MIPS/GAS/testsuite: Convert LUI list tests to dump tests
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
CommitLineData
252b5132 1/* tc-mips.c -- assemble code for a MIPS chip.
2571583a 2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
ec2655a6 12 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
252b5132
RH
24
25#include "as.h"
26#include "config.h"
27#include "subsegs.h"
3882b010 28#include "safe-ctype.h"
252b5132 29
252b5132
RH
30#include "opcode/mips.h"
31#include "itbl-ops.h"
c5dd6aab 32#include "dwarf2dbg.h"
5862107c 33#include "dw2gencfi.h"
252b5132 34
42429eac
RS
35/* Check assumptions made in this file. */
36typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
252b5132
RH
39#ifdef DEBUG
40#define DBG(x) printf x
41#else
42#define DBG(x)
43#endif
44
263b2574 45#define streq(a, b) (strcmp (a, b) == 0)
46
9e12b7a2
RS
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
252b5132 50/* Clean up namespace so we can include obj-elf.h too. */
17a2f251
TS
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
252b5132
RH
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
252b5132
RH
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
252b5132 70
252b5132 71#include "elf/mips.h"
252b5132
RH
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
ecb4347a
DJ
78int mips_flag_mdebug = -1;
79
dcd410fe
RO
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
84int mips_flag_pdr = FALSE;
85#else
86int mips_flag_pdr = TRUE;
87#endif
88
252b5132
RH
89#include "ecoff.h"
90
252b5132 91static char *mips_regmask_frag;
351cdf24 92static char *mips_flags_frag;
252b5132 93
85b51719 94#define ZERO 0
741fe287 95#define ATREG 1
df58fc94
RS
96#define S0 16
97#define S7 23
252b5132
RH
98#define TREG 24
99#define PIC_CALL_REG 25
100#define KT0 26
101#define KT1 27
102#define GP 28
103#define SP 29
104#define FP 30
105#define RA 31
106
107#define ILLEGAL_REG (32)
108
741fe287
MR
109#define AT mips_opts.at
110
252b5132
RH
111extern int target_big_endian;
112
252b5132 113/* The name of the readonly data section. */
e8044f35 114#define RDATA_SECTION_NAME ".rodata"
252b5132 115
a4e06468
RS
116/* Ways in which an instruction can be "appended" to the output. */
117enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129};
130
47e39b9d
RS
131/* Information about an instruction, including its format, operands
132 and fixups. */
133struct mips_cl_insn
134{
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
47e39b9d 138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
5c04167a
RS
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
47e39b9d
RS
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
a38419a5
RS
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
47e39b9d 155
708587a4 156 /* True if this instruction occurred in a .set noreorder block. */
47e39b9d
RS
157 unsigned int noreorder_p : 1;
158
2fa15973
RS
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
15be625d
CM
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
e407c74b
NC
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
47e39b9d
RS
168};
169
a325df1d
TS
170/* The ABI to use. */
171enum mips_abi_level
172{
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179};
180
181/* MIPS ABI we are using for this output file. */
316f5878 182static enum mips_abi_level mips_abi = NO_ABI;
a325df1d 183
143d77c5
EC
184/* Whether or not we have code that can call pic code. */
185int mips_abicalls = FALSE;
186
aa6975fb
ILT
187/* Whether or not we have code which can be put into a shared
188 library. */
189static bfd_boolean mips_in_shared = TRUE;
190
252b5132
RH
191/* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
e972090a
NC
195struct mips_set_options
196{
252b5132
RH
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
846ef2d0
RS
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
252b5132
RH
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
df58fc94
RS
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
252b5132
RH
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
741fe287
MR
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
252b5132
RH
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
833794fc
MR
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
a325df1d
TS
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
bad1aba3 245 int gp;
0b35dfee 246 int fp;
fef14a42
TS
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
aed1a261
RS
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
037b32b9
AN
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
351cdf24
MF
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
252b5132
RH
265};
266
919731af 267/* Specifies whether module level options have been checked yet. */
268static bfd_boolean file_mips_opts_checked = FALSE;
269
7361da2c
AB
270/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274static int mips_nan2008 = -1;
a325df1d 275
0b35dfee 276/* This is the struct we use to hold the module level set of options.
bad1aba3 277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
0b35dfee 278 fp fields to -1 to indicate that they have not been initialized. */
037b32b9 279
0b35dfee 280static struct mips_set_options file_mips_opts =
281{
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
0b35dfee 287};
252b5132 288
0b35dfee 289/* This is similar to file_mips_opts, but for the current set of options. */
ba92f887 290
e972090a
NC
291static struct mips_set_options mips_opts =
292{
846ef2d0 293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
b015e599 294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
833794fc 295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
e7af610e 298};
252b5132 299
846ef2d0
RS
300/* Which bits of file_ase were explicitly set or cleared by ASE options. */
301static unsigned int file_ase_explicit;
302
252b5132
RH
303/* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306unsigned long mips_gprmask;
307unsigned long mips_cprmask[4];
308
738f4d98 309/* True if any MIPS16 code was produced. */
a4672219
TS
310static int file_ase_mips16;
311
3994f87e
TS
312#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
3994f87e 316 || mips_opts.isa == ISA_MIPS64 \
ae52f483
AB
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
3994f87e 320
df58fc94
RS
321/* True if any microMIPS code was produced. */
322static int file_ase_micromips;
323
b12dd2e4
CF
324/* True if we want to create R_MIPS_JALR for jalr $25. */
325#ifdef TE_IRIX
1180b5a4 326#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
b12dd2e4 327#else
1180b5a4
RS
328/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331#define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
b12dd2e4
CF
334#endif
335
ec68c924 336/* The argument of the -march= flag. The architecture we are assembling. */
316f5878 337static const char *mips_arch_string;
ec68c924
EC
338
339/* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341static int mips_tune = CPU_UNKNOWN;
316f5878 342static const char *mips_tune_string;
ec68c924 343
316f5878 344/* True when generating 32-bit code for a 64-bit processor. */
252b5132
RH
345static int mips_32bitmode = 0;
346
316f5878
RS
347/* True if the given ABI requires 32-bit registers. */
348#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350/* Likewise 64-bit registers. */
707bfff6 351#define ABI_NEEDS_64BIT_REGS(ABI) \
134c0c8b 352 ((ABI) == N32_ABI \
707bfff6 353 || (ABI) == N64_ABI \
316f5878
RS
354 || (ABI) == O64_ABI)
355
7361da2c
AB
356#define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
ad3fea08 360/* Return true if ISA supports 64 bit wide gp registers. */
707bfff6
TS
361#define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
ae52f483
AB
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
9ce8a5dd 370
ad3fea08
TS
371/* Return true if ISA supports 64 bit wide float registers. */
372#define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
ae52f483
AB
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
7361da2c 379 || (ISA) == ISA_MIPS32R6 \
ad3fea08 380 || (ISA) == ISA_MIPS64 \
ae52f483
AB
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
ad3fea08 385
af7ee8bf
CD
386/* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
707bfff6 388#define ISA_HAS_DROR(ISA) \
df58fc94 389 ((ISA) == ISA_MIPS64R2 \
ae52f483
AB
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
7361da2c 392 || (ISA) == ISA_MIPS64R6 \
df58fc94
RS
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
af7ee8bf
CD
396
397/* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
707bfff6
TS
399#define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
7361da2c 403 || (ISA) == ISA_MIPS32R6 \
707bfff6 404 || (ISA) == ISA_MIPS64R2 \
ae52f483
AB
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
7361da2c 407 || (ISA) == ISA_MIPS64R6 \
846ef2d0 408 || (mips_opts.ase & ASE_SMARTMIPS) \
df58fc94
RS
409 || mips_opts.micromips \
410 )
707bfff6 411
7455baf8 412/* Return true if ISA supports single-precision floats in odd registers. */
351cdf24
MF
413#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
7361da2c 418 || (ISA) == ISA_MIPS32R6 \
351cdf24
MF
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
7361da2c 423 || (ISA) == ISA_MIPS64R6 \
351cdf24
MF
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
af7ee8bf 426
ad3fea08
TS
427/* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429#define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
7361da2c
AB
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439/* Return true if ISA supports legacy NAN. */
440#define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
ae52f483
AB
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
ad3fea08 454
bad1aba3 455#define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
ca4e0257 459
bad1aba3 460#define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
ca4e0257 464
316f5878 465#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
e013f690 466
316f5878 467#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
e013f690 468
3b91255e
RS
469/* True if relocations are stored in-place. */
470#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
aed1a261
RS
472/* The ABI-derived address size. */
473#define HAVE_64BIT_ADDRESSES \
bad1aba3 474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
aed1a261 475#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
e013f690 476
aed1a261
RS
477/* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479#define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
ca4e0257 482
b7c7d6c1
TS
483/* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
f899b4b8 486#define ADDRESS_ADD_INSN \
b7c7d6c1 487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
f899b4b8
TS
488
489#define ADDRESS_ADDI_INSN \
b7c7d6c1 490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
f899b4b8
TS
491
492#define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495#define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
a4672219 498/* Return true if the given CPU supports the MIPS16 ASE. */
3396de36
TS
499#define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
a4672219 502
2309ddf2 503/* Return true if the given CPU supports the microMIPS ASE. */
df58fc94
RS
504#define CPU_HAS_MICROMIPS(cpu) 0
505
60b63b72
RS
506/* True if CPU has a dror instruction. */
507#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509/* True if CPU has a ror instruction. */
510#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
dd6a37e7 512/* True if CPU is in the Octeon family */
2c629856
N
513#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
dd6a37e7 515
dd3cbb7e 516/* True if CPU has seq/sne and seqi/snei instructions. */
dd6a37e7 517#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
dd3cbb7e 518
0aa27725
RS
519/* True, if CPU has support for ldc1 and sdc1. */
520#define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
c8978940
CD
523/* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535#define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
7361da2c 540 || mips_opts.isa == ISA_MIPS32R6 \
c8978940
CD
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
ae52f483
AB
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
7361da2c 545 || mips_opts.isa == ISA_MIPS64R6 \
c8978940 546 || mips_opts.arch == CPU_R4010 \
e407c74b 547 || mips_opts.arch == CPU_R5900 \
c8978940
CD
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
3aa3176b
TS
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
c8978940 552 || mips_opts.arch == CPU_RM7000 \
c8978940 553 || mips_opts.arch == CPU_VR5500 \
df58fc94 554 || mips_opts.micromips \
c8978940 555 )
252b5132
RH
556
557/* Whether the processor uses hardware interlocks to protect reads
81912461
ILT
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
67dc82bc 560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
df58fc94
RS
561 level I and microMIPS mode instructions are always interlocked. */
562#define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
e407c74b 565 || mips_opts.arch == CPU_R5900 \
df58fc94
RS
566 || mips_opts.micromips \
567 )
252b5132 568
81912461
ILT
569/* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
43885403
MF
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
81912461 574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
df58fc94
RS
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
bdaaa2e1 577/* Itbl support may require additional care here. */
81912461
ILT
578#define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
df58fc94 583 || mips_opts.micromips \
81912461
ILT
584 )
585
586/* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
df58fc94
RS
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592#define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
252b5132 596
6b76fefe
CM
597/* Is this a mfhi or mflo instruction? */
598#define MF_HILO_INSN(PINFO) \
b19e8a9b
AN
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
df58fc94
RS
601/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604#define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
42429eac 607/* The minimum and maximum signed values that can be stored in a GPR. */
bad1aba3 608#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
42429eac
RS
609#define GPR_SMIN (-GPR_SMAX - 1)
610
252b5132
RH
611/* MIPS PIC level. */
612
a161fe53 613enum mips_pic_level mips_pic;
252b5132 614
c9914766 615/* 1 if we should generate 32 bit offsets from the $gp register in
252b5132 616 SVR4_PIC mode. Currently has no meaning in other modes. */
c9914766 617static int mips_big_got = 0;
252b5132
RH
618
619/* 1 if trap instructions should used for overflow rather than break
620 instructions. */
c9914766 621static int mips_trap = 0;
252b5132 622
119d663a 623/* 1 if double width floating point constants should not be constructed
b6ff326e 624 by assembling two single width halves into two single width floating
119d663a
NC
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
d547a75e 627 in the status register, and the setting of this bit cannot be determined
119d663a
NC
628 automatically at assemble time. */
629static int mips_disable_float_construction;
630
252b5132
RH
631/* Non-zero if any .set noreorder directives were used. */
632
633static int mips_any_noreorder;
634
6b76fefe
CM
635/* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637static int mips_7000_hilo_fix;
638
02ffd3e4 639/* The size of objects in the small data section. */
156c2f8b 640static unsigned int g_switch_value = 8;
252b5132
RH
641/* Whether the -G option was used. */
642static int g_switch_seen = 0;
643
644#define N_RMASK 0xc4
645#define N_VFP 0xd4
646
647/* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
fba2b7f9
GK
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
252b5132
RH
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
17a2f251 659static int nopic_need_relax (symbolS *, int);
252b5132
RH
660
661/* handle of the OPCODE hash table */
662static struct hash_control *op_hash = NULL;
663
664/* The opcode hash table we use for the mips16. */
665static struct hash_control *mips16_op_hash = NULL;
666
df58fc94
RS
667/* The opcode hash table we use for the microMIPS ASE. */
668static struct hash_control *micromips_op_hash = NULL;
669
252b5132
RH
670/* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672const char comment_chars[] = "#";
673
674/* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677/* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
bdaaa2e1 679 #NO_APP at the beginning of its output. */
252b5132
RH
680/* Also note that C style comments are always supported. */
681const char line_comment_chars[] = "#";
682
bdaaa2e1 683/* This array holds machine specific line separator characters. */
63a0b638 684const char line_separator_chars[] = ";";
252b5132
RH
685
686/* Chars that can be used to separate mant from exp in floating point nums */
687const char EXP_CHARS[] = "eE";
688
689/* Chars that mean this number is a floating point constant */
690/* As in 0f12.456 */
691/* or 0d1.2345e12 */
692const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
e3de51ce
RS
699/* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705};
706
707/* Information about an error that was found while assembling the current
708 instruction. */
709struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732};
733
734/* The error that should be reported for the current instruction. */
735static struct mips_insn_error insn_error;
252b5132
RH
736
737static int auto_align = 1;
738
739/* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743static offsetT mips_cprestore_offset = -1;
744
67c1ffbe 745/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
6478892d 746 more optimizations, it can use a register value instead of a memory-saved
956cd1d6 747 offset and even an other register than $gp as global pointer. */
6478892d
TS
748static offsetT mips_cpreturn_offset = -1;
749static int mips_cpreturn_register = -1;
750static int mips_gp_register = GP;
def2e0dd 751static int mips_gprel_offset = 0;
6478892d 752
7a621144
DJ
753/* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755static int mips_cprestore_valid = 0;
756
252b5132
RH
757/* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759static int mips_frame_reg = SP;
760
7a621144
DJ
761/* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763static int mips_frame_reg_valid = 0;
764
252b5132
RH
765/* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768/* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772static int mips_optimize = 2;
773
774/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776static int mips_debug = 0;
777
7d8e00cf
RS
778/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779#define MAX_VR4130_NOPS 4
780
781/* The maximum number of NOPs needed to fill delay slots. */
782#define MAX_DELAY_NOPS 2
783
784/* The maximum number of NOPs needed for any purpose. */
785#define MAX_NOPS 4
71400594
RS
786
787/* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792static struct mips_cl_insn history[1 + MAX_NOPS];
252b5132 793
fc76e730 794/* Arrays of operands for each instruction. */
14daeee3 795#define MAX_OPERANDS 6
fc76e730
RS
796struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798};
799static struct mips_operand_array *mips_operands;
800static struct mips_operand_array *mips16_operands;
801static struct mips_operand_array *micromips_operands;
802
1e915849 803/* Nop instructions used by emit_nop. */
df58fc94
RS
804static struct mips_cl_insn nop_insn;
805static struct mips_cl_insn mips16_nop_insn;
806static struct mips_cl_insn micromips_nop16_insn;
807static struct mips_cl_insn micromips_nop32_insn;
1e915849
RS
808
809/* The appropriate nop for the current mode. */
833794fc
MR
810#define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
df58fc94
RS
817
818/* The size of NOP_INSN in bytes. */
833794fc
MR
819#define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
252b5132 822
252b5132
RH
823/* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827static fragS *prev_nop_frag;
828
829/* The number of nop instructions we created in prev_nop_frag. */
830static int prev_nop_frag_holds;
831
832/* The number of nop instructions that we know we need in
bdaaa2e1 833 prev_nop_frag. */
252b5132
RH
834static int prev_nop_frag_required;
835
836/* The number of instructions we've seen since prev_nop_frag. */
837static int prev_nop_frag_since;
838
e8044f35
RS
839/* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
252b5132
RH
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
bdaaa2e1 848 corresponding LO relocation. */
252b5132 849
e972090a
NC
850struct mips_hi_fixup
851{
252b5132
RH
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858};
859
860/* The list of unmatched HI relocs. */
861
862static struct mips_hi_fixup *mips_hi_fixup_list;
863
64bdfcaf
RS
864/* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867static fragS *prev_reloc_op_frag;
868
252b5132
RH
869/* Map mips16 register numbers to normal MIPS register numbers. */
870
e972090a
NC
871static const unsigned int mips16_to_32_reg_map[] =
872{
252b5132
RH
873 16, 17, 2, 3, 4, 5, 6, 7
874};
60b63b72 875
df58fc94
RS
876/* Map microMIPS register numbers to normal MIPS register numbers. */
877
df58fc94 878#define micromips_to_32_reg_d_map mips16_to_32_reg_map
df58fc94
RS
879
880/* The microMIPS registers with type h. */
e76ff5ab 881static const unsigned int micromips_to_32_reg_h_map1[] =
df58fc94
RS
882{
883 5, 5, 6, 4, 4, 4, 4, 4
884};
e76ff5ab 885static const unsigned int micromips_to_32_reg_h_map2[] =
df58fc94
RS
886{
887 6, 7, 7, 21, 22, 5, 6, 7
888};
889
df58fc94
RS
890/* The microMIPS registers with type m. */
891static const unsigned int micromips_to_32_reg_m_map[] =
892{
893 0, 17, 2, 3, 16, 18, 19, 20
894};
895
896#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
71400594
RS
898/* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
c67a084a
NC
900enum fix_vr4120_class
901{
71400594
RS
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909};
910
c67a084a
NC
911/* ...likewise -mfix-loongson2f-jump. */
912static bfd_boolean mips_fix_loongson2f_jump;
913
914/* ...likewise -mfix-loongson2f-nop. */
915static bfd_boolean mips_fix_loongson2f_nop;
916
917/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918static bfd_boolean mips_fix_loongson2f;
919
71400594
RS
920/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925/* True if -mfix-vr4120 is in force. */
d766e8ec 926static int mips_fix_vr4120;
4a6a3df4 927
7d8e00cf
RS
928/* ...likewise -mfix-vr4130. */
929static int mips_fix_vr4130;
930
6a32d874
CM
931/* ...likewise -mfix-24k. */
932static int mips_fix_24k;
933
a8d14a88
CM
934/* ...likewise -mfix-rm7000 */
935static int mips_fix_rm7000;
936
d954098f
DD
937/* ...likewise -mfix-cn63xxp1 */
938static bfd_boolean mips_fix_cn63xxp1;
939
4a6a3df4
AO
940/* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945static int mips_relax_branch;
8b10b0b3
MR
946
947/* TRUE if checks are suppressed for invalid branches between ISA modes.
948 Needed for broken assembly produced by some GCC versions and some
949 sloppy code out there, where branches to data labels are present. */
950static bfd_boolean mips_ignore_branch_isa;
252b5132 951\f
4d7206a2
RS
952/* The expansion of many macros depends on the type of symbol that
953 they refer to. For example, when generating position-dependent code,
954 a macro that refers to a symbol may have two different expansions,
955 one which uses GP-relative addresses and one which uses absolute
956 addresses. When generating SVR4-style PIC, a macro may have
957 different expansions for local and global symbols.
958
959 We handle these situations by generating both sequences and putting
960 them in variant frags. In position-dependent code, the first sequence
961 will be the GP-relative one and the second sequence will be the
962 absolute one. In SVR4 PIC, the first sequence will be for global
963 symbols and the second will be for local symbols.
964
584892a6
RS
965 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
966 SECOND are the lengths of the two sequences in bytes. These fields
967 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
968 the subtype has the following flags:
4d7206a2 969
ce8ad872
MR
970 RELAX_PIC
971 Set if generating PIC code.
972
584892a6
RS
973 RELAX_USE_SECOND
974 Set if it has been decided that we should use the second
975 sequence instead of the first.
976
977 RELAX_SECOND_LONGER
978 Set in the first variant frag if the macro's second implementation
979 is longer than its first. This refers to the macro as a whole,
980 not an individual relaxation.
981
982 RELAX_NOMACRO
983 Set in the first variant frag if the macro appeared in a .set nomacro
984 block and if one alternative requires a warning but the other does not.
985
986 RELAX_DELAY_SLOT
987 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
988 delay slot.
4d7206a2 989
df58fc94
RS
990 RELAX_DELAY_SLOT_16BIT
991 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
992 16-bit instruction.
993
994 RELAX_DELAY_SLOT_SIZE_FIRST
995 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
996 the macro is of the wrong size for the branch delay slot.
997
998 RELAX_DELAY_SLOT_SIZE_SECOND
999 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1000 the macro is of the wrong size for the branch delay slot.
1001
4d7206a2
RS
1002 The frag's "opcode" points to the first fixup for relaxable code.
1003
1004 Relaxable macros are generated using a sequence such as:
1005
1006 relax_start (SYMBOL);
1007 ... generate first expansion ...
1008 relax_switch ();
1009 ... generate second expansion ...
1010 relax_end ();
1011
1012 The code and fixups for the unwanted alternative are discarded
1013 by md_convert_frag. */
ce8ad872
MR
1014#define RELAX_ENCODE(FIRST, SECOND, PIC) \
1015 (((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
4d7206a2 1016
584892a6
RS
1017#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1018#define RELAX_SECOND(X) ((X) & 0xff)
ce8ad872
MR
1019#define RELAX_PIC(X) (((X) & 0x10000) != 0)
1020#define RELAX_USE_SECOND 0x20000
1021#define RELAX_SECOND_LONGER 0x40000
1022#define RELAX_NOMACRO 0x80000
1023#define RELAX_DELAY_SLOT 0x100000
1024#define RELAX_DELAY_SLOT_16BIT 0x200000
1025#define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
1026#define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
252b5132 1027
4a6a3df4
AO
1028/* Branch without likely bit. If label is out of range, we turn:
1029
134c0c8b 1030 beq reg1, reg2, label
4a6a3df4
AO
1031 delay slot
1032
1033 into
1034
1035 bne reg1, reg2, 0f
1036 nop
1037 j label
1038 0: delay slot
1039
1040 with the following opcode replacements:
1041
1042 beq <-> bne
1043 blez <-> bgtz
1044 bltz <-> bgez
1045 bc1f <-> bc1t
1046
1047 bltzal <-> bgezal (with jal label instead of j label)
1048
1049 Even though keeping the delay slot instruction in the delay slot of
1050 the branch would be more efficient, it would be very tricky to do
1051 correctly, because we'd have to introduce a variable frag *after*
1052 the delay slot instruction, and expand that instead. Let's do it
1053 the easy way for now, even if the branch-not-taken case now costs
1054 one additional instruction. Out-of-range branches are not supposed
1055 to be common, anyway.
1056
1057 Branch likely. If label is out of range, we turn:
1058
1059 beql reg1, reg2, label
1060 delay slot (annulled if branch not taken)
1061
1062 into
1063
1064 beql reg1, reg2, 1f
1065 nop
1066 beql $0, $0, 2f
1067 nop
1068 1: j[al] label
1069 delay slot (executed only if branch taken)
1070 2:
1071
1072 It would be possible to generate a shorter sequence by losing the
1073 likely bit, generating something like:
b34976b6 1074
4a6a3df4
AO
1075 bne reg1, reg2, 0f
1076 nop
1077 j[al] label
1078 delay slot (executed only if branch taken)
1079 0:
1080
1081 beql -> bne
1082 bnel -> beq
1083 blezl -> bgtz
1084 bgtzl -> blez
1085 bltzl -> bgez
1086 bgezl -> bltz
1087 bc1fl -> bc1t
1088 bc1tl -> bc1f
1089
1090 bltzall -> bgezal (with jal label instead of j label)
1091 bgezall -> bltzal (ditto)
1092
1093
1094 but it's not clear that it would actually improve performance. */
ce8ad872
MR
1095#define RELAX_BRANCH_ENCODE(at, pic, \
1096 uncond, likely, link, toofar) \
66b3e8da
MR
1097 ((relax_substateT) \
1098 (0xc0000000 \
1099 | ((at) & 0x1f) \
ce8ad872
MR
1100 | ((pic) ? 0x20 : 0) \
1101 | ((toofar) ? 0x40 : 0) \
1102 | ((link) ? 0x80 : 0) \
1103 | ((likely) ? 0x100 : 0) \
1104 | ((uncond) ? 0x200 : 0)))
4a6a3df4 1105#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
ce8ad872
MR
1106#define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
1107#define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
1108#define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
1109#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
1110#define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
66b3e8da 1111#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
4a6a3df4 1112
252b5132
RH
1113/* For mips16 code, we use an entirely different form of relaxation.
1114 mips16 supports two versions of most instructions which take
1115 immediate values: a small one which takes some small value, and a
1116 larger one which takes a 16 bit value. Since branches also follow
1117 this pattern, relaxing these values is required.
1118
1119 We can assemble both mips16 and normal MIPS code in a single
1120 object. Therefore, we need to support this type of relaxation at
1121 the same time that we support the relaxation described above. We
1122 use the high bit of the subtype field to distinguish these cases.
1123
1124 The information we store for this type of relaxation is the
1125 argument code found in the opcode file for this relocation, whether
1126 the user explicitly requested a small or extended form, and whether
1127 the relocation is in a jump or jal delay slot. That tells us the
1128 size of the value, and how it should be stored. We also store
1129 whether the fragment is considered to be extended or not. We also
1130 store whether this is known to be a branch to a different section,
1131 whether we have tried to relax this frag yet, and whether we have
1132 ever extended a PC relative fragment because of a shift count. */
8507b6e7
MR
1133#define RELAX_MIPS16_ENCODE(type, pic, sym32, nomacro, \
1134 small, ext, \
1135 dslot, jal_dslot) \
252b5132
RH
1136 (0x80000000 \
1137 | ((type) & 0xff) \
8507b6e7
MR
1138 | ((pic) ? 0x100 : 0) \
1139 | ((sym32) ? 0x200 : 0) \
1140 | ((nomacro) ? 0x400 : 0) \
1141 | ((small) ? 0x800 : 0) \
1142 | ((ext) ? 0x1000 : 0) \
1143 | ((dslot) ? 0x2000 : 0) \
1144 | ((jal_dslot) ? 0x4000 : 0))
1145
4a6a3df4 1146#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
252b5132 1147#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
8507b6e7
MR
1148#define RELAX_MIPS16_PIC(i) (((i) & 0x100) != 0)
1149#define RELAX_MIPS16_SYM32(i) (((i) & 0x200) != 0)
1150#define RELAX_MIPS16_NOMACRO(i) (((i) & 0x400) != 0)
1151#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x800) != 0)
1152#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x1000) != 0)
1153#define RELAX_MIPS16_DSLOT(i) (((i) & 0x2000) != 0)
1154#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x4000) != 0)
1155
1156#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x8000) != 0)
1157#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x8000)
1158#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x8000)
1159#define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x10000) != 0)
1160#define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x10000)
1161#define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x10000)
1162#define RELAX_MIPS16_MACRO(i) (((i) & 0x20000) != 0)
1163#define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x20000)
1164#define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x20000)
885add95 1165
df58fc94
RS
1166/* For microMIPS code, we use relaxation similar to one we use for
1167 MIPS16 code. Some instructions that take immediate values support
1168 two encodings: a small one which takes some small value, and a
1169 larger one which takes a 16 bit value. As some branches also follow
1170 this pattern, relaxing these values is required.
1171
1172 We can assemble both microMIPS and normal MIPS code in a single
1173 object. Therefore, we need to support this type of relaxation at
1174 the same time that we support the relaxation described above. We
1175 use one of the high bits of the subtype field to distinguish these
1176 cases.
1177
1178 The information we store for this type of relaxation is the argument
1179 code found in the opcode file for this relocation, the register
8484fb75
MR
1180 selected as the assembler temporary, whether in the 32-bit
1181 instruction mode, whether the branch is unconditional, whether it is
7bd374a4
MR
1182 compact, whether there is no delay-slot instruction available to fill
1183 in, whether it stores the link address implicitly in $ra, whether
1184 relaxation of out-of-range 32-bit branches to a sequence of
8484fb75
MR
1185 instructions is enabled, and whether the displacement of a branch is
1186 too large to fit as an immediate argument of a 16-bit and a 32-bit
1187 branch, respectively. */
ce8ad872 1188#define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
7bd374a4 1189 uncond, compact, link, nods, \
40209cad
MR
1190 relax32, toofar16, toofar32) \
1191 (0x40000000 \
1192 | ((type) & 0xff) \
1193 | (((at) & 0x1f) << 8) \
8484fb75 1194 | ((insn32) ? 0x2000 : 0) \
ce8ad872
MR
1195 | ((pic) ? 0x4000 : 0) \
1196 | ((uncond) ? 0x8000 : 0) \
1197 | ((compact) ? 0x10000 : 0) \
1198 | ((link) ? 0x20000 : 0) \
1199 | ((nods) ? 0x40000 : 0) \
1200 | ((relax32) ? 0x80000 : 0) \
1201 | ((toofar16) ? 0x100000 : 0) \
1202 | ((toofar32) ? 0x200000 : 0))
df58fc94
RS
1203#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1204#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1205#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
8484fb75 1206#define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
ce8ad872
MR
1207#define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
1208#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
1209#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
1210#define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
1211#define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
1212#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
1213
1214#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
1215#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
1216#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
1217#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
1218#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
1219#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
df58fc94 1220
43c0598f
RS
1221/* Sign-extend 16-bit value X. */
1222#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1223
885add95
CD
1224/* Is the given value a sign-extended 32-bit value? */
1225#define IS_SEXT_32BIT_NUM(x) \
1226 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1227 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1228
1229/* Is the given value a sign-extended 16-bit value? */
1230#define IS_SEXT_16BIT_NUM(x) \
1231 (((x) &~ (offsetT) 0x7fff) == 0 \
1232 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1233
df58fc94
RS
1234/* Is the given value a sign-extended 12-bit value? */
1235#define IS_SEXT_12BIT_NUM(x) \
1236 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1237
7f3c4072
CM
1238/* Is the given value a sign-extended 9-bit value? */
1239#define IS_SEXT_9BIT_NUM(x) \
1240 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1241
2051e8c4
MR
1242/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1243#define IS_ZEXT_32BIT_NUM(x) \
1244 (((x) &~ (offsetT) 0xffffffff) == 0 \
1245 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1246
bf12938e
RS
1247/* Extract bits MASK << SHIFT from STRUCT and shift them right
1248 SHIFT places. */
1249#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1250 (((STRUCT) >> (SHIFT)) & (MASK))
1251
bf12938e 1252/* Extract the operand given by FIELD from mips_cl_insn INSN. */
df58fc94
RS
1253#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1254 (!(MICROMIPS) \
1255 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1256 : EXTRACT_BITS ((INSN).insn_opcode, \
1257 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
bf12938e
RS
1258#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1259 EXTRACT_BITS ((INSN).insn_opcode, \
1260 MIPS16OP_MASK_##FIELD, \
1261 MIPS16OP_SH_##FIELD)
5c04167a
RS
1262
1263/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1264#define MIPS16_EXTEND (0xf000U << 16)
4d7206a2 1265\f
df58fc94
RS
1266/* Whether or not we are emitting a branch-likely macro. */
1267static bfd_boolean emit_branch_likely_macro = FALSE;
1268
4d7206a2
RS
1269/* Global variables used when generating relaxable macros. See the
1270 comment above RELAX_ENCODE for more details about how relaxation
1271 is used. */
1272static struct {
1273 /* 0 if we're not emitting a relaxable macro.
1274 1 if we're emitting the first of the two relaxation alternatives.
1275 2 if we're emitting the second alternative. */
1276 int sequence;
1277
1278 /* The first relaxable fixup in the current frag. (In other words,
1279 the first fixup that refers to relaxable code.) */
1280 fixS *first_fixup;
1281
1282 /* sizes[0] says how many bytes of the first alternative are stored in
1283 the current frag. Likewise sizes[1] for the second alternative. */
1284 unsigned int sizes[2];
1285
1286 /* The symbol on which the choice of sequence depends. */
1287 symbolS *symbol;
1288} mips_relax;
252b5132 1289\f
584892a6
RS
1290/* Global variables used to decide whether a macro needs a warning. */
1291static struct {
1292 /* True if the macro is in a branch delay slot. */
1293 bfd_boolean delay_slot_p;
1294
df58fc94
RS
1295 /* Set to the length in bytes required if the macro is in a delay slot
1296 that requires a specific length of instruction, otherwise zero. */
1297 unsigned int delay_slot_length;
1298
584892a6
RS
1299 /* For relaxable macros, sizes[0] is the length of the first alternative
1300 in bytes and sizes[1] is the length of the second alternative.
1301 For non-relaxable macros, both elements give the length of the
1302 macro in bytes. */
1303 unsigned int sizes[2];
1304
df58fc94
RS
1305 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1306 instruction of the first alternative in bytes and first_insn_sizes[1]
1307 is the length of the first instruction of the second alternative.
1308 For non-relaxable macros, both elements give the length of the first
1309 instruction in bytes.
1310
1311 Set to zero if we haven't yet seen the first instruction. */
1312 unsigned int first_insn_sizes[2];
1313
1314 /* For relaxable macros, insns[0] is the number of instructions for the
1315 first alternative and insns[1] is the number of instructions for the
1316 second alternative.
1317
1318 For non-relaxable macros, both elements give the number of
1319 instructions for the macro. */
1320 unsigned int insns[2];
1321
584892a6
RS
1322 /* The first variant frag for this macro. */
1323 fragS *first_frag;
1324} mips_macro_warning;
1325\f
252b5132
RH
1326/* Prototypes for static functions. */
1327
252b5132
RH
1328enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1329
b34976b6 1330static void append_insn
df58fc94
RS
1331 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1332 bfd_boolean expansionp);
7d10b47d 1333static void mips_no_prev_insn (void);
c67a084a 1334static void macro_build (expressionS *, const char *, const char *, ...);
b34976b6 1335static void mips16_macro_build
03ea81db 1336 (expressionS *, const char *, const char *, va_list *);
67c0d1eb 1337static void load_register (int, expressionS *, int);
584892a6
RS
1338static void macro_start (void);
1339static void macro_end (void);
833794fc 1340static void macro (struct mips_cl_insn *ip, char *str);
17a2f251 1341static void mips16_macro (struct mips_cl_insn * ip);
17a2f251
TS
1342static void mips_ip (char *str, struct mips_cl_insn * ip);
1343static void mips16_ip (char *str, struct mips_cl_insn * ip);
b34976b6 1344static void mips16_immed
3b4dbbbf 1345 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
43c0598f 1346 unsigned int, unsigned long *);
5e0116d5 1347static size_t my_getSmallExpression
17a2f251
TS
1348 (expressionS *, bfd_reloc_code_real_type *, char *);
1349static void my_getExpression (expressionS *, char *);
1350static void s_align (int);
1351static void s_change_sec (int);
1352static void s_change_section (int);
1353static void s_cons (int);
1354static void s_float_cons (int);
1355static void s_mips_globl (int);
1356static void s_option (int);
1357static void s_mipsset (int);
1358static void s_abicalls (int);
1359static void s_cpload (int);
1360static void s_cpsetup (int);
1361static void s_cplocal (int);
1362static void s_cprestore (int);
1363static void s_cpreturn (int);
741d6ea8
JM
1364static void s_dtprelword (int);
1365static void s_dtpreldword (int);
d0f13682
CLT
1366static void s_tprelword (int);
1367static void s_tpreldword (int);
17a2f251
TS
1368static void s_gpvalue (int);
1369static void s_gpword (int);
1370static void s_gpdword (int);
a3f278e2 1371static void s_ehword (int);
17a2f251
TS
1372static void s_cpadd (int);
1373static void s_insn (int);
ba92f887 1374static void s_nan (int);
919731af 1375static void s_module (int);
17a2f251
TS
1376static void s_mips_ent (int);
1377static void s_mips_end (int);
1378static void s_mips_frame (int);
1379static void s_mips_mask (int reg_type);
1380static void s_mips_stab (int);
1381static void s_mips_weakext (int);
1382static void s_mips_file (int);
1383static void s_mips_loc (int);
9e009953 1384static bfd_boolean pic_need_relax (symbolS *);
4a6a3df4 1385static int relaxed_branch_length (fragS *, asection *, int);
df58fc94
RS
1386static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1387static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
919731af 1388static void file_mips_check_options (void);
e7af610e
NC
1389
1390/* Table and functions used to map between CPU/ISA names, and
1391 ISA levels, and CPU numbers. */
1392
e972090a
NC
1393struct mips_cpu_info
1394{
e7af610e 1395 const char *name; /* CPU or ISA name. */
d16afab6
RS
1396 int flags; /* MIPS_CPU_* flags. */
1397 int ase; /* Set of ASEs implemented by the CPU. */
e7af610e
NC
1398 int isa; /* ISA level. */
1399 int cpu; /* CPU number (default CPU if ISA). */
1400};
1401
ad3fea08 1402#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
ad3fea08 1403
17a2f251
TS
1404static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1405static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1406static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
252b5132 1407\f
c31f3936
RS
1408/* Command-line options. */
1409const char *md_shortopts = "O::g::G:";
1410
1411enum options
1412 {
1413 OPTION_MARCH = OPTION_MD_BASE,
1414 OPTION_MTUNE,
1415 OPTION_MIPS1,
1416 OPTION_MIPS2,
1417 OPTION_MIPS3,
1418 OPTION_MIPS4,
1419 OPTION_MIPS5,
1420 OPTION_MIPS32,
1421 OPTION_MIPS64,
1422 OPTION_MIPS32R2,
ae52f483
AB
1423 OPTION_MIPS32R3,
1424 OPTION_MIPS32R5,
7361da2c 1425 OPTION_MIPS32R6,
c31f3936 1426 OPTION_MIPS64R2,
ae52f483
AB
1427 OPTION_MIPS64R3,
1428 OPTION_MIPS64R5,
7361da2c 1429 OPTION_MIPS64R6,
c31f3936
RS
1430 OPTION_MIPS16,
1431 OPTION_NO_MIPS16,
1432 OPTION_MIPS3D,
1433 OPTION_NO_MIPS3D,
1434 OPTION_MDMX,
1435 OPTION_NO_MDMX,
1436 OPTION_DSP,
1437 OPTION_NO_DSP,
1438 OPTION_MT,
1439 OPTION_NO_MT,
1440 OPTION_VIRT,
1441 OPTION_NO_VIRT,
56d438b1
CF
1442 OPTION_MSA,
1443 OPTION_NO_MSA,
c31f3936
RS
1444 OPTION_SMARTMIPS,
1445 OPTION_NO_SMARTMIPS,
1446 OPTION_DSPR2,
1447 OPTION_NO_DSPR2,
8f4f9071
MF
1448 OPTION_DSPR3,
1449 OPTION_NO_DSPR3,
c31f3936
RS
1450 OPTION_EVA,
1451 OPTION_NO_EVA,
7d64c587
AB
1452 OPTION_XPA,
1453 OPTION_NO_XPA,
c31f3936
RS
1454 OPTION_MICROMIPS,
1455 OPTION_NO_MICROMIPS,
1456 OPTION_MCU,
1457 OPTION_NO_MCU,
1458 OPTION_COMPAT_ARCH_BASE,
1459 OPTION_M4650,
1460 OPTION_NO_M4650,
1461 OPTION_M4010,
1462 OPTION_NO_M4010,
1463 OPTION_M4100,
1464 OPTION_NO_M4100,
1465 OPTION_M3900,
1466 OPTION_NO_M3900,
1467 OPTION_M7000_HILO_FIX,
1468 OPTION_MNO_7000_HILO_FIX,
1469 OPTION_FIX_24K,
1470 OPTION_NO_FIX_24K,
a8d14a88
CM
1471 OPTION_FIX_RM7000,
1472 OPTION_NO_FIX_RM7000,
c31f3936
RS
1473 OPTION_FIX_LOONGSON2F_JUMP,
1474 OPTION_NO_FIX_LOONGSON2F_JUMP,
1475 OPTION_FIX_LOONGSON2F_NOP,
1476 OPTION_NO_FIX_LOONGSON2F_NOP,
1477 OPTION_FIX_VR4120,
1478 OPTION_NO_FIX_VR4120,
1479 OPTION_FIX_VR4130,
1480 OPTION_NO_FIX_VR4130,
1481 OPTION_FIX_CN63XXP1,
1482 OPTION_NO_FIX_CN63XXP1,
1483 OPTION_TRAP,
1484 OPTION_BREAK,
1485 OPTION_EB,
1486 OPTION_EL,
1487 OPTION_FP32,
1488 OPTION_GP32,
1489 OPTION_CONSTRUCT_FLOATS,
1490 OPTION_NO_CONSTRUCT_FLOATS,
1491 OPTION_FP64,
351cdf24 1492 OPTION_FPXX,
c31f3936
RS
1493 OPTION_GP64,
1494 OPTION_RELAX_BRANCH,
1495 OPTION_NO_RELAX_BRANCH,
8b10b0b3
MR
1496 OPTION_IGNORE_BRANCH_ISA,
1497 OPTION_NO_IGNORE_BRANCH_ISA,
833794fc
MR
1498 OPTION_INSN32,
1499 OPTION_NO_INSN32,
c31f3936
RS
1500 OPTION_MSHARED,
1501 OPTION_MNO_SHARED,
1502 OPTION_MSYM32,
1503 OPTION_MNO_SYM32,
1504 OPTION_SOFT_FLOAT,
1505 OPTION_HARD_FLOAT,
1506 OPTION_SINGLE_FLOAT,
1507 OPTION_DOUBLE_FLOAT,
1508 OPTION_32,
c31f3936
RS
1509 OPTION_CALL_SHARED,
1510 OPTION_CALL_NONPIC,
1511 OPTION_NON_SHARED,
1512 OPTION_XGOT,
1513 OPTION_MABI,
1514 OPTION_N32,
1515 OPTION_64,
1516 OPTION_MDEBUG,
1517 OPTION_NO_MDEBUG,
1518 OPTION_PDR,
1519 OPTION_NO_PDR,
1520 OPTION_MVXWORKS_PIC,
ba92f887 1521 OPTION_NAN,
351cdf24
MF
1522 OPTION_ODD_SPREG,
1523 OPTION_NO_ODD_SPREG,
c31f3936
RS
1524 OPTION_END_OF_ENUM
1525 };
1526
1527struct option md_longopts[] =
1528{
1529 /* Options which specify architecture. */
1530 {"march", required_argument, NULL, OPTION_MARCH},
1531 {"mtune", required_argument, NULL, OPTION_MTUNE},
1532 {"mips0", no_argument, NULL, OPTION_MIPS1},
1533 {"mips1", no_argument, NULL, OPTION_MIPS1},
1534 {"mips2", no_argument, NULL, OPTION_MIPS2},
1535 {"mips3", no_argument, NULL, OPTION_MIPS3},
1536 {"mips4", no_argument, NULL, OPTION_MIPS4},
1537 {"mips5", no_argument, NULL, OPTION_MIPS5},
1538 {"mips32", no_argument, NULL, OPTION_MIPS32},
1539 {"mips64", no_argument, NULL, OPTION_MIPS64},
1540 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
ae52f483
AB
1541 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1542 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
7361da2c 1543 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
c31f3936 1544 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
ae52f483
AB
1545 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1546 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
7361da2c 1547 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
c31f3936
RS
1548
1549 /* Options which specify Application Specific Extensions (ASEs). */
1550 {"mips16", no_argument, NULL, OPTION_MIPS16},
1551 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1552 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1553 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1554 {"mdmx", no_argument, NULL, OPTION_MDMX},
1555 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1556 {"mdsp", no_argument, NULL, OPTION_DSP},
1557 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1558 {"mmt", no_argument, NULL, OPTION_MT},
1559 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1560 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1561 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1562 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1563 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
8f4f9071
MF
1564 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1565 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
c31f3936
RS
1566 {"meva", no_argument, NULL, OPTION_EVA},
1567 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1568 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1569 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1570 {"mmcu", no_argument, NULL, OPTION_MCU},
1571 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1572 {"mvirt", no_argument, NULL, OPTION_VIRT},
1573 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
56d438b1
CF
1574 {"mmsa", no_argument, NULL, OPTION_MSA},
1575 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
7d64c587
AB
1576 {"mxpa", no_argument, NULL, OPTION_XPA},
1577 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
c31f3936
RS
1578
1579 /* Old-style architecture options. Don't add more of these. */
1580 {"m4650", no_argument, NULL, OPTION_M4650},
1581 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1582 {"m4010", no_argument, NULL, OPTION_M4010},
1583 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1584 {"m4100", no_argument, NULL, OPTION_M4100},
1585 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1586 {"m3900", no_argument, NULL, OPTION_M3900},
1587 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1588
1589 /* Options which enable bug fixes. */
1590 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1591 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1592 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1593 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1594 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1595 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1596 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1597 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1598 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1599 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1600 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1601 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1602 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
a8d14a88
CM
1603 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1604 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
c31f3936
RS
1605 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1606 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1607
1608 /* Miscellaneous options. */
1609 {"trap", no_argument, NULL, OPTION_TRAP},
1610 {"no-break", no_argument, NULL, OPTION_TRAP},
1611 {"break", no_argument, NULL, OPTION_BREAK},
1612 {"no-trap", no_argument, NULL, OPTION_BREAK},
1613 {"EB", no_argument, NULL, OPTION_EB},
1614 {"EL", no_argument, NULL, OPTION_EL},
1615 {"mfp32", no_argument, NULL, OPTION_FP32},
1616 {"mgp32", no_argument, NULL, OPTION_GP32},
1617 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1618 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1619 {"mfp64", no_argument, NULL, OPTION_FP64},
351cdf24 1620 {"mfpxx", no_argument, NULL, OPTION_FPXX},
c31f3936
RS
1621 {"mgp64", no_argument, NULL, OPTION_GP64},
1622 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1623 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
8b10b0b3
MR
1624 {"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
1625 {"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
833794fc
MR
1626 {"minsn32", no_argument, NULL, OPTION_INSN32},
1627 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
c31f3936
RS
1628 {"mshared", no_argument, NULL, OPTION_MSHARED},
1629 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1630 {"msym32", no_argument, NULL, OPTION_MSYM32},
1631 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1632 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1633 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1634 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1635 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
351cdf24
MF
1636 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1637 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
c31f3936
RS
1638
1639 /* Strictly speaking this next option is ELF specific,
1640 but we allow it for other ports as well in order to
1641 make testing easier. */
1642 {"32", no_argument, NULL, OPTION_32},
1643
1644 /* ELF-specific options. */
c31f3936
RS
1645 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1646 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1647 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1648 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1649 {"xgot", no_argument, NULL, OPTION_XGOT},
1650 {"mabi", required_argument, NULL, OPTION_MABI},
1651 {"n32", no_argument, NULL, OPTION_N32},
1652 {"64", no_argument, NULL, OPTION_64},
1653 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1654 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1655 {"mpdr", no_argument, NULL, OPTION_PDR},
1656 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1657 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
ba92f887 1658 {"mnan", required_argument, NULL, OPTION_NAN},
c31f3936
RS
1659
1660 {NULL, no_argument, NULL, 0}
1661};
1662size_t md_longopts_size = sizeof (md_longopts);
1663\f
c6278170
RS
1664/* Information about either an Application Specific Extension or an
1665 optional architecture feature that, for simplicity, we treat in the
1666 same way as an ASE. */
1667struct mips_ase
1668{
1669 /* The name of the ASE, used in both the command-line and .set options. */
1670 const char *name;
1671
1672 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1673 and 64-bit architectures, the flags here refer to the subset that
1674 is available on both. */
1675 unsigned int flags;
1676
1677 /* The ASE_* flag used for instructions that are available on 64-bit
1678 architectures but that are not included in FLAGS. */
1679 unsigned int flags64;
1680
1681 /* The command-line options that turn the ASE on and off. */
1682 int option_on;
1683 int option_off;
1684
1685 /* The minimum required architecture revisions for MIPS32, MIPS64,
1686 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1687 int mips32_rev;
1688 int mips64_rev;
1689 int micromips32_rev;
1690 int micromips64_rev;
7361da2c
AB
1691
1692 /* The architecture where the ASE was removed or -1 if the extension has not
1693 been removed. */
1694 int rem_rev;
c6278170
RS
1695};
1696
1697/* A table of all supported ASEs. */
1698static const struct mips_ase mips_ases[] = {
1699 { "dsp", ASE_DSP, ASE_DSP64,
1700 OPTION_DSP, OPTION_NO_DSP,
7361da2c
AB
1701 2, 2, 2, 2,
1702 -1 },
c6278170
RS
1703
1704 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1705 OPTION_DSPR2, OPTION_NO_DSPR2,
7361da2c
AB
1706 2, 2, 2, 2,
1707 -1 },
c6278170 1708
8f4f9071
MF
1709 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1710 OPTION_DSPR3, OPTION_NO_DSPR3,
1711 6, 6, -1, -1,
1712 -1 },
1713
c6278170
RS
1714 { "eva", ASE_EVA, 0,
1715 OPTION_EVA, OPTION_NO_EVA,
7361da2c
AB
1716 2, 2, 2, 2,
1717 -1 },
c6278170
RS
1718
1719 { "mcu", ASE_MCU, 0,
1720 OPTION_MCU, OPTION_NO_MCU,
7361da2c
AB
1721 2, 2, 2, 2,
1722 -1 },
c6278170
RS
1723
1724 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1725 { "mdmx", ASE_MDMX, 0,
1726 OPTION_MDMX, OPTION_NO_MDMX,
7361da2c
AB
1727 -1, 1, -1, -1,
1728 6 },
c6278170
RS
1729
1730 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1731 { "mips3d", ASE_MIPS3D, 0,
1732 OPTION_MIPS3D, OPTION_NO_MIPS3D,
7361da2c
AB
1733 2, 1, -1, -1,
1734 6 },
c6278170
RS
1735
1736 { "mt", ASE_MT, 0,
1737 OPTION_MT, OPTION_NO_MT,
7361da2c
AB
1738 2, 2, -1, -1,
1739 -1 },
c6278170
RS
1740
1741 { "smartmips", ASE_SMARTMIPS, 0,
1742 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
7361da2c
AB
1743 1, -1, -1, -1,
1744 6 },
c6278170
RS
1745
1746 { "virt", ASE_VIRT, ASE_VIRT64,
1747 OPTION_VIRT, OPTION_NO_VIRT,
7361da2c
AB
1748 2, 2, 2, 2,
1749 -1 },
56d438b1
CF
1750
1751 { "msa", ASE_MSA, ASE_MSA64,
1752 OPTION_MSA, OPTION_NO_MSA,
7361da2c
AB
1753 2, 2, 2, 2,
1754 -1 },
7d64c587
AB
1755
1756 { "xpa", ASE_XPA, 0,
1757 OPTION_XPA, OPTION_NO_XPA,
7361da2c
AB
1758 2, 2, -1, -1,
1759 -1 },
c6278170
RS
1760};
1761
1762/* The set of ASEs that require -mfp64. */
82bda27b 1763#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
c6278170
RS
1764
1765/* Groups of ASE_* flags that represent different revisions of an ASE. */
1766static const unsigned int mips_ase_groups[] = {
8f4f9071 1767 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
c6278170
RS
1768};
1769\f
252b5132
RH
1770/* Pseudo-op table.
1771
1772 The following pseudo-ops from the Kane and Heinrich MIPS book
1773 should be defined here, but are currently unsupported: .alias,
1774 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1775
1776 The following pseudo-ops from the Kane and Heinrich MIPS book are
1777 specific to the type of debugging information being generated, and
1778 should be defined by the object format: .aent, .begin, .bend,
1779 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1780 .vreg.
1781
1782 The following pseudo-ops from the Kane and Heinrich MIPS book are
1783 not MIPS CPU specific, but are also not specific to the object file
1784 format. This file is probably the best place to define them, but
d84bcf09 1785 they are not currently supported: .asm0, .endr, .lab, .struct. */
252b5132 1786
e972090a
NC
1787static const pseudo_typeS mips_pseudo_table[] =
1788{
beae10d5 1789 /* MIPS specific pseudo-ops. */
252b5132
RH
1790 {"option", s_option, 0},
1791 {"set", s_mipsset, 0},
1792 {"rdata", s_change_sec, 'r'},
1793 {"sdata", s_change_sec, 's'},
1794 {"livereg", s_ignore, 0},
1795 {"abicalls", s_abicalls, 0},
1796 {"cpload", s_cpload, 0},
6478892d
TS
1797 {"cpsetup", s_cpsetup, 0},
1798 {"cplocal", s_cplocal, 0},
252b5132 1799 {"cprestore", s_cprestore, 0},
6478892d 1800 {"cpreturn", s_cpreturn, 0},
741d6ea8
JM
1801 {"dtprelword", s_dtprelword, 0},
1802 {"dtpreldword", s_dtpreldword, 0},
d0f13682
CLT
1803 {"tprelword", s_tprelword, 0},
1804 {"tpreldword", s_tpreldword, 0},
6478892d 1805 {"gpvalue", s_gpvalue, 0},
252b5132 1806 {"gpword", s_gpword, 0},
10181a0d 1807 {"gpdword", s_gpdword, 0},
a3f278e2 1808 {"ehword", s_ehword, 0},
252b5132
RH
1809 {"cpadd", s_cpadd, 0},
1810 {"insn", s_insn, 0},
ba92f887 1811 {"nan", s_nan, 0},
919731af 1812 {"module", s_module, 0},
252b5132 1813
beae10d5 1814 /* Relatively generic pseudo-ops that happen to be used on MIPS
252b5132 1815 chips. */
38a57ae7 1816 {"asciiz", stringer, 8 + 1},
252b5132
RH
1817 {"bss", s_change_sec, 'b'},
1818 {"err", s_err, 0},
1819 {"half", s_cons, 1},
1820 {"dword", s_cons, 3},
1821 {"weakext", s_mips_weakext, 0},
7c752c2a
TS
1822 {"origin", s_org, 0},
1823 {"repeat", s_rept, 0},
252b5132 1824
998b3c36
MR
1825 /* For MIPS this is non-standard, but we define it for consistency. */
1826 {"sbss", s_change_sec, 'B'},
1827
beae10d5 1828 /* These pseudo-ops are defined in read.c, but must be overridden
252b5132
RH
1829 here for one reason or another. */
1830 {"align", s_align, 0},
1831 {"byte", s_cons, 0},
1832 {"data", s_change_sec, 'd'},
1833 {"double", s_float_cons, 'd'},
1834 {"float", s_float_cons, 'f'},
1835 {"globl", s_mips_globl, 0},
1836 {"global", s_mips_globl, 0},
1837 {"hword", s_cons, 1},
1838 {"int", s_cons, 2},
1839 {"long", s_cons, 2},
1840 {"octa", s_cons, 4},
1841 {"quad", s_cons, 3},
cca86cc8 1842 {"section", s_change_section, 0},
252b5132
RH
1843 {"short", s_cons, 1},
1844 {"single", s_float_cons, 'f'},
754e2bb9 1845 {"stabd", s_mips_stab, 'd'},
252b5132 1846 {"stabn", s_mips_stab, 'n'},
754e2bb9 1847 {"stabs", s_mips_stab, 's'},
252b5132
RH
1848 {"text", s_change_sec, 't'},
1849 {"word", s_cons, 2},
add56521 1850
add56521 1851 { "extern", ecoff_directive_extern, 0},
add56521 1852
43841e91 1853 { NULL, NULL, 0 },
252b5132
RH
1854};
1855
e972090a
NC
1856static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1857{
beae10d5
KH
1858 /* These pseudo-ops should be defined by the object file format.
1859 However, a.out doesn't support them, so we have versions here. */
252b5132
RH
1860 {"aent", s_mips_ent, 1},
1861 {"bgnb", s_ignore, 0},
1862 {"end", s_mips_end, 0},
1863 {"endb", s_ignore, 0},
1864 {"ent", s_mips_ent, 0},
c5dd6aab 1865 {"file", s_mips_file, 0},
252b5132
RH
1866 {"fmask", s_mips_mask, 'F'},
1867 {"frame", s_mips_frame, 0},
c5dd6aab 1868 {"loc", s_mips_loc, 0},
252b5132
RH
1869 {"mask", s_mips_mask, 'R'},
1870 {"verstamp", s_ignore, 0},
43841e91 1871 { NULL, NULL, 0 },
252b5132
RH
1872};
1873
3ae8dd8d
MR
1874/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1875 purpose of the `.dc.a' internal pseudo-op. */
1876
1877int
1878mips_address_bytes (void)
1879{
919731af 1880 file_mips_check_options ();
3ae8dd8d
MR
1881 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1882}
1883
17a2f251 1884extern void pop_insert (const pseudo_typeS *);
252b5132
RH
1885
1886void
17a2f251 1887mips_pop_insert (void)
252b5132
RH
1888{
1889 pop_insert (mips_pseudo_table);
1890 if (! ECOFF_DEBUGGING)
1891 pop_insert (mips_nonecoff_pseudo_table);
1892}
1893\f
1894/* Symbols labelling the current insn. */
1895
e972090a
NC
1896struct insn_label_list
1897{
252b5132
RH
1898 struct insn_label_list *next;
1899 symbolS *label;
1900};
1901
252b5132 1902static struct insn_label_list *free_insn_labels;
742a56fe 1903#define label_list tc_segment_info_data.labels
252b5132 1904
17a2f251 1905static void mips_clear_insn_labels (void);
df58fc94
RS
1906static void mips_mark_labels (void);
1907static void mips_compressed_mark_labels (void);
252b5132
RH
1908
1909static inline void
17a2f251 1910mips_clear_insn_labels (void)
252b5132 1911{
ed9e98c2 1912 struct insn_label_list **pl;
a8dbcb85 1913 segment_info_type *si;
252b5132 1914
a8dbcb85
TS
1915 if (now_seg)
1916 {
1917 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1918 ;
3739860c 1919
a8dbcb85
TS
1920 si = seg_info (now_seg);
1921 *pl = si->label_list;
1922 si->label_list = NULL;
1923 }
252b5132 1924}
a8dbcb85 1925
df58fc94
RS
1926/* Mark instruction labels in MIPS16/microMIPS mode. */
1927
1928static inline void
1929mips_mark_labels (void)
1930{
1931 if (HAVE_CODE_COMPRESSION)
1932 mips_compressed_mark_labels ();
1933}
252b5132
RH
1934\f
1935static char *expr_end;
1936
e423441d 1937/* An expression in a macro instruction. This is set by mips_ip and
b0e6f033 1938 mips16_ip and when populated is always an O_constant. */
252b5132
RH
1939
1940static expressionS imm_expr;
252b5132 1941
77bd4346
RS
1942/* The relocatable field in an instruction and the relocs associated
1943 with it. These variables are used for instructions like LUI and
1944 JAL as well as true offsets. They are also used for address
1945 operands in macros. */
252b5132 1946
77bd4346 1947static expressionS offset_expr;
f6688943
TS
1948static bfd_reloc_code_real_type offset_reloc[3]
1949 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 1950
df58fc94
RS
1951/* This is set to the resulting size of the instruction to be produced
1952 by mips16_ip if an explicit extension is used or by mips_ip if an
1953 explicit size is supplied. */
252b5132 1954
df58fc94 1955static unsigned int forced_insn_length;
252b5132 1956
e1b47bd5
RS
1957/* True if we are assembling an instruction. All dot symbols defined during
1958 this time should be treated as code labels. */
1959
1960static bfd_boolean mips_assembling_insn;
1961
ecb4347a
DJ
1962/* The pdr segment for per procedure frame/regmask info. Not used for
1963 ECOFF debugging. */
252b5132
RH
1964
1965static segT pdr_seg;
252b5132 1966
e013f690
TS
1967/* The default target format to use. */
1968
aeffff67
RS
1969#if defined (TE_FreeBSD)
1970#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1971#elif defined (TE_TMIPS)
1972#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1973#else
1974#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1975#endif
1976
e013f690 1977const char *
17a2f251 1978mips_target_format (void)
e013f690
TS
1979{
1980 switch (OUTPUT_FLAVOR)
1981 {
e013f690 1982 case bfd_target_elf_flavour:
0a44bf69
RS
1983#ifdef TE_VXWORKS
1984 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1985 return (target_big_endian
1986 ? "elf32-bigmips-vxworks"
1987 : "elf32-littlemips-vxworks");
1988#endif
e013f690 1989 return (target_big_endian
cfe86eaa 1990 ? (HAVE_64BIT_OBJECTS
aeffff67 1991 ? ELF_TARGET ("elf64-", "big")
cfe86eaa 1992 : (HAVE_NEWABI
aeffff67
RS
1993 ? ELF_TARGET ("elf32-n", "big")
1994 : ELF_TARGET ("elf32-", "big")))
cfe86eaa 1995 : (HAVE_64BIT_OBJECTS
aeffff67 1996 ? ELF_TARGET ("elf64-", "little")
cfe86eaa 1997 : (HAVE_NEWABI
aeffff67
RS
1998 ? ELF_TARGET ("elf32-n", "little")
1999 : ELF_TARGET ("elf32-", "little"))));
e013f690
TS
2000 default:
2001 abort ();
2002 return NULL;
2003 }
2004}
2005
c6278170
RS
2006/* Return the ISA revision that is currently in use, or 0 if we are
2007 generating code for MIPS V or below. */
2008
2009static int
2010mips_isa_rev (void)
2011{
2012 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
2013 return 2;
2014
ae52f483
AB
2015 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
2016 return 3;
2017
2018 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
2019 return 5;
2020
7361da2c
AB
2021 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
2022 return 6;
2023
c6278170
RS
2024 /* microMIPS implies revision 2 or above. */
2025 if (mips_opts.micromips)
2026 return 2;
2027
2028 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2029 return 1;
2030
2031 return 0;
2032}
2033
2034/* Return the mask of all ASEs that are revisions of those in FLAGS. */
2035
2036static unsigned int
2037mips_ase_mask (unsigned int flags)
2038{
2039 unsigned int i;
2040
2041 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2042 if (flags & mips_ase_groups[i])
2043 flags |= mips_ase_groups[i];
2044 return flags;
2045}
2046
2047/* Check whether the current ISA supports ASE. Issue a warning if
2048 appropriate. */
2049
2050static void
2051mips_check_isa_supports_ase (const struct mips_ase *ase)
2052{
2053 const char *base;
2054 int min_rev, size;
2055 static unsigned int warned_isa;
2056 static unsigned int warned_fp32;
2057
2058 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2059 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2060 else
2061 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2062 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2063 && (warned_isa & ase->flags) != ase->flags)
2064 {
2065 warned_isa |= ase->flags;
2066 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2067 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2068 if (min_rev < 0)
1661c76c 2069 as_warn (_("the %d-bit %s architecture does not support the"
c6278170
RS
2070 " `%s' extension"), size, base, ase->name);
2071 else
1661c76c 2072 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
c6278170
RS
2073 ase->name, base, size, min_rev);
2074 }
7361da2c
AB
2075 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2076 && (warned_isa & ase->flags) != ase->flags)
2077 {
2078 warned_isa |= ase->flags;
2079 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2080 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2081 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2082 ase->name, base, size, ase->rem_rev);
2083 }
2084
c6278170 2085 if ((ase->flags & FP64_ASES)
0b35dfee 2086 && mips_opts.fp != 64
c6278170
RS
2087 && (warned_fp32 & ase->flags) != ase->flags)
2088 {
2089 warned_fp32 |= ase->flags;
1661c76c 2090 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
c6278170
RS
2091 }
2092}
2093
2094/* Check all enabled ASEs to see whether they are supported by the
2095 chosen architecture. */
2096
2097static void
2098mips_check_isa_supports_ases (void)
2099{
2100 unsigned int i, mask;
2101
2102 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2103 {
2104 mask = mips_ase_mask (mips_ases[i].flags);
2105 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2106 mips_check_isa_supports_ase (&mips_ases[i]);
2107 }
2108}
2109
2110/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2111 that were affected. */
2112
2113static unsigned int
919731af 2114mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2115 bfd_boolean enabled_p)
c6278170
RS
2116{
2117 unsigned int mask;
2118
2119 mask = mips_ase_mask (ase->flags);
919731af 2120 opts->ase &= ~mask;
c6278170 2121 if (enabled_p)
919731af 2122 opts->ase |= ase->flags;
c6278170
RS
2123 return mask;
2124}
2125
2126/* Return the ASE called NAME, or null if none. */
2127
2128static const struct mips_ase *
2129mips_lookup_ase (const char *name)
2130{
2131 unsigned int i;
2132
2133 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2134 if (strcmp (name, mips_ases[i].name) == 0)
2135 return &mips_ases[i];
2136 return NULL;
2137}
2138
df58fc94 2139/* Return the length of a microMIPS instruction in bytes. If bits of
100b4f2e
MR
2140 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2141 otherwise it is a 32-bit instruction. */
df58fc94
RS
2142
2143static inline unsigned int
2144micromips_insn_length (const struct mips_opcode *mo)
2145{
7fd53920 2146 return mips_opcode_32bit_p (mo) ? 4 : 2;
df58fc94
RS
2147}
2148
5c04167a
RS
2149/* Return the length of MIPS16 instruction OPCODE. */
2150
2151static inline unsigned int
2152mips16_opcode_length (unsigned long opcode)
2153{
2154 return (opcode >> 16) == 0 ? 2 : 4;
2155}
2156
1e915849
RS
2157/* Return the length of instruction INSN. */
2158
2159static inline unsigned int
2160insn_length (const struct mips_cl_insn *insn)
2161{
df58fc94
RS
2162 if (mips_opts.micromips)
2163 return micromips_insn_length (insn->insn_mo);
2164 else if (mips_opts.mips16)
5c04167a 2165 return mips16_opcode_length (insn->insn_opcode);
df58fc94 2166 else
1e915849 2167 return 4;
1e915849
RS
2168}
2169
2170/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2171
2172static void
2173create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2174{
2175 size_t i;
2176
2177 insn->insn_mo = mo;
1e915849
RS
2178 insn->insn_opcode = mo->match;
2179 insn->frag = NULL;
2180 insn->where = 0;
2181 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2182 insn->fixp[i] = NULL;
2183 insn->fixed_p = (mips_opts.noreorder > 0);
2184 insn->noreorder_p = (mips_opts.noreorder > 0);
2185 insn->mips16_absolute_jump_p = 0;
15be625d 2186 insn->complete_p = 0;
e407c74b 2187 insn->cleared_p = 0;
1e915849
RS
2188}
2189
fc76e730
RS
2190/* Get a list of all the operands in INSN. */
2191
2192static const struct mips_operand_array *
2193insn_operands (const struct mips_cl_insn *insn)
2194{
2195 if (insn->insn_mo >= &mips_opcodes[0]
2196 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2197 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2198
2199 if (insn->insn_mo >= &mips16_opcodes[0]
2200 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2201 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2202
2203 if (insn->insn_mo >= &micromips_opcodes[0]
2204 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2205 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2206
2207 abort ();
2208}
2209
2210/* Get a description of operand OPNO of INSN. */
2211
2212static const struct mips_operand *
2213insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2214{
2215 const struct mips_operand_array *operands;
2216
2217 operands = insn_operands (insn);
2218 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2219 abort ();
2220 return operands->operand[opno];
2221}
2222
e077a1c8
RS
2223/* Install UVAL as the value of OPERAND in INSN. */
2224
2225static inline void
2226insn_insert_operand (struct mips_cl_insn *insn,
2227 const struct mips_operand *operand, unsigned int uval)
2228{
2229 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2230}
2231
fc76e730
RS
2232/* Extract the value of OPERAND from INSN. */
2233
2234static inline unsigned
2235insn_extract_operand (const struct mips_cl_insn *insn,
2236 const struct mips_operand *operand)
2237{
2238 return mips_extract_operand (operand, insn->insn_opcode);
2239}
2240
df58fc94 2241/* Record the current MIPS16/microMIPS mode in now_seg. */
742a56fe
RS
2242
2243static void
df58fc94 2244mips_record_compressed_mode (void)
742a56fe
RS
2245{
2246 segment_info_type *si;
2247
2248 si = seg_info (now_seg);
2249 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2250 si->tc_segment_info_data.mips16 = mips_opts.mips16;
df58fc94
RS
2251 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2252 si->tc_segment_info_data.micromips = mips_opts.micromips;
742a56fe
RS
2253}
2254
4d68580a
RS
2255/* Read a standard MIPS instruction from BUF. */
2256
2257static unsigned long
2258read_insn (char *buf)
2259{
2260 if (target_big_endian)
2261 return bfd_getb32 ((bfd_byte *) buf);
2262 else
2263 return bfd_getl32 ((bfd_byte *) buf);
2264}
2265
2266/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2267 the next byte. */
2268
2269static char *
2270write_insn (char *buf, unsigned int insn)
2271{
2272 md_number_to_chars (buf, insn, 4);
2273 return buf + 4;
2274}
2275
2276/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2277 has length LENGTH. */
2278
2279static unsigned long
2280read_compressed_insn (char *buf, unsigned int length)
2281{
2282 unsigned long insn;
2283 unsigned int i;
2284
2285 insn = 0;
2286 for (i = 0; i < length; i += 2)
2287 {
2288 insn <<= 16;
2289 if (target_big_endian)
2290 insn |= bfd_getb16 ((char *) buf);
2291 else
2292 insn |= bfd_getl16 ((char *) buf);
2293 buf += 2;
2294 }
2295 return insn;
2296}
2297
5c04167a
RS
2298/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2299 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2300
2301static char *
2302write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2303{
2304 unsigned int i;
2305
2306 for (i = 0; i < length; i += 2)
2307 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2308 return buf + length;
2309}
2310
1e915849
RS
2311/* Install INSN at the location specified by its "frag" and "where" fields. */
2312
2313static void
2314install_insn (const struct mips_cl_insn *insn)
2315{
2316 char *f = insn->frag->fr_literal + insn->where;
5c04167a
RS
2317 if (HAVE_CODE_COMPRESSION)
2318 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1e915849 2319 else
4d68580a 2320 write_insn (f, insn->insn_opcode);
df58fc94 2321 mips_record_compressed_mode ();
1e915849
RS
2322}
2323
2324/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2325 and install the opcode in the new location. */
2326
2327static void
2328move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2329{
2330 size_t i;
2331
2332 insn->frag = frag;
2333 insn->where = where;
2334 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2335 if (insn->fixp[i] != NULL)
2336 {
2337 insn->fixp[i]->fx_frag = frag;
2338 insn->fixp[i]->fx_where = where;
2339 }
2340 install_insn (insn);
2341}
2342
2343/* Add INSN to the end of the output. */
2344
2345static void
2346add_fixed_insn (struct mips_cl_insn *insn)
2347{
2348 char *f = frag_more (insn_length (insn));
2349 move_insn (insn, frag_now, f - frag_now->fr_literal);
2350}
2351
2352/* Start a variant frag and move INSN to the start of the variant part,
2353 marking it as fixed. The other arguments are as for frag_var. */
2354
2355static void
2356add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2357 relax_substateT subtype, symbolS *symbol, offsetT offset)
2358{
2359 frag_grow (max_chars);
2360 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2361 insn->fixed_p = 1;
2362 frag_var (rs_machine_dependent, max_chars, var,
2363 subtype, symbol, offset, NULL);
2364}
2365
2366/* Insert N copies of INSN into the history buffer, starting at
2367 position FIRST. Neither FIRST nor N need to be clipped. */
2368
2369static void
2370insert_into_history (unsigned int first, unsigned int n,
2371 const struct mips_cl_insn *insn)
2372{
2373 if (mips_relax.sequence != 2)
2374 {
2375 unsigned int i;
2376
2377 for (i = ARRAY_SIZE (history); i-- > first;)
2378 if (i >= first + n)
2379 history[i] = history[i - n];
2380 else
2381 history[i] = *insn;
2382 }
2383}
2384
e3de51ce
RS
2385/* Clear the error in insn_error. */
2386
2387static void
2388clear_insn_error (void)
2389{
2390 memset (&insn_error, 0, sizeof (insn_error));
2391}
2392
2393/* Possibly record error message MSG for the current instruction.
2394 If the error is about a particular argument, ARGNUM is the 1-based
2395 number of that argument, otherwise it is 0. FORMAT is the format
2396 of MSG. Return true if MSG was used, false if the current message
2397 was kept. */
2398
2399static bfd_boolean
2400set_insn_error_format (int argnum, enum mips_insn_error_format format,
2401 const char *msg)
2402{
2403 if (argnum == 0)
2404 {
2405 /* Give priority to errors against specific arguments, and to
2406 the first whole-instruction message. */
2407 if (insn_error.msg)
2408 return FALSE;
2409 }
2410 else
2411 {
2412 /* Keep insn_error if it is against a later argument. */
2413 if (argnum < insn_error.min_argnum)
2414 return FALSE;
2415
2416 /* If both errors are against the same argument but are different,
2417 give up on reporting a specific error for this argument.
2418 See the comment about mips_insn_error for details. */
2419 if (argnum == insn_error.min_argnum
2420 && insn_error.msg
2421 && strcmp (insn_error.msg, msg) != 0)
2422 {
2423 insn_error.msg = 0;
2424 insn_error.min_argnum += 1;
2425 return FALSE;
2426 }
2427 }
2428 insn_error.min_argnum = argnum;
2429 insn_error.format = format;
2430 insn_error.msg = msg;
2431 return TRUE;
2432}
2433
2434/* Record an instruction error with no % format fields. ARGNUM and MSG are
2435 as for set_insn_error_format. */
2436
2437static void
2438set_insn_error (int argnum, const char *msg)
2439{
2440 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2441}
2442
2443/* Record an instruction error with one %d field I. ARGNUM and MSG are
2444 as for set_insn_error_format. */
2445
2446static void
2447set_insn_error_i (int argnum, const char *msg, int i)
2448{
2449 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2450 insn_error.u.i = i;
2451}
2452
2453/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2454 are as for set_insn_error_format. */
2455
2456static void
2457set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2458{
2459 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2460 {
2461 insn_error.u.ss[0] = s1;
2462 insn_error.u.ss[1] = s2;
2463 }
2464}
2465
2466/* Report the error in insn_error, which is against assembly code STR. */
2467
2468static void
2469report_insn_error (const char *str)
2470{
e1fa0163 2471 const char *msg = concat (insn_error.msg, " `%s'", NULL);
e3de51ce 2472
e3de51ce
RS
2473 switch (insn_error.format)
2474 {
2475 case ERR_FMT_PLAIN:
2476 as_bad (msg, str);
2477 break;
2478
2479 case ERR_FMT_I:
2480 as_bad (msg, insn_error.u.i, str);
2481 break;
2482
2483 case ERR_FMT_SS:
2484 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2485 break;
2486 }
e1fa0163
NC
2487
2488 free ((char *) msg);
e3de51ce
RS
2489}
2490
71400594
RS
2491/* Initialize vr4120_conflicts. There is a bit of duplication here:
2492 the idea is to make it obvious at a glance that each errata is
2493 included. */
2494
2495static void
2496init_vr4120_conflicts (void)
2497{
2498#define CONFLICT(FIRST, SECOND) \
2499 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2500
2501 /* Errata 21 - [D]DIV[U] after [D]MACC */
2502 CONFLICT (MACC, DIV);
2503 CONFLICT (DMACC, DIV);
2504
2505 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2506 CONFLICT (DMULT, DMULT);
2507 CONFLICT (DMULT, DMACC);
2508 CONFLICT (DMACC, DMULT);
2509 CONFLICT (DMACC, DMACC);
2510
2511 /* Errata 24 - MT{LO,HI} after [D]MACC */
2512 CONFLICT (MACC, MTHILO);
2513 CONFLICT (DMACC, MTHILO);
2514
2515 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2516 instruction is executed immediately after a MACC or DMACC
2517 instruction, the result of [either instruction] is incorrect." */
2518 CONFLICT (MACC, MULT);
2519 CONFLICT (MACC, DMULT);
2520 CONFLICT (DMACC, MULT);
2521 CONFLICT (DMACC, DMULT);
2522
2523 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2524 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2525 DDIV or DDIVU instruction, the result of the MACC or
2526 DMACC instruction is incorrect.". */
2527 CONFLICT (DMULT, MACC);
2528 CONFLICT (DMULT, DMACC);
2529 CONFLICT (DIV, MACC);
2530 CONFLICT (DIV, DMACC);
2531
2532#undef CONFLICT
2533}
2534
707bfff6
TS
2535struct regname {
2536 const char *name;
2537 unsigned int num;
2538};
2539
14daeee3 2540#define RNUM_MASK 0x00000ff
56d438b1 2541#define RTYPE_MASK 0x0ffff00
14daeee3
RS
2542#define RTYPE_NUM 0x0000100
2543#define RTYPE_FPU 0x0000200
2544#define RTYPE_FCC 0x0000400
2545#define RTYPE_VEC 0x0000800
2546#define RTYPE_GP 0x0001000
2547#define RTYPE_CP0 0x0002000
2548#define RTYPE_PC 0x0004000
2549#define RTYPE_ACC 0x0008000
2550#define RTYPE_CCC 0x0010000
2551#define RTYPE_VI 0x0020000
2552#define RTYPE_VF 0x0040000
2553#define RTYPE_R5900_I 0x0080000
2554#define RTYPE_R5900_Q 0x0100000
2555#define RTYPE_R5900_R 0x0200000
2556#define RTYPE_R5900_ACC 0x0400000
56d438b1 2557#define RTYPE_MSA 0x0800000
14daeee3 2558#define RWARN 0x8000000
707bfff6
TS
2559
2560#define GENERIC_REGISTER_NUMBERS \
2561 {"$0", RTYPE_NUM | 0}, \
2562 {"$1", RTYPE_NUM | 1}, \
2563 {"$2", RTYPE_NUM | 2}, \
2564 {"$3", RTYPE_NUM | 3}, \
2565 {"$4", RTYPE_NUM | 4}, \
2566 {"$5", RTYPE_NUM | 5}, \
2567 {"$6", RTYPE_NUM | 6}, \
2568 {"$7", RTYPE_NUM | 7}, \
2569 {"$8", RTYPE_NUM | 8}, \
2570 {"$9", RTYPE_NUM | 9}, \
2571 {"$10", RTYPE_NUM | 10}, \
2572 {"$11", RTYPE_NUM | 11}, \
2573 {"$12", RTYPE_NUM | 12}, \
2574 {"$13", RTYPE_NUM | 13}, \
2575 {"$14", RTYPE_NUM | 14}, \
2576 {"$15", RTYPE_NUM | 15}, \
2577 {"$16", RTYPE_NUM | 16}, \
2578 {"$17", RTYPE_NUM | 17}, \
2579 {"$18", RTYPE_NUM | 18}, \
2580 {"$19", RTYPE_NUM | 19}, \
2581 {"$20", RTYPE_NUM | 20}, \
2582 {"$21", RTYPE_NUM | 21}, \
2583 {"$22", RTYPE_NUM | 22}, \
2584 {"$23", RTYPE_NUM | 23}, \
2585 {"$24", RTYPE_NUM | 24}, \
2586 {"$25", RTYPE_NUM | 25}, \
2587 {"$26", RTYPE_NUM | 26}, \
2588 {"$27", RTYPE_NUM | 27}, \
2589 {"$28", RTYPE_NUM | 28}, \
2590 {"$29", RTYPE_NUM | 29}, \
2591 {"$30", RTYPE_NUM | 30}, \
3739860c 2592 {"$31", RTYPE_NUM | 31}
707bfff6
TS
2593
2594#define FPU_REGISTER_NAMES \
2595 {"$f0", RTYPE_FPU | 0}, \
2596 {"$f1", RTYPE_FPU | 1}, \
2597 {"$f2", RTYPE_FPU | 2}, \
2598 {"$f3", RTYPE_FPU | 3}, \
2599 {"$f4", RTYPE_FPU | 4}, \
2600 {"$f5", RTYPE_FPU | 5}, \
2601 {"$f6", RTYPE_FPU | 6}, \
2602 {"$f7", RTYPE_FPU | 7}, \
2603 {"$f8", RTYPE_FPU | 8}, \
2604 {"$f9", RTYPE_FPU | 9}, \
2605 {"$f10", RTYPE_FPU | 10}, \
2606 {"$f11", RTYPE_FPU | 11}, \
2607 {"$f12", RTYPE_FPU | 12}, \
2608 {"$f13", RTYPE_FPU | 13}, \
2609 {"$f14", RTYPE_FPU | 14}, \
2610 {"$f15", RTYPE_FPU | 15}, \
2611 {"$f16", RTYPE_FPU | 16}, \
2612 {"$f17", RTYPE_FPU | 17}, \
2613 {"$f18", RTYPE_FPU | 18}, \
2614 {"$f19", RTYPE_FPU | 19}, \
2615 {"$f20", RTYPE_FPU | 20}, \
2616 {"$f21", RTYPE_FPU | 21}, \
2617 {"$f22", RTYPE_FPU | 22}, \
2618 {"$f23", RTYPE_FPU | 23}, \
2619 {"$f24", RTYPE_FPU | 24}, \
2620 {"$f25", RTYPE_FPU | 25}, \
2621 {"$f26", RTYPE_FPU | 26}, \
2622 {"$f27", RTYPE_FPU | 27}, \
2623 {"$f28", RTYPE_FPU | 28}, \
2624 {"$f29", RTYPE_FPU | 29}, \
2625 {"$f30", RTYPE_FPU | 30}, \
2626 {"$f31", RTYPE_FPU | 31}
2627
2628#define FPU_CONDITION_CODE_NAMES \
2629 {"$fcc0", RTYPE_FCC | 0}, \
2630 {"$fcc1", RTYPE_FCC | 1}, \
2631 {"$fcc2", RTYPE_FCC | 2}, \
2632 {"$fcc3", RTYPE_FCC | 3}, \
2633 {"$fcc4", RTYPE_FCC | 4}, \
2634 {"$fcc5", RTYPE_FCC | 5}, \
2635 {"$fcc6", RTYPE_FCC | 6}, \
2636 {"$fcc7", RTYPE_FCC | 7}
2637
2638#define COPROC_CONDITION_CODE_NAMES \
2639 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2640 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2641 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2642 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2643 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2644 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2645 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2646 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2647
2648#define N32N64_SYMBOLIC_REGISTER_NAMES \
2649 {"$a4", RTYPE_GP | 8}, \
2650 {"$a5", RTYPE_GP | 9}, \
2651 {"$a6", RTYPE_GP | 10}, \
2652 {"$a7", RTYPE_GP | 11}, \
2653 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2654 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2655 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2656 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2657 {"$t0", RTYPE_GP | 12}, \
2658 {"$t1", RTYPE_GP | 13}, \
2659 {"$t2", RTYPE_GP | 14}, \
2660 {"$t3", RTYPE_GP | 15}
2661
2662#define O32_SYMBOLIC_REGISTER_NAMES \
2663 {"$t0", RTYPE_GP | 8}, \
2664 {"$t1", RTYPE_GP | 9}, \
2665 {"$t2", RTYPE_GP | 10}, \
2666 {"$t3", RTYPE_GP | 11}, \
2667 {"$t4", RTYPE_GP | 12}, \
2668 {"$t5", RTYPE_GP | 13}, \
2669 {"$t6", RTYPE_GP | 14}, \
2670 {"$t7", RTYPE_GP | 15}, \
2671 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2672 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2673 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
3739860c 2674 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
707bfff6
TS
2675
2676/* Remaining symbolic register names */
2677#define SYMBOLIC_REGISTER_NAMES \
2678 {"$zero", RTYPE_GP | 0}, \
2679 {"$at", RTYPE_GP | 1}, \
2680 {"$AT", RTYPE_GP | 1}, \
2681 {"$v0", RTYPE_GP | 2}, \
2682 {"$v1", RTYPE_GP | 3}, \
2683 {"$a0", RTYPE_GP | 4}, \
2684 {"$a1", RTYPE_GP | 5}, \
2685 {"$a2", RTYPE_GP | 6}, \
2686 {"$a3", RTYPE_GP | 7}, \
2687 {"$s0", RTYPE_GP | 16}, \
2688 {"$s1", RTYPE_GP | 17}, \
2689 {"$s2", RTYPE_GP | 18}, \
2690 {"$s3", RTYPE_GP | 19}, \
2691 {"$s4", RTYPE_GP | 20}, \
2692 {"$s5", RTYPE_GP | 21}, \
2693 {"$s6", RTYPE_GP | 22}, \
2694 {"$s7", RTYPE_GP | 23}, \
2695 {"$t8", RTYPE_GP | 24}, \
2696 {"$t9", RTYPE_GP | 25}, \
2697 {"$k0", RTYPE_GP | 26}, \
2698 {"$kt0", RTYPE_GP | 26}, \
2699 {"$k1", RTYPE_GP | 27}, \
2700 {"$kt1", RTYPE_GP | 27}, \
2701 {"$gp", RTYPE_GP | 28}, \
2702 {"$sp", RTYPE_GP | 29}, \
2703 {"$s8", RTYPE_GP | 30}, \
2704 {"$fp", RTYPE_GP | 30}, \
2705 {"$ra", RTYPE_GP | 31}
2706
2707#define MIPS16_SPECIAL_REGISTER_NAMES \
2708 {"$pc", RTYPE_PC | 0}
2709
2710#define MDMX_VECTOR_REGISTER_NAMES \
2711 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2712 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2713 {"$v2", RTYPE_VEC | 2}, \
2714 {"$v3", RTYPE_VEC | 3}, \
2715 {"$v4", RTYPE_VEC | 4}, \
2716 {"$v5", RTYPE_VEC | 5}, \
2717 {"$v6", RTYPE_VEC | 6}, \
2718 {"$v7", RTYPE_VEC | 7}, \
2719 {"$v8", RTYPE_VEC | 8}, \
2720 {"$v9", RTYPE_VEC | 9}, \
2721 {"$v10", RTYPE_VEC | 10}, \
2722 {"$v11", RTYPE_VEC | 11}, \
2723 {"$v12", RTYPE_VEC | 12}, \
2724 {"$v13", RTYPE_VEC | 13}, \
2725 {"$v14", RTYPE_VEC | 14}, \
2726 {"$v15", RTYPE_VEC | 15}, \
2727 {"$v16", RTYPE_VEC | 16}, \
2728 {"$v17", RTYPE_VEC | 17}, \
2729 {"$v18", RTYPE_VEC | 18}, \
2730 {"$v19", RTYPE_VEC | 19}, \
2731 {"$v20", RTYPE_VEC | 20}, \
2732 {"$v21", RTYPE_VEC | 21}, \
2733 {"$v22", RTYPE_VEC | 22}, \
2734 {"$v23", RTYPE_VEC | 23}, \
2735 {"$v24", RTYPE_VEC | 24}, \
2736 {"$v25", RTYPE_VEC | 25}, \
2737 {"$v26", RTYPE_VEC | 26}, \
2738 {"$v27", RTYPE_VEC | 27}, \
2739 {"$v28", RTYPE_VEC | 28}, \
2740 {"$v29", RTYPE_VEC | 29}, \
2741 {"$v30", RTYPE_VEC | 30}, \
2742 {"$v31", RTYPE_VEC | 31}
2743
14daeee3
RS
2744#define R5900_I_NAMES \
2745 {"$I", RTYPE_R5900_I | 0}
2746
2747#define R5900_Q_NAMES \
2748 {"$Q", RTYPE_R5900_Q | 0}
2749
2750#define R5900_R_NAMES \
2751 {"$R", RTYPE_R5900_R | 0}
2752
2753#define R5900_ACC_NAMES \
2754 {"$ACC", RTYPE_R5900_ACC | 0 }
2755
707bfff6
TS
2756#define MIPS_DSP_ACCUMULATOR_NAMES \
2757 {"$ac0", RTYPE_ACC | 0}, \
2758 {"$ac1", RTYPE_ACC | 1}, \
2759 {"$ac2", RTYPE_ACC | 2}, \
2760 {"$ac3", RTYPE_ACC | 3}
2761
2762static const struct regname reg_names[] = {
2763 GENERIC_REGISTER_NUMBERS,
2764 FPU_REGISTER_NAMES,
2765 FPU_CONDITION_CODE_NAMES,
2766 COPROC_CONDITION_CODE_NAMES,
2767
2768 /* The $txx registers depends on the abi,
2769 these will be added later into the symbol table from
3739860c 2770 one of the tables below once mips_abi is set after
707bfff6
TS
2771 parsing of arguments from the command line. */
2772 SYMBOLIC_REGISTER_NAMES,
2773
2774 MIPS16_SPECIAL_REGISTER_NAMES,
2775 MDMX_VECTOR_REGISTER_NAMES,
14daeee3
RS
2776 R5900_I_NAMES,
2777 R5900_Q_NAMES,
2778 R5900_R_NAMES,
2779 R5900_ACC_NAMES,
707bfff6
TS
2780 MIPS_DSP_ACCUMULATOR_NAMES,
2781 {0, 0}
2782};
2783
2784static const struct regname reg_names_o32[] = {
2785 O32_SYMBOLIC_REGISTER_NAMES,
2786 {0, 0}
2787};
2788
2789static const struct regname reg_names_n32n64[] = {
2790 N32N64_SYMBOLIC_REGISTER_NAMES,
2791 {0, 0}
2792};
2793
a92713e6
RS
2794/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2795 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2796 of these register symbols, return the associated vector register,
2797 otherwise return SYMVAL itself. */
df58fc94 2798
a92713e6
RS
2799static unsigned int
2800mips_prefer_vec_regno (unsigned int symval)
707bfff6 2801{
a92713e6
RS
2802 if ((symval & -2) == (RTYPE_GP | 2))
2803 return RTYPE_VEC | (symval & 1);
2804 return symval;
2805}
2806
14daeee3
RS
2807/* Return true if string [S, E) is a valid register name, storing its
2808 symbol value in *SYMVAL_PTR if so. */
a92713e6
RS
2809
2810static bfd_boolean
14daeee3 2811mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
a92713e6 2812{
707bfff6 2813 char save_c;
14daeee3 2814 symbolS *symbol;
707bfff6
TS
2815
2816 /* Terminate name. */
2817 save_c = *e;
2818 *e = '\0';
2819
a92713e6
RS
2820 /* Look up the name. */
2821 symbol = symbol_find (s);
2822 *e = save_c;
2823
2824 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2825 return FALSE;
2826
14daeee3
RS
2827 *symval_ptr = S_GET_VALUE (symbol);
2828 return TRUE;
2829}
2830
2831/* Return true if the string at *SPTR is a valid register name. Allow it
2832 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2833 is nonnull.
