Automatic date update in version.in
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
CommitLineData
252b5132 1/* tc-mips.c -- assemble code for a MIPS chip.
6f2750fe 2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
ec2655a6 12 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
252b5132
RH
24
25#include "as.h"
26#include "config.h"
27#include "subsegs.h"
3882b010 28#include "safe-ctype.h"
252b5132 29
252b5132
RH
30#include "opcode/mips.h"
31#include "itbl-ops.h"
c5dd6aab 32#include "dwarf2dbg.h"
5862107c 33#include "dw2gencfi.h"
252b5132 34
42429eac
RS
35/* Check assumptions made in this file. */
36typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
252b5132
RH
39#ifdef DEBUG
40#define DBG(x) printf x
41#else
42#define DBG(x)
43#endif
44
263b2574 45#define streq(a, b) (strcmp (a, b) == 0)
46
9e12b7a2
RS
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
252b5132 50/* Clean up namespace so we can include obj-elf.h too. */
17a2f251
TS
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
252b5132
RH
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
252b5132
RH
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
252b5132 70
252b5132 71#include "elf/mips.h"
252b5132
RH
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
ecb4347a
DJ
78int mips_flag_mdebug = -1;
79
dcd410fe
RO
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
84int mips_flag_pdr = FALSE;
85#else
86int mips_flag_pdr = TRUE;
87#endif
88
252b5132
RH
89#include "ecoff.h"
90
252b5132 91static char *mips_regmask_frag;
351cdf24 92static char *mips_flags_frag;
252b5132 93
85b51719 94#define ZERO 0
741fe287 95#define ATREG 1
df58fc94
RS
96#define S0 16
97#define S7 23
252b5132
RH
98#define TREG 24
99#define PIC_CALL_REG 25
100#define KT0 26
101#define KT1 27
102#define GP 28
103#define SP 29
104#define FP 30
105#define RA 31
106
107#define ILLEGAL_REG (32)
108
741fe287
MR
109#define AT mips_opts.at
110
252b5132
RH
111extern int target_big_endian;
112
252b5132 113/* The name of the readonly data section. */
e8044f35 114#define RDATA_SECTION_NAME ".rodata"
252b5132 115
a4e06468
RS
116/* Ways in which an instruction can be "appended" to the output. */
117enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129};
130
47e39b9d
RS
131/* Information about an instruction, including its format, operands
132 and fixups. */
133struct mips_cl_insn
134{
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
47e39b9d 138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
5c04167a
RS
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
47e39b9d
RS
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
a38419a5
RS
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
47e39b9d 155
708587a4 156 /* True if this instruction occurred in a .set noreorder block. */
47e39b9d
RS
157 unsigned int noreorder_p : 1;
158
2fa15973
RS
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
15be625d
CM
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
e407c74b
NC
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
47e39b9d
RS
168};
169
a325df1d
TS
170/* The ABI to use. */
171enum mips_abi_level
172{
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179};
180
181/* MIPS ABI we are using for this output file. */
316f5878 182static enum mips_abi_level mips_abi = NO_ABI;
a325df1d 183
143d77c5
EC
184/* Whether or not we have code that can call pic code. */
185int mips_abicalls = FALSE;
186
aa6975fb
ILT
187/* Whether or not we have code which can be put into a shared
188 library. */
189static bfd_boolean mips_in_shared = TRUE;
190
252b5132
RH
191/* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
e972090a
NC
195struct mips_set_options
196{
252b5132
RH
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
846ef2d0
RS
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
252b5132
RH
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
df58fc94
RS
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
252b5132
RH
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
741fe287
MR
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
252b5132
RH
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
833794fc
MR
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
a325df1d
TS
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
bad1aba3 245 int gp;
0b35dfee 246 int fp;
fef14a42
TS
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
aed1a261
RS
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
037b32b9
AN
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
351cdf24
MF
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
252b5132
RH
265};
266
919731af 267/* Specifies whether module level options have been checked yet. */
268static bfd_boolean file_mips_opts_checked = FALSE;
269
7361da2c
AB
270/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274static int mips_nan2008 = -1;
a325df1d 275
0b35dfee 276/* This is the struct we use to hold the module level set of options.
bad1aba3 277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
0b35dfee 278 fp fields to -1 to indicate that they have not been initialized. */
037b32b9 279
0b35dfee 280static struct mips_set_options file_mips_opts =
281{
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
0b35dfee 287};
252b5132 288
0b35dfee 289/* This is similar to file_mips_opts, but for the current set of options. */
ba92f887 290
e972090a
NC
291static struct mips_set_options mips_opts =
292{
846ef2d0 293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
b015e599 294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
833794fc 295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
e7af610e 298};
252b5132 299
846ef2d0
RS
300/* Which bits of file_ase were explicitly set or cleared by ASE options. */
301static unsigned int file_ase_explicit;
302
252b5132
RH
303/* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306unsigned long mips_gprmask;
307unsigned long mips_cprmask[4];
308
738f4d98 309/* True if any MIPS16 code was produced. */
a4672219
TS
310static int file_ase_mips16;
311
3994f87e
TS
312#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
3994f87e 316 || mips_opts.isa == ISA_MIPS64 \
ae52f483
AB
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
3994f87e 320
df58fc94
RS
321/* True if any microMIPS code was produced. */
322static int file_ase_micromips;
323
b12dd2e4
CF
324/* True if we want to create R_MIPS_JALR for jalr $25. */
325#ifdef TE_IRIX
1180b5a4 326#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
b12dd2e4 327#else
1180b5a4
RS
328/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331#define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
b12dd2e4
CF
334#endif
335
ec68c924 336/* The argument of the -march= flag. The architecture we are assembling. */
316f5878 337static const char *mips_arch_string;
ec68c924
EC
338
339/* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341static int mips_tune = CPU_UNKNOWN;
316f5878 342static const char *mips_tune_string;
ec68c924 343
316f5878 344/* True when generating 32-bit code for a 64-bit processor. */
252b5132
RH
345static int mips_32bitmode = 0;
346
316f5878
RS
347/* True if the given ABI requires 32-bit registers. */
348#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350/* Likewise 64-bit registers. */
707bfff6
TS
351#define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
316f5878
RS
354 || (ABI) == O64_ABI)
355
7361da2c
AB
356#define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
ad3fea08 360/* Return true if ISA supports 64 bit wide gp registers. */
707bfff6
TS
361#define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
ae52f483
AB
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
9ce8a5dd 370
ad3fea08
TS
371/* Return true if ISA supports 64 bit wide float registers. */
372#define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
ae52f483
AB
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
7361da2c 379 || (ISA) == ISA_MIPS32R6 \
ad3fea08 380 || (ISA) == ISA_MIPS64 \
ae52f483
AB
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
ad3fea08 385
af7ee8bf
CD
386/* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
707bfff6 388#define ISA_HAS_DROR(ISA) \
df58fc94 389 ((ISA) == ISA_MIPS64R2 \
ae52f483
AB
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
7361da2c 392 || (ISA) == ISA_MIPS64R6 \
df58fc94
RS
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
af7ee8bf
CD
396
397/* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
707bfff6
TS
399#define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
7361da2c 403 || (ISA) == ISA_MIPS32R6 \
707bfff6 404 || (ISA) == ISA_MIPS64R2 \
ae52f483
AB
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
7361da2c 407 || (ISA) == ISA_MIPS64R6 \
846ef2d0 408 || (mips_opts.ase & ASE_SMARTMIPS) \
df58fc94
RS
409 || mips_opts.micromips \
410 )
707bfff6 411
7455baf8 412/* Return true if ISA supports single-precision floats in odd registers. */
351cdf24
MF
413#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
7361da2c 418 || (ISA) == ISA_MIPS32R6 \
351cdf24
MF
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
7361da2c 423 || (ISA) == ISA_MIPS64R6 \
351cdf24
MF
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
af7ee8bf 426
ad3fea08
TS
427/* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429#define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
7361da2c
AB
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439/* Return true if ISA supports legacy NAN. */
440#define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
ae52f483
AB
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
ad3fea08 454
bad1aba3 455#define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
ca4e0257 459
bad1aba3 460#define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
ca4e0257 464
316f5878 465#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
e013f690 466
316f5878 467#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
e013f690 468
3b91255e
RS
469/* True if relocations are stored in-place. */
470#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
aed1a261
RS
472/* The ABI-derived address size. */
473#define HAVE_64BIT_ADDRESSES \
bad1aba3 474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
aed1a261 475#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
e013f690 476
aed1a261
RS
477/* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479#define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
ca4e0257 482
b7c7d6c1
TS
483/* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
f899b4b8 486#define ADDRESS_ADD_INSN \
b7c7d6c1 487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
f899b4b8
TS
488
489#define ADDRESS_ADDI_INSN \
b7c7d6c1 490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
f899b4b8
TS
491
492#define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495#define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
a4672219 498/* Return true if the given CPU supports the MIPS16 ASE. */
3396de36
TS
499#define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
a4672219 502
2309ddf2 503/* Return true if the given CPU supports the microMIPS ASE. */
df58fc94
RS
504#define CPU_HAS_MICROMIPS(cpu) 0
505
60b63b72
RS
506/* True if CPU has a dror instruction. */
507#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509/* True if CPU has a ror instruction. */
510#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
dd6a37e7 512/* True if CPU is in the Octeon family */
2c629856
N
513#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
dd6a37e7 515
dd3cbb7e 516/* True if CPU has seq/sne and seqi/snei instructions. */
dd6a37e7 517#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
dd3cbb7e 518
0aa27725
RS
519/* True, if CPU has support for ldc1 and sdc1. */
520#define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
c8978940
CD
523/* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535#define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
7361da2c 540 || mips_opts.isa == ISA_MIPS32R6 \
c8978940
CD
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
ae52f483
AB
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
7361da2c 545 || mips_opts.isa == ISA_MIPS64R6 \
c8978940 546 || mips_opts.arch == CPU_R4010 \
e407c74b 547 || mips_opts.arch == CPU_R5900 \
c8978940
CD
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
3aa3176b
TS
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
c8978940 552 || mips_opts.arch == CPU_RM7000 \
c8978940 553 || mips_opts.arch == CPU_VR5500 \
df58fc94 554 || mips_opts.micromips \
c8978940 555 )
252b5132
RH
556
557/* Whether the processor uses hardware interlocks to protect reads
81912461
ILT
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
67dc82bc 560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
df58fc94
RS
561 level I and microMIPS mode instructions are always interlocked. */
562#define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
e407c74b 565 || mips_opts.arch == CPU_R5900 \
df58fc94
RS
566 || mips_opts.micromips \
567 )
252b5132 568
81912461
ILT
569/* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
43885403
MF
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
81912461 574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
df58fc94
RS
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
bdaaa2e1 577/* Itbl support may require additional care here. */
81912461
ILT
578#define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
df58fc94 583 || mips_opts.micromips \
81912461
ILT
584 )
585
586/* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
df58fc94
RS
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592#define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
252b5132 596
6b76fefe
CM
597/* Is this a mfhi or mflo instruction? */
598#define MF_HILO_INSN(PINFO) \
b19e8a9b
AN
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
df58fc94
RS
601/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604#define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
42429eac 607/* The minimum and maximum signed values that can be stored in a GPR. */
bad1aba3 608#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
42429eac
RS
609#define GPR_SMIN (-GPR_SMAX - 1)
610
252b5132
RH
611/* MIPS PIC level. */
612
a161fe53 613enum mips_pic_level mips_pic;
252b5132 614
c9914766 615/* 1 if we should generate 32 bit offsets from the $gp register in
252b5132 616 SVR4_PIC mode. Currently has no meaning in other modes. */
c9914766 617static int mips_big_got = 0;
252b5132
RH
618
619/* 1 if trap instructions should used for overflow rather than break
620 instructions. */
c9914766 621static int mips_trap = 0;
252b5132 622
119d663a 623/* 1 if double width floating point constants should not be constructed
b6ff326e 624 by assembling two single width halves into two single width floating
119d663a
NC
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
d547a75e 627 in the status register, and the setting of this bit cannot be determined
119d663a
NC
628 automatically at assemble time. */
629static int mips_disable_float_construction;
630
252b5132
RH
631/* Non-zero if any .set noreorder directives were used. */
632
633static int mips_any_noreorder;
634
6b76fefe
CM
635/* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637static int mips_7000_hilo_fix;
638
02ffd3e4 639/* The size of objects in the small data section. */
156c2f8b 640static unsigned int g_switch_value = 8;
252b5132
RH
641/* Whether the -G option was used. */
642static int g_switch_seen = 0;
643
644#define N_RMASK 0xc4
645#define N_VFP 0xd4
646
647/* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
fba2b7f9
GK
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
252b5132
RH
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
17a2f251 659static int nopic_need_relax (symbolS *, int);
252b5132
RH
660
661/* handle of the OPCODE hash table */
662static struct hash_control *op_hash = NULL;
663
664/* The opcode hash table we use for the mips16. */
665static struct hash_control *mips16_op_hash = NULL;
666
df58fc94
RS
667/* The opcode hash table we use for the microMIPS ASE. */
668static struct hash_control *micromips_op_hash = NULL;
669
252b5132
RH
670/* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672const char comment_chars[] = "#";
673
674/* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677/* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
bdaaa2e1 679 #NO_APP at the beginning of its output. */
252b5132
RH
680/* Also note that C style comments are always supported. */
681const char line_comment_chars[] = "#";
682
bdaaa2e1 683/* This array holds machine specific line separator characters. */
63a0b638 684const char line_separator_chars[] = ";";
252b5132
RH
685
686/* Chars that can be used to separate mant from exp in floating point nums */
687const char EXP_CHARS[] = "eE";
688
689/* Chars that mean this number is a floating point constant */
690/* As in 0f12.456 */
691/* or 0d1.2345e12 */
692const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
e3de51ce
RS
699/* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705};
706
707/* Information about an error that was found while assembling the current
708 instruction. */
709struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732};
733
734/* The error that should be reported for the current instruction. */
735static struct mips_insn_error insn_error;
252b5132
RH
736
737static int auto_align = 1;
738
739/* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743static offsetT mips_cprestore_offset = -1;
744
67c1ffbe 745/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
6478892d 746 more optimizations, it can use a register value instead of a memory-saved
956cd1d6 747 offset and even an other register than $gp as global pointer. */
6478892d
TS
748static offsetT mips_cpreturn_offset = -1;
749static int mips_cpreturn_register = -1;
750static int mips_gp_register = GP;
def2e0dd 751static int mips_gprel_offset = 0;
6478892d 752
7a621144
DJ
753/* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755static int mips_cprestore_valid = 0;
756
252b5132
RH
757/* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759static int mips_frame_reg = SP;
760
7a621144
DJ
761/* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763static int mips_frame_reg_valid = 0;
764
252b5132
RH
765/* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768/* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772static int mips_optimize = 2;
773
774/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776static int mips_debug = 0;
777
7d8e00cf
RS
778/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779#define MAX_VR4130_NOPS 4
780
781/* The maximum number of NOPs needed to fill delay slots. */
782#define MAX_DELAY_NOPS 2
783
784/* The maximum number of NOPs needed for any purpose. */
785#define MAX_NOPS 4
71400594
RS
786
787/* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792static struct mips_cl_insn history[1 + MAX_NOPS];
252b5132 793
fc76e730 794/* Arrays of operands for each instruction. */
14daeee3 795#define MAX_OPERANDS 6
fc76e730
RS
796struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798};
799static struct mips_operand_array *mips_operands;
800static struct mips_operand_array *mips16_operands;
801static struct mips_operand_array *micromips_operands;
802
1e915849 803/* Nop instructions used by emit_nop. */
df58fc94
RS
804static struct mips_cl_insn nop_insn;
805static struct mips_cl_insn mips16_nop_insn;
806static struct mips_cl_insn micromips_nop16_insn;
807static struct mips_cl_insn micromips_nop32_insn;
1e915849
RS
808
809/* The appropriate nop for the current mode. */
833794fc
MR
810#define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
df58fc94
RS
817
818/* The size of NOP_INSN in bytes. */
833794fc
MR
819#define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
252b5132 822
252b5132
RH
823/* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827static fragS *prev_nop_frag;
828
829/* The number of nop instructions we created in prev_nop_frag. */
830static int prev_nop_frag_holds;
831
832/* The number of nop instructions that we know we need in
bdaaa2e1 833 prev_nop_frag. */
252b5132
RH
834static int prev_nop_frag_required;
835
836/* The number of instructions we've seen since prev_nop_frag. */
837static int prev_nop_frag_since;
838
e8044f35
RS
839/* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
252b5132
RH
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
bdaaa2e1 848 corresponding LO relocation. */
252b5132 849
e972090a
NC
850struct mips_hi_fixup
851{
252b5132
RH
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858};
859
860/* The list of unmatched HI relocs. */
861
862static struct mips_hi_fixup *mips_hi_fixup_list;
863
64bdfcaf
RS
864/* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867static fragS *prev_reloc_op_frag;
868
252b5132
RH
869/* Map mips16 register numbers to normal MIPS register numbers. */
870
e972090a
NC
871static const unsigned int mips16_to_32_reg_map[] =
872{
252b5132
RH
873 16, 17, 2, 3, 4, 5, 6, 7
874};
60b63b72 875
df58fc94
RS
876/* Map microMIPS register numbers to normal MIPS register numbers. */
877
df58fc94 878#define micromips_to_32_reg_d_map mips16_to_32_reg_map
df58fc94
RS
879
880/* The microMIPS registers with type h. */
e76ff5ab 881static const unsigned int micromips_to_32_reg_h_map1[] =
df58fc94
RS
882{
883 5, 5, 6, 4, 4, 4, 4, 4
884};
e76ff5ab 885static const unsigned int micromips_to_32_reg_h_map2[] =
df58fc94
RS
886{
887 6, 7, 7, 21, 22, 5, 6, 7
888};
889
df58fc94
RS
890/* The microMIPS registers with type m. */
891static const unsigned int micromips_to_32_reg_m_map[] =
892{
893 0, 17, 2, 3, 16, 18, 19, 20
894};
895
896#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
71400594
RS
898/* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
c67a084a
NC
900enum fix_vr4120_class
901{
71400594
RS
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909};
910
c67a084a
NC
911/* ...likewise -mfix-loongson2f-jump. */
912static bfd_boolean mips_fix_loongson2f_jump;
913
914/* ...likewise -mfix-loongson2f-nop. */
915static bfd_boolean mips_fix_loongson2f_nop;
916
917/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918static bfd_boolean mips_fix_loongson2f;
919
71400594
RS
920/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925/* True if -mfix-vr4120 is in force. */
d766e8ec 926static int mips_fix_vr4120;
4a6a3df4 927
7d8e00cf
RS
928/* ...likewise -mfix-vr4130. */
929static int mips_fix_vr4130;
930
6a32d874
CM
931/* ...likewise -mfix-24k. */
932static int mips_fix_24k;
933
a8d14a88
CM
934/* ...likewise -mfix-rm7000 */
935static int mips_fix_rm7000;
936
d954098f
DD
937/* ...likewise -mfix-cn63xxp1 */
938static bfd_boolean mips_fix_cn63xxp1;
939
4a6a3df4
AO
940/* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945static int mips_relax_branch;
252b5132 946\f
4d7206a2
RS
947/* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
584892a6
RS
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
4d7206a2 964
584892a6
RS
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
4d7206a2 981
df58fc94
RS
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
4d7206a2
RS
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
584892a6 1006#define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
4d7206a2 1007
584892a6
RS
1008#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009#define RELAX_SECOND(X) ((X) & 0xff)
1010#define RELAX_USE_SECOND 0x10000
1011#define RELAX_SECOND_LONGER 0x20000
1012#define RELAX_NOMACRO 0x40000
1013#define RELAX_DELAY_SLOT 0x80000
df58fc94
RS
1014#define RELAX_DELAY_SLOT_16BIT 0x100000
1015#define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016#define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
252b5132 1017
4a6a3df4
AO
1018/* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
b34976b6 1064
4a6a3df4
AO
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
66b3e8da
MR
1085#define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
4a6a3df4 1093#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
66b3e8da
MR
1094#define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095#define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096#define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
4a6a3df4 1099
252b5132
RH
1100/* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120#define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
4a6a3df4 1127#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
252b5132
RH
1128#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131#define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136#define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137#define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138#define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
885add95 1139
df58fc94
RS
1140/* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
40209cad
MR
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160#define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
df58fc94
RS
1171#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
40209cad
MR
1174#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176#define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
df58fc94 1185
43c0598f
RS
1186/* Sign-extend 16-bit value X. */
1187#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
885add95
CD
1189/* Is the given value a sign-extended 32-bit value? */
1190#define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194/* Is the given value a sign-extended 16-bit value? */
1195#define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
df58fc94
RS
1199/* Is the given value a sign-extended 12-bit value? */
1200#define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
7f3c4072
CM
1203/* Is the given value a sign-extended 9-bit value? */
1204#define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
2051e8c4
MR
1207/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208#define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
bf12938e
RS
1212/* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
bf12938e 1217/* Extract the operand given by FIELD from mips_cl_insn INSN. */
df58fc94
RS
1218#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
bf12938e
RS
1223#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
5c04167a
RS
1227
1228/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229#define MIPS16_EXTEND (0xf000U << 16)
4d7206a2 1230\f
df58fc94
RS
1231/* Whether or not we are emitting a branch-likely macro. */
1232static bfd_boolean emit_branch_likely_macro = FALSE;
1233
4d7206a2
RS
1234/* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253} mips_relax;
252b5132 1254\f
584892a6
RS
1255/* Global variables used to decide whether a macro needs a warning. */
1256static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
df58fc94
RS
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
584892a6
RS
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
df58fc94
RS
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
584892a6
RS
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289} mips_macro_warning;
1290\f
252b5132
RH
1291/* Prototypes for static functions. */
1292
252b5132
RH
1293enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
b34976b6 1295static void append_insn
df58fc94
RS
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
7d10b47d 1298static void mips_no_prev_insn (void);
c67a084a 1299static void macro_build (expressionS *, const char *, const char *, ...);
b34976b6 1300static void mips16_macro_build
03ea81db 1301 (expressionS *, const char *, const char *, va_list *);
67c0d1eb 1302static void load_register (int, expressionS *, int);
584892a6
RS
1303static void macro_start (void);
1304static void macro_end (void);
833794fc 1305static void macro (struct mips_cl_insn *ip, char *str);
17a2f251 1306static void mips16_macro (struct mips_cl_insn * ip);
17a2f251
TS
1307static void mips_ip (char *str, struct mips_cl_insn * ip);
1308static void mips16_ip (char *str, struct mips_cl_insn * ip);
b34976b6 1309static void mips16_immed
3b4dbbbf 1310 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
43c0598f 1311 unsigned int, unsigned long *);
5e0116d5 1312static size_t my_getSmallExpression
17a2f251
TS
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314static void my_getExpression (expressionS *, char *);
1315static void s_align (int);
1316static void s_change_sec (int);
1317static void s_change_section (int);
1318static void s_cons (int);
1319static void s_float_cons (int);
1320static void s_mips_globl (int);
1321static void s_option (int);
1322static void s_mipsset (int);
1323static void s_abicalls (int);
1324static void s_cpload (int);
1325static void s_cpsetup (int);
1326static void s_cplocal (int);
1327static void s_cprestore (int);
1328static void s_cpreturn (int);
741d6ea8
JM
1329static void s_dtprelword (int);
1330static void s_dtpreldword (int);
d0f13682
CLT
1331static void s_tprelword (int);
1332static void s_tpreldword (int);
17a2f251
TS
1333static void s_gpvalue (int);
1334static void s_gpword (int);
1335static void s_gpdword (int);
a3f278e2 1336static void s_ehword (int);
17a2f251
TS
1337static void s_cpadd (int);
1338static void s_insn (int);
ba92f887 1339static void s_nan (int);
919731af 1340static void s_module (int);
17a2f251
TS
1341static void s_mips_ent (int);
1342static void s_mips_end (int);
1343static void s_mips_frame (int);
1344static void s_mips_mask (int reg_type);
1345static void s_mips_stab (int);
1346static void s_mips_weakext (int);
1347static void s_mips_file (int);
1348static void s_mips_loc (int);
1349static bfd_boolean pic_need_relax (symbolS *, asection *);
4a6a3df4 1350static int relaxed_branch_length (fragS *, asection *, int);
df58fc94
RS
1351static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
919731af 1353static void file_mips_check_options (void);
e7af610e
NC
1354
1355/* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
e972090a
NC
1358struct mips_cpu_info
1359{
e7af610e 1360 const char *name; /* CPU or ISA name. */
d16afab6
RS
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
e7af610e
NC
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365};
1366
ad3fea08 1367#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
ad3fea08 1368
17a2f251
TS
1369static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
252b5132 1372\f
c31f3936
RS
1373/* Command-line options. */
1374const char *md_shortopts = "O::g::G:";
1375
1376enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
ae52f483
AB
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
7361da2c 1390 OPTION_MIPS32R6,
c31f3936 1391 OPTION_MIPS64R2,
ae52f483
AB
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
7361da2c 1394 OPTION_MIPS64R6,
c31f3936
RS
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
56d438b1
CF
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
c31f3936
RS
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
8f4f9071
MF
1413 OPTION_DSPR3,
1414 OPTION_NO_DSPR3,
c31f3936
RS
1415 OPTION_EVA,
1416 OPTION_NO_EVA,
7d64c587
AB
1417 OPTION_XPA,
1418 OPTION_NO_XPA,
c31f3936
RS
1419 OPTION_MICROMIPS,
1420 OPTION_NO_MICROMIPS,
1421 OPTION_MCU,
1422 OPTION_NO_MCU,
1423 OPTION_COMPAT_ARCH_BASE,
1424 OPTION_M4650,
1425 OPTION_NO_M4650,
1426 OPTION_M4010,
1427 OPTION_NO_M4010,
1428 OPTION_M4100,
1429 OPTION_NO_M4100,
1430 OPTION_M3900,
1431 OPTION_NO_M3900,
1432 OPTION_M7000_HILO_FIX,
1433 OPTION_MNO_7000_HILO_FIX,
1434 OPTION_FIX_24K,
1435 OPTION_NO_FIX_24K,
a8d14a88
CM
1436 OPTION_FIX_RM7000,
1437 OPTION_NO_FIX_RM7000,
c31f3936
RS
1438 OPTION_FIX_LOONGSON2F_JUMP,
1439 OPTION_NO_FIX_LOONGSON2F_JUMP,
1440 OPTION_FIX_LOONGSON2F_NOP,
1441 OPTION_NO_FIX_LOONGSON2F_NOP,
1442 OPTION_FIX_VR4120,
1443 OPTION_NO_FIX_VR4120,
1444 OPTION_FIX_VR4130,
1445 OPTION_NO_FIX_VR4130,
1446 OPTION_FIX_CN63XXP1,
1447 OPTION_NO_FIX_CN63XXP1,
1448 OPTION_TRAP,
1449 OPTION_BREAK,
1450 OPTION_EB,
1451 OPTION_EL,
1452 OPTION_FP32,
1453 OPTION_GP32,
1454 OPTION_CONSTRUCT_FLOATS,
1455 OPTION_NO_CONSTRUCT_FLOATS,
1456 OPTION_FP64,
351cdf24 1457 OPTION_FPXX,
c31f3936
RS
1458 OPTION_GP64,
1459 OPTION_RELAX_BRANCH,
1460 OPTION_NO_RELAX_BRANCH,
833794fc
MR
1461 OPTION_INSN32,
1462 OPTION_NO_INSN32,
c31f3936
RS
1463 OPTION_MSHARED,
1464 OPTION_MNO_SHARED,
1465 OPTION_MSYM32,
1466 OPTION_MNO_SYM32,
1467 OPTION_SOFT_FLOAT,
1468 OPTION_HARD_FLOAT,
1469 OPTION_SINGLE_FLOAT,
1470 OPTION_DOUBLE_FLOAT,
1471 OPTION_32,
c31f3936
RS
1472 OPTION_CALL_SHARED,
1473 OPTION_CALL_NONPIC,
1474 OPTION_NON_SHARED,
1475 OPTION_XGOT,
1476 OPTION_MABI,
1477 OPTION_N32,
1478 OPTION_64,
1479 OPTION_MDEBUG,
1480 OPTION_NO_MDEBUG,
1481 OPTION_PDR,
1482 OPTION_NO_PDR,
1483 OPTION_MVXWORKS_PIC,
ba92f887 1484 OPTION_NAN,
351cdf24
MF
1485 OPTION_ODD_SPREG,
1486 OPTION_NO_ODD_SPREG,
c31f3936
RS
1487 OPTION_END_OF_ENUM
1488 };
1489
1490struct option md_longopts[] =
1491{
1492 /* Options which specify architecture. */
1493 {"march", required_argument, NULL, OPTION_MARCH},
1494 {"mtune", required_argument, NULL, OPTION_MTUNE},
1495 {"mips0", no_argument, NULL, OPTION_MIPS1},
1496 {"mips1", no_argument, NULL, OPTION_MIPS1},
1497 {"mips2", no_argument, NULL, OPTION_MIPS2},
1498 {"mips3", no_argument, NULL, OPTION_MIPS3},
1499 {"mips4", no_argument, NULL, OPTION_MIPS4},
1500 {"mips5", no_argument, NULL, OPTION_MIPS5},
1501 {"mips32", no_argument, NULL, OPTION_MIPS32},
1502 {"mips64", no_argument, NULL, OPTION_MIPS64},
1503 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
ae52f483
AB
1504 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1505 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
7361da2c 1506 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
c31f3936 1507 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
ae52f483
AB
1508 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1509 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
7361da2c 1510 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
c31f3936
RS
1511
1512 /* Options which specify Application Specific Extensions (ASEs). */
1513 {"mips16", no_argument, NULL, OPTION_MIPS16},
1514 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1515 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1516 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1517 {"mdmx", no_argument, NULL, OPTION_MDMX},
1518 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1519 {"mdsp", no_argument, NULL, OPTION_DSP},
1520 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1521 {"mmt", no_argument, NULL, OPTION_MT},
1522 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1523 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1524 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1525 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1526 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
8f4f9071
MF
1527 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1528 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
c31f3936
RS
1529 {"meva", no_argument, NULL, OPTION_EVA},
1530 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1531 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1532 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1533 {"mmcu", no_argument, NULL, OPTION_MCU},
1534 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1535 {"mvirt", no_argument, NULL, OPTION_VIRT},
1536 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
56d438b1
CF
1537 {"mmsa", no_argument, NULL, OPTION_MSA},
1538 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
7d64c587
AB
1539 {"mxpa", no_argument, NULL, OPTION_XPA},
1540 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
c31f3936
RS
1541
1542 /* Old-style architecture options. Don't add more of these. */
1543 {"m4650", no_argument, NULL, OPTION_M4650},
1544 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1545 {"m4010", no_argument, NULL, OPTION_M4010},
1546 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1547 {"m4100", no_argument, NULL, OPTION_M4100},
1548 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1549 {"m3900", no_argument, NULL, OPTION_M3900},
1550 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1551
1552 /* Options which enable bug fixes. */
1553 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1554 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1555 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1556 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1557 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1558 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1559 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1560 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1561 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1562 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1563 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1564 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1565 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
a8d14a88
CM
1566 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1567 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
c31f3936
RS
1568 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1569 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1570
1571 /* Miscellaneous options. */
1572 {"trap", no_argument, NULL, OPTION_TRAP},
1573 {"no-break", no_argument, NULL, OPTION_TRAP},
1574 {"break", no_argument, NULL, OPTION_BREAK},
1575 {"no-trap", no_argument, NULL, OPTION_BREAK},
1576 {"EB", no_argument, NULL, OPTION_EB},
1577 {"EL", no_argument, NULL, OPTION_EL},
1578 {"mfp32", no_argument, NULL, OPTION_FP32},
1579 {"mgp32", no_argument, NULL, OPTION_GP32},
1580 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1581 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1582 {"mfp64", no_argument, NULL, OPTION_FP64},
351cdf24 1583 {"mfpxx", no_argument, NULL, OPTION_FPXX},
c31f3936
RS
1584 {"mgp64", no_argument, NULL, OPTION_GP64},
1585 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1586 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
833794fc
MR
1587 {"minsn32", no_argument, NULL, OPTION_INSN32},
1588 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
c31f3936
RS
1589 {"mshared", no_argument, NULL, OPTION_MSHARED},
1590 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1591 {"msym32", no_argument, NULL, OPTION_MSYM32},
1592 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1593 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1594 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1595 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1596 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
351cdf24
MF
1597 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1598 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
c31f3936
RS
1599
1600 /* Strictly speaking this next option is ELF specific,
1601 but we allow it for other ports as well in order to
1602 make testing easier. */
1603 {"32", no_argument, NULL, OPTION_32},
1604
1605 /* ELF-specific options. */
c31f3936
RS
1606 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1607 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1608 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1609 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1610 {"xgot", no_argument, NULL, OPTION_XGOT},
1611 {"mabi", required_argument, NULL, OPTION_MABI},
1612 {"n32", no_argument, NULL, OPTION_N32},
1613 {"64", no_argument, NULL, OPTION_64},
1614 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1615 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1616 {"mpdr", no_argument, NULL, OPTION_PDR},
1617 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1618 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
ba92f887 1619 {"mnan", required_argument, NULL, OPTION_NAN},
c31f3936
RS
1620
1621 {NULL, no_argument, NULL, 0}
1622};
1623size_t md_longopts_size = sizeof (md_longopts);
1624\f
c6278170
RS
1625/* Information about either an Application Specific Extension or an
1626 optional architecture feature that, for simplicity, we treat in the
1627 same way as an ASE. */
1628struct mips_ase
1629{
1630 /* The name of the ASE, used in both the command-line and .set options. */
1631 const char *name;
1632
1633 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1634 and 64-bit architectures, the flags here refer to the subset that
1635 is available on both. */
1636 unsigned int flags;
1637
1638 /* The ASE_* flag used for instructions that are available on 64-bit
1639 architectures but that are not included in FLAGS. */
1640 unsigned int flags64;
1641
1642 /* The command-line options that turn the ASE on and off. */
1643 int option_on;
1644 int option_off;
1645
1646 /* The minimum required architecture revisions for MIPS32, MIPS64,
1647 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1648 int mips32_rev;
1649 int mips64_rev;
1650 int micromips32_rev;
1651 int micromips64_rev;
7361da2c
AB
1652
1653 /* The architecture where the ASE was removed or -1 if the extension has not
1654 been removed. */
1655 int rem_rev;
c6278170
RS
1656};
1657
1658/* A table of all supported ASEs. */
1659static const struct mips_ase mips_ases[] = {
1660 { "dsp", ASE_DSP, ASE_DSP64,
1661 OPTION_DSP, OPTION_NO_DSP,
7361da2c
AB
1662 2, 2, 2, 2,
1663 -1 },
c6278170
RS
1664
1665 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1666 OPTION_DSPR2, OPTION_NO_DSPR2,
7361da2c
AB
1667 2, 2, 2, 2,
1668 -1 },
c6278170 1669
8f4f9071
MF
1670 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1671 OPTION_DSPR3, OPTION_NO_DSPR3,
1672 6, 6, -1, -1,
1673 -1 },
1674
c6278170
RS
1675 { "eva", ASE_EVA, 0,
1676 OPTION_EVA, OPTION_NO_EVA,
7361da2c
AB
1677 2, 2, 2, 2,
1678 -1 },
c6278170
RS
1679
1680 { "mcu", ASE_MCU, 0,
1681 OPTION_MCU, OPTION_NO_MCU,
7361da2c
AB
1682 2, 2, 2, 2,
1683 -1 },
c6278170
RS
1684
1685 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1686 { "mdmx", ASE_MDMX, 0,
1687 OPTION_MDMX, OPTION_NO_MDMX,
7361da2c
AB
1688 -1, 1, -1, -1,
1689 6 },
c6278170
RS
1690
1691 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1692 { "mips3d", ASE_MIPS3D, 0,
1693 OPTION_MIPS3D, OPTION_NO_MIPS3D,
7361da2c
AB
1694 2, 1, -1, -1,
1695 6 },
c6278170
RS
1696
1697 { "mt", ASE_MT, 0,
1698 OPTION_MT, OPTION_NO_MT,
7361da2c
AB
1699 2, 2, -1, -1,
1700 -1 },
c6278170
RS
1701
1702 { "smartmips", ASE_SMARTMIPS, 0,
1703 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
7361da2c
AB
1704 1, -1, -1, -1,
1705 6 },
c6278170
RS
1706
1707 { "virt", ASE_VIRT, ASE_VIRT64,
1708 OPTION_VIRT, OPTION_NO_VIRT,
7361da2c
AB
1709 2, 2, 2, 2,
1710 -1 },
56d438b1
CF
1711
1712 { "msa", ASE_MSA, ASE_MSA64,
1713 OPTION_MSA, OPTION_NO_MSA,
7361da2c
AB
1714 2, 2, 2, 2,
1715 -1 },
7d64c587
AB
1716
1717 { "xpa", ASE_XPA, 0,
1718 OPTION_XPA, OPTION_NO_XPA,
7361da2c
AB
1719 2, 2, -1, -1,
1720 -1 },
c6278170
RS
1721};
1722
1723/* The set of ASEs that require -mfp64. */
82bda27b 1724#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
c6278170
RS
1725
1726/* Groups of ASE_* flags that represent different revisions of an ASE. */
1727static const unsigned int mips_ase_groups[] = {
8f4f9071 1728 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
c6278170
RS
1729};
1730\f
252b5132
RH
1731/* Pseudo-op table.
1732
1733 The following pseudo-ops from the Kane and Heinrich MIPS book
1734 should be defined here, but are currently unsupported: .alias,
1735 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1736
1737 The following pseudo-ops from the Kane and Heinrich MIPS book are
1738 specific to the type of debugging information being generated, and
1739 should be defined by the object format: .aent, .begin, .bend,
1740 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1741 .vreg.
1742
1743 The following pseudo-ops from the Kane and Heinrich MIPS book are
1744 not MIPS CPU specific, but are also not specific to the object file
1745 format. This file is probably the best place to define them, but
d84bcf09 1746 they are not currently supported: .asm0, .endr, .lab, .struct. */
252b5132 1747
e972090a
NC
1748static const pseudo_typeS mips_pseudo_table[] =
1749{
beae10d5 1750 /* MIPS specific pseudo-ops. */
252b5132
RH
1751 {"option", s_option, 0},
1752 {"set", s_mipsset, 0},
1753 {"rdata", s_change_sec, 'r'},
1754 {"sdata", s_change_sec, 's'},
1755 {"livereg", s_ignore, 0},
1756 {"abicalls", s_abicalls, 0},
1757 {"cpload", s_cpload, 0},
6478892d
TS
1758 {"cpsetup", s_cpsetup, 0},
1759 {"cplocal", s_cplocal, 0},
252b5132 1760 {"cprestore", s_cprestore, 0},
6478892d 1761 {"cpreturn", s_cpreturn, 0},
741d6ea8
JM
1762 {"dtprelword", s_dtprelword, 0},
1763 {"dtpreldword", s_dtpreldword, 0},
d0f13682
CLT
1764 {"tprelword", s_tprelword, 0},
1765 {"tpreldword", s_tpreldword, 0},
6478892d 1766 {"gpvalue", s_gpvalue, 0},
252b5132 1767 {"gpword", s_gpword, 0},
10181a0d 1768 {"gpdword", s_gpdword, 0},
a3f278e2 1769 {"ehword", s_ehword, 0},
252b5132
RH
1770 {"cpadd", s_cpadd, 0},
1771 {"insn", s_insn, 0},
ba92f887 1772 {"nan", s_nan, 0},
919731af 1773 {"module", s_module, 0},
252b5132 1774
beae10d5 1775 /* Relatively generic pseudo-ops that happen to be used on MIPS
252b5132 1776 chips. */
38a57ae7 1777 {"asciiz", stringer, 8 + 1},
252b5132
RH
1778 {"bss", s_change_sec, 'b'},
1779 {"err", s_err, 0},
1780 {"half", s_cons, 1},
1781 {"dword", s_cons, 3},
1782 {"weakext", s_mips_weakext, 0},
7c752c2a
TS
1783 {"origin", s_org, 0},
1784 {"repeat", s_rept, 0},
252b5132 1785
998b3c36
MR
1786 /* For MIPS this is non-standard, but we define it for consistency. */
1787 {"sbss", s_change_sec, 'B'},
1788
beae10d5 1789 /* These pseudo-ops are defined in read.c, but must be overridden
252b5132
RH
1790 here for one reason or another. */
1791 {"align", s_align, 0},
1792 {"byte", s_cons, 0},
1793 {"data", s_change_sec, 'd'},
1794 {"double", s_float_cons, 'd'},
1795 {"float", s_float_cons, 'f'},
1796 {"globl", s_mips_globl, 0},
1797 {"global", s_mips_globl, 0},
1798 {"hword", s_cons, 1},
1799 {"int", s_cons, 2},
1800 {"long", s_cons, 2},
1801 {"octa", s_cons, 4},
1802 {"quad", s_cons, 3},
cca86cc8 1803 {"section", s_change_section, 0},
252b5132
RH
1804 {"short", s_cons, 1},
1805 {"single", s_float_cons, 'f'},
754e2bb9 1806 {"stabd", s_mips_stab, 'd'},
252b5132 1807 {"stabn", s_mips_stab, 'n'},
754e2bb9 1808 {"stabs", s_mips_stab, 's'},
252b5132
RH
1809 {"text", s_change_sec, 't'},
1810 {"word", s_cons, 2},
add56521 1811
add56521 1812 { "extern", ecoff_directive_extern, 0},
add56521 1813
43841e91 1814 { NULL, NULL, 0 },
252b5132
RH
1815};
1816
e972090a
NC
1817static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1818{
beae10d5
KH
1819 /* These pseudo-ops should be defined by the object file format.
1820 However, a.out doesn't support them, so we have versions here. */
252b5132
RH
1821 {"aent", s_mips_ent, 1},
1822 {"bgnb", s_ignore, 0},
1823 {"end", s_mips_end, 0},
1824 {"endb", s_ignore, 0},
1825 {"ent", s_mips_ent, 0},
c5dd6aab 1826 {"file", s_mips_file, 0},
252b5132
RH
1827 {"fmask", s_mips_mask, 'F'},
1828 {"frame", s_mips_frame, 0},
c5dd6aab 1829 {"loc", s_mips_loc, 0},
252b5132
RH
1830 {"mask", s_mips_mask, 'R'},
1831 {"verstamp", s_ignore, 0},
43841e91 1832 { NULL, NULL, 0 },
252b5132
RH
1833};
1834
3ae8dd8d
MR
1835/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1836 purpose of the `.dc.a' internal pseudo-op. */
1837
1838int
1839mips_address_bytes (void)
1840{
919731af 1841 file_mips_check_options ();
3ae8dd8d
MR
1842 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1843}
1844
17a2f251 1845extern void pop_insert (const pseudo_typeS *);
252b5132
RH
1846
1847void
17a2f251 1848mips_pop_insert (void)
252b5132
RH
1849{
1850 pop_insert (mips_pseudo_table);
1851 if (! ECOFF_DEBUGGING)
1852 pop_insert (mips_nonecoff_pseudo_table);
1853}
1854\f
1855/* Symbols labelling the current insn. */
1856
e972090a
NC
1857struct insn_label_list
1858{
252b5132
RH
1859 struct insn_label_list *next;
1860 symbolS *label;
1861};
1862
252b5132 1863static struct insn_label_list *free_insn_labels;
742a56fe 1864#define label_list tc_segment_info_data.labels
252b5132 1865
17a2f251 1866static void mips_clear_insn_labels (void);
df58fc94
RS
1867static void mips_mark_labels (void);
1868static void mips_compressed_mark_labels (void);
252b5132
RH
1869
1870static inline void
17a2f251 1871mips_clear_insn_labels (void)
252b5132 1872{
ed9e98c2 1873 struct insn_label_list **pl;
a8dbcb85 1874 segment_info_type *si;
252b5132 1875
a8dbcb85
TS
1876 if (now_seg)
1877 {
1878 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1879 ;
3739860c 1880
a8dbcb85
TS
1881 si = seg_info (now_seg);
1882 *pl = si->label_list;
1883 si->label_list = NULL;
1884 }
252b5132 1885}
a8dbcb85 1886
df58fc94
RS
1887/* Mark instruction labels in MIPS16/microMIPS mode. */
1888
1889static inline void
1890mips_mark_labels (void)
1891{
1892 if (HAVE_CODE_COMPRESSION)
1893 mips_compressed_mark_labels ();
1894}
252b5132
RH
1895\f
1896static char *expr_end;
1897
e423441d 1898/* An expression in a macro instruction. This is set by mips_ip and
b0e6f033 1899 mips16_ip and when populated is always an O_constant. */
252b5132
RH
1900
1901static expressionS imm_expr;
252b5132 1902
77bd4346
RS
1903/* The relocatable field in an instruction and the relocs associated
1904 with it. These variables are used for instructions like LUI and
1905 JAL as well as true offsets. They are also used for address
1906 operands in macros. */
252b5132 1907
77bd4346 1908static expressionS offset_expr;
f6688943
TS
1909static bfd_reloc_code_real_type offset_reloc[3]
1910 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 1911
df58fc94
RS
1912/* This is set to the resulting size of the instruction to be produced
1913 by mips16_ip if an explicit extension is used or by mips_ip if an
1914 explicit size is supplied. */
252b5132 1915
df58fc94 1916static unsigned int forced_insn_length;
252b5132 1917
e1b47bd5
RS
1918/* True if we are assembling an instruction. All dot symbols defined during
1919 this time should be treated as code labels. */
1920
1921static bfd_boolean mips_assembling_insn;
1922
ecb4347a
DJ
1923/* The pdr segment for per procedure frame/regmask info. Not used for
1924 ECOFF debugging. */
252b5132
RH
1925
1926static segT pdr_seg;
252b5132 1927
e013f690
TS
1928/* The default target format to use. */
1929
aeffff67
RS
1930#if defined (TE_FreeBSD)
1931#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1932#elif defined (TE_TMIPS)
1933#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1934#else
1935#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1936#endif
1937
e013f690 1938const char *
17a2f251 1939mips_target_format (void)
e013f690
TS
1940{
1941 switch (OUTPUT_FLAVOR)
1942 {
e013f690 1943 case bfd_target_elf_flavour:
0a44bf69
RS
1944#ifdef TE_VXWORKS
1945 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1946 return (target_big_endian
1947 ? "elf32-bigmips-vxworks"
1948 : "elf32-littlemips-vxworks");
1949#endif
e013f690 1950 return (target_big_endian
cfe86eaa 1951 ? (HAVE_64BIT_OBJECTS
aeffff67 1952 ? ELF_TARGET ("elf64-", "big")
cfe86eaa 1953 : (HAVE_NEWABI
aeffff67
RS
1954 ? ELF_TARGET ("elf32-n", "big")
1955 : ELF_TARGET ("elf32-", "big")))
cfe86eaa 1956 : (HAVE_64BIT_OBJECTS
aeffff67 1957 ? ELF_TARGET ("elf64-", "little")
cfe86eaa 1958 : (HAVE_NEWABI
aeffff67
RS
1959 ? ELF_TARGET ("elf32-n", "little")
1960 : ELF_TARGET ("elf32-", "little"))));
e013f690
TS
1961 default:
1962 abort ();
1963 return NULL;
1964 }
1965}
1966
c6278170
RS
1967/* Return the ISA revision that is currently in use, or 0 if we are
1968 generating code for MIPS V or below. */
1969
1970static int
1971mips_isa_rev (void)
1972{
1973 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1974 return 2;
1975
ae52f483
AB
1976 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1977 return 3;
1978
1979 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1980 return 5;
1981
7361da2c
AB
1982 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1983 return 6;
1984
c6278170
RS
1985 /* microMIPS implies revision 2 or above. */
1986 if (mips_opts.micromips)
1987 return 2;
1988
1989 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1990 return 1;
1991
1992 return 0;
1993}
1994
1995/* Return the mask of all ASEs that are revisions of those in FLAGS. */
1996
1997static unsigned int
1998mips_ase_mask (unsigned int flags)
1999{
2000 unsigned int i;
2001
2002 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2003 if (flags & mips_ase_groups[i])
2004 flags |= mips_ase_groups[i];
2005 return flags;
2006}
2007
2008/* Check whether the current ISA supports ASE. Issue a warning if
2009 appropriate. */
2010
2011static void
2012mips_check_isa_supports_ase (const struct mips_ase *ase)
2013{
2014 const char *base;
2015 int min_rev, size;
2016 static unsigned int warned_isa;
2017 static unsigned int warned_fp32;
2018
2019 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2020 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2021 else
2022 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2023 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2024 && (warned_isa & ase->flags) != ase->flags)
2025 {
2026 warned_isa |= ase->flags;
2027 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2028 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2029 if (min_rev < 0)
1661c76c 2030 as_warn (_("the %d-bit %s architecture does not support the"
c6278170
RS
2031 " `%s' extension"), size, base, ase->name);
2032 else
1661c76c 2033 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
c6278170
RS
2034 ase->name, base, size, min_rev);
2035 }
7361da2c
AB
2036 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2037 && (warned_isa & ase->flags) != ase->flags)
2038 {
2039 warned_isa |= ase->flags;
2040 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2041 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2042 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2043 ase->name, base, size, ase->rem_rev);
2044 }
2045
c6278170 2046 if ((ase->flags & FP64_ASES)
0b35dfee 2047 && mips_opts.fp != 64
c6278170
RS
2048 && (warned_fp32 & ase->flags) != ase->flags)
2049 {
2050 warned_fp32 |= ase->flags;
1661c76c 2051 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
c6278170
RS
2052 }
2053}
2054
2055/* Check all enabled ASEs to see whether they are supported by the
2056 chosen architecture. */
2057
2058static void
2059mips_check_isa_supports_ases (void)
2060{
2061 unsigned int i, mask;
2062
2063 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2064 {
2065 mask = mips_ase_mask (mips_ases[i].flags);
2066 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2067 mips_check_isa_supports_ase (&mips_ases[i]);
2068 }
2069}
2070
2071/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2072 that were affected. */
2073
2074static unsigned int
919731af 2075mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2076 bfd_boolean enabled_p)
c6278170
RS
2077{
2078 unsigned int mask;
2079
2080 mask = mips_ase_mask (ase->flags);
919731af 2081 opts->ase &= ~mask;
c6278170 2082 if (enabled_p)
919731af 2083 opts->ase |= ase->flags;
c6278170
RS
2084 return mask;
2085}
2086
2087/* Return the ASE called NAME, or null if none. */
2088
2089static const struct mips_ase *
2090mips_lookup_ase (const char *name)
2091{
2092 unsigned int i;
2093
2094 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2095 if (strcmp (name, mips_ases[i].name) == 0)
2096 return &mips_ases[i];
2097 return NULL;
2098}
2099
df58fc94 2100/* Return the length of a microMIPS instruction in bytes. If bits of
100b4f2e
MR
2101 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2102 otherwise it is a 32-bit instruction. */
df58fc94
RS
2103
2104static inline unsigned int
2105micromips_insn_length (const struct mips_opcode *mo)
2106{
2107 return (mo->mask >> 16) == 0 ? 2 : 4;
2108}
2109
5c04167a
RS
2110/* Return the length of MIPS16 instruction OPCODE. */
2111
2112static inline unsigned int
2113mips16_opcode_length (unsigned long opcode)
2114{
2115 return (opcode >> 16) == 0 ? 2 : 4;
2116}
2117
1e915849
RS
2118/* Return the length of instruction INSN. */
2119
2120static inline unsigned int
2121insn_length (const struct mips_cl_insn *insn)
2122{
df58fc94
RS
2123 if (mips_opts.micromips)
2124 return micromips_insn_length (insn->insn_mo);
2125 else if (mips_opts.mips16)
5c04167a 2126 return mips16_opcode_length (insn->insn_opcode);
df58fc94 2127 else
1e915849 2128 return 4;
1e915849
RS
2129}
2130
2131/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2132
2133static void
2134create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2135{
2136 size_t i;
2137
2138 insn->insn_mo = mo;
1e915849
RS
2139 insn->insn_opcode = mo->match;
2140 insn->frag = NULL;
2141 insn->where = 0;
2142 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2143 insn->fixp[i] = NULL;
2144 insn->fixed_p = (mips_opts.noreorder > 0);
2145 insn->noreorder_p = (mips_opts.noreorder > 0);
2146 insn->mips16_absolute_jump_p = 0;
15be625d 2147 insn->complete_p = 0;
e407c74b 2148 insn->cleared_p = 0;
1e915849
RS
2149}
2150
fc76e730
RS
2151/* Get a list of all the operands in INSN. */
2152
2153static const struct mips_operand_array *
2154insn_operands (const struct mips_cl_insn *insn)
2155{
2156 if (insn->insn_mo >= &mips_opcodes[0]
2157 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2158 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2159
2160 if (insn->insn_mo >= &mips16_opcodes[0]
2161 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2162 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2163
2164 if (insn->insn_mo >= &micromips_opcodes[0]
2165 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2166 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2167
2168 abort ();
2169}
2170
2171/* Get a description of operand OPNO of INSN. */
2172
2173static const struct mips_operand *
2174insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2175{
2176 const struct mips_operand_array *operands;
2177
2178 operands = insn_operands (insn);
2179 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2180 abort ();
2181 return operands->operand[opno];
2182}
2183
e077a1c8
RS
2184/* Install UVAL as the value of OPERAND in INSN. */
2185
2186static inline void
2187insn_insert_operand (struct mips_cl_insn *insn,
2188 const struct mips_operand *operand, unsigned int uval)
2189{
2190 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2191}
2192
fc76e730
RS
2193/* Extract the value of OPERAND from INSN. */
2194
2195static inline unsigned
2196insn_extract_operand (const struct mips_cl_insn *insn,
2197 const struct mips_operand *operand)
2198{
2199 return mips_extract_operand (operand, insn->insn_opcode);
2200}
2201
df58fc94 2202/* Record the current MIPS16/microMIPS mode in now_seg. */
742a56fe
RS
2203
2204static void
df58fc94 2205mips_record_compressed_mode (void)
742a56fe
RS
2206{
2207 segment_info_type *si;
2208
2209 si = seg_info (now_seg);
2210 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2211 si->tc_segment_info_data.mips16 = mips_opts.mips16;
df58fc94
RS
2212 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2213 si->tc_segment_info_data.micromips = mips_opts.micromips;
742a56fe
RS
2214}
2215
4d68580a
RS
2216/* Read a standard MIPS instruction from BUF. */
2217
2218static unsigned long
2219read_insn (char *buf)
2220{
2221 if (target_big_endian)
2222 return bfd_getb32 ((bfd_byte *) buf);
2223 else
2224 return bfd_getl32 ((bfd_byte *) buf);
2225}
2226
2227/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2228 the next byte. */
2229
2230static char *
2231write_insn (char *buf, unsigned int insn)
2232{
2233 md_number_to_chars (buf, insn, 4);
2234 return buf + 4;
2235}
2236
2237/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2238 has length LENGTH. */
2239
2240static unsigned long
2241read_compressed_insn (char *buf, unsigned int length)
2242{
2243 unsigned long insn;
2244 unsigned int i;
2245
2246 insn = 0;
2247 for (i = 0; i < length; i += 2)
2248 {
2249 insn <<= 16;
2250 if (target_big_endian)
2251 insn |= bfd_getb16 ((char *) buf);
2252 else
2253 insn |= bfd_getl16 ((char *) buf);
2254 buf += 2;
2255 }
2256 return insn;
2257}
2258
5c04167a
RS
2259/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2260 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2261
2262static char *
2263write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2264{
2265 unsigned int i;
2266
2267 for (i = 0; i < length; i += 2)
2268 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2269 return buf + length;
2270}
2271
1e915849
RS
2272/* Install INSN at the location specified by its "frag" and "where" fields. */
2273
2274static void
2275install_insn (const struct mips_cl_insn *insn)
2276{
2277 char *f = insn->frag->fr_literal + insn->where;
5c04167a
RS
2278 if (HAVE_CODE_COMPRESSION)
2279 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1e915849 2280 else
4d68580a 2281 write_insn (f, insn->insn_opcode);
df58fc94 2282 mips_record_compressed_mode ();
1e915849
RS
2283}
2284
2285/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2286 and install the opcode in the new location. */
2287
2288static void
2289move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2290{
2291 size_t i;
2292
2293 insn->frag = frag;
2294 insn->where = where;
2295 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2296 if (insn->fixp[i] != NULL)
2297 {
2298 insn->fixp[i]->fx_frag = frag;
2299 insn->fixp[i]->fx_where = where;
2300 }
2301 install_insn (insn);
2302}
2303
2304/* Add INSN to the end of the output. */
2305
2306static void
2307add_fixed_insn (struct mips_cl_insn *insn)
2308{
2309 char *f = frag_more (insn_length (insn));
2310 move_insn (insn, frag_now, f - frag_now->fr_literal);
2311}
2312
2313/* Start a variant frag and move INSN to the start of the variant part,
2314 marking it as fixed. The other arguments are as for frag_var. */
2315
2316static void
2317add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2318 relax_substateT subtype, symbolS *symbol, offsetT offset)
2319{
2320 frag_grow (max_chars);
2321 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2322 insn->fixed_p = 1;
2323 frag_var (rs_machine_dependent, max_chars, var,
2324 subtype, symbol, offset, NULL);
2325}
2326
2327/* Insert N copies of INSN into the history buffer, starting at
2328 position FIRST. Neither FIRST nor N need to be clipped. */
2329
2330static void
2331insert_into_history (unsigned int first, unsigned int n,
2332 const struct mips_cl_insn *insn)
2333{
2334 if (mips_relax.sequence != 2)
2335 {
2336 unsigned int i;
2337
2338 for (i = ARRAY_SIZE (history); i-- > first;)
2339 if (i >= first + n)
2340 history[i] = history[i - n];
2341 else
2342 history[i] = *insn;
2343 }
2344}
2345
e3de51ce
RS
2346/* Clear the error in insn_error. */
2347
2348static void
2349clear_insn_error (void)
2350{
2351 memset (&insn_error, 0, sizeof (insn_error));
2352}
2353
2354/* Possibly record error message MSG for the current instruction.
2355 If the error is about a particular argument, ARGNUM is the 1-based
2356 number of that argument, otherwise it is 0. FORMAT is the format
2357 of MSG. Return true if MSG was used, false if the current message
2358 was kept. */
2359
2360static bfd_boolean
2361set_insn_error_format (int argnum, enum mips_insn_error_format format,
2362 const char *msg)
2363{
2364 if (argnum == 0)
2365 {
2366 /* Give priority to errors against specific arguments, and to
2367 the first whole-instruction message. */
2368 if (insn_error.msg)
2369 return FALSE;
2370 }
2371 else
2372 {
2373 /* Keep insn_error if it is against a later argument. */
2374 if (argnum < insn_error.min_argnum)
2375 return FALSE;
2376
2377 /* If both errors are against the same argument but are different,
2378 give up on reporting a specific error for this argument.
2379 See the comment about mips_insn_error for details. */
2380 if (argnum == insn_error.min_argnum
2381 && insn_error.msg
2382 && strcmp (insn_error.msg, msg) != 0)
2383 {
2384 insn_error.msg = 0;
2385 insn_error.min_argnum += 1;
2386 return FALSE;
2387 }
2388 }
2389 insn_error.min_argnum = argnum;
2390 insn_error.format = format;
2391 insn_error.msg = msg;
2392 return TRUE;
2393}
2394
2395/* Record an instruction error with no % format fields. ARGNUM and MSG are
2396 as for set_insn_error_format. */
2397
2398static void
2399set_insn_error (int argnum, const char *msg)
2400{
2401 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2402}
2403
2404/* Record an instruction error with one %d field I. ARGNUM and MSG are
2405 as for set_insn_error_format. */
2406
2407static void
2408set_insn_error_i (int argnum, const char *msg, int i)
2409{
2410 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2411 insn_error.u.i = i;
2412}
2413
2414/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2415 are as for set_insn_error_format. */
2416
2417static void
2418set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2419{
2420 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2421 {
2422 insn_error.u.ss[0] = s1;
2423 insn_error.u.ss[1] = s2;
2424 }
2425}
2426
2427/* Report the error in insn_error, which is against assembly code STR. */
2428
2429static void
2430report_insn_error (const char *str)
2431{
e1fa0163 2432 const char *msg = concat (insn_error.msg, " `%s'", NULL);
e3de51ce 2433
e3de51ce
RS
2434 switch (insn_error.format)
2435 {
2436 case ERR_FMT_PLAIN:
2437 as_bad (msg, str);
2438 break;
2439
2440 case ERR_FMT_I:
2441 as_bad (msg, insn_error.u.i, str);
2442 break;
2443
2444 case ERR_FMT_SS:
2445 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2446 break;
2447 }
e1fa0163
NC
2448
2449 free ((char *) msg);
e3de51ce
RS
2450}
2451
71400594
RS
2452/* Initialize vr4120_conflicts. There is a bit of duplication here:
2453 the idea is to make it obvious at a glance that each errata is
2454 included. */
2455
2456static void
2457init_vr4120_conflicts (void)
2458{
2459#define CONFLICT(FIRST, SECOND) \
2460 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2461
2462 /* Errata 21 - [D]DIV[U] after [D]MACC */
2463 CONFLICT (MACC, DIV);
2464 CONFLICT (DMACC, DIV);
2465
2466 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2467 CONFLICT (DMULT, DMULT);
2468 CONFLICT (DMULT, DMACC);
2469 CONFLICT (DMACC, DMULT);
2470 CONFLICT (DMACC, DMACC);
2471
2472 /* Errata 24 - MT{LO,HI} after [D]MACC */
2473 CONFLICT (MACC, MTHILO);
2474 CONFLICT (DMACC, MTHILO);
2475
2476 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2477 instruction is executed immediately after a MACC or DMACC
2478 instruction, the result of [either instruction] is incorrect." */
2479 CONFLICT (MACC, MULT);
2480 CONFLICT (MACC, DMULT);
2481 CONFLICT (DMACC, MULT);
2482 CONFLICT (DMACC, DMULT);
2483
2484 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2485 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2486 DDIV or DDIVU instruction, the result of the MACC or
2487 DMACC instruction is incorrect.". */
2488 CONFLICT (DMULT, MACC);
2489 CONFLICT (DMULT, DMACC);
2490 CONFLICT (DIV, MACC);
2491 CONFLICT (DIV, DMACC);
2492
2493#undef CONFLICT
2494}
2495
707bfff6
TS
2496struct regname {
2497 const char *name;
2498 unsigned int num;
2499};
2500
14daeee3 2501#define RNUM_MASK 0x00000ff
56d438b1 2502#define RTYPE_MASK 0x0ffff00
14daeee3
RS
2503#define RTYPE_NUM 0x0000100
2504#define RTYPE_FPU 0x0000200
2505#define RTYPE_FCC 0x0000400
2506#define RTYPE_VEC 0x0000800
2507#define RTYPE_GP 0x0001000
2508#define RTYPE_CP0 0x0002000
2509#define RTYPE_PC 0x0004000
2510#define RTYPE_ACC 0x0008000
2511#define RTYPE_CCC 0x0010000
2512#define RTYPE_VI 0x0020000
2513#define RTYPE_VF 0x0040000
2514#define RTYPE_R5900_I 0x0080000
2515#define RTYPE_R5900_Q 0x0100000
2516#define RTYPE_R5900_R 0x0200000
2517#define RTYPE_R5900_ACC 0x0400000
56d438b1 2518#define RTYPE_MSA 0x0800000
14daeee3 2519#define RWARN 0x8000000
707bfff6
TS
2520
2521#define GENERIC_REGISTER_NUMBERS \
2522 {"$0", RTYPE_NUM | 0}, \
2523 {"$1", RTYPE_NUM | 1}, \
2524 {"$2", RTYPE_NUM | 2}, \
2525 {"$3", RTYPE_NUM | 3}, \
2526 {"$4", RTYPE_NUM | 4}, \
2527 {"$5", RTYPE_NUM | 5}, \
2528 {"$6", RTYPE_NUM | 6}, \
2529 {"$7", RTYPE_NUM | 7}, \
2530 {"$8", RTYPE_NUM | 8}, \
2531 {"$9", RTYPE_NUM | 9}, \
2532 {"$10", RTYPE_NUM | 10}, \
2533 {"$11", RTYPE_NUM | 11}, \
2534 {"$12", RTYPE_NUM | 12}, \
2535 {"$13", RTYPE_NUM | 13}, \
2536 {"$14", RTYPE_NUM | 14}, \
2537 {"$15", RTYPE_NUM | 15}, \
2538 {"$16", RTYPE_NUM | 16}, \
2539 {"$17", RTYPE_NUM | 17}, \
2540 {"$18", RTYPE_NUM | 18}, \
2541 {"$19", RTYPE_NUM | 19}, \
2542 {"$20", RTYPE_NUM | 20}, \
2543 {"$21", RTYPE_NUM | 21}, \
2544 {"$22", RTYPE_NUM | 22}, \
2545 {"$23", RTYPE_NUM | 23}, \
2546 {"$24", RTYPE_NUM | 24}, \
2547 {"$25", RTYPE_NUM | 25}, \
2548 {"$26", RTYPE_NUM | 26}, \
2549 {"$27", RTYPE_NUM | 27}, \
2550 {"$28", RTYPE_NUM | 28}, \
2551 {"$29", RTYPE_NUM | 29}, \
2552 {"$30", RTYPE_NUM | 30}, \
3739860c 2553 {"$31", RTYPE_NUM | 31}
707bfff6
TS
2554
2555#define FPU_REGISTER_NAMES \
2556 {"$f0", RTYPE_FPU | 0}, \
2557 {"$f1", RTYPE_FPU | 1}, \
2558 {"$f2", RTYPE_FPU | 2}, \
2559 {"$f3", RTYPE_FPU | 3}, \
2560 {"$f4", RTYPE_FPU | 4}, \
2561 {"$f5", RTYPE_FPU | 5}, \
2562 {"$f6", RTYPE_FPU | 6}, \
2563 {"$f7", RTYPE_FPU | 7}, \
2564 {"$f8", RTYPE_FPU | 8}, \
2565 {"$f9", RTYPE_FPU | 9}, \
2566 {"$f10", RTYPE_FPU | 10}, \
2567 {"$f11", RTYPE_FPU | 11}, \
2568 {"$f12", RTYPE_FPU | 12}, \
2569 {"$f13", RTYPE_FPU | 13}, \
2570 {"$f14", RTYPE_FPU | 14}, \
2571 {"$f15", RTYPE_FPU | 15}, \
2572 {"$f16", RTYPE_FPU | 16}, \
2573 {"$f17", RTYPE_FPU | 17}, \
2574 {"$f18", RTYPE_FPU | 18}, \
2575 {"$f19", RTYPE_FPU | 19}, \
2576 {"$f20", RTYPE_FPU | 20}, \
2577 {"$f21", RTYPE_FPU | 21}, \
2578 {"$f22", RTYPE_FPU | 22}, \
2579 {"$f23", RTYPE_FPU | 23}, \
2580 {"$f24", RTYPE_FPU | 24}, \
2581 {"$f25", RTYPE_FPU | 25}, \
2582 {"$f26", RTYPE_FPU | 26}, \
2583 {"$f27", RTYPE_FPU | 27}, \
2584 {"$f28", RTYPE_FPU | 28}, \
2585 {"$f29", RTYPE_FPU | 29}, \
2586 {"$f30", RTYPE_FPU | 30}, \
2587 {"$f31", RTYPE_FPU | 31}
2588
2589#define FPU_CONDITION_CODE_NAMES \
2590 {"$fcc0", RTYPE_FCC | 0}, \
2591 {"$fcc1", RTYPE_FCC | 1}, \
2592 {"$fcc2", RTYPE_FCC | 2}, \
2593 {"$fcc3", RTYPE_FCC | 3}, \
2594 {"$fcc4", RTYPE_FCC | 4}, \
2595 {"$fcc5", RTYPE_FCC | 5}, \
2596 {"$fcc6", RTYPE_FCC | 6}, \
2597 {"$fcc7", RTYPE_FCC | 7}
2598
2599#define COPROC_CONDITION_CODE_NAMES \
2600 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2601 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2602 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2603 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2604 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2605 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2606 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2607 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2608
2609#define N32N64_SYMBOLIC_REGISTER_NAMES \
2610 {"$a4", RTYPE_GP | 8}, \
2611 {"$a5", RTYPE_GP | 9}, \
2612 {"$a6", RTYPE_GP | 10}, \
2613 {"$a7", RTYPE_GP | 11}, \
2614 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2615 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2616 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2617 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2618 {"$t0", RTYPE_GP | 12}, \
2619 {"$t1", RTYPE_GP | 13}, \
2620 {"$t2", RTYPE_GP | 14}, \
2621 {"$t3", RTYPE_GP | 15}
2622
2623#define O32_SYMBOLIC_REGISTER_NAMES \
2624 {"$t0", RTYPE_GP | 8}, \
2625 {"$t1", RTYPE_GP | 9}, \
2626 {"$t2", RTYPE_GP | 10}, \
2627 {"$t3", RTYPE_GP | 11}, \
2628 {"$t4", RTYPE_GP | 12}, \
2629 {"$t5", RTYPE_GP | 13}, \
2630 {"$t6", RTYPE_GP | 14}, \
2631 {"$t7", RTYPE_GP | 15}, \
2632 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2633 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2634 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
3739860c 2635 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
707bfff6
TS
2636
2637/* Remaining symbolic register names */
2638#define SYMBOLIC_REGISTER_NAMES \
2639 {"$zero", RTYPE_GP | 0}, \
2640 {"$at", RTYPE_GP | 1}, \
2641 {"$AT", RTYPE_GP | 1}, \
2642 {"$v0", RTYPE_GP | 2}, \
2643 {"$v1", RTYPE_GP | 3}, \
2644 {"$a0", RTYPE_GP | 4}, \
2645 {"$a1", RTYPE_GP | 5}, \
2646 {"$a2", RTYPE_GP | 6}, \
2647 {"$a3", RTYPE_GP | 7}, \
2648 {"$s0", RTYPE_GP | 16}, \
2649 {"$s1", RTYPE_GP | 17}, \
2650 {"$s2", RTYPE_GP | 18}, \
2651 {"$s3", RTYPE_GP | 19}, \
2652 {"$s4", RTYPE_GP | 20}, \
2653 {"$s5", RTYPE_GP | 21}, \
2654 {"$s6", RTYPE_GP | 22}, \
2655 {"$s7", RTYPE_GP | 23}, \
2656 {"$t8", RTYPE_GP | 24}, \
2657 {"$t9", RTYPE_GP | 25}, \
2658 {"$k0", RTYPE_GP | 26}, \
2659 {"$kt0", RTYPE_GP | 26}, \
2660 {"$k1", RTYPE_GP | 27}, \
2661 {"$kt1", RTYPE_GP | 27}, \
2662 {"$gp", RTYPE_GP | 28}, \
2663 {"$sp", RTYPE_GP | 29}, \
2664 {"$s8", RTYPE_GP | 30}, \
2665 {"$fp", RTYPE_GP | 30}, \
2666 {"$ra", RTYPE_GP | 31}
2667
2668#define MIPS16_SPECIAL_REGISTER_NAMES \
2669 {"$pc", RTYPE_PC | 0}
2670
2671#define MDMX_VECTOR_REGISTER_NAMES \
2672 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2673 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2674 {"$v2", RTYPE_VEC | 2}, \
2675 {"$v3", RTYPE_VEC | 3}, \
2676 {"$v4", RTYPE_VEC | 4}, \
2677 {"$v5", RTYPE_VEC | 5}, \
2678 {"$v6", RTYPE_VEC | 6}, \
2679 {"$v7", RTYPE_VEC | 7}, \
2680 {"$v8", RTYPE_VEC | 8}, \
2681 {"$v9", RTYPE_VEC | 9}, \
2682 {"$v10", RTYPE_VEC | 10}, \
2683 {"$v11", RTYPE_VEC | 11}, \
2684 {"$v12", RTYPE_VEC | 12}, \
2685 {"$v13", RTYPE_VEC | 13}, \
2686 {"$v14", RTYPE_VEC | 14}, \
2687 {"$v15", RTYPE_VEC | 15}, \
2688 {"$v16", RTYPE_VEC | 16}, \
2689 {"$v17", RTYPE_VEC | 17}, \
2690 {"$v18", RTYPE_VEC | 18}, \
2691 {"$v19", RTYPE_VEC | 19}, \
2692 {"$v20", RTYPE_VEC | 20}, \
2693 {"$v21", RTYPE_VEC | 21}, \
2694 {"$v22", RTYPE_VEC | 22}, \
2695 {"$v23", RTYPE_VEC | 23}, \
2696 {"$v24", RTYPE_VEC | 24}, \
2697 {"$v25", RTYPE_VEC | 25}, \
2698 {"$v26", RTYPE_VEC | 26}, \
2699 {"$v27", RTYPE_VEC | 27}, \
2700 {"$v28", RTYPE_VEC | 28}, \
2701 {"$v29", RTYPE_VEC | 29}, \
2702 {"$v30", RTYPE_VEC | 30}, \
2703 {"$v31", RTYPE_VEC | 31}
2704
14daeee3
RS
2705#define R5900_I_NAMES \
2706 {"$I", RTYPE_R5900_I | 0}
2707
2708#define R5900_Q_NAMES \
2709 {"$Q", RTYPE_R5900_Q | 0}
2710
2711#define R5900_R_NAMES \
2712 {"$R", RTYPE_R5900_R | 0}
2713
2714#define R5900_ACC_NAMES \
2715 {"$ACC", RTYPE_R5900_ACC | 0 }
2716
707bfff6
TS
2717#define MIPS_DSP_ACCUMULATOR_NAMES \
2718 {"$ac0", RTYPE_ACC | 0}, \
2719 {"$ac1", RTYPE_ACC | 1}, \
2720 {"$ac2", RTYPE_ACC | 2}, \
2721 {"$ac3", RTYPE_ACC | 3}
2722
2723static const struct regname reg_names[] = {
2724 GENERIC_REGISTER_NUMBERS,
2725 FPU_REGISTER_NAMES,
2726 FPU_CONDITION_CODE_NAMES,
2727 COPROC_CONDITION_CODE_NAMES,
2728
2729 /* The $txx registers depends on the abi,
2730 these will be added later into the symbol table from
3739860c 2731 one of the tables below once mips_abi is set after
707bfff6
TS
2732 parsing of arguments from the command line. */
2733 SYMBOLIC_REGISTER_NAMES,
2734
2735 MIPS16_SPECIAL_REGISTER_NAMES,
2736 MDMX_VECTOR_REGISTER_NAMES,
14daeee3
RS
2737 R5900_I_NAMES,
2738 R5900_Q_NAMES,
2739 R5900_R_NAMES,
2740 R5900_ACC_NAMES,
707bfff6
TS
2741 MIPS_DSP_ACCUMULATOR_NAMES,
2742 {0, 0}
2743};
2744
2745static const struct regname reg_names_o32[] = {
2746 O32_SYMBOLIC_REGISTER_NAMES,
2747 {0, 0}
2748};
2749
2750static const struct regname reg_names_n32n64[] = {
2751 N32N64_SYMBOLIC_REGISTER_NAMES,
2752 {0, 0}
2753};
2754
a92713e6
RS
2755/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2756 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2757 of these register symbols, return the associated vector register,
2758 otherwise return SYMVAL itself. */
df58fc94 2759
a92713e6
RS
2760static unsigned int
2761mips_prefer_vec_regno (unsigned int symval)
707bfff6 2762{
a92713e6
RS
2763 if ((symval & -2) == (RTYPE_GP | 2))
2764 return RTYPE_VEC | (symval & 1);
2765 return symval;
2766}
2767
14daeee3
RS
2768/* Return true if string [S, E) is a valid register name, storing its
2769 symbol value in *SYMVAL_PTR if so. */
a92713e6
RS
2770
2771static bfd_boolean
14daeee3 2772mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
a92713e6 2773{
707bfff6 2774 char save_c;
14daeee3 2775 symbolS *symbol;
707bfff6
TS
2776
2777 /* Terminate name. */
2778 save_c = *e;
2779 *e = '\0';
2780
a92713e6
RS
2781 /* Look up the name. */
2782 symbol = symbol_find (s);
2783 *e = save_c;
2784
2785 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2786 return FALSE;
2787
14daeee3
RS
2788 *symval_ptr = S_GET_VALUE (symbol);
2789 return TRUE;
2790}
2791
2792/* Return true if the string at *SPTR is a valid register name. Allow it
2793 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2794 is nonnull.
