 14334 _("Branch to misaligned address (%lx)"), (long) *valP);
cb56d3d3 14335
54f4ddb3
TS
14336 /* We need to save the bits in the instruction since fixup_segment()
14337 might be deleting the relocation entry (i.e., a branch within
14338 the current segment). */
a7ebbfdf 14339 if (! fixP->fx_done)
bb2d6cd7 14340 break;
252b5132 14341
54f4ddb3 14342 /* Update old instruction data. */
4d68580a 14343 insn = read_insn (buf);
252b5132 14344
a7ebbfdf
TS
14345 if (*valP + 0x20000 <= 0x3ffff)
14346 {
14347 insn |= (*valP >> 2) & 0xffff;
4d68580a 14348 write_insn (buf, insn);
a7ebbfdf
TS
14349 }
14350 else if (mips_pic == NO_PIC
14351 && fixP->fx_done
14352 && fixP->fx_frag->fr_address >= text_section->vma
14353 && (fixP->fx_frag->fr_address
587aac4e 14354 < text_section->vma + bfd_get_section_size (text_section))
a7ebbfdf
TS
14355 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
14356 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
14357 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
252b5132
RH
14358 {
14359 /* The branch offset is too large. If this is an
14360 unconditional branch, and we are not generating PIC code,
14361 we can convert it to an absolute jump instruction. */
a7ebbfdf
TS
14362 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
14363 insn = 0x0c000000; /* jal */
252b5132 14364 else
a7ebbfdf
TS
14365 insn = 0x08000000; /* j */
14366 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
14367 fixP->fx_done = 0;
14368 fixP->fx_addsy = section_symbol (text_section);
14369 *valP += md_pcrel_from (fixP);
4d68580a 14370 write_insn (buf, insn);
a7ebbfdf
TS
14371 }
14372 else
14373 {
14374 /* If we got here, we have branch-relaxation disabled,
14375 and there's nothing we can do to fix this instruction
14376 without turning it into a longer sequence. */
14377 as_bad_where (fixP->fx_file, fixP->fx_line,
14378 _("Branch out of range"));
252b5132 14379 }
252b5132
RH
14380 break;
14381
df58fc94
RS
14382 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14383 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14384 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14385 /* We adjust the offset back to even. */
14386 if ((*valP & 0x1) != 0)
14387 --(*valP);
14388
14389 if (! fixP->fx_done)
14390 break;
14391
14392 /* Should never visit here, because we keep the relocation. */
14393 abort ();
14394 break;
14395
252b5132
RH
14396 case BFD_RELOC_VTABLE_INHERIT:
14397 fixP->fx_done = 0;
14398 if (fixP->fx_addsy
14399 && !S_IS_DEFINED (fixP->fx_addsy)
14400 && !S_IS_WEAK (fixP->fx_addsy))
14401 S_SET_WEAK (fixP->fx_addsy);
14402 break;
14403
14404 case BFD_RELOC_VTABLE_ENTRY:
14405 fixP->fx_done = 0;
14406 break;
14407
14408 default:
b37df7c4 14409 abort ();
252b5132 14410 }
a7ebbfdf
TS
14411
14412 /* Remember value for tc_gen_reloc. */
14413 fixP->fx_addnumber = *valP;
252b5132
RH
14414}
14415
252b5132 14416static symbolS *
17a2f251 14417get_symbol (void)
252b5132
RH
14418{
14419 int c;
14420 char *name;
14421 symbolS *p;
14422
14423 name = input_line_pointer;
14424 c = get_symbol_end ();
14425 p = (symbolS *) symbol_find_or_make (name);
14426 *input_line_pointer = c;
14427 return p;
14428}
14429
742a56fe
RS
14430/* Align the current frag to a given power of two. If a particular
14431 fill byte should be used, FILL points to an integer that contains
14432 that byte, otherwise FILL is null.
14433
462427c4
RS
14434 This function used to have the comment:
14435
14436 The MIPS assembler also automatically adjusts any preceding label.
14437
14438 The implementation therefore applied the adjustment to a maximum of
14439 one label. However, other label adjustments are applied to batches
14440 of labels, and adjusting just one caused problems when new labels
14441 were added for the sake of debugging or unwind information.
14442 We therefore adjust all preceding labels (given as LABELS) instead. */
252b5132
RH
14443
14444static void
462427c4 14445mips_align (int to, int *fill, struct insn_label_list *labels)
252b5132 14446{
7d10b47d 14447 mips_emit_delays ();
df58fc94 14448 mips_record_compressed_mode ();
742a56fe
RS
14449 if (fill == NULL && subseg_text_p (now_seg))
14450 frag_align_code (to, 0);
14451 else
14452 frag_align (to, fill ? *fill : 0, 0);
252b5132 14453 record_alignment (now_seg, to);
462427c4 14454 mips_move_labels (labels, FALSE);
252b5132
RH
14455}
14456
14457/* Align to a given power of two. .align 0 turns off the automatic
14458 alignment used by the data creating pseudo-ops. */
14459
14460static void
17a2f251 14461s_align (int x ATTRIBUTE_UNUSED)
252b5132 14462{
742a56fe 14463 int temp, fill_value, *fill_ptr;
49954fb4 14464 long max_alignment = 28;
252b5132 14465
54f4ddb3 14466 /* o Note that the assembler pulls down any immediately preceding label
252b5132 14467 to the aligned address.
54f4ddb3 14468 o It's not documented but auto alignment is reinstated by
252b5132 14469 a .align pseudo instruction.
54f4ddb3 14470 o Note also that after auto alignment is turned off the mips assembler
252b5132 14471 issues an error on attempt to assemble an improperly aligned data item.
54f4ddb3 14472 We don't. */
252b5132
RH
14473
14474 temp = get_absolute_expression ();
14475 if (temp > max_alignment)
14476 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
14477 else if (temp < 0)
14478 {
14479 as_warn (_("Alignment negative: 0 assumed."));
14480 temp = 0;
14481 }
14482 if (*input_line_pointer == ',')
14483 {
f9419b05 14484 ++input_line_pointer;
742a56fe
RS
14485 fill_value = get_absolute_expression ();
14486 fill_ptr = &fill_value;
252b5132
RH
14487 }
14488 else
742a56fe 14489 fill_ptr = 0;
252b5132
RH
14490 if (temp)
14491 {
a8dbcb85
TS
14492 segment_info_type *si = seg_info (now_seg);
14493 struct insn_label_list *l = si->label_list;
54f4ddb3 14494 /* Auto alignment should be switched on by next section change. */
252b5132 14495 auto_align = 1;
462427c4 14496 mips_align (temp, fill_ptr, l);
252b5132
RH
14497 }
14498 else
14499 {
14500 auto_align = 0;
14501 }
14502
14503 demand_empty_rest_of_line ();
14504}
14505
252b5132 14506static void
17a2f251 14507s_change_sec (int sec)
252b5132
RH
14508{
14509 segT seg;
14510
252b5132
RH
14511 /* The ELF backend needs to know that we are changing sections, so
14512 that .previous works correctly. We could do something like check
b6ff326e 14513 for an obj_section_change_hook macro, but that might be confusing
252b5132
RH
14514 as it would not be appropriate to use it in the section changing
14515 functions in read.c, since obj-elf.c intercepts those. FIXME:
14516 This should be cleaner, somehow. */
f3ded42a 14517 obj_elf_section_change_hook ();
252b5132 14518
7d10b47d 14519 mips_emit_delays ();
6a32d874 14520
252b5132
RH
14521 switch (sec)
14522 {
14523 case 't':
14524 s_text (0);
14525 break;
14526 case 'd':
14527 s_data (0);
14528 break;
14529 case 'b':
14530 subseg_set (bss_section, (subsegT) get_absolute_expression ());
14531 demand_empty_rest_of_line ();
14532 break;
14533
14534 case 'r':
4d0d148d
TS
14535 seg = subseg_new (RDATA_SECTION_NAME,
14536 (subsegT) get_absolute_expression ());
f3ded42a
RS
14537 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
14538 | SEC_READONLY | SEC_RELOC
14539 | SEC_DATA));
14540 if (strncmp (TARGET_OS, "elf", 3) != 0)
14541 record_alignment (seg, 4);
4d0d148d 14542 demand_empty_rest_of_line ();
252b5132
RH
14543 break;
14544
14545 case 's':
4d0d148d 14546 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
f3ded42a
RS
14547 bfd_set_section_flags (stdoutput, seg,
14548 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
14549 if (strncmp (TARGET_OS, "elf", 3) != 0)
14550 record_alignment (seg, 4);
4d0d148d
TS
14551 demand_empty_rest_of_line ();
14552 break;
998b3c36
MR
14553
14554 case 'B':
14555 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
f3ded42a
RS
14556 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
14557 if (strncmp (TARGET_OS, "elf", 3) != 0)
14558 record_alignment (seg, 4);
998b3c36
MR
14559 demand_empty_rest_of_line ();
14560 break;
252b5132
RH
14561 }
14562
14563 auto_align = 1;
14564}
b34976b6 14565
cca86cc8 14566void
17a2f251 14567s_change_section (int ignore ATTRIBUTE_UNUSED)
cca86cc8 14568{
cca86cc8
SC
14569 char *section_name;
14570 char c;
684022ea 14571 char next_c = 0;
cca86cc8
SC
14572 int section_type;
14573 int section_flag;
14574 int section_entry_size;
14575 int section_alignment;
b34976b6 14576
cca86cc8
SC
14577 section_name = input_line_pointer;
14578 c = get_symbol_end ();
a816d1ed
AO
14579 if (c)
14580 next_c = *(input_line_pointer + 1);
cca86cc8 14581
4cf0dd0d
TS
14582 /* Do we have .section Name<,"flags">? */
14583 if (c != ',' || (c == ',' && next_c == '"'))
cca86cc8 14584 {
4cf0dd0d
TS
14585 /* just after name is now '\0'. */
14586 *input_line_pointer = c;
cca86cc8
SC
14587 input_line_pointer = section_name;
14588 obj_elf_section (ignore);
14589 return;
14590 }
14591 input_line_pointer++;
14592
14593 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
14594 if (c == ',')
14595 section_type = get_absolute_expression ();
14596 else
14597 section_type = 0;
14598 if (*input_line_pointer++ == ',')
14599 section_flag = get_absolute_expression ();
14600 else
14601 section_flag = 0;
14602 if (*input_line_pointer++ == ',')
14603 section_entry_size = get_absolute_expression ();
14604 else
14605 section_entry_size = 0;
14606 if (*input_line_pointer++ == ',')
14607 section_alignment = get_absolute_expression ();
14608 else
14609 section_alignment = 0;
87975d2a
AM
14610 /* FIXME: really ignore? */
14611 (void) section_alignment;
cca86cc8 14612
a816d1ed
AO
14613 section_name = xstrdup (section_name);
14614
8ab8a5c8
RS
14615 /* When using the generic form of .section (as implemented by obj-elf.c),
14616 there's no way to set the section type to SHT_MIPS_DWARF. Users have
14617 traditionally had to fall back on the more common @progbits instead.
14618
14619 There's nothing really harmful in this, since bfd will correct
14620 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
708587a4 14621 means that, for backwards compatibility, the special_section entries
8ab8a5c8
RS
14622 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
14623
14624 Even so, we shouldn't force users of the MIPS .section syntax to
14625 incorrectly label the sections as SHT_PROGBITS. The best compromise
14626 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
14627 generic type-checking code. */
14628 if (section_type == SHT_MIPS_DWARF)
14629 section_type = SHT_PROGBITS;
14630
cca86cc8
SC
14631 obj_elf_change_section (section_name, section_type, section_flag,
14632 section_entry_size, 0, 0, 0);
a816d1ed
AO
14633
14634 if (now_seg->name != section_name)
14635 free (section_name);
cca86cc8 14636}
252b5132
RH
14637
14638void
17a2f251 14639mips_enable_auto_align (void)
252b5132
RH
14640{
14641 auto_align = 1;
14642}
14643
14644static void
17a2f251 14645s_cons (int log_size)
252b5132 14646{
a8dbcb85
TS
14647 segment_info_type *si = seg_info (now_seg);
14648 struct insn_label_list *l = si->label_list;
252b5132 14649
7d10b47d 14650 mips_emit_delays ();
252b5132 14651 if (log_size > 0 && auto_align)
462427c4 14652 mips_align (log_size, 0, l);
252b5132 14653 cons (1 << log_size);
a1facbec 14654 mips_clear_insn_labels ();
252b5132
RH
14655}
14656
14657static void
17a2f251 14658s_float_cons (int type)
252b5132 14659{
a8dbcb85
TS
14660 segment_info_type *si = seg_info (now_seg);
14661 struct insn_label_list *l = si->label_list;
252b5132 14662
7d10b47d 14663 mips_emit_delays ();
252b5132
RH
14664
14665 if (auto_align)
49309057
ILT
14666 {
14667 if (type == 'd')
462427c4 14668 mips_align (3, 0, l);
49309057 14669 else
462427c4 14670 mips_align (2, 0, l);
49309057 14671 }
252b5132 14672
252b5132 14673 float_cons (type);
a1facbec 14674 mips_clear_insn_labels ();
252b5132
RH
14675}
14676
14677/* Handle .globl. We need to override it because on Irix 5 you are
14678 permitted to say
14679 .globl foo .text
14680 where foo is an undefined symbol, to mean that foo should be
14681 considered to be the address of a function. */
14682
14683static void
17a2f251 14684s_mips_globl (int x ATTRIBUTE_UNUSED)
252b5132
RH
14685{
14686 char *name;
14687 int c;
14688 symbolS *symbolP;
14689 flagword flag;
14690
8a06b769 14691 do
252b5132 14692 {
8a06b769 14693 name = input_line_pointer;
252b5132 14694 c = get_symbol_end ();
8a06b769
TS
14695 symbolP = symbol_find_or_make (name);
14696 S_SET_EXTERNAL (symbolP);
14697
252b5132 14698 *input_line_pointer = c;
8a06b769 14699 SKIP_WHITESPACE ();
252b5132 14700
8a06b769
TS
14701 /* On Irix 5, every global symbol that is not explicitly labelled as
14702 being a function is apparently labelled as being an object. */
14703 flag = BSF_OBJECT;
252b5132 14704
8a06b769
TS
14705 if (!is_end_of_line[(unsigned char) *input_line_pointer]
14706 && (*input_line_pointer != ','))
14707 {
14708 char *secname;
14709 asection *sec;
14710
14711 secname = input_line_pointer;
14712 c = get_symbol_end ();
14713 sec = bfd_get_section_by_name (stdoutput, secname);
14714 if (sec == NULL)
14715 as_bad (_("%s: no such section"), secname);
14716 *input_line_pointer = c;
14717
14718 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
14719 flag = BSF_FUNCTION;
14720 }
14721
14722 symbol_get_bfdsym (symbolP)->flags |= flag;
14723
14724 c = *input_line_pointer;
14725 if (c == ',')
14726 {
14727 input_line_pointer++;
14728 SKIP_WHITESPACE ();