2834
2835 When returning true, move *SPTR past the register, store the
2836 register's symbol value in *SYMVAL_PTR and the channel mask in
2837 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2838 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2839 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2840
2841static bfd_boolean
2842mips_parse_register (char **sptr, unsigned int *symval_ptr,
2843 unsigned int *channels_ptr)
2844{
2845 char *s, *e, *m;
2846 const char *q;
2847 unsigned int channels, symval, bit;
2848
2849 /* Find end of name. */
2850 s = e = *sptr;
2851 if (is_name_beginner (*e))
2852 ++e;
2853 while (is_part_of_name (*e))
2854 ++e;
2855
2856 channels = 0;
2857 if (!mips_parse_register_1 (s, e, &symval))
2858 {
2859 if (!channels_ptr)
2860 return FALSE;
2861
2862 /* Eat characters from the end of the string that are valid
2863 channel suffixes. The preceding register must be $ACC or
2864 end with a digit, so there is no ambiguity. */
2865 bit = 1;
2866 m = e;
2867 for (q = "wzyx"; *q; q++, bit <<= 1)
2868 if (m > s && m[-1] == *q)
2869 {
2870 --m;
2871 channels |= bit;
2872 }
2873
2874 if (channels == 0
2875 || !mips_parse_register_1 (s, m, &symval)
2876 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2877 return FALSE;
2878 }
2879
a92713e6 2880 *sptr = e;
14daeee3
RS
2881 *symval_ptr = symval;
2882 if (channels_ptr)
2883 *channels_ptr = channels;
a92713e6
RS
2884 return TRUE;
2885}
2886
2887/* Check if SPTR points at a valid register specifier according to TYPES.
2888 If so, then return 1, advance S to consume the specifier and store
2889 the register's number in REGNOP, otherwise return 0. */
2890
2891static int
2892reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2893{
2894 unsigned int regno;
2895
14daeee3 2896 if (mips_parse_register (s, &regno, NULL))
707bfff6 2897 {
a92713e6
RS
2898 if (types & RTYPE_VEC)
2899 regno = mips_prefer_vec_regno (regno);
2900 if (regno & types)
2901 regno &= RNUM_MASK;
2902 else
2903 regno = ~0;
707bfff6 2904 }
a92713e6 2905 else
707bfff6 2906 {
a92713e6 2907 if (types & RWARN)
1661c76c 2908 as_warn (_("unrecognized register name `%s'"), *s);
a92713e6 2909 regno = ~0;
707bfff6 2910 }
707bfff6 2911 if (regnop)
a92713e6
RS
2912 *regnop = regno;
2913 return regno <= RNUM_MASK;
707bfff6
TS
2914}
2915
14daeee3
RS
2916/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2917 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2918
2919static char *
2920mips_parse_vu0_channels (char *s, unsigned int *channels)
2921{
2922 unsigned int i;
2923
2924 *channels = 0;
2925 for (i = 0; i < 4; i++)
2926 if (*s == "xyzw"[i])
2927 {
2928 *channels |= 1 << (3 - i);
2929 ++s;
2930 }
2931 return s;
2932}
2933
a92713e6
RS
2934/* Token types for parsed operand lists. */
2935enum mips_operand_token_type {
2936 /* A plain register, e.g. $f2. */
2937 OT_REG,
df58fc94 2938
14daeee3
RS
2939 /* A 4-bit XYZW channel mask. */
2940 OT_CHANNELS,
2941
56d438b1
CF
2942 /* A constant vector index, e.g. [1]. */
2943 OT_INTEGER_INDEX,
2944
2945 /* A register vector index, e.g. [$2]. */
2946 OT_REG_INDEX,
df58fc94 2947
a92713e6
RS
2948 /* A continuous range of registers, e.g. $s0-$s4. */
2949 OT_REG_RANGE,
2950
2951 /* A (possibly relocated) expression. */
2952 OT_INTEGER,
2953
2954 /* A floating-point value. */
2955 OT_FLOAT,
2956
2957 /* A single character. This can be '(', ')' or ',', but '(' only appears
2958 before OT_REGs. */
2959 OT_CHAR,
2960
14daeee3
RS
2961 /* A doubled character, either "--" or "++". */
2962 OT_DOUBLE_CHAR,
2963
a92713e6
RS
2964 /* The end of the operand list. */
2965 OT_END
2966};
2967
2968/* A parsed operand token. */
2969struct mips_operand_token
2970{
2971 /* The type of token. */
2972 enum mips_operand_token_type type;
2973 union
2974 {
56d438b1 2975 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
a92713e6
RS
2976 unsigned int regno;
2977
14daeee3
RS
2978 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2979 unsigned int channels;
2980
56d438b1
CF
2981 /* The integer value of an OT_INTEGER_INDEX. */
2982 addressT index;
a92713e6
RS
2983
2984 /* The two register symbol values involved in an OT_REG_RANGE. */
2985 struct {
2986 unsigned int regno1;
2987 unsigned int regno2;
2988 } reg_range;
2989
2990 /* The value of an OT_INTEGER. The value is represented as an
2991 expression and the relocation operators that were applied to
2992 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2993 relocation operators were used. */
2994 struct {
2995 expressionS value;
2996 bfd_reloc_code_real_type relocs[3];
2997 } integer;
2998
2999 /* The binary data for an OT_FLOAT constant, and the number of bytes
3000 in the constant. */
3001 struct {
3002 unsigned char data[8];
3003 int length;
3004 } flt;
3005
14daeee3 3006 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
a92713e6
RS
3007 char ch;
3008 } u;
3009};
3010
3011/* An obstack used to construct lists of mips_operand_tokens. */
3012static struct obstack mips_operand_tokens;
3013
3014/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
3015
3016static void
3017mips_add_token (struct mips_operand_token *token,
3018 enum mips_operand_token_type type)
3019{
3020 token->type = type;
3021 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
3022}
3023
3024/* Check whether S is '(' followed by a register name. Add OT_CHAR
3025 and OT_REG tokens for them if so, and return a pointer to the first
3026 unconsumed character. Return null otherwise. */
3027
3028static char *
3029mips_parse_base_start (char *s)
3030{
3031 struct mips_operand_token token;
14daeee3
RS
3032 unsigned int regno, channels;
3033 bfd_boolean decrement_p;
df58fc94 3034
a92713e6
RS
3035 if (*s != '(')
3036 return 0;
3037
3038 ++s;
3039 SKIP_SPACE_TABS (s);
14daeee3
RS
3040
3041 /* Only match "--" as part of a base expression. In other contexts "--X"
3042 is a double negative. */
3043 decrement_p = (s[0] == '-' && s[1] == '-');
3044 if (decrement_p)
3045 {
3046 s += 2;
3047 SKIP_SPACE_TABS (s);
3048 }
3049
3050 /* Allow a channel specifier because that leads to better error messages
3051 than treating something like "$vf0x++" as an expression. */
3052 if (!mips_parse_register (&s, &regno, &channels))
a92713e6
RS
3053 return 0;
3054
3055 token.u.ch = '(';
3056 mips_add_token (&token, OT_CHAR);
3057
14daeee3
RS
3058 if (decrement_p)
3059 {
3060 token.u.ch = '-';
3061 mips_add_token (&token, OT_DOUBLE_CHAR);
3062 }
3063
a92713e6
RS
3064 token.u.regno = regno;
3065 mips_add_token (&token, OT_REG);
3066
14daeee3
RS
3067 if (channels)
3068 {
3069 token.u.channels = channels;
3070 mips_add_token (&token, OT_CHANNELS);
3071 }
3072
3073 /* For consistency, only match "++" as part of base expressions too. */
3074 SKIP_SPACE_TABS (s);
3075 if (s[0] == '+' && s[1] == '+')
3076 {
3077 s += 2;
3078 token.u.ch = '+';
3079 mips_add_token (&token, OT_DOUBLE_CHAR);
3080 }
3081
a92713e6
RS
3082 return s;
3083}
3084
3085/* Parse one or more tokens from S. Return a pointer to the first
3086 unconsumed character on success. Return null if an error was found
3087 and store the error text in insn_error. FLOAT_FORMAT is as for
3088 mips_parse_arguments. */
3089
3090static char *
3091mips_parse_argument_token (char *s, char float_format)
3092{
6d4af3c2
AM
3093 char *end, *save_in;
3094 const char *err;
14daeee3 3095 unsigned int regno1, regno2, channels;
a92713e6
RS
3096 struct mips_operand_token token;
3097
3098 /* First look for "($reg", since we want to treat that as an
3099 OT_CHAR and OT_REG rather than an expression. */
3100 end = mips_parse_base_start (s);
3101 if (end)
3102 return end;
3103
3104 /* Handle other characters that end up as OT_CHARs. */
3105 if (*s == ')' || *s == ',')
3106 {
3107 token.u.ch = *s;
3108 mips_add_token (&token, OT_CHAR);
3109 ++s;
3110 return s;
3111 }
3112
3113 /* Handle tokens that start with a register. */
14daeee3 3114 if (mips_parse_register (&s, &regno1, &channels))
df58fc94 3115 {
14daeee3
RS
3116 if (channels)
3117 {
3118 /* A register and a VU0 channel suffix. */
3119 token.u.regno = regno1;
3120 mips_add_token (&token, OT_REG);
3121
3122 token.u.channels = channels;
3123 mips_add_token (&token, OT_CHANNELS);
3124 return s;
3125 }
3126
a92713e6
RS
3127 SKIP_SPACE_TABS (s);
3128 if (*s == '-')
df58fc94 3129 {
a92713e6
RS
3130 /* A register range. */
3131 ++s;
3132 SKIP_SPACE_TABS (s);
14daeee3 3133 if (!mips_parse_register (&s, &regno2, NULL))
a92713e6 3134 {
1661c76c 3135 set_insn_error (0, _("invalid register range"));
a92713e6
RS
3136 return 0;
3137 }
df58fc94 3138
a92713e6
RS
3139 token.u.reg_range.regno1 = regno1;
3140 token.u.reg_range.regno2 = regno2;
3141 mips_add_token (&token, OT_REG_RANGE);
3142 return s;
3143 }
a92713e6 3144
56d438b1
CF
3145 /* Add the register itself. */
3146 token.u.regno = regno1;
3147 mips_add_token (&token, OT_REG);
3148
3149 /* Check for a vector index. */
3150 if (*s == '[')
3151 {
a92713e6
RS
3152 ++s;
3153 SKIP_SPACE_TABS (s);
56d438b1
CF
3154 if (mips_parse_register (&s, &token.u.regno, NULL))
3155 mips_add_token (&token, OT_REG_INDEX);
3156 else
a92713e6 3157 {
56d438b1
CF
3158 expressionS element;
3159
3160 my_getExpression (&element, s);
3161 if (element.X_op != O_constant)
3162 {
3163 set_insn_error (0, _("vector element must be constant"));
3164 return 0;
3165 }
3166 s = expr_end;
3167 token.u.index = element.X_add_number;
3168 mips_add_token (&token, OT_INTEGER_INDEX);
a92713e6 3169 }
a92713e6
RS
3170 SKIP_SPACE_TABS (s);
3171 if (*s != ']')
3172 {
1661c76c 3173 set_insn_error (0, _("missing `]'"));
a92713e6
RS
3174 return 0;
3175 }
3176 ++s;
df58fc94 3177 }
a92713e6 3178 return s;
df58fc94
RS
3179 }
3180
a92713e6
RS
3181 if (float_format)
3182 {
3183 /* First try to treat expressions as floats. */
3184 save_in = input_line_pointer;
3185 input_line_pointer = s;
3186 err = md_atof (float_format, (char *) token.u.flt.data,
3187 &token.u.flt.length);
3188 end = input_line_pointer;
3189 input_line_pointer = save_in;
3190 if (err && *err)
3191 {
e3de51ce 3192 set_insn_error (0, err);
a92713e6
RS
3193 return 0;
3194 }
3195 if (s != end)
3196 {
3197 mips_add_token (&token, OT_FLOAT);
3198 return end;
3199 }
3200 }
3201
3202 /* Treat everything else as an integer expression. */
3203 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3204 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3205 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3206 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3207 s = expr_end;
3208 mips_add_token (&token, OT_INTEGER);
3209 return s;
3210}
3211
3212/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3213 if expressions should be treated as 32-bit floating-point constants,
3214 'd' if they should be treated as 64-bit floating-point constants,
3215 or 0 if they should be treated as integer expressions (the usual case).
3216
3217 Return a list of tokens on success, otherwise return 0. The caller
3218 must obstack_free the list after use. */
3219
3220static struct mips_operand_token *
3221mips_parse_arguments (char *s, char float_format)
3222{
3223 struct mips_operand_token token;
3224
3225 SKIP_SPACE_TABS (s);
3226 while (*s)
3227 {
3228 s = mips_parse_argument_token (s, float_format);
3229 if (!s)
3230 {
3231 obstack_free (&mips_operand_tokens,
3232 obstack_finish (&mips_operand_tokens));
3233 return 0;
3234 }
3235 SKIP_SPACE_TABS (s);
3236 }
3237 mips_add_token (&token, OT_END);
3238 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
df58fc94
RS
3239}
3240
d301a56b
RS
3241/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3242 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
037b32b9
AN
3243
3244static bfd_boolean
f79e2745 3245is_opcode_valid (const struct mips_opcode *mo)
037b32b9
AN
3246{
3247 int isa = mips_opts.isa;
846ef2d0 3248 int ase = mips_opts.ase;
037b32b9 3249 int fp_s, fp_d;
c6278170 3250 unsigned int i;
037b32b9 3251
be0fcbee 3252 if (ISA_HAS_64BIT_REGS (isa))
c6278170
RS
3253 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3254 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3255 ase |= mips_ases[i].flags64;
037b32b9 3256
d301a56b 3257 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
037b32b9
AN
3258 return FALSE;
3259
3260 /* Check whether the instruction or macro requires single-precision or
3261 double-precision floating-point support. Note that this information is
3262 stored differently in the opcode table for insns and macros. */
3263 if (mo->pinfo == INSN_MACRO)
3264 {
3265 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3266 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3267 }
3268 else
3269 {
3270 fp_s = mo->pinfo & FP_S;
3271 fp_d = mo->pinfo & FP_D;
3272 }
3273
3274 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3275 return FALSE;
3276
3277 if (fp_s && mips_opts.soft_float)
3278 return FALSE;
3279
3280 return TRUE;
3281}
3282
3283/* Return TRUE if the MIPS16 opcode MO is valid on the currently
3284 selected ISA and architecture. */
3285
3286static bfd_boolean
3287is_opcode_valid_16 (const struct mips_opcode *mo)
3288{
d301a56b 3289 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
037b32b9
AN
3290}
3291
df58fc94 3292/* Return TRUE if the size of the microMIPS opcode MO matches one
7fd53920
MR
3293 explicitly requested. Always TRUE in the standard MIPS mode.
3294 Use is_size_valid_16 for MIPS16 opcodes. */
df58fc94
RS
3295
3296static bfd_boolean
3297is_size_valid (const struct mips_opcode *mo)
3298{
3299 if (!mips_opts.micromips)
3300 return TRUE;
3301
833794fc
MR
3302 if (mips_opts.insn32)
3303 {
3304 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3305 return FALSE;
3306 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3307 return FALSE;
3308 }
df58fc94
RS
3309 if (!forced_insn_length)
3310 return TRUE;
3311 if (mo->pinfo == INSN_MACRO)
3312 return FALSE;
3313 return forced_insn_length == micromips_insn_length (mo);
3314}
3315
7fd53920
MR
3316/* Return TRUE if the size of the MIPS16 opcode MO matches one
3317 explicitly requested. */
3318
3319static bfd_boolean
3320is_size_valid_16 (const struct mips_opcode *mo)
3321{
3322 if (!forced_insn_length)
3323 return TRUE;
3324 if (mo->pinfo == INSN_MACRO)
3325 return FALSE;
3326 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3327 return FALSE;
0674ee5d
MR
3328 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3329 return FALSE;
7fd53920
MR
3330 return TRUE;
3331}
3332
df58fc94 3333/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
e64af278
MR
3334 of the preceding instruction. Always TRUE in the standard MIPS mode.
3335
3336 We don't accept macros in 16-bit delay slots to avoid a case where
3337 a macro expansion fails because it relies on a preceding 32-bit real
3338 instruction to have matched and does not handle the operands correctly.
3339 The only macros that may expand to 16-bit instructions are JAL that
3340 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3341 and BGT (that likewise cannot be placed in a delay slot) that decay to
3342 a NOP. In all these cases the macros precede any corresponding real
3343 instruction definitions in the opcode table, so they will match in the
3344 second pass where the size of the delay slot is ignored and therefore
3345 produce correct code. */
df58fc94
RS
3346
3347static bfd_boolean
3348is_delay_slot_valid (const struct mips_opcode *mo)
3349{
3350 if (!mips_opts.micromips)
3351 return TRUE;
3352
3353 if (mo->pinfo == INSN_MACRO)
c06dec14 3354 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
df58fc94
RS
3355 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3356 && micromips_insn_length (mo) != 4)
3357 return FALSE;
3358 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3359 && micromips_insn_length (mo) != 2)
3360 return FALSE;
3361
3362 return TRUE;
3363}
3364
fc76e730
RS
3365/* For consistency checking, verify that all bits of OPCODE are specified
3366 either by the match/mask part of the instruction definition, or by the
3367 operand list. Also build up a list of operands in OPERANDS.
3368
3369 INSN_BITS says which bits of the instruction are significant.
3370 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3371 provides the mips_operand description of each operand. DECODE_OPERAND
3372 is null for MIPS16 instructions. */
ab902481
RS
3373
3374static int
3375validate_mips_insn (const struct mips_opcode *opcode,
3376 unsigned long insn_bits,
fc76e730
RS
3377 const struct mips_operand *(*decode_operand) (const char *),
3378 struct mips_operand_array *operands)
ab902481
RS
3379{
3380 const char *s;
fc76e730 3381 unsigned long used_bits, doubled, undefined, opno, mask;
ab902481
RS
3382 const struct mips_operand *operand;
3383
fc76e730
RS
3384 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3385 if ((mask & opcode->match) != opcode->match)
ab902481
RS
3386 {
3387 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3388 opcode->name, opcode->args);
3389 return 0;
3390 }
3391 used_bits = 0;
fc76e730 3392 opno = 0;
14daeee3
RS
3393 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3394 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
ab902481
RS
3395 for (s = opcode->args; *s; ++s)
3396 switch (*s)
3397 {
3398 case ',':
3399 case '(':
3400 case ')':
3401 break;
3402
14daeee3
RS
3403 case '#':
3404 s++;
3405 break;
3406
ab902481 3407 default:
fc76e730 3408 if (!decode_operand)
7fd53920 3409 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
fc76e730
RS
3410 else
3411 operand = decode_operand (s);
3412 if (!operand && opcode->pinfo != INSN_MACRO)
ab902481
RS
3413 {
3414 as_bad (_("internal: unknown operand type: %s %s"),
3415 opcode->name, opcode->args);
3416 return 0;
3417 }
fc76e730
RS
3418 gas_assert (opno < MAX_OPERANDS);
3419 operands->operand[opno] = operand;
14daeee3 3420 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
fc76e730 3421 {
14daeee3 3422 used_bits = mips_insert_operand (operand, used_bits, -1);
fc76e730
RS
3423 if (operand->type == OP_MDMX_IMM_REG)
3424 /* Bit 5 is the format selector (OB vs QH). The opcode table
3425 has separate entries for each format. */
3426 used_bits &= ~(1 << (operand->lsb + 5));
3427 if (operand->type == OP_ENTRY_EXIT_LIST)
3428 used_bits &= ~(mask & 0x700);
3429 }
ab902481 3430 /* Skip prefix characters. */
7361da2c 3431 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
ab902481 3432 ++s;
fc76e730 3433 opno += 1;
ab902481
RS
3434 break;
3435 }
fc76e730 3436 doubled = used_bits & mask & insn_bits;
ab902481
RS
3437 if (doubled)
3438 {
3439 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3440 " %s %s"), doubled, opcode->name, opcode->args);
3441 return 0;
3442 }
fc76e730 3443 used_bits |= mask;
ab902481 3444 undefined = ~used_bits & insn_bits;
fc76e730 3445 if (opcode->pinfo != INSN_MACRO && undefined)
ab902481
RS
3446 {
3447 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3448 undefined, opcode->name, opcode->args);
3449 return 0;
3450 }
3451 used_bits &= ~insn_bits;
3452 if (used_bits)
3453 {
3454 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3455 used_bits, opcode->name, opcode->args);
3456 return 0;
3457 }
3458 return 1;
3459}
3460
fc76e730
RS
3461/* The MIPS16 version of validate_mips_insn. */
3462
3463static int
3464validate_mips16_insn (const struct mips_opcode *opcode,
3465 struct mips_operand_array *operands)
3466{
7fd53920 3467 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
fc76e730 3468
7fd53920 3469 return validate_mips_insn (opcode, insn_bits, 0, operands);
fc76e730
RS
3470}
3471
ab902481
RS
3472/* The microMIPS version of validate_mips_insn. */
3473
3474static int
fc76e730
RS
3475validate_micromips_insn (const struct mips_opcode *opc,
3476 struct mips_operand_array *operands)
ab902481
RS
3477{
3478 unsigned long insn_bits;
3479 unsigned long major;
3480 unsigned int length;
3481
fc76e730
RS
3482 if (opc->pinfo == INSN_MACRO)
3483 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3484 operands);
3485
ab902481
RS
3486 length = micromips_insn_length (opc);
3487 if (length != 2 && length != 4)
3488 {
1661c76c 3489 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
ab902481
RS
3490 "%s %s"), length, opc->name, opc->args);
3491 return 0;
3492 }
3493 major = opc->match >> (10 + 8 * (length - 2));
3494 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3495 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3496 {
1661c76c 3497 as_bad (_("internal error: bad microMIPS opcode "
ab902481
RS
3498 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3499 return 0;
3500 }
3501
3502 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3503 insn_bits = 1 << 4 * length;
3504 insn_bits <<= 4 * length;
3505 insn_bits -= 1;
fc76e730
RS
3506 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3507 operands);
ab902481
RS
3508}
3509
707bfff6
TS
3510/* This function is called once, at assembler startup time. It should set up
3511 all the tables, etc. that the MD part of the assembler will need. */
156c2f8b 3512
252b5132 3513void
17a2f251 3514md_begin (void)
252b5132 3515{
3994f87e 3516 const char *retval = NULL;
156c2f8b 3517 int i = 0;
252b5132 3518 int broken = 0;
1f25f5d3 3519
0a44bf69
RS
3520 if (mips_pic != NO_PIC)
3521 {
3522 if (g_switch_seen && g_switch_value != 0)
3523 as_bad (_("-G may not be used in position-independent code"));
3524 g_switch_value = 0;
3525 }
00acd688
CM
3526 else if (mips_abicalls)
3527 {
3528 if (g_switch_seen && g_switch_value != 0)
3529 as_bad (_("-G may not be used with abicalls"));
3530 g_switch_value = 0;
3531 }
0a44bf69 3532
0b35dfee 3533 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
1661c76c 3534 as_warn (_("could not set architecture and machine"));
252b5132 3535
252b5132
RH
3536 op_hash = hash_new ();
3537
fc76e730 3538 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
252b5132
RH
3539 for (i = 0; i < NUMOPCODES;)
3540 {
3541 const char *name = mips_opcodes[i].name;
3542
17a2f251 3543 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
252b5132
RH
3544 if (retval != NULL)
3545 {
3546 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3547 mips_opcodes[i].name, retval);
3548 /* Probably a memory allocation problem? Give up now. */
1661c76c 3549 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3550 }
3551 do
3552 {
fc76e730
RS
3553 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3554 decode_mips_operand, &mips_operands[i]))
3555 broken = 1;
3556 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
252b5132 3557 {
fc76e730
RS
3558 create_insn (&nop_insn, mips_opcodes + i);
3559 if (mips_fix_loongson2f_nop)
3560 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3561 nop_insn.fixed_p = 1;
252b5132
RH
3562 }
3563 ++i;
3564 }
3565 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3566 }
3567
3568 mips16_op_hash = hash_new ();
fc76e730
RS
3569 mips16_operands = XCNEWVEC (struct mips_operand_array,
3570 bfd_mips16_num_opcodes);
252b5132
RH
3571
3572 i = 0;
3573 while (i < bfd_mips16_num_opcodes)
3574 {
3575 const char *name = mips16_opcodes[i].name;
3576
17a2f251 3577 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
252b5132
RH
3578 if (retval != NULL)
3579 as_fatal (_("internal: can't hash `%s': %s"),
3580 mips16_opcodes[i].name, retval);
3581 do
3582 {
fc76e730
RS
3583 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3584 broken = 1;
1e915849
RS
3585 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3586 {
3587 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3588 mips16_nop_insn.fixed_p = 1;
3589 }
252b5132
RH
3590 ++i;
3591 }
3592 while (i < bfd_mips16_num_opcodes
3593 && strcmp (mips16_opcodes[i].name, name) == 0);
3594 }
3595
df58fc94 3596 micromips_op_hash = hash_new ();
fc76e730
RS
3597 micromips_operands = XCNEWVEC (struct mips_operand_array,
3598 bfd_micromips_num_opcodes);
df58fc94
RS
3599
3600 i = 0;
3601 while (i < bfd_micromips_num_opcodes)
3602 {
3603 const char *name = micromips_opcodes[i].name;
3604
3605 retval = hash_insert (micromips_op_hash, name,
3606 (void *) &micromips_opcodes[i]);
3607 if (retval != NULL)
3608 as_fatal (_("internal: can't hash `%s': %s"),
3609 micromips_opcodes[i].name, retval);
3610 do
fc76e730
RS
3611 {
3612 struct mips_cl_insn *micromips_nop_insn;
3613
3614 if (!validate_micromips_insn (&micromips_opcodes[i],
3615 &micromips_operands[i]))
3616 broken = 1;
3617
3618 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3619 {
3620 if (micromips_insn_length (micromips_opcodes + i) == 2)
3621 micromips_nop_insn = &micromips_nop16_insn;
3622 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3623 micromips_nop_insn = &micromips_nop32_insn;
3624 else
3625 continue;
3626
3627 if (micromips_nop_insn->insn_mo == NULL
3628 && strcmp (name, "nop") == 0)
3629 {
3630 create_insn (micromips_nop_insn, micromips_opcodes + i);
3631 micromips_nop_insn->fixed_p = 1;
3632 }
3633 }
3634 }
df58fc94
RS
3635 while (++i < bfd_micromips_num_opcodes
3636 && strcmp (micromips_opcodes[i].name, name) == 0);
3637 }
3638
252b5132 3639 if (broken)
1661c76c 3640 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3641
3642 /* We add all the general register names to the symbol table. This
3643 helps us detect invalid uses of them. */
3739860c 3644 for (i = 0; reg_names[i].name; i++)
707bfff6 3645 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
8fc4ee9b 3646 reg_names[i].num, /* & RNUM_MASK, */
707bfff6
TS
3647 &zero_address_frag));
3648 if (HAVE_NEWABI)
3739860c 3649 for (i = 0; reg_names_n32n64[i].name; i++)
707bfff6 3650 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
8fc4ee9b 3651 reg_names_n32n64[i].num, /* & RNUM_MASK, */
252b5132 3652 &zero_address_frag));
707bfff6 3653 else
3739860c 3654 for (i = 0; reg_names_o32[i].name; i++)
707bfff6 3655 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
8fc4ee9b 3656 reg_names_o32[i].num, /* & RNUM_MASK, */
6047c971 3657 &zero_address_frag));
6047c971 3658
14daeee3
RS
3659 for (i = 0; i < 32; i++)
3660 {
92fce9bd 3661 char regname[6];
14daeee3
RS
3662
3663 /* R5900 VU0 floating-point register. */
92fce9bd 3664 sprintf (regname, "$vf%d", i);
14daeee3
RS
3665 symbol_table_insert (symbol_new (regname, reg_section,
3666 RTYPE_VF | i, &zero_address_frag));
3667
3668 /* R5900 VU0 integer register. */
92fce9bd 3669 sprintf (regname, "$vi%d", i);
14daeee3
RS
3670 symbol_table_insert (symbol_new (regname, reg_section,
3671 RTYPE_VI | i, &zero_address_frag));
3672
56d438b1 3673 /* MSA register. */
92fce9bd 3674 sprintf (regname, "$w%d", i);
56d438b1
CF
3675 symbol_table_insert (symbol_new (regname, reg_section,
3676 RTYPE_MSA | i, &zero_address_frag));
14daeee3
RS
3677 }
3678
a92713e6
RS
3679 obstack_init (&mips_operand_tokens);
3680
7d10b47d 3681 mips_no_prev_insn ();
252b5132
RH
3682
3683 mips_gprmask = 0;
3684 mips_cprmask[0] = 0;
3685 mips_cprmask[1] = 0;
3686 mips_cprmask[2] = 0;
3687 mips_cprmask[3] = 0;
3688
3689 /* set the default alignment for the text section (2**2) */
3690 record_alignment (text_section, 2);
3691
4d0d148d 3692 bfd_set_gp_size (stdoutput, g_switch_value);
252b5132 3693
f3ded42a
RS
3694 /* On a native system other than VxWorks, sections must be aligned
3695 to 16 byte boundaries. When configured for an embedded ELF
3696 target, we don't bother. */
3697 if (strncmp (TARGET_OS, "elf", 3) != 0
3698 && strncmp (TARGET_OS, "vxworks", 7) != 0)
252b5132 3699 {
f3ded42a
RS
3700 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3701 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3702 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3703 }
252b5132 3704
f3ded42a
RS
3705 /* Create a .reginfo section for register masks and a .mdebug
3706 section for debugging information. */
3707 {
3708 segT seg;
3709 subsegT subseg;
3710 flagword flags;
3711 segT sec;
3712
3713 seg = now_seg;
3714 subseg = now_subseg;
3715
3716 /* The ABI says this section should be loaded so that the
3717 running program can access it. However, we don't load it
3718 if we are configured for an embedded target */
3719 flags = SEC_READONLY | SEC_DATA;
3720 if (strncmp (TARGET_OS, "elf", 3) != 0)
3721 flags |= SEC_ALLOC | SEC_LOAD;
3722
3723 if (mips_abi != N64_ABI)
252b5132 3724 {
f3ded42a 3725 sec = subseg_new (".reginfo", (subsegT) 0);
bdaaa2e1 3726
f3ded42a
RS
3727 bfd_set_section_flags (stdoutput, sec, flags);
3728 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
252b5132 3729
f3ded42a
RS
3730 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3731 }
3732 else
3733 {
3734 /* The 64-bit ABI uses a .MIPS.options section rather than
3735 .reginfo section. */
3736 sec = subseg_new (".MIPS.options", (subsegT) 0);
3737 bfd_set_section_flags (stdoutput, sec, flags);
3738 bfd_set_section_alignment (stdoutput, sec, 3);
252b5132 3739
f3ded42a
RS
3740 /* Set up the option header. */
3741 {
3742 Elf_Internal_Options opthdr;
3743 char *f;
3744
3745 opthdr.kind = ODK_REGINFO;
3746 opthdr.size = (sizeof (Elf_External_Options)
3747 + sizeof (Elf64_External_RegInfo));
3748 opthdr.section = 0;
3749 opthdr.info = 0;
3750 f = frag_more (sizeof (Elf_External_Options));
3751 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3752 (Elf_External_Options *) f);
3753
3754 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3755 }
3756 }
252b5132 3757
351cdf24
MF
3758 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3759 bfd_set_section_flags (stdoutput, sec,
3760 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3761 bfd_set_section_alignment (stdoutput, sec, 3);
3762 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3763
f3ded42a
RS
3764 if (ECOFF_DEBUGGING)
3765 {
3766 sec = subseg_new (".mdebug", (subsegT) 0);
3767 (void) bfd_set_section_flags (stdoutput, sec,
3768 SEC_HAS_CONTENTS | SEC_READONLY);
3769 (void) bfd_set_section_alignment (stdoutput, sec, 2);
252b5132 3770 }
f3ded42a
RS
3771 else if (mips_flag_pdr)
3772 {
3773 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3774 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3775 SEC_READONLY | SEC_RELOC
3776 | SEC_DEBUGGING);
3777 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3778 }
3779
3780 subseg_set (seg, subseg);
3781 }
252b5132 3782
71400594
RS
3783 if (mips_fix_vr4120)
3784 init_vr4120_conflicts ();
252b5132
RH
3785}
3786
351cdf24
MF
3787static inline void
3788fpabi_incompatible_with (int fpabi, const char *what)
3789{
3790 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3791 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3792}
3793
3794static inline void
3795fpabi_requires (int fpabi, const char *what)
3796{
3797 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3798 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3799}
3800
3801/* Check -mabi and register sizes against the specified FP ABI. */
3802static void
3803check_fpabi (int fpabi)
3804{
351cdf24
MF
3805 switch (fpabi)
3806 {
3807 case Val_GNU_MIPS_ABI_FP_DOUBLE:
ea79f94a
MF
3808 if (file_mips_opts.soft_float)
3809 fpabi_incompatible_with (fpabi, "softfloat");
3810 else if (file_mips_opts.single_float)
3811 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3812 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3813 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3814 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3815 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
351cdf24
MF
3816 break;
3817
3818 case Val_GNU_MIPS_ABI_FP_XX:
3819 if (mips_abi != O32_ABI)
3820 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3821 else if (file_mips_opts.soft_float)
3822 fpabi_incompatible_with (fpabi, "softfloat");
3823 else if (file_mips_opts.single_float)
3824 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3825 else if (file_mips_opts.fp != 0)
3826 fpabi_requires (fpabi, "fp=xx");
351cdf24
MF
3827 break;
3828
3829 case Val_GNU_MIPS_ABI_FP_64A:
3830 case Val_GNU_MIPS_ABI_FP_64:
3831 if (mips_abi != O32_ABI)
3832 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3833 else if (file_mips_opts.soft_float)
3834 fpabi_incompatible_with (fpabi, "softfloat");
3835 else if (file_mips_opts.single_float)
3836 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3837 else if (file_mips_opts.fp != 64)
3838 fpabi_requires (fpabi, "fp=64");
3839 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3840 fpabi_incompatible_with (fpabi, "nooddspreg");
3841 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3842 fpabi_requires (fpabi, "nooddspreg");
351cdf24
MF
3843 break;
3844
3845 case Val_GNU_MIPS_ABI_FP_SINGLE:
3846 if (file_mips_opts.soft_float)
3847 fpabi_incompatible_with (fpabi, "softfloat");
3848 else if (!file_mips_opts.single_float)
3849 fpabi_requires (fpabi, "singlefloat");
3850 break;
3851
3852 case Val_GNU_MIPS_ABI_FP_SOFT:
3853 if (!file_mips_opts.soft_float)
3854 fpabi_requires (fpabi, "softfloat");
3855 break;
3856
3857 case Val_GNU_MIPS_ABI_FP_OLD_64:
3858 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3859 Tag_GNU_MIPS_ABI_FP, fpabi);
3860 break;
3861
3350cc01
CM
3862 case Val_GNU_MIPS_ABI_FP_NAN2008:
3863 /* Silently ignore compatibility value. */
3864 break;
3865
351cdf24
MF
3866 default:
3867 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3868 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3869 break;
3870 }
351cdf24
MF
3871}
3872
919731af 3873/* Perform consistency checks on the current options. */
3874
3875static void
3876mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3877{
3878 /* Check the size of integer registers agrees with the ABI and ISA. */
3879 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3880 as_bad (_("`gp=64' used with a 32-bit processor"));
3881 else if (abi_checks
3882 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3883 as_bad (_("`gp=32' used with a 64-bit ABI"));
3884 else if (abi_checks
3885 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3886 as_bad (_("`gp=64' used with a 32-bit ABI"));
3887
3888 /* Check the size of the float registers agrees with the ABI and ISA. */
3889 switch (opts->fp)
3890 {
351cdf24
MF
3891 case 0:
3892 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3893 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3894 else if (opts->single_float == 1)
3895 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3896 break;
919731af 3897 case 64:
3898 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3899 as_bad (_("`fp=64' used with a 32-bit fpu"));
3900 else if (abi_checks
3901 && ABI_NEEDS_32BIT_REGS (mips_abi)
3902 && !ISA_HAS_MXHC1 (opts->isa))
3903 as_warn (_("`fp=64' used with a 32-bit ABI"));
3904 break;
3905 case 32:
3906 if (abi_checks
3907 && ABI_NEEDS_64BIT_REGS (mips_abi))
3908 as_warn (_("`fp=32' used with a 64-bit ABI"));
5f4678bb 3909 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
7361da2c 3910 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
919731af 3911 break;
3912 default:
3913 as_bad (_("Unknown size of floating point registers"));
3914 break;
3915 }
3916
351cdf24
MF
3917 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3918 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3919
919731af 3920 if (opts->micromips == 1 && opts->mips16 == 1)
1357373c 3921 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
5f4678bb 3922 else if (ISA_IS_R6 (opts->isa)
7361da2c
AB
3923 && (opts->micromips == 1
3924 || opts->mips16 == 1))
1357373c 3925 as_fatal (_("`%s' cannot be used with `%s'"),
7361da2c 3926 opts->micromips ? "micromips" : "mips16",
5f4678bb 3927 mips_cpu_info_from_isa (opts->isa)->name);
7361da2c
AB
3928
3929 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3930 as_fatal (_("branch relaxation is not supported in `%s'"),
3931 mips_cpu_info_from_isa (opts->isa)->name);
919731af 3932}
3933
3934/* Perform consistency checks on the module level options exactly once.
3935 This is a deferred check that happens:
3936 at the first .set directive
3937 or, at the first pseudo op that generates code (inc .dc.a)
3938 or, at the first instruction
3939 or, at the end. */
3940
3941static void
3942file_mips_check_options (void)
3943{
3944 const struct mips_cpu_info *arch_info = 0;
3945
3946 if (file_mips_opts_checked)
3947 return;
3948
3949 /* The following code determines the register size.
3950 Similar code was added to GCC 3.3 (see override_options() in
3951 config/mips/mips.c). The GAS and GCC code should be kept in sync
3952 as much as possible. */
3953
3954 if (file_mips_opts.gp < 0)
3955 {
3956 /* Infer the integer register size from the ABI and processor.
3957 Restrict ourselves to 32-bit registers if that's all the
3958 processor has, or if the ABI cannot handle 64-bit registers. */
3959 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3960 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3961 ? 32 : 64;
3962 }
3963
3964 if (file_mips_opts.fp < 0)
3965 {
3966 /* No user specified float register size.
3967 ??? GAS treats single-float processors as though they had 64-bit
3968 float registers (although it complains when double-precision
3969 instructions are used). As things stand, saying they have 32-bit
3970 registers would lead to spurious "register must be even" messages.
3971 So here we assume float registers are never smaller than the
3972 integer ones. */
3973 if (file_mips_opts.gp == 64)
3974 /* 64-bit integer registers implies 64-bit float registers. */
3975 file_mips_opts.fp = 64;
3976 else if ((file_mips_opts.ase & FP64_ASES)
3977 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3978 /* Handle ASEs that require 64-bit float registers, if possible. */
3979 file_mips_opts.fp = 64;
7361da2c
AB
3980 else if (ISA_IS_R6 (mips_opts.isa))
3981 /* R6 implies 64-bit float registers. */
3982 file_mips_opts.fp = 64;
919731af 3983 else
3984 /* 32-bit float registers. */
3985 file_mips_opts.fp = 32;
3986 }
3987
3988 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3989
351cdf24
MF
3990 /* Disable operations on odd-numbered floating-point registers by default
3991 when using the FPXX ABI. */
3992 if (file_mips_opts.oddspreg < 0)
3993 {
3994 if (file_mips_opts.fp == 0)
3995 file_mips_opts.oddspreg = 0;
3996 else
3997 file_mips_opts.oddspreg = 1;
3998 }
3999
919731af 4000 /* End of GCC-shared inference code. */
4001
4002 /* This flag is set when we have a 64-bit capable CPU but use only
4003 32-bit wide registers. Note that EABI does not use it. */
4004 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
4005 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
4006 || mips_abi == O32_ABI))
4007 mips_32bitmode = 1;
4008
4009 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
4010 as_bad (_("trap exception not supported at ISA 1"));
4011
4012 /* If the selected architecture includes support for ASEs, enable
4013 generation of code for them. */
4014 if (file_mips_opts.mips16 == -1)
4015 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
4016 if (file_mips_opts.micromips == -1)
4017 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
4018 ? 1 : 0;
4019
7361da2c
AB
4020 if (mips_nan2008 == -1)
4021 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
4022 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
4023 as_fatal (_("`%s' does not support legacy NaN"),
4024 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
4025
919731af 4026 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4027 being selected implicitly. */
4028 if (file_mips_opts.fp != 64)
4029 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
4030
4031 /* If the user didn't explicitly select or deselect a particular ASE,
4032 use the default setting for the CPU. */
4033 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4034
4035 /* Set up the current options. These may change throughout assembly. */
4036 mips_opts = file_mips_opts;
4037
4038 mips_check_isa_supports_ases ();
4039 mips_check_options (&file_mips_opts, TRUE);
4040 file_mips_opts_checked = TRUE;
4041
4042 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4043 as_warn (_("could not set architecture and machine"));
4044}
4045
252b5132 4046void
17a2f251 4047md_assemble (char *str)
252b5132
RH
4048{
4049 struct mips_cl_insn insn;
f6688943
TS
4050 bfd_reloc_code_real_type unused_reloc[3]
4051 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 4052
919731af 4053 file_mips_check_options ();
4054
252b5132 4055 imm_expr.X_op = O_absent;
252b5132 4056 offset_expr.X_op = O_absent;
f6688943
TS
4057 offset_reloc[0] = BFD_RELOC_UNUSED;
4058 offset_reloc[1] = BFD_RELOC_UNUSED;
4059 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132 4060
e1b47bd5
RS
4061 mips_mark_labels ();
4062 mips_assembling_insn = TRUE;
e3de51ce 4063 clear_insn_error ();
e1b47bd5 4064
252b5132
RH
4065 if (mips_opts.mips16)
4066 mips16_ip (str, &insn);
4067 else
4068 {
4069 mips_ip (str, &insn);
beae10d5
KH
4070 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4071 str, insn.insn_opcode));
252b5132
RH
4072 }
4073
e3de51ce
RS
4074 if (insn_error.msg)
4075 report_insn_error (str);
e1b47bd5 4076 else if (insn.insn_mo->pinfo == INSN_MACRO)
252b5132 4077 {
584892a6 4078 macro_start ();
252b5132
RH
4079 if (mips_opts.mips16)
4080 mips16_macro (&insn);
4081 else
833794fc 4082 macro (&insn, str);
584892a6 4083 macro_end ();
252b5132
RH
4084 }
4085 else
4086 {
77bd4346 4087 if (offset_expr.X_op != O_absent)
df58fc94 4088 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
252b5132 4089 else
df58fc94 4090 append_insn (&insn, NULL, unused_reloc, FALSE);
252b5132 4091 }
e1b47bd5
RS
4092
4093 mips_assembling_insn = FALSE;
252b5132
RH
4094}
4095
738e5348
RS
4096/* Convenience functions for abstracting away the differences between
4097 MIPS16 and non-MIPS16 relocations. */
4098
4099static inline bfd_boolean
4100mips16_reloc_p (bfd_reloc_code_real_type reloc)
4101{
4102 switch (reloc)
4103 {
4104 case BFD_RELOC_MIPS16_JMP:
4105 case BFD_RELOC_MIPS16_GPREL:
4106 case BFD_RELOC_MIPS16_GOT16:
4107 case BFD_RELOC_MIPS16_CALL16:
4108 case BFD_RELOC_MIPS16_HI16_S:
4109 case BFD_RELOC_MIPS16_HI16:
4110 case BFD_RELOC_MIPS16_LO16:
c9775dde 4111 case BFD_RELOC_MIPS16_16_PCREL_S1:
738e5348
RS
4112 return TRUE;
4113
4114 default:
4115 return FALSE;
4116 }
4117}
4118
df58fc94
RS
4119static inline bfd_boolean
4120micromips_reloc_p (bfd_reloc_code_real_type reloc)
4121{
4122 switch (reloc)
4123 {
4124 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4125 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4126 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4127 case BFD_RELOC_MICROMIPS_GPREL16:
4128 case BFD_RELOC_MICROMIPS_JMP:
4129 case BFD_RELOC_MICROMIPS_HI16:
4130 case BFD_RELOC_MICROMIPS_HI16_S:
4131 case BFD_RELOC_MICROMIPS_LO16:
4132 case BFD_RELOC_MICROMIPS_LITERAL:
4133 case BFD_RELOC_MICROMIPS_GOT16:
4134 case BFD_RELOC_MICROMIPS_CALL16:
4135 case BFD_RELOC_MICROMIPS_GOT_HI16:
4136 case BFD_RELOC_MICROMIPS_GOT_LO16:
4137 case BFD_RELOC_MICROMIPS_CALL_HI16:
4138 case BFD_RELOC_MICROMIPS_CALL_LO16:
4139 case BFD_RELOC_MICROMIPS_SUB:
4140 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4141 case BFD_RELOC_MICROMIPS_GOT_OFST:
4142 case BFD_RELOC_MICROMIPS_GOT_DISP:
4143 case BFD_RELOC_MICROMIPS_HIGHEST:
4144 case BFD_RELOC_MICROMIPS_HIGHER:
4145 case BFD_RELOC_MICROMIPS_SCN_DISP:
4146 case BFD_RELOC_MICROMIPS_JALR:
4147 return TRUE;
4148
4149 default:
4150 return FALSE;
4151 }
4152}
4153
2309ddf2
MR
4154static inline bfd_boolean
4155jmp_reloc_p (bfd_reloc_code_real_type reloc)
4156{
4157 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4158}
4159
0e9c5a5c
MR
4160static inline bfd_boolean
4161b_reloc_p (bfd_reloc_code_real_type reloc)
4162{
4163 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4164 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4165 || reloc == BFD_RELOC_16_PCREL_S2
c9775dde 4166 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
0e9c5a5c
MR
4167 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4168 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4169 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4170}
4171
738e5348
RS
4172static inline bfd_boolean
4173got16_reloc_p (bfd_reloc_code_real_type reloc)
4174{
2309ddf2 4175 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
df58fc94 4176 || reloc == BFD_RELOC_MICROMIPS_GOT16);
738e5348
RS
4177}
4178
4179static inline bfd_boolean
4180hi16_reloc_p (bfd_reloc_code_real_type reloc)
4181{
2309ddf2 4182 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
df58fc94 4183 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
738e5348
RS
4184}
4185
4186static inline bfd_boolean
4187lo16_reloc_p (bfd_reloc_code_real_type reloc)
4188{
2309ddf2 4189 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
df58fc94
RS
4190 || reloc == BFD_RELOC_MICROMIPS_LO16);
4191}
4192
df58fc94
RS
4193static inline bfd_boolean
4194jalr_reloc_p (bfd_reloc_code_real_type reloc)
4195{
2309ddf2 4196 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
738e5348
RS
4197}
4198
f2ae14a1
RS
4199static inline bfd_boolean
4200gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4201{
4202 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4203 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4204}
4205
2de39019
CM
4206/* Return true if RELOC is a PC-relative relocation that does not have
4207 full address range. */
4208
4209static inline bfd_boolean
4210limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4211{
4212 switch (reloc)
4213 {
4214 case BFD_RELOC_16_PCREL_S2:
c9775dde 4215 case BFD_RELOC_MIPS16_16_PCREL_S1:
2de39019
CM
4216 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4217 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4218 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
7361da2c
AB
4219 case BFD_RELOC_MIPS_21_PCREL_S2:
4220 case BFD_RELOC_MIPS_26_PCREL_S2:
4221 case BFD_RELOC_MIPS_18_PCREL_S3:
4222 case BFD_RELOC_MIPS_19_PCREL_S2:
2de39019
CM
4223 return TRUE;
4224
b47468a6 4225 case BFD_RELOC_32_PCREL:
7361da2c
AB
4226 case BFD_RELOC_HI16_S_PCREL:
4227 case BFD_RELOC_LO16_PCREL:
b47468a6
CM
4228 return HAVE_64BIT_ADDRESSES;
4229
2de39019
CM
4230 default:
4231 return FALSE;
4232 }
4233}
b47468a6 4234
5919d012 4235/* Return true if the given relocation might need a matching %lo().
0a44bf69
RS
4236 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4237 need a matching %lo() when applied to local symbols. */
5919d012
RS
4238
4239static inline bfd_boolean
17a2f251 4240reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
5919d012 4241{
3b91255e 4242 return (HAVE_IN_PLACE_ADDENDS
738e5348 4243 && (hi16_reloc_p (reloc)
0a44bf69
RS
4244 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4245 all GOT16 relocations evaluate to "G". */
738e5348
RS
4246 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4247}
4248
4249/* Return the type of %lo() reloc needed by RELOC, given that
4250 reloc_needs_lo_p. */
4251
4252static inline bfd_reloc_code_real_type
4253matching_lo_reloc (bfd_reloc_code_real_type reloc)
4254{
df58fc94
RS
4255 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4256 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4257 : BFD_RELOC_LO16));
5919d012
RS
4258}
4259
4260/* Return true if the given fixup is followed by a matching R_MIPS_LO16
4261 relocation. */
4262
4263static inline bfd_boolean
17a2f251 4264fixup_has_matching_lo_p (fixS *fixp)
5919d012
RS
4265{
4266 return (fixp->fx_next != NULL
738e5348 4267 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
5919d012
RS
4268 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4269 && fixp->fx_offset == fixp->fx_next->fx_offset);
4270}
4271
462427c4
RS
4272/* Move all labels in LABELS to the current insertion point. TEXT_P
4273 says whether the labels refer to text or data. */
404a8071
RS
4274
4275static void
462427c4 4276mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
404a8071
RS
4277{
4278 struct insn_label_list *l;
4279 valueT val;
4280
462427c4 4281 for (l = labels; l != NULL; l = l->next)
404a8071 4282 {
9c2799c2 4283 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
404a8071
RS
4284 symbol_set_frag (l->label, frag_now);
4285 val = (valueT) frag_now_fix ();
df58fc94 4286 /* MIPS16/microMIPS text labels are stored as odd. */
462427c4 4287 if (text_p && HAVE_CODE_COMPRESSION)
404a8071
RS
4288 ++val;
4289 S_SET_VALUE (l->label, val);
4290 }
4291}
4292
462427c4
RS
4293/* Move all labels in insn_labels to the current insertion point
4294 and treat them as text labels. */
4295
4296static void
4297mips_move_text_labels (void)
4298{
4299 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4300}
4301
9e009953
MR
4302/* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4303
5f0fe04b
TS
4304static bfd_boolean
4305s_is_linkonce (symbolS *sym, segT from_seg)
4306{
4307 bfd_boolean linkonce = FALSE;
4308 segT symseg = S_GET_SEGMENT (sym);
4309
4310 if (symseg != from_seg && !S_IS_LOCAL (sym))
4311 {
4312 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4313 linkonce = TRUE;
5f0fe04b
TS
4314 /* The GNU toolchain uses an extension for ELF: a section
4315 beginning with the magic string .gnu.linkonce is a
4316 linkonce section. */
4317 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4318 sizeof ".gnu.linkonce" - 1) == 0)
4319 linkonce = TRUE;
5f0fe04b
TS
4320 }
4321 return linkonce;
4322}
4323
e1b47bd5 4324/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
df58fc94
RS
4325 linker to handle them specially, such as generating jalx instructions
4326 when needed. We also make them odd for the duration of the assembly,
4327 in order to generate the right sort of code. We will make them even
252b5132
RH
4328 in the adjust_symtab routine, while leaving them marked. This is
4329 convenient for the debugger and the disassembler. The linker knows
4330 to make them odd again. */
4331
4332static void
e1b47bd5 4333mips_compressed_mark_label (symbolS *label)
252b5132 4334{
df58fc94 4335 gas_assert (HAVE_CODE_COMPRESSION);
a8dbcb85 4336
f3ded42a
RS
4337 if (mips_opts.mips16)
4338 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4339 else
4340 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
e1b47bd5
RS
4341 if ((S_GET_VALUE (label) & 1) == 0
4342 /* Don't adjust the address if the label is global or weak, or
4343 in a link-once section, since we'll be emitting symbol reloc
4344 references to it which will be patched up by the linker, and
4345 the final value of the symbol may or may not be MIPS16/microMIPS. */
4346 && !S_IS_WEAK (label)
4347 && !S_IS_EXTERNAL (label)
4348 && !s_is_linkonce (label, now_seg))
4349 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4350}
4351
4352/* Mark preceding MIPS16 or microMIPS instruction labels. */
4353
4354static void
4355mips_compressed_mark_labels (void)
4356{
4357 struct insn_label_list *l;
4358
4359 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4360 mips_compressed_mark_label (l->label);
252b5132
RH
4361}
4362
4d7206a2
RS
4363/* End the current frag. Make it a variant frag and record the
4364 relaxation info. */
4365
4366static void
4367relax_close_frag (void)
4368{
584892a6 4369 mips_macro_warning.first_frag = frag_now;
4d7206a2 4370 frag_var (rs_machine_dependent, 0, 0,
ce8ad872
MR
4371 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
4372 mips_pic != NO_PIC),
4d7206a2
RS
4373 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4374
4375 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4376 mips_relax.first_fixup = 0;
4377}
4378
4379/* Start a new relaxation sequence whose expansion depends on SYMBOL.
4380 See the comment above RELAX_ENCODE for more details. */
4381
4382static void
4383relax_start (symbolS *symbol)
4384{
9c2799c2 4385 gas_assert (mips_relax.sequence == 0);
4d7206a2
RS
4386 mips_relax.sequence = 1;
4387 mips_relax.symbol = symbol;
4388}
4389
4390/* Start generating the second version of a relaxable sequence.
4391 See the comment above RELAX_ENCODE for more details. */
252b5132
RH
4392
4393static void
4d7206a2
RS
4394relax_switch (void)
4395{
9c2799c2 4396 gas_assert (mips_relax.sequence == 1);
4d7206a2
RS
4397 mips_relax.sequence = 2;
4398}
4399
4400/* End the current relaxable sequence. */
4401
4402static void
4403relax_end (void)
4404{
9c2799c2 4405 gas_assert (mips_relax.sequence == 2);
4d7206a2
RS
4406 relax_close_frag ();
4407 mips_relax.sequence = 0;
4408}
4409
11625dd8
RS
4410/* Return true if IP is a delayed branch or jump. */
4411
4412static inline bfd_boolean
4413delayed_branch_p (const struct mips_cl_insn *ip)
4414{
4415 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4416 | INSN_COND_BRANCH_DELAY
4417 | INSN_COND_BRANCH_LIKELY)) != 0;
4418}
4419
4420/* Return true if IP is a compact branch or jump. */
4421
4422static inline bfd_boolean
4423compact_branch_p (const struct mips_cl_insn *ip)
4424{
26545944
RS
4425 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4426 | INSN2_COND_BRANCH)) != 0;
11625dd8
RS
4427}
4428
4429/* Return true if IP is an unconditional branch or jump. */
4430
4431static inline bfd_boolean
4432uncond_branch_p (const struct mips_cl_insn *ip)
4433{
4434 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
26545944 4435 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
11625dd8
RS
4436}
4437
4438/* Return true if IP is a branch-likely instruction. */
4439
4440static inline bfd_boolean
4441branch_likely_p (const struct mips_cl_insn *ip)
4442{
4443 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4444}
4445
14fe068b
RS
4446/* Return the type of nop that should be used to fill the delay slot
4447 of delayed branch IP. */
4448
4449static struct mips_cl_insn *
4450get_delay_slot_nop (const struct mips_cl_insn *ip)
4451{
4452 if (mips_opts.micromips
4453 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4454 return &micromips_nop32_insn;
4455 return NOP_INSN;
4456}
4457
fc76e730
RS
4458/* Return a mask that has bit N set if OPCODE reads the register(s)
4459 in operand N. */
df58fc94
RS
4460
4461static unsigned int
fc76e730 4462insn_read_mask (const struct mips_opcode *opcode)
df58fc94 4463{
fc76e730
RS
4464 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4465}
df58fc94 4466
fc76e730
RS
4467/* Return a mask that has bit N set if OPCODE writes to the register(s)
4468 in operand N. */
4469
4470static unsigned int
4471insn_write_mask (const struct mips_opcode *opcode)
4472{
4473 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4474}
4475
4476/* Return a mask of the registers specified by operand OPERAND of INSN.
4477 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4478 is set. */
4479
4480static unsigned int
4481operand_reg_mask (const struct mips_cl_insn *insn,
4482 const struct mips_operand *operand,
4483 unsigned int type_mask)
4484{
4485 unsigned int uval, vsel;
4486
4487 switch (operand->type)
df58fc94 4488 {
fc76e730
RS
4489 case OP_INT:
4490 case OP_MAPPED_INT:
4491 case OP_MSB:
4492 case OP_PCREL:
4493 case OP_PERF_REG:
4494 case OP_ADDIUSP_INT:
4495 case OP_ENTRY_EXIT_LIST:
4496 case OP_REPEAT_DEST_REG:
4497 case OP_REPEAT_PREV_REG:
4498 case OP_PC:
14daeee3
RS
4499 case OP_VU0_SUFFIX:
4500 case OP_VU0_MATCH_SUFFIX:
56d438b1 4501 case OP_IMM_INDEX:
fc76e730
RS
4502 abort ();
4503
4504 case OP_REG:
0f35dbc4 4505 case OP_OPTIONAL_REG:
fc76e730
RS
4506 {
4507 const struct mips_reg_operand *reg_op;
4508
4509 reg_op = (const struct mips_reg_operand *) operand;
4510 if (!(type_mask & (1 << reg_op->reg_type)))
4511 return 0;
4512 uval = insn_extract_operand (insn, operand);
4513 return 1 << mips_decode_reg_operand (reg_op, uval);
4514 }
4515
4516 case OP_REG_PAIR:
4517 {
4518 const struct mips_reg_pair_operand *pair_op;
4519
4520 pair_op = (const struct mips_reg_pair_operand *) operand;
4521 if (!(type_mask & (1 << pair_op->reg_type)))
4522 return 0;
4523 uval = insn_extract_operand (insn, operand);
4524 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4525 }
4526
4527 case OP_CLO_CLZ_DEST:
4528 if (!(type_mask & (1 << OP_REG_GP)))
4529 return 0;
4530 uval = insn_extract_operand (insn, operand);
4531 return (1 << (uval & 31)) | (1 << (uval >> 5));
4532
7361da2c
AB
4533 case OP_SAME_RS_RT:
4534 if (!(type_mask & (1 << OP_REG_GP)))
4535 return 0;
4536 uval = insn_extract_operand (insn, operand);
4537 gas_assert ((uval & 31) == (uval >> 5));
4538 return 1 << (uval & 31);
4539
4540 case OP_CHECK_PREV:
4541 case OP_NON_ZERO_REG:
4542 if (!(type_mask & (1 << OP_REG_GP)))
4543 return 0;
4544 uval = insn_extract_operand (insn, operand);
4545 return 1 << (uval & 31);
4546
fc76e730
RS
4547 case OP_LWM_SWM_LIST:
4548 abort ();
4549
4550 case OP_SAVE_RESTORE_LIST:
4551 abort ();
4552
4553 case OP_MDMX_IMM_REG:
4554 if (!(type_mask & (1 << OP_REG_VEC)))
4555 return 0;
4556 uval = insn_extract_operand (insn, operand);
4557 vsel = uval >> 5;
4558 if ((vsel & 0x18) == 0x18)
4559 return 0;
4560 return 1 << (uval & 31);
56d438b1
CF
4561
4562 case OP_REG_INDEX:
4563 if (!(type_mask & (1 << OP_REG_GP)))
4564 return 0;
4565 return 1 << insn_extract_operand (insn, operand);
df58fc94 4566 }
fc76e730
RS
4567 abort ();
4568}
4569
4570/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4571 where bit N of OPNO_MASK is set if operand N should be included.
4572 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4573 is set. */
4574
4575static unsigned int
4576insn_reg_mask (const struct mips_cl_insn *insn,
4577 unsigned int type_mask, unsigned int opno_mask)
4578{
4579 unsigned int opno, reg_mask;
4580
4581 opno = 0;
4582 reg_mask = 0;
4583 while (opno_mask != 0)
4584 {
4585 if (opno_mask & 1)
4586 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4587 opno_mask >>= 1;
4588 opno += 1;
4589 }
4590 return reg_mask;
df58fc94
RS
4591}
4592
4c260379
RS
4593/* Return the mask of core registers that IP reads. */
4594
4595static unsigned int
4596gpr_read_mask (const struct mips_cl_insn *ip)
4597{
4598 unsigned long pinfo, pinfo2;
4599 unsigned int mask;
4600
fc76e730 4601 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4c260379
RS
4602 pinfo = ip->insn_mo->pinfo;
4603 pinfo2 = ip->insn_mo->pinfo2;
fc76e730 4604 if (pinfo & INSN_UDI)
4c260379 4605 {
fc76e730
RS
4606 /* UDI instructions have traditionally been assumed to read RS
4607 and RT. */
4608 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4609 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4c260379 4610 }
fc76e730
RS
4611 if (pinfo & INSN_READ_GPR_24)
4612 mask |= 1 << 24;
4613 if (pinfo2 & INSN2_READ_GPR_16)
4614 mask |= 1 << 16;
4615 if (pinfo2 & INSN2_READ_SP)
4616 mask |= 1 << SP;
26545944 4617 if (pinfo2 & INSN2_READ_GPR_31)
fc76e730 4618 mask |= 1 << 31;
fe35f09f
RS
4619 /* Don't include register 0. */
4620 return mask & ~1;
4c260379
RS
4621}
4622
4623/* Return the mask of core registers that IP writes. */
4624
4625static unsigned int
4626gpr_write_mask (const struct mips_cl_insn *ip)
4627{
4628 unsigned long pinfo, pinfo2;
4629 unsigned int mask;
4630
fc76e730 4631 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4c260379
RS
4632 pinfo = ip->insn_mo->pinfo;
4633 pinfo2 = ip->insn_mo->pinfo2;
fc76e730
RS
4634 if (pinfo & INSN_WRITE_GPR_24)
4635 mask |= 1 << 24;
4636 if (pinfo & INSN_WRITE_GPR_31)
4637 mask |= 1 << 31;
4638 if (pinfo & INSN_UDI)
4639 /* UDI instructions have traditionally been assumed to write to RD. */
4640 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4641 if (pinfo2 & INSN2_WRITE_SP)
4642 mask |= 1 << SP;
fe35f09f
RS
4643 /* Don't include register 0. */
4644 return mask & ~1;
4c260379
RS
4645}
4646
4647/* Return the mask of floating-point registers that IP reads. */
4648
4649static unsigned int
4650fpr_read_mask (const struct mips_cl_insn *ip)
4651{
fc76e730 4652 unsigned long pinfo;
4c260379
RS
4653 unsigned int mask;
4654
9d5de888
CF
4655 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4656 | (1 << OP_REG_MSA)),
fc76e730 4657 insn_read_mask (ip->insn_mo));
4c260379 4658 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4659 /* Conservatively treat all operands to an FP_D instruction are doubles.
4660 (This is overly pessimistic for things like cvt.d.s.) */
bad1aba3 4661 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4662 mask |= mask << 1;
4663 return mask;
4664}
4665
4666/* Return the mask of floating-point registers that IP writes. */
4667
4668static unsigned int
4669fpr_write_mask (const struct mips_cl_insn *ip)
4670{
fc76e730 4671 unsigned long pinfo;
4c260379
RS
4672 unsigned int mask;
4673
9d5de888
CF
4674 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4675 | (1 << OP_REG_MSA)),
fc76e730 4676 insn_write_mask (ip->insn_mo));
4c260379 4677 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4678 /* Conservatively treat all operands to an FP_D instruction are doubles.
4679 (This is overly pessimistic for things like cvt.s.d.) */
bad1aba3 4680 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4681 mask |= mask << 1;
4682 return mask;
4683}
4684
a1d78564
RS
4685/* Operand OPNUM of INSN is an odd-numbered floating-point register.
4686 Check whether that is allowed. */
4687
4688static bfd_boolean
4689mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4690{
4691 const char *s = insn->name;
351cdf24
MF
4692 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4693 || FPR_SIZE == 64)
4694 && mips_opts.oddspreg;
a1d78564
RS
4695
4696 if (insn->pinfo == INSN_MACRO)
4697 /* Let a macro pass, we'll catch it later when it is expanded. */
4698 return TRUE;
4699
351cdf24
MF
4700 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4701 otherwise it depends on oddspreg. */
4702 if ((insn->pinfo & FP_S)
4703 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
43885403 4704 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
351cdf24 4705 return FPR_SIZE == 32 || oddspreg;
a1d78564 4706
351cdf24
MF
4707 /* Allow odd registers for single-precision ops and double-precision if the
4708 floating-point registers are 64-bit wide. */
4709 switch (insn->pinfo & (FP_S | FP_D))
4710 {
4711 case FP_S:
4712 case 0:
4713 return oddspreg;
4714 case FP_D:
4715 return FPR_SIZE == 64;
4716 default:
4717 break;
a1d78564
RS
4718 }
4719
351cdf24
MF
4720 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4721 s = strchr (insn->name, '.');
4722 if (s != NULL && opnum == 2)
4723 s = strchr (s + 1, '.');
4724 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4725 return oddspreg;
a1d78564 4726
351cdf24 4727 return FPR_SIZE == 64;
a1d78564
RS
4728}
4729
a1d78564
RS
4730/* Information about an instruction argument that we're trying to match. */
4731struct mips_arg_info
4732{
4733 /* The instruction so far. */
4734 struct mips_cl_insn *insn;
4735
a92713e6
RS
4736 /* The first unconsumed operand token. */
4737 struct mips_operand_token *token;
4738
a1d78564
RS
4739 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4740 int opnum;
4741
4742 /* The 1-based argument number, for error reporting. This does not
4743 count elided optional registers, etc.. */
4744 int argnum;
4745
4746 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4747 unsigned int last_regno;
4748
4749 /* If the first operand was an OP_REG, this is the register that it
4750 specified, otherwise it is ILLEGAL_REG. */
4751 unsigned int dest_regno;
4752
4753 /* The value of the last OP_INT operand. Only used for OP_MSB,
4754 where it gives the lsb position. */
4755 unsigned int last_op_int;
4756
60f20e8b 4757 /* If true, match routines should assume that no later instruction
2b0f3761 4758 alternative matches and should therefore be as accommodating as
60f20e8b
RS
4759 possible. Match routines should not report errors if something
4760 is only invalid for !LAX_MATCH. */
4761 bfd_boolean lax_match;
a1d78564 4762
a1d78564
RS
4763 /* True if a reference to the current AT register was seen. */
4764 bfd_boolean seen_at;
4765};
4766
1a00e612
RS
4767/* Record that the argument is out of range. */
4768
4769static void
4770match_out_of_range (struct mips_arg_info *arg)
4771{
4772 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4773}
4774
4775/* Record that the argument isn't constant but needs to be. */
4776
4777static void
4778match_not_constant (struct mips_arg_info *arg)
4779{
4780 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4781 arg->argnum);
4782}
4783
a92713e6
RS
4784/* Try to match an OT_CHAR token for character CH. Consume the token
4785 and return true on success, otherwise return false. */
a1d78564 4786
a92713e6
RS
4787static bfd_boolean
4788match_char (struct mips_arg_info *arg, char ch)
a1d78564 4789{
a92713e6
RS
4790 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4791 {
4792 ++arg->token;
4793 if (ch == ',')
4794 arg->argnum += 1;
4795 return TRUE;
4796 }
4797 return FALSE;
4798}
a1d78564 4799
a92713e6
RS
4800/* Try to get an expression from the next tokens in ARG. Consume the
4801 tokens and return true on success, storing the expression value in
4802 VALUE and relocation types in R. */
4803
4804static bfd_boolean
4805match_expression (struct mips_arg_info *arg, expressionS *value,
4806 bfd_reloc_code_real_type *r)
4807{
d436c1c2
RS
4808 /* If the next token is a '(' that was parsed as being part of a base
4809 expression, assume we have an elided offset. The later match will fail
4810 if this turns out to be wrong. */
4811 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
a1d78564 4812 {
d436c1c2
RS
4813 value->X_op = O_constant;
4814 value->X_add_number = 0;
4815 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
a92713e6
RS
4816 return TRUE;
4817 }
4818
d436c1c2
RS
4819 /* Reject register-based expressions such as "0+$2" and "(($2))".
4820 For plain registers the default error seems more appropriate. */
4821 if (arg->token->type == OT_INTEGER
4822 && arg->token->u.integer.value.X_op == O_register)
a92713e6 4823 {
d436c1c2
RS
4824 set_insn_error (arg->argnum, _("register value used as expression"));
4825 return FALSE;
a1d78564 4826 }
d436c1c2
RS
4827
4828 if (arg->token->type == OT_INTEGER)
a92713e6 4829 {
d436c1c2
RS
4830 *value = arg->token->u.integer.value;
4831 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4832 ++arg->token;
4833 return TRUE;
a92713e6 4834 }
a92713e6 4835
d436c1c2
RS
4836 set_insn_error_i
4837 (arg->argnum, _("operand %d must be an immediate expression"),
4838 arg->argnum);
4839 return FALSE;
a92713e6
RS
4840}
4841
4842/* Try to get a constant expression from the next tokens in ARG. Consume
4843 the tokens and return return true on success, storing the constant value
a54d5f8b 4844 in *VALUE. */
a92713e6
RS
4845
4846static bfd_boolean
1a00e612 4847match_const_int (struct mips_arg_info *arg, offsetT *value)
a92713e6
RS
4848{
4849 expressionS ex;
4850 bfd_reloc_code_real_type r[3];
a1d78564 4851
a92713e6
RS
4852 if (!match_expression (arg, &ex, r))
4853 return FALSE;
4854
4855 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
a1d78564
RS
4856 *value = ex.X_add_number;
4857 else
4858 {
1a00e612
RS
4859 match_not_constant (arg);
4860 return FALSE;
a1d78564 4861 }
a92713e6 4862 return TRUE;
a1d78564
RS
4863}
4864
4865/* Return the RTYPE_* flags for a register operand of type TYPE that
4866 appears in instruction OPCODE. */
4867
4868static unsigned int
4869convert_reg_type (const struct mips_opcode *opcode,
4870 enum mips_reg_operand_type type)
4871{
4872 switch (type)
4873 {
4874 case OP_REG_GP:
4875 return RTYPE_NUM | RTYPE_GP;
4876
4877 case OP_REG_FP:
4878 /* Allow vector register names for MDMX if the instruction is a 64-bit
4879 FPR load, store or move (including moves to and from GPRs). */
4880 if ((mips_opts.ase & ASE_MDMX)
4881 && (opcode->pinfo & FP_D)
43885403 4882 && (opcode->pinfo & (INSN_COPROC_MOVE
a1d78564 4883 | INSN_COPROC_MEMORY_DELAY
43885403 4884 | INSN_LOAD_COPROC
67dc82bc 4885 | INSN_LOAD_MEMORY
a1d78564
RS
4886 | INSN_STORE_MEMORY)))
4887 return RTYPE_FPU | RTYPE_VEC;
4888 return RTYPE_FPU;
4889
4890 case OP_REG_CCC:
4891 if (opcode->pinfo & (FP_D | FP_S))
4892 return RTYPE_CCC | RTYPE_FCC;
4893 return RTYPE_CCC;
4894
4895 case OP_REG_VEC:
4896 if (opcode->membership & INSN_5400)
4897 return RTYPE_FPU;
4898 return RTYPE_FPU | RTYPE_VEC;
4899
4900 case OP_REG_ACC:
4901 return RTYPE_ACC;
4902
4903 case OP_REG_COPRO:
4904 if (opcode->name[strlen (opcode->name) - 1] == '0')
4905 return RTYPE_NUM | RTYPE_CP0;
4906 return RTYPE_NUM;
4907
4908 case OP_REG_HW:
4909 return RTYPE_NUM;
14daeee3
RS
4910
4911 case OP_REG_VI:
4912 return RTYPE_NUM | RTYPE_VI;
4913
4914 case OP_REG_VF:
4915 return RTYPE_NUM | RTYPE_VF;
4916
4917 case OP_REG_R5900_I:
4918 return RTYPE_R5900_I;
4919
4920 case OP_REG_R5900_Q:
4921 return RTYPE_R5900_Q;
4922
4923 case OP_REG_R5900_R:
4924 return RTYPE_R5900_R;
4925
4926 case OP_REG_R5900_ACC:
4927 return RTYPE_R5900_ACC;
56d438b1
CF
4928
4929 case OP_REG_MSA:
4930 return RTYPE_MSA;
4931
4932 case OP_REG_MSA_CTRL:
4933 return RTYPE_NUM;
a1d78564
RS
4934 }
4935 abort ();
4936}
4937
4938/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4939
4940static void
4941check_regno (struct mips_arg_info *arg,
4942 enum mips_reg_operand_type type, unsigned int regno)
4943{
4944 if (AT && type == OP_REG_GP && regno == AT)
4945 arg->seen_at = TRUE;
4946
4947 if (type == OP_REG_FP
4948 && (regno & 1) != 0
a1d78564 4949 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
351cdf24
MF
4950 {
4951 /* This was a warning prior to introducing O32 FPXX and FP64 support
4952 so maintain a warning for FP32 but raise an error for the new
4953 cases. */
4954 if (FPR_SIZE == 32)
4955 as_warn (_("float register should be even, was %d"), regno);
4956 else
4957 as_bad (_("float register should be even, was %d"), regno);
4958 }
a1d78564
RS
4959
4960 if (type == OP_REG_CCC)
4961 {
4962 const char *name;
4963 size_t length;
4964
4965 name = arg->insn->insn_mo->name;
4966 length = strlen (name);
4967 if ((regno & 1) != 0
4968 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4969 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
1661c76c 4970 as_warn (_("condition code register should be even for %s, was %d"),
a1d78564
RS
4971 name, regno);
4972
4973 if ((regno & 3) != 0
4974 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
1661c76c 4975 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
a1d78564
RS
4976 name, regno);
4977 }
4978}
4979
a92713e6
RS
4980/* ARG is a register with symbol value SYMVAL. Try to interpret it as
4981 a register of type TYPE. Return true on success, storing the register
4982 number in *REGNO and warning about any dubious uses. */
4983
4984static bfd_boolean
4985match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4986 unsigned int symval, unsigned int *regno)
4987{
4988 if (type == OP_REG_VEC)
4989 symval = mips_prefer_vec_regno (symval);
4990 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4991 return FALSE;
4992
4993 *regno = symval & RNUM_MASK;
4994 check_regno (arg, type, *regno);
4995 return TRUE;
4996}
4997
4998/* Try to interpret the next token in ARG as a register of type TYPE.
4999 Consume the token and return true on success, storing the register
5000 number in *REGNO. Return false on failure. */
5001
5002static bfd_boolean
5003match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5004 unsigned int *regno)
5005{
5006 if (arg->token->type == OT_REG
5007 && match_regno (arg, type, arg->token->u.regno, regno))
5008 {
5009 ++arg->token;
5010 return TRUE;
5011 }
5012 return FALSE;
5013}
5014
5015/* Try to interpret the next token in ARG as a range of registers of type TYPE.