2795
2796 When returning true, move *SPTR past the register, store the
2797 register's symbol value in *SYMVAL_PTR and the channel mask in
2798 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2799 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2800 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2801
2802static bfd_boolean
2803mips_parse_register (char **sptr, unsigned int *symval_ptr,
2804 unsigned int *channels_ptr)
2805{
2806 char *s, *e, *m;
2807 const char *q;
2808 unsigned int channels, symval, bit;
2809
2810 /* Find end of name. */
2811 s = e = *sptr;
2812 if (is_name_beginner (*e))
2813 ++e;
2814 while (is_part_of_name (*e))
2815 ++e;
2816
2817 channels = 0;
2818 if (!mips_parse_register_1 (s, e, &symval))
2819 {
2820 if (!channels_ptr)
2821 return FALSE;
2822
2823 /* Eat characters from the end of the string that are valid
2824 channel suffixes. The preceding register must be $ACC or
2825 end with a digit, so there is no ambiguity. */
2826 bit = 1;
2827 m = e;
2828 for (q = "wzyx"; *q; q++, bit <<= 1)
2829 if (m > s && m[-1] == *q)
2830 {
2831 --m;
2832 channels |= bit;
2833 }
2834
2835 if (channels == 0
2836 || !mips_parse_register_1 (s, m, &symval)
2837 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2838 return FALSE;
2839 }
2840
a92713e6 2841 *sptr = e;
14daeee3
RS
2842 *symval_ptr = symval;
2843 if (channels_ptr)
2844 *channels_ptr = channels;
a92713e6
RS
2845 return TRUE;
2846}
2847
2848/* Check if SPTR points at a valid register specifier according to TYPES.
2849 If so, then return 1, advance S to consume the specifier and store
2850 the register's number in REGNOP, otherwise return 0. */
2851
2852static int
2853reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2854{
2855 unsigned int regno;
2856
14daeee3 2857 if (mips_parse_register (s, &regno, NULL))
707bfff6 2858 {
a92713e6
RS
2859 if (types & RTYPE_VEC)
2860 regno = mips_prefer_vec_regno (regno);
2861 if (regno & types)
2862 regno &= RNUM_MASK;
2863 else
2864 regno = ~0;
707bfff6 2865 }
a92713e6 2866 else
707bfff6 2867 {
a92713e6 2868 if (types & RWARN)
1661c76c 2869 as_warn (_("unrecognized register name `%s'"), *s);
a92713e6 2870 regno = ~0;
707bfff6 2871 }
707bfff6 2872 if (regnop)
a92713e6
RS
2873 *regnop = regno;
2874 return regno <= RNUM_MASK;
707bfff6
TS
2875}
2876
14daeee3
RS
2877/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2878 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2879
2880static char *
2881mips_parse_vu0_channels (char *s, unsigned int *channels)
2882{
2883 unsigned int i;
2884
2885 *channels = 0;
2886 for (i = 0; i < 4; i++)
2887 if (*s == "xyzw"[i])
2888 {
2889 *channels |= 1 << (3 - i);
2890 ++s;
2891 }
2892 return s;
2893}
2894
a92713e6
RS
2895/* Token types for parsed operand lists. */
2896enum mips_operand_token_type {
2897 /* A plain register, e.g. $f2. */
2898 OT_REG,
df58fc94 2899
14daeee3
RS
2900 /* A 4-bit XYZW channel mask. */
2901 OT_CHANNELS,
2902
56d438b1
CF
2903 /* A constant vector index, e.g. [1]. */
2904 OT_INTEGER_INDEX,
2905
2906 /* A register vector index, e.g. [$2]. */
2907 OT_REG_INDEX,
df58fc94 2908
a92713e6
RS
2909 /* A continuous range of registers, e.g. $s0-$s4. */
2910 OT_REG_RANGE,
2911
2912 /* A (possibly relocated) expression. */
2913 OT_INTEGER,
2914
2915 /* A floating-point value. */
2916 OT_FLOAT,
2917
2918 /* A single character. This can be '(', ')' or ',', but '(' only appears
2919 before OT_REGs. */
2920 OT_CHAR,
2921
14daeee3
RS
2922 /* A doubled character, either "--" or "++". */
2923 OT_DOUBLE_CHAR,
2924
a92713e6
RS
2925 /* The end of the operand list. */
2926 OT_END
2927};
2928
2929/* A parsed operand token. */
2930struct mips_operand_token
2931{
2932 /* The type of token. */
2933 enum mips_operand_token_type type;
2934 union
2935 {
56d438b1 2936 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
a92713e6
RS
2937 unsigned int regno;
2938
14daeee3
RS
2939 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2940 unsigned int channels;
2941
56d438b1
CF
2942 /* The integer value of an OT_INTEGER_INDEX. */
2943 addressT index;
a92713e6
RS
2944
2945 /* The two register symbol values involved in an OT_REG_RANGE. */
2946 struct {
2947 unsigned int regno1;
2948 unsigned int regno2;
2949 } reg_range;
2950
2951 /* The value of an OT_INTEGER. The value is represented as an
2952 expression and the relocation operators that were applied to
2953 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2954 relocation operators were used. */
2955 struct {
2956 expressionS value;
2957 bfd_reloc_code_real_type relocs[3];
2958 } integer;
2959
2960 /* The binary data for an OT_FLOAT constant, and the number of bytes
2961 in the constant. */
2962 struct {
2963 unsigned char data[8];
2964 int length;
2965 } flt;
2966
14daeee3 2967 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
a92713e6
RS
2968 char ch;
2969 } u;
2970};
2971
2972/* An obstack used to construct lists of mips_operand_tokens. */
2973static struct obstack mips_operand_tokens;
2974
2975/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2976
2977static void
2978mips_add_token (struct mips_operand_token *token,
2979 enum mips_operand_token_type type)
2980{
2981 token->type = type;
2982 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2983}
2984
2985/* Check whether S is '(' followed by a register name. Add OT_CHAR
2986 and OT_REG tokens for them if so, and return a pointer to the first
2987 unconsumed character. Return null otherwise. */
2988
2989static char *
2990mips_parse_base_start (char *s)
2991{
2992 struct mips_operand_token token;
14daeee3
RS
2993 unsigned int regno, channels;
2994 bfd_boolean decrement_p;
df58fc94 2995
a92713e6
RS
2996 if (*s != '(')
2997 return 0;
2998
2999 ++s;
3000 SKIP_SPACE_TABS (s);
14daeee3
RS
3001
3002 /* Only match "--" as part of a base expression. In other contexts "--X"
3003 is a double negative. */
3004 decrement_p = (s[0] == '-' && s[1] == '-');
3005 if (decrement_p)
3006 {
3007 s += 2;
3008 SKIP_SPACE_TABS (s);
3009 }
3010
3011 /* Allow a channel specifier because that leads to better error messages
3012 than treating something like "$vf0x++" as an expression. */
3013 if (!mips_parse_register (&s, &regno, &channels))
a92713e6
RS
3014 return 0;
3015
3016 token.u.ch = '(';
3017 mips_add_token (&token, OT_CHAR);
3018
14daeee3
RS
3019 if (decrement_p)
3020 {
3021 token.u.ch = '-';
3022 mips_add_token (&token, OT_DOUBLE_CHAR);
3023 }
3024
a92713e6
RS
3025 token.u.regno = regno;
3026 mips_add_token (&token, OT_REG);
3027
14daeee3
RS
3028 if (channels)
3029 {
3030 token.u.channels = channels;
3031 mips_add_token (&token, OT_CHANNELS);
3032 }
3033
3034 /* For consistency, only match "++" as part of base expressions too. */
3035 SKIP_SPACE_TABS (s);
3036 if (s[0] == '+' && s[1] == '+')
3037 {
3038 s += 2;
3039 token.u.ch = '+';
3040 mips_add_token (&token, OT_DOUBLE_CHAR);
3041 }
3042
a92713e6
RS
3043 return s;
3044}
3045
3046/* Parse one or more tokens from S. Return a pointer to the first
3047 unconsumed character on success. Return null if an error was found
3048 and store the error text in insn_error. FLOAT_FORMAT is as for
3049 mips_parse_arguments. */
3050
3051static char *
3052mips_parse_argument_token (char *s, char float_format)
3053{
6d4af3c2
AM
3054 char *end, *save_in;
3055 const char *err;
14daeee3 3056 unsigned int regno1, regno2, channels;
a92713e6
RS
3057 struct mips_operand_token token;
3058
3059 /* First look for "($reg", since we want to treat that as an
3060 OT_CHAR and OT_REG rather than an expression. */
3061 end = mips_parse_base_start (s);
3062 if (end)
3063 return end;
3064
3065 /* Handle other characters that end up as OT_CHARs. */
3066 if (*s == ')' || *s == ',')
3067 {
3068 token.u.ch = *s;
3069 mips_add_token (&token, OT_CHAR);
3070 ++s;
3071 return s;
3072 }
3073
3074 /* Handle tokens that start with a register. */
14daeee3 3075 if (mips_parse_register (&s, &regno1, &channels))
df58fc94 3076 {
14daeee3
RS
3077 if (channels)
3078 {
3079 /* A register and a VU0 channel suffix. */
3080 token.u.regno = regno1;
3081 mips_add_token (&token, OT_REG);
3082
3083 token.u.channels = channels;
3084 mips_add_token (&token, OT_CHANNELS);
3085 return s;
3086 }
3087
a92713e6
RS
3088 SKIP_SPACE_TABS (s);
3089 if (*s == '-')
df58fc94 3090 {
a92713e6
RS
3091 /* A register range. */
3092 ++s;
3093 SKIP_SPACE_TABS (s);
14daeee3 3094 if (!mips_parse_register (&s, &regno2, NULL))
a92713e6 3095 {
1661c76c 3096 set_insn_error (0, _("invalid register range"));
a92713e6
RS
3097 return 0;
3098 }
df58fc94 3099
a92713e6
RS
3100 token.u.reg_range.regno1 = regno1;
3101 token.u.reg_range.regno2 = regno2;
3102 mips_add_token (&token, OT_REG_RANGE);
3103 return s;
3104 }
a92713e6 3105
56d438b1
CF
3106 /* Add the register itself. */
3107 token.u.regno = regno1;
3108 mips_add_token (&token, OT_REG);
3109
3110 /* Check for a vector index. */
3111 if (*s == '[')
3112 {
a92713e6
RS
3113 ++s;
3114 SKIP_SPACE_TABS (s);
56d438b1
CF
3115 if (mips_parse_register (&s, &token.u.regno, NULL))
3116 mips_add_token (&token, OT_REG_INDEX);
3117 else
a92713e6 3118 {
56d438b1
CF
3119 expressionS element;
3120
3121 my_getExpression (&element, s);
3122 if (element.X_op != O_constant)
3123 {
3124 set_insn_error (0, _("vector element must be constant"));
3125 return 0;
3126 }
3127 s = expr_end;
3128 token.u.index = element.X_add_number;
3129 mips_add_token (&token, OT_INTEGER_INDEX);
a92713e6 3130 }
a92713e6
RS
3131 SKIP_SPACE_TABS (s);
3132 if (*s != ']')
3133 {
1661c76c 3134 set_insn_error (0, _("missing `]'"));
a92713e6
RS
3135 return 0;
3136 }
3137 ++s;
df58fc94 3138 }
a92713e6 3139 return s;
df58fc94
RS
3140 }
3141
a92713e6
RS
3142 if (float_format)
3143 {
3144 /* First try to treat expressions as floats. */
3145 save_in = input_line_pointer;
3146 input_line_pointer = s;
3147 err = md_atof (float_format, (char *) token.u.flt.data,
3148 &token.u.flt.length);
3149 end = input_line_pointer;
3150 input_line_pointer = save_in;
3151 if (err && *err)
3152 {
e3de51ce 3153 set_insn_error (0, err);
a92713e6
RS
3154 return 0;
3155 }
3156 if (s != end)
3157 {
3158 mips_add_token (&token, OT_FLOAT);
3159 return end;
3160 }
3161 }
3162
3163 /* Treat everything else as an integer expression. */
3164 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3165 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3166 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3167 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3168 s = expr_end;
3169 mips_add_token (&token, OT_INTEGER);
3170 return s;
3171}
3172
3173/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3174 if expressions should be treated as 32-bit floating-point constants,
3175 'd' if they should be treated as 64-bit floating-point constants,
3176 or 0 if they should be treated as integer expressions (the usual case).
3177
3178 Return a list of tokens on success, otherwise return 0. The caller
3179 must obstack_free the list after use. */
3180
3181static struct mips_operand_token *
3182mips_parse_arguments (char *s, char float_format)
3183{
3184 struct mips_operand_token token;
3185
3186 SKIP_SPACE_TABS (s);
3187 while (*s)
3188 {
3189 s = mips_parse_argument_token (s, float_format);
3190 if (!s)
3191 {
3192 obstack_free (&mips_operand_tokens,
3193 obstack_finish (&mips_operand_tokens));
3194 return 0;
3195 }
3196 SKIP_SPACE_TABS (s);
3197 }
3198 mips_add_token (&token, OT_END);
3199 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
df58fc94
RS
3200}
3201
d301a56b
RS
3202/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3203 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
037b32b9
AN
3204
3205static bfd_boolean
f79e2745 3206is_opcode_valid (const struct mips_opcode *mo)
037b32b9
AN
3207{
3208 int isa = mips_opts.isa;
846ef2d0 3209 int ase = mips_opts.ase;
037b32b9 3210 int fp_s, fp_d;
c6278170 3211 unsigned int i;
037b32b9 3212
c6278170
RS
3213 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3214 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3215 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3216 ase |= mips_ases[i].flags64;
037b32b9 3217
d301a56b 3218 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
037b32b9
AN
3219 return FALSE;
3220
3221 /* Check whether the instruction or macro requires single-precision or
3222 double-precision floating-point support. Note that this information is
3223 stored differently in the opcode table for insns and macros. */
3224 if (mo->pinfo == INSN_MACRO)
3225 {
3226 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3227 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3228 }
3229 else
3230 {
3231 fp_s = mo->pinfo & FP_S;
3232 fp_d = mo->pinfo & FP_D;
3233 }
3234
3235 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3236 return FALSE;
3237
3238 if (fp_s && mips_opts.soft_float)
3239 return FALSE;
3240
3241 return TRUE;
3242}
3243
3244/* Return TRUE if the MIPS16 opcode MO is valid on the currently
3245 selected ISA and architecture. */
3246
3247static bfd_boolean
3248is_opcode_valid_16 (const struct mips_opcode *mo)
3249{
d301a56b 3250 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
037b32b9
AN
3251}
3252
df58fc94
RS
3253/* Return TRUE if the size of the microMIPS opcode MO matches one
3254 explicitly requested. Always TRUE in the standard MIPS mode. */
3255
3256static bfd_boolean
3257is_size_valid (const struct mips_opcode *mo)
3258{
3259 if (!mips_opts.micromips)
3260 return TRUE;
3261
833794fc
MR
3262 if (mips_opts.insn32)
3263 {
3264 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3265 return FALSE;
3266 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3267 return FALSE;
3268 }
df58fc94
RS
3269 if (!forced_insn_length)
3270 return TRUE;
3271 if (mo->pinfo == INSN_MACRO)
3272 return FALSE;
3273 return forced_insn_length == micromips_insn_length (mo);
3274}
3275
3276/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
e64af278
MR
3277 of the preceding instruction. Always TRUE in the standard MIPS mode.
3278
3279 We don't accept macros in 16-bit delay slots to avoid a case where
3280 a macro expansion fails because it relies on a preceding 32-bit real
3281 instruction to have matched and does not handle the operands correctly.
3282 The only macros that may expand to 16-bit instructions are JAL that
3283 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3284 and BGT (that likewise cannot be placed in a delay slot) that decay to
3285 a NOP. In all these cases the macros precede any corresponding real
3286 instruction definitions in the opcode table, so they will match in the
3287 second pass where the size of the delay slot is ignored and therefore
3288 produce correct code. */
df58fc94
RS
3289
3290static bfd_boolean
3291is_delay_slot_valid (const struct mips_opcode *mo)
3292{
3293 if (!mips_opts.micromips)
3294 return TRUE;
3295
3296 if (mo->pinfo == INSN_MACRO)
c06dec14 3297 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
df58fc94
RS
3298 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3299 && micromips_insn_length (mo) != 4)
3300 return FALSE;
3301 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3302 && micromips_insn_length (mo) != 2)
3303 return FALSE;
3304
3305 return TRUE;
3306}
3307
fc76e730
RS
3308/* For consistency checking, verify that all bits of OPCODE are specified
3309 either by the match/mask part of the instruction definition, or by the
3310 operand list. Also build up a list of operands in OPERANDS.
3311
3312 INSN_BITS says which bits of the instruction are significant.
3313 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3314 provides the mips_operand description of each operand. DECODE_OPERAND
3315 is null for MIPS16 instructions. */
ab902481
RS
3316
3317static int
3318validate_mips_insn (const struct mips_opcode *opcode,
3319 unsigned long insn_bits,
fc76e730
RS
3320 const struct mips_operand *(*decode_operand) (const char *),
3321 struct mips_operand_array *operands)
ab902481
RS
3322{
3323 const char *s;
fc76e730 3324 unsigned long used_bits, doubled, undefined, opno, mask;
ab902481
RS
3325 const struct mips_operand *operand;
3326
fc76e730
RS
3327 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3328 if ((mask & opcode->match) != opcode->match)
ab902481
RS
3329 {
3330 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3331 opcode->name, opcode->args);
3332 return 0;
3333 }
3334 used_bits = 0;
fc76e730 3335 opno = 0;
14daeee3
RS
3336 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3337 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
ab902481
RS
3338 for (s = opcode->args; *s; ++s)
3339 switch (*s)
3340 {
3341 case ',':
3342 case '(':
3343 case ')':
3344 break;
3345
14daeee3
RS
3346 case '#':
3347 s++;
3348 break;
3349
ab902481 3350 default:
fc76e730
RS
3351 if (!decode_operand)
3352 operand = decode_mips16_operand (*s, FALSE);
3353 else
3354 operand = decode_operand (s);
3355 if (!operand && opcode->pinfo != INSN_MACRO)
ab902481
RS
3356 {
3357 as_bad (_("internal: unknown operand type: %s %s"),
3358 opcode->name, opcode->args);
3359 return 0;
3360 }
fc76e730
RS
3361 gas_assert (opno < MAX_OPERANDS);
3362 operands->operand[opno] = operand;
14daeee3 3363 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
fc76e730 3364 {
14daeee3 3365 used_bits = mips_insert_operand (operand, used_bits, -1);
fc76e730
RS
3366 if (operand->type == OP_MDMX_IMM_REG)
3367 /* Bit 5 is the format selector (OB vs QH). The opcode table
3368 has separate entries for each format. */
3369 used_bits &= ~(1 << (operand->lsb + 5));
3370 if (operand->type == OP_ENTRY_EXIT_LIST)
3371 used_bits &= ~(mask & 0x700);
3372 }
ab902481 3373 /* Skip prefix characters. */
7361da2c 3374 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
ab902481 3375 ++s;
fc76e730 3376 opno += 1;
ab902481
RS
3377 break;
3378 }
fc76e730 3379 doubled = used_bits & mask & insn_bits;
ab902481
RS
3380 if (doubled)
3381 {
3382 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3383 " %s %s"), doubled, opcode->name, opcode->args);
3384 return 0;
3385 }
fc76e730 3386 used_bits |= mask;
ab902481 3387 undefined = ~used_bits & insn_bits;
fc76e730 3388 if (opcode->pinfo != INSN_MACRO && undefined)
ab902481
RS
3389 {
3390 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3391 undefined, opcode->name, opcode->args);
3392 return 0;
3393 }
3394 used_bits &= ~insn_bits;
3395 if (used_bits)
3396 {
3397 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3398 used_bits, opcode->name, opcode->args);
3399 return 0;
3400 }
3401 return 1;
3402}
3403
fc76e730
RS
3404/* The MIPS16 version of validate_mips_insn. */
3405
3406static int
3407validate_mips16_insn (const struct mips_opcode *opcode,
3408 struct mips_operand_array *operands)
3409{
3410 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3411 {
3412 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3413 instruction. Use TMP to describe the full instruction. */
3414 struct mips_opcode tmp;
3415
3416 tmp = *opcode;
3417 tmp.match <<= 16;
3418 tmp.mask <<= 16;
3419 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3420 }
3421 return validate_mips_insn (opcode, 0xffff, 0, operands);
3422}
3423
ab902481
RS
3424/* The microMIPS version of validate_mips_insn. */
3425
3426static int
fc76e730
RS
3427validate_micromips_insn (const struct mips_opcode *opc,
3428 struct mips_operand_array *operands)
ab902481
RS
3429{
3430 unsigned long insn_bits;
3431 unsigned long major;
3432 unsigned int length;
3433
fc76e730
RS
3434 if (opc->pinfo == INSN_MACRO)
3435 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3436 operands);
3437
ab902481
RS
3438 length = micromips_insn_length (opc);
3439 if (length != 2 && length != 4)
3440 {
1661c76c 3441 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
ab902481
RS
3442 "%s %s"), length, opc->name, opc->args);
3443 return 0;
3444 }
3445 major = opc->match >> (10 + 8 * (length - 2));
3446 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3447 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3448 {
1661c76c 3449 as_bad (_("internal error: bad microMIPS opcode "
ab902481
RS
3450 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3451 return 0;
3452 }
3453
3454 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3455 insn_bits = 1 << 4 * length;
3456 insn_bits <<= 4 * length;
3457 insn_bits -= 1;
fc76e730
RS
3458 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3459 operands);
ab902481
RS
3460}
3461
707bfff6
TS
3462/* This function is called once, at assembler startup time. It should set up
3463 all the tables, etc. that the MD part of the assembler will need. */
156c2f8b 3464
252b5132 3465void
17a2f251 3466md_begin (void)
252b5132 3467{
3994f87e 3468 const char *retval = NULL;
156c2f8b 3469 int i = 0;
252b5132 3470 int broken = 0;
1f25f5d3 3471
0a44bf69
RS
3472 if (mips_pic != NO_PIC)
3473 {
3474 if (g_switch_seen && g_switch_value != 0)
3475 as_bad (_("-G may not be used in position-independent code"));
3476 g_switch_value = 0;
3477 }
00acd688
CM
3478 else if (mips_abicalls)
3479 {
3480 if (g_switch_seen && g_switch_value != 0)
3481 as_bad (_("-G may not be used with abicalls"));
3482 g_switch_value = 0;
3483 }
0a44bf69 3484
0b35dfee 3485 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
1661c76c 3486 as_warn (_("could not set architecture and machine"));
252b5132 3487
252b5132
RH
3488 op_hash = hash_new ();
3489
fc76e730 3490 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
252b5132
RH
3491 for (i = 0; i < NUMOPCODES;)
3492 {
3493 const char *name = mips_opcodes[i].name;
3494
17a2f251 3495 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
252b5132
RH
3496 if (retval != NULL)
3497 {
3498 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3499 mips_opcodes[i].name, retval);
3500 /* Probably a memory allocation problem? Give up now. */
1661c76c 3501 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3502 }
3503 do
3504 {
fc76e730
RS
3505 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3506 decode_mips_operand, &mips_operands[i]))
3507 broken = 1;
3508 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
252b5132 3509 {
fc76e730
RS
3510 create_insn (&nop_insn, mips_opcodes + i);
3511 if (mips_fix_loongson2f_nop)
3512 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3513 nop_insn.fixed_p = 1;
252b5132
RH
3514 }
3515 ++i;
3516 }
3517 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3518 }
3519
3520 mips16_op_hash = hash_new ();
fc76e730
RS
3521 mips16_operands = XCNEWVEC (struct mips_operand_array,
3522 bfd_mips16_num_opcodes);
252b5132
RH
3523
3524 i = 0;
3525 while (i < bfd_mips16_num_opcodes)
3526 {
3527 const char *name = mips16_opcodes[i].name;
3528
17a2f251 3529 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
252b5132
RH
3530 if (retval != NULL)
3531 as_fatal (_("internal: can't hash `%s': %s"),
3532 mips16_opcodes[i].name, retval);
3533 do
3534 {
fc76e730
RS
3535 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3536 broken = 1;
1e915849
RS
3537 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3538 {
3539 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3540 mips16_nop_insn.fixed_p = 1;
3541 }
252b5132
RH
3542 ++i;
3543 }
3544 while (i < bfd_mips16_num_opcodes
3545 && strcmp (mips16_opcodes[i].name, name) == 0);
3546 }
3547
df58fc94 3548 micromips_op_hash = hash_new ();
fc76e730
RS
3549 micromips_operands = XCNEWVEC (struct mips_operand_array,
3550 bfd_micromips_num_opcodes);
df58fc94
RS
3551
3552 i = 0;
3553 while (i < bfd_micromips_num_opcodes)
3554 {
3555 const char *name = micromips_opcodes[i].name;
3556
3557 retval = hash_insert (micromips_op_hash, name,
3558 (void *) &micromips_opcodes[i]);
3559 if (retval != NULL)
3560 as_fatal (_("internal: can't hash `%s': %s"),
3561 micromips_opcodes[i].name, retval);
3562 do
fc76e730
RS
3563 {
3564 struct mips_cl_insn *micromips_nop_insn;
3565
3566 if (!validate_micromips_insn (&micromips_opcodes[i],
3567 &micromips_operands[i]))
3568 broken = 1;
3569
3570 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3571 {
3572 if (micromips_insn_length (micromips_opcodes + i) == 2)
3573 micromips_nop_insn = &micromips_nop16_insn;
3574 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3575 micromips_nop_insn = &micromips_nop32_insn;
3576 else
3577 continue;
3578
3579 if (micromips_nop_insn->insn_mo == NULL
3580 && strcmp (name, "nop") == 0)
3581 {
3582 create_insn (micromips_nop_insn, micromips_opcodes + i);
3583 micromips_nop_insn->fixed_p = 1;
3584 }
3585 }
3586 }
df58fc94
RS
3587 while (++i < bfd_micromips_num_opcodes
3588 && strcmp (micromips_opcodes[i].name, name) == 0);
3589 }
3590
252b5132 3591 if (broken)
1661c76c 3592 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3593
3594 /* We add all the general register names to the symbol table. This
3595 helps us detect invalid uses of them. */
3739860c 3596 for (i = 0; reg_names[i].name; i++)
707bfff6 3597 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
8fc4ee9b 3598 reg_names[i].num, /* & RNUM_MASK, */
707bfff6
TS
3599 &zero_address_frag));
3600 if (HAVE_NEWABI)
3739860c 3601 for (i = 0; reg_names_n32n64[i].name; i++)
707bfff6 3602 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
8fc4ee9b 3603 reg_names_n32n64[i].num, /* & RNUM_MASK, */
252b5132 3604 &zero_address_frag));
707bfff6 3605 else
3739860c 3606 for (i = 0; reg_names_o32[i].name; i++)
707bfff6 3607 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
8fc4ee9b 3608 reg_names_o32[i].num, /* & RNUM_MASK, */
6047c971 3609 &zero_address_frag));
6047c971 3610
14daeee3
RS
3611 for (i = 0; i < 32; i++)
3612 {
92fce9bd 3613 char regname[6];
14daeee3
RS
3614
3615 /* R5900 VU0 floating-point register. */
92fce9bd 3616 sprintf (regname, "$vf%d", i);
14daeee3
RS
3617 symbol_table_insert (symbol_new (regname, reg_section,
3618 RTYPE_VF | i, &zero_address_frag));
3619
3620 /* R5900 VU0 integer register. */
92fce9bd 3621 sprintf (regname, "$vi%d", i);
14daeee3
RS
3622 symbol_table_insert (symbol_new (regname, reg_section,
3623 RTYPE_VI | i, &zero_address_frag));
3624
56d438b1 3625 /* MSA register. */
92fce9bd 3626 sprintf (regname, "$w%d", i);
56d438b1
CF
3627 symbol_table_insert (symbol_new (regname, reg_section,
3628 RTYPE_MSA | i, &zero_address_frag));
14daeee3
RS
3629 }
3630
a92713e6
RS
3631 obstack_init (&mips_operand_tokens);
3632
7d10b47d 3633 mips_no_prev_insn ();
252b5132
RH
3634
3635 mips_gprmask = 0;
3636 mips_cprmask[0] = 0;
3637 mips_cprmask[1] = 0;
3638 mips_cprmask[2] = 0;
3639 mips_cprmask[3] = 0;
3640
3641 /* set the default alignment for the text section (2**2) */
3642 record_alignment (text_section, 2);
3643
4d0d148d 3644 bfd_set_gp_size (stdoutput, g_switch_value);
252b5132 3645
f3ded42a
RS
3646 /* On a native system other than VxWorks, sections must be aligned
3647 to 16 byte boundaries. When configured for an embedded ELF
3648 target, we don't bother. */
3649 if (strncmp (TARGET_OS, "elf", 3) != 0
3650 && strncmp (TARGET_OS, "vxworks", 7) != 0)
252b5132 3651 {
f3ded42a
RS
3652 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3653 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3654 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3655 }
252b5132 3656
f3ded42a
RS
3657 /* Create a .reginfo section for register masks and a .mdebug
3658 section for debugging information. */
3659 {
3660 segT seg;
3661 subsegT subseg;
3662 flagword flags;
3663 segT sec;
3664
3665 seg = now_seg;
3666 subseg = now_subseg;
3667
3668 /* The ABI says this section should be loaded so that the
3669 running program can access it. However, we don't load it
3670 if we are configured for an embedded target */
3671 flags = SEC_READONLY | SEC_DATA;
3672 if (strncmp (TARGET_OS, "elf", 3) != 0)
3673 flags |= SEC_ALLOC | SEC_LOAD;
3674
3675 if (mips_abi != N64_ABI)
252b5132 3676 {
f3ded42a 3677 sec = subseg_new (".reginfo", (subsegT) 0);
bdaaa2e1 3678
f3ded42a
RS
3679 bfd_set_section_flags (stdoutput, sec, flags);
3680 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
252b5132 3681
f3ded42a
RS
3682 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3683 }
3684 else
3685 {
3686 /* The 64-bit ABI uses a .MIPS.options section rather than
3687 .reginfo section. */
3688 sec = subseg_new (".MIPS.options", (subsegT) 0);
3689 bfd_set_section_flags (stdoutput, sec, flags);
3690 bfd_set_section_alignment (stdoutput, sec, 3);
252b5132 3691
f3ded42a
RS
3692 /* Set up the option header. */
3693 {
3694 Elf_Internal_Options opthdr;
3695 char *f;
3696
3697 opthdr.kind = ODK_REGINFO;
3698 opthdr.size = (sizeof (Elf_External_Options)
3699 + sizeof (Elf64_External_RegInfo));
3700 opthdr.section = 0;
3701 opthdr.info = 0;
3702 f = frag_more (sizeof (Elf_External_Options));
3703 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3704 (Elf_External_Options *) f);
3705
3706 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3707 }
3708 }
252b5132 3709
351cdf24
MF
3710 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3711 bfd_set_section_flags (stdoutput, sec,
3712 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3713 bfd_set_section_alignment (stdoutput, sec, 3);
3714 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3715
f3ded42a
RS
3716 if (ECOFF_DEBUGGING)
3717 {
3718 sec = subseg_new (".mdebug", (subsegT) 0);
3719 (void) bfd_set_section_flags (stdoutput, sec,
3720 SEC_HAS_CONTENTS | SEC_READONLY);
3721 (void) bfd_set_section_alignment (stdoutput, sec, 2);
252b5132 3722 }
f3ded42a
RS
3723 else if (mips_flag_pdr)
3724 {
3725 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3726 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3727 SEC_READONLY | SEC_RELOC
3728 | SEC_DEBUGGING);
3729 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3730 }
3731
3732 subseg_set (seg, subseg);
3733 }
252b5132 3734
71400594
RS
3735 if (mips_fix_vr4120)
3736 init_vr4120_conflicts ();
252b5132
RH
3737}
3738
351cdf24
MF
3739static inline void
3740fpabi_incompatible_with (int fpabi, const char *what)
3741{
3742 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3743 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3744}
3745
3746static inline void
3747fpabi_requires (int fpabi, const char *what)
3748{
3749 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3750 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3751}
3752
3753/* Check -mabi and register sizes against the specified FP ABI. */
3754static void
3755check_fpabi (int fpabi)
3756{
351cdf24
MF
3757 switch (fpabi)
3758 {
3759 case Val_GNU_MIPS_ABI_FP_DOUBLE:
ea79f94a
MF
3760 if (file_mips_opts.soft_float)
3761 fpabi_incompatible_with (fpabi, "softfloat");
3762 else if (file_mips_opts.single_float)
3763 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3764 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3765 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3766 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3767 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
351cdf24
MF
3768 break;
3769
3770 case Val_GNU_MIPS_ABI_FP_XX:
3771 if (mips_abi != O32_ABI)
3772 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3773 else if (file_mips_opts.soft_float)
3774 fpabi_incompatible_with (fpabi, "softfloat");
3775 else if (file_mips_opts.single_float)
3776 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3777 else if (file_mips_opts.fp != 0)
3778 fpabi_requires (fpabi, "fp=xx");
351cdf24
MF
3779 break;
3780
3781 case Val_GNU_MIPS_ABI_FP_64A:
3782 case Val_GNU_MIPS_ABI_FP_64:
3783 if (mips_abi != O32_ABI)
3784 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3785 else if (file_mips_opts.soft_float)
3786 fpabi_incompatible_with (fpabi, "softfloat");
3787 else if (file_mips_opts.single_float)
3788 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3789 else if (file_mips_opts.fp != 64)
3790 fpabi_requires (fpabi, "fp=64");
3791 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3792 fpabi_incompatible_with (fpabi, "nooddspreg");
3793 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3794 fpabi_requires (fpabi, "nooddspreg");
351cdf24
MF
3795 break;
3796
3797 case Val_GNU_MIPS_ABI_FP_SINGLE:
3798 if (file_mips_opts.soft_float)
3799 fpabi_incompatible_with (fpabi, "softfloat");
3800 else if (!file_mips_opts.single_float)
3801 fpabi_requires (fpabi, "singlefloat");
3802 break;
3803
3804 case Val_GNU_MIPS_ABI_FP_SOFT:
3805 if (!file_mips_opts.soft_float)
3806 fpabi_requires (fpabi, "softfloat");
3807 break;
3808
3809 case Val_GNU_MIPS_ABI_FP_OLD_64:
3810 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3811 Tag_GNU_MIPS_ABI_FP, fpabi);
3812 break;
3813
3350cc01
CM
3814 case Val_GNU_MIPS_ABI_FP_NAN2008:
3815 /* Silently ignore compatibility value. */
3816 break;
3817
351cdf24
MF
3818 default:
3819 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3820 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3821 break;
3822 }
351cdf24
MF
3823}
3824
919731af 3825/* Perform consistency checks on the current options. */
3826
3827static void
3828mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3829{
3830 /* Check the size of integer registers agrees with the ABI and ISA. */
3831 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3832 as_bad (_("`gp=64' used with a 32-bit processor"));
3833 else if (abi_checks
3834 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3835 as_bad (_("`gp=32' used with a 64-bit ABI"));
3836 else if (abi_checks
3837 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3838 as_bad (_("`gp=64' used with a 32-bit ABI"));
3839
3840 /* Check the size of the float registers agrees with the ABI and ISA. */
3841 switch (opts->fp)
3842 {
351cdf24
MF
3843 case 0:
3844 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3845 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3846 else if (opts->single_float == 1)
3847 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3848 break;
919731af 3849 case 64:
3850 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3851 as_bad (_("`fp=64' used with a 32-bit fpu"));
3852 else if (abi_checks
3853 && ABI_NEEDS_32BIT_REGS (mips_abi)
3854 && !ISA_HAS_MXHC1 (opts->isa))
3855 as_warn (_("`fp=64' used with a 32-bit ABI"));
3856 break;
3857 case 32:
3858 if (abi_checks
3859 && ABI_NEEDS_64BIT_REGS (mips_abi))
3860 as_warn (_("`fp=32' used with a 64-bit ABI"));
5f4678bb 3861 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
7361da2c 3862 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
919731af 3863 break;
3864 default:
3865 as_bad (_("Unknown size of floating point registers"));
3866 break;
3867 }
3868
351cdf24
MF
3869 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3870 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3871
919731af 3872 if (opts->micromips == 1 && opts->mips16 == 1)
1357373c 3873 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
5f4678bb 3874 else if (ISA_IS_R6 (opts->isa)
7361da2c
AB
3875 && (opts->micromips == 1
3876 || opts->mips16 == 1))
1357373c 3877 as_fatal (_("`%s' cannot be used with `%s'"),
7361da2c 3878 opts->micromips ? "micromips" : "mips16",
5f4678bb 3879 mips_cpu_info_from_isa (opts->isa)->name);
7361da2c
AB
3880
3881 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3882 as_fatal (_("branch relaxation is not supported in `%s'"),
3883 mips_cpu_info_from_isa (opts->isa)->name);
919731af 3884}
3885
3886/* Perform consistency checks on the module level options exactly once.
3887 This is a deferred check that happens:
3888 at the first .set directive
3889 or, at the first pseudo op that generates code (inc .dc.a)
3890 or, at the first instruction
3891 or, at the end. */
3892
3893static void
3894file_mips_check_options (void)
3895{
3896 const struct mips_cpu_info *arch_info = 0;
3897
3898 if (file_mips_opts_checked)
3899 return;
3900
3901 /* The following code determines the register size.
3902 Similar code was added to GCC 3.3 (see override_options() in
3903 config/mips/mips.c). The GAS and GCC code should be kept in sync
3904 as much as possible. */
3905
3906 if (file_mips_opts.gp < 0)
3907 {
3908 /* Infer the integer register size from the ABI and processor.
3909 Restrict ourselves to 32-bit registers if that's all the
3910 processor has, or if the ABI cannot handle 64-bit registers. */
3911 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3912 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3913 ? 32 : 64;
3914 }
3915
3916 if (file_mips_opts.fp < 0)
3917 {
3918 /* No user specified float register size.
3919 ??? GAS treats single-float processors as though they had 64-bit
3920 float registers (although it complains when double-precision
3921 instructions are used). As things stand, saying they have 32-bit
3922 registers would lead to spurious "register must be even" messages.
3923 So here we assume float registers are never smaller than the
3924 integer ones. */
3925 if (file_mips_opts.gp == 64)
3926 /* 64-bit integer registers implies 64-bit float registers. */
3927 file_mips_opts.fp = 64;
3928 else if ((file_mips_opts.ase & FP64_ASES)
3929 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3930 /* Handle ASEs that require 64-bit float registers, if possible. */
3931 file_mips_opts.fp = 64;
7361da2c
AB
3932 else if (ISA_IS_R6 (mips_opts.isa))
3933 /* R6 implies 64-bit float registers. */
3934 file_mips_opts.fp = 64;
919731af 3935 else
3936 /* 32-bit float registers. */
3937 file_mips_opts.fp = 32;
3938 }
3939
3940 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3941
351cdf24
MF
3942 /* Disable operations on odd-numbered floating-point registers by default
3943 when using the FPXX ABI. */
3944 if (file_mips_opts.oddspreg < 0)
3945 {
3946 if (file_mips_opts.fp == 0)
3947 file_mips_opts.oddspreg = 0;
3948 else
3949 file_mips_opts.oddspreg = 1;
3950 }
3951
919731af 3952 /* End of GCC-shared inference code. */
3953
3954 /* This flag is set when we have a 64-bit capable CPU but use only
3955 32-bit wide registers. Note that EABI does not use it. */
3956 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3957 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3958 || mips_abi == O32_ABI))
3959 mips_32bitmode = 1;
3960
3961 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3962 as_bad (_("trap exception not supported at ISA 1"));
3963
3964 /* If the selected architecture includes support for ASEs, enable
3965 generation of code for them. */
3966 if (file_mips_opts.mips16 == -1)
3967 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3968 if (file_mips_opts.micromips == -1)
3969 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3970 ? 1 : 0;
3971
7361da2c
AB
3972 if (mips_nan2008 == -1)
3973 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3974 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3975 as_fatal (_("`%s' does not support legacy NaN"),
3976 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3977
919731af 3978 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3979 being selected implicitly. */
3980 if (file_mips_opts.fp != 64)
3981 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3982
3983 /* If the user didn't explicitly select or deselect a particular ASE,
3984 use the default setting for the CPU. */
3985 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3986
3987 /* Set up the current options. These may change throughout assembly. */
3988 mips_opts = file_mips_opts;
3989
3990 mips_check_isa_supports_ases ();
3991 mips_check_options (&file_mips_opts, TRUE);
3992 file_mips_opts_checked = TRUE;
3993
3994 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3995 as_warn (_("could not set architecture and machine"));
3996}
3997
252b5132 3998void
17a2f251 3999md_assemble (char *str)
252b5132
RH
4000{
4001 struct mips_cl_insn insn;
f6688943
TS
4002 bfd_reloc_code_real_type unused_reloc[3]
4003 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 4004
919731af 4005 file_mips_check_options ();
4006
252b5132 4007 imm_expr.X_op = O_absent;
252b5132 4008 offset_expr.X_op = O_absent;
f6688943
TS
4009 offset_reloc[0] = BFD_RELOC_UNUSED;
4010 offset_reloc[1] = BFD_RELOC_UNUSED;
4011 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132 4012
e1b47bd5
RS
4013 mips_mark_labels ();
4014 mips_assembling_insn = TRUE;
e3de51ce 4015 clear_insn_error ();
e1b47bd5 4016
252b5132
RH
4017 if (mips_opts.mips16)
4018 mips16_ip (str, &insn);
4019 else
4020 {
4021 mips_ip (str, &insn);
beae10d5
KH
4022 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4023 str, insn.insn_opcode));
252b5132
RH
4024 }
4025
e3de51ce
RS
4026 if (insn_error.msg)
4027 report_insn_error (str);
e1b47bd5 4028 else if (insn.insn_mo->pinfo == INSN_MACRO)
252b5132 4029 {
584892a6 4030 macro_start ();
252b5132
RH
4031 if (mips_opts.mips16)
4032 mips16_macro (&insn);
4033 else
833794fc 4034 macro (&insn, str);
584892a6 4035 macro_end ();
252b5132
RH
4036 }
4037 else
4038 {
77bd4346 4039 if (offset_expr.X_op != O_absent)
df58fc94 4040 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
252b5132 4041 else
df58fc94 4042 append_insn (&insn, NULL, unused_reloc, FALSE);
252b5132 4043 }
e1b47bd5
RS
4044
4045 mips_assembling_insn = FALSE;
252b5132
RH
4046}
4047
738e5348
RS
4048/* Convenience functions for abstracting away the differences between
4049 MIPS16 and non-MIPS16 relocations. */
4050
4051static inline bfd_boolean
4052mips16_reloc_p (bfd_reloc_code_real_type reloc)
4053{
4054 switch (reloc)
4055 {
4056 case BFD_RELOC_MIPS16_JMP:
4057 case BFD_RELOC_MIPS16_GPREL:
4058 case BFD_RELOC_MIPS16_GOT16:
4059 case BFD_RELOC_MIPS16_CALL16:
4060 case BFD_RELOC_MIPS16_HI16_S:
4061 case BFD_RELOC_MIPS16_HI16:
4062 case BFD_RELOC_MIPS16_LO16:
4063 return TRUE;
4064
4065 default:
4066 return FALSE;
4067 }
4068}
4069
df58fc94
RS
4070static inline bfd_boolean
4071micromips_reloc_p (bfd_reloc_code_real_type reloc)
4072{
4073 switch (reloc)
4074 {
4075 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4076 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4077 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4078 case BFD_RELOC_MICROMIPS_GPREL16:
4079 case BFD_RELOC_MICROMIPS_JMP:
4080 case BFD_RELOC_MICROMIPS_HI16:
4081 case BFD_RELOC_MICROMIPS_HI16_S:
4082 case BFD_RELOC_MICROMIPS_LO16:
4083 case BFD_RELOC_MICROMIPS_LITERAL:
4084 case BFD_RELOC_MICROMIPS_GOT16:
4085 case BFD_RELOC_MICROMIPS_CALL16:
4086 case BFD_RELOC_MICROMIPS_GOT_HI16:
4087 case BFD_RELOC_MICROMIPS_GOT_LO16:
4088 case BFD_RELOC_MICROMIPS_CALL_HI16:
4089 case BFD_RELOC_MICROMIPS_CALL_LO16:
4090 case BFD_RELOC_MICROMIPS_SUB:
4091 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4092 case BFD_RELOC_MICROMIPS_GOT_OFST:
4093 case BFD_RELOC_MICROMIPS_GOT_DISP:
4094 case BFD_RELOC_MICROMIPS_HIGHEST:
4095 case BFD_RELOC_MICROMIPS_HIGHER:
4096 case BFD_RELOC_MICROMIPS_SCN_DISP:
4097 case BFD_RELOC_MICROMIPS_JALR:
4098 return TRUE;
4099
4100 default:
4101 return FALSE;
4102 }
4103}
4104
2309ddf2
MR
4105static inline bfd_boolean
4106jmp_reloc_p (bfd_reloc_code_real_type reloc)
4107{
4108 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4109}
4110
738e5348
RS
4111static inline bfd_boolean
4112got16_reloc_p (bfd_reloc_code_real_type reloc)
4113{
2309ddf2 4114 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
df58fc94 4115 || reloc == BFD_RELOC_MICROMIPS_GOT16);
738e5348
RS
4116}
4117
4118static inline bfd_boolean
4119hi16_reloc_p (bfd_reloc_code_real_type reloc)
4120{
2309ddf2 4121 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
df58fc94 4122 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
738e5348
RS
4123}
4124
4125static inline bfd_boolean
4126lo16_reloc_p (bfd_reloc_code_real_type reloc)
4127{
2309ddf2 4128 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
df58fc94
RS
4129 || reloc == BFD_RELOC_MICROMIPS_LO16);
4130}
4131
df58fc94
RS
4132static inline bfd_boolean
4133jalr_reloc_p (bfd_reloc_code_real_type reloc)
4134{
2309ddf2 4135 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
738e5348
RS
4136}
4137
f2ae14a1
RS
4138static inline bfd_boolean
4139gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4140{
4141 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4142 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4143}
4144
2de39019
CM
4145/* Return true if RELOC is a PC-relative relocation that does not have
4146 full address range. */
4147
4148static inline bfd_boolean
4149limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4150{
4151 switch (reloc)
4152 {
4153 case BFD_RELOC_16_PCREL_S2:
4154 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4155 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4156 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
7361da2c
AB
4157 case BFD_RELOC_MIPS_21_PCREL_S2:
4158 case BFD_RELOC_MIPS_26_PCREL_S2:
4159 case BFD_RELOC_MIPS_18_PCREL_S3:
4160 case BFD_RELOC_MIPS_19_PCREL_S2:
2de39019
CM
4161 return TRUE;
4162
b47468a6 4163 case BFD_RELOC_32_PCREL:
7361da2c
AB
4164 case BFD_RELOC_HI16_S_PCREL:
4165 case BFD_RELOC_LO16_PCREL:
b47468a6
CM
4166 return HAVE_64BIT_ADDRESSES;
4167
2de39019
CM
4168 default:
4169 return FALSE;
4170 }
4171}
b47468a6 4172
5919d012 4173/* Return true if the given relocation might need a matching %lo().
0a44bf69
RS
4174 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4175 need a matching %lo() when applied to local symbols. */
5919d012
RS
4176
4177static inline bfd_boolean
17a2f251 4178reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
5919d012 4179{
3b91255e 4180 return (HAVE_IN_PLACE_ADDENDS
738e5348 4181 && (hi16_reloc_p (reloc)
0a44bf69
RS
4182 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4183 all GOT16 relocations evaluate to "G". */
738e5348
RS
4184 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4185}
4186
4187/* Return the type of %lo() reloc needed by RELOC, given that
4188 reloc_needs_lo_p. */
4189
4190static inline bfd_reloc_code_real_type
4191matching_lo_reloc (bfd_reloc_code_real_type reloc)
4192{
df58fc94
RS
4193 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4194 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4195 : BFD_RELOC_LO16));
5919d012
RS
4196}
4197
4198/* Return true if the given fixup is followed by a matching R_MIPS_LO16
4199 relocation. */
4200
4201static inline bfd_boolean
17a2f251 4202fixup_has_matching_lo_p (fixS *fixp)
5919d012
RS
4203{
4204 return (fixp->fx_next != NULL
738e5348 4205 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
5919d012
RS
4206 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4207 && fixp->fx_offset == fixp->fx_next->fx_offset);
4208}
4209
462427c4
RS
4210/* Move all labels in LABELS to the current insertion point. TEXT_P
4211 says whether the labels refer to text or data. */
404a8071
RS
4212
4213static void
462427c4 4214mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
404a8071
RS
4215{
4216 struct insn_label_list *l;
4217 valueT val;
4218
462427c4 4219 for (l = labels; l != NULL; l = l->next)
404a8071 4220 {
9c2799c2 4221 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
404a8071
RS
4222 symbol_set_frag (l->label, frag_now);
4223 val = (valueT) frag_now_fix ();
df58fc94 4224 /* MIPS16/microMIPS text labels are stored as odd. */
462427c4 4225 if (text_p && HAVE_CODE_COMPRESSION)
404a8071
RS
4226 ++val;
4227 S_SET_VALUE (l->label, val);
4228 }
4229}
4230
462427c4
RS
4231/* Move all labels in insn_labels to the current insertion point
4232 and treat them as text labels. */
4233
4234static void
4235mips_move_text_labels (void)
4236{
4237 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4238}
4239
5f0fe04b
TS
4240static bfd_boolean
4241s_is_linkonce (symbolS *sym, segT from_seg)
4242{
4243 bfd_boolean linkonce = FALSE;
4244 segT symseg = S_GET_SEGMENT (sym);
4245
4246 if (symseg != from_seg && !S_IS_LOCAL (sym))
4247 {
4248 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4249 linkonce = TRUE;
5f0fe04b
TS
4250 /* The GNU toolchain uses an extension for ELF: a section
4251 beginning with the magic string .gnu.linkonce is a
4252 linkonce section. */
4253 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4254 sizeof ".gnu.linkonce" - 1) == 0)
4255 linkonce = TRUE;
5f0fe04b
TS
4256 }
4257 return linkonce;
4258}
4259
e1b47bd5 4260/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
df58fc94
RS
4261 linker to handle them specially, such as generating jalx instructions
4262 when needed. We also make them odd for the duration of the assembly,
4263 in order to generate the right sort of code. We will make them even
252b5132
RH
4264 in the adjust_symtab routine, while leaving them marked. This is
4265 convenient for the debugger and the disassembler. The linker knows
4266 to make them odd again. */
4267
4268static void
e1b47bd5 4269mips_compressed_mark_label (symbolS *label)
252b5132 4270{
df58fc94 4271 gas_assert (HAVE_CODE_COMPRESSION);
a8dbcb85 4272
f3ded42a
RS
4273 if (mips_opts.mips16)
4274 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4275 else
4276 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
e1b47bd5
RS
4277 if ((S_GET_VALUE (label) & 1) == 0
4278 /* Don't adjust the address if the label is global or weak, or
4279 in a link-once section, since we'll be emitting symbol reloc
4280 references to it which will be patched up by the linker, and
4281 the final value of the symbol may or may not be MIPS16/microMIPS. */
4282 && !S_IS_WEAK (label)
4283 && !S_IS_EXTERNAL (label)
4284 && !s_is_linkonce (label, now_seg))
4285 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4286}
4287
4288/* Mark preceding MIPS16 or microMIPS instruction labels. */
4289
4290static void
4291mips_compressed_mark_labels (void)
4292{
4293 struct insn_label_list *l;
4294
4295 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4296 mips_compressed_mark_label (l->label);
252b5132
RH
4297}
4298
4d7206a2
RS
4299/* End the current frag. Make it a variant frag and record the
4300 relaxation info. */
4301
4302static void
4303relax_close_frag (void)
4304{
584892a6 4305 mips_macro_warning.first_frag = frag_now;
4d7206a2 4306 frag_var (rs_machine_dependent, 0, 0,
584892a6 4307 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4d7206a2
RS
4308 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4309
4310 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4311 mips_relax.first_fixup = 0;
4312}
4313
4314/* Start a new relaxation sequence whose expansion depends on SYMBOL.
4315 See the comment above RELAX_ENCODE for more details. */
4316
4317static void
4318relax_start (symbolS *symbol)
4319{
9c2799c2 4320 gas_assert (mips_relax.sequence == 0);
4d7206a2
RS
4321 mips_relax.sequence = 1;
4322 mips_relax.symbol = symbol;
4323}
4324
4325/* Start generating the second version of a relaxable sequence.
4326 See the comment above RELAX_ENCODE for more details. */
252b5132
RH
4327
4328static void
4d7206a2
RS
4329relax_switch (void)
4330{
9c2799c2 4331 gas_assert (mips_relax.sequence == 1);
4d7206a2
RS
4332 mips_relax.sequence = 2;
4333}
4334
4335/* End the current relaxable sequence. */
4336
4337static void
4338relax_end (void)
4339{
9c2799c2 4340 gas_assert (mips_relax.sequence == 2);
4d7206a2
RS
4341 relax_close_frag ();
4342 mips_relax.sequence = 0;
4343}
4344
11625dd8
RS
4345/* Return true if IP is a delayed branch or jump. */
4346
4347static inline bfd_boolean
4348delayed_branch_p (const struct mips_cl_insn *ip)
4349{
4350 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4351 | INSN_COND_BRANCH_DELAY
4352 | INSN_COND_BRANCH_LIKELY)) != 0;
4353}
4354
4355/* Return true if IP is a compact branch or jump. */
4356
4357static inline bfd_boolean
4358compact_branch_p (const struct mips_cl_insn *ip)
4359{
26545944
RS
4360 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4361 | INSN2_COND_BRANCH)) != 0;
11625dd8
RS
4362}
4363
4364/* Return true if IP is an unconditional branch or jump. */
4365
4366static inline bfd_boolean
4367uncond_branch_p (const struct mips_cl_insn *ip)
4368{
4369 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
26545944 4370 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
11625dd8
RS
4371}
4372
4373/* Return true if IP is a branch-likely instruction. */
4374
4375static inline bfd_boolean
4376branch_likely_p (const struct mips_cl_insn *ip)
4377{
4378 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4379}
4380
14fe068b
RS
4381/* Return the type of nop that should be used to fill the delay slot
4382 of delayed branch IP. */
4383
4384static struct mips_cl_insn *
4385get_delay_slot_nop (const struct mips_cl_insn *ip)
4386{
4387 if (mips_opts.micromips
4388 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4389 return &micromips_nop32_insn;
4390 return NOP_INSN;
4391}
4392
fc76e730
RS
4393/* Return a mask that has bit N set if OPCODE reads the register(s)
4394 in operand N. */
df58fc94
RS
4395
4396static unsigned int
fc76e730 4397insn_read_mask (const struct mips_opcode *opcode)
df58fc94 4398{
fc76e730
RS
4399 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4400}
df58fc94 4401
fc76e730
RS
4402/* Return a mask that has bit N set if OPCODE writes to the register(s)
4403 in operand N. */
4404
4405static unsigned int
4406insn_write_mask (const struct mips_opcode *opcode)
4407{
4408 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4409}
4410
4411/* Return a mask of the registers specified by operand OPERAND of INSN.
4412 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4413 is set. */
4414
4415static unsigned int
4416operand_reg_mask (const struct mips_cl_insn *insn,
4417 const struct mips_operand *operand,
4418 unsigned int type_mask)
4419{
4420 unsigned int uval, vsel;
4421
4422 switch (operand->type)
df58fc94 4423 {
fc76e730
RS
4424 case OP_INT:
4425 case OP_MAPPED_INT:
4426 case OP_MSB:
4427 case OP_PCREL:
4428 case OP_PERF_REG:
4429 case OP_ADDIUSP_INT:
4430 case OP_ENTRY_EXIT_LIST:
4431 case OP_REPEAT_DEST_REG:
4432 case OP_REPEAT_PREV_REG:
4433 case OP_PC:
14daeee3
RS
4434 case OP_VU0_SUFFIX:
4435 case OP_VU0_MATCH_SUFFIX:
56d438b1 4436 case OP_IMM_INDEX:
fc76e730
RS
4437 abort ();
4438
4439 case OP_REG:
0f35dbc4 4440 case OP_OPTIONAL_REG:
fc76e730
RS
4441 {
4442 const struct mips_reg_operand *reg_op;
4443
4444 reg_op = (const struct mips_reg_operand *) operand;
4445 if (!(type_mask & (1 << reg_op->reg_type)))
4446 return 0;
4447 uval = insn_extract_operand (insn, operand);
4448 return 1 << mips_decode_reg_operand (reg_op, uval);
4449 }
4450
4451 case OP_REG_PAIR:
4452 {
4453 const struct mips_reg_pair_operand *pair_op;
4454
4455 pair_op = (const struct mips_reg_pair_operand *) operand;
4456 if (!(type_mask & (1 << pair_op->reg_type)))
4457 return 0;
4458 uval = insn_extract_operand (insn, operand);
4459 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4460 }
4461
4462 case OP_CLO_CLZ_DEST:
4463 if (!(type_mask & (1 << OP_REG_GP)))
4464 return 0;
4465 uval = insn_extract_operand (insn, operand);
4466 return (1 << (uval & 31)) | (1 << (uval >> 5));
4467
7361da2c
AB
4468 case OP_SAME_RS_RT:
4469 if (!(type_mask & (1 << OP_REG_GP)))
4470 return 0;
4471 uval = insn_extract_operand (insn, operand);
4472 gas_assert ((uval & 31) == (uval >> 5));
4473 return 1 << (uval & 31);
4474
4475 case OP_CHECK_PREV:
4476 case OP_NON_ZERO_REG:
4477 if (!(type_mask & (1 << OP_REG_GP)))
4478 return 0;
4479 uval = insn_extract_operand (insn, operand);
4480 return 1 << (uval & 31);
4481
fc76e730
RS
4482 case OP_LWM_SWM_LIST:
4483 abort ();
4484
4485 case OP_SAVE_RESTORE_LIST:
4486 abort ();
4487
4488 case OP_MDMX_IMM_REG:
4489 if (!(type_mask & (1 << OP_REG_VEC)))
4490 return 0;
4491 uval = insn_extract_operand (insn, operand);
4492 vsel = uval >> 5;
4493 if ((vsel & 0x18) == 0x18)
4494 return 0;
4495 return 1 << (uval & 31);
56d438b1
CF
4496
4497 case OP_REG_INDEX:
4498 if (!(type_mask & (1 << OP_REG_GP)))
4499 return 0;
4500 return 1 << insn_extract_operand (insn, operand);
df58fc94 4501 }
fc76e730
RS
4502 abort ();
4503}
4504
4505/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4506 where bit N of OPNO_MASK is set if operand N should be included.
4507 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4508 is set. */
4509
4510static unsigned int
4511insn_reg_mask (const struct mips_cl_insn *insn,
4512 unsigned int type_mask, unsigned int opno_mask)
4513{
4514 unsigned int opno, reg_mask;
4515
4516 opno = 0;
4517 reg_mask = 0;
4518 while (opno_mask != 0)
4519 {
4520 if (opno_mask & 1)
4521 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4522 opno_mask >>= 1;
4523 opno += 1;
4524 }
4525 return reg_mask;
df58fc94
RS
4526}
4527
4c260379
RS
4528/* Return the mask of core registers that IP reads. */
4529
4530static unsigned int
4531gpr_read_mask (const struct mips_cl_insn *ip)
4532{
4533 unsigned long pinfo, pinfo2;
4534 unsigned int mask;
4535
fc76e730 4536 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4c260379
RS
4537 pinfo = ip->insn_mo->pinfo;
4538 pinfo2 = ip->insn_mo->pinfo2;
fc76e730 4539 if (pinfo & INSN_UDI)
4c260379 4540 {
fc76e730
RS
4541 /* UDI instructions have traditionally been assumed to read RS
4542 and RT. */
4543 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4544 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4c260379 4545 }
fc76e730
RS
4546 if (pinfo & INSN_READ_GPR_24)
4547 mask |= 1 << 24;
4548 if (pinfo2 & INSN2_READ_GPR_16)
4549 mask |= 1 << 16;
4550 if (pinfo2 & INSN2_READ_SP)
4551 mask |= 1 << SP;
26545944 4552 if (pinfo2 & INSN2_READ_GPR_31)
fc76e730 4553 mask |= 1 << 31;
fe35f09f
RS
4554 /* Don't include register 0. */
4555 return mask & ~1;
4c260379
RS
4556}
4557
4558/* Return the mask of core registers that IP writes. */
4559
4560static unsigned int
4561gpr_write_mask (const struct mips_cl_insn *ip)
4562{
4563 unsigned long pinfo, pinfo2;
4564 unsigned int mask;
4565
fc76e730 4566 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4c260379
RS
4567 pinfo = ip->insn_mo->pinfo;
4568 pinfo2 = ip->insn_mo->pinfo2;
fc76e730
RS
4569 if (pinfo & INSN_WRITE_GPR_24)
4570 mask |= 1 << 24;
4571 if (pinfo & INSN_WRITE_GPR_31)
4572 mask |= 1 << 31;
4573 if (pinfo & INSN_UDI)
4574 /* UDI instructions have traditionally been assumed to write to RD. */
4575 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4576 if (pinfo2 & INSN2_WRITE_SP)
4577 mask |= 1 << SP;
fe35f09f
RS
4578 /* Don't include register 0. */
4579 return mask & ~1;
4c260379
RS
4580}
4581
4582/* Return the mask of floating-point registers that IP reads. */
4583
4584static unsigned int
4585fpr_read_mask (const struct mips_cl_insn *ip)
4586{
fc76e730 4587 unsigned long pinfo;
4c260379
RS
4588 unsigned int mask;
4589
9d5de888
CF
4590 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4591 | (1 << OP_REG_MSA)),
fc76e730 4592 insn_read_mask (ip->insn_mo));
4c260379 4593 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4594 /* Conservatively treat all operands to an FP_D instruction are doubles.
4595 (This is overly pessimistic for things like cvt.d.s.) */
bad1aba3 4596 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4597 mask |= mask << 1;
4598 return mask;
4599}
4600
4601/* Return the mask of floating-point registers that IP writes. */
4602
4603static unsigned int
4604fpr_write_mask (const struct mips_cl_insn *ip)
4605{
fc76e730 4606 unsigned long pinfo;
4c260379
RS
4607 unsigned int mask;
4608
9d5de888
CF
4609 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4610 | (1 << OP_REG_MSA)),
fc76e730 4611 insn_write_mask (ip->insn_mo));
4c260379 4612 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4613 /* Conservatively treat all operands to an FP_D instruction are doubles.
4614 (This is overly pessimistic for things like cvt.s.d.) */
bad1aba3 4615 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4616 mask |= mask << 1;
4617 return mask;
4618}
4619
a1d78564
RS
4620/* Operand OPNUM of INSN is an odd-numbered floating-point register.
4621 Check whether that is allowed. */
4622
4623static bfd_boolean
4624mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4625{
4626 const char *s = insn->name;
351cdf24
MF
4627 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4628 || FPR_SIZE == 64)
4629 && mips_opts.oddspreg;
a1d78564
RS
4630
4631 if (insn->pinfo == INSN_MACRO)
4632 /* Let a macro pass, we'll catch it later when it is expanded. */
4633 return TRUE;
4634
351cdf24
MF
4635 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4636 otherwise it depends on oddspreg. */
4637 if ((insn->pinfo & FP_S)
4638 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
43885403 4639 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
351cdf24 4640 return FPR_SIZE == 32 || oddspreg;
a1d78564 4641
351cdf24
MF
4642 /* Allow odd registers for single-precision ops and double-precision if the
4643 floating-point registers are 64-bit wide. */
4644 switch (insn->pinfo & (FP_S | FP_D))
4645 {
4646 case FP_S:
4647 case 0:
4648 return oddspreg;
4649 case FP_D:
4650 return FPR_SIZE == 64;
4651 default:
4652 break;
a1d78564
RS
4653 }
4654
351cdf24
MF
4655 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4656 s = strchr (insn->name, '.');
4657 if (s != NULL && opnum == 2)
4658 s = strchr (s + 1, '.');
4659 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4660 return oddspreg;
a1d78564 4661
351cdf24 4662 return FPR_SIZE == 64;
a1d78564
RS
4663}
4664
a1d78564
RS
4665/* Information about an instruction argument that we're trying to match. */
4666struct mips_arg_info
4667{
4668 /* The instruction so far. */
4669 struct mips_cl_insn *insn;
4670
a92713e6
RS
4671 /* The first unconsumed operand token. */
4672 struct mips_operand_token *token;
4673
a1d78564
RS
4674 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4675 int opnum;
4676
4677 /* The 1-based argument number, for error reporting. This does not
4678 count elided optional registers, etc.. */
4679 int argnum;
4680
4681 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4682 unsigned int last_regno;
4683
4684 /* If the first operand was an OP_REG, this is the register that it
4685 specified, otherwise it is ILLEGAL_REG. */
4686 unsigned int dest_regno;
4687
4688 /* The value of the last OP_INT operand. Only used for OP_MSB,
4689 where it gives the lsb position. */
4690 unsigned int last_op_int;
4691
60f20e8b
RS
4692 /* If true, match routines should assume that no later instruction
4693 alternative matches and should therefore be as accomodating as
4694 possible. Match routines should not report errors if something
4695 is only invalid for !LAX_MATCH. */
4696 bfd_boolean lax_match;
a1d78564 4697
a1d78564
RS
4698 /* True if a reference to the current AT register was seen. */
4699 bfd_boolean seen_at;
4700};
4701
1a00e612
RS
4702/* Record that the argument is out of range. */
4703
4704static void
4705match_out_of_range (struct mips_arg_info *arg)
4706{
4707 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4708}
4709
4710/* Record that the argument isn't constant but needs to be. */
4711
4712static void
4713match_not_constant (struct mips_arg_info *arg)
4714{
4715 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4716 arg->argnum);
4717}
4718
a92713e6
RS
4719/* Try to match an OT_CHAR token for character CH. Consume the token
4720 and return true on success, otherwise return false. */
a1d78564 4721
a92713e6
RS
4722static bfd_boolean
4723match_char (struct mips_arg_info *arg, char ch)
a1d78564 4724{
a92713e6
RS
4725 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4726 {
4727 ++arg->token;
4728 if (ch == ',')
4729 arg->argnum += 1;
4730 return TRUE;
4731 }
4732 return FALSE;
4733}
a1d78564 4734
a92713e6
RS
4735/* Try to get an expression from the next tokens in ARG. Consume the
4736 tokens and return true on success, storing the expression value in
4737 VALUE and relocation types in R. */
4738
4739static bfd_boolean
4740match_expression (struct mips_arg_info *arg, expressionS *value,
4741 bfd_reloc_code_real_type *r)
4742{
d436c1c2
RS
4743 /* If the next token is a '(' that was parsed as being part of a base
4744 expression, assume we have an elided offset. The later match will fail
4745 if this turns out to be wrong. */
4746 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
a1d78564 4747 {
d436c1c2
RS
4748 value->X_op = O_constant;
4749 value->X_add_number = 0;
4750 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
a92713e6
RS
4751 return TRUE;
4752 }
4753
d436c1c2
RS
4754 /* Reject register-based expressions such as "0+$2" and "(($2))".