14729 if (is_end_of_line[(unsigned char) *input_line_pointer])
14730 c = '\n';
14731 }
14732 }
14733 while (c == ',');
252b5132 14734
252b5132
RH
14735 demand_empty_rest_of_line ();
14736}
14737
14738static void
17a2f251 14739s_option (int x ATTRIBUTE_UNUSED)
252b5132
RH
14740{
14741 char *opt;
14742 char c;
14743
14744 opt = input_line_pointer;
14745 c = get_symbol_end ();
14746
14747 if (*opt == 'O')
14748 {
14749 /* FIXME: What does this mean? */
14750 }
14751 else if (strncmp (opt, "pic", 3) == 0)
14752 {
14753 int i;
14754
14755 i = atoi (opt + 3);
14756 if (i == 0)
14757 mips_pic = NO_PIC;
14758 else if (i == 2)
143d77c5 14759 {
8b828383 14760 mips_pic = SVR4_PIC;
143d77c5
EC
14761 mips_abicalls = TRUE;
14762 }
252b5132
RH
14763 else
14764 as_bad (_(".option pic%d not supported"), i);
14765
4d0d148d 14766 if (mips_pic == SVR4_PIC)
252b5132
RH
14767 {
14768 if (g_switch_seen && g_switch_value != 0)
14769 as_warn (_("-G may not be used with SVR4 PIC code"));
14770 g_switch_value = 0;
14771 bfd_set_gp_size (stdoutput, 0);
14772 }
14773 }
14774 else
14775 as_warn (_("Unrecognized option \"%s\""), opt);
14776
14777 *input_line_pointer = c;
14778 demand_empty_rest_of_line ();
14779}
14780
14781/* This structure is used to hold a stack of .set values. */
14782
e972090a
NC
14783struct mips_option_stack
14784{
252b5132
RH
14785 struct mips_option_stack *next;
14786 struct mips_set_options options;
14787};
14788
14789static struct mips_option_stack *mips_opts_stack;
14790
14791/* Handle the .set pseudo-op. */
14792
14793static void
17a2f251 14794s_mipsset (int x ATTRIBUTE_UNUSED)
252b5132
RH
14795{
14796 char *name = input_line_pointer, ch;
c6278170 14797 const struct mips_ase *ase;
252b5132
RH
14798
14799 while (!is_end_of_line[(unsigned char) *input_line_pointer])
f9419b05 14800 ++input_line_pointer;
252b5132
RH
14801 ch = *input_line_pointer;
14802 *input_line_pointer = '\0';
14803
14804 if (strcmp (name, "reorder") == 0)
14805 {
7d10b47d
RS
14806 if (mips_opts.noreorder)
14807 end_noreorder ();
252b5132
RH
14808 }
14809 else if (strcmp (name, "noreorder") == 0)
14810 {
7d10b47d
RS
14811 if (!mips_opts.noreorder)
14812 start_noreorder ();
252b5132 14813 }
741fe287
MR
14814 else if (strncmp (name, "at=", 3) == 0)
14815 {
14816 char *s = name + 3;
14817
14818 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
14819 as_bad (_("Unrecognized register name `%s'"), s);
14820 }
252b5132
RH
14821 else if (strcmp (name, "at") == 0)
14822 {
741fe287 14823 mips_opts.at = ATREG;
252b5132
RH
14824 }
14825 else if (strcmp (name, "noat") == 0)
14826 {
741fe287 14827 mips_opts.at = ZERO;
252b5132
RH
14828 }
14829 else if (strcmp (name, "macro") == 0)
14830 {
14831 mips_opts.warn_about_macros = 0;
14832 }
14833 else if (strcmp (name, "nomacro") == 0)
14834 {
14835 if (mips_opts.noreorder == 0)
14836 as_bad (_("`noreorder' must be set before `nomacro'"));
14837 mips_opts.warn_about_macros = 1;
14838 }
14839 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
14840 {
14841 mips_opts.nomove = 0;
14842 }
14843 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
14844 {
14845 mips_opts.nomove = 1;
14846 }
14847 else if (strcmp (name, "bopt") == 0)
14848 {
14849 mips_opts.nobopt = 0;
14850 }
14851 else if (strcmp (name, "nobopt") == 0)
14852 {
14853 mips_opts.nobopt = 1;
14854 }
ad3fea08
TS
14855 else if (strcmp (name, "gp=default") == 0)
14856 mips_opts.gp32 = file_mips_gp32;
14857 else if (strcmp (name, "gp=32") == 0)
14858 mips_opts.gp32 = 1;
14859 else if (strcmp (name, "gp=64") == 0)
14860 {
14861 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
20203fb9 14862 as_warn (_("%s isa does not support 64-bit registers"),
ad3fea08
TS
14863 mips_cpu_info_from_isa (mips_opts.isa)->name);
14864 mips_opts.gp32 = 0;
14865 }
14866 else if (strcmp (name, "fp=default") == 0)
14867 mips_opts.fp32 = file_mips_fp32;
14868 else if (strcmp (name, "fp=32") == 0)
14869 mips_opts.fp32 = 1;
14870 else if (strcmp (name, "fp=64") == 0)
14871 {
14872 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
20203fb9 14873 as_warn (_("%s isa does not support 64-bit floating point registers"),
ad3fea08
TS
14874 mips_cpu_info_from_isa (mips_opts.isa)->name);
14875 mips_opts.fp32 = 0;
14876 }
037b32b9
AN
14877 else if (strcmp (name, "softfloat") == 0)
14878 mips_opts.soft_float = 1;
14879 else if (strcmp (name, "hardfloat") == 0)
14880 mips_opts.soft_float = 0;
14881 else if (strcmp (name, "singlefloat") == 0)
14882 mips_opts.single_float = 1;
14883 else if (strcmp (name, "doublefloat") == 0)
14884 mips_opts.single_float = 0;
252b5132
RH
14885 else if (strcmp (name, "mips16") == 0
14886 || strcmp (name, "MIPS-16") == 0)
df58fc94
RS
14887 {
14888 if (mips_opts.micromips == 1)
14889 as_fatal (_("`mips16' cannot be used with `micromips'"));
14890 mips_opts.mips16 = 1;
14891 }
252b5132
RH
14892 else if (strcmp (name, "nomips16") == 0
14893 || strcmp (name, "noMIPS-16") == 0)
14894 mips_opts.mips16 = 0;
df58fc94
RS
14895 else if (strcmp (name, "micromips") == 0)
14896 {
14897 if (mips_opts.mips16 == 1)
14898 as_fatal (_("`micromips' cannot be used with `mips16'"));
14899 mips_opts.micromips = 1;
14900 }
14901 else if (strcmp (name, "nomicromips") == 0)
14902 mips_opts.micromips = 0;
c6278170
RS
14903 else if (name[0] == 'n'
14904 && name[1] == 'o'
14905 && (ase = mips_lookup_ase (name + 2)))
14906 mips_set_ase (ase, FALSE);
14907 else if ((ase = mips_lookup_ase (name)))
14908 mips_set_ase (ase, TRUE);
1a2c1fad 14909 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
252b5132 14910 {
af7ee8bf 14911 int reset = 0;
252b5132 14912
1a2c1fad
CD
14913 /* Permit the user to change the ISA and architecture on the fly.
14914 Needless to say, misuse can cause serious problems. */
81a21e38 14915 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
af7ee8bf
CD
14916 {
14917 reset = 1;
14918 mips_opts.isa = file_mips_isa;
1a2c1fad 14919 mips_opts.arch = file_mips_arch;
1a2c1fad
CD
14920 }
14921 else if (strncmp (name, "arch=", 5) == 0)
14922 {
14923 const struct mips_cpu_info *p;
14924
14925 p = mips_parse_cpu("internal use", name + 5);
14926 if (!p)
14927 as_bad (_("unknown architecture %s"), name + 5);
14928 else
14929 {
14930 mips_opts.arch = p->cpu;
14931 mips_opts.isa = p->isa;
14932 }
14933 }
81a21e38
TS
14934 else if (strncmp (name, "mips", 4) == 0)
14935 {
14936 const struct mips_cpu_info *p;
14937
14938 p = mips_parse_cpu("internal use", name);
14939 if (!p)
14940 as_bad (_("unknown ISA level %s"), name + 4);
14941 else
14942 {
14943 mips_opts.arch = p->cpu;
14944 mips_opts.isa = p->isa;
14945 }
14946 }
af7ee8bf 14947 else
81a21e38 14948 as_bad (_("unknown ISA or architecture %s"), name);
af7ee8bf
CD
14949
14950 switch (mips_opts.isa)
98d3f06f
KH
14951 {
14952 case 0:
98d3f06f 14953 break;
af7ee8bf
CD
14954 case ISA_MIPS1:
14955 case ISA_MIPS2:
14956 case ISA_MIPS32:
14957 case ISA_MIPS32R2:
98d3f06f
KH
14958 mips_opts.gp32 = 1;
14959 mips_opts.fp32 = 1;
14960 break;
af7ee8bf
CD
14961 case ISA_MIPS3:
14962 case ISA_MIPS4:
14963 case ISA_MIPS5:
14964 case ISA_MIPS64:
5f74bc13 14965 case ISA_MIPS64R2:
98d3f06f 14966 mips_opts.gp32 = 0;
e407c74b
NC
14967 if (mips_opts.arch == CPU_R5900)
14968 {
14969 mips_opts.fp32 = 1;
14970 }
14971 else
14972 {
98d3f06f 14973 mips_opts.fp32 = 0;
e407c74b 14974 }
98d3f06f
KH
14975 break;
14976 default:
14977 as_bad (_("unknown ISA level %s"), name + 4);
14978 break;
14979 }
af7ee8bf 14980 if (reset)
98d3f06f 14981 {
af7ee8bf
CD
14982 mips_opts.gp32 = file_mips_gp32;
14983 mips_opts.fp32 = file_mips_fp32;
98d3f06f 14984 }
252b5132
RH
14985 }
14986 else if (strcmp (name, "autoextend") == 0)
14987 mips_opts.noautoextend = 0;
14988 else if (strcmp (name, "noautoextend") == 0)
14989 mips_opts.noautoextend = 1;
833794fc
MR
14990 else if (strcmp (name, "insn32") == 0)
14991 mips_opts.insn32 = TRUE;
14992 else if (strcmp (name, "noinsn32") == 0)
14993 mips_opts.insn32 = FALSE;
252b5132
RH
14994 else if (strcmp (name, "push") == 0)
14995 {
14996 struct mips_option_stack *s;
14997
14998 s = (struct mips_option_stack *) xmalloc (sizeof *s);
14999 s->next = mips_opts_stack;
15000 s->options = mips_opts;
15001 mips_opts_stack = s;
15002 }
15003 else if (strcmp (name, "pop") == 0)
15004 {
15005 struct mips_option_stack *s;
15006
15007 s = mips_opts_stack;
15008 if (s == NULL)
15009 as_bad (_(".set pop with no .set push"));
15010 else
15011 {
15012 /* If we're changing the reorder mode we need to handle
15013 delay slots correctly. */
15014 if (s->options.noreorder && ! mips_opts.noreorder)
7d10b47d 15015 start_noreorder ();
252b5132 15016 else if (! s->options.noreorder && mips_opts.noreorder)
7d10b47d 15017 end_noreorder ();
252b5132
RH
15018
15019 mips_opts = s->options;
15020 mips_opts_stack = s->next;
15021 free (s);
15022 }
15023 }
aed1a261
RS
15024 else if (strcmp (name, "sym32") == 0)
15025 mips_opts.sym32 = TRUE;
15026 else if (strcmp (name, "nosym32") == 0)
15027 mips_opts.sym32 = FALSE;
e6559e01
JM
15028 else if (strchr (name, ','))
15029 {
15030 /* Generic ".set" directive; use the generic handler. */
15031 *input_line_pointer = ch;
15032 input_line_pointer = name;
15033 s_set (0);
15034 return;
15035 }
252b5132
RH
15036 else
15037 {
15038 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
15039 }
c6278170 15040 mips_check_isa_supports_ases ();
252b5132
RH
15041 *input_line_pointer = ch;
15042 demand_empty_rest_of_line ();
15043}
15044
15045/* Handle the .abicalls pseudo-op. I believe this is equivalent to
15046 .option pic2. It means to generate SVR4 PIC calls. */
15047
15048static void
17a2f251 15049s_abicalls (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15050{
15051 mips_pic = SVR4_PIC;
143d77c5 15052 mips_abicalls = TRUE;
4d0d148d
TS
15053
15054 if (g_switch_seen && g_switch_value != 0)
15055 as_warn (_("-G may not be used with SVR4 PIC code"));
15056 g_switch_value = 0;
15057
252b5132
RH
15058 bfd_set_gp_size (stdoutput, 0);
15059 demand_empty_rest_of_line ();
15060}
15061
15062/* Handle the .cpload pseudo-op. This is used when generating SVR4
15063 PIC code. It sets the $gp register for the function based on the
15064 function address, which is in the register named in the argument.
15065 This uses a relocation against _gp_disp, which is handled specially
15066 by the linker. The result is:
15067 lui $gp,%hi(_gp_disp)
15068 addiu $gp,$gp,%lo(_gp_disp)
15069 addu $gp,$gp,.cpload argument
aa6975fb
ILT
15070 The .cpload argument is normally $25 == $t9.
15071
15072 The -mno-shared option changes this to:
bbe506e8
TS
15073 lui $gp,%hi(__gnu_local_gp)
15074 addiu $gp,$gp,%lo(__gnu_local_gp)
aa6975fb
ILT
15075 and the argument is ignored. This saves an instruction, but the
15076 resulting code is not position independent; it uses an absolute
bbe506e8
TS
15077 address for __gnu_local_gp. Thus code assembled with -mno-shared
15078 can go into an ordinary executable, but not into a shared library. */
252b5132
RH
15079
15080static void
17a2f251 15081s_cpload (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15082{
15083 expressionS ex;
aa6975fb
ILT
15084 int reg;
15085 int in_shared;
252b5132 15086
6478892d
TS
15087 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15088 .cpload is ignored. */
15089 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
15090 {
15091 s_ignore (0);
15092 return;
15093 }
15094
a276b80c
MR
15095 if (mips_opts.mips16)
15096 {
15097 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15098 ignore_rest_of_line ();
15099 return;
15100 }
15101
d3ecfc59 15102 /* .cpload should be in a .set noreorder section. */
252b5132
RH
15103 if (mips_opts.noreorder == 0)
15104 as_warn (_(".cpload not in noreorder section"));
15105
aa6975fb
ILT
15106 reg = tc_get_register (0);
15107
15108 /* If we need to produce a 64-bit address, we are better off using
15109 the default instruction sequence. */
aed1a261 15110 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
aa6975fb 15111
252b5132 15112 ex.X_op = O_symbol;
bbe506e8
TS
15113 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15114 "__gnu_local_gp");
252b5132
RH
15115 ex.X_op_symbol = NULL;
15116 ex.X_add_number = 0;
15117
15118 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
49309057 15119 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
252b5132 15120
8a75745d
MR
15121 mips_mark_labels ();
15122 mips_assembling_insn = TRUE;
15123
584892a6 15124 macro_start ();
67c0d1eb
RS
15125 macro_build_lui (&ex, mips_gp_register);
15126 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17a2f251 15127 mips_gp_register, BFD_RELOC_LO16);
aa6975fb
ILT
15128 if (in_shared)
15129 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15130 mips_gp_register, reg);
584892a6 15131 macro_end ();
252b5132 15132
8a75745d 15133 mips_assembling_insn = FALSE;
252b5132
RH
15134 demand_empty_rest_of_line ();
15135}
15136
6478892d
TS
15137/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15138 .cpsetup $reg1, offset|$reg2, label
15139
15140 If offset is given, this results in:
15141 sd $gp, offset($sp)
956cd1d6 15142 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
15143 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15144 daddu $gp, $gp, $reg1
6478892d
TS
15145
15146 If $reg2 is given, this results in:
15147 daddu $reg2, $gp, $0
956cd1d6 15148 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
15149 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15150 daddu $gp, $gp, $reg1
aa6975fb
ILT
15151 $reg1 is normally $25 == $t9.