5016 Consume the token and return true on success, storing the register numbers
5017 in *REGNO1 and *REGNO2. Return false on failure. */
5018
5019static bfd_boolean
5020match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5021 unsigned int *regno1, unsigned int *regno2)
5022{
5023 if (match_reg (arg, type, regno1))
5024 {
5025 *regno2 = *regno1;
5026 return TRUE;
5027 }
5028 if (arg->token->type == OT_REG_RANGE
5029 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
5030 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
5031 && *regno1 <= *regno2)
5032 {
5033 ++arg->token;
5034 return TRUE;
5035 }
5036 return FALSE;
5037}
5038
a1d78564
RS
5039/* OP_INT matcher. */
5040
a92713e6 5041static bfd_boolean
a1d78564 5042match_int_operand (struct mips_arg_info *arg,
a92713e6 5043 const struct mips_operand *operand_base)
a1d78564
RS
5044{
5045 const struct mips_int_operand *operand;
3ccad066 5046 unsigned int uval;
a1d78564
RS
5047 int min_val, max_val, factor;
5048 offsetT sval;
a1d78564
RS
5049
5050 operand = (const struct mips_int_operand *) operand_base;
5051 factor = 1 << operand->shift;
3ccad066
RS
5052 min_val = mips_int_operand_min (operand);
5053 max_val = mips_int_operand_max (operand);
a1d78564 5054
d436c1c2
RS
5055 if (operand_base->lsb == 0
5056 && operand_base->size == 16
5057 && operand->shift == 0
5058 && operand->bias == 0
5059 && (operand->max_val == 32767 || operand->max_val == 65535))
a1d78564
RS
5060 {
5061 /* The operand can be relocated. */
a92713e6
RS
5062 if (!match_expression (arg, &offset_expr, offset_reloc))
5063 return FALSE;
5064
5065 if (offset_reloc[0] != BFD_RELOC_UNUSED)
33eaf5de 5066 /* Relocation operators were used. Accept the argument and
a1d78564
RS
5067 leave the relocation value in offset_expr and offset_relocs
5068 for the caller to process. */
a92713e6
RS
5069 return TRUE;
5070
5071 if (offset_expr.X_op != O_constant)
a1d78564 5072 {
60f20e8b
RS
5073 /* Accept non-constant operands if no later alternative matches,
5074 leaving it for the caller to process. */
5075 if (!arg->lax_match)
5076 return FALSE;
a92713e6
RS
5077 offset_reloc[0] = BFD_RELOC_LO16;
5078 return TRUE;
a1d78564 5079 }
a92713e6 5080
a1d78564
RS
5081 /* Clear the global state; we're going to install the operand
5082 ourselves. */
a92713e6 5083 sval = offset_expr.X_add_number;
a1d78564 5084 offset_expr.X_op = O_absent;
60f20e8b
RS
5085
5086 /* For compatibility with older assemblers, we accept
5087 0x8000-0xffff as signed 16-bit numbers when only
5088 signed numbers are allowed. */
5089 if (sval > max_val)
5090 {
5091 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5092 if (!arg->lax_match && sval <= max_val)
5093 return FALSE;
5094 }
a1d78564
RS
5095 }
5096 else
5097 {
1a00e612 5098 if (!match_const_int (arg, &sval))
a92713e6 5099 return FALSE;
a1d78564
RS
5100 }
5101
5102 arg->last_op_int = sval;
5103
1a00e612 5104 if (sval < min_val || sval > max_val || sval % factor)
a1d78564 5105 {
1a00e612
RS
5106 match_out_of_range (arg);
5107 return FALSE;
a1d78564
RS
5108 }
5109
5110 uval = (unsigned int) sval >> operand->shift;
5111 uval -= operand->bias;
5112
5113 /* Handle -mfix-cn63xxp1. */
5114 if (arg->opnum == 1
5115 && mips_fix_cn63xxp1
5116 && !mips_opts.micromips
5117 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5118 switch (uval)
5119 {
5120 case 5:
5121 case 25:
5122 case 26:
5123 case 27:
5124 case 28:
5125 case 29:
5126 case 30:
5127 case 31:
5128 /* These are ok. */
5129 break;
5130
5131 default:
5132 /* The rest must be changed to 28. */
5133 uval = 28;
5134 break;
5135 }
5136
5137 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5138 return TRUE;
a1d78564
RS
5139}
5140
5141/* OP_MAPPED_INT matcher. */
5142
a92713e6 5143static bfd_boolean
a1d78564 5144match_mapped_int_operand (struct mips_arg_info *arg,
a92713e6 5145 const struct mips_operand *operand_base)
a1d78564
RS
5146{
5147 const struct mips_mapped_int_operand *operand;
5148 unsigned int uval, num_vals;
5149 offsetT sval;
5150
5151 operand = (const struct mips_mapped_int_operand *) operand_base;
1a00e612 5152 if (!match_const_int (arg, &sval))
a92713e6 5153 return FALSE;
a1d78564
RS
5154
5155 num_vals = 1 << operand_base->size;
5156 for (uval = 0; uval < num_vals; uval++)
5157 if (operand->int_map[uval] == sval)
5158 break;
5159 if (uval == num_vals)
1a00e612
RS
5160 {
5161 match_out_of_range (arg);
5162 return FALSE;
5163 }
a1d78564
RS
5164
5165 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5166 return TRUE;
a1d78564
RS
5167}
5168
5169/* OP_MSB matcher. */
5170
a92713e6 5171static bfd_boolean
a1d78564 5172match_msb_operand (struct mips_arg_info *arg,
a92713e6 5173 const struct mips_operand *operand_base)
a1d78564
RS
5174{
5175 const struct mips_msb_operand *operand;
5176 int min_val, max_val, max_high;
5177 offsetT size, sval, high;
5178
5179 operand = (const struct mips_msb_operand *) operand_base;
5180 min_val = operand->bias;
5181 max_val = min_val + (1 << operand_base->size) - 1;
5182 max_high = operand->opsize;
5183
1a00e612 5184 if (!match_const_int (arg, &size))
a92713e6 5185 return FALSE;
a1d78564
RS
5186
5187 high = size + arg->last_op_int;
5188 sval = operand->add_lsb ? high : size;
5189
5190 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5191 {
1a00e612
RS
5192 match_out_of_range (arg);
5193 return FALSE;
a1d78564
RS
5194 }
5195 insn_insert_operand (arg->insn, operand_base, sval - min_val);
a92713e6 5196 return TRUE;
a1d78564
RS
5197}
5198
5199/* OP_REG matcher. */
5200
a92713e6 5201static bfd_boolean
a1d78564 5202match_reg_operand (struct mips_arg_info *arg,
a92713e6 5203 const struct mips_operand *operand_base)
a1d78564
RS
5204{
5205 const struct mips_reg_operand *operand;
a92713e6 5206 unsigned int regno, uval, num_vals;
a1d78564
RS
5207
5208 operand = (const struct mips_reg_operand *) operand_base;
a92713e6
RS
5209 if (!match_reg (arg, operand->reg_type, &regno))
5210 return FALSE;
a1d78564
RS
5211
5212 if (operand->reg_map)
5213 {
5214 num_vals = 1 << operand->root.size;
5215 for (uval = 0; uval < num_vals; uval++)
5216 if (operand->reg_map[uval] == regno)
5217 break;
5218 if (num_vals == uval)
a92713e6 5219 return FALSE;
a1d78564
RS
5220 }
5221 else
5222 uval = regno;
5223
a1d78564
RS
5224 arg->last_regno = regno;
5225 if (arg->opnum == 1)
5226 arg->dest_regno = regno;
5227 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5228 return TRUE;
a1d78564
RS
5229}
5230
5231/* OP_REG_PAIR matcher. */
5232
a92713e6 5233static bfd_boolean
a1d78564 5234match_reg_pair_operand (struct mips_arg_info *arg,
a92713e6 5235 const struct mips_operand *operand_base)
a1d78564
RS
5236{
5237 const struct mips_reg_pair_operand *operand;
a92713e6 5238 unsigned int regno1, regno2, uval, num_vals;
a1d78564
RS
5239
5240 operand = (const struct mips_reg_pair_operand *) operand_base;
a92713e6
RS
5241 if (!match_reg (arg, operand->reg_type, &regno1)
5242 || !match_char (arg, ',')
5243 || !match_reg (arg, operand->reg_type, &regno2))
5244 return FALSE;
a1d78564
RS
5245
5246 num_vals = 1 << operand_base->size;
5247 for (uval = 0; uval < num_vals; uval++)
5248 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5249 break;
5250 if (uval == num_vals)
a92713e6 5251 return FALSE;
a1d78564 5252
a1d78564 5253 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5254 return TRUE;
a1d78564
RS
5255}
5256
5257/* OP_PCREL matcher. The caller chooses the relocation type. */
5258
a92713e6
RS
5259static bfd_boolean
5260match_pcrel_operand (struct mips_arg_info *arg)
a1d78564 5261{
a92713e6
RS
5262 bfd_reloc_code_real_type r[3];
5263
5264 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
a1d78564
RS
5265}
5266
5267/* OP_PERF_REG matcher. */
5268
a92713e6 5269static bfd_boolean
a1d78564 5270match_perf_reg_operand (struct mips_arg_info *arg,
a92713e6 5271 const struct mips_operand *operand)
a1d78564
RS
5272{
5273 offsetT sval;
5274
1a00e612 5275 if (!match_const_int (arg, &sval))
a92713e6 5276 return FALSE;
a1d78564
RS
5277
5278 if (sval != 0
5279 && (sval != 1
5280 || (mips_opts.arch == CPU_R5900
5281 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5282 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5283 {
1a00e612
RS
5284 set_insn_error (arg->argnum, _("invalid performance register"));
5285 return FALSE;
a1d78564
RS
5286 }
5287
5288 insn_insert_operand (arg->insn, operand, sval);
a92713e6 5289 return TRUE;
a1d78564
RS
5290}
5291
5292/* OP_ADDIUSP matcher. */
5293
a92713e6 5294static bfd_boolean
a1d78564 5295match_addiusp_operand (struct mips_arg_info *arg,
a92713e6 5296 const struct mips_operand *operand)
a1d78564
RS
5297{
5298 offsetT sval;
5299 unsigned int uval;
5300
1a00e612 5301 if (!match_const_int (arg, &sval))
a92713e6 5302 return FALSE;
a1d78564
RS
5303
5304 if (sval % 4)
1a00e612
RS
5305 {
5306 match_out_of_range (arg);
5307 return FALSE;
5308 }
a1d78564
RS
5309
5310 sval /= 4;
5311 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
1a00e612
RS
5312 {
5313 match_out_of_range (arg);
5314 return FALSE;
5315 }
a1d78564
RS
5316
5317 uval = (unsigned int) sval;
5318 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5319 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5320 return TRUE;
a1d78564
RS
5321}
5322
5323/* OP_CLO_CLZ_DEST matcher. */
5324
a92713e6 5325static bfd_boolean
a1d78564 5326match_clo_clz_dest_operand (struct mips_arg_info *arg,
a92713e6 5327 const struct mips_operand *operand)
a1d78564
RS
5328{
5329 unsigned int regno;
5330
a92713e6
RS
5331 if (!match_reg (arg, OP_REG_GP, &regno))
5332 return FALSE;
a1d78564 5333
a1d78564 5334 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
a92713e6 5335 return TRUE;
a1d78564
RS
5336}
5337
7361da2c
AB
5338/* OP_CHECK_PREV matcher. */
5339
5340static bfd_boolean
5341match_check_prev_operand (struct mips_arg_info *arg,
5342 const struct mips_operand *operand_base)
5343{
5344 const struct mips_check_prev_operand *operand;
5345 unsigned int regno;
5346
5347 operand = (const struct mips_check_prev_operand *) operand_base;
5348
5349 if (!match_reg (arg, OP_REG_GP, &regno))
5350 return FALSE;
5351
5352 if (!operand->zero_ok && regno == 0)
5353 return FALSE;
5354
5355 if ((operand->less_than_ok && regno < arg->last_regno)
5356 || (operand->greater_than_ok && regno > arg->last_regno)
5357 || (operand->equal_ok && regno == arg->last_regno))
5358 {
5359 arg->last_regno = regno;
5360 insn_insert_operand (arg->insn, operand_base, regno);
5361 return TRUE;
5362 }
5363
5364 return FALSE;
5365}
5366
5367/* OP_SAME_RS_RT matcher. */
5368
5369static bfd_boolean
5370match_same_rs_rt_operand (struct mips_arg_info *arg,
5371 const struct mips_operand *operand)
5372{
5373 unsigned int regno;
5374
5375 if (!match_reg (arg, OP_REG_GP, &regno))
5376 return FALSE;
5377
5378 if (regno == 0)
5379 {
5380 set_insn_error (arg->argnum, _("the source register must not be $0"));
5381 return FALSE;
5382 }
5383
5384 arg->last_regno = regno;
5385
5386 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5387 return TRUE;
5388}
5389
a1d78564
RS
5390/* OP_LWM_SWM_LIST matcher. */
5391
a92713e6 5392static bfd_boolean
a1d78564 5393match_lwm_swm_list_operand (struct mips_arg_info *arg,
a92713e6 5394 const struct mips_operand *operand)
a1d78564 5395{
a92713e6
RS
5396 unsigned int reglist, sregs, ra, regno1, regno2;
5397 struct mips_arg_info reset;
a1d78564 5398
a92713e6
RS
5399 reglist = 0;
5400 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5401 return FALSE;
5402 do
5403 {
5404 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5405 {
5406 reglist |= 1 << FP;
5407 regno2 = S7;
5408 }
5409 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5410 reset = *arg;
5411 }
5412 while (match_char (arg, ',')
5413 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5414 *arg = reset;
a1d78564
RS
5415
5416 if (operand->size == 2)
5417 {
5418 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5419
5420 s0, ra
5421 s0, s1, ra, s2, s3
5422 s0-s2, ra
5423
5424 and any permutations of these. */
5425 if ((reglist & 0xfff1ffff) != 0x80010000)
a92713e6 5426 return FALSE;
a1d78564
RS
5427
5428 sregs = (reglist >> 17) & 7;
5429 ra = 0;
5430 }
5431 else
5432 {
5433 /* The list must include at least one of ra and s0-sN,
5434 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5435 which are $23 and $30 respectively.) E.g.:
5436
5437 ra
5438 s0
5439 ra, s0, s1, s2
5440 s0-s8
5441 s0-s5, ra
5442
5443 and any permutations of these. */
5444 if ((reglist & 0x3f00ffff) != 0)
a92713e6 5445 return FALSE;
a1d78564
RS
5446
5447 ra = (reglist >> 27) & 0x10;
5448 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5449 }
5450 sregs += 1;
5451 if ((sregs & -sregs) != sregs)
a92713e6 5452 return FALSE;
a1d78564
RS
5453
5454 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
a92713e6 5455 return TRUE;
a1d78564
RS
5456}
5457
364215c8
RS
5458/* OP_ENTRY_EXIT_LIST matcher. */
5459
a92713e6 5460static unsigned int
364215c8 5461match_entry_exit_operand (struct mips_arg_info *arg,
a92713e6 5462 const struct mips_operand *operand)
364215c8
RS
5463{
5464 unsigned int mask;
5465 bfd_boolean is_exit;
5466
5467 /* The format is the same for both ENTRY and EXIT, but the constraints
5468 are different. */
5469 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5470 mask = (is_exit ? 7 << 3 : 0);
a92713e6 5471 do
364215c8
RS
5472 {
5473 unsigned int regno1, regno2;
5474 bfd_boolean is_freg;
5475
a92713e6 5476 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
364215c8 5477 is_freg = FALSE;
a92713e6 5478 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
364215c8
RS
5479 is_freg = TRUE;
5480 else
a92713e6 5481 return FALSE;
364215c8
RS
5482
5483 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5484 {
5485 mask &= ~(7 << 3);
5486 mask |= (5 + regno2) << 3;
5487 }
5488 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5489 mask |= (regno2 - 3) << 3;
5490 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5491 mask |= (regno2 - 15) << 1;
5492 else if (regno1 == RA && regno2 == RA)
5493 mask |= 1;
5494 else
a92713e6 5495 return FALSE;
364215c8 5496 }
a92713e6
RS
5497 while (match_char (arg, ','));
5498
364215c8 5499 insn_insert_operand (arg->insn, operand, mask);
a92713e6 5500 return TRUE;
364215c8
RS
5501}
5502
5503/* OP_SAVE_RESTORE_LIST matcher. */
5504
a92713e6
RS
5505static bfd_boolean
5506match_save_restore_list_operand (struct mips_arg_info *arg)
364215c8
RS
5507{
5508 unsigned int opcode, args, statics, sregs;
5509 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
364215c8 5510 offsetT frame_size;
364215c8 5511
364215c8
RS
5512 opcode = arg->insn->insn_opcode;
5513 frame_size = 0;
5514 num_frame_sizes = 0;
5515 args = 0;
5516 statics = 0;
5517 sregs = 0;
a92713e6 5518 do
364215c8
RS
5519 {
5520 unsigned int regno1, regno2;
5521
a92713e6 5522 if (arg->token->type == OT_INTEGER)
364215c8
RS
5523 {
5524 /* Handle the frame size. */
1a00e612 5525 if (!match_const_int (arg, &frame_size))
a92713e6 5526 return FALSE;
364215c8 5527 num_frame_sizes += 1;
364215c8
RS
5528 }
5529 else
5530 {
a92713e6
RS
5531 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5532 return FALSE;
364215c8
RS
5533
5534 while (regno1 <= regno2)
5535 {
5536 if (regno1 >= 4 && regno1 <= 7)
5537 {
5538 if (num_frame_sizes == 0)
5539 /* args $a0-$a3 */
5540 args |= 1 << (regno1 - 4);
5541 else
5542 /* statics $a0-$a3 */
5543 statics |= 1 << (regno1 - 4);
5544 }
5545 else if (regno1 >= 16 && regno1 <= 23)
5546 /* $s0-$s7 */
5547 sregs |= 1 << (regno1 - 16);
5548 else if (regno1 == 30)
5549 /* $s8 */
5550 sregs |= 1 << 8;
5551 else if (regno1 == 31)
5552 /* Add $ra to insn. */
5553 opcode |= 0x40;
5554 else
a92713e6 5555 return FALSE;
364215c8
RS
5556 regno1 += 1;
5557 if (regno1 == 24)
5558 regno1 = 30;
5559 }
5560 }
364215c8 5561 }
a92713e6 5562 while (match_char (arg, ','));
364215c8
RS
5563
5564 /* Encode args/statics combination. */
5565 if (args & statics)
a92713e6 5566 return FALSE;
364215c8
RS
5567 else if (args == 0xf)
5568 /* All $a0-$a3 are args. */
5569 opcode |= MIPS16_ALL_ARGS << 16;
5570 else if (statics == 0xf)
5571 /* All $a0-$a3 are statics. */
5572 opcode |= MIPS16_ALL_STATICS << 16;
5573 else
5574 {
5575 /* Count arg registers. */
5576 num_args = 0;
5577 while (args & 0x1)
5578 {
5579 args >>= 1;
5580 num_args += 1;
5581 }
5582 if (args != 0)
a92713e6 5583 return FALSE;
364215c8
RS
5584
5585 /* Count static registers. */
5586 num_statics = 0;
5587 while (statics & 0x8)
5588 {
5589 statics = (statics << 1) & 0xf;
5590 num_statics += 1;
5591 }
5592 if (statics != 0)
a92713e6 5593 return FALSE;
364215c8
RS
5594
5595 /* Encode args/statics. */
5596 opcode |= ((num_args << 2) | num_statics) << 16;
5597 }
5598
5599 /* Encode $s0/$s1. */
5600 if (sregs & (1 << 0)) /* $s0 */
5601 opcode |= 0x20;
5602 if (sregs & (1 << 1)) /* $s1 */
5603 opcode |= 0x10;
5604 sregs >>= 2;
5605
5606 /* Encode $s2-$s8. */
5607 num_sregs = 0;
5608 while (sregs & 1)
5609 {
5610 sregs >>= 1;
5611 num_sregs += 1;
5612 }
5613 if (sregs != 0)
a92713e6 5614 return FALSE;
364215c8
RS
5615 opcode |= num_sregs << 24;
5616
5617 /* Encode frame size. */
5618 if (num_frame_sizes == 0)
1a00e612
RS
5619 {
5620 set_insn_error (arg->argnum, _("missing frame size"));
5621 return FALSE;
5622 }
5623 if (num_frame_sizes > 1)
5624 {
5625 set_insn_error (arg->argnum, _("frame size specified twice"));
5626 return FALSE;
5627 }
5628 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5629 {
5630 set_insn_error (arg->argnum, _("invalid frame size"));
5631 return FALSE;
5632 }
5633 if (frame_size != 128 || (opcode >> 16) != 0)
364215c8
RS
5634 {
5635 frame_size /= 8;
5636 opcode |= (((frame_size & 0xf0) << 16)
5637 | (frame_size & 0x0f));
5638 }
5639
364215c8
RS
5640 /* Finally build the instruction. */
5641 if ((opcode >> 16) != 0 || frame_size == 0)
5642 opcode |= MIPS16_EXTEND;
5643 arg->insn->insn_opcode = opcode;
a92713e6 5644 return TRUE;
364215c8
RS
5645}
5646
a1d78564
RS
5647/* OP_MDMX_IMM_REG matcher. */
5648
a92713e6 5649static bfd_boolean
a1d78564 5650match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
a92713e6 5651 const struct mips_operand *operand)
a1d78564 5652{
a92713e6 5653 unsigned int regno, uval;
a1d78564
RS
5654 bfd_boolean is_qh;
5655 const struct mips_opcode *opcode;
5656
5657 /* The mips_opcode records whether this is an octobyte or quadhalf
5658 instruction. Start out with that bit in place. */
5659 opcode = arg->insn->insn_mo;
5660 uval = mips_extract_operand (operand, opcode->match);
5661 is_qh = (uval != 0);
5662
56d438b1 5663 if (arg->token->type == OT_REG)
a1d78564
RS
5664 {
5665 if ((opcode->membership & INSN_5400)
5666 && strcmp (opcode->name, "rzu.ob") == 0)
5667 {
1a00e612
RS
5668 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5669 arg->argnum);
5670 return FALSE;
a1d78564
RS
5671 }
5672
56d438b1
CF
5673 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5674 return FALSE;
5675 ++arg->token;
5676
a1d78564
RS
5677 /* Check whether this is a vector register or a broadcast of
5678 a single element. */
56d438b1 5679 if (arg->token->type == OT_INTEGER_INDEX)
a1d78564 5680 {
56d438b1 5681 if (arg->token->u.index > (is_qh ? 3 : 7))
a1d78564 5682 {
1a00e612
RS
5683 set_insn_error (arg->argnum, _("invalid element selector"));
5684 return FALSE;
a1d78564 5685 }
56d438b1
CF
5686 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5687 ++arg->token;
a1d78564
RS
5688 }
5689 else
5690 {
5691 /* A full vector. */
5692 if ((opcode->membership & INSN_5400)
5693 && (strcmp (opcode->name, "sll.ob") == 0
5694 || strcmp (opcode->name, "srl.ob") == 0))
5695 {
1a00e612
RS
5696 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5697 arg->argnum);
5698 return FALSE;
a1d78564
RS
5699 }
5700
5701 if (is_qh)
5702 uval |= MDMX_FMTSEL_VEC_QH << 5;
5703 else
5704 uval |= MDMX_FMTSEL_VEC_OB << 5;
5705 }
a1d78564
RS
5706 uval |= regno;
5707 }
5708 else
5709 {
5710 offsetT sval;
5711
1a00e612 5712 if (!match_const_int (arg, &sval))
a92713e6 5713 return FALSE;
a1d78564
RS
5714 if (sval < 0 || sval > 31)
5715 {
1a00e612
RS
5716 match_out_of_range (arg);
5717 return FALSE;
a1d78564
RS
5718 }
5719 uval |= (sval & 31);
5720 if (is_qh)
5721 uval |= MDMX_FMTSEL_IMM_QH << 5;
5722 else
5723 uval |= MDMX_FMTSEL_IMM_OB << 5;
5724 }
5725 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5726 return TRUE;
a1d78564
RS
5727}
5728
56d438b1
CF
5729/* OP_IMM_INDEX matcher. */
5730
5731static bfd_boolean
5732match_imm_index_operand (struct mips_arg_info *arg,
5733 const struct mips_operand *operand)
5734{
5735 unsigned int max_val;
5736
5737 if (arg->token->type != OT_INTEGER_INDEX)
5738 return FALSE;
5739
5740 max_val = (1 << operand->size) - 1;
5741 if (arg->token->u.index > max_val)
5742 {
5743 match_out_of_range (arg);
5744 return FALSE;
5745 }
5746 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5747 ++arg->token;
5748 return TRUE;
5749}
5750
5751/* OP_REG_INDEX matcher. */
5752
5753static bfd_boolean
5754match_reg_index_operand (struct mips_arg_info *arg,
5755 const struct mips_operand *operand)
5756{
5757 unsigned int regno;
5758
5759 if (arg->token->type != OT_REG_INDEX)
5760 return FALSE;
5761
5762 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5763 return FALSE;
5764
5765 insn_insert_operand (arg->insn, operand, regno);
5766 ++arg->token;
5767 return TRUE;
5768}
5769
a1d78564
RS
5770/* OP_PC matcher. */
5771
a92713e6
RS
5772static bfd_boolean
5773match_pc_operand (struct mips_arg_info *arg)
a1d78564 5774{
a92713e6
RS
5775 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5776 {
5777 ++arg->token;
5778 return TRUE;
5779 }
5780 return FALSE;
a1d78564
RS
5781}
5782
7361da2c
AB
5783/* OP_NON_ZERO_REG matcher. */
5784
5785static bfd_boolean
5786match_non_zero_reg_operand (struct mips_arg_info *arg,
5787 const struct mips_operand *operand)
5788{
5789 unsigned int regno;
5790
5791 if (!match_reg (arg, OP_REG_GP, &regno))
5792 return FALSE;
5793
5794 if (regno == 0)
5795 return FALSE;
5796
5797 arg->last_regno = regno;
5798 insn_insert_operand (arg->insn, operand, regno);
5799 return TRUE;
5800}
5801
a1d78564
RS
5802/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5803 register that we need to match. */
5804
a92713e6
RS
5805static bfd_boolean
5806match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
a1d78564
RS
5807{
5808 unsigned int regno;
5809
a92713e6 5810 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
a1d78564
RS
5811}
5812
89565f1b
RS
5813/* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5814 the length of the value in bytes (4 for float, 8 for double) and
5815 USING_GPRS says whether the destination is a GPR rather than an FPR.
5816
5817 Return the constant in IMM and OFFSET as follows:
5818
5819 - If the constant should be loaded via memory, set IMM to O_absent and
5820 OFFSET to the memory address.
5821
5822 - Otherwise, if the constant should be loaded into two 32-bit registers,
5823 set IMM to the O_constant to load into the high register and OFFSET
5824 to the corresponding value for the low register.
5825
5826 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5827
5828 These constants only appear as the last operand in an instruction,
5829 and every instruction that accepts them in any variant accepts them
5830 in all variants. This means we don't have to worry about backing out
5831 any changes if the instruction does not match. We just match
5832 unconditionally and report an error if the constant is invalid. */
5833
a92713e6
RS
5834static bfd_boolean
5835match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5836 expressionS *offset, int length, bfd_boolean using_gprs)
89565f1b 5837{
a92713e6 5838 char *p;
89565f1b
RS
5839 segT seg, new_seg;
5840 subsegT subseg;
5841 const char *newname;
a92713e6 5842 unsigned char *data;
89565f1b
RS
5843
5844 /* Where the constant is placed is based on how the MIPS assembler
5845 does things:
5846
5847 length == 4 && using_gprs -- immediate value only
5848 length == 8 && using_gprs -- .rdata or immediate value
5849 length == 4 && !using_gprs -- .lit4 or immediate value
5850 length == 8 && !using_gprs -- .lit8 or immediate value
5851
5852 The .lit4 and .lit8 sections are only used if permitted by the
5853 -G argument. */
a92713e6 5854 if (arg->token->type != OT_FLOAT)
1a00e612
RS
5855 {
5856 set_insn_error (arg->argnum, _("floating-point expression required"));
5857 return FALSE;
5858 }
a92713e6
RS
5859
5860 gas_assert (arg->token->u.flt.length == length);
5861 data = arg->token->u.flt.data;
5862 ++arg->token;
89565f1b
RS
5863
5864 /* Handle 32-bit constants for which an immediate value is best. */
5865 if (length == 4
5866 && (using_gprs
5867 || g_switch_value < 4
5868 || (data[0] == 0 && data[1] == 0)
5869 || (data[2] == 0 && data[3] == 0)))
5870 {
5871 imm->X_op = O_constant;
5872 if (!target_big_endian)
5873 imm->X_add_number = bfd_getl32 (data);
5874 else
5875 imm->X_add_number = bfd_getb32 (data);
5876 offset->X_op = O_absent;
a92713e6 5877 return TRUE;
89565f1b
RS
5878 }
5879
5880 /* Handle 64-bit constants for which an immediate value is best. */
5881 if (length == 8
5882 && !mips_disable_float_construction
351cdf24
MF
5883 /* Constants can only be constructed in GPRs and copied to FPRs if the
5884 GPRs are at least as wide as the FPRs or MTHC1 is available.
5885 Unlike most tests for 32-bit floating-point registers this check
5886 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5887 permit 64-bit moves without MXHC1.
5888 Force the constant into memory otherwise. */
5889 && (using_gprs
5890 || GPR_SIZE == 64
5891 || ISA_HAS_MXHC1 (mips_opts.isa)
5892 || FPR_SIZE == 32)
89565f1b
RS
5893 && ((data[0] == 0 && data[1] == 0)
5894 || (data[2] == 0 && data[3] == 0))
5895 && ((data[4] == 0 && data[5] == 0)
5896 || (data[6] == 0 && data[7] == 0)))
5897 {
5898 /* The value is simple enough to load with a couple of instructions.
5899 If using 32-bit registers, set IMM to the high order 32 bits and
5900 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5901 64 bit constant. */
351cdf24 5902 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
89565f1b
RS
5903 {
5904 imm->X_op = O_constant;
5905 offset->X_op = O_constant;
5906 if (!target_big_endian)
5907 {
5908 imm->X_add_number = bfd_getl32 (data + 4);
5909 offset->X_add_number = bfd_getl32 (data);
5910 }
5911 else
5912 {
5913 imm->X_add_number = bfd_getb32 (data);
5914 offset->X_add_number = bfd_getb32 (data + 4);
5915 }
5916 if (offset->X_add_number == 0)
5917 offset->X_op = O_absent;
5918 }
5919 else
5920 {
5921 imm->X_op = O_constant;
5922 if (!target_big_endian)
5923 imm->X_add_number = bfd_getl64 (data);
5924 else
5925 imm->X_add_number = bfd_getb64 (data);
5926 offset->X_op = O_absent;
5927 }
a92713e6 5928 return TRUE;
89565f1b
RS
5929 }
5930
5931 /* Switch to the right section. */
5932 seg = now_seg;
5933 subseg = now_subseg;
5934 if (length == 4)
5935 {
5936 gas_assert (!using_gprs && g_switch_value >= 4);
5937 newname = ".lit4";
5938 }
5939 else
5940 {
5941 if (using_gprs || g_switch_value < 8)
5942 newname = RDATA_SECTION_NAME;
5943 else
5944 newname = ".lit8";
5945 }
5946
5947 new_seg = subseg_new (newname, (subsegT) 0);
5948 bfd_set_section_flags (stdoutput, new_seg,
5949 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5950 frag_align (length == 4 ? 2 : 3, 0, 0);
5951 if (strncmp (TARGET_OS, "elf", 3) != 0)
5952 record_alignment (new_seg, 4);
5953 else
5954 record_alignment (new_seg, length == 4 ? 2 : 3);
5955 if (seg == now_seg)
1661c76c 5956 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
89565f1b
RS
5957
5958 /* Set the argument to the current address in the section. */
5959 imm->X_op = O_absent;
5960 offset->X_op = O_symbol;
5961 offset->X_add_symbol = symbol_temp_new_now ();
5962 offset->X_add_number = 0;
5963
5964 /* Put the floating point number into the section. */
5965 p = frag_more (length);
5966 memcpy (p, data, length);
5967
5968 /* Switch back to the original section. */
5969 subseg_set (seg, subseg);
a92713e6 5970 return TRUE;
89565f1b
RS
5971}
5972
14daeee3
RS
5973/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5974 them. */
5975
5976static bfd_boolean
5977match_vu0_suffix_operand (struct mips_arg_info *arg,
5978 const struct mips_operand *operand,
5979 bfd_boolean match_p)
5980{
5981 unsigned int uval;
5982
5983 /* The operand can be an XYZW mask or a single 2-bit channel index
5984 (with X being 0). */
5985 gas_assert (operand->size == 2 || operand->size == 4);
5986
ee5734f0 5987 /* The suffix can be omitted when it is already part of the opcode. */
14daeee3 5988 if (arg->token->type != OT_CHANNELS)
ee5734f0 5989 return match_p;
14daeee3
RS
5990
5991 uval = arg->token->u.channels;
5992 if (operand->size == 2)
5993 {
5994 /* Check that a single bit is set and convert it into a 2-bit index. */
5995 if ((uval & -uval) != uval)
5996 return FALSE;
5997 uval = 4 - ffs (uval);
5998 }
5999
6000 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
6001 return FALSE;
6002
6003 ++arg->token;
6004 if (!match_p)
6005 insn_insert_operand (arg->insn, operand, uval);
6006 return TRUE;
6007}
6008
a1d78564
RS
6009/* S is the text seen for ARG. Match it against OPERAND. Return the end
6010 of the argument text if the match is successful, otherwise return null. */
6011
a92713e6 6012static bfd_boolean
a1d78564 6013match_operand (struct mips_arg_info *arg,
a92713e6 6014 const struct mips_operand *operand)
a1d78564
RS
6015{
6016 switch (operand->type)
6017 {
6018 case OP_INT:
a92713e6 6019 return match_int_operand (arg, operand);
a1d78564
RS
6020
6021 case OP_MAPPED_INT:
a92713e6 6022 return match_mapped_int_operand (arg, operand);
a1d78564
RS
6023
6024 case OP_MSB:
a92713e6 6025 return match_msb_operand (arg, operand);
a1d78564
RS
6026
6027 case OP_REG:
0f35dbc4 6028 case OP_OPTIONAL_REG:
a92713e6 6029 return match_reg_operand (arg, operand);
a1d78564
RS
6030
6031 case OP_REG_PAIR:
a92713e6 6032 return match_reg_pair_operand (arg, operand);
a1d78564
RS
6033
6034 case OP_PCREL:
a92713e6 6035 return match_pcrel_operand (arg);
a1d78564
RS
6036
6037 case OP_PERF_REG:
a92713e6 6038 return match_perf_reg_operand (arg, operand);
a1d78564
RS
6039
6040 case OP_ADDIUSP_INT:
a92713e6 6041 return match_addiusp_operand (arg, operand);
a1d78564
RS
6042
6043 case OP_CLO_CLZ_DEST:
a92713e6 6044 return match_clo_clz_dest_operand (arg, operand);
a1d78564
RS
6045
6046 case OP_LWM_SWM_LIST:
a92713e6 6047 return match_lwm_swm_list_operand (arg, operand);
a1d78564
RS
6048
6049 case OP_ENTRY_EXIT_LIST:
a92713e6 6050 return match_entry_exit_operand (arg, operand);
364215c8 6051
a1d78564 6052 case OP_SAVE_RESTORE_LIST:
a92713e6 6053 return match_save_restore_list_operand (arg);
a1d78564
RS
6054
6055 case OP_MDMX_IMM_REG:
a92713e6 6056 return match_mdmx_imm_reg_operand (arg, operand);
a1d78564
RS
6057
6058 case OP_REPEAT_DEST_REG:
a92713e6 6059 return match_tied_reg_operand (arg, arg->dest_regno);
a1d78564
RS
6060
6061 case OP_REPEAT_PREV_REG:
a92713e6 6062 return match_tied_reg_operand (arg, arg->last_regno);
a1d78564
RS
6063
6064 case OP_PC:
a92713e6 6065 return match_pc_operand (arg);
14daeee3
RS
6066
6067 case OP_VU0_SUFFIX:
6068 return match_vu0_suffix_operand (arg, operand, FALSE);
6069
6070 case OP_VU0_MATCH_SUFFIX:
6071 return match_vu0_suffix_operand (arg, operand, TRUE);
56d438b1
CF
6072
6073 case OP_IMM_INDEX:
6074 return match_imm_index_operand (arg, operand);
6075
6076 case OP_REG_INDEX:
6077 return match_reg_index_operand (arg, operand);
7361da2c
AB
6078
6079 case OP_SAME_RS_RT:
6080 return match_same_rs_rt_operand (arg, operand);
6081
6082 case OP_CHECK_PREV:
6083 return match_check_prev_operand (arg, operand);
6084
6085 case OP_NON_ZERO_REG:
6086 return match_non_zero_reg_operand (arg, operand);
a1d78564
RS
6087 }
6088 abort ();
6089}
6090
6091/* ARG is the state after successfully matching an instruction.
6092 Issue any queued-up warnings. */
6093
6094static void
6095check_completed_insn (struct mips_arg_info *arg)
6096{
6097 if (arg->seen_at)
6098 {
6099 if (AT == ATREG)
1661c76c 6100 as_warn (_("used $at without \".set noat\""));
a1d78564 6101 else
1661c76c 6102 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
a1d78564
RS
6103 }
6104}
a1d78564 6105
85fcb30f
RS
6106/* Return true if modifying general-purpose register REG needs a delay. */
6107
6108static bfd_boolean
6109reg_needs_delay (unsigned int reg)
6110{
6111 unsigned long prev_pinfo;
6112
6113 prev_pinfo = history[0].insn_mo->pinfo;
6114 if (!mips_opts.noreorder
67dc82bc 6115 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
43885403 6116 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
85fcb30f
RS
6117 && (gpr_write_mask (&history[0]) & (1 << reg)))
6118 return TRUE;
6119
6120 return FALSE;
6121}
6122
71400594
RS
6123/* Classify an instruction according to the FIX_VR4120_* enumeration.
6124 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6125 by VR4120 errata. */
4d7206a2 6126
71400594
RS
6127static unsigned int
6128classify_vr4120_insn (const char *name)
252b5132 6129{
71400594
RS
6130 if (strncmp (name, "macc", 4) == 0)
6131 return FIX_VR4120_MACC;
6132 if (strncmp (name, "dmacc", 5) == 0)
6133 return FIX_VR4120_DMACC;
6134 if (strncmp (name, "mult", 4) == 0)
6135 return FIX_VR4120_MULT;
6136 if (strncmp (name, "dmult", 5) == 0)
6137 return FIX_VR4120_DMULT;
6138 if (strstr (name, "div"))
6139 return FIX_VR4120_DIV;
6140 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6141 return FIX_VR4120_MTHILO;
6142 return NUM_FIX_VR4120_CLASSES;
6143}
252b5132 6144
a8d14a88
CM
6145#define INSN_ERET 0x42000018
6146#define INSN_DERET 0x4200001f
6147#define INSN_DMULT 0x1c
6148#define INSN_DMULTU 0x1d
ff239038 6149
71400594
RS
6150/* Return the number of instructions that must separate INSN1 and INSN2,
6151 where INSN1 is the earlier instruction. Return the worst-case value
6152 for any INSN2 if INSN2 is null. */
252b5132 6153
71400594
RS
6154static unsigned int
6155insns_between (const struct mips_cl_insn *insn1,
6156 const struct mips_cl_insn *insn2)
6157{
6158 unsigned long pinfo1, pinfo2;
4c260379 6159 unsigned int mask;
71400594 6160
85fcb30f
RS
6161 /* If INFO2 is null, pessimistically assume that all flags are set for
6162 the second instruction. */
71400594
RS
6163 pinfo1 = insn1->insn_mo->pinfo;
6164 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
252b5132 6165
71400594
RS
6166 /* For most targets, write-after-read dependencies on the HI and LO
6167 registers must be separated by at least two instructions. */
6168 if (!hilo_interlocks)
252b5132 6169 {
71400594
RS
6170 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6171 return 2;
6172 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6173 return 2;
6174 }
6175
6176 /* If we're working around r7000 errata, there must be two instructions
6177 between an mfhi or mflo and any instruction that uses the result. */
6178 if (mips_7000_hilo_fix
df58fc94 6179 && !mips_opts.micromips
71400594 6180 && MF_HILO_INSN (pinfo1)
85fcb30f 6181 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
71400594
RS
6182 return 2;
6183
ff239038
CM
6184 /* If we're working around 24K errata, one instruction is required
6185 if an ERET or DERET is followed by a branch instruction. */
df58fc94 6186 if (mips_fix_24k && !mips_opts.micromips)
ff239038
CM
6187 {
6188 if (insn1->insn_opcode == INSN_ERET
6189 || insn1->insn_opcode == INSN_DERET)
6190 {
6191 if (insn2 == NULL
6192 || insn2->insn_opcode == INSN_ERET
6193 || insn2->insn_opcode == INSN_DERET
11625dd8 6194 || delayed_branch_p (insn2))
ff239038
CM
6195 return 1;
6196 }
6197 }
6198
a8d14a88
CM
6199 /* If we're working around PMC RM7000 errata, there must be three
6200 nops between a dmult and a load instruction. */
6201 if (mips_fix_rm7000 && !mips_opts.micromips)
6202 {
6203 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6204 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6205 {
6206 if (pinfo2 & INSN_LOAD_MEMORY)
6207 return 3;
6208 }
6209 }
6210
71400594
RS
6211 /* If working around VR4120 errata, check for combinations that need
6212 a single intervening instruction. */
df58fc94 6213 if (mips_fix_vr4120 && !mips_opts.micromips)
71400594
RS
6214 {
6215 unsigned int class1, class2;
252b5132 6216
71400594
RS
6217 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6218 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
252b5132 6219 {
71400594
RS
6220 if (insn2 == NULL)
6221 return 1;
6222 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6223 if (vr4120_conflicts[class1] & (1 << class2))
6224 return 1;
252b5132 6225 }
71400594
RS
6226 }
6227
df58fc94 6228 if (!HAVE_CODE_COMPRESSION)
71400594
RS
6229 {
6230 /* Check for GPR or coprocessor load delays. All such delays
6231 are on the RT register. */
6232 /* Itbl support may require additional care here. */
67dc82bc 6233 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
43885403 6234 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
252b5132 6235 {
85fcb30f 6236 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
71400594
RS
6237 return 1;
6238 }
6239
6240 /* Check for generic coprocessor hazards.
6241
6242 This case is not handled very well. There is no special
6243 knowledge of CP0 handling, and the coprocessors other than
6244 the floating point unit are not distinguished at all. */
6245 /* Itbl support may require additional care here. FIXME!
6246 Need to modify this to include knowledge about
6247 user specified delays! */
43885403 6248 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
71400594
RS
6249 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6250 {
6251 /* Handle cases where INSN1 writes to a known general coprocessor
6252 register. There must be a one instruction delay before INSN2
6253 if INSN2 reads that register, otherwise no delay is needed. */
4c260379
RS
6254 mask = fpr_write_mask (insn1);
6255 if (mask != 0)
252b5132 6256 {
4c260379 6257 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
71400594 6258 return 1;
252b5132
RH
6259 }
6260 else
6261 {
71400594
RS
6262 /* Read-after-write dependencies on the control registers
6263 require a two-instruction gap. */
6264 if ((pinfo1 & INSN_WRITE_COND_CODE)
6265 && (pinfo2 & INSN_READ_COND_CODE))
6266 return 2;
6267
6268 /* We don't know exactly what INSN1 does. If INSN2 is
6269 also a coprocessor instruction, assume there must be
6270 a one instruction gap. */
6271 if (pinfo2 & INSN_COP)
6272 return 1;
252b5132
RH
6273 }
6274 }
6b76fefe 6275
71400594
RS
6276 /* Check for read-after-write dependencies on the coprocessor
6277 control registers in cases where INSN1 does not need a general
6278 coprocessor delay. This means that INSN1 is a floating point
6279 comparison instruction. */
6280 /* Itbl support may require additional care here. */
6281 else if (!cop_interlocks
6282 && (pinfo1 & INSN_WRITE_COND_CODE)
6283 && (pinfo2 & INSN_READ_COND_CODE))
6284 return 1;
6285 }
6b76fefe 6286
7361da2c
AB
6287 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6288 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6289 and pause. */
6290 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6291 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6292 || (insn2 && delayed_branch_p (insn2))))
6293 return 1;
6294
71400594
RS
6295 return 0;
6296}
6b76fefe 6297
7d8e00cf
RS
6298/* Return the number of nops that would be needed to work around the
6299 VR4130 mflo/mfhi errata if instruction INSN immediately followed
932d1a1b
RS
6300 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6301 that are contained within the first IGNORE instructions of HIST. */
7d8e00cf
RS
6302
6303static int
932d1a1b 6304nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
7d8e00cf
RS
6305 const struct mips_cl_insn *insn)
6306{
4c260379
RS
6307 int i, j;
6308 unsigned int mask;
7d8e00cf
RS
6309
6310 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6311 are not affected by the errata. */
6312 if (insn != 0
6313 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6314 || strcmp (insn->insn_mo->name, "mtlo") == 0
6315 || strcmp (insn->insn_mo->name, "mthi") == 0))
6316 return 0;
6317
6318 /* Search for the first MFLO or MFHI. */
6319 for (i = 0; i < MAX_VR4130_NOPS; i++)
91d6fa6a 6320 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
7d8e00cf
RS
6321 {
6322 /* Extract the destination register. */
4c260379 6323 mask = gpr_write_mask (&hist[i]);
7d8e00cf
RS
6324
6325 /* No nops are needed if INSN reads that register. */
4c260379 6326 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
7d8e00cf
RS
6327 return 0;
6328
6329 /* ...or if any of the intervening instructions do. */
6330 for (j = 0; j < i; j++)
4c260379 6331 if (gpr_read_mask (&hist[j]) & mask)
7d8e00cf
RS
6332 return 0;
6333
932d1a1b
RS
6334 if (i >= ignore)
6335 return MAX_VR4130_NOPS - i;
7d8e00cf
RS
6336 }
6337 return 0;
6338}
6339
134c0c8b
MR
6340#define BASE_REG_EQ(INSN1, INSN2) \
6341 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
15be625d
CM
6342 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6343
6344/* Return the minimum alignment for this store instruction. */
6345
6346static int
6347fix_24k_align_to (const struct mips_opcode *mo)
6348{
6349 if (strcmp (mo->name, "sh") == 0)
6350 return 2;
6351
6352 if (strcmp (mo->name, "swc1") == 0
6353 || strcmp (mo->name, "swc2") == 0
6354 || strcmp (mo->name, "sw") == 0
6355 || strcmp (mo->name, "sc") == 0
6356 || strcmp (mo->name, "s.s") == 0)
6357 return 4;
6358
6359 if (strcmp (mo->name, "sdc1") == 0
6360 || strcmp (mo->name, "sdc2") == 0
6361 || strcmp (mo->name, "s.d") == 0)
6362 return 8;
6363
6364 /* sb, swl, swr */
6365 return 1;
6366}
6367
6368struct fix_24k_store_info
6369 {
6370 /* Immediate offset, if any, for this store instruction. */
6371 short off;
6372 /* Alignment required by this store instruction. */
6373 int align_to;
6374 /* True for register offsets. */
6375 int register_offset;
6376 };
6377
6378/* Comparison function used by qsort. */
6379
6380static int
6381fix_24k_sort (const void *a, const void *b)
6382{
6383 const struct fix_24k_store_info *pos1 = a;
6384 const struct fix_24k_store_info *pos2 = b;
6385
6386 return (pos1->off - pos2->off);
6387}
6388
6389/* INSN is a store instruction. Try to record the store information
6390 in STINFO. Return false if the information isn't known. */
6391
6392static bfd_boolean
6393fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
ab9794cf 6394 const struct mips_cl_insn *insn)
15be625d
CM
6395{
6396 /* The instruction must have a known offset. */
6397 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6398 return FALSE;
6399
6400 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6401 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6402 return TRUE;
6403}
6404
932d1a1b
RS
6405/* Return the number of nops that would be needed to work around the 24k
6406 "lost data on stores during refill" errata if instruction INSN
6407 immediately followed the 2 instructions described by HIST.
6408 Ignore hazards that are contained within the first IGNORE
6409 instructions of HIST.
6410
6411 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6412 for the data cache refills and store data. The following describes
6413 the scenario where the store data could be lost.
6414
6415 * A data cache miss, due to either a load or a store, causing fill
6416 data to be supplied by the memory subsystem
6417 * The first three doublewords of fill data are returned and written
6418 into the cache
6419 * A sequence of four stores occurs in consecutive cycles around the
6420 final doubleword of the fill:
6421 * Store A
6422 * Store B
6423 * Store C
6424 * Zero, One or more instructions
6425 * Store D
6426
6427 The four stores A-D must be to different doublewords of the line that
6428 is being filled. The fourth instruction in the sequence above permits
6429 the fill of the final doubleword to be transferred from the FSB into
6430 the cache. In the sequence above, the stores may be either integer
6431 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6432 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6433 different doublewords on the line. If the floating point unit is
6434 running in 1:2 mode, it is not possible to create the sequence above
6435 using only floating point store instructions.
15be625d
CM
6436
6437 In this case, the cache line being filled is incorrectly marked
6438 invalid, thereby losing the data from any store to the line that
6439 occurs between the original miss and the completion of the five
6440 cycle sequence shown above.
6441
932d1a1b 6442 The workarounds are:
15be625d 6443
932d1a1b
RS
6444 * Run the data cache in write-through mode.
6445 * Insert a non-store instruction between
6446 Store A and Store B or Store B and Store C. */
3739860c 6447
15be625d 6448static int
932d1a1b 6449nops_for_24k (int ignore, const struct mips_cl_insn *hist,
15be625d
CM
6450 const struct mips_cl_insn *insn)
6451{
6452 struct fix_24k_store_info pos[3];
6453 int align, i, base_offset;
6454
932d1a1b
RS
6455 if (ignore >= 2)
6456 return 0;
6457
ab9794cf
RS
6458 /* If the previous instruction wasn't a store, there's nothing to
6459 worry about. */
15be625d
CM
6460 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6461 return 0;
6462
ab9794cf
RS
6463 /* If the instructions after the previous one are unknown, we have
6464 to assume the worst. */
6465 if (!insn)
15be625d
CM
6466 return 1;
6467
ab9794cf
RS
6468 /* Check whether we are dealing with three consecutive stores. */
6469 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6470 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
15be625d
CM
6471 return 0;
6472
6473 /* If we don't know the relationship between the store addresses,
6474 assume the worst. */
ab9794cf 6475 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
15be625d
CM
6476 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6477 return 1;
6478
6479 if (!fix_24k_record_store_info (&pos[0], insn)
6480 || !fix_24k_record_store_info (&pos[1], &hist[0])
6481 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6482 return 1;
6483
6484 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6485
6486 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6487 X bytes and such that the base register + X is known to be aligned
6488 to align bytes. */
6489
6490 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6491 align = 8;
6492 else
6493 {
6494 align = pos[0].align_to;
6495 base_offset = pos[0].off;
6496 for (i = 1; i < 3; i++)
6497 if (align < pos[i].align_to)
6498 {
6499 align = pos[i].align_to;
6500 base_offset = pos[i].off;
6501 }
6502 for (i = 0; i < 3; i++)
6503 pos[i].off -= base_offset;
6504 }
6505
6506 pos[0].off &= ~align + 1;
6507 pos[1].off &= ~align + 1;
6508 pos[2].off &= ~align + 1;
6509
6510 /* If any two stores write to the same chunk, they also write to the
6511 same doubleword. The offsets are still sorted at this point. */
6512 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6513 return 0;
6514
6515 /* A range of at least 9 bytes is needed for the stores to be in
6516 non-overlapping doublewords. */
6517 if (pos[2].off - pos[0].off <= 8)
6518 return 0;
6519
6520 if (pos[2].off - pos[1].off >= 24
6521 || pos[1].off - pos[0].off >= 24
6522 || pos[2].off - pos[0].off >= 32)
6523 return 0;
6524
6525 return 1;
6526}
6527
71400594 6528/* Return the number of nops that would be needed if instruction INSN
91d6fa6a 6529 immediately followed the MAX_NOPS instructions given by HIST,
932d1a1b
RS
6530 where HIST[0] is the most recent instruction. Ignore hazards
6531 between INSN and the first IGNORE instructions in HIST.
6532
6533 If INSN is null, return the worse-case number of nops for any
6534 instruction. */
bdaaa2e1 6535
71400594 6536static int
932d1a1b 6537nops_for_insn (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6538 const struct mips_cl_insn *insn)
6539{
6540 int i, nops, tmp_nops;
bdaaa2e1 6541
71400594 6542 nops = 0;
932d1a1b 6543 for (i = ignore; i < MAX_DELAY_NOPS; i++)
65b02341 6544 {
91d6fa6a 6545 tmp_nops = insns_between (hist + i, insn) - i;
65b02341
RS
6546 if (tmp_nops > nops)
6547 nops = tmp_nops;
6548 }
7d8e00cf 6549
df58fc94 6550 if (mips_fix_vr4130 && !mips_opts.micromips)
7d8e00cf 6551 {
932d1a1b 6552 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
7d8e00cf
RS
6553 if (tmp_nops > nops)
6554 nops = tmp_nops;
6555 }
6556
df58fc94 6557 if (mips_fix_24k && !mips_opts.micromips)
15be625d 6558 {
932d1a1b 6559 tmp_nops = nops_for_24k (ignore, hist, insn);
15be625d
CM
6560 if (tmp_nops > nops)
6561 nops = tmp_nops;
6562 }
6563
71400594
RS
6564 return nops;
6565}
252b5132 6566
71400594 6567/* The variable arguments provide NUM_INSNS extra instructions that
91d6fa6a 6568 might be added to HIST. Return the largest number of nops that
932d1a1b
RS
6569 would be needed after the extended sequence, ignoring hazards
6570 in the first IGNORE instructions. */
252b5132 6571
71400594 6572static int
932d1a1b
RS
6573nops_for_sequence (int num_insns, int ignore,
6574 const struct mips_cl_insn *hist, ...)
71400594
RS
6575{
6576 va_list args;
6577 struct mips_cl_insn buffer[MAX_NOPS];
6578 struct mips_cl_insn *cursor;
6579 int nops;
6580
91d6fa6a 6581 va_start (args, hist);
71400594 6582 cursor = buffer + num_insns;
91d6fa6a 6583 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
71400594
RS
6584 while (cursor > buffer)
6585 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6586
932d1a1b 6587 nops = nops_for_insn (ignore, buffer, NULL);
71400594
RS
6588 va_end (args);
6589 return nops;
6590}
252b5132 6591
71400594
RS
6592/* Like nops_for_insn, but if INSN is a branch, take into account the
6593 worst-case delay for the branch target. */
252b5132 6594
71400594 6595static int
932d1a1b 6596nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6597 const struct mips_cl_insn *insn)
6598{
6599 int nops, tmp_nops;
60b63b72 6600
932d1a1b 6601 nops = nops_for_insn (ignore, hist, insn);
11625dd8 6602 if (delayed_branch_p (insn))
71400594 6603 {
932d1a1b 6604 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
14fe068b 6605 hist, insn, get_delay_slot_nop (insn));
71400594
RS
6606 if (tmp_nops > nops)
6607 nops = tmp_nops;
6608 }
11625dd8 6609 else if (compact_branch_p (insn))
71400594 6610 {
932d1a1b 6611 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
71400594
RS
6612 if (tmp_nops > nops)
6613 nops = tmp_nops;
6614 }
6615 return nops;
6616}
6617
c67a084a
NC
6618/* Fix NOP issue: Replace nops by "or at,at,zero". */
6619
6620static void
6621fix_loongson2f_nop (struct mips_cl_insn * ip)
6622{
df58fc94 6623 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6624 if (strcmp (ip->insn_mo->name, "nop") == 0)
6625 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6626}
6627
6628/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6629 jr target pc &= 'hffff_ffff_cfff_ffff. */
6630
6631static void
6632fix_loongson2f_jump (struct mips_cl_insn * ip)
6633{
df58fc94 6634 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6635 if (strcmp (ip->insn_mo->name, "j") == 0
6636 || strcmp (ip->insn_mo->name, "jr") == 0
6637 || strcmp (ip->insn_mo->name, "jalr") == 0)
6638 {
6639 int sreg;
6640 expressionS ep;
6641
6642 if (! mips_opts.at)
6643 return;
6644
df58fc94 6645 sreg = EXTRACT_OPERAND (0, RS, *ip);
c67a084a
NC
6646 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6647 return;
6648
6649 ep.X_op = O_constant;
6650 ep.X_add_number = 0xcfff0000;
6651 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6652 ep.X_add_number = 0xffff;
6653 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6654 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6655 }
6656}
6657
6658static void
6659fix_loongson2f (struct mips_cl_insn * ip)
6660{
6661 if (mips_fix_loongson2f_nop)
6662 fix_loongson2f_nop (ip);
6663
6664 if (mips_fix_loongson2f_jump)
6665 fix_loongson2f_jump (ip);
6666}
6667
a4e06468
RS
6668/* IP is a branch that has a delay slot, and we need to fill it
6669 automatically. Return true if we can do that by swapping IP
e407c74b
NC
6670 with the previous instruction.
6671 ADDRESS_EXPR is an operand of the instruction to be used with
6672 RELOC_TYPE. */
a4e06468
RS
6673
6674static bfd_boolean
e407c74b 6675can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6676 bfd_reloc_code_real_type *reloc_type)
a4e06468 6677{
2b0c8b40 6678 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
a4e06468 6679 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
9d5de888 6680 unsigned int fpr_read, prev_fpr_write;
a4e06468
RS
6681
6682 /* -O2 and above is required for this optimization. */
6683 if (mips_optimize < 2)
6684 return FALSE;
6685
6686 /* If we have seen .set volatile or .set nomove, don't optimize. */
6687 if (mips_opts.nomove)
6688 return FALSE;
6689
6690 /* We can't swap if the previous instruction's position is fixed. */
6691 if (history[0].fixed_p)
6692 return FALSE;
6693
6694 /* If the previous previous insn was in a .set noreorder, we can't
6695 swap. Actually, the MIPS assembler will swap in this situation.
6696 However, gcc configured -with-gnu-as will generate code like
6697
6698 .set noreorder
6699 lw $4,XXX
6700 .set reorder
6701 INSN
6702 bne $4,$0,foo
6703
6704 in which we can not swap the bne and INSN. If gcc is not configured
6705 -with-gnu-as, it does not output the .set pseudo-ops. */
6706 if (history[1].noreorder_p)
6707 return FALSE;
6708
87333bb7
MR
6709 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6710 This means that the previous instruction was a 4-byte one anyhow. */
a4e06468
RS
6711 if (mips_opts.mips16 && history[0].fixp[0])
6712 return FALSE;
6713
6714 /* If the branch is itself the target of a branch, we can not swap.
6715 We cheat on this; all we check for is whether there is a label on
6716 this instruction. If there are any branches to anything other than
6717 a label, users must use .set noreorder. */
6718 if (seg_info (now_seg)->label_list)
6719 return FALSE;
6720
6721 /* If the previous instruction is in a variant frag other than this
2309ddf2 6722 branch's one, we cannot do the swap. This does not apply to
9301f9c3
MR
6723 MIPS16 code, which uses variant frags for different purposes. */
6724 if (!mips_opts.mips16
a4e06468
RS
6725 && history[0].frag
6726 && history[0].frag->fr_type == rs_machine_dependent)
6727 return FALSE;
6728
bcd530a7
RS
6729 /* We do not swap with instructions that cannot architecturally
6730 be placed in a branch delay slot, such as SYNC or ERET. We
6731 also refrain from swapping with a trap instruction, since it
6732 complicates trap handlers to have the trap instruction be in
6733 a delay slot. */
a4e06468 6734 prev_pinfo = history[0].insn_mo->pinfo;
bcd530a7 6735 if (prev_pinfo & INSN_NO_DELAY_SLOT)
a4e06468
RS
6736 return FALSE;
6737
6738 /* Check for conflicts between the branch and the instructions
6739 before the candidate delay slot. */
6740 if (nops_for_insn (0, history + 1, ip) > 0)
6741 return FALSE;
6742
6743 /* Check for conflicts between the swapped sequence and the
6744 target of the branch. */
6745 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6746 return FALSE;
6747
6748 /* If the branch reads a register that the previous
6749 instruction sets, we can not swap. */
6750 gpr_read = gpr_read_mask (ip);
6751 prev_gpr_write = gpr_write_mask (&history[0]);
6752 if (gpr_read & prev_gpr_write)
6753 return FALSE;
6754
9d5de888
CF
6755 fpr_read = fpr_read_mask (ip);
6756 prev_fpr_write = fpr_write_mask (&history[0]);
6757 if (fpr_read & prev_fpr_write)
6758 return FALSE;
6759
a4e06468
RS
6760 /* If the branch writes a register that the previous
6761 instruction sets, we can not swap. */
6762 gpr_write = gpr_write_mask (ip);
6763 if (gpr_write & prev_gpr_write)
6764 return FALSE;
6765
6766 /* If the branch writes a register that the previous
6767 instruction reads, we can not swap. */
6768 prev_gpr_read = gpr_read_mask (&history[0]);
6769 if (gpr_write & prev_gpr_read)
6770 return FALSE;
6771
6772 /* If one instruction sets a condition code and the
6773 other one uses a condition code, we can not swap. */
6774 pinfo = ip->insn_mo->pinfo;
6775 if ((pinfo & INSN_READ_COND_CODE)
6776 && (prev_pinfo & INSN_WRITE_COND_CODE))
6777 return FALSE;
6778 if ((pinfo & INSN_WRITE_COND_CODE)
6779 && (prev_pinfo & INSN_READ_COND_CODE))
6780 return FALSE;
6781
6782 /* If the previous instruction uses the PC, we can not swap. */
2b0c8b40 6783 prev_pinfo2 = history[0].insn_mo->pinfo2;
26545944 6784 if (prev_pinfo2 & INSN2_READ_PC)
2b0c8b40 6785 return FALSE;
a4e06468 6786
df58fc94
RS
6787 /* If the previous instruction has an incorrect size for a fixed
6788 branch delay slot in microMIPS mode, we cannot swap. */
2309ddf2
MR
6789 pinfo2 = ip->insn_mo->pinfo2;
6790 if (mips_opts.micromips
6791 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6792 && insn_length (history) != 2)
6793 return FALSE;
6794 if (mips_opts.micromips
6795 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6796 && insn_length (history) != 4)
6797 return FALSE;
6798
e407c74b
NC
6799 /* On R5900 short loops need to be fixed by inserting a nop in
6800 the branch delay slots.
6801 A short loop can be terminated too early. */
6802 if (mips_opts.arch == CPU_R5900
6803 /* Check if instruction has a parameter, ignore "j $31". */
6804 && (address_expr != NULL)
6805 /* Parameter must be 16 bit. */
6806 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6807 /* Branch to same segment. */
41065f5e 6808 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
e407c74b 6809 /* Branch to same code fragment. */
41065f5e 6810 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
e407c74b 6811 /* Can only calculate branch offset if value is known. */
41065f5e 6812 && symbol_constant_p (address_expr->X_add_symbol)
e407c74b
NC
6813 /* Check if branch is really conditional. */
6814 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6815 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6816 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6817 {
6818 int distance;
6819 /* Check if loop is shorter than 6 instructions including
6820 branch and delay slot. */
41065f5e 6821 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
e407c74b
NC
6822 if (distance <= 20)
6823 {
6824 int i;
6825 int rv;
6826
6827 rv = FALSE;
6828 /* When the loop includes branches or jumps,
6829 it is not a short loop. */
6830 for (i = 0; i < (distance / 4); i++)
6831 {
6832 if ((history[i].cleared_p)
41065f5e 6833 || delayed_branch_p (&history[i]))
e407c74b
NC
6834 {
6835 rv = TRUE;
6836 break;
6837 }
6838 }
6839 if (rv == FALSE)
6840 {
6841 /* Insert nop after branch to fix short loop. */
6842 return FALSE;
6843 }
6844 }
6845 }
6846
a4e06468
RS
6847 return TRUE;
6848}
6849
e407c74b
NC
6850/* Decide how we should add IP to the instruction stream.
6851 ADDRESS_EXPR is an operand of the instruction to be used with
6852 RELOC_TYPE. */
a4e06468
RS
6853
6854static enum append_method
e407c74b 6855get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6856 bfd_reloc_code_real_type *reloc_type)
a4e06468 6857{
a4e06468
RS
6858 /* The relaxed version of a macro sequence must be inherently
6859 hazard-free. */
6860 if (mips_relax.sequence == 2)
6861 return APPEND_ADD;
6862
3b821a28 6863 /* We must not dabble with instructions in a ".set noreorder" block. */
a4e06468
RS
6864 if (mips_opts.noreorder)
6865 return APPEND_ADD;
6866
6867 /* Otherwise, it's our responsibility to fill branch delay slots. */
11625dd8 6868 if (delayed_branch_p (ip))
a4e06468 6869 {
e407c74b
NC
6870 if (!branch_likely_p (ip)
6871 && can_swap_branch_p (ip, address_expr, reloc_type))
a4e06468
RS
6872 return APPEND_SWAP;
6873
6874 if (mips_opts.mips16
6875 && ISA_SUPPORTS_MIPS16E
fc76e730 6876 && gpr_read_mask (ip) != 0)
a4e06468
RS
6877 return APPEND_ADD_COMPACT;
6878
7bd374a4
MR
6879 if (mips_opts.micromips
6880 && ((ip->insn_opcode & 0xffe0) == 0x4580
6881 || (!forced_insn_length
6882 && ((ip->insn_opcode & 0xfc00) == 0xcc00
6883 || (ip->insn_opcode & 0xdc00) == 0x8c00))
6884 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
6885 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
6886 return APPEND_ADD_COMPACT;
6887
a4e06468
RS
6888 return APPEND_ADD_WITH_NOP;
6889 }
6890
a4e06468
RS
6891 return APPEND_ADD;
6892}
6893
7bd374a4
MR
6894/* IP is an instruction whose opcode we have just changed, END points
6895 to the end of the opcode table processed. Point IP->insn_mo to the
6896 new opcode's definition. */
ceb94aa5
RS
6897
6898static void
7bd374a4 6899find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
ceb94aa5 6900{
7bd374a4 6901 const struct mips_opcode *mo;
ceb94aa5 6902
ceb94aa5 6903 for (mo = ip->insn_mo; mo < end; mo++)
7bd374a4
MR
6904 if (mo->pinfo != INSN_MACRO
6905 && (ip->insn_opcode & mo->mask) == mo->match)
ceb94aa5
RS
6906 {
6907 ip->insn_mo = mo;
6908 return;
6909 }
6910 abort ();
6911}
6912
7bd374a4
MR
6913/* IP is a MIPS16 instruction whose opcode we have just changed.
6914 Point IP->insn_mo to the new opcode's definition. */
6915
6916static void
6917find_altered_mips16_opcode (struct mips_cl_insn *ip)
6918{
6919 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
6920}
6921
6922/* IP is a microMIPS instruction whose opcode we have just changed.
6923 Point IP->insn_mo to the new opcode's definition. */
6924
6925static void
6926find_altered_micromips_opcode (struct mips_cl_insn *ip)
6927{
6928 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
6929}
6930
df58fc94
RS
6931/* For microMIPS macros, we need to generate a local number label
6932 as the target of branches. */
6933#define MICROMIPS_LABEL_CHAR '\037'
6934static unsigned long micromips_target_label;
6935static char micromips_target_name[32];
6936
6937static char *
6938micromips_label_name (void)
6939{
6940 char *p = micromips_target_name;
6941 char symbol_name_temporary[24];
6942 unsigned long l;
6943 int i;
6944
6945 if (*p)
6946 return p;
6947
6948 i = 0;
6949 l = micromips_target_label;
6950#ifdef LOCAL_LABEL_PREFIX
6951 *p++ = LOCAL_LABEL_PREFIX;
6952#endif
6953 *p++ = 'L';
6954 *p++ = MICROMIPS_LABEL_CHAR;
6955 do
6956 {
6957 symbol_name_temporary[i++] = l % 10 + '0';
6958 l /= 10;
6959 }
6960 while (l != 0);
6961 while (i > 0)
6962 *p++ = symbol_name_temporary[--i];
6963 *p = '\0';
6964
6965 return micromips_target_name;
6966}
6967
6968static void
6969micromips_label_expr (expressionS *label_expr)
6970{
6971 label_expr->X_op = O_symbol;
6972 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6973 label_expr->X_add_number = 0;
6974}
6975
6976static void
6977micromips_label_inc (void)
6978{
6979 micromips_target_label++;
6980 *micromips_target_name = '\0';
6981}
6982
6983static void
6984micromips_add_label (void)
6985{
6986 symbolS *s;
6987
6988 s = colon (micromips_label_name ());
6989 micromips_label_inc ();
f3ded42a 6990 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
df58fc94
RS
6991}
6992
6993/* If assembling microMIPS code, then return the microMIPS reloc
6994 corresponding to the requested one if any. Otherwise return
6995 the reloc unchanged. */
6996
6997static bfd_reloc_code_real_type
6998micromips_map_reloc (bfd_reloc_code_real_type reloc)
6999{
7000 static const bfd_reloc_code_real_type relocs[][2] =
7001 {
7002 /* Keep sorted incrementally by the left-hand key. */
7003 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
7004 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
7005 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
7006 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
7007 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
7008 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
7009 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
7010 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
7011 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
7012 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
7013 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
7014 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
7015 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
7016 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
7017 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
7018 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
7019 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
7020 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
7021 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
7022 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
7023 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
7024 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
7025 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
7026 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
7027 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
7028 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
7029 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
7030 };
7031 bfd_reloc_code_real_type r;
7032 size_t i;
7033
7034 if (!mips_opts.micromips)
7035 return reloc;
7036 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7037 {
7038 r = relocs[i][0];
7039 if (r > reloc)
7040 return reloc;
7041 if (r == reloc)
7042 return relocs[i][1];
7043 }
7044 return reloc;
7045}
7046
b886a2ab
RS
7047/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7048 Return true on success, storing the resolved value in RESULT. */
7049
7050static bfd_boolean
7051calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7052 offsetT *result)
7053{
7054 switch (reloc)
7055 {
7056 case BFD_RELOC_MIPS_HIGHEST:
7057 case BFD_RELOC_MICROMIPS_HIGHEST:
7058 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7059 return TRUE;
7060
7061 case BFD_RELOC_MIPS_HIGHER:
7062 case BFD_RELOC_MICROMIPS_HIGHER:
7063 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7064 return TRUE;
7065
7066 case BFD_RELOC_HI16_S:
41947d9e 7067 case BFD_RELOC_HI16_S_PCREL:
b886a2ab
RS
7068 case BFD_RELOC_MICROMIPS_HI16_S:
7069 case BFD_RELOC_MIPS16_HI16_S:
7070 *result = ((operand + 0x8000) >> 16) & 0xffff;
7071 return TRUE;
7072
7073 case BFD_RELOC_HI16:
7074 case BFD_RELOC_MICROMIPS_HI16:
7075 case BFD_RELOC_MIPS16_HI16:
7076 *result = (operand >> 16) & 0xffff;
7077 return TRUE;
7078
7079 case BFD_RELOC_LO16:
41947d9e 7080 case BFD_RELOC_LO16_PCREL:
b886a2ab
RS
7081 case BFD_RELOC_MICROMIPS_LO16:
7082 case BFD_RELOC_MIPS16_LO16:
7083 *result = operand & 0xffff;
7084 return TRUE;
7085
7086 case BFD_RELOC_UNUSED:
7087 *result = operand;
7088 return TRUE;
7089
7090 default:
7091 return FALSE;
7092 }
7093}
7094
71400594
RS
7095/* Output an instruction. IP is the instruction information.
7096 ADDRESS_EXPR is an operand of the instruction to be used with
df58fc94
RS
7097 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7098 a macro expansion. */
71400594
RS
7099
7100static void
7101append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
df58fc94 7102 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
71400594 7103{
14fe068b 7104 unsigned long prev_pinfo2, pinfo;
71400594 7105 bfd_boolean relaxed_branch = FALSE;
a4e06468 7106 enum append_method method;
2309ddf2 7107 bfd_boolean relax32;
2b0c8b40 7108 int branch_disp;
71400594 7109
2309ddf2 7110 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
c67a084a
NC
7111 fix_loongson2f (ip);
7112
738f4d98 7113 file_ase_mips16 |= mips_opts.mips16;
df58fc94 7114 file_ase_micromips |= mips_opts.micromips;
738f4d98 7115
df58fc94 7116 prev_pinfo2 = history[0].insn_mo->pinfo2;
71400594 7117 pinfo = ip->insn_mo->pinfo;
df58fc94 7118
7bd374a4
MR
7119 /* Don't raise alarm about `nods' frags as they'll fill in the right
7120 kind of nop in relaxation if required. */
df58fc94
RS
7121 if (mips_opts.micromips
7122 && !expansionp
7bd374a4
MR
7123 && !(history[0].frag
7124 && history[0].frag->fr_type == rs_machine_dependent
7125 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7126 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
df58fc94
RS
7127 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7128 && micromips_insn_length (ip->insn_mo) != 2)
7129 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7130 && micromips_insn_length (ip->insn_mo) != 4)))
1661c76c 7131 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
df58fc94 7132 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
71400594 7133
15be625d
CM
7134 if (address_expr == NULL)
7135 ip->complete_p = 1;
b886a2ab
RS
7136 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7137 && reloc_type[1] == BFD_RELOC_UNUSED
7138 && reloc_type[2] == BFD_RELOC_UNUSED
15be625d
CM
7139 && address_expr->X_op == O_constant)
7140 {
15be625d
CM
7141 switch (*reloc_type)
7142 {
15be625d 7143 case BFD_RELOC_MIPS_JMP:
df58fc94
RS
7144 {
7145 int shift;
7146
17c6c9d9
MR
7147 /* Shift is 2, unusually, for microMIPS JALX. */
7148 shift = (mips_opts.micromips
7149 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
df58fc94
RS
7150 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7151 as_bad (_("jump to misaligned address (0x%lx)"),
7152 (unsigned long) address_expr->X_add_number);
7153 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7154 & 0x3ffffff);
335574df 7155 ip->complete_p = 1;
df58fc94 7156 }
15be625d
CM
7157 break;
7158
7159 case BFD_RELOC_MIPS16_JMP:
7160 if ((address_expr->X_add_number & 3) != 0)
7161 as_bad (_("jump to misaligned address (0x%lx)"),
7162 (unsigned long) address_expr->X_add_number);
7163 ip->insn_opcode |=
7164 (((address_expr->X_add_number & 0x7c0000) << 3)
7165 | ((address_expr->X_add_number & 0xf800000) >> 7)
7166 | ((address_expr->X_add_number & 0x3fffc) >> 2));
335574df 7167 ip->complete_p = 1;
15be625d
CM
7168 break;
7169
7170 case BFD_RELOC_16_PCREL_S2:
df58fc94
RS
7171 {
7172 int shift;
7173
7174 shift = mips_opts.micromips ? 1 : 2;
7175 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7176 as_bad (_("branch to misaligned address (0x%lx)"),
7177 (unsigned long) address_expr->X_add_number);
7178 if (!mips_relax_branch)
7179 {
7180 if ((address_expr->X_add_number + (1 << (shift + 15)))
7181 & ~((1 << (shift + 16)) - 1))
7182 as_bad (_("branch address range overflow (0x%lx)"),
7183 (unsigned long) address_expr->X_add_number);
7184 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7185 & 0xffff);
7186 }
df58fc94 7187 }
15be625d
CM
7188 break;
7189
7361da2c
AB
7190 case BFD_RELOC_MIPS_21_PCREL_S2:
7191 {
7192 int shift;
7193
7194 shift = 2;
7195 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7196 as_bad (_("branch to misaligned address (0x%lx)"),
7197 (unsigned long) address_expr->X_add_number);
7198 if ((address_expr->X_add_number + (1 << (shift + 20)))
7199 & ~((1 << (shift + 21)) - 1))
7200 as_bad (_("branch address range overflow (0x%lx)"),
7201 (unsigned long) address_expr->X_add_number);
7202 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7203 & 0x1fffff);
7204 }
7205 break;
7206
7207 case BFD_RELOC_MIPS_26_PCREL_S2:
7208 {
7209 int shift;
7210
7211 shift = 2;
7212 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7213 as_bad (_("branch to misaligned address (0x%lx)"),
7214 (unsigned long) address_expr->X_add_number);
7215 if ((address_expr->X_add_number + (1 << (shift + 25)))
7216 & ~((1 << (shift + 26)) - 1))
7217 as_bad (_("branch address range overflow (0x%lx)"),
7218 (unsigned long) address_expr->X_add_number);
7219 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7220 & 0x3ffffff);
7221 }
7222 break;
7223
15be625d 7224 default:
b886a2ab
RS
7225 {
7226 offsetT value;
7227
7228 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7229 &value))
7230 {
7231 ip->insn_opcode |= value & 0xffff;
7232 ip->complete_p = 1;
7233 }
7234 }
7235 break;
7236 }
15be625d
CM
7237 }
7238
71400594
RS
7239 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7240 {
7241 /* There are a lot of optimizations we could do that we don't.
7242 In particular, we do not, in general, reorder instructions.
7243 If you use gcc with optimization, it will reorder
7244 instructions and generally do much more optimization then we
7245 do here; repeating all that work in the assembler would only
7246 benefit hand written assembly code, and does not seem worth
7247 it. */
7248 int nops = (mips_optimize == 0
932d1a1b
RS
7249 ? nops_for_insn (0, history, NULL)
7250 : nops_for_insn_or_target (0, history, ip));
71400594 7251 if (nops > 0)
252b5132
RH
7252 {
7253 fragS *old_frag;
7254 unsigned long old_frag_offset;
7255 int i;
252b5132
RH
7256
7257 old_frag = frag_now;
7258 old_frag_offset = frag_now_fix ();
7259
7260 for (i = 0; i < nops; i++)
14fe068b
RS
7261 add_fixed_insn (NOP_INSN);
7262 insert_into_history (0, nops, NOP_INSN);
252b5132
RH
7263
7264 if (listing)
7265 {
7266 listing_prev_line ();
7267 /* We may be at the start of a variant frag. In case we
7268 are, make sure there is enough space for the frag
7269 after the frags created by listing_prev_line. The
7270 argument to frag_grow here must be at least as large
7271 as the argument to all other calls to frag_grow in
7272 this file. We don't have to worry about being in the
7273 middle of a variant frag, because the variants insert
7274 all needed nop instructions themselves. */
7275 frag_grow (40);
7276 }
7277
462427c4 7278 mips_move_text_labels ();
252b5132
RH
7279
7280#ifndef NO_ECOFF_DEBUGGING
7281 if (ECOFF_DEBUGGING)
7282 ecoff_fix_loc (old_frag, old_frag_offset);
7283#endif
7284 }
71400594
RS
7285 }
7286 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7287 {
932d1a1b
RS
7288 int nops;
7289
7290 /* Work out how many nops in prev_nop_frag are needed by IP,
7291 ignoring hazards generated by the first prev_nop_frag_since
7292 instructions. */
7293 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
9c2799c2 7294 gas_assert (nops <= prev_nop_frag_holds);
252b5132 7295
71400594
RS
7296 /* Enforce NOPS as a minimum. */
7297 if (nops > prev_nop_frag_required)
7298 prev_nop_frag_required = nops;
252b5132 7299
71400594
RS
7300 if (prev_nop_frag_holds == prev_nop_frag_required)
7301 {
7302 /* Settle for the current number of nops. Update the history
7303 accordingly (for the benefit of any future .set reorder code). */
7304 prev_nop_frag = NULL;
7305 insert_into_history (prev_nop_frag_since,
7306 prev_nop_frag_holds, NOP_INSN);
7307 }
7308 else
7309 {
7310 /* Allow this instruction to replace one of the nops that was
7311 tentatively added to prev_nop_frag. */
df58fc94 7312 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
71400594
RS
7313 prev_nop_frag_holds--;
7314 prev_nop_frag_since++;
252b5132
RH
7315 }
7316 }
7317
e407c74b 7318 method = get_append_method (ip, address_expr, reloc_type);
2b0c8b40 7319 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
a4e06468 7320
e410add4
RS
7321 dwarf2_emit_insn (0);
7322 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7323 so "move" the instruction address accordingly.
7324
7325 Also, it doesn't seem appropriate for the assembler to reorder .loc
7326 entries. If this instruction is a branch that we are going to swap
7327 with the previous instruction, the two instructions should be
7328 treated as a unit, and the debug information for both instructions
7329 should refer to the start of the branch sequence. Using the
7330 current position is certainly wrong when swapping a 32-bit branch
7331 and a 16-bit delay slot, since the current position would then be
7332 in the middle of a branch. */
7333 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
58e2ea4d 7334
df58fc94
RS
7335 relax32 = (mips_relax_branch
7336 /* Don't try branch relaxation within .set nomacro, or within
7337 .set noat if we use $at for PIC computations. If it turns
7338 out that the branch was out-of-range, we'll get an error. */
7339 && !mips_opts.warn_about_macros
7340 && (mips_opts.at || mips_pic == NO_PIC)
3bf0dbfb
MR
7341 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7342 as they have no complementing branches. */
7343 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
df58fc94
RS
7344
7345 if (!HAVE_CODE_COMPRESSION
7346 && address_expr
7347 && relax32
0b25d3e6 7348 && *reloc_type == BFD_RELOC_16_PCREL_S2
11625dd8 7349 && delayed_branch_p (ip))
4a6a3df4 7350 {
895921c9 7351 relaxed_branch = TRUE;
1e915849
RS
7352 add_relaxed_insn (ip, (relaxed_branch_length
7353 (NULL, NULL,
11625dd8
RS
7354 uncond_branch_p (ip) ? -1
7355 : branch_likely_p (ip) ? 1
1e915849
RS
7356 : 0)), 4,
7357 RELAX_BRANCH_ENCODE
ce8ad872 7358 (AT, mips_pic != NO_PIC,
11625dd8
RS
7359 uncond_branch_p (ip),
7360 branch_likely_p (ip),
1e915849
RS
7361 pinfo & INSN_WRITE_GPR_31,
7362 0),
7363 address_expr->X_add_symbol,
7364 address_expr->X_add_number);
4a6a3df4
AO
7365 *reloc_type = BFD_RELOC_UNUSED;
7366 }
df58fc94
RS
7367 else if (mips_opts.micromips
7368 && address_expr
7369 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7370 || *reloc_type > BFD_RELOC_UNUSED)
40209cad
MR
7371 && (delayed_branch_p (ip) || compact_branch_p (ip))
7372 /* Don't try branch relaxation when users specify
7373 16-bit/32-bit instructions. */
7374 && !forced_insn_length)
df58fc94 7375 {
7bd374a4
MR
7376 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7377 && *reloc_type > BFD_RELOC_UNUSED);
df58fc94 7378 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
11625dd8 7379 int uncond = uncond_branch_p (ip) ? -1 : 0;
7bd374a4
MR
7380 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7381 int nods = method == APPEND_ADD_WITH_NOP;
df58fc94 7382 int al = pinfo & INSN_WRITE_GPR_31;
7bd374a4 7383 int length32 = nods ? 8 : 4;
df58fc94
RS
7384
7385 gas_assert (address_expr != NULL);
7386 gas_assert (!mips_relax.sequence);
7387
2b0c8b40 7388 relaxed_branch = TRUE;
7bd374a4
MR
7389 if (nods)
7390 method = APPEND_ADD;
7391 if (relax32)
7392 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7393 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
8484fb75 7394 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
ce8ad872 7395 mips_pic != NO_PIC,
7bd374a4 7396 uncond, compact, al, nods,
40209cad 7397 relax32, 0, 0),
df58fc94
RS
7398 address_expr->X_add_symbol,
7399 address_expr->X_add_number);
7400 *reloc_type = BFD_RELOC_UNUSED;
7401 }
7402 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
252b5132 7403 {
7fd53920
MR
7404 bfd_boolean require_unextended;
7405 bfd_boolean require_extended;
88a7ef16
MR
7406 symbolS *symbol;
7407 offsetT offset;
7408
7fd53920
MR
7409 if (forced_insn_length != 0)
7410 {
7411 require_unextended = forced_insn_length == 2;
7412 require_extended = forced_insn_length == 4;
7413 }
7414 else
7415 {
7416 require_unextended = (mips_opts.noautoextend
7417 && !mips_opcode_32bit_p (ip->insn_mo));
7418 require_extended = 0;
7419 }
7420
252b5132 7421 /* We need to set up a variant frag. */
df58fc94 7422 gas_assert (address_expr != NULL);
88a7ef16
MR
7423 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7424 symbol created by `make_expr_symbol' may not get a necessary
7425 external relocation produced. */
7426 if (address_expr->X_op == O_symbol)
7427 {
7428 symbol = address_expr->X_add_symbol;
7429 offset = address_expr->X_add_number;
7430 }
7431 else
7432 {
7433 symbol = make_expr_symbol (address_expr);
82d808ed 7434 symbol_append (symbol, symbol_lastP, &symbol_rootP, &symbol_lastP);
88a7ef16
MR
7435 offset = 0;
7436 }
8507b6e7 7437 add_relaxed_insn (ip, 12, 0,
1e915849
RS
7438 RELAX_MIPS16_ENCODE
7439 (*reloc_type - BFD_RELOC_UNUSED,
8507b6e7
MR
7440 mips_pic != NO_PIC,
7441 HAVE_32BIT_SYMBOLS,
7442 mips_opts.warn_about_macros,
7fd53920 7443 require_unextended, require_extended,
11625dd8 7444 delayed_branch_p (&history[0]),
1e915849 7445 history[0].mips16_absolute_jump_p),
88a7ef16 7446 symbol, offset);
252b5132 7447 }
5c04167a 7448 else if (mips_opts.mips16 && insn_length (ip) == 2)
9497f5ac 7449 {
11625dd8 7450 if (!delayed_branch_p (ip))
b8ee1a6e
DU
7451 /* Make sure there is enough room to swap this instruction with
7452 a following jump instruction. */
7453 frag_grow (6);
1e915849 7454 add_fixed_insn (ip);
252b5132
RH
7455 }
7456 else
7457 {
7458 if (mips_opts.mips16
7459 && mips_opts.noreorder
11625dd8 7460 && delayed_branch_p (&history[0]))
252b5132
RH
7461 as_warn (_("extended instruction in delay slot"));
7462
4d7206a2
RS
7463 if (mips_relax.sequence)
7464 {
7465 /* If we've reached the end of this frag, turn it into a variant
7466 frag and record the information for the instructions we've
7467 written so far. */
7468 if (frag_room () < 4)
7469 relax_close_frag ();
df58fc94 7470 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4d7206a2
RS
7471 }
7472
584892a6 7473 if (mips_relax.sequence != 2)
df58fc94
RS
7474 {
7475 if (mips_macro_warning.first_insn_sizes[0] == 0)
7476 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7477 mips_macro_warning.sizes[0] += insn_length (ip);
7478 mips_macro_warning.insns[0]++;
7479 }
584892a6 7480 if (mips_relax.sequence != 1)
df58fc94
RS
7481 {
7482 if (mips_macro_warning.first_insn_sizes[1] == 0)
7483 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7484 mips_macro_warning.sizes[1] += insn_length (ip);
7485 mips_macro_warning.insns[1]++;
7486 }
584892a6 7487
1e915849
RS
7488 if (mips_opts.mips16)
7489 {
7490 ip->fixed_p = 1;
7491 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7492 }
7493 add_fixed_insn (ip);
252b5132
RH
7494 }
7495
9fe77896 7496 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
252b5132 7497 {
df58fc94 7498 bfd_reloc_code_real_type final_type[3];
2309ddf2 7499 reloc_howto_type *howto0;
9fe77896
RS
7500 reloc_howto_type *howto;
7501 int i;
34ce925e 7502
df58fc94
RS
7503 /* Perform any necessary conversion to microMIPS relocations
7504 and find out how many relocations there actually are. */
7505 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7506 final_type[i] = micromips_map_reloc (reloc_type[i]);
7507
9fe77896
RS
7508 /* In a compound relocation, it is the final (outermost)
7509 operator that determines the relocated field. */
2309ddf2 7510 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
e8044f35
RS
7511 if (!howto)
7512 abort ();
2309ddf2
MR
7513
7514 if (i > 1)
7515 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
9fe77896
RS
7516 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7517 bfd_get_reloc_size (howto),
7518 address_expr,
2309ddf2
MR
7519 howto0 && howto0->pc_relative,
7520 final_type[0]);
ce8ad872
MR
7521 /* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
7522 ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
9fe77896
RS
7523
7524 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2309ddf2 7525 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
9fe77896
RS
7526 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7527
7528 /* These relocations can have an addend that won't fit in
7529 4 octets for 64bit assembly. */
bad1aba3 7530 if (GPR_SIZE == 64
9fe77896
RS
7531 && ! howto->partial_inplace
7532 && (reloc_type[0] == BFD_RELOC_16
7533 || reloc_type[0] == BFD_RELOC_32
7534 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7535 || reloc_type[0] == BFD_RELOC_GPREL16
7536 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7537 || reloc_type[0] == BFD_RELOC_GPREL32
7538 || reloc_type[0] == BFD_RELOC_64
7539 || reloc_type[0] == BFD_RELOC_CTOR
7540 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7541 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7542 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7543 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7544 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7545 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7546 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7547 || hi16_reloc_p (reloc_type[0])
7548 || lo16_reloc_p (reloc_type[0])))
7549 ip->fixp[0]->fx_no_overflow = 1;
7550
ddaf2c41
MR
7551 /* These relocations can have an addend that won't fit in 2 octets. */
7552 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7553 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7554 ip->fixp[0]->fx_no_overflow = 1;
7555
9fe77896
RS
7556 if (mips_relax.sequence)
7557 {
7558 if (mips_relax.first_fixup == 0)
7559 mips_relax.first_fixup = ip->fixp[0];
7560 }
7561 else if (reloc_needs_lo_p (*reloc_type))
7562 {
7563 struct mips_hi_fixup *hi_fixup;
7564
7565 /* Reuse the last entry if it already has a matching %lo. */
7566 hi_fixup = mips_hi_fixup_list;
7567 if (hi_fixup == 0
7568 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4d7206a2 7569 {
325801bd 7570 hi_fixup = XNEW (struct mips_hi_fixup);
9fe77896
RS
7571 hi_fixup->next = mips_hi_fixup_list;
7572 mips_hi_fixup_list = hi_fixup;
4d7206a2 7573 }
9fe77896
RS
7574 hi_fixup->fixp = ip->fixp[0];
7575 hi_fixup->seg = now_seg;
7576 }
252b5132 7577
9fe77896
RS
7578 /* Add fixups for the second and third relocations, if given.