4755 For plain registers the default error seems more appropriate. */
4756 if (arg->token->type == OT_INTEGER
4757 && arg->token->u.integer.value.X_op == O_register)
a92713e6 4758 {
d436c1c2
RS
4759 set_insn_error (arg->argnum, _("register value used as expression"));
4760 return FALSE;
a1d78564 4761 }
d436c1c2
RS
4762
4763 if (arg->token->type == OT_INTEGER)
a92713e6 4764 {
d436c1c2
RS
4765 *value = arg->token->u.integer.value;
4766 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4767 ++arg->token;
4768 return TRUE;
a92713e6 4769 }
a92713e6 4770
d436c1c2
RS
4771 set_insn_error_i
4772 (arg->argnum, _("operand %d must be an immediate expression"),
4773 arg->argnum);
4774 return FALSE;
a92713e6
RS
4775}
4776
4777/* Try to get a constant expression from the next tokens in ARG. Consume
4778 the tokens and return return true on success, storing the constant value
4779 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4780 error. */
4781
4782static bfd_boolean
1a00e612 4783match_const_int (struct mips_arg_info *arg, offsetT *value)
a92713e6
RS
4784{
4785 expressionS ex;
4786 bfd_reloc_code_real_type r[3];
a1d78564 4787
a92713e6
RS
4788 if (!match_expression (arg, &ex, r))
4789 return FALSE;
4790
4791 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
a1d78564
RS
4792 *value = ex.X_add_number;
4793 else
4794 {
1a00e612
RS
4795 match_not_constant (arg);
4796 return FALSE;
a1d78564 4797 }
a92713e6 4798 return TRUE;
a1d78564
RS
4799}
4800
4801/* Return the RTYPE_* flags for a register operand of type TYPE that
4802 appears in instruction OPCODE. */
4803
4804static unsigned int
4805convert_reg_type (const struct mips_opcode *opcode,
4806 enum mips_reg_operand_type type)
4807{
4808 switch (type)
4809 {
4810 case OP_REG_GP:
4811 return RTYPE_NUM | RTYPE_GP;
4812
4813 case OP_REG_FP:
4814 /* Allow vector register names for MDMX if the instruction is a 64-bit
4815 FPR load, store or move (including moves to and from GPRs). */
4816 if ((mips_opts.ase & ASE_MDMX)
4817 && (opcode->pinfo & FP_D)
43885403 4818 && (opcode->pinfo & (INSN_COPROC_MOVE
a1d78564 4819 | INSN_COPROC_MEMORY_DELAY
43885403 4820 | INSN_LOAD_COPROC
67dc82bc 4821 | INSN_LOAD_MEMORY
a1d78564
RS
4822 | INSN_STORE_MEMORY)))
4823 return RTYPE_FPU | RTYPE_VEC;
4824 return RTYPE_FPU;
4825
4826 case OP_REG_CCC:
4827 if (opcode->pinfo & (FP_D | FP_S))
4828 return RTYPE_CCC | RTYPE_FCC;
4829 return RTYPE_CCC;
4830
4831 case OP_REG_VEC:
4832 if (opcode->membership & INSN_5400)
4833 return RTYPE_FPU;
4834 return RTYPE_FPU | RTYPE_VEC;
4835
4836 case OP_REG_ACC:
4837 return RTYPE_ACC;
4838
4839 case OP_REG_COPRO:
4840 if (opcode->name[strlen (opcode->name) - 1] == '0')
4841 return RTYPE_NUM | RTYPE_CP0;
4842 return RTYPE_NUM;
4843
4844 case OP_REG_HW:
4845 return RTYPE_NUM;
14daeee3
RS
4846
4847 case OP_REG_VI:
4848 return RTYPE_NUM | RTYPE_VI;
4849
4850 case OP_REG_VF:
4851 return RTYPE_NUM | RTYPE_VF;
4852
4853 case OP_REG_R5900_I:
4854 return RTYPE_R5900_I;
4855
4856 case OP_REG_R5900_Q:
4857 return RTYPE_R5900_Q;
4858
4859 case OP_REG_R5900_R:
4860 return RTYPE_R5900_R;
4861
4862 case OP_REG_R5900_ACC:
4863 return RTYPE_R5900_ACC;
56d438b1
CF
4864
4865 case OP_REG_MSA:
4866 return RTYPE_MSA;
4867
4868 case OP_REG_MSA_CTRL:
4869 return RTYPE_NUM;
a1d78564
RS
4870 }
4871 abort ();
4872}
4873
4874/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4875
4876static void
4877check_regno (struct mips_arg_info *arg,
4878 enum mips_reg_operand_type type, unsigned int regno)
4879{
4880 if (AT && type == OP_REG_GP && regno == AT)
4881 arg->seen_at = TRUE;
4882
4883 if (type == OP_REG_FP
4884 && (regno & 1) != 0
a1d78564 4885 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
351cdf24
MF
4886 {
4887 /* This was a warning prior to introducing O32 FPXX and FP64 support
4888 so maintain a warning for FP32 but raise an error for the new
4889 cases. */
4890 if (FPR_SIZE == 32)
4891 as_warn (_("float register should be even, was %d"), regno);
4892 else
4893 as_bad (_("float register should be even, was %d"), regno);
4894 }
a1d78564
RS
4895
4896 if (type == OP_REG_CCC)
4897 {
4898 const char *name;
4899 size_t length;
4900
4901 name = arg->insn->insn_mo->name;
4902 length = strlen (name);
4903 if ((regno & 1) != 0
4904 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4905 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
1661c76c 4906 as_warn (_("condition code register should be even for %s, was %d"),
a1d78564
RS
4907 name, regno);
4908
4909 if ((regno & 3) != 0
4910 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
1661c76c 4911 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
a1d78564
RS
4912 name, regno);
4913 }
4914}
4915
a92713e6
RS
4916/* ARG is a register with symbol value SYMVAL. Try to interpret it as
4917 a register of type TYPE. Return true on success, storing the register
4918 number in *REGNO and warning about any dubious uses. */
4919
4920static bfd_boolean
4921match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4922 unsigned int symval, unsigned int *regno)
4923{
4924 if (type == OP_REG_VEC)
4925 symval = mips_prefer_vec_regno (symval);
4926 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4927 return FALSE;
4928
4929 *regno = symval & RNUM_MASK;
4930 check_regno (arg, type, *regno);
4931 return TRUE;
4932}
4933
4934/* Try to interpret the next token in ARG as a register of type TYPE.
4935 Consume the token and return true on success, storing the register
4936 number in *REGNO. Return false on failure. */
4937
4938static bfd_boolean
4939match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4940 unsigned int *regno)
4941{
4942 if (arg->token->type == OT_REG
4943 && match_regno (arg, type, arg->token->u.regno, regno))
4944 {
4945 ++arg->token;
4946 return TRUE;
4947 }
4948 return FALSE;
4949}
4950
4951/* Try to interpret the next token in ARG as a range of registers of type TYPE.
4952 Consume the token and return true on success, storing the register numbers
4953 in *REGNO1 and *REGNO2. Return false on failure. */
4954
4955static bfd_boolean
4956match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4957 unsigned int *regno1, unsigned int *regno2)
4958{
4959 if (match_reg (arg, type, regno1))
4960 {
4961 *regno2 = *regno1;
4962 return TRUE;
4963 }
4964 if (arg->token->type == OT_REG_RANGE
4965 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4966 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4967 && *regno1 <= *regno2)
4968 {
4969 ++arg->token;
4970 return TRUE;
4971 }
4972 return FALSE;
4973}
4974
a1d78564
RS
4975/* OP_INT matcher. */
4976
a92713e6 4977static bfd_boolean
a1d78564 4978match_int_operand (struct mips_arg_info *arg,
a92713e6 4979 const struct mips_operand *operand_base)
a1d78564
RS
4980{
4981 const struct mips_int_operand *operand;
3ccad066 4982 unsigned int uval;
a1d78564
RS
4983 int min_val, max_val, factor;
4984 offsetT sval;
a1d78564
RS
4985
4986 operand = (const struct mips_int_operand *) operand_base;
4987 factor = 1 << operand->shift;
3ccad066
RS
4988 min_val = mips_int_operand_min (operand);
4989 max_val = mips_int_operand_max (operand);
a1d78564 4990
d436c1c2
RS
4991 if (operand_base->lsb == 0
4992 && operand_base->size == 16
4993 && operand->shift == 0
4994 && operand->bias == 0
4995 && (operand->max_val == 32767 || operand->max_val == 65535))
a1d78564
RS
4996 {
4997 /* The operand can be relocated. */
a92713e6
RS
4998 if (!match_expression (arg, &offset_expr, offset_reloc))
4999 return FALSE;
5000
5001 if (offset_reloc[0] != BFD_RELOC_UNUSED)
a1d78564
RS
5002 /* Relocation operators were used. Accept the arguent and
5003 leave the relocation value in offset_expr and offset_relocs
5004 for the caller to process. */
a92713e6
RS
5005 return TRUE;
5006
5007 if (offset_expr.X_op != O_constant)
a1d78564 5008 {
60f20e8b
RS
5009 /* Accept non-constant operands if no later alternative matches,
5010 leaving it for the caller to process. */
5011 if (!arg->lax_match)
5012 return FALSE;
a92713e6
RS
5013 offset_reloc[0] = BFD_RELOC_LO16;
5014 return TRUE;
a1d78564 5015 }
a92713e6 5016
a1d78564
RS
5017 /* Clear the global state; we're going to install the operand
5018 ourselves. */
a92713e6 5019 sval = offset_expr.X_add_number;
a1d78564 5020 offset_expr.X_op = O_absent;
60f20e8b
RS
5021
5022 /* For compatibility with older assemblers, we accept
5023 0x8000-0xffff as signed 16-bit numbers when only
5024 signed numbers are allowed. */
5025 if (sval > max_val)
5026 {
5027 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5028 if (!arg->lax_match && sval <= max_val)
5029 return FALSE;
5030 }
a1d78564
RS
5031 }
5032 else
5033 {
1a00e612 5034 if (!match_const_int (arg, &sval))
a92713e6 5035 return FALSE;
a1d78564
RS
5036 }
5037
5038 arg->last_op_int = sval;
5039
1a00e612 5040 if (sval < min_val || sval > max_val || sval % factor)
a1d78564 5041 {
1a00e612
RS
5042 match_out_of_range (arg);
5043 return FALSE;
a1d78564
RS
5044 }
5045
5046 uval = (unsigned int) sval >> operand->shift;
5047 uval -= operand->bias;
5048
5049 /* Handle -mfix-cn63xxp1. */
5050 if (arg->opnum == 1
5051 && mips_fix_cn63xxp1
5052 && !mips_opts.micromips
5053 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5054 switch (uval)
5055 {
5056 case 5:
5057 case 25:
5058 case 26:
5059 case 27:
5060 case 28:
5061 case 29:
5062 case 30:
5063 case 31:
5064 /* These are ok. */
5065 break;
5066
5067 default:
5068 /* The rest must be changed to 28. */
5069 uval = 28;
5070 break;
5071 }
5072
5073 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5074 return TRUE;
a1d78564
RS
5075}
5076
5077/* OP_MAPPED_INT matcher. */
5078
a92713e6 5079static bfd_boolean
a1d78564 5080match_mapped_int_operand (struct mips_arg_info *arg,
a92713e6 5081 const struct mips_operand *operand_base)
a1d78564
RS
5082{
5083 const struct mips_mapped_int_operand *operand;
5084 unsigned int uval, num_vals;
5085 offsetT sval;
5086
5087 operand = (const struct mips_mapped_int_operand *) operand_base;
1a00e612 5088 if (!match_const_int (arg, &sval))
a92713e6 5089 return FALSE;
a1d78564
RS
5090
5091 num_vals = 1 << operand_base->size;
5092 for (uval = 0; uval < num_vals; uval++)
5093 if (operand->int_map[uval] == sval)
5094 break;
5095 if (uval == num_vals)
1a00e612
RS
5096 {
5097 match_out_of_range (arg);
5098 return FALSE;
5099 }
a1d78564
RS
5100
5101 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5102 return TRUE;
a1d78564
RS
5103}
5104
5105/* OP_MSB matcher. */
5106
a92713e6 5107static bfd_boolean
a1d78564 5108match_msb_operand (struct mips_arg_info *arg,
a92713e6 5109 const struct mips_operand *operand_base)
a1d78564
RS
5110{
5111 const struct mips_msb_operand *operand;
5112 int min_val, max_val, max_high;
5113 offsetT size, sval, high;
5114
5115 operand = (const struct mips_msb_operand *) operand_base;
5116 min_val = operand->bias;
5117 max_val = min_val + (1 << operand_base->size) - 1;
5118 max_high = operand->opsize;
5119
1a00e612 5120 if (!match_const_int (arg, &size))
a92713e6 5121 return FALSE;
a1d78564
RS
5122
5123 high = size + arg->last_op_int;
5124 sval = operand->add_lsb ? high : size;
5125
5126 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5127 {
1a00e612
RS
5128 match_out_of_range (arg);
5129 return FALSE;
a1d78564
RS
5130 }
5131 insn_insert_operand (arg->insn, operand_base, sval - min_val);
a92713e6 5132 return TRUE;
a1d78564
RS
5133}
5134
5135/* OP_REG matcher. */
5136
a92713e6 5137static bfd_boolean
a1d78564 5138match_reg_operand (struct mips_arg_info *arg,
a92713e6 5139 const struct mips_operand *operand_base)
a1d78564
RS
5140{
5141 const struct mips_reg_operand *operand;
a92713e6 5142 unsigned int regno, uval, num_vals;
a1d78564
RS
5143
5144 operand = (const struct mips_reg_operand *) operand_base;
a92713e6
RS
5145 if (!match_reg (arg, operand->reg_type, &regno))
5146 return FALSE;
a1d78564
RS
5147
5148 if (operand->reg_map)
5149 {
5150 num_vals = 1 << operand->root.size;
5151 for (uval = 0; uval < num_vals; uval++)
5152 if (operand->reg_map[uval] == regno)
5153 break;
5154 if (num_vals == uval)
a92713e6 5155 return FALSE;
a1d78564
RS
5156 }
5157 else
5158 uval = regno;
5159
a1d78564
RS
5160 arg->last_regno = regno;
5161 if (arg->opnum == 1)
5162 arg->dest_regno = regno;
5163 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5164 return TRUE;
a1d78564
RS
5165}
5166
5167/* OP_REG_PAIR matcher. */
5168
a92713e6 5169static bfd_boolean
a1d78564 5170match_reg_pair_operand (struct mips_arg_info *arg,
a92713e6 5171 const struct mips_operand *operand_base)
a1d78564
RS
5172{
5173 const struct mips_reg_pair_operand *operand;
a92713e6 5174 unsigned int regno1, regno2, uval, num_vals;
a1d78564
RS
5175
5176 operand = (const struct mips_reg_pair_operand *) operand_base;
a92713e6
RS
5177 if (!match_reg (arg, operand->reg_type, &regno1)
5178 || !match_char (arg, ',')
5179 || !match_reg (arg, operand->reg_type, &regno2))
5180 return FALSE;
a1d78564
RS
5181
5182 num_vals = 1 << operand_base->size;
5183 for (uval = 0; uval < num_vals; uval++)
5184 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5185 break;
5186 if (uval == num_vals)
a92713e6 5187 return FALSE;
a1d78564 5188
a1d78564 5189 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5190 return TRUE;
a1d78564
RS
5191}
5192
5193/* OP_PCREL matcher. The caller chooses the relocation type. */
5194
a92713e6
RS
5195static bfd_boolean
5196match_pcrel_operand (struct mips_arg_info *arg)
a1d78564 5197{
a92713e6
RS
5198 bfd_reloc_code_real_type r[3];
5199
5200 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
a1d78564
RS
5201}
5202
5203/* OP_PERF_REG matcher. */
5204
a92713e6 5205static bfd_boolean
a1d78564 5206match_perf_reg_operand (struct mips_arg_info *arg,
a92713e6 5207 const struct mips_operand *operand)
a1d78564
RS
5208{
5209 offsetT sval;
5210
1a00e612 5211 if (!match_const_int (arg, &sval))
a92713e6 5212 return FALSE;
a1d78564
RS
5213
5214 if (sval != 0
5215 && (sval != 1
5216 || (mips_opts.arch == CPU_R5900
5217 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5218 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5219 {
1a00e612
RS
5220 set_insn_error (arg->argnum, _("invalid performance register"));
5221 return FALSE;
a1d78564
RS
5222 }
5223
5224 insn_insert_operand (arg->insn, operand, sval);
a92713e6 5225 return TRUE;
a1d78564
RS
5226}
5227
5228/* OP_ADDIUSP matcher. */
5229
a92713e6 5230static bfd_boolean
a1d78564 5231match_addiusp_operand (struct mips_arg_info *arg,
a92713e6 5232 const struct mips_operand *operand)
a1d78564
RS
5233{
5234 offsetT sval;
5235 unsigned int uval;
5236
1a00e612 5237 if (!match_const_int (arg, &sval))
a92713e6 5238 return FALSE;
a1d78564
RS
5239
5240 if (sval % 4)
1a00e612
RS
5241 {
5242 match_out_of_range (arg);
5243 return FALSE;
5244 }
a1d78564
RS
5245
5246 sval /= 4;
5247 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
1a00e612
RS
5248 {
5249 match_out_of_range (arg);
5250 return FALSE;
5251 }
a1d78564
RS
5252
5253 uval = (unsigned int) sval;
5254 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5255 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5256 return TRUE;
a1d78564
RS
5257}
5258
5259/* OP_CLO_CLZ_DEST matcher. */
5260
a92713e6 5261static bfd_boolean
a1d78564 5262match_clo_clz_dest_operand (struct mips_arg_info *arg,
a92713e6 5263 const struct mips_operand *operand)
a1d78564
RS
5264{
5265 unsigned int regno;
5266
a92713e6
RS
5267 if (!match_reg (arg, OP_REG_GP, &regno))
5268 return FALSE;
a1d78564 5269
a1d78564 5270 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
a92713e6 5271 return TRUE;
a1d78564
RS
5272}
5273
7361da2c
AB
5274/* OP_CHECK_PREV matcher. */
5275
5276static bfd_boolean
5277match_check_prev_operand (struct mips_arg_info *arg,
5278 const struct mips_operand *operand_base)
5279{
5280 const struct mips_check_prev_operand *operand;
5281 unsigned int regno;
5282
5283 operand = (const struct mips_check_prev_operand *) operand_base;
5284
5285 if (!match_reg (arg, OP_REG_GP, &regno))
5286 return FALSE;
5287
5288 if (!operand->zero_ok && regno == 0)
5289 return FALSE;
5290
5291 if ((operand->less_than_ok && regno < arg->last_regno)
5292 || (operand->greater_than_ok && regno > arg->last_regno)
5293 || (operand->equal_ok && regno == arg->last_regno))
5294 {
5295 arg->last_regno = regno;
5296 insn_insert_operand (arg->insn, operand_base, regno);
5297 return TRUE;
5298 }
5299
5300 return FALSE;
5301}
5302
5303/* OP_SAME_RS_RT matcher. */
5304
5305static bfd_boolean
5306match_same_rs_rt_operand (struct mips_arg_info *arg,
5307 const struct mips_operand *operand)
5308{
5309 unsigned int regno;
5310
5311 if (!match_reg (arg, OP_REG_GP, &regno))
5312 return FALSE;
5313
5314 if (regno == 0)
5315 {
5316 set_insn_error (arg->argnum, _("the source register must not be $0"));
5317 return FALSE;
5318 }
5319
5320 arg->last_regno = regno;
5321
5322 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5323 return TRUE;
5324}
5325
a1d78564
RS
5326/* OP_LWM_SWM_LIST matcher. */
5327
a92713e6 5328static bfd_boolean
a1d78564 5329match_lwm_swm_list_operand (struct mips_arg_info *arg,
a92713e6 5330 const struct mips_operand *operand)
a1d78564 5331{
a92713e6
RS
5332 unsigned int reglist, sregs, ra, regno1, regno2;
5333 struct mips_arg_info reset;
a1d78564 5334
a92713e6
RS
5335 reglist = 0;
5336 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5337 return FALSE;
5338 do
5339 {
5340 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5341 {
5342 reglist |= 1 << FP;
5343 regno2 = S7;
5344 }
5345 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5346 reset = *arg;
5347 }
5348 while (match_char (arg, ',')
5349 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5350 *arg = reset;
a1d78564
RS
5351
5352 if (operand->size == 2)
5353 {
5354 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5355
5356 s0, ra
5357 s0, s1, ra, s2, s3
5358 s0-s2, ra
5359
5360 and any permutations of these. */
5361 if ((reglist & 0xfff1ffff) != 0x80010000)
a92713e6 5362 return FALSE;
a1d78564
RS
5363
5364 sregs = (reglist >> 17) & 7;
5365 ra = 0;
5366 }
5367 else
5368 {
5369 /* The list must include at least one of ra and s0-sN,
5370 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5371 which are $23 and $30 respectively.) E.g.:
5372
5373 ra
5374 s0
5375 ra, s0, s1, s2
5376 s0-s8
5377 s0-s5, ra
5378
5379 and any permutations of these. */
5380 if ((reglist & 0x3f00ffff) != 0)
a92713e6 5381 return FALSE;
a1d78564
RS
5382
5383 ra = (reglist >> 27) & 0x10;
5384 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5385 }
5386 sregs += 1;
5387 if ((sregs & -sregs) != sregs)
a92713e6 5388 return FALSE;
a1d78564
RS
5389
5390 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
a92713e6 5391 return TRUE;
a1d78564
RS
5392}
5393
364215c8
RS
5394/* OP_ENTRY_EXIT_LIST matcher. */
5395
a92713e6 5396static unsigned int
364215c8 5397match_entry_exit_operand (struct mips_arg_info *arg,
a92713e6 5398 const struct mips_operand *operand)
364215c8
RS
5399{
5400 unsigned int mask;
5401 bfd_boolean is_exit;
5402
5403 /* The format is the same for both ENTRY and EXIT, but the constraints
5404 are different. */
5405 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5406 mask = (is_exit ? 7 << 3 : 0);
a92713e6 5407 do
364215c8
RS
5408 {
5409 unsigned int regno1, regno2;
5410 bfd_boolean is_freg;
5411
a92713e6 5412 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
364215c8 5413 is_freg = FALSE;
a92713e6 5414 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
364215c8
RS
5415 is_freg = TRUE;
5416 else
a92713e6 5417 return FALSE;
364215c8
RS
5418
5419 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5420 {
5421 mask &= ~(7 << 3);
5422 mask |= (5 + regno2) << 3;
5423 }
5424 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5425 mask |= (regno2 - 3) << 3;
5426 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5427 mask |= (regno2 - 15) << 1;
5428 else if (regno1 == RA && regno2 == RA)
5429 mask |= 1;
5430 else
a92713e6 5431 return FALSE;
364215c8 5432 }
a92713e6
RS
5433 while (match_char (arg, ','));
5434
364215c8 5435 insn_insert_operand (arg->insn, operand, mask);
a92713e6 5436 return TRUE;
364215c8
RS
5437}
5438
5439/* OP_SAVE_RESTORE_LIST matcher. */
5440
a92713e6
RS
5441static bfd_boolean
5442match_save_restore_list_operand (struct mips_arg_info *arg)
364215c8
RS
5443{
5444 unsigned int opcode, args, statics, sregs;
5445 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
364215c8 5446 offsetT frame_size;
364215c8 5447
364215c8
RS
5448 opcode = arg->insn->insn_opcode;
5449 frame_size = 0;
5450 num_frame_sizes = 0;
5451 args = 0;
5452 statics = 0;
5453 sregs = 0;
a92713e6 5454 do
364215c8
RS
5455 {
5456 unsigned int regno1, regno2;
5457
a92713e6 5458 if (arg->token->type == OT_INTEGER)
364215c8
RS
5459 {
5460 /* Handle the frame size. */
1a00e612 5461 if (!match_const_int (arg, &frame_size))
a92713e6 5462 return FALSE;
364215c8 5463 num_frame_sizes += 1;
364215c8
RS
5464 }
5465 else
5466 {
a92713e6
RS
5467 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5468 return FALSE;
364215c8
RS
5469
5470 while (regno1 <= regno2)
5471 {
5472 if (regno1 >= 4 && regno1 <= 7)
5473 {
5474 if (num_frame_sizes == 0)
5475 /* args $a0-$a3 */
5476 args |= 1 << (regno1 - 4);
5477 else
5478 /* statics $a0-$a3 */
5479 statics |= 1 << (regno1 - 4);
5480 }
5481 else if (regno1 >= 16 && regno1 <= 23)
5482 /* $s0-$s7 */
5483 sregs |= 1 << (regno1 - 16);
5484 else if (regno1 == 30)
5485 /* $s8 */
5486 sregs |= 1 << 8;
5487 else if (regno1 == 31)
5488 /* Add $ra to insn. */
5489 opcode |= 0x40;
5490 else
a92713e6 5491 return FALSE;
364215c8
RS
5492 regno1 += 1;
5493 if (regno1 == 24)
5494 regno1 = 30;
5495 }
5496 }
364215c8 5497 }
a92713e6 5498 while (match_char (arg, ','));
364215c8
RS
5499
5500 /* Encode args/statics combination. */
5501 if (args & statics)
a92713e6 5502 return FALSE;
364215c8
RS
5503 else if (args == 0xf)
5504 /* All $a0-$a3 are args. */
5505 opcode |= MIPS16_ALL_ARGS << 16;
5506 else if (statics == 0xf)
5507 /* All $a0-$a3 are statics. */
5508 opcode |= MIPS16_ALL_STATICS << 16;
5509 else
5510 {
5511 /* Count arg registers. */
5512 num_args = 0;
5513 while (args & 0x1)
5514 {
5515 args >>= 1;
5516 num_args += 1;
5517 }
5518 if (args != 0)
a92713e6 5519 return FALSE;
364215c8
RS
5520
5521 /* Count static registers. */
5522 num_statics = 0;
5523 while (statics & 0x8)
5524 {
5525 statics = (statics << 1) & 0xf;
5526 num_statics += 1;
5527 }
5528 if (statics != 0)
a92713e6 5529 return FALSE;
364215c8
RS
5530
5531 /* Encode args/statics. */
5532 opcode |= ((num_args << 2) | num_statics) << 16;
5533 }
5534
5535 /* Encode $s0/$s1. */
5536 if (sregs & (1 << 0)) /* $s0 */
5537 opcode |= 0x20;
5538 if (sregs & (1 << 1)) /* $s1 */
5539 opcode |= 0x10;
5540 sregs >>= 2;
5541
5542 /* Encode $s2-$s8. */
5543 num_sregs = 0;
5544 while (sregs & 1)
5545 {
5546 sregs >>= 1;
5547 num_sregs += 1;
5548 }
5549 if (sregs != 0)
a92713e6 5550 return FALSE;
364215c8
RS
5551 opcode |= num_sregs << 24;
5552
5553 /* Encode frame size. */
5554 if (num_frame_sizes == 0)
1a00e612
RS
5555 {
5556 set_insn_error (arg->argnum, _("missing frame size"));
5557 return FALSE;
5558 }
5559 if (num_frame_sizes > 1)
5560 {
5561 set_insn_error (arg->argnum, _("frame size specified twice"));
5562 return FALSE;
5563 }
5564 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5565 {
5566 set_insn_error (arg->argnum, _("invalid frame size"));
5567 return FALSE;
5568 }
5569 if (frame_size != 128 || (opcode >> 16) != 0)
364215c8
RS
5570 {
5571 frame_size /= 8;
5572 opcode |= (((frame_size & 0xf0) << 16)
5573 | (frame_size & 0x0f));
5574 }
5575
364215c8
RS
5576 /* Finally build the instruction. */
5577 if ((opcode >> 16) != 0 || frame_size == 0)
5578 opcode |= MIPS16_EXTEND;
5579 arg->insn->insn_opcode = opcode;
a92713e6 5580 return TRUE;
364215c8
RS
5581}
5582
a1d78564
RS
5583/* OP_MDMX_IMM_REG matcher. */
5584
a92713e6 5585static bfd_boolean
a1d78564 5586match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
a92713e6 5587 const struct mips_operand *operand)
a1d78564 5588{
a92713e6 5589 unsigned int regno, uval;
a1d78564
RS
5590 bfd_boolean is_qh;
5591 const struct mips_opcode *opcode;
5592
5593 /* The mips_opcode records whether this is an octobyte or quadhalf
5594 instruction. Start out with that bit in place. */
5595 opcode = arg->insn->insn_mo;
5596 uval = mips_extract_operand (operand, opcode->match);
5597 is_qh = (uval != 0);
5598
56d438b1 5599 if (arg->token->type == OT_REG)
a1d78564
RS
5600 {
5601 if ((opcode->membership & INSN_5400)
5602 && strcmp (opcode->name, "rzu.ob") == 0)
5603 {
1a00e612
RS
5604 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5605 arg->argnum);
5606 return FALSE;
a1d78564
RS
5607 }
5608
56d438b1
CF
5609 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5610 return FALSE;
5611 ++arg->token;
5612
a1d78564
RS
5613 /* Check whether this is a vector register or a broadcast of
5614 a single element. */
56d438b1 5615 if (arg->token->type == OT_INTEGER_INDEX)
a1d78564 5616 {
56d438b1 5617 if (arg->token->u.index > (is_qh ? 3 : 7))
a1d78564 5618 {
1a00e612
RS
5619 set_insn_error (arg->argnum, _("invalid element selector"));
5620 return FALSE;
a1d78564 5621 }
56d438b1
CF
5622 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5623 ++arg->token;
a1d78564
RS
5624 }
5625 else
5626 {
5627 /* A full vector. */
5628 if ((opcode->membership & INSN_5400)
5629 && (strcmp (opcode->name, "sll.ob") == 0
5630 || strcmp (opcode->name, "srl.ob") == 0))
5631 {
1a00e612
RS
5632 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5633 arg->argnum);
5634 return FALSE;
a1d78564
RS
5635 }
5636
5637 if (is_qh)
5638 uval |= MDMX_FMTSEL_VEC_QH << 5;
5639 else
5640 uval |= MDMX_FMTSEL_VEC_OB << 5;
5641 }
a1d78564
RS
5642 uval |= regno;
5643 }
5644 else
5645 {
5646 offsetT sval;
5647
1a00e612 5648 if (!match_const_int (arg, &sval))
a92713e6 5649 return FALSE;
a1d78564
RS
5650 if (sval < 0 || sval > 31)
5651 {
1a00e612
RS
5652 match_out_of_range (arg);
5653 return FALSE;
a1d78564
RS
5654 }
5655 uval |= (sval & 31);
5656 if (is_qh)
5657 uval |= MDMX_FMTSEL_IMM_QH << 5;
5658 else
5659 uval |= MDMX_FMTSEL_IMM_OB << 5;
5660 }
5661 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5662 return TRUE;
a1d78564
RS
5663}
5664
56d438b1
CF
5665/* OP_IMM_INDEX matcher. */
5666
5667static bfd_boolean
5668match_imm_index_operand (struct mips_arg_info *arg,
5669 const struct mips_operand *operand)
5670{
5671 unsigned int max_val;
5672
5673 if (arg->token->type != OT_INTEGER_INDEX)
5674 return FALSE;
5675
5676 max_val = (1 << operand->size) - 1;
5677 if (arg->token->u.index > max_val)
5678 {
5679 match_out_of_range (arg);
5680 return FALSE;
5681 }
5682 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5683 ++arg->token;
5684 return TRUE;
5685}
5686
5687/* OP_REG_INDEX matcher. */
5688
5689static bfd_boolean
5690match_reg_index_operand (struct mips_arg_info *arg,
5691 const struct mips_operand *operand)
5692{
5693 unsigned int regno;
5694
5695 if (arg->token->type != OT_REG_INDEX)
5696 return FALSE;
5697
5698 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5699 return FALSE;
5700
5701 insn_insert_operand (arg->insn, operand, regno);
5702 ++arg->token;
5703 return TRUE;
5704}
5705
a1d78564
RS
5706/* OP_PC matcher. */
5707
a92713e6
RS
5708static bfd_boolean
5709match_pc_operand (struct mips_arg_info *arg)
a1d78564 5710{
a92713e6
RS
5711 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5712 {
5713 ++arg->token;
5714 return TRUE;
5715 }
5716 return FALSE;
a1d78564
RS
5717}
5718
7361da2c
AB
5719/* OP_NON_ZERO_REG matcher. */
5720
5721static bfd_boolean
5722match_non_zero_reg_operand (struct mips_arg_info *arg,
5723 const struct mips_operand *operand)
5724{
5725 unsigned int regno;
5726
5727 if (!match_reg (arg, OP_REG_GP, &regno))
5728 return FALSE;
5729
5730 if (regno == 0)
5731 return FALSE;
5732
5733 arg->last_regno = regno;
5734 insn_insert_operand (arg->insn, operand, regno);
5735 return TRUE;
5736}
5737
a1d78564
RS
5738/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5739 register that we need to match. */
5740
a92713e6
RS
5741static bfd_boolean
5742match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
a1d78564
RS
5743{
5744 unsigned int regno;
5745
a92713e6 5746 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
a1d78564
RS
5747}
5748
89565f1b
RS
5749/* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5750 the length of the value in bytes (4 for float, 8 for double) and
5751 USING_GPRS says whether the destination is a GPR rather than an FPR.
5752
5753 Return the constant in IMM and OFFSET as follows:
5754
5755 - If the constant should be loaded via memory, set IMM to O_absent and
5756 OFFSET to the memory address.
5757
5758 - Otherwise, if the constant should be loaded into two 32-bit registers,
5759 set IMM to the O_constant to load into the high register and OFFSET
5760 to the corresponding value for the low register.
5761
5762 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5763
5764 These constants only appear as the last operand in an instruction,
5765 and every instruction that accepts them in any variant accepts them
5766 in all variants. This means we don't have to worry about backing out
5767 any changes if the instruction does not match. We just match
5768 unconditionally and report an error if the constant is invalid. */
5769
a92713e6
RS
5770static bfd_boolean
5771match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5772 expressionS *offset, int length, bfd_boolean using_gprs)
89565f1b 5773{
a92713e6 5774 char *p;
89565f1b
RS
5775 segT seg, new_seg;
5776 subsegT subseg;
5777 const char *newname;
a92713e6 5778 unsigned char *data;
89565f1b
RS
5779
5780 /* Where the constant is placed is based on how the MIPS assembler
5781 does things:
5782
5783 length == 4 && using_gprs -- immediate value only
5784 length == 8 && using_gprs -- .rdata or immediate value
5785 length == 4 && !using_gprs -- .lit4 or immediate value
5786 length == 8 && !using_gprs -- .lit8 or immediate value
5787
5788 The .lit4 and .lit8 sections are only used if permitted by the
5789 -G argument. */
a92713e6 5790 if (arg->token->type != OT_FLOAT)
1a00e612
RS
5791 {
5792 set_insn_error (arg->argnum, _("floating-point expression required"));
5793 return FALSE;
5794 }
a92713e6
RS
5795
5796 gas_assert (arg->token->u.flt.length == length);
5797 data = arg->token->u.flt.data;
5798 ++arg->token;
89565f1b
RS
5799
5800 /* Handle 32-bit constants for which an immediate value is best. */
5801 if (length == 4
5802 && (using_gprs
5803 || g_switch_value < 4
5804 || (data[0] == 0 && data[1] == 0)
5805 || (data[2] == 0 && data[3] == 0)))
5806 {
5807 imm->X_op = O_constant;
5808 if (!target_big_endian)
5809 imm->X_add_number = bfd_getl32 (data);
5810 else
5811 imm->X_add_number = bfd_getb32 (data);
5812 offset->X_op = O_absent;
a92713e6 5813 return TRUE;
89565f1b
RS
5814 }
5815
5816 /* Handle 64-bit constants for which an immediate value is best. */
5817 if (length == 8
5818 && !mips_disable_float_construction
351cdf24
MF
5819 /* Constants can only be constructed in GPRs and copied to FPRs if the
5820 GPRs are at least as wide as the FPRs or MTHC1 is available.
5821 Unlike most tests for 32-bit floating-point registers this check
5822 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5823 permit 64-bit moves without MXHC1.
5824 Force the constant into memory otherwise. */
5825 && (using_gprs
5826 || GPR_SIZE == 64
5827 || ISA_HAS_MXHC1 (mips_opts.isa)
5828 || FPR_SIZE == 32)
89565f1b
RS
5829 && ((data[0] == 0 && data[1] == 0)
5830 || (data[2] == 0 && data[3] == 0))
5831 && ((data[4] == 0 && data[5] == 0)
5832 || (data[6] == 0 && data[7] == 0)))
5833 {
5834 /* The value is simple enough to load with a couple of instructions.
5835 If using 32-bit registers, set IMM to the high order 32 bits and
5836 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5837 64 bit constant. */
351cdf24 5838 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
89565f1b
RS
5839 {
5840 imm->X_op = O_constant;
5841 offset->X_op = O_constant;
5842 if (!target_big_endian)
5843 {
5844 imm->X_add_number = bfd_getl32 (data + 4);
5845 offset->X_add_number = bfd_getl32 (data);
5846 }
5847 else
5848 {
5849 imm->X_add_number = bfd_getb32 (data);
5850 offset->X_add_number = bfd_getb32 (data + 4);
5851 }
5852 if (offset->X_add_number == 0)
5853 offset->X_op = O_absent;
5854 }
5855 else
5856 {
5857 imm->X_op = O_constant;
5858 if (!target_big_endian)
5859 imm->X_add_number = bfd_getl64 (data);
5860 else
5861 imm->X_add_number = bfd_getb64 (data);
5862 offset->X_op = O_absent;
5863 }
a92713e6 5864 return TRUE;
89565f1b
RS
5865 }
5866
5867 /* Switch to the right section. */
5868 seg = now_seg;
5869 subseg = now_subseg;
5870 if (length == 4)
5871 {
5872 gas_assert (!using_gprs && g_switch_value >= 4);
5873 newname = ".lit4";
5874 }
5875 else
5876 {
5877 if (using_gprs || g_switch_value < 8)
5878 newname = RDATA_SECTION_NAME;
5879 else
5880 newname = ".lit8";
5881 }
5882
5883 new_seg = subseg_new (newname, (subsegT) 0);
5884 bfd_set_section_flags (stdoutput, new_seg,
5885 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5886 frag_align (length == 4 ? 2 : 3, 0, 0);
5887 if (strncmp (TARGET_OS, "elf", 3) != 0)
5888 record_alignment (new_seg, 4);
5889 else
5890 record_alignment (new_seg, length == 4 ? 2 : 3);
5891 if (seg == now_seg)
1661c76c 5892 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
89565f1b
RS
5893
5894 /* Set the argument to the current address in the section. */
5895 imm->X_op = O_absent;
5896 offset->X_op = O_symbol;
5897 offset->X_add_symbol = symbol_temp_new_now ();
5898 offset->X_add_number = 0;
5899
5900 /* Put the floating point number into the section. */
5901 p = frag_more (length);
5902 memcpy (p, data, length);
5903
5904 /* Switch back to the original section. */
5905 subseg_set (seg, subseg);
a92713e6 5906 return TRUE;
89565f1b
RS
5907}
5908
14daeee3
RS
5909/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5910 them. */
5911
5912static bfd_boolean
5913match_vu0_suffix_operand (struct mips_arg_info *arg,
5914 const struct mips_operand *operand,
5915 bfd_boolean match_p)
5916{
5917 unsigned int uval;
5918
5919 /* The operand can be an XYZW mask or a single 2-bit channel index
5920 (with X being 0). */
5921 gas_assert (operand->size == 2 || operand->size == 4);
5922
ee5734f0 5923 /* The suffix can be omitted when it is already part of the opcode. */
14daeee3 5924 if (arg->token->type != OT_CHANNELS)
ee5734f0 5925 return match_p;
14daeee3
RS
5926
5927 uval = arg->token->u.channels;
5928 if (operand->size == 2)
5929 {
5930 /* Check that a single bit is set and convert it into a 2-bit index. */
5931 if ((uval & -uval) != uval)
5932 return FALSE;
5933 uval = 4 - ffs (uval);
5934 }
5935
5936 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5937 return FALSE;
5938
5939 ++arg->token;
5940 if (!match_p)
5941 insn_insert_operand (arg->insn, operand, uval);
5942 return TRUE;
5943}
5944
a1d78564
RS
5945/* S is the text seen for ARG. Match it against OPERAND. Return the end
5946 of the argument text if the match is successful, otherwise return null. */
5947
a92713e6 5948static bfd_boolean
a1d78564 5949match_operand (struct mips_arg_info *arg,
a92713e6 5950 const struct mips_operand *operand)
a1d78564
RS
5951{
5952 switch (operand->type)
5953 {
5954 case OP_INT:
a92713e6 5955 return match_int_operand (arg, operand);
a1d78564
RS
5956
5957 case OP_MAPPED_INT:
a92713e6 5958 return match_mapped_int_operand (arg, operand);
a1d78564
RS
5959
5960 case OP_MSB:
a92713e6 5961 return match_msb_operand (arg, operand);
a1d78564
RS
5962
5963 case OP_REG:
0f35dbc4 5964 case OP_OPTIONAL_REG:
a92713e6 5965 return match_reg_operand (arg, operand);
a1d78564
RS
5966
5967 case OP_REG_PAIR:
a92713e6 5968 return match_reg_pair_operand (arg, operand);
a1d78564
RS
5969
5970 case OP_PCREL:
a92713e6 5971 return match_pcrel_operand (arg);
a1d78564
RS
5972
5973 case OP_PERF_REG:
a92713e6 5974 return match_perf_reg_operand (arg, operand);
a1d78564
RS
5975
5976 case OP_ADDIUSP_INT:
a92713e6 5977 return match_addiusp_operand (arg, operand);
a1d78564
RS
5978
5979 case OP_CLO_CLZ_DEST:
a92713e6 5980 return match_clo_clz_dest_operand (arg, operand);
a1d78564
RS
5981
5982 case OP_LWM_SWM_LIST:
a92713e6 5983 return match_lwm_swm_list_operand (arg, operand);
a1d78564
RS
5984
5985 case OP_ENTRY_EXIT_LIST:
a92713e6 5986 return match_entry_exit_operand (arg, operand);
364215c8 5987
a1d78564 5988 case OP_SAVE_RESTORE_LIST:
a92713e6 5989 return match_save_restore_list_operand (arg);
a1d78564
RS
5990
5991 case OP_MDMX_IMM_REG:
a92713e6 5992 return match_mdmx_imm_reg_operand (arg, operand);
a1d78564
RS
5993
5994 case OP_REPEAT_DEST_REG:
a92713e6 5995 return match_tied_reg_operand (arg, arg->dest_regno);
a1d78564
RS
5996
5997 case OP_REPEAT_PREV_REG:
a92713e6 5998 return match_tied_reg_operand (arg, arg->last_regno);
a1d78564
RS
5999
6000 case OP_PC:
a92713e6 6001 return match_pc_operand (arg);
14daeee3
RS
6002
6003 case OP_VU0_SUFFIX:
6004 return match_vu0_suffix_operand (arg, operand, FALSE);
6005
6006 case OP_VU0_MATCH_SUFFIX:
6007 return match_vu0_suffix_operand (arg, operand, TRUE);
56d438b1
CF
6008
6009 case OP_IMM_INDEX:
6010 return match_imm_index_operand (arg, operand);
6011
6012 case OP_REG_INDEX:
6013 return match_reg_index_operand (arg, operand);
7361da2c
AB
6014
6015 case OP_SAME_RS_RT:
6016 return match_same_rs_rt_operand (arg, operand);
6017
6018 case OP_CHECK_PREV:
6019 return match_check_prev_operand (arg, operand);
6020
6021 case OP_NON_ZERO_REG:
6022 return match_non_zero_reg_operand (arg, operand);
a1d78564
RS
6023 }
6024 abort ();
6025}
6026
6027/* ARG is the state after successfully matching an instruction.
6028 Issue any queued-up warnings. */
6029
6030static void
6031check_completed_insn (struct mips_arg_info *arg)
6032{
6033 if (arg->seen_at)
6034 {
6035 if (AT == ATREG)
1661c76c 6036 as_warn (_("used $at without \".set noat\""));
a1d78564 6037 else
1661c76c 6038 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
a1d78564
RS
6039 }
6040}
a1d78564 6041
85fcb30f
RS
6042/* Return true if modifying general-purpose register REG needs a delay. */
6043
6044static bfd_boolean
6045reg_needs_delay (unsigned int reg)
6046{
6047 unsigned long prev_pinfo;
6048
6049 prev_pinfo = history[0].insn_mo->pinfo;
6050 if (!mips_opts.noreorder
67dc82bc 6051 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
43885403 6052 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
85fcb30f
RS
6053 && (gpr_write_mask (&history[0]) & (1 << reg)))
6054 return TRUE;
6055
6056 return FALSE;
6057}
6058
71400594
RS
6059/* Classify an instruction according to the FIX_VR4120_* enumeration.
6060 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6061 by VR4120 errata. */
4d7206a2 6062
71400594
RS
6063static unsigned int
6064classify_vr4120_insn (const char *name)
252b5132 6065{
71400594
RS
6066 if (strncmp (name, "macc", 4) == 0)
6067 return FIX_VR4120_MACC;
6068 if (strncmp (name, "dmacc", 5) == 0)
6069 return FIX_VR4120_DMACC;
6070 if (strncmp (name, "mult", 4) == 0)
6071 return FIX_VR4120_MULT;
6072 if (strncmp (name, "dmult", 5) == 0)
6073 return FIX_VR4120_DMULT;
6074 if (strstr (name, "div"))
6075 return FIX_VR4120_DIV;
6076 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6077 return FIX_VR4120_MTHILO;
6078 return NUM_FIX_VR4120_CLASSES;
6079}
252b5132 6080
a8d14a88
CM
6081#define INSN_ERET 0x42000018
6082#define INSN_DERET 0x4200001f
6083#define INSN_DMULT 0x1c
6084#define INSN_DMULTU 0x1d
ff239038 6085
71400594
RS
6086/* Return the number of instructions that must separate INSN1 and INSN2,
6087 where INSN1 is the earlier instruction. Return the worst-case value
6088 for any INSN2 if INSN2 is null. */
252b5132 6089
71400594
RS
6090static unsigned int
6091insns_between (const struct mips_cl_insn *insn1,
6092 const struct mips_cl_insn *insn2)
6093{
6094 unsigned long pinfo1, pinfo2;
4c260379 6095 unsigned int mask;
71400594 6096
85fcb30f
RS
6097 /* If INFO2 is null, pessimistically assume that all flags are set for
6098 the second instruction. */
71400594
RS
6099 pinfo1 = insn1->insn_mo->pinfo;
6100 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
252b5132 6101
71400594
RS
6102 /* For most targets, write-after-read dependencies on the HI and LO
6103 registers must be separated by at least two instructions. */
6104 if (!hilo_interlocks)
252b5132 6105 {
71400594
RS
6106 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6107 return 2;
6108 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6109 return 2;
6110 }
6111
6112 /* If we're working around r7000 errata, there must be two instructions
6113 between an mfhi or mflo and any instruction that uses the result. */
6114 if (mips_7000_hilo_fix
df58fc94 6115 && !mips_opts.micromips
71400594 6116 && MF_HILO_INSN (pinfo1)
85fcb30f 6117 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
71400594
RS
6118 return 2;
6119
ff239038
CM
6120 /* If we're working around 24K errata, one instruction is required
6121 if an ERET or DERET is followed by a branch instruction. */
df58fc94 6122 if (mips_fix_24k && !mips_opts.micromips)
ff239038
CM
6123 {
6124 if (insn1->insn_opcode == INSN_ERET
6125 || insn1->insn_opcode == INSN_DERET)
6126 {
6127 if (insn2 == NULL
6128 || insn2->insn_opcode == INSN_ERET
6129 || insn2->insn_opcode == INSN_DERET
11625dd8 6130 || delayed_branch_p (insn2))
ff239038
CM
6131 return 1;
6132 }
6133 }
6134
a8d14a88
CM
6135 /* If we're working around PMC RM7000 errata, there must be three
6136 nops between a dmult and a load instruction. */
6137 if (mips_fix_rm7000 && !mips_opts.micromips)
6138 {
6139 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6140 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6141 {
6142 if (pinfo2 & INSN_LOAD_MEMORY)
6143 return 3;
6144 }
6145 }
6146
71400594
RS
6147 /* If working around VR4120 errata, check for combinations that need
6148 a single intervening instruction. */
df58fc94 6149 if (mips_fix_vr4120 && !mips_opts.micromips)
71400594
RS
6150 {
6151 unsigned int class1, class2;
252b5132 6152
71400594
RS
6153 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6154 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
252b5132 6155 {
71400594
RS
6156 if (insn2 == NULL)
6157 return 1;
6158 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6159 if (vr4120_conflicts[class1] & (1 << class2))
6160 return 1;
252b5132 6161 }
71400594
RS
6162 }
6163
df58fc94 6164 if (!HAVE_CODE_COMPRESSION)
71400594
RS
6165 {
6166 /* Check for GPR or coprocessor load delays. All such delays
6167 are on the RT register. */
6168 /* Itbl support may require additional care here. */
67dc82bc 6169 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
43885403 6170 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
252b5132 6171 {
85fcb30f 6172 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
71400594
RS
6173 return 1;
6174 }
6175
6176 /* Check for generic coprocessor hazards.
6177
6178 This case is not handled very well. There is no special
6179 knowledge of CP0 handling, and the coprocessors other than
6180 the floating point unit are not distinguished at all. */
6181 /* Itbl support may require additional care here. FIXME!
6182 Need to modify this to include knowledge about
6183 user specified delays! */
43885403 6184 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
71400594
RS
6185 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6186 {
6187 /* Handle cases where INSN1 writes to a known general coprocessor
6188 register. There must be a one instruction delay before INSN2
6189 if INSN2 reads that register, otherwise no delay is needed. */
4c260379
RS
6190 mask = fpr_write_mask (insn1);
6191 if (mask != 0)
252b5132 6192 {
4c260379 6193 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
71400594 6194 return 1;
252b5132
RH
6195 }
6196 else
6197 {
71400594
RS
6198 /* Read-after-write dependencies on the control registers
6199 require a two-instruction gap. */
6200 if ((pinfo1 & INSN_WRITE_COND_CODE)
6201 && (pinfo2 & INSN_READ_COND_CODE))
6202 return 2;
6203
6204 /* We don't know exactly what INSN1 does. If INSN2 is
6205 also a coprocessor instruction, assume there must be
6206 a one instruction gap. */
6207 if (pinfo2 & INSN_COP)
6208 return 1;
252b5132
RH
6209 }
6210 }
6b76fefe 6211
71400594
RS
6212 /* Check for read-after-write dependencies on the coprocessor
6213 control registers in cases where INSN1 does not need a general
6214 coprocessor delay. This means that INSN1 is a floating point
6215 comparison instruction. */
6216 /* Itbl support may require additional care here. */
6217 else if (!cop_interlocks
6218 && (pinfo1 & INSN_WRITE_COND_CODE)
6219 && (pinfo2 & INSN_READ_COND_CODE))
6220 return 1;
6221 }
6b76fefe 6222
7361da2c
AB
6223 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6224 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6225 and pause. */
6226 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6227 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6228 || (insn2 && delayed_branch_p (insn2))))
6229 return 1;
6230
71400594
RS
6231 return 0;
6232}
6b76fefe 6233
7d8e00cf
RS
6234/* Return the number of nops that would be needed to work around the
6235 VR4130 mflo/mfhi errata if instruction INSN immediately followed
932d1a1b
RS
6236 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6237 that are contained within the first IGNORE instructions of HIST. */
7d8e00cf
RS
6238
6239static int
932d1a1b 6240nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
7d8e00cf
RS
6241 const struct mips_cl_insn *insn)
6242{
4c260379
RS
6243 int i, j;
6244 unsigned int mask;
7d8e00cf
RS
6245
6246 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6247 are not affected by the errata. */
6248 if (insn != 0
6249 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6250 || strcmp (insn->insn_mo->name, "mtlo") == 0
6251 || strcmp (insn->insn_mo->name, "mthi") == 0))
6252 return 0;
6253
6254 /* Search for the first MFLO or MFHI. */
6255 for (i = 0; i < MAX_VR4130_NOPS; i++)
91d6fa6a 6256 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
7d8e00cf
RS
6257 {
6258 /* Extract the destination register. */
4c260379 6259 mask = gpr_write_mask (&hist[i]);
7d8e00cf
RS
6260
6261 /* No nops are needed if INSN reads that register. */
4c260379 6262 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
7d8e00cf
RS
6263 return 0;
6264
6265 /* ...or if any of the intervening instructions do. */
6266 for (j = 0; j < i; j++)
4c260379 6267 if (gpr_read_mask (&hist[j]) & mask)
7d8e00cf
RS
6268 return 0;
6269
932d1a1b
RS
6270 if (i >= ignore)
6271 return MAX_VR4130_NOPS - i;
7d8e00cf
RS
6272 }
6273 return 0;
6274}
6275
15be625d
CM
6276#define BASE_REG_EQ(INSN1, INSN2) \
6277 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6278 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6279
6280/* Return the minimum alignment for this store instruction. */
6281
6282static int
6283fix_24k_align_to (const struct mips_opcode *mo)
6284{
6285 if (strcmp (mo->name, "sh") == 0)
6286 return 2;
6287
6288 if (strcmp (mo->name, "swc1") == 0
6289 || strcmp (mo->name, "swc2") == 0
6290 || strcmp (mo->name, "sw") == 0
6291 || strcmp (mo->name, "sc") == 0
6292 || strcmp (mo->name, "s.s") == 0)
6293 return 4;
6294
6295 if (strcmp (mo->name, "sdc1") == 0
6296 || strcmp (mo->name, "sdc2") == 0
6297 || strcmp (mo->name, "s.d") == 0)
6298 return 8;
6299
6300 /* sb, swl, swr */
6301 return 1;
6302}
6303
6304struct fix_24k_store_info
6305 {
6306 /* Immediate offset, if any, for this store instruction. */
6307 short off;
6308 /* Alignment required by this store instruction. */
6309 int align_to;
6310 /* True for register offsets. */
6311 int register_offset;
6312 };
6313
6314/* Comparison function used by qsort. */
6315
6316static int
6317fix_24k_sort (const void *a, const void *b)
6318{
6319 const struct fix_24k_store_info *pos1 = a;
6320 const struct fix_24k_store_info *pos2 = b;
6321
6322 return (pos1->off - pos2->off);
6323}
6324
6325/* INSN is a store instruction. Try to record the store information
6326 in STINFO. Return false if the information isn't known. */
6327
6328static bfd_boolean
6329fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
ab9794cf 6330 const struct mips_cl_insn *insn)
15be625d
CM
6331{
6332 /* The instruction must have a known offset. */
6333 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6334 return FALSE;
6335
6336 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6337 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6338 return TRUE;
6339}
6340
932d1a1b
RS
6341/* Return the number of nops that would be needed to work around the 24k
6342 "lost data on stores during refill" errata if instruction INSN
6343 immediately followed the 2 instructions described by HIST.
6344 Ignore hazards that are contained within the first IGNORE
6345 instructions of HIST.
6346
6347 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6348 for the data cache refills and store data. The following describes
6349 the scenario where the store data could be lost.
6350
6351 * A data cache miss, due to either a load or a store, causing fill
6352 data to be supplied by the memory subsystem
6353 * The first three doublewords of fill data are returned and written
6354 into the cache
6355 * A sequence of four stores occurs in consecutive cycles around the
6356 final doubleword of the fill:
6357 * Store A
6358 * Store B
6359 * Store C
6360 * Zero, One or more instructions
6361 * Store D
6362
6363 The four stores A-D must be to different doublewords of the line that
6364 is being filled. The fourth instruction in the sequence above permits
6365 the fill of the final doubleword to be transferred from the FSB into
6366 the cache. In the sequence above, the stores may be either integer
6367 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6368 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6369 different doublewords on the line. If the floating point unit is
6370 running in 1:2 mode, it is not possible to create the sequence above
6371 using only floating point store instructions.
15be625d
CM
6372
6373 In this case, the cache line being filled is incorrectly marked
6374 invalid, thereby losing the data from any store to the line that
6375 occurs between the original miss and the completion of the five
6376 cycle sequence shown above.
6377
932d1a1b 6378 The workarounds are:
15be625d 6379
932d1a1b
RS
6380 * Run the data cache in write-through mode.
6381 * Insert a non-store instruction between
6382 Store A and Store B or Store B and Store C. */
3739860c 6383
15be625d 6384static int
932d1a1b 6385nops_for_24k (int ignore, const struct mips_cl_insn *hist,
15be625d
CM
6386 const struct mips_cl_insn *insn)
6387{
6388 struct fix_24k_store_info pos[3];
6389 int align, i, base_offset;
6390
932d1a1b
RS
6391 if (ignore >= 2)
6392 return 0;
6393
ab9794cf
RS
6394 /* If the previous instruction wasn't a store, there's nothing to
6395 worry about. */
15be625d
CM
6396 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6397 return 0;
6398
ab9794cf
RS
6399 /* If the instructions after the previous one are unknown, we have
6400 to assume the worst. */
6401 if (!insn)
15be625d
CM
6402 return 1;
6403
ab9794cf
RS
6404 /* Check whether we are dealing with three consecutive stores. */
6405 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6406 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
15be625d
CM
6407 return 0;
6408
6409 /* If we don't know the relationship between the store addresses,
6410 assume the worst. */
ab9794cf 6411 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
15be625d
CM
6412 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6413 return 1;
6414
6415 if (!fix_24k_record_store_info (&pos[0], insn)
6416 || !fix_24k_record_store_info (&pos[1], &hist[0])
6417 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6418 return 1;
6419
6420 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6421
6422 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6423 X bytes and such that the base register + X is known to be aligned
6424 to align bytes. */
6425
6426 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6427 align = 8;
6428 else
6429 {
6430 align = pos[0].align_to;
6431 base_offset = pos[0].off;
6432 for (i = 1; i < 3; i++)
6433 if (align < pos[i].align_to)
6434 {
6435 align = pos[i].align_to;
6436 base_offset = pos[i].off;
6437 }
6438 for (i = 0; i < 3; i++)
6439 pos[i].off -= base_offset;
6440 }
6441
6442 pos[0].off &= ~align + 1;
6443 pos[1].off &= ~align + 1;
6444 pos[2].off &= ~align + 1;
6445
6446 /* If any two stores write to the same chunk, they also write to the
6447 same doubleword. The offsets are still sorted at this point. */
6448 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6449 return 0;
6450
6451 /* A range of at least 9 bytes is needed for the stores to be in
6452 non-overlapping doublewords. */
6453 if (pos[2].off - pos[0].off <= 8)
6454 return 0;
6455
6456 if (pos[2].off - pos[1].off >= 24
6457 || pos[1].off - pos[0].off >= 24
6458 || pos[2].off - pos[0].off >= 32)
6459 return 0;
6460
6461 return 1;
6462}
6463
71400594 6464/* Return the number of nops that would be needed if instruction INSN
91d6fa6a 6465 immediately followed the MAX_NOPS instructions given by HIST,
932d1a1b
RS
6466 where HIST[0] is the most recent instruction. Ignore hazards
6467 between INSN and the first IGNORE instructions in HIST.
6468
6469 If INSN is null, return the worse-case number of nops for any
6470 instruction. */
bdaaa2e1 6471
71400594 6472static int
932d1a1b 6473nops_for_insn (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6474 const struct mips_cl_insn *insn)
6475{
6476 int i, nops, tmp_nops;
bdaaa2e1 6477
71400594 6478 nops = 0;
932d1a1b 6479 for (i = ignore; i < MAX_DELAY_NOPS; i++)
65b02341 6480 {
91d6fa6a 6481 tmp_nops = insns_between (hist + i, insn) - i;
65b02341
RS
6482 if (tmp_nops > nops)
6483 nops = tmp_nops;
6484 }
7d8e00cf 6485
df58fc94 6486 if (mips_fix_vr4130 && !mips_opts.micromips)
7d8e00cf 6487 {
932d1a1b 6488 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
7d8e00cf
RS
6489 if (tmp_nops > nops)
6490 nops = tmp_nops;
6491 }
6492
df58fc94 6493 if (mips_fix_24k && !mips_opts.micromips)
15be625d 6494 {
932d1a1b 6495 tmp_nops = nops_for_24k (ignore, hist, insn);
15be625d
CM
6496 if (tmp_nops > nops)
6497 nops = tmp_nops;
6498 }
6499
71400594
RS
6500 return nops;
6501}
252b5132 6502
71400594 6503/* The variable arguments provide NUM_INSNS extra instructions that
91d6fa6a 6504 might be added to HIST. Return the largest number of nops that
932d1a1b
RS
6505 would be needed after the extended sequence, ignoring hazards
6506 in the first IGNORE instructions. */
252b5132 6507
71400594 6508static int
932d1a1b
RS
6509nops_for_sequence (int num_insns, int ignore,
6510 const struct mips_cl_insn *hist, ...)
71400594
RS
6511{
6512 va_list args;
6513 struct mips_cl_insn buffer[MAX_NOPS];
6514 struct mips_cl_insn *cursor;
6515 int nops;
6516
91d6fa6a 6517 va_start (args, hist);
71400594 6518 cursor = buffer + num_insns;
91d6fa6a 6519 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
71400594
RS
6520 while (cursor > buffer)
6521 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6522
932d1a1b 6523 nops = nops_for_insn (ignore, buffer, NULL);
71400594
RS
6524 va_end (args);
6525 return nops;
6526}
252b5132 6527
71400594
RS
6528/* Like nops_for_insn, but if INSN is a branch, take into account the
6529 worst-case delay for the branch target. */
252b5132 6530
71400594 6531static int
932d1a1b 6532nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6533 const struct mips_cl_insn *insn)
6534{
6535 int nops, tmp_nops;
60b63b72 6536
932d1a1b 6537 nops = nops_for_insn (ignore, hist, insn);
11625dd8 6538 if (delayed_branch_p (insn))
71400594 6539 {
932d1a1b 6540 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
14fe068b 6541 hist, insn, get_delay_slot_nop (insn));
71400594
RS
6542 if (tmp_nops > nops)
6543 nops = tmp_nops;
6544 }
11625dd8 6545 else if (compact_branch_p (insn))
71400594 6546 {
932d1a1b 6547 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
71400594
RS
6548 if (tmp_nops > nops)
6549 nops = tmp_nops;
6550 }
6551 return nops;
6552}
6553
c67a084a
NC
6554/* Fix NOP issue: Replace nops by "or at,at,zero". */
6555
6556static void
6557fix_loongson2f_nop (struct mips_cl_insn * ip)
6558{
df58fc94 6559 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6560 if (strcmp (ip->insn_mo->name, "nop") == 0)
6561 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6562}
6563
6564/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6565 jr target pc &= 'hffff_ffff_cfff_ffff. */
6566
6567static void
6568fix_loongson2f_jump (struct mips_cl_insn * ip)
6569{
df58fc94 6570 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6571 if (strcmp (ip->insn_mo->name, "j") == 0
6572 || strcmp (ip->insn_mo->name, "jr") == 0
6573 || strcmp (ip->insn_mo->name, "jalr") == 0)
6574 {
6575 int sreg;
6576 expressionS ep;
6577
6578 if (! mips_opts.at)
6579 return;
6580
df58fc94 6581 sreg = EXTRACT_OPERAND (0, RS, *ip);
c67a084a
NC
6582 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6583 return;
6584
6585 ep.X_op = O_constant;
6586 ep.X_add_number = 0xcfff0000;
6587 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6588 ep.X_add_number = 0xffff;
6589 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6590 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6591 }
6592}
6593
6594static void
6595fix_loongson2f (struct mips_cl_insn * ip)
6596{
6597 if (mips_fix_loongson2f_nop)
6598 fix_loongson2f_nop (ip);
6599
6600 if (mips_fix_loongson2f_jump)
6601 fix_loongson2f_jump (ip);
6602}
6603
a4e06468
RS
6604/* IP is a branch that has a delay slot, and we need to fill it
6605 automatically. Return true if we can do that by swapping IP
e407c74b
NC
6606 with the previous instruction.
6607 ADDRESS_EXPR is an operand of the instruction to be used with
6608 RELOC_TYPE. */
a4e06468
RS
6609
6610static bfd_boolean
e407c74b 6611can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6612 bfd_reloc_code_real_type *reloc_type)
a4e06468 6613{
2b0c8b40 6614 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
a4e06468 6615 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
9d5de888 6616 unsigned int fpr_read, prev_fpr_write;
a4e06468
RS
6617
6618 /* -O2 and above is required for this optimization. */
6619 if (mips_optimize < 2)
6620 return FALSE;
6621
6622 /* If we have seen .set volatile or .set nomove, don't optimize. */
6623 if (mips_opts.nomove)
6624 return FALSE;
6625
6626 /* We can't swap if the previous instruction's position is fixed. */
6627 if (history[0].fixed_p)
6628 return FALSE;
6629
6630 /* If the previous previous insn was in a .set noreorder, we can't
6631 swap. Actually, the MIPS assembler will swap in this situation.
6632 However, gcc configured -with-gnu-as will generate code like
6633
6634 .set noreorder
6635 lw $4,XXX
6636 .set reorder
6637 INSN
6638 bne $4,$0,foo
6639
6640 in which we can not swap the bne and INSN. If gcc is not configured
6641 -with-gnu-as, it does not output the .set pseudo-ops. */
6642 if (history[1].noreorder_p)
6643 return FALSE;
6644
87333bb7
MR
6645 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6646 This means that the previous instruction was a 4-byte one anyhow. */
a4e06468
RS
6647 if (mips_opts.mips16 && history[0].fixp[0])
6648 return FALSE;
6649
6650 /* If the branch is itself the target of a branch, we can not swap.
6651 We cheat on this; all we check for is whether there is a label on
6652 this instruction. If there are any branches to anything other than
6653 a label, users must use .set noreorder. */
6654 if (seg_info (now_seg)->label_list)
6655 return FALSE;
6656
6657 /* If the previous instruction is in a variant frag other than this
2309ddf2 6658 branch's one, we cannot do the swap. This does not apply to
9301f9c3
MR
6659 MIPS16 code, which uses variant frags for different purposes. */
6660 if (!mips_opts.mips16
a4e06468
RS
6661 && history[0].frag
6662 && history[0].frag->fr_type == rs_machine_dependent)
6663 return FALSE;
6664
bcd530a7
RS
6665 /* We do not swap with instructions that cannot architecturally
6666 be placed in a branch delay slot, such as SYNC or ERET. We
6667 also refrain from swapping with a trap instruction, since it
6668 complicates trap handlers to have the trap instruction be in
6669 a delay slot. */
a4e06468 6670 prev_pinfo = history[0].insn_mo->pinfo;
bcd530a7 6671 if (prev_pinfo & INSN_NO_DELAY_SLOT)
a4e06468
RS
6672 return FALSE;
6673
6674 /* Check for conflicts between the branch and the instructions
6675 before the candidate delay slot. */
6676 if (nops_for_insn (0, history + 1, ip) > 0)
6677 return FALSE;
6678
6679 /* Check for conflicts between the swapped sequence and the
6680 target of the branch. */
6681 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6682 return FALSE;
6683
6684 /* If the branch reads a register that the previous
6685 instruction sets, we can not swap. */
6686 gpr_read = gpr_read_mask (ip);
6687 prev_gpr_write = gpr_write_mask (&history[0]);
6688 if (gpr_read & prev_gpr_write)
6689 return FALSE;
6690
9d5de888
CF
6691 fpr_read = fpr_read_mask (ip);
6692 prev_fpr_write = fpr_write_mask (&history[0]);
6693 if (fpr_read & prev_fpr_write)
6694 return FALSE;
6695
a4e06468
RS
6696 /* If the branch writes a register that the previous
6697 instruction sets, we can not swap. */
6698 gpr_write = gpr_write_mask (ip);
6699 if (gpr_write & prev_gpr_write)
6700 return FALSE;
6701
6702 /* If the branch writes a register that the previous
6703 instruction reads, we can not swap. */
6704 prev_gpr_read = gpr_read_mask (&history[0]);
6705 if (gpr_write & prev_gpr_read)
6706 return FALSE;
6707
6708 /* If one instruction sets a condition code and the
6709 other one uses a condition code, we can not swap. */
6710 pinfo = ip->insn_mo->pinfo;
6711 if ((pinfo & INSN_READ_COND_CODE)
6712 && (prev_pinfo & INSN_WRITE_COND_CODE))
6713 return FALSE;
6714 if ((pinfo & INSN_WRITE_COND_CODE)
6715 && (prev_pinfo & INSN_READ_COND_CODE))
6716 return FALSE;
6717
6718 /* If the previous instruction uses the PC, we can not swap. */
2b0c8b40 6719 prev_pinfo2 = history[0].insn_mo->pinfo2;
26545944 6720 if (prev_pinfo2 & INSN2_READ_PC)
2b0c8b40 6721 return FALSE;
a4e06468 6722
df58fc94
RS
6723 /* If the previous instruction has an incorrect size for a fixed
6724 branch delay slot in microMIPS mode, we cannot swap. */
2309ddf2
MR
6725 pinfo2 = ip->insn_mo->pinfo2;
6726 if (mips_opts.micromips
6727 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6728 && insn_length (history) != 2)
6729 return FALSE;
6730 if (mips_opts.micromips
6731 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6732 && insn_length (history) != 4)
6733 return FALSE;
6734
e407c74b
NC
6735 /* On R5900 short loops need to be fixed by inserting a nop in
6736 the branch delay slots.