15152
15153 The -mno-shared option replaces the last three instructions with
15154 lui $gp,%hi(_gp)
54f4ddb3 15155 addiu $gp,$gp,%lo(_gp) */
aa6975fb 15156
6478892d 15157static void
17a2f251 15158s_cpsetup (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
15159{
15160 expressionS ex_off;
15161 expressionS ex_sym;
15162 int reg1;
6478892d 15163
8586fc66 15164 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
6478892d
TS
15165 We also need NewABI support. */
15166 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15167 {
15168 s_ignore (0);
15169 return;
15170 }
15171
a276b80c
MR
15172 if (mips_opts.mips16)
15173 {
15174 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15175 ignore_rest_of_line ();
15176 return;
15177 }
15178
6478892d
TS
15179 reg1 = tc_get_register (0);
15180 SKIP_WHITESPACE ();
15181 if (*input_line_pointer != ',')
15182 {
15183 as_bad (_("missing argument separator ',' for .cpsetup"));
15184 return;
15185 }
15186 else
80245285 15187 ++input_line_pointer;
6478892d
TS
15188 SKIP_WHITESPACE ();
15189 if (*input_line_pointer == '$')
80245285
TS
15190 {
15191 mips_cpreturn_register = tc_get_register (0);
15192 mips_cpreturn_offset = -1;
15193 }
6478892d 15194 else
80245285
TS
15195 {
15196 mips_cpreturn_offset = get_absolute_expression ();
15197 mips_cpreturn_register = -1;
15198 }
6478892d
TS
15199 SKIP_WHITESPACE ();
15200 if (*input_line_pointer != ',')
15201 {
15202 as_bad (_("missing argument separator ',' for .cpsetup"));
15203 return;
15204 }
15205 else
f9419b05 15206 ++input_line_pointer;
6478892d 15207 SKIP_WHITESPACE ();
f21f8242 15208 expression (&ex_sym);
6478892d 15209
8a75745d
MR
15210 mips_mark_labels ();
15211 mips_assembling_insn = TRUE;
15212
584892a6 15213 macro_start ();
6478892d
TS
15214 if (mips_cpreturn_register == -1)
15215 {
15216 ex_off.X_op = O_constant;
15217 ex_off.X_add_symbol = NULL;
15218 ex_off.X_op_symbol = NULL;
15219 ex_off.X_add_number = mips_cpreturn_offset;
15220
67c0d1eb 15221 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17a2f251 15222 BFD_RELOC_LO16, SP);
6478892d
TS
15223 }
15224 else
67c0d1eb 15225 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
17a2f251 15226 mips_gp_register, 0);
6478892d 15227
aed1a261 15228 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
aa6975fb 15229 {
df58fc94 15230 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
aa6975fb
ILT
15231 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
15232 BFD_RELOC_HI16_S);
15233
15234 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
15235 mips_gp_register, -1, BFD_RELOC_GPREL16,
15236 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
15237
15238 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
15239 mips_gp_register, reg1);
15240 }
15241 else
15242 {
15243 expressionS ex;
15244
15245 ex.X_op = O_symbol;
4184909a 15246 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
aa6975fb
ILT
15247 ex.X_op_symbol = NULL;
15248 ex.X_add_number = 0;
6e1304d8 15249
aa6975fb
ILT
15250 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15251 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15252
15253 macro_build_lui (&ex, mips_gp_register);
15254 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15255 mips_gp_register, BFD_RELOC_LO16);
15256 }
f21f8242 15257
584892a6 15258 macro_end ();
6478892d 15259
8a75745d 15260 mips_assembling_insn = FALSE;
6478892d
TS
15261 demand_empty_rest_of_line ();
15262}
15263
15264static void
17a2f251 15265s_cplocal (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
15266{
15267 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
54f4ddb3 15268 .cplocal is ignored. */
6478892d
TS
15269 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15270 {
15271 s_ignore (0);
15272 return;
15273 }
15274
a276b80c
MR
15275 if (mips_opts.mips16)
15276 {
15277 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
15278 ignore_rest_of_line ();
15279 return;
15280 }
15281
6478892d 15282 mips_gp_register = tc_get_register (0);
85b51719 15283 demand_empty_rest_of_line ();
6478892d
TS
15284}
15285
252b5132
RH
15286/* Handle the .cprestore pseudo-op. This stores $gp into a given
15287 offset from $sp. The offset is remembered, and after making a PIC
15288 call $gp is restored from that location. */
15289
15290static void
17a2f251 15291s_cprestore (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15292{
15293 expressionS ex;
252b5132 15294
6478892d 15295 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
c9914766 15296 .cprestore is ignored. */
6478892d 15297 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
15298 {
15299 s_ignore (0);
15300 return;
15301 }
15302
a276b80c
MR
15303 if (mips_opts.mips16)
15304 {
15305 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
15306 ignore_rest_of_line ();
15307 return;
15308 }
15309
252b5132 15310 mips_cprestore_offset = get_absolute_expression ();
7a621144 15311 mips_cprestore_valid = 1;
252b5132
RH
15312
15313 ex.X_op = O_constant;
15314 ex.X_add_symbol = NULL;
15315 ex.X_op_symbol = NULL;
15316 ex.X_add_number = mips_cprestore_offset;
15317
8a75745d
MR
15318 mips_mark_labels ();
15319 mips_assembling_insn = TRUE;
15320
584892a6 15321 macro_start ();
67c0d1eb
RS
15322 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
15323 SP, HAVE_64BIT_ADDRESSES);
584892a6 15324 macro_end ();
252b5132 15325
8a75745d 15326 mips_assembling_insn = FALSE;
252b5132
RH
15327 demand_empty_rest_of_line ();
15328}
15329
6478892d 15330/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
67c1ffbe 15331 was given in the preceding .cpsetup, it results in:
6478892d 15332 ld $gp, offset($sp)
76b3015f 15333
6478892d 15334 If a register $reg2 was given there, it results in:
54f4ddb3
TS
15335 daddu $gp, $reg2, $0 */
15336
6478892d 15337static void
17a2f251 15338s_cpreturn (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
15339{
15340 expressionS ex;
6478892d
TS
15341
15342 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
15343 We also need NewABI support. */
15344 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15345 {
15346 s_ignore (0);
15347 return;
15348 }
15349
a276b80c
MR
15350 if (mips_opts.mips16)
15351 {
15352 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
15353 ignore_rest_of_line ();
15354 return;
15355 }
15356
8a75745d
MR
15357 mips_mark_labels ();
15358 mips_assembling_insn = TRUE;
15359
584892a6 15360 macro_start ();
6478892d
TS
15361 if (mips_cpreturn_register == -1)
15362 {
15363 ex.X_op = O_constant;
15364 ex.X_add_symbol = NULL;
15365 ex.X_op_symbol = NULL;
15366 ex.X_add_number = mips_cpreturn_offset;
15367
67c0d1eb 15368 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
6478892d
TS
15369 }
15370 else
67c0d1eb 15371 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
17a2f251 15372 mips_cpreturn_register, 0);
584892a6 15373 macro_end ();
6478892d 15374
8a75745d 15375 mips_assembling_insn = FALSE;
6478892d
TS
15376 demand_empty_rest_of_line ();
15377}
15378
d0f13682
CLT
15379/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
15380 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
15381 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
15382 debug information or MIPS16 TLS. */
741d6ea8
JM
15383
15384static void
d0f13682
CLT
15385s_tls_rel_directive (const size_t bytes, const char *dirstr,
15386 bfd_reloc_code_real_type rtype)
741d6ea8
JM
15387{
15388 expressionS ex;
15389 char *p;
15390
15391 expression (&ex);
15392
15393 if (ex.X_op != O_symbol)
15394 {
d0f13682 15395 as_bad (_("Unsupported use of %s"), dirstr);
741d6ea8
JM
15396 ignore_rest_of_line ();
15397 }
15398
15399 p = frag_more (bytes);
15400 md_number_to_chars (p, 0, bytes);
d0f13682 15401 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
741d6ea8 15402 demand_empty_rest_of_line ();
de64cffd 15403 mips_clear_insn_labels ();
741d6ea8
JM
15404}
15405
15406/* Handle .dtprelword. */
15407
15408static void
15409s_dtprelword (int ignore ATTRIBUTE_UNUSED)
15410{
d0f13682 15411 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
741d6ea8
JM
15412}
15413
15414/* Handle .dtpreldword. */
15415
15416static void
15417s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
15418{
d0f13682
CLT
15419 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
15420}
15421
15422/* Handle .tprelword. */
15423
15424static void
15425s_tprelword (int ignore ATTRIBUTE_UNUSED)
15426{
15427 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
15428}
15429
15430/* Handle .tpreldword. */
15431
15432static void
15433s_tpreldword (int ignore ATTRIBUTE_UNUSED)
15434{
15435 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
741d6ea8
JM
15436}
15437
6478892d
TS
15438/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
15439 code. It sets the offset to use in gp_rel relocations. */
15440
15441static void
17a2f251 15442s_gpvalue (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
15443{
15444 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
15445 We also need NewABI support. */
15446 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15447 {
15448 s_ignore (0);
15449 return;
15450 }
15451
def2e0dd 15452 mips_gprel_offset = get_absolute_expression ();
6478892d
TS
15453
15454 demand_empty_rest_of_line ();
15455}
15456
252b5132
RH
15457/* Handle the .gpword pseudo-op. This is used when generating PIC
15458 code. It generates a 32 bit GP relative reloc. */
15459
15460static void
17a2f251 15461s_gpword (int ignore ATTRIBUTE_UNUSED)
252b5132 15462{
a8dbcb85
TS
15463 segment_info_type *si;
15464 struct insn_label_list *l;
252b5132
RH
15465 expressionS ex;
15466 char *p;
15467
15468 /* When not generating PIC code, this is treated as .word. */
15469 if (mips_pic != SVR4_PIC)
15470 {
15471 s_cons (2);
15472 return;
15473 }
15474
a8dbcb85
TS
15475 si = seg_info (now_seg);
15476 l = si->label_list;
7d10b47d 15477 mips_emit_delays ();
252b5132 15478 if (auto_align)
462427c4 15479 mips_align (2, 0, l);
252b5132
RH
15480
15481 expression (&ex);
a1facbec 15482 mips_clear_insn_labels ();
252b5132
RH
15483
15484 if (ex.X_op != O_symbol || ex.X_add_number != 0)
15485 {
15486 as_bad (_("Unsupported use of .gpword"));
15487 ignore_rest_of_line ();
15488 }
15489
15490 p = frag_more (4);
17a2f251 15491 md_number_to_chars (p, 0, 4);
b34976b6 15492 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
cdf6fd85 15493 BFD_RELOC_GPREL32);
252b5132
RH
15494
15495 demand_empty_rest_of_line ();
15496}
15497
10181a0d 15498static void
17a2f251 15499s_gpdword (int ignore ATTRIBUTE_UNUSED)
10181a0d 15500{
a8dbcb85
TS
15501 segment_info_type *si;
15502 struct insn_label_list *l;
10181a0d
AO
15503 expressionS ex;
15504 char *p;
15505
15506 /* When not generating PIC code, this is treated as .dword. */
15507 if (mips_pic != SVR4_PIC)
15508 {
15509 s_cons (3);
15510 return;
15511 }
15512
a8dbcb85
TS
15513 si = seg_info (now_seg);
15514 l = si->label_list;
7d10b47d 15515 mips_emit_delays ();
10181a0d 15516 if (auto_align)
462427c4 15517 mips_align (3, 0, l);
10181a0d
AO
15518
15519 expression (&ex);
a1facbec 15520 mips_clear_insn_labels ();
10181a0d
AO
15521
15522 if (ex.X_op != O_symbol || ex.X_add_number != 0)
15523 {
15524 as_bad (_("Unsupported use of .gpdword"));
15525 ignore_rest_of_line ();
15526 }
15527
15528 p = frag_more (8);
17a2f251 15529 md_number_to_chars (p, 0, 8);
a105a300 15530 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
6e1304d8 15531 BFD_RELOC_GPREL32)->fx_tcbit = 1;
10181a0d
AO
15532
15533 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
6e1304d8
RS
15534 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
15535 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
10181a0d
AO
15536
15537 demand_empty_rest_of_line ();
15538}
15539
a3f278e2
CM
15540/* Handle the .ehword pseudo-op. This is used when generating unwinding
15541 tables. It generates a R_MIPS_EH reloc. */
15542
15543static void
15544s_ehword (int ignore ATTRIBUTE_UNUSED)
15545{
15546 expressionS ex;
15547 char *p;
15548
15549 mips_emit_delays ();
15550
15551 expression (&ex);
15552 mips_clear_insn_labels ();
15553
15554 if (ex.X_op != O_symbol || ex.X_add_number != 0)
15555 {
15556 as_bad (_("Unsupported use of .ehword"));
15557 ignore_rest_of_line ();
15558 }
15559
15560 p = frag_more (4);
15561 md_number_to_chars (p, 0, 4);
15562 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
15563 BFD_RELOC_MIPS_EH);
15564
15565 demand_empty_rest_of_line ();
15566}
15567
252b5132
RH
15568/* Handle the .cpadd pseudo-op. This is used when dealing with switch
15569 tables in SVR4 PIC code. */
15570
15571static void
17a2f251 15572s_cpadd (int ignore ATTRIBUTE_UNUSED)
252b5132 15573{
252b5132
RH
15574 int reg;
15575
10181a0d
AO
15576 /* This is ignored when not generating SVR4 PIC code. */
15577 if (mips_pic != SVR4_PIC)
252b5132
RH
15578 {
15579 s_ignore (0);
15580 return;
15581 }
15582
8a75745d
MR
15583 mips_mark_labels ();
15584 mips_assembling_insn = TRUE;
15585
252b5132 15586 /* Add $gp to the register named as an argument. */
584892a6 15587 macro_start ();
252b5132 15588 reg = tc_get_register (0);
67c0d1eb 15589 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
584892a6 15590 macro_end ();
252b5132 15591
8a75745d 15592 mips_assembling_insn = FALSE;
bdaaa2e1 15593 demand_empty_rest_of_line ();
252b5132
RH
15594}
15595
15596/* Handle the .insn pseudo-op. This marks instruction labels in
df58fc94 15597 mips16/micromips mode. This permits the linker to handle them specially,
252b5132
RH
15598 such as generating jalx instructions when needed. We also make
15599 them odd for the duration of the assembly, in order to generate the
15600 right sort of code. We will make them even in the adjust_symtab
15601 routine, while leaving them marked. This is convenient for the
15602 debugger and the disassembler. The linker knows to make them odd
15603 again. */
15604
15605static void
17a2f251 15606s_insn (int ignore ATTRIBUTE_UNUSED)
252b5132 15607{
df58fc94 15608 mips_mark_labels ();
252b5132
RH
15609
15610 demand_empty_rest_of_line ();
15611}
15612
ba92f887
MR
15613/* Handle the .nan pseudo-op. */
15614
15615static void
15616s_nan (int ignore ATTRIBUTE_UNUSED)
15617{
15618 static const char str_legacy[] = "legacy";
15619 static const char str_2008[] = "2008";
15620 size_t i;
15621
15622 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
15623
15624 if (i == sizeof (str_2008) - 1
15625 && memcmp (input_line_pointer, str_2008, i) == 0)
15626 mips_flag_nan2008 = TRUE;
15627 else if (i == sizeof (str_legacy) - 1
15628 && memcmp (input_line_pointer, str_legacy, i) == 0)
15629 mips_flag_nan2008 = FALSE;
15630 else
15631 as_bad (_("Bad .nan directive"));
15632
15633 input_line_pointer += i;
15634 demand_empty_rest_of_line ();
15635}
15636
754e2bb9
RS
15637/* Handle a .stab[snd] directive. Ideally these directives would be
15638 implemented in a transparent way, so that removing them would not
15639 have any effect on the generated instructions. However, s_stab
15640 internally changes the section, so in practice we need to decide
15641 now whether the preceding label marks compressed code. We do not
15642 support changing the compression mode of a label after a .stab*
15643 directive, such as in:
15644
15645 foo:
15646 .stabs ...
15647 .set mips16
15648
15649 so the current mode wins. */
252b5132
RH
15650
15651static void
17a2f251 15652s_mips_stab (int type)
252b5132 15653{
754e2bb9 15654 mips_mark_labels ();
252b5132
RH
15655 s_stab (type);
15656}
15657
54f4ddb3 15658/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
252b5132
RH
15659
15660static void
17a2f251 15661s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15662{
15663 char *name;
15664 int c;
15665 symbolS *symbolP;
15666 expressionS exp;
15667
15668 name = input_line_pointer;
15669 c = get_symbol_end ();
15670 symbolP = symbol_find_or_make (name);
15671 S_SET_WEAK (symbolP);
15672 *input_line_pointer = c;
15673
15674 SKIP_WHITESPACE ();
15675
15676 if (! is_end_of_line[(unsigned char) *input_line_pointer])
15677 {
15678 if (S_IS_DEFINED (symbolP))
15679 {
20203fb9 15680 as_bad (_("ignoring attempt to redefine symbol %s"),
252b5132
RH
15681 S_GET_NAME (symbolP));
15682 ignore_rest_of_line ();
15683 return;
15684 }
bdaaa2e1 15685
252b5132
RH
15686 if (*input_line_pointer == ',')
15687 {
15688 ++input_line_pointer;
15689 SKIP_WHITESPACE ();
15690 }
bdaaa2e1 15691
252b5132
RH
15692 expression (&exp);
15693 if (exp.X_op != O_symbol)
15694 {
20203fb9 15695 as_bad (_("bad .weakext directive"));
98d3f06f 15696 ignore_rest_of_line ();
252b5132
RH
15697 return;
15698 }
49309057 15699 symbol_set_value_expression (symbolP, &exp);
252b5132
RH
15700 }
15701
15702 demand_empty_rest_of_line ();
15703}
15704
15705/* Parse a register string into a number. Called from the ECOFF code
15706 to parse .frame. The argument is non-zero if this is the frame
15707 register, so that we can record it in mips_frame_reg. */
15708
15709int
17a2f251 15710tc_get_register (int frame)
252b5132 15711{
707bfff6 15712 unsigned int reg;
252b5132
RH
15713
15714 SKIP_WHITESPACE ();
707bfff6
TS
15715 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
15716 reg = 0;
252b5132 15717 if (frame)
7a621144
DJ
15718 {
15719 mips_frame_reg = reg != 0 ? reg : SP;
15720 mips_frame_reg_valid = 1;
15721 mips_cprestore_valid = 0;
15722 }
252b5132
RH
15723 return reg;
15724}
15725
15726valueT
17a2f251 15727md_section_align (asection *seg, valueT addr)
252b5132
RH
15728{
15729 int align = bfd_get_section_alignment (stdoutput, seg);
15730
f3ded42a
RS
15731 /* We don't need to align ELF sections to the full alignment.