7579 Note that the ABI allows the second relocation to be
7580 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7581 moment we only use RSS_UNDEF, but we could add support
7582 for the others if it ever becomes necessary. */
7583 for (i = 1; i < 3; i++)
7584 if (reloc_type[i] != BFD_RELOC_UNUSED)
7585 {
7586 ip->fixp[i] = fix_new (ip->frag, ip->where,
7587 ip->fixp[0]->fx_size, NULL, 0,
df58fc94 7588 FALSE, final_type[i]);
f6688943 7589
9fe77896
RS
7590 /* Use fx_tcbit to mark compound relocs. */
7591 ip->fixp[0]->fx_tcbit = 1;
7592 ip->fixp[i]->fx_tcbit = 1;
7593 }
252b5132 7594 }
252b5132
RH
7595
7596 /* Update the register mask information. */
4c260379
RS
7597 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7598 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
252b5132 7599
a4e06468 7600 switch (method)
252b5132 7601 {
a4e06468
RS
7602 case APPEND_ADD:
7603 insert_into_history (0, 1, ip);
7604 break;
7605
7606 case APPEND_ADD_WITH_NOP:
14fe068b
RS
7607 {
7608 struct mips_cl_insn *nop;
7609
7610 insert_into_history (0, 1, ip);
7611 nop = get_delay_slot_nop (ip);
7612 add_fixed_insn (nop);
7613 insert_into_history (0, 1, nop);
7614 if (mips_relax.sequence)
7615 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7616 }
a4e06468
RS
7617 break;
7618
7619 case APPEND_ADD_COMPACT:
7620 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7bd374a4
MR
7621 if (mips_opts.mips16)
7622 {
7623 ip->insn_opcode |= 0x0080;
7624 find_altered_mips16_opcode (ip);
7625 }
7626 /* Convert microMIPS instructions. */
7627 else if (mips_opts.micromips)
7628 {
7629 /* jr16->jrc */
7630 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7631 ip->insn_opcode |= 0x0020;
7632 /* b16->bc */
7633 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7634 ip->insn_opcode = 0x40e00000;
7635 /* beqz16->beqzc, bnez16->bnezc */
7636 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7637 {
7638 unsigned long regno;
7639
7640 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7641 regno &= MICROMIPSOP_MASK_MD;
7642 regno = micromips_to_32_reg_d_map[regno];
7643 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7644 | (regno << MICROMIPSOP_SH_RS)
7645 | 0x40a00000) ^ 0x00400000;
7646 }
7647 /* beqz->beqzc, bnez->bnezc */
7648 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7649 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7650 | ((ip->insn_opcode >> 7) & 0x00400000)
7651 | 0x40a00000) ^ 0x00400000;
7652 /* beq $0->beqzc, bne $0->bnezc */
7653 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7654 ip->insn_opcode = (((ip->insn_opcode >>
7655 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7656 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7657 | ((ip->insn_opcode >> 7) & 0x00400000)
7658 | 0x40a00000) ^ 0x00400000;
7659 else
7660 abort ();
7661 find_altered_micromips_opcode (ip);
7662 }
7663 else
7664 abort ();
a4e06468
RS
7665 install_insn (ip);
7666 insert_into_history (0, 1, ip);
7667 break;
7668
7669 case APPEND_SWAP:
7670 {
7671 struct mips_cl_insn delay = history[0];
99e7978b
MF
7672
7673 if (relaxed_branch || delay.frag != ip->frag)
a4e06468
RS
7674 {
7675 /* Add the delay slot instruction to the end of the
7676 current frag and shrink the fixed part of the
7677 original frag. If the branch occupies the tail of
7678 the latter, move it backwards to cover the gap. */
2b0c8b40 7679 delay.frag->fr_fix -= branch_disp;
a4e06468 7680 if (delay.frag == ip->frag)
2b0c8b40 7681 move_insn (ip, ip->frag, ip->where - branch_disp);
a4e06468
RS
7682 add_fixed_insn (&delay);
7683 }
7684 else
7685 {
5e35670b
MR
7686 /* If this is not a relaxed branch and we are in the
7687 same frag, then just swap the instructions. */
7688 move_insn (ip, delay.frag, delay.where);
7689 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
a4e06468
RS
7690 }
7691 history[0] = *ip;
7692 delay.fixed_p = 1;
7693 insert_into_history (0, 1, &delay);
7694 }
7695 break;
252b5132
RH
7696 }
7697
13408f1e 7698 /* If we have just completed an unconditional branch, clear the history. */
11625dd8
RS
7699 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7700 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
e407c74b
NC
7701 {
7702 unsigned int i;
7703
79850f26 7704 mips_no_prev_insn ();
13408f1e 7705
e407c74b 7706 for (i = 0; i < ARRAY_SIZE (history); i++)
79850f26 7707 history[i].cleared_p = 1;
e407c74b
NC
7708 }
7709
df58fc94
RS
7710 /* We need to emit a label at the end of branch-likely macros. */
7711 if (emit_branch_likely_macro)
7712 {
7713 emit_branch_likely_macro = FALSE;
7714 micromips_add_label ();
7715 }
7716
252b5132
RH
7717 /* We just output an insn, so the next one doesn't have a label. */
7718 mips_clear_insn_labels ();
252b5132
RH
7719}
7720
e407c74b
NC
7721/* Forget that there was any previous instruction or label.
7722 When BRANCH is true, the branch history is also flushed. */
252b5132
RH
7723
7724static void
7d10b47d 7725mips_no_prev_insn (void)
252b5132 7726{
7d10b47d
RS
7727 prev_nop_frag = NULL;
7728 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
252b5132
RH
7729 mips_clear_insn_labels ();
7730}
7731
7d10b47d
RS
7732/* This function must be called before we emit something other than
7733 instructions. It is like mips_no_prev_insn except that it inserts
7734 any NOPS that might be needed by previous instructions. */
252b5132 7735
7d10b47d
RS
7736void
7737mips_emit_delays (void)
252b5132
RH
7738{
7739 if (! mips_opts.noreorder)
7740 {
932d1a1b 7741 int nops = nops_for_insn (0, history, NULL);
252b5132
RH
7742 if (nops > 0)
7743 {
7d10b47d
RS
7744 while (nops-- > 0)
7745 add_fixed_insn (NOP_INSN);
462427c4 7746 mips_move_text_labels ();
7d10b47d
RS
7747 }
7748 }
7749 mips_no_prev_insn ();
7750}
7751
7752/* Start a (possibly nested) noreorder block. */
7753
7754static void
7755start_noreorder (void)
7756{
7757 if (mips_opts.noreorder == 0)
7758 {
7759 unsigned int i;
7760 int nops;
7761
7762 /* None of the instructions before the .set noreorder can be moved. */
7763 for (i = 0; i < ARRAY_SIZE (history); i++)
7764 history[i].fixed_p = 1;
7765
7766 /* Insert any nops that might be needed between the .set noreorder
7767 block and the previous instructions. We will later remove any
7768 nops that turn out not to be needed. */
932d1a1b 7769 nops = nops_for_insn (0, history, NULL);
7d10b47d
RS
7770 if (nops > 0)
7771 {
7772 if (mips_optimize != 0)
252b5132
RH
7773 {
7774 /* Record the frag which holds the nop instructions, so
7775 that we can remove them if we don't need them. */
df58fc94 7776 frag_grow (nops * NOP_INSN_SIZE);
252b5132
RH
7777 prev_nop_frag = frag_now;
7778 prev_nop_frag_holds = nops;
7779 prev_nop_frag_required = 0;
7780 prev_nop_frag_since = 0;
7781 }
7782
7783 for (; nops > 0; --nops)
1e915849 7784 add_fixed_insn (NOP_INSN);
252b5132 7785
7d10b47d
RS
7786 /* Move on to a new frag, so that it is safe to simply
7787 decrease the size of prev_nop_frag. */
7788 frag_wane (frag_now);
7789 frag_new (0);
462427c4 7790 mips_move_text_labels ();
252b5132 7791 }
df58fc94 7792 mips_mark_labels ();
7d10b47d 7793 mips_clear_insn_labels ();
252b5132 7794 }
7d10b47d
RS
7795 mips_opts.noreorder++;
7796 mips_any_noreorder = 1;
7797}
252b5132 7798
7d10b47d 7799/* End a nested noreorder block. */
252b5132 7800
7d10b47d
RS
7801static void
7802end_noreorder (void)
7803{
7804 mips_opts.noreorder--;
7805 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7806 {
7807 /* Commit to inserting prev_nop_frag_required nops and go back to
7808 handling nop insertion the .set reorder way. */
7809 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
df58fc94 7810 * NOP_INSN_SIZE);
7d10b47d
RS
7811 insert_into_history (prev_nop_frag_since,
7812 prev_nop_frag_required, NOP_INSN);
7813 prev_nop_frag = NULL;
7814 }
252b5132
RH
7815}
7816
97d87491
RS
7817/* Sign-extend 32-bit mode constants that have bit 31 set and all
7818 higher bits unset. */
7819
7820static void
7821normalize_constant_expr (expressionS *ex)
7822{
7823 if (ex->X_op == O_constant
7824 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7825 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7826 - 0x80000000);
7827}
7828
7829/* Sign-extend 32-bit mode address offsets that have bit 31 set and
7830 all higher bits unset. */
7831
7832static void
7833normalize_address_expr (expressionS *ex)
7834{
7835 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7836 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7837 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7838 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7839 - 0x80000000);
7840}
7841
7842/* Try to match TOKENS against OPCODE, storing the result in INSN.
7843 Return true if the match was successful.
7844
7845 OPCODE_EXTRA is a value that should be ORed into the opcode
7846 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7847 there are more alternatives after OPCODE and SOFT_MATCH is
7848 as for mips_arg_info. */
7849
7850static bfd_boolean
7851match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7852 struct mips_operand_token *tokens, unsigned int opcode_extra,
60f20e8b 7853 bfd_boolean lax_match, bfd_boolean complete_p)
97d87491
RS
7854{
7855 const char *args;
7856 struct mips_arg_info arg;
7857 const struct mips_operand *operand;
7858 char c;
7859
7860 imm_expr.X_op = O_absent;
97d87491
RS
7861 offset_expr.X_op = O_absent;
7862 offset_reloc[0] = BFD_RELOC_UNUSED;
7863 offset_reloc[1] = BFD_RELOC_UNUSED;
7864 offset_reloc[2] = BFD_RELOC_UNUSED;
7865
7866 create_insn (insn, opcode);
60f20e8b
RS
7867 /* When no opcode suffix is specified, assume ".xyzw". */
7868 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7869 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7870 else
7871 insn->insn_opcode |= opcode_extra;
97d87491
RS
7872 memset (&arg, 0, sizeof (arg));
7873 arg.insn = insn;
7874 arg.token = tokens;
7875 arg.argnum = 1;
7876 arg.last_regno = ILLEGAL_REG;
7877 arg.dest_regno = ILLEGAL_REG;
60f20e8b 7878 arg.lax_match = lax_match;
97d87491
RS
7879 for (args = opcode->args;; ++args)
7880 {
7881 if (arg.token->type == OT_END)
7882 {
7883 /* Handle unary instructions in which only one operand is given.
7884 The source is then the same as the destination. */
7885 if (arg.opnum == 1 && *args == ',')
7886 {
7887 operand = (mips_opts.micromips
7888 ? decode_micromips_operand (args + 1)
7889 : decode_mips_operand (args + 1));
7890 if (operand && mips_optional_operand_p (operand))
7891 {
7892 arg.token = tokens;
7893 arg.argnum = 1;
7894 continue;
7895 }
7896 }
7897
7898 /* Treat elided base registers as $0. */
7899 if (strcmp (args, "(b)") == 0)
7900 args += 3;
7901
7902 if (args[0] == '+')
7903 switch (args[1])
7904 {
7905 case 'K':
7906 case 'N':
7907 /* The register suffix is optional. */
7908 args += 2;
7909 break;
7910 }
7911
7912 /* Fail the match if there were too few operands. */
7913 if (*args)
7914 return FALSE;
7915
7916 /* Successful match. */
60f20e8b
RS
7917 if (!complete_p)
7918 return TRUE;
e3de51ce 7919 clear_insn_error ();
97d87491
RS
7920 if (arg.dest_regno == arg.last_regno
7921 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7922 {
7923 if (arg.opnum == 2)
e3de51ce 7924 set_insn_error
1661c76c 7925 (0, _("source and destination must be different"));
97d87491 7926 else if (arg.last_regno == 31)
e3de51ce 7927 set_insn_error
1661c76c 7928 (0, _("a destination register must be supplied"));
97d87491 7929 }
173d3447
CF
7930 else if (arg.last_regno == 31
7931 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7932 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7933 set_insn_error (0, _("the source register must not be $31"));
97d87491
RS
7934 check_completed_insn (&arg);
7935 return TRUE;
7936 }
7937
7938 /* Fail the match if the line has too many operands. */
7939 if (*args == 0)
7940 return FALSE;
7941
7942 /* Handle characters that need to match exactly. */
7943 if (*args == '(' || *args == ')' || *args == ',')
7944 {
7945 if (match_char (&arg, *args))
7946 continue;
7947 return FALSE;
7948 }
7949 if (*args == '#')
7950 {
7951 ++args;
7952 if (arg.token->type == OT_DOUBLE_CHAR
7953 && arg.token->u.ch == *args)
7954 {
7955 ++arg.token;
7956 continue;
7957 }
7958 return FALSE;
7959 }
7960
7961 /* Handle special macro operands. Work out the properties of
7962 other operands. */
7963 arg.opnum += 1;
97d87491
RS
7964 switch (*args)
7965 {
7361da2c
AB
7966 case '-':
7967 switch (args[1])
7968 {
7969 case 'A':
7970 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7971 break;
7972
7973 case 'B':
7974 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7975 break;
7976 }
7977 break;
7978
97d87491
RS
7979 case '+':
7980 switch (args[1])
7981 {
97d87491
RS
7982 case 'i':
7983 *offset_reloc = BFD_RELOC_MIPS_JMP;
7984 break;
7361da2c
AB
7985
7986 case '\'':
7987 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7988 break;
7989
7990 case '\"':
7991 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7992 break;
97d87491
RS
7993 }
7994 break;
7995
97d87491 7996 case 'I':
1a00e612
RS
7997 if (!match_const_int (&arg, &imm_expr.X_add_number))
7998 return FALSE;
7999 imm_expr.X_op = O_constant;
bad1aba3 8000 if (GPR_SIZE == 32)
97d87491
RS
8001 normalize_constant_expr (&imm_expr);
8002 continue;
8003
8004 case 'A':
8005 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8006 {
8007 /* Assume that the offset has been elided and that what
8008 we saw was a base register. The match will fail later
8009 if that assumption turns out to be wrong. */
8010 offset_expr.X_op = O_constant;
8011 offset_expr.X_add_number = 0;
8012 }
97d87491 8013 else
1a00e612
RS
8014 {
8015 if (!match_expression (&arg, &offset_expr, offset_reloc))
8016 return FALSE;
8017 normalize_address_expr (&offset_expr);
8018 }
97d87491
RS
8019 continue;
8020
8021 case 'F':
8022 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8023 8, TRUE))
1a00e612 8024 return FALSE;
97d87491
RS
8025 continue;
8026
8027 case 'L':
8028 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8029 8, FALSE))
1a00e612 8030 return FALSE;
97d87491
RS
8031 continue;
8032
8033 case 'f':
8034 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8035 4, TRUE))
1a00e612 8036 return FALSE;
97d87491
RS
8037 continue;
8038
8039 case 'l':
8040 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8041 4, FALSE))
1a00e612 8042 return FALSE;
97d87491
RS
8043 continue;
8044
97d87491
RS
8045 case 'p':
8046 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8047 break;
8048
8049 case 'a':
8050 *offset_reloc = BFD_RELOC_MIPS_JMP;
8051 break;
8052
8053 case 'm':
8054 gas_assert (mips_opts.micromips);
8055 c = args[1];
8056 switch (c)
8057 {
8058 case 'D':
8059 case 'E':
8060 if (!forced_insn_length)
8061 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8062 else if (c == 'D')
8063 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8064 else
8065 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8066 break;
8067 }
8068 break;
8069 }
8070
8071 operand = (mips_opts.micromips
8072 ? decode_micromips_operand (args)
8073 : decode_mips_operand (args));
8074 if (!operand)
8075 abort ();
8076
8077 /* Skip prefixes. */
7361da2c 8078 if (*args == '+' || *args == 'm' || *args == '-')
97d87491
RS
8079 args++;
8080
8081 if (mips_optional_operand_p (operand)
8082 && args[1] == ','
8083 && (arg.token[0].type != OT_REG
8084 || arg.token[1].type == OT_END))
8085 {
8086 /* Assume that the register has been elided and is the
8087 same as the first operand. */
8088 arg.token = tokens;
8089 arg.argnum = 1;
8090 }
8091
8092 if (!match_operand (&arg, operand))
8093 return FALSE;
8094 }
8095}
8096
8097/* Like match_insn, but for MIPS16. */
8098
8099static bfd_boolean
8100match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
1a00e612 8101 struct mips_operand_token *tokens)
97d87491
RS
8102{
8103 const char *args;
8104 const struct mips_operand *operand;
8105 const struct mips_operand *ext_operand;
82d808ed 8106 bfd_boolean pcrel = FALSE;
7fd53920 8107 int required_insn_length;
97d87491
RS
8108 struct mips_arg_info arg;
8109 int relax_char;
8110
7fd53920
MR
8111 if (forced_insn_length)
8112 required_insn_length = forced_insn_length;
8113 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8114 required_insn_length = 2;
8115 else
8116 required_insn_length = 0;
8117
97d87491
RS
8118 create_insn (insn, opcode);
8119 imm_expr.X_op = O_absent;
97d87491
RS
8120 offset_expr.X_op = O_absent;
8121 offset_reloc[0] = BFD_RELOC_UNUSED;
8122 offset_reloc[1] = BFD_RELOC_UNUSED;
8123 offset_reloc[2] = BFD_RELOC_UNUSED;
8124 relax_char = 0;
8125
8126 memset (&arg, 0, sizeof (arg));
8127 arg.insn = insn;
8128 arg.token = tokens;
8129 arg.argnum = 1;
8130 arg.last_regno = ILLEGAL_REG;
8131 arg.dest_regno = ILLEGAL_REG;
97d87491
RS
8132 relax_char = 0;
8133 for (args = opcode->args;; ++args)
8134 {
8135 int c;
8136
8137 if (arg.token->type == OT_END)
8138 {
8139 offsetT value;
8140
8141 /* Handle unary instructions in which only one operand is given.
8142 The source is then the same as the destination. */
8143 if (arg.opnum == 1 && *args == ',')
8144 {
8145 operand = decode_mips16_operand (args[1], FALSE);
8146 if (operand && mips_optional_operand_p (operand))
8147 {
8148 arg.token = tokens;
8149 arg.argnum = 1;
8150 continue;
8151 }
8152 }
8153
8154 /* Fail the match if there were too few operands. */
8155 if (*args)
8156 return FALSE;
8157
8158 /* Successful match. Stuff the immediate value in now, if
8159 we can. */
e3de51ce 8160 clear_insn_error ();
97d87491
RS
8161 if (opcode->pinfo == INSN_MACRO)
8162 {
8163 gas_assert (relax_char == 0 || relax_char == 'p');
8164 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8165 }
8166 else if (relax_char
8167 && offset_expr.X_op == O_constant
82d808ed 8168 && !pcrel
97d87491
RS
8169 && calculate_reloc (*offset_reloc,
8170 offset_expr.X_add_number,
8171 &value))
8172 {
8173 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7fd53920 8174 required_insn_length, &insn->insn_opcode);
97d87491
RS
8175 offset_expr.X_op = O_absent;
8176 *offset_reloc = BFD_RELOC_UNUSED;
8177 }
8178 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8179 {
7fd53920 8180 if (required_insn_length == 2)
e3de51ce 8181 set_insn_error (0, _("invalid unextended operand value"));
1da43acc
MR
8182 else
8183 {
8184 forced_insn_length = 4;
8185 insn->insn_opcode |= MIPS16_EXTEND;
8186 }
97d87491
RS
8187 }
8188 else if (relax_char)
8189 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8190
8191 check_completed_insn (&arg);
8192 return TRUE;
8193 }
8194
8195 /* Fail the match if the line has too many operands. */
8196 if (*args == 0)
8197 return FALSE;
8198
8199 /* Handle characters that need to match exactly. */
8200 if (*args == '(' || *args == ')' || *args == ',')
8201 {
8202 if (match_char (&arg, *args))
8203 continue;
8204 return FALSE;
8205 }
8206
8207 arg.opnum += 1;
8208 c = *args;
8209 switch (c)
8210 {
8211 case 'p':
8212 case 'q':
8213 case 'A':
8214 case 'B':
8215 case 'E':
8216 relax_char = c;
8217 break;
8218
8219 case 'I':
1a00e612
RS
8220 if (!match_const_int (&arg, &imm_expr.X_add_number))
8221 return FALSE;
8222 imm_expr.X_op = O_constant;
bad1aba3 8223 if (GPR_SIZE == 32)
97d87491
RS
8224 normalize_constant_expr (&imm_expr);
8225 continue;
8226
8227 case 'a':
8228 case 'i':
8229 *offset_reloc = BFD_RELOC_MIPS16_JMP;
97d87491
RS
8230 break;
8231 }
8232
7fd53920 8233 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
97d87491
RS
8234 if (!operand)
8235 abort ();
8236
82d808ed
MR
8237 if (operand->type == OP_PCREL)
8238 pcrel = TRUE;
8239 else
97d87491
RS
8240 {
8241 ext_operand = decode_mips16_operand (c, TRUE);
8242 if (operand != ext_operand)
8243 {
8244 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8245 {
8246 offset_expr.X_op = O_constant;
8247 offset_expr.X_add_number = 0;
8248 relax_char = c;
8249 continue;
8250 }
8251
8252 /* We need the OT_INTEGER check because some MIPS16
8253 immediate variants are listed before the register ones. */
8254 if (arg.token->type != OT_INTEGER
8255 || !match_expression (&arg, &offset_expr, offset_reloc))
8256 return FALSE;
8257
8258 /* '8' is used for SLTI(U) and has traditionally not
8259 been allowed to take relocation operators. */
8260 if (offset_reloc[0] != BFD_RELOC_UNUSED
8261 && (ext_operand->size != 16 || c == '8'))
8262 return FALSE;
8263
8264 relax_char = c;
8265 continue;
8266 }
8267 }
8268
8269 if (mips_optional_operand_p (operand)
8270 && args[1] == ','
8271 && (arg.token[0].type != OT_REG
8272 || arg.token[1].type == OT_END))
8273 {
8274 /* Assume that the register has been elided and is the
8275 same as the first operand. */
8276 arg.token = tokens;
8277 arg.argnum = 1;
8278 }
8279
8280 if (!match_operand (&arg, operand))
8281 return FALSE;
8282 }
8283}
8284
60f20e8b
RS
8285/* Record that the current instruction is invalid for the current ISA. */
8286
8287static void
8288match_invalid_for_isa (void)
8289{
8290 set_insn_error_ss
1661c76c 8291 (0, _("opcode not supported on this processor: %s (%s)"),
60f20e8b
RS
8292 mips_cpu_info_from_arch (mips_opts.arch)->name,
8293 mips_cpu_info_from_isa (mips_opts.isa)->name);
8294}
8295
8296/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8297 Return true if a definite match or failure was found, storing any match
8298 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8299 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8300 tried and failed to match under normal conditions and now want to try a
8301 more relaxed match. */
8302
8303static bfd_boolean
8304match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8305 const struct mips_opcode *past, struct mips_operand_token *tokens,
8306 int opcode_extra, bfd_boolean lax_match)
8307{
8308 const struct mips_opcode *opcode;
8309 const struct mips_opcode *invalid_delay_slot;
8310 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8311
8312 /* Search for a match, ignoring alternatives that don't satisfy the
8313 current ISA or forced_length. */
8314 invalid_delay_slot = 0;
8315 seen_valid_for_isa = FALSE;
8316 seen_valid_for_size = FALSE;
8317 opcode = first;
8318 do
8319 {
8320 gas_assert (strcmp (opcode->name, first->name) == 0);
8321 if (is_opcode_valid (opcode))
8322 {
8323 seen_valid_for_isa = TRUE;
8324 if (is_size_valid (opcode))
8325 {
8326 bfd_boolean delay_slot_ok;
8327
8328 seen_valid_for_size = TRUE;
8329 delay_slot_ok = is_delay_slot_valid (opcode);
8330 if (match_insn (insn, opcode, tokens, opcode_extra,
8331 lax_match, delay_slot_ok))
8332 {
8333 if (!delay_slot_ok)
8334 {
8335 if (!invalid_delay_slot)
8336 invalid_delay_slot = opcode;
8337 }
8338 else
8339 return TRUE;
8340 }
8341 }
8342 }
8343 ++opcode;
8344 }
8345 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8346
8347 /* If the only matches we found had the wrong length for the delay slot,
8348 pick the first such match. We'll issue an appropriate warning later. */
8349 if (invalid_delay_slot)
8350 {
8351 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8352 lax_match, TRUE))
8353 return TRUE;
8354 abort ();
8355 }
8356
8357 /* Handle the case where we didn't try to match an instruction because
8358 all the alternatives were incompatible with the current ISA. */
8359 if (!seen_valid_for_isa)
8360 {
8361 match_invalid_for_isa ();
8362 return TRUE;
8363 }
8364
8365 /* Handle the case where we didn't try to match an instruction because
8366 all the alternatives were of the wrong size. */
8367 if (!seen_valid_for_size)
8368 {
8369 if (mips_opts.insn32)
1661c76c 8370 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
60f20e8b
RS
8371 else
8372 set_insn_error_i
1661c76c 8373 (0, _("unrecognized %d-bit version of microMIPS opcode"),
60f20e8b
RS
8374 8 * forced_insn_length);
8375 return TRUE;
8376 }
8377
8378 return FALSE;
8379}
8380
8381/* Like match_insns, but for MIPS16. */
8382
8383static bfd_boolean
8384match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8385 struct mips_operand_token *tokens)
8386{
8387 const struct mips_opcode *opcode;
8388 bfd_boolean seen_valid_for_isa;
7fd53920 8389 bfd_boolean seen_valid_for_size;
60f20e8b
RS
8390
8391 /* Search for a match, ignoring alternatives that don't satisfy the
8392 current ISA. There are no separate entries for extended forms so
8393 we deal with forced_length later. */
8394 seen_valid_for_isa = FALSE;
7fd53920 8395 seen_valid_for_size = FALSE;
60f20e8b
RS
8396 opcode = first;
8397 do
8398 {
8399 gas_assert (strcmp (opcode->name, first->name) == 0);
8400 if (is_opcode_valid_16 (opcode))
8401 {
8402 seen_valid_for_isa = TRUE;
7fd53920
MR
8403 if (is_size_valid_16 (opcode))
8404 {
8405 seen_valid_for_size = TRUE;
8406 if (match_mips16_insn (insn, opcode, tokens))
8407 return TRUE;
8408 }
60f20e8b
RS
8409 }
8410 ++opcode;
8411 }
8412 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8413 && strcmp (opcode->name, first->name) == 0);
8414
8415 /* Handle the case where we didn't try to match an instruction because
8416 all the alternatives were incompatible with the current ISA. */
8417 if (!seen_valid_for_isa)
8418 {
8419 match_invalid_for_isa ();
8420 return TRUE;
8421 }
8422
7fd53920
MR
8423 /* Handle the case where we didn't try to match an instruction because
8424 all the alternatives were of the wrong size. */
8425 if (!seen_valid_for_size)
8426 {
8427 if (forced_insn_length == 2)
8428 set_insn_error
8429 (0, _("unrecognized unextended version of MIPS16 opcode"));
8430 else
8431 set_insn_error
8432 (0, _("unrecognized extended version of MIPS16 opcode"));
8433 return TRUE;
8434 }
8435
60f20e8b
RS
8436 return FALSE;
8437}
8438
584892a6
RS
8439/* Set up global variables for the start of a new macro. */
8440
8441static void
8442macro_start (void)
8443{
8444 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
df58fc94
RS
8445 memset (&mips_macro_warning.first_insn_sizes, 0,
8446 sizeof (mips_macro_warning.first_insn_sizes));
8447 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
584892a6 8448 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
11625dd8 8449 && delayed_branch_p (&history[0]));
7bd374a4
MR
8450 if (history[0].frag
8451 && history[0].frag->fr_type == rs_machine_dependent
8452 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8453 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8454 mips_macro_warning.delay_slot_length = 0;
8455 else
8456 switch (history[0].insn_mo->pinfo2
8457 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8458 {
8459 case INSN2_BRANCH_DELAY_32BIT:
8460 mips_macro_warning.delay_slot_length = 4;
8461 break;
8462 case INSN2_BRANCH_DELAY_16BIT:
8463 mips_macro_warning.delay_slot_length = 2;
8464 break;
8465 default:
8466 mips_macro_warning.delay_slot_length = 0;
8467 break;
8468 }
df58fc94 8469 mips_macro_warning.first_frag = NULL;
584892a6
RS
8470}
8471
df58fc94
RS
8472/* Given that a macro is longer than one instruction or of the wrong size,
8473 return the appropriate warning for it. Return null if no warning is
8474 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8475 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8476 and RELAX_NOMACRO. */
584892a6
RS
8477
8478static const char *
8479macro_warning (relax_substateT subtype)
8480{
8481 if (subtype & RELAX_DELAY_SLOT)
1661c76c 8482 return _("macro instruction expanded into multiple instructions"
584892a6
RS
8483 " in a branch delay slot");
8484 else if (subtype & RELAX_NOMACRO)
1661c76c 8485 return _("macro instruction expanded into multiple instructions");
df58fc94
RS
8486 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8487 | RELAX_DELAY_SLOT_SIZE_SECOND))
8488 return ((subtype & RELAX_DELAY_SLOT_16BIT)
1661c76c 8489 ? _("macro instruction expanded into a wrong size instruction"
df58fc94 8490 " in a 16-bit branch delay slot")
1661c76c 8491 : _("macro instruction expanded into a wrong size instruction"
df58fc94 8492 " in a 32-bit branch delay slot"));
584892a6
RS
8493 else
8494 return 0;
8495}
8496
8497/* Finish up a macro. Emit warnings as appropriate. */
8498
8499static void
8500macro_end (void)
8501{
df58fc94
RS
8502 /* Relaxation warning flags. */
8503 relax_substateT subtype = 0;
8504
8505 /* Check delay slot size requirements. */
8506 if (mips_macro_warning.delay_slot_length == 2)
8507 subtype |= RELAX_DELAY_SLOT_16BIT;
8508 if (mips_macro_warning.delay_slot_length != 0)
584892a6 8509 {
df58fc94
RS
8510 if (mips_macro_warning.delay_slot_length
8511 != mips_macro_warning.first_insn_sizes[0])
8512 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8513 if (mips_macro_warning.delay_slot_length
8514 != mips_macro_warning.first_insn_sizes[1])
8515 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8516 }
584892a6 8517
df58fc94
RS
8518 /* Check instruction count requirements. */
8519 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8520 {
8521 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
584892a6
RS
8522 subtype |= RELAX_SECOND_LONGER;
8523 if (mips_opts.warn_about_macros)
8524 subtype |= RELAX_NOMACRO;
8525 if (mips_macro_warning.delay_slot_p)
8526 subtype |= RELAX_DELAY_SLOT;
df58fc94 8527 }
584892a6 8528
df58fc94
RS
8529 /* If both alternatives fail to fill a delay slot correctly,
8530 emit the warning now. */
8531 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8532 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8533 {
8534 relax_substateT s;
8535 const char *msg;
8536
8537 s = subtype & (RELAX_DELAY_SLOT_16BIT
8538 | RELAX_DELAY_SLOT_SIZE_FIRST
8539 | RELAX_DELAY_SLOT_SIZE_SECOND);
8540 msg = macro_warning (s);
8541 if (msg != NULL)
8542 as_warn ("%s", msg);
8543 subtype &= ~s;
8544 }
8545
8546 /* If both implementations are longer than 1 instruction, then emit the
8547 warning now. */
8548 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8549 {
8550 relax_substateT s;
8551 const char *msg;
8552
8553 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8554 msg = macro_warning (s);
8555 if (msg != NULL)
8556 as_warn ("%s", msg);
8557 subtype &= ~s;
584892a6 8558 }
df58fc94
RS
8559
8560 /* If any flags still set, then one implementation might need a warning
8561 and the other either will need one of a different kind or none at all.
8562 Pass any remaining flags over to relaxation. */
8563 if (mips_macro_warning.first_frag != NULL)
8564 mips_macro_warning.first_frag->fr_subtype |= subtype;
584892a6
RS
8565}
8566
df58fc94
RS
8567/* Instruction operand formats used in macros that vary between
8568 standard MIPS and microMIPS code. */
8569
833794fc 8570static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
df58fc94
RS
8571static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8572static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8573static const char * const lui_fmt[2] = { "t,u", "s,u" };
8574static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
833794fc 8575static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
df58fc94
RS
8576static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8577static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8578
833794fc 8579#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7361da2c
AB
8580#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8581 : cop12_fmt[mips_opts.micromips])
df58fc94
RS
8582#define JALR_FMT (jalr_fmt[mips_opts.micromips])
8583#define LUI_FMT (lui_fmt[mips_opts.micromips])
8584#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7361da2c
AB
8585#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8586 : mem12_fmt[mips_opts.micromips])
833794fc 8587#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
8588#define SHFT_FMT (shft_fmt[mips_opts.micromips])
8589#define TRAP_FMT (trap_fmt[mips_opts.micromips])
8590
6e1304d8
RS
8591/* Read a macro's relocation codes from *ARGS and store them in *R.
8592 The first argument in *ARGS will be either the code for a single
8593 relocation or -1 followed by the three codes that make up a
8594 composite relocation. */
8595
8596static void
8597macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8598{
8599 int i, next;
8600
8601 next = va_arg (*args, int);
8602 if (next >= 0)
8603 r[0] = (bfd_reloc_code_real_type) next;
8604 else
f2ae14a1
RS
8605 {
8606 for (i = 0; i < 3; i++)
8607 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8608 /* This function is only used for 16-bit relocation fields.
8609 To make the macro code simpler, treat an unrelocated value
8610 in the same way as BFD_RELOC_LO16. */
8611 if (r[0] == BFD_RELOC_UNUSED)
8612 r[0] = BFD_RELOC_LO16;
8613 }
6e1304d8
RS
8614}
8615
252b5132
RH
8616/* Build an instruction created by a macro expansion. This is passed
8617 a pointer to the count of instructions created so far, an
8618 expression, the name of the instruction to build, an operand format
8619 string, and corresponding arguments. */
8620
252b5132 8621static void
67c0d1eb 8622macro_build (expressionS *ep, const char *name, const char *fmt, ...)
252b5132 8623{
df58fc94 8624 const struct mips_opcode *mo = NULL;
f6688943 8625 bfd_reloc_code_real_type r[3];
df58fc94 8626 const struct mips_opcode *amo;
e077a1c8 8627 const struct mips_operand *operand;
df58fc94
RS
8628 struct hash_control *hash;
8629 struct mips_cl_insn insn;
252b5132 8630 va_list args;
e077a1c8 8631 unsigned int uval;
252b5132 8632
252b5132 8633 va_start (args, fmt);
252b5132 8634
252b5132
RH
8635 if (mips_opts.mips16)
8636 {
03ea81db 8637 mips16_macro_build (ep, name, fmt, &args);
252b5132
RH
8638 va_end (args);
8639 return;
8640 }
8641
f6688943
TS
8642 r[0] = BFD_RELOC_UNUSED;
8643 r[1] = BFD_RELOC_UNUSED;
8644 r[2] = BFD_RELOC_UNUSED;
df58fc94
RS
8645 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8646 amo = (struct mips_opcode *) hash_find (hash, name);
8647 gas_assert (amo);
8648 gas_assert (strcmp (name, amo->name) == 0);
1e915849 8649
df58fc94 8650 do
8b082fb1
TS
8651 {
8652 /* Search until we get a match for NAME. It is assumed here that
df58fc94 8653 macros will never generate MDMX, MIPS-3D, or MT instructions.
33eaf5de 8654 We try to match an instruction that fulfills the branch delay
df58fc94
RS
8655 slot instruction length requirement (if any) of the previous
8656 instruction. While doing this we record the first instruction
8657 seen that matches all the other conditions and use it anyway
8658 if the requirement cannot be met; we will issue an appropriate
8659 warning later on. */
8660 if (strcmp (fmt, amo->args) == 0
8661 && amo->pinfo != INSN_MACRO
8662 && is_opcode_valid (amo)
8663 && is_size_valid (amo))
8664 {
8665 if (is_delay_slot_valid (amo))
8666 {
8667 mo = amo;
8668 break;
8669 }
8670 else if (!mo)
8671 mo = amo;
8672 }
8b082fb1 8673
df58fc94
RS
8674 ++amo;
8675 gas_assert (amo->name);
252b5132 8676 }
df58fc94 8677 while (strcmp (name, amo->name) == 0);
252b5132 8678
df58fc94 8679 gas_assert (mo);
1e915849 8680 create_insn (&insn, mo);
e077a1c8 8681 for (; *fmt; ++fmt)
252b5132 8682 {
e077a1c8 8683 switch (*fmt)
252b5132 8684 {
252b5132
RH
8685 case ',':
8686 case '(':
8687 case ')':
252b5132 8688 case 'z':
e077a1c8 8689 break;
252b5132
RH
8690
8691 case 'i':
8692 case 'j':
6e1304d8 8693 macro_read_relocs (&args, r);
9c2799c2 8694 gas_assert (*r == BFD_RELOC_GPREL16
e391c024
RS
8695 || *r == BFD_RELOC_MIPS_HIGHER
8696 || *r == BFD_RELOC_HI16_S
8697 || *r == BFD_RELOC_LO16
8698 || *r == BFD_RELOC_MIPS_GOT_OFST);
e077a1c8 8699 break;
e391c024
RS
8700
8701 case 'o':
8702 macro_read_relocs (&args, r);
e077a1c8 8703 break;
252b5132
RH
8704
8705 case 'u':
6e1304d8 8706 macro_read_relocs (&args, r);
9c2799c2 8707 gas_assert (ep != NULL
90ecf173
MR
8708 && (ep->X_op == O_constant
8709 || (ep->X_op == O_symbol
8710 && (*r == BFD_RELOC_MIPS_HIGHEST
8711 || *r == BFD_RELOC_HI16_S
8712 || *r == BFD_RELOC_HI16
8713 || *r == BFD_RELOC_GPREL16
8714 || *r == BFD_RELOC_MIPS_GOT_HI16
8715 || *r == BFD_RELOC_MIPS_CALL_HI16))));
e077a1c8 8716 break;
252b5132
RH
8717
8718 case 'p':
9c2799c2 8719 gas_assert (ep != NULL);
bad36eac 8720
252b5132
RH
8721 /*
8722 * This allows macro() to pass an immediate expression for
8723 * creating short branches without creating a symbol.
bad36eac
DJ
8724 *
8725 * We don't allow branch relaxation for these branches, as
8726 * they should only appear in ".set nomacro" anyway.
252b5132
RH
8727 */
8728 if (ep->X_op == O_constant)
8729 {
df58fc94
RS
8730 /* For microMIPS we always use relocations for branches.
8731 So we should not resolve immediate values. */
8732 gas_assert (!mips_opts.micromips);
8733
bad36eac
DJ
8734 if ((ep->X_add_number & 3) != 0)
8735 as_bad (_("branch to misaligned address (0x%lx)"),
8736 (unsigned long) ep->X_add_number);
8737 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8738 as_bad (_("branch address range overflow (0x%lx)"),
8739 (unsigned long) ep->X_add_number);
252b5132
RH
8740 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8741 ep = NULL;
8742 }
8743 else
0b25d3e6 8744 *r = BFD_RELOC_16_PCREL_S2;
e077a1c8 8745 break;
252b5132
RH
8746
8747 case 'a':
9c2799c2 8748 gas_assert (ep != NULL);
f6688943 8749 *r = BFD_RELOC_MIPS_JMP;
e077a1c8 8750 break;
d43b4baf 8751
252b5132 8752 default:
e077a1c8
RS
8753 operand = (mips_opts.micromips
8754 ? decode_micromips_operand (fmt)
8755 : decode_mips_operand (fmt));
8756 if (!operand)
8757 abort ();
8758
8759 uval = va_arg (args, int);
8760 if (operand->type == OP_CLO_CLZ_DEST)
8761 uval |= (uval << 5);
8762 insn_insert_operand (&insn, operand, uval);
8763
7361da2c 8764 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
e077a1c8
RS
8765 ++fmt;
8766 break;
252b5132 8767 }
252b5132
RH
8768 }
8769 va_end (args);
9c2799c2 8770 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8771
df58fc94 8772 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8773}
8774
8775static void
67c0d1eb 8776mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
03ea81db 8777 va_list *args)
252b5132 8778{
1e915849 8779 struct mips_opcode *mo;
252b5132 8780 struct mips_cl_insn insn;
e077a1c8 8781 const struct mips_operand *operand;
f6688943
TS
8782 bfd_reloc_code_real_type r[3]
8783 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 8784
1e915849 8785 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9c2799c2
NC
8786 gas_assert (mo);
8787 gas_assert (strcmp (name, mo->name) == 0);
252b5132 8788
1e915849 8789 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
252b5132 8790 {
1e915849 8791 ++mo;
9c2799c2
NC
8792 gas_assert (mo->name);
8793 gas_assert (strcmp (name, mo->name) == 0);
252b5132
RH
8794 }
8795
1e915849 8796 create_insn (&insn, mo);
e077a1c8 8797 for (; *fmt; ++fmt)
252b5132
RH
8798 {
8799 int c;
8800
e077a1c8 8801 c = *fmt;
252b5132
RH
8802 switch (c)
8803 {
252b5132
RH
8804 case ',':
8805 case '(':
8806 case ')':
e077a1c8 8807 break;
252b5132 8808
d8722d76 8809 case '.':
252b5132
RH
8810 case 'S':
8811 case 'P':
8812 case 'R':
e077a1c8 8813 break;
252b5132
RH
8814
8815 case '<':
252b5132 8816 case '5':
d8722d76 8817 case 'F':
252b5132
RH
8818 case 'H':
8819 case 'W':
8820 case 'D':
8821 case 'j':
8822 case '8':
8823 case 'V':
8824 case 'C':
8825 case 'U':
8826 case 'k':
8827 case 'K':
8828 case 'p':
8829 case 'q':
8830 {
b886a2ab
RS
8831 offsetT value;
8832
9c2799c2 8833 gas_assert (ep != NULL);
252b5132
RH
8834
8835 if (ep->X_op != O_constant)
874e8986 8836 *r = (int) BFD_RELOC_UNUSED + c;
b886a2ab 8837 else if (calculate_reloc (*r, ep->X_add_number, &value))
252b5132 8838 {
b886a2ab 8839 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
252b5132 8840 ep = NULL;
f6688943 8841 *r = BFD_RELOC_UNUSED;
252b5132
RH
8842 }
8843 }
e077a1c8 8844 break;
252b5132 8845
e077a1c8
RS
8846 default:
8847 operand = decode_mips16_operand (c, FALSE);
8848 if (!operand)
8849 abort ();
252b5132 8850
4a06e5a2 8851 insn_insert_operand (&insn, operand, va_arg (*args, int));
e077a1c8
RS
8852 break;
8853 }
252b5132
RH
8854 }
8855
9c2799c2 8856 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8857
df58fc94 8858 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8859}
8860
438c16b8
TS
8861/*
8862 * Generate a "jalr" instruction with a relocation hint to the called
8863 * function. This occurs in NewABI PIC code.
8864 */
8865static void
df58fc94 8866macro_build_jalr (expressionS *ep, int cprestore)
438c16b8 8867{
df58fc94
RS
8868 static const bfd_reloc_code_real_type jalr_relocs[2]
8869 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8870 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8871 const char *jalr;
685736be 8872 char *f = NULL;
b34976b6 8873
1180b5a4 8874 if (MIPS_JALR_HINT_P (ep))
f21f8242 8875 {
cc3d92a5 8876 frag_grow (8);
f21f8242
AO
8877 f = frag_more (0);
8878 }
2906b037 8879 if (mips_opts.micromips)
df58fc94 8880 {
833794fc
MR
8881 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8882 ? "jalr" : "jalrs");
e64af278 8883 if (MIPS_JALR_HINT_P (ep)
833794fc 8884 || mips_opts.insn32
e64af278 8885 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
8886 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8887 else
8888 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8889 }
2906b037
MR
8890 else
8891 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
1180b5a4 8892 if (MIPS_JALR_HINT_P (ep))
df58fc94 8893 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
438c16b8
TS
8894}
8895
252b5132
RH
8896/*
8897 * Generate a "lui" instruction.
8898 */
8899static void
67c0d1eb 8900macro_build_lui (expressionS *ep, int regnum)
252b5132 8901{
9c2799c2 8902 gas_assert (! mips_opts.mips16);
252b5132 8903
df58fc94 8904 if (ep->X_op != O_constant)
252b5132 8905 {
9c2799c2 8906 gas_assert (ep->X_op == O_symbol);
bbe506e8
TS
8907 /* _gp_disp is a special case, used from s_cpload.
8908 __gnu_local_gp is used if mips_no_shared. */
9c2799c2 8909 gas_assert (mips_pic == NO_PIC
78e1bb40 8910 || (! HAVE_NEWABI
aa6975fb
ILT
8911 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8912 || (! mips_in_shared
bbe506e8
TS
8913 && strcmp (S_GET_NAME (ep->X_add_symbol),
8914 "__gnu_local_gp") == 0));
252b5132
RH
8915 }
8916
df58fc94 8917 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
252b5132
RH
8918}
8919
885add95
CD
8920/* Generate a sequence of instructions to do a load or store from a constant
8921 offset off of a base register (breg) into/from a target register (treg),
8922 using AT if necessary. */
8923static void
67c0d1eb
RS
8924macro_build_ldst_constoffset (expressionS *ep, const char *op,
8925 int treg, int breg, int dbl)
885add95 8926{
9c2799c2 8927 gas_assert (ep->X_op == O_constant);
885add95 8928
256ab948 8929 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8930 if (!dbl)
8931 normalize_constant_expr (ep);
256ab948 8932
67c1ffbe 8933 /* Right now, this routine can only handle signed 32-bit constants. */
ecd13cd3 8934 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
885add95
CD
8935 as_warn (_("operand overflow"));
8936
8937 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8938 {
8939 /* Signed 16-bit offset will fit in the op. Easy! */
67c0d1eb 8940 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
885add95
CD
8941 }
8942 else
8943 {
8944 /* 32-bit offset, need multiple instructions and AT, like:
8945 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8946 addu $tempreg,$tempreg,$breg
8947 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8948 to handle the complete offset. */
67c0d1eb
RS
8949 macro_build_lui (ep, AT);
8950 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8951 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
885add95 8952
741fe287 8953 if (!mips_opts.at)
1661c76c 8954 as_bad (_("macro used $at after \".set noat\""));
885add95
CD
8955 }
8956}
8957
252b5132
RH
8958/* set_at()
8959 * Generates code to set the $at register to true (one)
8960 * if reg is less than the immediate expression.
8961 */
8962static void
67c0d1eb 8963set_at (int reg, int unsignedp)
252b5132 8964{
b0e6f033 8965 if (imm_expr.X_add_number >= -0x8000
252b5132 8966 && imm_expr.X_add_number < 0x8000)
67c0d1eb
RS
8967 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8968 AT, reg, BFD_RELOC_LO16);
252b5132
RH
8969 else
8970 {
bad1aba3 8971 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 8972 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
252b5132
RH
8973 }
8974}
8975
252b5132
RH
8976/* Count the leading zeroes by performing a binary chop. This is a
8977 bulky bit of source, but performance is a LOT better for the
8978 majority of values than a simple loop to count the bits:
8979 for (lcnt = 0; (lcnt < 32); lcnt++)
8980 if ((v) & (1 << (31 - lcnt)))
8981 break;
8982 However it is not code size friendly, and the gain will drop a bit
8983 on certain cached systems.
8984*/
8985#define COUNT_TOP_ZEROES(v) \
8986 (((v) & ~0xffff) == 0 \
8987 ? ((v) & ~0xff) == 0 \
8988 ? ((v) & ~0xf) == 0 \
8989 ? ((v) & ~0x3) == 0 \
8990 ? ((v) & ~0x1) == 0 \
8991 ? !(v) \
8992 ? 32 \
8993 : 31 \
8994 : 30 \
8995 : ((v) & ~0x7) == 0 \
8996 ? 29 \
8997 : 28 \
8998 : ((v) & ~0x3f) == 0 \
8999 ? ((v) & ~0x1f) == 0 \
9000 ? 27 \
9001 : 26 \
9002 : ((v) & ~0x7f) == 0 \
9003 ? 25 \
9004 : 24 \
9005 : ((v) & ~0xfff) == 0 \
9006 ? ((v) & ~0x3ff) == 0 \
9007 ? ((v) & ~0x1ff) == 0 \
9008 ? 23 \
9009 : 22 \
9010 : ((v) & ~0x7ff) == 0 \
9011 ? 21 \
9012 : 20 \
9013 : ((v) & ~0x3fff) == 0 \
9014 ? ((v) & ~0x1fff) == 0 \
9015 ? 19 \
9016 : 18 \
9017 : ((v) & ~0x7fff) == 0 \
9018 ? 17 \
9019 : 16 \
9020 : ((v) & ~0xffffff) == 0 \
9021 ? ((v) & ~0xfffff) == 0 \
9022 ? ((v) & ~0x3ffff) == 0 \
9023 ? ((v) & ~0x1ffff) == 0 \
9024 ? 15 \
9025 : 14 \
9026 : ((v) & ~0x7ffff) == 0 \
9027 ? 13 \
9028 : 12 \
9029 : ((v) & ~0x3fffff) == 0 \
9030 ? ((v) & ~0x1fffff) == 0 \
9031 ? 11 \
9032 : 10 \
9033 : ((v) & ~0x7fffff) == 0 \
9034 ? 9 \
9035 : 8 \
9036 : ((v) & ~0xfffffff) == 0 \
9037 ? ((v) & ~0x3ffffff) == 0 \
9038 ? ((v) & ~0x1ffffff) == 0 \
9039 ? 7 \
9040 : 6 \
9041 : ((v) & ~0x7ffffff) == 0 \
9042 ? 5 \
9043 : 4 \
9044 : ((v) & ~0x3fffffff) == 0 \
9045 ? ((v) & ~0x1fffffff) == 0 \
9046 ? 3 \
9047 : 2 \
9048 : ((v) & ~0x7fffffff) == 0 \
9049 ? 1 \
9050 : 0)
9051
9052/* load_register()
67c1ffbe 9053 * This routine generates the least number of instructions necessary to load
252b5132
RH
9054 * an absolute expression value into a register.
9055 */
9056static void
67c0d1eb 9057load_register (int reg, expressionS *ep, int dbl)
252b5132
RH
9058{
9059 int freg;
9060 expressionS hi32, lo32;
9061
9062 if (ep->X_op != O_big)
9063 {
9c2799c2 9064 gas_assert (ep->X_op == O_constant);
256ab948
TS
9065
9066 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
9067 if (!dbl)
9068 normalize_constant_expr (ep);
256ab948
TS
9069
9070 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
252b5132
RH
9071 {
9072 /* We can handle 16 bit signed values with an addiu to
9073 $zero. No need to ever use daddiu here, since $zero and
9074 the result are always correct in 32 bit mode. */
67c0d1eb 9075 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9076 return;
9077 }
9078 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9079 {
9080 /* We can handle 16 bit unsigned values with an ori to
9081 $zero. */
67c0d1eb 9082 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9083 return;
9084 }
256ab948 9085 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
252b5132
RH
9086 {
9087 /* 32 bit values require an lui. */
df58fc94 9088 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 9089 if ((ep->X_add_number & 0xffff) != 0)
67c0d1eb 9090 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
252b5132
RH
9091 return;
9092 }
9093 }
9094
9095 /* The value is larger than 32 bits. */
9096
bad1aba3 9097 if (!dbl || GPR_SIZE == 32)
252b5132 9098 {
55e08f71
NC
9099 char value[32];
9100
9101 sprintf_vma (value, ep->X_add_number);
1661c76c 9102 as_bad (_("number (0x%s) larger than 32 bits"), value);
67c0d1eb 9103 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9104 return;
9105 }
9106
9107 if (ep->X_op != O_big)
9108 {
9109 hi32 = *ep;
9110 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9111 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9112 hi32.X_add_number &= 0xffffffff;
9113 lo32 = *ep;
9114 lo32.X_add_number &= 0xffffffff;
9115 }
9116 else
9117 {
9c2799c2 9118 gas_assert (ep->X_add_number > 2);
252b5132
RH
9119 if (ep->X_add_number == 3)
9120 generic_bignum[3] = 0;
9121 else if (ep->X_add_number > 4)
1661c76c 9122 as_bad (_("number larger than 64 bits"));
252b5132
RH
9123 lo32.X_op = O_constant;
9124 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9125 hi32.X_op = O_constant;
9126 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9127 }
9128
9129 if (hi32.X_add_number == 0)
9130 freg = 0;
9131 else
9132 {
9133 int shift, bit;
9134 unsigned long hi, lo;
9135
956cd1d6 9136 if (hi32.X_add_number == (offsetT) 0xffffffff)
beae10d5
KH
9137 {
9138 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9139 {
67c0d1eb 9140 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9141 return;
9142 }
9143 if (lo32.X_add_number & 0x80000000)
9144 {
df58fc94 9145 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 9146 if (lo32.X_add_number & 0xffff)
67c0d1eb 9147 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
beae10d5
KH
9148 return;
9149 }
9150 }
252b5132
RH
9151
9152 /* Check for 16bit shifted constant. We know that hi32 is
9153 non-zero, so start the mask on the first bit of the hi32
9154 value. */
9155 shift = 17;
9156 do
beae10d5
KH
9157 {
9158 unsigned long himask, lomask;
9159
9160 if (shift < 32)
9161 {
9162 himask = 0xffff >> (32 - shift);
9163 lomask = (0xffff << shift) & 0xffffffff;
9164 }
9165 else
9166 {
9167 himask = 0xffff << (shift - 32);
9168 lomask = 0;
9169 }
9170 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9171 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9172 {
9173 expressionS tmp;
9174
9175 tmp.X_op = O_constant;
9176 if (shift < 32)
9177 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9178 | (lo32.X_add_number >> shift));
9179 else
9180 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
67c0d1eb 9181 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
df58fc94 9182 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9183 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9184 return;
9185 }
f9419b05 9186 ++shift;
beae10d5
KH
9187 }
9188 while (shift <= (64 - 16));
252b5132
RH
9189
9190 /* Find the bit number of the lowest one bit, and store the
9191 shifted value in hi/lo. */
9192 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9193 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9194 if (lo != 0)
9195 {
9196 bit = 0;
9197 while ((lo & 1) == 0)
9198 {
9199 lo >>= 1;
9200 ++bit;
9201 }
9202 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9203 hi >>= bit;
9204 }
9205 else
9206 {
9207 bit = 32;
9208 while ((hi & 1) == 0)
9209 {
9210 hi >>= 1;
9211 ++bit;
9212 }
9213 lo = hi;
9214 hi = 0;
9215 }
9216
9217 /* Optimize if the shifted value is a (power of 2) - 1. */
9218 if ((hi == 0 && ((lo + 1) & lo) == 0)
9219 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
beae10d5
KH
9220 {
9221 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
252b5132 9222 if (shift != 0)
beae10d5 9223 {
252b5132
RH
9224 expressionS tmp;
9225
9226 /* This instruction will set the register to be all
9227 ones. */
beae10d5
KH
9228 tmp.X_op = O_constant;
9229 tmp.X_add_number = (offsetT) -1;
67c0d1eb 9230 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9231 if (bit != 0)
9232 {
9233 bit += shift;
df58fc94 9234 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9235 reg, reg, (bit >= 32) ? bit - 32 : bit);
beae10d5 9236 }
df58fc94 9237 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
67c0d1eb 9238 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9239 return;
9240 }
9241 }
252b5132
RH
9242
9243 /* Sign extend hi32 before calling load_register, because we can
9244 generally get better code when we load a sign extended value. */
9245 if ((hi32.X_add_number & 0x80000000) != 0)
beae10d5 9246 hi32.X_add_number |= ~(offsetT) 0xffffffff;
67c0d1eb 9247 load_register (reg, &hi32, 0);
252b5132
RH
9248 freg = reg;
9249 }
9250 if ((lo32.X_add_number & 0xffff0000) == 0)
9251 {
9252 if (freg != 0)
9253 {
df58fc94 9254 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
252b5132
RH
9255 freg = reg;
9256 }
9257 }
9258 else
9259 {
9260 expressionS mid16;
9261
956cd1d6 9262 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
beae10d5 9263 {
df58fc94
RS
9264 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9265 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
beae10d5
KH
9266 return;
9267 }
252b5132
RH
9268
9269 if (freg != 0)
9270 {
df58fc94 9271 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
252b5132
RH
9272 freg = reg;
9273 }
9274 mid16 = lo32;
9275 mid16.X_add_number >>= 16;
67c0d1eb 9276 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
df58fc94 9277 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
252b5132
RH
9278 freg = reg;
9279 }
9280 if ((lo32.X_add_number & 0xffff) != 0)
67c0d1eb 9281 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
252b5132
RH
9282}
9283
269137b2
TS
9284static inline void
9285load_delay_nop (void)
9286{
9287 if (!gpr_interlocks)
9288 macro_build (NULL, "nop", "");
9289}
9290
252b5132
RH
9291/* Load an address into a register. */
9292
9293static void
67c0d1eb 9294load_address (int reg, expressionS *ep, int *used_at)
252b5132 9295{
252b5132
RH
9296 if (ep->X_op != O_constant
9297 && ep->X_op != O_symbol)
9298 {
9299 as_bad (_("expression too complex"));
9300 ep->X_op = O_constant;
9301 }
9302
9303 if (ep->X_op == O_constant)
9304 {
67c0d1eb 9305 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
252b5132
RH
9306 return;
9307 }
9308
9309 if (mips_pic == NO_PIC)
9310 {
9311 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 9312 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
9313 Otherwise we want
9314 lui $reg,<sym> (BFD_RELOC_HI16_S)
9315 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
d6bc6245 9316 If we have an addend, we always use the latter form.
76b3015f 9317
d6bc6245
TS
9318 With 64bit address space and a usable $at we want
9319 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9320 lui $at,<sym> (BFD_RELOC_HI16_S)
9321 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9322 daddiu $at,<sym> (BFD_RELOC_LO16)
9323 dsll32 $reg,0
3a482fd5 9324 daddu $reg,$reg,$at
76b3015f 9325
c03099e6 9326 If $at is already in use, we use a path which is suboptimal
d6bc6245
TS
9327 on superscalar processors.
9328 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9329 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9330 dsll $reg,16
9331 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9332 dsll $reg,16
9333 daddiu $reg,<sym> (BFD_RELOC_LO16)
6caf9ef4
TS
9334
9335 For GP relative symbols in 64bit address space we can use
9336 the same sequence as in 32bit address space. */
aed1a261 9337 if (HAVE_64BIT_SYMBOLS)
d6bc6245 9338 {
6caf9ef4
TS
9339 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9340 && !nopic_need_relax (ep->X_add_symbol, 1))
9341 {
9342 relax_start (ep->X_add_symbol);
9343 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9344 mips_gp_register, BFD_RELOC_GPREL16);
9345 relax_switch ();
9346 }
d6bc6245 9347
741fe287 9348 if (*used_at == 0 && mips_opts.at)
d6bc6245 9349 {
df58fc94
RS
9350 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9351 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
67c0d1eb
RS
9352 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9353 BFD_RELOC_MIPS_HIGHER);
9354 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
df58fc94 9355 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
67c0d1eb 9356 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
d6bc6245
TS
9357 *used_at = 1;
9358 }
9359 else
9360 {
df58fc94 9361 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb
RS
9362 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9363 BFD_RELOC_MIPS_HIGHER);
df58fc94 9364 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9365 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
df58fc94 9366 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9367 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
d6bc6245 9368 }
6caf9ef4
TS
9369
9370 if (mips_relax.sequence)
9371 relax_end ();
d6bc6245 9372 }
252b5132
RH
9373 else
9374 {
d6bc6245 9375 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 9376 && !nopic_need_relax (ep->X_add_symbol, 1))
d6bc6245 9377 {
4d7206a2 9378 relax_start (ep->X_add_symbol);
67c0d1eb 9379 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
17a2f251 9380 mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 9381 relax_switch ();
d6bc6245 9382 }
67c0d1eb
RS
9383 macro_build_lui (ep, reg);
9384 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9385 reg, reg, BFD_RELOC_LO16);
4d7206a2
RS
9386 if (mips_relax.sequence)
9387 relax_end ();
d6bc6245 9388 }
252b5132 9389 }
0a44bf69 9390 else if (!mips_big_got)
252b5132
RH
9391 {
9392 expressionS ex;
9393
9394 /* If this is a reference to an external symbol, we want
9395 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9396 Otherwise we want
9397 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9398 nop
9399 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
f5040a92
AO
9400 If there is a constant, it must be added in after.
9401
ed6fb7bd 9402 If we have NewABI, we want
f5040a92
AO
9403 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9404 unless we're referencing a global symbol with a non-zero
9405 offset, in which case cst must be added separately. */
ed6fb7bd
SC
9406 if (HAVE_NEWABI)
9407 {
f5040a92
AO
9408 if (ep->X_add_number)
9409 {
4d7206a2 9410 ex.X_add_number = ep->X_add_number;
f5040a92 9411 ep->X_add_number = 0;
4d7206a2 9412 relax_start (ep->X_add_symbol);
67c0d1eb
RS
9413 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9414 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9415 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9416 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9417 ex.X_op = O_constant;
67c0d1eb 9418 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9419 reg, reg, BFD_RELOC_LO16);
f5040a92 9420 ep->X_add_number = ex.X_add_number;
4d7206a2 9421 relax_switch ();
f5040a92 9422 }
67c0d1eb 9423 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9424 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2
RS
9425 if (mips_relax.sequence)
9426 relax_end ();
ed6fb7bd
SC
9427 }
9428 else
9429 {
f5040a92
AO
9430 ex.X_add_number = ep->X_add_number;
9431 ep->X_add_number = 0;
67c0d1eb
RS
9432 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9433 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9434 load_delay_nop ();
4d7206a2
RS
9435 relax_start (ep->X_add_symbol);
9436 relax_switch ();
67c0d1eb 9437 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9438 BFD_RELOC_LO16);
4d7206a2 9439 relax_end ();
ed6fb7bd 9440
f5040a92
AO
9441 if (ex.X_add_number != 0)
9442 {
9443 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9444 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9445 ex.X_op = O_constant;
67c0d1eb 9446 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9447 reg, reg, BFD_RELOC_LO16);
f5040a92 9448 }
252b5132
RH
9449 }
9450 }
0a44bf69 9451 else if (mips_big_got)
252b5132
RH
9452 {
9453 expressionS ex;
252b5132
RH
9454
9455 /* This is the large GOT case. If this is a reference to an
9456 external symbol, we want
9457 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9458 addu $reg,$reg,$gp
9459 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
f5040a92
AO
9460
9461 Otherwise, for a reference to a local symbol in old ABI, we want
252b5132
RH
9462 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9463 nop
9464 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
684022ea 9465 If there is a constant, it must be added in after.
f5040a92
AO
9466
9467 In the NewABI, for local symbols, with or without offsets, we want:
438c16b8
TS
9468 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9469 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 9470 */
438c16b8
TS
9471 if (HAVE_NEWABI)
9472 {
4d7206a2 9473 ex.X_add_number = ep->X_add_number;
f5040a92 9474 ep->X_add_number = 0;
4d7206a2 9475 relax_start (ep->X_add_symbol);
df58fc94 9476 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9477 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9478 reg, reg, mips_gp_register);
9479 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9480 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
f5040a92
AO
9481 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9482 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9483 else if (ex.X_add_number)
9484 {
9485 ex.X_op = O_constant;
67c0d1eb
RS
9486 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9487 BFD_RELOC_LO16);
f5040a92
AO
9488 }
9489
9490 ep->X_add_number = ex.X_add_number;
4d7206a2 9491 relax_switch ();
67c0d1eb 9492 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9493 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
67c0d1eb
RS
9494 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9495 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 9496 relax_end ();
438c16b8 9497 }
252b5132 9498 else
438c16b8 9499 {
f5040a92
AO
9500 ex.X_add_number = ep->X_add_number;
9501 ep->X_add_number = 0;
4d7206a2 9502 relax_start (ep->X_add_symbol);
df58fc94 9503 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9504 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9505 reg, reg, mips_gp_register);
9506 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9507 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4d7206a2
RS
9508 relax_switch ();
9509 if (reg_needs_delay (mips_gp_register))
438c16b8
TS
9510 {
9511 /* We need a nop before loading from $gp. This special
9512 check is required because the lui which starts the main
9513 instruction stream does not refer to $gp, and so will not
9514 insert the nop which may be required. */
67c0d1eb 9515 macro_build (NULL, "nop", "");
438c16b8 9516 }
67c0d1eb 9517 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9518 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9519 load_delay_nop ();
67c0d1eb 9520 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9521 BFD_RELOC_LO16);
4d7206a2 9522 relax_end ();
438c16b8 9523
f5040a92
AO
9524 if (ex.X_add_number != 0)
9525 {
9526 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9527 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9528 ex.X_op = O_constant;
67c0d1eb
RS
9529 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9530 BFD_RELOC_LO16);
f5040a92 9531 }
252b5132
RH
9532 }
9533 }
252b5132
RH
9534 else
9535 abort ();
8fc2e39e 9536
741fe287 9537 if (!mips_opts.at && *used_at == 1)
1661c76c 9538 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
9539}
9540
ea1fb5dc
RS
9541/* Move the contents of register SOURCE into register DEST. */
9542
9543static void
67c0d1eb 9544move_register (int dest, int source)
ea1fb5dc 9545{
df58fc94
RS
9546 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9547 instruction specifically requires a 32-bit one. */
9548 if (mips_opts.micromips
833794fc 9549 && !mips_opts.insn32
df58fc94 9550 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7951ca42 9551 macro_build (NULL, "move", "mp,mj", dest, source);
df58fc94 9552 else
40fc1451 9553 macro_build (NULL, "or", "d,v,t", dest, source, 0);
ea1fb5dc
RS
9554}
9555
4d7206a2 9556/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
f6a22291
MR
9557 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9558 The two alternatives are:
4d7206a2 9559
33eaf5de 9560 Global symbol Local symbol
4d7206a2
RS
9561 ------------- ------------
9562 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9563 ... ...
9564 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9565
9566 load_got_offset emits the first instruction and add_got_offset
f6a22291
MR
9567 emits the second for a 16-bit offset or add_got_offset_hilo emits
9568 a sequence to add a 32-bit offset using a scratch register. */
4d7206a2
RS
9569
9570static void
67c0d1eb 9571load_got_offset (int dest, expressionS *local)
4d7206a2
RS
9572{
9573 expressionS global;
9574
9575 global = *local;
9576 global.X_add_number = 0;
9577
9578 relax_start (local->X_add_symbol);
67c0d1eb
RS
9579 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9580 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2 9581 relax_switch ();
67c0d1eb
RS
9582 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9583 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2
RS
9584 relax_end ();
9585}
9586
9587static void
67c0d1eb 9588add_got_offset (int dest, expressionS *local)
4d7206a2
RS
9589{
9590 expressionS global;
9591
9592 global.X_op = O_constant;
9593 global.X_op_symbol = NULL;
9594 global.X_add_symbol = NULL;
9595 global.X_add_number = local->X_add_number;
9596
9597 relax_start (local->X_add_symbol);
67c0d1eb 9598 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4d7206a2
RS
9599 dest, dest, BFD_RELOC_LO16);
9600 relax_switch ();
67c0d1eb 9601 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4d7206a2
RS
9602 relax_end ();
9603}
9604
f6a22291
MR
9605static void
9606add_got_offset_hilo (int dest, expressionS *local, int tmp)
9607{
9608 expressionS global;
9609 int hold_mips_optimize;
9610
9611 global.X_op = O_constant;
9612 global.X_op_symbol = NULL;
9613 global.X_add_symbol = NULL;
9614 global.X_add_number = local->X_add_number;
9615
9616 relax_start (local->X_add_symbol);
9617 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9618 relax_switch ();
9619 /* Set mips_optimize around the lui instruction to avoid
9620 inserting an unnecessary nop after the lw. */
9621 hold_mips_optimize = mips_optimize;
9622 mips_optimize = 2;
9623 macro_build_lui (&global, tmp);
9624 mips_optimize = hold_mips_optimize;
9625 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9626 relax_end ();
9627
9628 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9629}
9630
df58fc94
RS
9631/* Emit a sequence of instructions to emulate a branch likely operation.
9632 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9633 is its complementing branch with the original condition negated.
9634 CALL is set if the original branch specified the link operation.
9635 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9636
9637 Code like this is produced in the noreorder mode:
9638
9639 BRNEG <args>, 1f
9640 nop
9641 b <sym>
9642 delay slot (executed only if branch taken)
9643 1:
9644
9645 or, if CALL is set:
9646
9647 BRNEG <args>, 1f
9648 nop
9649 bal <sym>
9650 delay slot (executed only if branch taken)
9651 1:
9652
9653 In the reorder mode the delay slot would be filled with a nop anyway,
9654 so code produced is simply:
9655
9656 BR <args>, <sym>
9657 nop
9658
9659 This function is used when producing code for the microMIPS ASE that
9660 does not implement branch likely instructions in hardware. */
9661
9662static void
9663macro_build_branch_likely (const char *br, const char *brneg,
9664 int call, expressionS *ep, const char *fmt,
9665 unsigned int sreg, unsigned int treg)
9666{
9667 int noreorder = mips_opts.noreorder;
9668 expressionS expr1;
9669
9670 gas_assert (mips_opts.micromips);
9671 start_noreorder ();
9672 if (noreorder)
9673 {
9674 micromips_label_expr (&expr1);
9675 macro_build (&expr1, brneg, fmt, sreg, treg);
9676 macro_build (NULL, "nop", "");
9677 macro_build (ep, call ? "bal" : "b", "p");
9678
9679 /* Set to true so that append_insn adds a label. */
9680 emit_branch_likely_macro = TRUE;
9681 }
9682 else
9683 {
9684 macro_build (ep, br, fmt, sreg, treg);
9685 macro_build (NULL, "nop", "");
9686 }
9687 end_noreorder ();
9688}
9689
9690/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9691 the condition code tested. EP specifies the branch target. */
9692
9693static void
9694macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9695{
9696 const int call = 0;
9697 const char *brneg;
9698 const char *br;
9699
9700 switch (type)
9701 {
9702 case M_BC1FL:
9703 br = "bc1f";
9704 brneg = "bc1t";
9705 break;
9706 case M_BC1TL:
9707 br = "bc1t";
9708 brneg = "bc1f";
9709 break;
9710 case M_BC2FL:
9711 br = "bc2f";
9712 brneg = "bc2t";
9713 break;
9714 case M_BC2TL:
9715 br = "bc2t";
9716 brneg = "bc2f";
9717 break;
9718 default:
9719 abort ();
9720 }
9721 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9722}
9723
9724/* Emit a two-argument branch macro specified by TYPE, using SREG as
9725 the register tested. EP specifies the branch target. */
9726
9727static void
9728macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9729{
9730 const char *brneg = NULL;
9731 const char *br;
9732 int call = 0;
9733
9734 switch (type)
9735 {
9736 case M_BGEZ:
9737 br = "bgez";
9738 break;
9739 case M_BGEZL:
9740 br = mips_opts.micromips ? "bgez" : "bgezl";
9741 brneg = "bltz";
9742 break;
9743 case M_BGEZALL:
9744 gas_assert (mips_opts.micromips);
833794fc 9745 br = mips_opts.insn32 ? "bgezal" : "bgezals";
df58fc94
RS
9746 brneg = "bltz";
9747 call = 1;
9748 break;
9749 case M_BGTZ:
9750 br = "bgtz";
9751 break;
9752 case M_BGTZL:
9753 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9754 brneg = "blez";
9755 break;
9756 case M_BLEZ:
9757 br = "blez";
9758 break;
9759 case M_BLEZL:
9760 br = mips_opts.micromips ? "blez" : "blezl";
9761 brneg = "bgtz";
9762 break;
9763 case M_BLTZ:
9764 br = "bltz";
9765 break;
9766 case M_BLTZL:
9767 br = mips_opts.micromips ? "bltz" : "bltzl";
9768 brneg = "bgez";
9769 break;
9770 case M_BLTZALL:
9771 gas_assert (mips_opts.micromips);
833794fc 9772 br = mips_opts.insn32 ? "bltzal" : "bltzals";
df58fc94
RS
9773 brneg = "bgez";
9774 call = 1;
9775 break;
9776 default:
9777 abort ();
9778 }
9779 if (mips_opts.micromips && brneg)
9780 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9781 else
9782 macro_build (ep, br, "s,p", sreg);
9783}
9784
9785/* Emit a three-argument branch macro specified by TYPE, using SREG and
9786 TREG as the registers tested. EP specifies the branch target. */
9787
9788static void
9789macro_build_branch_rsrt (int type, expressionS *ep,
9790 unsigned int sreg, unsigned int treg)
9791{
9792 const char *brneg = NULL;
9793 const int call = 0;
9794 const char *br;
9795
9796 switch (type)
9797 {
9798 case M_BEQ:
9799 case M_BEQ_I:
9800 br = "beq";
9801 break;
9802 case M_BEQL:
9803 case M_BEQL_I:
9804 br = mips_opts.micromips ? "beq" : "beql";
9805 brneg = "bne";
9806 break;
9807 case M_BNE:
9808 case M_BNE_I:
9809 br = "bne";
9810 break;
9811 case M_BNEL:
9812 case M_BNEL_I:
9813 br = mips_opts.micromips ? "bne" : "bnel";
9814 brneg = "beq";
9815 break;
9816 default:
9817 abort ();
9818 }
9819 if (mips_opts.micromips && brneg)
9820 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9821 else
9822 macro_build (ep, br, "s,t,p", sreg, treg);
9823}
9824
f2ae14a1
RS
9825/* Return the high part that should be loaded in order to make the low
9826 part of VALUE accessible using an offset of OFFBITS bits. */
9827
9828static offsetT
9829offset_high_part (offsetT value, unsigned int offbits)
9830{
9831 offsetT bias;
9832 addressT low_mask;
9833
9834 if (offbits == 0)
9835 return value;
9836 bias = 1 << (offbits - 1);
9837 low_mask = bias * 2 - 1;
9838 return (value + bias) & ~low_mask;
9839}
9840
9841/* Return true if the value stored in offset_expr and offset_reloc
9842 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9843 amount that the caller wants to add without inducing overflow
9844 and ALIGN is the known alignment of the value in bytes. */
9845
9846static bfd_boolean
9847small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9848{
9849 if (offbits == 16)
9850 {
9851 /* Accept any relocation operator if overflow isn't a concern. */
9852 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9853 return TRUE;
9854
9855 /* These relocations are guaranteed not to overflow in correct links. */
9856 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9857 || gprel16_reloc_p (*offset_reloc))
9858 return TRUE;
9859 }
9860 if (offset_expr.X_op == O_constant
9861 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9862 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9863 return TRUE;
9864 return FALSE;
9865}
9866
252b5132
RH
9867/*
9868 * Build macros
9869 * This routine implements the seemingly endless macro or synthesized
9870 * instructions and addressing modes in the mips assembly language. Many
9871 * of these macros are simple and are similar to each other. These could
67c1ffbe 9872 * probably be handled by some kind of table or grammar approach instead of
252b5132
RH
9873 * this verbose method. Others are not simple macros but are more like
9874 * optimizing code generation.
9875 * One interesting optimization is when several store macros appear
67c1ffbe 9876 * consecutively that would load AT with the upper half of the same address.
2b0f3761 9877 * The ensuing load upper instructions are omitted. This implies some kind
252b5132
RH
9878 * of global optimization. We currently only optimize within a single macro.
9879 * For many of the load and store macros if the address is specified as a
9880 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9881 * first load register 'at' with zero and use it as the base register. The
9882 * mips assembler simply uses register $zero. Just one tiny optimization
9883 * we're missing.