6737 A short loop can be terminated too early. */
6738 if (mips_opts.arch == CPU_R5900
6739 /* Check if instruction has a parameter, ignore "j $31". */
6740 && (address_expr != NULL)
6741 /* Parameter must be 16 bit. */
6742 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6743 /* Branch to same segment. */
41065f5e 6744 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
e407c74b 6745 /* Branch to same code fragment. */
41065f5e 6746 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
e407c74b 6747 /* Can only calculate branch offset if value is known. */
41065f5e 6748 && symbol_constant_p (address_expr->X_add_symbol)
e407c74b
NC
6749 /* Check if branch is really conditional. */
6750 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6751 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6752 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6753 {
6754 int distance;
6755 /* Check if loop is shorter than 6 instructions including
6756 branch and delay slot. */
41065f5e 6757 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
e407c74b
NC
6758 if (distance <= 20)
6759 {
6760 int i;
6761 int rv;
6762
6763 rv = FALSE;
6764 /* When the loop includes branches or jumps,
6765 it is not a short loop. */
6766 for (i = 0; i < (distance / 4); i++)
6767 {
6768 if ((history[i].cleared_p)
41065f5e 6769 || delayed_branch_p (&history[i]))
e407c74b
NC
6770 {
6771 rv = TRUE;
6772 break;
6773 }
6774 }
6775 if (rv == FALSE)
6776 {
6777 /* Insert nop after branch to fix short loop. */
6778 return FALSE;
6779 }
6780 }
6781 }
6782
a4e06468
RS
6783 return TRUE;
6784}
6785
e407c74b
NC
6786/* Decide how we should add IP to the instruction stream.
6787 ADDRESS_EXPR is an operand of the instruction to be used with
6788 RELOC_TYPE. */
a4e06468
RS
6789
6790static enum append_method
e407c74b 6791get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6792 bfd_reloc_code_real_type *reloc_type)
a4e06468 6793{
a4e06468
RS
6794 /* The relaxed version of a macro sequence must be inherently
6795 hazard-free. */
6796 if (mips_relax.sequence == 2)
6797 return APPEND_ADD;
6798
6799 /* We must not dabble with instructions in a ".set norerorder" block. */
6800 if (mips_opts.noreorder)
6801 return APPEND_ADD;
6802
6803 /* Otherwise, it's our responsibility to fill branch delay slots. */
11625dd8 6804 if (delayed_branch_p (ip))
a4e06468 6805 {
e407c74b
NC
6806 if (!branch_likely_p (ip)
6807 && can_swap_branch_p (ip, address_expr, reloc_type))
a4e06468
RS
6808 return APPEND_SWAP;
6809
6810 if (mips_opts.mips16
6811 && ISA_SUPPORTS_MIPS16E
fc76e730 6812 && gpr_read_mask (ip) != 0)
a4e06468
RS
6813 return APPEND_ADD_COMPACT;
6814
6815 return APPEND_ADD_WITH_NOP;
6816 }
6817
a4e06468
RS
6818 return APPEND_ADD;
6819}
6820
ceb94aa5
RS
6821/* IP is a MIPS16 instruction whose opcode we have just changed.
6822 Point IP->insn_mo to the new opcode's definition. */
6823
6824static void
6825find_altered_mips16_opcode (struct mips_cl_insn *ip)
6826{
6827 const struct mips_opcode *mo, *end;
6828
6829 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6830 for (mo = ip->insn_mo; mo < end; mo++)
6831 if ((ip->insn_opcode & mo->mask) == mo->match)
6832 {
6833 ip->insn_mo = mo;
6834 return;
6835 }
6836 abort ();
6837}
6838
df58fc94
RS
6839/* For microMIPS macros, we need to generate a local number label
6840 as the target of branches. */
6841#define MICROMIPS_LABEL_CHAR '\037'
6842static unsigned long micromips_target_label;
6843static char micromips_target_name[32];
6844
6845static char *
6846micromips_label_name (void)
6847{
6848 char *p = micromips_target_name;
6849 char symbol_name_temporary[24];
6850 unsigned long l;
6851 int i;
6852
6853 if (*p)
6854 return p;
6855
6856 i = 0;
6857 l = micromips_target_label;
6858#ifdef LOCAL_LABEL_PREFIX
6859 *p++ = LOCAL_LABEL_PREFIX;
6860#endif
6861 *p++ = 'L';
6862 *p++ = MICROMIPS_LABEL_CHAR;
6863 do
6864 {
6865 symbol_name_temporary[i++] = l % 10 + '0';
6866 l /= 10;
6867 }
6868 while (l != 0);
6869 while (i > 0)
6870 *p++ = symbol_name_temporary[--i];
6871 *p = '\0';
6872
6873 return micromips_target_name;
6874}
6875
6876static void
6877micromips_label_expr (expressionS *label_expr)
6878{
6879 label_expr->X_op = O_symbol;
6880 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6881 label_expr->X_add_number = 0;
6882}
6883
6884static void
6885micromips_label_inc (void)
6886{
6887 micromips_target_label++;
6888 *micromips_target_name = '\0';
6889}
6890
6891static void
6892micromips_add_label (void)
6893{
6894 symbolS *s;
6895
6896 s = colon (micromips_label_name ());
6897 micromips_label_inc ();
f3ded42a 6898 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
df58fc94
RS
6899}
6900
6901/* If assembling microMIPS code, then return the microMIPS reloc
6902 corresponding to the requested one if any. Otherwise return
6903 the reloc unchanged. */
6904
6905static bfd_reloc_code_real_type
6906micromips_map_reloc (bfd_reloc_code_real_type reloc)
6907{
6908 static const bfd_reloc_code_real_type relocs[][2] =
6909 {
6910 /* Keep sorted incrementally by the left-hand key. */
6911 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6912 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6913 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6914 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6915 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6916 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6917 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6918 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6919 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6920 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6921 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6922 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6923 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6924 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6925 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6926 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6927 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6928 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6929 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6930 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6931 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6932 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6933 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6934 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6935 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6936 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6937 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6938 };
6939 bfd_reloc_code_real_type r;
6940 size_t i;
6941
6942 if (!mips_opts.micromips)
6943 return reloc;
6944 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6945 {
6946 r = relocs[i][0];
6947 if (r > reloc)
6948 return reloc;
6949 if (r == reloc)
6950 return relocs[i][1];
6951 }
6952 return reloc;
6953}
6954
b886a2ab
RS
6955/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6956 Return true on success, storing the resolved value in RESULT. */
6957
6958static bfd_boolean
6959calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6960 offsetT *result)
6961{
6962 switch (reloc)
6963 {
6964 case BFD_RELOC_MIPS_HIGHEST:
6965 case BFD_RELOC_MICROMIPS_HIGHEST:
6966 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6967 return TRUE;
6968
6969 case BFD_RELOC_MIPS_HIGHER:
6970 case BFD_RELOC_MICROMIPS_HIGHER:
6971 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6972 return TRUE;
6973
6974 case BFD_RELOC_HI16_S:
6975 case BFD_RELOC_MICROMIPS_HI16_S:
6976 case BFD_RELOC_MIPS16_HI16_S:
6977 *result = ((operand + 0x8000) >> 16) & 0xffff;
6978 return TRUE;
6979
6980 case BFD_RELOC_HI16:
6981 case BFD_RELOC_MICROMIPS_HI16:
6982 case BFD_RELOC_MIPS16_HI16:
6983 *result = (operand >> 16) & 0xffff;
6984 return TRUE;
6985
6986 case BFD_RELOC_LO16:
6987 case BFD_RELOC_MICROMIPS_LO16:
6988 case BFD_RELOC_MIPS16_LO16:
6989 *result = operand & 0xffff;
6990 return TRUE;
6991
6992 case BFD_RELOC_UNUSED:
6993 *result = operand;
6994 return TRUE;
6995
6996 default:
6997 return FALSE;
6998 }
6999}
7000
71400594
RS
7001/* Output an instruction. IP is the instruction information.
7002 ADDRESS_EXPR is an operand of the instruction to be used with
df58fc94
RS
7003 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7004 a macro expansion. */
71400594
RS
7005
7006static void
7007append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
df58fc94 7008 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
71400594 7009{
14fe068b 7010 unsigned long prev_pinfo2, pinfo;
71400594 7011 bfd_boolean relaxed_branch = FALSE;
a4e06468 7012 enum append_method method;
2309ddf2 7013 bfd_boolean relax32;
2b0c8b40 7014 int branch_disp;
71400594 7015
2309ddf2 7016 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
c67a084a
NC
7017 fix_loongson2f (ip);
7018
738f4d98 7019 file_ase_mips16 |= mips_opts.mips16;
df58fc94 7020 file_ase_micromips |= mips_opts.micromips;
738f4d98 7021
df58fc94 7022 prev_pinfo2 = history[0].insn_mo->pinfo2;
71400594 7023 pinfo = ip->insn_mo->pinfo;
df58fc94
RS
7024
7025 if (mips_opts.micromips
7026 && !expansionp
7027 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7028 && micromips_insn_length (ip->insn_mo) != 2)
7029 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7030 && micromips_insn_length (ip->insn_mo) != 4)))
1661c76c 7031 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
df58fc94 7032 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
71400594 7033
15be625d
CM
7034 if (address_expr == NULL)
7035 ip->complete_p = 1;
b886a2ab
RS
7036 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7037 && reloc_type[1] == BFD_RELOC_UNUSED
7038 && reloc_type[2] == BFD_RELOC_UNUSED
15be625d
CM
7039 && address_expr->X_op == O_constant)
7040 {
15be625d
CM
7041 switch (*reloc_type)
7042 {
15be625d 7043 case BFD_RELOC_MIPS_JMP:
df58fc94
RS
7044 {
7045 int shift;
7046
7047 shift = mips_opts.micromips ? 1 : 2;
7048 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7049 as_bad (_("jump to misaligned address (0x%lx)"),
7050 (unsigned long) address_expr->X_add_number);
7051 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7052 & 0x3ffffff);
335574df 7053 ip->complete_p = 1;
df58fc94 7054 }
15be625d
CM
7055 break;
7056
7057 case BFD_RELOC_MIPS16_JMP:
7058 if ((address_expr->X_add_number & 3) != 0)
7059 as_bad (_("jump to misaligned address (0x%lx)"),
7060 (unsigned long) address_expr->X_add_number);
7061 ip->insn_opcode |=
7062 (((address_expr->X_add_number & 0x7c0000) << 3)
7063 | ((address_expr->X_add_number & 0xf800000) >> 7)
7064 | ((address_expr->X_add_number & 0x3fffc) >> 2));
335574df 7065 ip->complete_p = 1;
15be625d
CM
7066 break;
7067
7068 case BFD_RELOC_16_PCREL_S2:
df58fc94
RS
7069 {
7070 int shift;
7071
7072 shift = mips_opts.micromips ? 1 : 2;
7073 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7074 as_bad (_("branch to misaligned address (0x%lx)"),
7075 (unsigned long) address_expr->X_add_number);
7076 if (!mips_relax_branch)
7077 {
7078 if ((address_expr->X_add_number + (1 << (shift + 15)))
7079 & ~((1 << (shift + 16)) - 1))
7080 as_bad (_("branch address range overflow (0x%lx)"),
7081 (unsigned long) address_expr->X_add_number);
7082 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7083 & 0xffff);
7084 }
df58fc94 7085 }
15be625d
CM
7086 break;
7087
7361da2c
AB
7088 case BFD_RELOC_MIPS_21_PCREL_S2:
7089 {
7090 int shift;
7091
7092 shift = 2;
7093 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7094 as_bad (_("branch to misaligned address (0x%lx)"),
7095 (unsigned long) address_expr->X_add_number);
7096 if ((address_expr->X_add_number + (1 << (shift + 20)))
7097 & ~((1 << (shift + 21)) - 1))
7098 as_bad (_("branch address range overflow (0x%lx)"),
7099 (unsigned long) address_expr->X_add_number);
7100 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7101 & 0x1fffff);
7102 }
7103 break;
7104
7105 case BFD_RELOC_MIPS_26_PCREL_S2:
7106 {
7107 int shift;
7108
7109 shift = 2;
7110 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7111 as_bad (_("branch to misaligned address (0x%lx)"),
7112 (unsigned long) address_expr->X_add_number);
7113 if ((address_expr->X_add_number + (1 << (shift + 25)))
7114 & ~((1 << (shift + 26)) - 1))
7115 as_bad (_("branch address range overflow (0x%lx)"),
7116 (unsigned long) address_expr->X_add_number);
7117 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7118 & 0x3ffffff);
7119 }
7120 break;
7121
15be625d 7122 default:
b886a2ab
RS
7123 {
7124 offsetT value;
7125
7126 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7127 &value))
7128 {
7129 ip->insn_opcode |= value & 0xffff;
7130 ip->complete_p = 1;
7131 }
7132 }
7133 break;
7134 }
15be625d
CM
7135 }
7136
71400594
RS
7137 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7138 {
7139 /* There are a lot of optimizations we could do that we don't.
7140 In particular, we do not, in general, reorder instructions.
7141 If you use gcc with optimization, it will reorder
7142 instructions and generally do much more optimization then we
7143 do here; repeating all that work in the assembler would only
7144 benefit hand written assembly code, and does not seem worth
7145 it. */
7146 int nops = (mips_optimize == 0
932d1a1b
RS
7147 ? nops_for_insn (0, history, NULL)
7148 : nops_for_insn_or_target (0, history, ip));
71400594 7149 if (nops > 0)
252b5132
RH
7150 {
7151 fragS *old_frag;
7152 unsigned long old_frag_offset;
7153 int i;
252b5132
RH
7154
7155 old_frag = frag_now;
7156 old_frag_offset = frag_now_fix ();
7157
7158 for (i = 0; i < nops; i++)
14fe068b
RS
7159 add_fixed_insn (NOP_INSN);
7160 insert_into_history (0, nops, NOP_INSN);
252b5132
RH
7161
7162 if (listing)
7163 {
7164 listing_prev_line ();
7165 /* We may be at the start of a variant frag. In case we
7166 are, make sure there is enough space for the frag
7167 after the frags created by listing_prev_line. The
7168 argument to frag_grow here must be at least as large
7169 as the argument to all other calls to frag_grow in
7170 this file. We don't have to worry about being in the
7171 middle of a variant frag, because the variants insert
7172 all needed nop instructions themselves. */
7173 frag_grow (40);
7174 }
7175
462427c4 7176 mips_move_text_labels ();
252b5132
RH
7177
7178#ifndef NO_ECOFF_DEBUGGING
7179 if (ECOFF_DEBUGGING)
7180 ecoff_fix_loc (old_frag, old_frag_offset);
7181#endif
7182 }
71400594
RS
7183 }
7184 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7185 {
932d1a1b
RS
7186 int nops;
7187
7188 /* Work out how many nops in prev_nop_frag are needed by IP,
7189 ignoring hazards generated by the first prev_nop_frag_since
7190 instructions. */
7191 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
9c2799c2 7192 gas_assert (nops <= prev_nop_frag_holds);
252b5132 7193
71400594
RS
7194 /* Enforce NOPS as a minimum. */
7195 if (nops > prev_nop_frag_required)
7196 prev_nop_frag_required = nops;
252b5132 7197
71400594
RS
7198 if (prev_nop_frag_holds == prev_nop_frag_required)
7199 {
7200 /* Settle for the current number of nops. Update the history
7201 accordingly (for the benefit of any future .set reorder code). */
7202 prev_nop_frag = NULL;
7203 insert_into_history (prev_nop_frag_since,
7204 prev_nop_frag_holds, NOP_INSN);
7205 }
7206 else
7207 {
7208 /* Allow this instruction to replace one of the nops that was
7209 tentatively added to prev_nop_frag. */
df58fc94 7210 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
71400594
RS
7211 prev_nop_frag_holds--;
7212 prev_nop_frag_since++;
252b5132
RH
7213 }
7214 }
7215
e407c74b 7216 method = get_append_method (ip, address_expr, reloc_type);
2b0c8b40 7217 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
a4e06468 7218
e410add4
RS
7219 dwarf2_emit_insn (0);
7220 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7221 so "move" the instruction address accordingly.
7222
7223 Also, it doesn't seem appropriate for the assembler to reorder .loc
7224 entries. If this instruction is a branch that we are going to swap
7225 with the previous instruction, the two instructions should be
7226 treated as a unit, and the debug information for both instructions
7227 should refer to the start of the branch sequence. Using the
7228 current position is certainly wrong when swapping a 32-bit branch
7229 and a 16-bit delay slot, since the current position would then be
7230 in the middle of a branch. */
7231 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
58e2ea4d 7232
df58fc94
RS
7233 relax32 = (mips_relax_branch
7234 /* Don't try branch relaxation within .set nomacro, or within
7235 .set noat if we use $at for PIC computations. If it turns
7236 out that the branch was out-of-range, we'll get an error. */
7237 && !mips_opts.warn_about_macros
7238 && (mips_opts.at || mips_pic == NO_PIC)
3bf0dbfb
MR
7239 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7240 as they have no complementing branches. */
7241 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
df58fc94
RS
7242
7243 if (!HAVE_CODE_COMPRESSION
7244 && address_expr
7245 && relax32
0b25d3e6 7246 && *reloc_type == BFD_RELOC_16_PCREL_S2
11625dd8 7247 && delayed_branch_p (ip))
4a6a3df4 7248 {
895921c9 7249 relaxed_branch = TRUE;
1e915849
RS
7250 add_relaxed_insn (ip, (relaxed_branch_length
7251 (NULL, NULL,
11625dd8
RS
7252 uncond_branch_p (ip) ? -1
7253 : branch_likely_p (ip) ? 1
1e915849
RS
7254 : 0)), 4,
7255 RELAX_BRANCH_ENCODE
66b3e8da 7256 (AT,
11625dd8
RS
7257 uncond_branch_p (ip),
7258 branch_likely_p (ip),
1e915849
RS
7259 pinfo & INSN_WRITE_GPR_31,
7260 0),
7261 address_expr->X_add_symbol,
7262 address_expr->X_add_number);
4a6a3df4
AO
7263 *reloc_type = BFD_RELOC_UNUSED;
7264 }
df58fc94
RS
7265 else if (mips_opts.micromips
7266 && address_expr
7267 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7268 || *reloc_type > BFD_RELOC_UNUSED)
40209cad
MR
7269 && (delayed_branch_p (ip) || compact_branch_p (ip))
7270 /* Don't try branch relaxation when users specify
7271 16-bit/32-bit instructions. */
7272 && !forced_insn_length)
df58fc94
RS
7273 {
7274 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7275 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
11625dd8
RS
7276 int uncond = uncond_branch_p (ip) ? -1 : 0;
7277 int compact = compact_branch_p (ip);
df58fc94
RS
7278 int al = pinfo & INSN_WRITE_GPR_31;
7279 int length32;
7280
7281 gas_assert (address_expr != NULL);
7282 gas_assert (!mips_relax.sequence);
7283
2b0c8b40 7284 relaxed_branch = TRUE;
df58fc94
RS
7285 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7286 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
40209cad
MR
7287 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7288 relax32, 0, 0),
df58fc94
RS
7289 address_expr->X_add_symbol,
7290 address_expr->X_add_number);
7291 *reloc_type = BFD_RELOC_UNUSED;
7292 }
7293 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
252b5132
RH
7294 {
7295 /* We need to set up a variant frag. */
df58fc94 7296 gas_assert (address_expr != NULL);
1e915849
RS
7297 add_relaxed_insn (ip, 4, 0,
7298 RELAX_MIPS16_ENCODE
7299 (*reloc_type - BFD_RELOC_UNUSED,
df58fc94 7300 forced_insn_length == 2, forced_insn_length == 4,
11625dd8 7301 delayed_branch_p (&history[0]),
1e915849
RS
7302 history[0].mips16_absolute_jump_p),
7303 make_expr_symbol (address_expr), 0);
252b5132 7304 }
5c04167a 7305 else if (mips_opts.mips16 && insn_length (ip) == 2)
9497f5ac 7306 {
11625dd8 7307 if (!delayed_branch_p (ip))
b8ee1a6e
DU
7308 /* Make sure there is enough room to swap this instruction with
7309 a following jump instruction. */
7310 frag_grow (6);
1e915849 7311 add_fixed_insn (ip);
252b5132
RH
7312 }
7313 else
7314 {
7315 if (mips_opts.mips16
7316 && mips_opts.noreorder
11625dd8 7317 && delayed_branch_p (&history[0]))
252b5132
RH
7318 as_warn (_("extended instruction in delay slot"));
7319
4d7206a2
RS
7320 if (mips_relax.sequence)
7321 {
7322 /* If we've reached the end of this frag, turn it into a variant
7323 frag and record the information for the instructions we've
7324 written so far. */
7325 if (frag_room () < 4)
7326 relax_close_frag ();
df58fc94 7327 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4d7206a2
RS
7328 }
7329
584892a6 7330 if (mips_relax.sequence != 2)
df58fc94
RS
7331 {
7332 if (mips_macro_warning.first_insn_sizes[0] == 0)
7333 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7334 mips_macro_warning.sizes[0] += insn_length (ip);
7335 mips_macro_warning.insns[0]++;
7336 }
584892a6 7337 if (mips_relax.sequence != 1)
df58fc94
RS
7338 {
7339 if (mips_macro_warning.first_insn_sizes[1] == 0)
7340 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7341 mips_macro_warning.sizes[1] += insn_length (ip);
7342 mips_macro_warning.insns[1]++;
7343 }
584892a6 7344
1e915849
RS
7345 if (mips_opts.mips16)
7346 {
7347 ip->fixed_p = 1;
7348 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7349 }
7350 add_fixed_insn (ip);
252b5132
RH
7351 }
7352
9fe77896 7353 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
252b5132 7354 {
df58fc94 7355 bfd_reloc_code_real_type final_type[3];
2309ddf2 7356 reloc_howto_type *howto0;
9fe77896
RS
7357 reloc_howto_type *howto;
7358 int i;
34ce925e 7359
df58fc94
RS
7360 /* Perform any necessary conversion to microMIPS relocations
7361 and find out how many relocations there actually are. */
7362 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7363 final_type[i] = micromips_map_reloc (reloc_type[i]);
7364
9fe77896
RS
7365 /* In a compound relocation, it is the final (outermost)
7366 operator that determines the relocated field. */
2309ddf2 7367 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
e8044f35
RS
7368 if (!howto)
7369 abort ();
2309ddf2
MR
7370
7371 if (i > 1)
7372 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
9fe77896
RS
7373 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7374 bfd_get_reloc_size (howto),
7375 address_expr,
2309ddf2
MR
7376 howto0 && howto0->pc_relative,
7377 final_type[0]);
9fe77896
RS
7378
7379 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2309ddf2 7380 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
9fe77896
RS
7381 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7382
7383 /* These relocations can have an addend that won't fit in
7384 4 octets for 64bit assembly. */
bad1aba3 7385 if (GPR_SIZE == 64
9fe77896
RS
7386 && ! howto->partial_inplace
7387 && (reloc_type[0] == BFD_RELOC_16
7388 || reloc_type[0] == BFD_RELOC_32
7389 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7390 || reloc_type[0] == BFD_RELOC_GPREL16
7391 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7392 || reloc_type[0] == BFD_RELOC_GPREL32
7393 || reloc_type[0] == BFD_RELOC_64
7394 || reloc_type[0] == BFD_RELOC_CTOR
7395 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7396 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7397 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7398 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7399 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7400 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7401 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7402 || hi16_reloc_p (reloc_type[0])
7403 || lo16_reloc_p (reloc_type[0])))
7404 ip->fixp[0]->fx_no_overflow = 1;
7405
ddaf2c41
MR
7406 /* These relocations can have an addend that won't fit in 2 octets. */
7407 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7408 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7409 ip->fixp[0]->fx_no_overflow = 1;
7410
9fe77896
RS
7411 if (mips_relax.sequence)
7412 {
7413 if (mips_relax.first_fixup == 0)
7414 mips_relax.first_fixup = ip->fixp[0];
7415 }
7416 else if (reloc_needs_lo_p (*reloc_type))
7417 {
7418 struct mips_hi_fixup *hi_fixup;
7419
7420 /* Reuse the last entry if it already has a matching %lo. */
7421 hi_fixup = mips_hi_fixup_list;
7422 if (hi_fixup == 0
7423 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4d7206a2 7424 {
325801bd 7425 hi_fixup = XNEW (struct mips_hi_fixup);
9fe77896
RS
7426 hi_fixup->next = mips_hi_fixup_list;
7427 mips_hi_fixup_list = hi_fixup;
4d7206a2 7428 }
9fe77896
RS
7429 hi_fixup->fixp = ip->fixp[0];
7430 hi_fixup->seg = now_seg;
7431 }
252b5132 7432
9fe77896
RS
7433 /* Add fixups for the second and third relocations, if given.
7434 Note that the ABI allows the second relocation to be
7435 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7436 moment we only use RSS_UNDEF, but we could add support
7437 for the others if it ever becomes necessary. */
7438 for (i = 1; i < 3; i++)
7439 if (reloc_type[i] != BFD_RELOC_UNUSED)
7440 {
7441 ip->fixp[i] = fix_new (ip->frag, ip->where,
7442 ip->fixp[0]->fx_size, NULL, 0,
df58fc94 7443 FALSE, final_type[i]);
f6688943 7444
9fe77896
RS
7445 /* Use fx_tcbit to mark compound relocs. */
7446 ip->fixp[0]->fx_tcbit = 1;
7447 ip->fixp[i]->fx_tcbit = 1;
7448 }
252b5132 7449 }
1e915849 7450 install_insn (ip);
252b5132
RH
7451
7452 /* Update the register mask information. */
4c260379
RS
7453 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7454 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
252b5132 7455
a4e06468 7456 switch (method)
252b5132 7457 {
a4e06468
RS
7458 case APPEND_ADD:
7459 insert_into_history (0, 1, ip);
7460 break;
7461
7462 case APPEND_ADD_WITH_NOP:
14fe068b
RS
7463 {
7464 struct mips_cl_insn *nop;
7465
7466 insert_into_history (0, 1, ip);
7467 nop = get_delay_slot_nop (ip);
7468 add_fixed_insn (nop);
7469 insert_into_history (0, 1, nop);
7470 if (mips_relax.sequence)
7471 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7472 }
a4e06468
RS
7473 break;
7474
7475 case APPEND_ADD_COMPACT:
7476 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7477 gas_assert (mips_opts.mips16);
7478 ip->insn_opcode |= 0x0080;
7479 find_altered_mips16_opcode (ip);
7480 install_insn (ip);
7481 insert_into_history (0, 1, ip);
7482 break;
7483
7484 case APPEND_SWAP:
7485 {
7486 struct mips_cl_insn delay = history[0];
7487 if (mips_opts.mips16)
7488 {
7489 know (delay.frag == ip->frag);
7490 move_insn (ip, delay.frag, delay.where);
7491 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7492 }
464ab0e5 7493 else if (relaxed_branch || delay.frag != ip->frag)
a4e06468
RS
7494 {
7495 /* Add the delay slot instruction to the end of the
7496 current frag and shrink the fixed part of the
7497 original frag. If the branch occupies the tail of
7498 the latter, move it backwards to cover the gap. */
2b0c8b40 7499 delay.frag->fr_fix -= branch_disp;
a4e06468 7500 if (delay.frag == ip->frag)
2b0c8b40 7501 move_insn (ip, ip->frag, ip->where - branch_disp);
a4e06468
RS
7502 add_fixed_insn (&delay);
7503 }
7504 else
7505 {
2b0c8b40
MR
7506 move_insn (&delay, ip->frag,
7507 ip->where - branch_disp + insn_length (ip));
a4e06468
RS
7508 move_insn (ip, history[0].frag, history[0].where);
7509 }
7510 history[0] = *ip;
7511 delay.fixed_p = 1;
7512 insert_into_history (0, 1, &delay);
7513 }
7514 break;
252b5132
RH
7515 }
7516
13408f1e 7517 /* If we have just completed an unconditional branch, clear the history. */
11625dd8
RS
7518 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7519 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
e407c74b
NC
7520 {
7521 unsigned int i;
7522
79850f26 7523 mips_no_prev_insn ();
13408f1e 7524
e407c74b 7525 for (i = 0; i < ARRAY_SIZE (history); i++)
79850f26 7526 history[i].cleared_p = 1;
e407c74b
NC
7527 }
7528
df58fc94
RS
7529 /* We need to emit a label at the end of branch-likely macros. */
7530 if (emit_branch_likely_macro)
7531 {
7532 emit_branch_likely_macro = FALSE;
7533 micromips_add_label ();
7534 }
7535
252b5132
RH
7536 /* We just output an insn, so the next one doesn't have a label. */
7537 mips_clear_insn_labels ();
252b5132
RH
7538}
7539
e407c74b
NC
7540/* Forget that there was any previous instruction or label.
7541 When BRANCH is true, the branch history is also flushed. */
252b5132
RH
7542
7543static void
7d10b47d 7544mips_no_prev_insn (void)
252b5132 7545{
7d10b47d
RS
7546 prev_nop_frag = NULL;
7547 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
252b5132
RH
7548 mips_clear_insn_labels ();
7549}
7550
7d10b47d
RS
7551/* This function must be called before we emit something other than
7552 instructions. It is like mips_no_prev_insn except that it inserts
7553 any NOPS that might be needed by previous instructions. */
252b5132 7554
7d10b47d
RS
7555void
7556mips_emit_delays (void)
252b5132
RH
7557{
7558 if (! mips_opts.noreorder)
7559 {
932d1a1b 7560 int nops = nops_for_insn (0, history, NULL);
252b5132
RH
7561 if (nops > 0)
7562 {
7d10b47d
RS
7563 while (nops-- > 0)
7564 add_fixed_insn (NOP_INSN);
462427c4 7565 mips_move_text_labels ();
7d10b47d
RS
7566 }
7567 }
7568 mips_no_prev_insn ();
7569}
7570
7571/* Start a (possibly nested) noreorder block. */
7572
7573static void
7574start_noreorder (void)
7575{
7576 if (mips_opts.noreorder == 0)
7577 {
7578 unsigned int i;
7579 int nops;
7580
7581 /* None of the instructions before the .set noreorder can be moved. */
7582 for (i = 0; i < ARRAY_SIZE (history); i++)
7583 history[i].fixed_p = 1;
7584
7585 /* Insert any nops that might be needed between the .set noreorder
7586 block and the previous instructions. We will later remove any
7587 nops that turn out not to be needed. */
932d1a1b 7588 nops = nops_for_insn (0, history, NULL);
7d10b47d
RS
7589 if (nops > 0)
7590 {
7591 if (mips_optimize != 0)
252b5132
RH
7592 {
7593 /* Record the frag which holds the nop instructions, so
7594 that we can remove them if we don't need them. */
df58fc94 7595 frag_grow (nops * NOP_INSN_SIZE);
252b5132
RH
7596 prev_nop_frag = frag_now;
7597 prev_nop_frag_holds = nops;
7598 prev_nop_frag_required = 0;
7599 prev_nop_frag_since = 0;
7600 }
7601
7602 for (; nops > 0; --nops)
1e915849 7603 add_fixed_insn (NOP_INSN);
252b5132 7604
7d10b47d
RS
7605 /* Move on to a new frag, so that it is safe to simply
7606 decrease the size of prev_nop_frag. */
7607 frag_wane (frag_now);
7608 frag_new (0);
462427c4 7609 mips_move_text_labels ();
252b5132 7610 }
df58fc94 7611 mips_mark_labels ();
7d10b47d 7612 mips_clear_insn_labels ();
252b5132 7613 }
7d10b47d
RS
7614 mips_opts.noreorder++;
7615 mips_any_noreorder = 1;
7616}
252b5132 7617
7d10b47d 7618/* End a nested noreorder block. */
252b5132 7619
7d10b47d
RS
7620static void
7621end_noreorder (void)
7622{
7623 mips_opts.noreorder--;
7624 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7625 {
7626 /* Commit to inserting prev_nop_frag_required nops and go back to
7627 handling nop insertion the .set reorder way. */
7628 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
df58fc94 7629 * NOP_INSN_SIZE);
7d10b47d
RS
7630 insert_into_history (prev_nop_frag_since,
7631 prev_nop_frag_required, NOP_INSN);
7632 prev_nop_frag = NULL;
7633 }
252b5132
RH
7634}
7635
97d87491
RS
7636/* Sign-extend 32-bit mode constants that have bit 31 set and all
7637 higher bits unset. */
7638
7639static void
7640normalize_constant_expr (expressionS *ex)
7641{
7642 if (ex->X_op == O_constant
7643 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7644 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7645 - 0x80000000);
7646}
7647
7648/* Sign-extend 32-bit mode address offsets that have bit 31 set and
7649 all higher bits unset. */
7650
7651static void
7652normalize_address_expr (expressionS *ex)
7653{
7654 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7655 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7656 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7657 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7658 - 0x80000000);
7659}
7660
7661/* Try to match TOKENS against OPCODE, storing the result in INSN.
7662 Return true if the match was successful.
7663
7664 OPCODE_EXTRA is a value that should be ORed into the opcode
7665 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7666 there are more alternatives after OPCODE and SOFT_MATCH is
7667 as for mips_arg_info. */
7668
7669static bfd_boolean
7670match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7671 struct mips_operand_token *tokens, unsigned int opcode_extra,
60f20e8b 7672 bfd_boolean lax_match, bfd_boolean complete_p)
97d87491
RS
7673{
7674 const char *args;
7675 struct mips_arg_info arg;
7676 const struct mips_operand *operand;
7677 char c;
7678
7679 imm_expr.X_op = O_absent;
97d87491
RS
7680 offset_expr.X_op = O_absent;
7681 offset_reloc[0] = BFD_RELOC_UNUSED;
7682 offset_reloc[1] = BFD_RELOC_UNUSED;
7683 offset_reloc[2] = BFD_RELOC_UNUSED;
7684
7685 create_insn (insn, opcode);
60f20e8b
RS
7686 /* When no opcode suffix is specified, assume ".xyzw". */
7687 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7688 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7689 else
7690 insn->insn_opcode |= opcode_extra;
97d87491
RS
7691 memset (&arg, 0, sizeof (arg));
7692 arg.insn = insn;
7693 arg.token = tokens;
7694 arg.argnum = 1;
7695 arg.last_regno = ILLEGAL_REG;
7696 arg.dest_regno = ILLEGAL_REG;
60f20e8b 7697 arg.lax_match = lax_match;
97d87491
RS
7698 for (args = opcode->args;; ++args)
7699 {
7700 if (arg.token->type == OT_END)
7701 {
7702 /* Handle unary instructions in which only one operand is given.
7703 The source is then the same as the destination. */
7704 if (arg.opnum == 1 && *args == ',')
7705 {
7706 operand = (mips_opts.micromips
7707 ? decode_micromips_operand (args + 1)
7708 : decode_mips_operand (args + 1));
7709 if (operand && mips_optional_operand_p (operand))
7710 {
7711 arg.token = tokens;
7712 arg.argnum = 1;
7713 continue;
7714 }
7715 }
7716
7717 /* Treat elided base registers as $0. */
7718 if (strcmp (args, "(b)") == 0)
7719 args += 3;
7720
7721 if (args[0] == '+')
7722 switch (args[1])
7723 {
7724 case 'K':
7725 case 'N':
7726 /* The register suffix is optional. */
7727 args += 2;
7728 break;
7729 }
7730
7731 /* Fail the match if there were too few operands. */
7732 if (*args)
7733 return FALSE;
7734
7735 /* Successful match. */
60f20e8b
RS
7736 if (!complete_p)
7737 return TRUE;
e3de51ce 7738 clear_insn_error ();
97d87491
RS
7739 if (arg.dest_regno == arg.last_regno
7740 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7741 {
7742 if (arg.opnum == 2)
e3de51ce 7743 set_insn_error
1661c76c 7744 (0, _("source and destination must be different"));
97d87491 7745 else if (arg.last_regno == 31)
e3de51ce 7746 set_insn_error
1661c76c 7747 (0, _("a destination register must be supplied"));
97d87491 7748 }
173d3447
CF
7749 else if (arg.last_regno == 31
7750 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7751 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7752 set_insn_error (0, _("the source register must not be $31"));
97d87491
RS
7753 check_completed_insn (&arg);
7754 return TRUE;
7755 }
7756
7757 /* Fail the match if the line has too many operands. */
7758 if (*args == 0)
7759 return FALSE;
7760
7761 /* Handle characters that need to match exactly. */
7762 if (*args == '(' || *args == ')' || *args == ',')
7763 {
7764 if (match_char (&arg, *args))
7765 continue;
7766 return FALSE;
7767 }
7768 if (*args == '#')
7769 {
7770 ++args;
7771 if (arg.token->type == OT_DOUBLE_CHAR
7772 && arg.token->u.ch == *args)
7773 {
7774 ++arg.token;
7775 continue;
7776 }
7777 return FALSE;
7778 }
7779
7780 /* Handle special macro operands. Work out the properties of
7781 other operands. */
7782 arg.opnum += 1;
97d87491
RS
7783 switch (*args)
7784 {
7361da2c
AB
7785 case '-':
7786 switch (args[1])
7787 {
7788 case 'A':
7789 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7790 break;
7791
7792 case 'B':
7793 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7794 break;
7795 }
7796 break;
7797
97d87491
RS
7798 case '+':
7799 switch (args[1])
7800 {
97d87491
RS
7801 case 'i':
7802 *offset_reloc = BFD_RELOC_MIPS_JMP;
7803 break;
7361da2c
AB
7804
7805 case '\'':
7806 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7807 break;
7808
7809 case '\"':
7810 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7811 break;
97d87491
RS
7812 }
7813 break;
7814
97d87491 7815 case 'I':
1a00e612
RS
7816 if (!match_const_int (&arg, &imm_expr.X_add_number))
7817 return FALSE;
7818 imm_expr.X_op = O_constant;
bad1aba3 7819 if (GPR_SIZE == 32)
97d87491
RS
7820 normalize_constant_expr (&imm_expr);
7821 continue;
7822
7823 case 'A':
7824 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7825 {
7826 /* Assume that the offset has been elided and that what
7827 we saw was a base register. The match will fail later
7828 if that assumption turns out to be wrong. */
7829 offset_expr.X_op = O_constant;
7830 offset_expr.X_add_number = 0;
7831 }
97d87491 7832 else
1a00e612
RS
7833 {
7834 if (!match_expression (&arg, &offset_expr, offset_reloc))
7835 return FALSE;
7836 normalize_address_expr (&offset_expr);
7837 }
97d87491
RS
7838 continue;
7839
7840 case 'F':
7841 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7842 8, TRUE))
1a00e612 7843 return FALSE;
97d87491
RS
7844 continue;
7845
7846 case 'L':
7847 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7848 8, FALSE))
1a00e612 7849 return FALSE;
97d87491
RS
7850 continue;
7851
7852 case 'f':
7853 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7854 4, TRUE))
1a00e612 7855 return FALSE;
97d87491
RS
7856 continue;
7857
7858 case 'l':
7859 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7860 4, FALSE))
1a00e612 7861 return FALSE;
97d87491
RS
7862 continue;
7863
97d87491
RS
7864 case 'p':
7865 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7866 break;
7867
7868 case 'a':
7869 *offset_reloc = BFD_RELOC_MIPS_JMP;
7870 break;
7871
7872 case 'm':
7873 gas_assert (mips_opts.micromips);
7874 c = args[1];
7875 switch (c)
7876 {
7877 case 'D':
7878 case 'E':
7879 if (!forced_insn_length)
7880 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7881 else if (c == 'D')
7882 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7883 else
7884 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7885 break;
7886 }
7887 break;
7888 }
7889
7890 operand = (mips_opts.micromips
7891 ? decode_micromips_operand (args)
7892 : decode_mips_operand (args));
7893 if (!operand)
7894 abort ();
7895
7896 /* Skip prefixes. */
7361da2c 7897 if (*args == '+' || *args == 'm' || *args == '-')
97d87491
RS
7898 args++;
7899
7900 if (mips_optional_operand_p (operand)
7901 && args[1] == ','
7902 && (arg.token[0].type != OT_REG
7903 || arg.token[1].type == OT_END))
7904 {
7905 /* Assume that the register has been elided and is the
7906 same as the first operand. */
7907 arg.token = tokens;
7908 arg.argnum = 1;
7909 }
7910
7911 if (!match_operand (&arg, operand))
7912 return FALSE;
7913 }
7914}
7915
7916/* Like match_insn, but for MIPS16. */
7917
7918static bfd_boolean
7919match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
1a00e612 7920 struct mips_operand_token *tokens)
97d87491
RS
7921{
7922 const char *args;
7923 const struct mips_operand *operand;
7924 const struct mips_operand *ext_operand;
7925 struct mips_arg_info arg;
7926 int relax_char;
7927
7928 create_insn (insn, opcode);
7929 imm_expr.X_op = O_absent;
97d87491
RS
7930 offset_expr.X_op = O_absent;
7931 offset_reloc[0] = BFD_RELOC_UNUSED;
7932 offset_reloc[1] = BFD_RELOC_UNUSED;
7933 offset_reloc[2] = BFD_RELOC_UNUSED;
7934 relax_char = 0;
7935
7936 memset (&arg, 0, sizeof (arg));
7937 arg.insn = insn;
7938 arg.token = tokens;
7939 arg.argnum = 1;
7940 arg.last_regno = ILLEGAL_REG;
7941 arg.dest_regno = ILLEGAL_REG;
97d87491
RS
7942 relax_char = 0;
7943 for (args = opcode->args;; ++args)
7944 {
7945 int c;
7946
7947 if (arg.token->type == OT_END)
7948 {
7949 offsetT value;
7950
7951 /* Handle unary instructions in which only one operand is given.
7952 The source is then the same as the destination. */
7953 if (arg.opnum == 1 && *args == ',')
7954 {
7955 operand = decode_mips16_operand (args[1], FALSE);
7956 if (operand && mips_optional_operand_p (operand))
7957 {
7958 arg.token = tokens;
7959 arg.argnum = 1;
7960 continue;
7961 }
7962 }
7963
7964 /* Fail the match if there were too few operands. */
7965 if (*args)
7966 return FALSE;
7967
7968 /* Successful match. Stuff the immediate value in now, if
7969 we can. */
e3de51ce 7970 clear_insn_error ();
97d87491
RS
7971 if (opcode->pinfo == INSN_MACRO)
7972 {
7973 gas_assert (relax_char == 0 || relax_char == 'p');
7974 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7975 }
7976 else if (relax_char
7977 && offset_expr.X_op == O_constant
7978 && calculate_reloc (*offset_reloc,
7979 offset_expr.X_add_number,
7980 &value))
7981 {
7982 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7983 forced_insn_length, &insn->insn_opcode);
7984 offset_expr.X_op = O_absent;
7985 *offset_reloc = BFD_RELOC_UNUSED;
7986 }
7987 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7988 {
7989 if (forced_insn_length == 2)
e3de51ce 7990 set_insn_error (0, _("invalid unextended operand value"));
97d87491
RS
7991 forced_insn_length = 4;
7992 insn->insn_opcode |= MIPS16_EXTEND;
7993 }
7994 else if (relax_char)
7995 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7996
7997 check_completed_insn (&arg);
7998 return TRUE;
7999 }
8000
8001 /* Fail the match if the line has too many operands. */
8002 if (*args == 0)
8003 return FALSE;
8004
8005 /* Handle characters that need to match exactly. */
8006 if (*args == '(' || *args == ')' || *args == ',')
8007 {
8008 if (match_char (&arg, *args))
8009 continue;
8010 return FALSE;
8011 }
8012
8013 arg.opnum += 1;
8014 c = *args;
8015 switch (c)
8016 {
8017 case 'p':
8018 case 'q':
8019 case 'A':
8020 case 'B':
8021 case 'E':
8022 relax_char = c;
8023 break;
8024
8025 case 'I':
1a00e612
RS
8026 if (!match_const_int (&arg, &imm_expr.X_add_number))
8027 return FALSE;
8028 imm_expr.X_op = O_constant;
bad1aba3 8029 if (GPR_SIZE == 32)
97d87491
RS
8030 normalize_constant_expr (&imm_expr);
8031 continue;
8032
8033 case 'a':
8034 case 'i':
8035 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8036 insn->insn_opcode <<= 16;
8037 break;
8038 }
8039
8040 operand = decode_mips16_operand (c, FALSE);
8041 if (!operand)
8042 abort ();
8043
8044 /* '6' is a special case. It is used for BREAK and SDBBP,
8045 whose operands are only meaningful to the software that decodes
8046 them. This means that there is no architectural reason why
8047 they cannot be prefixed by EXTEND, but in practice,
8048 exception handlers will only look at the instruction
8049 itself. We therefore allow '6' to be extended when
8050 disassembling but not when assembling. */
8051 if (operand->type != OP_PCREL && c != '6')
8052 {
8053 ext_operand = decode_mips16_operand (c, TRUE);
8054 if (operand != ext_operand)
8055 {
8056 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8057 {
8058 offset_expr.X_op = O_constant;
8059 offset_expr.X_add_number = 0;
8060 relax_char = c;
8061 continue;
8062 }
8063
8064 /* We need the OT_INTEGER check because some MIPS16
8065 immediate variants are listed before the register ones. */
8066 if (arg.token->type != OT_INTEGER
8067 || !match_expression (&arg, &offset_expr, offset_reloc))
8068 return FALSE;
8069
8070 /* '8' is used for SLTI(U) and has traditionally not
8071 been allowed to take relocation operators. */
8072 if (offset_reloc[0] != BFD_RELOC_UNUSED
8073 && (ext_operand->size != 16 || c == '8'))
8074 return FALSE;
8075
8076 relax_char = c;
8077 continue;
8078 }
8079 }
8080
8081 if (mips_optional_operand_p (operand)
8082 && args[1] == ','
8083 && (arg.token[0].type != OT_REG
8084 || arg.token[1].type == OT_END))
8085 {
8086 /* Assume that the register has been elided and is the
8087 same as the first operand. */
8088 arg.token = tokens;
8089 arg.argnum = 1;
8090 }
8091
8092 if (!match_operand (&arg, operand))
8093 return FALSE;
8094 }
8095}
8096
60f20e8b
RS
8097/* Record that the current instruction is invalid for the current ISA. */
8098
8099static void
8100match_invalid_for_isa (void)
8101{
8102 set_insn_error_ss
1661c76c 8103 (0, _("opcode not supported on this processor: %s (%s)"),
60f20e8b
RS
8104 mips_cpu_info_from_arch (mips_opts.arch)->name,
8105 mips_cpu_info_from_isa (mips_opts.isa)->name);
8106}
8107
8108/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8109 Return true if a definite match or failure was found, storing any match
8110 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8111 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8112 tried and failed to match under normal conditions and now want to try a
8113 more relaxed match. */
8114
8115static bfd_boolean
8116match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8117 const struct mips_opcode *past, struct mips_operand_token *tokens,
8118 int opcode_extra, bfd_boolean lax_match)
8119{
8120 const struct mips_opcode *opcode;
8121 const struct mips_opcode *invalid_delay_slot;
8122 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8123
8124 /* Search for a match, ignoring alternatives that don't satisfy the
8125 current ISA or forced_length. */
8126 invalid_delay_slot = 0;
8127 seen_valid_for_isa = FALSE;
8128 seen_valid_for_size = FALSE;
8129 opcode = first;
8130 do
8131 {
8132 gas_assert (strcmp (opcode->name, first->name) == 0);
8133 if (is_opcode_valid (opcode))
8134 {
8135 seen_valid_for_isa = TRUE;
8136 if (is_size_valid (opcode))
8137 {
8138 bfd_boolean delay_slot_ok;
8139
8140 seen_valid_for_size = TRUE;
8141 delay_slot_ok = is_delay_slot_valid (opcode);
8142 if (match_insn (insn, opcode, tokens, opcode_extra,
8143 lax_match, delay_slot_ok))
8144 {
8145 if (!delay_slot_ok)
8146 {
8147 if (!invalid_delay_slot)
8148 invalid_delay_slot = opcode;
8149 }
8150 else
8151 return TRUE;
8152 }
8153 }
8154 }
8155 ++opcode;
8156 }
8157 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8158
8159 /* If the only matches we found had the wrong length for the delay slot,
8160 pick the first such match. We'll issue an appropriate warning later. */
8161 if (invalid_delay_slot)
8162 {
8163 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8164 lax_match, TRUE))
8165 return TRUE;
8166 abort ();
8167 }
8168
8169 /* Handle the case where we didn't try to match an instruction because
8170 all the alternatives were incompatible with the current ISA. */
8171 if (!seen_valid_for_isa)
8172 {
8173 match_invalid_for_isa ();
8174 return TRUE;
8175 }
8176
8177 /* Handle the case where we didn't try to match an instruction because
8178 all the alternatives were of the wrong size. */
8179 if (!seen_valid_for_size)
8180 {
8181 if (mips_opts.insn32)
1661c76c 8182 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
60f20e8b
RS
8183 else
8184 set_insn_error_i
1661c76c 8185 (0, _("unrecognized %d-bit version of microMIPS opcode"),
60f20e8b
RS
8186 8 * forced_insn_length);
8187 return TRUE;
8188 }
8189
8190 return FALSE;
8191}
8192
8193/* Like match_insns, but for MIPS16. */
8194
8195static bfd_boolean
8196match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8197 struct mips_operand_token *tokens)
8198{
8199 const struct mips_opcode *opcode;
8200 bfd_boolean seen_valid_for_isa;
8201
8202 /* Search for a match, ignoring alternatives that don't satisfy the
8203 current ISA. There are no separate entries for extended forms so
8204 we deal with forced_length later. */
8205 seen_valid_for_isa = FALSE;
8206 opcode = first;
8207 do
8208 {
8209 gas_assert (strcmp (opcode->name, first->name) == 0);
8210 if (is_opcode_valid_16 (opcode))
8211 {
8212 seen_valid_for_isa = TRUE;
8213 if (match_mips16_insn (insn, opcode, tokens))
8214 return TRUE;
8215 }
8216 ++opcode;
8217 }
8218 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8219 && strcmp (opcode->name, first->name) == 0);
8220
8221 /* Handle the case where we didn't try to match an instruction because
8222 all the alternatives were incompatible with the current ISA. */
8223 if (!seen_valid_for_isa)
8224 {
8225 match_invalid_for_isa ();
8226 return TRUE;
8227 }
8228
8229 return FALSE;
8230}
8231
584892a6
RS
8232/* Set up global variables for the start of a new macro. */
8233
8234static void
8235macro_start (void)
8236{
8237 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
df58fc94
RS
8238 memset (&mips_macro_warning.first_insn_sizes, 0,
8239 sizeof (mips_macro_warning.first_insn_sizes));
8240 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
584892a6 8241 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
11625dd8 8242 && delayed_branch_p (&history[0]));
df58fc94
RS
8243 switch (history[0].insn_mo->pinfo2
8244 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8245 {
8246 case INSN2_BRANCH_DELAY_32BIT:
8247 mips_macro_warning.delay_slot_length = 4;
8248 break;
8249 case INSN2_BRANCH_DELAY_16BIT:
8250 mips_macro_warning.delay_slot_length = 2;
8251 break;
8252 default:
8253 mips_macro_warning.delay_slot_length = 0;
8254 break;
8255 }
8256 mips_macro_warning.first_frag = NULL;
584892a6
RS
8257}
8258
df58fc94
RS
8259/* Given that a macro is longer than one instruction or of the wrong size,
8260 return the appropriate warning for it. Return null if no warning is
8261 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8262 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8263 and RELAX_NOMACRO. */
584892a6
RS
8264
8265static const char *
8266macro_warning (relax_substateT subtype)
8267{
8268 if (subtype & RELAX_DELAY_SLOT)
1661c76c 8269 return _("macro instruction expanded into multiple instructions"
584892a6
RS
8270 " in a branch delay slot");
8271 else if (subtype & RELAX_NOMACRO)
1661c76c 8272 return _("macro instruction expanded into multiple instructions");
df58fc94
RS
8273 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8274 | RELAX_DELAY_SLOT_SIZE_SECOND))
8275 return ((subtype & RELAX_DELAY_SLOT_16BIT)
1661c76c 8276 ? _("macro instruction expanded into a wrong size instruction"
df58fc94 8277 " in a 16-bit branch delay slot")
1661c76c 8278 : _("macro instruction expanded into a wrong size instruction"
df58fc94 8279 " in a 32-bit branch delay slot"));
584892a6
RS
8280 else
8281 return 0;
8282}
8283
8284/* Finish up a macro. Emit warnings as appropriate. */
8285
8286static void
8287macro_end (void)
8288{
df58fc94
RS
8289 /* Relaxation warning flags. */
8290 relax_substateT subtype = 0;
8291
8292 /* Check delay slot size requirements. */
8293 if (mips_macro_warning.delay_slot_length == 2)
8294 subtype |= RELAX_DELAY_SLOT_16BIT;
8295 if (mips_macro_warning.delay_slot_length != 0)
584892a6 8296 {
df58fc94
RS
8297 if (mips_macro_warning.delay_slot_length
8298 != mips_macro_warning.first_insn_sizes[0])
8299 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8300 if (mips_macro_warning.delay_slot_length
8301 != mips_macro_warning.first_insn_sizes[1])
8302 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8303 }
584892a6 8304
df58fc94
RS
8305 /* Check instruction count requirements. */
8306 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8307 {
8308 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
584892a6
RS
8309 subtype |= RELAX_SECOND_LONGER;
8310 if (mips_opts.warn_about_macros)
8311 subtype |= RELAX_NOMACRO;
8312 if (mips_macro_warning.delay_slot_p)
8313 subtype |= RELAX_DELAY_SLOT;
df58fc94 8314 }
584892a6 8315
df58fc94
RS
8316 /* If both alternatives fail to fill a delay slot correctly,
8317 emit the warning now. */
8318 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8319 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8320 {
8321 relax_substateT s;
8322 const char *msg;
8323
8324 s = subtype & (RELAX_DELAY_SLOT_16BIT
8325 | RELAX_DELAY_SLOT_SIZE_FIRST
8326 | RELAX_DELAY_SLOT_SIZE_SECOND);
8327 msg = macro_warning (s);
8328 if (msg != NULL)
8329 as_warn ("%s", msg);
8330 subtype &= ~s;
8331 }
8332
8333 /* If both implementations are longer than 1 instruction, then emit the
8334 warning now. */
8335 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8336 {
8337 relax_substateT s;
8338 const char *msg;
8339
8340 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8341 msg = macro_warning (s);
8342 if (msg != NULL)
8343 as_warn ("%s", msg);
8344 subtype &= ~s;
584892a6 8345 }
df58fc94
RS
8346
8347 /* If any flags still set, then one implementation might need a warning
8348 and the other either will need one of a different kind or none at all.
8349 Pass any remaining flags over to relaxation. */
8350 if (mips_macro_warning.first_frag != NULL)
8351 mips_macro_warning.first_frag->fr_subtype |= subtype;
584892a6
RS
8352}
8353
df58fc94
RS
8354/* Instruction operand formats used in macros that vary between
8355 standard MIPS and microMIPS code. */
8356
833794fc 8357static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
df58fc94
RS
8358static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8359static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8360static const char * const lui_fmt[2] = { "t,u", "s,u" };
8361static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
833794fc 8362static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
df58fc94
RS
8363static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8364static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8365
833794fc 8366#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7361da2c
AB
8367#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8368 : cop12_fmt[mips_opts.micromips])
df58fc94
RS
8369#define JALR_FMT (jalr_fmt[mips_opts.micromips])
8370#define LUI_FMT (lui_fmt[mips_opts.micromips])
8371#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7361da2c
AB
8372#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8373 : mem12_fmt[mips_opts.micromips])
833794fc 8374#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
8375#define SHFT_FMT (shft_fmt[mips_opts.micromips])
8376#define TRAP_FMT (trap_fmt[mips_opts.micromips])
8377
6e1304d8
RS
8378/* Read a macro's relocation codes from *ARGS and store them in *R.
8379 The first argument in *ARGS will be either the code for a single
8380 relocation or -1 followed by the three codes that make up a
8381 composite relocation. */
8382
8383static void
8384macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8385{
8386 int i, next;
8387
8388 next = va_arg (*args, int);
8389 if (next >= 0)
8390 r[0] = (bfd_reloc_code_real_type) next;
8391 else
f2ae14a1
RS
8392 {
8393 for (i = 0; i < 3; i++)
8394 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8395 /* This function is only used for 16-bit relocation fields.
8396 To make the macro code simpler, treat an unrelocated value
8397 in the same way as BFD_RELOC_LO16. */
8398 if (r[0] == BFD_RELOC_UNUSED)
8399 r[0] = BFD_RELOC_LO16;
8400 }
6e1304d8
RS
8401}
8402
252b5132
RH
8403/* Build an instruction created by a macro expansion. This is passed
8404 a pointer to the count of instructions created so far, an
8405 expression, the name of the instruction to build, an operand format
8406 string, and corresponding arguments. */
8407
252b5132 8408static void
67c0d1eb 8409macro_build (expressionS *ep, const char *name, const char *fmt, ...)
252b5132 8410{
df58fc94 8411 const struct mips_opcode *mo = NULL;
f6688943 8412 bfd_reloc_code_real_type r[3];
df58fc94 8413 const struct mips_opcode *amo;
e077a1c8 8414 const struct mips_operand *operand;
df58fc94
RS
8415 struct hash_control *hash;
8416 struct mips_cl_insn insn;
252b5132 8417 va_list args;
e077a1c8 8418 unsigned int uval;
252b5132 8419
252b5132 8420 va_start (args, fmt);
252b5132 8421
252b5132
RH
8422 if (mips_opts.mips16)
8423 {
03ea81db 8424 mips16_macro_build (ep, name, fmt, &args);
252b5132
RH
8425 va_end (args);
8426 return;
8427 }
8428
f6688943
TS
8429 r[0] = BFD_RELOC_UNUSED;
8430 r[1] = BFD_RELOC_UNUSED;
8431 r[2] = BFD_RELOC_UNUSED;
df58fc94
RS
8432 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8433 amo = (struct mips_opcode *) hash_find (hash, name);
8434 gas_assert (amo);
8435 gas_assert (strcmp (name, amo->name) == 0);
1e915849 8436
df58fc94 8437 do
8b082fb1
TS
8438 {
8439 /* Search until we get a match for NAME. It is assumed here that
df58fc94
RS
8440 macros will never generate MDMX, MIPS-3D, or MT instructions.
8441 We try to match an instruction that fulfils the branch delay
8442 slot instruction length requirement (if any) of the previous
8443 instruction. While doing this we record the first instruction
8444 seen that matches all the other conditions and use it anyway
8445 if the requirement cannot be met; we will issue an appropriate
8446 warning later on. */
8447 if (strcmp (fmt, amo->args) == 0
8448 && amo->pinfo != INSN_MACRO
8449 && is_opcode_valid (amo)
8450 && is_size_valid (amo))
8451 {
8452 if (is_delay_slot_valid (amo))
8453 {
8454 mo = amo;
8455 break;
8456 }
8457 else if (!mo)
8458 mo = amo;
8459 }
8b082fb1 8460
df58fc94
RS
8461 ++amo;
8462 gas_assert (amo->name);
252b5132 8463 }
df58fc94 8464 while (strcmp (name, amo->name) == 0);
252b5132 8465
df58fc94 8466 gas_assert (mo);
1e915849 8467 create_insn (&insn, mo);
e077a1c8 8468 for (; *fmt; ++fmt)
252b5132 8469 {
e077a1c8 8470 switch (*fmt)
252b5132 8471 {
252b5132
RH
8472 case ',':
8473 case '(':
8474 case ')':
252b5132 8475 case 'z':
e077a1c8 8476 break;
252b5132
RH
8477
8478 case 'i':
8479 case 'j':
6e1304d8 8480 macro_read_relocs (&args, r);
9c2799c2 8481 gas_assert (*r == BFD_RELOC_GPREL16
e391c024
RS
8482 || *r == BFD_RELOC_MIPS_HIGHER
8483 || *r == BFD_RELOC_HI16_S
8484 || *r == BFD_RELOC_LO16
8485 || *r == BFD_RELOC_MIPS_GOT_OFST);
e077a1c8 8486 break;
e391c024
RS
8487
8488 case 'o':
8489 macro_read_relocs (&args, r);
e077a1c8 8490 break;
252b5132
RH
8491
8492 case 'u':
6e1304d8 8493 macro_read_relocs (&args, r);
9c2799c2 8494 gas_assert (ep != NULL
90ecf173
MR
8495 && (ep->X_op == O_constant
8496 || (ep->X_op == O_symbol
8497 && (*r == BFD_RELOC_MIPS_HIGHEST
8498 || *r == BFD_RELOC_HI16_S
8499 || *r == BFD_RELOC_HI16
8500 || *r == BFD_RELOC_GPREL16
8501 || *r == BFD_RELOC_MIPS_GOT_HI16
8502 || *r == BFD_RELOC_MIPS_CALL_HI16))));
e077a1c8 8503 break;
252b5132
RH
8504
8505 case 'p':
9c2799c2 8506 gas_assert (ep != NULL);
bad36eac 8507
252b5132
RH
8508 /*
8509 * This allows macro() to pass an immediate expression for
8510 * creating short branches without creating a symbol.
bad36eac
DJ
8511 *
8512 * We don't allow branch relaxation for these branches, as
8513 * they should only appear in ".set nomacro" anyway.
252b5132
RH
8514 */
8515 if (ep->X_op == O_constant)
8516 {
df58fc94
RS
8517 /* For microMIPS we always use relocations for branches.
8518 So we should not resolve immediate values. */
8519 gas_assert (!mips_opts.micromips);
8520
bad36eac
DJ
8521 if ((ep->X_add_number & 3) != 0)
8522 as_bad (_("branch to misaligned address (0x%lx)"),
8523 (unsigned long) ep->X_add_number);
8524 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8525 as_bad (_("branch address range overflow (0x%lx)"),
8526 (unsigned long) ep->X_add_number);
252b5132
RH
8527 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8528 ep = NULL;
8529 }
8530 else
0b25d3e6 8531 *r = BFD_RELOC_16_PCREL_S2;
e077a1c8 8532 break;
252b5132
RH
8533
8534 case 'a':
9c2799c2 8535 gas_assert (ep != NULL);
f6688943 8536 *r = BFD_RELOC_MIPS_JMP;
e077a1c8 8537 break;
d43b4baf 8538
252b5132 8539 default:
e077a1c8
RS
8540 operand = (mips_opts.micromips
8541 ? decode_micromips_operand (fmt)
8542 : decode_mips_operand (fmt));
8543 if (!operand)
8544 abort ();
8545
8546 uval = va_arg (args, int);
8547 if (operand->type == OP_CLO_CLZ_DEST)
8548 uval |= (uval << 5);
8549 insn_insert_operand (&insn, operand, uval);
8550
7361da2c 8551 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
e077a1c8
RS
8552 ++fmt;
8553 break;
252b5132 8554 }
252b5132
RH
8555 }
8556 va_end (args);
9c2799c2 8557 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8558
df58fc94 8559 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8560}
8561
8562static void
67c0d1eb 8563mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
03ea81db 8564 va_list *args)
252b5132 8565{
1e915849 8566 struct mips_opcode *mo;
252b5132 8567 struct mips_cl_insn insn;
e077a1c8 8568 const struct mips_operand *operand;
f6688943
TS
8569 bfd_reloc_code_real_type r[3]
8570 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 8571
1e915849 8572 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9c2799c2
NC
8573 gas_assert (mo);
8574 gas_assert (strcmp (name, mo->name) == 0);
252b5132 8575
1e915849 8576 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
252b5132 8577 {
1e915849 8578 ++mo;
9c2799c2
NC
8579 gas_assert (mo->name);
8580 gas_assert (strcmp (name, mo->name) == 0);
252b5132
RH
8581 }
8582
1e915849 8583 create_insn (&insn, mo);
e077a1c8 8584 for (; *fmt; ++fmt)
252b5132
RH
8585 {
8586 int c;
8587
e077a1c8 8588 c = *fmt;
252b5132
RH
8589 switch (c)
8590 {
252b5132
RH
8591 case ',':
8592 case '(':
8593 case ')':
e077a1c8 8594 break;
252b5132
RH
8595
8596 case '0':
8597 case 'S':
8598 case 'P':
8599 case 'R':
e077a1c8 8600 break;
252b5132
RH
8601
8602 case '<':
8603 case '>':
8604 case '4':
8605 case '5':
8606 case 'H':
8607 case 'W':
8608 case 'D':
8609 case 'j':
8610 case '8':
8611 case 'V':
8612 case 'C':
8613 case 'U':
8614 case 'k':
8615 case 'K':
8616 case 'p':
8617 case 'q':
8618 {
b886a2ab
RS
8619 offsetT value;
8620
9c2799c2 8621 gas_assert (ep != NULL);
252b5132
RH
8622
8623 if (ep->X_op != O_constant)
874e8986 8624 *r = (int) BFD_RELOC_UNUSED + c;
b886a2ab 8625 else if (calculate_reloc (*r, ep->X_add_number, &value))
252b5132 8626 {
b886a2ab 8627 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
252b5132 8628 ep = NULL;
f6688943 8629 *r = BFD_RELOC_UNUSED;
252b5132
RH
8630 }
8631 }
e077a1c8 8632 break;
252b5132 8633
e077a1c8
RS
8634 default:
8635 operand = decode_mips16_operand (c, FALSE);
8636 if (!operand)
8637 abort ();
252b5132 8638
4a06e5a2 8639 insn_insert_operand (&insn, operand, va_arg (*args, int));
e077a1c8
RS
8640 break;
8641 }
252b5132
RH
8642 }
8643
9c2799c2 8644 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8645
df58fc94 8646 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8647}
8648
438c16b8
TS
8649/*
8650 * Generate a "jalr" instruction with a relocation hint to the called
8651 * function. This occurs in NewABI PIC code.
8652 */
8653static void
df58fc94 8654macro_build_jalr (expressionS *ep, int cprestore)
438c16b8 8655{
df58fc94
RS
8656 static const bfd_reloc_code_real_type jalr_relocs[2]
8657 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8658 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8659 const char *jalr;
685736be 8660 char *f = NULL;
b34976b6 8661
1180b5a4 8662 if (MIPS_JALR_HINT_P (ep))
f21f8242 8663 {
cc3d92a5 8664 frag_grow (8);
f21f8242
AO
8665 f = frag_more (0);
8666 }
2906b037 8667 if (mips_opts.micromips)
df58fc94 8668 {
833794fc
MR
8669 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8670 ? "jalr" : "jalrs");
e64af278 8671 if (MIPS_JALR_HINT_P (ep)
833794fc 8672 || mips_opts.insn32
e64af278 8673 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
8674 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8675 else
8676 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8677 }
2906b037
MR
8678 else
8679 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
1180b5a4 8680 if (MIPS_JALR_HINT_P (ep))
df58fc94 8681 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
438c16b8
TS
8682}
8683
252b5132
RH
8684/*
8685 * Generate a "lui" instruction.
8686 */
8687static void
67c0d1eb 8688macro_build_lui (expressionS *ep, int regnum)
252b5132 8689{
9c2799c2 8690 gas_assert (! mips_opts.mips16);
252b5132 8691
df58fc94 8692 if (ep->X_op != O_constant)
252b5132 8693 {
9c2799c2 8694 gas_assert (ep->X_op == O_symbol);
bbe506e8
TS
8695 /* _gp_disp is a special case, used from s_cpload.
8696 __gnu_local_gp is used if mips_no_shared. */
9c2799c2 8697 gas_assert (mips_pic == NO_PIC
78e1bb40 8698 || (! HAVE_NEWABI
aa6975fb
ILT
8699 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8700 || (! mips_in_shared
bbe506e8
TS
8701 && strcmp (S_GET_NAME (ep->X_add_symbol),
8702 "__gnu_local_gp") == 0));
252b5132
RH
8703 }
8704
df58fc94 8705 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
252b5132
RH
8706}
8707
885add95
CD
8708/* Generate a sequence of instructions to do a load or store from a constant
8709 offset off of a base register (breg) into/from a target register (treg),
8710 using AT if necessary. */
8711static void
67c0d1eb
RS
8712macro_build_ldst_constoffset (expressionS *ep, const char *op,
8713 int treg, int breg, int dbl)
885add95 8714{
9c2799c2 8715 gas_assert (ep->X_op == O_constant);
885add95 8716
256ab948 8717 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8718 if (!dbl)
8719 normalize_constant_expr (ep);
256ab948 8720
67c1ffbe 8721 /* Right now, this routine can only handle signed 32-bit constants. */
ecd13cd3 8722 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
885add95
CD
8723 as_warn (_("operand overflow"));
8724
8725 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8726 {
8727 /* Signed 16-bit offset will fit in the op. Easy! */
67c0d1eb 8728 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
885add95
CD
8729 }
8730 else
8731 {
8732 /* 32-bit offset, need multiple instructions and AT, like:
8733 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8734 addu $tempreg,$tempreg,$breg
8735 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8736 to handle the complete offset. */
67c0d1eb
RS
8737 macro_build_lui (ep, AT);
8738 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8739 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
885add95 8740
741fe287 8741 if (!mips_opts.at)
1661c76c 8742 as_bad (_("macro used $at after \".set noat\""));
885add95
CD
8743 }
8744}
8745
252b5132
RH
8746/* set_at()
8747 * Generates code to set the $at register to true (one)
8748 * if reg is less than the immediate expression.
8749 */
8750static void
67c0d1eb 8751set_at (int reg, int unsignedp)
252b5132 8752{
b0e6f033 8753 if (imm_expr.X_add_number >= -0x8000
252b5132 8754 && imm_expr.X_add_number < 0x8000)
67c0d1eb
RS
8755 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8756 AT, reg, BFD_RELOC_LO16);
252b5132
RH
8757 else
8758 {
bad1aba3 8759 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 8760 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
252b5132
RH
8761 }
8762}
8763
252b5132
RH
8764/* Count the leading zeroes by performing a binary chop. This is a
8765 bulky bit of source, but performance is a LOT better for the
8766 majority of values than a simple loop to count the bits:
8767 for (lcnt = 0; (lcnt < 32); lcnt++)
8768 if ((v) & (1 << (31 - lcnt)))
8769 break;
8770 However it is not code size friendly, and the gain will drop a bit
8771 on certain cached systems.