15732 However, Irix 5 may prefer that we align them at least to a 16
15733 byte boundary. We don't bother to align the sections if we
15734 are targeted for an embedded system. */
15735 if (strncmp (TARGET_OS, "elf", 3) == 0)
15736 return addr;
15737 if (align > 4)
15738 align = 4;
252b5132
RH
15739
15740 return ((addr + (1 << align) - 1) & (-1 << align));
15741}
15742
15743/* Utility routine, called from above as well. If called while the
15744 input file is still being read, it's only an approximation. (For
15745 example, a symbol may later become defined which appeared to be
15746 undefined earlier.) */
15747
15748static int
17a2f251 15749nopic_need_relax (symbolS *sym, int before_relaxing)
252b5132
RH
15750{
15751 if (sym == 0)
15752 return 0;
15753
4d0d148d 15754 if (g_switch_value > 0)
252b5132
RH
15755 {
15756 const char *symname;
15757 int change;
15758
c9914766 15759 /* Find out whether this symbol can be referenced off the $gp
252b5132
RH
15760 register. It can be if it is smaller than the -G size or if
15761 it is in the .sdata or .sbss section. Certain symbols can
c9914766 15762 not be referenced off the $gp, although it appears as though
252b5132
RH
15763 they can. */
15764 symname = S_GET_NAME (sym);
15765 if (symname != (const char *) NULL
15766 && (strcmp (symname, "eprol") == 0
15767 || strcmp (symname, "etext") == 0
15768 || strcmp (symname, "_gp") == 0
15769 || strcmp (symname, "edata") == 0
15770 || strcmp (symname, "_fbss") == 0
15771 || strcmp (symname, "_fdata") == 0
15772 || strcmp (symname, "_ftext") == 0
15773 || strcmp (symname, "end") == 0
15774 || strcmp (symname, "_gp_disp") == 0))
15775 change = 1;
15776 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
15777 && (0
15778#ifndef NO_ECOFF_DEBUGGING
49309057
ILT
15779 || (symbol_get_obj (sym)->ecoff_extern_size != 0
15780 && (symbol_get_obj (sym)->ecoff_extern_size
15781 <= g_switch_value))
252b5132
RH
15782#endif
15783 /* We must defer this decision until after the whole
15784 file has been read, since there might be a .extern
15785 after the first use of this symbol. */
15786 || (before_relaxing
15787#ifndef NO_ECOFF_DEBUGGING
49309057 15788 && symbol_get_obj (sym)->ecoff_extern_size == 0
252b5132
RH
15789#endif
15790 && S_GET_VALUE (sym) == 0)
15791 || (S_GET_VALUE (sym) != 0
15792 && S_GET_VALUE (sym) <= g_switch_value)))
15793 change = 0;
15794 else
15795 {
15796 const char *segname;
15797
15798 segname = segment_name (S_GET_SEGMENT (sym));
9c2799c2 15799 gas_assert (strcmp (segname, ".lit8") != 0
252b5132
RH
15800 && strcmp (segname, ".lit4") != 0);
15801 change = (strcmp (segname, ".sdata") != 0
fba2b7f9
GK
15802 && strcmp (segname, ".sbss") != 0
15803 && strncmp (segname, ".sdata.", 7) != 0
d4dc2f22
TS
15804 && strncmp (segname, ".sbss.", 6) != 0
15805 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
fba2b7f9 15806 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
252b5132
RH
15807 }
15808 return change;
15809 }
15810 else
c9914766 15811 /* We are not optimizing for the $gp register. */
252b5132
RH
15812 return 1;
15813}
15814
5919d012
RS
15815
15816/* Return true if the given symbol should be considered local for SVR4 PIC. */
15817
15818static bfd_boolean
17a2f251 15819pic_need_relax (symbolS *sym, asection *segtype)
5919d012
RS
15820{
15821 asection *symsec;
5919d012
RS
15822
15823 /* Handle the case of a symbol equated to another symbol. */
15824 while (symbol_equated_reloc_p (sym))
15825 {
15826 symbolS *n;
15827
5f0fe04b 15828 /* It's possible to get a loop here in a badly written program. */
5919d012
RS
15829 n = symbol_get_value_expression (sym)->X_add_symbol;
15830 if (n == sym)
15831 break;
15832 sym = n;
15833 }
15834
df1f3cda
DD
15835 if (symbol_section_p (sym))
15836 return TRUE;
15837
5919d012
RS
15838 symsec = S_GET_SEGMENT (sym);
15839
5919d012 15840 /* This must duplicate the test in adjust_reloc_syms. */
45dfa85a
AM
15841 return (!bfd_is_und_section (symsec)
15842 && !bfd_is_abs_section (symsec)
5f0fe04b
TS
15843 && !bfd_is_com_section (symsec)
15844 && !s_is_linkonce (sym, segtype)
5919d012 15845 /* A global or weak symbol is treated as external. */
f3ded42a 15846 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
5919d012
RS
15847}
15848
15849
252b5132
RH
15850/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
15851 extended opcode. SEC is the section the frag is in. */
15852
15853static int
17a2f251 15854mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
252b5132
RH
15855{
15856 int type;
3ccad066 15857 const struct mips_int_operand *operand;
252b5132 15858 offsetT val;
252b5132 15859 segT symsec;
98aa84af 15860 fragS *sym_frag;
252b5132
RH
15861
15862 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
15863 return 0;
15864 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
15865 return 1;
15866
15867 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 15868 operand = mips16_immed_operand (type, FALSE);
252b5132 15869
98aa84af 15870 sym_frag = symbol_get_frag (fragp->fr_symbol);
ac62c346 15871 val = S_GET_VALUE (fragp->fr_symbol);
98aa84af 15872 symsec = S_GET_SEGMENT (fragp->fr_symbol);
252b5132 15873
3ccad066 15874 if (operand->root.type == OP_PCREL)
252b5132 15875 {
3ccad066 15876 const struct mips_pcrel_operand *pcrel_op;
252b5132 15877 addressT addr;
3ccad066 15878 offsetT maxtiny;
252b5132
RH
15879
15880 /* We won't have the section when we are called from
15881 mips_relax_frag. However, we will always have been called
15882 from md_estimate_size_before_relax first. If this is a
15883 branch to a different section, we mark it as such. If SEC is
15884 NULL, and the frag is not marked, then it must be a branch to
15885 the same section. */
3ccad066 15886 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
15887 if (sec == NULL)
15888 {
15889 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
15890 return 1;
15891 }
15892 else
15893 {
98aa84af 15894 /* Must have been called from md_estimate_size_before_relax. */
252b5132
RH
15895 if (symsec != sec)
15896 {
15897 fragp->fr_subtype =
15898 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
15899
15900 /* FIXME: We should support this, and let the linker
15901 catch branches and loads that are out of range. */
15902 as_bad_where (fragp->fr_file, fragp->fr_line,
15903 _("unsupported PC relative reference to different section"));
15904
15905 return 1;
15906 }
98aa84af
AM
15907 if (fragp != sym_frag && sym_frag->fr_address == 0)
15908 /* Assume non-extended on the first relaxation pass.
15909 The address we have calculated will be bogus if this is
15910 a forward branch to another frag, as the forward frag
15911 will have fr_address == 0. */
15912 return 0;
252b5132
RH
15913 }
15914
15915 /* In this case, we know for sure that the symbol fragment is in
98aa84af
AM
15916 the same section. If the relax_marker of the symbol fragment
15917 differs from the relax_marker of this fragment, we have not
15918 yet adjusted the symbol fragment fr_address. We want to add
252b5132
RH
15919 in STRETCH in order to get a better estimate of the address.
15920 This particularly matters because of the shift bits. */
15921 if (stretch != 0
98aa84af 15922 && sym_frag->relax_marker != fragp->relax_marker)
252b5132
RH
15923 {
15924 fragS *f;
15925
15926 /* Adjust stretch for any alignment frag. Note that if have
15927 been expanding the earlier code, the symbol may be
15928 defined in what appears to be an earlier frag. FIXME:
15929 This doesn't handle the fr_subtype field, which specifies
15930 a maximum number of bytes to skip when doing an
15931 alignment. */
98aa84af 15932 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
252b5132
RH
15933 {
15934 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
15935 {
15936 if (stretch < 0)
15937 stretch = - ((- stretch)
15938 & ~ ((1 << (int) f->fr_offset) - 1));
15939 else
15940 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
15941 if (stretch == 0)
15942 break;
15943 }
15944 }
15945 if (f != NULL)
15946 val += stretch;
15947 }
15948
15949 addr = fragp->fr_address + fragp->fr_fix;
15950
15951 /* The base address rules are complicated. The base address of
15952 a branch is the following instruction. The base address of a
15953 PC relative load or add is the instruction itself, but if it
15954 is in a delay slot (in which case it can not be extended) use
15955 the address of the instruction whose delay slot it is in. */
3ccad066 15956 if (pcrel_op->include_isa_bit)
252b5132
RH
15957 {
15958 addr += 2;
15959
15960 /* If we are currently assuming that this frag should be
15961 extended, then, the current address is two bytes
bdaaa2e1 15962 higher. */
252b5132
RH
15963 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
15964 addr += 2;
15965
15966 /* Ignore the low bit in the target, since it will be set
15967 for a text label. */
3ccad066 15968 val &= -2;
252b5132
RH
15969 }
15970 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
15971 addr -= 4;
15972 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
15973 addr -= 2;
15974
3ccad066 15975 val -= addr & -(1 << pcrel_op->align_log2);
252b5132
RH
15976
15977 /* If any of the shifted bits are set, we must use an extended
15978 opcode. If the address depends on the size of this
15979 instruction, this can lead to a loop, so we arrange to always
15980 use an extended opcode. We only check this when we are in
15981 the main relaxation loop, when SEC is NULL. */
3ccad066 15982 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
252b5132
RH
15983 {
15984 fragp->fr_subtype =
15985 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
15986 return 1;
15987 }
15988
15989 /* If we are about to mark a frag as extended because the value
3ccad066
RS
15990 is precisely the next value above maxtiny, then there is a
15991 chance of an infinite loop as in the following code:
252b5132
RH
15992 la $4,foo
15993 .skip 1020
15994 .align 2
15995 foo:
15996 In this case when the la is extended, foo is 0x3fc bytes
15997 away, so the la can be shrunk, but then foo is 0x400 away, so
15998 the la must be extended. To avoid this loop, we mark the
15999 frag as extended if it was small, and is about to become
3ccad066
RS
16000 extended with the next value above maxtiny. */
16001 maxtiny = mips_int_operand_max (operand);
16002 if (val == maxtiny + (1 << operand->shift)
252b5132
RH
16003 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16004 && sec == NULL)
16005 {
16006 fragp->fr_subtype =
16007 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16008 return 1;
16009 }
16010 }
16011 else if (symsec != absolute_section && sec != NULL)
16012 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16013
3ccad066 16014 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
252b5132
RH
16015}
16016
4a6a3df4
AO
16017/* Compute the length of a branch sequence, and adjust the
16018 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16019 worst-case length is computed, with UPDATE being used to indicate
16020 whether an unconditional (-1), branch-likely (+1) or regular (0)
16021 branch is to be computed. */
16022static int
17a2f251 16023relaxed_branch_length (fragS *fragp, asection *sec, int update)
4a6a3df4 16024{
b34976b6 16025 bfd_boolean toofar;
4a6a3df4
AO
16026 int length;
16027
16028 if (fragp
16029 && S_IS_DEFINED (fragp->fr_symbol)
16030 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16031 {
16032 addressT addr;
16033 offsetT val;
16034
16035 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16036
16037 addr = fragp->fr_address + fragp->fr_fix + 4;
16038
16039 val -= addr;
16040
16041 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16042 }
16043 else if (fragp)
16044 /* If the symbol is not defined or it's in a different segment,
16045 assume the user knows what's going on and emit a short
16046 branch. */
b34976b6 16047 toofar = FALSE;
4a6a3df4 16048 else
b34976b6 16049 toofar = TRUE;
4a6a3df4
AO
16050
16051 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16052 fragp->fr_subtype
66b3e8da
MR
16053 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16054 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
4a6a3df4
AO
16055 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16056 RELAX_BRANCH_LINK (fragp->fr_subtype),
16057 toofar);
16058
16059 length = 4;
16060 if (toofar)
16061 {
16062 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16063 length += 8;
16064
16065 if (mips_pic != NO_PIC)
16066 {
16067 /* Additional space for PIC loading of target address. */
16068 length += 8;
16069 if (mips_opts.isa == ISA_MIPS1)
16070 /* Additional space for $at-stabilizing nop. */
16071 length += 4;
16072 }
16073
16074 /* If branch is conditional. */
16075 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16076 length += 8;
16077 }
b34976b6 16078
4a6a3df4
AO
16079 return length;
16080}
16081
df58fc94
RS
16082/* Compute the length of a branch sequence, and adjust the
16083 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16084 worst-case length is computed, with UPDATE being used to indicate
16085 whether an unconditional (-1), or regular (0) branch is to be
16086 computed. */
16087
16088static int
16089relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16090{
16091 bfd_boolean toofar;
16092 int length;
16093
16094 if (fragp
16095 && S_IS_DEFINED (fragp->fr_symbol)
16096 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16097 {
16098 addressT addr;
16099 offsetT val;
16100
16101 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16102 /* Ignore the low bit in the target, since it will be set
16103 for a text label. */
16104 if ((val & 1) != 0)
16105 --val;
16106
16107 addr = fragp->fr_address + fragp->fr_fix + 4;
16108
16109 val -= addr;
16110
16111 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16112 }
16113 else if (fragp)
16114 /* If the symbol is not defined or it's in a different segment,
16115 assume the user knows what's going on and emit a short
16116 branch. */
16117 toofar = FALSE;
16118 else
16119 toofar = TRUE;
16120
16121 if (fragp && update
16122 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16123 fragp->fr_subtype = (toofar
16124 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16125 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16126
16127 length = 4;
16128 if (toofar)
16129 {
16130 bfd_boolean compact_known = fragp != NULL;
16131 bfd_boolean compact = FALSE;
16132 bfd_boolean uncond;
16133
16134 if (compact_known)
16135 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16136 if (fragp)
16137 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16138 else
16139 uncond = update < 0;
16140
16141 /* If label is out of range, we turn branch <br>:
16142
16143 <br> label # 4 bytes
16144 0:
16145
16146 into:
16147
16148 j label # 4 bytes
16149 nop # 2 bytes if compact && !PIC
16150 0:
16151 */
16152 if (mips_pic == NO_PIC && (!compact_known || compact))
16153 length += 2;
16154
16155 /* If assembling PIC code, we further turn:
16156
16157 j label # 4 bytes
16158
16159 into:
16160
16161 lw/ld at, %got(label)(gp) # 4 bytes
16162 d/addiu at, %lo(label) # 4 bytes
16163 jr/c at # 2 bytes
16164 */
16165 if (mips_pic != NO_PIC)
16166 length += 6;
16167
16168 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16169
16170 <brneg> 0f # 4 bytes
16171 nop # 2 bytes if !compact
16172 */
16173 if (!uncond)
16174 length += (compact_known && compact) ? 4 : 6;
16175 }
16176
16177 return length;
16178}
16179
16180/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16181 bit accordingly. */
16182
16183static int
16184relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16185{
16186 bfd_boolean toofar;
16187
df58fc94
RS
16188 if (fragp
16189 && S_IS_DEFINED (fragp->fr_symbol)
16190 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16191 {
16192 addressT addr;
16193 offsetT val;
16194 int type;
16195
16196 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16197 /* Ignore the low bit in the target, since it will be set
16198 for a text label. */
16199 if ((val & 1) != 0)
16200 --val;
16201
16202 /* Assume this is a 2-byte branch. */
16203 addr = fragp->fr_address + fragp->fr_fix + 2;
16204
16205 /* We try to avoid the infinite loop by not adding 2 more bytes for
16206 long branches. */
16207
16208 val -= addr;
16209
16210 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16211 if (type == 'D')
16212 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
16213 else if (type == 'E')
16214 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
16215 else
16216 abort ();
16217 }
16218 else
16219 /* If the symbol is not defined or it's in a different segment,
16220 we emit a normal 32-bit branch. */
16221 toofar = TRUE;
16222
16223 if (fragp && update
16224 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16225 fragp->fr_subtype
16226 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
16227 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
16228
16229 if (toofar)
16230 return 4;
16231
16232 return 2;
16233}
16234
252b5132
RH
16235/* Estimate the size of a frag before relaxing. Unless this is the
16236 mips16, we are not really relaxing here, and the final size is
16237 encoded in the subtype information. For the mips16, we have to
16238 decide whether we are using an extended opcode or not. */
16239
252b5132 16240int
17a2f251 16241md_estimate_size_before_relax (fragS *fragp, asection *segtype)
252b5132 16242{
5919d012 16243 int change;
252b5132 16244
4a6a3df4
AO
16245 if (RELAX_BRANCH_P (fragp->fr_subtype))
16246 {
16247
b34976b6
AM
16248 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
16249
4a6a3df4
AO
16250 return fragp->fr_var;
16251 }
16252
252b5132 16253 if (RELAX_MIPS16_P (fragp->fr_subtype))
177b4a6a
AO
16254 /* We don't want to modify the EXTENDED bit here; it might get us
16255 into infinite loops. We change it only in mips_relax_frag(). */
16256 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
252b5132 16257
df58fc94
RS
16258 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
16259 {
16260 int length = 4;
16261
16262 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
16263 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
16264 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
16265 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
16266 fragp->fr_var = length;
16267
16268 return length;
16269 }
16270
252b5132 16271 if (mips_pic == NO_PIC)
5919d012 16272 change = nopic_need_relax (fragp->fr_symbol, 0);
252b5132 16273 else if (mips_pic == SVR4_PIC)
5919d012 16274 change = pic_need_relax (fragp->fr_symbol, segtype);
0a44bf69
RS
16275 else if (mips_pic == VXWORKS_PIC)
16276 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
16277 change = 0;
252b5132
RH
16278 else
16279 abort ();
16280
16281 if (change)
16282 {
4d7206a2 16283 fragp->fr_subtype |= RELAX_USE_SECOND;
4d7206a2 16284 return -RELAX_FIRST (fragp->fr_subtype);
252b5132 16285 }
4d7206a2
RS
16286 else
16287 return -RELAX_SECOND (fragp->fr_subtype);
252b5132
RH
16288}
16289
16290/* This is called to see whether a reloc against a defined symbol
de7e6852 16291 should be converted into a reloc against a section. */
252b5132
RH
16292
16293int
17a2f251 16294mips_fix_adjustable (fixS *fixp)
252b5132 16295{
252b5132
RH
16296 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
16297 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
16298 return 0;
a161fe53 16299
252b5132
RH
16300 if (fixp->fx_addsy == NULL)
16301 return 1;
a161fe53 16302
de7e6852
RS
16303 /* If symbol SYM is in a mergeable section, relocations of the form
16304 SYM + 0 can usually be made section-relative. The mergeable data
16305 is then identified by the section offset rather than by the symbol.