9884 */
9885static void
833794fc 9886macro (struct mips_cl_insn *ip, char *str)
252b5132 9887{
c0ebe874
RS
9888 const struct mips_operand_array *operands;
9889 unsigned int breg, i;
741fe287 9890 unsigned int tempreg;
252b5132 9891 int mask;
43841e91 9892 int used_at = 0;
df58fc94 9893 expressionS label_expr;
252b5132 9894 expressionS expr1;
df58fc94 9895 expressionS *ep;
252b5132
RH
9896 const char *s;
9897 const char *s2;
9898 const char *fmt;
9899 int likely = 0;
252b5132 9900 int coproc = 0;
7f3c4072 9901 int offbits = 16;
1abe91b1 9902 int call = 0;
df58fc94
RS
9903 int jals = 0;
9904 int dbl = 0;
9905 int imm = 0;
9906 int ust = 0;
9907 int lp = 0;
f2ae14a1 9908 bfd_boolean large_offset;
252b5132 9909 int off;
252b5132 9910 int hold_mips_optimize;
f2ae14a1 9911 unsigned int align;
c0ebe874 9912 unsigned int op[MAX_OPERANDS];
252b5132 9913
9c2799c2 9914 gas_assert (! mips_opts.mips16);
252b5132 9915
c0ebe874
RS
9916 operands = insn_operands (ip);
9917 for (i = 0; i < MAX_OPERANDS; i++)
9918 if (operands->operand[i])
9919 op[i] = insn_extract_operand (ip, operands->operand[i]);
9920 else
9921 op[i] = -1;
9922
252b5132
RH
9923 mask = ip->insn_mo->mask;
9924
df58fc94
RS
9925 label_expr.X_op = O_constant;
9926 label_expr.X_op_symbol = NULL;
9927 label_expr.X_add_symbol = NULL;
9928 label_expr.X_add_number = 0;
9929
252b5132
RH
9930 expr1.X_op = O_constant;
9931 expr1.X_op_symbol = NULL;
9932 expr1.X_add_symbol = NULL;
9933 expr1.X_add_number = 1;
f2ae14a1 9934 align = 1;
252b5132
RH
9935
9936 switch (mask)
9937 {
9938 case M_DABS:
9939 dbl = 1;
1a0670f3 9940 /* Fall through. */
252b5132 9941 case M_ABS:
df58fc94
RS
9942 /* bgez $a0,1f
9943 move v0,$a0
9944 sub v0,$zero,$a0
9945 1:
9946 */
252b5132 9947
7d10b47d 9948 start_noreorder ();
252b5132 9949
df58fc94
RS
9950 if (mips_opts.micromips)
9951 micromips_label_expr (&label_expr);
9952 else
9953 label_expr.X_add_number = 8;
c0ebe874
RS
9954 macro_build (&label_expr, "bgez", "s,p", op[1]);
9955 if (op[0] == op[1])
a605d2b3 9956 macro_build (NULL, "nop", "");
252b5132 9957 else
c0ebe874
RS
9958 move_register (op[0], op[1]);
9959 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
df58fc94
RS
9960 if (mips_opts.micromips)
9961 micromips_add_label ();
252b5132 9962
7d10b47d 9963 end_noreorder ();
8fc2e39e 9964 break;
252b5132
RH
9965
9966 case M_ADD_I:
9967 s = "addi";
9968 s2 = "add";
9969 goto do_addi;
9970 case M_ADDU_I:
9971 s = "addiu";
9972 s2 = "addu";
9973 goto do_addi;
9974 case M_DADD_I:
9975 dbl = 1;
9976 s = "daddi";
9977 s2 = "dadd";
df58fc94
RS
9978 if (!mips_opts.micromips)
9979 goto do_addi;
b0e6f033 9980 if (imm_expr.X_add_number >= -0x200
df58fc94
RS
9981 && imm_expr.X_add_number < 0x200)
9982 {
b0e6f033
RS
9983 macro_build (NULL, s, "t,r,.", op[0], op[1],
9984 (int) imm_expr.X_add_number);
df58fc94
RS
9985 break;
9986 }
9987 goto do_addi_i;
252b5132
RH
9988 case M_DADDU_I:
9989 dbl = 1;
9990 s = "daddiu";
9991 s2 = "daddu";
9992 do_addi:
b0e6f033 9993 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
9994 && imm_expr.X_add_number < 0x8000)
9995 {
c0ebe874 9996 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 9997 break;
252b5132 9998 }
df58fc94 9999 do_addi_i:
8fc2e39e 10000 used_at = 1;
67c0d1eb 10001 load_register (AT, &imm_expr, dbl);
c0ebe874 10002 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
10003 break;
10004
10005 case M_AND_I:
10006 s = "andi";
10007 s2 = "and";
10008 goto do_bit;
10009 case M_OR_I:
10010 s = "ori";
10011 s2 = "or";
10012 goto do_bit;
10013 case M_NOR_I:
10014 s = "";
10015 s2 = "nor";
10016 goto do_bit;
10017 case M_XOR_I:
10018 s = "xori";
10019 s2 = "xor";
10020 do_bit:
b0e6f033 10021 if (imm_expr.X_add_number >= 0
252b5132
RH
10022 && imm_expr.X_add_number < 0x10000)
10023 {
10024 if (mask != M_NOR_I)
c0ebe874 10025 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
10026 else
10027 {
67c0d1eb 10028 macro_build (&imm_expr, "ori", "t,r,i",
c0ebe874
RS
10029 op[0], op[1], BFD_RELOC_LO16);
10030 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
252b5132 10031 }
8fc2e39e 10032 break;
252b5132
RH
10033 }
10034
8fc2e39e 10035 used_at = 1;
bad1aba3 10036 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 10037 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
10038 break;
10039
8b082fb1
TS
10040 case M_BALIGN:
10041 switch (imm_expr.X_add_number)
10042 {
10043 case 0:
10044 macro_build (NULL, "nop", "");
10045 break;
10046 case 2:
c0ebe874 10047 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
8b082fb1 10048 break;
03f66e8a
MR
10049 case 1:
10050 case 3:
c0ebe874 10051 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
90ecf173 10052 (int) imm_expr.X_add_number);
8b082fb1 10053 break;
03f66e8a
MR
10054 default:
10055 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10056 (unsigned long) imm_expr.X_add_number);
10057 break;
8b082fb1
TS
10058 }
10059 break;
10060
df58fc94
RS
10061 case M_BC1FL:
10062 case M_BC1TL:
10063 case M_BC2FL:
10064 case M_BC2TL:
10065 gas_assert (mips_opts.micromips);
10066 macro_build_branch_ccl (mask, &offset_expr,
10067 EXTRACT_OPERAND (1, BCC, *ip));
10068 break;
10069
252b5132 10070 case M_BEQ_I:
252b5132 10071 case M_BEQL_I:
252b5132 10072 case M_BNE_I:
252b5132 10073 case M_BNEL_I:
b0e6f033 10074 if (imm_expr.X_add_number == 0)
c0ebe874 10075 op[1] = 0;
df58fc94 10076 else
252b5132 10077 {
c0ebe874 10078 op[1] = AT;
df58fc94 10079 used_at = 1;
bad1aba3 10080 load_register (op[1], &imm_expr, GPR_SIZE == 64);
252b5132 10081 }
df58fc94
RS
10082 /* Fall through. */
10083 case M_BEQL:
10084 case M_BNEL:
c0ebe874 10085 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
252b5132
RH
10086 break;
10087
10088 case M_BGEL:
10089 likely = 1;
1a0670f3 10090 /* Fall through. */
252b5132 10091 case M_BGE:
c0ebe874
RS
10092 if (op[1] == 0)
10093 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10094 else if (op[0] == 0)
10095 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
df58fc94 10096 else
252b5132 10097 {
df58fc94 10098 used_at = 1;
c0ebe874 10099 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10100 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10101 &offset_expr, AT, ZERO);
252b5132 10102 }
df58fc94
RS
10103 break;
10104
10105 case M_BGEZL:
10106 case M_BGEZALL:
10107 case M_BGTZL:
10108 case M_BLEZL:
10109 case M_BLTZL:
10110 case M_BLTZALL:
c0ebe874 10111 macro_build_branch_rs (mask, &offset_expr, op[0]);
252b5132
RH
10112 break;
10113
10114 case M_BGTL_I:
10115 likely = 1;
1a0670f3 10116 /* Fall through. */
252b5132 10117 case M_BGT_I:
90ecf173 10118 /* Check for > max integer. */
b0e6f033 10119 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
10120 {
10121 do_false:
90ecf173 10122 /* Result is always false. */
252b5132 10123 if (! likely)
a605d2b3 10124 macro_build (NULL, "nop", "");
252b5132 10125 else
df58fc94 10126 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8fc2e39e 10127 break;
252b5132 10128 }
f9419b05 10129 ++imm_expr.X_add_number;
252b5132
RH
10130 /* FALLTHROUGH */
10131 case M_BGE_I:
10132 case M_BGEL_I:
10133 if (mask == M_BGEL_I)
10134 likely = 1;
b0e6f033 10135 if (imm_expr.X_add_number == 0)
252b5132 10136 {
df58fc94 10137 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
c0ebe874 10138 &offset_expr, op[0]);
8fc2e39e 10139 break;
252b5132 10140 }
b0e6f033 10141 if (imm_expr.X_add_number == 1)
252b5132 10142 {
df58fc94 10143 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
c0ebe874 10144 &offset_expr, op[0]);
8fc2e39e 10145 break;
252b5132 10146 }
b0e6f033 10147 if (imm_expr.X_add_number <= GPR_SMIN)
252b5132
RH
10148 {
10149 do_true:
10150 /* result is always true */
1661c76c 10151 as_warn (_("branch %s is always true"), ip->insn_mo->name);
67c0d1eb 10152 macro_build (&offset_expr, "b", "p");
8fc2e39e 10153 break;
252b5132 10154 }
8fc2e39e 10155 used_at = 1;
c0ebe874 10156 set_at (op[0], 0);
df58fc94
RS
10157 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10158 &offset_expr, AT, ZERO);
252b5132
RH
10159 break;
10160
10161 case M_BGEUL:
10162 likely = 1;
1a0670f3 10163 /* Fall through. */
252b5132 10164 case M_BGEU:
c0ebe874 10165 if (op[1] == 0)
252b5132 10166 goto do_true;
c0ebe874 10167 else if (op[0] == 0)
df58fc94 10168 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10169 &offset_expr, ZERO, op[1]);
df58fc94 10170 else
252b5132 10171 {
df58fc94 10172 used_at = 1;
c0ebe874 10173 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10174 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10175 &offset_expr, AT, ZERO);
252b5132 10176 }
252b5132
RH
10177 break;
10178
10179 case M_BGTUL_I:
10180 likely = 1;
1a0670f3 10181 /* Fall through. */
252b5132 10182 case M_BGTU_I:
c0ebe874 10183 if (op[0] == 0
bad1aba3 10184 || (GPR_SIZE == 32
f01dc953 10185 && imm_expr.X_add_number == -1))
252b5132 10186 goto do_false;
f9419b05 10187 ++imm_expr.X_add_number;
252b5132
RH
10188 /* FALLTHROUGH */
10189 case M_BGEU_I:
10190 case M_BGEUL_I:
10191 if (mask == M_BGEUL_I)
10192 likely = 1;
b0e6f033 10193 if (imm_expr.X_add_number == 0)
252b5132 10194 goto do_true;
b0e6f033 10195 else if (imm_expr.X_add_number == 1)
df58fc94 10196 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10197 &offset_expr, op[0], ZERO);
df58fc94 10198 else
252b5132 10199 {
df58fc94 10200 used_at = 1;
c0ebe874 10201 set_at (op[0], 1);
df58fc94
RS
10202 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10203 &offset_expr, AT, ZERO);
252b5132 10204 }
252b5132
RH
10205 break;
10206
10207 case M_BGTL:
10208 likely = 1;
1a0670f3 10209 /* Fall through. */
252b5132 10210 case M_BGT:
c0ebe874
RS
10211 if (op[1] == 0)
10212 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10213 else if (op[0] == 0)
10214 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
df58fc94 10215 else
252b5132 10216 {
df58fc94 10217 used_at = 1;
c0ebe874 10218 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10219 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10220 &offset_expr, AT, ZERO);
252b5132 10221 }
252b5132
RH
10222 break;
10223
10224 case M_BGTUL:
10225 likely = 1;
1a0670f3 10226 /* Fall through. */
252b5132 10227 case M_BGTU:
c0ebe874 10228 if (op[1] == 0)
df58fc94 10229 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874
RS
10230 &offset_expr, op[0], ZERO);
10231 else if (op[0] == 0)
df58fc94
RS
10232 goto do_false;
10233 else
252b5132 10234 {
df58fc94 10235 used_at = 1;
c0ebe874 10236 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10237 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10238 &offset_expr, AT, ZERO);
252b5132 10239 }
252b5132
RH
10240 break;
10241
10242 case M_BLEL:
10243 likely = 1;
1a0670f3 10244 /* Fall through. */
252b5132 10245 case M_BLE:
c0ebe874
RS
10246 if (op[1] == 0)
10247 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10248 else if (op[0] == 0)
10249 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
df58fc94 10250 else
252b5132 10251 {
df58fc94 10252 used_at = 1;
c0ebe874 10253 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10254 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10255 &offset_expr, AT, ZERO);
252b5132 10256 }
252b5132
RH
10257 break;
10258
10259 case M_BLEL_I:
10260 likely = 1;
1a0670f3 10261 /* Fall through. */
252b5132 10262 case M_BLE_I:
b0e6f033 10263 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132 10264 goto do_true;
f9419b05 10265 ++imm_expr.X_add_number;
252b5132
RH
10266 /* FALLTHROUGH */
10267 case M_BLT_I:
10268 case M_BLTL_I:
10269 if (mask == M_BLTL_I)
10270 likely = 1;
b0e6f033 10271 if (imm_expr.X_add_number == 0)
c0ebe874 10272 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
b0e6f033 10273 else if (imm_expr.X_add_number == 1)
c0ebe874 10274 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
df58fc94 10275 else
252b5132 10276 {
df58fc94 10277 used_at = 1;
c0ebe874 10278 set_at (op[0], 0);
df58fc94
RS
10279 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10280 &offset_expr, AT, ZERO);
252b5132 10281 }
252b5132
RH
10282 break;
10283
10284 case M_BLEUL:
10285 likely = 1;
1a0670f3 10286 /* Fall through. */
252b5132 10287 case M_BLEU:
c0ebe874 10288 if (op[1] == 0)
df58fc94 10289 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874
RS
10290 &offset_expr, op[0], ZERO);
10291 else if (op[0] == 0)
df58fc94
RS
10292 goto do_true;
10293 else
252b5132 10294 {
df58fc94 10295 used_at = 1;
c0ebe874 10296 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10297 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10298 &offset_expr, AT, ZERO);
252b5132 10299 }
252b5132
RH
10300 break;
10301
10302 case M_BLEUL_I:
10303 likely = 1;
1a0670f3 10304 /* Fall through. */
252b5132 10305 case M_BLEU_I:
c0ebe874 10306 if (op[0] == 0
bad1aba3 10307 || (GPR_SIZE == 32
f01dc953 10308 && imm_expr.X_add_number == -1))
252b5132 10309 goto do_true;
f9419b05 10310 ++imm_expr.X_add_number;
252b5132
RH
10311 /* FALLTHROUGH */
10312 case M_BLTU_I:
10313 case M_BLTUL_I:
10314 if (mask == M_BLTUL_I)
10315 likely = 1;
b0e6f033 10316 if (imm_expr.X_add_number == 0)
252b5132 10317 goto do_false;
b0e6f033 10318 else if (imm_expr.X_add_number == 1)
df58fc94 10319 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10320 &offset_expr, op[0], ZERO);
df58fc94 10321 else
252b5132 10322 {
df58fc94 10323 used_at = 1;
c0ebe874 10324 set_at (op[0], 1);
df58fc94
RS
10325 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10326 &offset_expr, AT, ZERO);
252b5132 10327 }
252b5132
RH
10328 break;
10329
10330 case M_BLTL:
10331 likely = 1;
1a0670f3 10332 /* Fall through. */
252b5132 10333 case M_BLT:
c0ebe874
RS
10334 if (op[1] == 0)
10335 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10336 else if (op[0] == 0)
10337 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
df58fc94 10338 else
252b5132 10339 {
df58fc94 10340 used_at = 1;
c0ebe874 10341 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10342 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10343 &offset_expr, AT, ZERO);
252b5132 10344 }
252b5132
RH
10345 break;
10346
10347 case M_BLTUL:
10348 likely = 1;
1a0670f3 10349 /* Fall through. */
252b5132 10350 case M_BLTU:
c0ebe874 10351 if (op[1] == 0)
252b5132 10352 goto do_false;
c0ebe874 10353 else if (op[0] == 0)
df58fc94 10354 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10355 &offset_expr, ZERO, op[1]);
df58fc94 10356 else
252b5132 10357 {
df58fc94 10358 used_at = 1;
c0ebe874 10359 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10360 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10361 &offset_expr, AT, ZERO);
252b5132 10362 }
252b5132
RH
10363 break;
10364
10365 case M_DDIV_3:
10366 dbl = 1;
1a0670f3 10367 /* Fall through. */
252b5132
RH
10368 case M_DIV_3:
10369 s = "mflo";
10370 goto do_div3;
10371 case M_DREM_3:
10372 dbl = 1;
1a0670f3 10373 /* Fall through. */
252b5132
RH
10374 case M_REM_3:
10375 s = "mfhi";
10376 do_div3:
c0ebe874 10377 if (op[2] == 0)
252b5132 10378 {
1661c76c 10379 as_warn (_("divide by zero"));
252b5132 10380 if (mips_trap)
df58fc94 10381 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10382 else
df58fc94 10383 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10384 break;
252b5132
RH
10385 }
10386
7d10b47d 10387 start_noreorder ();
252b5132
RH
10388 if (mips_trap)
10389 {
c0ebe874
RS
10390 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10391 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
252b5132
RH
10392 }
10393 else
10394 {
df58fc94
RS
10395 if (mips_opts.micromips)
10396 micromips_label_expr (&label_expr);
10397 else
10398 label_expr.X_add_number = 8;
c0ebe874
RS
10399 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10400 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
df58fc94
RS
10401 macro_build (NULL, "break", BRK_FMT, 7);
10402 if (mips_opts.micromips)
10403 micromips_add_label ();
252b5132
RH
10404 }
10405 expr1.X_add_number = -1;
8fc2e39e 10406 used_at = 1;
f6a22291 10407 load_register (AT, &expr1, dbl);
df58fc94
RS
10408 if (mips_opts.micromips)
10409 micromips_label_expr (&label_expr);
10410 else
10411 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
c0ebe874 10412 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
252b5132
RH
10413 if (dbl)
10414 {
10415 expr1.X_add_number = 1;
f6a22291 10416 load_register (AT, &expr1, dbl);
df58fc94 10417 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
252b5132
RH
10418 }
10419 else
10420 {
10421 expr1.X_add_number = 0x80000000;
df58fc94 10422 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
252b5132
RH
10423 }
10424 if (mips_trap)
10425 {
c0ebe874 10426 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
252b5132
RH
10427 /* We want to close the noreorder block as soon as possible, so
10428 that later insns are available for delay slot filling. */
7d10b47d 10429 end_noreorder ();
252b5132
RH
10430 }
10431 else
10432 {
df58fc94
RS
10433 if (mips_opts.micromips)
10434 micromips_label_expr (&label_expr);
10435 else
10436 label_expr.X_add_number = 8;
c0ebe874 10437 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
a605d2b3 10438 macro_build (NULL, "nop", "");
252b5132
RH
10439
10440 /* We want to close the noreorder block as soon as possible, so
10441 that later insns are available for delay slot filling. */
7d10b47d 10442 end_noreorder ();
252b5132 10443
df58fc94 10444 macro_build (NULL, "break", BRK_FMT, 6);
252b5132 10445 }
df58fc94
RS
10446 if (mips_opts.micromips)
10447 micromips_add_label ();
c0ebe874 10448 macro_build (NULL, s, MFHL_FMT, op[0]);
252b5132
RH
10449 break;
10450
10451 case M_DIV_3I:
10452 s = "div";
10453 s2 = "mflo";
10454 goto do_divi;
10455 case M_DIVU_3I:
10456 s = "divu";
10457 s2 = "mflo";
10458 goto do_divi;
10459 case M_REM_3I:
10460 s = "div";
10461 s2 = "mfhi";
10462 goto do_divi;
10463 case M_REMU_3I:
10464 s = "divu";
10465 s2 = "mfhi";
10466 goto do_divi;
10467 case M_DDIV_3I:
10468 dbl = 1;
10469 s = "ddiv";
10470 s2 = "mflo";
10471 goto do_divi;
10472 case M_DDIVU_3I:
10473 dbl = 1;
10474 s = "ddivu";
10475 s2 = "mflo";
10476 goto do_divi;
10477 case M_DREM_3I:
10478 dbl = 1;
10479 s = "ddiv";
10480 s2 = "mfhi";
10481 goto do_divi;
10482 case M_DREMU_3I:
10483 dbl = 1;
10484 s = "ddivu";
10485 s2 = "mfhi";
10486 do_divi:
b0e6f033 10487 if (imm_expr.X_add_number == 0)
252b5132 10488 {
1661c76c 10489 as_warn (_("divide by zero"));
252b5132 10490 if (mips_trap)
df58fc94 10491 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10492 else
df58fc94 10493 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10494 break;
252b5132 10495 }
b0e6f033 10496 if (imm_expr.X_add_number == 1)
252b5132
RH
10497 {
10498 if (strcmp (s2, "mflo") == 0)
c0ebe874 10499 move_register (op[0], op[1]);
252b5132 10500 else
c0ebe874 10501 move_register (op[0], ZERO);
8fc2e39e 10502 break;
252b5132 10503 }
b0e6f033 10504 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
252b5132
RH
10505 {
10506 if (strcmp (s2, "mflo") == 0)
c0ebe874 10507 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
252b5132 10508 else
c0ebe874 10509 move_register (op[0], ZERO);
8fc2e39e 10510 break;
252b5132
RH
10511 }
10512
8fc2e39e 10513 used_at = 1;
67c0d1eb 10514 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
10515 macro_build (NULL, s, "z,s,t", op[1], AT);
10516 macro_build (NULL, s2, MFHL_FMT, op[0]);
252b5132
RH
10517 break;
10518
10519 case M_DIVU_3:
10520 s = "divu";
10521 s2 = "mflo";
10522 goto do_divu3;
10523 case M_REMU_3:
10524 s = "divu";
10525 s2 = "mfhi";
10526 goto do_divu3;
10527 case M_DDIVU_3:
10528 s = "ddivu";
10529 s2 = "mflo";
10530 goto do_divu3;
10531 case M_DREMU_3:
10532 s = "ddivu";
10533 s2 = "mfhi";
10534 do_divu3:
7d10b47d 10535 start_noreorder ();
252b5132
RH
10536 if (mips_trap)
10537 {
c0ebe874
RS
10538 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10539 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10540 /* We want to close the noreorder block as soon as possible, so
10541 that later insns are available for delay slot filling. */
7d10b47d 10542 end_noreorder ();
252b5132
RH
10543 }
10544 else
10545 {
df58fc94
RS
10546 if (mips_opts.micromips)
10547 micromips_label_expr (&label_expr);
10548 else
10549 label_expr.X_add_number = 8;
c0ebe874
RS
10550 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10551 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10552
10553 /* We want to close the noreorder block as soon as possible, so
10554 that later insns are available for delay slot filling. */
7d10b47d 10555 end_noreorder ();
df58fc94
RS
10556 macro_build (NULL, "break", BRK_FMT, 7);
10557 if (mips_opts.micromips)
10558 micromips_add_label ();
252b5132 10559 }
c0ebe874 10560 macro_build (NULL, s2, MFHL_FMT, op[0]);
8fc2e39e 10561 break;
252b5132 10562
1abe91b1
MR
10563 case M_DLCA_AB:
10564 dbl = 1;
1a0670f3 10565 /* Fall through. */
1abe91b1
MR
10566 case M_LCA_AB:
10567 call = 1;
10568 goto do_la;
252b5132
RH
10569 case M_DLA_AB:
10570 dbl = 1;
1a0670f3 10571 /* Fall through. */
252b5132 10572 case M_LA_AB:
1abe91b1 10573 do_la:
252b5132
RH
10574 /* Load the address of a symbol into a register. If breg is not
10575 zero, we then add a base register to it. */
10576
c0ebe874 10577 breg = op[2];
bad1aba3 10578 if (dbl && GPR_SIZE == 32)
ece794d9
MF
10579 as_warn (_("dla used to load 32-bit register; recommend using la "
10580 "instead"));
3bec30a8 10581
90ecf173 10582 if (!dbl && HAVE_64BIT_OBJECTS)
ece794d9
MF
10583 as_warn (_("la used to load 64-bit address; recommend using dla "
10584 "instead"));
3bec30a8 10585
f2ae14a1 10586 if (small_offset_p (0, align, 16))
0c11417f 10587 {
c0ebe874 10588 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
f2ae14a1 10589 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8fc2e39e 10590 break;
0c11417f
MR
10591 }
10592
c0ebe874 10593 if (mips_opts.at && (op[0] == breg))
afdbd6d0
CD
10594 {
10595 tempreg = AT;
10596 used_at = 1;
10597 }
10598 else
c0ebe874 10599 tempreg = op[0];
afdbd6d0 10600
252b5132
RH
10601 if (offset_expr.X_op != O_symbol
10602 && offset_expr.X_op != O_constant)
10603 {
1661c76c 10604 as_bad (_("expression too complex"));
252b5132
RH
10605 offset_expr.X_op = O_constant;
10606 }
10607
252b5132 10608 if (offset_expr.X_op == O_constant)
aed1a261 10609 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
252b5132
RH
10610 else if (mips_pic == NO_PIC)
10611 {
d6bc6245 10612 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 10613 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
10614 Otherwise we want
10615 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10616 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10617 If we have a constant, we need two instructions anyhow,
d6bc6245 10618 so we may as well always use the latter form.
76b3015f 10619
6caf9ef4
TS
10620 With 64bit address space and a usable $at we want
10621 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10622 lui $at,<sym> (BFD_RELOC_HI16_S)
10623 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10624 daddiu $at,<sym> (BFD_RELOC_LO16)
10625 dsll32 $tempreg,0
10626 daddu $tempreg,$tempreg,$at
10627
10628 If $at is already in use, we use a path which is suboptimal
10629 on superscalar processors.
10630 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10631 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10632 dsll $tempreg,16
10633 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10634 dsll $tempreg,16
10635 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10636
10637 For GP relative symbols in 64bit address space we can use
10638 the same sequence as in 32bit address space. */
aed1a261 10639 if (HAVE_64BIT_SYMBOLS)
252b5132 10640 {
6caf9ef4
TS
10641 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10642 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10643 {
10644 relax_start (offset_expr.X_add_symbol);
10645 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10646 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10647 relax_switch ();
10648 }
d6bc6245 10649
741fe287 10650 if (used_at == 0 && mips_opts.at)
98d3f06f 10651 {
df58fc94 10652 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10653 tempreg, BFD_RELOC_MIPS_HIGHEST);
df58fc94 10654 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10655 AT, BFD_RELOC_HI16_S);
67c0d1eb 10656 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10657 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
67c0d1eb 10658 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10659 AT, AT, BFD_RELOC_LO16);
df58fc94 10660 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 10661 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
98d3f06f
KH
10662 used_at = 1;
10663 }
10664 else
10665 {
df58fc94 10666 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10667 tempreg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb 10668 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10669 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 10670 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10671 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10672 tempreg, tempreg, BFD_RELOC_HI16_S);
df58fc94 10673 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10674 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10675 tempreg, tempreg, BFD_RELOC_LO16);
98d3f06f 10676 }
6caf9ef4
TS
10677
10678 if (mips_relax.sequence)
10679 relax_end ();
98d3f06f
KH
10680 }
10681 else
10682 {
10683 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 10684 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
98d3f06f 10685 {
4d7206a2 10686 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10687 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10688 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 10689 relax_switch ();
98d3f06f 10690 }
6943caf0 10691 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
1661c76c 10692 as_bad (_("offset too large"));
67c0d1eb
RS
10693 macro_build_lui (&offset_expr, tempreg);
10694 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10695 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2
RS
10696 if (mips_relax.sequence)
10697 relax_end ();
98d3f06f 10698 }
252b5132 10699 }
0a44bf69 10700 else if (!mips_big_got && !HAVE_NEWABI)
252b5132 10701 {
9117d219
NC
10702 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10703
252b5132
RH
10704 /* If this is a reference to an external symbol, and there
10705 is no constant, we want
10706 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
1abe91b1 10707 or for lca or if tempreg is PIC_CALL_REG
9117d219 10708 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
252b5132
RH
10709 For a local symbol, we want
10710 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10711 nop
10712 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10713
10714 If we have a small constant, and this is a reference to
10715 an external symbol, we want
10716 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10717 nop
10718 addiu $tempreg,$tempreg,<constant>
10719 For a local symbol, we want the same instruction
10720 sequence, but we output a BFD_RELOC_LO16 reloc on the
10721 addiu instruction.
10722
10723 If we have a large constant, and this is a reference to
10724 an external symbol, we want
10725 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10726 lui $at,<hiconstant>
10727 addiu $at,$at,<loconstant>
10728 addu $tempreg,$tempreg,$at
10729 For a local symbol, we want the same instruction
10730 sequence, but we output a BFD_RELOC_LO16 reloc on the
ed6fb7bd 10731 addiu instruction.
ed6fb7bd
SC
10732 */
10733
4d7206a2 10734 if (offset_expr.X_add_number == 0)
252b5132 10735 {
0a44bf69
RS
10736 if (mips_pic == SVR4_PIC
10737 && breg == 0
10738 && (call || tempreg == PIC_CALL_REG))
4d7206a2
RS
10739 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10740
10741 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10742 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10743 lw_reloc_type, mips_gp_register);
4d7206a2 10744 if (breg != 0)
252b5132
RH
10745 {
10746 /* We're going to put in an addu instruction using
10747 tempreg, so we may as well insert the nop right
10748 now. */
269137b2 10749 load_delay_nop ();
252b5132 10750 }
4d7206a2 10751 relax_switch ();
67c0d1eb
RS
10752 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10753 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 10754 load_delay_nop ();
67c0d1eb
RS
10755 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10756 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2 10757 relax_end ();
252b5132
RH
10758 /* FIXME: If breg == 0, and the next instruction uses
10759 $tempreg, then if this variant case is used an extra
10760 nop will be generated. */
10761 }
4d7206a2
RS
10762 else if (offset_expr.X_add_number >= -0x8000
10763 && offset_expr.X_add_number < 0x8000)
252b5132 10764 {
67c0d1eb 10765 load_got_offset (tempreg, &offset_expr);
269137b2 10766 load_delay_nop ();
67c0d1eb 10767 add_got_offset (tempreg, &offset_expr);
252b5132
RH
10768 }
10769 else
10770 {
4d7206a2
RS
10771 expr1.X_add_number = offset_expr.X_add_number;
10772 offset_expr.X_add_number =
43c0598f 10773 SEXT_16BIT (offset_expr.X_add_number);
67c0d1eb 10774 load_got_offset (tempreg, &offset_expr);
f6a22291 10775 offset_expr.X_add_number = expr1.X_add_number;
252b5132
RH
10776 /* If we are going to add in a base register, and the
10777 target register and the base register are the same,
10778 then we are using AT as a temporary register. Since
10779 we want to load the constant into AT, we add our
10780 current AT (from the global offset table) and the
10781 register into the register now, and pretend we were
10782 not using a base register. */
c0ebe874 10783 if (breg == op[0])
252b5132 10784 {
269137b2 10785 load_delay_nop ();
67c0d1eb 10786 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10787 op[0], AT, breg);
252b5132 10788 breg = 0;
c0ebe874 10789 tempreg = op[0];
252b5132 10790 }
f6a22291 10791 add_got_offset_hilo (tempreg, &offset_expr, AT);
252b5132
RH
10792 used_at = 1;
10793 }
10794 }
0a44bf69 10795 else if (!mips_big_got && HAVE_NEWABI)
f5040a92 10796 {
67c0d1eb 10797 int add_breg_early = 0;
f5040a92
AO
10798
10799 /* If this is a reference to an external, and there is no
10800 constant, or local symbol (*), with or without a
10801 constant, we want
10802 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
1abe91b1 10803 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10804 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10805
10806 If we have a small constant, and this is a reference to
10807 an external symbol, we want
10808 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10809 addiu $tempreg,$tempreg,<constant>
10810
10811 If we have a large constant, and this is a reference to
10812 an external symbol, we want
10813 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10814 lui $at,<hiconstant>
10815 addiu $at,$at,<loconstant>
10816 addu $tempreg,$tempreg,$at
10817
10818 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10819 local symbols, even though it introduces an additional
10820 instruction. */
10821
f5040a92
AO
10822 if (offset_expr.X_add_number)
10823 {
4d7206a2 10824 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10825 offset_expr.X_add_number = 0;
10826
4d7206a2 10827 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10828 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10829 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10830
10831 if (expr1.X_add_number >= -0x8000
10832 && expr1.X_add_number < 0x8000)
10833 {
67c0d1eb
RS
10834 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10835 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10836 }
ecd13cd3 10837 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10838 {
c0ebe874
RS
10839 unsigned int dreg;
10840
f5040a92
AO
10841 /* If we are going to add in a base register, and the
10842 target register and the base register are the same,
10843 then we are using AT as a temporary register. Since
10844 we want to load the constant into AT, we add our
10845 current AT (from the global offset table) and the
10846 register into the register now, and pretend we were
10847 not using a base register. */
c0ebe874 10848 if (breg != op[0])
f5040a92
AO
10849 dreg = tempreg;
10850 else
10851 {
9c2799c2 10852 gas_assert (tempreg == AT);
67c0d1eb 10853 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10854 op[0], AT, breg);
10855 dreg = op[0];
67c0d1eb 10856 add_breg_early = 1;
f5040a92
AO
10857 }
10858
f6a22291 10859 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10860 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10861 dreg, dreg, AT);
f5040a92 10862
f5040a92
AO
10863 used_at = 1;
10864 }
10865 else
10866 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10867
4d7206a2 10868 relax_switch ();
f5040a92
AO
10869 offset_expr.X_add_number = expr1.X_add_number;
10870
67c0d1eb
RS
10871 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10872 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10873 if (add_breg_early)
f5040a92 10874 {
67c0d1eb 10875 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10876 op[0], tempreg, breg);
f5040a92 10877 breg = 0;
c0ebe874 10878 tempreg = op[0];
f5040a92 10879 }
4d7206a2 10880 relax_end ();
f5040a92 10881 }
4d7206a2 10882 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
f5040a92 10883 {
4d7206a2 10884 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10885 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10886 BFD_RELOC_MIPS_CALL16, mips_gp_register);
4d7206a2 10887 relax_switch ();
67c0d1eb
RS
10888 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10889 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2 10890 relax_end ();
f5040a92 10891 }
4d7206a2 10892 else
f5040a92 10893 {
67c0d1eb
RS
10894 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10895 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10896 }
10897 }
0a44bf69 10898 else if (mips_big_got && !HAVE_NEWABI)
252b5132 10899 {
67c0d1eb 10900 int gpdelay;
9117d219
NC
10901 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10902 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
ed6fb7bd 10903 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
252b5132
RH
10904
10905 /* This is the large GOT case. If this is a reference to an
10906 external symbol, and there is no constant, we want
10907 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10908 addu $tempreg,$tempreg,$gp
10909 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10910 or for lca or if tempreg is PIC_CALL_REG
9117d219
NC
10911 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10912 addu $tempreg,$tempreg,$gp
10913 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
252b5132
RH
10914 For a local symbol, we want
10915 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10916 nop
10917 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10918
10919 If we have a small constant, and this is a reference to
10920 an external symbol, we want
10921 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10922 addu $tempreg,$tempreg,$gp
10923 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10924 nop
10925 addiu $tempreg,$tempreg,<constant>
10926 For a local symbol, we want
10927 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10928 nop
10929 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10930
10931 If we have a large constant, and this is a reference to
10932 an external symbol, we want
10933 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10934 addu $tempreg,$tempreg,$gp
10935 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10936 lui $at,<hiconstant>
10937 addiu $at,$at,<loconstant>
10938 addu $tempreg,$tempreg,$at
10939 For a local symbol, we want
10940 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10941 lui $at,<hiconstant>
10942 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10943 addu $tempreg,$tempreg,$at
f5040a92 10944 */
438c16b8 10945
252b5132
RH
10946 expr1.X_add_number = offset_expr.X_add_number;
10947 offset_expr.X_add_number = 0;
4d7206a2 10948 relax_start (offset_expr.X_add_symbol);
67c0d1eb 10949 gpdelay = reg_needs_delay (mips_gp_register);
1abe91b1
MR
10950 if (expr1.X_add_number == 0 && breg == 0
10951 && (call || tempreg == PIC_CALL_REG))
9117d219
NC
10952 {
10953 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10954 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10955 }
df58fc94 10956 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10957 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10958 tempreg, tempreg, mips_gp_register);
67c0d1eb 10959 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 10960 tempreg, lw_reloc_type, tempreg);
252b5132
RH
10961 if (expr1.X_add_number == 0)
10962 {
67c0d1eb 10963 if (breg != 0)
252b5132
RH
10964 {
10965 /* We're going to put in an addu instruction using
10966 tempreg, so we may as well insert the nop right
10967 now. */
269137b2 10968 load_delay_nop ();
252b5132 10969 }
252b5132
RH
10970 }
10971 else if (expr1.X_add_number >= -0x8000
10972 && expr1.X_add_number < 0x8000)
10973 {
269137b2 10974 load_delay_nop ();
67c0d1eb 10975 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10976 tempreg, tempreg, BFD_RELOC_LO16);
252b5132
RH
10977 }
10978 else
10979 {
c0ebe874
RS
10980 unsigned int dreg;
10981
252b5132
RH
10982 /* If we are going to add in a base register, and the
10983 target register and the base register are the same,
10984 then we are using AT as a temporary register. Since
10985 we want to load the constant into AT, we add our
10986 current AT (from the global offset table) and the
10987 register into the register now, and pretend we were
10988 not using a base register. */
c0ebe874 10989 if (breg != op[0])
67c0d1eb 10990 dreg = tempreg;
252b5132
RH
10991 else
10992 {
9c2799c2 10993 gas_assert (tempreg == AT);
269137b2 10994 load_delay_nop ();
67c0d1eb 10995 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10996 op[0], AT, breg);
10997 dreg = op[0];
252b5132
RH
10998 }
10999
f6a22291 11000 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 11001 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
252b5132 11002
252b5132
RH
11003 used_at = 1;
11004 }
43c0598f 11005 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
4d7206a2 11006 relax_switch ();
252b5132 11007
67c0d1eb 11008 if (gpdelay)
252b5132
RH
11009 {
11010 /* This is needed because this instruction uses $gp, but
f5040a92 11011 the first instruction on the main stream does not. */
67c0d1eb 11012 macro_build (NULL, "nop", "");
252b5132 11013 }
ed6fb7bd 11014
67c0d1eb
RS
11015 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11016 local_reloc_type, mips_gp_register);
f5040a92 11017 if (expr1.X_add_number >= -0x8000
252b5132
RH
11018 && expr1.X_add_number < 0x8000)
11019 {
269137b2 11020 load_delay_nop ();
67c0d1eb
RS
11021 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11022 tempreg, tempreg, BFD_RELOC_LO16);
252b5132 11023 /* FIXME: If add_number is 0, and there was no base
f5040a92
AO
11024 register, the external symbol case ended with a load,
11025 so if the symbol turns out to not be external, and
11026 the next instruction uses tempreg, an unnecessary nop
11027 will be inserted. */
252b5132
RH
11028 }
11029 else
11030 {
c0ebe874 11031 if (breg == op[0])
252b5132
RH
11032 {
11033 /* We must add in the base register now, as in the
f5040a92 11034 external symbol case. */
9c2799c2 11035 gas_assert (tempreg == AT);
269137b2 11036 load_delay_nop ();
67c0d1eb 11037 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11038 op[0], AT, breg);
11039 tempreg = op[0];
252b5132 11040 /* We set breg to 0 because we have arranged to add
f5040a92 11041 it in in both cases. */
252b5132
RH
11042 breg = 0;
11043 }
11044
67c0d1eb
RS
11045 macro_build_lui (&expr1, AT);
11046 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11047 AT, AT, BFD_RELOC_LO16);
67c0d1eb 11048 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11049 tempreg, tempreg, AT);
8fc2e39e 11050 used_at = 1;
252b5132 11051 }
4d7206a2 11052 relax_end ();
252b5132 11053 }
0a44bf69 11054 else if (mips_big_got && HAVE_NEWABI)
f5040a92 11055 {
f5040a92
AO
11056 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11057 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
67c0d1eb 11058 int add_breg_early = 0;
f5040a92
AO
11059
11060 /* This is the large GOT case. If this is a reference to an
11061 external symbol, and there is no constant, we want
11062 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11063 add $tempreg,$tempreg,$gp
11064 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 11065 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
11066 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11067 add $tempreg,$tempreg,$gp
11068 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11069
11070 If we have a small constant, and this is a reference to
11071 an external symbol, we want
11072 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11073 add $tempreg,$tempreg,$gp
11074 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11075 addi $tempreg,$tempreg,<constant>
11076
11077 If we have a large constant, and this is a reference to
11078 an external symbol, we want
11079 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11080 addu $tempreg,$tempreg,$gp
11081 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11082 lui $at,<hiconstant>
11083 addi $at,$at,<loconstant>
11084 add $tempreg,$tempreg,$at
11085
11086 If we have NewABI, and we know it's a local symbol, we want
11087 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11088 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11089 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11090
4d7206a2 11091 relax_start (offset_expr.X_add_symbol);
f5040a92 11092
4d7206a2 11093 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11094 offset_expr.X_add_number = 0;
11095
1abe91b1
MR
11096 if (expr1.X_add_number == 0 && breg == 0
11097 && (call || tempreg == PIC_CALL_REG))
f5040a92
AO
11098 {
11099 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11100 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11101 }
df58fc94 11102 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 11103 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11104 tempreg, tempreg, mips_gp_register);
67c0d1eb
RS
11105 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11106 tempreg, lw_reloc_type, tempreg);
f5040a92
AO
11107
11108 if (expr1.X_add_number == 0)
4d7206a2 11109 ;
f5040a92
AO
11110 else if (expr1.X_add_number >= -0x8000
11111 && expr1.X_add_number < 0x8000)
11112 {
67c0d1eb 11113 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11114 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 11115 }
ecd13cd3 11116 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 11117 {
c0ebe874
RS
11118 unsigned int dreg;
11119
f5040a92
AO
11120 /* If we are going to add in a base register, and the
11121 target register and the base register are the same,
11122 then we are using AT as a temporary register. Since
11123 we want to load the constant into AT, we add our
11124 current AT (from the global offset table) and the
11125 register into the register now, and pretend we were
11126 not using a base register. */
c0ebe874 11127 if (breg != op[0])
f5040a92
AO
11128 dreg = tempreg;
11129 else
11130 {
9c2799c2 11131 gas_assert (tempreg == AT);
67c0d1eb 11132 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11133 op[0], AT, breg);
11134 dreg = op[0];
67c0d1eb 11135 add_breg_early = 1;
f5040a92
AO
11136 }
11137
f6a22291 11138 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 11139 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
f5040a92 11140
f5040a92
AO
11141 used_at = 1;
11142 }
11143 else
11144 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11145
4d7206a2 11146 relax_switch ();
f5040a92 11147 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
11148 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11149 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11150 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11151 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11152 if (add_breg_early)
f5040a92 11153 {
67c0d1eb 11154 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 11155 op[0], tempreg, breg);
f5040a92 11156 breg = 0;
c0ebe874 11157 tempreg = op[0];
f5040a92 11158 }
4d7206a2 11159 relax_end ();
f5040a92 11160 }
252b5132
RH
11161 else
11162 abort ();
11163
11164 if (breg != 0)
c0ebe874 11165 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
252b5132
RH
11166 break;
11167
52b6b6b9 11168 case M_MSGSND:
df58fc94 11169 gas_assert (!mips_opts.micromips);
c0ebe874 11170 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
c7af4273 11171 break;
52b6b6b9
JM
11172
11173 case M_MSGLD:
df58fc94 11174 gas_assert (!mips_opts.micromips);
c8276761 11175 macro_build (NULL, "c2", "C", 0x02);
c7af4273 11176 break;
52b6b6b9
JM
11177
11178 case M_MSGLD_T:
df58fc94 11179 gas_assert (!mips_opts.micromips);
c0ebe874 11180 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
c7af4273 11181 break;
52b6b6b9
JM
11182
11183 case M_MSGWAIT:
df58fc94 11184 gas_assert (!mips_opts.micromips);
52b6b6b9 11185 macro_build (NULL, "c2", "C", 3);
c7af4273 11186 break;
52b6b6b9
JM
11187
11188 case M_MSGWAIT_T:
df58fc94 11189 gas_assert (!mips_opts.micromips);
c0ebe874 11190 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
c7af4273 11191 break;
52b6b6b9 11192
252b5132
RH
11193 case M_J_A:
11194 /* The j instruction may not be used in PIC code, since it
11195 requires an absolute address. We convert it to a b
11196 instruction. */
11197 if (mips_pic == NO_PIC)
67c0d1eb 11198 macro_build (&offset_expr, "j", "a");
252b5132 11199 else
67c0d1eb 11200 macro_build (&offset_expr, "b", "p");
8fc2e39e 11201 break;
252b5132
RH
11202
11203 /* The jal instructions must be handled as macros because when
11204 generating PIC code they expand to multi-instruction
11205 sequences. Normally they are simple instructions. */
df58fc94 11206 case M_JALS_1:
c0ebe874
RS
11207 op[1] = op[0];
11208 op[0] = RA;
df58fc94
RS
11209 /* Fall through. */
11210 case M_JALS_2:
11211 gas_assert (mips_opts.micromips);
833794fc
MR
11212 if (mips_opts.insn32)
11213 {
1661c76c 11214 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11215 break;
11216 }
df58fc94
RS
11217 jals = 1;
11218 goto jal;
252b5132 11219 case M_JAL_1:
c0ebe874
RS
11220 op[1] = op[0];
11221 op[0] = RA;
252b5132
RH
11222 /* Fall through. */
11223 case M_JAL_2:
df58fc94 11224 jal:
3e722fb5 11225 if (mips_pic == NO_PIC)
df58fc94
RS
11226 {
11227 s = jals ? "jalrs" : "jalr";
e64af278 11228 if (mips_opts.micromips
833794fc 11229 && !mips_opts.insn32
c0ebe874 11230 && op[0] == RA
e64af278 11231 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11232 macro_build (NULL, s, "mj", op[1]);
df58fc94 11233 else
c0ebe874 11234 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
df58fc94 11235 }
0a44bf69 11236 else
252b5132 11237 {
df58fc94
RS
11238 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11239 && mips_cprestore_offset >= 0);
11240
c0ebe874 11241 if (op[1] != PIC_CALL_REG)
252b5132 11242 as_warn (_("MIPS PIC call to register other than $25"));
bdaaa2e1 11243
833794fc
MR
11244 s = ((mips_opts.micromips
11245 && !mips_opts.insn32
11246 && (!mips_opts.noreorder || cprestore))
df58fc94 11247 ? "jalrs" : "jalr");
e64af278 11248 if (mips_opts.micromips
833794fc 11249 && !mips_opts.insn32
c0ebe874 11250 && op[0] == RA
e64af278 11251 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11252 macro_build (NULL, s, "mj", op[1]);
df58fc94 11253 else
c0ebe874 11254 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
0a44bf69 11255 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
252b5132 11256 {
6478892d 11257 if (mips_cprestore_offset < 0)
1661c76c 11258 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11259 else
11260 {
90ecf173 11261 if (!mips_frame_reg_valid)
7a621144 11262 {
1661c76c 11263 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11264 /* Quiet this warning. */
11265 mips_frame_reg_valid = 1;
11266 }
90ecf173 11267 if (!mips_cprestore_valid)
7a621144 11268 {
1661c76c 11269 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11270 /* Quiet this warning. */
11271 mips_cprestore_valid = 1;
11272 }
d3fca0b5
MR
11273 if (mips_opts.noreorder)
11274 macro_build (NULL, "nop", "");
6478892d 11275 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11276 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11277 mips_gp_register,
256ab948
TS
11278 mips_frame_reg,
11279 HAVE_64BIT_ADDRESSES);
6478892d 11280 }
252b5132
RH
11281 }
11282 }
252b5132 11283
8fc2e39e 11284 break;
252b5132 11285
df58fc94
RS
11286 case M_JALS_A:
11287 gas_assert (mips_opts.micromips);
833794fc
MR
11288 if (mips_opts.insn32)
11289 {
1661c76c 11290 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11291 break;
11292 }
df58fc94
RS
11293 jals = 1;
11294 /* Fall through. */
252b5132
RH
11295 case M_JAL_A:
11296 if (mips_pic == NO_PIC)
df58fc94 11297 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
252b5132
RH
11298 else if (mips_pic == SVR4_PIC)
11299 {
11300 /* If this is a reference to an external symbol, and we are
11301 using a small GOT, we want
11302 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11303 nop
f9419b05 11304 jalr $ra,$25
252b5132
RH
11305 nop
11306 lw $gp,cprestore($sp)
11307 The cprestore value is set using the .cprestore
11308 pseudo-op. If we are using a big GOT, we want
11309 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11310 addu $25,$25,$gp
11311 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11312 nop
f9419b05 11313 jalr $ra,$25
252b5132
RH
11314 nop
11315 lw $gp,cprestore($sp)
11316 If the symbol is not external, we want
11317 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11318 nop
11319 addiu $25,$25,<sym> (BFD_RELOC_LO16)
f9419b05 11320 jalr $ra,$25
252b5132 11321 nop
438c16b8 11322 lw $gp,cprestore($sp)
f5040a92
AO
11323
11324 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11325 sequences above, minus nops, unless the symbol is local,
11326 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11327 GOT_DISP. */
438c16b8 11328 if (HAVE_NEWABI)
252b5132 11329 {
90ecf173 11330 if (!mips_big_got)
f5040a92 11331 {
4d7206a2 11332 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11333 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11334 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
f5040a92 11335 mips_gp_register);
4d7206a2 11336 relax_switch ();
67c0d1eb
RS
11337 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11338 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
4d7206a2
RS
11339 mips_gp_register);
11340 relax_end ();
f5040a92
AO
11341 }
11342 else
11343 {
4d7206a2 11344 relax_start (offset_expr.X_add_symbol);
df58fc94 11345 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11346 BFD_RELOC_MIPS_CALL_HI16);
11347 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11348 PIC_CALL_REG, mips_gp_register);
11349 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11350 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11351 PIC_CALL_REG);
4d7206a2 11352 relax_switch ();
67c0d1eb
RS
11353 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11354 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11355 mips_gp_register);
11356 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11357 PIC_CALL_REG, PIC_CALL_REG,
17a2f251 11358 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 11359 relax_end ();
f5040a92 11360 }
684022ea 11361
df58fc94 11362 macro_build_jalr (&offset_expr, 0);
252b5132
RH
11363 }
11364 else
11365 {
4d7206a2 11366 relax_start (offset_expr.X_add_symbol);
90ecf173 11367 if (!mips_big_got)
438c16b8 11368 {
67c0d1eb
RS
11369 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11370 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
17a2f251 11371 mips_gp_register);
269137b2 11372 load_delay_nop ();
4d7206a2 11373 relax_switch ();
438c16b8 11374 }
252b5132 11375 else
252b5132 11376 {
67c0d1eb
RS
11377 int gpdelay;
11378
11379 gpdelay = reg_needs_delay (mips_gp_register);
df58fc94 11380 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11381 BFD_RELOC_MIPS_CALL_HI16);
11382 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11383 PIC_CALL_REG, mips_gp_register);
11384 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11385 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11386 PIC_CALL_REG);
269137b2 11387 load_delay_nop ();
4d7206a2 11388 relax_switch ();
67c0d1eb
RS
11389 if (gpdelay)
11390 macro_build (NULL, "nop", "");
252b5132 11391 }
67c0d1eb
RS
11392 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11393 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
4d7206a2 11394 mips_gp_register);
269137b2 11395 load_delay_nop ();
67c0d1eb
RS
11396 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11397 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
4d7206a2 11398 relax_end ();
df58fc94 11399 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
438c16b8 11400
6478892d 11401 if (mips_cprestore_offset < 0)
1661c76c 11402 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11403 else
11404 {
90ecf173 11405 if (!mips_frame_reg_valid)
7a621144 11406 {
1661c76c 11407 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11408 /* Quiet this warning. */
11409 mips_frame_reg_valid = 1;
11410 }
90ecf173 11411 if (!mips_cprestore_valid)
7a621144 11412 {
1661c76c 11413 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11414 /* Quiet this warning. */
11415 mips_cprestore_valid = 1;
11416 }
6478892d 11417 if (mips_opts.noreorder)
67c0d1eb 11418 macro_build (NULL, "nop", "");
6478892d 11419 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11420 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11421 mips_gp_register,
256ab948
TS
11422 mips_frame_reg,
11423 HAVE_64BIT_ADDRESSES);
6478892d 11424 }
252b5132
RH
11425 }
11426 }
0a44bf69 11427 else if (mips_pic == VXWORKS_PIC)
1661c76c 11428 as_bad (_("non-PIC jump used in PIC library"));
252b5132
RH
11429 else
11430 abort ();
11431
8fc2e39e 11432 break;
252b5132 11433
7f3c4072 11434 case M_LBUE_AB:
7f3c4072
CM
11435 s = "lbue";
11436 fmt = "t,+j(b)";
11437 offbits = 9;
11438 goto ld_st;
11439 case M_LHUE_AB:
7f3c4072
CM
11440 s = "lhue";
11441 fmt = "t,+j(b)";
11442 offbits = 9;
11443 goto ld_st;
11444 case M_LBE_AB:
7f3c4072
CM
11445 s = "lbe";
11446 fmt = "t,+j(b)";
11447 offbits = 9;
11448 goto ld_st;
11449 case M_LHE_AB:
7f3c4072
CM
11450 s = "lhe";
11451 fmt = "t,+j(b)";
11452 offbits = 9;
11453 goto ld_st;
11454 case M_LLE_AB:
7f3c4072
CM
11455 s = "lle";
11456 fmt = "t,+j(b)";
11457 offbits = 9;
11458 goto ld_st;
11459 case M_LWE_AB:
7f3c4072
CM
11460 s = "lwe";
11461 fmt = "t,+j(b)";
11462 offbits = 9;
11463 goto ld_st;
11464 case M_LWLE_AB:
7f3c4072
CM
11465 s = "lwle";
11466 fmt = "t,+j(b)";
11467 offbits = 9;
11468 goto ld_st;
11469 case M_LWRE_AB:
7f3c4072
CM
11470 s = "lwre";
11471 fmt = "t,+j(b)";
11472 offbits = 9;
11473 goto ld_st;
11474 case M_SBE_AB:
7f3c4072
CM
11475 s = "sbe";
11476 fmt = "t,+j(b)";
11477 offbits = 9;
11478 goto ld_st;
11479 case M_SCE_AB:
7f3c4072
CM
11480 s = "sce";
11481 fmt = "t,+j(b)";
11482 offbits = 9;
11483 goto ld_st;
11484 case M_SHE_AB:
7f3c4072
CM
11485 s = "she";
11486 fmt = "t,+j(b)";
11487 offbits = 9;
11488 goto ld_st;
11489 case M_SWE_AB:
7f3c4072
CM
11490 s = "swe";
11491 fmt = "t,+j(b)";
11492 offbits = 9;
11493 goto ld_st;
11494 case M_SWLE_AB:
7f3c4072
CM
11495 s = "swle";
11496 fmt = "t,+j(b)";
11497 offbits = 9;
11498 goto ld_st;
11499 case M_SWRE_AB:
7f3c4072
CM
11500 s = "swre";
11501 fmt = "t,+j(b)";
11502 offbits = 9;
11503 goto ld_st;
dec0624d 11504 case M_ACLR_AB:
dec0624d 11505 s = "aclr";
dec0624d 11506 fmt = "\\,~(b)";
7f3c4072 11507 offbits = 12;
dec0624d
MR
11508 goto ld_st;
11509 case M_ASET_AB:
dec0624d 11510 s = "aset";
dec0624d 11511 fmt = "\\,~(b)";
7f3c4072 11512 offbits = 12;
dec0624d 11513 goto ld_st;
252b5132
RH
11514 case M_LB_AB:
11515 s = "lb";
df58fc94 11516 fmt = "t,o(b)";
252b5132
RH
11517 goto ld;
11518 case M_LBU_AB:
11519 s = "lbu";
df58fc94 11520 fmt = "t,o(b)";
252b5132
RH
11521 goto ld;
11522 case M_LH_AB:
11523 s = "lh";
df58fc94 11524 fmt = "t,o(b)";
252b5132
RH
11525 goto ld;
11526 case M_LHU_AB:
11527 s = "lhu";
df58fc94 11528 fmt = "t,o(b)";
252b5132
RH
11529 goto ld;
11530 case M_LW_AB:
11531 s = "lw";
df58fc94 11532 fmt = "t,o(b)";
252b5132
RH
11533 goto ld;
11534 case M_LWC0_AB:
df58fc94 11535 gas_assert (!mips_opts.micromips);
252b5132 11536 s = "lwc0";
df58fc94 11537 fmt = "E,o(b)";
bdaaa2e1 11538 /* Itbl support may require additional care here. */
252b5132 11539 coproc = 1;
df58fc94 11540 goto ld_st;
252b5132
RH
11541 case M_LWC1_AB:
11542 s = "lwc1";
df58fc94 11543 fmt = "T,o(b)";
bdaaa2e1 11544 /* Itbl support may require additional care here. */
252b5132 11545 coproc = 1;
df58fc94 11546 goto ld_st;
252b5132
RH
11547 case M_LWC2_AB:
11548 s = "lwc2";
df58fc94 11549 fmt = COP12_FMT;
7361da2c
AB
11550 offbits = (mips_opts.micromips ? 12
11551 : ISA_IS_R6 (mips_opts.isa) ? 11
11552 : 16);
bdaaa2e1 11553 /* Itbl support may require additional care here. */
252b5132 11554 coproc = 1;
df58fc94 11555 goto ld_st;
252b5132 11556 case M_LWC3_AB:
df58fc94 11557 gas_assert (!mips_opts.micromips);
252b5132 11558 s = "lwc3";
df58fc94 11559 fmt = "E,o(b)";
bdaaa2e1 11560 /* Itbl support may require additional care here. */
252b5132 11561 coproc = 1;
df58fc94 11562 goto ld_st;
252b5132
RH
11563 case M_LWL_AB:
11564 s = "lwl";
df58fc94 11565 fmt = MEM12_FMT;
7f3c4072 11566 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11567 goto ld_st;
252b5132
RH
11568 case M_LWR_AB:
11569 s = "lwr";
df58fc94 11570 fmt = MEM12_FMT;
7f3c4072 11571 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11572 goto ld_st;
252b5132 11573 case M_LDC1_AB:
252b5132 11574 s = "ldc1";
df58fc94 11575 fmt = "T,o(b)";
bdaaa2e1 11576 /* Itbl support may require additional care here. */
252b5132 11577 coproc = 1;
df58fc94 11578 goto ld_st;
252b5132
RH
11579 case M_LDC2_AB:
11580 s = "ldc2";
df58fc94 11581 fmt = COP12_FMT;
7361da2c
AB
11582 offbits = (mips_opts.micromips ? 12
11583 : ISA_IS_R6 (mips_opts.isa) ? 11
11584 : 16);
bdaaa2e1 11585 /* Itbl support may require additional care here. */
252b5132 11586 coproc = 1;
df58fc94 11587 goto ld_st;
c77c0862 11588 case M_LQC2_AB:
c77c0862 11589 s = "lqc2";
14daeee3 11590 fmt = "+7,o(b)";
c77c0862
RS
11591 /* Itbl support may require additional care here. */
11592 coproc = 1;
11593 goto ld_st;
252b5132
RH
11594 case M_LDC3_AB:
11595 s = "ldc3";
df58fc94 11596 fmt = "E,o(b)";
bdaaa2e1 11597 /* Itbl support may require additional care here. */
252b5132 11598 coproc = 1;
df58fc94 11599 goto ld_st;
252b5132
RH
11600 case M_LDL_AB:
11601 s = "ldl";
df58fc94 11602 fmt = MEM12_FMT;
7f3c4072 11603 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11604 goto ld_st;
252b5132
RH
11605 case M_LDR_AB:
11606 s = "ldr";
df58fc94 11607 fmt = MEM12_FMT;
7f3c4072 11608 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11609 goto ld_st;
252b5132
RH
11610 case M_LL_AB:
11611 s = "ll";
7361da2c
AB
11612 fmt = LL_SC_FMT;
11613 offbits = (mips_opts.micromips ? 12
11614 : ISA_IS_R6 (mips_opts.isa) ? 9
11615 : 16);
252b5132
RH
11616 goto ld;
11617 case M_LLD_AB:
11618 s = "lld";
7361da2c
AB
11619 fmt = LL_SC_FMT;
11620 offbits = (mips_opts.micromips ? 12
11621 : ISA_IS_R6 (mips_opts.isa) ? 9
11622 : 16);
252b5132
RH
11623 goto ld;
11624 case M_LWU_AB:
11625 s = "lwu";
df58fc94 11626 fmt = MEM12_FMT;
7f3c4072 11627 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11628 goto ld;
11629 case M_LWP_AB:
df58fc94
RS
11630 gas_assert (mips_opts.micromips);
11631 s = "lwp";
11632 fmt = "t,~(b)";
7f3c4072 11633 offbits = 12;
df58fc94
RS
11634 lp = 1;
11635 goto ld;
11636 case M_LDP_AB:
df58fc94
RS
11637 gas_assert (mips_opts.micromips);
11638 s = "ldp";
11639 fmt = "t,~(b)";
7f3c4072 11640 offbits = 12;
df58fc94
RS
11641 lp = 1;
11642 goto ld;
11643 case M_LWM_AB:
df58fc94
RS
11644 gas_assert (mips_opts.micromips);
11645 s = "lwm";
11646 fmt = "n,~(b)";
7f3c4072 11647 offbits = 12;
df58fc94
RS
11648 goto ld_st;
11649 case M_LDM_AB:
df58fc94
RS
11650 gas_assert (mips_opts.micromips);
11651 s = "ldm";
11652 fmt = "n,~(b)";
7f3c4072 11653 offbits = 12;
df58fc94
RS
11654 goto ld_st;
11655
252b5132 11656 ld:
f19ccbda 11657 /* We don't want to use $0 as tempreg. */
c0ebe874 11658 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
df58fc94 11659 goto ld_st;
252b5132 11660 else
c0ebe874 11661 tempreg = op[0] + lp;
df58fc94
RS
11662 goto ld_noat;
11663
252b5132
RH
11664 case M_SB_AB:
11665 s = "sb";
df58fc94
RS
11666 fmt = "t,o(b)";
11667 goto ld_st;
252b5132
RH
11668 case M_SH_AB:
11669 s = "sh";
df58fc94
RS
11670 fmt = "t,o(b)";
11671 goto ld_st;
252b5132
RH
11672 case M_SW_AB:
11673 s = "sw";
df58fc94
RS
11674 fmt = "t,o(b)";
11675 goto ld_st;
252b5132 11676 case M_SWC0_AB:
df58fc94 11677 gas_assert (!mips_opts.micromips);
252b5132 11678 s = "swc0";
df58fc94 11679 fmt = "E,o(b)";
bdaaa2e1 11680 /* Itbl support may require additional care here. */
252b5132 11681 coproc = 1;
df58fc94 11682 goto ld_st;
252b5132
RH
11683 case M_SWC1_AB:
11684 s = "swc1";
df58fc94 11685 fmt = "T,o(b)";
bdaaa2e1 11686 /* Itbl support may require additional care here. */
252b5132 11687 coproc = 1;
df58fc94 11688 goto ld_st;
252b5132
RH
11689 case M_SWC2_AB:
11690 s = "swc2";
df58fc94 11691 fmt = COP12_FMT;
7361da2c
AB
11692 offbits = (mips_opts.micromips ? 12
11693 : ISA_IS_R6 (mips_opts.isa) ? 11
11694 : 16);
bdaaa2e1 11695 /* Itbl support may require additional care here. */
252b5132 11696 coproc = 1;
df58fc94 11697 goto ld_st;
252b5132 11698 case M_SWC3_AB:
df58fc94 11699 gas_assert (!mips_opts.micromips);
252b5132 11700 s = "swc3";
df58fc94 11701 fmt = "E,o(b)";
bdaaa2e1 11702 /* Itbl support may require additional care here. */
252b5132 11703 coproc = 1;
df58fc94 11704 goto ld_st;
252b5132
RH
11705 case M_SWL_AB:
11706 s = "swl";
df58fc94 11707 fmt = MEM12_FMT;
7f3c4072 11708 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11709 goto ld_st;
252b5132
RH
11710 case M_SWR_AB:
11711 s = "swr";
df58fc94 11712 fmt = MEM12_FMT;
7f3c4072 11713 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11714 goto ld_st;
252b5132
RH
11715 case M_SC_AB:
11716 s = "sc";
7361da2c
AB
11717 fmt = LL_SC_FMT;
11718 offbits = (mips_opts.micromips ? 12
11719 : ISA_IS_R6 (mips_opts.isa) ? 9
11720 : 16);
df58fc94 11721 goto ld_st;
252b5132
RH
11722 case M_SCD_AB:
11723 s = "scd";
7361da2c
AB
11724 fmt = LL_SC_FMT;
11725 offbits = (mips_opts.micromips ? 12
11726 : ISA_IS_R6 (mips_opts.isa) ? 9
11727 : 16);
df58fc94 11728 goto ld_st;
d43b4baf
TS
11729 case M_CACHE_AB:
11730 s = "cache";
7361da2c
AB
11731 fmt = (mips_opts.micromips ? "k,~(b)"
11732 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11733 : "k,o(b)");
11734 offbits = (mips_opts.micromips ? 12
11735 : ISA_IS_R6 (mips_opts.isa) ? 9
11736 : 16);
7f3c4072
CM
11737 goto ld_st;
11738 case M_CACHEE_AB:
7f3c4072
CM
11739 s = "cachee";
11740 fmt = "k,+j(b)";
11741 offbits = 9;
df58fc94 11742 goto ld_st;
3eebd5eb
MR
11743 case M_PREF_AB:
11744 s = "pref";
7361da2c
AB
11745 fmt = (mips_opts.micromips ? "k,~(b)"
11746 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11747 : "k,o(b)");
11748 offbits = (mips_opts.micromips ? 12
11749 : ISA_IS_R6 (mips_opts.isa) ? 9
11750 : 16);
7f3c4072
CM
11751 goto ld_st;
11752 case M_PREFE_AB:
7f3c4072
CM
11753 s = "prefe";
11754 fmt = "k,+j(b)";
11755 offbits = 9;
df58fc94 11756 goto ld_st;
252b5132 11757 case M_SDC1_AB:
252b5132 11758 s = "sdc1";
df58fc94 11759 fmt = "T,o(b)";
252b5132 11760 coproc = 1;
bdaaa2e1 11761 /* Itbl support may require additional care here. */
df58fc94 11762 goto ld_st;
252b5132
RH
11763 case M_SDC2_AB:
11764 s = "sdc2";
df58fc94 11765 fmt = COP12_FMT;
7361da2c
AB
11766 offbits = (mips_opts.micromips ? 12
11767 : ISA_IS_R6 (mips_opts.isa) ? 11
11768 : 16);
c77c0862
RS
11769 /* Itbl support may require additional care here. */
11770 coproc = 1;
11771 goto ld_st;
11772 case M_SQC2_AB:
c77c0862 11773 s = "sqc2";
14daeee3 11774 fmt = "+7,o(b)";
bdaaa2e1 11775 /* Itbl support may require additional care here. */
252b5132 11776 coproc = 1;
df58fc94 11777 goto ld_st;
252b5132 11778 case M_SDC3_AB:
df58fc94 11779 gas_assert (!mips_opts.micromips);
252b5132 11780 s = "sdc3";
df58fc94 11781 fmt = "E,o(b)";
bdaaa2e1 11782 /* Itbl support may require additional care here. */
252b5132 11783 coproc = 1;
df58fc94 11784 goto ld_st;
252b5132
RH
11785 case M_SDL_AB:
11786 s = "sdl";
df58fc94 11787 fmt = MEM12_FMT;
7f3c4072 11788 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11789 goto ld_st;
252b5132
RH
11790 case M_SDR_AB:
11791 s = "sdr";
df58fc94 11792 fmt = MEM12_FMT;
7f3c4072 11793 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11794 goto ld_st;
11795 case M_SWP_AB:
df58fc94
RS
11796 gas_assert (mips_opts.micromips);
11797 s = "swp";
11798 fmt = "t,~(b)";
7f3c4072 11799 offbits = 12;
df58fc94
RS
11800 goto ld_st;
11801 case M_SDP_AB:
df58fc94
RS
11802 gas_assert (mips_opts.micromips);
11803 s = "sdp";
11804 fmt = "t,~(b)";
7f3c4072 11805 offbits = 12;
df58fc94
RS
11806 goto ld_st;
11807 case M_SWM_AB:
df58fc94
RS
11808 gas_assert (mips_opts.micromips);
11809 s = "swm";
11810 fmt = "n,~(b)";
7f3c4072 11811 offbits = 12;
df58fc94
RS
11812 goto ld_st;
11813 case M_SDM_AB:
df58fc94
RS
11814 gas_assert (mips_opts.micromips);
11815 s = "sdm";
11816 fmt = "n,~(b)";
7f3c4072 11817 offbits = 12;
df58fc94
RS
11818
11819 ld_st:
8fc2e39e 11820 tempreg = AT;
df58fc94 11821 ld_noat:
c0ebe874 11822 breg = op[2];
f2ae14a1
RS
11823 if (small_offset_p (0, align, 16))
11824 {
11825 /* The first case exists for M_LD_AB and M_SD_AB, which are
11826 macros for o32 but which should act like normal instructions
11827 otherwise. */
11828 if (offbits == 16)
c0ebe874 11829 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
11830 offset_reloc[1], offset_reloc[2], breg);
11831 else if (small_offset_p (0, align, offbits))
11832 {
11833 if (offbits == 0)
c0ebe874 11834 macro_build (NULL, s, fmt, op[0], breg);
f2ae14a1 11835 else
c0ebe874 11836 macro_build (NULL, s, fmt, op[0],
c8276761 11837 (int) offset_expr.X_add_number, breg);
f2ae14a1
RS
11838 }
11839 else
11840 {
11841 if (tempreg == AT)
11842 used_at = 1;
11843 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11844 tempreg, breg, -1, offset_reloc[0],
11845 offset_reloc[1], offset_reloc[2]);
11846 if (offbits == 0)
c0ebe874 11847 macro_build (NULL, s, fmt, op[0], tempreg);
f2ae14a1 11848 else
c0ebe874 11849 macro_build (NULL, s, fmt, op[0], 0, tempreg);
f2ae14a1
RS
11850 }
11851 break;
11852 }
11853
11854 if (tempreg == AT)
11855 used_at = 1;
11856
252b5132
RH
11857 if (offset_expr.X_op != O_constant
11858 && offset_expr.X_op != O_symbol)
11859 {
1661c76c 11860 as_bad (_("expression too complex"));
252b5132
RH
11861 offset_expr.X_op = O_constant;
11862 }
11863
2051e8c4
MR
11864 if (HAVE_32BIT_ADDRESSES
11865 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
11866 {
11867 char value [32];
11868
11869 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 11870 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 11871 }
2051e8c4 11872
252b5132
RH
11873 /* A constant expression in PIC code can be handled just as it
11874 is in non PIC code. */
aed1a261
RS
11875 if (offset_expr.X_op == O_constant)
11876 {
f2ae14a1
RS
11877 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11878 offbits == 0 ? 16 : offbits);
11879 offset_expr.X_add_number -= expr1.X_add_number;
df58fc94 11880
f2ae14a1
RS
11881 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11882 if (breg != 0)
11883 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11884 tempreg, tempreg, breg);
7f3c4072 11885 if (offbits == 0)
dd6a37e7 11886 {
f2ae14a1 11887 if (offset_expr.X_add_number != 0)
dd6a37e7 11888 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
f2ae14a1 11889 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
c0ebe874 11890 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11891 }
7f3c4072 11892 else if (offbits == 16)
c0ebe874 11893 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
df58fc94 11894 else
c0ebe874 11895 macro_build (NULL, s, fmt, op[0],
c8276761 11896 (int) offset_expr.X_add_number, tempreg);
df58fc94 11897 }
7f3c4072 11898 else if (offbits != 16)
df58fc94 11899 {
7f3c4072 11900 /* The offset field is too narrow to be used for a low-part
2b0f3761 11901 relocation, so load the whole address into the auxiliary
f2ae14a1
RS
11902 register. */
11903 load_address (tempreg, &offset_expr, &used_at);
11904 if (breg != 0)
11905 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11906 tempreg, tempreg, breg);
7f3c4072 11907 if (offbits == 0)
c0ebe874 11908 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11909 else
c0ebe874 11910 macro_build (NULL, s, fmt, op[0], 0, tempreg);
aed1a261
RS
11911 }
11912 else if (mips_pic == NO_PIC)
252b5132
RH
11913 {
11914 /* If this is a reference to a GP relative symbol, and there
11915 is no base register, we want
c0ebe874 11916 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
252b5132
RH
11917 Otherwise, if there is no base register, we want
11918 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
c0ebe874 11919 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
252b5132
RH
11920 If we have a constant, we need two instructions anyhow,
11921 so we always use the latter form.
11922
11923 If we have a base register, and this is a reference to a
11924 GP relative symbol, we want
11925 addu $tempreg,$breg,$gp
c0ebe874 11926 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
252b5132
RH
11927 Otherwise we want
11928 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11929 addu $tempreg,$tempreg,$breg
c0ebe874 11930 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245 11931 With a constant we always use the latter case.
76b3015f 11932
d6bc6245
TS
11933 With 64bit address space and no base register and $at usable,
11934 we want
11935 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11936 lui $at,<sym> (BFD_RELOC_HI16_S)
11937 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11938 dsll32 $tempreg,0
11939 daddu $tempreg,$at
c0ebe874 11940 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11941 If we have a base register, we want
11942 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11943 lui $at,<sym> (BFD_RELOC_HI16_S)
11944 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11945 daddu $at,$breg
11946 dsll32 $tempreg,0
11947 daddu $tempreg,$at
c0ebe874 11948 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11949
11950 Without $at we can't generate the optimal path for superscalar
11951 processors here since this would require two temporary registers.
11952 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11953 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11954 dsll $tempreg,16
11955 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11956 dsll $tempreg,16
c0ebe874 11957 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11958 If we have a base register, we want
11959 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11960 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11961 dsll $tempreg,16
11962 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11963 dsll $tempreg,16
11964 daddu $tempreg,$tempreg,$breg
c0ebe874 11965 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
6373ee54 11966
6caf9ef4 11967 For GP relative symbols in 64bit address space we can use
aed1a261
RS
11968 the same sequence as in 32bit address space. */
11969 if (HAVE_64BIT_SYMBOLS)
d6bc6245 11970 {
aed1a261 11971 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4
TS
11972 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11973 {
11974 relax_start (offset_expr.X_add_symbol);
11975 if (breg == 0)
11976 {
c0ebe874 11977 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11978 BFD_RELOC_GPREL16, mips_gp_register);
11979 }
11980 else
11981 {
11982 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11983 tempreg, breg, mips_gp_register);
c0ebe874 11984 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11985 BFD_RELOC_GPREL16, tempreg);
11986 }
11987 relax_switch ();
11988 }
d6bc6245 11989
741fe287 11990 if (used_at == 0 && mips_opts.at)
d6bc6245 11991 {
df58fc94 11992 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb 11993 BFD_RELOC_MIPS_HIGHEST);
df58fc94 11994 macro_build (&offset_expr, "lui", LUI_FMT, AT,
67c0d1eb
RS
11995 BFD_RELOC_HI16_S);
11996 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11997 tempreg, BFD_RELOC_MIPS_HIGHER);
d6bc6245 11998 if (breg != 0)
67c0d1eb 11999 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
df58fc94 12000 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 12001 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
c0ebe874 12002 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
67c0d1eb 12003 tempreg);
d6bc6245
TS
12004 used_at = 1;
12005 }
12006 else
12007 {
df58fc94 12008 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb
RS
12009 BFD_RELOC_MIPS_HIGHEST);
12010 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12011 tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 12012 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb
RS
12013 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12014 tempreg, BFD_RELOC_HI16_S);
df58fc94 12015 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
d6bc6245 12016 if (breg != 0)
67c0d1eb 12017 macro_build (NULL, "daddu", "d,v,t",
17a2f251 12018 tempreg, tempreg, breg);
c0ebe874 12019 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12020 BFD_RELOC_LO16, tempreg);
d6bc6245 12021 }
6caf9ef4
TS
12022
12023 if (mips_relax.sequence)
12024 relax_end ();
8fc2e39e 12025 break;
d6bc6245 12026 }
256ab948 12027
252b5132
RH
12028 if (breg == 0)
12029 {
67c0d1eb 12030 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12031 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12032 {
4d7206a2 12033 relax_start (offset_expr.X_add_symbol);
c0ebe874 12034 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
67c0d1eb 12035 mips_gp_register);
4d7206a2 12036 relax_switch ();
252b5132 12037 }
67c0d1eb 12038 macro_build_lui (&offset_expr, tempreg);
c0ebe874 12039 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12040 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
12041 if (mips_relax.sequence)
12042 relax_end ();
252b5132
RH
12043 }
12044 else
12045 {
67c0d1eb 12046 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12047 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12048 {
4d7206a2 12049 relax_start (offset_expr.X_add_symbol);
67c0d1eb 12050 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12051 tempreg, breg, mips_gp_register);
c0ebe874 12052 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12053 BFD_RELOC_GPREL16, tempreg);
4d7206a2 12054 relax_switch ();
252b5132 12055 }
67c0d1eb
RS
12056 macro_build_lui (&offset_expr, tempreg);
12057 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12058 tempreg, tempreg, breg);
c0ebe874 12059 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12060 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
12061 if (mips_relax.sequence)
12062 relax_end ();
252b5132
RH
12063 }
12064 }
0a44bf69 12065 else if (!mips_big_got)
252b5132 12066 {
ed6fb7bd 12067 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
f9419b05 12068
252b5132
RH
12069 /* If this is a reference to an external symbol, we want
12070 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12071 nop
c0ebe874 12072 <op> op[0],0($tempreg)
252b5132
RH
12073 Otherwise we want
12074 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12075 nop
12076 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 12077 <op> op[0],0($tempreg)
f5040a92
AO
12078
12079 For NewABI, we want
12080 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 12081 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 12082
252b5132
RH
12083 If there is a base register, we add it to $tempreg before
12084 the <op>. If there is a constant, we stick it in the
12085 <op> instruction. We don't handle constants larger than
12086 16 bits, because we have no way to load the upper 16 bits
12087 (actually, we could handle them for the subset of cases
12088 in which we are not using $at). */
9c2799c2 12089 gas_assert (offset_expr.X_op == O_symbol);
f5040a92
AO
12090 if (HAVE_NEWABI)
12091 {
67c0d1eb
RS
12092 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12093 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 12094 if (breg != 0)
67c0d1eb 12095 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12096 tempreg, tempreg, breg);
c0ebe874 12097 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12098 BFD_RELOC_MIPS_GOT_OFST, tempreg);
f5040a92
AO
12099 break;
12100 }
252b5132
RH
12101 expr1.X_add_number = offset_expr.X_add_number;
12102 offset_expr.X_add_number = 0;
12103 if (expr1.X_add_number < -0x8000
12104 || expr1.X_add_number >= 0x8000)
12105 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb
RS
12106 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12107 lw_reloc_type, mips_gp_register);
269137b2 12108 load_delay_nop ();
4d7206a2
RS
12109 relax_start (offset_expr.X_add_symbol);
12110 relax_switch ();
67c0d1eb
RS
12111 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12112 tempreg, BFD_RELOC_LO16);
4d7206a2 12113 relax_end ();
252b5132 12114 if (breg != 0)
67c0d1eb 12115 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12116 tempreg, tempreg, breg);
c0ebe874 12117 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 12118 }
0a44bf69 12119 else if (mips_big_got && !HAVE_NEWABI)
252b5132 12120 {
67c0d1eb 12121 int gpdelay;
252b5132
RH
12122
12123 /* If this is a reference to an external symbol, we want
12124 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12125 addu $tempreg,$tempreg,$gp
12126 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 12127 <op> op[0],0($tempreg)
252b5132
RH
12128 Otherwise we want
12129 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12130 nop
12131 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 12132 <op> op[0],0($tempreg)
252b5132
RH
12133 If there is a base register, we add it to $tempreg before
12134 the <op>. If there is a constant, we stick it in the
12135 <op> instruction. We don't handle constants larger than
12136 16 bits, because we have no way to load the upper 16 bits
12137 (actually, we could handle them for the subset of cases
f5040a92 12138 in which we are not using $at). */
9c2799c2 12139 gas_assert (offset_expr.X_op == O_symbol);
252b5132
RH
12140 expr1.X_add_number = offset_expr.X_add_number;
12141 offset_expr.X_add_number = 0;
12142 if (expr1.X_add_number < -0x8000
12143 || expr1.X_add_number >= 0x8000)
12144 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12145 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12146 relax_start (offset_expr.X_add_symbol);
df58fc94 12147 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 12148 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
12149 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12150 mips_gp_register);
12151 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12152 BFD_RELOC_MIPS_GOT_LO16, tempreg);
4d7206a2 12153 relax_switch ();
67c0d1eb
RS
12154 if (gpdelay)
12155 macro_build (NULL, "nop", "");
12156 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12157 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12158 load_delay_nop ();
67c0d1eb
RS
12159 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12160 tempreg, BFD_RELOC_LO16);
4d7206a2
RS
12161 relax_end ();
12162
252b5132 12163 if (breg != 0)
67c0d1eb 12164 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12165 tempreg, tempreg, breg);
c0ebe874 12166 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 12167 }
0a44bf69 12168 else if (mips_big_got && HAVE_NEWABI)
f5040a92 12169 {
f5040a92
AO
12170 /* If this is a reference to an external symbol, we want
12171 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12172 add $tempreg,$tempreg,$gp
12173 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 12174 <op> op[0],<ofst>($tempreg)
f5040a92
AO
12175 Otherwise, for local symbols, we want:
12176 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 12177 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9c2799c2 12178 gas_assert (offset_expr.X_op == O_symbol);
4d7206a2 12179 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
12180 offset_expr.X_add_number = 0;
12181 if (expr1.X_add_number < -0x8000
12182 || expr1.X_add_number >= 0x8000)
12183 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4d7206a2 12184 relax_start (offset_expr.X_add_symbol);
df58fc94 12185 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 12186 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
12187 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12188 mips_gp_register);
12189 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12190 BFD_RELOC_MIPS_GOT_LO16, tempreg);
f5040a92 12191 if (breg != 0)
67c0d1eb 12192 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12193 tempreg, tempreg, breg);
c0ebe874 12194 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
684022ea 12195
4d7206a2 12196 relax_switch ();
f5040a92 12197 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12198 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12199 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 12200 if (breg != 0)
67c0d1eb 12201 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12202 tempreg, tempreg, breg);
c0ebe874 12203 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12204 BFD_RELOC_MIPS_GOT_OFST, tempreg);
4d7206a2 12205 relax_end ();
f5040a92 12206 }
252b5132
RH
12207 else
12208 abort ();
12209
252b5132
RH
12210 break;
12211
833794fc
MR
12212 case M_JRADDIUSP:
12213 gas_assert (mips_opts.micromips);
12214 gas_assert (mips_opts.insn32);
12215 start_noreorder ();
12216 macro_build (NULL, "jr", "s", RA);
c0ebe874 12217 expr1.X_add_number = op[0] << 2;
833794fc
MR
12218 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12219 end_noreorder ();
12220 break;
12221
12222 case M_JRC:
12223 gas_assert (mips_opts.micromips);
12224 gas_assert (mips_opts.insn32);
c0ebe874 12225 macro_build (NULL, "jr", "s", op[0]);
833794fc
MR
12226 if (mips_opts.noreorder)
12227 macro_build (NULL, "nop", "");
12228 break;
12229
252b5132
RH
12230 case M_LI:
12231 case M_LI_S:
c0ebe874 12232 load_register (op[0], &imm_expr, 0);
8fc2e39e 12233 break;
252b5132
RH
12234
12235 case M_DLI:
c0ebe874 12236 load_register (op[0], &imm_expr, 1);
8fc2e39e 12237 break;
252b5132
RH
12238
12239 case M_LI_SS:
12240 if (imm_expr.X_op == O_constant)
12241 {
8fc2e39e 12242 used_at = 1;
67c0d1eb 12243 load_register (AT, &imm_expr, 0);
c0ebe874 12244 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12245 break;
12246 }
12247 else
12248 {
b0e6f033
RS
12249 gas_assert (imm_expr.X_op == O_absent
12250 && offset_expr.X_op == O_symbol
90ecf173
MR
12251 && strcmp (segment_name (S_GET_SEGMENT
12252 (offset_expr.X_add_symbol)),
12253 ".lit4") == 0
12254 && offset_expr.X_add_number == 0);
c0ebe874 12255 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
17a2f251 12256 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8fc2e39e 12257 break;
252b5132
RH
12258 }
12259
12260 case M_LI_D:
ca4e0257
RS
12261 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12262 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12263 order 32 bits of the value and the low order 32 bits are either
12264 zero or in OFFSET_EXPR. */
b0e6f033 12265 if (imm_expr.X_op == O_constant)
252b5132 12266 {
bad1aba3 12267 if (GPR_SIZE == 64)
c0ebe874 12268 load_register (op[0], &imm_expr, 1);
252b5132
RH
12269 else
12270 {
12271 int hreg, lreg;
12272
12273 if (target_big_endian)
12274 {
c0ebe874
RS
12275 hreg = op[0];
12276 lreg = op[0] + 1;
252b5132
RH
12277 }
12278 else
12279 {
c0ebe874
RS
12280 hreg = op[0] + 1;
12281 lreg = op[0];
252b5132
RH
12282 }
12283
12284 if (hreg <= 31)
67c0d1eb 12285 load_register (hreg, &imm_expr, 0);
252b5132
RH
12286 if (lreg <= 31)
12287 {
12288 if (offset_expr.X_op == O_absent)
67c0d1eb 12289 move_register (lreg, 0);
252b5132
RH
12290 else
12291 {
9c2799c2 12292 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12293 load_register (lreg, &offset_expr, 0);
252b5132
RH
12294 }
12295 }
12296 }
8fc2e39e 12297 break;
252b5132 12298 }
b0e6f033 12299 gas_assert (imm_expr.X_op == O_absent);
252b5132
RH
12300
12301 /* We know that sym is in the .rdata section. First we get the
12302 upper 16 bits of the address. */
12303 if (mips_pic == NO_PIC)
12304 {
67c0d1eb 12305 macro_build_lui (&offset_expr, AT);
8fc2e39e 12306 used_at = 1;
252b5132 12307 }
0a44bf69 12308 else
252b5132 12309 {
67c0d1eb
RS
12310 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12311 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8fc2e39e 12312 used_at = 1;
252b5132 12313 }
bdaaa2e1 12314
252b5132 12315 /* Now we load the register(s). */
bad1aba3 12316 if (GPR_SIZE == 64)
8fc2e39e
TS
12317 {
12318 used_at = 1;
c0ebe874
RS
12319 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12320 BFD_RELOC_LO16, AT);
8fc2e39e 12321 }
252b5132
RH
12322 else
12323 {
8fc2e39e 12324 used_at = 1;
c0ebe874
RS
12325 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12326 BFD_RELOC_LO16, AT);
12327 if (op[0] != RA)
252b5132
RH
12328 {
12329 /* FIXME: How in the world do we deal with the possible
12330 overflow here? */
12331 offset_expr.X_add_number += 4;
67c0d1eb 12332 macro_build (&offset_expr, "lw", "t,o(b)",
c0ebe874 12333 op[0] + 1, BFD_RELOC_LO16, AT);
252b5132
RH
12334 }
12335 }
252b5132
RH
12336 break;
12337
12338 case M_LI_DD:
ca4e0257
RS
12339 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12340 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12341 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12342 the value and the low order 32 bits are either zero or in
12343 OFFSET_EXPR. */
b0e6f033 12344 if (imm_expr.X_op == O_constant)
252b5132 12345 {
8fc2e39e 12346 used_at = 1;
bad1aba3 12347 load_register (AT, &imm_expr, FPR_SIZE == 64);
351cdf24
MF
12348 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12349 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
252b5132
RH
12350 else
12351 {
351cdf24
MF
12352 if (ISA_HAS_MXHC1 (mips_opts.isa))
12353 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12354 else if (FPR_SIZE != 32)
12355 as_bad (_("Unable to generate `%s' compliant code "
12356 "without mthc1"),
12357 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12358 else
12359 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
252b5132 12360 if (offset_expr.X_op == O_absent)
c0ebe874 12361 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
252b5132
RH
12362 else
12363 {
9c2799c2 12364 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12365 load_register (AT, &offset_expr, 0);
c0ebe874 12366 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12367 }
12368 }
12369 break;
12370 }
12371
b0e6f033
RS
12372 gas_assert (imm_expr.X_op == O_absent
12373 && offset_expr.X_op == O_symbol
90ecf173 12374 && offset_expr.X_add_number == 0);
252b5132
RH
12375 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12376 if (strcmp (s, ".lit8") == 0)
134c0c8b
MR
12377 {
12378 op[2] = mips_gp_register;
f2ae14a1
RS
12379 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12380 offset_reloc[1] = BFD_RELOC_UNUSED;
12381 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132
RH
12382 }
12383 else
12384 {
9c2799c2 12385 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8fc2e39e 12386 used_at = 1;
0a44bf69 12387 if (mips_pic != NO_PIC)
67c0d1eb
RS
12388 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12389 BFD_RELOC_MIPS_GOT16, mips_gp_register);
252b5132
RH
12390 else
12391 {
12392 /* FIXME: This won't work for a 64 bit address. */
67c0d1eb 12393 macro_build_lui (&offset_expr, AT);
252b5132 12394 }
bdaaa2e1 12395
c0ebe874 12396 op[2] = AT;
f2ae14a1
RS
12397 offset_reloc[0] = BFD_RELOC_LO16;
12398 offset_reloc[1] = BFD_RELOC_UNUSED;
12399 offset_reloc[2] = BFD_RELOC_UNUSED;
134c0c8b 12400 }
f2ae14a1
RS
12401 align = 8;
12402 /* Fall through */
c4a68bea 12403
252b5132
RH
12404 case M_L_DAB:
12405 /*
12406 * The MIPS assembler seems to check for X_add_number not
12407 * being double aligned and generating:
12408 * lui at,%hi(foo+1)
12409 * addu at,at,v1
12410 * addiu at,at,%lo(foo+1)
12411 * lwc1 f2,0(at)
12412 * lwc1 f3,4(at)
12413 * But, the resulting address is the same after relocation so why
12414 * generate the extra instruction?
12415 */
bdaaa2e1 12416 /* Itbl support may require additional care here. */
252b5132 12417 coproc = 1;
df58fc94 12418 fmt = "T,o(b)";
0aa27725 12419 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12420 {
12421 s = "ldc1";
df58fc94 12422 goto ld_st;
252b5132 12423 }
252b5132 12424 s = "lwc1";
252b5132
RH
12425 goto ldd_std;
12426
12427 case M_S_DAB:
df58fc94
RS
12428 gas_assert (!mips_opts.micromips);
12429 /* Itbl support may require additional care here. */
12430 coproc = 1;
12431 fmt = "T,o(b)";
0aa27725 12432 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12433 {
12434 s = "sdc1";
df58fc94 12435 goto ld_st;
252b5132 12436 }
252b5132 12437 s = "swc1";
252b5132
RH
12438 goto ldd_std;
12439
e407c74b
NC
12440 case M_LQ_AB:
12441 fmt = "t,o(b)";
12442 s = "lq";
12443 goto ld;
12444
12445 case M_SQ_AB:
12446 fmt = "t,o(b)";
12447 s = "sq";
12448 goto ld_st;
12449
252b5132 12450 case M_LD_AB:
df58fc94 12451 fmt = "t,o(b)";
bad1aba3 12452 if (GPR_SIZE == 64)
252b5132
RH
12453 {
12454 s = "ld";
12455 goto ld;
12456 }
252b5132 12457 s = "lw";
252b5132
RH
12458 goto ldd_std;
12459
12460 case M_SD_AB:
df58fc94 12461 fmt = "t,o(b)";
bad1aba3 12462 if (GPR_SIZE == 64)
252b5132
RH
12463 {
12464 s = "sd";
df58fc94 12465 goto ld_st;
252b5132 12466 }
252b5132 12467 s = "sw";
252b5132
RH
12468
12469 ldd_std:
f2ae14a1
RS
12470 /* Even on a big endian machine $fn comes before $fn+1. We have
12471 to adjust when loading from memory. We set coproc if we must
12472 load $fn+1 first. */
12473 /* Itbl support may require additional care here. */
12474 if (!target_big_endian)
12475 coproc = 0;
12476
c0ebe874 12477 breg = op[2];
f2ae14a1
RS
12478 if (small_offset_p (0, align, 16))
12479 {
12480 ep = &offset_expr;
12481 if (!small_offset_p (4, align, 16))
12482 {
12483 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12484 -1, offset_reloc[0], offset_reloc[1],
12485 offset_reloc[2]);
12486 expr1.X_add_number = 0;
12487 ep = &expr1;
12488 breg = AT;
12489 used_at = 1;
12490 offset_reloc[0] = BFD_RELOC_LO16;
12491 offset_reloc[1] = BFD_RELOC_UNUSED;
12492 offset_reloc[2] = BFD_RELOC_UNUSED;
12493 }
c0ebe874 12494 if (strcmp (s, "lw") == 0 && op[0] == breg)
f2ae14a1
RS
12495 {
12496 ep->X_add_number += 4;
c0ebe874 12497 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
f2ae14a1
RS
12498 offset_reloc[1], offset_reloc[2], breg);
12499 ep->X_add_number -= 4;
c0ebe874 12500 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12501 offset_reloc[1], offset_reloc[2], breg);
12502 }
12503 else
12504 {
c0ebe874 12505 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
f2ae14a1
RS
12506 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12507 breg);
12508 ep->X_add_number += 4;
c0ebe874 12509 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
f2ae14a1
RS
12510 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12511 breg);
12512 }
12513 break;
12514 }
12515
252b5132
RH
12516 if (offset_expr.X_op != O_symbol
12517 && offset_expr.X_op != O_constant)
12518 {
1661c76c 12519 as_bad (_("expression too complex"));
252b5132
RH
12520 offset_expr.X_op = O_constant;
12521 }
12522
2051e8c4
MR
12523 if (HAVE_32BIT_ADDRESSES
12524 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
12525 {
12526 char value [32];
12527
12528 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 12529 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 12530 }
2051e8c4 12531
90ecf173 12532 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
252b5132
RH
12533 {
12534 /* If this is a reference to a GP relative symbol, we want
c0ebe874
RS
12535 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12536 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
252b5132
RH
12537 If we have a base register, we use this
12538 addu $at,$breg,$gp
c0ebe874
RS
12539 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12540 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
252b5132
RH
12541 If this is not a GP relative symbol, we want
12542 lui $at,<sym> (BFD_RELOC_HI16_S)
c0ebe874
RS
12543 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12544 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12545 If there is a base register, we add it to $at after the
12546 lui instruction. If there is a constant, we always use
12547 the last case. */
39a59cf8
MR
12548 if (offset_expr.X_op == O_symbol
12549 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12550 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12551 {
4d7206a2 12552 relax_start (offset_expr.X_add_symbol);
252b5132
RH
12553 if (breg == 0)
12554 {
c9914766 12555 tempreg = mips_gp_register;
252b5132
RH
12556 }
12557 else
12558 {
67c0d1eb 12559 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12560 AT, breg, mips_gp_register);
252b5132 12561 tempreg = AT;
252b5132
RH
12562 used_at = 1;
12563 }
12564
beae10d5 12565 /* Itbl support may require additional care here. */
c0ebe874 12566 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12567 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12568 offset_expr.X_add_number += 4;
12569
12570 /* Set mips_optimize to 2 to avoid inserting an
12571 undesired nop. */
12572 hold_mips_optimize = mips_optimize;
12573 mips_optimize = 2;
beae10d5 12574 /* Itbl support may require additional care here. */
c0ebe874 12575 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12576 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12577 mips_optimize = hold_mips_optimize;
12578
4d7206a2 12579 relax_switch ();
252b5132 12580
0970e49e 12581 offset_expr.X_add_number -= 4;
252b5132 12582 }
8fc2e39e 12583 used_at = 1;
f2ae14a1
RS
12584 if (offset_high_part (offset_expr.X_add_number, 16)
12585 != offset_high_part (offset_expr.X_add_number + 4, 16))
12586 {
12587 load_address (AT, &offset_expr, &used_at);
12588 offset_expr.X_op = O_constant;
12589 offset_expr.X_add_number = 0;
12590 }
12591 else
12592 macro_build_lui (&offset_expr, AT);
252b5132 12593 if (breg != 0)
67c0d1eb 12594 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12595 /* Itbl support may require additional care here. */
c0ebe874 12596 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12597 BFD_RELOC_LO16, AT);
252b5132
RH
12598 /* FIXME: How do we handle overflow here? */
12599 offset_expr.X_add_number += 4;
beae10d5 12600 /* Itbl support may require additional care here. */
c0ebe874 12601 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12602 BFD_RELOC_LO16, AT);
4d7206a2
RS
12603 if (mips_relax.sequence)
12604 relax_end ();
bdaaa2e1 12605 }
0a44bf69 12606 else if (!mips_big_got)
252b5132 12607 {
252b5132
RH
12608 /* If this is a reference to an external symbol, we want
12609 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12610 nop
c0ebe874
RS
12611 <op> op[0],0($at)
12612 <op> op[0]+1,4($at)
252b5132
RH
12613 Otherwise we want
12614 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12615 nop
c0ebe874
RS
12616 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12617 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12618 If there is a base register we add it to $at before the
12619 lwc1 instructions. If there is a constant we include it
12620 in the lwc1 instructions. */
12621 used_at = 1;
12622 expr1.X_add_number = offset_expr.X_add_number;
252b5132
RH
12623 if (expr1.X_add_number < -0x8000
12624 || expr1.X_add_number >= 0x8000 - 4)
12625 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12626 load_got_offset (AT, &offset_expr);
269137b2 12627 load_delay_nop ();
252b5132 12628 if (breg != 0)
67c0d1eb 12629 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
252b5132
RH
12630
12631 /* Set mips_optimize to 2 to avoid inserting an undesired
12632 nop. */
12633 hold_mips_optimize = mips_optimize;
12634 mips_optimize = 2;
4d7206a2 12635
beae10d5 12636 /* Itbl support may require additional care here. */
4d7206a2 12637 relax_start (offset_expr.X_add_symbol);
c0ebe874 12638 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12639 BFD_RELOC_LO16, AT);
4d7206a2 12640 expr1.X_add_number += 4;
c0ebe874 12641 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12642 BFD_RELOC_LO16, AT);
4d7206a2 12643 relax_switch ();
c0ebe874 12644 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12645 BFD_RELOC_LO16, AT);
4d7206a2 12646 offset_expr.X_add_number += 4;
c0ebe874 12647 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12648 BFD_RELOC_LO16, AT);
4d7206a2 12649 relax_end ();
252b5132 12650
4d7206a2 12651 mips_optimize = hold_mips_optimize;
252b5132 12652 }
0a44bf69 12653 else if (mips_big_got)
252b5132 12654 {
67c0d1eb 12655 int gpdelay;
252b5132
RH
12656
12657 /* If this is a reference to an external symbol, we want
12658 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12659 addu $at,$at,$gp
12660 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12661 nop
c0ebe874
RS
12662 <op> op[0],0($at)
12663 <op> op[0]+1,4($at)
252b5132
RH
12664 Otherwise we want
12665 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12666 nop
c0ebe874
RS
12667 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12668 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12669 If there is a base register we add it to $at before the
12670 lwc1 instructions. If there is a constant we include it
12671 in the lwc1 instructions. */
12672 used_at = 1;
12673 expr1.X_add_number = offset_expr.X_add_number;
12674 offset_expr.X_add_number = 0;
12675 if (expr1.X_add_number < -0x8000
12676 || expr1.X_add_number >= 0x8000 - 4)
12677 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12678 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12679 relax_start (offset_expr.X_add_symbol);
df58fc94 12680 macro_build (&offset_expr, "lui", LUI_FMT,
67c0d1eb
RS
12681 AT, BFD_RELOC_MIPS_GOT_HI16);
12682 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12683 AT, AT, mips_gp_register);
67c0d1eb 12684 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 12685 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
269137b2 12686 load_delay_nop ();
252b5132 12687 if (breg != 0)
67c0d1eb 12688 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12689 /* Itbl support may require additional care here. */
c0ebe874 12690 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12691 BFD_RELOC_LO16, AT);
252b5132
RH
12692 expr1.X_add_number += 4;
12693
12694 /* Set mips_optimize to 2 to avoid inserting an undesired
12695 nop. */
12696 hold_mips_optimize = mips_optimize;
12697 mips_optimize = 2;
beae10d5 12698 /* Itbl support may require additional care here. */
c0ebe874 12699 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12700 BFD_RELOC_LO16, AT);
252b5132
RH
12701 mips_optimize = hold_mips_optimize;
12702 expr1.X_add_number -= 4;
12703
4d7206a2
RS
12704 relax_switch ();
12705 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12706 if (gpdelay)
12707 macro_build (NULL, "nop", "");
12708 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12709 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12710 load_delay_nop ();
252b5132 12711 if (breg != 0)
67c0d1eb 12712 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12713 /* Itbl support may require additional care here. */
c0ebe874 12714 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12715 BFD_RELOC_LO16, AT);
4d7206a2 12716 offset_expr.X_add_number += 4;
252b5132
RH
12717
12718 /* Set mips_optimize to 2 to avoid inserting an undesired
12719 nop. */
12720 hold_mips_optimize = mips_optimize;
12721 mips_optimize = 2;
beae10d5 12722 /* Itbl support may require additional care here. */
c0ebe874 12723 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12724 BFD_RELOC_LO16, AT);
252b5132 12725 mips_optimize = hold_mips_optimize;
4d7206a2 12726 relax_end ();
252b5132 12727 }
252b5132
RH
12728 else
12729 abort ();
12730
252b5132 12731 break;
3739860c 12732
dd6a37e7 12733 case M_SAA_AB:
dd6a37e7 12734 s = "saa";
0db377d0 12735 goto saa_saad;
dd6a37e7 12736 case M_SAAD_AB:
dd6a37e7 12737 s = "saad";
0db377d0
MR
12738 saa_saad:
12739 gas_assert (!mips_opts.micromips);
7f3c4072 12740 offbits = 0;
dd6a37e7
AP
12741 fmt = "t,(b)";
12742 goto ld_st;
12743
252b5132
RH
12744 /* New code added to support COPZ instructions.