8772*/
8773#define COUNT_TOP_ZEROES(v) \
8774 (((v) & ~0xffff) == 0 \
8775 ? ((v) & ~0xff) == 0 \
8776 ? ((v) & ~0xf) == 0 \
8777 ? ((v) & ~0x3) == 0 \
8778 ? ((v) & ~0x1) == 0 \
8779 ? !(v) \
8780 ? 32 \
8781 : 31 \
8782 : 30 \
8783 : ((v) & ~0x7) == 0 \
8784 ? 29 \
8785 : 28 \
8786 : ((v) & ~0x3f) == 0 \
8787 ? ((v) & ~0x1f) == 0 \
8788 ? 27 \
8789 : 26 \
8790 : ((v) & ~0x7f) == 0 \
8791 ? 25 \
8792 : 24 \
8793 : ((v) & ~0xfff) == 0 \
8794 ? ((v) & ~0x3ff) == 0 \
8795 ? ((v) & ~0x1ff) == 0 \
8796 ? 23 \
8797 : 22 \
8798 : ((v) & ~0x7ff) == 0 \
8799 ? 21 \
8800 : 20 \
8801 : ((v) & ~0x3fff) == 0 \
8802 ? ((v) & ~0x1fff) == 0 \
8803 ? 19 \
8804 : 18 \
8805 : ((v) & ~0x7fff) == 0 \
8806 ? 17 \
8807 : 16 \
8808 : ((v) & ~0xffffff) == 0 \
8809 ? ((v) & ~0xfffff) == 0 \
8810 ? ((v) & ~0x3ffff) == 0 \
8811 ? ((v) & ~0x1ffff) == 0 \
8812 ? 15 \
8813 : 14 \
8814 : ((v) & ~0x7ffff) == 0 \
8815 ? 13 \
8816 : 12 \
8817 : ((v) & ~0x3fffff) == 0 \
8818 ? ((v) & ~0x1fffff) == 0 \
8819 ? 11 \
8820 : 10 \
8821 : ((v) & ~0x7fffff) == 0 \
8822 ? 9 \
8823 : 8 \
8824 : ((v) & ~0xfffffff) == 0 \
8825 ? ((v) & ~0x3ffffff) == 0 \
8826 ? ((v) & ~0x1ffffff) == 0 \
8827 ? 7 \
8828 : 6 \
8829 : ((v) & ~0x7ffffff) == 0 \
8830 ? 5 \
8831 : 4 \
8832 : ((v) & ~0x3fffffff) == 0 \
8833 ? ((v) & ~0x1fffffff) == 0 \
8834 ? 3 \
8835 : 2 \
8836 : ((v) & ~0x7fffffff) == 0 \
8837 ? 1 \
8838 : 0)
8839
8840/* load_register()
67c1ffbe 8841 * This routine generates the least number of instructions necessary to load
252b5132
RH
8842 * an absolute expression value into a register.
8843 */
8844static void
67c0d1eb 8845load_register (int reg, expressionS *ep, int dbl)
252b5132
RH
8846{
8847 int freg;
8848 expressionS hi32, lo32;
8849
8850 if (ep->X_op != O_big)
8851 {
9c2799c2 8852 gas_assert (ep->X_op == O_constant);
256ab948
TS
8853
8854 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8855 if (!dbl)
8856 normalize_constant_expr (ep);
256ab948
TS
8857
8858 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
252b5132
RH
8859 {
8860 /* We can handle 16 bit signed values with an addiu to
8861 $zero. No need to ever use daddiu here, since $zero and
8862 the result are always correct in 32 bit mode. */
67c0d1eb 8863 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8864 return;
8865 }
8866 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8867 {
8868 /* We can handle 16 bit unsigned values with an ori to
8869 $zero. */
67c0d1eb 8870 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8871 return;
8872 }
256ab948 8873 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
252b5132
RH
8874 {
8875 /* 32 bit values require an lui. */
df58fc94 8876 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 8877 if ((ep->X_add_number & 0xffff) != 0)
67c0d1eb 8878 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
252b5132
RH
8879 return;
8880 }
8881 }
8882
8883 /* The value is larger than 32 bits. */
8884
bad1aba3 8885 if (!dbl || GPR_SIZE == 32)
252b5132 8886 {
55e08f71
NC
8887 char value[32];
8888
8889 sprintf_vma (value, ep->X_add_number);
1661c76c 8890 as_bad (_("number (0x%s) larger than 32 bits"), value);
67c0d1eb 8891 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8892 return;
8893 }
8894
8895 if (ep->X_op != O_big)
8896 {
8897 hi32 = *ep;
8898 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8899 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8900 hi32.X_add_number &= 0xffffffff;
8901 lo32 = *ep;
8902 lo32.X_add_number &= 0xffffffff;
8903 }
8904 else
8905 {
9c2799c2 8906 gas_assert (ep->X_add_number > 2);
252b5132
RH
8907 if (ep->X_add_number == 3)
8908 generic_bignum[3] = 0;
8909 else if (ep->X_add_number > 4)
1661c76c 8910 as_bad (_("number larger than 64 bits"));
252b5132
RH
8911 lo32.X_op = O_constant;
8912 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8913 hi32.X_op = O_constant;
8914 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8915 }
8916
8917 if (hi32.X_add_number == 0)
8918 freg = 0;
8919 else
8920 {
8921 int shift, bit;
8922 unsigned long hi, lo;
8923
956cd1d6 8924 if (hi32.X_add_number == (offsetT) 0xffffffff)
beae10d5
KH
8925 {
8926 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8927 {
67c0d1eb 8928 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
8929 return;
8930 }
8931 if (lo32.X_add_number & 0x80000000)
8932 {
df58fc94 8933 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 8934 if (lo32.X_add_number & 0xffff)
67c0d1eb 8935 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
beae10d5
KH
8936 return;
8937 }
8938 }
252b5132
RH
8939
8940 /* Check for 16bit shifted constant. We know that hi32 is
8941 non-zero, so start the mask on the first bit of the hi32
8942 value. */
8943 shift = 17;
8944 do
beae10d5
KH
8945 {
8946 unsigned long himask, lomask;
8947
8948 if (shift < 32)
8949 {
8950 himask = 0xffff >> (32 - shift);
8951 lomask = (0xffff << shift) & 0xffffffff;
8952 }
8953 else
8954 {
8955 himask = 0xffff << (shift - 32);
8956 lomask = 0;
8957 }
8958 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8959 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8960 {
8961 expressionS tmp;
8962
8963 tmp.X_op = O_constant;
8964 if (shift < 32)
8965 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8966 | (lo32.X_add_number >> shift));
8967 else
8968 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
67c0d1eb 8969 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
df58fc94 8970 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 8971 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
8972 return;
8973 }
f9419b05 8974 ++shift;
beae10d5
KH
8975 }
8976 while (shift <= (64 - 16));
252b5132
RH
8977
8978 /* Find the bit number of the lowest one bit, and store the
8979 shifted value in hi/lo. */
8980 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8981 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8982 if (lo != 0)
8983 {
8984 bit = 0;
8985 while ((lo & 1) == 0)
8986 {
8987 lo >>= 1;
8988 ++bit;
8989 }
8990 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8991 hi >>= bit;
8992 }
8993 else
8994 {
8995 bit = 32;
8996 while ((hi & 1) == 0)
8997 {
8998 hi >>= 1;
8999 ++bit;
9000 }
9001 lo = hi;
9002 hi = 0;
9003 }
9004
9005 /* Optimize if the shifted value is a (power of 2) - 1. */
9006 if ((hi == 0 && ((lo + 1) & lo) == 0)
9007 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
beae10d5
KH
9008 {
9009 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
252b5132 9010 if (shift != 0)
beae10d5 9011 {
252b5132
RH
9012 expressionS tmp;
9013
9014 /* This instruction will set the register to be all
9015 ones. */
beae10d5
KH
9016 tmp.X_op = O_constant;
9017 tmp.X_add_number = (offsetT) -1;
67c0d1eb 9018 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9019 if (bit != 0)
9020 {
9021 bit += shift;
df58fc94 9022 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9023 reg, reg, (bit >= 32) ? bit - 32 : bit);
beae10d5 9024 }
df58fc94 9025 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
67c0d1eb 9026 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9027 return;
9028 }
9029 }
252b5132
RH
9030
9031 /* Sign extend hi32 before calling load_register, because we can
9032 generally get better code when we load a sign extended value. */
9033 if ((hi32.X_add_number & 0x80000000) != 0)
beae10d5 9034 hi32.X_add_number |= ~(offsetT) 0xffffffff;
67c0d1eb 9035 load_register (reg, &hi32, 0);
252b5132
RH
9036 freg = reg;
9037 }
9038 if ((lo32.X_add_number & 0xffff0000) == 0)
9039 {
9040 if (freg != 0)
9041 {
df58fc94 9042 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
252b5132
RH
9043 freg = reg;
9044 }
9045 }
9046 else
9047 {
9048 expressionS mid16;
9049
956cd1d6 9050 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
beae10d5 9051 {
df58fc94
RS
9052 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9053 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
beae10d5
KH
9054 return;
9055 }
252b5132
RH
9056
9057 if (freg != 0)
9058 {
df58fc94 9059 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
252b5132
RH
9060 freg = reg;
9061 }
9062 mid16 = lo32;
9063 mid16.X_add_number >>= 16;
67c0d1eb 9064 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
df58fc94 9065 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
252b5132
RH
9066 freg = reg;
9067 }
9068 if ((lo32.X_add_number & 0xffff) != 0)
67c0d1eb 9069 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
252b5132
RH
9070}
9071
269137b2
TS
9072static inline void
9073load_delay_nop (void)
9074{
9075 if (!gpr_interlocks)
9076 macro_build (NULL, "nop", "");
9077}
9078
252b5132
RH
9079/* Load an address into a register. */
9080
9081static void
67c0d1eb 9082load_address (int reg, expressionS *ep, int *used_at)
252b5132 9083{
252b5132
RH
9084 if (ep->X_op != O_constant
9085 && ep->X_op != O_symbol)
9086 {
9087 as_bad (_("expression too complex"));
9088 ep->X_op = O_constant;
9089 }
9090
9091 if (ep->X_op == O_constant)
9092 {
67c0d1eb 9093 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
252b5132
RH
9094 return;
9095 }
9096
9097 if (mips_pic == NO_PIC)
9098 {
9099 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 9100 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
9101 Otherwise we want
9102 lui $reg,<sym> (BFD_RELOC_HI16_S)
9103 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
d6bc6245 9104 If we have an addend, we always use the latter form.
76b3015f 9105
d6bc6245
TS
9106 With 64bit address space and a usable $at we want
9107 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9108 lui $at,<sym> (BFD_RELOC_HI16_S)
9109 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9110 daddiu $at,<sym> (BFD_RELOC_LO16)
9111 dsll32 $reg,0
3a482fd5 9112 daddu $reg,$reg,$at
76b3015f 9113
c03099e6 9114 If $at is already in use, we use a path which is suboptimal
d6bc6245
TS
9115 on superscalar processors.
9116 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9117 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9118 dsll $reg,16
9119 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9120 dsll $reg,16
9121 daddiu $reg,<sym> (BFD_RELOC_LO16)
6caf9ef4
TS
9122
9123 For GP relative symbols in 64bit address space we can use
9124 the same sequence as in 32bit address space. */
aed1a261 9125 if (HAVE_64BIT_SYMBOLS)
d6bc6245 9126 {
6caf9ef4
TS
9127 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9128 && !nopic_need_relax (ep->X_add_symbol, 1))
9129 {
9130 relax_start (ep->X_add_symbol);
9131 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9132 mips_gp_register, BFD_RELOC_GPREL16);
9133 relax_switch ();
9134 }
d6bc6245 9135
741fe287 9136 if (*used_at == 0 && mips_opts.at)
d6bc6245 9137 {
df58fc94
RS
9138 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9139 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
67c0d1eb
RS
9140 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9141 BFD_RELOC_MIPS_HIGHER);
9142 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
df58fc94 9143 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
67c0d1eb 9144 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
d6bc6245
TS
9145 *used_at = 1;
9146 }
9147 else
9148 {
df58fc94 9149 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb
RS
9150 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9151 BFD_RELOC_MIPS_HIGHER);
df58fc94 9152 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9153 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
df58fc94 9154 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9155 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
d6bc6245 9156 }
6caf9ef4
TS
9157
9158 if (mips_relax.sequence)
9159 relax_end ();
d6bc6245 9160 }
252b5132
RH
9161 else
9162 {
d6bc6245 9163 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 9164 && !nopic_need_relax (ep->X_add_symbol, 1))
d6bc6245 9165 {
4d7206a2 9166 relax_start (ep->X_add_symbol);
67c0d1eb 9167 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
17a2f251 9168 mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 9169 relax_switch ();
d6bc6245 9170 }
67c0d1eb
RS
9171 macro_build_lui (ep, reg);
9172 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9173 reg, reg, BFD_RELOC_LO16);
4d7206a2
RS
9174 if (mips_relax.sequence)
9175 relax_end ();
d6bc6245 9176 }
252b5132 9177 }
0a44bf69 9178 else if (!mips_big_got)
252b5132
RH
9179 {
9180 expressionS ex;
9181
9182 /* If this is a reference to an external symbol, we want
9183 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9184 Otherwise we want
9185 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9186 nop
9187 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
f5040a92
AO
9188 If there is a constant, it must be added in after.
9189
ed6fb7bd 9190 If we have NewABI, we want
f5040a92
AO
9191 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9192 unless we're referencing a global symbol with a non-zero
9193 offset, in which case cst must be added separately. */
ed6fb7bd
SC
9194 if (HAVE_NEWABI)
9195 {
f5040a92
AO
9196 if (ep->X_add_number)
9197 {
4d7206a2 9198 ex.X_add_number = ep->X_add_number;
f5040a92 9199 ep->X_add_number = 0;
4d7206a2 9200 relax_start (ep->X_add_symbol);
67c0d1eb
RS
9201 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9202 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9203 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9204 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9205 ex.X_op = O_constant;
67c0d1eb 9206 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9207 reg, reg, BFD_RELOC_LO16);
f5040a92 9208 ep->X_add_number = ex.X_add_number;
4d7206a2 9209 relax_switch ();
f5040a92 9210 }
67c0d1eb 9211 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9212 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2
RS
9213 if (mips_relax.sequence)
9214 relax_end ();
ed6fb7bd
SC
9215 }
9216 else
9217 {
f5040a92
AO
9218 ex.X_add_number = ep->X_add_number;
9219 ep->X_add_number = 0;
67c0d1eb
RS
9220 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9221 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9222 load_delay_nop ();
4d7206a2
RS
9223 relax_start (ep->X_add_symbol);
9224 relax_switch ();
67c0d1eb 9225 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9226 BFD_RELOC_LO16);
4d7206a2 9227 relax_end ();
ed6fb7bd 9228
f5040a92
AO
9229 if (ex.X_add_number != 0)
9230 {
9231 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9232 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9233 ex.X_op = O_constant;
67c0d1eb 9234 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9235 reg, reg, BFD_RELOC_LO16);
f5040a92 9236 }
252b5132
RH
9237 }
9238 }
0a44bf69 9239 else if (mips_big_got)
252b5132
RH
9240 {
9241 expressionS ex;
252b5132
RH
9242
9243 /* This is the large GOT case. If this is a reference to an
9244 external symbol, we want
9245 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9246 addu $reg,$reg,$gp
9247 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
f5040a92
AO
9248
9249 Otherwise, for a reference to a local symbol in old ABI, we want
252b5132
RH
9250 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9251 nop
9252 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
684022ea 9253 If there is a constant, it must be added in after.
f5040a92
AO
9254
9255 In the NewABI, for local symbols, with or without offsets, we want:
438c16b8
TS
9256 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9257 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 9258 */
438c16b8
TS
9259 if (HAVE_NEWABI)
9260 {
4d7206a2 9261 ex.X_add_number = ep->X_add_number;
f5040a92 9262 ep->X_add_number = 0;
4d7206a2 9263 relax_start (ep->X_add_symbol);
df58fc94 9264 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9265 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9266 reg, reg, mips_gp_register);
9267 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9268 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
f5040a92
AO
9269 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9270 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9271 else if (ex.X_add_number)
9272 {
9273 ex.X_op = O_constant;
67c0d1eb
RS
9274 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9275 BFD_RELOC_LO16);
f5040a92
AO
9276 }
9277
9278 ep->X_add_number = ex.X_add_number;
4d7206a2 9279 relax_switch ();
67c0d1eb 9280 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9281 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
67c0d1eb
RS
9282 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9283 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 9284 relax_end ();
438c16b8 9285 }
252b5132 9286 else
438c16b8 9287 {
f5040a92
AO
9288 ex.X_add_number = ep->X_add_number;
9289 ep->X_add_number = 0;
4d7206a2 9290 relax_start (ep->X_add_symbol);
df58fc94 9291 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9292 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9293 reg, reg, mips_gp_register);
9294 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9295 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4d7206a2
RS
9296 relax_switch ();
9297 if (reg_needs_delay (mips_gp_register))
438c16b8
TS
9298 {
9299 /* We need a nop before loading from $gp. This special
9300 check is required because the lui which starts the main
9301 instruction stream does not refer to $gp, and so will not
9302 insert the nop which may be required. */
67c0d1eb 9303 macro_build (NULL, "nop", "");
438c16b8 9304 }
67c0d1eb 9305 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9306 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9307 load_delay_nop ();
67c0d1eb 9308 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9309 BFD_RELOC_LO16);
4d7206a2 9310 relax_end ();
438c16b8 9311
f5040a92
AO
9312 if (ex.X_add_number != 0)
9313 {
9314 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9315 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9316 ex.X_op = O_constant;
67c0d1eb
RS
9317 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9318 BFD_RELOC_LO16);
f5040a92 9319 }
252b5132
RH
9320 }
9321 }
252b5132
RH
9322 else
9323 abort ();
8fc2e39e 9324
741fe287 9325 if (!mips_opts.at && *used_at == 1)
1661c76c 9326 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
9327}
9328
ea1fb5dc
RS
9329/* Move the contents of register SOURCE into register DEST. */
9330
9331static void
67c0d1eb 9332move_register (int dest, int source)
ea1fb5dc 9333{
df58fc94
RS
9334 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9335 instruction specifically requires a 32-bit one. */
9336 if (mips_opts.micromips
833794fc 9337 && !mips_opts.insn32
df58fc94 9338 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7951ca42 9339 macro_build (NULL, "move", "mp,mj", dest, source);
df58fc94 9340 else
40fc1451 9341 macro_build (NULL, "or", "d,v,t", dest, source, 0);
ea1fb5dc
RS
9342}
9343
4d7206a2 9344/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
f6a22291
MR
9345 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9346 The two alternatives are:
4d7206a2
RS
9347
9348 Global symbol Local sybmol
9349 ------------- ------------
9350 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9351 ... ...
9352 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9353
9354 load_got_offset emits the first instruction and add_got_offset
f6a22291
MR
9355 emits the second for a 16-bit offset or add_got_offset_hilo emits
9356 a sequence to add a 32-bit offset using a scratch register. */
4d7206a2
RS
9357
9358static void
67c0d1eb 9359load_got_offset (int dest, expressionS *local)
4d7206a2
RS
9360{
9361 expressionS global;
9362
9363 global = *local;
9364 global.X_add_number = 0;
9365
9366 relax_start (local->X_add_symbol);
67c0d1eb
RS
9367 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9368 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2 9369 relax_switch ();
67c0d1eb
RS
9370 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9371 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2
RS
9372 relax_end ();
9373}
9374
9375static void
67c0d1eb 9376add_got_offset (int dest, expressionS *local)
4d7206a2
RS
9377{
9378 expressionS global;
9379
9380 global.X_op = O_constant;
9381 global.X_op_symbol = NULL;
9382 global.X_add_symbol = NULL;
9383 global.X_add_number = local->X_add_number;
9384
9385 relax_start (local->X_add_symbol);
67c0d1eb 9386 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4d7206a2
RS
9387 dest, dest, BFD_RELOC_LO16);
9388 relax_switch ();
67c0d1eb 9389 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4d7206a2
RS
9390 relax_end ();
9391}
9392
f6a22291
MR
9393static void
9394add_got_offset_hilo (int dest, expressionS *local, int tmp)
9395{
9396 expressionS global;
9397 int hold_mips_optimize;
9398
9399 global.X_op = O_constant;
9400 global.X_op_symbol = NULL;
9401 global.X_add_symbol = NULL;
9402 global.X_add_number = local->X_add_number;
9403
9404 relax_start (local->X_add_symbol);
9405 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9406 relax_switch ();
9407 /* Set mips_optimize around the lui instruction to avoid
9408 inserting an unnecessary nop after the lw. */
9409 hold_mips_optimize = mips_optimize;
9410 mips_optimize = 2;
9411 macro_build_lui (&global, tmp);
9412 mips_optimize = hold_mips_optimize;
9413 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9414 relax_end ();
9415
9416 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9417}
9418
df58fc94
RS
9419/* Emit a sequence of instructions to emulate a branch likely operation.
9420 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9421 is its complementing branch with the original condition negated.
9422 CALL is set if the original branch specified the link operation.
9423 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9424
9425 Code like this is produced in the noreorder mode:
9426
9427 BRNEG <args>, 1f
9428 nop
9429 b <sym>
9430 delay slot (executed only if branch taken)
9431 1:
9432
9433 or, if CALL is set:
9434
9435 BRNEG <args>, 1f
9436 nop
9437 bal <sym>
9438 delay slot (executed only if branch taken)
9439 1:
9440
9441 In the reorder mode the delay slot would be filled with a nop anyway,
9442 so code produced is simply:
9443
9444 BR <args>, <sym>
9445 nop
9446
9447 This function is used when producing code for the microMIPS ASE that
9448 does not implement branch likely instructions in hardware. */
9449
9450static void
9451macro_build_branch_likely (const char *br, const char *brneg,
9452 int call, expressionS *ep, const char *fmt,
9453 unsigned int sreg, unsigned int treg)
9454{
9455 int noreorder = mips_opts.noreorder;
9456 expressionS expr1;
9457
9458 gas_assert (mips_opts.micromips);
9459 start_noreorder ();
9460 if (noreorder)
9461 {
9462 micromips_label_expr (&expr1);
9463 macro_build (&expr1, brneg, fmt, sreg, treg);
9464 macro_build (NULL, "nop", "");
9465 macro_build (ep, call ? "bal" : "b", "p");
9466
9467 /* Set to true so that append_insn adds a label. */
9468 emit_branch_likely_macro = TRUE;
9469 }
9470 else
9471 {
9472 macro_build (ep, br, fmt, sreg, treg);
9473 macro_build (NULL, "nop", "");
9474 }
9475 end_noreorder ();
9476}
9477
9478/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9479 the condition code tested. EP specifies the branch target. */
9480
9481static void
9482macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9483{
9484 const int call = 0;
9485 const char *brneg;
9486 const char *br;
9487
9488 switch (type)
9489 {
9490 case M_BC1FL:
9491 br = "bc1f";
9492 brneg = "bc1t";
9493 break;
9494 case M_BC1TL:
9495 br = "bc1t";
9496 brneg = "bc1f";
9497 break;
9498 case M_BC2FL:
9499 br = "bc2f";
9500 brneg = "bc2t";
9501 break;
9502 case M_BC2TL:
9503 br = "bc2t";
9504 brneg = "bc2f";
9505 break;
9506 default:
9507 abort ();
9508 }
9509 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9510}
9511
9512/* Emit a two-argument branch macro specified by TYPE, using SREG as
9513 the register tested. EP specifies the branch target. */
9514
9515static void
9516macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9517{
9518 const char *brneg = NULL;
9519 const char *br;
9520 int call = 0;
9521
9522 switch (type)
9523 {
9524 case M_BGEZ:
9525 br = "bgez";
9526 break;
9527 case M_BGEZL:
9528 br = mips_opts.micromips ? "bgez" : "bgezl";
9529 brneg = "bltz";
9530 break;
9531 case M_BGEZALL:
9532 gas_assert (mips_opts.micromips);
833794fc 9533 br = mips_opts.insn32 ? "bgezal" : "bgezals";
df58fc94
RS
9534 brneg = "bltz";
9535 call = 1;
9536 break;
9537 case M_BGTZ:
9538 br = "bgtz";
9539 break;
9540 case M_BGTZL:
9541 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9542 brneg = "blez";
9543 break;
9544 case M_BLEZ:
9545 br = "blez";
9546 break;
9547 case M_BLEZL:
9548 br = mips_opts.micromips ? "blez" : "blezl";
9549 brneg = "bgtz";
9550 break;
9551 case M_BLTZ:
9552 br = "bltz";
9553 break;
9554 case M_BLTZL:
9555 br = mips_opts.micromips ? "bltz" : "bltzl";
9556 brneg = "bgez";
9557 break;
9558 case M_BLTZALL:
9559 gas_assert (mips_opts.micromips);
833794fc 9560 br = mips_opts.insn32 ? "bltzal" : "bltzals";
df58fc94
RS
9561 brneg = "bgez";
9562 call = 1;
9563 break;
9564 default:
9565 abort ();
9566 }
9567 if (mips_opts.micromips && brneg)
9568 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9569 else
9570 macro_build (ep, br, "s,p", sreg);
9571}
9572
9573/* Emit a three-argument branch macro specified by TYPE, using SREG and
9574 TREG as the registers tested. EP specifies the branch target. */
9575
9576static void
9577macro_build_branch_rsrt (int type, expressionS *ep,
9578 unsigned int sreg, unsigned int treg)
9579{
9580 const char *brneg = NULL;
9581 const int call = 0;
9582 const char *br;
9583
9584 switch (type)
9585 {
9586 case M_BEQ:
9587 case M_BEQ_I:
9588 br = "beq";
9589 break;
9590 case M_BEQL:
9591 case M_BEQL_I:
9592 br = mips_opts.micromips ? "beq" : "beql";
9593 brneg = "bne";
9594 break;
9595 case M_BNE:
9596 case M_BNE_I:
9597 br = "bne";
9598 break;
9599 case M_BNEL:
9600 case M_BNEL_I:
9601 br = mips_opts.micromips ? "bne" : "bnel";
9602 brneg = "beq";
9603 break;
9604 default:
9605 abort ();
9606 }
9607 if (mips_opts.micromips && brneg)
9608 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9609 else
9610 macro_build (ep, br, "s,t,p", sreg, treg);
9611}
9612
f2ae14a1
RS
9613/* Return the high part that should be loaded in order to make the low
9614 part of VALUE accessible using an offset of OFFBITS bits. */
9615
9616static offsetT
9617offset_high_part (offsetT value, unsigned int offbits)
9618{
9619 offsetT bias;
9620 addressT low_mask;
9621
9622 if (offbits == 0)
9623 return value;
9624 bias = 1 << (offbits - 1);
9625 low_mask = bias * 2 - 1;
9626 return (value + bias) & ~low_mask;
9627}
9628
9629/* Return true if the value stored in offset_expr and offset_reloc
9630 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9631 amount that the caller wants to add without inducing overflow
9632 and ALIGN is the known alignment of the value in bytes. */
9633
9634static bfd_boolean
9635small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9636{
9637 if (offbits == 16)
9638 {
9639 /* Accept any relocation operator if overflow isn't a concern. */
9640 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9641 return TRUE;
9642
9643 /* These relocations are guaranteed not to overflow in correct links. */
9644 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9645 || gprel16_reloc_p (*offset_reloc))
9646 return TRUE;
9647 }
9648 if (offset_expr.X_op == O_constant
9649 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9650 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9651 return TRUE;
9652 return FALSE;
9653}
9654
252b5132
RH
9655/*
9656 * Build macros
9657 * This routine implements the seemingly endless macro or synthesized
9658 * instructions and addressing modes in the mips assembly language. Many
9659 * of these macros are simple and are similar to each other. These could
67c1ffbe 9660 * probably be handled by some kind of table or grammar approach instead of
252b5132
RH
9661 * this verbose method. Others are not simple macros but are more like
9662 * optimizing code generation.
9663 * One interesting optimization is when several store macros appear
67c1ffbe 9664 * consecutively that would load AT with the upper half of the same address.
252b5132
RH
9665 * The ensuing load upper instructions are ommited. This implies some kind
9666 * of global optimization. We currently only optimize within a single macro.
9667 * For many of the load and store macros if the address is specified as a
9668 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9669 * first load register 'at' with zero and use it as the base register. The
9670 * mips assembler simply uses register $zero. Just one tiny optimization
9671 * we're missing.
9672 */
9673static void
833794fc 9674macro (struct mips_cl_insn *ip, char *str)
252b5132 9675{
c0ebe874
RS
9676 const struct mips_operand_array *operands;
9677 unsigned int breg, i;
741fe287 9678 unsigned int tempreg;
252b5132 9679 int mask;
43841e91 9680 int used_at = 0;
df58fc94 9681 expressionS label_expr;
252b5132 9682 expressionS expr1;
df58fc94 9683 expressionS *ep;
252b5132
RH
9684 const char *s;
9685 const char *s2;
9686 const char *fmt;
9687 int likely = 0;
252b5132 9688 int coproc = 0;
7f3c4072 9689 int offbits = 16;
1abe91b1 9690 int call = 0;
df58fc94
RS
9691 int jals = 0;
9692 int dbl = 0;
9693 int imm = 0;
9694 int ust = 0;
9695 int lp = 0;
f2ae14a1 9696 bfd_boolean large_offset;
252b5132 9697 int off;
252b5132 9698 int hold_mips_optimize;
f2ae14a1 9699 unsigned int align;
c0ebe874 9700 unsigned int op[MAX_OPERANDS];
252b5132 9701
9c2799c2 9702 gas_assert (! mips_opts.mips16);
252b5132 9703
c0ebe874
RS
9704 operands = insn_operands (ip);
9705 for (i = 0; i < MAX_OPERANDS; i++)
9706 if (operands->operand[i])
9707 op[i] = insn_extract_operand (ip, operands->operand[i]);
9708 else
9709 op[i] = -1;
9710
252b5132
RH
9711 mask = ip->insn_mo->mask;
9712
df58fc94
RS
9713 label_expr.X_op = O_constant;
9714 label_expr.X_op_symbol = NULL;
9715 label_expr.X_add_symbol = NULL;
9716 label_expr.X_add_number = 0;
9717
252b5132
RH
9718 expr1.X_op = O_constant;
9719 expr1.X_op_symbol = NULL;
9720 expr1.X_add_symbol = NULL;
9721 expr1.X_add_number = 1;
f2ae14a1 9722 align = 1;
252b5132
RH
9723
9724 switch (mask)
9725 {
9726 case M_DABS:
9727 dbl = 1;
9728 case M_ABS:
df58fc94
RS
9729 /* bgez $a0,1f
9730 move v0,$a0
9731 sub v0,$zero,$a0
9732 1:
9733 */
252b5132 9734
7d10b47d 9735 start_noreorder ();
252b5132 9736
df58fc94
RS
9737 if (mips_opts.micromips)
9738 micromips_label_expr (&label_expr);
9739 else
9740 label_expr.X_add_number = 8;
c0ebe874
RS
9741 macro_build (&label_expr, "bgez", "s,p", op[1]);
9742 if (op[0] == op[1])
a605d2b3 9743 macro_build (NULL, "nop", "");
252b5132 9744 else
c0ebe874
RS
9745 move_register (op[0], op[1]);
9746 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
df58fc94
RS
9747 if (mips_opts.micromips)
9748 micromips_add_label ();
252b5132 9749
7d10b47d 9750 end_noreorder ();
8fc2e39e 9751 break;
252b5132
RH
9752
9753 case M_ADD_I:
9754 s = "addi";
9755 s2 = "add";
9756 goto do_addi;
9757 case M_ADDU_I:
9758 s = "addiu";
9759 s2 = "addu";
9760 goto do_addi;
9761 case M_DADD_I:
9762 dbl = 1;
9763 s = "daddi";
9764 s2 = "dadd";
df58fc94
RS
9765 if (!mips_opts.micromips)
9766 goto do_addi;
b0e6f033 9767 if (imm_expr.X_add_number >= -0x200
df58fc94
RS
9768 && imm_expr.X_add_number < 0x200)
9769 {
b0e6f033
RS
9770 macro_build (NULL, s, "t,r,.", op[0], op[1],
9771 (int) imm_expr.X_add_number);
df58fc94
RS
9772 break;
9773 }
9774 goto do_addi_i;
252b5132
RH
9775 case M_DADDU_I:
9776 dbl = 1;
9777 s = "daddiu";
9778 s2 = "daddu";
9779 do_addi:
b0e6f033 9780 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
9781 && imm_expr.X_add_number < 0x8000)
9782 {
c0ebe874 9783 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 9784 break;
252b5132 9785 }
df58fc94 9786 do_addi_i:
8fc2e39e 9787 used_at = 1;
67c0d1eb 9788 load_register (AT, &imm_expr, dbl);
c0ebe874 9789 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9790 break;
9791
9792 case M_AND_I:
9793 s = "andi";
9794 s2 = "and";
9795 goto do_bit;
9796 case M_OR_I:
9797 s = "ori";
9798 s2 = "or";
9799 goto do_bit;
9800 case M_NOR_I:
9801 s = "";
9802 s2 = "nor";
9803 goto do_bit;
9804 case M_XOR_I:
9805 s = "xori";
9806 s2 = "xor";
9807 do_bit:
b0e6f033 9808 if (imm_expr.X_add_number >= 0
252b5132
RH
9809 && imm_expr.X_add_number < 0x10000)
9810 {
9811 if (mask != M_NOR_I)
c0ebe874 9812 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
9813 else
9814 {
67c0d1eb 9815 macro_build (&imm_expr, "ori", "t,r,i",
c0ebe874
RS
9816 op[0], op[1], BFD_RELOC_LO16);
9817 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
252b5132 9818 }
8fc2e39e 9819 break;
252b5132
RH
9820 }
9821
8fc2e39e 9822 used_at = 1;
bad1aba3 9823 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 9824 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9825 break;
9826
8b082fb1
TS
9827 case M_BALIGN:
9828 switch (imm_expr.X_add_number)
9829 {
9830 case 0:
9831 macro_build (NULL, "nop", "");
9832 break;
9833 case 2:
c0ebe874 9834 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
8b082fb1 9835 break;
03f66e8a
MR
9836 case 1:
9837 case 3:
c0ebe874 9838 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
90ecf173 9839 (int) imm_expr.X_add_number);
8b082fb1 9840 break;
03f66e8a
MR
9841 default:
9842 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9843 (unsigned long) imm_expr.X_add_number);
9844 break;
8b082fb1
TS
9845 }
9846 break;
9847
df58fc94
RS
9848 case M_BC1FL:
9849 case M_BC1TL:
9850 case M_BC2FL:
9851 case M_BC2TL:
9852 gas_assert (mips_opts.micromips);
9853 macro_build_branch_ccl (mask, &offset_expr,
9854 EXTRACT_OPERAND (1, BCC, *ip));
9855 break;
9856
252b5132 9857 case M_BEQ_I:
252b5132 9858 case M_BEQL_I:
252b5132 9859 case M_BNE_I:
252b5132 9860 case M_BNEL_I:
b0e6f033 9861 if (imm_expr.X_add_number == 0)
c0ebe874 9862 op[1] = 0;
df58fc94 9863 else
252b5132 9864 {
c0ebe874 9865 op[1] = AT;
df58fc94 9866 used_at = 1;
bad1aba3 9867 load_register (op[1], &imm_expr, GPR_SIZE == 64);
252b5132 9868 }
df58fc94
RS
9869 /* Fall through. */
9870 case M_BEQL:
9871 case M_BNEL:
c0ebe874 9872 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
252b5132
RH
9873 break;
9874
9875 case M_BGEL:
9876 likely = 1;
9877 case M_BGE:
c0ebe874
RS
9878 if (op[1] == 0)
9879 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9880 else if (op[0] == 0)
9881 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
df58fc94 9882 else
252b5132 9883 {
df58fc94 9884 used_at = 1;
c0ebe874 9885 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9886 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9887 &offset_expr, AT, ZERO);
252b5132 9888 }
df58fc94
RS
9889 break;
9890
9891 case M_BGEZL:
9892 case M_BGEZALL:
9893 case M_BGTZL:
9894 case M_BLEZL:
9895 case M_BLTZL:
9896 case M_BLTZALL:
c0ebe874 9897 macro_build_branch_rs (mask, &offset_expr, op[0]);
252b5132
RH
9898 break;
9899
9900 case M_BGTL_I:
9901 likely = 1;
9902 case M_BGT_I:
90ecf173 9903 /* Check for > max integer. */
b0e6f033 9904 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
9905 {
9906 do_false:
90ecf173 9907 /* Result is always false. */
252b5132 9908 if (! likely)
a605d2b3 9909 macro_build (NULL, "nop", "");
252b5132 9910 else
df58fc94 9911 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8fc2e39e 9912 break;
252b5132 9913 }
f9419b05 9914 ++imm_expr.X_add_number;
252b5132
RH
9915 /* FALLTHROUGH */
9916 case M_BGE_I:
9917 case M_BGEL_I:
9918 if (mask == M_BGEL_I)
9919 likely = 1;
b0e6f033 9920 if (imm_expr.X_add_number == 0)
252b5132 9921 {
df58fc94 9922 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
c0ebe874 9923 &offset_expr, op[0]);
8fc2e39e 9924 break;
252b5132 9925 }
b0e6f033 9926 if (imm_expr.X_add_number == 1)
252b5132 9927 {
df58fc94 9928 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
c0ebe874 9929 &offset_expr, op[0]);
8fc2e39e 9930 break;
252b5132 9931 }
b0e6f033 9932 if (imm_expr.X_add_number <= GPR_SMIN)
252b5132
RH
9933 {
9934 do_true:
9935 /* result is always true */
1661c76c 9936 as_warn (_("branch %s is always true"), ip->insn_mo->name);
67c0d1eb 9937 macro_build (&offset_expr, "b", "p");
8fc2e39e 9938 break;
252b5132 9939 }
8fc2e39e 9940 used_at = 1;
c0ebe874 9941 set_at (op[0], 0);
df58fc94
RS
9942 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9943 &offset_expr, AT, ZERO);
252b5132
RH
9944 break;
9945
9946 case M_BGEUL:
9947 likely = 1;
9948 case M_BGEU:
c0ebe874 9949 if (op[1] == 0)
252b5132 9950 goto do_true;
c0ebe874 9951 else if (op[0] == 0)
df58fc94 9952 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 9953 &offset_expr, ZERO, op[1]);
df58fc94 9954 else
252b5132 9955 {
df58fc94 9956 used_at = 1;
c0ebe874 9957 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9958 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9959 &offset_expr, AT, ZERO);
252b5132 9960 }
252b5132
RH
9961 break;
9962
9963 case M_BGTUL_I:
9964 likely = 1;
9965 case M_BGTU_I:
c0ebe874 9966 if (op[0] == 0
bad1aba3 9967 || (GPR_SIZE == 32
f01dc953 9968 && imm_expr.X_add_number == -1))
252b5132 9969 goto do_false;
f9419b05 9970 ++imm_expr.X_add_number;
252b5132
RH
9971 /* FALLTHROUGH */
9972 case M_BGEU_I:
9973 case M_BGEUL_I:
9974 if (mask == M_BGEUL_I)
9975 likely = 1;
b0e6f033 9976 if (imm_expr.X_add_number == 0)
252b5132 9977 goto do_true;
b0e6f033 9978 else if (imm_expr.X_add_number == 1)
df58fc94 9979 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 9980 &offset_expr, op[0], ZERO);
df58fc94 9981 else
252b5132 9982 {
df58fc94 9983 used_at = 1;
c0ebe874 9984 set_at (op[0], 1);
df58fc94
RS
9985 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9986 &offset_expr, AT, ZERO);
252b5132 9987 }
252b5132
RH
9988 break;
9989
9990 case M_BGTL:
9991 likely = 1;
9992 case M_BGT:
c0ebe874
RS
9993 if (op[1] == 0)
9994 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9995 else if (op[0] == 0)
9996 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
df58fc94 9997 else
252b5132 9998 {
df58fc94 9999 used_at = 1;
c0ebe874 10000 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10001 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10002 &offset_expr, AT, ZERO);
252b5132 10003 }
252b5132
RH
10004 break;
10005
10006 case M_BGTUL:
10007 likely = 1;
10008 case M_BGTU:
c0ebe874 10009 if (op[1] == 0)
df58fc94 10010 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874
RS
10011 &offset_expr, op[0], ZERO);
10012 else if (op[0] == 0)
df58fc94
RS
10013 goto do_false;
10014 else
252b5132 10015 {
df58fc94 10016 used_at = 1;
c0ebe874 10017 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10018 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10019 &offset_expr, AT, ZERO);
252b5132 10020 }
252b5132
RH
10021 break;
10022
10023 case M_BLEL:
10024 likely = 1;
10025 case M_BLE:
c0ebe874
RS
10026 if (op[1] == 0)
10027 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10028 else if (op[0] == 0)
10029 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
df58fc94 10030 else
252b5132 10031 {
df58fc94 10032 used_at = 1;
c0ebe874 10033 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10034 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10035 &offset_expr, AT, ZERO);
252b5132 10036 }
252b5132
RH
10037 break;
10038
10039 case M_BLEL_I:
10040 likely = 1;
10041 case M_BLE_I:
b0e6f033 10042 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132 10043 goto do_true;
f9419b05 10044 ++imm_expr.X_add_number;
252b5132
RH
10045 /* FALLTHROUGH */
10046 case M_BLT_I:
10047 case M_BLTL_I:
10048 if (mask == M_BLTL_I)
10049 likely = 1;
b0e6f033 10050 if (imm_expr.X_add_number == 0)
c0ebe874 10051 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
b0e6f033 10052 else if (imm_expr.X_add_number == 1)
c0ebe874 10053 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
df58fc94 10054 else
252b5132 10055 {
df58fc94 10056 used_at = 1;
c0ebe874 10057 set_at (op[0], 0);
df58fc94
RS
10058 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10059 &offset_expr, AT, ZERO);
252b5132 10060 }
252b5132
RH
10061 break;
10062
10063 case M_BLEUL:
10064 likely = 1;
10065 case M_BLEU:
c0ebe874 10066 if (op[1] == 0)
df58fc94 10067 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874
RS
10068 &offset_expr, op[0], ZERO);
10069 else if (op[0] == 0)
df58fc94
RS
10070 goto do_true;
10071 else
252b5132 10072 {
df58fc94 10073 used_at = 1;
c0ebe874 10074 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10075 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10076 &offset_expr, AT, ZERO);
252b5132 10077 }
252b5132
RH
10078 break;
10079
10080 case M_BLEUL_I:
10081 likely = 1;
10082 case M_BLEU_I:
c0ebe874 10083 if (op[0] == 0
bad1aba3 10084 || (GPR_SIZE == 32
f01dc953 10085 && imm_expr.X_add_number == -1))
252b5132 10086 goto do_true;
f9419b05 10087 ++imm_expr.X_add_number;
252b5132
RH
10088 /* FALLTHROUGH */
10089 case M_BLTU_I:
10090 case M_BLTUL_I:
10091 if (mask == M_BLTUL_I)
10092 likely = 1;
b0e6f033 10093 if (imm_expr.X_add_number == 0)
252b5132 10094 goto do_false;
b0e6f033 10095 else if (imm_expr.X_add_number == 1)
df58fc94 10096 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10097 &offset_expr, op[0], ZERO);
df58fc94 10098 else
252b5132 10099 {
df58fc94 10100 used_at = 1;
c0ebe874 10101 set_at (op[0], 1);
df58fc94
RS
10102 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10103 &offset_expr, AT, ZERO);
252b5132 10104 }
252b5132
RH
10105 break;
10106
10107 case M_BLTL:
10108 likely = 1;
10109 case M_BLT:
c0ebe874
RS
10110 if (op[1] == 0)
10111 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10112 else if (op[0] == 0)
10113 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
df58fc94 10114 else
252b5132 10115 {
df58fc94 10116 used_at = 1;
c0ebe874 10117 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10118 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10119 &offset_expr, AT, ZERO);
252b5132 10120 }
252b5132
RH
10121 break;
10122
10123 case M_BLTUL:
10124 likely = 1;
10125 case M_BLTU:
c0ebe874 10126 if (op[1] == 0)
252b5132 10127 goto do_false;
c0ebe874 10128 else if (op[0] == 0)
df58fc94 10129 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10130 &offset_expr, ZERO, op[1]);
df58fc94 10131 else
252b5132 10132 {
df58fc94 10133 used_at = 1;
c0ebe874 10134 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10135 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10136 &offset_expr, AT, ZERO);
252b5132 10137 }
252b5132
RH
10138 break;
10139
10140 case M_DDIV_3:
10141 dbl = 1;
10142 case M_DIV_3:
10143 s = "mflo";
10144 goto do_div3;
10145 case M_DREM_3:
10146 dbl = 1;
10147 case M_REM_3:
10148 s = "mfhi";
10149 do_div3:
c0ebe874 10150 if (op[2] == 0)
252b5132 10151 {
1661c76c 10152 as_warn (_("divide by zero"));
252b5132 10153 if (mips_trap)
df58fc94 10154 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10155 else
df58fc94 10156 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10157 break;
252b5132
RH
10158 }
10159
7d10b47d 10160 start_noreorder ();
252b5132
RH
10161 if (mips_trap)
10162 {
c0ebe874
RS
10163 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10164 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
252b5132
RH
10165 }
10166 else
10167 {
df58fc94
RS
10168 if (mips_opts.micromips)
10169 micromips_label_expr (&label_expr);
10170 else
10171 label_expr.X_add_number = 8;
c0ebe874
RS
10172 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10173 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
df58fc94
RS
10174 macro_build (NULL, "break", BRK_FMT, 7);
10175 if (mips_opts.micromips)
10176 micromips_add_label ();
252b5132
RH
10177 }
10178 expr1.X_add_number = -1;
8fc2e39e 10179 used_at = 1;
f6a22291 10180 load_register (AT, &expr1, dbl);
df58fc94
RS
10181 if (mips_opts.micromips)
10182 micromips_label_expr (&label_expr);
10183 else
10184 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
c0ebe874 10185 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
252b5132
RH
10186 if (dbl)
10187 {
10188 expr1.X_add_number = 1;
f6a22291 10189 load_register (AT, &expr1, dbl);
df58fc94 10190 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
252b5132
RH
10191 }
10192 else
10193 {
10194 expr1.X_add_number = 0x80000000;
df58fc94 10195 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
252b5132
RH
10196 }
10197 if (mips_trap)
10198 {
c0ebe874 10199 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
252b5132
RH
10200 /* We want to close the noreorder block as soon as possible, so
10201 that later insns are available for delay slot filling. */
7d10b47d 10202 end_noreorder ();
252b5132
RH
10203 }
10204 else
10205 {
df58fc94
RS
10206 if (mips_opts.micromips)
10207 micromips_label_expr (&label_expr);
10208 else
10209 label_expr.X_add_number = 8;
c0ebe874 10210 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
a605d2b3 10211 macro_build (NULL, "nop", "");
252b5132
RH
10212
10213 /* We want to close the noreorder block as soon as possible, so
10214 that later insns are available for delay slot filling. */
7d10b47d 10215 end_noreorder ();
252b5132 10216
df58fc94 10217 macro_build (NULL, "break", BRK_FMT, 6);
252b5132 10218 }
df58fc94
RS
10219 if (mips_opts.micromips)
10220 micromips_add_label ();
c0ebe874 10221 macro_build (NULL, s, MFHL_FMT, op[0]);
252b5132
RH
10222 break;
10223
10224 case M_DIV_3I:
10225 s = "div";
10226 s2 = "mflo";
10227 goto do_divi;
10228 case M_DIVU_3I:
10229 s = "divu";
10230 s2 = "mflo";
10231 goto do_divi;
10232 case M_REM_3I:
10233 s = "div";
10234 s2 = "mfhi";
10235 goto do_divi;
10236 case M_REMU_3I:
10237 s = "divu";
10238 s2 = "mfhi";
10239 goto do_divi;
10240 case M_DDIV_3I:
10241 dbl = 1;
10242 s = "ddiv";
10243 s2 = "mflo";
10244 goto do_divi;
10245 case M_DDIVU_3I:
10246 dbl = 1;
10247 s = "ddivu";
10248 s2 = "mflo";
10249 goto do_divi;
10250 case M_DREM_3I:
10251 dbl = 1;
10252 s = "ddiv";
10253 s2 = "mfhi";
10254 goto do_divi;
10255 case M_DREMU_3I:
10256 dbl = 1;
10257 s = "ddivu";
10258 s2 = "mfhi";
10259 do_divi:
b0e6f033 10260 if (imm_expr.X_add_number == 0)
252b5132 10261 {
1661c76c 10262 as_warn (_("divide by zero"));
252b5132 10263 if (mips_trap)
df58fc94 10264 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10265 else
df58fc94 10266 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10267 break;
252b5132 10268 }
b0e6f033 10269 if (imm_expr.X_add_number == 1)
252b5132
RH
10270 {
10271 if (strcmp (s2, "mflo") == 0)
c0ebe874 10272 move_register (op[0], op[1]);
252b5132 10273 else
c0ebe874 10274 move_register (op[0], ZERO);
8fc2e39e 10275 break;
252b5132 10276 }
b0e6f033 10277 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
252b5132
RH
10278 {
10279 if (strcmp (s2, "mflo") == 0)
c0ebe874 10280 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
252b5132 10281 else
c0ebe874 10282 move_register (op[0], ZERO);
8fc2e39e 10283 break;
252b5132
RH
10284 }
10285
8fc2e39e 10286 used_at = 1;
67c0d1eb 10287 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
10288 macro_build (NULL, s, "z,s,t", op[1], AT);
10289 macro_build (NULL, s2, MFHL_FMT, op[0]);
252b5132
RH
10290 break;
10291
10292 case M_DIVU_3:
10293 s = "divu";
10294 s2 = "mflo";
10295 goto do_divu3;
10296 case M_REMU_3:
10297 s = "divu";
10298 s2 = "mfhi";
10299 goto do_divu3;
10300 case M_DDIVU_3:
10301 s = "ddivu";
10302 s2 = "mflo";
10303 goto do_divu3;
10304 case M_DREMU_3:
10305 s = "ddivu";
10306 s2 = "mfhi";
10307 do_divu3:
7d10b47d 10308 start_noreorder ();
252b5132
RH
10309 if (mips_trap)
10310 {
c0ebe874
RS
10311 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10312 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10313 /* We want to close the noreorder block as soon as possible, so
10314 that later insns are available for delay slot filling. */
7d10b47d 10315 end_noreorder ();
252b5132
RH
10316 }
10317 else
10318 {
df58fc94
RS
10319 if (mips_opts.micromips)
10320 micromips_label_expr (&label_expr);
10321 else
10322 label_expr.X_add_number = 8;
c0ebe874
RS
10323 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10324 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10325
10326 /* We want to close the noreorder block as soon as possible, so
10327 that later insns are available for delay slot filling. */
7d10b47d 10328 end_noreorder ();
df58fc94
RS
10329 macro_build (NULL, "break", BRK_FMT, 7);
10330 if (mips_opts.micromips)
10331 micromips_add_label ();
252b5132 10332 }
c0ebe874 10333 macro_build (NULL, s2, MFHL_FMT, op[0]);
8fc2e39e 10334 break;
252b5132 10335
1abe91b1
MR
10336 case M_DLCA_AB:
10337 dbl = 1;
10338 case M_LCA_AB:
10339 call = 1;
10340 goto do_la;
252b5132
RH
10341 case M_DLA_AB:
10342 dbl = 1;
10343 case M_LA_AB:
1abe91b1 10344 do_la:
252b5132
RH
10345 /* Load the address of a symbol into a register. If breg is not
10346 zero, we then add a base register to it. */
10347
c0ebe874 10348 breg = op[2];
bad1aba3 10349 if (dbl && GPR_SIZE == 32)
ece794d9
MF
10350 as_warn (_("dla used to load 32-bit register; recommend using la "
10351 "instead"));
3bec30a8 10352
90ecf173 10353 if (!dbl && HAVE_64BIT_OBJECTS)
ece794d9
MF
10354 as_warn (_("la used to load 64-bit address; recommend using dla "
10355 "instead"));
3bec30a8 10356
f2ae14a1 10357 if (small_offset_p (0, align, 16))
0c11417f 10358 {
c0ebe874 10359 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
f2ae14a1 10360 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8fc2e39e 10361 break;
0c11417f
MR
10362 }
10363
c0ebe874 10364 if (mips_opts.at && (op[0] == breg))
afdbd6d0
CD
10365 {
10366 tempreg = AT;
10367 used_at = 1;
10368 }
10369 else
c0ebe874 10370 tempreg = op[0];
afdbd6d0 10371
252b5132
RH
10372 if (offset_expr.X_op != O_symbol
10373 && offset_expr.X_op != O_constant)
10374 {
1661c76c 10375 as_bad (_("expression too complex"));
252b5132
RH
10376 offset_expr.X_op = O_constant;
10377 }
10378
252b5132 10379 if (offset_expr.X_op == O_constant)
aed1a261 10380 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
252b5132
RH
10381 else if (mips_pic == NO_PIC)
10382 {
d6bc6245 10383 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 10384 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
10385 Otherwise we want
10386 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10387 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10388 If we have a constant, we need two instructions anyhow,
d6bc6245 10389 so we may as well always use the latter form.
76b3015f 10390
6caf9ef4
TS
10391 With 64bit address space and a usable $at we want
10392 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10393 lui $at,<sym> (BFD_RELOC_HI16_S)
10394 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10395 daddiu $at,<sym> (BFD_RELOC_LO16)
10396 dsll32 $tempreg,0
10397 daddu $tempreg,$tempreg,$at
10398
10399 If $at is already in use, we use a path which is suboptimal
10400 on superscalar processors.
10401 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10402 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10403 dsll $tempreg,16
10404 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10405 dsll $tempreg,16
10406 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10407
10408 For GP relative symbols in 64bit address space we can use
10409 the same sequence as in 32bit address space. */
aed1a261 10410 if (HAVE_64BIT_SYMBOLS)
252b5132 10411 {
6caf9ef4
TS
10412 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10413 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10414 {
10415 relax_start (offset_expr.X_add_symbol);
10416 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10417 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10418 relax_switch ();
10419 }
d6bc6245 10420
741fe287 10421 if (used_at == 0 && mips_opts.at)
98d3f06f 10422 {
df58fc94 10423 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10424 tempreg, BFD_RELOC_MIPS_HIGHEST);
df58fc94 10425 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10426 AT, BFD_RELOC_HI16_S);
67c0d1eb 10427 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10428 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
67c0d1eb 10429 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10430 AT, AT, BFD_RELOC_LO16);
df58fc94 10431 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 10432 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
98d3f06f
KH
10433 used_at = 1;
10434 }
10435 else
10436 {
df58fc94 10437 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10438 tempreg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb 10439 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10440 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 10441 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10442 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10443 tempreg, tempreg, BFD_RELOC_HI16_S);
df58fc94 10444 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10445 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10446 tempreg, tempreg, BFD_RELOC_LO16);
98d3f06f 10447 }
6caf9ef4
TS
10448
10449 if (mips_relax.sequence)
10450 relax_end ();
98d3f06f
KH
10451 }
10452 else
10453 {
10454 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 10455 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
98d3f06f 10456 {
4d7206a2 10457 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10458 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10459 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 10460 relax_switch ();
98d3f06f 10461 }
6943caf0 10462 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
1661c76c 10463 as_bad (_("offset too large"));
67c0d1eb
RS
10464 macro_build_lui (&offset_expr, tempreg);
10465 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10466 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2
RS
10467 if (mips_relax.sequence)
10468 relax_end ();
98d3f06f 10469 }
252b5132 10470 }
0a44bf69 10471 else if (!mips_big_got && !HAVE_NEWABI)
252b5132 10472 {
9117d219
NC
10473 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10474
252b5132
RH
10475 /* If this is a reference to an external symbol, and there
10476 is no constant, we want
10477 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
1abe91b1 10478 or for lca or if tempreg is PIC_CALL_REG
9117d219 10479 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
252b5132
RH
10480 For a local symbol, we want
10481 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10482 nop
10483 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10484
10485 If we have a small constant, and this is a reference to
10486 an external symbol, we want
10487 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10488 nop
10489 addiu $tempreg,$tempreg,<constant>
10490 For a local symbol, we want the same instruction
10491 sequence, but we output a BFD_RELOC_LO16 reloc on the
10492 addiu instruction.
10493
10494 If we have a large constant, and this is a reference to
10495 an external symbol, we want
10496 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10497 lui $at,<hiconstant>
10498 addiu $at,$at,<loconstant>
10499 addu $tempreg,$tempreg,$at
10500 For a local symbol, we want the same instruction
10501 sequence, but we output a BFD_RELOC_LO16 reloc on the
ed6fb7bd 10502 addiu instruction.