16306
16307 However, if we're generating REL LO16 relocations, the offset is split
16308 between the LO16 and parterning high part relocation. The linker will
16309 need to recalculate the complete offset in order to correctly identify
16310 the merge data.
16311
16312 The linker has traditionally not looked for the parterning high part
16313 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
16314 placed anywhere. Rather than break backwards compatibility by changing
16315 this, it seems better not to force the issue, and instead keep the
16316 original symbol. This will work with either linker behavior. */
738e5348 16317 if ((lo16_reloc_p (fixp->fx_r_type)
704803a9 16318 || reloc_needs_lo_p (fixp->fx_r_type))
de7e6852
RS
16319 && HAVE_IN_PLACE_ADDENDS
16320 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
16321 return 0;
16322
ce70d90a 16323 /* There is no place to store an in-place offset for JALR relocations.
2de39019
CM
16324 Likewise an in-range offset of limited PC-relative relocations may
16325 overflow the in-place relocatable field if recalculated against the
16326 start address of the symbol's containing section. */
ce70d90a 16327 if (HAVE_IN_PLACE_ADDENDS
2de39019
CM
16328 && (limited_pcrel_reloc_p (fixp->fx_r_type)
16329 || jalr_reloc_p (fixp->fx_r_type)))
1180b5a4
RS
16330 return 0;
16331
b314ec0e
RS
16332 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
16333 to a floating-point stub. The same is true for non-R_MIPS16_26
16334 relocations against MIPS16 functions; in this case, the stub becomes
16335 the function's canonical address.
16336
16337 Floating-point stubs are stored in unique .mips16.call.* or
16338 .mips16.fn.* sections. If a stub T for function F is in section S,
16339 the first relocation in section S must be against F; this is how the
16340 linker determines the target function. All relocations that might
16341 resolve to T must also be against F. We therefore have the following
16342 restrictions, which are given in an intentionally-redundant way:
16343
16344 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
16345 symbols.
16346
16347 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
16348 if that stub might be used.
16349
16350 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
16351 symbols.
16352
16353 4. We cannot reduce a stub's relocations against MIPS16 symbols if
16354 that stub might be used.
16355
16356 There is a further restriction:
16357
df58fc94
RS
16358 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
16359 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
16360 targets with in-place addends; the relocation field cannot
b314ec0e
RS
16361 encode the low bit.
16362
df58fc94
RS
16363 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
16364 against a MIPS16 symbol. We deal with (5) by by not reducing any
16365 such relocations on REL targets.
b314ec0e
RS
16366
16367 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
16368 relocation against some symbol R, no relocation against R may be
16369 reduced. (Note that this deals with (2) as well as (1) because
16370 relocations against global symbols will never be reduced on ELF
16371 targets.) This approach is a little simpler than trying to detect
16372 stub sections, and gives the "all or nothing" per-symbol consistency
16373 that we have for MIPS16 symbols. */
f3ded42a 16374 if (fixp->fx_subsy == NULL
30c09090 16375 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
df58fc94
RS
16376 || *symbol_get_tc (fixp->fx_addsy)
16377 || (HAVE_IN_PLACE_ADDENDS
16378 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
16379 && jmp_reloc_p (fixp->fx_r_type))))
252b5132 16380 return 0;
a161fe53 16381
252b5132
RH
16382 return 1;
16383}
16384
16385/* Translate internal representation of relocation info to BFD target
16386 format. */
16387
16388arelent **
17a2f251 16389tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
16390{
16391 static arelent *retval[4];
16392 arelent *reloc;
16393 bfd_reloc_code_real_type code;
16394
4b0cff4e
TS
16395 memset (retval, 0, sizeof(retval));
16396 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
49309057
ILT
16397 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
16398 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
16399 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
16400
bad36eac
DJ
16401 if (fixp->fx_pcrel)
16402 {
df58fc94
RS
16403 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
16404 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
16405 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6
CM
16406 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
16407 || fixp->fx_r_type == BFD_RELOC_32_PCREL);
bad36eac
DJ
16408
16409 /* At this point, fx_addnumber is "symbol offset - pcrel address".
16410 Relocations want only the symbol offset. */
16411 reloc->addend = fixp->fx_addnumber + reloc->address;
bad36eac
DJ
16412 }
16413 else
16414 reloc->addend = fixp->fx_addnumber;
252b5132 16415
438c16b8
TS
16416 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
16417 entry to be used in the relocation's section offset. */
16418 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
252b5132
RH
16419 {
16420 reloc->address = reloc->addend;
16421 reloc->addend = 0;
16422 }
16423
252b5132 16424 code = fixp->fx_r_type;
252b5132 16425
bad36eac 16426 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
252b5132
RH
16427 if (reloc->howto == NULL)
16428 {
16429 as_bad_where (fixp->fx_file, fixp->fx_line,
16430 _("Can not represent %s relocation in this object file format"),
16431 bfd_get_reloc_code_name (code));
16432 retval[0] = NULL;
16433 }
16434
16435 return retval;
16436}
16437
16438/* Relax a machine dependent frag. This returns the amount by which
16439 the current size of the frag should change. */
16440
16441int
17a2f251 16442mips_relax_frag (asection *sec, fragS *fragp, long stretch)
252b5132 16443{
4a6a3df4
AO
16444 if (RELAX_BRANCH_P (fragp->fr_subtype))
16445 {
16446 offsetT old_var = fragp->fr_var;
b34976b6
AM
16447
16448 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
4a6a3df4
AO
16449
16450 return fragp->fr_var - old_var;
16451 }
16452
df58fc94
RS
16453 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
16454 {
16455 offsetT old_var = fragp->fr_var;
16456 offsetT new_var = 4;
16457
16458 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
16459 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
16460 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
16461 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
16462 fragp->fr_var = new_var;
16463
16464 return new_var - old_var;
16465 }
16466
252b5132
RH
16467 if (! RELAX_MIPS16_P (fragp->fr_subtype))
16468 return 0;
16469
c4e7957c 16470 if (mips16_extended_frag (fragp, NULL, stretch))
252b5132
RH
16471 {
16472 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16473 return 0;
16474 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
16475 return 2;
16476 }
16477 else
16478 {
16479 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16480 return 0;
16481 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
16482 return -2;
16483 }
16484
16485 return 0;
16486}
16487
16488/* Convert a machine dependent frag. */
16489
16490void
17a2f251 16491md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
252b5132 16492{
4a6a3df4
AO
16493 if (RELAX_BRANCH_P (fragp->fr_subtype))
16494 {
4d68580a 16495 char *buf;
4a6a3df4
AO
16496 unsigned long insn;
16497 expressionS exp;
16498 fixS *fixp;
b34976b6 16499
4d68580a
RS
16500 buf = fragp->fr_literal + fragp->fr_fix;
16501 insn = read_insn (buf);
b34976b6 16502
4a6a3df4
AO
16503 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16504 {
16505 /* We generate a fixup instead of applying it right now
16506 because, if there are linker relaxations, we're going to
16507 need the relocations. */
16508 exp.X_op = O_symbol;
16509 exp.X_add_symbol = fragp->fr_symbol;
16510 exp.X_add_number = fragp->fr_offset;
16511
4d68580a
RS
16512 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
16513 BFD_RELOC_16_PCREL_S2);
4a6a3df4
AO
16514 fixp->fx_file = fragp->fr_file;
16515 fixp->fx_line = fragp->fr_line;
b34976b6 16516
4d68580a 16517 buf = write_insn (buf, insn);
4a6a3df4
AO
16518 }
16519 else
16520 {
16521 int i;
16522
16523 as_warn_where (fragp->fr_file, fragp->fr_line,
5c4f07ba 16524 _("Relaxed out-of-range branch into a jump"));
4a6a3df4
AO
16525
16526 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
16527 goto uncond;
16528
16529 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
16530 {
16531 /* Reverse the branch. */
16532 switch ((insn >> 28) & 0xf)
16533 {
16534 case 4:
3bf0dbfb
MR
16535 /* bc[0-3][tf]l? instructions can have the condition
16536 reversed by tweaking a single TF bit, and their
16537 opcodes all have 0x4???????. */
16538 gas_assert ((insn & 0xf3e00000) == 0x41000000);
4a6a3df4
AO
16539 insn ^= 0x00010000;
16540 break;
16541
16542 case 0:
16543 /* bltz 0x04000000 bgez 0x04010000
54f4ddb3 16544 bltzal 0x04100000 bgezal 0x04110000 */
9c2799c2 16545 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
4a6a3df4
AO
16546 insn ^= 0x00010000;
16547 break;
b34976b6 16548
4a6a3df4
AO
16549 case 1:
16550 /* beq 0x10000000 bne 0x14000000
54f4ddb3 16551 blez 0x18000000 bgtz 0x1c000000 */
4a6a3df4
AO
16552 insn ^= 0x04000000;
16553 break;
16554
16555 default:
16556 abort ();
16557 }
16558 }
16559
16560 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
16561 {
16562 /* Clear the and-link bit. */
9c2799c2 16563 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
4a6a3df4 16564
54f4ddb3
TS
16565 /* bltzal 0x04100000 bgezal 0x04110000
16566 bltzall 0x04120000 bgezall 0x04130000 */
4a6a3df4
AO
16567 insn &= ~0x00100000;
16568 }
16569
16570 /* Branch over the branch (if the branch was likely) or the
16571 full jump (not likely case). Compute the offset from the
16572 current instruction to branch to. */
16573 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
16574 i = 16;
16575 else
16576 {
16577 /* How many bytes in instructions we've already emitted? */
4d68580a 16578 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
16579 /* How many bytes in instructions from here to the end? */
16580 i = fragp->fr_var - i;
16581 }
16582 /* Convert to instruction count. */
16583 i >>= 2;
16584 /* Branch counts from the next instruction. */
b34976b6 16585 i--;
4a6a3df4
AO
16586 insn |= i;
16587 /* Branch over the jump. */
4d68580a 16588 buf = write_insn (buf, insn);
4a6a3df4 16589
54f4ddb3 16590 /* nop */
4d68580a 16591 buf = write_insn (buf, 0);
4a6a3df4
AO
16592
16593 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
16594 {
16595 /* beql $0, $0, 2f */
16596 insn = 0x50000000;
16597 /* Compute the PC offset from the current instruction to
16598 the end of the variable frag. */
16599 /* How many bytes in instructions we've already emitted? */
4d68580a 16600 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
16601 /* How many bytes in instructions from here to the end? */
16602 i = fragp->fr_var - i;
16603 /* Convert to instruction count. */
16604 i >>= 2;
16605 /* Don't decrement i, because we want to branch over the
16606 delay slot. */
4a6a3df4 16607 insn |= i;
4a6a3df4 16608
4d68580a
RS
16609 buf = write_insn (buf, insn);
16610 buf = write_insn (buf, 0);
4a6a3df4
AO
16611 }
16612
16613 uncond:
16614 if (mips_pic == NO_PIC)
16615 {
16616 /* j or jal. */
16617 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
16618 ? 0x0c000000 : 0x08000000);
16619 exp.X_op = O_symbol;
16620 exp.X_add_symbol = fragp->fr_symbol;
16621 exp.X_add_number = fragp->fr_offset;
16622
4d68580a
RS
16623 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
16624 FALSE, BFD_RELOC_MIPS_JMP);
4a6a3df4
AO
16625 fixp->fx_file = fragp->fr_file;
16626 fixp->fx_line = fragp->fr_line;
16627
4d68580a 16628 buf = write_insn (buf, insn);
4a6a3df4
AO
16629 }
16630 else
16631 {
66b3e8da
MR
16632 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
16633
4a6a3df4 16634 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
66b3e8da
MR
16635 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
16636 insn |= at << OP_SH_RT;
4a6a3df4
AO
16637 exp.X_op = O_symbol;
16638 exp.X_add_symbol = fragp->fr_symbol;
16639 exp.X_add_number = fragp->fr_offset;
16640
16641 if (fragp->fr_offset)
16642 {
16643 exp.X_add_symbol = make_expr_symbol (&exp);
16644 exp.X_add_number = 0;
16645 }
16646
4d68580a
RS
16647 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
16648 FALSE, BFD_RELOC_MIPS_GOT16);
4a6a3df4
AO
16649 fixp->fx_file = fragp->fr_file;
16650 fixp->fx_line = fragp->fr_line;
16651
4d68580a 16652 buf = write_insn (buf, insn);
b34976b6 16653
4a6a3df4 16654 if (mips_opts.isa == ISA_MIPS1)
4d68580a
RS
16655 /* nop */
16656 buf = write_insn (buf, 0);
4a6a3df4
AO
16657
16658 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
66b3e8da
MR
16659 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
16660 insn |= at << OP_SH_RS | at << OP_SH_RT;
4a6a3df4 16661
4d68580a
RS
16662 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
16663 FALSE, BFD_RELOC_LO16);
4a6a3df4
AO
16664 fixp->fx_file = fragp->fr_file;
16665 fixp->fx_line = fragp->fr_line;
b34976b6 16666
4d68580a 16667 buf = write_insn (buf, insn);
4a6a3df4
AO
16668
16669 /* j(al)r $at. */
16670 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
66b3e8da 16671 insn = 0x0000f809;
4a6a3df4 16672 else
66b3e8da
MR
16673 insn = 0x00000008;
16674 insn |= at << OP_SH_RS;
4a6a3df4 16675
4d68580a 16676 buf = write_insn (buf, insn);
4a6a3df4
AO
16677 }
16678 }
16679
4a6a3df4 16680 fragp->fr_fix += fragp->fr_var;
4d68580a 16681 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
4a6a3df4
AO
16682 return;
16683 }
16684
df58fc94
RS
16685 /* Relax microMIPS branches. */
16686 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
16687 {
4d68580a 16688 char *buf = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
16689 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16690 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
16691 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
2309ddf2 16692 bfd_boolean short_ds;
df58fc94
RS
16693 unsigned long insn;
16694 expressionS exp;
16695 fixS *fixp;
16696
16697 exp.X_op = O_symbol;
16698 exp.X_add_symbol = fragp->fr_symbol;
16699 exp.X_add_number = fragp->fr_offset;
16700
16701 fragp->fr_fix += fragp->fr_var;
16702
16703 /* Handle 16-bit branches that fit or are forced to fit. */
16704 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16705 {
16706 /* We generate a fixup instead of applying it right now,
16707 because if there is linker relaxation, we're going to
16708 need the relocations. */
16709 if (type == 'D')
4d68580a 16710 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
16711 BFD_RELOC_MICROMIPS_10_PCREL_S1);
16712 else if (type == 'E')
4d68580a 16713 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
16714 BFD_RELOC_MICROMIPS_7_PCREL_S1);
16715 else
16716 abort ();
16717
16718 fixp->fx_file = fragp->fr_file;
16719 fixp->fx_line = fragp->fr_line;
16720
16721 /* These relocations can have an addend that won't fit in
16722 2 octets. */
16723 fixp->fx_no_overflow = 1;
16724
16725 return;
16726 }
16727
2309ddf2 16728 /* Handle 32-bit branches that fit or are forced to fit. */
df58fc94
RS
16729 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
16730 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16731 {
16732 /* We generate a fixup instead of applying it right now,
16733 because if there is linker relaxation, we're going to
16734 need the relocations. */
4d68580a
RS
16735 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
16736 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
16737 fixp->fx_file = fragp->fr_file;
16738 fixp->fx_line = fragp->fr_line;
16739
16740 if (type == 0)
16741 return;
16742 }
16743
16744 /* Relax 16-bit branches to 32-bit branches. */
16745 if (type != 0)
16746 {
4d68580a 16747 insn = read_compressed_insn (buf, 2);
df58fc94
RS
16748
16749 if ((insn & 0xfc00) == 0xcc00) /* b16 */
16750 insn = 0x94000000; /* beq */
16751 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
16752 {
16753 unsigned long regno;
16754
16755 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
16756 regno = micromips_to_32_reg_d_map [regno];
16757 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
16758 insn |= regno << MICROMIPSOP_SH_RS;
16759 }
16760 else
16761 abort ();
16762
16763 /* Nothing else to do, just write it out. */
16764 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
16765 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16766 {
4d68580a
RS
16767 buf = write_compressed_insn (buf, insn, 4);
16768 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
16769 return;
16770 }
16771 }
16772 else
4d68580a 16773 insn = read_compressed_insn (buf, 4);
df58fc94
RS
16774
16775 /* Relax 32-bit branches to a sequence of instructions. */
16776 as_warn_where (fragp->fr_file, fragp->fr_line,
16777 _("Relaxed out-of-range branch into a jump"));
16778
2309ddf2
MR
16779 /* Set the short-delay-slot bit. */
16780 short_ds = al && (insn & 0x02000000) != 0;
df58fc94
RS
16781
16782 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
16783 {
16784 symbolS *l;
16785
16786 /* Reverse the branch. */
16787 if ((insn & 0xfc000000) == 0x94000000 /* beq */
16788 || (insn & 0xfc000000) == 0xb4000000) /* bne */
16789 insn ^= 0x20000000;