12745 This code builds table entries out of the macros in mip_opcodes.
12746 R4000 uses interlocks to handle coproc delays.
12747 Other chips (like the R3000) require nops to be inserted for delays.
12748
f72c8c98 12749 FIXME: Currently, we require that the user handle delays.
252b5132
RH
12750 In order to fill delay slots for non-interlocked chips,
12751 we must have a way to specify delays based on the coprocessor.
12752 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12753 What are the side-effects of the cop instruction?
12754 What cache support might we have and what are its effects?
12755 Both coprocessor & memory require delays. how long???
bdaaa2e1 12756 What registers are read/set/modified?
252b5132
RH
12757
12758 If an itbl is provided to interpret cop instructions,
bdaaa2e1 12759 this knowledge can be encoded in the itbl spec. */
252b5132
RH
12760
12761 case M_COP0:
12762 s = "c0";
12763 goto copz;
12764 case M_COP1:
12765 s = "c1";
12766 goto copz;
12767 case M_COP2:
12768 s = "c2";
12769 goto copz;
12770 case M_COP3:
12771 s = "c3";
12772 copz:
df58fc94 12773 gas_assert (!mips_opts.micromips);
252b5132
RH
12774 /* For now we just do C (same as Cz). The parameter will be
12775 stored in insn_opcode by mips_ip. */
c8276761 12776 macro_build (NULL, s, "C", (int) ip->insn_opcode);
8fc2e39e 12777 break;
252b5132 12778
ea1fb5dc 12779 case M_MOVE:
c0ebe874 12780 move_register (op[0], op[1]);
8fc2e39e 12781 break;
ea1fb5dc 12782
833794fc
MR
12783 case M_MOVEP:
12784 gas_assert (mips_opts.micromips);
12785 gas_assert (mips_opts.insn32);
c0ebe874
RS
12786 move_register (micromips_to_32_reg_h_map1[op[0]],
12787 micromips_to_32_reg_m_map[op[1]]);
12788 move_register (micromips_to_32_reg_h_map2[op[0]],
12789 micromips_to_32_reg_n_map[op[2]]);
833794fc
MR
12790 break;
12791
252b5132
RH
12792 case M_DMUL:
12793 dbl = 1;
1a0670f3 12794 /* Fall through. */
252b5132 12795 case M_MUL:
e407c74b 12796 if (mips_opts.arch == CPU_R5900)
c0ebe874
RS
12797 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12798 op[2]);
e407c74b
NC
12799 else
12800 {
c0ebe874
RS
12801 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12802 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
e407c74b 12803 }
8fc2e39e 12804 break;
252b5132
RH
12805
12806 case M_DMUL_I:
12807 dbl = 1;
1a0670f3 12808 /* Fall through. */
252b5132
RH
12809 case M_MUL_I:
12810 /* The MIPS assembler some times generates shifts and adds. I'm
12811 not trying to be that fancy. GCC should do this for us
12812 anyway. */
8fc2e39e 12813 used_at = 1;
67c0d1eb 12814 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12815 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12816 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12817 break;
12818
12819 case M_DMULO_I:
12820 dbl = 1;
1a0670f3 12821 /* Fall through. */
252b5132
RH
12822 case M_MULO_I:
12823 imm = 1;
12824 goto do_mulo;
12825
12826 case M_DMULO:
12827 dbl = 1;
1a0670f3 12828 /* Fall through. */
252b5132
RH
12829 case M_MULO:
12830 do_mulo:
7d10b47d 12831 start_noreorder ();
8fc2e39e 12832 used_at = 1;
252b5132 12833 if (imm)
67c0d1eb 12834 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12835 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12836 op[1], imm ? AT : op[2]);
12837 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12838 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
df58fc94 12839 macro_build (NULL, "mfhi", MFHL_FMT, AT);
252b5132 12840 if (mips_trap)
c0ebe874 12841 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
252b5132
RH
12842 else
12843 {
df58fc94
RS
12844 if (mips_opts.micromips)
12845 micromips_label_expr (&label_expr);
12846 else
12847 label_expr.X_add_number = 8;
c0ebe874 12848 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
a605d2b3 12849 macro_build (NULL, "nop", "");
df58fc94
RS
12850 macro_build (NULL, "break", BRK_FMT, 6);
12851 if (mips_opts.micromips)
12852 micromips_add_label ();
252b5132 12853 }
7d10b47d 12854 end_noreorder ();
c0ebe874 12855 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12856 break;
12857
12858 case M_DMULOU_I:
12859 dbl = 1;
1a0670f3 12860 /* Fall through. */
252b5132
RH
12861 case M_MULOU_I:
12862 imm = 1;
12863 goto do_mulou;
12864
12865 case M_DMULOU:
12866 dbl = 1;
1a0670f3 12867 /* Fall through. */
252b5132
RH
12868 case M_MULOU:
12869 do_mulou:
7d10b47d 12870 start_noreorder ();
8fc2e39e 12871 used_at = 1;
252b5132 12872 if (imm)
67c0d1eb
RS
12873 load_register (AT, &imm_expr, dbl);
12874 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
c0ebe874 12875 op[1], imm ? AT : op[2]);
df58fc94 12876 macro_build (NULL, "mfhi", MFHL_FMT, AT);
c0ebe874 12877 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132 12878 if (mips_trap)
df58fc94 12879 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
252b5132
RH
12880 else
12881 {
df58fc94
RS
12882 if (mips_opts.micromips)
12883 micromips_label_expr (&label_expr);
12884 else
12885 label_expr.X_add_number = 8;
12886 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
a605d2b3 12887 macro_build (NULL, "nop", "");
df58fc94
RS
12888 macro_build (NULL, "break", BRK_FMT, 6);
12889 if (mips_opts.micromips)
12890 micromips_add_label ();
252b5132 12891 }
7d10b47d 12892 end_noreorder ();
252b5132
RH
12893 break;
12894
771c7ce4 12895 case M_DROL:
fef14a42 12896 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12897 {
c0ebe874 12898 if (op[0] == op[1])
82dd0097
CD
12899 {
12900 tempreg = AT;
12901 used_at = 1;
12902 }
12903 else
c0ebe874
RS
12904 tempreg = op[0];
12905 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12906 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12907 break;
82dd0097 12908 }
8fc2e39e 12909 used_at = 1;
c0ebe874
RS
12910 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12911 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12912 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12913 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12914 break;
12915
252b5132 12916 case M_ROL:
fef14a42 12917 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12918 {
c0ebe874 12919 if (op[0] == op[1])
82dd0097
CD
12920 {
12921 tempreg = AT;
12922 used_at = 1;
12923 }
12924 else
c0ebe874
RS
12925 tempreg = op[0];
12926 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12927 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12928 break;
82dd0097 12929 }
8fc2e39e 12930 used_at = 1;
c0ebe874
RS
12931 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12932 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12933 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12934 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12935 break;
12936
771c7ce4
TS
12937 case M_DROL_I:
12938 {
12939 unsigned int rot;
e0471c16
TS
12940 const char *l;
12941 const char *rr;
771c7ce4 12942
771c7ce4 12943 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12944 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
60b63b72
RS
12945 {
12946 rot = (64 - rot) & 0x3f;
12947 if (rot >= 32)
c0ebe874 12948 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
60b63b72 12949 else
c0ebe874 12950 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12951 break;
60b63b72 12952 }
483fc7cd 12953 if (rot == 0)
483fc7cd 12954 {
c0ebe874 12955 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12956 break;
483fc7cd 12957 }
82dd0097 12958 l = (rot < 0x20) ? "dsll" : "dsll32";
91d6fa6a 12959 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
82dd0097 12960 rot &= 0x1f;
8fc2e39e 12961 used_at = 1;
c0ebe874
RS
12962 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12963 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12964 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12965 }
12966 break;
12967
252b5132 12968 case M_ROL_I:
771c7ce4
TS
12969 {
12970 unsigned int rot;
12971
771c7ce4 12972 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12973 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
60b63b72 12974 {
c0ebe874
RS
12975 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12976 (32 - rot) & 0x1f);
8fc2e39e 12977 break;
60b63b72 12978 }
483fc7cd 12979 if (rot == 0)
483fc7cd 12980 {
c0ebe874 12981 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12982 break;
483fc7cd 12983 }
8fc2e39e 12984 used_at = 1;
c0ebe874
RS
12985 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12986 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12987 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12988 }
12989 break;
12990
12991 case M_DROR:
fef14a42 12992 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12993 {
c0ebe874 12994 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12995 break;
82dd0097 12996 }
8fc2e39e 12997 used_at = 1;
c0ebe874
RS
12998 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12999 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
13000 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
13001 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
13002 break;
13003
13004 case M_ROR:
fef14a42 13005 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 13006 {
c0ebe874 13007 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 13008 break;
82dd0097 13009 }
8fc2e39e 13010 used_at = 1;
c0ebe874
RS
13011 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13012 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
13013 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
13014 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
13015 break;
13016
771c7ce4
TS
13017 case M_DROR_I:
13018 {
13019 unsigned int rot;
e0471c16
TS
13020 const char *l;
13021 const char *rr;
771c7ce4 13022
771c7ce4 13023 rot = imm_expr.X_add_number & 0x3f;
fef14a42 13024 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
13025 {
13026 if (rot >= 32)
c0ebe874 13027 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
82dd0097 13028 else
c0ebe874 13029 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 13030 break;
82dd0097 13031 }
483fc7cd 13032 if (rot == 0)
483fc7cd 13033 {
c0ebe874 13034 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13035 break;
483fc7cd 13036 }
91d6fa6a 13037 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
82dd0097
CD
13038 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
13039 rot &= 0x1f;
8fc2e39e 13040 used_at = 1;
c0ebe874
RS
13041 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
13042 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13043 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
13044 }
13045 break;
13046
252b5132 13047 case M_ROR_I:
771c7ce4
TS
13048 {
13049 unsigned int rot;
13050
771c7ce4 13051 rot = imm_expr.X_add_number & 0x1f;
fef14a42 13052 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 13053 {
c0ebe874 13054 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 13055 break;
82dd0097 13056 }
483fc7cd 13057 if (rot == 0)
483fc7cd 13058 {
c0ebe874 13059 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13060 break;
483fc7cd 13061 }
8fc2e39e 13062 used_at = 1;
c0ebe874
RS
13063 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13064 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13065 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4 13066 }
252b5132
RH
13067 break;
13068
252b5132 13069 case M_SEQ:
c0ebe874
RS
13070 if (op[1] == 0)
13071 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13072 else if (op[2] == 0)
13073 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
13074 else
13075 {
c0ebe874
RS
13076 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13077 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
252b5132 13078 }
8fc2e39e 13079 break;
252b5132
RH
13080
13081 case M_SEQ_I:
b0e6f033 13082 if (imm_expr.X_add_number == 0)
252b5132 13083 {
c0ebe874 13084 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13085 break;
252b5132 13086 }
c0ebe874 13087 if (op[1] == 0)
252b5132 13088 {
1661c76c 13089 as_warn (_("instruction %s: result is always false"),
252b5132 13090 ip->insn_mo->name);
c0ebe874 13091 move_register (op[0], 0);
8fc2e39e 13092 break;
252b5132 13093 }
dd3cbb7e
NC
13094 if (CPU_HAS_SEQ (mips_opts.arch)
13095 && -512 <= imm_expr.X_add_number
13096 && imm_expr.X_add_number < 512)
13097 {
c0ebe874 13098 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
750bdd57 13099 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13100 break;
13101 }
b0e6f033 13102 if (imm_expr.X_add_number >= 0
252b5132 13103 && imm_expr.X_add_number < 0x10000)
c0ebe874 13104 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
b0e6f033 13105 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13106 && imm_expr.X_add_number < 0)
13107 {
13108 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13109 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13110 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13111 }
dd3cbb7e
NC
13112 else if (CPU_HAS_SEQ (mips_opts.arch))
13113 {
13114 used_at = 1;
bad1aba3 13115 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13116 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13117 break;
13118 }
252b5132
RH
13119 else
13120 {
bad1aba3 13121 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13122 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13123 used_at = 1;
13124 }
c0ebe874 13125 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13126 break;
252b5132 13127
c0ebe874 13128 case M_SGE: /* X >= Y <==> not (X < Y) */
252b5132
RH
13129 s = "slt";
13130 goto sge;
13131 case M_SGEU:
13132 s = "sltu";
13133 sge:
c0ebe874
RS
13134 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13135 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13136 break;
252b5132 13137
c0ebe874 13138 case M_SGE_I: /* X >= I <==> not (X < I) */
252b5132 13139 case M_SGEU_I:
b0e6f033 13140 if (imm_expr.X_add_number >= -0x8000
252b5132 13141 && imm_expr.X_add_number < 0x8000)
c0ebe874
RS
13142 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13143 op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
13144 else
13145 {
bad1aba3 13146 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 13147 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
c0ebe874 13148 op[0], op[1], AT);
252b5132
RH
13149 used_at = 1;
13150 }
c0ebe874 13151 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13152 break;
252b5132 13153
c0ebe874 13154 case M_SGT: /* X > Y <==> Y < X */
252b5132
RH
13155 s = "slt";
13156 goto sgt;
13157 case M_SGTU:
13158 s = "sltu";
13159 sgt:
c0ebe874 13160 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
8fc2e39e 13161 break;
252b5132 13162
c0ebe874 13163 case M_SGT_I: /* X > I <==> I < X */
252b5132
RH
13164 s = "slt";
13165 goto sgti;
13166 case M_SGTU_I:
13167 s = "sltu";
13168 sgti:
8fc2e39e 13169 used_at = 1;
bad1aba3 13170 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13171 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
252b5132
RH
13172 break;
13173
c0ebe874 13174 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
252b5132
RH
13175 s = "slt";
13176 goto sle;
13177 case M_SLEU:
13178 s = "sltu";
13179 sle:
c0ebe874
RS
13180 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13181 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13182 break;
252b5132 13183
c0ebe874 13184 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
252b5132
RH
13185 s = "slt";
13186 goto slei;
13187 case M_SLEU_I:
13188 s = "sltu";
13189 slei:
8fc2e39e 13190 used_at = 1;
bad1aba3 13191 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874
RS
13192 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13193 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
252b5132
RH
13194 break;
13195
13196 case M_SLT_I:
b0e6f033 13197 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
13198 && imm_expr.X_add_number < 0x8000)
13199 {
c0ebe874
RS
13200 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13201 BFD_RELOC_LO16);
8fc2e39e 13202 break;
252b5132 13203 }
8fc2e39e 13204 used_at = 1;
bad1aba3 13205 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13206 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
252b5132
RH
13207 break;
13208
13209 case M_SLTU_I:
b0e6f033 13210 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
13211 && imm_expr.X_add_number < 0x8000)
13212 {
c0ebe874 13213 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
17a2f251 13214 BFD_RELOC_LO16);
8fc2e39e 13215 break;
252b5132 13216 }
8fc2e39e 13217 used_at = 1;
bad1aba3 13218 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13219 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
252b5132
RH
13220 break;
13221
13222 case M_SNE:
c0ebe874
RS
13223 if (op[1] == 0)
13224 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13225 else if (op[2] == 0)
13226 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
252b5132
RH
13227 else
13228 {
c0ebe874
RS
13229 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13230 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
252b5132 13231 }
8fc2e39e 13232 break;
252b5132
RH
13233
13234 case M_SNE_I:
b0e6f033 13235 if (imm_expr.X_add_number == 0)
252b5132 13236 {
c0ebe874 13237 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
8fc2e39e 13238 break;
252b5132 13239 }
c0ebe874 13240 if (op[1] == 0)
252b5132 13241 {
1661c76c 13242 as_warn (_("instruction %s: result is always true"),
252b5132 13243 ip->insn_mo->name);
bad1aba3 13244 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
c0ebe874 13245 op[0], 0, BFD_RELOC_LO16);
8fc2e39e 13246 break;
252b5132 13247 }
dd3cbb7e
NC
13248 if (CPU_HAS_SEQ (mips_opts.arch)
13249 && -512 <= imm_expr.X_add_number
13250 && imm_expr.X_add_number < 512)
13251 {
c0ebe874 13252 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
750bdd57 13253 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13254 break;
13255 }
b0e6f033 13256 if (imm_expr.X_add_number >= 0
252b5132
RH
13257 && imm_expr.X_add_number < 0x10000)
13258 {
c0ebe874
RS
13259 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13260 BFD_RELOC_LO16);
252b5132 13261 }
b0e6f033 13262 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13263 && imm_expr.X_add_number < 0)
13264 {
13265 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13266 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13267 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13268 }
dd3cbb7e
NC
13269 else if (CPU_HAS_SEQ (mips_opts.arch))
13270 {
13271 used_at = 1;
bad1aba3 13272 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13273 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13274 break;
13275 }
252b5132
RH
13276 else
13277 {
bad1aba3 13278 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13279 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13280 used_at = 1;
13281 }
c0ebe874 13282 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
8fc2e39e 13283 break;
252b5132 13284
df58fc94
RS
13285 case M_SUB_I:
13286 s = "addi";
13287 s2 = "sub";
13288 goto do_subi;
13289 case M_SUBU_I:
13290 s = "addiu";
13291 s2 = "subu";
13292 goto do_subi;
252b5132
RH
13293 case M_DSUB_I:
13294 dbl = 1;
df58fc94
RS
13295 s = "daddi";
13296 s2 = "dsub";
13297 if (!mips_opts.micromips)
13298 goto do_subi;
b0e6f033 13299 if (imm_expr.X_add_number > -0x200
df58fc94 13300 && imm_expr.X_add_number <= 0x200)
252b5132 13301 {
b0e6f033
RS
13302 macro_build (NULL, s, "t,r,.", op[0], op[1],
13303 (int) -imm_expr.X_add_number);
8fc2e39e 13304 break;
252b5132 13305 }
df58fc94 13306 goto do_subi_i;
252b5132
RH
13307 case M_DSUBU_I:
13308 dbl = 1;
df58fc94
RS
13309 s = "daddiu";
13310 s2 = "dsubu";
13311 do_subi:
b0e6f033 13312 if (imm_expr.X_add_number > -0x8000
252b5132
RH
13313 && imm_expr.X_add_number <= 0x8000)
13314 {
13315 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13316 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13317 break;
252b5132 13318 }
df58fc94 13319 do_subi_i:
8fc2e39e 13320 used_at = 1;
67c0d1eb 13321 load_register (AT, &imm_expr, dbl);
c0ebe874 13322 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
13323 break;
13324
13325 case M_TEQ_I:
13326 s = "teq";
13327 goto trap;
13328 case M_TGE_I:
13329 s = "tge";
13330 goto trap;
13331 case M_TGEU_I:
13332 s = "tgeu";
13333 goto trap;
13334 case M_TLT_I:
13335 s = "tlt";
13336 goto trap;
13337 case M_TLTU_I:
13338 s = "tltu";
13339 goto trap;
13340 case M_TNE_I:
13341 s = "tne";
13342 trap:
8fc2e39e 13343 used_at = 1;
bad1aba3 13344 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13345 macro_build (NULL, s, "s,t", op[0], AT);
252b5132
RH
13346 break;
13347
252b5132 13348 case M_TRUNCWS:
43841e91 13349 case M_TRUNCWD:
df58fc94 13350 gas_assert (!mips_opts.micromips);
0aa27725 13351 gas_assert (mips_opts.isa == ISA_MIPS1);
8fc2e39e 13352 used_at = 1;
252b5132
RH
13353
13354 /*
13355 * Is the double cfc1 instruction a bug in the mips assembler;
13356 * or is there a reason for it?
13357 */
7d10b47d 13358 start_noreorder ();
c0ebe874
RS
13359 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13360 macro_build (NULL, "cfc1", "t,G", op[2], RA);
67c0d1eb 13361 macro_build (NULL, "nop", "");
252b5132 13362 expr1.X_add_number = 3;
c0ebe874 13363 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
252b5132 13364 expr1.X_add_number = 2;
67c0d1eb
RS
13365 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13366 macro_build (NULL, "ctc1", "t,G", AT, RA);
13367 macro_build (NULL, "nop", "");
13368 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
c0ebe874
RS
13369 op[0], op[1]);
13370 macro_build (NULL, "ctc1", "t,G", op[2], RA);
67c0d1eb 13371 macro_build (NULL, "nop", "");
7d10b47d 13372 end_noreorder ();
252b5132
RH
13373 break;
13374
f2ae14a1 13375 case M_ULH_AB:
252b5132 13376 s = "lb";
df58fc94
RS
13377 s2 = "lbu";
13378 off = 1;
13379 goto uld_st;
f2ae14a1 13380 case M_ULHU_AB:
252b5132 13381 s = "lbu";
df58fc94
RS
13382 s2 = "lbu";
13383 off = 1;
13384 goto uld_st;
f2ae14a1 13385 case M_ULW_AB:
df58fc94
RS
13386 s = "lwl";
13387 s2 = "lwr";
7f3c4072 13388 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13389 off = 3;
13390 goto uld_st;
f2ae14a1 13391 case M_ULD_AB:
252b5132
RH
13392 s = "ldl";
13393 s2 = "ldr";
7f3c4072 13394 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13395 off = 7;
df58fc94 13396 goto uld_st;
f2ae14a1 13397 case M_USH_AB:
df58fc94
RS
13398 s = "sb";
13399 s2 = "sb";
13400 off = 1;
13401 ust = 1;
13402 goto uld_st;
f2ae14a1 13403 case M_USW_AB:
df58fc94
RS
13404 s = "swl";
13405 s2 = "swr";
7f3c4072 13406 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13407 off = 3;
df58fc94
RS
13408 ust = 1;
13409 goto uld_st;
f2ae14a1 13410 case M_USD_AB:
df58fc94
RS
13411 s = "sdl";
13412 s2 = "sdr";
7f3c4072 13413 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13414 off = 7;
13415 ust = 1;
13416
13417 uld_st:
c0ebe874 13418 breg = op[2];
f2ae14a1 13419 large_offset = !small_offset_p (off, align, offbits);
df58fc94
RS
13420 ep = &offset_expr;
13421 expr1.X_add_number = 0;
f2ae14a1 13422 if (large_offset)
df58fc94
RS
13423 {
13424 used_at = 1;
13425 tempreg = AT;
f2ae14a1
RS
13426 if (small_offset_p (0, align, 16))
13427 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13428 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13429 else
13430 {
13431 load_address (tempreg, ep, &used_at);
13432 if (breg != 0)
13433 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13434 tempreg, tempreg, breg);
13435 }
13436 offset_reloc[0] = BFD_RELOC_LO16;
13437 offset_reloc[1] = BFD_RELOC_UNUSED;
13438 offset_reloc[2] = BFD_RELOC_UNUSED;
df58fc94 13439 breg = tempreg;
c0ebe874 13440 tempreg = op[0];
df58fc94
RS
13441 ep = &expr1;
13442 }
c0ebe874 13443 else if (!ust && op[0] == breg)
8fc2e39e
TS
13444 {
13445 used_at = 1;
13446 tempreg = AT;
13447 }
252b5132 13448 else
c0ebe874 13449 tempreg = op[0];
af22f5b2 13450
df58fc94
RS
13451 if (off == 1)
13452 goto ulh_sh;
252b5132 13453
90ecf173 13454 if (!target_big_endian)
df58fc94 13455 ep->X_add_number += off;
f2ae14a1 13456 if (offbits == 12)
c8276761 13457 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13458 else
13459 macro_build (ep, s, "t,o(b)", tempreg, -1,
13460 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94 13461
90ecf173 13462 if (!target_big_endian)
df58fc94 13463 ep->X_add_number -= off;
252b5132 13464 else
df58fc94 13465 ep->X_add_number += off;
f2ae14a1 13466 if (offbits == 12)
df58fc94 13467 macro_build (NULL, s2, "t,~(b)",
c8276761 13468 tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13469 else
13470 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13471 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13472
df58fc94 13473 /* If necessary, move the result in tempreg to the final destination. */
c0ebe874 13474 if (!ust && op[0] != tempreg)
df58fc94
RS
13475 {
13476 /* Protect second load's delay slot. */
13477 load_delay_nop ();
c0ebe874 13478 move_register (op[0], tempreg);
df58fc94 13479 }
8fc2e39e 13480 break;
252b5132 13481
df58fc94 13482 ulh_sh:
d6bc6245 13483 used_at = 1;
df58fc94
RS
13484 if (target_big_endian == ust)
13485 ep->X_add_number += off;
c0ebe874 13486 tempreg = ust || large_offset ? op[0] : AT;
f2ae14a1
RS
13487 macro_build (ep, s, "t,o(b)", tempreg, -1,
13488 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94
RS
13489
13490 /* For halfword transfers we need a temporary register to shuffle
13491 bytes. Unfortunately for M_USH_A we have none available before
13492 the next store as AT holds the base address. We deal with this
13493 case by clobbering TREG and then restoring it as with ULH. */
c0ebe874 13494 tempreg = ust == large_offset ? op[0] : AT;
df58fc94 13495 if (ust)
c0ebe874 13496 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
df58fc94
RS
13497
13498 if (target_big_endian == ust)
13499 ep->X_add_number -= off;
252b5132 13500 else
df58fc94 13501 ep->X_add_number += off;
f2ae14a1
RS
13502 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13503 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13504
df58fc94 13505 /* For M_USH_A re-retrieve the LSB. */
f2ae14a1 13506 if (ust && large_offset)
df58fc94
RS
13507 {
13508 if (target_big_endian)
13509 ep->X_add_number += off;
13510 else
13511 ep->X_add_number -= off;
f2ae14a1
RS
13512 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13513 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
df58fc94
RS
13514 }
13515 /* For ULH and M_USH_A OR the LSB in. */
f2ae14a1 13516 if (!ust || large_offset)
df58fc94 13517 {
c0ebe874 13518 tempreg = !large_offset ? AT : op[0];
df58fc94 13519 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
c0ebe874 13520 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
df58fc94 13521 }
252b5132
RH
13522 break;
13523
13524 default:
13525 /* FIXME: Check if this is one of the itbl macros, since they
bdaaa2e1 13526 are added dynamically. */
1661c76c 13527 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
252b5132
RH
13528 break;
13529 }
741fe287 13530 if (!mips_opts.at && used_at)
1661c76c 13531 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
13532}
13533
13534/* Implement macros in mips16 mode. */
13535
13536static void
17a2f251 13537mips16_macro (struct mips_cl_insn *ip)
252b5132 13538{
c0ebe874 13539 const struct mips_operand_array *operands;
252b5132 13540 int mask;
c0ebe874 13541 int tmp;
252b5132
RH
13542 expressionS expr1;
13543 int dbl;
13544 const char *s, *s2, *s3;
c0ebe874
RS
13545 unsigned int op[MAX_OPERANDS];
13546 unsigned int i;
252b5132
RH
13547
13548 mask = ip->insn_mo->mask;
13549
c0ebe874
RS
13550 operands = insn_operands (ip);
13551 for (i = 0; i < MAX_OPERANDS; i++)
13552 if (operands->operand[i])
13553 op[i] = insn_extract_operand (ip, operands->operand[i]);
13554 else
13555 op[i] = -1;
252b5132 13556
252b5132
RH
13557 expr1.X_op = O_constant;
13558 expr1.X_op_symbol = NULL;
13559 expr1.X_add_symbol = NULL;
13560 expr1.X_add_number = 1;
13561
13562 dbl = 0;
13563
13564 switch (mask)
13565 {
13566 default:
b37df7c4 13567 abort ();
252b5132
RH
13568
13569 case M_DDIV_3:
13570 dbl = 1;
1a0670f3 13571 /* Fall through. */
252b5132
RH
13572 case M_DIV_3:
13573 s = "mflo";
13574 goto do_div3;
13575 case M_DREM_3:
13576 dbl = 1;
1a0670f3 13577 /* Fall through. */
252b5132
RH
13578 case M_REM_3:
13579 s = "mfhi";
13580 do_div3:
7d10b47d 13581 start_noreorder ();
d8722d76 13582 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
252b5132 13583 expr1.X_add_number = 2;
c0ebe874 13584 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13585 macro_build (NULL, "break", "6", 7);
bdaaa2e1 13586
252b5132
RH
13587 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13588 since that causes an overflow. We should do that as well,
13589 but I don't see how to do the comparisons without a temporary
13590 register. */
7d10b47d 13591 end_noreorder ();
c0ebe874 13592 macro_build (NULL, s, "x", op[0]);
252b5132
RH
13593 break;
13594
13595 case M_DIVU_3:
13596 s = "divu";
13597 s2 = "mflo";
13598 goto do_divu3;
13599 case M_REMU_3:
13600 s = "divu";
13601 s2 = "mfhi";
13602 goto do_divu3;
13603 case M_DDIVU_3:
13604 s = "ddivu";
13605 s2 = "mflo";
13606 goto do_divu3;
13607 case M_DREMU_3:
13608 s = "ddivu";
13609 s2 = "mfhi";
13610 do_divu3:
7d10b47d 13611 start_noreorder ();
d8722d76 13612 macro_build (NULL, s, ".,x,y", op[1], op[2]);
252b5132 13613 expr1.X_add_number = 2;
c0ebe874 13614 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13615 macro_build (NULL, "break", "6", 7);
7d10b47d 13616 end_noreorder ();
c0ebe874 13617 macro_build (NULL, s2, "x", op[0]);
252b5132
RH
13618 break;
13619
13620 case M_DMUL:
13621 dbl = 1;
1a0670f3 13622 /* Fall through. */
252b5132 13623 case M_MUL:
c0ebe874
RS
13624 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13625 macro_build (NULL, "mflo", "x", op[0]);
8fc2e39e 13626 break;
252b5132
RH
13627
13628 case M_DSUBU_I:
13629 dbl = 1;
13630 goto do_subu;
13631 case M_SUBU_I:
13632 do_subu:
252b5132 13633 imm_expr.X_add_number = -imm_expr.X_add_number;
d8722d76 13634 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
252b5132
RH
13635 break;
13636
13637 case M_SUBU_I_2:
252b5132 13638 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13639 macro_build (&imm_expr, "addiu", "x,k", op[0]);
252b5132
RH
13640 break;
13641
13642 case M_DSUBU_I_2:
252b5132 13643 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13644 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
252b5132
RH
13645 break;
13646
13647 case M_BEQ:
13648 s = "cmp";
13649 s2 = "bteqz";
13650 goto do_branch;
13651 case M_BNE:
13652 s = "cmp";
13653 s2 = "btnez";
13654 goto do_branch;
13655 case M_BLT:
13656 s = "slt";
13657 s2 = "btnez";
13658 goto do_branch;
13659 case M_BLTU:
13660 s = "sltu";
13661 s2 = "btnez";
13662 goto do_branch;
13663 case M_BLE:
13664 s = "slt";
13665 s2 = "bteqz";
13666 goto do_reverse_branch;
13667 case M_BLEU:
13668 s = "sltu";
13669 s2 = "bteqz";
13670 goto do_reverse_branch;
13671 case M_BGE:
13672 s = "slt";
13673 s2 = "bteqz";
13674 goto do_branch;
13675 case M_BGEU:
13676 s = "sltu";
13677 s2 = "bteqz";
13678 goto do_branch;
13679 case M_BGT:
13680 s = "slt";
13681 s2 = "btnez";
13682 goto do_reverse_branch;
13683 case M_BGTU:
13684 s = "sltu";
13685 s2 = "btnez";
13686
13687 do_reverse_branch:
c0ebe874
RS
13688 tmp = op[1];
13689 op[1] = op[0];
13690 op[0] = tmp;
252b5132
RH
13691
13692 do_branch:
c0ebe874 13693 macro_build (NULL, s, "x,y", op[0], op[1]);
67c0d1eb 13694 macro_build (&offset_expr, s2, "p");
252b5132
RH
13695 break;
13696
13697 case M_BEQ_I:
13698 s = "cmpi";
13699 s2 = "bteqz";
13700 s3 = "x,U";
13701 goto do_branch_i;
13702 case M_BNE_I:
13703 s = "cmpi";
13704 s2 = "btnez";
13705 s3 = "x,U";
13706 goto do_branch_i;
13707 case M_BLT_I:
13708 s = "slti";
13709 s2 = "btnez";
13710 s3 = "x,8";
13711 goto do_branch_i;
13712 case M_BLTU_I:
13713 s = "sltiu";
13714 s2 = "btnez";
13715 s3 = "x,8";
13716 goto do_branch_i;
13717 case M_BLE_I:
13718 s = "slti";
13719 s2 = "btnez";
13720 s3 = "x,8";
13721 goto do_addone_branch_i;
13722 case M_BLEU_I:
13723 s = "sltiu";
13724 s2 = "btnez";
13725 s3 = "x,8";
13726 goto do_addone_branch_i;
13727 case M_BGE_I:
13728 s = "slti";
13729 s2 = "bteqz";
13730 s3 = "x,8";
13731 goto do_branch_i;
13732 case M_BGEU_I:
13733 s = "sltiu";
13734 s2 = "bteqz";
13735 s3 = "x,8";
13736 goto do_branch_i;
13737 case M_BGT_I:
13738 s = "slti";
13739 s2 = "bteqz";
13740 s3 = "x,8";
13741 goto do_addone_branch_i;
13742 case M_BGTU_I:
13743 s = "sltiu";
13744 s2 = "bteqz";
13745 s3 = "x,8";
13746
13747 do_addone_branch_i:
252b5132
RH
13748 ++imm_expr.X_add_number;
13749
13750 do_branch_i:
c0ebe874 13751 macro_build (&imm_expr, s, s3, op[0]);
67c0d1eb 13752 macro_build (&offset_expr, s2, "p");
252b5132
RH
13753 break;
13754
13755 case M_ABS:
13756 expr1.X_add_number = 0;
c0ebe874
RS
13757 macro_build (&expr1, "slti", "x,8", op[1]);
13758 if (op[0] != op[1])
13759 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
252b5132 13760 expr1.X_add_number = 2;
67c0d1eb 13761 macro_build (&expr1, "bteqz", "p");
c0ebe874 13762 macro_build (NULL, "neg", "x,w", op[0], op[0]);
0acfaea6 13763 break;
252b5132
RH
13764 }
13765}
13766
14daeee3
RS
13767/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13768 opcode bits in *OPCODE_EXTRA. */
13769
13770static struct mips_opcode *
13771mips_lookup_insn (struct hash_control *hash, const char *start,
da8bca91 13772 ssize_t length, unsigned int *opcode_extra)
14daeee3
RS
13773{
13774 char *name, *dot, *p;
13775 unsigned int mask, suffix;
da8bca91 13776 ssize_t opend;
14daeee3
RS
13777 struct mips_opcode *insn;
13778
13779 /* Make a copy of the instruction so that we can fiddle with it. */
4ec9d7d5 13780 name = xstrndup (start, length);
14daeee3
RS
13781
13782 /* Look up the instruction as-is. */
13783 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13784 if (insn)
e1fa0163 13785 goto end;
14daeee3
RS
13786
13787 dot = strchr (name, '.');
13788 if (dot && dot[1])
13789 {
13790 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13791 p = mips_parse_vu0_channels (dot + 1, &mask);
13792 if (*p == 0 && mask != 0)
13793 {
13794 *dot = 0;
13795 insn = (struct mips_opcode *) hash_find (hash, name);
13796 *dot = '.';
13797 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13798 {
13799 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
e1fa0163 13800 goto end;
14daeee3
RS
13801 }
13802 }
13803 }
13804
13805 if (mips_opts.micromips)
13806 {
13807 /* See if there's an instruction size override suffix,
13808 either `16' or `32', at the end of the mnemonic proper,
13809 that defines the operation, i.e. before the first `.'
13810 character if any. Strip it and retry. */
13811 opend = dot != NULL ? dot - name : length;
13812 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13813 suffix = 2;
13814 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13815 suffix = 4;
13816 else
13817 suffix = 0;
13818 if (suffix)
13819 {
13820 memcpy (name + opend - 2, name + opend, length - opend + 1);
13821 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13822 if (insn)
14daeee3
RS
13823 {
13824 forced_insn_length = suffix;
e1fa0163 13825 goto end;
14daeee3
RS
13826 }
13827 }
13828 }
13829
e1fa0163
NC
13830 insn = NULL;
13831 end:
13832 free (name);
13833 return insn;
14daeee3
RS
13834}
13835
77bd4346 13836/* Assemble an instruction into its binary format. If the instruction
e423441d
RS
13837 is a macro, set imm_expr and offset_expr to the values associated
13838 with "I" and "A" operands respectively. Otherwise store the value
13839 of the relocatable field (if any) in offset_expr. In both cases
13840 set offset_reloc to the relocation operators applied to offset_expr. */
252b5132
RH
13841
13842static void
60f20e8b 13843mips_ip (char *str, struct mips_cl_insn *insn)
252b5132 13844{
60f20e8b 13845 const struct mips_opcode *first, *past;
df58fc94 13846 struct hash_control *hash;
a92713e6 13847 char format;
14daeee3 13848 size_t end;
a92713e6 13849 struct mips_operand_token *tokens;
14daeee3 13850 unsigned int opcode_extra;
252b5132 13851
df58fc94
RS
13852 if (mips_opts.micromips)
13853 {
13854 hash = micromips_op_hash;
13855 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13856 }
13857 else
13858 {
13859 hash = op_hash;
13860 past = &mips_opcodes[NUMOPCODES];
13861 }
13862 forced_insn_length = 0;
14daeee3 13863 opcode_extra = 0;
252b5132 13864
df58fc94 13865 /* We first try to match an instruction up to a space or to the end. */
a40bc9dd
RS
13866 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13867 continue;
bdaaa2e1 13868
60f20e8b
RS
13869 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13870 if (first == NULL)
252b5132 13871 {
1661c76c 13872 set_insn_error (0, _("unrecognized opcode"));
a40bc9dd 13873 return;
252b5132
RH
13874 }
13875
60f20e8b 13876 if (strcmp (first->name, "li.s") == 0)
a92713e6 13877 format = 'f';
60f20e8b 13878 else if (strcmp (first->name, "li.d") == 0)
a92713e6
RS
13879 format = 'd';
13880 else
13881 format = 0;
13882 tokens = mips_parse_arguments (str + end, format);
13883 if (!tokens)
13884 return;
13885
60f20e8b
RS
13886 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13887 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
1661c76c 13888 set_insn_error (0, _("invalid operands"));
df58fc94 13889
e3de51ce 13890 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13891}
13892
77bd4346
RS
13893/* As for mips_ip, but used when assembling MIPS16 code.
13894 Also set forced_insn_length to the resulting instruction size in
13895 bytes if the user explicitly requested a small or extended instruction. */
252b5132
RH
13896
13897static void
60f20e8b 13898mips16_ip (char *str, struct mips_cl_insn *insn)
252b5132 13899{
1a00e612 13900 char *end, *s, c;
60f20e8b 13901 struct mips_opcode *first;
a92713e6 13902 struct mips_operand_token *tokens;
3fb49709 13903 unsigned int l;
252b5132 13904
3882b010 13905 for (s = str; ISLOWER (*s); ++s)
252b5132 13906 ;
1a00e612
RS
13907 end = s;
13908 c = *end;
3fb49709
MR
13909
13910 l = 0;
1a00e612 13911 switch (c)
252b5132
RH
13912 {
13913 case '\0':
13914 break;
13915
13916 case ' ':
1a00e612 13917 s++;
252b5132
RH
13918 break;
13919
13920 case '.':
3fb49709
MR
13921 s++;
13922 if (*s == 't')
252b5132 13923 {
3fb49709
MR
13924 l = 2;
13925 s++;
252b5132 13926 }
3fb49709 13927 else if (*s == 'e')
252b5132 13928 {
3fb49709
MR
13929 l = 4;
13930 s++;
252b5132 13931 }
3fb49709
MR
13932 if (*s == '\0')
13933 break;
13934 else if (*s++ == ' ')
13935 break;
252b5132
RH
13936 /* Fall through. */
13937 default:
1661c76c 13938 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13939 return;
13940 }
3fb49709 13941 forced_insn_length = l;
252b5132 13942
1a00e612 13943 *end = 0;
60f20e8b 13944 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
1a00e612
RS
13945 *end = c;
13946
60f20e8b 13947 if (!first)
252b5132 13948 {
1661c76c 13949 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13950 return;
13951 }
13952
a92713e6
RS
13953 tokens = mips_parse_arguments (s, 0);
13954 if (!tokens)
13955 return;
13956
60f20e8b 13957 if (!match_mips16_insns (insn, first, tokens))
1661c76c 13958 set_insn_error (0, _("invalid operands"));
252b5132 13959
e3de51ce 13960 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13961}
13962
b886a2ab
RS
13963/* Marshal immediate value VAL for an extended MIPS16 instruction.
13964 NBITS is the number of significant bits in VAL. */
13965
13966static unsigned long
13967mips16_immed_extend (offsetT val, unsigned int nbits)
13968{
13969 int extval;
13970 if (nbits == 16)
13971 {
13972 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13973 val &= 0x1f;
13974 }
13975 else if (nbits == 15)
13976 {
13977 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13978 val &= 0xf;
13979 }
13980 else
13981 {
13982 extval = ((val & 0x1f) << 6) | (val & 0x20);
13983 val = 0;
13984 }
13985 return (extval << 16) | val;
13986}
13987
3ccad066
RS
13988/* Like decode_mips16_operand, but require the operand to be defined and
13989 require it to be an integer. */
13990
13991static const struct mips_int_operand *
13992mips16_immed_operand (int type, bfd_boolean extended_p)
13993{
13994 const struct mips_operand *operand;
13995
13996 operand = decode_mips16_operand (type, extended_p);
13997 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13998 abort ();
13999 return (const struct mips_int_operand *) operand;
14000}
14001
14002/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
14003
14004static bfd_boolean
14005mips16_immed_in_range_p (const struct mips_int_operand *operand,
14006 bfd_reloc_code_real_type reloc, offsetT sval)
14007{
14008 int min_val, max_val;
14009
14010 min_val = mips_int_operand_min (operand);
14011 max_val = mips_int_operand_max (operand);
14012 if (reloc != BFD_RELOC_UNUSED)
14013 {
14014 if (min_val < 0)
14015 sval = SEXT_16BIT (sval);
14016 else
14017 sval &= 0xffff;
14018 }
14019
14020 return (sval >= min_val
14021 && sval <= max_val
14022 && (sval & ((1 << operand->shift) - 1)) == 0);
14023}
14024
5c04167a
RS
14025/* Install immediate value VAL into MIPS16 instruction *INSN,
14026 extending it if necessary. The instruction in *INSN may
14027 already be extended.
14028
43c0598f
RS
14029 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14030 if none. In the former case, VAL is a 16-bit number with no
14031 defined signedness.
14032
14033 TYPE is the type of the immediate field. USER_INSN_LENGTH
14034 is the length that the user requested, or 0 if none. */
252b5132
RH
14035
14036static void
3b4dbbbf 14037mips16_immed (const char *file, unsigned int line, int type,
43c0598f 14038 bfd_reloc_code_real_type reloc, offsetT val,
5c04167a 14039 unsigned int user_insn_length, unsigned long *insn)
252b5132 14040{
3ccad066
RS
14041 const struct mips_int_operand *operand;
14042 unsigned int uval, length;
252b5132 14043
3ccad066
RS
14044 operand = mips16_immed_operand (type, FALSE);
14045 if (!mips16_immed_in_range_p (operand, reloc, val))
5c04167a
RS
14046 {
14047 /* We need an extended instruction. */
14048 if (user_insn_length == 2)
14049 as_bad_where (file, line, _("invalid unextended operand value"));
14050 else
14051 *insn |= MIPS16_EXTEND;
14052 }
14053 else if (user_insn_length == 4)
14054 {
14055 /* The operand doesn't force an unextended instruction to be extended.
14056 Warn if the user wanted an extended instruction anyway. */
14057 *insn |= MIPS16_EXTEND;
14058 as_warn_where (file, line,
14059 _("extended operand requested but not required"));
14060 }
252b5132 14061
3ccad066
RS
14062 length = mips16_opcode_length (*insn);
14063 if (length == 4)
252b5132 14064 {
3ccad066
RS
14065 operand = mips16_immed_operand (type, TRUE);
14066 if (!mips16_immed_in_range_p (operand, reloc, val))
14067 as_bad_where (file, line,
14068 _("operand value out of range for instruction"));
252b5132 14069 }
3ccad066 14070 uval = ((unsigned int) val >> operand->shift) - operand->bias;
bdd15286 14071 if (length == 2 || operand->root.lsb != 0)
3ccad066 14072 *insn = mips_insert_operand (&operand->root, *insn, uval);
252b5132 14073 else
3ccad066 14074 *insn |= mips16_immed_extend (uval, operand->root.size);
252b5132
RH
14075}
14076\f
d6f16593 14077struct percent_op_match
ad8d3bb3 14078{
5e0116d5
RS
14079 const char *str;
14080 bfd_reloc_code_real_type reloc;
d6f16593
MR
14081};
14082
14083static const struct percent_op_match mips_percent_op[] =
ad8d3bb3 14084{
5e0116d5 14085 {"%lo", BFD_RELOC_LO16},
5e0116d5
RS
14086 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14087 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14088 {"%call16", BFD_RELOC_MIPS_CALL16},
14089 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14090 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14091 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14092 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14093 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14094 {"%got", BFD_RELOC_MIPS_GOT16},
14095 {"%gp_rel", BFD_RELOC_GPREL16},
be3f1006 14096 {"%gprel", BFD_RELOC_GPREL16},
5e0116d5
RS
14097 {"%half", BFD_RELOC_16},
14098 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14099 {"%higher", BFD_RELOC_MIPS_HIGHER},
14100 {"%neg", BFD_RELOC_MIPS_SUB},
3f98094e
DJ
14101 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14102 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14103 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14104 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14105 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14106 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14107 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
7361da2c
AB
14108 {"%hi", BFD_RELOC_HI16_S},
14109 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14110 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
ad8d3bb3
TS
14111};
14112
d6f16593
MR
14113static const struct percent_op_match mips16_percent_op[] =
14114{
14115 {"%lo", BFD_RELOC_MIPS16_LO16},
be3f1006 14116 {"%gp_rel", BFD_RELOC_MIPS16_GPREL},
d6f16593 14117 {"%gprel", BFD_RELOC_MIPS16_GPREL},
738e5348
RS
14118 {"%got", BFD_RELOC_MIPS16_GOT16},
14119 {"%call16", BFD_RELOC_MIPS16_CALL16},
d0f13682
CLT
14120 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14121 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14122 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14123 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14124 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14125 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14126 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14127 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
d6f16593
MR
14128};
14129
252b5132 14130
5e0116d5
RS
14131/* Return true if *STR points to a relocation operator. When returning true,
14132 move *STR over the operator and store its relocation code in *RELOC.
14133 Leave both *STR and *RELOC alone when returning false. */
14134
14135static bfd_boolean
17a2f251 14136parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
252b5132 14137{
d6f16593
MR
14138 const struct percent_op_match *percent_op;
14139 size_t limit, i;
14140
14141 if (mips_opts.mips16)
14142 {
14143 percent_op = mips16_percent_op;
14144 limit = ARRAY_SIZE (mips16_percent_op);
14145 }
14146 else
14147 {
14148 percent_op = mips_percent_op;
14149 limit = ARRAY_SIZE (mips_percent_op);
14150 }
76b3015f 14151
d6f16593 14152 for (i = 0; i < limit; i++)
5e0116d5 14153 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
394f9b3a 14154 {
3f98094e
DJ
14155 int len = strlen (percent_op[i].str);
14156
14157 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14158 continue;
14159
5e0116d5
RS
14160 *str += strlen (percent_op[i].str);
14161 *reloc = percent_op[i].reloc;
394f9b3a 14162
5e0116d5
RS
14163 /* Check whether the output BFD supports this relocation.
14164 If not, issue an error and fall back on something safe. */
14165 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
394f9b3a 14166 {
20203fb9 14167 as_bad (_("relocation %s isn't supported by the current ABI"),
5e0116d5 14168 percent_op[i].str);
01a3f561 14169 *reloc = BFD_RELOC_UNUSED;
394f9b3a 14170 }
5e0116d5 14171 return TRUE;
394f9b3a 14172 }
5e0116d5 14173 return FALSE;
394f9b3a 14174}
ad8d3bb3 14175
ad8d3bb3 14176
5e0116d5
RS
14177/* Parse string STR as a 16-bit relocatable operand. Store the
14178 expression in *EP and the relocations in the array starting
14179 at RELOC. Return the number of relocation operators used.
ad8d3bb3 14180
01a3f561 14181 On exit, EXPR_END points to the first character after the expression. */
ad8d3bb3 14182
5e0116d5 14183static size_t
17a2f251
TS
14184my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14185 char *str)
ad8d3bb3 14186{
5e0116d5
RS
14187 bfd_reloc_code_real_type reversed_reloc[3];
14188 size_t reloc_index, i;
09b8f35a
RS
14189 int crux_depth, str_depth;
14190 char *crux;
5e0116d5
RS
14191
14192 /* Search for the start of the main expression, recoding relocations
09b8f35a
RS
14193 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14194 of the main expression and with CRUX_DEPTH containing the number
14195 of open brackets at that point. */
14196 reloc_index = -1;
14197 str_depth = 0;
14198 do
fb1b3232 14199 {
09b8f35a
RS
14200 reloc_index++;
14201 crux = str;
14202 crux_depth = str_depth;
14203
14204 /* Skip over whitespace and brackets, keeping count of the number
14205 of brackets. */
14206 while (*str == ' ' || *str == '\t' || *str == '(')
14207 if (*str++ == '(')
14208 str_depth++;
5e0116d5 14209 }
09b8f35a
RS
14210 while (*str == '%'
14211 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14212 && parse_relocation (&str, &reversed_reloc[reloc_index]));
ad8d3bb3 14213
09b8f35a 14214 my_getExpression (ep, crux);
5e0116d5 14215 str = expr_end;
394f9b3a 14216
5e0116d5 14217 /* Match every open bracket. */
09b8f35a 14218 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
5e0116d5 14219 if (*str++ == ')')
09b8f35a 14220 crux_depth--;
394f9b3a 14221
09b8f35a 14222 if (crux_depth > 0)
20203fb9 14223 as_bad (_("unclosed '('"));
394f9b3a 14224
5e0116d5 14225 expr_end = str;
252b5132 14226
01a3f561 14227 if (reloc_index != 0)
64bdfcaf
RS
14228 {
14229 prev_reloc_op_frag = frag_now;
14230 for (i = 0; i < reloc_index; i++)
14231 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14232 }
fb1b3232 14233
5e0116d5 14234 return reloc_index;
252b5132
RH
14235}
14236
14237static void
17a2f251 14238my_getExpression (expressionS *ep, char *str)
252b5132
RH
14239{
14240 char *save_in;
14241
14242 save_in = input_line_pointer;
14243 input_line_pointer = str;
14244 expression (ep);
14245 expr_end = input_line_pointer;
14246 input_line_pointer = save_in;
252b5132
RH
14247}
14248
6d4af3c2 14249const char *
17a2f251 14250md_atof (int type, char *litP, int *sizeP)
252b5132 14251{
499ac353 14252 return ieee_md_atof (type, litP, sizeP, target_big_endian);
252b5132
RH
14253}
14254
14255void
17a2f251 14256md_number_to_chars (char *buf, valueT val, int n)
252b5132
RH
14257{
14258 if (target_big_endian)
14259 number_to_chars_bigendian (buf, val, n);
14260 else
14261 number_to_chars_littleendian (buf, val, n);
14262}
14263\f
e013f690
TS
14264static int support_64bit_objects(void)
14265{
14266 const char **list, **l;
aa3d8fdf 14267 int yes;
e013f690
TS
14268
14269 list = bfd_target_list ();
14270 for (l = list; *l != NULL; l++)
aeffff67
RS
14271 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14272 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
e013f690 14273 break;
aa3d8fdf 14274 yes = (*l != NULL);
e013f690 14275 free (list);
aa3d8fdf 14276 return yes;
e013f690
TS
14277}
14278
316f5878
RS
14279/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14280 NEW_VALUE. Warn if another value was already specified. Note:
14281 we have to defer parsing the -march and -mtune arguments in order
14282 to handle 'from-abi' correctly, since the ABI might be specified
14283 in a later argument. */
14284
14285static void
17a2f251 14286mips_set_option_string (const char **string_ptr, const char *new_value)
316f5878
RS
14287{
14288 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
1661c76c 14289 as_warn (_("a different %s was already specified, is now %s"),
316f5878
RS
14290 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14291 new_value);
14292
14293 *string_ptr = new_value;
14294}
14295
252b5132 14296int
17b9d67d 14297md_parse_option (int c, const char *arg)
252b5132 14298{
c6278170
RS
14299 unsigned int i;
14300
14301 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14302 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14303 {
919731af 14304 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c6278170
RS
14305 c == mips_ases[i].option_on);
14306 return 1;
14307 }
14308
252b5132
RH
14309 switch (c)
14310 {
119d663a
NC
14311 case OPTION_CONSTRUCT_FLOATS:
14312 mips_disable_float_construction = 0;
14313 break;
bdaaa2e1 14314
119d663a
NC
14315 case OPTION_NO_CONSTRUCT_FLOATS:
14316 mips_disable_float_construction = 1;
14317 break;
bdaaa2e1 14318
252b5132
RH
14319 case OPTION_TRAP:
14320 mips_trap = 1;
14321 break;
14322
14323 case OPTION_BREAK:
14324 mips_trap = 0;
14325 break;
14326
14327 case OPTION_EB:
14328 target_big_endian = 1;
14329 break;
14330
14331 case OPTION_EL:
14332 target_big_endian = 0;
14333 break;
14334
14335 case 'O':
4ffff32f
TS
14336 if (arg == NULL)
14337 mips_optimize = 1;
14338 else if (arg[0] == '0')
14339 mips_optimize = 0;
14340 else if (arg[0] == '1')
252b5132
RH
14341 mips_optimize = 1;
14342 else
14343 mips_optimize = 2;
14344 break;
14345
14346 case 'g':
14347 if (arg == NULL)
14348 mips_debug = 2;
14349 else
14350 mips_debug = atoi (arg);
252b5132
RH
14351 break;
14352
14353 case OPTION_MIPS1:
0b35dfee 14354 file_mips_opts.isa = ISA_MIPS1;
252b5132
RH
14355 break;
14356
14357 case OPTION_MIPS2:
0b35dfee 14358 file_mips_opts.isa = ISA_MIPS2;
252b5132
RH
14359 break;
14360
14361 case OPTION_MIPS3:
0b35dfee 14362 file_mips_opts.isa = ISA_MIPS3;
252b5132
RH
14363 break;
14364
14365 case OPTION_MIPS4:
0b35dfee 14366 file_mips_opts.isa = ISA_MIPS4;
e7af610e
NC
14367 break;
14368
84ea6cf2 14369 case OPTION_MIPS5:
0b35dfee 14370 file_mips_opts.isa = ISA_MIPS5;
84ea6cf2
NC
14371 break;
14372
e7af610e 14373 case OPTION_MIPS32:
0b35dfee 14374 file_mips_opts.isa = ISA_MIPS32;
252b5132
RH
14375 break;
14376
af7ee8bf 14377 case OPTION_MIPS32R2:
0b35dfee 14378 file_mips_opts.isa = ISA_MIPS32R2;
af7ee8bf
CD
14379 break;
14380
ae52f483 14381 case OPTION_MIPS32R3:
0ae19f05 14382 file_mips_opts.isa = ISA_MIPS32R3;
ae52f483
AB
14383 break;
14384
14385 case OPTION_MIPS32R5:
0ae19f05 14386 file_mips_opts.isa = ISA_MIPS32R5;
ae52f483
AB
14387 break;
14388
7361da2c
AB
14389 case OPTION_MIPS32R6:
14390 file_mips_opts.isa = ISA_MIPS32R6;
14391 break;
14392
5f74bc13 14393 case OPTION_MIPS64R2:
0b35dfee 14394 file_mips_opts.isa = ISA_MIPS64R2;
5f74bc13
CD
14395 break;
14396
ae52f483 14397 case OPTION_MIPS64R3:
0ae19f05 14398 file_mips_opts.isa = ISA_MIPS64R3;
ae52f483
AB
14399 break;
14400
14401 case OPTION_MIPS64R5:
0ae19f05 14402 file_mips_opts.isa = ISA_MIPS64R5;
ae52f483
AB
14403 break;
14404
7361da2c
AB
14405 case OPTION_MIPS64R6:
14406 file_mips_opts.isa = ISA_MIPS64R6;
14407 break;
14408
84ea6cf2 14409 case OPTION_MIPS64:
0b35dfee 14410 file_mips_opts.isa = ISA_MIPS64;
84ea6cf2
NC
14411 break;
14412
ec68c924 14413 case OPTION_MTUNE:
316f5878
RS
14414 mips_set_option_string (&mips_tune_string, arg);
14415 break;
ec68c924 14416
316f5878
RS
14417 case OPTION_MARCH:
14418 mips_set_option_string (&mips_arch_string, arg);
252b5132
RH
14419 break;
14420
14421 case OPTION_M4650:
316f5878
RS
14422 mips_set_option_string (&mips_arch_string, "4650");
14423 mips_set_option_string (&mips_tune_string, "4650");
252b5132
RH
14424 break;
14425
14426 case OPTION_NO_M4650:
14427 break;
14428
14429 case OPTION_M4010:
316f5878
RS
14430 mips_set_option_string (&mips_arch_string, "4010");
14431 mips_set_option_string (&mips_tune_string, "4010");
252b5132
RH
14432 break;
14433
14434 case OPTION_NO_M4010:
14435 break;
14436
14437 case OPTION_M4100:
316f5878
RS
14438 mips_set_option_string (&mips_arch_string, "4100");
14439 mips_set_option_string (&mips_tune_string, "4100");
252b5132
RH
14440 break;
14441
14442 case OPTION_NO_M4100:
14443 break;
14444
252b5132 14445 case OPTION_M3900:
316f5878
RS
14446 mips_set_option_string (&mips_arch_string, "3900");
14447 mips_set_option_string (&mips_tune_string, "3900");
252b5132 14448 break;
bdaaa2e1 14449
252b5132
RH
14450 case OPTION_NO_M3900:
14451 break;
14452
df58fc94 14453 case OPTION_MICROMIPS:
919731af 14454 if (file_mips_opts.mips16 == 1)
df58fc94
RS
14455 {
14456 as_bad (_("-mmicromips cannot be used with -mips16"));
14457 return 0;
14458 }
919731af 14459 file_mips_opts.micromips = 1;
df58fc94
RS
14460 mips_no_prev_insn ();
14461 break;
14462
14463 case OPTION_NO_MICROMIPS:
919731af 14464 file_mips_opts.micromips = 0;
df58fc94
RS
14465 mips_no_prev_insn ();
14466 break;
14467
252b5132 14468 case OPTION_MIPS16:
919731af 14469 if (file_mips_opts.micromips == 1)
df58fc94
RS
14470 {
14471 as_bad (_("-mips16 cannot be used with -micromips"));
14472 return 0;
14473 }
919731af 14474 file_mips_opts.mips16 = 1;
7d10b47d 14475 mips_no_prev_insn ();
252b5132
RH
14476 break;
14477
14478 case OPTION_NO_MIPS16:
919731af 14479 file_mips_opts.mips16 = 0;
7d10b47d 14480 mips_no_prev_insn ();
252b5132
RH
14481 break;
14482
6a32d874
CM
14483 case OPTION_FIX_24K:
14484 mips_fix_24k = 1;
14485 break;
14486
14487 case OPTION_NO_FIX_24K:
14488 mips_fix_24k = 0;
14489 break;
14490
a8d14a88
CM
14491 case OPTION_FIX_RM7000:
14492 mips_fix_rm7000 = 1;
14493 break;
14494
14495 case OPTION_NO_FIX_RM7000:
14496 mips_fix_rm7000 = 0;
14497 break;
14498
c67a084a
NC
14499 case OPTION_FIX_LOONGSON2F_JUMP:
14500 mips_fix_loongson2f_jump = TRUE;
14501 break;
14502
14503 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14504 mips_fix_loongson2f_jump = FALSE;
14505 break;
14506
14507 case OPTION_FIX_LOONGSON2F_NOP:
14508 mips_fix_loongson2f_nop = TRUE;
14509 break;
14510
14511 case OPTION_NO_FIX_LOONGSON2F_NOP:
14512 mips_fix_loongson2f_nop = FALSE;
14513 break;
14514
d766e8ec
RS
14515 case OPTION_FIX_VR4120:
14516 mips_fix_vr4120 = 1;
60b63b72
RS
14517 break;
14518
d766e8ec
RS
14519 case OPTION_NO_FIX_VR4120:
14520 mips_fix_vr4120 = 0;
60b63b72
RS
14521 break;
14522
7d8e00cf
RS
14523 case OPTION_FIX_VR4130:
14524 mips_fix_vr4130 = 1;
14525 break;
14526
14527 case OPTION_NO_FIX_VR4130:
14528 mips_fix_vr4130 = 0;
14529 break;
14530
d954098f
DD
14531 case OPTION_FIX_CN63XXP1:
14532 mips_fix_cn63xxp1 = TRUE;
14533 break;
14534
14535 case OPTION_NO_FIX_CN63XXP1:
14536 mips_fix_cn63xxp1 = FALSE;
14537 break;
14538
4a6a3df4
AO
14539 case OPTION_RELAX_BRANCH:
14540 mips_relax_branch = 1;
14541 break;
14542
14543 case OPTION_NO_RELAX_BRANCH:
14544 mips_relax_branch = 0;
14545 break;
14546
8b10b0b3
MR
14547 case OPTION_IGNORE_BRANCH_ISA:
14548 mips_ignore_branch_isa = TRUE;
14549 break;
14550
14551 case OPTION_NO_IGNORE_BRANCH_ISA:
14552 mips_ignore_branch_isa = FALSE;
14553 break;
14554
833794fc 14555 case OPTION_INSN32:
919731af 14556 file_mips_opts.insn32 = TRUE;
833794fc
MR
14557 break;
14558
14559 case OPTION_NO_INSN32:
919731af 14560 file_mips_opts.insn32 = FALSE;
833794fc
MR
14561 break;
14562
aa6975fb
ILT
14563 case OPTION_MSHARED:
14564 mips_in_shared = TRUE;
14565 break;
14566
14567 case OPTION_MNO_SHARED:
14568 mips_in_shared = FALSE;
14569 break;
14570
aed1a261 14571 case OPTION_MSYM32:
919731af 14572 file_mips_opts.sym32 = TRUE;
aed1a261
RS
14573 break;
14574
14575 case OPTION_MNO_SYM32:
919731af 14576 file_mips_opts.sym32 = FALSE;
aed1a261
RS
14577 break;
14578
252b5132
RH
14579 /* When generating ELF code, we permit -KPIC and -call_shared to
14580 select SVR4_PIC, and -non_shared to select no PIC. This is
14581 intended to be compatible with Irix 5. */
14582 case OPTION_CALL_SHARED:
252b5132 14583 mips_pic = SVR4_PIC;
143d77c5 14584 mips_abicalls = TRUE;
252b5132
RH
14585 break;
14586
861fb55a 14587 case OPTION_CALL_NONPIC:
861fb55a
DJ
14588 mips_pic = NO_PIC;
14589 mips_abicalls = TRUE;
14590 break;
14591
252b5132 14592 case OPTION_NON_SHARED:
252b5132 14593 mips_pic = NO_PIC;
143d77c5 14594 mips_abicalls = FALSE;
252b5132
RH
14595 break;
14596
44075ae2
TS
14597 /* The -xgot option tells the assembler to use 32 bit offsets
14598 when accessing the got in SVR4_PIC mode. It is for Irix
252b5132
RH
14599 compatibility. */
14600 case OPTION_XGOT:
14601 mips_big_got = 1;
14602 break;
14603
14604 case 'G':
6caf9ef4
TS
14605 g_switch_value = atoi (arg);
14606 g_switch_seen = 1;
252b5132
RH
14607 break;
14608
34ba82a8
TS
14609 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14610 and -mabi=64. */
252b5132 14611 case OPTION_32:
f3ded42a 14612 mips_abi = O32_ABI;
252b5132
RH
14613 break;
14614
e013f690 14615 case OPTION_N32:
316f5878 14616 mips_abi = N32_ABI;
e013f690 14617 break;
252b5132 14618
e013f690 14619 case OPTION_64:
316f5878 14620 mips_abi = N64_ABI;
f43abd2b 14621 if (!support_64bit_objects())
1661c76c 14622 as_fatal (_("no compiled in support for 64 bit object file format"));
252b5132
RH
14623 break;
14624
c97ef257 14625 case OPTION_GP32:
bad1aba3 14626 file_mips_opts.gp = 32;
c97ef257
AH
14627 break;
14628
14629 case OPTION_GP64:
bad1aba3 14630 file_mips_opts.gp = 64;
c97ef257 14631 break;
252b5132 14632
ca4e0257 14633 case OPTION_FP32:
0b35dfee 14634 file_mips_opts.fp = 32;
316f5878
RS
14635 break;
14636
351cdf24
MF
14637 case OPTION_FPXX:
14638 file_mips_opts.fp = 0;
14639 break;
14640
316f5878 14641 case OPTION_FP64:
0b35dfee 14642 file_mips_opts.fp = 64;
ca4e0257
RS
14643 break;
14644
351cdf24
MF
14645 case OPTION_ODD_SPREG:
14646 file_mips_opts.oddspreg = 1;
14647 break;
14648
14649 case OPTION_NO_ODD_SPREG:
14650 file_mips_opts.oddspreg = 0;
14651 break;
14652
037b32b9 14653 case OPTION_SINGLE_FLOAT:
0b35dfee 14654 file_mips_opts.single_float = 1;
037b32b9
AN
14655 break;
14656
14657 case OPTION_DOUBLE_FLOAT:
0b35dfee 14658 file_mips_opts.single_float = 0;
037b32b9
AN
14659 break;
14660
14661 case OPTION_SOFT_FLOAT:
0b35dfee 14662 file_mips_opts.soft_float = 1;
037b32b9
AN
14663 break;
14664
14665 case OPTION_HARD_FLOAT:
0b35dfee 14666 file_mips_opts.soft_float = 0;
037b32b9
AN
14667 break;
14668
252b5132 14669 case OPTION_MABI:
e013f690 14670 if (strcmp (arg, "32") == 0)
316f5878 14671 mips_abi = O32_ABI;
e013f690 14672 else if (strcmp (arg, "o64") == 0)
316f5878 14673 mips_abi = O64_ABI;
e013f690 14674 else if (strcmp (arg, "n32") == 0)
316f5878 14675 mips_abi = N32_ABI;
e013f690
TS
14676 else if (strcmp (arg, "64") == 0)
14677 {
316f5878 14678 mips_abi = N64_ABI;
e013f690 14679 if (! support_64bit_objects())
1661c76c 14680 as_fatal (_("no compiled in support for 64 bit object file "
e013f690
TS
14681 "format"));
14682 }
14683 else if (strcmp (arg, "eabi") == 0)
316f5878 14684 mips_abi = EABI_ABI;
e013f690 14685 else
da0e507f
TS
14686 {
14687 as_fatal (_("invalid abi -mabi=%s"), arg);
14688 return 0;
14689 }
252b5132
RH
14690 break;
14691
6b76fefe 14692 case OPTION_M7000_HILO_FIX:
b34976b6 14693 mips_7000_hilo_fix = TRUE;
6b76fefe
CM
14694 break;
14695
9ee72ff1 14696 case OPTION_MNO_7000_HILO_FIX:
b34976b6 14697 mips_7000_hilo_fix = FALSE;
6b76fefe
CM
14698 break;
14699
ecb4347a 14700 case OPTION_MDEBUG:
b34976b6 14701 mips_flag_mdebug = TRUE;
ecb4347a
DJ
14702 break;
14703
14704 case OPTION_NO_MDEBUG:
b34976b6 14705 mips_flag_mdebug = FALSE;
ecb4347a 14706 break;
dcd410fe
RO
14707
14708 case OPTION_PDR:
14709 mips_flag_pdr = TRUE;
14710 break;
14711
14712 case OPTION_NO_PDR:
14713 mips_flag_pdr = FALSE;
14714 break;
0a44bf69
RS
14715
14716 case OPTION_MVXWORKS_PIC:
14717 mips_pic = VXWORKS_PIC;
14718 break;
ecb4347a 14719
ba92f887
MR
14720 case OPTION_NAN:
14721 if (strcmp (arg, "2008") == 0)
7361da2c 14722 mips_nan2008 = 1;
ba92f887 14723 else if (strcmp (arg, "legacy") == 0)
7361da2c 14724 mips_nan2008 = 0;
ba92f887
MR
14725 else
14726 {
1661c76c 14727 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
ba92f887
MR
14728 return 0;
14729 }
14730 break;
14731
252b5132
RH
14732 default:
14733 return 0;
14734 }
14735
c67a084a
NC
14736 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14737
252b5132
RH
14738 return 1;
14739}
316f5878 14740\f
919731af 14741/* Set up globals to tune for the ISA or processor described by INFO. */
252b5132 14742
316f5878 14743static void
17a2f251 14744mips_set_tune (const struct mips_cpu_info *info)
316f5878
RS
14745{
14746 if (info != 0)
fef14a42 14747 mips_tune = info->cpu;
316f5878 14748}
80cc45a5 14749
34ba82a8 14750
252b5132 14751void
17a2f251 14752mips_after_parse_args (void)
e9670677 14753{
fef14a42
TS
14754 const struct mips_cpu_info *arch_info = 0;
14755 const struct mips_cpu_info *tune_info = 0;
14756
e9670677 14757 /* GP relative stuff not working for PE */
6caf9ef4 14758 if (strncmp (TARGET_OS, "pe", 2) == 0)
e9670677 14759 {
6caf9ef4 14760 if (g_switch_seen && g_switch_value != 0)
1661c76c 14761 as_bad (_("-G not supported in this configuration"));
e9670677
MR
14762 g_switch_value = 0;
14763 }
14764
cac012d6
AO
14765 if (mips_abi == NO_ABI)
14766 mips_abi = MIPS_DEFAULT_ABI;
14767
919731af 14768 /* The following code determines the architecture.
22923709
RS
14769 Similar code was added to GCC 3.3 (see override_options() in
14770 config/mips/mips.c). The GAS and GCC code should be kept in sync
14771 as much as possible. */
e9670677 14772
316f5878 14773 if (mips_arch_string != 0)
fef14a42 14774 arch_info = mips_parse_cpu ("-march", mips_arch_string);
e9670677 14775
0b35dfee 14776 if (file_mips_opts.isa != ISA_UNKNOWN)
e9670677 14777 {
0b35dfee 14778 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
fef14a42 14779 ISA level specified by -mipsN, while arch_info->isa contains
316f5878 14780 the -march selection (if any). */
fef14a42 14781 if (arch_info != 0)
e9670677 14782 {
316f5878
RS
14783 /* -march takes precedence over -mipsN, since it is more descriptive.
14784 There's no harm in specifying both as long as the ISA levels
14785 are the same. */
0b35dfee 14786 if (file_mips_opts.isa != arch_info->isa)
1661c76c
RS
14787 as_bad (_("-%s conflicts with the other architecture options,"
14788 " which imply -%s"),
0b35dfee 14789 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
fef14a42 14790 mips_cpu_info_from_isa (arch_info->isa)->name);
e9670677 14791 }
316f5878 14792 else
0b35dfee 14793 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
e9670677
MR
14794 }
14795
fef14a42 14796 if (arch_info == 0)
95bfe26e
MF
14797 {
14798 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14799 gas_assert (arch_info);
14800 }
e9670677 14801
fef14a42 14802 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
20203fb9 14803 as_bad (_("-march=%s is not compatible with the selected ABI"),
fef14a42
TS
14804 arch_info->name);
14805
919731af 14806 file_mips_opts.arch = arch_info->cpu;
14807 file_mips_opts.isa = arch_info->isa;
14808
14809 /* Set up initial mips_opts state. */
14810 mips_opts = file_mips_opts;
14811
14812 /* The register size inference code is now placed in
14813 file_mips_check_options. */
fef14a42 14814
0b35dfee 14815 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14816 processor. */
fef14a42
TS
14817 if (mips_tune_string != 0)
14818 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
e9670677 14819
fef14a42
TS
14820 if (tune_info == 0)
14821 mips_set_tune (arch_info);
14822 else
14823 mips_set_tune (tune_info);
e9670677 14824
ecb4347a 14825 if (mips_flag_mdebug < 0)
e8044f35 14826 mips_flag_mdebug = 0;
e9670677
MR
14827}
14828\f
14829void
17a2f251 14830mips_init_after_args (void)
252b5132
RH
14831{
14832 /* initialize opcodes */
14833 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
beae10d5 14834 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
252b5132
RH
14835}
14836
14837long
17a2f251 14838md_pcrel_from (fixS *fixP)
252b5132 14839{
a7ebbfdf
TS
14840 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14841 switch (fixP->fx_r_type)
14842 {
df58fc94
RS
14843 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14844 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14845 /* Return the address of the delay slot. */
14846 return addr + 2;
14847
14848 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14849 case BFD_RELOC_MICROMIPS_JMP:
c9775dde 14850 case BFD_RELOC_MIPS16_16_PCREL_S1:
a7ebbfdf 14851 case BFD_RELOC_16_PCREL_S2:
7361da2c
AB
14852 case BFD_RELOC_MIPS_21_PCREL_S2:
14853 case BFD_RELOC_MIPS_26_PCREL_S2:
a7ebbfdf
TS
14854 case BFD_RELOC_MIPS_JMP:
14855 /* Return the address of the delay slot. */
14856 return addr + 4;
df58fc94 14857
51f6035b
MR
14858 case BFD_RELOC_MIPS_18_PCREL_S3:
14859 /* Return the aligned address of the doubleword containing
14860 the instruction. */
14861 return addr & ~7;
14862
a7ebbfdf
TS
14863 default:
14864 return addr;
14865 }
252b5132
RH
14866}
14867
252b5132
RH
14868/* This is called before the symbol table is processed. In order to
14869 work with gcc when using mips-tfile, we must keep all local labels.
14870 However, in other cases, we want to discard them. If we were
14871 called with -g, but we didn't see any debugging information, it may
14872 mean that gcc is smuggling debugging information through to
14873 mips-tfile, in which case we must generate all local labels. */
14874
14875void
17a2f251 14876mips_frob_file_before_adjust (void)
252b5132
RH
14877{
14878#ifndef NO_ECOFF_DEBUGGING
14879 if (ECOFF_DEBUGGING
14880 && mips_debug != 0
14881 && ! ecoff_debugging_seen)
14882 flag_keep_locals = 1;
14883#endif
14884}
14885
3b91255e 14886/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
55cf6793 14887 the corresponding LO16 reloc. This is called before md_apply_fix and
3b91255e
RS
14888 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14889 relocation operators.
14890
14891 For our purposes, a %lo() expression matches a %got() or %hi()
14892 expression if:
14893
14894 (a) it refers to the same symbol; and
14895 (b) the offset applied in the %lo() expression is no lower than
14896 the offset applied in the %got() or %hi().
14897
14898 (b) allows us to cope with code like:
14899
14900 lui $4,%hi(foo)
14901 lh $4,%lo(foo+2)($4)
14902
14903 ...which is legal on RELA targets, and has a well-defined behaviour
14904 if the user knows that adding 2 to "foo" will not induce a carry to
14905 the high 16 bits.
14906
14907 When several %lo()s match a particular %got() or %hi(), we use the
14908 following rules to distinguish them:
14909
14910 (1) %lo()s with smaller offsets are a better match than %lo()s with
14911 higher offsets.
14912
14913 (2) %lo()s with no matching %got() or %hi() are better than those
14914 that already have a matching %got() or %hi().
14915
14916 (3) later %lo()s are better than earlier %lo()s.
14917
14918 These rules are applied in order.
14919
14920 (1) means, among other things, that %lo()s with identical offsets are
14921 chosen if they exist.
14922
14923 (2) means that we won't associate several high-part relocations with
14924 the same low-part relocation unless there's no alternative. Having
14925 several high parts for the same low part is a GNU extension; this rule
14926 allows careful users to avoid it.
14927
14928 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14929 with the last high-part relocation being at the front of the list.
14930 It therefore makes sense to choose the last matching low-part
14931 relocation, all other things being equal. It's also easier
14932 to code that way. */
252b5132
RH
14933
14934void
17a2f251 14935mips_frob_file (void)
252b5132
RH
14936{
14937 struct mips_hi_fixup *l;
35903be0 14938 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
252b5132
RH
14939
14940 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14941 {
14942 segment_info_type *seginfo;
3b91255e
RS
14943 bfd_boolean matched_lo_p;
14944 fixS **hi_pos, **lo_pos, **pos;
252b5132 14945
9c2799c2 14946 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
252b5132 14947
5919d012 14948 /* If a GOT16 relocation turns out to be against a global symbol,
b886a2ab
RS
14949 there isn't supposed to be a matching LO. Ignore %gots against
14950 constants; we'll report an error for those later. */
738e5348 14951 if (got16_reloc_p (l->fixp->fx_r_type)
b886a2ab 14952 && !(l->fixp->fx_addsy
9e009953 14953 && pic_need_relax (l->fixp->fx_addsy)))
5919d012
RS
14954 continue;
14955
14956 /* Check quickly whether the next fixup happens to be a matching %lo. */
14957 if (fixup_has_matching_lo_p (l->fixp))
252b5132
RH
14958 continue;
14959
252b5132 14960 seginfo = seg_info (l->seg);
252b5132 14961
3b91255e
RS
14962 /* Set HI_POS to the position of this relocation in the chain.
14963 Set LO_POS to the position of the chosen low-part relocation.
14964 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14965 relocation that matches an immediately-preceding high-part
14966 relocation. */
14967 hi_pos = NULL;
14968 lo_pos = NULL;
14969 matched_lo_p = FALSE;
738e5348 14970 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
35903be0 14971
3b91255e
RS
14972 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14973 {
14974 if (*pos == l->fixp)
14975 hi_pos = pos;
14976
35903be0 14977 if ((*pos)->fx_r_type == looking_for_rtype
30cfc97a 14978 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
3b91255e
RS
14979 && (*pos)->fx_offset >= l->fixp->fx_offset
14980 && (lo_pos == NULL
14981 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14982 || (!matched_lo_p
14983 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14984 lo_pos = pos;
14985
14986 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14987 && fixup_has_matching_lo_p (*pos));
14988 }
14989
14990 /* If we found a match, remove the high-part relocation from its
14991 current position and insert it before the low-part relocation.
14992 Make the offsets match so that fixup_has_matching_lo_p()
14993 will return true.
14994
14995 We don't warn about unmatched high-part relocations since some
14996 versions of gcc have been known to emit dead "lui ...%hi(...)"
14997 instructions. */
14998 if (lo_pos != NULL)
14999 {
15000 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15001 if (l->fixp->fx_next != *lo_pos)
252b5132 15002 {
3b91255e
RS
15003 *hi_pos = l->fixp->fx_next;
15004 l->fixp->fx_next = *lo_pos;
15005 *lo_pos = l->fixp;
252b5132 15006 }
252b5132
RH
15007 }
15008 }
15009}
15010
252b5132 15011int
17a2f251 15012mips_force_relocation (fixS *fixp)
252b5132 15013{
ae6063d4 15014 if (generic_force_reloc (fixp))
252b5132
RH
15015 return 1;
15016
df58fc94
RS
15017 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15018 so that the linker relaxation can update targets. */
15019 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15020 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15021 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15022 return 1;
15023
5caa2b07
MR
15024 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
15025 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
15026 microMIPS symbols so that we can do cross-mode branch diagnostics
15027 and BAL to JALX conversion by the linker. */
15028 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
9d862524
MR
15029 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15030 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
15031 && fixp->fx_addsy
15032 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
15033 return 1;
15034
7361da2c 15035 /* We want all PC-relative relocations to be kept for R6 relaxation. */
912815f0 15036 if (ISA_IS_R6 (file_mips_opts.isa)
7361da2c
AB
15037 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15038 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15039 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
15040 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
15041 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
15042 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
15043 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
15044 return 1;
15045
3e722fb5 15046 return 0;
252b5132
RH
15047}
15048
b416ba9b
MR
15049/* Implement TC_FORCE_RELOCATION_ABS. */
15050
15051bfd_boolean
15052mips_force_relocation_abs (fixS *fixp)
15053{
15054 if (generic_force_reloc (fixp))
15055 return TRUE;
15056
15057 /* These relocations do not have enough bits in the in-place addend
15058 to hold an arbitrary absolute section's offset. */
15059 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15060 return TRUE;
15061
15062 return FALSE;
15063}
15064
b886a2ab
RS
15065/* Read the instruction associated with RELOC from BUF. */
15066
15067static unsigned int
15068read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15069{
15070 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15071 return read_compressed_insn (buf, 4);
15072 else
15073 return read_insn (buf);
15074}
15075
15076/* Write instruction INSN to BUF, given that it has been relocated
15077 by RELOC. */
15078
15079static void
15080write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15081 unsigned long insn)
15082{
15083 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15084 write_compressed_insn (buf, insn, 4);
15085 else
15086 write_insn (buf, insn);
15087}
15088
9d862524
MR
15089/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15090 to a symbol in another ISA mode, which cannot be converted to JALX. */
15091
15092static bfd_boolean
15093fix_bad_cross_mode_jump_p (fixS *fixP)
15094{
15095 unsigned long opcode;
15096 int other;
15097 char *buf;
15098
15099 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15100 return FALSE;
15101
15102 other = S_GET_OTHER (fixP->fx_addsy);
15103 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15104 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15105 switch (fixP->fx_r_type)
15106 {
15107 case BFD_RELOC_MIPS_JMP:
15108 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15109 case BFD_RELOC_MICROMIPS_JMP:
15110 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15111 default:
15112 return FALSE;
15113 }
15114}
15115
15116/* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15117 jump to a symbol in the same ISA mode. */
15118
15119static bfd_boolean
15120fix_bad_same_mode_jalx_p (fixS *fixP)
15121{
15122 unsigned long opcode;
15123 int other;
15124 char *buf;
15125
15126 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15127 return FALSE;
15128
15129 other = S_GET_OTHER (fixP->fx_addsy);
15130 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15131 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15132 switch (fixP->fx_r_type)
15133 {
15134 case BFD_RELOC_MIPS_JMP:
15135 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15136 case BFD_RELOC_MIPS16_JMP:
15137 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15138 case BFD_RELOC_MICROMIPS_JMP:
15139 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15140 default:
15141 return FALSE;
15142 }
15143}
15144
15145/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15146 to a symbol whose value plus addend is not aligned according to the
15147 ultimate (after linker relaxation) jump instruction's immediate field
15148 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15149 regular MIPS code, to (1 << 2). */
15150
15151static bfd_boolean
15152fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15153{
15154 bfd_boolean micro_to_mips_p;
15155 valueT val;
15156 int other;
15157
15158 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15159 return FALSE;
15160
15161 other = S_GET_OTHER (fixP->fx_addsy);
15162 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15163 val += fixP->fx_offset;
15164 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15165 && !ELF_ST_IS_MICROMIPS (other));
15166 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15167 != ELF_ST_IS_COMPRESSED (other));
15168}
15169
15170/* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15171 to a symbol whose annotation indicates another ISA mode. For absolute
a6ebf616
MR
15172 symbols check the ISA bit instead.