ed6fb7bd
SC
10503 */
10504
4d7206a2 10505 if (offset_expr.X_add_number == 0)
252b5132 10506 {
0a44bf69
RS
10507 if (mips_pic == SVR4_PIC
10508 && breg == 0
10509 && (call || tempreg == PIC_CALL_REG))
4d7206a2
RS
10510 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10511
10512 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10513 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10514 lw_reloc_type, mips_gp_register);
4d7206a2 10515 if (breg != 0)
252b5132
RH
10516 {
10517 /* We're going to put in an addu instruction using
10518 tempreg, so we may as well insert the nop right
10519 now. */
269137b2 10520 load_delay_nop ();
252b5132 10521 }
4d7206a2 10522 relax_switch ();
67c0d1eb
RS
10523 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10524 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 10525 load_delay_nop ();
67c0d1eb
RS
10526 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10527 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2 10528 relax_end ();
252b5132
RH
10529 /* FIXME: If breg == 0, and the next instruction uses
10530 $tempreg, then if this variant case is used an extra
10531 nop will be generated. */
10532 }
4d7206a2
RS
10533 else if (offset_expr.X_add_number >= -0x8000
10534 && offset_expr.X_add_number < 0x8000)
252b5132 10535 {
67c0d1eb 10536 load_got_offset (tempreg, &offset_expr);
269137b2 10537 load_delay_nop ();
67c0d1eb 10538 add_got_offset (tempreg, &offset_expr);
252b5132
RH
10539 }
10540 else
10541 {
4d7206a2
RS
10542 expr1.X_add_number = offset_expr.X_add_number;
10543 offset_expr.X_add_number =
43c0598f 10544 SEXT_16BIT (offset_expr.X_add_number);
67c0d1eb 10545 load_got_offset (tempreg, &offset_expr);
f6a22291 10546 offset_expr.X_add_number = expr1.X_add_number;
252b5132
RH
10547 /* If we are going to add in a base register, and the
10548 target register and the base register are the same,
10549 then we are using AT as a temporary register. Since
10550 we want to load the constant into AT, we add our
10551 current AT (from the global offset table) and the
10552 register into the register now, and pretend we were
10553 not using a base register. */
c0ebe874 10554 if (breg == op[0])
252b5132 10555 {
269137b2 10556 load_delay_nop ();
67c0d1eb 10557 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10558 op[0], AT, breg);
252b5132 10559 breg = 0;
c0ebe874 10560 tempreg = op[0];
252b5132 10561 }
f6a22291 10562 add_got_offset_hilo (tempreg, &offset_expr, AT);
252b5132
RH
10563 used_at = 1;
10564 }
10565 }
0a44bf69 10566 else if (!mips_big_got && HAVE_NEWABI)
f5040a92 10567 {
67c0d1eb 10568 int add_breg_early = 0;
f5040a92
AO
10569
10570 /* If this is a reference to an external, and there is no
10571 constant, or local symbol (*), with or without a
10572 constant, we want
10573 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
1abe91b1 10574 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10575 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10576
10577 If we have a small constant, and this is a reference to
10578 an external symbol, we want
10579 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10580 addiu $tempreg,$tempreg,<constant>
10581
10582 If we have a large constant, and this is a reference to
10583 an external symbol, we want
10584 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10585 lui $at,<hiconstant>
10586 addiu $at,$at,<loconstant>
10587 addu $tempreg,$tempreg,$at
10588
10589 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10590 local symbols, even though it introduces an additional
10591 instruction. */
10592
f5040a92
AO
10593 if (offset_expr.X_add_number)
10594 {
4d7206a2 10595 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10596 offset_expr.X_add_number = 0;
10597
4d7206a2 10598 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10599 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10600 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10601
10602 if (expr1.X_add_number >= -0x8000
10603 && expr1.X_add_number < 0x8000)
10604 {
67c0d1eb
RS
10605 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10606 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10607 }
ecd13cd3 10608 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10609 {
c0ebe874
RS
10610 unsigned int dreg;
10611
f5040a92
AO
10612 /* If we are going to add in a base register, and the
10613 target register and the base register are the same,
10614 then we are using AT as a temporary register. Since
10615 we want to load the constant into AT, we add our
10616 current AT (from the global offset table) and the
10617 register into the register now, and pretend we were
10618 not using a base register. */
c0ebe874 10619 if (breg != op[0])
f5040a92
AO
10620 dreg = tempreg;
10621 else
10622 {
9c2799c2 10623 gas_assert (tempreg == AT);
67c0d1eb 10624 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10625 op[0], AT, breg);
10626 dreg = op[0];
67c0d1eb 10627 add_breg_early = 1;
f5040a92
AO
10628 }
10629
f6a22291 10630 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10631 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10632 dreg, dreg, AT);
f5040a92 10633
f5040a92
AO
10634 used_at = 1;
10635 }
10636 else
10637 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10638
4d7206a2 10639 relax_switch ();
f5040a92
AO
10640 offset_expr.X_add_number = expr1.X_add_number;
10641
67c0d1eb
RS
10642 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10643 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10644 if (add_breg_early)
f5040a92 10645 {
67c0d1eb 10646 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10647 op[0], tempreg, breg);
f5040a92 10648 breg = 0;
c0ebe874 10649 tempreg = op[0];
f5040a92 10650 }
4d7206a2 10651 relax_end ();
f5040a92 10652 }
4d7206a2 10653 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
f5040a92 10654 {
4d7206a2 10655 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10656 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10657 BFD_RELOC_MIPS_CALL16, mips_gp_register);
4d7206a2 10658 relax_switch ();
67c0d1eb
RS
10659 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10660 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2 10661 relax_end ();
f5040a92 10662 }
4d7206a2 10663 else
f5040a92 10664 {
67c0d1eb
RS
10665 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10666 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10667 }
10668 }
0a44bf69 10669 else if (mips_big_got && !HAVE_NEWABI)
252b5132 10670 {
67c0d1eb 10671 int gpdelay;
9117d219
NC
10672 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10673 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
ed6fb7bd 10674 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
252b5132
RH
10675
10676 /* This is the large GOT case. If this is a reference to an
10677 external symbol, and there is no constant, we want
10678 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10679 addu $tempreg,$tempreg,$gp
10680 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10681 or for lca or if tempreg is PIC_CALL_REG
9117d219
NC
10682 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10683 addu $tempreg,$tempreg,$gp
10684 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
252b5132
RH
10685 For a local symbol, we want
10686 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10687 nop
10688 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10689
10690 If we have a small constant, and this is a reference to
10691 an external symbol, we want
10692 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10693 addu $tempreg,$tempreg,$gp
10694 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10695 nop
10696 addiu $tempreg,$tempreg,<constant>
10697 For a local symbol, we want
10698 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10699 nop
10700 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10701
10702 If we have a large constant, and this is a reference to
10703 an external symbol, we want
10704 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10705 addu $tempreg,$tempreg,$gp
10706 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10707 lui $at,<hiconstant>
10708 addiu $at,$at,<loconstant>
10709 addu $tempreg,$tempreg,$at
10710 For a local symbol, we want
10711 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10712 lui $at,<hiconstant>
10713 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10714 addu $tempreg,$tempreg,$at
f5040a92 10715 */
438c16b8 10716
252b5132
RH
10717 expr1.X_add_number = offset_expr.X_add_number;
10718 offset_expr.X_add_number = 0;
4d7206a2 10719 relax_start (offset_expr.X_add_symbol);
67c0d1eb 10720 gpdelay = reg_needs_delay (mips_gp_register);
1abe91b1
MR
10721 if (expr1.X_add_number == 0 && breg == 0
10722 && (call || tempreg == PIC_CALL_REG))
9117d219
NC
10723 {
10724 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10725 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10726 }
df58fc94 10727 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10728 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10729 tempreg, tempreg, mips_gp_register);
67c0d1eb 10730 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 10731 tempreg, lw_reloc_type, tempreg);
252b5132
RH
10732 if (expr1.X_add_number == 0)
10733 {
67c0d1eb 10734 if (breg != 0)
252b5132
RH
10735 {
10736 /* We're going to put in an addu instruction using
10737 tempreg, so we may as well insert the nop right
10738 now. */
269137b2 10739 load_delay_nop ();
252b5132 10740 }
252b5132
RH
10741 }
10742 else if (expr1.X_add_number >= -0x8000
10743 && expr1.X_add_number < 0x8000)
10744 {
269137b2 10745 load_delay_nop ();
67c0d1eb 10746 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10747 tempreg, tempreg, BFD_RELOC_LO16);
252b5132
RH
10748 }
10749 else
10750 {
c0ebe874
RS
10751 unsigned int dreg;
10752
252b5132
RH
10753 /* If we are going to add in a base register, and the
10754 target register and the base register are the same,
10755 then we are using AT as a temporary register. Since
10756 we want to load the constant into AT, we add our
10757 current AT (from the global offset table) and the
10758 register into the register now, and pretend we were
10759 not using a base register. */
c0ebe874 10760 if (breg != op[0])
67c0d1eb 10761 dreg = tempreg;
252b5132
RH
10762 else
10763 {
9c2799c2 10764 gas_assert (tempreg == AT);
269137b2 10765 load_delay_nop ();
67c0d1eb 10766 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10767 op[0], AT, breg);
10768 dreg = op[0];
252b5132
RH
10769 }
10770
f6a22291 10771 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10772 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
252b5132 10773
252b5132
RH
10774 used_at = 1;
10775 }
43c0598f 10776 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
4d7206a2 10777 relax_switch ();
252b5132 10778
67c0d1eb 10779 if (gpdelay)
252b5132
RH
10780 {
10781 /* This is needed because this instruction uses $gp, but
f5040a92 10782 the first instruction on the main stream does not. */
67c0d1eb 10783 macro_build (NULL, "nop", "");
252b5132 10784 }
ed6fb7bd 10785
67c0d1eb
RS
10786 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10787 local_reloc_type, mips_gp_register);
f5040a92 10788 if (expr1.X_add_number >= -0x8000
252b5132
RH
10789 && expr1.X_add_number < 0x8000)
10790 {
269137b2 10791 load_delay_nop ();
67c0d1eb
RS
10792 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10793 tempreg, tempreg, BFD_RELOC_LO16);
252b5132 10794 /* FIXME: If add_number is 0, and there was no base
f5040a92
AO
10795 register, the external symbol case ended with a load,
10796 so if the symbol turns out to not be external, and
10797 the next instruction uses tempreg, an unnecessary nop
10798 will be inserted. */
252b5132
RH
10799 }
10800 else
10801 {
c0ebe874 10802 if (breg == op[0])
252b5132
RH
10803 {
10804 /* We must add in the base register now, as in the
f5040a92 10805 external symbol case. */
9c2799c2 10806 gas_assert (tempreg == AT);
269137b2 10807 load_delay_nop ();
67c0d1eb 10808 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10809 op[0], AT, breg);
10810 tempreg = op[0];
252b5132 10811 /* We set breg to 0 because we have arranged to add
f5040a92 10812 it in in both cases. */
252b5132
RH
10813 breg = 0;
10814 }
10815
67c0d1eb
RS
10816 macro_build_lui (&expr1, AT);
10817 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10818 AT, AT, BFD_RELOC_LO16);
67c0d1eb 10819 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10820 tempreg, tempreg, AT);
8fc2e39e 10821 used_at = 1;
252b5132 10822 }
4d7206a2 10823 relax_end ();
252b5132 10824 }
0a44bf69 10825 else if (mips_big_got && HAVE_NEWABI)
f5040a92 10826 {
f5040a92
AO
10827 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10828 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
67c0d1eb 10829 int add_breg_early = 0;
f5040a92
AO
10830
10831 /* This is the large GOT case. If this is a reference to an
10832 external symbol, and there is no constant, we want
10833 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10834 add $tempreg,$tempreg,$gp
10835 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10836 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10837 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10838 add $tempreg,$tempreg,$gp
10839 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10840
10841 If we have a small constant, and this is a reference to
10842 an external symbol, we want
10843 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10844 add $tempreg,$tempreg,$gp
10845 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10846 addi $tempreg,$tempreg,<constant>
10847
10848 If we have a large constant, and this is a reference to
10849 an external symbol, we want
10850 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10851 addu $tempreg,$tempreg,$gp
10852 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10853 lui $at,<hiconstant>
10854 addi $at,$at,<loconstant>
10855 add $tempreg,$tempreg,$at
10856
10857 If we have NewABI, and we know it's a local symbol, we want
10858 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10859 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10860 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10861
4d7206a2 10862 relax_start (offset_expr.X_add_symbol);
f5040a92 10863
4d7206a2 10864 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10865 offset_expr.X_add_number = 0;
10866
1abe91b1
MR
10867 if (expr1.X_add_number == 0 && breg == 0
10868 && (call || tempreg == PIC_CALL_REG))
f5040a92
AO
10869 {
10870 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10871 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10872 }
df58fc94 10873 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10874 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10875 tempreg, tempreg, mips_gp_register);
67c0d1eb
RS
10876 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10877 tempreg, lw_reloc_type, tempreg);
f5040a92
AO
10878
10879 if (expr1.X_add_number == 0)
4d7206a2 10880 ;
f5040a92
AO
10881 else if (expr1.X_add_number >= -0x8000
10882 && expr1.X_add_number < 0x8000)
10883 {
67c0d1eb 10884 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10885 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10886 }
ecd13cd3 10887 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10888 {
c0ebe874
RS
10889 unsigned int dreg;
10890
f5040a92
AO
10891 /* If we are going to add in a base register, and the
10892 target register and the base register are the same,
10893 then we are using AT as a temporary register. Since
10894 we want to load the constant into AT, we add our
10895 current AT (from the global offset table) and the
10896 register into the register now, and pretend we were
10897 not using a base register. */
c0ebe874 10898 if (breg != op[0])
f5040a92
AO
10899 dreg = tempreg;
10900 else
10901 {
9c2799c2 10902 gas_assert (tempreg == AT);
67c0d1eb 10903 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10904 op[0], AT, breg);
10905 dreg = op[0];
67c0d1eb 10906 add_breg_early = 1;
f5040a92
AO
10907 }
10908
f6a22291 10909 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10910 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
f5040a92 10911
f5040a92
AO
10912 used_at = 1;
10913 }
10914 else
10915 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10916
4d7206a2 10917 relax_switch ();
f5040a92 10918 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
10919 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10920 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10921 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10922 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10923 if (add_breg_early)
f5040a92 10924 {
67c0d1eb 10925 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10926 op[0], tempreg, breg);
f5040a92 10927 breg = 0;
c0ebe874 10928 tempreg = op[0];
f5040a92 10929 }
4d7206a2 10930 relax_end ();
f5040a92 10931 }
252b5132
RH
10932 else
10933 abort ();
10934
10935 if (breg != 0)
c0ebe874 10936 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
252b5132
RH
10937 break;
10938
52b6b6b9 10939 case M_MSGSND:
df58fc94 10940 gas_assert (!mips_opts.micromips);
c0ebe874 10941 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
c7af4273 10942 break;
52b6b6b9
JM
10943
10944 case M_MSGLD:
df58fc94 10945 gas_assert (!mips_opts.micromips);
c8276761 10946 macro_build (NULL, "c2", "C", 0x02);
c7af4273 10947 break;
52b6b6b9
JM
10948
10949 case M_MSGLD_T:
df58fc94 10950 gas_assert (!mips_opts.micromips);
c0ebe874 10951 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
c7af4273 10952 break;
52b6b6b9
JM
10953
10954 case M_MSGWAIT:
df58fc94 10955 gas_assert (!mips_opts.micromips);
52b6b6b9 10956 macro_build (NULL, "c2", "C", 3);
c7af4273 10957 break;
52b6b6b9
JM
10958
10959 case M_MSGWAIT_T:
df58fc94 10960 gas_assert (!mips_opts.micromips);
c0ebe874 10961 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
c7af4273 10962 break;
52b6b6b9 10963
252b5132
RH
10964 case M_J_A:
10965 /* The j instruction may not be used in PIC code, since it
10966 requires an absolute address. We convert it to a b
10967 instruction. */
10968 if (mips_pic == NO_PIC)
67c0d1eb 10969 macro_build (&offset_expr, "j", "a");
252b5132 10970 else
67c0d1eb 10971 macro_build (&offset_expr, "b", "p");
8fc2e39e 10972 break;
252b5132
RH
10973
10974 /* The jal instructions must be handled as macros because when
10975 generating PIC code they expand to multi-instruction
10976 sequences. Normally they are simple instructions. */
df58fc94 10977 case M_JALS_1:
c0ebe874
RS
10978 op[1] = op[0];
10979 op[0] = RA;
df58fc94
RS
10980 /* Fall through. */
10981 case M_JALS_2:
10982 gas_assert (mips_opts.micromips);
833794fc
MR
10983 if (mips_opts.insn32)
10984 {
1661c76c 10985 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
10986 break;
10987 }
df58fc94
RS
10988 jals = 1;
10989 goto jal;
252b5132 10990 case M_JAL_1:
c0ebe874
RS
10991 op[1] = op[0];
10992 op[0] = RA;
252b5132
RH
10993 /* Fall through. */
10994 case M_JAL_2:
df58fc94 10995 jal:
3e722fb5 10996 if (mips_pic == NO_PIC)
df58fc94
RS
10997 {
10998 s = jals ? "jalrs" : "jalr";
e64af278 10999 if (mips_opts.micromips
833794fc 11000 && !mips_opts.insn32
c0ebe874 11001 && op[0] == RA
e64af278 11002 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11003 macro_build (NULL, s, "mj", op[1]);
df58fc94 11004 else
c0ebe874 11005 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
df58fc94 11006 }
0a44bf69 11007 else
252b5132 11008 {
df58fc94
RS
11009 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11010 && mips_cprestore_offset >= 0);
11011
c0ebe874 11012 if (op[1] != PIC_CALL_REG)
252b5132 11013 as_warn (_("MIPS PIC call to register other than $25"));
bdaaa2e1 11014
833794fc
MR
11015 s = ((mips_opts.micromips
11016 && !mips_opts.insn32
11017 && (!mips_opts.noreorder || cprestore))
df58fc94 11018 ? "jalrs" : "jalr");
e64af278 11019 if (mips_opts.micromips
833794fc 11020 && !mips_opts.insn32
c0ebe874 11021 && op[0] == RA
e64af278 11022 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11023 macro_build (NULL, s, "mj", op[1]);
df58fc94 11024 else
c0ebe874 11025 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
0a44bf69 11026 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
252b5132 11027 {
6478892d 11028 if (mips_cprestore_offset < 0)
1661c76c 11029 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11030 else
11031 {
90ecf173 11032 if (!mips_frame_reg_valid)
7a621144 11033 {
1661c76c 11034 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11035 /* Quiet this warning. */
11036 mips_frame_reg_valid = 1;
11037 }
90ecf173 11038 if (!mips_cprestore_valid)
7a621144 11039 {
1661c76c 11040 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11041 /* Quiet this warning. */
11042 mips_cprestore_valid = 1;
11043 }
d3fca0b5
MR
11044 if (mips_opts.noreorder)
11045 macro_build (NULL, "nop", "");
6478892d 11046 expr1.X_add_number = mips_cprestore_offset;
67c0d1eb 11047 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11048 mips_gp_register,
256ab948
TS
11049 mips_frame_reg,
11050 HAVE_64BIT_ADDRESSES);
6478892d 11051 }
252b5132
RH
11052 }
11053 }
252b5132 11054
8fc2e39e 11055 break;
252b5132 11056
df58fc94
RS
11057 case M_JALS_A:
11058 gas_assert (mips_opts.micromips);
833794fc
MR
11059 if (mips_opts.insn32)
11060 {
1661c76c 11061 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11062 break;
11063 }
df58fc94
RS
11064 jals = 1;
11065 /* Fall through. */
252b5132
RH
11066 case M_JAL_A:
11067 if (mips_pic == NO_PIC)
df58fc94 11068 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
252b5132
RH
11069 else if (mips_pic == SVR4_PIC)
11070 {
11071 /* If this is a reference to an external symbol, and we are
11072 using a small GOT, we want
11073 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11074 nop
f9419b05 11075 jalr $ra,$25
252b5132
RH
11076 nop
11077 lw $gp,cprestore($sp)
11078 The cprestore value is set using the .cprestore
11079 pseudo-op. If we are using a big GOT, we want
11080 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11081 addu $25,$25,$gp
11082 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11083 nop
f9419b05 11084 jalr $ra,$25
252b5132
RH
11085 nop
11086 lw $gp,cprestore($sp)
11087 If the symbol is not external, we want
11088 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11089 nop
11090 addiu $25,$25,<sym> (BFD_RELOC_LO16)
f9419b05 11091 jalr $ra,$25
252b5132 11092 nop
438c16b8 11093 lw $gp,cprestore($sp)
f5040a92
AO
11094
11095 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11096 sequences above, minus nops, unless the symbol is local,
11097 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11098 GOT_DISP. */
438c16b8 11099 if (HAVE_NEWABI)
252b5132 11100 {
90ecf173 11101 if (!mips_big_got)
f5040a92 11102 {
4d7206a2 11103 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11104 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11105 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
f5040a92 11106 mips_gp_register);
4d7206a2 11107 relax_switch ();
67c0d1eb
RS
11108 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11109 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
4d7206a2
RS
11110 mips_gp_register);
11111 relax_end ();
f5040a92
AO
11112 }
11113 else
11114 {
4d7206a2 11115 relax_start (offset_expr.X_add_symbol);
df58fc94 11116 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11117 BFD_RELOC_MIPS_CALL_HI16);
11118 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11119 PIC_CALL_REG, mips_gp_register);
11120 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11121 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11122 PIC_CALL_REG);
4d7206a2 11123 relax_switch ();
67c0d1eb
RS
11124 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11125 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11126 mips_gp_register);
11127 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11128 PIC_CALL_REG, PIC_CALL_REG,
17a2f251 11129 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 11130 relax_end ();
f5040a92 11131 }
684022ea 11132
df58fc94 11133 macro_build_jalr (&offset_expr, 0);
252b5132
RH
11134 }
11135 else
11136 {
4d7206a2 11137 relax_start (offset_expr.X_add_symbol);
90ecf173 11138 if (!mips_big_got)
438c16b8 11139 {
67c0d1eb
RS
11140 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11141 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
17a2f251 11142 mips_gp_register);
269137b2 11143 load_delay_nop ();
4d7206a2 11144 relax_switch ();
438c16b8 11145 }
252b5132 11146 else
252b5132 11147 {
67c0d1eb
RS
11148 int gpdelay;
11149
11150 gpdelay = reg_needs_delay (mips_gp_register);
df58fc94 11151 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11152 BFD_RELOC_MIPS_CALL_HI16);
11153 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11154 PIC_CALL_REG, mips_gp_register);
11155 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11156 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11157 PIC_CALL_REG);
269137b2 11158 load_delay_nop ();
4d7206a2 11159 relax_switch ();
67c0d1eb
RS
11160 if (gpdelay)
11161 macro_build (NULL, "nop", "");
252b5132 11162 }
67c0d1eb
RS
11163 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11164 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
4d7206a2 11165 mips_gp_register);
269137b2 11166 load_delay_nop ();
67c0d1eb
RS
11167 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11168 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
4d7206a2 11169 relax_end ();
df58fc94 11170 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
438c16b8 11171
6478892d 11172 if (mips_cprestore_offset < 0)
1661c76c 11173 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11174 else
11175 {
90ecf173 11176 if (!mips_frame_reg_valid)
7a621144 11177 {
1661c76c 11178 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11179 /* Quiet this warning. */
11180 mips_frame_reg_valid = 1;
11181 }
90ecf173 11182 if (!mips_cprestore_valid)
7a621144 11183 {
1661c76c 11184 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11185 /* Quiet this warning. */
11186 mips_cprestore_valid = 1;
11187 }
6478892d 11188 if (mips_opts.noreorder)
67c0d1eb 11189 macro_build (NULL, "nop", "");
6478892d 11190 expr1.X_add_number = mips_cprestore_offset;
67c0d1eb 11191 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11192 mips_gp_register,
256ab948
TS
11193 mips_frame_reg,
11194 HAVE_64BIT_ADDRESSES);
6478892d 11195 }
252b5132
RH
11196 }
11197 }
0a44bf69 11198 else if (mips_pic == VXWORKS_PIC)
1661c76c 11199 as_bad (_("non-PIC jump used in PIC library"));
252b5132
RH
11200 else
11201 abort ();
11202
8fc2e39e 11203 break;
252b5132 11204
7f3c4072 11205 case M_LBUE_AB:
7f3c4072
CM
11206 s = "lbue";
11207 fmt = "t,+j(b)";
11208 offbits = 9;
11209 goto ld_st;
11210 case M_LHUE_AB:
7f3c4072
CM
11211 s = "lhue";
11212 fmt = "t,+j(b)";
11213 offbits = 9;
11214 goto ld_st;
11215 case M_LBE_AB:
7f3c4072
CM
11216 s = "lbe";
11217 fmt = "t,+j(b)";
11218 offbits = 9;
11219 goto ld_st;
11220 case M_LHE_AB:
7f3c4072
CM
11221 s = "lhe";
11222 fmt = "t,+j(b)";
11223 offbits = 9;
11224 goto ld_st;
11225 case M_LLE_AB:
7f3c4072
CM
11226 s = "lle";
11227 fmt = "t,+j(b)";
11228 offbits = 9;
11229 goto ld_st;
11230 case M_LWE_AB:
7f3c4072
CM
11231 s = "lwe";
11232 fmt = "t,+j(b)";
11233 offbits = 9;
11234 goto ld_st;
11235 case M_LWLE_AB:
7f3c4072
CM
11236 s = "lwle";
11237 fmt = "t,+j(b)";
11238 offbits = 9;
11239 goto ld_st;
11240 case M_LWRE_AB:
7f3c4072
CM
11241 s = "lwre";
11242 fmt = "t,+j(b)";
11243 offbits = 9;
11244 goto ld_st;
11245 case M_SBE_AB:
7f3c4072
CM
11246 s = "sbe";
11247 fmt = "t,+j(b)";
11248 offbits = 9;
11249 goto ld_st;
11250 case M_SCE_AB:
7f3c4072
CM
11251 s = "sce";
11252 fmt = "t,+j(b)";
11253 offbits = 9;
11254 goto ld_st;
11255 case M_SHE_AB:
7f3c4072
CM
11256 s = "she";
11257 fmt = "t,+j(b)";
11258 offbits = 9;
11259 goto ld_st;
11260 case M_SWE_AB:
7f3c4072
CM
11261 s = "swe";
11262 fmt = "t,+j(b)";
11263 offbits = 9;
11264 goto ld_st;
11265 case M_SWLE_AB:
7f3c4072
CM
11266 s = "swle";
11267 fmt = "t,+j(b)";
11268 offbits = 9;
11269 goto ld_st;
11270 case M_SWRE_AB:
7f3c4072
CM
11271 s = "swre";
11272 fmt = "t,+j(b)";
11273 offbits = 9;
11274 goto ld_st;
dec0624d 11275 case M_ACLR_AB:
dec0624d 11276 s = "aclr";
dec0624d 11277 fmt = "\\,~(b)";
7f3c4072 11278 offbits = 12;
dec0624d
MR
11279 goto ld_st;
11280 case M_ASET_AB:
dec0624d 11281 s = "aset";
dec0624d 11282 fmt = "\\,~(b)";
7f3c4072 11283 offbits = 12;
dec0624d 11284 goto ld_st;
252b5132
RH
11285 case M_LB_AB:
11286 s = "lb";
df58fc94 11287 fmt = "t,o(b)";
252b5132
RH
11288 goto ld;
11289 case M_LBU_AB:
11290 s = "lbu";
df58fc94 11291 fmt = "t,o(b)";
252b5132
RH
11292 goto ld;
11293 case M_LH_AB:
11294 s = "lh";
df58fc94 11295 fmt = "t,o(b)";
252b5132
RH
11296 goto ld;
11297 case M_LHU_AB:
11298 s = "lhu";
df58fc94 11299 fmt = "t,o(b)";
252b5132
RH
11300 goto ld;
11301 case M_LW_AB:
11302 s = "lw";
df58fc94 11303 fmt = "t,o(b)";
252b5132
RH
11304 goto ld;
11305 case M_LWC0_AB:
df58fc94 11306 gas_assert (!mips_opts.micromips);
252b5132 11307 s = "lwc0";
df58fc94 11308 fmt = "E,o(b)";
bdaaa2e1 11309 /* Itbl support may require additional care here. */
252b5132 11310 coproc = 1;
df58fc94 11311 goto ld_st;
252b5132
RH
11312 case M_LWC1_AB:
11313 s = "lwc1";
df58fc94 11314 fmt = "T,o(b)";
bdaaa2e1 11315 /* Itbl support may require additional care here. */
252b5132 11316 coproc = 1;
df58fc94 11317 goto ld_st;
252b5132
RH
11318 case M_LWC2_AB:
11319 s = "lwc2";
df58fc94 11320 fmt = COP12_FMT;
7361da2c
AB
11321 offbits = (mips_opts.micromips ? 12
11322 : ISA_IS_R6 (mips_opts.isa) ? 11
11323 : 16);
bdaaa2e1 11324 /* Itbl support may require additional care here. */
252b5132 11325 coproc = 1;
df58fc94 11326 goto ld_st;
252b5132 11327 case M_LWC3_AB:
df58fc94 11328 gas_assert (!mips_opts.micromips);
252b5132 11329 s = "lwc3";
df58fc94 11330 fmt = "E,o(b)";
bdaaa2e1 11331 /* Itbl support may require additional care here. */
252b5132 11332 coproc = 1;
df58fc94 11333 goto ld_st;
252b5132
RH
11334 case M_LWL_AB:
11335 s = "lwl";
df58fc94 11336 fmt = MEM12_FMT;
7f3c4072 11337 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11338 goto ld_st;
252b5132
RH
11339 case M_LWR_AB:
11340 s = "lwr";
df58fc94 11341 fmt = MEM12_FMT;
7f3c4072 11342 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11343 goto ld_st;
252b5132 11344 case M_LDC1_AB:
252b5132 11345 s = "ldc1";
df58fc94 11346 fmt = "T,o(b)";
bdaaa2e1 11347 /* Itbl support may require additional care here. */
252b5132 11348 coproc = 1;
df58fc94 11349 goto ld_st;
252b5132
RH
11350 case M_LDC2_AB:
11351 s = "ldc2";
df58fc94 11352 fmt = COP12_FMT;
7361da2c
AB
11353 offbits = (mips_opts.micromips ? 12
11354 : ISA_IS_R6 (mips_opts.isa) ? 11
11355 : 16);
bdaaa2e1 11356 /* Itbl support may require additional care here. */
252b5132 11357 coproc = 1;
df58fc94 11358 goto ld_st;
c77c0862 11359 case M_LQC2_AB:
c77c0862 11360 s = "lqc2";
14daeee3 11361 fmt = "+7,o(b)";
c77c0862
RS
11362 /* Itbl support may require additional care here. */
11363 coproc = 1;
11364 goto ld_st;
252b5132
RH
11365 case M_LDC3_AB:
11366 s = "ldc3";
df58fc94 11367 fmt = "E,o(b)";
bdaaa2e1 11368 /* Itbl support may require additional care here. */
252b5132 11369 coproc = 1;
df58fc94 11370 goto ld_st;
252b5132
RH
11371 case M_LDL_AB:
11372 s = "ldl";
df58fc94 11373 fmt = MEM12_FMT;
7f3c4072 11374 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11375 goto ld_st;
252b5132
RH
11376 case M_LDR_AB:
11377 s = "ldr";
df58fc94 11378 fmt = MEM12_FMT;
7f3c4072 11379 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11380 goto ld_st;
252b5132
RH
11381 case M_LL_AB:
11382 s = "ll";
7361da2c
AB
11383 fmt = LL_SC_FMT;
11384 offbits = (mips_opts.micromips ? 12
11385 : ISA_IS_R6 (mips_opts.isa) ? 9
11386 : 16);
252b5132
RH
11387 goto ld;
11388 case M_LLD_AB:
11389 s = "lld";
7361da2c
AB
11390 fmt = LL_SC_FMT;
11391 offbits = (mips_opts.micromips ? 12
11392 : ISA_IS_R6 (mips_opts.isa) ? 9
11393 : 16);
252b5132
RH
11394 goto ld;
11395 case M_LWU_AB:
11396 s = "lwu";
df58fc94 11397 fmt = MEM12_FMT;
7f3c4072 11398 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11399 goto ld;
11400 case M_LWP_AB:
df58fc94
RS
11401 gas_assert (mips_opts.micromips);
11402 s = "lwp";
11403 fmt = "t,~(b)";
7f3c4072 11404 offbits = 12;
df58fc94
RS
11405 lp = 1;
11406 goto ld;
11407 case M_LDP_AB:
df58fc94
RS
11408 gas_assert (mips_opts.micromips);
11409 s = "ldp";
11410 fmt = "t,~(b)";
7f3c4072 11411 offbits = 12;
df58fc94
RS
11412 lp = 1;
11413 goto ld;
11414 case M_LWM_AB:
df58fc94
RS
11415 gas_assert (mips_opts.micromips);
11416 s = "lwm";
11417 fmt = "n,~(b)";
7f3c4072 11418 offbits = 12;
df58fc94
RS
11419 goto ld_st;
11420 case M_LDM_AB:
df58fc94
RS
11421 gas_assert (mips_opts.micromips);
11422 s = "ldm";
11423 fmt = "n,~(b)";
7f3c4072 11424 offbits = 12;
df58fc94
RS
11425 goto ld_st;
11426
252b5132 11427 ld:
f19ccbda 11428 /* We don't want to use $0 as tempreg. */
c0ebe874 11429 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
df58fc94 11430 goto ld_st;
252b5132 11431 else
c0ebe874 11432 tempreg = op[0] + lp;
df58fc94
RS
11433 goto ld_noat;
11434
252b5132
RH
11435 case M_SB_AB:
11436 s = "sb";
df58fc94
RS
11437 fmt = "t,o(b)";
11438 goto ld_st;
252b5132
RH
11439 case M_SH_AB:
11440 s = "sh";
df58fc94
RS
11441 fmt = "t,o(b)";
11442 goto ld_st;
252b5132
RH
11443 case M_SW_AB:
11444 s = "sw";
df58fc94
RS
11445 fmt = "t,o(b)";
11446 goto ld_st;
252b5132 11447 case M_SWC0_AB:
df58fc94 11448 gas_assert (!mips_opts.micromips);
252b5132 11449 s = "swc0";
df58fc94 11450 fmt = "E,o(b)";
bdaaa2e1 11451 /* Itbl support may require additional care here. */
252b5132 11452 coproc = 1;
df58fc94 11453 goto ld_st;
252b5132
RH
11454 case M_SWC1_AB:
11455 s = "swc1";
df58fc94 11456 fmt = "T,o(b)";
bdaaa2e1 11457 /* Itbl support may require additional care here. */
252b5132 11458 coproc = 1;
df58fc94 11459 goto ld_st;
252b5132
RH
11460 case M_SWC2_AB:
11461 s = "swc2";
df58fc94 11462 fmt = COP12_FMT;
7361da2c
AB
11463 offbits = (mips_opts.micromips ? 12
11464 : ISA_IS_R6 (mips_opts.isa) ? 11
11465 : 16);
bdaaa2e1 11466 /* Itbl support may require additional care here. */
252b5132 11467 coproc = 1;
df58fc94 11468 goto ld_st;
252b5132 11469 case M_SWC3_AB:
df58fc94 11470 gas_assert (!mips_opts.micromips);
252b5132 11471 s = "swc3";
df58fc94 11472 fmt = "E,o(b)";
bdaaa2e1 11473 /* Itbl support may require additional care here. */
252b5132 11474 coproc = 1;
df58fc94 11475 goto ld_st;
252b5132
RH
11476 case M_SWL_AB:
11477 s = "swl";
df58fc94 11478 fmt = MEM12_FMT;
7f3c4072 11479 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11480 goto ld_st;
252b5132
RH
11481 case M_SWR_AB:
11482 s = "swr";
df58fc94 11483 fmt = MEM12_FMT;
7f3c4072 11484 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11485 goto ld_st;
252b5132
RH
11486 case M_SC_AB:
11487 s = "sc";
7361da2c
AB
11488 fmt = LL_SC_FMT;
11489 offbits = (mips_opts.micromips ? 12
11490 : ISA_IS_R6 (mips_opts.isa) ? 9
11491 : 16);
df58fc94 11492 goto ld_st;
252b5132
RH
11493 case M_SCD_AB:
11494 s = "scd";
7361da2c
AB
11495 fmt = LL_SC_FMT;
11496 offbits = (mips_opts.micromips ? 12
11497 : ISA_IS_R6 (mips_opts.isa) ? 9
11498 : 16);
df58fc94 11499 goto ld_st;
d43b4baf
TS
11500 case M_CACHE_AB:
11501 s = "cache";
7361da2c
AB
11502 fmt = (mips_opts.micromips ? "k,~(b)"
11503 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11504 : "k,o(b)");
11505 offbits = (mips_opts.micromips ? 12
11506 : ISA_IS_R6 (mips_opts.isa) ? 9
11507 : 16);
7f3c4072
CM
11508 goto ld_st;
11509 case M_CACHEE_AB:
7f3c4072
CM
11510 s = "cachee";
11511 fmt = "k,+j(b)";
11512 offbits = 9;
df58fc94 11513 goto ld_st;
3eebd5eb
MR
11514 case M_PREF_AB:
11515 s = "pref";
7361da2c
AB
11516 fmt = (mips_opts.micromips ? "k,~(b)"
11517 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11518 : "k,o(b)");
11519 offbits = (mips_opts.micromips ? 12
11520 : ISA_IS_R6 (mips_opts.isa) ? 9
11521 : 16);
7f3c4072
CM
11522 goto ld_st;
11523 case M_PREFE_AB:
7f3c4072
CM
11524 s = "prefe";
11525 fmt = "k,+j(b)";
11526 offbits = 9;
df58fc94 11527 goto ld_st;
252b5132 11528 case M_SDC1_AB:
252b5132 11529 s = "sdc1";
df58fc94 11530 fmt = "T,o(b)";
252b5132 11531 coproc = 1;
bdaaa2e1 11532 /* Itbl support may require additional care here. */
df58fc94 11533 goto ld_st;
252b5132
RH
11534 case M_SDC2_AB:
11535 s = "sdc2";
df58fc94 11536 fmt = COP12_FMT;
7361da2c
AB
11537 offbits = (mips_opts.micromips ? 12
11538 : ISA_IS_R6 (mips_opts.isa) ? 11
11539 : 16);
c77c0862
RS
11540 /* Itbl support may require additional care here. */
11541 coproc = 1;
11542 goto ld_st;
11543 case M_SQC2_AB:
c77c0862 11544 s = "sqc2";
14daeee3 11545 fmt = "+7,o(b)";
bdaaa2e1 11546 /* Itbl support may require additional care here. */
252b5132 11547 coproc = 1;
df58fc94 11548 goto ld_st;
252b5132 11549 case M_SDC3_AB:
df58fc94 11550 gas_assert (!mips_opts.micromips);
252b5132 11551 s = "sdc3";
df58fc94 11552 fmt = "E,o(b)";
bdaaa2e1 11553 /* Itbl support may require additional care here. */
252b5132 11554 coproc = 1;
df58fc94 11555 goto ld_st;
252b5132
RH
11556 case M_SDL_AB:
11557 s = "sdl";
df58fc94 11558 fmt = MEM12_FMT;
7f3c4072 11559 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11560 goto ld_st;
252b5132
RH
11561 case M_SDR_AB:
11562 s = "sdr";
df58fc94 11563 fmt = MEM12_FMT;
7f3c4072 11564 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11565 goto ld_st;
11566 case M_SWP_AB:
df58fc94
RS
11567 gas_assert (mips_opts.micromips);
11568 s = "swp";
11569 fmt = "t,~(b)";
7f3c4072 11570 offbits = 12;
df58fc94
RS
11571 goto ld_st;
11572 case M_SDP_AB:
df58fc94
RS
11573 gas_assert (mips_opts.micromips);
11574 s = "sdp";
11575 fmt = "t,~(b)";
7f3c4072 11576 offbits = 12;
df58fc94
RS
11577 goto ld_st;
11578 case M_SWM_AB:
df58fc94
RS
11579 gas_assert (mips_opts.micromips);
11580 s = "swm";
11581 fmt = "n,~(b)";
7f3c4072 11582 offbits = 12;
df58fc94
RS
11583 goto ld_st;
11584 case M_SDM_AB:
df58fc94
RS
11585 gas_assert (mips_opts.micromips);
11586 s = "sdm";
11587 fmt = "n,~(b)";
7f3c4072 11588 offbits = 12;
df58fc94
RS
11589
11590 ld_st:
8fc2e39e 11591 tempreg = AT;
df58fc94 11592 ld_noat:
c0ebe874 11593 breg = op[2];
f2ae14a1
RS
11594 if (small_offset_p (0, align, 16))
11595 {
11596 /* The first case exists for M_LD_AB and M_SD_AB, which are
11597 macros for o32 but which should act like normal instructions
11598 otherwise. */
11599 if (offbits == 16)
c0ebe874 11600 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
11601 offset_reloc[1], offset_reloc[2], breg);
11602 else if (small_offset_p (0, align, offbits))
11603 {
11604 if (offbits == 0)
c0ebe874 11605 macro_build (NULL, s, fmt, op[0], breg);
f2ae14a1 11606 else
c0ebe874 11607 macro_build (NULL, s, fmt, op[0],
c8276761 11608 (int) offset_expr.X_add_number, breg);
f2ae14a1
RS
11609 }
11610 else
11611 {
11612 if (tempreg == AT)
11613 used_at = 1;
11614 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11615 tempreg, breg, -1, offset_reloc[0],
11616 offset_reloc[1], offset_reloc[2]);
11617 if (offbits == 0)
c0ebe874 11618 macro_build (NULL, s, fmt, op[0], tempreg);
f2ae14a1 11619 else
c0ebe874 11620 macro_build (NULL, s, fmt, op[0], 0, tempreg);
f2ae14a1
RS
11621 }
11622 break;
11623 }
11624
11625 if (tempreg == AT)
11626 used_at = 1;
11627
252b5132
RH
11628 if (offset_expr.X_op != O_constant
11629 && offset_expr.X_op != O_symbol)
11630 {
1661c76c 11631 as_bad (_("expression too complex"));
252b5132
RH
11632 offset_expr.X_op = O_constant;
11633 }
11634
2051e8c4
MR
11635 if (HAVE_32BIT_ADDRESSES
11636 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
11637 {
11638 char value [32];
11639
11640 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 11641 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 11642 }
2051e8c4 11643
252b5132
RH
11644 /* A constant expression in PIC code can be handled just as it
11645 is in non PIC code. */
aed1a261
RS
11646 if (offset_expr.X_op == O_constant)
11647 {
f2ae14a1
RS
11648 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11649 offbits == 0 ? 16 : offbits);
11650 offset_expr.X_add_number -= expr1.X_add_number;
df58fc94 11651
f2ae14a1
RS
11652 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11653 if (breg != 0)
11654 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11655 tempreg, tempreg, breg);
7f3c4072 11656 if (offbits == 0)
dd6a37e7 11657 {
f2ae14a1 11658 if (offset_expr.X_add_number != 0)
dd6a37e7 11659 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
f2ae14a1 11660 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
c0ebe874 11661 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11662 }
7f3c4072 11663 else if (offbits == 16)
c0ebe874 11664 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
df58fc94 11665 else
c0ebe874 11666 macro_build (NULL, s, fmt, op[0],
c8276761 11667 (int) offset_expr.X_add_number, tempreg);
df58fc94 11668 }
7f3c4072 11669 else if (offbits != 16)
df58fc94 11670 {
7f3c4072
CM
11671 /* The offset field is too narrow to be used for a low-part
11672 relocation, so load the whole address into the auxillary
f2ae14a1
RS
11673 register. */
11674 load_address (tempreg, &offset_expr, &used_at);
11675 if (breg != 0)
11676 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11677 tempreg, tempreg, breg);
7f3c4072 11678 if (offbits == 0)
c0ebe874 11679 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11680 else
c0ebe874 11681 macro_build (NULL, s, fmt, op[0], 0, tempreg);
aed1a261
RS
11682 }
11683 else if (mips_pic == NO_PIC)
252b5132
RH
11684 {
11685 /* If this is a reference to a GP relative symbol, and there
11686 is no base register, we want
c0ebe874 11687 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
252b5132
RH
11688 Otherwise, if there is no base register, we want
11689 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
c0ebe874 11690 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
252b5132
RH
11691 If we have a constant, we need two instructions anyhow,
11692 so we always use the latter form.
11693
11694 If we have a base register, and this is a reference to a
11695 GP relative symbol, we want
11696 addu $tempreg,$breg,$gp
c0ebe874 11697 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
252b5132
RH
11698 Otherwise we want
11699 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11700 addu $tempreg,$tempreg,$breg
c0ebe874 11701 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245 11702 With a constant we always use the latter case.
76b3015f 11703
d6bc6245
TS
11704 With 64bit address space and no base register and $at usable,
11705 we want
11706 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11707 lui $at,<sym> (BFD_RELOC_HI16_S)
11708 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11709 dsll32 $tempreg,0
11710 daddu $tempreg,$at
c0ebe874 11711 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11712 If we have a base register, we want
11713 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11714 lui $at,<sym> (BFD_RELOC_HI16_S)
11715 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11716 daddu $at,$breg
11717 dsll32 $tempreg,0
11718 daddu $tempreg,$at
c0ebe874 11719 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11720
11721 Without $at we can't generate the optimal path for superscalar
11722 processors here since this would require two temporary registers.
11723 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11724 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11725 dsll $tempreg,16
11726 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11727 dsll $tempreg,16
c0ebe874 11728 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11729 If we have a base register, we want
11730 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11731 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11732 dsll $tempreg,16
11733 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11734 dsll $tempreg,16
11735 daddu $tempreg,$tempreg,$breg
c0ebe874 11736 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
6373ee54 11737
6caf9ef4 11738 For GP relative symbols in 64bit address space we can use
aed1a261
RS
11739 the same sequence as in 32bit address space. */
11740 if (HAVE_64BIT_SYMBOLS)
d6bc6245 11741 {
aed1a261 11742 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4
TS
11743 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11744 {
11745 relax_start (offset_expr.X_add_symbol);
11746 if (breg == 0)
11747 {
c0ebe874 11748 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11749 BFD_RELOC_GPREL16, mips_gp_register);
11750 }
11751 else
11752 {
11753 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11754 tempreg, breg, mips_gp_register);
c0ebe874 11755 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11756 BFD_RELOC_GPREL16, tempreg);
11757 }
11758 relax_switch ();
11759 }
d6bc6245 11760
741fe287 11761 if (used_at == 0 && mips_opts.at)
d6bc6245 11762 {
df58fc94 11763 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb 11764 BFD_RELOC_MIPS_HIGHEST);
df58fc94 11765 macro_build (&offset_expr, "lui", LUI_FMT, AT,
67c0d1eb
RS
11766 BFD_RELOC_HI16_S);
11767 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11768 tempreg, BFD_RELOC_MIPS_HIGHER);
d6bc6245 11769 if (breg != 0)
67c0d1eb 11770 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
df58fc94 11771 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 11772 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
c0ebe874 11773 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
67c0d1eb 11774 tempreg);
d6bc6245
TS
11775 used_at = 1;
11776 }
11777 else
11778 {
df58fc94 11779 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb
RS
11780 BFD_RELOC_MIPS_HIGHEST);
11781 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11782 tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 11783 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb
RS
11784 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11785 tempreg, BFD_RELOC_HI16_S);
df58fc94 11786 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
d6bc6245 11787 if (breg != 0)
67c0d1eb 11788 macro_build (NULL, "daddu", "d,v,t",
17a2f251 11789 tempreg, tempreg, breg);
c0ebe874 11790 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11791 BFD_RELOC_LO16, tempreg);
d6bc6245 11792 }
6caf9ef4
TS
11793
11794 if (mips_relax.sequence)
11795 relax_end ();
8fc2e39e 11796 break;
d6bc6245 11797 }
256ab948 11798
252b5132
RH
11799 if (breg == 0)
11800 {
67c0d1eb 11801 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11802 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11803 {
4d7206a2 11804 relax_start (offset_expr.X_add_symbol);
c0ebe874 11805 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
67c0d1eb 11806 mips_gp_register);
4d7206a2 11807 relax_switch ();
252b5132 11808 }
67c0d1eb 11809 macro_build_lui (&offset_expr, tempreg);
c0ebe874 11810 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11811 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11812 if (mips_relax.sequence)
11813 relax_end ();
252b5132
RH
11814 }
11815 else
11816 {
67c0d1eb 11817 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11818 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11819 {
4d7206a2 11820 relax_start (offset_expr.X_add_symbol);
67c0d1eb 11821 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11822 tempreg, breg, mips_gp_register);
c0ebe874 11823 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11824 BFD_RELOC_GPREL16, tempreg);
4d7206a2 11825 relax_switch ();
252b5132 11826 }
67c0d1eb
RS
11827 macro_build_lui (&offset_expr, tempreg);
11828 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11829 tempreg, tempreg, breg);
c0ebe874 11830 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11831 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11832 if (mips_relax.sequence)
11833 relax_end ();
252b5132
RH
11834 }
11835 }
0a44bf69 11836 else if (!mips_big_got)
252b5132 11837 {
ed6fb7bd 11838 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
f9419b05 11839
252b5132
RH
11840 /* If this is a reference to an external symbol, we want
11841 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11842 nop
c0ebe874 11843 <op> op[0],0($tempreg)
252b5132
RH
11844 Otherwise we want
11845 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11846 nop
11847 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 11848 <op> op[0],0($tempreg)
f5040a92
AO
11849
11850 For NewABI, we want
11851 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 11852 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 11853
252b5132
RH
11854 If there is a base register, we add it to $tempreg before
11855 the <op>. If there is a constant, we stick it in the
11856 <op> instruction. We don't handle constants larger than
11857 16 bits, because we have no way to load the upper 16 bits
11858 (actually, we could handle them for the subset of cases
11859 in which we are not using $at). */
9c2799c2 11860 gas_assert (offset_expr.X_op == O_symbol);
f5040a92
AO
11861 if (HAVE_NEWABI)
11862 {
67c0d1eb
RS
11863 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11864 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 11865 if (breg != 0)
67c0d1eb 11866 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11867 tempreg, tempreg, breg);
c0ebe874 11868 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11869 BFD_RELOC_MIPS_GOT_OFST, tempreg);
f5040a92
AO
11870 break;
11871 }
252b5132
RH
11872 expr1.X_add_number = offset_expr.X_add_number;
11873 offset_expr.X_add_number = 0;
11874 if (expr1.X_add_number < -0x8000
11875 || expr1.X_add_number >= 0x8000)
11876 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb
RS
11877 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11878 lw_reloc_type, mips_gp_register);
269137b2 11879 load_delay_nop ();
4d7206a2
RS
11880 relax_start (offset_expr.X_add_symbol);
11881 relax_switch ();
67c0d1eb
RS
11882 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11883 tempreg, BFD_RELOC_LO16);
4d7206a2 11884 relax_end ();
252b5132 11885 if (breg != 0)
67c0d1eb 11886 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11887 tempreg, tempreg, breg);
c0ebe874 11888 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 11889 }
0a44bf69 11890 else if (mips_big_got && !HAVE_NEWABI)
252b5132 11891 {
67c0d1eb 11892 int gpdelay;
252b5132
RH
11893
11894 /* If this is a reference to an external symbol, we want
11895 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11896 addu $tempreg,$tempreg,$gp
11897 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 11898 <op> op[0],0($tempreg)
252b5132
RH
11899 Otherwise we want
11900 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11901 nop
11902 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 11903 <op> op[0],0($tempreg)
252b5132
RH
11904 If there is a base register, we add it to $tempreg before
11905 the <op>. If there is a constant, we stick it in the
11906 <op> instruction. We don't handle constants larger than
11907 16 bits, because we have no way to load the upper 16 bits
11908 (actually, we could handle them for the subset of cases
f5040a92 11909 in which we are not using $at). */
9c2799c2 11910 gas_assert (offset_expr.X_op == O_symbol);
252b5132
RH
11911 expr1.X_add_number = offset_expr.X_add_number;
11912 offset_expr.X_add_number = 0;
11913 if (expr1.X_add_number < -0x8000
11914 || expr1.X_add_number >= 0x8000)
11915 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 11916 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 11917 relax_start (offset_expr.X_add_symbol);
df58fc94 11918 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 11919 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
11920 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11921 mips_gp_register);
11922 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11923 BFD_RELOC_MIPS_GOT_LO16, tempreg);
4d7206a2 11924 relax_switch ();
67c0d1eb
RS
11925 if (gpdelay)
11926 macro_build (NULL, "nop", "");
11927 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11928 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 11929 load_delay_nop ();
67c0d1eb
RS
11930 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11931 tempreg, BFD_RELOC_LO16);
4d7206a2
RS
11932 relax_end ();
11933
252b5132 11934 if (breg != 0)
67c0d1eb 11935 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11936 tempreg, tempreg, breg);
c0ebe874 11937 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 11938 }
0a44bf69 11939 else if (mips_big_got && HAVE_NEWABI)
f5040a92 11940 {
f5040a92
AO
11941 /* If this is a reference to an external symbol, we want
11942 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11943 add $tempreg,$tempreg,$gp
11944 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 11945 <op> op[0],<ofst>($tempreg)
f5040a92
AO
11946 Otherwise, for local symbols, we want:
11947 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 11948 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9c2799c2 11949 gas_assert (offset_expr.X_op == O_symbol);
4d7206a2 11950 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11951 offset_expr.X_add_number = 0;
11952 if (expr1.X_add_number < -0x8000
11953 || expr1.X_add_number >= 0x8000)
11954 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4d7206a2 11955 relax_start (offset_expr.X_add_symbol);
df58fc94 11956 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 11957 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
11958 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11959 mips_gp_register);
11960 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11961 BFD_RELOC_MIPS_GOT_LO16, tempreg);
f5040a92 11962 if (breg != 0)
67c0d1eb 11963 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11964 tempreg, tempreg, breg);
c0ebe874 11965 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
684022ea 11966
4d7206a2 11967 relax_switch ();
f5040a92 11968 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
11969 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11970 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 11971 if (breg != 0)
67c0d1eb 11972 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11973 tempreg, tempreg, breg);
c0ebe874 11974 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11975 BFD_RELOC_MIPS_GOT_OFST, tempreg);
4d7206a2 11976 relax_end ();
f5040a92 11977 }
252b5132
RH
11978 else
11979 abort ();
11980
252b5132
RH
11981 break;
11982
833794fc
MR
11983 case M_JRADDIUSP:
11984 gas_assert (mips_opts.micromips);
11985 gas_assert (mips_opts.insn32);
11986 start_noreorder ();
11987 macro_build (NULL, "jr", "s", RA);
c0ebe874 11988 expr1.X_add_number = op[0] << 2;
833794fc
MR
11989 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11990 end_noreorder ();
11991 break;
11992
11993 case M_JRC:
11994 gas_assert (mips_opts.micromips);
11995 gas_assert (mips_opts.insn32);
c0ebe874 11996 macro_build (NULL, "jr", "s", op[0]);
833794fc
MR
11997 if (mips_opts.noreorder)
11998 macro_build (NULL, "nop", "");
11999 break;
12000
252b5132
RH
12001 case M_LI:
12002 case M_LI_S:
c0ebe874 12003 load_register (op[0], &imm_expr, 0);
8fc2e39e 12004 break;
252b5132
RH
12005
12006 case M_DLI:
c0ebe874 12007 load_register (op[0], &imm_expr, 1);
8fc2e39e 12008 break;
252b5132
RH
12009
12010 case M_LI_SS:
12011 if (imm_expr.X_op == O_constant)
12012 {
8fc2e39e 12013 used_at = 1;
67c0d1eb 12014 load_register (AT, &imm_expr, 0);
c0ebe874 12015 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12016 break;
12017 }
12018 else
12019 {
b0e6f033
RS
12020 gas_assert (imm_expr.X_op == O_absent
12021 && offset_expr.X_op == O_symbol
90ecf173
MR
12022 && strcmp (segment_name (S_GET_SEGMENT
12023 (offset_expr.X_add_symbol)),
12024 ".lit4") == 0
12025 && offset_expr.X_add_number == 0);
c0ebe874 12026 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
17a2f251 12027 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8fc2e39e 12028 break;
252b5132
RH
12029 }
12030
12031 case M_LI_D:
ca4e0257
RS
12032 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12033 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12034 order 32 bits of the value and the low order 32 bits are either
12035 zero or in OFFSET_EXPR. */
b0e6f033 12036 if (imm_expr.X_op == O_constant)
252b5132 12037 {
bad1aba3 12038 if (GPR_SIZE == 64)
c0ebe874 12039 load_register (op[0], &imm_expr, 1);
252b5132
RH
12040 else
12041 {
12042 int hreg, lreg;
12043
12044 if (target_big_endian)
12045 {
c0ebe874
RS
12046 hreg = op[0];
12047 lreg = op[0] + 1;
252b5132
RH
12048 }
12049 else
12050 {
c0ebe874
RS
12051 hreg = op[0] + 1;
12052 lreg = op[0];
252b5132
RH
12053 }
12054
12055 if (hreg <= 31)
67c0d1eb 12056 load_register (hreg, &imm_expr, 0);
252b5132
RH
12057 if (lreg <= 31)
12058 {
12059 if (offset_expr.X_op == O_absent)
67c0d1eb 12060 move_register (lreg, 0);
252b5132
RH
12061 else
12062 {
9c2799c2 12063 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12064 load_register (lreg, &offset_expr, 0);
252b5132
RH
12065 }
12066 }
12067 }
8fc2e39e 12068 break;
252b5132 12069 }
b0e6f033 12070 gas_assert (imm_expr.X_op == O_absent);
252b5132
RH
12071
12072 /* We know that sym is in the .rdata section. First we get the
12073 upper 16 bits of the address. */
12074 if (mips_pic == NO_PIC)
12075 {
67c0d1eb 12076 macro_build_lui (&offset_expr, AT);
8fc2e39e 12077 used_at = 1;
252b5132 12078 }
0a44bf69 12079 else
252b5132 12080 {
67c0d1eb
RS
12081 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12082 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8fc2e39e 12083 used_at = 1;
252b5132 12084 }
bdaaa2e1 12085
252b5132 12086 /* Now we load the register(s). */
bad1aba3 12087 if (GPR_SIZE == 64)
8fc2e39e
TS
12088 {
12089 used_at = 1;
c0ebe874
RS
12090 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12091 BFD_RELOC_LO16, AT);
8fc2e39e 12092 }
252b5132
RH
12093 else
12094 {
8fc2e39e 12095 used_at = 1;
c0ebe874
RS
12096 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12097 BFD_RELOC_LO16, AT);
12098 if (op[0] != RA)
252b5132
RH
12099 {
12100 /* FIXME: How in the world do we deal with the possible
12101 overflow here? */
12102 offset_expr.X_add_number += 4;
67c0d1eb 12103 macro_build (&offset_expr, "lw", "t,o(b)",
c0ebe874 12104 op[0] + 1, BFD_RELOC_LO16, AT);
252b5132
RH
12105 }
12106 }
252b5132
RH
12107 break;
12108
12109 case M_LI_DD:
ca4e0257
RS
12110 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12111 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12112 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12113 the value and the low order 32 bits are either zero or in
12114 OFFSET_EXPR. */
b0e6f033 12115 if (imm_expr.X_op == O_constant)
252b5132 12116 {
8fc2e39e 12117 used_at = 1;
bad1aba3 12118 load_register (AT, &imm_expr, FPR_SIZE == 64);
351cdf24
MF
12119 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12120 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
252b5132
RH
12121 else
12122 {
351cdf24
MF
12123 if (ISA_HAS_MXHC1 (mips_opts.isa))
12124 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12125 else if (FPR_SIZE != 32)
12126 as_bad (_("Unable to generate `%s' compliant code "
12127 "without mthc1"),
12128 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12129 else
12130 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
252b5132 12131 if (offset_expr.X_op == O_absent)
c0ebe874 12132 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
252b5132
RH
12133 else
12134 {
9c2799c2 12135 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12136 load_register (AT, &offset_expr, 0);
c0ebe874 12137 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12138 }
12139 }
12140 break;
12141 }
12142
b0e6f033
RS
12143 gas_assert (imm_expr.X_op == O_absent
12144 && offset_expr.X_op == O_symbol
90ecf173 12145 && offset_expr.X_add_number == 0);
252b5132
RH
12146 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12147 if (strcmp (s, ".lit8") == 0)
f2ae14a1 12148 {
c0ebe874 12149 op[2] = mips_gp_register;
f2ae14a1
RS
12150 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12151 offset_reloc[1] = BFD_RELOC_UNUSED;
12152 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132
RH
12153 }
12154 else
12155 {
9c2799c2 12156 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8fc2e39e 12157 used_at = 1;
0a44bf69 12158 if (mips_pic != NO_PIC)
67c0d1eb
RS
12159 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12160 BFD_RELOC_MIPS_GOT16, mips_gp_register);
252b5132
RH
12161 else
12162 {
12163 /* FIXME: This won't work for a 64 bit address. */
67c0d1eb 12164 macro_build_lui (&offset_expr, AT);
252b5132 12165 }
bdaaa2e1 12166
c0ebe874 12167 op[2] = AT;
f2ae14a1
RS
12168 offset_reloc[0] = BFD_RELOC_LO16;
12169 offset_reloc[1] = BFD_RELOC_UNUSED;
12170 offset_reloc[2] = BFD_RELOC_UNUSED;
12171 }
12172 align = 8;
12173 /* Fall through */
c4a68bea 12174
252b5132
RH
12175 case M_L_DAB:
12176 /*
12177 * The MIPS assembler seems to check for X_add_number not
12178 * being double aligned and generating:
12179 * lui at,%hi(foo+1)
12180 * addu at,at,v1
12181 * addiu at,at,%lo(foo+1)
12182 * lwc1 f2,0(at)
12183 * lwc1 f3,4(at)
12184 * But, the resulting address is the same after relocation so why
12185 * generate the extra instruction?
12186 */
bdaaa2e1 12187 /* Itbl support may require additional care here. */
252b5132 12188 coproc = 1;
df58fc94 12189 fmt = "T,o(b)";
0aa27725 12190 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12191 {
12192 s = "ldc1";
df58fc94 12193 goto ld_st;
252b5132 12194 }
252b5132 12195 s = "lwc1";
252b5132
RH
12196 goto ldd_std;
12197
12198 case M_S_DAB:
df58fc94
RS
12199 gas_assert (!mips_opts.micromips);
12200 /* Itbl support may require additional care here. */
12201 coproc = 1;
12202 fmt = "T,o(b)";
0aa27725 12203 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12204 {
12205 s = "sdc1";
df58fc94 12206 goto ld_st;
252b5132 12207 }
252b5132 12208 s = "swc1";
252b5132
RH
12209 goto ldd_std;
12210
e407c74b
NC
12211 case M_LQ_AB:
12212 fmt = "t,o(b)";
12213 s = "lq";
12214 goto ld;
12215
12216 case M_SQ_AB:
12217 fmt = "t,o(b)";
12218 s = "sq";
12219 goto ld_st;
12220
252b5132 12221 case M_LD_AB:
df58fc94 12222 fmt = "t,o(b)";
bad1aba3 12223 if (GPR_SIZE == 64)
252b5132
RH
12224 {
12225 s = "ld";
12226 goto ld;
12227 }
252b5132 12228 s = "lw";
252b5132
RH
12229 goto ldd_std;
12230
12231 case M_SD_AB:
df58fc94 12232 fmt = "t,o(b)";
bad1aba3 12233 if (GPR_SIZE == 64)
252b5132
RH
12234 {
12235 s = "sd";
df58fc94 12236 goto ld_st;
252b5132 12237 }
252b5132 12238 s = "sw";
252b5132
RH
12239
12240 ldd_std:
f2ae14a1
RS
12241 /* Even on a big endian machine $fn comes before $fn+1. We have
12242 to adjust when loading from memory. We set coproc if we must
12243 load $fn+1 first. */
12244 /* Itbl support may require additional care here. */
12245 if (!target_big_endian)
12246 coproc = 0;
12247
c0ebe874 12248 breg = op[2];
f2ae14a1
RS
12249 if (small_offset_p (0, align, 16))
12250 {
12251 ep = &offset_expr;
12252 if (!small_offset_p (4, align, 16))
12253 {
12254 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12255 -1, offset_reloc[0], offset_reloc[1],
12256 offset_reloc[2]);
12257 expr1.X_add_number = 0;
12258 ep = &expr1;
12259 breg = AT;
12260 used_at = 1;
12261 offset_reloc[0] = BFD_RELOC_LO16;
12262 offset_reloc[1] = BFD_RELOC_UNUSED;
12263 offset_reloc[2] = BFD_RELOC_UNUSED;
12264 }
c0ebe874 12265 if (strcmp (s, "lw") == 0 && op[0] == breg)
f2ae14a1
RS
12266 {
12267 ep->X_add_number += 4;
c0ebe874 12268 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
f2ae14a1
RS
12269 offset_reloc[1], offset_reloc[2], breg);
12270 ep->X_add_number -= 4;
c0ebe874 12271 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12272 offset_reloc[1], offset_reloc[2], breg);
12273 }
12274 else
12275 {
c0ebe874 12276 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
f2ae14a1
RS
12277 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12278 breg);
12279 ep->X_add_number += 4;
c0ebe874 12280 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
f2ae14a1
RS
12281 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12282 breg);
12283 }
12284 break;
12285 }
12286
252b5132
RH
12287 if (offset_expr.X_op != O_symbol
12288 && offset_expr.X_op != O_constant)
12289 {
1661c76c 12290 as_bad (_("expression too complex"));
252b5132
RH
12291 offset_expr.X_op = O_constant;
12292 }
12293
2051e8c4
MR
12294 if (HAVE_32BIT_ADDRESSES
12295 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
12296 {
12297 char value [32];
12298
12299 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 12300 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 12301 }
2051e8c4 12302
90ecf173 12303 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
252b5132
RH
12304 {
12305 /* If this is a reference to a GP relative symbol, we want
c0ebe874
RS
12306 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12307 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
252b5132
RH
12308 If we have a base register, we use this
12309 addu $at,$breg,$gp
c0ebe874
RS
12310 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12311 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
252b5132
RH
12312 If this is not a GP relative symbol, we want
12313 lui $at,<sym> (BFD_RELOC_HI16_S)
c0ebe874
RS
12314 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12315 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12316 If there is a base register, we add it to $at after the
12317 lui instruction. If there is a constant, we always use
12318 the last case. */
39a59cf8
MR
12319 if (offset_expr.X_op == O_symbol
12320 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12321 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12322 {
4d7206a2 12323 relax_start (offset_expr.X_add_symbol);
252b5132
RH
12324 if (breg == 0)
12325 {
c9914766 12326 tempreg = mips_gp_register;
252b5132
RH
12327 }
12328 else
12329 {
67c0d1eb 12330 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12331 AT, breg, mips_gp_register);
252b5132 12332 tempreg = AT;
252b5132
RH
12333 used_at = 1;
12334 }
12335
beae10d5 12336 /* Itbl support may require additional care here. */
c0ebe874 12337 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12338 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12339 offset_expr.X_add_number += 4;
12340
12341 /* Set mips_optimize to 2 to avoid inserting an
12342 undesired nop. */
12343 hold_mips_optimize = mips_optimize;
12344 mips_optimize = 2;
beae10d5 12345 /* Itbl support may require additional care here. */
c0ebe874 12346 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12347 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12348 mips_optimize = hold_mips_optimize;
12349
4d7206a2 12350 relax_switch ();
252b5132 12351
0970e49e 12352 offset_expr.X_add_number -= 4;
252b5132 12353 }
8fc2e39e 12354 used_at = 1;
f2ae14a1
RS
12355 if (offset_high_part (offset_expr.X_add_number, 16)
12356 != offset_high_part (offset_expr.X_add_number + 4, 16))
12357 {
12358 load_address (AT, &offset_expr, &used_at);
12359 offset_expr.X_op = O_constant;
12360 offset_expr.X_add_number = 0;
12361 }
12362 else
12363 macro_build_lui (&offset_expr, AT);
252b5132 12364 if (breg != 0)
67c0d1eb 12365 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12366 /* Itbl support may require additional care here. */
c0ebe874 12367 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12368 BFD_RELOC_LO16, AT);
252b5132
RH
12369 /* FIXME: How do we handle overflow here? */
12370 offset_expr.X_add_number += 4;
beae10d5 12371 /* Itbl support may require additional care here. */
c0ebe874 12372 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12373 BFD_RELOC_LO16, AT);
4d7206a2
RS
12374 if (mips_relax.sequence)
12375 relax_end ();
bdaaa2e1 12376 }
0a44bf69 12377 else if (!mips_big_got)
252b5132 12378 {
252b5132
RH
12379 /* If this is a reference to an external symbol, we want
12380 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12381 nop
c0ebe874
RS
12382 <op> op[0],0($at)
12383 <op> op[0]+1,4($at)
252b5132
RH
12384 Otherwise we want
12385 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12386 nop
c0ebe874
RS
12387 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12388 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12389 If there is a base register we add it to $at before the
12390 lwc1 instructions. If there is a constant we include it
12391 in the lwc1 instructions. */
12392 used_at = 1;
12393 expr1.X_add_number = offset_expr.X_add_number;
252b5132
RH
12394 if (expr1.X_add_number < -0x8000
12395 || expr1.X_add_number >= 0x8000 - 4)
12396 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12397 load_got_offset (AT, &offset_expr);
269137b2 12398 load_delay_nop ();
252b5132 12399 if (breg != 0)
67c0d1eb 12400 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
252b5132
RH
12401
12402 /* Set mips_optimize to 2 to avoid inserting an undesired
12403 nop. */
12404 hold_mips_optimize = mips_optimize;
12405 mips_optimize = 2;
4d7206a2 12406
beae10d5 12407 /* Itbl support may require additional care here. */
4d7206a2 12408 relax_start (offset_expr.X_add_symbol);
c0ebe874 12409 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12410 BFD_RELOC_LO16, AT);
4d7206a2 12411 expr1.X_add_number += 4;
c0ebe874 12412 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12413 BFD_RELOC_LO16, AT);
4d7206a2 12414 relax_switch ();
c0ebe874 12415 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12416 BFD_RELOC_LO16, AT);
4d7206a2 12417 offset_expr.X_add_number += 4;
c0ebe874 12418 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12419 BFD_RELOC_LO16, AT);
4d7206a2 12420 relax_end ();
252b5132 12421
4d7206a2 12422 mips_optimize = hold_mips_optimize;
252b5132 12423 }
0a44bf69 12424 else if (mips_big_got)
252b5132 12425 {
67c0d1eb 12426 int gpdelay;
252b5132
RH
12427
12428 /* If this is a reference to an external symbol, we want
12429 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12430 addu $at,$at,$gp
12431 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12432 nop
c0ebe874
RS
12433 <op> op[0],0($at)
12434 <op> op[0]+1,4($at)
252b5132
RH
12435 Otherwise we want
12436 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12437 nop
c0ebe874
RS
12438 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12439 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12440 If there is a base register we add it to $at before the
12441 lwc1 instructions. If there is a constant we include it
12442 in the lwc1 instructions. */
12443 used_at = 1;
12444 expr1.X_add_number = offset_expr.X_add_number;
12445 offset_expr.X_add_number = 0;
12446 if (expr1.X_add_number < -0x8000
12447 || expr1.X_add_number >= 0x8000 - 4)
12448 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12449 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12450 relax_start (offset_expr.X_add_symbol);
df58fc94 12451 macro_build (&offset_expr, "lui", LUI_FMT,
67c0d1eb
RS
12452 AT, BFD_RELOC_MIPS_GOT_HI16);
12453 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12454 AT, AT, mips_gp_register);
67c0d1eb 12455 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 12456 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
269137b2 12457 load_delay_nop ();
252b5132 12458 if (breg != 0)
67c0d1eb 12459 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12460 /* Itbl support may require additional care here. */
c0ebe874 12461 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12462 BFD_RELOC_LO16, AT);
252b5132
RH
12463 expr1.X_add_number += 4;
12464
12465 /* Set mips_optimize to 2 to avoid inserting an undesired
12466 nop. */
12467 hold_mips_optimize = mips_optimize;
12468 mips_optimize = 2;
beae10d5 12469 /* Itbl support may require additional care here. */
c0ebe874 12470 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12471 BFD_RELOC_LO16, AT);
252b5132
RH
12472 mips_optimize = hold_mips_optimize;
12473 expr1.X_add_number -= 4;
12474
4d7206a2
RS
12475 relax_switch ();
12476 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12477 if (gpdelay)
12478 macro_build (NULL, "nop", "");
12479 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12480 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12481 load_delay_nop ();
252b5132 12482 if (breg != 0)
67c0d1eb 12483 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12484 /* Itbl support may require additional care here. */
c0ebe874 12485 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12486 BFD_RELOC_LO16, AT);
4d7206a2 12487 offset_expr.X_add_number += 4;
252b5132
RH
12488
12489 /* Set mips_optimize to 2 to avoid inserting an undesired
12490 nop. */
12491 hold_mips_optimize = mips_optimize;
12492 mips_optimize = 2;
beae10d5 12493 /* Itbl support may require additional care here. */
c0ebe874 12494 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12495 BFD_RELOC_LO16, AT);
252b5132 12496 mips_optimize = hold_mips_optimize;
4d7206a2 12497 relax_end ();
252b5132 12498 }
252b5132
RH
12499 else
12500 abort ();
12501
252b5132 12502 break;
3739860c 12503
dd6a37e7 12504 case M_SAA_AB:
dd6a37e7 12505 s = "saa";
0db377d0 12506 goto saa_saad;
dd6a37e7 12507 case M_SAAD_AB:
dd6a37e7 12508 s = "saad";
0db377d0
MR
12509 saa_saad:
12510 gas_assert (!mips_opts.micromips);
7f3c4072 12511 offbits = 0;
dd6a37e7
AP
12512 fmt = "t,(b)";
12513 goto ld_st;
12514
252b5132
RH
12515 /* New code added to support COPZ instructions.
12516 This code builds table entries out of the macros in mip_opcodes.
12517 R4000 uses interlocks to handle coproc delays.
12518 Other chips (like the R3000) require nops to be inserted for delays.
12519
f72c8c98 12520 FIXME: Currently, we require that the user handle delays.
252b5132
RH
12521 In order to fill delay slots for non-interlocked chips,
12522 we must have a way to specify delays based on the coprocessor.
12523 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12524 What are the side-effects of the cop instruction?
12525 What cache support might we have and what are its effects?
12526 Both coprocessor & memory require delays. how long???
bdaaa2e1 12527 What registers are read/set/modified?
252b5132
RH
12528
12529 If an itbl is provided to interpret cop instructions,
bdaaa2e1 12530 this knowledge can be encoded in the itbl spec. */
252b5132
RH
12531
12532 case M_COP0:
12533 s = "c0";
12534 goto copz;
12535 case M_COP1:
12536 s = "c1";
12537 goto copz;
12538 case M_COP2:
12539 s = "c2";
12540 goto copz;
12541 case M_COP3:
12542 s = "c3";
12543 copz:
df58fc94 12544 gas_assert (!mips_opts.micromips);
252b5132
RH
12545 /* For now we just do C (same as Cz). The parameter will be
12546 stored in insn_opcode by mips_ip. */
c8276761 12547 macro_build (NULL, s, "C", (int) ip->insn_opcode);
8fc2e39e 12548 break;
252b5132 12549
ea1fb5dc 12550 case M_MOVE:
c0ebe874 12551 move_register (op[0], op[1]);
8fc2e39e 12552 break;
ea1fb5dc 12553
833794fc
MR
12554 case M_MOVEP:
12555 gas_assert (mips_opts.micromips);
12556 gas_assert (mips_opts.insn32);
c0ebe874
RS
12557 move_register (micromips_to_32_reg_h_map1[op[0]],
12558 micromips_to_32_reg_m_map[op[1]]);
12559 move_register (micromips_to_32_reg_h_map2[op[0]],
12560 micromips_to_32_reg_n_map[op[2]]);
833794fc
MR
12561 break;
12562
252b5132
RH
12563 case M_DMUL:
12564 dbl = 1;
12565 case M_MUL:
e407c74b 12566 if (mips_opts.arch == CPU_R5900)
c0ebe874
RS
12567 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12568 op[2]);
e407c74b
NC
12569 else
12570 {
c0ebe874
RS
12571 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12572 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
e407c74b 12573 }
8fc2e39e 12574 break;
252b5132
RH
12575
12576 case M_DMUL_I:
12577 dbl = 1;
12578 case M_MUL_I:
12579 /* The MIPS assembler some times generates shifts and adds. I'm
12580 not trying to be that fancy. GCC should do this for us
12581 anyway. */
8fc2e39e 12582 used_at = 1;
67c0d1eb 12583 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12584 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12585 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12586 break;
12587
12588 case M_DMULO_I:
12589 dbl = 1;
12590 case M_MULO_I:
12591 imm = 1;
12592 goto do_mulo;
12593
12594 case M_DMULO:
12595 dbl = 1;
12596 case M_MULO:
12597 do_mulo:
7d10b47d 12598 start_noreorder ();
8fc2e39e 12599 used_at = 1;
252b5132 12600 if (imm)
67c0d1eb 12601 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12602 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12603 op[1], imm ? AT : op[2]);
12604 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12605 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
df58fc94 12606 macro_build (NULL, "mfhi", MFHL_FMT, AT);
252b5132 12607 if (mips_trap)
c0ebe874 12608 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
252b5132
RH
12609 else
12610 {
df58fc94
RS
12611 if (mips_opts.micromips)
12612 micromips_label_expr (&label_expr);
12613 else
12614 label_expr.X_add_number = 8;
c0ebe874 12615 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
a605d2b3 12616 macro_build (NULL, "nop", "");
df58fc94
RS
12617 macro_build (NULL, "break", BRK_FMT, 6);
12618 if (mips_opts.micromips)
12619 micromips_add_label ();
252b5132 12620 }
7d10b47d 12621 end_noreorder ();
c0ebe874 12622 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12623 break;
12624
12625 case M_DMULOU_I:
12626 dbl = 1;
12627 case M_MULOU_I:
12628 imm = 1;
12629 goto do_mulou;
12630
12631 case M_DMULOU:
12632 dbl = 1;
12633 case M_MULOU:
12634 do_mulou:
7d10b47d 12635 start_noreorder ();
8fc2e39e 12636 used_at = 1;
252b5132 12637 if (imm)
67c0d1eb
RS
12638 load_register (AT, &imm_expr, dbl);
12639 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
c0ebe874 12640 op[1], imm ? AT : op[2]);
df58fc94 12641 macro_build (NULL, "mfhi", MFHL_FMT, AT);
c0ebe874 12642 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132 12643 if (mips_trap)
df58fc94 12644 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
252b5132
RH
12645 else
12646 {
df58fc94
RS
12647 if (mips_opts.micromips)
12648 micromips_label_expr (&label_expr);
12649 else
12650 label_expr.X_add_number = 8;
12651 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
a605d2b3 12652 macro_build (NULL, "nop", "");
df58fc94
RS
12653 macro_build (NULL, "break", BRK_FMT, 6);
12654 if (mips_opts.micromips)
12655 micromips_add_label ();
252b5132 12656 }
7d10b47d 12657 end_noreorder ();
252b5132
RH
12658 break;
12659
771c7ce4 12660 case M_DROL:
fef14a42 12661 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12662 {
c0ebe874 12663 if (op[0] == op[1])
82dd0097
CD
12664 {
12665 tempreg = AT;
12666 used_at = 1;
12667 }
12668 else
c0ebe874
RS
12669 tempreg = op[0];
12670 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12671 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12672 break;
82dd0097 12673 }
8fc2e39e 12674 used_at = 1;
c0ebe874
RS
12675 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12676 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12677 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12678 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12679 break;
12680
252b5132 12681 case M_ROL:
fef14a42 12682 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12683 {
c0ebe874 12684 if (op[0] == op[1])
82dd0097
CD
12685 {
12686 tempreg = AT;
12687 used_at = 1;
12688 }
12689 else
c0ebe874
RS
12690 tempreg = op[0];
12691 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12692 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12693 break;
82dd0097 12694 }
8fc2e39e 12695 used_at = 1;
c0ebe874
RS
12696 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12697 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12698 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12699 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12700 break;
12701
771c7ce4
TS
12702 case M_DROL_I:
12703 {
12704 unsigned int rot;
e0471c16
TS
12705 const char *l;
12706 const char *rr;
771c7ce4 12707
771c7ce4 12708 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12709 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
60b63b72
RS
12710 {
12711 rot = (64 - rot) & 0x3f;
12712 if (rot >= 32)
c0ebe874 12713 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
60b63b72 12714 else
c0ebe874 12715 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12716 break;
60b63b72 12717 }
483fc7cd 12718 if (rot == 0)
483fc7cd 12719 {
c0ebe874 12720 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12721 break;
483fc7cd 12722 }
82dd0097 12723 l = (rot < 0x20) ? "dsll" : "dsll32";
91d6fa6a 12724 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
82dd0097 12725 rot &= 0x1f;
8fc2e39e 12726 used_at = 1;
c0ebe874
RS
12727 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12728 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12729 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12730 }
12731 break;
12732
252b5132 12733 case M_ROL_I:
771c7ce4
TS
12734 {
12735 unsigned int rot;
12736
771c7ce4 12737 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12738 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
60b63b72 12739 {
c0ebe874
RS
12740 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12741 (32 - rot) & 0x1f);
8fc2e39e 12742 break;
60b63b72 12743 }
483fc7cd 12744 if (rot == 0)
483fc7cd 12745 {
c0ebe874 12746 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12747 break;
483fc7cd 12748 }
8fc2e39e 12749 used_at = 1;
c0ebe874
RS
12750 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12751 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12752 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12753 }
12754 break;
12755
12756 case M_DROR:
fef14a42 12757 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12758 {
c0ebe874 12759 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12760 break;
82dd0097 12761 }
8fc2e39e 12762 used_at = 1;
c0ebe874
RS
12763 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12764 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12765 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12766 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12767 break;
12768
12769 case M_ROR:
fef14a42 12770 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12771 {
c0ebe874 12772 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12773 break;
82dd0097 12774 }
8fc2e39e 12775 used_at = 1;
c0ebe874
RS
12776 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12777 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12778 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12779 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12780 break;
12781
771c7ce4
TS
12782 case M_DROR_I:
12783 {
12784 unsigned int rot;
e0471c16
TS
12785 const char *l;
12786 const char *rr;
771c7ce4 12787
771c7ce4 12788 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12789 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
12790 {
12791 if (rot >= 32)
c0ebe874 12792 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
82dd0097 12793 else
c0ebe874 12794 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12795 break;
82dd0097 12796 }
483fc7cd 12797 if (rot == 0)
483fc7cd 12798 {
c0ebe874 12799 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12800 break;
483fc7cd 12801 }
91d6fa6a 12802 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
82dd0097
CD
12803 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12804 rot &= 0x1f;
8fc2e39e 12805 used_at = 1;
c0ebe874
RS
12806 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12807 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12808 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12809 }
12810 break;
12811
252b5132 12812 case M_ROR_I:
771c7ce4
TS
12813 {
12814 unsigned int rot;
12815
771c7ce4 12816 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12817 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12818 {
c0ebe874 12819 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12820 break;
82dd0097 12821 }
483fc7cd 12822 if (rot == 0)
483fc7cd 12823 {
c0ebe874 12824 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12825 break;
483fc7cd 12826 }
8fc2e39e 12827 used_at = 1;
c0ebe874
RS
12828 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12829 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12830 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4 12831 }
252b5132
RH
12832 break;
12833
252b5132 12834 case M_SEQ:
c0ebe874
RS
12835 if (op[1] == 0)
12836 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12837 else if (op[2] == 0)
12838 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
12839 else
12840 {
c0ebe874
RS
12841 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12842 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
252b5132 12843 }
8fc2e39e 12844 break;
252b5132
RH
12845
12846 case M_SEQ_I:
b0e6f033 12847 if (imm_expr.X_add_number == 0)
252b5132 12848 {
c0ebe874 12849 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 12850 break;
252b5132 12851 }
c0ebe874 12852 if (op[1] == 0)
252b5132 12853 {
1661c76c 12854 as_warn (_("instruction %s: result is always false"),
252b5132 12855 ip->insn_mo->name);
c0ebe874 12856 move_register (op[0], 0);
8fc2e39e 12857 break;
252b5132 12858 }
dd3cbb7e
NC
12859 if (CPU_HAS_SEQ (mips_opts.arch)
12860 && -512 <= imm_expr.X_add_number
12861 && imm_expr.X_add_number < 512)
12862 {
c0ebe874 12863 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
750bdd57 12864 (int) imm_expr.X_add_number);
dd3cbb7e
NC
12865 break;
12866 }
b0e6f033 12867 if (imm_expr.X_add_number >= 0
252b5132 12868 && imm_expr.X_add_number < 0x10000)
c0ebe874 12869 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
b0e6f033 12870 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
12871 && imm_expr.X_add_number < 0)
12872 {
12873 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 12874 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 12875 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 12876 }
dd3cbb7e
NC
12877 else if (CPU_HAS_SEQ (mips_opts.arch))
12878 {
12879 used_at = 1;
bad1aba3 12880 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12881 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
12882 break;
12883 }
252b5132
RH
12884 else
12885 {
bad1aba3 12886 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12887 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
12888 used_at = 1;
12889 }
c0ebe874 12890 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12891 break;
252b5132 12892
c0ebe874 12893 case M_SGE: /* X >= Y <==> not (X < Y) */
252b5132
RH
12894 s = "slt";
12895 goto sge;
12896 case M_SGEU:
12897 s = "sltu";
12898 sge:
c0ebe874
RS
12899 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12900 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12901 break;
252b5132 12902
c0ebe874 12903 case M_SGE_I: /* X >= I <==> not (X < I) */
252b5132 12904 case M_SGEU_I:
b0e6f033 12905 if (imm_expr.X_add_number >= -0x8000
252b5132 12906 && imm_expr.X_add_number < 0x8000)
c0ebe874
RS
12907 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12908 op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
12909 else
12910 {
bad1aba3 12911 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 12912 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
c0ebe874 12913 op[0], op[1], AT);
252b5132
RH
12914 used_at = 1;
12915 }
c0ebe874 12916 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12917 break;
252b5132 12918
c0ebe874 12919 case M_SGT: /* X > Y <==> Y < X */
252b5132
RH
12920 s = "slt";
12921 goto sgt;
12922 case M_SGTU:
12923 s = "sltu";
12924 sgt:
c0ebe874 12925 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
8fc2e39e 12926 break;
252b5132 12927
c0ebe874 12928 case M_SGT_I: /* X > I <==> I < X */
252b5132
RH
12929 s = "slt";
12930 goto sgti;
12931 case M_SGTU_I:
12932 s = "sltu";
12933 sgti:
8fc2e39e 12934 used_at = 1;
bad1aba3 12935 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12936 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
252b5132
RH
12937 break;
12938
c0ebe874 12939 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
252b5132
RH
12940 s = "slt";
12941 goto sle;
12942 case M_SLEU:
12943 s = "sltu";
12944 sle:
c0ebe874
RS
12945 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12946 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12947 break;
252b5132 12948
c0ebe874 12949 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
252b5132
RH
12950 s = "slt";
12951 goto slei;
12952 case M_SLEU_I:
12953 s = "sltu";
12954 slei:
8fc2e39e 12955 used_at = 1;
bad1aba3 12956 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874
RS
12957 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12958 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
252b5132
RH
12959 break;
12960
12961 case M_SLT_I:
b0e6f033 12962 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
12963 && imm_expr.X_add_number < 0x8000)
12964 {
c0ebe874
RS
12965 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12966 BFD_RELOC_LO16);
8fc2e39e 12967 break;
252b5132 12968 }
8fc2e39e 12969 used_at = 1;
bad1aba3 12970 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12971 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
252b5132
RH
12972 break;
12973
12974 case M_SLTU_I:
b0e6f033 12975 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
12976 && imm_expr.X_add_number < 0x8000)
12977 {
c0ebe874 12978 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
17a2f251 12979 BFD_RELOC_LO16);
8fc2e39e 12980 break;
252b5132 12981 }
8fc2e39e 12982 used_at = 1;
bad1aba3 12983 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12984 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
252b5132
RH
12985 break;
12986
12987 case M_SNE:
c0ebe874
RS
12988 if (op[1] == 0)
12989 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12990 else if (op[2] == 0)
12991 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
252b5132
RH
12992 else
12993 {
c0ebe874
RS
12994 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12995 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
252b5132 12996 }
8fc2e39e 12997 break;
252b5132
RH
12998
12999 case M_SNE_I:
b0e6f033 13000 if (imm_expr.X_add_number == 0)
252b5132 13001 {
c0ebe874 13002 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
8fc2e39e 13003 break;
252b5132 13004 }
c0ebe874 13005 if (op[1] == 0)
252b5132 13006 {
1661c76c 13007 as_warn (_("instruction %s: result is always true"),
252b5132 13008 ip->insn_mo->name);
bad1aba3 13009 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
c0ebe874 13010 op[0], 0, BFD_RELOC_LO16);
8fc2e39e 13011 break;
252b5132 13012 }
dd3cbb7e
NC
13013 if (CPU_HAS_SEQ (mips_opts.arch)
13014 && -512 <= imm_expr.X_add_number
13015 && imm_expr.X_add_number < 512)
13016 {
c0ebe874 13017 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
750bdd57 13018 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13019 break;
13020 }
b0e6f033 13021 if (imm_expr.X_add_number >= 0
252b5132
RH
13022 && imm_expr.X_add_number < 0x10000)
13023 {
c0ebe874
RS
13024 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13025 BFD_RELOC_LO16);
252b5132 13026 }
b0e6f033 13027 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13028 && imm_expr.X_add_number < 0)
13029 {
13030 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13031 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13032 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13033 }
dd3cbb7e
NC
13034 else if (CPU_HAS_SEQ (mips_opts.arch))
13035 {
13036 used_at = 1;
bad1aba3 13037 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13038 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13039 break;
13040 }
252b5132
RH
13041 else
13042 {
bad1aba3 13043 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13044 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13045 used_at = 1;
13046 }
c0ebe874 13047 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
8fc2e39e 13048 break;
252b5132 13049
df58fc94
RS
13050 case M_SUB_I:
13051 s = "addi";
13052 s2 = "sub";
13053 goto do_subi;
13054 case M_SUBU_I:
13055 s = "addiu";
13056 s2 = "subu";
13057 goto do_subi;
252b5132
RH
13058 case M_DSUB_I:
13059 dbl = 1;
df58fc94
RS
13060 s = "daddi";
13061 s2 = "dsub";
13062 if (!mips_opts.micromips)
13063 goto do_subi;
b0e6f033 13064 if (imm_expr.X_add_number > -0x200
df58fc94 13065 && imm_expr.X_add_number <= 0x200)
252b5132 13066 {
b0e6f033
RS
13067 macro_build (NULL, s, "t,r,.", op[0], op[1],
13068 (int) -imm_expr.X_add_number);
8fc2e39e 13069 break;
252b5132 13070 }
df58fc94 13071 goto do_subi_i;
252b5132
RH
13072 case M_DSUBU_I:
13073 dbl = 1;
df58fc94
RS
13074 s = "daddiu";
13075 s2 = "dsubu";
13076 do_subi:
b0e6f033 13077 if (imm_expr.X_add_number > -0x8000
252b5132
RH
13078 && imm_expr.X_add_number <= 0x8000)
13079 {
13080 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13081 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13082 break;
252b5132 13083 }
df58fc94 13084 do_subi_i:
8fc2e39e 13085 used_at = 1;
67c0d1eb 13086 load_register (AT, &imm_expr, dbl);
c0ebe874 13087 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
13088 break;
13089
13090 case M_TEQ_I:
13091 s = "teq";
13092 goto trap;
13093 case M_TGE_I:
13094 s = "tge";
13095 goto trap;
13096 case M_TGEU_I:
13097 s = "tgeu";
13098 goto trap;
13099 case M_TLT_I:
13100 s = "tlt";
13101 goto trap;
13102 case M_TLTU_I:
13103 s = "tltu";
13104 goto trap;
13105 case M_TNE_I:
13106 s = "tne";
13107 trap:
8fc2e39e 13108 used_at = 1;
bad1aba3 13109 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13110 macro_build (NULL, s, "s,t", op[0], AT);
252b5132
RH
13111 break;
13112
252b5132 13113 case M_TRUNCWS:
43841e91 13114 case M_TRUNCWD:
df58fc94 13115 gas_assert (!mips_opts.micromips);
0aa27725 13116 gas_assert (mips_opts.isa == ISA_MIPS1);
8fc2e39e 13117 used_at = 1;
252b5132
RH
13118
13119 /*
13120 * Is the double cfc1 instruction a bug in the mips assembler;
13121 * or is there a reason for it?