16790 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
16791 || (insn & 0xffe00000) == 0x40400000 /* bgez */
16792 || (insn & 0xffe00000) == 0x40800000 /* blez */
16793 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
16794 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
16795 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
16796 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
16797 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
16798 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
16799 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
16800 insn ^= 0x00400000;
16801 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
16802 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
16803 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
16804 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
16805 insn ^= 0x00200000;
16806 else
16807 abort ();
16808
16809 if (al)
16810 {
16811 /* Clear the and-link and short-delay-slot bits. */
16812 gas_assert ((insn & 0xfda00000) == 0x40200000);
16813
16814 /* bltzal 0x40200000 bgezal 0x40600000 */
16815 /* bltzals 0x42200000 bgezals 0x42600000 */
16816 insn &= ~0x02200000;
16817 }
16818
16819 /* Make a label at the end for use with the branch. */
16820 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
16821 micromips_label_inc ();
f3ded42a 16822 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
df58fc94
RS
16823
16824 /* Refer to it. */
4d68580a
RS
16825 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
16826 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
16827 fixp->fx_file = fragp->fr_file;
16828 fixp->fx_line = fragp->fr_line;
16829
16830 /* Branch over the jump. */
4d68580a 16831 buf = write_compressed_insn (buf, insn, 4);
df58fc94 16832 if (!compact)
4d68580a
RS
16833 /* nop */
16834 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
16835 }
16836
16837 if (mips_pic == NO_PIC)
16838 {
2309ddf2
MR
16839 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
16840
df58fc94
RS
16841 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
16842 insn = al ? jal : 0xd4000000;
16843
4d68580a
RS
16844 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
16845 BFD_RELOC_MICROMIPS_JMP);
df58fc94
RS
16846 fixp->fx_file = fragp->fr_file;
16847 fixp->fx_line = fragp->fr_line;
16848
4d68580a 16849 buf = write_compressed_insn (buf, insn, 4);
df58fc94 16850 if (compact)
4d68580a
RS
16851 /* nop */
16852 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
16853 }
16854 else
16855 {
16856 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
2309ddf2
MR
16857 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
16858 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
df58fc94
RS
16859
16860 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
16861 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
16862 insn |= at << MICROMIPSOP_SH_RT;
16863
16864 if (exp.X_add_number)
16865 {
16866 exp.X_add_symbol = make_expr_symbol (&exp);
16867 exp.X_add_number = 0;
16868 }
16869
4d68580a
RS
16870 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
16871 BFD_RELOC_MICROMIPS_GOT16);
df58fc94
RS
16872 fixp->fx_file = fragp->fr_file;
16873 fixp->fx_line = fragp->fr_line;
16874
4d68580a 16875 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
16876
16877 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
16878 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
16879 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
16880
4d68580a
RS
16881 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
16882 BFD_RELOC_MICROMIPS_LO16);
df58fc94
RS
16883 fixp->fx_file = fragp->fr_file;
16884 fixp->fx_line = fragp->fr_line;
16885
4d68580a 16886 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
16887
16888 /* jr/jrc/jalr/jalrs $at */
16889 insn = al ? jalr : jr;
16890 insn |= at << MICROMIPSOP_SH_MJ;
16891
4d68580a 16892 buf = write_compressed_insn (buf, insn, 2);
df58fc94
RS
16893 }
16894
4d68580a 16895 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
16896 return;
16897 }
16898
252b5132
RH
16899 if (RELAX_MIPS16_P (fragp->fr_subtype))
16900 {
16901 int type;
3ccad066 16902 const struct mips_int_operand *operand;
252b5132 16903 offsetT val;
5c04167a
RS
16904 char *buf;
16905 unsigned int user_length, length;
252b5132 16906 unsigned long insn;
5c04167a 16907 bfd_boolean ext;
252b5132
RH
16908
16909 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 16910 operand = mips16_immed_operand (type, FALSE);
252b5132 16911
5c04167a 16912 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
5f5f22c0 16913 val = resolve_symbol_value (fragp->fr_symbol);
3ccad066 16914 if (operand->root.type == OP_PCREL)
252b5132 16915 {
3ccad066 16916 const struct mips_pcrel_operand *pcrel_op;
252b5132
RH
16917 addressT addr;
16918
3ccad066 16919 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
16920 addr = fragp->fr_address + fragp->fr_fix;
16921
16922 /* The rules for the base address of a PC relative reloc are
16923 complicated; see mips16_extended_frag. */
3ccad066 16924 if (pcrel_op->include_isa_bit)
252b5132
RH
16925 {
16926 addr += 2;
16927 if (ext)
16928 addr += 2;
16929 /* Ignore the low bit in the target, since it will be
16930 set for a text label. */
3ccad066 16931 val &= -2;
252b5132
RH
16932 }
16933 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16934 addr -= 4;
16935 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16936 addr -= 2;
16937
3ccad066 16938 addr &= -(1 << pcrel_op->align_log2);
252b5132
RH
16939 val -= addr;
16940
16941 /* Make sure the section winds up with the alignment we have
16942 assumed. */
3ccad066
RS
16943 if (operand->shift > 0)
16944 record_alignment (asec, operand->shift);
252b5132
RH
16945 }
16946
16947 if (ext
16948 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
16949 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
16950 as_warn_where (fragp->fr_file, fragp->fr_line,
16951 _("extended instruction in delay slot"));
16952
5c04167a 16953 buf = fragp->fr_literal + fragp->fr_fix;
252b5132 16954
4d68580a 16955 insn = read_compressed_insn (buf, 2);
5c04167a
RS
16956 if (ext)
16957 insn |= MIPS16_EXTEND;
252b5132 16958
5c04167a
RS
16959 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16960 user_length = 4;
16961 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16962 user_length = 2;
16963 else
16964 user_length = 0;
16965
43c0598f 16966 mips16_immed (fragp->fr_file, fragp->fr_line, type,
c150d1d2 16967 BFD_RELOC_UNUSED, val, user_length, &insn);
252b5132 16968
5c04167a
RS
16969 length = (ext ? 4 : 2);
16970 gas_assert (mips16_opcode_length (insn) == length);
16971 write_compressed_insn (buf, insn, length);
16972 fragp->fr_fix += length;
252b5132
RH
16973 }
16974 else
16975 {
df58fc94
RS
16976 relax_substateT subtype = fragp->fr_subtype;
16977 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
16978 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
4d7206a2
RS
16979 int first, second;
16980 fixS *fixp;
252b5132 16981
df58fc94
RS
16982 first = RELAX_FIRST (subtype);
16983 second = RELAX_SECOND (subtype);
4d7206a2 16984 fixp = (fixS *) fragp->fr_opcode;
252b5132 16985
df58fc94
RS
16986 /* If the delay slot chosen does not match the size of the instruction,
16987 then emit a warning. */
16988 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
16989 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
16990 {
16991 relax_substateT s;
16992 const char *msg;
16993
16994 s = subtype & (RELAX_DELAY_SLOT_16BIT
16995 | RELAX_DELAY_SLOT_SIZE_FIRST
16996 | RELAX_DELAY_SLOT_SIZE_SECOND);
16997 msg = macro_warning (s);
16998 if (msg != NULL)
db9b2be4 16999 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94
RS
17000 subtype &= ~s;
17001 }
17002
584892a6 17003 /* Possibly emit a warning if we've chosen the longer option. */
df58fc94 17004 if (use_second == second_longer)
584892a6 17005 {
df58fc94
RS
17006 relax_substateT s;
17007 const char *msg;
17008
17009 s = (subtype
17010 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17011 msg = macro_warning (s);
17012 if (msg != NULL)
db9b2be4 17013 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94 17014 subtype &= ~s;
584892a6
RS
17015 }
17016
4d7206a2
RS
17017 /* Go through all the fixups for the first sequence. Disable them
17018 (by marking them as done) if we're going to use the second
17019 sequence instead. */
17020 while (fixp
17021 && fixp->fx_frag == fragp
17022 && fixp->fx_where < fragp->fr_fix - second)
17023 {
df58fc94 17024 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17025 fixp->fx_done = 1;
17026 fixp = fixp->fx_next;
17027 }
252b5132 17028
4d7206a2
RS
17029 /* Go through the fixups for the second sequence. Disable them if
17030 we're going to use the first sequence, otherwise adjust their
17031 addresses to account for the relaxation. */
17032 while (fixp && fixp->fx_frag == fragp)
17033 {
df58fc94 17034 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17035 fixp->fx_where -= first;
17036 else
17037 fixp->fx_done = 1;
17038 fixp = fixp->fx_next;
17039 }
17040
17041 /* Now modify the frag contents. */
df58fc94 17042 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17043 {
17044 char *start;
17045
17046 start = fragp->fr_literal + fragp->fr_fix - first - second;
17047 memmove (start, start + first, second);
17048 fragp->fr_fix -= first;
17049 }
17050 else
17051 fragp->fr_fix -= second;
252b5132
RH
17052 }
17053}
17054
252b5132
RH
17055/* This function is called after the relocs have been generated.
17056 We've been storing mips16 text labels as odd. Here we convert them
17057 back to even for the convenience of the debugger. */
17058
17059void
17a2f251 17060mips_frob_file_after_relocs (void)
252b5132
RH
17061{
17062 asymbol **syms;
17063 unsigned int count, i;
17064
252b5132
RH
17065 syms = bfd_get_outsymbols (stdoutput);
17066 count = bfd_get_symcount (stdoutput);
17067 for (i = 0; i < count; i++, syms++)
df58fc94
RS
17068 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17069 && ((*syms)->value & 1) != 0)
17070 {
17071 (*syms)->value &= ~1;
17072 /* If the symbol has an odd size, it was probably computed
17073 incorrectly, so adjust that as well. */
17074 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17075 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17076 }
252b5132
RH
17077}
17078
a1facbec
MR
17079/* This function is called whenever a label is defined, including fake
17080 labels instantiated off the dot special symbol. It is used when
17081 handling branch delays; if a branch has a label, we assume we cannot
17082 move it. This also bumps the value of the symbol by 1 in compressed
17083 code. */
252b5132 17084
e1b47bd5 17085static void
a1facbec 17086mips_record_label (symbolS *sym)
252b5132 17087{
a8dbcb85 17088 segment_info_type *si = seg_info (now_seg);
252b5132
RH
17089 struct insn_label_list *l;
17090
17091 if (free_insn_labels == NULL)
17092 l = (struct insn_label_list *) xmalloc (sizeof *l);
17093 else
17094 {
17095 l = free_insn_labels;
17096 free_insn_labels = l->next;
17097 }
17098
17099 l->label = sym;
a8dbcb85
TS
17100 l->next = si->label_list;
17101 si->label_list = l;
a1facbec 17102}
07a53e5c 17103
a1facbec
MR
17104/* This function is called as tc_frob_label() whenever a label is defined
17105 and adds a DWARF-2 record we only want for true labels. */
17106
17107void
17108mips_define_label (symbolS *sym)
17109{
17110 mips_record_label (sym);
07a53e5c 17111 dwarf2_emit_label (sym);
252b5132 17112}
e1b47bd5
RS
17113
17114/* This function is called by tc_new_dot_label whenever a new dot symbol
17115 is defined. */
17116
17117void
17118mips_add_dot_label (symbolS *sym)
17119{
17120 mips_record_label (sym);
17121 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17122 mips_compressed_mark_label (sym);
17123}
252b5132 17124\f
252b5132
RH
17125/* Some special processing for a MIPS ELF file. */
17126
17127void
17a2f251 17128mips_elf_final_processing (void)
252b5132
RH
17129{
17130 /* Write out the register information. */
316f5878 17131 if (mips_abi != N64_ABI)
252b5132
RH
17132 {
17133 Elf32_RegInfo s;
17134
17135 s.ri_gprmask = mips_gprmask;
17136 s.ri_cprmask[0] = mips_cprmask[0];
17137 s.ri_cprmask[1] = mips_cprmask[1];
17138 s.ri_cprmask[2] = mips_cprmask[2];
17139 s.ri_cprmask[3] = mips_cprmask[3];
17140 /* The gp_value field is set by the MIPS ELF backend. */
17141
17142 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
17143 ((Elf32_External_RegInfo *)
17144 mips_regmask_frag));
17145 }
17146 else
17147 {
17148 Elf64_Internal_RegInfo s;
17149
17150 s.ri_gprmask = mips_gprmask;
17151 s.ri_pad = 0;
17152 s.ri_cprmask[0] = mips_cprmask[0];
17153 s.ri_cprmask[1] = mips_cprmask[1];
17154 s.ri_cprmask[2] = mips_cprmask[2];
17155 s.ri_cprmask[3] = mips_cprmask[3];
17156 /* The gp_value field is set by the MIPS ELF backend. */
17157
17158 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
17159 ((Elf64_External_RegInfo *)
17160 mips_regmask_frag));
17161 }
17162
17163 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
17164 sort of BFD interface for this. */
17165 if (mips_any_noreorder)
17166 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
17167 if (mips_pic != NO_PIC)
143d77c5 17168 {
8b828383 17169 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
143d77c5
EC
17170 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
17171 }
17172 if (mips_abicalls)
17173 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
252b5132 17174
b015e599
AP
17175 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
17176 defined at present; this might need to change in future. */
a4672219
TS
17177 if (file_ase_mips16)
17178 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
df58fc94
RS
17179 if (file_ase_micromips)
17180 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
846ef2d0 17181 if (file_ase & ASE_MDMX)
deec1734 17182 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
1f25f5d3 17183
bdaaa2e1 17184 /* Set the MIPS ELF ABI flags. */
316f5878 17185 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
252b5132 17186 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
316f5878 17187 else if (mips_abi == O64_ABI)
252b5132 17188 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
316f5878 17189 else if (mips_abi == EABI_ABI)
252b5132 17190 {
316f5878 17191 if (!file_mips_gp32)
252b5132
RH
17192 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
17193 else
17194 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
17195 }
316f5878 17196 else if (mips_abi == N32_ABI)
be00bddd
TS
17197 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
17198
c9914766 17199 /* Nothing to do for N64_ABI. */
252b5132
RH
17200
17201 if (mips_32bitmode)
17202 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
ad3fea08 17203
ba92f887
MR
17204 if (mips_flag_nan2008)
17205 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
17206
ad3fea08
TS
17207#if 0 /* XXX FIXME */
17208 /* 32 bit code with 64 bit FP registers. */
17209 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
17210 elf_elfheader (stdoutput)->e_flags |= ???;
17211#endif
252b5132 17212}
252b5132 17213\f
beae10d5 17214typedef struct proc {
9b2f1d35
EC
17215 symbolS *func_sym;
17216 symbolS *func_end_sym;
beae10d5
KH
17217 unsigned long reg_mask;
17218 unsigned long reg_offset;
17219 unsigned long fpreg_mask;
17220 unsigned long fpreg_offset;
17221 unsigned long frame_offset;
17222 unsigned long frame_reg;
17223 unsigned long pc_reg;
17224} procS;
252b5132
RH
17225
17226static procS cur_proc;
17227static procS *cur_proc_ptr;
17228static int numprocs;
17229
df58fc94
RS
17230/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
17231 as "2", and a normal nop as "0". */
17232
17233#define NOP_OPCODE_MIPS 0
17234#define NOP_OPCODE_MIPS16 1
17235#define NOP_OPCODE_MICROMIPS 2
742a56fe
RS
17236
17237char
17238mips_nop_opcode (void)
17239{
df58fc94
RS
17240 if (seg_info (now_seg)->tc_segment_info_data.micromips)
17241 return NOP_OPCODE_MICROMIPS;
17242 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
17243 return NOP_OPCODE_MIPS16;
17244 else
17245 return NOP_OPCODE_MIPS;
742a56fe
RS
17246}
17247
df58fc94
RS
17248/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
17249 32-bit microMIPS NOPs here (if applicable). */
a19d8eb0 17250
0a9ef439 17251void
17a2f251 17252mips_handle_align (fragS *fragp)
a19d8eb0 17253{
df58fc94 17254 char nop_opcode;
742a56fe 17255 char *p;
c67a084a
NC
17256 int bytes, size, excess;
17257 valueT opcode;
742a56fe 17258
0a9ef439
RH
17259 if (fragp->fr_type != rs_align_code)
17260 return;
17261
742a56fe 17262 p = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
17263 nop_opcode = *p;
17264 switch (nop_opcode)
a19d8eb0 17265 {
df58fc94
RS
17266 case NOP_OPCODE_MICROMIPS:
17267 opcode = micromips_nop32_insn.insn_opcode;
17268 size = 4;
17269 break;
17270 case NOP_OPCODE_MIPS16:
c67a084a
NC
17271 opcode = mips16_nop_insn.insn_opcode;
17272 size = 2;
df58fc94
RS
17273 break;
17274 case NOP_OPCODE_MIPS:
17275 default:
c67a084a
NC
17276 opcode = nop_insn.insn_opcode;
17277 size = 4;
df58fc94 17278 break;
c67a084a 17279 }
a19d8eb0 17280
c67a084a
NC
17281 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
17282 excess = bytes % size;
df58fc94
RS
17283
17284 /* Handle the leading part if we're not inserting a whole number of
17285 instructions, and make it the end of the fixed part of the frag.