15173
15174 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15175 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15176 MIPS symbols and associated with BAL instructions as these instructions
15177 may be be converted to JALX by the linker. */
9d862524
MR
15178
15179static bfd_boolean
15180fix_bad_cross_mode_branch_p (fixS *fixP)
15181{
15182 bfd_boolean absolute_p;
15183 unsigned long opcode;
15184 asection *symsec;
15185 valueT val;
15186 int other;
15187 char *buf;
15188
8b10b0b3
MR
15189 if (mips_ignore_branch_isa)
15190 return FALSE;
15191
9d862524
MR
15192 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15193 return FALSE;
15194
15195 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15196 absolute_p = bfd_is_abs_section (symsec);
15197
15198 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15199 other = S_GET_OTHER (fixP->fx_addsy);
15200
15201 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15202 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15203 switch (fixP->fx_r_type)
15204 {
15205 case BFD_RELOC_16_PCREL_S2:
a6ebf616
MR
15206 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15207 && opcode != 0x0411);
15208 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15209 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15210 && opcode != 0x4060);
9d862524
MR
15211 case BFD_RELOC_MIPS_21_PCREL_S2:
15212 case BFD_RELOC_MIPS_26_PCREL_S2:
15213 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15214 case BFD_RELOC_MIPS16_16_PCREL_S1:
15215 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15216 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15217 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
9d862524
MR
15218 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15219 default:
15220 abort ();
15221 }
15222}
15223
15224/* Return TRUE if the symbol plus addend associated with a regular MIPS
15225 branch instruction pointed to by FIXP is not aligned according to the
15226 branch instruction's immediate field requirement. We need the addend
15227 to preserve the ISA bit and also the sum must not have bit 2 set. We
15228 must explicitly OR in the ISA bit from symbol annotation as the bit
15229 won't be set in the symbol's value then. */
15230
15231static bfd_boolean
15232fix_bad_misaligned_branch_p (fixS *fixP)
15233{
15234 bfd_boolean absolute_p;
15235 asection *symsec;
15236 valueT isa_bit;
15237 valueT val;
15238 valueT off;
15239 int other;
15240
15241 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15242 return FALSE;
15243
15244 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15245 absolute_p = bfd_is_abs_section (symsec);
15246
15247 val = S_GET_VALUE (fixP->fx_addsy);
15248 other = S_GET_OTHER (fixP->fx_addsy);
15249 off = fixP->fx_offset;
15250
15251 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15252 val |= ELF_ST_IS_COMPRESSED (other);
15253 val += off;
15254 return (val & 0x3) != isa_bit;
15255}
15256
15257/* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15258 and its calculated value VAL. */
15259
15260static void
15261fix_validate_branch (fixS *fixP, valueT val)
15262{
15263 if (fixP->fx_done && (val & 0x3) != 0)
15264 as_bad_where (fixP->fx_file, fixP->fx_line,
15265 _("branch to misaligned address (0x%lx)"),
15266 (long) (val + md_pcrel_from (fixP)));
15267 else if (fix_bad_cross_mode_branch_p (fixP))
15268 as_bad_where (fixP->fx_file, fixP->fx_line,
15269 _("branch to a symbol in another ISA mode"));
15270 else if (fix_bad_misaligned_branch_p (fixP))
15271 as_bad_where (fixP->fx_file, fixP->fx_line,
15272 _("branch to misaligned address (0x%lx)"),
15273 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15274 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15275 as_bad_where (fixP->fx_file, fixP->fx_line,
15276 _("cannot encode misaligned addend "
15277 "in the relocatable field (0x%lx)"),
15278 (long) fixP->fx_offset);
15279}
15280
252b5132
RH
15281/* Apply a fixup to the object file. */
15282
94f592af 15283void
55cf6793 15284md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 15285{
4d68580a 15286 char *buf;
b886a2ab 15287 unsigned long insn;
a7ebbfdf 15288 reloc_howto_type *howto;
252b5132 15289
d56a8dda
RS
15290 if (fixP->fx_pcrel)
15291 switch (fixP->fx_r_type)
15292 {
15293 case BFD_RELOC_16_PCREL_S2:
c9775dde 15294 case BFD_RELOC_MIPS16_16_PCREL_S1:
d56a8dda
RS
15295 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15296 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15297 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15298 case BFD_RELOC_32_PCREL:
7361da2c
AB
15299 case BFD_RELOC_MIPS_21_PCREL_S2:
15300 case BFD_RELOC_MIPS_26_PCREL_S2:
15301 case BFD_RELOC_MIPS_18_PCREL_S3:
15302 case BFD_RELOC_MIPS_19_PCREL_S2:
15303 case BFD_RELOC_HI16_S_PCREL:
15304 case BFD_RELOC_LO16_PCREL:
d56a8dda
RS
15305 break;
15306
15307 case BFD_RELOC_32:
15308 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15309 break;
15310
15311 default:
15312 as_bad_where (fixP->fx_file, fixP->fx_line,
15313 _("PC-relative reference to a different section"));
15314 break;
15315 }
15316
15317 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15318 that have no MIPS ELF equivalent. */
15319 if (fixP->fx_r_type != BFD_RELOC_8)
15320 {
15321 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15322 if (!howto)
15323 return;
15324 }
65551fa4 15325
df58fc94
RS
15326 gas_assert (fixP->fx_size == 2
15327 || fixP->fx_size == 4
d56a8dda 15328 || fixP->fx_r_type == BFD_RELOC_8
90ecf173
MR
15329 || fixP->fx_r_type == BFD_RELOC_16
15330 || fixP->fx_r_type == BFD_RELOC_64
15331 || fixP->fx_r_type == BFD_RELOC_CTOR
15332 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
df58fc94 15333 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
90ecf173
MR
15334 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15335 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2f0c68f2
CM
15336 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15337 || fixP->fx_r_type == BFD_RELOC_NONE);
252b5132 15338
4d68580a 15339 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 15340
b1dca8ee
RS
15341 /* Don't treat parts of a composite relocation as done. There are two
15342 reasons for this:
15343
15344 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15345 should nevertheless be emitted if the first part is.
15346
15347 (2) In normal usage, composite relocations are never assembly-time
15348 constants. The easiest way of dealing with the pathological
15349 exceptions is to generate a relocation against STN_UNDEF and
15350 leave everything up to the linker. */
3994f87e 15351 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
252b5132
RH
15352 fixP->fx_done = 1;
15353
15354 switch (fixP->fx_r_type)
15355 {
3f98094e
DJ
15356 case BFD_RELOC_MIPS_TLS_GD:
15357 case BFD_RELOC_MIPS_TLS_LDM:
741d6ea8
JM
15358 case BFD_RELOC_MIPS_TLS_DTPREL32:
15359 case BFD_RELOC_MIPS_TLS_DTPREL64:
3f98094e
DJ
15360 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15361 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15362 case BFD_RELOC_MIPS_TLS_GOTTPREL:
d0f13682
CLT
15363 case BFD_RELOC_MIPS_TLS_TPREL32:
15364 case BFD_RELOC_MIPS_TLS_TPREL64:
3f98094e
DJ
15365 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15366 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
df58fc94
RS
15367 case BFD_RELOC_MICROMIPS_TLS_GD:
15368 case BFD_RELOC_MICROMIPS_TLS_LDM:
15369 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15370 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15371 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15372 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15373 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
d0f13682
CLT
15374 case BFD_RELOC_MIPS16_TLS_GD:
15375 case BFD_RELOC_MIPS16_TLS_LDM:
15376 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15377 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15378 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15379 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15380 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
4512dafa
MR
15381 if (fixP->fx_addsy)
15382 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15383 else
15384 as_bad_where (fixP->fx_file, fixP->fx_line,
15385 _("TLS relocation against a constant"));
15386 break;
3f98094e 15387
252b5132 15388 case BFD_RELOC_MIPS_JMP:
9d862524
MR
15389 case BFD_RELOC_MIPS16_JMP:
15390 case BFD_RELOC_MICROMIPS_JMP:
15391 {
15392 int shift;
15393
15394 gas_assert (!fixP->fx_done);
15395
15396 /* Shift is 2, unusually, for microMIPS JALX. */
15397 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15398 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15399 shift = 1;
15400 else
15401 shift = 2;
15402
15403 if (fix_bad_cross_mode_jump_p (fixP))
15404 as_bad_where (fixP->fx_file, fixP->fx_line,
15405 _("jump to a symbol in another ISA mode"));
15406 else if (fix_bad_same_mode_jalx_p (fixP))
15407 as_bad_where (fixP->fx_file, fixP->fx_line,
15408 _("JALX to a symbol in the same ISA mode"));
15409 else if (fix_bad_misaligned_jump_p (fixP, shift))
15410 as_bad_where (fixP->fx_file, fixP->fx_line,
15411 _("jump to misaligned address (0x%lx)"),
15412 (long) (S_GET_VALUE (fixP->fx_addsy)
15413 + fixP->fx_offset));
15414 else if (HAVE_IN_PLACE_ADDENDS
15415 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15416 as_bad_where (fixP->fx_file, fixP->fx_line,
15417 _("cannot encode misaligned addend "
15418 "in the relocatable field (0x%lx)"),
15419 (long) fixP->fx_offset);
15420 }
15421 /* Fall through. */
15422
e369bcce
TS
15423 case BFD_RELOC_MIPS_SHIFT5:
15424 case BFD_RELOC_MIPS_SHIFT6:
15425 case BFD_RELOC_MIPS_GOT_DISP:
15426 case BFD_RELOC_MIPS_GOT_PAGE:
15427 case BFD_RELOC_MIPS_GOT_OFST:
15428 case BFD_RELOC_MIPS_SUB:
15429 case BFD_RELOC_MIPS_INSERT_A:
15430 case BFD_RELOC_MIPS_INSERT_B:
15431 case BFD_RELOC_MIPS_DELETE:
15432 case BFD_RELOC_MIPS_HIGHEST:
15433 case BFD_RELOC_MIPS_HIGHER:
15434 case BFD_RELOC_MIPS_SCN_DISP:
15435 case BFD_RELOC_MIPS_REL16:
15436 case BFD_RELOC_MIPS_RELGOT:
15437 case BFD_RELOC_MIPS_JALR:
252b5132
RH
15438 case BFD_RELOC_HI16:
15439 case BFD_RELOC_HI16_S:
b886a2ab 15440 case BFD_RELOC_LO16:
cdf6fd85 15441 case BFD_RELOC_GPREL16:
252b5132
RH
15442 case BFD_RELOC_MIPS_LITERAL:
15443 case BFD_RELOC_MIPS_CALL16:
15444 case BFD_RELOC_MIPS_GOT16:
cdf6fd85 15445 case BFD_RELOC_GPREL32:
252b5132
RH
15446 case BFD_RELOC_MIPS_GOT_HI16:
15447 case BFD_RELOC_MIPS_GOT_LO16:
15448 case BFD_RELOC_MIPS_CALL_HI16:
15449 case BFD_RELOC_MIPS_CALL_LO16:
41947d9e
MR
15450 case BFD_RELOC_HI16_S_PCREL:
15451 case BFD_RELOC_LO16_PCREL:
252b5132 15452 case BFD_RELOC_MIPS16_GPREL:
738e5348
RS
15453 case BFD_RELOC_MIPS16_GOT16:
15454 case BFD_RELOC_MIPS16_CALL16:
d6f16593
MR
15455 case BFD_RELOC_MIPS16_HI16:
15456 case BFD_RELOC_MIPS16_HI16_S:
b886a2ab 15457 case BFD_RELOC_MIPS16_LO16:
df58fc94
RS
15458 case BFD_RELOC_MICROMIPS_GOT_DISP:
15459 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15460 case BFD_RELOC_MICROMIPS_GOT_OFST:
15461 case BFD_RELOC_MICROMIPS_SUB:
15462 case BFD_RELOC_MICROMIPS_HIGHEST:
15463 case BFD_RELOC_MICROMIPS_HIGHER:
15464 case BFD_RELOC_MICROMIPS_SCN_DISP:
15465 case BFD_RELOC_MICROMIPS_JALR:
15466 case BFD_RELOC_MICROMIPS_HI16:
15467 case BFD_RELOC_MICROMIPS_HI16_S:
b886a2ab 15468 case BFD_RELOC_MICROMIPS_LO16:
df58fc94
RS
15469 case BFD_RELOC_MICROMIPS_GPREL16:
15470 case BFD_RELOC_MICROMIPS_LITERAL:
15471 case BFD_RELOC_MICROMIPS_CALL16:
15472 case BFD_RELOC_MICROMIPS_GOT16:
15473 case BFD_RELOC_MICROMIPS_GOT_HI16:
15474 case BFD_RELOC_MICROMIPS_GOT_LO16:
15475 case BFD_RELOC_MICROMIPS_CALL_HI16:
15476 case BFD_RELOC_MICROMIPS_CALL_LO16:
067ec077 15477 case BFD_RELOC_MIPS_EH:
b886a2ab
RS
15478 if (fixP->fx_done)
15479 {
15480 offsetT value;
15481
15482 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15483 {
15484 insn = read_reloc_insn (buf, fixP->fx_r_type);
15485 if (mips16_reloc_p (fixP->fx_r_type))
15486 insn |= mips16_immed_extend (value, 16);
15487 else
15488 insn |= (value & 0xffff);
15489 write_reloc_insn (buf, fixP->fx_r_type, insn);
15490 }
15491 else
15492 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15493 _("unsupported constant in relocation"));
b886a2ab 15494 }
252b5132
RH
15495 break;
15496
252b5132
RH
15497 case BFD_RELOC_64:
15498 /* This is handled like BFD_RELOC_32, but we output a sign
15499 extended value if we are only 32 bits. */
3e722fb5 15500 if (fixP->fx_done)
252b5132
RH
15501 {
15502 if (8 <= sizeof (valueT))
4d68580a 15503 md_number_to_chars (buf, *valP, 8);
252b5132
RH
15504 else
15505 {
a7ebbfdf 15506 valueT hiv;
252b5132 15507
a7ebbfdf 15508 if ((*valP & 0x80000000) != 0)
252b5132
RH
15509 hiv = 0xffffffff;
15510 else
15511 hiv = 0;
4d68580a
RS
15512 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15513 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
252b5132
RH
15514 }
15515 }
15516 break;
15517
056350c6 15518 case BFD_RELOC_RVA:
252b5132 15519 case BFD_RELOC_32:
b47468a6 15520 case BFD_RELOC_32_PCREL:
252b5132 15521 case BFD_RELOC_16:
d56a8dda 15522 case BFD_RELOC_8:
252b5132 15523 /* If we are deleting this reloc entry, we must fill in the
54f4ddb3
TS
15524 value now. This can happen if we have a .word which is not
15525 resolved when it appears but is later defined. */
252b5132 15526 if (fixP->fx_done)
4d68580a 15527 md_number_to_chars (buf, *valP, fixP->fx_size);
252b5132
RH
15528 break;
15529
7361da2c 15530 case BFD_RELOC_MIPS_21_PCREL_S2:
9d862524 15531 fix_validate_branch (fixP, *valP);
41947d9e
MR
15532 if (!fixP->fx_done)
15533 break;
15534
15535 if (*valP + 0x400000 <= 0x7fffff)
15536 {
15537 insn = read_insn (buf);
15538 insn |= (*valP >> 2) & 0x1fffff;
15539 write_insn (buf, insn);
15540 }
15541 else
15542 as_bad_where (fixP->fx_file, fixP->fx_line,
15543 _("branch out of range"));
15544 break;
15545
7361da2c 15546 case BFD_RELOC_MIPS_26_PCREL_S2:
9d862524 15547 fix_validate_branch (fixP, *valP);
41947d9e
MR
15548 if (!fixP->fx_done)
15549 break;
7361da2c 15550
41947d9e
MR
15551 if (*valP + 0x8000000 <= 0xfffffff)
15552 {
15553 insn = read_insn (buf);
15554 insn |= (*valP >> 2) & 0x3ffffff;
15555 write_insn (buf, insn);
15556 }
15557 else
15558 as_bad_where (fixP->fx_file, fixP->fx_line,
15559 _("branch out of range"));
7361da2c
AB
15560 break;
15561
15562 case BFD_RELOC_MIPS_18_PCREL_S3:
717ba204 15563 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
7361da2c 15564 as_bad_where (fixP->fx_file, fixP->fx_line,
0866e94c
MF
15565 _("PC-relative access using misaligned symbol (%lx)"),
15566 (long) S_GET_VALUE (fixP->fx_addsy));
15567 if ((fixP->fx_offset & 0x7) != 0)
15568 as_bad_where (fixP->fx_file, fixP->fx_line,
15569 _("PC-relative access using misaligned offset (%lx)"),
15570 (long) fixP->fx_offset);
41947d9e
MR
15571 if (!fixP->fx_done)
15572 break;
7361da2c 15573
41947d9e
MR
15574 if (*valP + 0x100000 <= 0x1fffff)
15575 {
15576 insn = read_insn (buf);
15577 insn |= (*valP >> 3) & 0x3ffff;
15578 write_insn (buf, insn);
15579 }
15580 else
15581 as_bad_where (fixP->fx_file, fixP->fx_line,
15582 _("PC-relative access out of range"));
7361da2c
AB
15583 break;
15584
15585 case BFD_RELOC_MIPS_19_PCREL_S2:
15586 if ((*valP & 0x3) != 0)
15587 as_bad_where (fixP->fx_file, fixP->fx_line,
15588 _("PC-relative access to misaligned address (%lx)"),
717ba204 15589 (long) *valP);
41947d9e
MR
15590 if (!fixP->fx_done)
15591 break;
7361da2c 15592
41947d9e
MR
15593 if (*valP + 0x100000 <= 0x1fffff)
15594 {
15595 insn = read_insn (buf);
15596 insn |= (*valP >> 2) & 0x7ffff;
15597 write_insn (buf, insn);
15598 }
15599 else
15600 as_bad_where (fixP->fx_file, fixP->fx_line,
15601 _("PC-relative access out of range"));
7361da2c
AB
15602 break;
15603
252b5132 15604 case BFD_RELOC_16_PCREL_S2:
9d862524 15605 fix_validate_branch (fixP, *valP);
cb56d3d3 15606
54f4ddb3
TS
15607 /* We need to save the bits in the instruction since fixup_segment()
15608 might be deleting the relocation entry (i.e., a branch within
15609 the current segment). */
a7ebbfdf 15610 if (! fixP->fx_done)
bb2d6cd7 15611 break;
252b5132 15612
54f4ddb3 15613 /* Update old instruction data. */
4d68580a 15614 insn = read_insn (buf);
252b5132 15615
a7ebbfdf
TS
15616 if (*valP + 0x20000 <= 0x3ffff)
15617 {
15618 insn |= (*valP >> 2) & 0xffff;
4d68580a 15619 write_insn (buf, insn);
a7ebbfdf 15620 }
ce8ad872 15621 else if (fixP->fx_tcbit2
a7ebbfdf
TS
15622 && fixP->fx_done
15623 && fixP->fx_frag->fr_address >= text_section->vma
15624 && (fixP->fx_frag->fr_address
587aac4e 15625 < text_section->vma + bfd_get_section_size (text_section))
a7ebbfdf
TS
15626 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15627 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15628 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
252b5132
RH
15629 {
15630 /* The branch offset is too large. If this is an
15631 unconditional branch, and we are not generating PIC code,
15632 we can convert it to an absolute jump instruction. */
a7ebbfdf
TS
15633 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15634 insn = 0x0c000000; /* jal */
252b5132 15635 else
a7ebbfdf
TS
15636 insn = 0x08000000; /* j */
15637 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15638 fixP->fx_done = 0;
15639 fixP->fx_addsy = section_symbol (text_section);
15640 *valP += md_pcrel_from (fixP);
4d68580a 15641 write_insn (buf, insn);
a7ebbfdf
TS
15642 }
15643 else
15644 {
15645 /* If we got here, we have branch-relaxation disabled,
15646 and there's nothing we can do to fix this instruction
15647 without turning it into a longer sequence. */
15648 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15649 _("branch out of range"));
252b5132 15650 }
252b5132
RH
15651 break;
15652
c9775dde 15653 case BFD_RELOC_MIPS16_16_PCREL_S1:
df58fc94
RS
15654 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15655 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15656 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
96e9ba5f 15657 gas_assert (!fixP->fx_done);
9d862524
MR
15658 if (fix_bad_cross_mode_branch_p (fixP))
15659 as_bad_where (fixP->fx_file, fixP->fx_line,
15660 _("branch to a symbol in another ISA mode"));
15661 else if (fixP->fx_addsy
15662 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15663 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15664 && (fixP->fx_offset & 0x1) != 0)
15665 as_bad_where (fixP->fx_file, fixP->fx_line,
15666 _("branch to misaligned address (0x%lx)"),
15667 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15668 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15669 as_bad_where (fixP->fx_file, fixP->fx_line,
15670 _("cannot encode misaligned addend "
15671 "in the relocatable field (0x%lx)"),
15672 (long) fixP->fx_offset);
df58fc94
RS
15673 break;
15674
252b5132
RH
15675 case BFD_RELOC_VTABLE_INHERIT:
15676 fixP->fx_done = 0;
15677 if (fixP->fx_addsy
15678 && !S_IS_DEFINED (fixP->fx_addsy)
15679 && !S_IS_WEAK (fixP->fx_addsy))
15680 S_SET_WEAK (fixP->fx_addsy);
15681 break;
15682
2f0c68f2 15683 case BFD_RELOC_NONE:
252b5132
RH
15684 case BFD_RELOC_VTABLE_ENTRY:
15685 fixP->fx_done = 0;
15686 break;
15687
15688 default:
b37df7c4 15689 abort ();
252b5132 15690 }
a7ebbfdf
TS
15691
15692 /* Remember value for tc_gen_reloc. */
15693 fixP->fx_addnumber = *valP;
252b5132
RH
15694}
15695
252b5132 15696static symbolS *
17a2f251 15697get_symbol (void)
252b5132
RH
15698{
15699 int c;
15700 char *name;
15701 symbolS *p;
15702
d02603dc 15703 c = get_symbol_name (&name);
252b5132 15704 p = (symbolS *) symbol_find_or_make (name);
d02603dc 15705 (void) restore_line_pointer (c);
252b5132
RH
15706 return p;
15707}
15708
742a56fe
RS
15709/* Align the current frag to a given power of two. If a particular
15710 fill byte should be used, FILL points to an integer that contains
15711 that byte, otherwise FILL is null.
15712
462427c4
RS
15713 This function used to have the comment:
15714
15715 The MIPS assembler also automatically adjusts any preceding label.
15716
15717 The implementation therefore applied the adjustment to a maximum of
15718 one label. However, other label adjustments are applied to batches
15719 of labels, and adjusting just one caused problems when new labels
15720 were added for the sake of debugging or unwind information.
15721 We therefore adjust all preceding labels (given as LABELS) instead. */
252b5132
RH
15722
15723static void
462427c4 15724mips_align (int to, int *fill, struct insn_label_list *labels)
252b5132 15725{
7d10b47d 15726 mips_emit_delays ();
df58fc94 15727 mips_record_compressed_mode ();
742a56fe
RS
15728 if (fill == NULL && subseg_text_p (now_seg))
15729 frag_align_code (to, 0);
15730 else
15731 frag_align (to, fill ? *fill : 0, 0);
252b5132 15732 record_alignment (now_seg, to);
462427c4 15733 mips_move_labels (labels, FALSE);
252b5132
RH
15734}
15735
15736/* Align to a given power of two. .align 0 turns off the automatic
15737 alignment used by the data creating pseudo-ops. */
15738
15739static void
17a2f251 15740s_align (int x ATTRIBUTE_UNUSED)
252b5132 15741{
742a56fe 15742 int temp, fill_value, *fill_ptr;
49954fb4 15743 long max_alignment = 28;
252b5132 15744
54f4ddb3 15745 /* o Note that the assembler pulls down any immediately preceding label
252b5132 15746 to the aligned address.
54f4ddb3 15747 o It's not documented but auto alignment is reinstated by
252b5132 15748 a .align pseudo instruction.
54f4ddb3 15749 o Note also that after auto alignment is turned off the mips assembler
252b5132 15750 issues an error on attempt to assemble an improperly aligned data item.
54f4ddb3 15751 We don't. */
252b5132
RH
15752
15753 temp = get_absolute_expression ();
15754 if (temp > max_alignment)
1661c76c 15755 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
252b5132
RH
15756 else if (temp < 0)
15757 {
1661c76c 15758 as_warn (_("alignment negative, 0 assumed"));
252b5132
RH
15759 temp = 0;
15760 }
15761 if (*input_line_pointer == ',')
15762 {
f9419b05 15763 ++input_line_pointer;
742a56fe
RS
15764 fill_value = get_absolute_expression ();
15765 fill_ptr = &fill_value;
252b5132
RH
15766 }
15767 else
742a56fe 15768 fill_ptr = 0;
252b5132
RH
15769 if (temp)
15770 {
a8dbcb85
TS
15771 segment_info_type *si = seg_info (now_seg);
15772 struct insn_label_list *l = si->label_list;
54f4ddb3 15773 /* Auto alignment should be switched on by next section change. */
252b5132 15774 auto_align = 1;
462427c4 15775 mips_align (temp, fill_ptr, l);
252b5132
RH
15776 }
15777 else
15778 {
15779 auto_align = 0;
15780 }
15781
15782 demand_empty_rest_of_line ();
15783}
15784
252b5132 15785static void
17a2f251 15786s_change_sec (int sec)
252b5132
RH
15787{
15788 segT seg;
15789
252b5132
RH
15790 /* The ELF backend needs to know that we are changing sections, so
15791 that .previous works correctly. We could do something like check
b6ff326e 15792 for an obj_section_change_hook macro, but that might be confusing
252b5132
RH
15793 as it would not be appropriate to use it in the section changing
15794 functions in read.c, since obj-elf.c intercepts those. FIXME:
15795 This should be cleaner, somehow. */
f3ded42a 15796 obj_elf_section_change_hook ();
252b5132 15797
7d10b47d 15798 mips_emit_delays ();
6a32d874 15799
252b5132
RH
15800 switch (sec)
15801 {
15802 case 't':
15803 s_text (0);
15804 break;
15805 case 'd':
15806 s_data (0);
15807 break;
15808 case 'b':
15809 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15810 demand_empty_rest_of_line ();
15811 break;
15812
15813 case 'r':
4d0d148d
TS
15814 seg = subseg_new (RDATA_SECTION_NAME,
15815 (subsegT) get_absolute_expression ());
f3ded42a
RS
15816 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15817 | SEC_READONLY | SEC_RELOC
15818 | SEC_DATA));
15819 if (strncmp (TARGET_OS, "elf", 3) != 0)
15820 record_alignment (seg, 4);
4d0d148d 15821 demand_empty_rest_of_line ();
252b5132
RH
15822 break;
15823
15824 case 's':
4d0d148d 15825 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
f3ded42a
RS
15826 bfd_set_section_flags (stdoutput, seg,
15827 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15828 if (strncmp (TARGET_OS, "elf", 3) != 0)
15829 record_alignment (seg, 4);
4d0d148d
TS
15830 demand_empty_rest_of_line ();
15831 break;
998b3c36
MR
15832
15833 case 'B':
15834 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
f3ded42a
RS
15835 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15836 if (strncmp (TARGET_OS, "elf", 3) != 0)
15837 record_alignment (seg, 4);
998b3c36
MR
15838 demand_empty_rest_of_line ();
15839 break;
252b5132
RH
15840 }
15841
15842 auto_align = 1;
15843}
b34976b6 15844
cca86cc8 15845void
17a2f251 15846s_change_section (int ignore ATTRIBUTE_UNUSED)
cca86cc8 15847{
d02603dc 15848 char *saved_ilp;
cca86cc8 15849 char *section_name;
d02603dc 15850 char c, endc;
684022ea 15851 char next_c = 0;
cca86cc8
SC
15852 int section_type;
15853 int section_flag;
15854 int section_entry_size;
15855 int section_alignment;
b34976b6 15856
d02603dc
NC
15857 saved_ilp = input_line_pointer;
15858 endc = get_symbol_name (&section_name);
15859 c = (endc == '"' ? input_line_pointer[1] : endc);
a816d1ed 15860 if (c)
d02603dc 15861 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
cca86cc8 15862
4cf0dd0d
TS
15863 /* Do we have .section Name<,"flags">? */
15864 if (c != ',' || (c == ',' && next_c == '"'))
cca86cc8 15865 {
d02603dc
NC
15866 /* Just after name is now '\0'. */
15867 (void) restore_line_pointer (endc);
15868 input_line_pointer = saved_ilp;
cca86cc8
SC
15869 obj_elf_section (ignore);
15870 return;
15871 }
d02603dc
NC
15872
15873 section_name = xstrdup (section_name);
15874 c = restore_line_pointer (endc);
15875
cca86cc8
SC
15876 input_line_pointer++;
15877
15878 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15879 if (c == ',')
15880 section_type = get_absolute_expression ();
15881 else
15882 section_type = 0;
d02603dc 15883
cca86cc8
SC
15884 if (*input_line_pointer++ == ',')
15885 section_flag = get_absolute_expression ();
15886 else
15887 section_flag = 0;
d02603dc 15888
cca86cc8
SC
15889 if (*input_line_pointer++ == ',')
15890 section_entry_size = get_absolute_expression ();
15891 else
15892 section_entry_size = 0;
d02603dc 15893
cca86cc8
SC
15894 if (*input_line_pointer++ == ',')
15895 section_alignment = get_absolute_expression ();
15896 else
15897 section_alignment = 0;
d02603dc 15898
87975d2a
AM
15899 /* FIXME: really ignore? */
15900 (void) section_alignment;
cca86cc8 15901
8ab8a5c8
RS
15902 /* When using the generic form of .section (as implemented by obj-elf.c),
15903 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15904 traditionally had to fall back on the more common @progbits instead.
15905
15906 There's nothing really harmful in this, since bfd will correct
15907 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
708587a4 15908 means that, for backwards compatibility, the special_section entries
8ab8a5c8
RS
15909 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15910
15911 Even so, we shouldn't force users of the MIPS .section syntax to
15912 incorrectly label the sections as SHT_PROGBITS. The best compromise
15913 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15914 generic type-checking code. */
15915 if (section_type == SHT_MIPS_DWARF)
15916 section_type = SHT_PROGBITS;
15917
a91e1603 15918 obj_elf_change_section (section_name, section_type, 0, section_flag,
cca86cc8 15919 section_entry_size, 0, 0, 0);
a816d1ed
AO
15920
15921 if (now_seg->name != section_name)
15922 free (section_name);
cca86cc8 15923}
252b5132
RH
15924
15925void
17a2f251 15926mips_enable_auto_align (void)
252b5132
RH
15927{
15928 auto_align = 1;
15929}
15930
15931static void
17a2f251 15932s_cons (int log_size)
252b5132 15933{
a8dbcb85
TS
15934 segment_info_type *si = seg_info (now_seg);
15935 struct insn_label_list *l = si->label_list;
252b5132 15936
7d10b47d 15937 mips_emit_delays ();
252b5132 15938 if (log_size > 0 && auto_align)
462427c4 15939 mips_align (log_size, 0, l);
252b5132 15940 cons (1 << log_size);
a1facbec 15941 mips_clear_insn_labels ();
252b5132
RH
15942}
15943
15944static void
17a2f251 15945s_float_cons (int type)
252b5132 15946{
a8dbcb85
TS
15947 segment_info_type *si = seg_info (now_seg);
15948 struct insn_label_list *l = si->label_list;
252b5132 15949
7d10b47d 15950 mips_emit_delays ();
252b5132
RH
15951
15952 if (auto_align)
49309057
ILT
15953 {
15954 if (type == 'd')
462427c4 15955 mips_align (3, 0, l);
49309057 15956 else
462427c4 15957 mips_align (2, 0, l);
49309057 15958 }
252b5132 15959
252b5132 15960 float_cons (type);
a1facbec 15961 mips_clear_insn_labels ();
252b5132
RH
15962}
15963
15964/* Handle .globl. We need to override it because on Irix 5 you are
15965 permitted to say
15966 .globl foo .text
15967 where foo is an undefined symbol, to mean that foo should be
15968 considered to be the address of a function. */
15969
15970static void
17a2f251 15971s_mips_globl (int x ATTRIBUTE_UNUSED)
252b5132
RH
15972{
15973 char *name;
15974 int c;
15975 symbolS *symbolP;
15976 flagword flag;
15977
8a06b769 15978 do
252b5132 15979 {
d02603dc 15980 c = get_symbol_name (&name);
8a06b769
TS
15981 symbolP = symbol_find_or_make (name);
15982 S_SET_EXTERNAL (symbolP);
15983
252b5132 15984 *input_line_pointer = c;
d02603dc 15985 SKIP_WHITESPACE_AFTER_NAME ();
252b5132 15986
8a06b769
TS
15987 /* On Irix 5, every global symbol that is not explicitly labelled as
15988 being a function is apparently labelled as being an object. */
15989 flag = BSF_OBJECT;
252b5132 15990
8a06b769
TS
15991 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15992 && (*input_line_pointer != ','))
15993 {
15994 char *secname;
15995 asection *sec;
15996
d02603dc 15997 c = get_symbol_name (&secname);
8a06b769
TS
15998 sec = bfd_get_section_by_name (stdoutput, secname);
15999 if (sec == NULL)
16000 as_bad (_("%s: no such section"), secname);
d02603dc 16001 (void) restore_line_pointer (c);
8a06b769
TS
16002
16003 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16004 flag = BSF_FUNCTION;
16005 }
16006
16007 symbol_get_bfdsym (symbolP)->flags |= flag;
16008
16009 c = *input_line_pointer;
16010 if (c == ',')
16011 {
16012 input_line_pointer++;
16013 SKIP_WHITESPACE ();
16014 if (is_end_of_line[(unsigned char) *input_line_pointer])
16015 c = '\n';
16016 }
16017 }
16018 while (c == ',');
252b5132 16019
252b5132
RH
16020 demand_empty_rest_of_line ();
16021}
16022
16023static void
17a2f251 16024s_option (int x ATTRIBUTE_UNUSED)
252b5132
RH
16025{
16026 char *opt;
16027 char c;
16028
d02603dc 16029 c = get_symbol_name (&opt);
252b5132
RH
16030
16031 if (*opt == 'O')
16032 {
16033 /* FIXME: What does this mean? */
16034 }
41a1578e 16035 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
252b5132
RH
16036 {
16037 int i;
16038
16039 i = atoi (opt + 3);
668c5ebc
MR
16040 if (i != 0 && i != 2)
16041 as_bad (_(".option pic%d not supported"), i);
16042 else if (mips_pic == VXWORKS_PIC)
16043 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
16044 else if (i == 0)
252b5132
RH
16045 mips_pic = NO_PIC;
16046 else if (i == 2)
143d77c5 16047 {
8b828383 16048 mips_pic = SVR4_PIC;
143d77c5
EC
16049 mips_abicalls = TRUE;
16050 }
252b5132 16051
4d0d148d 16052 if (mips_pic == SVR4_PIC)
252b5132
RH
16053 {
16054 if (g_switch_seen && g_switch_value != 0)
16055 as_warn (_("-G may not be used with SVR4 PIC code"));
16056 g_switch_value = 0;
16057 bfd_set_gp_size (stdoutput, 0);
16058 }
16059 }
16060 else
1661c76c 16061 as_warn (_("unrecognized option \"%s\""), opt);
252b5132 16062
d02603dc 16063 (void) restore_line_pointer (c);
252b5132
RH
16064 demand_empty_rest_of_line ();
16065}
16066
16067/* This structure is used to hold a stack of .set values. */
16068
e972090a
NC
16069struct mips_option_stack
16070{
252b5132
RH
16071 struct mips_option_stack *next;
16072 struct mips_set_options options;
16073};
16074
16075static struct mips_option_stack *mips_opts_stack;
16076
22522f88
MR
16077/* Return status for .set/.module option handling. */
16078
16079enum code_option_type
16080{
16081 /* Unrecognized option. */
16082 OPTION_TYPE_BAD = -1,
16083
16084 /* Ordinary option. */
16085 OPTION_TYPE_NORMAL,
16086
16087 /* ISA changing option. */
16088 OPTION_TYPE_ISA
16089};
16090
16091/* Handle common .set/.module options. Return status indicating option
16092 type. */
16093
16094static enum code_option_type
919731af 16095parse_code_option (char * name)
252b5132 16096{
22522f88 16097 bfd_boolean isa_set = FALSE;
c6278170 16098 const struct mips_ase *ase;
22522f88 16099
919731af 16100 if (strncmp (name, "at=", 3) == 0)
741fe287
MR
16101 {
16102 char *s = name + 3;
16103
16104 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
1661c76c 16105 as_bad (_("unrecognized register name `%s'"), s);
741fe287 16106 }
252b5132 16107 else if (strcmp (name, "at") == 0)
919731af 16108 mips_opts.at = ATREG;
252b5132 16109 else if (strcmp (name, "noat") == 0)
919731af 16110 mips_opts.at = ZERO;
252b5132 16111 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
919731af 16112 mips_opts.nomove = 0;
252b5132 16113 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
919731af 16114 mips_opts.nomove = 1;
252b5132 16115 else if (strcmp (name, "bopt") == 0)
919731af 16116 mips_opts.nobopt = 0;
252b5132 16117 else if (strcmp (name, "nobopt") == 0)
919731af 16118 mips_opts.nobopt = 1;
ad3fea08 16119 else if (strcmp (name, "gp=32") == 0)
bad1aba3 16120 mips_opts.gp = 32;
ad3fea08 16121 else if (strcmp (name, "gp=64") == 0)
919731af 16122 mips_opts.gp = 64;
ad3fea08 16123 else if (strcmp (name, "fp=32") == 0)
0b35dfee 16124 mips_opts.fp = 32;
351cdf24
MF
16125 else if (strcmp (name, "fp=xx") == 0)
16126 mips_opts.fp = 0;
ad3fea08 16127 else if (strcmp (name, "fp=64") == 0)
919731af 16128 mips_opts.fp = 64;
037b32b9
AN
16129 else if (strcmp (name, "softfloat") == 0)
16130 mips_opts.soft_float = 1;
16131 else if (strcmp (name, "hardfloat") == 0)
16132 mips_opts.soft_float = 0;
16133 else if (strcmp (name, "singlefloat") == 0)
16134 mips_opts.single_float = 1;
16135 else if (strcmp (name, "doublefloat") == 0)
16136 mips_opts.single_float = 0;
351cdf24
MF
16137 else if (strcmp (name, "nooddspreg") == 0)
16138 mips_opts.oddspreg = 0;
16139 else if (strcmp (name, "oddspreg") == 0)
16140 mips_opts.oddspreg = 1;
252b5132
RH
16141 else if (strcmp (name, "mips16") == 0
16142 || strcmp (name, "MIPS-16") == 0)
919731af 16143 mips_opts.mips16 = 1;
252b5132
RH
16144 else if (strcmp (name, "nomips16") == 0
16145 || strcmp (name, "noMIPS-16") == 0)
16146 mips_opts.mips16 = 0;
df58fc94 16147 else if (strcmp (name, "micromips") == 0)
919731af 16148 mips_opts.micromips = 1;
df58fc94
RS
16149 else if (strcmp (name, "nomicromips") == 0)
16150 mips_opts.micromips = 0;
c6278170
RS
16151 else if (name[0] == 'n'
16152 && name[1] == 'o'
16153 && (ase = mips_lookup_ase (name + 2)))
919731af 16154 mips_set_ase (ase, &mips_opts, FALSE);
c6278170 16155 else if ((ase = mips_lookup_ase (name)))
919731af 16156 mips_set_ase (ase, &mips_opts, TRUE);
1a2c1fad 16157 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
252b5132 16158 {
1a2c1fad
CD
16159 /* Permit the user to change the ISA and architecture on the fly.
16160 Needless to say, misuse can cause serious problems. */
919731af 16161 if (strncmp (name, "arch=", 5) == 0)
1a2c1fad
CD
16162 {
16163 const struct mips_cpu_info *p;
16164
919731af 16165 p = mips_parse_cpu ("internal use", name + 5);
1a2c1fad
CD
16166 if (!p)
16167 as_bad (_("unknown architecture %s"), name + 5);
16168 else
16169 {
16170 mips_opts.arch = p->cpu;
16171 mips_opts.isa = p->isa;
22522f88 16172 isa_set = TRUE;
1a2c1fad
CD
16173 }
16174 }
81a21e38
TS
16175 else if (strncmp (name, "mips", 4) == 0)
16176 {
16177 const struct mips_cpu_info *p;
16178
919731af 16179 p = mips_parse_cpu ("internal use", name);
81a21e38
TS
16180 if (!p)
16181 as_bad (_("unknown ISA level %s"), name + 4);
16182 else
16183 {
16184 mips_opts.arch = p->cpu;
16185 mips_opts.isa = p->isa;
22522f88 16186 isa_set = TRUE;
81a21e38
TS
16187 }
16188 }
af7ee8bf 16189 else
81a21e38 16190 as_bad (_("unknown ISA or architecture %s"), name);
252b5132
RH
16191 }
16192 else if (strcmp (name, "autoextend") == 0)
16193 mips_opts.noautoextend = 0;
16194 else if (strcmp (name, "noautoextend") == 0)
16195 mips_opts.noautoextend = 1;
833794fc
MR
16196 else if (strcmp (name, "insn32") == 0)
16197 mips_opts.insn32 = TRUE;
16198 else if (strcmp (name, "noinsn32") == 0)
16199 mips_opts.insn32 = FALSE;
919731af 16200 else if (strcmp (name, "sym32") == 0)
16201 mips_opts.sym32 = TRUE;
16202 else if (strcmp (name, "nosym32") == 0)
16203 mips_opts.sym32 = FALSE;
16204 else
22522f88
MR
16205 return OPTION_TYPE_BAD;
16206
16207 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
919731af 16208}
16209
16210/* Handle the .set pseudo-op. */
16211
16212static void
16213s_mipsset (int x ATTRIBUTE_UNUSED)
16214{
22522f88 16215 enum code_option_type type = OPTION_TYPE_NORMAL;
919731af 16216 char *name = input_line_pointer, ch;
919731af 16217
16218 file_mips_check_options ();
16219
16220 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16221 ++input_line_pointer;
16222 ch = *input_line_pointer;
16223 *input_line_pointer = '\0';
16224
16225 if (strchr (name, ','))
16226 {
16227 /* Generic ".set" directive; use the generic handler. */
16228 *input_line_pointer = ch;
16229 input_line_pointer = name;
16230 s_set (0);
16231 return;
16232 }
16233
16234 if (strcmp (name, "reorder") == 0)
16235 {
16236 if (mips_opts.noreorder)
16237 end_noreorder ();
16238 }
16239 else if (strcmp (name, "noreorder") == 0)
16240 {
16241 if (!mips_opts.noreorder)
16242 start_noreorder ();
16243 }
16244 else if (strcmp (name, "macro") == 0)
16245 mips_opts.warn_about_macros = 0;
16246 else if (strcmp (name, "nomacro") == 0)
16247 {
16248 if (mips_opts.noreorder == 0)
16249 as_bad (_("`noreorder' must be set before `nomacro'"));
16250 mips_opts.warn_about_macros = 1;
16251 }
16252 else if (strcmp (name, "gp=default") == 0)
16253 mips_opts.gp = file_mips_opts.gp;
16254 else if (strcmp (name, "fp=default") == 0)
16255 mips_opts.fp = file_mips_opts.fp;
16256 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16257 {
16258 mips_opts.isa = file_mips_opts.isa;
16259 mips_opts.arch = file_mips_opts.arch;
16260 mips_opts.gp = file_mips_opts.gp;
16261 mips_opts.fp = file_mips_opts.fp;
16262 }
252b5132
RH
16263 else if (strcmp (name, "push") == 0)
16264 {
16265 struct mips_option_stack *s;
16266
325801bd 16267 s = XNEW (struct mips_option_stack);
252b5132
RH
16268 s->next = mips_opts_stack;
16269 s->options = mips_opts;
16270 mips_opts_stack = s;
16271 }
16272 else if (strcmp (name, "pop") == 0)
16273 {
16274 struct mips_option_stack *s;
16275
16276 s = mips_opts_stack;
16277 if (s == NULL)
16278 as_bad (_(".set pop with no .set push"));
16279 else
16280 {
16281 /* If we're changing the reorder mode we need to handle
16282 delay slots correctly. */
16283 if (s->options.noreorder && ! mips_opts.noreorder)
7d10b47d 16284 start_noreorder ();
252b5132 16285 else if (! s->options.noreorder && mips_opts.noreorder)
7d10b47d 16286 end_noreorder ();
252b5132
RH
16287
16288 mips_opts = s->options;
16289 mips_opts_stack = s->next;
16290 free (s);
16291 }
16292 }
22522f88
MR
16293 else
16294 {
16295 type = parse_code_option (name);
16296 if (type == OPTION_TYPE_BAD)
16297 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16298 }
919731af 16299
16300 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16301 registers based on what is supported by the arch/cpu. */
22522f88 16302 if (type == OPTION_TYPE_ISA)
e6559e01 16303 {
919731af 16304 switch (mips_opts.isa)
16305 {
16306 case 0:
16307 break;
16308 case ISA_MIPS1:
351cdf24
MF
16309 /* MIPS I cannot support FPXX. */
16310 mips_opts.fp = 32;
16311 /* fall-through. */
919731af 16312 case ISA_MIPS2:
16313 case ISA_MIPS32:
16314 case ISA_MIPS32R2:
16315 case ISA_MIPS32R3:
16316 case ISA_MIPS32R5:
16317 mips_opts.gp = 32;
351cdf24
MF
16318 if (mips_opts.fp != 0)
16319 mips_opts.fp = 32;
919731af 16320 break;
7361da2c
AB
16321 case ISA_MIPS32R6:
16322 mips_opts.gp = 32;
16323 mips_opts.fp = 64;
16324 break;
919731af 16325 case ISA_MIPS3:
16326 case ISA_MIPS4:
16327 case ISA_MIPS5:
16328 case ISA_MIPS64:
16329 case ISA_MIPS64R2:
16330 case ISA_MIPS64R3:
16331 case ISA_MIPS64R5:
7361da2c 16332 case ISA_MIPS64R6:
919731af 16333 mips_opts.gp = 64;
351cdf24
MF
16334 if (mips_opts.fp != 0)
16335 {
16336 if (mips_opts.arch == CPU_R5900)
16337 mips_opts.fp = 32;
16338 else
16339 mips_opts.fp = 64;
16340 }
919731af 16341 break;
16342 default:
16343 as_bad (_("unknown ISA level %s"), name + 4);
16344 break;
16345 }
e6559e01 16346 }
919731af 16347
16348 mips_check_options (&mips_opts, FALSE);
16349
16350 mips_check_isa_supports_ases ();
16351 *input_line_pointer = ch;
16352 demand_empty_rest_of_line ();
16353}
16354
16355/* Handle the .module pseudo-op. */
16356
16357static void
16358s_module (int ignore ATTRIBUTE_UNUSED)
16359{
16360 char *name = input_line_pointer, ch;
16361
16362 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16363 ++input_line_pointer;
16364 ch = *input_line_pointer;
16365 *input_line_pointer = '\0';
16366
16367 if (!file_mips_opts_checked)
252b5132 16368 {
22522f88 16369 if (parse_code_option (name) == OPTION_TYPE_BAD)
919731af 16370 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16371
16372 /* Update module level settings from mips_opts. */
16373 file_mips_opts = mips_opts;
252b5132 16374 }
919731af 16375 else
16376 as_bad (_(".module is not permitted after generating code"));
16377
252b5132
RH
16378 *input_line_pointer = ch;
16379 demand_empty_rest_of_line ();
16380}
16381
16382/* Handle the .abicalls pseudo-op. I believe this is equivalent to
16383 .option pic2. It means to generate SVR4 PIC calls. */
16384
16385static void
17a2f251 16386s_abicalls (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16387{
16388 mips_pic = SVR4_PIC;
143d77c5 16389 mips_abicalls = TRUE;
4d0d148d
TS
16390
16391 if (g_switch_seen && g_switch_value != 0)
16392 as_warn (_("-G may not be used with SVR4 PIC code"));
16393 g_switch_value = 0;
16394
252b5132
RH
16395 bfd_set_gp_size (stdoutput, 0);
16396 demand_empty_rest_of_line ();
16397}
16398
16399/* Handle the .cpload pseudo-op. This is used when generating SVR4
16400 PIC code. It sets the $gp register for the function based on the
16401 function address, which is in the register named in the argument.
16402 This uses a relocation against _gp_disp, which is handled specially
16403 by the linker. The result is:
16404 lui $gp,%hi(_gp_disp)
16405 addiu $gp,$gp,%lo(_gp_disp)
16406 addu $gp,$gp,.cpload argument
aa6975fb
ILT
16407 The .cpload argument is normally $25 == $t9.
16408
16409 The -mno-shared option changes this to:
bbe506e8
TS
16410 lui $gp,%hi(__gnu_local_gp)
16411 addiu $gp,$gp,%lo(__gnu_local_gp)
aa6975fb
ILT
16412 and the argument is ignored. This saves an instruction, but the
16413 resulting code is not position independent; it uses an absolute
bbe506e8
TS
16414 address for __gnu_local_gp. Thus code assembled with -mno-shared
16415 can go into an ordinary executable, but not into a shared library. */
252b5132
RH
16416
16417static void
17a2f251 16418s_cpload (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16419{
16420 expressionS ex;
aa6975fb
ILT
16421 int reg;
16422 int in_shared;
252b5132 16423
919731af 16424 file_mips_check_options ();
16425
6478892d
TS
16426 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16427 .cpload is ignored. */
16428 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16429 {
16430 s_ignore (0);
16431 return;
16432 }
16433
a276b80c
MR
16434 if (mips_opts.mips16)
16435 {
16436 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16437 ignore_rest_of_line ();
16438 return;
16439 }
16440
d3ecfc59 16441 /* .cpload should be in a .set noreorder section. */
252b5132
RH
16442 if (mips_opts.noreorder == 0)
16443 as_warn (_(".cpload not in noreorder section"));
16444
aa6975fb
ILT
16445 reg = tc_get_register (0);
16446
16447 /* If we need to produce a 64-bit address, we are better off using
16448 the default instruction sequence. */
aed1a261 16449 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
aa6975fb 16450
252b5132 16451 ex.X_op = O_symbol;
bbe506e8
TS
16452 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16453 "__gnu_local_gp");
252b5132
RH
16454 ex.X_op_symbol = NULL;
16455 ex.X_add_number = 0;
16456
16457 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
49309057 16458 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
252b5132 16459
8a75745d
MR
16460 mips_mark_labels ();
16461 mips_assembling_insn = TRUE;
16462
584892a6 16463 macro_start ();
67c0d1eb
RS
16464 macro_build_lui (&ex, mips_gp_register);
16465 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17a2f251 16466 mips_gp_register, BFD_RELOC_LO16);
aa6975fb
ILT
16467 if (in_shared)
16468 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16469 mips_gp_register, reg);
584892a6 16470 macro_end ();
252b5132 16471
8a75745d 16472 mips_assembling_insn = FALSE;
252b5132
RH
16473 demand_empty_rest_of_line ();
16474}
16475
6478892d
TS
16476/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16477 .cpsetup $reg1, offset|$reg2, label
16478
16479 If offset is given, this results in:
16480 sd $gp, offset($sp)
956cd1d6 16481 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
16482 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16483 daddu $gp, $gp, $reg1
6478892d
TS
16484
16485 If $reg2 is given, this results in:
40fc1451 16486 or $reg2, $gp, $0
956cd1d6 16487 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
16488 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16489 daddu $gp, $gp, $reg1
aa6975fb
ILT
16490 $reg1 is normally $25 == $t9.
16491
16492 The -mno-shared option replaces the last three instructions with
16493 lui $gp,%hi(_gp)
54f4ddb3 16494 addiu $gp,$gp,%lo(_gp) */
aa6975fb 16495
6478892d 16496static void
17a2f251 16497s_cpsetup (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16498{
16499 expressionS ex_off;
16500 expressionS ex_sym;
16501 int reg1;
6478892d 16502
919731af 16503 file_mips_check_options ();
16504
8586fc66 16505 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
6478892d
TS
16506 We also need NewABI support. */
16507 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16508 {
16509 s_ignore (0);
16510 return;
16511 }
16512
a276b80c
MR
16513 if (mips_opts.mips16)
16514 {
16515 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16516 ignore_rest_of_line ();
16517 return;
16518 }
16519
6478892d
TS
16520 reg1 = tc_get_register (0);
16521 SKIP_WHITESPACE ();
16522 if (*input_line_pointer != ',')
16523 {
16524 as_bad (_("missing argument separator ',' for .cpsetup"));
16525 return;
16526 }
16527 else
80245285 16528 ++input_line_pointer;
6478892d
TS
16529 SKIP_WHITESPACE ();
16530 if (*input_line_pointer == '$')
80245285
TS
16531 {
16532 mips_cpreturn_register = tc_get_register (0);
16533 mips_cpreturn_offset = -1;
16534 }
6478892d 16535 else
80245285
TS
16536 {
16537 mips_cpreturn_offset = get_absolute_expression ();
16538 mips_cpreturn_register = -1;
16539 }
6478892d
TS
16540 SKIP_WHITESPACE ();
16541 if (*input_line_pointer != ',')
16542 {
16543 as_bad (_("missing argument separator ',' for .cpsetup"));
16544 return;
16545 }
16546 else
f9419b05 16547 ++input_line_pointer;
6478892d 16548 SKIP_WHITESPACE ();
f21f8242 16549 expression (&ex_sym);
6478892d 16550
8a75745d
MR
16551 mips_mark_labels ();
16552 mips_assembling_insn = TRUE;
16553
584892a6 16554 macro_start ();
6478892d
TS
16555 if (mips_cpreturn_register == -1)
16556 {
16557 ex_off.X_op = O_constant;
16558 ex_off.X_add_symbol = NULL;
16559 ex_off.X_op_symbol = NULL;
16560 ex_off.X_add_number = mips_cpreturn_offset;
16561
67c0d1eb 16562 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17a2f251 16563 BFD_RELOC_LO16, SP);
6478892d
TS
16564 }
16565 else
40fc1451 16566 move_register (mips_cpreturn_register, mips_gp_register);
6478892d 16567
aed1a261 16568 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
aa6975fb 16569 {
df58fc94 16570 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
aa6975fb
ILT
16571 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16572 BFD_RELOC_HI16_S);
16573
16574 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16575 mips_gp_register, -1, BFD_RELOC_GPREL16,
16576 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16577
16578 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16579 mips_gp_register, reg1);
16580 }
16581 else
16582 {
16583 expressionS ex;
16584
16585 ex.X_op = O_symbol;
4184909a 16586 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
aa6975fb
ILT
16587 ex.X_op_symbol = NULL;
16588 ex.X_add_number = 0;
6e1304d8 16589
aa6975fb
ILT
16590 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16591 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16592
16593 macro_build_lui (&ex, mips_gp_register);
16594 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16595 mips_gp_register, BFD_RELOC_LO16);
16596 }
f21f8242 16597
584892a6 16598 macro_end ();
6478892d 16599
8a75745d 16600 mips_assembling_insn = FALSE;
6478892d
TS
16601 demand_empty_rest_of_line ();
16602}
16603
16604static void
17a2f251 16605s_cplocal (int ignore ATTRIBUTE_UNUSED)
6478892d 16606{
919731af 16607 file_mips_check_options ();
16608
6478892d 16609 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
54f4ddb3 16610 .cplocal is ignored. */
6478892d
TS
16611 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16612 {
16613 s_ignore (0);
16614 return;
16615 }
16616
a276b80c
MR
16617 if (mips_opts.mips16)
16618 {
16619 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16620 ignore_rest_of_line ();
16621 return;
16622 }
16623
6478892d 16624 mips_gp_register = tc_get_register (0);
85b51719 16625 demand_empty_rest_of_line ();
6478892d
TS
16626}
16627
252b5132
RH
16628/* Handle the .cprestore pseudo-op. This stores $gp into a given
16629 offset from $sp. The offset is remembered, and after making a PIC
16630 call $gp is restored from that location. */
16631
16632static void
17a2f251 16633s_cprestore (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16634{
16635 expressionS ex;
252b5132 16636
919731af 16637 file_mips_check_options ();
16638
6478892d 16639 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
c9914766 16640 .cprestore is ignored. */
6478892d 16641 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16642 {
16643 s_ignore (0);
16644 return;
16645 }
16646
a276b80c
MR
16647 if (mips_opts.mips16)
16648 {
16649 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16650 ignore_rest_of_line ();
16651 return;
16652 }
16653
252b5132 16654 mips_cprestore_offset = get_absolute_expression ();
7a621144 16655 mips_cprestore_valid = 1;
252b5132
RH
16656
16657 ex.X_op = O_constant;
16658 ex.X_add_symbol = NULL;
16659 ex.X_op_symbol = NULL;
16660 ex.X_add_number = mips_cprestore_offset;
16661
8a75745d
MR
16662 mips_mark_labels ();
16663 mips_assembling_insn = TRUE;
16664
584892a6 16665 macro_start ();
67c0d1eb
RS
16666 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16667 SP, HAVE_64BIT_ADDRESSES);
584892a6 16668 macro_end ();
252b5132 16669
8a75745d 16670 mips_assembling_insn = FALSE;
252b5132
RH
16671 demand_empty_rest_of_line ();
16672}
16673
6478892d 16674/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
67c1ffbe 16675 was given in the preceding .cpsetup, it results in:
6478892d 16676 ld $gp, offset($sp)
76b3015f 16677
6478892d 16678 If a register $reg2 was given there, it results in:
40fc1451 16679 or $gp, $reg2, $0 */
54f4ddb3 16680
6478892d 16681static void
17a2f251 16682s_cpreturn (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16683{
16684 expressionS ex;
6478892d 16685
919731af 16686 file_mips_check_options ();
16687
6478892d
TS
16688 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16689 We also need NewABI support. */
16690 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16691 {
16692 s_ignore (0);
16693 return;
16694 }
16695
a276b80c
MR
16696 if (mips_opts.mips16)
16697 {
16698 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16699 ignore_rest_of_line ();
16700 return;
16701 }
16702
8a75745d
MR
16703 mips_mark_labels ();
16704 mips_assembling_insn = TRUE;
16705
584892a6 16706 macro_start ();
6478892d
TS
16707 if (mips_cpreturn_register == -1)
16708 {
16709 ex.X_op = O_constant;
16710 ex.X_add_symbol = NULL;
16711 ex.X_op_symbol = NULL;
16712 ex.X_add_number = mips_cpreturn_offset;
16713
67c0d1eb 16714 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
6478892d
TS
16715 }
16716 else
40fc1451
SD
16717 move_register (mips_gp_register, mips_cpreturn_register);
16718
584892a6 16719 macro_end ();
6478892d 16720
8a75745d 16721 mips_assembling_insn = FALSE;
6478892d
TS
16722 demand_empty_rest_of_line ();
16723}
16724
d0f13682
CLT
16725/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16726 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16727 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16728 debug information or MIPS16 TLS. */
741d6ea8
JM
16729
16730static void
d0f13682
CLT
16731s_tls_rel_directive (const size_t bytes, const char *dirstr,
16732 bfd_reloc_code_real_type rtype)
741d6ea8
JM
16733{
16734 expressionS ex;
16735 char *p;
16736
16737 expression (&ex);
16738
16739 if (ex.X_op != O_symbol)
16740 {
1661c76c 16741 as_bad (_("unsupported use of %s"), dirstr);
741d6ea8
JM
16742 ignore_rest_of_line ();
16743 }
16744
16745 p = frag_more (bytes);
16746 md_number_to_chars (p, 0, bytes);
d0f13682 16747 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
741d6ea8 16748 demand_empty_rest_of_line ();
de64cffd 16749 mips_clear_insn_labels ();
741d6ea8
JM
16750}
16751
16752/* Handle .dtprelword. */
16753
16754static void
16755s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16756{
d0f13682 16757 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
741d6ea8
JM
16758}
16759
16760/* Handle .dtpreldword. */
16761
16762static void
16763s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16764{
d0f13682
CLT
16765 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16766}
16767
16768/* Handle .tprelword. */
16769
16770static void
16771s_tprelword (int ignore ATTRIBUTE_UNUSED)
16772{
16773 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16774}
16775
16776/* Handle .tpreldword. */
16777
16778static void
16779s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16780{
16781 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
741d6ea8
JM
16782}
16783
6478892d
TS
16784/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16785 code. It sets the offset to use in gp_rel relocations. */
16786
16787static void
17a2f251 16788s_gpvalue (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16789{
16790 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16791 We also need NewABI support. */
16792 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16793 {
16794 s_ignore (0);
16795 return;
16796 }
16797
def2e0dd 16798 mips_gprel_offset = get_absolute_expression ();
6478892d
TS
16799
16800 demand_empty_rest_of_line ();
16801}
16802
252b5132
RH
16803/* Handle the .gpword pseudo-op. This is used when generating PIC
16804 code. It generates a 32 bit GP relative reloc. */
16805
16806static void
17a2f251 16807s_gpword (int ignore ATTRIBUTE_UNUSED)
252b5132 16808{
a8dbcb85
TS
16809 segment_info_type *si;
16810 struct insn_label_list *l;
252b5132
RH
16811 expressionS ex;
16812 char *p;
16813
16814 /* When not generating PIC code, this is treated as .word. */
16815 if (mips_pic != SVR4_PIC)
16816 {
16817 s_cons (2);
16818 return;
16819 }
16820
a8dbcb85
TS
16821 si = seg_info (now_seg);
16822 l = si->label_list;
7d10b47d 16823 mips_emit_delays ();
252b5132 16824 if (auto_align)
462427c4 16825 mips_align (2, 0, l);
252b5132
RH
16826
16827 expression (&ex);
a1facbec 16828 mips_clear_insn_labels ();
252b5132
RH
16829
16830 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16831 {
1661c76c 16832 as_bad (_("unsupported use of .gpword"));
252b5132
RH
16833 ignore_rest_of_line ();
16834 }
16835
16836 p = frag_more (4);
17a2f251 16837 md_number_to_chars (p, 0, 4);
b34976b6 16838 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
cdf6fd85 16839 BFD_RELOC_GPREL32);
252b5132
RH
16840
16841 demand_empty_rest_of_line ();
16842}
16843
10181a0d 16844static void
17a2f251 16845s_gpdword (int ignore ATTRIBUTE_UNUSED)
10181a0d 16846{
a8dbcb85
TS
16847 segment_info_type *si;
16848 struct insn_label_list *l;
10181a0d
AO
16849 expressionS ex;
16850 char *p;
16851
16852 /* When not generating PIC code, this is treated as .dword. */
16853 if (mips_pic != SVR4_PIC)
16854 {
16855 s_cons (3);
16856 return;
16857 }
16858
a8dbcb85
TS
16859 si = seg_info (now_seg);
16860 l = si->label_list;
7d10b47d 16861 mips_emit_delays ();
10181a0d 16862 if (auto_align)
462427c4 16863 mips_align (3, 0, l);
10181a0d
AO
16864
16865 expression (&ex);
a1facbec 16866 mips_clear_insn_labels ();
10181a0d
AO
16867
16868 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16869 {
1661c76c 16870 as_bad (_("unsupported use of .gpdword"));
10181a0d
AO
16871 ignore_rest_of_line ();
16872 }
16873
16874 p = frag_more (8);
17a2f251 16875 md_number_to_chars (p, 0, 8);
a105a300 16876 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
6e1304d8 16877 BFD_RELOC_GPREL32)->fx_tcbit = 1;
10181a0d
AO
16878
16879 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
6e1304d8
RS
16880 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16881 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
10181a0d
AO
16882
16883 demand_empty_rest_of_line ();
16884}
16885
a3f278e2
CM
16886/* Handle the .ehword pseudo-op. This is used when generating unwinding
16887 tables. It generates a R_MIPS_EH reloc. */
16888
16889static void
16890s_ehword (int ignore ATTRIBUTE_UNUSED)
16891{
16892 expressionS ex;
16893 char *p;
16894
16895 mips_emit_delays ();
16896
16897 expression (&ex);
16898 mips_clear_insn_labels ();
16899
16900 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16901 {
1661c76c 16902 as_bad (_("unsupported use of .ehword"));
a3f278e2
CM
16903 ignore_rest_of_line ();
16904 }
16905
16906 p = frag_more (4);
16907 md_number_to_chars (p, 0, 4);
16908 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
2f0c68f2 16909 BFD_RELOC_32_PCREL);
a3f278e2
CM
16910
16911 demand_empty_rest_of_line ();
16912}
16913
252b5132
RH
16914/* Handle the .cpadd pseudo-op. This is used when dealing with switch
16915 tables in SVR4 PIC code. */
16916
16917static void
17a2f251 16918s_cpadd (int ignore ATTRIBUTE_UNUSED)
252b5132 16919{
252b5132
RH
16920 int reg;
16921
919731af 16922 file_mips_check_options ();
16923
10181a0d
AO
16924 /* This is ignored when not generating SVR4 PIC code. */
16925 if (mips_pic != SVR4_PIC)
252b5132
RH
16926 {
16927 s_ignore (0);
16928 return;
16929 }
16930
8a75745d
MR
16931 mips_mark_labels ();
16932 mips_assembling_insn = TRUE;
16933
252b5132 16934 /* Add $gp to the register named as an argument. */
584892a6 16935 macro_start ();
252b5132 16936 reg = tc_get_register (0);
67c0d1eb 16937 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
584892a6 16938 macro_end ();
252b5132 16939
8a75745d 16940 mips_assembling_insn = FALSE;
bdaaa2e1 16941 demand_empty_rest_of_line ();
252b5132
RH
16942}
16943
16944/* Handle the .insn pseudo-op. This marks instruction labels in
df58fc94 16945 mips16/micromips mode. This permits the linker to handle them specially,
252b5132
RH
16946 such as generating jalx instructions when needed. We also make
16947 them odd for the duration of the assembly, in order to generate the
16948 right sort of code. We will make them even in the adjust_symtab
16949 routine, while leaving them marked. This is convenient for the
16950 debugger and the disassembler. The linker knows to make them odd
16951 again. */
16952
16953static void
17a2f251 16954s_insn (int ignore ATTRIBUTE_UNUSED)
252b5132 16955{
7bb01e2d
MR
16956 file_mips_check_options ();
16957 file_ase_mips16 |= mips_opts.mips16;
16958 file_ase_micromips |= mips_opts.micromips;
16959
df58fc94 16960 mips_mark_labels ();
252b5132
RH
16961
16962 demand_empty_rest_of_line ();
16963}
16964
ba92f887
MR
16965/* Handle the .nan pseudo-op. */
16966
16967static void
16968s_nan (int ignore ATTRIBUTE_UNUSED)
16969{
16970 static const char str_legacy[] = "legacy";
16971 static const char str_2008[] = "2008";
16972 size_t i;
16973
16974 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16975
16976 if (i == sizeof (str_2008) - 1
16977 && memcmp (input_line_pointer, str_2008, i) == 0)
7361da2c 16978 mips_nan2008 = 1;
ba92f887
MR
16979 else if (i == sizeof (str_legacy) - 1
16980 && memcmp (input_line_pointer, str_legacy, i) == 0)
7361da2c
AB
16981 {
16982 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16983 mips_nan2008 = 0;
16984 else
16985 as_bad (_("`%s' does not support legacy NaN"),
16986 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16987 }
ba92f887 16988 else
1661c76c 16989 as_bad (_("bad .nan directive"));
ba92f887
MR
16990
16991 input_line_pointer += i;
16992 demand_empty_rest_of_line ();
16993}
16994
754e2bb9
RS
16995/* Handle a .stab[snd] directive. Ideally these directives would be
16996 implemented in a transparent way, so that removing them would not
16997 have any effect on the generated instructions. However, s_stab
16998 internally changes the section, so in practice we need to decide
16999 now whether the preceding label marks compressed code. We do not
17000 support changing the compression mode of a label after a .stab*
17001 directive, such as in:
17002
17003 foo:
134c0c8b 17004 .stabs ...
754e2bb9
RS
17005 .set mips16
17006
17007 so the current mode wins. */
252b5132
RH
17008
17009static void
17a2f251 17010s_mips_stab (int type)
252b5132 17011{
754e2bb9 17012 mips_mark_labels ();
252b5132
RH
17013 s_stab (type);
17014}
17015
54f4ddb3 17016/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
252b5132
RH
17017
17018static void
17a2f251 17019s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
17020{
17021 char *name;
17022 int c;
17023 symbolS *symbolP;
17024 expressionS exp;
17025
d02603dc 17026 c = get_symbol_name (&name);
252b5132
RH
17027 symbolP = symbol_find_or_make (name);
17028 S_SET_WEAK (symbolP);
17029 *input_line_pointer = c;
17030
d02603dc 17031 SKIP_WHITESPACE_AFTER_NAME ();
252b5132
RH
17032
17033 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17034 {
17035 if (S_IS_DEFINED (symbolP))
17036 {
20203fb9 17037 as_bad (_("ignoring attempt to redefine symbol %s"),
252b5132
RH
17038 S_GET_NAME (symbolP));
17039 ignore_rest_of_line ();
17040 return;
17041 }
bdaaa2e1 17042
252b5132
RH
17043 if (*input_line_pointer == ',')
17044 {
17045 ++input_line_pointer;
17046 SKIP_WHITESPACE ();
17047 }
bdaaa2e1 17048
252b5132
RH
17049 expression (&exp);
17050 if (exp.X_op != O_symbol)
17051 {
20203fb9 17052 as_bad (_("bad .weakext directive"));
98d3f06f 17053 ignore_rest_of_line ();
252b5132
RH
17054 return;
17055 }
49309057 17056 symbol_set_value_expression (symbolP, &exp);
252b5132
RH
17057 }
17058
17059 demand_empty_rest_of_line ();
17060}
17061
17062/* Parse a register string into a number. Called from the ECOFF code
17063 to parse .frame. The argument is non-zero if this is the frame
17064 register, so that we can record it in mips_frame_reg. */
17065
17066int
17a2f251 17067tc_get_register (int frame)
252b5132 17068{
707bfff6 17069 unsigned int reg;
252b5132
RH
17070
17071 SKIP_WHITESPACE ();
707bfff6
TS
17072 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17073 reg = 0;
252b5132 17074 if (frame)
7a621144
DJ
17075 {
17076 mips_frame_reg = reg != 0 ? reg : SP;
17077 mips_frame_reg_valid = 1;
17078 mips_cprestore_valid = 0;
17079 }
252b5132
RH
17080 return reg;
17081}
17082
17083valueT
17a2f251 17084md_section_align (asection *seg, valueT addr)
252b5132
RH
17085{
17086 int align = bfd_get_section_alignment (stdoutput, seg);
17087
f3ded42a
RS
17088 /* We don't need to align ELF sections to the full alignment.
17089 However, Irix 5 may prefer that we align them at least to a 16
17090 byte boundary. We don't bother to align the sections if we
17091 are targeted for an embedded system. */
17092 if (strncmp (TARGET_OS, "elf", 3) == 0)
17093 return addr;
17094 if (align > 4)
17095 align = 4;
252b5132 17096
8d3842cd 17097 return ((addr + (1 << align) - 1) & -(1 << align));
252b5132
RH
17098}
17099
17100/* Utility routine, called from above as well. If called while the
17101 input file is still being read, it's only an approximation. (For
17102 example, a symbol may later become defined which appeared to be
17103 undefined earlier.) */
17104
17105static int
17a2f251 17106nopic_need_relax (symbolS *sym, int before_relaxing)
252b5132
RH
17107{
17108 if (sym == 0)
17109 return 0;
17110
4d0d148d 17111 if (g_switch_value > 0)
252b5132
RH
17112 {
17113 const char *symname;
17114 int change;
17115
c9914766 17116 /* Find out whether this symbol can be referenced off the $gp
252b5132
RH
17117 register. It can be if it is smaller than the -G size or if
17118 it is in the .sdata or .sbss section. Certain symbols can
c9914766 17119 not be referenced off the $gp, although it appears as though
252b5132
RH
17120 they can. */
17121 symname = S_GET_NAME (sym);
17122 if (symname != (const char *) NULL
17123 && (strcmp (symname, "eprol") == 0
17124 || strcmp (symname, "etext") == 0
17125 || strcmp (symname, "_gp") == 0
17126 || strcmp (symname, "edata") == 0
17127 || strcmp (symname, "_fbss") == 0
17128 || strcmp (symname, "_fdata") == 0
17129 || strcmp (symname, "_ftext") == 0
17130 || strcmp (symname, "end") == 0
17131 || strcmp (symname, "_gp_disp") == 0))
17132 change = 1;
17133 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17134 && (0
17135#ifndef NO_ECOFF_DEBUGGING
49309057
ILT
17136 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17137 && (symbol_get_obj (sym)->ecoff_extern_size
17138 <= g_switch_value))
252b5132
RH
17139#endif
17140 /* We must defer this decision until after the whole
17141 file has been read, since there might be a .extern
17142 after the first use of this symbol. */
17143 || (before_relaxing
17144#ifndef NO_ECOFF_DEBUGGING
49309057 17145 && symbol_get_obj (sym)->ecoff_extern_size == 0
252b5132
RH
17146#endif
17147 && S_GET_VALUE (sym) == 0)
17148 || (S_GET_VALUE (sym) != 0
17149 && S_GET_VALUE (sym) <= g_switch_value)))
17150 change = 0;
17151 else
17152 {
17153 const char *segname;
17154
17155 segname = segment_name (S_GET_SEGMENT (sym));
9c2799c2 17156 gas_assert (strcmp (segname, ".lit8") != 0
252b5132
RH
17157 && strcmp (segname, ".lit4") != 0);
17158 change = (strcmp (segname, ".sdata") != 0
fba2b7f9
GK
17159 && strcmp (segname, ".sbss") != 0
17160 && strncmp (segname, ".sdata.", 7) != 0
d4dc2f22
TS
17161 && strncmp (segname, ".sbss.", 6) != 0
17162 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
fba2b7f9 17163 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
252b5132
RH
17164 }
17165 return change;
17166 }
17167 else
c9914766 17168 /* We are not optimizing for the $gp register. */
252b5132
RH
17169 return 1;
17170}
17171
5919d012
RS
17172
17173/* Return true if the given symbol should be considered local for SVR4 PIC. */
17174
17175static bfd_boolean
9e009953 17176pic_need_relax (symbolS *sym)
5919d012
RS
17177{
17178 asection *symsec;
5919d012
RS
17179
17180 /* Handle the case of a symbol equated to another symbol. */
17181 while (symbol_equated_reloc_p (sym))
17182 {
17183 symbolS *n;
17184
5f0fe04b 17185 /* It's possible to get a loop here in a badly written program. */
5919d012
RS
17186 n = symbol_get_value_expression (sym)->X_add_symbol;
17187 if (n == sym)
17188 break;
17189 sym = n;
17190 }
17191
df1f3cda
DD
17192 if (symbol_section_p (sym))
17193 return TRUE;
17194
5919d012
RS
17195 symsec = S_GET_SEGMENT (sym);
17196
5919d012 17197 /* This must duplicate the test in adjust_reloc_syms. */
45dfa85a
AM
17198 return (!bfd_is_und_section (symsec)
17199 && !bfd_is_abs_section (symsec)
5f0fe04b 17200 && !bfd_is_com_section (symsec)
5919d012 17201 /* A global or weak symbol is treated as external. */
f3ded42a 17202 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
5919d012 17203}
14f72d45
MR
17204\f
17205/* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
17206 convert a section-relative value VAL to the equivalent PC-relative
17207 value. */
17208
17209static offsetT
17210mips16_pcrel_val (fragS *fragp, const struct mips_pcrel_operand *pcrel_op,
17211 offsetT val, long stretch)
17212{
17213 fragS *sym_frag;
17214 addressT addr;
17215
17216 gas_assert (pcrel_op->root.root.type == OP_PCREL);
17217
17218 sym_frag = symbol_get_frag (fragp->fr_symbol);
17219
17220 /* If the relax_marker of the symbol fragment differs from the
17221 relax_marker of this fragment, we have not yet adjusted the
17222 symbol fragment fr_address. We want to add in STRETCH in
17223 order to get a better estimate of the address. This
17224 particularly matters because of the shift bits. */
17225 if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker)
17226 {
17227 fragS *f;
17228
17229 /* Adjust stretch for any alignment frag. Note that if have
17230 been expanding the earlier code, the symbol may be
17231 defined in what appears to be an earlier frag. FIXME:
17232 This doesn't handle the fr_subtype field, which specifies
17233 a maximum number of bytes to skip when doing an
17234 alignment. */
17235 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17236 {
17237 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17238 {
17239 if (stretch < 0)
17240 stretch = -(-stretch & ~((1 << (int) f->fr_offset) - 1));
17241 else
17242 stretch &= ~((1 << (int) f->fr_offset) - 1);
17243 if (stretch == 0)
17244 break;
17245 }
17246 }
17247 if (f != NULL)
17248 val += stretch;
17249 }
17250
17251 addr = fragp->fr_address + fragp->fr_fix;
17252
17253 /* The base address rules are complicated. The base address of
17254 a branch is the following instruction. The base address of a
17255 PC relative load or add is the instruction itself, but if it
17256 is in a delay slot (in which case it can not be extended) use
17257 the address of the instruction whose delay slot it is in. */
17258 if (pcrel_op->include_isa_bit)
17259 {
17260 addr += 2;
17261
17262 /* If we are currently assuming that this frag should be
17263 extended, then the current address is two bytes higher. */
17264 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17265 addr += 2;
17266
17267 /* Ignore the low bit in the target, since it will be set
17268 for a text label. */
17269 val &= -2;
17270 }
17271 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17272 addr -= 4;
17273 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17274 addr -= 2;
5919d012 17275
14f72d45
MR
17276 val -= addr & -(1 << pcrel_op->align_log2);
17277
17278 return val;
17279}
5919d012 17280
252b5132
RH
17281/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17282 extended opcode. SEC is the section the frag is in. */
17283
17284static int
17a2f251 17285mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
252b5132 17286{
3ccad066 17287 const struct mips_int_operand *operand;
252b5132 17288 offsetT val;
252b5132 17289 segT symsec;
14f72d45 17290 int type;
252b5132
RH
17291
17292 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17293 return 0;
17294 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17295 return 1;
17296
88a7ef16 17297 symsec = S_GET_SEGMENT (fragp->fr_symbol);
252b5132 17298 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 17299 operand = mips16_immed_operand (type, FALSE);
88a7ef16
MR
17300 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17301 || (operand->root.type == OP_PCREL
17302 ? sec != symsec
17303 : !bfd_is_abs_section (symsec)))
17304 return 1;
252b5132 17305
88a7ef16 17306 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
252b5132 17307
3ccad066 17308 if (operand->root.type == OP_PCREL)
252b5132 17309 {
3ccad066 17310 const struct mips_pcrel_operand *pcrel_op;
3ccad066 17311 offsetT maxtiny;
252b5132 17312
1425c41d 17313 if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp->fr_subtype))
88a7ef16 17314 return 1;
252b5132 17315
88a7ef16 17316 pcrel_op = (const struct mips_pcrel_operand *) operand;
14f72d45 17317 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
252b5132
RH
17318
17319 /* If any of the shifted bits are set, we must use an extended
17320 opcode. If the address depends on the size of this
17321 instruction, this can lead to a loop, so we arrange to always
88a7ef16
MR
17322 use an extended opcode. */
17323 if ((val & ((1 << operand->shift) - 1)) != 0)
252b5132
RH
17324 {
17325 fragp->fr_subtype =
1425c41d 17326 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
252b5132
RH
17327 return 1;
17328 }
17329
17330 /* If we are about to mark a frag as extended because the value
3ccad066
RS
17331 is precisely the next value above maxtiny, then there is a
17332 chance of an infinite loop as in the following code:
252b5132
RH
17333 la $4,foo
17334 .skip 1020
17335 .align 2
17336 foo:
17337 In this case when the la is extended, foo is 0x3fc bytes
17338 away, so the la can be shrunk, but then foo is 0x400 away, so
17339 the la must be extended. To avoid this loop, we mark the
17340 frag as extended if it was small, and is about to become
3ccad066
RS
17341 extended with the next value above maxtiny. */
17342 maxtiny = mips_int_operand_max (operand);
17343 if (val == maxtiny + (1 << operand->shift)
88a7ef16 17344 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
252b5132
RH
17345 {
17346 fragp->fr_subtype =
1425c41d 17347 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
252b5132
RH
17348 return 1;
17349 }
17350 }
252b5132 17351
3ccad066 17352 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
252b5132
RH
17353}
17354
8507b6e7
MR
17355/* Given a MIPS16 variant frag FRAGP, return non-zero if it needs
17356 macro expansion. SEC is the section the frag is in. We only
17357 support PC-relative instructions (LA, DLA, LW, LD) here, in
17358 non-PIC code using 32-bit addressing. */
17359
17360static int
17361mips16_macro_frag (fragS *fragp, asection *sec, long stretch)
17362{
17363 const struct mips_pcrel_operand *pcrel_op;
17364 const struct mips_int_operand *operand;
17365 offsetT val;
17366 segT symsec;
17367 int type;
17368
17369 gas_assert (!RELAX_MIPS16_USER_SMALL (fragp->fr_subtype));
17370
17371 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17372 return 0;
17373 if (!RELAX_MIPS16_SYM32 (fragp->fr_subtype))
17374 return 0;
17375
17376 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17377 switch (type)
17378 {
17379 case 'A':
17380 case 'B':
17381 case 'E':
17382 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17383 if (bfd_is_abs_section (symsec))
17384 return 1;
17385 if (RELAX_MIPS16_PIC (fragp->fr_subtype))
17386 return 0;
17387 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE) || sec != symsec)
17388 return 1;
17389
17390 operand = mips16_immed_operand (type, TRUE);
17391 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17392 pcrel_op = (const struct mips_pcrel_operand *) operand;
17393 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17394
17395 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17396
17397 default:
17398 return 0;
17399 }
17400}
17401
4a6a3df4
AO
17402/* Compute the length of a branch sequence, and adjust the
17403 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17404 worst-case length is computed, with UPDATE being used to indicate
17405 whether an unconditional (-1), branch-likely (+1) or regular (0)
17406 branch is to be computed. */
17407static int
17a2f251 17408relaxed_branch_length (fragS *fragp, asection *sec, int update)
4a6a3df4 17409{
b34976b6 17410 bfd_boolean toofar;
4a6a3df4
AO
17411 int length;
17412
17413 if (fragp
17414 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17415 && !S_IS_WEAK (fragp->fr_symbol)
4a6a3df4
AO
17416 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17417 {
17418 addressT addr;
17419 offsetT val;
17420
17421 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17422
17423 addr = fragp->fr_address + fragp->fr_fix + 4;
17424
17425 val -= addr;
17426
17427 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17428 }
4a6a3df4 17429 else
c1f61bd2
MR
17430 /* If the symbol is not defined or it's in a different segment,
17431 we emit the long sequence. */
b34976b6 17432 toofar = TRUE;
4a6a3df4
AO
17433
17434 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17435 fragp->fr_subtype
66b3e8da 17436 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
ce8ad872 17437 RELAX_BRANCH_PIC (fragp->fr_subtype),
66b3e8da 17438 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
4a6a3df4
AO
17439 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17440 RELAX_BRANCH_LINK (fragp->fr_subtype),
17441 toofar);
17442
17443 length = 4;
17444 if (toofar)
17445 {
17446 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17447 length += 8;
17448
ce8ad872 17449 if (!fragp || RELAX_BRANCH_PIC (fragp->fr_subtype))
4a6a3df4
AO
17450 {
17451 /* Additional space for PIC loading of target address. */
17452 length += 8;
17453 if (mips_opts.isa == ISA_MIPS1)
17454 /* Additional space for $at-stabilizing nop. */
17455 length += 4;
17456 }
17457
17458 /* If branch is conditional. */
17459 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17460 length += 8;
17461 }
b34976b6 17462
4a6a3df4
AO
17463 return length;
17464}
17465
7bd374a4
MR
17466/* Get a FRAG's branch instruction delay slot size, either from the
17467 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17468 or SHORT_INSN_SIZE otherwise. */
17469
17470static int
17471frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17472{
17473 char *buf = fragp->fr_literal + fragp->fr_fix;
17474
17475 if (al)
17476 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17477 else
17478 return short_insn_size;
17479}
17480
df58fc94
RS
17481/* Compute the length of a branch sequence, and adjust the
17482 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17483 worst-case length is computed, with UPDATE being used to indicate
17484 whether an unconditional (-1), or regular (0) branch is to be
17485 computed. */
17486
17487static int
17488relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17489{
7bd374a4
MR
17490 bfd_boolean insn32 = TRUE;
17491 bfd_boolean nods = TRUE;
ce8ad872 17492 bfd_boolean pic = TRUE;
7bd374a4
MR
17493 bfd_boolean al = TRUE;
17494 int short_insn_size;
df58fc94
RS
17495 bfd_boolean toofar;
17496 int length;
17497
7bd374a4
MR
17498 if (fragp)
17499 {
17500 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17501 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
ce8ad872 17502 pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
7bd374a4
MR
17503 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17504 }
17505 short_insn_size = insn32 ? 4 : 2;
17506
df58fc94
RS
17507 if (fragp
17508 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17509 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
17510 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17511 {
17512 addressT addr;
17513 offsetT val;
17514
17515 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17516 /* Ignore the low bit in the target, since it will be set
17517 for a text label. */
17518 if ((val & 1) != 0)
17519 --val;
17520
17521 addr = fragp->fr_address + fragp->fr_fix + 4;
17522
17523 val -= addr;
17524
17525 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17526 }
df58fc94 17527 else
c1f61bd2
MR
17528 /* If the symbol is not defined or it's in a different segment,
17529 we emit the long sequence. */
df58fc94
RS
17530 toofar = TRUE;
17531
17532 if (fragp && update
17533 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17534 fragp->fr_subtype = (toofar
17535 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17536 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17537
17538 length = 4;
17539 if (toofar)
17540 {
17541 bfd_boolean compact_known = fragp != NULL;
17542 bfd_boolean compact = FALSE;
17543 bfd_boolean uncond;
17544
df58fc94 17545 if (fragp)
8484fb75
MR
17546 {
17547 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17548 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
8484fb75 17549 }
df58fc94
RS
17550 else
17551 uncond = update < 0;
17552
17553 /* If label is out of range, we turn branch <br>:
17554
17555 <br> label # 4 bytes
17556 0:
17557
17558 into:
17559
17560 j label # 4 bytes
8484fb75
MR
17561 nop # 2/4 bytes if
17562 # compact && (!PIC || insn32)
df58fc94
RS
17563 0:
17564 */
ce8ad872 17565 if ((!pic || insn32) && (!compact_known || compact))
8484fb75 17566 length += short_insn_size;
df58fc94
RS
17567
17568 /* If assembling PIC code, we further turn:
17569
17570 j label # 4 bytes
17571
17572 into:
17573
17574 lw/ld at, %got(label)(gp) # 4 bytes
17575 d/addiu at, %lo(label) # 4 bytes
8484fb75 17576 jr/c at # 2/4 bytes
df58fc94 17577 */
ce8ad872 17578 if (pic)
8484fb75 17579 length += 4 + short_insn_size;
df58fc94 17580
7bd374a4
MR
17581 /* Add an extra nop if the jump has no compact form and we need
17582 to fill the delay slot. */
ce8ad872 17583 if ((!pic || al) && nods)
7bd374a4
MR
17584 length += (fragp
17585 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17586 : short_insn_size);
17587
df58fc94
RS
17588 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17589
17590 <brneg> 0f # 4 bytes
8484fb75 17591 nop # 2/4 bytes if !compact
df58fc94
RS
17592 */
17593 if (!uncond)
8484fb75 17594 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
df58fc94 17595 }
7bd374a4
MR
17596 else if (nods)
17597 {
17598 /* Add an extra nop to fill the delay slot. */
17599 gas_assert (fragp);
17600 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17601 }
df58fc94
RS
17602
17603 return length;
17604}
17605
17606/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17607 bit accordingly. */
17608
17609static int
17610relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17611{
17612 bfd_boolean toofar;
17613
df58fc94
RS
17614 if (fragp
17615 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17616 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
17617 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17618 {
17619 addressT addr;
17620 offsetT val;
17621 int type;
17622
17623 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17624 /* Ignore the low bit in the target, since it will be set
17625 for a text label. */
17626 if ((val & 1) != 0)
17627 --val;
17628
17629 /* Assume this is a 2-byte branch. */
17630 addr = fragp->fr_address + fragp->fr_fix + 2;
17631
17632 /* We try to avoid the infinite loop by not adding 2 more bytes for
17633 long branches. */
17634
17635 val -= addr;
17636
17637 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17638 if (type == 'D')
17639 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17640 else if (type == 'E')
17641 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17642 else
17643 abort ();
17644 }
17645 else
17646 /* If the symbol is not defined or it's in a different segment,
17647 we emit a normal 32-bit branch. */
17648 toofar = TRUE;
17649
17650 if (fragp && update
17651 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17652 fragp->fr_subtype
17653 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17654 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17655
17656 if (toofar)
17657 return 4;
17658
17659 return 2;
17660}
17661
252b5132
RH
17662/* Estimate the size of a frag before relaxing. Unless this is the
17663 mips16, we are not really relaxing here, and the final size is
17664 encoded in the subtype information. For the mips16, we have to
17665 decide whether we are using an extended opcode or not. */
17666
252b5132 17667int
17a2f251 17668md_estimate_size_before_relax (fragS *fragp, asection *segtype)
252b5132 17669{
5919d012 17670 int change;
252b5132 17671
4a6a3df4
AO
17672 if (RELAX_BRANCH_P (fragp->fr_subtype))
17673 {
17674
b34976b6
AM
17675 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17676
4a6a3df4
AO
17677 return fragp->fr_var;
17678 }
17679
252b5132 17680 if (RELAX_MIPS16_P (fragp->fr_subtype))
8507b6e7
MR
17681 {
17682 /* We don't want to modify the EXTENDED bit here; it might get us
17683 into infinite loops. We change it only in mips_relax_frag(). */
17684 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
17685 return 12;
17686 else
17687 return RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2;
17688 }
252b5132 17689
df58fc94
RS
17690 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17691 {
17692 int length = 4;
17693
17694 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17695 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17696 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17697 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17698 fragp->fr_var = length;
17699
17700 return length;
17701 }
17702
ce8ad872 17703 if (mips_pic == VXWORKS_PIC)
0a44bf69
RS
17704 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17705 change = 0;
ce8ad872
MR
17706 else if (RELAX_PIC (fragp->fr_subtype))
17707 change = pic_need_relax (fragp->fr_symbol);
252b5132 17708 else
ce8ad872 17709 change = nopic_need_relax (fragp->fr_symbol, 0);
252b5132
RH
17710
17711 if (change)
17712 {
4d7206a2 17713 fragp->fr_subtype |= RELAX_USE_SECOND;
4d7206a2 17714 return -RELAX_FIRST (fragp->fr_subtype);
252b5132 17715 }
4d7206a2
RS
17716 else
17717 return -RELAX_SECOND (fragp->fr_subtype);
252b5132
RH
17718}
17719
17720/* This is called to see whether a reloc against a defined symbol
de7e6852 17721 should be converted into a reloc against a section. */
252b5132
RH
17722
17723int
17a2f251 17724mips_fix_adjustable (fixS *fixp)
252b5132 17725{
252b5132
RH
17726 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17727 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17728 return 0;
a161fe53 17729
252b5132
RH
17730 if (fixp->fx_addsy == NULL)
17731 return 1;
a161fe53 17732
2f0c68f2
CM
17733 /* Allow relocs used for EH tables. */
17734 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17735 return 1;
17736
de7e6852
RS
17737 /* If symbol SYM is in a mergeable section, relocations of the form
17738 SYM + 0 can usually be made section-relative. The mergeable data
17739 is then identified by the section offset rather than by the symbol.