13122 */
7d10b47d 13123 start_noreorder ();
c0ebe874
RS
13124 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13125 macro_build (NULL, "cfc1", "t,G", op[2], RA);
67c0d1eb 13126 macro_build (NULL, "nop", "");
252b5132 13127 expr1.X_add_number = 3;
c0ebe874 13128 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
252b5132 13129 expr1.X_add_number = 2;
67c0d1eb
RS
13130 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13131 macro_build (NULL, "ctc1", "t,G", AT, RA);
13132 macro_build (NULL, "nop", "");
13133 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
c0ebe874
RS
13134 op[0], op[1]);
13135 macro_build (NULL, "ctc1", "t,G", op[2], RA);
67c0d1eb 13136 macro_build (NULL, "nop", "");
7d10b47d 13137 end_noreorder ();
252b5132
RH
13138 break;
13139
f2ae14a1 13140 case M_ULH_AB:
252b5132 13141 s = "lb";
df58fc94
RS
13142 s2 = "lbu";
13143 off = 1;
13144 goto uld_st;
f2ae14a1 13145 case M_ULHU_AB:
252b5132 13146 s = "lbu";
df58fc94
RS
13147 s2 = "lbu";
13148 off = 1;
13149 goto uld_st;
f2ae14a1 13150 case M_ULW_AB:
df58fc94
RS
13151 s = "lwl";
13152 s2 = "lwr";
7f3c4072 13153 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13154 off = 3;
13155 goto uld_st;
f2ae14a1 13156 case M_ULD_AB:
252b5132
RH
13157 s = "ldl";
13158 s2 = "ldr";
7f3c4072 13159 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13160 off = 7;
df58fc94 13161 goto uld_st;
f2ae14a1 13162 case M_USH_AB:
df58fc94
RS
13163 s = "sb";
13164 s2 = "sb";
13165 off = 1;
13166 ust = 1;
13167 goto uld_st;
f2ae14a1 13168 case M_USW_AB:
df58fc94
RS
13169 s = "swl";
13170 s2 = "swr";
7f3c4072 13171 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13172 off = 3;
df58fc94
RS
13173 ust = 1;
13174 goto uld_st;
f2ae14a1 13175 case M_USD_AB:
df58fc94
RS
13176 s = "sdl";
13177 s2 = "sdr";
7f3c4072 13178 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13179 off = 7;
13180 ust = 1;
13181
13182 uld_st:
c0ebe874 13183 breg = op[2];
f2ae14a1 13184 large_offset = !small_offset_p (off, align, offbits);
df58fc94
RS
13185 ep = &offset_expr;
13186 expr1.X_add_number = 0;
f2ae14a1 13187 if (large_offset)
df58fc94
RS
13188 {
13189 used_at = 1;
13190 tempreg = AT;
f2ae14a1
RS
13191 if (small_offset_p (0, align, 16))
13192 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13193 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13194 else
13195 {
13196 load_address (tempreg, ep, &used_at);
13197 if (breg != 0)
13198 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13199 tempreg, tempreg, breg);
13200 }
13201 offset_reloc[0] = BFD_RELOC_LO16;
13202 offset_reloc[1] = BFD_RELOC_UNUSED;
13203 offset_reloc[2] = BFD_RELOC_UNUSED;
df58fc94 13204 breg = tempreg;
c0ebe874 13205 tempreg = op[0];
df58fc94
RS
13206 ep = &expr1;
13207 }
c0ebe874 13208 else if (!ust && op[0] == breg)
8fc2e39e
TS
13209 {
13210 used_at = 1;
13211 tempreg = AT;
13212 }
252b5132 13213 else
c0ebe874 13214 tempreg = op[0];
af22f5b2 13215
df58fc94
RS
13216 if (off == 1)
13217 goto ulh_sh;
252b5132 13218
90ecf173 13219 if (!target_big_endian)
df58fc94 13220 ep->X_add_number += off;
f2ae14a1 13221 if (offbits == 12)
c8276761 13222 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13223 else
13224 macro_build (ep, s, "t,o(b)", tempreg, -1,
13225 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94 13226
90ecf173 13227 if (!target_big_endian)
df58fc94 13228 ep->X_add_number -= off;
252b5132 13229 else
df58fc94 13230 ep->X_add_number += off;
f2ae14a1 13231 if (offbits == 12)
df58fc94 13232 macro_build (NULL, s2, "t,~(b)",
c8276761 13233 tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13234 else
13235 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13236 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13237
df58fc94 13238 /* If necessary, move the result in tempreg to the final destination. */
c0ebe874 13239 if (!ust && op[0] != tempreg)
df58fc94
RS
13240 {
13241 /* Protect second load's delay slot. */
13242 load_delay_nop ();
c0ebe874 13243 move_register (op[0], tempreg);
df58fc94 13244 }
8fc2e39e 13245 break;
252b5132 13246
df58fc94 13247 ulh_sh:
d6bc6245 13248 used_at = 1;
df58fc94
RS
13249 if (target_big_endian == ust)
13250 ep->X_add_number += off;
c0ebe874 13251 tempreg = ust || large_offset ? op[0] : AT;
f2ae14a1
RS
13252 macro_build (ep, s, "t,o(b)", tempreg, -1,
13253 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94
RS
13254
13255 /* For halfword transfers we need a temporary register to shuffle
13256 bytes. Unfortunately for M_USH_A we have none available before
13257 the next store as AT holds the base address. We deal with this
13258 case by clobbering TREG and then restoring it as with ULH. */
c0ebe874 13259 tempreg = ust == large_offset ? op[0] : AT;
df58fc94 13260 if (ust)
c0ebe874 13261 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
df58fc94
RS
13262
13263 if (target_big_endian == ust)
13264 ep->X_add_number -= off;
252b5132 13265 else
df58fc94 13266 ep->X_add_number += off;
f2ae14a1
RS
13267 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13268 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13269
df58fc94 13270 /* For M_USH_A re-retrieve the LSB. */
f2ae14a1 13271 if (ust && large_offset)
df58fc94
RS
13272 {
13273 if (target_big_endian)
13274 ep->X_add_number += off;
13275 else
13276 ep->X_add_number -= off;
f2ae14a1
RS
13277 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13278 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
df58fc94
RS
13279 }
13280 /* For ULH and M_USH_A OR the LSB in. */
f2ae14a1 13281 if (!ust || large_offset)
df58fc94 13282 {
c0ebe874 13283 tempreg = !large_offset ? AT : op[0];
df58fc94 13284 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
c0ebe874 13285 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
df58fc94 13286 }
252b5132
RH
13287 break;
13288
13289 default:
13290 /* FIXME: Check if this is one of the itbl macros, since they
bdaaa2e1 13291 are added dynamically. */
1661c76c 13292 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
252b5132
RH
13293 break;
13294 }
741fe287 13295 if (!mips_opts.at && used_at)
1661c76c 13296 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
13297}
13298
13299/* Implement macros in mips16 mode. */
13300
13301static void
17a2f251 13302mips16_macro (struct mips_cl_insn *ip)
252b5132 13303{
c0ebe874 13304 const struct mips_operand_array *operands;
252b5132 13305 int mask;
c0ebe874 13306 int tmp;
252b5132
RH
13307 expressionS expr1;
13308 int dbl;
13309 const char *s, *s2, *s3;
c0ebe874
RS
13310 unsigned int op[MAX_OPERANDS];
13311 unsigned int i;
252b5132
RH
13312
13313 mask = ip->insn_mo->mask;
13314
c0ebe874
RS
13315 operands = insn_operands (ip);
13316 for (i = 0; i < MAX_OPERANDS; i++)
13317 if (operands->operand[i])
13318 op[i] = insn_extract_operand (ip, operands->operand[i]);
13319 else
13320 op[i] = -1;
252b5132 13321
252b5132
RH
13322 expr1.X_op = O_constant;
13323 expr1.X_op_symbol = NULL;
13324 expr1.X_add_symbol = NULL;
13325 expr1.X_add_number = 1;
13326
13327 dbl = 0;
13328
13329 switch (mask)
13330 {
13331 default:
b37df7c4 13332 abort ();
252b5132
RH
13333
13334 case M_DDIV_3:
13335 dbl = 1;
13336 case M_DIV_3:
13337 s = "mflo";
13338 goto do_div3;
13339 case M_DREM_3:
13340 dbl = 1;
13341 case M_REM_3:
13342 s = "mfhi";
13343 do_div3:
7d10b47d 13344 start_noreorder ();
c0ebe874 13345 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
252b5132 13346 expr1.X_add_number = 2;
c0ebe874 13347 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13348 macro_build (NULL, "break", "6", 7);
bdaaa2e1 13349
252b5132
RH
13350 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13351 since that causes an overflow. We should do that as well,
13352 but I don't see how to do the comparisons without a temporary
13353 register. */
7d10b47d 13354 end_noreorder ();
c0ebe874 13355 macro_build (NULL, s, "x", op[0]);
252b5132
RH
13356 break;
13357
13358 case M_DIVU_3:
13359 s = "divu";
13360 s2 = "mflo";
13361 goto do_divu3;
13362 case M_REMU_3:
13363 s = "divu";
13364 s2 = "mfhi";
13365 goto do_divu3;
13366 case M_DDIVU_3:
13367 s = "ddivu";
13368 s2 = "mflo";
13369 goto do_divu3;
13370 case M_DREMU_3:
13371 s = "ddivu";
13372 s2 = "mfhi";
13373 do_divu3:
7d10b47d 13374 start_noreorder ();
c0ebe874 13375 macro_build (NULL, s, "0,x,y", op[1], op[2]);
252b5132 13376 expr1.X_add_number = 2;
c0ebe874 13377 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13378 macro_build (NULL, "break", "6", 7);
7d10b47d 13379 end_noreorder ();
c0ebe874 13380 macro_build (NULL, s2, "x", op[0]);
252b5132
RH
13381 break;
13382
13383 case M_DMUL:
13384 dbl = 1;
13385 case M_MUL:
c0ebe874
RS
13386 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13387 macro_build (NULL, "mflo", "x", op[0]);
8fc2e39e 13388 break;
252b5132
RH
13389
13390 case M_DSUBU_I:
13391 dbl = 1;
13392 goto do_subu;
13393 case M_SUBU_I:
13394 do_subu:
252b5132 13395 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13396 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
252b5132
RH
13397 break;
13398
13399 case M_SUBU_I_2:
252b5132 13400 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13401 macro_build (&imm_expr, "addiu", "x,k", op[0]);
252b5132
RH
13402 break;
13403
13404 case M_DSUBU_I_2:
252b5132 13405 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13406 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
252b5132
RH
13407 break;
13408
13409 case M_BEQ:
13410 s = "cmp";
13411 s2 = "bteqz";
13412 goto do_branch;
13413 case M_BNE:
13414 s = "cmp";
13415 s2 = "btnez";
13416 goto do_branch;
13417 case M_BLT:
13418 s = "slt";
13419 s2 = "btnez";
13420 goto do_branch;
13421 case M_BLTU:
13422 s = "sltu";
13423 s2 = "btnez";
13424 goto do_branch;
13425 case M_BLE:
13426 s = "slt";
13427 s2 = "bteqz";
13428 goto do_reverse_branch;
13429 case M_BLEU:
13430 s = "sltu";
13431 s2 = "bteqz";
13432 goto do_reverse_branch;
13433 case M_BGE:
13434 s = "slt";
13435 s2 = "bteqz";
13436 goto do_branch;
13437 case M_BGEU:
13438 s = "sltu";
13439 s2 = "bteqz";
13440 goto do_branch;
13441 case M_BGT:
13442 s = "slt";
13443 s2 = "btnez";
13444 goto do_reverse_branch;
13445 case M_BGTU:
13446 s = "sltu";
13447 s2 = "btnez";
13448
13449 do_reverse_branch:
c0ebe874
RS
13450 tmp = op[1];
13451 op[1] = op[0];
13452 op[0] = tmp;
252b5132
RH
13453
13454 do_branch:
c0ebe874 13455 macro_build (NULL, s, "x,y", op[0], op[1]);
67c0d1eb 13456 macro_build (&offset_expr, s2, "p");
252b5132
RH
13457 break;
13458
13459 case M_BEQ_I:
13460 s = "cmpi";
13461 s2 = "bteqz";
13462 s3 = "x,U";
13463 goto do_branch_i;
13464 case M_BNE_I:
13465 s = "cmpi";
13466 s2 = "btnez";
13467 s3 = "x,U";
13468 goto do_branch_i;
13469 case M_BLT_I:
13470 s = "slti";
13471 s2 = "btnez";
13472 s3 = "x,8";
13473 goto do_branch_i;
13474 case M_BLTU_I:
13475 s = "sltiu";
13476 s2 = "btnez";
13477 s3 = "x,8";
13478 goto do_branch_i;
13479 case M_BLE_I:
13480 s = "slti";
13481 s2 = "btnez";
13482 s3 = "x,8";
13483 goto do_addone_branch_i;
13484 case M_BLEU_I:
13485 s = "sltiu";
13486 s2 = "btnez";
13487 s3 = "x,8";
13488 goto do_addone_branch_i;
13489 case M_BGE_I:
13490 s = "slti";
13491 s2 = "bteqz";
13492 s3 = "x,8";
13493 goto do_branch_i;
13494 case M_BGEU_I:
13495 s = "sltiu";
13496 s2 = "bteqz";
13497 s3 = "x,8";
13498 goto do_branch_i;
13499 case M_BGT_I:
13500 s = "slti";
13501 s2 = "bteqz";
13502 s3 = "x,8";
13503 goto do_addone_branch_i;
13504 case M_BGTU_I:
13505 s = "sltiu";
13506 s2 = "bteqz";
13507 s3 = "x,8";
13508
13509 do_addone_branch_i:
252b5132
RH
13510 ++imm_expr.X_add_number;
13511
13512 do_branch_i:
c0ebe874 13513 macro_build (&imm_expr, s, s3, op[0]);
67c0d1eb 13514 macro_build (&offset_expr, s2, "p");
252b5132
RH
13515 break;
13516
13517 case M_ABS:
13518 expr1.X_add_number = 0;
c0ebe874
RS
13519 macro_build (&expr1, "slti", "x,8", op[1]);
13520 if (op[0] != op[1])
13521 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
252b5132 13522 expr1.X_add_number = 2;
67c0d1eb 13523 macro_build (&expr1, "bteqz", "p");
c0ebe874 13524 macro_build (NULL, "neg", "x,w", op[0], op[0]);
0acfaea6 13525 break;
252b5132
RH
13526 }
13527}
13528
14daeee3
RS
13529/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13530 opcode bits in *OPCODE_EXTRA. */
13531
13532static struct mips_opcode *
13533mips_lookup_insn (struct hash_control *hash, const char *start,
da8bca91 13534 ssize_t length, unsigned int *opcode_extra)
14daeee3
RS
13535{
13536 char *name, *dot, *p;
13537 unsigned int mask, suffix;
da8bca91 13538 ssize_t opend;
14daeee3
RS
13539 struct mips_opcode *insn;
13540
13541 /* Make a copy of the instruction so that we can fiddle with it. */
4ec9d7d5 13542 name = xstrndup (start, length);
14daeee3
RS
13543
13544 /* Look up the instruction as-is. */
13545 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13546 if (insn)
e1fa0163 13547 goto end;
14daeee3
RS
13548
13549 dot = strchr (name, '.');
13550 if (dot && dot[1])
13551 {
13552 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13553 p = mips_parse_vu0_channels (dot + 1, &mask);
13554 if (*p == 0 && mask != 0)
13555 {
13556 *dot = 0;
13557 insn = (struct mips_opcode *) hash_find (hash, name);
13558 *dot = '.';
13559 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13560 {
13561 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
e1fa0163 13562 goto end;
14daeee3
RS
13563 }
13564 }
13565 }
13566
13567 if (mips_opts.micromips)
13568 {
13569 /* See if there's an instruction size override suffix,
13570 either `16' or `32', at the end of the mnemonic proper,
13571 that defines the operation, i.e. before the first `.'
13572 character if any. Strip it and retry. */
13573 opend = dot != NULL ? dot - name : length;
13574 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13575 suffix = 2;
13576 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13577 suffix = 4;
13578 else
13579 suffix = 0;
13580 if (suffix)
13581 {
13582 memcpy (name + opend - 2, name + opend, length - opend + 1);
13583 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13584 if (insn)
14daeee3
RS
13585 {
13586 forced_insn_length = suffix;
e1fa0163 13587 goto end;
14daeee3
RS
13588 }
13589 }
13590 }
13591
e1fa0163
NC
13592 insn = NULL;
13593 end:
13594 free (name);
13595 return insn;
14daeee3
RS
13596}
13597
77bd4346 13598/* Assemble an instruction into its binary format. If the instruction
e423441d
RS
13599 is a macro, set imm_expr and offset_expr to the values associated
13600 with "I" and "A" operands respectively. Otherwise store the value
13601 of the relocatable field (if any) in offset_expr. In both cases
13602 set offset_reloc to the relocation operators applied to offset_expr. */
252b5132
RH
13603
13604static void
60f20e8b 13605mips_ip (char *str, struct mips_cl_insn *insn)
252b5132 13606{
60f20e8b 13607 const struct mips_opcode *first, *past;
df58fc94 13608 struct hash_control *hash;
a92713e6 13609 char format;
14daeee3 13610 size_t end;
a92713e6 13611 struct mips_operand_token *tokens;
14daeee3 13612 unsigned int opcode_extra;
252b5132 13613
df58fc94
RS
13614 if (mips_opts.micromips)
13615 {
13616 hash = micromips_op_hash;
13617 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13618 }
13619 else
13620 {
13621 hash = op_hash;
13622 past = &mips_opcodes[NUMOPCODES];
13623 }
13624 forced_insn_length = 0;
14daeee3 13625 opcode_extra = 0;
252b5132 13626
df58fc94 13627 /* We first try to match an instruction up to a space or to the end. */
a40bc9dd
RS
13628 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13629 continue;
bdaaa2e1 13630
60f20e8b
RS
13631 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13632 if (first == NULL)
252b5132 13633 {
1661c76c 13634 set_insn_error (0, _("unrecognized opcode"));
a40bc9dd 13635 return;
252b5132
RH
13636 }
13637
60f20e8b 13638 if (strcmp (first->name, "li.s") == 0)
a92713e6 13639 format = 'f';
60f20e8b 13640 else if (strcmp (first->name, "li.d") == 0)
a92713e6
RS
13641 format = 'd';
13642 else
13643 format = 0;
13644 tokens = mips_parse_arguments (str + end, format);
13645 if (!tokens)
13646 return;
13647
60f20e8b
RS
13648 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13649 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
1661c76c 13650 set_insn_error (0, _("invalid operands"));
df58fc94 13651
e3de51ce 13652 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13653}
13654
77bd4346
RS
13655/* As for mips_ip, but used when assembling MIPS16 code.
13656 Also set forced_insn_length to the resulting instruction size in
13657 bytes if the user explicitly requested a small or extended instruction. */
252b5132
RH
13658
13659static void
60f20e8b 13660mips16_ip (char *str, struct mips_cl_insn *insn)
252b5132 13661{
1a00e612 13662 char *end, *s, c;
60f20e8b 13663 struct mips_opcode *first;
a92713e6 13664 struct mips_operand_token *tokens;
252b5132 13665
df58fc94 13666 forced_insn_length = 0;
252b5132 13667
3882b010 13668 for (s = str; ISLOWER (*s); ++s)
252b5132 13669 ;
1a00e612
RS
13670 end = s;
13671 c = *end;
13672 switch (c)
252b5132
RH
13673 {
13674 case '\0':
13675 break;
13676
13677 case ' ':
1a00e612 13678 s++;
252b5132
RH
13679 break;
13680
13681 case '.':
13682 if (s[1] == 't' && s[2] == ' ')
13683 {
df58fc94 13684 forced_insn_length = 2;
252b5132
RH
13685 s += 3;
13686 break;
13687 }
13688 else if (s[1] == 'e' && s[2] == ' ')
13689 {
df58fc94 13690 forced_insn_length = 4;
252b5132
RH
13691 s += 3;
13692 break;
13693 }
13694 /* Fall through. */
13695 default:
1661c76c 13696 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13697 return;
13698 }
13699
df58fc94
RS
13700 if (mips_opts.noautoextend && !forced_insn_length)
13701 forced_insn_length = 2;
252b5132 13702
1a00e612 13703 *end = 0;
60f20e8b 13704 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
1a00e612
RS
13705 *end = c;
13706
60f20e8b 13707 if (!first)
252b5132 13708 {
1661c76c 13709 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13710 return;
13711 }
13712
a92713e6
RS
13713 tokens = mips_parse_arguments (s, 0);
13714 if (!tokens)
13715 return;
13716
60f20e8b 13717 if (!match_mips16_insns (insn, first, tokens))
1661c76c 13718 set_insn_error (0, _("invalid operands"));
252b5132 13719
e3de51ce 13720 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13721}
13722
b886a2ab
RS
13723/* Marshal immediate value VAL for an extended MIPS16 instruction.
13724 NBITS is the number of significant bits in VAL. */
13725
13726static unsigned long
13727mips16_immed_extend (offsetT val, unsigned int nbits)
13728{
13729 int extval;
13730 if (nbits == 16)
13731 {
13732 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13733 val &= 0x1f;
13734 }
13735 else if (nbits == 15)
13736 {
13737 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13738 val &= 0xf;
13739 }
13740 else
13741 {
13742 extval = ((val & 0x1f) << 6) | (val & 0x20);
13743 val = 0;
13744 }
13745 return (extval << 16) | val;
13746}
13747
3ccad066
RS
13748/* Like decode_mips16_operand, but require the operand to be defined and
13749 require it to be an integer. */
13750
13751static const struct mips_int_operand *
13752mips16_immed_operand (int type, bfd_boolean extended_p)
13753{
13754 const struct mips_operand *operand;
13755
13756 operand = decode_mips16_operand (type, extended_p);
13757 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13758 abort ();
13759 return (const struct mips_int_operand *) operand;
13760}
13761
13762/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13763
13764static bfd_boolean
13765mips16_immed_in_range_p (const struct mips_int_operand *operand,
13766 bfd_reloc_code_real_type reloc, offsetT sval)
13767{
13768 int min_val, max_val;
13769
13770 min_val = mips_int_operand_min (operand);
13771 max_val = mips_int_operand_max (operand);
13772 if (reloc != BFD_RELOC_UNUSED)
13773 {
13774 if (min_val < 0)
13775 sval = SEXT_16BIT (sval);
13776 else
13777 sval &= 0xffff;
13778 }
13779
13780 return (sval >= min_val
13781 && sval <= max_val
13782 && (sval & ((1 << operand->shift) - 1)) == 0);
13783}
13784
5c04167a
RS
13785/* Install immediate value VAL into MIPS16 instruction *INSN,
13786 extending it if necessary. The instruction in *INSN may
13787 already be extended.
13788
43c0598f
RS
13789 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13790 if none. In the former case, VAL is a 16-bit number with no
13791 defined signedness.
13792
13793 TYPE is the type of the immediate field. USER_INSN_LENGTH
13794 is the length that the user requested, or 0 if none. */
252b5132
RH
13795
13796static void
3b4dbbbf 13797mips16_immed (const char *file, unsigned int line, int type,
43c0598f 13798 bfd_reloc_code_real_type reloc, offsetT val,
5c04167a 13799 unsigned int user_insn_length, unsigned long *insn)
252b5132 13800{
3ccad066
RS
13801 const struct mips_int_operand *operand;
13802 unsigned int uval, length;
252b5132 13803
3ccad066
RS
13804 operand = mips16_immed_operand (type, FALSE);
13805 if (!mips16_immed_in_range_p (operand, reloc, val))
5c04167a
RS
13806 {
13807 /* We need an extended instruction. */
13808 if (user_insn_length == 2)
13809 as_bad_where (file, line, _("invalid unextended operand value"));
13810 else
13811 *insn |= MIPS16_EXTEND;
13812 }
13813 else if (user_insn_length == 4)
13814 {
13815 /* The operand doesn't force an unextended instruction to be extended.
13816 Warn if the user wanted an extended instruction anyway. */
13817 *insn |= MIPS16_EXTEND;
13818 as_warn_where (file, line,
13819 _("extended operand requested but not required"));
13820 }
252b5132 13821
3ccad066
RS
13822 length = mips16_opcode_length (*insn);
13823 if (length == 4)
252b5132 13824 {
3ccad066
RS
13825 operand = mips16_immed_operand (type, TRUE);
13826 if (!mips16_immed_in_range_p (operand, reloc, val))
13827 as_bad_where (file, line,
13828 _("operand value out of range for instruction"));
252b5132 13829 }
3ccad066
RS
13830 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13831 if (length == 2)
13832 *insn = mips_insert_operand (&operand->root, *insn, uval);
252b5132 13833 else
3ccad066 13834 *insn |= mips16_immed_extend (uval, operand->root.size);
252b5132
RH
13835}
13836\f
d6f16593 13837struct percent_op_match
ad8d3bb3 13838{
5e0116d5
RS
13839 const char *str;
13840 bfd_reloc_code_real_type reloc;
d6f16593
MR
13841};
13842
13843static const struct percent_op_match mips_percent_op[] =
ad8d3bb3 13844{
5e0116d5 13845 {"%lo", BFD_RELOC_LO16},
5e0116d5
RS
13846 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13847 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13848 {"%call16", BFD_RELOC_MIPS_CALL16},
13849 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13850 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13851 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13852 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13853 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13854 {"%got", BFD_RELOC_MIPS_GOT16},
13855 {"%gp_rel", BFD_RELOC_GPREL16},
13856 {"%half", BFD_RELOC_16},
13857 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13858 {"%higher", BFD_RELOC_MIPS_HIGHER},
13859 {"%neg", BFD_RELOC_MIPS_SUB},
3f98094e
DJ
13860 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13861 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13862 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13863 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13864 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13865 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13866 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
7361da2c
AB
13867 {"%hi", BFD_RELOC_HI16_S},
13868 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13869 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
ad8d3bb3
TS
13870};
13871
d6f16593
MR
13872static const struct percent_op_match mips16_percent_op[] =
13873{
13874 {"%lo", BFD_RELOC_MIPS16_LO16},
13875 {"%gprel", BFD_RELOC_MIPS16_GPREL},
738e5348
RS
13876 {"%got", BFD_RELOC_MIPS16_GOT16},
13877 {"%call16", BFD_RELOC_MIPS16_CALL16},
d0f13682
CLT
13878 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13879 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13880 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13881 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13882 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13883 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13884 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13885 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
d6f16593
MR
13886};
13887
252b5132 13888
5e0116d5
RS
13889/* Return true if *STR points to a relocation operator. When returning true,
13890 move *STR over the operator and store its relocation code in *RELOC.
13891 Leave both *STR and *RELOC alone when returning false. */
13892
13893static bfd_boolean
17a2f251 13894parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
252b5132 13895{
d6f16593
MR
13896 const struct percent_op_match *percent_op;
13897 size_t limit, i;
13898
13899 if (mips_opts.mips16)
13900 {
13901 percent_op = mips16_percent_op;
13902 limit = ARRAY_SIZE (mips16_percent_op);
13903 }
13904 else
13905 {
13906 percent_op = mips_percent_op;
13907 limit = ARRAY_SIZE (mips_percent_op);
13908 }
76b3015f 13909
d6f16593 13910 for (i = 0; i < limit; i++)
5e0116d5 13911 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
394f9b3a 13912 {
3f98094e
DJ
13913 int len = strlen (percent_op[i].str);
13914
13915 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13916 continue;
13917
5e0116d5
RS
13918 *str += strlen (percent_op[i].str);
13919 *reloc = percent_op[i].reloc;
394f9b3a 13920
5e0116d5
RS
13921 /* Check whether the output BFD supports this relocation.
13922 If not, issue an error and fall back on something safe. */
13923 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
394f9b3a 13924 {
20203fb9 13925 as_bad (_("relocation %s isn't supported by the current ABI"),
5e0116d5 13926 percent_op[i].str);
01a3f561 13927 *reloc = BFD_RELOC_UNUSED;
394f9b3a 13928 }
5e0116d5 13929 return TRUE;
394f9b3a 13930 }
5e0116d5 13931 return FALSE;
394f9b3a 13932}
ad8d3bb3 13933
ad8d3bb3 13934
5e0116d5
RS
13935/* Parse string STR as a 16-bit relocatable operand. Store the
13936 expression in *EP and the relocations in the array starting
13937 at RELOC. Return the number of relocation operators used.
ad8d3bb3 13938
01a3f561 13939 On exit, EXPR_END points to the first character after the expression. */
ad8d3bb3 13940
5e0116d5 13941static size_t
17a2f251
TS
13942my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13943 char *str)
ad8d3bb3 13944{
5e0116d5
RS
13945 bfd_reloc_code_real_type reversed_reloc[3];
13946 size_t reloc_index, i;
09b8f35a
RS
13947 int crux_depth, str_depth;
13948 char *crux;
5e0116d5
RS
13949
13950 /* Search for the start of the main expression, recoding relocations
09b8f35a
RS
13951 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13952 of the main expression and with CRUX_DEPTH containing the number
13953 of open brackets at that point. */
13954 reloc_index = -1;
13955 str_depth = 0;
13956 do
fb1b3232 13957 {
09b8f35a
RS
13958 reloc_index++;
13959 crux = str;
13960 crux_depth = str_depth;
13961
13962 /* Skip over whitespace and brackets, keeping count of the number
13963 of brackets. */
13964 while (*str == ' ' || *str == '\t' || *str == '(')
13965 if (*str++ == '(')
13966 str_depth++;
5e0116d5 13967 }
09b8f35a
RS
13968 while (*str == '%'
13969 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13970 && parse_relocation (&str, &reversed_reloc[reloc_index]));
ad8d3bb3 13971
09b8f35a 13972 my_getExpression (ep, crux);
5e0116d5 13973 str = expr_end;
394f9b3a 13974
5e0116d5 13975 /* Match every open bracket. */
09b8f35a 13976 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
5e0116d5 13977 if (*str++ == ')')
09b8f35a 13978 crux_depth--;
394f9b3a 13979
09b8f35a 13980 if (crux_depth > 0)
20203fb9 13981 as_bad (_("unclosed '('"));
394f9b3a 13982
5e0116d5 13983 expr_end = str;
252b5132 13984
01a3f561 13985 if (reloc_index != 0)
64bdfcaf
RS
13986 {
13987 prev_reloc_op_frag = frag_now;
13988 for (i = 0; i < reloc_index; i++)
13989 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13990 }
fb1b3232 13991
5e0116d5 13992 return reloc_index;
252b5132
RH
13993}
13994
13995static void
17a2f251 13996my_getExpression (expressionS *ep, char *str)
252b5132
RH
13997{
13998 char *save_in;
13999
14000 save_in = input_line_pointer;
14001 input_line_pointer = str;
14002 expression (ep);
14003 expr_end = input_line_pointer;
14004 input_line_pointer = save_in;
252b5132
RH
14005}
14006
6d4af3c2 14007const char *
17a2f251 14008md_atof (int type, char *litP, int *sizeP)
252b5132 14009{
499ac353 14010 return ieee_md_atof (type, litP, sizeP, target_big_endian);
252b5132
RH
14011}
14012
14013void
17a2f251 14014md_number_to_chars (char *buf, valueT val, int n)
252b5132
RH
14015{
14016 if (target_big_endian)
14017 number_to_chars_bigendian (buf, val, n);
14018 else
14019 number_to_chars_littleendian (buf, val, n);
14020}
14021\f
e013f690
TS
14022static int support_64bit_objects(void)
14023{
14024 const char **list, **l;
aa3d8fdf 14025 int yes;
e013f690
TS
14026
14027 list = bfd_target_list ();
14028 for (l = list; *l != NULL; l++)
aeffff67
RS
14029 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14030 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
e013f690 14031 break;
aa3d8fdf 14032 yes = (*l != NULL);
e013f690 14033 free (list);
aa3d8fdf 14034 return yes;
e013f690
TS
14035}
14036
316f5878
RS
14037/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14038 NEW_VALUE. Warn if another value was already specified. Note:
14039 we have to defer parsing the -march and -mtune arguments in order
14040 to handle 'from-abi' correctly, since the ABI might be specified
14041 in a later argument. */
14042
14043static void
17a2f251 14044mips_set_option_string (const char **string_ptr, const char *new_value)
316f5878
RS
14045{
14046 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
1661c76c 14047 as_warn (_("a different %s was already specified, is now %s"),
316f5878
RS
14048 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14049 new_value);
14050
14051 *string_ptr = new_value;
14052}
14053
252b5132 14054int
17b9d67d 14055md_parse_option (int c, const char *arg)
252b5132 14056{
c6278170
RS
14057 unsigned int i;
14058
14059 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14060 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14061 {
919731af 14062 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c6278170
RS
14063 c == mips_ases[i].option_on);
14064 return 1;
14065 }
14066
252b5132
RH
14067 switch (c)
14068 {
119d663a
NC
14069 case OPTION_CONSTRUCT_FLOATS:
14070 mips_disable_float_construction = 0;
14071 break;
bdaaa2e1 14072
119d663a
NC
14073 case OPTION_NO_CONSTRUCT_FLOATS:
14074 mips_disable_float_construction = 1;
14075 break;
bdaaa2e1 14076
252b5132
RH
14077 case OPTION_TRAP:
14078 mips_trap = 1;
14079 break;
14080
14081 case OPTION_BREAK:
14082 mips_trap = 0;
14083 break;
14084
14085 case OPTION_EB:
14086 target_big_endian = 1;
14087 break;
14088
14089 case OPTION_EL:
14090 target_big_endian = 0;
14091 break;
14092
14093 case 'O':
4ffff32f
TS
14094 if (arg == NULL)
14095 mips_optimize = 1;
14096 else if (arg[0] == '0')
14097 mips_optimize = 0;
14098 else if (arg[0] == '1')
252b5132
RH
14099 mips_optimize = 1;
14100 else
14101 mips_optimize = 2;
14102 break;
14103
14104 case 'g':
14105 if (arg == NULL)
14106 mips_debug = 2;
14107 else
14108 mips_debug = atoi (arg);
252b5132
RH
14109 break;
14110
14111 case OPTION_MIPS1:
0b35dfee 14112 file_mips_opts.isa = ISA_MIPS1;
252b5132
RH
14113 break;
14114
14115 case OPTION_MIPS2:
0b35dfee 14116 file_mips_opts.isa = ISA_MIPS2;
252b5132
RH
14117 break;
14118
14119 case OPTION_MIPS3:
0b35dfee 14120 file_mips_opts.isa = ISA_MIPS3;
252b5132
RH
14121 break;
14122
14123 case OPTION_MIPS4:
0b35dfee 14124 file_mips_opts.isa = ISA_MIPS4;
e7af610e
NC
14125 break;
14126
84ea6cf2 14127 case OPTION_MIPS5:
0b35dfee 14128 file_mips_opts.isa = ISA_MIPS5;
84ea6cf2
NC
14129 break;
14130
e7af610e 14131 case OPTION_MIPS32:
0b35dfee 14132 file_mips_opts.isa = ISA_MIPS32;
252b5132
RH
14133 break;
14134
af7ee8bf 14135 case OPTION_MIPS32R2:
0b35dfee 14136 file_mips_opts.isa = ISA_MIPS32R2;
af7ee8bf
CD
14137 break;
14138
ae52f483 14139 case OPTION_MIPS32R3:
0ae19f05 14140 file_mips_opts.isa = ISA_MIPS32R3;
ae52f483
AB
14141 break;
14142
14143 case OPTION_MIPS32R5:
0ae19f05 14144 file_mips_opts.isa = ISA_MIPS32R5;
ae52f483
AB
14145 break;
14146
7361da2c
AB
14147 case OPTION_MIPS32R6:
14148 file_mips_opts.isa = ISA_MIPS32R6;
14149 break;
14150
5f74bc13 14151 case OPTION_MIPS64R2:
0b35dfee 14152 file_mips_opts.isa = ISA_MIPS64R2;
5f74bc13
CD
14153 break;
14154
ae52f483 14155 case OPTION_MIPS64R3:
0ae19f05 14156 file_mips_opts.isa = ISA_MIPS64R3;
ae52f483
AB
14157 break;
14158
14159 case OPTION_MIPS64R5:
0ae19f05 14160 file_mips_opts.isa = ISA_MIPS64R5;
ae52f483
AB
14161 break;
14162
7361da2c
AB
14163 case OPTION_MIPS64R6:
14164 file_mips_opts.isa = ISA_MIPS64R6;
14165 break;
14166
84ea6cf2 14167 case OPTION_MIPS64:
0b35dfee 14168 file_mips_opts.isa = ISA_MIPS64;
84ea6cf2
NC
14169 break;
14170
ec68c924 14171 case OPTION_MTUNE:
316f5878
RS
14172 mips_set_option_string (&mips_tune_string, arg);
14173 break;
ec68c924 14174
316f5878
RS
14175 case OPTION_MARCH:
14176 mips_set_option_string (&mips_arch_string, arg);
252b5132
RH
14177 break;
14178
14179 case OPTION_M4650:
316f5878
RS
14180 mips_set_option_string (&mips_arch_string, "4650");
14181 mips_set_option_string (&mips_tune_string, "4650");
252b5132
RH
14182 break;
14183
14184 case OPTION_NO_M4650:
14185 break;
14186
14187 case OPTION_M4010:
316f5878
RS
14188 mips_set_option_string (&mips_arch_string, "4010");
14189 mips_set_option_string (&mips_tune_string, "4010");
252b5132
RH
14190 break;
14191
14192 case OPTION_NO_M4010:
14193 break;
14194
14195 case OPTION_M4100:
316f5878
RS
14196 mips_set_option_string (&mips_arch_string, "4100");
14197 mips_set_option_string (&mips_tune_string, "4100");
252b5132
RH
14198 break;
14199
14200 case OPTION_NO_M4100:
14201 break;
14202
252b5132 14203 case OPTION_M3900:
316f5878
RS
14204 mips_set_option_string (&mips_arch_string, "3900");
14205 mips_set_option_string (&mips_tune_string, "3900");
252b5132 14206 break;
bdaaa2e1 14207
252b5132
RH
14208 case OPTION_NO_M3900:
14209 break;
14210
df58fc94 14211 case OPTION_MICROMIPS:
919731af 14212 if (file_mips_opts.mips16 == 1)
df58fc94
RS
14213 {
14214 as_bad (_("-mmicromips cannot be used with -mips16"));
14215 return 0;
14216 }
919731af 14217 file_mips_opts.micromips = 1;
df58fc94
RS
14218 mips_no_prev_insn ();
14219 break;
14220
14221 case OPTION_NO_MICROMIPS:
919731af 14222 file_mips_opts.micromips = 0;
df58fc94
RS
14223 mips_no_prev_insn ();
14224 break;
14225
252b5132 14226 case OPTION_MIPS16:
919731af 14227 if (file_mips_opts.micromips == 1)
df58fc94
RS
14228 {
14229 as_bad (_("-mips16 cannot be used with -micromips"));
14230 return 0;
14231 }
919731af 14232 file_mips_opts.mips16 = 1;
7d10b47d 14233 mips_no_prev_insn ();
252b5132
RH
14234 break;
14235
14236 case OPTION_NO_MIPS16:
919731af 14237 file_mips_opts.mips16 = 0;
7d10b47d 14238 mips_no_prev_insn ();
252b5132
RH
14239 break;
14240
6a32d874
CM
14241 case OPTION_FIX_24K:
14242 mips_fix_24k = 1;
14243 break;
14244
14245 case OPTION_NO_FIX_24K:
14246 mips_fix_24k = 0;
14247 break;
14248
a8d14a88
CM
14249 case OPTION_FIX_RM7000:
14250 mips_fix_rm7000 = 1;
14251 break;
14252
14253 case OPTION_NO_FIX_RM7000:
14254 mips_fix_rm7000 = 0;
14255 break;
14256
c67a084a
NC
14257 case OPTION_FIX_LOONGSON2F_JUMP:
14258 mips_fix_loongson2f_jump = TRUE;
14259 break;
14260
14261 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14262 mips_fix_loongson2f_jump = FALSE;
14263 break;
14264
14265 case OPTION_FIX_LOONGSON2F_NOP:
14266 mips_fix_loongson2f_nop = TRUE;
14267 break;
14268
14269 case OPTION_NO_FIX_LOONGSON2F_NOP:
14270 mips_fix_loongson2f_nop = FALSE;
14271 break;
14272
d766e8ec
RS
14273 case OPTION_FIX_VR4120:
14274 mips_fix_vr4120 = 1;
60b63b72
RS
14275 break;
14276
d766e8ec
RS
14277 case OPTION_NO_FIX_VR4120:
14278 mips_fix_vr4120 = 0;
60b63b72
RS
14279 break;
14280
7d8e00cf
RS
14281 case OPTION_FIX_VR4130:
14282 mips_fix_vr4130 = 1;
14283 break;
14284
14285 case OPTION_NO_FIX_VR4130:
14286 mips_fix_vr4130 = 0;
14287 break;
14288
d954098f
DD
14289 case OPTION_FIX_CN63XXP1:
14290 mips_fix_cn63xxp1 = TRUE;
14291 break;
14292
14293 case OPTION_NO_FIX_CN63XXP1:
14294 mips_fix_cn63xxp1 = FALSE;
14295 break;
14296
4a6a3df4
AO
14297 case OPTION_RELAX_BRANCH:
14298 mips_relax_branch = 1;
14299 break;
14300
14301 case OPTION_NO_RELAX_BRANCH:
14302 mips_relax_branch = 0;
14303 break;
14304
833794fc 14305 case OPTION_INSN32:
919731af 14306 file_mips_opts.insn32 = TRUE;
833794fc
MR
14307 break;
14308
14309 case OPTION_NO_INSN32:
919731af 14310 file_mips_opts.insn32 = FALSE;
833794fc
MR
14311 break;
14312
aa6975fb
ILT
14313 case OPTION_MSHARED:
14314 mips_in_shared = TRUE;
14315 break;
14316
14317 case OPTION_MNO_SHARED:
14318 mips_in_shared = FALSE;
14319 break;
14320
aed1a261 14321 case OPTION_MSYM32:
919731af 14322 file_mips_opts.sym32 = TRUE;
aed1a261
RS
14323 break;
14324
14325 case OPTION_MNO_SYM32:
919731af 14326 file_mips_opts.sym32 = FALSE;
aed1a261
RS
14327 break;
14328
252b5132
RH
14329 /* When generating ELF code, we permit -KPIC and -call_shared to
14330 select SVR4_PIC, and -non_shared to select no PIC. This is
14331 intended to be compatible with Irix 5. */
14332 case OPTION_CALL_SHARED:
252b5132 14333 mips_pic = SVR4_PIC;
143d77c5 14334 mips_abicalls = TRUE;
252b5132
RH
14335 break;
14336
861fb55a 14337 case OPTION_CALL_NONPIC:
861fb55a
DJ
14338 mips_pic = NO_PIC;
14339 mips_abicalls = TRUE;
14340 break;
14341
252b5132 14342 case OPTION_NON_SHARED:
252b5132 14343 mips_pic = NO_PIC;
143d77c5 14344 mips_abicalls = FALSE;
252b5132
RH
14345 break;
14346
44075ae2
TS
14347 /* The -xgot option tells the assembler to use 32 bit offsets
14348 when accessing the got in SVR4_PIC mode. It is for Irix
252b5132
RH
14349 compatibility. */
14350 case OPTION_XGOT:
14351 mips_big_got = 1;
14352 break;
14353
14354 case 'G':
6caf9ef4
TS
14355 g_switch_value = atoi (arg);
14356 g_switch_seen = 1;
252b5132
RH
14357 break;
14358
34ba82a8
TS
14359 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14360 and -mabi=64. */
252b5132 14361 case OPTION_32:
f3ded42a 14362 mips_abi = O32_ABI;
252b5132
RH
14363 break;
14364
e013f690 14365 case OPTION_N32:
316f5878 14366 mips_abi = N32_ABI;
e013f690 14367 break;
252b5132 14368
e013f690 14369 case OPTION_64:
316f5878 14370 mips_abi = N64_ABI;
f43abd2b 14371 if (!support_64bit_objects())
1661c76c 14372 as_fatal (_("no compiled in support for 64 bit object file format"));
252b5132
RH
14373 break;
14374
c97ef257 14375 case OPTION_GP32:
bad1aba3 14376 file_mips_opts.gp = 32;
c97ef257
AH
14377 break;
14378
14379 case OPTION_GP64:
bad1aba3 14380 file_mips_opts.gp = 64;
c97ef257 14381 break;
252b5132 14382
ca4e0257 14383 case OPTION_FP32:
0b35dfee 14384 file_mips_opts.fp = 32;
316f5878
RS
14385 break;
14386
351cdf24
MF
14387 case OPTION_FPXX:
14388 file_mips_opts.fp = 0;
14389 break;
14390
316f5878 14391 case OPTION_FP64:
0b35dfee 14392 file_mips_opts.fp = 64;
ca4e0257
RS
14393 break;
14394
351cdf24
MF
14395 case OPTION_ODD_SPREG:
14396 file_mips_opts.oddspreg = 1;
14397 break;
14398
14399 case OPTION_NO_ODD_SPREG:
14400 file_mips_opts.oddspreg = 0;
14401 break;
14402
037b32b9 14403 case OPTION_SINGLE_FLOAT:
0b35dfee 14404 file_mips_opts.single_float = 1;
037b32b9
AN
14405 break;
14406
14407 case OPTION_DOUBLE_FLOAT:
0b35dfee 14408 file_mips_opts.single_float = 0;
037b32b9
AN
14409 break;
14410
14411 case OPTION_SOFT_FLOAT:
0b35dfee 14412 file_mips_opts.soft_float = 1;
037b32b9
AN
14413 break;
14414
14415 case OPTION_HARD_FLOAT:
0b35dfee 14416 file_mips_opts.soft_float = 0;
037b32b9
AN
14417 break;
14418
252b5132 14419 case OPTION_MABI:
e013f690 14420 if (strcmp (arg, "32") == 0)
316f5878 14421 mips_abi = O32_ABI;
e013f690 14422 else if (strcmp (arg, "o64") == 0)
316f5878 14423 mips_abi = O64_ABI;
e013f690 14424 else if (strcmp (arg, "n32") == 0)
316f5878 14425 mips_abi = N32_ABI;
e013f690
TS
14426 else if (strcmp (arg, "64") == 0)
14427 {
316f5878 14428 mips_abi = N64_ABI;
e013f690 14429 if (! support_64bit_objects())
1661c76c 14430 as_fatal (_("no compiled in support for 64 bit object file "
e013f690
TS
14431 "format"));
14432 }
14433 else if (strcmp (arg, "eabi") == 0)
316f5878 14434 mips_abi = EABI_ABI;
e013f690 14435 else
da0e507f
TS
14436 {
14437 as_fatal (_("invalid abi -mabi=%s"), arg);
14438 return 0;
14439 }
252b5132
RH
14440 break;
14441
6b76fefe 14442 case OPTION_M7000_HILO_FIX:
b34976b6 14443 mips_7000_hilo_fix = TRUE;
6b76fefe
CM
14444 break;
14445
9ee72ff1 14446 case OPTION_MNO_7000_HILO_FIX:
b34976b6 14447 mips_7000_hilo_fix = FALSE;
6b76fefe
CM
14448 break;
14449
ecb4347a 14450 case OPTION_MDEBUG:
b34976b6 14451 mips_flag_mdebug = TRUE;
ecb4347a
DJ
14452 break;
14453
14454 case OPTION_NO_MDEBUG:
b34976b6 14455 mips_flag_mdebug = FALSE;
ecb4347a 14456 break;
dcd410fe
RO
14457
14458 case OPTION_PDR:
14459 mips_flag_pdr = TRUE;
14460 break;
14461
14462 case OPTION_NO_PDR:
14463 mips_flag_pdr = FALSE;
14464 break;
0a44bf69
RS
14465
14466 case OPTION_MVXWORKS_PIC:
14467 mips_pic = VXWORKS_PIC;
14468 break;
ecb4347a 14469
ba92f887
MR
14470 case OPTION_NAN:
14471 if (strcmp (arg, "2008") == 0)
7361da2c 14472 mips_nan2008 = 1;
ba92f887 14473 else if (strcmp (arg, "legacy") == 0)
7361da2c 14474 mips_nan2008 = 0;
ba92f887
MR
14475 else
14476 {
1661c76c 14477 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
ba92f887
MR
14478 return 0;
14479 }
14480 break;
14481
252b5132
RH
14482 default:
14483 return 0;
14484 }
14485
c67a084a
NC
14486 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14487
252b5132
RH
14488 return 1;
14489}
316f5878 14490\f
919731af 14491/* Set up globals to tune for the ISA or processor described by INFO. */
252b5132 14492
316f5878 14493static void
17a2f251 14494mips_set_tune (const struct mips_cpu_info *info)
316f5878
RS
14495{
14496 if (info != 0)
fef14a42 14497 mips_tune = info->cpu;
316f5878 14498}
80cc45a5 14499
34ba82a8 14500
252b5132 14501void
17a2f251 14502mips_after_parse_args (void)
e9670677 14503{
fef14a42
TS
14504 const struct mips_cpu_info *arch_info = 0;
14505 const struct mips_cpu_info *tune_info = 0;
14506
e9670677 14507 /* GP relative stuff not working for PE */
6caf9ef4 14508 if (strncmp (TARGET_OS, "pe", 2) == 0)
e9670677 14509 {
6caf9ef4 14510 if (g_switch_seen && g_switch_value != 0)
1661c76c 14511 as_bad (_("-G not supported in this configuration"));
e9670677
MR
14512 g_switch_value = 0;
14513 }
14514
cac012d6
AO
14515 if (mips_abi == NO_ABI)
14516 mips_abi = MIPS_DEFAULT_ABI;
14517
919731af 14518 /* The following code determines the architecture.
22923709
RS
14519 Similar code was added to GCC 3.3 (see override_options() in
14520 config/mips/mips.c). The GAS and GCC code should be kept in sync
14521 as much as possible. */
e9670677 14522
316f5878 14523 if (mips_arch_string != 0)
fef14a42 14524 arch_info = mips_parse_cpu ("-march", mips_arch_string);
e9670677 14525
0b35dfee 14526 if (file_mips_opts.isa != ISA_UNKNOWN)
e9670677 14527 {
0b35dfee 14528 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
fef14a42 14529 ISA level specified by -mipsN, while arch_info->isa contains
316f5878 14530 the -march selection (if any). */
fef14a42 14531 if (arch_info != 0)
e9670677 14532 {
316f5878
RS
14533 /* -march takes precedence over -mipsN, since it is more descriptive.
14534 There's no harm in specifying both as long as the ISA levels
14535 are the same. */
0b35dfee 14536 if (file_mips_opts.isa != arch_info->isa)
1661c76c
RS
14537 as_bad (_("-%s conflicts with the other architecture options,"
14538 " which imply -%s"),
0b35dfee 14539 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
fef14a42 14540 mips_cpu_info_from_isa (arch_info->isa)->name);
e9670677 14541 }
316f5878 14542 else
0b35dfee 14543 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
e9670677
MR
14544 }
14545
fef14a42 14546 if (arch_info == 0)
95bfe26e
MF
14547 {
14548 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14549 gas_assert (arch_info);
14550 }
e9670677 14551
fef14a42 14552 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
20203fb9 14553 as_bad (_("-march=%s is not compatible with the selected ABI"),
fef14a42
TS
14554 arch_info->name);
14555
919731af 14556 file_mips_opts.arch = arch_info->cpu;
14557 file_mips_opts.isa = arch_info->isa;
14558
14559 /* Set up initial mips_opts state. */
14560 mips_opts = file_mips_opts;
14561
14562 /* The register size inference code is now placed in
14563 file_mips_check_options. */
fef14a42 14564
0b35dfee 14565 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14566 processor. */
fef14a42
TS
14567 if (mips_tune_string != 0)
14568 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
e9670677 14569
fef14a42
TS
14570 if (tune_info == 0)
14571 mips_set_tune (arch_info);
14572 else
14573 mips_set_tune (tune_info);
e9670677 14574
ecb4347a 14575 if (mips_flag_mdebug < 0)
e8044f35 14576 mips_flag_mdebug = 0;
e9670677
MR
14577}
14578\f
14579void
17a2f251 14580mips_init_after_args (void)
252b5132
RH
14581{
14582 /* initialize opcodes */
14583 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
beae10d5 14584 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
252b5132
RH
14585}
14586
14587long
17a2f251 14588md_pcrel_from (fixS *fixP)
252b5132 14589{
a7ebbfdf
TS
14590 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14591 switch (fixP->fx_r_type)
14592 {
df58fc94
RS
14593 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14594 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14595 /* Return the address of the delay slot. */
14596 return addr + 2;
14597
14598 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14599 case BFD_RELOC_MICROMIPS_JMP:
a7ebbfdf 14600 case BFD_RELOC_16_PCREL_S2:
7361da2c
AB
14601 case BFD_RELOC_MIPS_21_PCREL_S2:
14602 case BFD_RELOC_MIPS_26_PCREL_S2:
a7ebbfdf
TS
14603 case BFD_RELOC_MIPS_JMP:
14604 /* Return the address of the delay slot. */
14605 return addr + 4;
df58fc94 14606
a7ebbfdf
TS
14607 default:
14608 return addr;
14609 }
252b5132
RH
14610}
14611
252b5132
RH
14612/* This is called before the symbol table is processed. In order to
14613 work with gcc when using mips-tfile, we must keep all local labels.
14614 However, in other cases, we want to discard them. If we were
14615 called with -g, but we didn't see any debugging information, it may
14616 mean that gcc is smuggling debugging information through to
14617 mips-tfile, in which case we must generate all local labels. */
14618
14619void
17a2f251 14620mips_frob_file_before_adjust (void)
252b5132
RH
14621{
14622#ifndef NO_ECOFF_DEBUGGING
14623 if (ECOFF_DEBUGGING
14624 && mips_debug != 0
14625 && ! ecoff_debugging_seen)
14626 flag_keep_locals = 1;
14627#endif
14628}
14629
3b91255e 14630/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
55cf6793 14631 the corresponding LO16 reloc. This is called before md_apply_fix and
3b91255e
RS
14632 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14633 relocation operators.
14634
14635 For our purposes, a %lo() expression matches a %got() or %hi()
14636 expression if:
14637
14638 (a) it refers to the same symbol; and
14639 (b) the offset applied in the %lo() expression is no lower than
14640 the offset applied in the %got() or %hi().
14641
14642 (b) allows us to cope with code like:
14643
14644 lui $4,%hi(foo)
14645 lh $4,%lo(foo+2)($4)
14646
14647 ...which is legal on RELA targets, and has a well-defined behaviour
14648 if the user knows that adding 2 to "foo" will not induce a carry to
14649 the high 16 bits.
14650
14651 When several %lo()s match a particular %got() or %hi(), we use the
14652 following rules to distinguish them:
14653
14654 (1) %lo()s with smaller offsets are a better match than %lo()s with
14655 higher offsets.
14656
14657 (2) %lo()s with no matching %got() or %hi() are better than those
14658 that already have a matching %got() or %hi().
14659
14660 (3) later %lo()s are better than earlier %lo()s.
14661
14662 These rules are applied in order.
14663
14664 (1) means, among other things, that %lo()s with identical offsets are
14665 chosen if they exist.
14666
14667 (2) means that we won't associate several high-part relocations with
14668 the same low-part relocation unless there's no alternative. Having
14669 several high parts for the same low part is a GNU extension; this rule
14670 allows careful users to avoid it.
14671
14672 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14673 with the last high-part relocation being at the front of the list.
14674 It therefore makes sense to choose the last matching low-part
14675 relocation, all other things being equal. It's also easier
14676 to code that way. */
252b5132
RH
14677
14678void
17a2f251 14679mips_frob_file (void)
252b5132
RH
14680{
14681 struct mips_hi_fixup *l;
35903be0 14682 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
252b5132
RH
14683
14684 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14685 {
14686 segment_info_type *seginfo;
3b91255e
RS
14687 bfd_boolean matched_lo_p;
14688 fixS **hi_pos, **lo_pos, **pos;
252b5132 14689
9c2799c2 14690 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
252b5132 14691
5919d012 14692 /* If a GOT16 relocation turns out to be against a global symbol,
b886a2ab
RS
14693 there isn't supposed to be a matching LO. Ignore %gots against
14694 constants; we'll report an error for those later. */
738e5348 14695 if (got16_reloc_p (l->fixp->fx_r_type)
b886a2ab
RS
14696 && !(l->fixp->fx_addsy
14697 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
5919d012
RS
14698 continue;
14699
14700 /* Check quickly whether the next fixup happens to be a matching %lo. */
14701 if (fixup_has_matching_lo_p (l->fixp))
252b5132
RH
14702 continue;
14703
252b5132 14704 seginfo = seg_info (l->seg);
252b5132 14705
3b91255e
RS
14706 /* Set HI_POS to the position of this relocation in the chain.
14707 Set LO_POS to the position of the chosen low-part relocation.
14708 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14709 relocation that matches an immediately-preceding high-part
14710 relocation. */
14711 hi_pos = NULL;
14712 lo_pos = NULL;
14713 matched_lo_p = FALSE;
738e5348 14714 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
35903be0 14715
3b91255e
RS
14716 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14717 {
14718 if (*pos == l->fixp)
14719 hi_pos = pos;
14720
35903be0 14721 if ((*pos)->fx_r_type == looking_for_rtype
30cfc97a 14722 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
3b91255e
RS
14723 && (*pos)->fx_offset >= l->fixp->fx_offset
14724 && (lo_pos == NULL
14725 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14726 || (!matched_lo_p
14727 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14728 lo_pos = pos;
14729
14730 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14731 && fixup_has_matching_lo_p (*pos));
14732 }
14733
14734 /* If we found a match, remove the high-part relocation from its
14735 current position and insert it before the low-part relocation.
14736 Make the offsets match so that fixup_has_matching_lo_p()
14737 will return true.
14738
14739 We don't warn about unmatched high-part relocations since some
14740 versions of gcc have been known to emit dead "lui ...%hi(...)"
14741 instructions. */
14742 if (lo_pos != NULL)
14743 {
14744 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14745 if (l->fixp->fx_next != *lo_pos)
252b5132 14746 {
3b91255e
RS
14747 *hi_pos = l->fixp->fx_next;
14748 l->fixp->fx_next = *lo_pos;
14749 *lo_pos = l->fixp;
252b5132 14750 }
252b5132
RH
14751 }
14752 }
14753}
14754
252b5132 14755int
17a2f251 14756mips_force_relocation (fixS *fixp)
252b5132 14757{
ae6063d4 14758 if (generic_force_reloc (fixp))
252b5132
RH
14759 return 1;
14760
df58fc94
RS
14761 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14762 so that the linker relaxation can update targets. */
14763 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14764 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14765 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14766 return 1;
14767
7361da2c
AB
14768 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14769 if (ISA_IS_R6 (mips_opts.isa)
14770 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14771 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14772 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14773 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14774 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14775 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14776 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14777 return 1;
14778
3e722fb5 14779 return 0;
252b5132
RH
14780}
14781
b886a2ab
RS
14782/* Read the instruction associated with RELOC from BUF. */
14783
14784static unsigned int
14785read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14786{
14787 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14788 return read_compressed_insn (buf, 4);
14789 else
14790 return read_insn (buf);
14791}
14792
14793/* Write instruction INSN to BUF, given that it has been relocated
14794 by RELOC. */
14795
14796static void
14797write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14798 unsigned long insn)
14799{
14800 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14801 write_compressed_insn (buf, insn, 4);
14802 else
14803 write_insn (buf, insn);
14804}
14805
252b5132
RH
14806/* Apply a fixup to the object file. */
14807
94f592af 14808void
55cf6793 14809md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 14810{
4d68580a 14811 char *buf;
b886a2ab 14812 unsigned long insn;
a7ebbfdf 14813 reloc_howto_type *howto;
252b5132 14814
d56a8dda
RS
14815 if (fixP->fx_pcrel)
14816 switch (fixP->fx_r_type)
14817 {
14818 case BFD_RELOC_16_PCREL_S2:
14819 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14820 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14821 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14822 case BFD_RELOC_32_PCREL:
7361da2c
AB
14823 case BFD_RELOC_MIPS_21_PCREL_S2:
14824 case BFD_RELOC_MIPS_26_PCREL_S2:
14825 case BFD_RELOC_MIPS_18_PCREL_S3:
14826 case BFD_RELOC_MIPS_19_PCREL_S2:
14827 case BFD_RELOC_HI16_S_PCREL:
14828 case BFD_RELOC_LO16_PCREL:
d56a8dda
RS
14829 break;
14830
14831 case BFD_RELOC_32:
14832 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14833 break;
14834
14835 default:
14836 as_bad_where (fixP->fx_file, fixP->fx_line,
14837 _("PC-relative reference to a different section"));
14838 break;
14839 }
14840
14841 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14842 that have no MIPS ELF equivalent. */
14843 if (fixP->fx_r_type != BFD_RELOC_8)
14844 {
14845 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14846 if (!howto)
14847 return;
14848 }
65551fa4 14849
df58fc94
RS
14850 gas_assert (fixP->fx_size == 2
14851 || fixP->fx_size == 4
d56a8dda 14852 || fixP->fx_r_type == BFD_RELOC_8
90ecf173
MR
14853 || fixP->fx_r_type == BFD_RELOC_16
14854 || fixP->fx_r_type == BFD_RELOC_64
14855 || fixP->fx_r_type == BFD_RELOC_CTOR
14856 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
df58fc94 14857 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
90ecf173
MR
14858 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14859 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2f0c68f2
CM
14860 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14861 || fixP->fx_r_type == BFD_RELOC_NONE);
252b5132 14862
4d68580a 14863 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 14864
b1dca8ee
RS
14865 /* Don't treat parts of a composite relocation as done. There are two
14866 reasons for this:
14867
14868 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14869 should nevertheless be emitted if the first part is.