17286 Try to fit in a short microMIPS NOP if applicable and possible,
17287 and use zeroes otherwise. */
17288 gas_assert (excess < 4);
17289 fragp->fr_fix += excess;
17290 switch (excess)
c67a084a 17291 {
df58fc94
RS
17292 case 3:
17293 *p++ = '\0';
17294 /* Fall through. */
17295 case 2:
833794fc 17296 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
df58fc94 17297 {
4d68580a 17298 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
df58fc94
RS
17299 break;
17300 }
17301 *p++ = '\0';
17302 /* Fall through. */
17303 case 1:
17304 *p++ = '\0';
17305 /* Fall through. */
17306 case 0:
17307 break;
a19d8eb0 17308 }
c67a084a
NC
17309
17310 md_number_to_chars (p, opcode, size);
17311 fragp->fr_var = size;
a19d8eb0
CP
17312}
17313
252b5132 17314static void
17a2f251 17315md_obj_begin (void)
252b5132
RH
17316{
17317}
17318
17319static void
17a2f251 17320md_obj_end (void)
252b5132 17321{
54f4ddb3 17322 /* Check for premature end, nesting errors, etc. */
252b5132 17323 if (cur_proc_ptr)
9a41af64 17324 as_warn (_("missing .end at end of assembly"));
252b5132
RH
17325}
17326
17327static long
17a2f251 17328get_number (void)
252b5132
RH
17329{
17330 int negative = 0;
17331 long val = 0;
17332
17333 if (*input_line_pointer == '-')
17334 {
17335 ++input_line_pointer;
17336 negative = 1;
17337 }
3882b010 17338 if (!ISDIGIT (*input_line_pointer))
956cd1d6 17339 as_bad (_("expected simple number"));
252b5132
RH
17340 if (input_line_pointer[0] == '0')
17341 {
17342 if (input_line_pointer[1] == 'x')
17343 {
17344 input_line_pointer += 2;
3882b010 17345 while (ISXDIGIT (*input_line_pointer))
252b5132
RH
17346 {
17347 val <<= 4;
17348 val |= hex_value (*input_line_pointer++);
17349 }
17350 return negative ? -val : val;
17351 }
17352 else
17353 {
17354 ++input_line_pointer;
3882b010 17355 while (ISDIGIT (*input_line_pointer))
252b5132
RH
17356 {
17357 val <<= 3;
17358 val |= *input_line_pointer++ - '0';
17359 }
17360 return negative ? -val : val;
17361 }
17362 }
3882b010 17363 if (!ISDIGIT (*input_line_pointer))
252b5132
RH
17364 {
17365 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
17366 *input_line_pointer, *input_line_pointer);
956cd1d6 17367 as_warn (_("invalid number"));
252b5132
RH
17368 return -1;
17369 }
3882b010 17370 while (ISDIGIT (*input_line_pointer))
252b5132
RH
17371 {
17372 val *= 10;
17373 val += *input_line_pointer++ - '0';
17374 }
17375 return negative ? -val : val;
17376}
17377
17378/* The .file directive; just like the usual .file directive, but there
c5dd6aab
DJ
17379 is an initial number which is the ECOFF file index. In the non-ECOFF
17380 case .file implies DWARF-2. */
17381
17382static void
17a2f251 17383s_mips_file (int x ATTRIBUTE_UNUSED)
c5dd6aab 17384{
ecb4347a
DJ
17385 static int first_file_directive = 0;
17386
c5dd6aab
DJ
17387 if (ECOFF_DEBUGGING)
17388 {
17389 get_number ();
17390 s_app_file (0);
17391 }
17392 else
ecb4347a
DJ
17393 {
17394 char *filename;
17395
17396 filename = dwarf2_directive_file (0);
17397
17398 /* Versions of GCC up to 3.1 start files with a ".file"
17399 directive even for stabs output. Make sure that this
17400 ".file" is handled. Note that you need a version of GCC
17401 after 3.1 in order to support DWARF-2 on MIPS. */
17402 if (filename != NULL && ! first_file_directive)
17403 {
17404 (void) new_logical_line (filename, -1);
c04f5787 17405 s_app_file_string (filename, 0);
ecb4347a
DJ
17406 }
17407 first_file_directive = 1;
17408 }
c5dd6aab
DJ
17409}
17410
17411/* The .loc directive, implying DWARF-2. */
252b5132
RH
17412
17413static void
17a2f251 17414s_mips_loc (int x ATTRIBUTE_UNUSED)
252b5132 17415{
c5dd6aab
DJ
17416 if (!ECOFF_DEBUGGING)
17417 dwarf2_directive_loc (0);
252b5132
RH
17418}
17419
252b5132
RH
17420/* The .end directive. */
17421
17422static void
17a2f251 17423s_mips_end (int x ATTRIBUTE_UNUSED)
252b5132
RH
17424{
17425 symbolS *p;
252b5132 17426
7a621144
DJ
17427 /* Following functions need their own .frame and .cprestore directives. */
17428 mips_frame_reg_valid = 0;
17429 mips_cprestore_valid = 0;
17430
252b5132
RH
17431 if (!is_end_of_line[(unsigned char) *input_line_pointer])
17432 {
17433 p = get_symbol ();
17434 demand_empty_rest_of_line ();
17435 }
17436 else
17437 p = NULL;
17438
14949570 17439 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
17440 as_warn (_(".end not in text section"));
17441
17442 if (!cur_proc_ptr)
17443 {
17444 as_warn (_(".end directive without a preceding .ent directive."));
17445 demand_empty_rest_of_line ();
17446 return;
17447 }
17448
17449 if (p != NULL)
17450 {
9c2799c2 17451 gas_assert (S_GET_NAME (p));
9b2f1d35 17452 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
252b5132 17453 as_warn (_(".end symbol does not match .ent symbol."));
ecb4347a
DJ
17454
17455 if (debug_type == DEBUG_STABS)
17456 stabs_generate_asm_endfunc (S_GET_NAME (p),
17457 S_GET_NAME (p));
252b5132
RH
17458 }
17459 else
17460 as_warn (_(".end directive missing or unknown symbol"));
17461
9b2f1d35
EC
17462 /* Create an expression to calculate the size of the function. */
17463 if (p && cur_proc_ptr)
17464 {
17465 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
17466 expressionS *exp = xmalloc (sizeof (expressionS));
17467
17468 obj->size = exp;
17469 exp->X_op = O_subtract;
17470 exp->X_add_symbol = symbol_temp_new_now ();
17471 exp->X_op_symbol = p;
17472 exp->X_add_number = 0;
17473
17474 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
17475 }
17476
ecb4347a 17477 /* Generate a .pdr section. */
f3ded42a 17478 if (!ECOFF_DEBUGGING && mips_flag_pdr)
ecb4347a
DJ
17479 {
17480 segT saved_seg = now_seg;
17481 subsegT saved_subseg = now_subseg;
ecb4347a
DJ
17482 expressionS exp;
17483 char *fragp;
252b5132 17484
252b5132 17485#ifdef md_flush_pending_output
ecb4347a 17486 md_flush_pending_output ();
252b5132
RH
17487#endif
17488
9c2799c2 17489 gas_assert (pdr_seg);
ecb4347a 17490 subseg_set (pdr_seg, 0);
252b5132 17491
ecb4347a
DJ
17492 /* Write the symbol. */
17493 exp.X_op = O_symbol;
17494 exp.X_add_symbol = p;
17495 exp.X_add_number = 0;
17496 emit_expr (&exp, 4);
252b5132 17497
ecb4347a 17498 fragp = frag_more (7 * 4);
252b5132 17499
17a2f251
TS
17500 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
17501 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
17502 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
17503 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
17504 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
17505 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
17506 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
252b5132 17507
ecb4347a
DJ
17508 subseg_set (saved_seg, saved_subseg);
17509 }
252b5132
RH
17510
17511 cur_proc_ptr = NULL;
17512}
17513
17514/* The .aent and .ent directives. */
17515
17516static void
17a2f251 17517s_mips_ent (int aent)
252b5132 17518{
252b5132 17519 symbolS *symbolP;
252b5132
RH
17520
17521 symbolP = get_symbol ();
17522 if (*input_line_pointer == ',')
f9419b05 17523 ++input_line_pointer;
252b5132 17524 SKIP_WHITESPACE ();
3882b010 17525 if (ISDIGIT (*input_line_pointer)
d9a62219 17526 || *input_line_pointer == '-')
874e8986 17527 get_number ();
252b5132 17528
14949570 17529 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
17530 as_warn (_(".ent or .aent not in text section."));
17531
17532 if (!aent && cur_proc_ptr)
9a41af64 17533 as_warn (_("missing .end"));
252b5132
RH
17534
17535 if (!aent)
17536 {
7a621144
DJ
17537 /* This function needs its own .frame and .cprestore directives. */
17538 mips_frame_reg_valid = 0;
17539 mips_cprestore_valid = 0;
17540
252b5132
RH
17541 cur_proc_ptr = &cur_proc;
17542 memset (cur_proc_ptr, '\0', sizeof (procS));
17543
9b2f1d35 17544 cur_proc_ptr->func_sym = symbolP;
252b5132 17545
f9419b05 17546 ++numprocs;
ecb4347a
DJ
17547
17548 if (debug_type == DEBUG_STABS)
17549 stabs_generate_asm_func (S_GET_NAME (symbolP),
17550 S_GET_NAME (symbolP));
252b5132
RH
17551 }
17552
7c0fc524
MR
17553 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
17554
252b5132
RH
17555 demand_empty_rest_of_line ();
17556}
17557
17558/* The .frame directive. If the mdebug section is present (IRIX 5 native)
bdaaa2e1 17559 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
252b5132 17560 s_mips_frame is used so that we can set the PDR information correctly.
bdaaa2e1 17561 We can't use the ecoff routines because they make reference to the ecoff
252b5132
RH
17562 symbol table (in the mdebug section). */
17563
17564static void
17a2f251 17565s_mips_frame (int ignore ATTRIBUTE_UNUSED)
252b5132 17566{
f3ded42a
RS
17567 if (ECOFF_DEBUGGING)
17568 s_ignore (ignore);
17569 else
ecb4347a
DJ
17570 {
17571 long val;
252b5132 17572
ecb4347a
DJ
17573 if (cur_proc_ptr == (procS *) NULL)
17574 {
17575 as_warn (_(".frame outside of .ent"));
17576 demand_empty_rest_of_line ();
17577 return;
17578 }
252b5132 17579
ecb4347a
DJ
17580 cur_proc_ptr->frame_reg = tc_get_register (1);
17581
17582 SKIP_WHITESPACE ();
17583 if (*input_line_pointer++ != ','
17584 || get_absolute_expression_and_terminator (&val) != ',')
17585 {
17586 as_warn (_("Bad .frame directive"));
17587 --input_line_pointer;
17588 demand_empty_rest_of_line ();
17589 return;
17590 }
252b5132 17591
ecb4347a
DJ
17592 cur_proc_ptr->frame_offset = val;
17593 cur_proc_ptr->pc_reg = tc_get_register (0);
252b5132 17594
252b5132 17595 demand_empty_rest_of_line ();
252b5132 17596 }
252b5132
RH
17597}
17598
bdaaa2e1
KH
17599/* The .fmask and .mask directives. If the mdebug section is present
17600 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
252b5132 17601 embedded targets, s_mips_mask is used so that we can set the PDR
bdaaa2e1 17602 information correctly. We can't use the ecoff routines because they
252b5132
RH
17603 make reference to the ecoff symbol table (in the mdebug section). */
17604
17605static void
17a2f251 17606s_mips_mask (int reg_type)
252b5132 17607{
f3ded42a
RS
17608 if (ECOFF_DEBUGGING)
17609 s_ignore (reg_type);
17610 else
252b5132 17611 {
ecb4347a 17612 long mask, off;
252b5132 17613
ecb4347a
DJ
17614 if (cur_proc_ptr == (procS *) NULL)
17615 {
17616 as_warn (_(".mask/.fmask outside of .ent"));
17617 demand_empty_rest_of_line ();
17618 return;
17619 }
252b5132 17620
ecb4347a
DJ
17621 if (get_absolute_expression_and_terminator (&mask) != ',')
17622 {
17623 as_warn (_("Bad .mask/.fmask directive"));
17624 --input_line_pointer;
17625 demand_empty_rest_of_line ();
17626 return;
17627 }
252b5132 17628
ecb4347a
DJ
17629 off = get_absolute_expression ();
17630
17631 if (reg_type == 'F')
17632 {
17633 cur_proc_ptr->fpreg_mask = mask;
17634 cur_proc_ptr->fpreg_offset = off;
17635 }
17636 else
17637 {
17638 cur_proc_ptr->reg_mask = mask;
17639 cur_proc_ptr->reg_offset = off;
17640 }
17641
17642 demand_empty_rest_of_line ();
252b5132 17643 }
252b5132
RH
17644}
17645
316f5878
RS
17646/* A table describing all the processors gas knows about. Names are
17647 matched in the order listed.