17740
17741 However, if we're generating REL LO16 relocations, the offset is split
33eaf5de 17742 between the LO16 and partnering high part relocation. The linker will
de7e6852
RS
17743 need to recalculate the complete offset in order to correctly identify
17744 the merge data.
17745
33eaf5de 17746 The linker has traditionally not looked for the partnering high part
de7e6852
RS
17747 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17748 placed anywhere. Rather than break backwards compatibility by changing
17749 this, it seems better not to force the issue, and instead keep the
17750 original symbol. This will work with either linker behavior. */
738e5348 17751 if ((lo16_reloc_p (fixp->fx_r_type)
704803a9 17752 || reloc_needs_lo_p (fixp->fx_r_type))
de7e6852
RS
17753 && HAVE_IN_PLACE_ADDENDS
17754 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17755 return 0;
17756
97f50151
MR
17757 /* There is no place to store an in-place offset for JALR relocations. */
17758 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17759 return 0;
17760
17761 /* Likewise an in-range offset of limited PC-relative relocations may
2de39019 17762 overflow the in-place relocatable field if recalculated against the
7361da2c
AB
17763 start address of the symbol's containing section.
17764
17765 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17766 section relative to allow linker relaxations to be performed later on. */
97f50151 17767 if (limited_pcrel_reloc_p (fixp->fx_r_type)
912815f0 17768 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
1180b5a4
RS
17769 return 0;
17770
b314ec0e
RS
17771 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17772 to a floating-point stub. The same is true for non-R_MIPS16_26
17773 relocations against MIPS16 functions; in this case, the stub becomes
17774 the function's canonical address.
17775
17776 Floating-point stubs are stored in unique .mips16.call.* or
17777 .mips16.fn.* sections. If a stub T for function F is in section S,
17778 the first relocation in section S must be against F; this is how the
17779 linker determines the target function. All relocations that might
17780 resolve to T must also be against F. We therefore have the following
17781 restrictions, which are given in an intentionally-redundant way:
17782
17783 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17784 symbols.
17785
17786 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17787 if that stub might be used.
17788
17789 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17790 symbols.
17791
17792 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17793 that stub might be used.
17794
17795 There is a further restriction:
17796
df58fc94 17797 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
0e9c5a5c 17798 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
c9775dde
MR
17799 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17800 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17801 against MIPS16 or microMIPS symbols because we need to keep the
17802 MIPS16 or microMIPS symbol for the purpose of mode mismatch
a6ebf616
MR
17803 detection and JAL or BAL to JALX instruction conversion in the
17804 linker.
b314ec0e 17805
df58fc94 17806 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
507dcb32 17807 against a MIPS16 symbol. We deal with (5) by additionally leaving
0e9c5a5c 17808 alone any jump and branch relocations against a microMIPS symbol.
b314ec0e
RS
17809
17810 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17811 relocation against some symbol R, no relocation against R may be
17812 reduced. (Note that this deals with (2) as well as (1) because
17813 relocations against global symbols will never be reduced on ELF
17814 targets.) This approach is a little simpler than trying to detect
17815 stub sections, and gives the "all or nothing" per-symbol consistency
17816 that we have for MIPS16 symbols. */
f3ded42a 17817 if (fixp->fx_subsy == NULL
30c09090 17818 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
44d3da23 17819 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
0e9c5a5c
MR
17820 && (jmp_reloc_p (fixp->fx_r_type)
17821 || b_reloc_p (fixp->fx_r_type)))
44d3da23 17822 || *symbol_get_tc (fixp->fx_addsy)))
252b5132 17823 return 0;
a161fe53 17824
252b5132
RH
17825 return 1;
17826}
17827
17828/* Translate internal representation of relocation info to BFD target
17829 format. */
17830
17831arelent **
17a2f251 17832tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
17833{
17834 static arelent *retval[4];
17835 arelent *reloc;
17836 bfd_reloc_code_real_type code;
17837
4b0cff4e 17838 memset (retval, 0, sizeof(retval));
325801bd
TS
17839 reloc = retval[0] = XCNEW (arelent);
17840 reloc->sym_ptr_ptr = XNEW (asymbol *);
49309057 17841 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
17842 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17843
bad36eac
DJ
17844 if (fixp->fx_pcrel)
17845 {
df58fc94 17846 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
c9775dde 17847 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
df58fc94
RS
17848 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17849 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6 17850 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
7361da2c
AB
17851 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17852 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17853 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17854 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17855 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17856 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17857 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
bad36eac
DJ
17858
17859 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17860 Relocations want only the symbol offset. */
51f6035b
MR
17861 switch (fixp->fx_r_type)
17862 {
17863 case BFD_RELOC_MIPS_18_PCREL_S3:
17864 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17865 break;
17866 default:
17867 reloc->addend = fixp->fx_addnumber + reloc->address;
17868 break;
17869 }
bad36eac 17870 }
17c6c9d9
MR
17871 else if (HAVE_IN_PLACE_ADDENDS
17872 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17873 && (read_compressed_insn (fixp->fx_frag->fr_literal
17874 + fixp->fx_where, 4) >> 26) == 0x3c)
17875 {
17876 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17877 addend accordingly. */
17878 reloc->addend = fixp->fx_addnumber >> 1;
17879 }
bad36eac
DJ
17880 else
17881 reloc->addend = fixp->fx_addnumber;
252b5132 17882
438c16b8
TS
17883 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17884 entry to be used in the relocation's section offset. */
17885 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
252b5132
RH
17886 {
17887 reloc->address = reloc->addend;
17888 reloc->addend = 0;
17889 }
17890
252b5132 17891 code = fixp->fx_r_type;
252b5132 17892
bad36eac 17893 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
252b5132
RH
17894 if (reloc->howto == NULL)
17895 {
17896 as_bad_where (fixp->fx_file, fixp->fx_line,
1661c76c
RS
17897 _("cannot represent %s relocation in this object file"
17898 " format"),
252b5132
RH
17899 bfd_get_reloc_code_name (code));
17900 retval[0] = NULL;
17901 }
17902
17903 return retval;
17904}
17905
17906/* Relax a machine dependent frag. This returns the amount by which
17907 the current size of the frag should change. */
17908
17909int
17a2f251 17910mips_relax_frag (asection *sec, fragS *fragp, long stretch)
252b5132 17911{
4a6a3df4
AO
17912 if (RELAX_BRANCH_P (fragp->fr_subtype))
17913 {
17914 offsetT old_var = fragp->fr_var;
b34976b6
AM
17915
17916 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
4a6a3df4
AO
17917
17918 return fragp->fr_var - old_var;
17919 }
17920
df58fc94
RS
17921 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17922 {
17923 offsetT old_var = fragp->fr_var;
17924 offsetT new_var = 4;
17925
17926 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17927 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17928 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17929 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17930 fragp->fr_var = new_var;
17931
17932 return new_var - old_var;
17933 }
17934
252b5132
RH
17935 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17936 return 0;
17937
8507b6e7 17938 if (!mips16_extended_frag (fragp, sec, stretch))
252b5132 17939 {
8507b6e7
MR
17940 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
17941 {
17942 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
17943 return -10;
17944 }
17945 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17946 {
17947 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17948 return -2;
17949 }
17950 else
17951 return 0;
17952 }
17953 else if (!mips16_macro_frag (fragp, sec, stretch))
17954 {
17955 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
17956 {
17957 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
17958 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17959 return -8;
17960 }
17961 else if (!RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17962 {
17963 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17964 return 2;
17965 }
17966 else
252b5132 17967 return 0;
252b5132
RH
17968 }
17969 else
17970 {
8507b6e7 17971 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
252b5132 17972 return 0;
8507b6e7
MR
17973 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17974 {
17975 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17976 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
17977 return 8;
17978 }
17979 else
17980 {
17981 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
17982 return 10;
17983 }
252b5132
RH
17984 }
17985
17986 return 0;
17987}
17988
17989/* Convert a machine dependent frag. */
17990
17991void
17a2f251 17992md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
252b5132 17993{
4a6a3df4
AO
17994 if (RELAX_BRANCH_P (fragp->fr_subtype))
17995 {
4d68580a 17996 char *buf;
4a6a3df4
AO
17997 unsigned long insn;
17998 expressionS exp;
17999 fixS *fixp;
b34976b6 18000
4d68580a
RS
18001 buf = fragp->fr_literal + fragp->fr_fix;
18002 insn = read_insn (buf);
b34976b6 18003
4a6a3df4
AO
18004 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18005 {
18006 /* We generate a fixup instead of applying it right now
18007 because, if there are linker relaxations, we're going to
18008 need the relocations. */
18009 exp.X_op = O_symbol;
18010 exp.X_add_symbol = fragp->fr_symbol;
18011 exp.X_add_number = fragp->fr_offset;
18012
4d68580a
RS
18013 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18014 BFD_RELOC_16_PCREL_S2);
4a6a3df4
AO
18015 fixp->fx_file = fragp->fr_file;
18016 fixp->fx_line = fragp->fr_line;
b34976b6 18017
4d68580a 18018 buf = write_insn (buf, insn);
4a6a3df4
AO
18019 }
18020 else
18021 {
18022 int i;
18023
18024 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 18025 _("relaxed out-of-range branch into a jump"));
4a6a3df4
AO
18026
18027 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18028 goto uncond;
18029
18030 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18031 {
18032 /* Reverse the branch. */
18033 switch ((insn >> 28) & 0xf)
18034 {
18035 case 4:
56d438b1
CF
18036 if ((insn & 0xff000000) == 0x47000000
18037 || (insn & 0xff600000) == 0x45600000)
18038 {
18039 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
18040 reversed by tweaking bit 23. */
18041 insn ^= 0x00800000;
18042 }
18043 else
18044 {
18045 /* bc[0-3][tf]l? instructions can have the condition
18046 reversed by tweaking a single TF bit, and their
18047 opcodes all have 0x4???????. */
18048 gas_assert ((insn & 0xf3e00000) == 0x41000000);
18049 insn ^= 0x00010000;
18050 }
4a6a3df4
AO
18051 break;
18052
18053 case 0:
18054 /* bltz 0x04000000 bgez 0x04010000
54f4ddb3 18055 bltzal 0x04100000 bgezal 0x04110000 */
9c2799c2 18056 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
4a6a3df4
AO
18057 insn ^= 0x00010000;
18058 break;
b34976b6 18059
4a6a3df4
AO
18060 case 1:
18061 /* beq 0x10000000 bne 0x14000000
54f4ddb3 18062 blez 0x18000000 bgtz 0x1c000000 */
4a6a3df4
AO
18063 insn ^= 0x04000000;
18064 break;
18065
18066 default:
18067 abort ();
18068 }
18069 }
18070
18071 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18072 {
18073 /* Clear the and-link bit. */
9c2799c2 18074 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
4a6a3df4 18075
54f4ddb3
TS
18076 /* bltzal 0x04100000 bgezal 0x04110000
18077 bltzall 0x04120000 bgezall 0x04130000 */
4a6a3df4
AO
18078 insn &= ~0x00100000;
18079 }
18080
18081 /* Branch over the branch (if the branch was likely) or the
18082 full jump (not likely case). Compute the offset from the
18083 current instruction to branch to. */
18084 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18085 i = 16;
18086 else
18087 {
18088 /* How many bytes in instructions we've already emitted? */
4d68580a 18089 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
18090 /* How many bytes in instructions from here to the end? */
18091 i = fragp->fr_var - i;
18092 }
18093 /* Convert to instruction count. */
18094 i >>= 2;
18095 /* Branch counts from the next instruction. */
b34976b6 18096 i--;
4a6a3df4
AO
18097 insn |= i;
18098 /* Branch over the jump. */
4d68580a 18099 buf = write_insn (buf, insn);
4a6a3df4 18100
54f4ddb3 18101 /* nop */
4d68580a 18102 buf = write_insn (buf, 0);
4a6a3df4
AO
18103
18104 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18105 {
18106 /* beql $0, $0, 2f */
18107 insn = 0x50000000;
18108 /* Compute the PC offset from the current instruction to
18109 the end of the variable frag. */
18110 /* How many bytes in instructions we've already emitted? */
4d68580a 18111 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
18112 /* How many bytes in instructions from here to the end? */
18113 i = fragp->fr_var - i;
18114 /* Convert to instruction count. */
18115 i >>= 2;
18116 /* Don't decrement i, because we want to branch over the
18117 delay slot. */
4a6a3df4 18118 insn |= i;
4a6a3df4 18119
4d68580a
RS
18120 buf = write_insn (buf, insn);
18121 buf = write_insn (buf, 0);
4a6a3df4
AO
18122 }
18123
18124 uncond:
ce8ad872 18125 if (!RELAX_BRANCH_PIC (fragp->fr_subtype))
4a6a3df4
AO
18126 {
18127 /* j or jal. */
18128 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18129 ? 0x0c000000 : 0x08000000);
18130 exp.X_op = O_symbol;
18131 exp.X_add_symbol = fragp->fr_symbol;
18132 exp.X_add_number = fragp->fr_offset;
18133
4d68580a
RS
18134 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18135 FALSE, BFD_RELOC_MIPS_JMP);
4a6a3df4
AO
18136 fixp->fx_file = fragp->fr_file;
18137 fixp->fx_line = fragp->fr_line;
18138
4d68580a 18139 buf = write_insn (buf, insn);
4a6a3df4
AO
18140 }
18141 else
18142 {
66b3e8da
MR
18143 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18144
4a6a3df4 18145 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
66b3e8da
MR
18146 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18147 insn |= at << OP_SH_RT;
4a6a3df4
AO
18148 exp.X_op = O_symbol;
18149 exp.X_add_symbol = fragp->fr_symbol;
18150 exp.X_add_number = fragp->fr_offset;
18151
18152 if (fragp->fr_offset)
18153 {
18154 exp.X_add_symbol = make_expr_symbol (&exp);
18155 exp.X_add_number = 0;
18156 }
18157
4d68580a
RS
18158 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18159 FALSE, BFD_RELOC_MIPS_GOT16);
4a6a3df4
AO
18160 fixp->fx_file = fragp->fr_file;
18161 fixp->fx_line = fragp->fr_line;
18162
4d68580a 18163 buf = write_insn (buf, insn);
b34976b6 18164
4a6a3df4 18165 if (mips_opts.isa == ISA_MIPS1)
4d68580a
RS
18166 /* nop */
18167 buf = write_insn (buf, 0);
4a6a3df4
AO
18168
18169 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
66b3e8da
MR
18170 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18171 insn |= at << OP_SH_RS | at << OP_SH_RT;
4a6a3df4 18172
4d68580a
RS
18173 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18174 FALSE, BFD_RELOC_LO16);
4a6a3df4
AO
18175 fixp->fx_file = fragp->fr_file;
18176 fixp->fx_line = fragp->fr_line;
b34976b6 18177
4d68580a 18178 buf = write_insn (buf, insn);
4a6a3df4
AO
18179
18180 /* j(al)r $at. */
18181 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
66b3e8da 18182 insn = 0x0000f809;
4a6a3df4 18183 else
66b3e8da
MR
18184 insn = 0x00000008;
18185 insn |= at << OP_SH_RS;
4a6a3df4 18186
4d68580a 18187 buf = write_insn (buf, insn);
4a6a3df4
AO
18188 }
18189 }
18190
4a6a3df4 18191 fragp->fr_fix += fragp->fr_var;
4d68580a 18192 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
4a6a3df4
AO
18193 return;
18194 }
18195
df58fc94
RS
18196 /* Relax microMIPS branches. */
18197 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18198 {
4d68580a 18199 char *buf = fragp->fr_literal + fragp->fr_fix;
df58fc94 18200 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
8484fb75 18201 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
7bd374a4 18202 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
ce8ad872 18203 bfd_boolean pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
df58fc94
RS
18204 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18205 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
2309ddf2 18206 bfd_boolean short_ds;
df58fc94
RS
18207 unsigned long insn;
18208 expressionS exp;
18209 fixS *fixp;
18210
18211 exp.X_op = O_symbol;
18212 exp.X_add_symbol = fragp->fr_symbol;
18213 exp.X_add_number = fragp->fr_offset;
18214
18215 fragp->fr_fix += fragp->fr_var;
18216
18217 /* Handle 16-bit branches that fit or are forced to fit. */
18218 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18219 {
18220 /* We generate a fixup instead of applying it right now,
18221 because if there is linker relaxation, we're going to
18222 need the relocations. */
18223 if (type == 'D')
4d68580a 18224 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
18225 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18226 else if (type == 'E')
4d68580a 18227 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
18228 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18229 else
18230 abort ();
18231
18232 fixp->fx_file = fragp->fr_file;
18233 fixp->fx_line = fragp->fr_line;
18234
18235 /* These relocations can have an addend that won't fit in
18236 2 octets. */
18237 fixp->fx_no_overflow = 1;
18238
18239 return;
18240 }
18241
2309ddf2 18242 /* Handle 32-bit branches that fit or are forced to fit. */
df58fc94
RS
18243 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18244 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18245 {
18246 /* We generate a fixup instead of applying it right now,
18247 because if there is linker relaxation, we're going to
18248 need the relocations. */
4d68580a
RS
18249 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18250 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
18251 fixp->fx_file = fragp->fr_file;
18252 fixp->fx_line = fragp->fr_line;
18253
18254 if (type == 0)
7bd374a4
MR
18255 {
18256 insn = read_compressed_insn (buf, 4);
18257 buf += 4;
18258
18259 if (nods)
18260 {
18261 /* Check the short-delay-slot bit. */
18262 if (!al || (insn & 0x02000000) != 0)
18263 buf = write_compressed_insn (buf, 0x0c00, 2);
18264 else
18265 buf = write_compressed_insn (buf, 0x00000000, 4);
18266 }
18267
18268 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18269 return;
18270 }
df58fc94
RS
18271 }
18272
18273 /* Relax 16-bit branches to 32-bit branches. */
18274 if (type != 0)
18275 {
4d68580a 18276 insn = read_compressed_insn (buf, 2);
df58fc94
RS
18277
18278 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18279 insn = 0x94000000; /* beq */
18280 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18281 {
18282 unsigned long regno;
18283
18284 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18285 regno = micromips_to_32_reg_d_map [regno];
18286 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18287 insn |= regno << MICROMIPSOP_SH_RS;
18288 }
18289 else
18290 abort ();
18291
18292 /* Nothing else to do, just write it out. */
18293 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18294 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18295 {
4d68580a 18296 buf = write_compressed_insn (buf, insn, 4);
7bd374a4
MR
18297 if (nods)
18298 buf = write_compressed_insn (buf, 0x0c00, 2);
4d68580a 18299 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
18300 return;
18301 }
18302 }
18303 else
4d68580a 18304 insn = read_compressed_insn (buf, 4);
df58fc94
RS
18305
18306 /* Relax 32-bit branches to a sequence of instructions. */
18307 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 18308 _("relaxed out-of-range branch into a jump"));
df58fc94 18309
2309ddf2 18310 /* Set the short-delay-slot bit. */
7bd374a4 18311 short_ds = !al || (insn & 0x02000000) != 0;
df58fc94
RS
18312
18313 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18314 {
18315 symbolS *l;
18316
18317 /* Reverse the branch. */
18318 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18319 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18320 insn ^= 0x20000000;
18321 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18322 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18323 || (insn & 0xffe00000) == 0x40800000 /* blez */
18324 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18325 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18326 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18327 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18328 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18329 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18330 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18331 insn ^= 0x00400000;
18332 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18333 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18334 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18335 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18336 insn ^= 0x00200000;
56d438b1
CF
18337 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18338 BNZ.df */
18339 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18340 BNZ.V */
18341 insn ^= 0x00800000;
df58fc94
RS
18342 else
18343 abort ();
18344
18345 if (al)
18346 {
18347 /* Clear the and-link and short-delay-slot bits. */
18348 gas_assert ((insn & 0xfda00000) == 0x40200000);
18349
18350 /* bltzal 0x40200000 bgezal 0x40600000 */
18351 /* bltzals 0x42200000 bgezals 0x42600000 */
18352 insn &= ~0x02200000;
18353 }
18354
18355 /* Make a label at the end for use with the branch. */
18356 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18357 micromips_label_inc ();
f3ded42a 18358 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
df58fc94
RS
18359
18360 /* Refer to it. */
4d68580a
RS
18361 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18362 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
18363 fixp->fx_file = fragp->fr_file;
18364 fixp->fx_line = fragp->fr_line;
18365
18366 /* Branch over the jump. */
4d68580a 18367 buf = write_compressed_insn (buf, insn, 4);
8484fb75 18368
df58fc94 18369 if (!compact)
8484fb75
MR
18370 {
18371 /* nop */
18372 if (insn32)
18373 buf = write_compressed_insn (buf, 0x00000000, 4);
18374 else
18375 buf = write_compressed_insn (buf, 0x0c00, 2);
18376 }
df58fc94
RS
18377 }
18378
ce8ad872 18379 if (!pic)
df58fc94 18380 {
7bd374a4
MR
18381 unsigned long jal = (short_ds || nods
18382 ? 0x74000000 : 0xf4000000); /* jal/s */
2309ddf2 18383
df58fc94
RS
18384 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18385 insn = al ? jal : 0xd4000000;
18386
4d68580a
RS
18387 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18388 BFD_RELOC_MICROMIPS_JMP);
df58fc94
RS
18389 fixp->fx_file = fragp->fr_file;
18390 fixp->fx_line = fragp->fr_line;
18391
4d68580a 18392 buf = write_compressed_insn (buf, insn, 4);
8484fb75 18393
7bd374a4 18394 if (compact || nods)
8484fb75
MR
18395 {
18396 /* nop */
18397 if (insn32)
18398 buf = write_compressed_insn (buf, 0x00000000, 4);
18399 else
18400 buf = write_compressed_insn (buf, 0x0c00, 2);
18401 }
df58fc94
RS
18402 }
18403 else
18404 {
18405 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18406
18407 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18408 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18409 insn |= at << MICROMIPSOP_SH_RT;
18410
18411 if (exp.X_add_number)
18412 {
18413 exp.X_add_symbol = make_expr_symbol (&exp);
18414 exp.X_add_number = 0;
18415 }
18416
4d68580a
RS
18417 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18418 BFD_RELOC_MICROMIPS_GOT16);
df58fc94
RS
18419 fixp->fx_file = fragp->fr_file;
18420 fixp->fx_line = fragp->fr_line;
18421
4d68580a 18422 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
18423
18424 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18425 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18426 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18427
4d68580a
RS
18428 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18429 BFD_RELOC_MICROMIPS_LO16);
df58fc94
RS
18430 fixp->fx_file = fragp->fr_file;
18431 fixp->fx_line = fragp->fr_line;
18432
4d68580a 18433 buf = write_compressed_insn (buf, insn, 4);
df58fc94 18434
8484fb75
MR
18435 if (insn32)
18436 {
18437 /* jr/jalr $at */
18438 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18439 insn |= at << MICROMIPSOP_SH_RS;
18440
18441 buf = write_compressed_insn (buf, insn, 4);
df58fc94 18442
7bd374a4 18443 if (compact || nods)
8484fb75
MR
18444 /* nop */
18445 buf = write_compressed_insn (buf, 0x00000000, 4);
18446 }
18447 else
18448 {
18449 /* jr/jrc/jalr/jalrs $at */
18450 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
7bd374a4 18451 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
8484fb75
MR
18452
18453 insn = al ? jalr : jr;
18454 insn |= at << MICROMIPSOP_SH_MJ;
18455
18456 buf = write_compressed_insn (buf, insn, 2);
7bd374a4
MR
18457 if (al && nods)
18458 {
18459 /* nop */
18460 if (short_ds)
18461 buf = write_compressed_insn (buf, 0x0c00, 2);
18462 else
18463 buf = write_compressed_insn (buf, 0x00000000, 4);
18464 }
8484fb75 18465 }
df58fc94
RS
18466 }
18467
4d68580a 18468 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
18469 return;
18470 }
18471
252b5132
RH
18472 if (RELAX_MIPS16_P (fragp->fr_subtype))
18473 {
18474 int type;
3ccad066 18475 const struct mips_int_operand *operand;
252b5132 18476 offsetT val;
5c04167a 18477 char *buf;
8507b6e7 18478 unsigned int user_length;
9d862524 18479 bfd_boolean need_reloc;
252b5132 18480 unsigned long insn;
8507b6e7 18481 bfd_boolean mac;
5c04167a 18482 bfd_boolean ext;
88a7ef16 18483 segT symsec;
252b5132
RH
18484
18485 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 18486 operand = mips16_immed_operand (type, FALSE);
252b5132 18487
8507b6e7 18488 mac = RELAX_MIPS16_MACRO (fragp->fr_subtype);
5c04167a 18489 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
88a7ef16 18490 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
9d862524
MR
18491
18492 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18493 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
8507b6e7 18494 || (operand->root.type == OP_PCREL && !mac
9d862524
MR
18495 ? asec != symsec
18496 : !bfd_is_abs_section (symsec)));
18497
8507b6e7 18498 if (operand->root.type == OP_PCREL && !mac)
252b5132 18499 {
3ccad066 18500 const struct mips_pcrel_operand *pcrel_op;
252b5132 18501
3ccad066 18502 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132 18503
14f72d45 18504 if (pcrel_op->include_isa_bit && !need_reloc)
252b5132 18505 {
14f72d45
MR
18506 if (!ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18507 as_bad_where (fragp->fr_file, fragp->fr_line,
18508 _("branch to a symbol in another ISA mode"));
18509 else if ((fragp->fr_offset & 0x1) != 0)
18510 as_bad_where (fragp->fr_file, fragp->fr_line,
18511 _("branch to misaligned address (0x%lx)"),
18512 (long) val);
252b5132 18513 }
252b5132 18514
14f72d45 18515 val = mips16_pcrel_val (fragp, pcrel_op, val, 0);
252b5132
RH
18516
18517 /* Make sure the section winds up with the alignment we have
18518 assumed. */
3ccad066
RS
18519 if (operand->shift > 0)
18520 record_alignment (asec, operand->shift);
252b5132
RH
18521 }
18522
8507b6e7
MR
18523 if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18524 || RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18525 {
18526 if (mac)
18527 as_warn_where (fragp->fr_file, fragp->fr_line,
18528 _("macro instruction expanded into multiple "
18529 "instructions in a branch delay slot"));
18530 else if (ext)
18531 as_warn_where (fragp->fr_file, fragp->fr_line,
18532 _("extended instruction in a branch delay slot"));
18533 }
18534 else if (RELAX_MIPS16_NOMACRO (fragp->fr_subtype) && mac)
252b5132 18535 as_warn_where (fragp->fr_file, fragp->fr_line,
8507b6e7
MR
18536 _("macro instruction expanded into multiple "
18537 "instructions"));
252b5132 18538
5c04167a 18539 buf = fragp->fr_literal + fragp->fr_fix;
252b5132 18540
4d68580a 18541 insn = read_compressed_insn (buf, 2);
5c04167a
RS
18542 if (ext)
18543 insn |= MIPS16_EXTEND;
252b5132 18544
5c04167a
RS
18545 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18546 user_length = 4;
18547 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18548 user_length = 2;
18549 else
18550 user_length = 0;
18551
8507b6e7 18552 if (mac)
c9775dde 18553 {
8507b6e7
MR
18554 unsigned long reg;
18555 unsigned long new;
18556 unsigned long op;
18557
18558 gas_assert (type == 'A' || type == 'B' || type == 'E');
18559 gas_assert (RELAX_MIPS16_SYM32 (fragp->fr_subtype));
c9775dde 18560
8507b6e7 18561 if (need_reloc)
c9775dde 18562 {
8507b6e7
MR
18563 fixS *fixp;
18564
18565 gas_assert (!RELAX_MIPS16_PIC (fragp->fr_subtype));
18566
18567 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18568 fragp->fr_symbol, fragp->fr_offset,
18569 FALSE, BFD_RELOC_MIPS16_HI16_S);
18570 fixp->fx_file = fragp->fr_file;
18571 fixp->fx_line = fragp->fr_line;
18572
18573 fixp = fix_new (fragp, buf - fragp->fr_literal + 8, 4,
18574 fragp->fr_symbol, fragp->fr_offset,
18575 FALSE, BFD_RELOC_MIPS16_LO16);
18576 fixp->fx_file = fragp->fr_file;
18577 fixp->fx_line = fragp->fr_line;
18578
18579 val = 0;
18580 }
18581
18582 switch (insn & 0xf800)
18583 {
18584 case 0x0800: /* ADDIU */
18585 reg = (insn >> 8) & 0x7;
18586 op = 0xf0004800 | (reg << 8);
c9775dde 18587 break;
8507b6e7
MR
18588 case 0xb000: /* LW */
18589 reg = (insn >> 8) & 0x7;
18590 op = 0xf0009800 | (reg << 8) | (reg << 5);
c9775dde 18591 break;
8507b6e7
MR
18592 case 0xf800: /* I64 */
18593 reg = (insn >> 5) & 0x7;
18594 switch (insn & 0x0700)
18595 {
18596 case 0x0400: /* LD */
18597 op = 0xf0003800 | (reg << 8) | (reg << 5);
18598 break;
18599 case 0x0600: /* DADDIU */
18600 op = 0xf000fd00 | (reg << 5);
18601 break;
18602 default:
18603 abort ();
18604 }
18605 break;
18606 default:
18607 abort ();
c9775dde 18608 }
8507b6e7
MR
18609
18610 new = 0xf0006800 | (reg << 8); /* LI */
18611 new |= mips16_immed_extend ((val + 0x8000) >> 16, 16);
18612 buf = write_compressed_insn (buf, new, 4);
18613 new = 0xf4003000 | (reg << 8) | (reg << 5); /* SLL */
18614 buf = write_compressed_insn (buf, new, 4);
18615 op |= mips16_immed_extend (val, 16);
18616 buf = write_compressed_insn (buf, op, 4);
18617
18618 fragp->fr_fix += 12;
18619 }
18620 else
18621 {
18622 unsigned int length = ext ? 4 : 2;
18623
18624 if (need_reloc)
c9775dde 18625 {
8507b6e7
MR
18626 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18627 expressionS exp;
18628 fixS *fixp;
c9775dde 18629
8507b6e7
MR
18630 switch (type)
18631 {
18632 case 'p':
18633 case 'q':
18634 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18635 break;
18636 default:
18637 break;
18638 }
18639 if (mac || reloc == BFD_RELOC_NONE)
18640 as_bad_where (fragp->fr_file, fragp->fr_line,
18641 _("unsupported relocation"));
18642 else if (ext)
18643 {
18644 exp.X_op = O_symbol;
18645 exp.X_add_symbol = fragp->fr_symbol;
18646 exp.X_add_number = fragp->fr_offset;
c9775dde 18647
8507b6e7
MR
18648 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18649 TRUE, reloc);
18650
18651 fixp->fx_file = fragp->fr_file;
18652 fixp->fx_line = fragp->fr_line;
18653 }
18654 else
18655 as_bad_where (fragp->fr_file, fragp->fr_line,
18656 _("invalid unextended operand value"));
c9775dde 18657 }
eefc3365 18658 else
8507b6e7
MR
18659 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18660 BFD_RELOC_UNUSED, val, user_length, &insn);
252b5132 18661
8507b6e7
MR
18662 gas_assert (mips16_opcode_length (insn) == length);
18663 write_compressed_insn (buf, insn, length);
18664 fragp->fr_fix += length;
18665 }
252b5132
RH
18666 }
18667 else
18668 {
df58fc94
RS
18669 relax_substateT subtype = fragp->fr_subtype;
18670 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18671 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
4d7206a2
RS
18672 int first, second;
18673 fixS *fixp;
252b5132 18674
df58fc94
RS
18675 first = RELAX_FIRST (subtype);
18676 second = RELAX_SECOND (subtype);
4d7206a2 18677 fixp = (fixS *) fragp->fr_opcode;
252b5132 18678
df58fc94
RS
18679 /* If the delay slot chosen does not match the size of the instruction,
18680 then emit a warning. */
18681 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18682 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18683 {
18684 relax_substateT s;
18685 const char *msg;
18686
18687 s = subtype & (RELAX_DELAY_SLOT_16BIT
18688 | RELAX_DELAY_SLOT_SIZE_FIRST
18689 | RELAX_DELAY_SLOT_SIZE_SECOND);
18690 msg = macro_warning (s);
18691 if (msg != NULL)
db9b2be4 18692 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94
RS
18693 subtype &= ~s;
18694 }
18695
584892a6 18696 /* Possibly emit a warning if we've chosen the longer option. */
df58fc94 18697 if (use_second == second_longer)
584892a6 18698 {
df58fc94
RS
18699 relax_substateT s;
18700 const char *msg;
18701
18702 s = (subtype
18703 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18704 msg = macro_warning (s);
18705 if (msg != NULL)
db9b2be4 18706 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94 18707 subtype &= ~s;
584892a6
RS
18708 }
18709
4d7206a2
RS
18710 /* Go through all the fixups for the first sequence. Disable them
18711 (by marking them as done) if we're going to use the second
18712 sequence instead. */
18713 while (fixp
18714 && fixp->fx_frag == fragp
18715 && fixp->fx_where < fragp->fr_fix - second)
18716 {
df58fc94 18717 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18718 fixp->fx_done = 1;
18719 fixp = fixp->fx_next;
18720 }
252b5132 18721
4d7206a2
RS
18722 /* Go through the fixups for the second sequence. Disable them if
18723 we're going to use the first sequence, otherwise adjust their
18724 addresses to account for the relaxation. */
18725 while (fixp && fixp->fx_frag == fragp)
18726 {
df58fc94 18727 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18728 fixp->fx_where -= first;
18729 else
18730 fixp->fx_done = 1;
18731 fixp = fixp->fx_next;
18732 }
18733
18734 /* Now modify the frag contents. */
df58fc94 18735 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18736 {
18737 char *start;
18738
18739 start = fragp->fr_literal + fragp->fr_fix - first - second;
18740 memmove (start, start + first, second);
18741 fragp->fr_fix -= first;
18742 }
18743 else
18744 fragp->fr_fix -= second;
252b5132
RH
18745 }
18746}
18747
252b5132
RH
18748/* This function is called after the relocs have been generated.
18749 We've been storing mips16 text labels as odd. Here we convert them
18750 back to even for the convenience of the debugger. */
18751
18752void
17a2f251 18753mips_frob_file_after_relocs (void)
252b5132
RH
18754{
18755 asymbol **syms;
18756 unsigned int count, i;
18757
252b5132
RH
18758 syms = bfd_get_outsymbols (stdoutput);
18759 count = bfd_get_symcount (stdoutput);
18760 for (i = 0; i < count; i++, syms++)
df58fc94
RS
18761 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18762 && ((*syms)->value & 1) != 0)
18763 {
18764 (*syms)->value &= ~1;
18765 /* If the symbol has an odd size, it was probably computed
18766 incorrectly, so adjust that as well. */
18767 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18768 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18769 }
252b5132
RH
18770}
18771
a1facbec
MR
18772/* This function is called whenever a label is defined, including fake
18773 labels instantiated off the dot special symbol. It is used when
18774 handling branch delays; if a branch has a label, we assume we cannot
18775 move it. This also bumps the value of the symbol by 1 in compressed
18776 code. */
252b5132 18777
e1b47bd5 18778static void
a1facbec 18779mips_record_label (symbolS *sym)
252b5132 18780{
a8dbcb85 18781 segment_info_type *si = seg_info (now_seg);
252b5132
RH
18782 struct insn_label_list *l;
18783
18784 if (free_insn_labels == NULL)
325801bd 18785 l = XNEW (struct insn_label_list);
252b5132
RH
18786 else
18787 {
18788 l = free_insn_labels;
18789 free_insn_labels = l->next;
18790 }
18791
18792 l->label = sym;
a8dbcb85
TS
18793 l->next = si->label_list;
18794 si->label_list = l;
a1facbec 18795}
07a53e5c 18796
a1facbec
MR
18797/* This function is called as tc_frob_label() whenever a label is defined
18798 and adds a DWARF-2 record we only want for true labels. */
18799
18800void
18801mips_define_label (symbolS *sym)
18802{
18803 mips_record_label (sym);
07a53e5c 18804 dwarf2_emit_label (sym);
252b5132 18805}
e1b47bd5
RS
18806
18807/* This function is called by tc_new_dot_label whenever a new dot symbol
18808 is defined. */
18809
18810void
18811mips_add_dot_label (symbolS *sym)
18812{
18813 mips_record_label (sym);
18814 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18815 mips_compressed_mark_label (sym);
18816}
252b5132 18817\f
351cdf24
MF
18818/* Converting ASE flags from internal to .MIPS.abiflags values. */
18819static unsigned int
18820mips_convert_ase_flags (int ase)
18821{
18822 unsigned int ext_ases = 0;
18823
18824 if (ase & ASE_DSP)
18825 ext_ases |= AFL_ASE_DSP;
18826 if (ase & ASE_DSPR2)
18827 ext_ases |= AFL_ASE_DSPR2;
8f4f9071
MF
18828 if (ase & ASE_DSPR3)
18829 ext_ases |= AFL_ASE_DSPR3;
351cdf24
MF
18830 if (ase & ASE_EVA)
18831 ext_ases |= AFL_ASE_EVA;
18832 if (ase & ASE_MCU)
18833 ext_ases |= AFL_ASE_MCU;
18834 if (ase & ASE_MDMX)
18835 ext_ases |= AFL_ASE_MDMX;
18836 if (ase & ASE_MIPS3D)
18837 ext_ases |= AFL_ASE_MIPS3D;
18838 if (ase & ASE_MT)
18839 ext_ases |= AFL_ASE_MT;
18840 if (ase & ASE_SMARTMIPS)
18841 ext_ases |= AFL_ASE_SMARTMIPS;
18842 if (ase & ASE_VIRT)
18843 ext_ases |= AFL_ASE_VIRT;
18844 if (ase & ASE_MSA)
18845 ext_ases |= AFL_ASE_MSA;
18846 if (ase & ASE_XPA)
18847 ext_ases |= AFL_ASE_XPA;
18848
18849 return ext_ases;
18850}
252b5132
RH
18851/* Some special processing for a MIPS ELF file. */
18852
18853void
17a2f251 18854mips_elf_final_processing (void)
252b5132 18855{
351cdf24
MF
18856 int fpabi;
18857 Elf_Internal_ABIFlags_v0 flags;
18858
18859 flags.version = 0;
18860 flags.isa_rev = 0;
18861 switch (file_mips_opts.isa)
18862 {
18863 case INSN_ISA1:
18864 flags.isa_level = 1;
18865 break;
18866 case INSN_ISA2:
18867 flags.isa_level = 2;
18868 break;
18869 case INSN_ISA3:
18870 flags.isa_level = 3;
18871 break;
18872 case INSN_ISA4:
18873 flags.isa_level = 4;
18874 break;
18875 case INSN_ISA5:
18876 flags.isa_level = 5;
18877 break;
18878 case INSN_ISA32:
18879 flags.isa_level = 32;
18880 flags.isa_rev = 1;
18881 break;
18882 case INSN_ISA32R2:
18883 flags.isa_level = 32;
18884 flags.isa_rev = 2;
18885 break;
18886 case INSN_ISA32R3:
18887 flags.isa_level = 32;
18888 flags.isa_rev = 3;
18889 break;
18890 case INSN_ISA32R5:
18891 flags.isa_level = 32;
18892 flags.isa_rev = 5;
18893 break;
09c14161
MF
18894 case INSN_ISA32R6:
18895 flags.isa_level = 32;
18896 flags.isa_rev = 6;
18897 break;
351cdf24
MF
18898 case INSN_ISA64:
18899 flags.isa_level = 64;
18900 flags.isa_rev = 1;
18901 break;
18902 case INSN_ISA64R2:
18903 flags.isa_level = 64;
18904 flags.isa_rev = 2;
18905 break;
18906 case INSN_ISA64R3:
18907 flags.isa_level = 64;
18908 flags.isa_rev = 3;
18909 break;
18910 case INSN_ISA64R5:
18911 flags.isa_level = 64;
18912 flags.isa_rev = 5;
18913 break;
09c14161
MF
18914 case INSN_ISA64R6:
18915 flags.isa_level = 64;
18916 flags.isa_rev = 6;
18917 break;
351cdf24
MF
18918 }
18919
18920 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18921 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18922 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18923 : (file_mips_opts.fp == 64) ? AFL_REG_64
18924 : AFL_REG_32;
18925 flags.cpr2_size = AFL_REG_NONE;
18926 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18927 Tag_GNU_MIPS_ABI_FP);
18928 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18929 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18930 if (file_ase_mips16)
18931 flags.ases |= AFL_ASE_MIPS16;
18932 if (file_ase_micromips)
18933 flags.ases |= AFL_ASE_MICROMIPS;
18934 flags.flags1 = 0;
18935 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18936 || file_mips_opts.fp == 64)
18937 && file_mips_opts.oddspreg)
18938 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18939 flags.flags2 = 0;
18940
18941 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18942 ((Elf_External_ABIFlags_v0 *)
18943 mips_flags_frag));
18944
252b5132 18945 /* Write out the register information. */
316f5878 18946 if (mips_abi != N64_ABI)
252b5132
RH
18947 {
18948 Elf32_RegInfo s;
18949
18950 s.ri_gprmask = mips_gprmask;
18951 s.ri_cprmask[0] = mips_cprmask[0];
18952 s.ri_cprmask[1] = mips_cprmask[1];
18953 s.ri_cprmask[2] = mips_cprmask[2];
18954 s.ri_cprmask[3] = mips_cprmask[3];
18955 /* The gp_value field is set by the MIPS ELF backend. */
18956
18957 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18958 ((Elf32_External_RegInfo *)
18959 mips_regmask_frag));
18960 }
18961 else
18962 {
18963 Elf64_Internal_RegInfo s;
18964
18965 s.ri_gprmask = mips_gprmask;
18966 s.ri_pad = 0;
18967 s.ri_cprmask[0] = mips_cprmask[0];
18968 s.ri_cprmask[1] = mips_cprmask[1];
18969 s.ri_cprmask[2] = mips_cprmask[2];
18970 s.ri_cprmask[3] = mips_cprmask[3];
18971 /* The gp_value field is set by the MIPS ELF backend. */
18972
18973 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18974 ((Elf64_External_RegInfo *)
18975 mips_regmask_frag));
18976 }
18977
18978 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18979 sort of BFD interface for this. */
18980 if (mips_any_noreorder)
18981 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18982 if (mips_pic != NO_PIC)
143d77c5 18983 {
8b828383 18984 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
143d77c5
EC
18985 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18986 }
18987 if (mips_abicalls)
18988 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
252b5132 18989
b015e599
AP
18990 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18991 defined at present; this might need to change in future. */
a4672219
TS
18992 if (file_ase_mips16)
18993 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
df58fc94
RS
18994 if (file_ase_micromips)
18995 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
919731af 18996 if (file_mips_opts.ase & ASE_MDMX)
deec1734 18997 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
1f25f5d3 18998
bdaaa2e1 18999 /* Set the MIPS ELF ABI flags. */
316f5878 19000 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
252b5132 19001 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
316f5878 19002 else if (mips_abi == O64_ABI)
252b5132 19003 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
316f5878 19004 else if (mips_abi == EABI_ABI)
252b5132 19005 {
bad1aba3 19006 if (file_mips_opts.gp == 64)
252b5132
RH
19007 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
19008 else
19009 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
19010 }
316f5878 19011 else if (mips_abi == N32_ABI)
be00bddd
TS
19012 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
19013
c9914766 19014 /* Nothing to do for N64_ABI. */
252b5132
RH
19015
19016 if (mips_32bitmode)
19017 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
ad3fea08 19018
7361da2c 19019 if (mips_nan2008 == 1)
ba92f887
MR
19020 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
19021
ad3fea08 19022 /* 32 bit code with 64 bit FP registers. */
351cdf24
MF
19023 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19024 Tag_GNU_MIPS_ABI_FP);
19025 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
f1c38003 19026 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
252b5132 19027}
252b5132 19028\f
beae10d5 19029typedef struct proc {
9b2f1d35
EC
19030 symbolS *func_sym;
19031 symbolS *func_end_sym;
beae10d5
KH
19032 unsigned long reg_mask;
19033 unsigned long reg_offset;
19034 unsigned long fpreg_mask;
19035 unsigned long fpreg_offset;
19036 unsigned long frame_offset;
19037 unsigned long frame_reg;
19038 unsigned long pc_reg;
19039} procS;
252b5132
RH
19040
19041static procS cur_proc;
19042static procS *cur_proc_ptr;
19043static int numprocs;
19044
df58fc94
RS
19045/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
19046 as "2", and a normal nop as "0". */
19047
19048#define NOP_OPCODE_MIPS 0
19049#define NOP_OPCODE_MIPS16 1
19050#define NOP_OPCODE_MICROMIPS 2
742a56fe
RS
19051
19052char
19053mips_nop_opcode (void)
19054{
df58fc94
RS
19055 if (seg_info (now_seg)->tc_segment_info_data.micromips)
19056 return NOP_OPCODE_MICROMIPS;
19057 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
19058 return NOP_OPCODE_MIPS16;
19059 else
19060 return NOP_OPCODE_MIPS;
742a56fe
RS
19061}
19062
df58fc94
RS
19063/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
19064 32-bit microMIPS NOPs here (if applicable). */
a19d8eb0 19065
0a9ef439 19066void
17a2f251 19067mips_handle_align (fragS *fragp)
a19d8eb0 19068{
df58fc94 19069 char nop_opcode;
742a56fe 19070 char *p;
c67a084a
NC
19071 int bytes, size, excess;
19072 valueT opcode;
742a56fe 19073
0a9ef439
RH
19074 if (fragp->fr_type != rs_align_code)
19075 return;
19076
742a56fe 19077 p = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
19078 nop_opcode = *p;
19079 switch (nop_opcode)
a19d8eb0 19080 {
df58fc94
RS
19081 case NOP_OPCODE_MICROMIPS:
19082 opcode = micromips_nop32_insn.insn_opcode;
19083 size = 4;
19084 break;
19085 case NOP_OPCODE_MIPS16:
c67a084a
NC
19086 opcode = mips16_nop_insn.insn_opcode;
19087 size = 2;
df58fc94
RS
19088 break;
19089 case NOP_OPCODE_MIPS:
19090 default:
c67a084a
NC
19091 opcode = nop_insn.insn_opcode;
19092 size = 4;
df58fc94 19093 break;
c67a084a 19094 }
a19d8eb0 19095
c67a084a
NC
19096 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
19097 excess = bytes % size;
df58fc94
RS
19098
19099 /* Handle the leading part if we're not inserting a whole number of
19100 instructions, and make it the end of the fixed part of the frag.
19101 Try to fit in a short microMIPS NOP if applicable and possible,
19102 and use zeroes otherwise. */
19103 gas_assert (excess < 4);
19104 fragp->fr_fix += excess;
19105 switch (excess)
c67a084a 19106 {
df58fc94
RS
19107 case 3:
19108 *p++ = '\0';
19109 /* Fall through. */
19110 case 2:
833794fc 19111 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
df58fc94 19112 {
4d68580a 19113 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
df58fc94
RS
19114 break;
19115 }
19116 *p++ = '\0';
19117 /* Fall through. */
19118 case 1:
19119 *p++ = '\0';
19120 /* Fall through. */
19121 case 0:
19122 break;
a19d8eb0 19123 }
c67a084a
NC
19124
19125 md_number_to_chars (p, opcode, size);
19126 fragp->fr_var = size;
a19d8eb0
CP
19127}
19128
252b5132 19129static long
17a2f251 19130get_number (void)
252b5132
RH
19131{
19132 int negative = 0;
19133 long val = 0;
19134
19135 if (*input_line_pointer == '-')
19136 {
19137 ++input_line_pointer;
19138 negative = 1;
19139 }
3882b010 19140 if (!ISDIGIT (*input_line_pointer))
956cd1d6 19141 as_bad (_("expected simple number"));
252b5132
RH
19142 if (input_line_pointer[0] == '0')
19143 {
19144 if (input_line_pointer[1] == 'x')
19145 {
19146 input_line_pointer += 2;
3882b010 19147 while (ISXDIGIT (*input_line_pointer))
252b5132
RH
19148 {
19149 val <<= 4;
19150 val |= hex_value (*input_line_pointer++);
19151 }
19152 return negative ? -val : val;
19153 }
19154 else
19155 {
19156 ++input_line_pointer;
3882b010 19157 while (ISDIGIT (*input_line_pointer))
252b5132
RH
19158 {
19159 val <<= 3;
19160 val |= *input_line_pointer++ - '0';
19161 }
19162 return negative ? -val : val;
19163 }
19164 }
3882b010 19165 if (!ISDIGIT (*input_line_pointer))
252b5132
RH
19166 {
19167 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
19168 *input_line_pointer, *input_line_pointer);
956cd1d6 19169 as_warn (_("invalid number"));
252b5132
RH
19170 return -1;
19171 }
3882b010 19172 while (ISDIGIT (*input_line_pointer))
252b5132
RH
19173 {
19174 val *= 10;
19175 val += *input_line_pointer++ - '0';
19176 }
19177 return negative ? -val : val;
19178}
19179
19180/* The .file directive; just like the usual .file directive, but there
c5dd6aab
DJ
19181 is an initial number which is the ECOFF file index. In the non-ECOFF
19182 case .file implies DWARF-2. */
19183
19184static void
17a2f251 19185s_mips_file (int x ATTRIBUTE_UNUSED)
c5dd6aab 19186{
ecb4347a
DJ
19187 static int first_file_directive = 0;
19188
c5dd6aab
DJ
19189 if (ECOFF_DEBUGGING)
19190 {
19191 get_number ();
19192 s_app_file (0);
19193 }
19194 else
ecb4347a
DJ
19195 {
19196 char *filename;
19197
19198 filename = dwarf2_directive_file (0);
19199
19200 /* Versions of GCC up to 3.1 start files with a ".file"
19201 directive even for stabs output. Make sure that this
19202 ".file" is handled. Note that you need a version of GCC
19203 after 3.1 in order to support DWARF-2 on MIPS. */
19204 if (filename != NULL && ! first_file_directive)
19205 {
19206 (void) new_logical_line (filename, -1);
c04f5787 19207 s_app_file_string (filename, 0);
ecb4347a
DJ
19208 }
19209 first_file_directive = 1;
19210 }
c5dd6aab
DJ
19211}
19212
19213/* The .loc directive, implying DWARF-2. */
252b5132
RH
19214
19215static void
17a2f251 19216s_mips_loc (int x ATTRIBUTE_UNUSED)
252b5132 19217{
c5dd6aab
DJ
19218 if (!ECOFF_DEBUGGING)
19219 dwarf2_directive_loc (0);
252b5132
RH
19220}
19221
252b5132
RH
19222/* The .end directive. */
19223
19224static void
17a2f251 19225s_mips_end (int x ATTRIBUTE_UNUSED)
252b5132
RH
19226{
19227 symbolS *p;
252b5132 19228
7a621144
DJ
19229 /* Following functions need their own .frame and .cprestore directives. */
19230 mips_frame_reg_valid = 0;
19231 mips_cprestore_valid = 0;
19232
252b5132
RH
19233 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19234 {
19235 p = get_symbol ();
19236 demand_empty_rest_of_line ();
19237 }
19238 else
19239 p = NULL;
19240
14949570 19241 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
19242 as_warn (_(".end not in text section"));
19243
19244 if (!cur_proc_ptr)
19245 {
1661c76c 19246 as_warn (_(".end directive without a preceding .ent directive"));
252b5132
RH
19247 demand_empty_rest_of_line ();
19248 return;
19249 }
19250
19251 if (p != NULL)
19252 {
9c2799c2 19253 gas_assert (S_GET_NAME (p));
9b2f1d35 19254 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
1661c76c 19255 as_warn (_(".end symbol does not match .ent symbol"));
ecb4347a
DJ
19256
19257 if (debug_type == DEBUG_STABS)
19258 stabs_generate_asm_endfunc (S_GET_NAME (p),
19259 S_GET_NAME (p));
252b5132
RH
19260 }
19261 else
19262 as_warn (_(".end directive missing or unknown symbol"));
19263
9b2f1d35
EC
19264 /* Create an expression to calculate the size of the function. */
19265 if (p && cur_proc_ptr)
19266 {
19267 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
325801bd 19268 expressionS *exp = XNEW (expressionS);
9b2f1d35
EC
19269
19270 obj->size = exp;
19271 exp->X_op = O_subtract;
19272 exp->X_add_symbol = symbol_temp_new_now ();
19273 exp->X_op_symbol = p;
19274 exp->X_add_number = 0;
19275
19276 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19277 }
19278
5ff6a06c
MR
19279#ifdef md_flush_pending_output
19280 md_flush_pending_output ();
19281#endif
19282
ecb4347a 19283 /* Generate a .pdr section. */
f3ded42a 19284 if (!ECOFF_DEBUGGING && mips_flag_pdr)
ecb4347a
DJ
19285 {
19286 segT saved_seg = now_seg;
19287 subsegT saved_subseg = now_subseg;
ecb4347a
DJ
19288 expressionS exp;
19289 char *fragp;
252b5132 19290
9c2799c2 19291 gas_assert (pdr_seg);
ecb4347a 19292 subseg_set (pdr_seg, 0);
252b5132 19293
ecb4347a
DJ
19294 /* Write the symbol. */
19295 exp.X_op = O_symbol;
19296 exp.X_add_symbol = p;
19297 exp.X_add_number = 0;
19298 emit_expr (&exp, 4);
252b5132 19299
ecb4347a 19300 fragp = frag_more (7 * 4);
252b5132 19301
17a2f251
TS
19302 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19303 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19304 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19305 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19306 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19307 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19308 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
252b5132 19309
ecb4347a
DJ
19310 subseg_set (saved_seg, saved_subseg);
19311 }
252b5132
RH
19312
19313 cur_proc_ptr = NULL;
19314}
19315
19316/* The .aent and .ent directives. */
19317
19318static void
17a2f251 19319s_mips_ent (int aent)
252b5132 19320{
252b5132 19321 symbolS *symbolP;
252b5132
RH
19322
19323 symbolP = get_symbol ();
19324 if (*input_line_pointer == ',')
f9419b05 19325 ++input_line_pointer;
252b5132 19326 SKIP_WHITESPACE ();
3882b010 19327 if (ISDIGIT (*input_line_pointer)
d9a62219 19328 || *input_line_pointer == '-')
874e8986 19329 get_number ();
252b5132 19330
14949570 19331 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
1661c76c 19332 as_warn (_(".ent or .aent not in text section"));
252b5132
RH
19333
19334 if (!aent && cur_proc_ptr)
9a41af64 19335 as_warn (_("missing .end"));
252b5132
RH
19336
19337 if (!aent)
19338 {
7a621144
DJ
19339 /* This function needs its own .frame and .cprestore directives. */
19340 mips_frame_reg_valid = 0;
19341 mips_cprestore_valid = 0;
19342
252b5132
RH
19343 cur_proc_ptr = &cur_proc;
19344 memset (cur_proc_ptr, '\0', sizeof (procS));
19345
9b2f1d35 19346 cur_proc_ptr->func_sym = symbolP;
252b5132 19347
f9419b05 19348 ++numprocs;
ecb4347a
DJ
19349
19350 if (debug_type == DEBUG_STABS)
19351 stabs_generate_asm_func (S_GET_NAME (symbolP),
19352 S_GET_NAME (symbolP));
252b5132
RH
19353 }
19354
7c0fc524
MR
19355 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19356
252b5132
RH
19357 demand_empty_rest_of_line ();
19358}
19359
19360/* The .frame directive. If the mdebug section is present (IRIX 5 native)
bdaaa2e1 19361 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
252b5132 19362 s_mips_frame is used so that we can set the PDR information correctly.
bdaaa2e1 19363 We can't use the ecoff routines because they make reference to the ecoff
252b5132
RH
19364 symbol table (in the mdebug section). */
19365
19366static void
17a2f251 19367s_mips_frame (int ignore ATTRIBUTE_UNUSED)
252b5132 19368{
f3ded42a
RS
19369 if (ECOFF_DEBUGGING)
19370 s_ignore (ignore);
19371 else
ecb4347a
DJ
19372 {
19373 long val;
252b5132 19374
ecb4347a
DJ
19375 if (cur_proc_ptr == (procS *) NULL)
19376 {
19377 as_warn (_(".frame outside of .ent"));
19378 demand_empty_rest_of_line ();
19379 return;
19380 }
252b5132 19381
ecb4347a
DJ
19382 cur_proc_ptr->frame_reg = tc_get_register (1);
19383
19384 SKIP_WHITESPACE ();
19385 if (*input_line_pointer++ != ','
19386 || get_absolute_expression_and_terminator (&val) != ',')
19387 {
1661c76c 19388 as_warn (_("bad .frame directive"));
ecb4347a
DJ
19389 --input_line_pointer;
19390 demand_empty_rest_of_line ();
19391 return;
19392 }
252b5132 19393
ecb4347a
DJ
19394 cur_proc_ptr->frame_offset = val;
19395 cur_proc_ptr->pc_reg = tc_get_register (0);
252b5132 19396
252b5132 19397 demand_empty_rest_of_line ();
252b5132 19398 }
252b5132
RH
19399}
19400
bdaaa2e1
KH
19401/* The .fmask and .mask directives. If the mdebug section is present
19402 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
252b5132 19403 embedded targets, s_mips_mask is used so that we can set the PDR
bdaaa2e1 19404 information correctly. We can't use the ecoff routines because they
252b5132
RH
19405 make reference to the ecoff symbol table (in the mdebug section). */
19406
19407static void
17a2f251 19408s_mips_mask (int reg_type)
252b5132 19409{
f3ded42a
RS
19410 if (ECOFF_DEBUGGING)
19411 s_ignore (reg_type);
19412 else
252b5132 19413 {
ecb4347a 19414 long mask, off;
252b5132 19415
ecb4347a
DJ
19416 if (cur_proc_ptr == (procS *) NULL)
19417 {
19418 as_warn (_(".mask/.fmask outside of .ent"));
19419 demand_empty_rest_of_line ();
19420 return;
19421 }
252b5132 19422
ecb4347a
DJ
19423 if (get_absolute_expression_and_terminator (&mask) != ',')
19424 {
1661c76c 19425 as_warn (_("bad .mask/.fmask directive"));
ecb4347a
DJ
19426 --input_line_pointer;
19427 demand_empty_rest_of_line ();
19428 return;
19429 }
252b5132 19430
ecb4347a
DJ
19431 off = get_absolute_expression ();
19432
19433 if (reg_type == 'F')
19434 {
19435 cur_proc_ptr->fpreg_mask = mask;
19436 cur_proc_ptr->fpreg_offset = off;
19437 }
19438 else
19439 {
19440 cur_proc_ptr->reg_mask = mask;
19441 cur_proc_ptr->reg_offset = off;
19442 }
19443
19444 demand_empty_rest_of_line ();
252b5132 19445 }
252b5132
RH
19446}
19447
316f5878
RS
19448/* A table describing all the processors gas knows about. Names are
19449 matched in the order listed.
e7af610e 19450
316f5878
RS
19451 To ease comparison, please keep this table in the same order as
19452 gcc's mips_cpu_info_table[]. */
e972090a
NC
19453static const struct mips_cpu_info mips_cpu_info_table[] =
19454{
316f5878 19455 /* Entries for generic ISAs */
d16afab6
RS
19456 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19457 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19458 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19459 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19460 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19461 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19462 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
ae52f483
AB
19463 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19464 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
7361da2c 19465 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
d16afab6
RS
19466 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19467 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
ae52f483
AB
19468 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19469 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
7361da2c 19470 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
316f5878
RS
19471
19472 /* MIPS I */
d16afab6
RS
19473 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19474 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19475 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
316f5878
RS
19476
19477 /* MIPS II */
d16afab6 19478 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
316f5878
RS
19479
19480 /* MIPS III */
d16afab6
RS
19481 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19482 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19483 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19484 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19485 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19486 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19487 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19488 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19489 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19490 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19491 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19492 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19493 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
b15591bb 19494 /* ST Microelectronics Loongson 2E and 2F cores */
d16afab6
RS
19495 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19496 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
316f5878
RS
19497
19498 /* MIPS IV */
d16afab6
RS
19499 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19500 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19501 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19502 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19503 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19504 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19505 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19506 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19507 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19508 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19509 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19510 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19511 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19512 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19513 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
316f5878
RS
19514
19515 /* MIPS 32 */
d16afab6
RS
19516 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19517 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19518 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19519 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
ad3fea08
TS
19520
19521 /* MIPS 32 Release 2 */
d16afab6
RS
19522 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19523 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19524 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19525 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19526 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19527 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19528 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19529 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19530 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19531 ISA_MIPS32R2, CPU_MIPS32R2 },
19532 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19533 ISA_MIPS32R2, CPU_MIPS32R2 },
19534 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19535 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19536 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19537 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19538 /* Deprecated forms of the above. */
d16afab6
RS
19539 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19540 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19541 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
d16afab6
RS
19542 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19543 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19544 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19545 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19546 /* Deprecated forms of the above. */
d16afab6
RS
19547 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19548 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19549 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
d16afab6
RS
19550 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19551 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19552 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19553 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19554 /* Deprecated forms of the above. */
d16afab6
RS
19555 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19556 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
711eefe4 19557 /* 34Kn is a 34kc without DSP. */
d16afab6 19558 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19559 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
d16afab6
RS
19560 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19561 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19562 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19563 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19564 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19565 /* Deprecated forms of the above. */
d16afab6
RS
19566 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19567 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
30f8113a 19568 /* 1004K cores are multiprocessor versions of the 34K. */
d16afab6
RS
19569 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19570 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19571 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19572 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
77403ce9
RS
19573 /* interaptiv is the new name for 1004kf */
19574 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
c6e5c03a
RS
19575 /* M5100 family */
19576 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19577 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
bbaa46c0 19578 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
134c0c8b 19579 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
32b26a03 19580
316f5878 19581 /* MIPS 64 */
d16afab6
RS
19582 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19583 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19584 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19585 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
ad3fea08 19586
c7a23324 19587 /* Broadcom SB-1 CPU core */
d16afab6 19588 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
1e85aad8 19589 /* Broadcom SB-1A CPU core */
d16afab6 19590 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
3739860c 19591
4ba154f5 19592 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
e7af610e 19593
ed163775
MR
19594 /* MIPS 64 Release 2 */
19595
967344c6 19596 /* Cavium Networks Octeon CPU core */
d16afab6
RS
19597 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19598 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19599 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
2c629856 19600 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
967344c6 19601
52b6b6b9 19602 /* RMI Xlr */
d16afab6 19603 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
52b6b6b9 19604
55a36193
MK
19605 /* Broadcom XLP.
19606 XLP is mostly like XLR, with the prominent exception that it is
19607 MIPS64R2 rather than MIPS64. */
d16afab6 19608 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
55a36193 19609
a4968f42 19610 /* MIPS 64 Release 6 */
7ef0d297 19611 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
a4968f42 19612 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
7ef0d297 19613
316f5878 19614 /* End marker */
d16afab6 19615 { NULL, 0, 0, 0, 0 }
316f5878 19616};
e7af610e 19617
84ea6cf2 19618
316f5878
RS
19619/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19620 with a final "000" replaced by "k". Ignore case.
e7af610e 19621
316f5878 19622 Note: this function is shared between GCC and GAS. */
c6c98b38 19623
b34976b6 19624static bfd_boolean
17a2f251 19625mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
19626{
19627 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19628 given++, canonical++;
19629
19630 return ((*given == 0 && *canonical == 0)
19631 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19632}
19633
19634
19635/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19636 CPU name. We've traditionally allowed a lot of variation here.
19637
19638 Note: this function is shared between GCC and GAS. */
19639
b34976b6 19640static bfd_boolean
17a2f251 19641mips_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
19642{
19643 /* First see if the name matches exactly, or with a final "000"
19644 turned into "k". */
19645 if (mips_strict_matching_cpu_name_p (canonical, given))
b34976b6 19646 return TRUE;
316f5878
RS
19647
19648 /* If not, try comparing based on numerical designation alone.
19649 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19650 if (TOLOWER (*given) == 'r')
19651 given++;
19652 if (!ISDIGIT (*given))
b34976b6 19653 return FALSE;
316f5878
RS
19654
19655 /* Skip over some well-known prefixes in the canonical name,
19656 hoping to find a number there too. */
19657 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19658 canonical += 2;
19659 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19660 canonical += 2;
19661 else if (TOLOWER (canonical[0]) == 'r')
19662 canonical += 1;
19663
19664 return mips_strict_matching_cpu_name_p (canonical, given);
19665}
19666
19667
19668/* Parse an option that takes the name of a processor as its argument.
19669 OPTION is the name of the option and CPU_STRING is the argument.
19670 Return the corresponding processor enumeration if the CPU_STRING is
19671 recognized, otherwise report an error and return null.
19672
19673 A similar function exists in GCC. */
e7af610e
NC
19674
19675static const struct mips_cpu_info *
17a2f251 19676mips_parse_cpu (const char *option, const char *cpu_string)
e7af610e 19677{
316f5878 19678 const struct mips_cpu_info *p;
e7af610e 19679
316f5878
RS
19680 /* 'from-abi' selects the most compatible architecture for the given
19681 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19682 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19683 version. Look first at the -mgp options, if given, otherwise base
19684 the choice on MIPS_DEFAULT_64BIT.
e7af610e 19685
316f5878
RS
19686 Treat NO_ABI like the EABIs. One reason to do this is that the
19687 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19688 architecture. This code picks MIPS I for 'mips' and MIPS III for
19689 'mips64', just as we did in the days before 'from-abi'. */
19690 if (strcasecmp (cpu_string, "from-abi") == 0)
19691 {
19692 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19693 return mips_cpu_info_from_isa (ISA_MIPS1);
19694
19695 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19696 return mips_cpu_info_from_isa (ISA_MIPS3);
19697
bad1aba3 19698 if (file_mips_opts.gp >= 0)
19699 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
0b35dfee 19700 ? ISA_MIPS1 : ISA_MIPS3);
316f5878
RS
19701
19702 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19703 ? ISA_MIPS3
19704 : ISA_MIPS1);
19705 }
19706
19707 /* 'default' has traditionally been a no-op. Probably not very useful. */
19708 if (strcasecmp (cpu_string, "default") == 0)
19709 return 0;
19710
19711 for (p = mips_cpu_info_table; p->name != 0; p++)
19712 if (mips_matching_cpu_name_p (p->name, cpu_string))
19713 return p;
19714
1661c76c 19715 as_bad (_("bad value (%s) for %s"), cpu_string, option);
316f5878 19716 return 0;
e7af610e
NC
19717}
19718
316f5878
RS
19719/* Return the canonical processor information for ISA (a member of the
19720 ISA_MIPS* enumeration). */
19721
e7af610e 19722static const struct mips_cpu_info *
17a2f251 19723mips_cpu_info_from_isa (int isa)
e7af610e
NC
19724{
19725 int i;
19726
19727 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
ad3fea08 19728 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
316f5878 19729 && isa == mips_cpu_info_table[i].isa)
e7af610e
NC
19730 return (&mips_cpu_info_table[i]);
19731
e972090a 19732 return NULL;
e7af610e 19733}
fef14a42
TS
19734
19735static const struct mips_cpu_info *
17a2f251 19736mips_cpu_info_from_arch (int arch)
fef14a42
TS
19737{
19738 int i;
19739
19740 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19741 if (arch == mips_cpu_info_table[i].cpu)
19742 return (&mips_cpu_info_table[i]);
19743
19744 return NULL;
19745}
316f5878
RS
19746\f
19747static void
17a2f251 19748show (FILE *stream, const char *string, int *col_p, int *first_p)
316f5878
RS
19749{
19750 if (*first_p)
19751 {
19752 fprintf (stream, "%24s", "");
19753 *col_p = 24;
19754 }
19755 else
19756 {
19757 fprintf (stream, ", ");
19758 *col_p += 2;
19759 }
e7af610e 19760
316f5878
RS
19761 if (*col_p + strlen (string) > 72)
19762 {
19763 fprintf (stream, "\n%24s", "");
19764 *col_p = 24;
19765 }
19766
19767 fprintf (stream, "%s", string);
19768 *col_p += strlen (string);
19769
19770 *first_p = 0;
19771}
19772
19773void
17a2f251 19774md_show_usage (FILE *stream)
e7af610e 19775{
316f5878
RS
19776 int column, first;
19777 size_t i;
19778
19779 fprintf (stream, _("\
19780MIPS options:\n\
316f5878
RS
19781-EB generate big endian output\n\
19782-EL generate little endian output\n\
19783-g, -g2 do not remove unneeded NOPs or swap branches\n\
19784-G NUM allow referencing objects up to NUM bytes\n\
19785 implicitly with the gp register [default 8]\n"));
19786 fprintf (stream, _("\
19787-mips1 generate MIPS ISA I instructions\n\
19788-mips2 generate MIPS ISA II instructions\n\
19789-mips3 generate MIPS ISA III instructions\n\
19790-mips4 generate MIPS ISA IV instructions\n\
19791-mips5 generate MIPS ISA V instructions\n\
19792-mips32 generate MIPS32 ISA instructions\n\
af7ee8bf 19793-mips32r2 generate MIPS32 release 2 ISA instructions\n\
ae52f483
AB
19794-mips32r3 generate MIPS32 release 3 ISA instructions\n\
19795-mips32r5 generate MIPS32 release 5 ISA instructions\n\
7361da2c 19796-mips32r6 generate MIPS32 release 6 ISA instructions\n\
316f5878 19797-mips64 generate MIPS64 ISA instructions\n\
5f74bc13 19798-mips64r2 generate MIPS64 release 2 ISA instructions\n\
ae52f483
AB
19799-mips64r3 generate MIPS64 release 3 ISA instructions\n\
19800-mips64r5 generate MIPS64 release 5 ISA instructions\n\
7361da2c 19801-mips64r6 generate MIPS64 release 6 ISA instructions\n\
316f5878
RS
19802-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19803
19804 first = 1;
e7af610e
NC
19805
19806 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
316f5878
RS
19807 show (stream, mips_cpu_info_table[i].name, &column, &first);
19808 show (stream, "from-abi", &column, &first);
19809 fputc ('\n', stream);
e7af610e 19810
316f5878
RS
19811 fprintf (stream, _("\
19812-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19813-no-mCPU don't generate code specific to CPU.\n\
19814 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19815
19816 first = 1;
19817
19818 show (stream, "3900", &column, &first);
19819 show (stream, "4010", &column, &first);
19820 show (stream, "4100", &column, &first);
19821 show (stream, "4650", &column, &first);
19822 fputc ('\n', stream);
19823
19824 fprintf (stream, _("\
19825-mips16 generate mips16 instructions\n\
19826-no-mips16 do not generate mips16 instructions\n"));
19827 fprintf (stream, _("\
df58fc94
RS
19828-mmicromips generate microMIPS instructions\n\
19829-mno-micromips do not generate microMIPS instructions\n"));
19830 fprintf (stream, _("\
e16bfa71 19831-msmartmips generate smartmips instructions\n\
3739860c 19832-mno-smartmips do not generate smartmips instructions\n"));
e16bfa71 19833 fprintf (stream, _("\
74cd071d
CF
19834-mdsp generate DSP instructions\n\
19835-mno-dsp do not generate DSP instructions\n"));
19836 fprintf (stream, _("\
8b082fb1
TS
19837-mdspr2 generate DSP R2 instructions\n\
19838-mno-dspr2 do not generate DSP R2 instructions\n"));
19839 fprintf (stream, _("\
8f4f9071
MF
19840-mdspr3 generate DSP R3 instructions\n\
19841-mno-dspr3 do not generate DSP R3 instructions\n"));
19842 fprintf (stream, _("\
ef2e4d86
CF
19843-mmt generate MT instructions\n\
19844-mno-mt do not generate MT instructions\n"));
19845 fprintf (stream, _("\
dec0624d
MR
19846-mmcu generate MCU instructions\n\
19847-mno-mcu do not generate MCU instructions\n"));
19848 fprintf (stream, _("\
56d438b1
CF
19849-mmsa generate MSA instructions\n\
19850-mno-msa do not generate MSA instructions\n"));
19851 fprintf (stream, _("\
7d64c587
AB
19852-mxpa generate eXtended Physical Address (XPA) instructions\n\
19853-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19854 fprintf (stream, _("\
b015e599
AP
19855-mvirt generate Virtualization instructions\n\
19856-mno-virt do not generate Virtualization instructions\n"));
19857 fprintf (stream, _("\
833794fc
MR
19858-minsn32 only generate 32-bit microMIPS instructions\n\
19859-mno-insn32 generate all microMIPS instructions\n"));
19860 fprintf (stream, _("\
c67a084a
NC
19861-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19862-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
d766e8ec 19863-mfix-vr4120 work around certain VR4120 errata\n\
7d8e00cf 19864-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
6a32d874 19865-mfix-24k insert a nop after ERET and DERET instructions\n\
d954098f 19866-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
316f5878
RS
19867-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19868-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
aed1a261 19869-msym32 assume all symbols have 32-bit values\n\
316f5878
RS
19870-O0 remove unneeded NOPs, do not swap branches\n\
19871-O remove unneeded NOPs and swap branches\n\
316f5878
RS
19872--trap, --no-break trap exception on div by 0 and mult overflow\n\
19873--break, --no-trap break exception on div by 0 and mult overflow\n"));
037b32b9
AN
19874 fprintf (stream, _("\
19875-mhard-float allow floating-point instructions\n\
19876-msoft-float do not allow floating-point instructions\n\
19877-msingle-float only allow 32-bit floating-point operations\n\
19878-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
3bf0dbfb 19879--[no-]construct-floats [dis]allow floating point values to be constructed\n\
ba92f887 19880--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
8b10b0b3
MR
19881-mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
19882-mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
ba92f887
MR
19883-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19884
19885 first = 1;
19886
19887 show (stream, "legacy", &column, &first);
19888 show (stream, "2008", &column, &first);
19889
19890 fputc ('\n', stream);
19891
316f5878
RS
19892 fprintf (stream, _("\
19893-KPIC, -call_shared generate SVR4 position independent code\n\
861fb55a 19894-call_nonpic generate non-PIC code that can operate with DSOs\n\
0c000745 19895-mvxworks-pic generate VxWorks position independent code\n\
861fb55a 19896-non_shared do not generate code that can operate with DSOs\n\
316f5878 19897-xgot assume a 32 bit GOT\n\
dcd410fe 19898-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
bbe506e8 19899-mshared, -mno-shared disable/enable .cpload optimization for\n\
d821e36b 19900 position dependent (non shared) code\n\
316f5878
RS
19901-mabi=ABI create ABI conformant object file for:\n"));
19902
19903 first = 1;
19904
19905 show (stream, "32", &column, &first);
19906 show (stream, "o64", &column, &first);
19907 show (stream, "n32", &column, &first);
19908 show (stream, "64", &column, &first);
19909 show (stream, "eabi", &column, &first);
19910
19911 fputc ('\n', stream);
19912
19913 fprintf (stream, _("\
19914-32 create o32 ABI object file (default)\n\
19915-n32 create n32 ABI object file\n\
19916-64 create 64 ABI object file\n"));
e7af610e 19917}
14e777e0 19918
1575952e 19919#ifdef TE_IRIX
14e777e0 19920enum dwarf2_format
413a266c 19921mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
14e777e0 19922{
369943fe 19923 if (HAVE_64BIT_SYMBOLS)
1575952e 19924 return dwarf2_format_64bit_irix;
14e777e0
KB
19925 else
19926 return dwarf2_format_32bit;
19927}
1575952e 19928#endif
73369e65
EC
19929
19930int
19931mips_dwarf2_addr_size (void)
19932{
6b6b3450 19933 if (HAVE_64BIT_OBJECTS)
73369e65 19934 return 8;
73369e65
EC
19935 else
19936 return 4;
19937}
5862107c
EC
19938
19939/* Standard calling conventions leave the CFA at SP on entry. */
19940void
19941mips_cfi_frame_initial_instructions (void)
19942{
19943 cfi_add_CFA_def_cfa_register (SP);
19944}
19945
707bfff6
TS
19946int
19947tc_mips_regname_to_dw2regnum (char *regname)
19948{
19949 unsigned int regnum = -1;
19950 unsigned int reg;
19951
19952 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19953 regnum = reg;
19954
19955 return regnum;
19956}
263b2574 19957
19958/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19959 Given a symbolic attribute NAME, return the proper integer value.
19960 Returns -1 if the attribute is not known. */
19961
19962int
19963mips_convert_symbolic_attribute (const char *name)
19964{
19965 static const struct
19966 {
19967 const char * name;
19968 const int tag;
19969 }
19970 attribute_table[] =
19971 {
19972#define T(tag) {#tag, tag}
19973 T (Tag_GNU_MIPS_ABI_FP),
19974 T (Tag_GNU_MIPS_ABI_MSA),
19975#undef T
19976 };
19977 unsigned int i;
19978
19979 if (name == NULL)
19980 return -1;
19981
19982 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19983 if (streq (name, attribute_table[i].name))
19984 return attribute_table[i].tag;
19985
19986 return -1;
19987}
fd5c94ab
RS
19988
19989void
19990md_mips_end (void)
19991{
351cdf24
MF
19992 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19993
fd5c94ab
RS
19994 mips_emit_delays ();
19995 if (cur_proc_ptr)
19996 as_warn (_("missing .end at end of assembly"));
919731af 19997
19998 /* Just in case no code was emitted, do the consistency check. */
19999 file_mips_check_options ();
351cdf24
MF
20000
20001 /* Set a floating-point ABI if the user did not. */
20002 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
20003 {
20004 /* Perform consistency checks on the floating-point ABI. */
20005 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20006 Tag_GNU_MIPS_ABI_FP);
20007 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
20008 check_fpabi (fpabi);
20009 }
20010 else
20011 {
20012 /* Soft-float gets precedence over single-float, the two options should
20013 not be used together so this should not matter. */
20014 if (file_mips_opts.soft_float == 1)
20015 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
20016 /* Single-float gets precedence over all double_float cases. */
20017 else if (file_mips_opts.single_float == 1)
20018 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
20019 else
20020 {
20021 switch (file_mips_opts.fp)
20022 {
20023 case 32:
20024 if (file_mips_opts.gp == 32)
20025 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20026 break;
20027 case 0:
20028 fpabi = Val_GNU_MIPS_ABI_FP_XX;
20029 break;
20030 case 64:
20031 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
20032 fpabi = Val_GNU_MIPS_ABI_FP_64A;
20033 else if (file_mips_opts.gp == 32)
20034 fpabi = Val_GNU_MIPS_ABI_FP_64;
20035 else
20036 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20037 break;
20038 }
20039 }
20040
20041 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20042 Tag_GNU_MIPS_ABI_FP, fpabi);
20043 }
fd5c94ab 20044}
2f0c68f2
CM
20045
20046/* Returns the relocation type required for a particular CFI encoding. */
20047
20048bfd_reloc_code_real_type
20049mips_cfi_reloc_for_encoding (int encoding)
20050{
20051 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
20052 return BFD_RELOC_32_PCREL;
20053 else return BFD_RELOC_NONE;
20054}
This page took 3.113731 seconds and 4 git commands to generate.