e7af610e 17648
316f5878
RS
17649 To ease comparison, please keep this table in the same order as
17650 gcc's mips_cpu_info_table[]. */
e972090a
NC
17651static const struct mips_cpu_info mips_cpu_info_table[] =
17652{
316f5878 17653 /* Entries for generic ISAs */
d16afab6
RS
17654 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
17655 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
17656 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
17657 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
17658 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
17659 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
17660 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17661 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
17662 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
316f5878
RS
17663
17664 /* MIPS I */
d16afab6
RS
17665 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
17666 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
17667 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
316f5878
RS
17668
17669 /* MIPS II */
d16afab6 17670 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
316f5878
RS
17671
17672 /* MIPS III */
d16afab6
RS
17673 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
17674 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
17675 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
17676 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
17677 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
17678 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
17679 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
17680 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
17681 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
17682 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
17683 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
17684 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
17685 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
b15591bb 17686 /* ST Microelectronics Loongson 2E and 2F cores */
d16afab6
RS
17687 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
17688 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
316f5878
RS
17689
17690 /* MIPS IV */
d16afab6
RS
17691 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
17692 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
17693 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
17694 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
17695 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
17696 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
17697 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
17698 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
17699 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
17700 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
17701 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
17702 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
17703 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
17704 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
17705 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
316f5878
RS
17706
17707 /* MIPS 32 */
d16afab6
RS
17708 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
17709 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
17710 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
17711 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
ad3fea08
TS
17712
17713 /* MIPS 32 Release 2 */
d16afab6
RS
17714 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17715 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17716 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17717 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
17718 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17719 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17720 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
17721 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
17722 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
17723 ISA_MIPS32R2, CPU_MIPS32R2 },
17724 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
17725 ISA_MIPS32R2, CPU_MIPS32R2 },
17726 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17727 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17728 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17729 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 17730 /* Deprecated forms of the above. */
d16afab6
RS
17731 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17732 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 17733 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
d16afab6
RS
17734 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17735 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17736 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17737 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 17738 /* Deprecated forms of the above. */
d16afab6
RS
17739 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17740 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 17741 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
d16afab6
RS
17742 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17743 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17744 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17745 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 17746 /* Deprecated forms of the above. */
d16afab6
RS
17747 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17748 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
711eefe4 17749 /* 34Kn is a 34kc without DSP. */
d16afab6 17750 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 17751 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
d16afab6
RS
17752 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17753 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17754 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17755 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17756 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 17757 /* Deprecated forms of the above. */
d16afab6
RS
17758 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17759 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
30f8113a 17760 /* 1004K cores are multiprocessor versions of the 34K. */
d16afab6
RS
17761 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17762 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17763 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17764 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
32b26a03 17765
316f5878 17766 /* MIPS 64 */
d16afab6
RS
17767 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
17768 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
17769 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
17770 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
ad3fea08 17771
c7a23324 17772 /* Broadcom SB-1 CPU core */
d16afab6 17773 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
1e85aad8 17774 /* Broadcom SB-1A CPU core */
d16afab6 17775 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
d051516a 17776
d16afab6 17777 { "loongson3a", 0, 0, ISA_MIPS64, CPU_LOONGSON_3A },
e7af610e 17778
ed163775
MR
17779 /* MIPS 64 Release 2 */
17780
967344c6 17781 /* Cavium Networks Octeon CPU core */
d16afab6
RS
17782 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
17783 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
17784 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
967344c6 17785
52b6b6b9 17786 /* RMI Xlr */
d16afab6 17787 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
52b6b6b9 17788
55a36193
MK
17789 /* Broadcom XLP.
17790 XLP is mostly like XLR, with the prominent exception that it is
17791 MIPS64R2 rather than MIPS64. */
d16afab6 17792 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
55a36193 17793
316f5878 17794 /* End marker */
d16afab6 17795 { NULL, 0, 0, 0, 0 }
316f5878 17796};
e7af610e 17797
84ea6cf2 17798
316f5878
RS
17799/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
17800 with a final "000" replaced by "k". Ignore case.
e7af610e 17801
316f5878 17802 Note: this function is shared between GCC and GAS. */
c6c98b38 17803
b34976b6 17804static bfd_boolean
17a2f251 17805mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
17806{
17807 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
17808 given++, canonical++;
17809
17810 return ((*given == 0 && *canonical == 0)
17811 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
17812}
17813
17814
17815/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
17816 CPU name. We've traditionally allowed a lot of variation here.
17817
17818 Note: this function is shared between GCC and GAS. */
17819
b34976b6 17820static bfd_boolean
17a2f251 17821mips_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
17822{
17823 /* First see if the name matches exactly, or with a final "000"
17824 turned into "k". */
17825 if (mips_strict_matching_cpu_name_p (canonical, given))
b34976b6 17826 return TRUE;
316f5878
RS
17827
17828 /* If not, try comparing based on numerical designation alone.
17829 See if GIVEN is an unadorned number, or 'r' followed by a number. */
17830 if (TOLOWER (*given) == 'r')
17831 given++;
17832 if (!ISDIGIT (*given))
b34976b6 17833 return FALSE;
316f5878
RS
17834
17835 /* Skip over some well-known prefixes in the canonical name,
17836 hoping to find a number there too. */
17837 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
17838 canonical += 2;
17839 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
17840 canonical += 2;
17841 else if (TOLOWER (canonical[0]) == 'r')
17842 canonical += 1;
17843
17844 return mips_strict_matching_cpu_name_p (canonical, given);
17845}
17846
17847
17848/* Parse an option that takes the name of a processor as its argument.
17849 OPTION is the name of the option and CPU_STRING is the argument.
17850 Return the corresponding processor enumeration if the CPU_STRING is
17851 recognized, otherwise report an error and return null.
17852
17853 A similar function exists in GCC. */
e7af610e
NC
17854
17855static const struct mips_cpu_info *
17a2f251 17856mips_parse_cpu (const char *option, const char *cpu_string)
e7af610e 17857{
316f5878 17858 const struct mips_cpu_info *p;
e7af610e 17859
316f5878
RS
17860 /* 'from-abi' selects the most compatible architecture for the given
17861 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
17862 EABIs, we have to decide whether we're using the 32-bit or 64-bit
17863 version. Look first at the -mgp options, if given, otherwise base
17864 the choice on MIPS_DEFAULT_64BIT.
e7af610e 17865
316f5878
RS
17866 Treat NO_ABI like the EABIs. One reason to do this is that the
17867 plain 'mips' and 'mips64' configs have 'from-abi' as their default
17868 architecture. This code picks MIPS I for 'mips' and MIPS III for
17869 'mips64', just as we did in the days before 'from-abi'. */
17870 if (strcasecmp (cpu_string, "from-abi") == 0)
17871 {
17872 if (ABI_NEEDS_32BIT_REGS (mips_abi))
17873 return mips_cpu_info_from_isa (ISA_MIPS1);
17874
17875 if (ABI_NEEDS_64BIT_REGS (mips_abi))
17876 return mips_cpu_info_from_isa (ISA_MIPS3);
17877
17878 if (file_mips_gp32 >= 0)
17879 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
17880
17881 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
17882 ? ISA_MIPS3
17883 : ISA_MIPS1);
17884 }
17885
17886 /* 'default' has traditionally been a no-op. Probably not very useful. */
17887 if (strcasecmp (cpu_string, "default") == 0)
17888 return 0;
17889
17890 for (p = mips_cpu_info_table; p->name != 0; p++)
17891 if (mips_matching_cpu_name_p (p->name, cpu_string))
17892 return p;
17893
20203fb9 17894 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
316f5878 17895 return 0;
e7af610e
NC
17896}
17897
316f5878
RS
17898/* Return the canonical processor information for ISA (a member of the
17899 ISA_MIPS* enumeration). */
17900
e7af610e 17901static const struct mips_cpu_info *
17a2f251 17902mips_cpu_info_from_isa (int isa)
e7af610e
NC
17903{
17904 int i;
17905
17906 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
ad3fea08 17907 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
316f5878 17908 && isa == mips_cpu_info_table[i].isa)
e7af610e
NC
17909 return (&mips_cpu_info_table[i]);
17910
e972090a 17911 return NULL;
e7af610e 17912}
fef14a42
TS
17913
17914static const struct mips_cpu_info *
17a2f251 17915mips_cpu_info_from_arch (int arch)
fef14a42
TS
17916{
17917 int i;
17918
17919 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
17920 if (arch == mips_cpu_info_table[i].cpu)
17921 return (&mips_cpu_info_table[i]);
17922
17923 return NULL;
17924}
316f5878
RS
17925\f
17926static void
17a2f251 17927show (FILE *stream, const char *string, int *col_p, int *first_p)
316f5878
RS
17928{
17929 if (*first_p)
17930 {
17931 fprintf (stream, "%24s", "");
17932 *col_p = 24;
17933 }
17934 else
17935 {
17936 fprintf (stream, ", ");
17937 *col_p += 2;
17938 }
e7af610e 17939
316f5878
RS
17940 if (*col_p + strlen (string) > 72)
17941 {
17942 fprintf (stream, "\n%24s", "");
17943 *col_p = 24;
17944 }
17945
17946 fprintf (stream, "%s", string);
17947 *col_p += strlen (string);
17948
17949 *first_p = 0;
17950}
17951
17952void
17a2f251 17953md_show_usage (FILE *stream)
e7af610e 17954{
316f5878
RS
17955 int column, first;
17956 size_t i;
17957
17958 fprintf (stream, _("\
17959MIPS options:\n\
316f5878
RS
17960-EB generate big endian output\n\
17961-EL generate little endian output\n\
17962-g, -g2 do not remove unneeded NOPs or swap branches\n\
17963-G NUM allow referencing objects up to NUM bytes\n\
17964 implicitly with the gp register [default 8]\n"));
17965 fprintf (stream, _("\
17966-mips1 generate MIPS ISA I instructions\n\
17967-mips2 generate MIPS ISA II instructions\n\
17968-mips3 generate MIPS ISA III instructions\n\
17969-mips4 generate MIPS ISA IV instructions\n\
17970-mips5 generate MIPS ISA V instructions\n\
17971-mips32 generate MIPS32 ISA instructions\n\
af7ee8bf 17972-mips32r2 generate MIPS32 release 2 ISA instructions\n\
316f5878 17973-mips64 generate MIPS64 ISA instructions\n\
5f74bc13 17974-mips64r2 generate MIPS64 release 2 ISA instructions\n\
316f5878
RS
17975-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
17976
17977 first = 1;
e7af610e
NC
17978
17979 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
316f5878
RS
17980 show (stream, mips_cpu_info_table[i].name, &column, &first);
17981 show (stream, "from-abi", &column, &first);
17982 fputc ('\n', stream);
e7af610e 17983
316f5878
RS
17984 fprintf (stream, _("\
17985-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
17986-no-mCPU don't generate code specific to CPU.\n\
17987 For -mCPU and -no-mCPU, CPU must be one of:\n"));
17988
17989 first = 1;
17990
17991 show (stream, "3900", &column, &first);
17992 show (stream, "4010", &column, &first);
17993 show (stream, "4100", &column, &first);
17994 show (stream, "4650", &column, &first);
17995 fputc ('\n', stream);
17996
17997 fprintf (stream, _("\
17998-mips16 generate mips16 instructions\n\
17999-no-mips16 do not generate mips16 instructions\n"));
18000 fprintf (stream, _("\
df58fc94
RS
18001-mmicromips generate microMIPS instructions\n\
18002-mno-micromips do not generate microMIPS instructions\n"));
18003 fprintf (stream, _("\
e16bfa71
TS
18004-msmartmips generate smartmips instructions\n\
18005-mno-smartmips do not generate smartmips instructions\n"));
18006 fprintf (stream, _("\
74cd071d
CF
18007-mdsp generate DSP instructions\n\
18008-mno-dsp do not generate DSP instructions\n"));
18009 fprintf (stream, _("\
8b082fb1
TS
18010-mdspr2 generate DSP R2 instructions\n\
18011-mno-dspr2 do not generate DSP R2 instructions\n"));
18012 fprintf (stream, _("\
ef2e4d86
CF
18013-mmt generate MT instructions\n\
18014-mno-mt do not generate MT instructions\n"));
18015 fprintf (stream, _("\
dec0624d
MR
18016-mmcu generate MCU instructions\n\
18017-mno-mcu do not generate MCU instructions\n"));
18018 fprintf (stream, _("\
b015e599
AP
18019-mvirt generate Virtualization instructions\n\
18020-mno-virt do not generate Virtualization instructions\n"));
18021 fprintf (stream, _("\
833794fc
MR
18022-minsn32 only generate 32-bit microMIPS instructions\n\
18023-mno-insn32 generate all microMIPS instructions\n"));
18024 fprintf (stream, _("\
c67a084a
NC
18025-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18026-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
d766e8ec 18027-mfix-vr4120 work around certain VR4120 errata\n\
7d8e00cf 18028-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
6a32d874 18029-mfix-24k insert a nop after ERET and DERET instructions\n\
d954098f 18030-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
316f5878
RS
18031-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
18032-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
aed1a261 18033-msym32 assume all symbols have 32-bit values\n\
316f5878
RS
18034-O0 remove unneeded NOPs, do not swap branches\n\
18035-O remove unneeded NOPs and swap branches\n\
316f5878
RS
18036--trap, --no-break trap exception on div by 0 and mult overflow\n\
18037--break, --no-trap break exception on div by 0 and mult overflow\n"));
037b32b9
AN
18038 fprintf (stream, _("\
18039-mhard-float allow floating-point instructions\n\
18040-msoft-float do not allow floating-point instructions\n\
18041-msingle-float only allow 32-bit floating-point operations\n\
18042-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
3bf0dbfb 18043--[no-]construct-floats [dis]allow floating point values to be constructed\n\
ba92f887
MR
18044--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
18045-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
18046
18047 first = 1;
18048
18049 show (stream, "legacy", &column, &first);
18050 show (stream, "2008", &column, &first);
18051
18052 fputc ('\n', stream);
18053
316f5878
RS
18054 fprintf (stream, _("\
18055-KPIC, -call_shared generate SVR4 position independent code\n\
861fb55a 18056-call_nonpic generate non-PIC code that can operate with DSOs\n\
0c000745 18057-mvxworks-pic generate VxWorks position independent code\n\
861fb55a 18058-non_shared do not generate code that can operate with DSOs\n\
316f5878 18059-xgot assume a 32 bit GOT\n\
dcd410fe 18060-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
bbe506e8 18061-mshared, -mno-shared disable/enable .cpload optimization for\n\
d821e36b 18062 position dependent (non shared) code\n\
316f5878
RS
18063-mabi=ABI create ABI conformant object file for:\n"));
18064
18065 first = 1;
18066
18067 show (stream, "32", &column, &first);
18068 show (stream, "o64", &column, &first);
18069 show (stream, "n32", &column, &first);
18070 show (stream, "64", &column, &first);
18071 show (stream, "eabi", &column, &first);
18072
18073 fputc ('\n', stream);
18074
18075 fprintf (stream, _("\
18076-32 create o32 ABI object file (default)\n\
18077-n32 create n32 ABI object file\n\
18078-64 create 64 ABI object file\n"));
e7af610e 18079}
14e777e0 18080
1575952e 18081#ifdef TE_IRIX
14e777e0 18082enum dwarf2_format
413a266c 18083mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
14e777e0 18084{
369943fe 18085 if (HAVE_64BIT_SYMBOLS)
1575952e 18086 return dwarf2_format_64bit_irix;
14e777e0
KB
18087 else
18088 return dwarf2_format_32bit;
18089}
1575952e 18090#endif
73369e65
EC
18091
18092int
18093mips_dwarf2_addr_size (void)
18094{
6b6b3450 18095 if (HAVE_64BIT_OBJECTS)
73369e65 18096 return 8;
73369e65
EC
18097 else
18098 return 4;
18099}
5862107c
EC
18100
18101/* Standard calling conventions leave the CFA at SP on entry. */
18102void
18103mips_cfi_frame_initial_instructions (void)
18104{
18105 cfi_add_CFA_def_cfa_register (SP);
18106}
18107
707bfff6
TS
18108int
18109tc_mips_regname_to_dw2regnum (char *regname)
18110{
18111 unsigned int regnum = -1;
18112 unsigned int reg;
18113
18114 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
18115 regnum = reg;
18116
18117 return regnum;
18118}
This page took 3.110955 seconds and 4 git commands to generate.