14870
14871 (2) In normal usage, composite relocations are never assembly-time
14872 constants. The easiest way of dealing with the pathological
14873 exceptions is to generate a relocation against STN_UNDEF and
14874 leave everything up to the linker. */
3994f87e 14875 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
252b5132
RH
14876 fixP->fx_done = 1;
14877
14878 switch (fixP->fx_r_type)
14879 {
3f98094e
DJ
14880 case BFD_RELOC_MIPS_TLS_GD:
14881 case BFD_RELOC_MIPS_TLS_LDM:
741d6ea8
JM
14882 case BFD_RELOC_MIPS_TLS_DTPREL32:
14883 case BFD_RELOC_MIPS_TLS_DTPREL64:
3f98094e
DJ
14884 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14885 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14886 case BFD_RELOC_MIPS_TLS_GOTTPREL:
d0f13682
CLT
14887 case BFD_RELOC_MIPS_TLS_TPREL32:
14888 case BFD_RELOC_MIPS_TLS_TPREL64:
3f98094e
DJ
14889 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14890 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
df58fc94
RS
14891 case BFD_RELOC_MICROMIPS_TLS_GD:
14892 case BFD_RELOC_MICROMIPS_TLS_LDM:
14893 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14894 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14895 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14896 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14897 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
d0f13682
CLT
14898 case BFD_RELOC_MIPS16_TLS_GD:
14899 case BFD_RELOC_MIPS16_TLS_LDM:
14900 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14901 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14902 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14903 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14904 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
b886a2ab
RS
14905 if (!fixP->fx_addsy)
14906 {
14907 as_bad_where (fixP->fx_file, fixP->fx_line,
14908 _("TLS relocation against a constant"));
14909 break;
14910 }
3f98094e
DJ
14911 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14912 /* fall through */
14913
252b5132 14914 case BFD_RELOC_MIPS_JMP:
e369bcce
TS
14915 case BFD_RELOC_MIPS_SHIFT5:
14916 case BFD_RELOC_MIPS_SHIFT6:
14917 case BFD_RELOC_MIPS_GOT_DISP:
14918 case BFD_RELOC_MIPS_GOT_PAGE:
14919 case BFD_RELOC_MIPS_GOT_OFST:
14920 case BFD_RELOC_MIPS_SUB:
14921 case BFD_RELOC_MIPS_INSERT_A:
14922 case BFD_RELOC_MIPS_INSERT_B:
14923 case BFD_RELOC_MIPS_DELETE:
14924 case BFD_RELOC_MIPS_HIGHEST:
14925 case BFD_RELOC_MIPS_HIGHER:
14926 case BFD_RELOC_MIPS_SCN_DISP:
14927 case BFD_RELOC_MIPS_REL16:
14928 case BFD_RELOC_MIPS_RELGOT:
14929 case BFD_RELOC_MIPS_JALR:
252b5132
RH
14930 case BFD_RELOC_HI16:
14931 case BFD_RELOC_HI16_S:
b886a2ab 14932 case BFD_RELOC_LO16:
cdf6fd85 14933 case BFD_RELOC_GPREL16:
252b5132
RH
14934 case BFD_RELOC_MIPS_LITERAL:
14935 case BFD_RELOC_MIPS_CALL16:
14936 case BFD_RELOC_MIPS_GOT16:
cdf6fd85 14937 case BFD_RELOC_GPREL32:
252b5132
RH
14938 case BFD_RELOC_MIPS_GOT_HI16:
14939 case BFD_RELOC_MIPS_GOT_LO16:
14940 case BFD_RELOC_MIPS_CALL_HI16:
14941 case BFD_RELOC_MIPS_CALL_LO16:
14942 case BFD_RELOC_MIPS16_GPREL:
738e5348
RS
14943 case BFD_RELOC_MIPS16_GOT16:
14944 case BFD_RELOC_MIPS16_CALL16:
d6f16593
MR
14945 case BFD_RELOC_MIPS16_HI16:
14946 case BFD_RELOC_MIPS16_HI16_S:
b886a2ab 14947 case BFD_RELOC_MIPS16_LO16:
252b5132 14948 case BFD_RELOC_MIPS16_JMP:
df58fc94
RS
14949 case BFD_RELOC_MICROMIPS_JMP:
14950 case BFD_RELOC_MICROMIPS_GOT_DISP:
14951 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14952 case BFD_RELOC_MICROMIPS_GOT_OFST:
14953 case BFD_RELOC_MICROMIPS_SUB:
14954 case BFD_RELOC_MICROMIPS_HIGHEST:
14955 case BFD_RELOC_MICROMIPS_HIGHER:
14956 case BFD_RELOC_MICROMIPS_SCN_DISP:
14957 case BFD_RELOC_MICROMIPS_JALR:
14958 case BFD_RELOC_MICROMIPS_HI16:
14959 case BFD_RELOC_MICROMIPS_HI16_S:
b886a2ab 14960 case BFD_RELOC_MICROMIPS_LO16:
df58fc94
RS
14961 case BFD_RELOC_MICROMIPS_GPREL16:
14962 case BFD_RELOC_MICROMIPS_LITERAL:
14963 case BFD_RELOC_MICROMIPS_CALL16:
14964 case BFD_RELOC_MICROMIPS_GOT16:
14965 case BFD_RELOC_MICROMIPS_GOT_HI16:
14966 case BFD_RELOC_MICROMIPS_GOT_LO16:
14967 case BFD_RELOC_MICROMIPS_CALL_HI16:
14968 case BFD_RELOC_MICROMIPS_CALL_LO16:
067ec077 14969 case BFD_RELOC_MIPS_EH:
b886a2ab
RS
14970 if (fixP->fx_done)
14971 {
14972 offsetT value;
14973
14974 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14975 {
14976 insn = read_reloc_insn (buf, fixP->fx_r_type);
14977 if (mips16_reloc_p (fixP->fx_r_type))
14978 insn |= mips16_immed_extend (value, 16);
14979 else
14980 insn |= (value & 0xffff);
14981 write_reloc_insn (buf, fixP->fx_r_type, insn);
14982 }
14983 else
14984 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 14985 _("unsupported constant in relocation"));
b886a2ab 14986 }
252b5132
RH
14987 break;
14988
252b5132
RH
14989 case BFD_RELOC_64:
14990 /* This is handled like BFD_RELOC_32, but we output a sign
14991 extended value if we are only 32 bits. */
3e722fb5 14992 if (fixP->fx_done)
252b5132
RH
14993 {
14994 if (8 <= sizeof (valueT))
4d68580a 14995 md_number_to_chars (buf, *valP, 8);
252b5132
RH
14996 else
14997 {
a7ebbfdf 14998 valueT hiv;
252b5132 14999
a7ebbfdf 15000 if ((*valP & 0x80000000) != 0)
252b5132
RH
15001 hiv = 0xffffffff;
15002 else
15003 hiv = 0;
4d68580a
RS
15004 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15005 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
252b5132
RH
15006 }
15007 }
15008 break;
15009
056350c6 15010 case BFD_RELOC_RVA:
252b5132 15011 case BFD_RELOC_32:
b47468a6 15012 case BFD_RELOC_32_PCREL:
252b5132 15013 case BFD_RELOC_16:
d56a8dda 15014 case BFD_RELOC_8:
252b5132 15015 /* If we are deleting this reloc entry, we must fill in the
54f4ddb3
TS
15016 value now. This can happen if we have a .word which is not
15017 resolved when it appears but is later defined. */
252b5132 15018 if (fixP->fx_done)
4d68580a 15019 md_number_to_chars (buf, *valP, fixP->fx_size);
252b5132
RH
15020 break;
15021
7361da2c
AB
15022 case BFD_RELOC_MIPS_21_PCREL_S2:
15023 case BFD_RELOC_MIPS_26_PCREL_S2:
15024 if ((*valP & 0x3) != 0)
15025 as_bad_where (fixP->fx_file, fixP->fx_line,
15026 _("branch to misaligned address (%lx)"), (long) *valP);
15027
15028 gas_assert (!fixP->fx_done);
15029 break;
15030
15031 case BFD_RELOC_MIPS_18_PCREL_S3:
0866e94c 15032 if ((S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
7361da2c 15033 as_bad_where (fixP->fx_file, fixP->fx_line,
0866e94c
MF
15034 _("PC-relative access using misaligned symbol (%lx)"),
15035 (long) S_GET_VALUE (fixP->fx_addsy));
15036 if ((fixP->fx_offset & 0x7) != 0)
15037 as_bad_where (fixP->fx_file, fixP->fx_line,
15038 _("PC-relative access using misaligned offset (%lx)"),
15039 (long) fixP->fx_offset);
7361da2c
AB
15040
15041 gas_assert (!fixP->fx_done);
15042 break;
15043
15044 case BFD_RELOC_MIPS_19_PCREL_S2:
15045 if ((*valP & 0x3) != 0)
15046 as_bad_where (fixP->fx_file, fixP->fx_line,
15047 _("PC-relative access to misaligned address (%lx)"),
0866e94c 15048 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
7361da2c
AB
15049
15050 gas_assert (!fixP->fx_done);
15051 break;
15052
15053 case BFD_RELOC_HI16_S_PCREL:
15054 case BFD_RELOC_LO16_PCREL:
15055 gas_assert (!fixP->fx_done);
15056 break;
15057
252b5132 15058 case BFD_RELOC_16_PCREL_S2:
a7ebbfdf 15059 if ((*valP & 0x3) != 0)
cb56d3d3 15060 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15061 _("branch to misaligned address (%lx)"), (long) *valP);
cb56d3d3 15062
54f4ddb3
TS
15063 /* We need to save the bits in the instruction since fixup_segment()
15064 might be deleting the relocation entry (i.e., a branch within
15065 the current segment). */
a7ebbfdf 15066 if (! fixP->fx_done)
bb2d6cd7 15067 break;
252b5132 15068
54f4ddb3 15069 /* Update old instruction data. */
4d68580a 15070 insn = read_insn (buf);
252b5132 15071
a7ebbfdf
TS
15072 if (*valP + 0x20000 <= 0x3ffff)
15073 {
15074 insn |= (*valP >> 2) & 0xffff;
4d68580a 15075 write_insn (buf, insn);
a7ebbfdf
TS
15076 }
15077 else if (mips_pic == NO_PIC
15078 && fixP->fx_done
15079 && fixP->fx_frag->fr_address >= text_section->vma
15080 && (fixP->fx_frag->fr_address
587aac4e 15081 < text_section->vma + bfd_get_section_size (text_section))
a7ebbfdf
TS
15082 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15083 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15084 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
252b5132
RH
15085 {
15086 /* The branch offset is too large. If this is an
15087 unconditional branch, and we are not generating PIC code,
15088 we can convert it to an absolute jump instruction. */
a7ebbfdf
TS
15089 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15090 insn = 0x0c000000; /* jal */
252b5132 15091 else
a7ebbfdf
TS
15092 insn = 0x08000000; /* j */
15093 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15094 fixP->fx_done = 0;
15095 fixP->fx_addsy = section_symbol (text_section);
15096 *valP += md_pcrel_from (fixP);
4d68580a 15097 write_insn (buf, insn);
a7ebbfdf
TS
15098 }
15099 else
15100 {
15101 /* If we got here, we have branch-relaxation disabled,
15102 and there's nothing we can do to fix this instruction
15103 without turning it into a longer sequence. */
15104 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15105 _("branch out of range"));
252b5132 15106 }
252b5132
RH
15107 break;
15108
df58fc94
RS
15109 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15110 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15111 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15112 /* We adjust the offset back to even. */
15113 if ((*valP & 0x1) != 0)
15114 --(*valP);
15115
15116 if (! fixP->fx_done)
15117 break;
15118
15119 /* Should never visit here, because we keep the relocation. */
15120 abort ();
15121 break;
15122
252b5132
RH
15123 case BFD_RELOC_VTABLE_INHERIT:
15124 fixP->fx_done = 0;
15125 if (fixP->fx_addsy
15126 && !S_IS_DEFINED (fixP->fx_addsy)
15127 && !S_IS_WEAK (fixP->fx_addsy))
15128 S_SET_WEAK (fixP->fx_addsy);
15129 break;
15130
2f0c68f2 15131 case BFD_RELOC_NONE:
252b5132
RH
15132 case BFD_RELOC_VTABLE_ENTRY:
15133 fixP->fx_done = 0;
15134 break;
15135
15136 default:
b37df7c4 15137 abort ();
252b5132 15138 }
a7ebbfdf
TS
15139
15140 /* Remember value for tc_gen_reloc. */
15141 fixP->fx_addnumber = *valP;
252b5132
RH
15142}
15143
252b5132 15144static symbolS *
17a2f251 15145get_symbol (void)
252b5132
RH
15146{
15147 int c;
15148 char *name;
15149 symbolS *p;
15150
d02603dc 15151 c = get_symbol_name (&name);
252b5132 15152 p = (symbolS *) symbol_find_or_make (name);
d02603dc 15153 (void) restore_line_pointer (c);
252b5132
RH
15154 return p;
15155}
15156
742a56fe
RS
15157/* Align the current frag to a given power of two. If a particular
15158 fill byte should be used, FILL points to an integer that contains
15159 that byte, otherwise FILL is null.
15160
462427c4
RS
15161 This function used to have the comment:
15162
15163 The MIPS assembler also automatically adjusts any preceding label.
15164
15165 The implementation therefore applied the adjustment to a maximum of
15166 one label. However, other label adjustments are applied to batches
15167 of labels, and adjusting just one caused problems when new labels
15168 were added for the sake of debugging or unwind information.
15169 We therefore adjust all preceding labels (given as LABELS) instead. */
252b5132
RH
15170
15171static void
462427c4 15172mips_align (int to, int *fill, struct insn_label_list *labels)
252b5132 15173{
7d10b47d 15174 mips_emit_delays ();
df58fc94 15175 mips_record_compressed_mode ();
742a56fe
RS
15176 if (fill == NULL && subseg_text_p (now_seg))
15177 frag_align_code (to, 0);
15178 else
15179 frag_align (to, fill ? *fill : 0, 0);
252b5132 15180 record_alignment (now_seg, to);
462427c4 15181 mips_move_labels (labels, FALSE);
252b5132
RH
15182}
15183
15184/* Align to a given power of two. .align 0 turns off the automatic
15185 alignment used by the data creating pseudo-ops. */
15186
15187static void
17a2f251 15188s_align (int x ATTRIBUTE_UNUSED)
252b5132 15189{
742a56fe 15190 int temp, fill_value, *fill_ptr;
49954fb4 15191 long max_alignment = 28;
252b5132 15192
54f4ddb3 15193 /* o Note that the assembler pulls down any immediately preceding label
252b5132 15194 to the aligned address.
54f4ddb3 15195 o It's not documented but auto alignment is reinstated by
252b5132 15196 a .align pseudo instruction.
54f4ddb3 15197 o Note also that after auto alignment is turned off the mips assembler
252b5132 15198 issues an error on attempt to assemble an improperly aligned data item.
54f4ddb3 15199 We don't. */
252b5132
RH
15200
15201 temp = get_absolute_expression ();
15202 if (temp > max_alignment)
1661c76c 15203 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
252b5132
RH
15204 else if (temp < 0)
15205 {
1661c76c 15206 as_warn (_("alignment negative, 0 assumed"));
252b5132
RH
15207 temp = 0;
15208 }
15209 if (*input_line_pointer == ',')
15210 {
f9419b05 15211 ++input_line_pointer;
742a56fe
RS
15212 fill_value = get_absolute_expression ();
15213 fill_ptr = &fill_value;
252b5132
RH
15214 }
15215 else
742a56fe 15216 fill_ptr = 0;
252b5132
RH
15217 if (temp)
15218 {
a8dbcb85
TS
15219 segment_info_type *si = seg_info (now_seg);
15220 struct insn_label_list *l = si->label_list;
54f4ddb3 15221 /* Auto alignment should be switched on by next section change. */
252b5132 15222 auto_align = 1;
462427c4 15223 mips_align (temp, fill_ptr, l);
252b5132
RH
15224 }
15225 else
15226 {
15227 auto_align = 0;
15228 }
15229
15230 demand_empty_rest_of_line ();
15231}
15232
252b5132 15233static void
17a2f251 15234s_change_sec (int sec)
252b5132
RH
15235{
15236 segT seg;
15237
252b5132
RH
15238 /* The ELF backend needs to know that we are changing sections, so
15239 that .previous works correctly. We could do something like check
b6ff326e 15240 for an obj_section_change_hook macro, but that might be confusing
252b5132
RH
15241 as it would not be appropriate to use it in the section changing
15242 functions in read.c, since obj-elf.c intercepts those. FIXME:
15243 This should be cleaner, somehow. */
f3ded42a 15244 obj_elf_section_change_hook ();
252b5132 15245
7d10b47d 15246 mips_emit_delays ();
6a32d874 15247
252b5132
RH
15248 switch (sec)
15249 {
15250 case 't':
15251 s_text (0);
15252 break;
15253 case 'd':
15254 s_data (0);
15255 break;
15256 case 'b':
15257 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15258 demand_empty_rest_of_line ();
15259 break;
15260
15261 case 'r':
4d0d148d
TS
15262 seg = subseg_new (RDATA_SECTION_NAME,
15263 (subsegT) get_absolute_expression ());
f3ded42a
RS
15264 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15265 | SEC_READONLY | SEC_RELOC
15266 | SEC_DATA));
15267 if (strncmp (TARGET_OS, "elf", 3) != 0)
15268 record_alignment (seg, 4);
4d0d148d 15269 demand_empty_rest_of_line ();
252b5132
RH
15270 break;
15271
15272 case 's':
4d0d148d 15273 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
f3ded42a
RS
15274 bfd_set_section_flags (stdoutput, seg,
15275 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15276 if (strncmp (TARGET_OS, "elf", 3) != 0)
15277 record_alignment (seg, 4);
4d0d148d
TS
15278 demand_empty_rest_of_line ();
15279 break;
998b3c36
MR
15280
15281 case 'B':
15282 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
f3ded42a
RS
15283 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15284 if (strncmp (TARGET_OS, "elf", 3) != 0)
15285 record_alignment (seg, 4);
998b3c36
MR
15286 demand_empty_rest_of_line ();
15287 break;
252b5132
RH
15288 }
15289
15290 auto_align = 1;
15291}
b34976b6 15292
cca86cc8 15293void
17a2f251 15294s_change_section (int ignore ATTRIBUTE_UNUSED)
cca86cc8 15295{
d02603dc 15296 char *saved_ilp;
cca86cc8 15297 char *section_name;
d02603dc 15298 char c, endc;
684022ea 15299 char next_c = 0;
cca86cc8
SC
15300 int section_type;
15301 int section_flag;
15302 int section_entry_size;
15303 int section_alignment;
b34976b6 15304
d02603dc
NC
15305 saved_ilp = input_line_pointer;
15306 endc = get_symbol_name (&section_name);
15307 c = (endc == '"' ? input_line_pointer[1] : endc);
a816d1ed 15308 if (c)
d02603dc 15309 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
cca86cc8 15310
4cf0dd0d
TS
15311 /* Do we have .section Name<,"flags">? */
15312 if (c != ',' || (c == ',' && next_c == '"'))
cca86cc8 15313 {
d02603dc
NC
15314 /* Just after name is now '\0'. */
15315 (void) restore_line_pointer (endc);
15316 input_line_pointer = saved_ilp;
cca86cc8
SC
15317 obj_elf_section (ignore);
15318 return;
15319 }
d02603dc
NC
15320
15321 section_name = xstrdup (section_name);
15322 c = restore_line_pointer (endc);
15323
cca86cc8
SC
15324 input_line_pointer++;
15325
15326 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15327 if (c == ',')
15328 section_type = get_absolute_expression ();
15329 else
15330 section_type = 0;
d02603dc 15331
cca86cc8
SC
15332 if (*input_line_pointer++ == ',')
15333 section_flag = get_absolute_expression ();
15334 else
15335 section_flag = 0;
d02603dc 15336
cca86cc8
SC
15337 if (*input_line_pointer++ == ',')
15338 section_entry_size = get_absolute_expression ();
15339 else
15340 section_entry_size = 0;
d02603dc 15341
cca86cc8
SC
15342 if (*input_line_pointer++ == ',')
15343 section_alignment = get_absolute_expression ();
15344 else
15345 section_alignment = 0;
d02603dc 15346
87975d2a
AM
15347 /* FIXME: really ignore? */
15348 (void) section_alignment;
cca86cc8 15349
8ab8a5c8
RS
15350 /* When using the generic form of .section (as implemented by obj-elf.c),
15351 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15352 traditionally had to fall back on the more common @progbits instead.
15353
15354 There's nothing really harmful in this, since bfd will correct
15355 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
708587a4 15356 means that, for backwards compatibility, the special_section entries
8ab8a5c8
RS
15357 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15358
15359 Even so, we shouldn't force users of the MIPS .section syntax to
15360 incorrectly label the sections as SHT_PROGBITS. The best compromise
15361 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15362 generic type-checking code. */
15363 if (section_type == SHT_MIPS_DWARF)
15364 section_type = SHT_PROGBITS;
15365
cca86cc8
SC
15366 obj_elf_change_section (section_name, section_type, section_flag,
15367 section_entry_size, 0, 0, 0);
a816d1ed
AO
15368
15369 if (now_seg->name != section_name)
15370 free (section_name);
cca86cc8 15371}
252b5132
RH
15372
15373void
17a2f251 15374mips_enable_auto_align (void)
252b5132
RH
15375{
15376 auto_align = 1;
15377}
15378
15379static void
17a2f251 15380s_cons (int log_size)
252b5132 15381{
a8dbcb85
TS
15382 segment_info_type *si = seg_info (now_seg);
15383 struct insn_label_list *l = si->label_list;
252b5132 15384
7d10b47d 15385 mips_emit_delays ();
252b5132 15386 if (log_size > 0 && auto_align)
462427c4 15387 mips_align (log_size, 0, l);
252b5132 15388 cons (1 << log_size);
a1facbec 15389 mips_clear_insn_labels ();
252b5132
RH
15390}
15391
15392static void
17a2f251 15393s_float_cons (int type)
252b5132 15394{
a8dbcb85
TS
15395 segment_info_type *si = seg_info (now_seg);
15396 struct insn_label_list *l = si->label_list;
252b5132 15397
7d10b47d 15398 mips_emit_delays ();
252b5132
RH
15399
15400 if (auto_align)
49309057
ILT
15401 {
15402 if (type == 'd')
462427c4 15403 mips_align (3, 0, l);
49309057 15404 else
462427c4 15405 mips_align (2, 0, l);
49309057 15406 }
252b5132 15407
252b5132 15408 float_cons (type);
a1facbec 15409 mips_clear_insn_labels ();
252b5132
RH
15410}
15411
15412/* Handle .globl. We need to override it because on Irix 5 you are
15413 permitted to say
15414 .globl foo .text
15415 where foo is an undefined symbol, to mean that foo should be
15416 considered to be the address of a function. */
15417
15418static void
17a2f251 15419s_mips_globl (int x ATTRIBUTE_UNUSED)
252b5132
RH
15420{
15421 char *name;
15422 int c;
15423 symbolS *symbolP;
15424 flagword flag;
15425
8a06b769 15426 do
252b5132 15427 {
d02603dc 15428 c = get_symbol_name (&name);
8a06b769
TS
15429 symbolP = symbol_find_or_make (name);
15430 S_SET_EXTERNAL (symbolP);
15431
252b5132 15432 *input_line_pointer = c;
d02603dc 15433 SKIP_WHITESPACE_AFTER_NAME ();
252b5132 15434
8a06b769
TS
15435 /* On Irix 5, every global symbol that is not explicitly labelled as
15436 being a function is apparently labelled as being an object. */
15437 flag = BSF_OBJECT;
252b5132 15438
8a06b769
TS
15439 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15440 && (*input_line_pointer != ','))
15441 {
15442 char *secname;
15443 asection *sec;
15444
d02603dc 15445 c = get_symbol_name (&secname);
8a06b769
TS
15446 sec = bfd_get_section_by_name (stdoutput, secname);
15447 if (sec == NULL)
15448 as_bad (_("%s: no such section"), secname);
d02603dc 15449 (void) restore_line_pointer (c);
8a06b769
TS
15450
15451 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15452 flag = BSF_FUNCTION;
15453 }
15454
15455 symbol_get_bfdsym (symbolP)->flags |= flag;
15456
15457 c = *input_line_pointer;
15458 if (c == ',')
15459 {
15460 input_line_pointer++;
15461 SKIP_WHITESPACE ();
15462 if (is_end_of_line[(unsigned char) *input_line_pointer])
15463 c = '\n';
15464 }
15465 }
15466 while (c == ',');
252b5132 15467
252b5132
RH
15468 demand_empty_rest_of_line ();
15469}
15470
15471static void
17a2f251 15472s_option (int x ATTRIBUTE_UNUSED)
252b5132
RH
15473{
15474 char *opt;
15475 char c;
15476
d02603dc 15477 c = get_symbol_name (&opt);
252b5132
RH
15478
15479 if (*opt == 'O')
15480 {
15481 /* FIXME: What does this mean? */
15482 }
41a1578e 15483 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
252b5132
RH
15484 {
15485 int i;
15486
15487 i = atoi (opt + 3);
668c5ebc
MR
15488 if (i != 0 && i != 2)
15489 as_bad (_(".option pic%d not supported"), i);
15490 else if (mips_pic == VXWORKS_PIC)
15491 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15492 else if (i == 0)
252b5132
RH
15493 mips_pic = NO_PIC;
15494 else if (i == 2)
143d77c5 15495 {
8b828383 15496 mips_pic = SVR4_PIC;
143d77c5
EC
15497 mips_abicalls = TRUE;
15498 }
252b5132 15499
4d0d148d 15500 if (mips_pic == SVR4_PIC)
252b5132
RH
15501 {
15502 if (g_switch_seen && g_switch_value != 0)
15503 as_warn (_("-G may not be used with SVR4 PIC code"));
15504 g_switch_value = 0;
15505 bfd_set_gp_size (stdoutput, 0);
15506 }
15507 }
15508 else
1661c76c 15509 as_warn (_("unrecognized option \"%s\""), opt);
252b5132 15510
d02603dc 15511 (void) restore_line_pointer (c);
252b5132
RH
15512 demand_empty_rest_of_line ();
15513}
15514
15515/* This structure is used to hold a stack of .set values. */
15516
e972090a
NC
15517struct mips_option_stack
15518{
252b5132
RH
15519 struct mips_option_stack *next;
15520 struct mips_set_options options;
15521};
15522
15523static struct mips_option_stack *mips_opts_stack;
15524
22522f88
MR
15525/* Return status for .set/.module option handling. */
15526
15527enum code_option_type
15528{
15529 /* Unrecognized option. */
15530 OPTION_TYPE_BAD = -1,
15531
15532 /* Ordinary option. */
15533 OPTION_TYPE_NORMAL,
15534
15535 /* ISA changing option. */
15536 OPTION_TYPE_ISA
15537};
15538
15539/* Handle common .set/.module options. Return status indicating option
15540 type. */
15541
15542static enum code_option_type
919731af 15543parse_code_option (char * name)
252b5132 15544{
22522f88 15545 bfd_boolean isa_set = FALSE;
c6278170 15546 const struct mips_ase *ase;
22522f88 15547
919731af 15548 if (strncmp (name, "at=", 3) == 0)
741fe287
MR
15549 {
15550 char *s = name + 3;
15551
15552 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
1661c76c 15553 as_bad (_("unrecognized register name `%s'"), s);
741fe287 15554 }
252b5132 15555 else if (strcmp (name, "at") == 0)
919731af 15556 mips_opts.at = ATREG;
252b5132 15557 else if (strcmp (name, "noat") == 0)
919731af 15558 mips_opts.at = ZERO;
252b5132 15559 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
919731af 15560 mips_opts.nomove = 0;
252b5132 15561 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
919731af 15562 mips_opts.nomove = 1;
252b5132 15563 else if (strcmp (name, "bopt") == 0)
919731af 15564 mips_opts.nobopt = 0;
252b5132 15565 else if (strcmp (name, "nobopt") == 0)
919731af 15566 mips_opts.nobopt = 1;
ad3fea08 15567 else if (strcmp (name, "gp=32") == 0)
bad1aba3 15568 mips_opts.gp = 32;
ad3fea08 15569 else if (strcmp (name, "gp=64") == 0)
919731af 15570 mips_opts.gp = 64;
ad3fea08 15571 else if (strcmp (name, "fp=32") == 0)
0b35dfee 15572 mips_opts.fp = 32;
351cdf24
MF
15573 else if (strcmp (name, "fp=xx") == 0)
15574 mips_opts.fp = 0;
ad3fea08 15575 else if (strcmp (name, "fp=64") == 0)
919731af 15576 mips_opts.fp = 64;
037b32b9
AN
15577 else if (strcmp (name, "softfloat") == 0)
15578 mips_opts.soft_float = 1;
15579 else if (strcmp (name, "hardfloat") == 0)
15580 mips_opts.soft_float = 0;
15581 else if (strcmp (name, "singlefloat") == 0)
15582 mips_opts.single_float = 1;
15583 else if (strcmp (name, "doublefloat") == 0)
15584 mips_opts.single_float = 0;
351cdf24
MF
15585 else if (strcmp (name, "nooddspreg") == 0)
15586 mips_opts.oddspreg = 0;
15587 else if (strcmp (name, "oddspreg") == 0)
15588 mips_opts.oddspreg = 1;
252b5132
RH
15589 else if (strcmp (name, "mips16") == 0
15590 || strcmp (name, "MIPS-16") == 0)
919731af 15591 mips_opts.mips16 = 1;
252b5132
RH
15592 else if (strcmp (name, "nomips16") == 0
15593 || strcmp (name, "noMIPS-16") == 0)
15594 mips_opts.mips16 = 0;
df58fc94 15595 else if (strcmp (name, "micromips") == 0)
919731af 15596 mips_opts.micromips = 1;
df58fc94
RS
15597 else if (strcmp (name, "nomicromips") == 0)
15598 mips_opts.micromips = 0;
c6278170
RS
15599 else if (name[0] == 'n'
15600 && name[1] == 'o'
15601 && (ase = mips_lookup_ase (name + 2)))
919731af 15602 mips_set_ase (ase, &mips_opts, FALSE);
c6278170 15603 else if ((ase = mips_lookup_ase (name)))
919731af 15604 mips_set_ase (ase, &mips_opts, TRUE);
1a2c1fad 15605 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
252b5132 15606 {
1a2c1fad
CD
15607 /* Permit the user to change the ISA and architecture on the fly.
15608 Needless to say, misuse can cause serious problems. */
919731af 15609 if (strncmp (name, "arch=", 5) == 0)
1a2c1fad
CD
15610 {
15611 const struct mips_cpu_info *p;
15612
919731af 15613 p = mips_parse_cpu ("internal use", name + 5);
1a2c1fad
CD
15614 if (!p)
15615 as_bad (_("unknown architecture %s"), name + 5);
15616 else
15617 {
15618 mips_opts.arch = p->cpu;
15619 mips_opts.isa = p->isa;
22522f88 15620 isa_set = TRUE;
1a2c1fad
CD
15621 }
15622 }
81a21e38
TS
15623 else if (strncmp (name, "mips", 4) == 0)
15624 {
15625 const struct mips_cpu_info *p;
15626
919731af 15627 p = mips_parse_cpu ("internal use", name);
81a21e38
TS
15628 if (!p)
15629 as_bad (_("unknown ISA level %s"), name + 4);
15630 else
15631 {
15632 mips_opts.arch = p->cpu;
15633 mips_opts.isa = p->isa;
22522f88 15634 isa_set = TRUE;
81a21e38
TS
15635 }
15636 }
af7ee8bf 15637 else
81a21e38 15638 as_bad (_("unknown ISA or architecture %s"), name);
252b5132
RH
15639 }
15640 else if (strcmp (name, "autoextend") == 0)
15641 mips_opts.noautoextend = 0;
15642 else if (strcmp (name, "noautoextend") == 0)
15643 mips_opts.noautoextend = 1;
833794fc
MR
15644 else if (strcmp (name, "insn32") == 0)
15645 mips_opts.insn32 = TRUE;
15646 else if (strcmp (name, "noinsn32") == 0)
15647 mips_opts.insn32 = FALSE;
919731af 15648 else if (strcmp (name, "sym32") == 0)
15649 mips_opts.sym32 = TRUE;
15650 else if (strcmp (name, "nosym32") == 0)
15651 mips_opts.sym32 = FALSE;
15652 else
22522f88
MR
15653 return OPTION_TYPE_BAD;
15654
15655 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
919731af 15656}
15657
15658/* Handle the .set pseudo-op. */
15659
15660static void
15661s_mipsset (int x ATTRIBUTE_UNUSED)
15662{
22522f88 15663 enum code_option_type type = OPTION_TYPE_NORMAL;
919731af 15664 char *name = input_line_pointer, ch;
919731af 15665
15666 file_mips_check_options ();
15667
15668 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15669 ++input_line_pointer;
15670 ch = *input_line_pointer;
15671 *input_line_pointer = '\0';
15672
15673 if (strchr (name, ','))
15674 {
15675 /* Generic ".set" directive; use the generic handler. */
15676 *input_line_pointer = ch;
15677 input_line_pointer = name;
15678 s_set (0);
15679 return;
15680 }
15681
15682 if (strcmp (name, "reorder") == 0)
15683 {
15684 if (mips_opts.noreorder)
15685 end_noreorder ();
15686 }
15687 else if (strcmp (name, "noreorder") == 0)
15688 {
15689 if (!mips_opts.noreorder)
15690 start_noreorder ();
15691 }
15692 else if (strcmp (name, "macro") == 0)
15693 mips_opts.warn_about_macros = 0;
15694 else if (strcmp (name, "nomacro") == 0)
15695 {
15696 if (mips_opts.noreorder == 0)
15697 as_bad (_("`noreorder' must be set before `nomacro'"));
15698 mips_opts.warn_about_macros = 1;
15699 }
15700 else if (strcmp (name, "gp=default") == 0)
15701 mips_opts.gp = file_mips_opts.gp;
15702 else if (strcmp (name, "fp=default") == 0)
15703 mips_opts.fp = file_mips_opts.fp;
15704 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15705 {
15706 mips_opts.isa = file_mips_opts.isa;
15707 mips_opts.arch = file_mips_opts.arch;
15708 mips_opts.gp = file_mips_opts.gp;
15709 mips_opts.fp = file_mips_opts.fp;
15710 }
252b5132
RH
15711 else if (strcmp (name, "push") == 0)
15712 {
15713 struct mips_option_stack *s;
15714
325801bd 15715 s = XNEW (struct mips_option_stack);
252b5132
RH
15716 s->next = mips_opts_stack;
15717 s->options = mips_opts;
15718 mips_opts_stack = s;
15719 }
15720 else if (strcmp (name, "pop") == 0)
15721 {
15722 struct mips_option_stack *s;
15723
15724 s = mips_opts_stack;
15725 if (s == NULL)
15726 as_bad (_(".set pop with no .set push"));
15727 else
15728 {
15729 /* If we're changing the reorder mode we need to handle
15730 delay slots correctly. */
15731 if (s->options.noreorder && ! mips_opts.noreorder)
7d10b47d 15732 start_noreorder ();
252b5132 15733 else if (! s->options.noreorder && mips_opts.noreorder)
7d10b47d 15734 end_noreorder ();
252b5132
RH
15735
15736 mips_opts = s->options;
15737 mips_opts_stack = s->next;
15738 free (s);
15739 }
15740 }
22522f88
MR
15741 else
15742 {
15743 type = parse_code_option (name);
15744 if (type == OPTION_TYPE_BAD)
15745 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15746 }
919731af 15747
15748 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15749 registers based on what is supported by the arch/cpu. */
22522f88 15750 if (type == OPTION_TYPE_ISA)
e6559e01 15751 {
919731af 15752 switch (mips_opts.isa)
15753 {
15754 case 0:
15755 break;
15756 case ISA_MIPS1:
351cdf24
MF
15757 /* MIPS I cannot support FPXX. */
15758 mips_opts.fp = 32;
15759 /* fall-through. */
919731af 15760 case ISA_MIPS2:
15761 case ISA_MIPS32:
15762 case ISA_MIPS32R2:
15763 case ISA_MIPS32R3:
15764 case ISA_MIPS32R5:
15765 mips_opts.gp = 32;
351cdf24
MF
15766 if (mips_opts.fp != 0)
15767 mips_opts.fp = 32;
919731af 15768 break;
7361da2c
AB
15769 case ISA_MIPS32R6:
15770 mips_opts.gp = 32;
15771 mips_opts.fp = 64;
15772 break;
919731af 15773 case ISA_MIPS3:
15774 case ISA_MIPS4:
15775 case ISA_MIPS5:
15776 case ISA_MIPS64:
15777 case ISA_MIPS64R2:
15778 case ISA_MIPS64R3:
15779 case ISA_MIPS64R5:
7361da2c 15780 case ISA_MIPS64R6:
919731af 15781 mips_opts.gp = 64;
351cdf24
MF
15782 if (mips_opts.fp != 0)
15783 {
15784 if (mips_opts.arch == CPU_R5900)
15785 mips_opts.fp = 32;
15786 else
15787 mips_opts.fp = 64;
15788 }
919731af 15789 break;
15790 default:
15791 as_bad (_("unknown ISA level %s"), name + 4);
15792 break;
15793 }
e6559e01 15794 }
919731af 15795
15796 mips_check_options (&mips_opts, FALSE);
15797
15798 mips_check_isa_supports_ases ();
15799 *input_line_pointer = ch;
15800 demand_empty_rest_of_line ();
15801}
15802
15803/* Handle the .module pseudo-op. */
15804
15805static void
15806s_module (int ignore ATTRIBUTE_UNUSED)
15807{
15808 char *name = input_line_pointer, ch;
15809
15810 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15811 ++input_line_pointer;
15812 ch = *input_line_pointer;
15813 *input_line_pointer = '\0';
15814
15815 if (!file_mips_opts_checked)
252b5132 15816 {
22522f88 15817 if (parse_code_option (name) == OPTION_TYPE_BAD)
919731af 15818 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15819
15820 /* Update module level settings from mips_opts. */
15821 file_mips_opts = mips_opts;
252b5132 15822 }
919731af 15823 else
15824 as_bad (_(".module is not permitted after generating code"));
15825
252b5132
RH
15826 *input_line_pointer = ch;
15827 demand_empty_rest_of_line ();
15828}
15829
15830/* Handle the .abicalls pseudo-op. I believe this is equivalent to
15831 .option pic2. It means to generate SVR4 PIC calls. */
15832
15833static void
17a2f251 15834s_abicalls (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15835{
15836 mips_pic = SVR4_PIC;
143d77c5 15837 mips_abicalls = TRUE;
4d0d148d
TS
15838
15839 if (g_switch_seen && g_switch_value != 0)
15840 as_warn (_("-G may not be used with SVR4 PIC code"));
15841 g_switch_value = 0;
15842
252b5132
RH
15843 bfd_set_gp_size (stdoutput, 0);
15844 demand_empty_rest_of_line ();
15845}
15846
15847/* Handle the .cpload pseudo-op. This is used when generating SVR4
15848 PIC code. It sets the $gp register for the function based on the
15849 function address, which is in the register named in the argument.
15850 This uses a relocation against _gp_disp, which is handled specially
15851 by the linker. The result is:
15852 lui $gp,%hi(_gp_disp)
15853 addiu $gp,$gp,%lo(_gp_disp)
15854 addu $gp,$gp,.cpload argument
aa6975fb
ILT
15855 The .cpload argument is normally $25 == $t9.
15856
15857 The -mno-shared option changes this to:
bbe506e8
TS
15858 lui $gp,%hi(__gnu_local_gp)
15859 addiu $gp,$gp,%lo(__gnu_local_gp)
aa6975fb
ILT
15860 and the argument is ignored. This saves an instruction, but the
15861 resulting code is not position independent; it uses an absolute
bbe506e8
TS
15862 address for __gnu_local_gp. Thus code assembled with -mno-shared
15863 can go into an ordinary executable, but not into a shared library. */
252b5132
RH
15864
15865static void
17a2f251 15866s_cpload (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15867{
15868 expressionS ex;
aa6975fb
ILT
15869 int reg;
15870 int in_shared;
252b5132 15871
919731af 15872 file_mips_check_options ();
15873
6478892d
TS
15874 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15875 .cpload is ignored. */
15876 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
15877 {
15878 s_ignore (0);
15879 return;
15880 }
15881
a276b80c
MR
15882 if (mips_opts.mips16)
15883 {
15884 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15885 ignore_rest_of_line ();
15886 return;
15887 }
15888
d3ecfc59 15889 /* .cpload should be in a .set noreorder section. */
252b5132
RH
15890 if (mips_opts.noreorder == 0)
15891 as_warn (_(".cpload not in noreorder section"));
15892
aa6975fb
ILT
15893 reg = tc_get_register (0);
15894
15895 /* If we need to produce a 64-bit address, we are better off using
15896 the default instruction sequence. */
aed1a261 15897 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
aa6975fb 15898
252b5132 15899 ex.X_op = O_symbol;
bbe506e8
TS
15900 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15901 "__gnu_local_gp");
252b5132
RH
15902 ex.X_op_symbol = NULL;
15903 ex.X_add_number = 0;
15904
15905 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
49309057 15906 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
252b5132 15907
8a75745d
MR
15908 mips_mark_labels ();
15909 mips_assembling_insn = TRUE;
15910
584892a6 15911 macro_start ();
67c0d1eb
RS
15912 macro_build_lui (&ex, mips_gp_register);
15913 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17a2f251 15914 mips_gp_register, BFD_RELOC_LO16);
aa6975fb
ILT
15915 if (in_shared)
15916 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15917 mips_gp_register, reg);
584892a6 15918 macro_end ();
252b5132 15919
8a75745d 15920 mips_assembling_insn = FALSE;
252b5132
RH
15921 demand_empty_rest_of_line ();
15922}
15923
6478892d
TS
15924/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15925 .cpsetup $reg1, offset|$reg2, label
15926
15927 If offset is given, this results in:
15928 sd $gp, offset($sp)
956cd1d6 15929 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
15930 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15931 daddu $gp, $gp, $reg1
6478892d
TS
15932
15933 If $reg2 is given, this results in:
40fc1451 15934 or $reg2, $gp, $0
956cd1d6 15935 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
15936 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15937 daddu $gp, $gp, $reg1
aa6975fb
ILT
15938 $reg1 is normally $25 == $t9.
15939
15940 The -mno-shared option replaces the last three instructions with
15941 lui $gp,%hi(_gp)
54f4ddb3 15942 addiu $gp,$gp,%lo(_gp) */
aa6975fb 15943
6478892d 15944static void
17a2f251 15945s_cpsetup (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
15946{
15947 expressionS ex_off;
15948 expressionS ex_sym;
15949 int reg1;
6478892d 15950
919731af 15951 file_mips_check_options ();
15952
8586fc66 15953 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
6478892d
TS
15954 We also need NewABI support. */
15955 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15956 {
15957 s_ignore (0);
15958 return;
15959 }
15960
a276b80c
MR
15961 if (mips_opts.mips16)
15962 {
15963 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15964 ignore_rest_of_line ();
15965 return;
15966 }
15967
6478892d
TS
15968 reg1 = tc_get_register (0);
15969 SKIP_WHITESPACE ();
15970 if (*input_line_pointer != ',')
15971 {
15972 as_bad (_("missing argument separator ',' for .cpsetup"));
15973 return;
15974 }
15975 else
80245285 15976 ++input_line_pointer;
6478892d
TS
15977 SKIP_WHITESPACE ();
15978 if (*input_line_pointer == '$')
80245285
TS
15979 {
15980 mips_cpreturn_register = tc_get_register (0);
15981 mips_cpreturn_offset = -1;
15982 }
6478892d 15983 else
80245285
TS
15984 {
15985 mips_cpreturn_offset = get_absolute_expression ();
15986 mips_cpreturn_register = -1;
15987 }
6478892d
TS
15988 SKIP_WHITESPACE ();
15989 if (*input_line_pointer != ',')
15990 {
15991 as_bad (_("missing argument separator ',' for .cpsetup"));
15992 return;
15993 }
15994 else
f9419b05 15995 ++input_line_pointer;
6478892d 15996 SKIP_WHITESPACE ();
f21f8242 15997 expression (&ex_sym);
6478892d 15998
8a75745d
MR
15999 mips_mark_labels ();
16000 mips_assembling_insn = TRUE;
16001
584892a6 16002 macro_start ();
6478892d
TS
16003 if (mips_cpreturn_register == -1)
16004 {
16005 ex_off.X_op = O_constant;
16006 ex_off.X_add_symbol = NULL;
16007 ex_off.X_op_symbol = NULL;
16008 ex_off.X_add_number = mips_cpreturn_offset;
16009
67c0d1eb 16010 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17a2f251 16011 BFD_RELOC_LO16, SP);
6478892d
TS
16012 }
16013 else
40fc1451 16014 move_register (mips_cpreturn_register, mips_gp_register);
6478892d 16015
aed1a261 16016 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
aa6975fb 16017 {
df58fc94 16018 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
aa6975fb
ILT
16019 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16020 BFD_RELOC_HI16_S);
16021
16022 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16023 mips_gp_register, -1, BFD_RELOC_GPREL16,
16024 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16025
16026 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16027 mips_gp_register, reg1);
16028 }
16029 else
16030 {
16031 expressionS ex;
16032
16033 ex.X_op = O_symbol;
4184909a 16034 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
aa6975fb
ILT
16035 ex.X_op_symbol = NULL;
16036 ex.X_add_number = 0;
6e1304d8 16037
aa6975fb
ILT
16038 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16039 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16040
16041 macro_build_lui (&ex, mips_gp_register);
16042 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16043 mips_gp_register, BFD_RELOC_LO16);
16044 }
f21f8242 16045
584892a6 16046 macro_end ();
6478892d 16047
8a75745d 16048 mips_assembling_insn = FALSE;
6478892d
TS
16049 demand_empty_rest_of_line ();
16050}
16051
16052static void
17a2f251 16053s_cplocal (int ignore ATTRIBUTE_UNUSED)
6478892d 16054{
919731af 16055 file_mips_check_options ();
16056
6478892d 16057 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
54f4ddb3 16058 .cplocal is ignored. */
6478892d
TS
16059 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16060 {
16061 s_ignore (0);
16062 return;
16063 }
16064
a276b80c
MR
16065 if (mips_opts.mips16)
16066 {
16067 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16068 ignore_rest_of_line ();
16069 return;
16070 }
16071
6478892d 16072 mips_gp_register = tc_get_register (0);
85b51719 16073 demand_empty_rest_of_line ();
6478892d
TS
16074}
16075
252b5132
RH
16076/* Handle the .cprestore pseudo-op. This stores $gp into a given
16077 offset from $sp. The offset is remembered, and after making a PIC
16078 call $gp is restored from that location. */
16079
16080static void
17a2f251 16081s_cprestore (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16082{
16083 expressionS ex;
252b5132 16084
919731af 16085 file_mips_check_options ();
16086
6478892d 16087 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
c9914766 16088 .cprestore is ignored. */
6478892d 16089 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16090 {
16091 s_ignore (0);
16092 return;
16093 }
16094
a276b80c
MR
16095 if (mips_opts.mips16)
16096 {
16097 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16098 ignore_rest_of_line ();
16099 return;
16100 }
16101
252b5132 16102 mips_cprestore_offset = get_absolute_expression ();
7a621144 16103 mips_cprestore_valid = 1;
252b5132
RH
16104
16105 ex.X_op = O_constant;
16106 ex.X_add_symbol = NULL;
16107 ex.X_op_symbol = NULL;
16108 ex.X_add_number = mips_cprestore_offset;
16109
8a75745d
MR
16110 mips_mark_labels ();
16111 mips_assembling_insn = TRUE;
16112
584892a6 16113 macro_start ();
67c0d1eb
RS
16114 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16115 SP, HAVE_64BIT_ADDRESSES);
584892a6 16116 macro_end ();
252b5132 16117
8a75745d 16118 mips_assembling_insn = FALSE;
252b5132
RH
16119 demand_empty_rest_of_line ();
16120}
16121
6478892d 16122/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
67c1ffbe 16123 was given in the preceding .cpsetup, it results in:
6478892d 16124 ld $gp, offset($sp)
76b3015f 16125
6478892d 16126 If a register $reg2 was given there, it results in:
40fc1451 16127 or $gp, $reg2, $0 */
54f4ddb3 16128
6478892d 16129static void
17a2f251 16130s_cpreturn (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16131{
16132 expressionS ex;
6478892d 16133
919731af 16134 file_mips_check_options ();
16135
6478892d
TS
16136 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16137 We also need NewABI support. */
16138 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16139 {
16140 s_ignore (0);
16141 return;
16142 }
16143
a276b80c
MR
16144 if (mips_opts.mips16)
16145 {
16146 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16147 ignore_rest_of_line ();
16148 return;
16149 }
16150
8a75745d
MR
16151 mips_mark_labels ();
16152 mips_assembling_insn = TRUE;
16153
584892a6 16154 macro_start ();
6478892d
TS
16155 if (mips_cpreturn_register == -1)
16156 {
16157 ex.X_op = O_constant;
16158 ex.X_add_symbol = NULL;
16159 ex.X_op_symbol = NULL;
16160 ex.X_add_number = mips_cpreturn_offset;
16161
67c0d1eb 16162 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
6478892d
TS
16163 }
16164 else
40fc1451
SD
16165 move_register (mips_gp_register, mips_cpreturn_register);
16166
584892a6 16167 macro_end ();
6478892d 16168
8a75745d 16169 mips_assembling_insn = FALSE;
6478892d
TS
16170 demand_empty_rest_of_line ();
16171}
16172
d0f13682
CLT
16173/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16174 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16175 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16176 debug information or MIPS16 TLS. */
741d6ea8
JM
16177
16178static void
d0f13682
CLT
16179s_tls_rel_directive (const size_t bytes, const char *dirstr,
16180 bfd_reloc_code_real_type rtype)
741d6ea8
JM
16181{
16182 expressionS ex;
16183 char *p;
16184
16185 expression (&ex);
16186
16187 if (ex.X_op != O_symbol)
16188 {
1661c76c 16189 as_bad (_("unsupported use of %s"), dirstr);
741d6ea8
JM
16190 ignore_rest_of_line ();
16191 }
16192
16193 p = frag_more (bytes);
16194 md_number_to_chars (p, 0, bytes);
d0f13682 16195 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
741d6ea8 16196 demand_empty_rest_of_line ();
de64cffd 16197 mips_clear_insn_labels ();
741d6ea8
JM
16198}
16199
16200/* Handle .dtprelword. */
16201
16202static void
16203s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16204{
d0f13682 16205 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
741d6ea8
JM
16206}
16207
16208/* Handle .dtpreldword. */
16209
16210static void
16211s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16212{
d0f13682
CLT
16213 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16214}
16215
16216/* Handle .tprelword. */
16217
16218static void
16219s_tprelword (int ignore ATTRIBUTE_UNUSED)
16220{
16221 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16222}
16223
16224/* Handle .tpreldword. */
16225
16226static void
16227s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16228{
16229 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
741d6ea8
JM
16230}
16231
6478892d
TS
16232/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16233 code. It sets the offset to use in gp_rel relocations. */
16234
16235static void
17a2f251 16236s_gpvalue (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16237{
16238 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16239 We also need NewABI support. */
16240 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16241 {
16242 s_ignore (0);
16243 return;
16244 }
16245
def2e0dd 16246 mips_gprel_offset = get_absolute_expression ();
6478892d
TS
16247
16248 demand_empty_rest_of_line ();
16249}
16250
252b5132
RH
16251/* Handle the .gpword pseudo-op. This is used when generating PIC
16252 code. It generates a 32 bit GP relative reloc. */
16253
16254static void
17a2f251 16255s_gpword (int ignore ATTRIBUTE_UNUSED)
252b5132 16256{
a8dbcb85
TS
16257 segment_info_type *si;
16258 struct insn_label_list *l;
252b5132
RH
16259 expressionS ex;
16260 char *p;
16261
16262 /* When not generating PIC code, this is treated as .word. */
16263 if (mips_pic != SVR4_PIC)
16264 {
16265 s_cons (2);
16266 return;
16267 }
16268
a8dbcb85
TS
16269 si = seg_info (now_seg);
16270 l = si->label_list;
7d10b47d 16271 mips_emit_delays ();
252b5132 16272 if (auto_align)
462427c4 16273 mips_align (2, 0, l);
252b5132
RH
16274
16275 expression (&ex);
a1facbec 16276 mips_clear_insn_labels ();
252b5132
RH
16277
16278 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16279 {
1661c76c 16280 as_bad (_("unsupported use of .gpword"));
252b5132
RH
16281 ignore_rest_of_line ();
16282 }
16283
16284 p = frag_more (4);
17a2f251 16285 md_number_to_chars (p, 0, 4);
b34976b6 16286 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
cdf6fd85 16287 BFD_RELOC_GPREL32);
252b5132
RH
16288
16289 demand_empty_rest_of_line ();
16290}
16291
10181a0d 16292static void
17a2f251 16293s_gpdword (int ignore ATTRIBUTE_UNUSED)
10181a0d 16294{
a8dbcb85
TS
16295 segment_info_type *si;
16296 struct insn_label_list *l;
10181a0d
AO
16297 expressionS ex;
16298 char *p;
16299
16300 /* When not generating PIC code, this is treated as .dword. */
16301 if (mips_pic != SVR4_PIC)
16302 {
16303 s_cons (3);
16304 return;
16305 }
16306
a8dbcb85
TS
16307 si = seg_info (now_seg);
16308 l = si->label_list;
7d10b47d 16309 mips_emit_delays ();
10181a0d 16310 if (auto_align)
462427c4 16311 mips_align (3, 0, l);
10181a0d
AO
16312
16313 expression (&ex);
a1facbec 16314 mips_clear_insn_labels ();
10181a0d
AO
16315
16316 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16317 {
1661c76c 16318 as_bad (_("unsupported use of .gpdword"));
10181a0d
AO
16319 ignore_rest_of_line ();
16320 }
16321
16322 p = frag_more (8);
17a2f251 16323 md_number_to_chars (p, 0, 8);
a105a300 16324 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
6e1304d8 16325 BFD_RELOC_GPREL32)->fx_tcbit = 1;
10181a0d
AO
16326
16327 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
6e1304d8
RS
16328 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16329 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
10181a0d
AO
16330
16331 demand_empty_rest_of_line ();
16332}
16333
a3f278e2
CM
16334/* Handle the .ehword pseudo-op. This is used when generating unwinding
16335 tables. It generates a R_MIPS_EH reloc. */
16336
16337static void
16338s_ehword (int ignore ATTRIBUTE_UNUSED)
16339{
16340 expressionS ex;
16341 char *p;
16342
16343 mips_emit_delays ();
16344
16345 expression (&ex);
16346 mips_clear_insn_labels ();
16347
16348 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16349 {
1661c76c 16350 as_bad (_("unsupported use of .ehword"));
a3f278e2
CM
16351 ignore_rest_of_line ();
16352 }
16353
16354 p = frag_more (4);
16355 md_number_to_chars (p, 0, 4);
16356 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
2f0c68f2 16357 BFD_RELOC_32_PCREL);
a3f278e2
CM
16358
16359 demand_empty_rest_of_line ();
16360}
16361
252b5132
RH
16362/* Handle the .cpadd pseudo-op. This is used when dealing with switch
16363 tables in SVR4 PIC code. */
16364
16365static void
17a2f251 16366s_cpadd (int ignore ATTRIBUTE_UNUSED)
252b5132 16367{
252b5132
RH
16368 int reg;
16369
919731af 16370 file_mips_check_options ();
16371
10181a0d
AO
16372 /* This is ignored when not generating SVR4 PIC code. */
16373 if (mips_pic != SVR4_PIC)
252b5132
RH
16374 {
16375 s_ignore (0);
16376 return;
16377 }
16378
8a75745d
MR
16379 mips_mark_labels ();
16380 mips_assembling_insn = TRUE;
16381
252b5132 16382 /* Add $gp to the register named as an argument. */
584892a6 16383 macro_start ();
252b5132 16384 reg = tc_get_register (0);
67c0d1eb 16385 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
584892a6 16386 macro_end ();
252b5132 16387
8a75745d 16388 mips_assembling_insn = FALSE;
bdaaa2e1 16389 demand_empty_rest_of_line ();
252b5132
RH
16390}
16391
16392/* Handle the .insn pseudo-op. This marks instruction labels in
df58fc94 16393 mips16/micromips mode. This permits the linker to handle them specially,
252b5132
RH
16394 such as generating jalx instructions when needed. We also make
16395 them odd for the duration of the assembly, in order to generate the
16396 right sort of code. We will make them even in the adjust_symtab
16397 routine, while leaving them marked. This is convenient for the
16398 debugger and the disassembler. The linker knows to make them odd
16399 again. */
16400
16401static void
17a2f251 16402s_insn (int ignore ATTRIBUTE_UNUSED)
252b5132 16403{
7bb01e2d
MR
16404 file_mips_check_options ();
16405 file_ase_mips16 |= mips_opts.mips16;
16406 file_ase_micromips |= mips_opts.micromips;
16407
df58fc94 16408 mips_mark_labels ();
252b5132
RH
16409
16410 demand_empty_rest_of_line ();
16411}
16412
ba92f887
MR
16413/* Handle the .nan pseudo-op. */
16414
16415static void
16416s_nan (int ignore ATTRIBUTE_UNUSED)
16417{
16418 static const char str_legacy[] = "legacy";
16419 static const char str_2008[] = "2008";
16420 size_t i;
16421
16422 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16423
16424 if (i == sizeof (str_2008) - 1
16425 && memcmp (input_line_pointer, str_2008, i) == 0)
7361da2c 16426 mips_nan2008 = 1;
ba92f887
MR
16427 else if (i == sizeof (str_legacy) - 1
16428 && memcmp (input_line_pointer, str_legacy, i) == 0)
7361da2c
AB
16429 {
16430 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16431 mips_nan2008 = 0;
16432 else
16433 as_bad (_("`%s' does not support legacy NaN"),
16434 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16435 }
ba92f887 16436 else
1661c76c 16437 as_bad (_("bad .nan directive"));
ba92f887
MR
16438
16439 input_line_pointer += i;
16440 demand_empty_rest_of_line ();
16441}
16442
754e2bb9
RS
16443/* Handle a .stab[snd] directive. Ideally these directives would be
16444 implemented in a transparent way, so that removing them would not
16445 have any effect on the generated instructions. However, s_stab
16446 internally changes the section, so in practice we need to decide
16447 now whether the preceding label marks compressed code. We do not
16448 support changing the compression mode of a label after a .stab*
16449 directive, such as in:
16450
16451 foo:
16452 .stabs ...
16453 .set mips16
16454
16455 so the current mode wins. */
252b5132
RH
16456
16457static void
17a2f251 16458s_mips_stab (int type)
252b5132 16459{
754e2bb9 16460 mips_mark_labels ();
252b5132
RH
16461 s_stab (type);
16462}
16463
54f4ddb3 16464/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
252b5132
RH
16465
16466static void
17a2f251 16467s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16468{
16469 char *name;
16470 int c;
16471 symbolS *symbolP;
16472 expressionS exp;
16473
d02603dc 16474 c = get_symbol_name (&name);
252b5132
RH
16475 symbolP = symbol_find_or_make (name);
16476 S_SET_WEAK (symbolP);
16477 *input_line_pointer = c;
16478
d02603dc 16479 SKIP_WHITESPACE_AFTER_NAME ();
252b5132
RH
16480
16481 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16482 {
16483 if (S_IS_DEFINED (symbolP))
16484 {
20203fb9 16485 as_bad (_("ignoring attempt to redefine symbol %s"),
252b5132
RH
16486 S_GET_NAME (symbolP));
16487 ignore_rest_of_line ();
16488 return;
16489 }
bdaaa2e1 16490
252b5132
RH
16491 if (*input_line_pointer == ',')
16492 {
16493 ++input_line_pointer;
16494 SKIP_WHITESPACE ();
16495 }
bdaaa2e1 16496
252b5132
RH
16497 expression (&exp);
16498 if (exp.X_op != O_symbol)
16499 {
20203fb9 16500 as_bad (_("bad .weakext directive"));
98d3f06f 16501 ignore_rest_of_line ();
252b5132
RH
16502 return;
16503 }
49309057 16504 symbol_set_value_expression (symbolP, &exp);
252b5132
RH
16505 }
16506
16507 demand_empty_rest_of_line ();
16508}
16509
16510/* Parse a register string into a number. Called from the ECOFF code
16511 to parse .frame. The argument is non-zero if this is the frame
16512 register, so that we can record it in mips_frame_reg. */
16513
16514int
17a2f251 16515tc_get_register (int frame)
252b5132 16516{
707bfff6 16517 unsigned int reg;
252b5132
RH
16518
16519 SKIP_WHITESPACE ();
707bfff6
TS
16520 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16521 reg = 0;
252b5132 16522 if (frame)
7a621144
DJ
16523 {
16524 mips_frame_reg = reg != 0 ? reg : SP;
16525 mips_frame_reg_valid = 1;
16526 mips_cprestore_valid = 0;
16527 }
252b5132
RH
16528 return reg;
16529}
16530
16531valueT
17a2f251 16532md_section_align (asection *seg, valueT addr)
252b5132
RH
16533{
16534 int align = bfd_get_section_alignment (stdoutput, seg);
16535
f3ded42a
RS
16536 /* We don't need to align ELF sections to the full alignment.
16537 However, Irix 5 may prefer that we align them at least to a 16
16538 byte boundary. We don't bother to align the sections if we
16539 are targeted for an embedded system. */
16540 if (strncmp (TARGET_OS, "elf", 3) == 0)
16541 return addr;
16542 if (align > 4)
16543 align = 4;
252b5132 16544
8d3842cd 16545 return ((addr + (1 << align) - 1) & -(1 << align));
252b5132
RH
16546}
16547
16548/* Utility routine, called from above as well. If called while the
16549 input file is still being read, it's only an approximation. (For
16550 example, a symbol may later become defined which appeared to be
16551 undefined earlier.) */
16552
16553static int
17a2f251 16554nopic_need_relax (symbolS *sym, int before_relaxing)
252b5132
RH
16555{
16556 if (sym == 0)
16557 return 0;
16558
4d0d148d 16559 if (g_switch_value > 0)
252b5132
RH
16560 {
16561 const char *symname;
16562 int change;
16563
c9914766 16564 /* Find out whether this symbol can be referenced off the $gp
252b5132
RH
16565 register. It can be if it is smaller than the -G size or if
16566 it is in the .sdata or .sbss section. Certain symbols can
c9914766 16567 not be referenced off the $gp, although it appears as though
252b5132
RH
16568 they can. */
16569 symname = S_GET_NAME (sym);
16570 if (symname != (const char *) NULL
16571 && (strcmp (symname, "eprol") == 0
16572 || strcmp (symname, "etext") == 0
16573 || strcmp (symname, "_gp") == 0
16574 || strcmp (symname, "edata") == 0
16575 || strcmp (symname, "_fbss") == 0
16576 || strcmp (symname, "_fdata") == 0
16577 || strcmp (symname, "_ftext") == 0
16578 || strcmp (symname, "end") == 0
16579 || strcmp (symname, "_gp_disp") == 0))
16580 change = 1;
16581 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16582 && (0
16583#ifndef NO_ECOFF_DEBUGGING
49309057
ILT
16584 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16585 && (symbol_get_obj (sym)->ecoff_extern_size
16586 <= g_switch_value))
252b5132
RH
16587#endif
16588 /* We must defer this decision until after the whole
16589 file has been read, since there might be a .extern
16590 after the first use of this symbol. */
16591 || (before_relaxing
16592#ifndef NO_ECOFF_DEBUGGING
49309057 16593 && symbol_get_obj (sym)->ecoff_extern_size == 0
252b5132
RH
16594#endif
16595 && S_GET_VALUE (sym) == 0)
16596 || (S_GET_VALUE (sym) != 0
16597 && S_GET_VALUE (sym) <= g_switch_value)))
16598 change = 0;
16599 else
16600 {
16601 const char *segname;
16602
16603 segname = segment_name (S_GET_SEGMENT (sym));
9c2799c2 16604 gas_assert (strcmp (segname, ".lit8") != 0
252b5132
RH
16605 && strcmp (segname, ".lit4") != 0);
16606 change = (strcmp (segname, ".sdata") != 0
fba2b7f9
GK
16607 && strcmp (segname, ".sbss") != 0
16608 && strncmp (segname, ".sdata.", 7) != 0
d4dc2f22
TS
16609 && strncmp (segname, ".sbss.", 6) != 0
16610 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
fba2b7f9 16611 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
252b5132
RH
16612 }
16613 return change;
16614 }
16615 else
c9914766 16616 /* We are not optimizing for the $gp register. */
252b5132
RH
16617 return 1;
16618}
16619
5919d012
RS
16620
16621/* Return true if the given symbol should be considered local for SVR4 PIC. */
16622
16623static bfd_boolean
17a2f251 16624pic_need_relax (symbolS *sym, asection *segtype)
5919d012
RS
16625{
16626 asection *symsec;
5919d012
RS
16627
16628 /* Handle the case of a symbol equated to another symbol. */
16629 while (symbol_equated_reloc_p (sym))
16630 {
16631 symbolS *n;
16632
5f0fe04b 16633 /* It's possible to get a loop here in a badly written program. */
5919d012
RS
16634 n = symbol_get_value_expression (sym)->X_add_symbol;
16635 if (n == sym)
16636 break;
16637 sym = n;
16638 }
16639
df1f3cda
DD
16640 if (symbol_section_p (sym))
16641 return TRUE;
16642
5919d012
RS
16643 symsec = S_GET_SEGMENT (sym);
16644
5919d012 16645 /* This must duplicate the test in adjust_reloc_syms. */
45dfa85a
AM
16646 return (!bfd_is_und_section (symsec)
16647 && !bfd_is_abs_section (symsec)
5f0fe04b
TS
16648 && !bfd_is_com_section (symsec)
16649 && !s_is_linkonce (sym, segtype)
5919d012 16650 /* A global or weak symbol is treated as external. */
f3ded42a 16651 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
5919d012
RS
16652}
16653
16654
252b5132
RH
16655/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16656 extended opcode. SEC is the section the frag is in. */
16657
16658static int
17a2f251 16659mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
252b5132
RH
16660{
16661 int type;
3ccad066 16662 const struct mips_int_operand *operand;
252b5132 16663 offsetT val;
252b5132 16664 segT symsec;
98aa84af 16665 fragS *sym_frag;
252b5132
RH
16666
16667 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16668 return 0;
16669 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16670 return 1;
16671
16672 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 16673 operand = mips16_immed_operand (type, FALSE);
252b5132 16674
98aa84af 16675 sym_frag = symbol_get_frag (fragp->fr_symbol);
ac62c346 16676 val = S_GET_VALUE (fragp->fr_symbol);
98aa84af 16677 symsec = S_GET_SEGMENT (fragp->fr_symbol);
252b5132 16678
3ccad066 16679 if (operand->root.type == OP_PCREL)
252b5132 16680 {
3ccad066 16681 const struct mips_pcrel_operand *pcrel_op;
252b5132 16682 addressT addr;
3ccad066 16683 offsetT maxtiny;
252b5132
RH
16684
16685 /* We won't have the section when we are called from
16686 mips_relax_frag. However, we will always have been called
16687 from md_estimate_size_before_relax first. If this is a
16688 branch to a different section, we mark it as such. If SEC is
16689 NULL, and the frag is not marked, then it must be a branch to
16690 the same section. */
3ccad066 16691 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
16692 if (sec == NULL)
16693 {
16694 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16695 return 1;
16696 }
16697 else
16698 {
98aa84af 16699 /* Must have been called from md_estimate_size_before_relax. */
252b5132
RH
16700 if (symsec != sec)
16701 {
16702 fragp->fr_subtype =
16703 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16704
16705 /* FIXME: We should support this, and let the linker
16706 catch branches and loads that are out of range. */
16707 as_bad_where (fragp->fr_file, fragp->fr_line,
16708 _("unsupported PC relative reference to different section"));
16709
16710 return 1;
16711 }
98aa84af
AM
16712 if (fragp != sym_frag && sym_frag->fr_address == 0)
16713 /* Assume non-extended on the first relaxation pass.
16714 The address we have calculated will be bogus if this is
16715 a forward branch to another frag, as the forward frag
16716 will have fr_address == 0. */
16717 return 0;
252b5132
RH
16718 }
16719
16720 /* In this case, we know for sure that the symbol fragment is in
98aa84af
AM
16721 the same section. If the relax_marker of the symbol fragment
16722 differs from the relax_marker of this fragment, we have not
16723 yet adjusted the symbol fragment fr_address. We want to add
252b5132
RH
16724 in STRETCH in order to get a better estimate of the address.
16725 This particularly matters because of the shift bits. */
16726 if (stretch != 0
98aa84af 16727 && sym_frag->relax_marker != fragp->relax_marker)
252b5132
RH
16728 {
16729 fragS *f;
16730
16731 /* Adjust stretch for any alignment frag. Note that if have
16732 been expanding the earlier code, the symbol may be
16733 defined in what appears to be an earlier frag. FIXME:
16734 This doesn't handle the fr_subtype field, which specifies
16735 a maximum number of bytes to skip when doing an
16736 alignment. */
98aa84af 16737 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
252b5132
RH
16738 {
16739 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16740 {
16741 if (stretch < 0)
16742 stretch = - ((- stretch)
16743 & ~ ((1 << (int) f->fr_offset) - 1));
16744 else
16745 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16746 if (stretch == 0)
16747 break;
16748 }
16749 }
16750 if (f != NULL)
16751 val += stretch;
16752 }
16753
16754 addr = fragp->fr_address + fragp->fr_fix;
16755
16756 /* The base address rules are complicated. The base address of
16757 a branch is the following instruction. The base address of a
16758 PC relative load or add is the instruction itself, but if it
16759 is in a delay slot (in which case it can not be extended) use
16760 the address of the instruction whose delay slot it is in. */
3ccad066 16761 if (pcrel_op->include_isa_bit)
252b5132
RH
16762 {
16763 addr += 2;
16764
16765 /* If we are currently assuming that this frag should be
16766 extended, then, the current address is two bytes
bdaaa2e1 16767 higher. */
252b5132
RH
16768 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16769 addr += 2;
16770
16771 /* Ignore the low bit in the target, since it will be set
16772 for a text label. */
3ccad066 16773 val &= -2;
252b5132
RH
16774 }
16775 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16776 addr -= 4;
16777 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16778 addr -= 2;
16779
3ccad066 16780 val -= addr & -(1 << pcrel_op->align_log2);
252b5132
RH
16781
16782 /* If any of the shifted bits are set, we must use an extended
16783 opcode. If the address depends on the size of this
16784 instruction, this can lead to a loop, so we arrange to always
16785 use an extended opcode. We only check this when we are in
16786 the main relaxation loop, when SEC is NULL. */
3ccad066 16787 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
252b5132
RH
16788 {
16789 fragp->fr_subtype =
16790 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16791 return 1;
16792 }
16793
16794 /* If we are about to mark a frag as extended because the value
3ccad066
RS
16795 is precisely the next value above maxtiny, then there is a
16796 chance of an infinite loop as in the following code:
252b5132
RH
16797 la $4,foo
16798 .skip 1020
16799 .align 2
16800 foo:
16801 In this case when the la is extended, foo is 0x3fc bytes
16802 away, so the la can be shrunk, but then foo is 0x400 away, so
16803 the la must be extended. To avoid this loop, we mark the
16804 frag as extended if it was small, and is about to become
3ccad066
RS
16805 extended with the next value above maxtiny. */
16806 maxtiny = mips_int_operand_max (operand);
16807 if (val == maxtiny + (1 << operand->shift)
252b5132
RH
16808 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16809 && sec == NULL)
16810 {
16811 fragp->fr_subtype =
16812 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16813 return 1;
16814 }
16815 }
16816 else if (symsec != absolute_section && sec != NULL)
16817 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16818
3ccad066 16819 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
252b5132
RH
16820}
16821
4a6a3df4
AO
16822/* Compute the length of a branch sequence, and adjust the
16823 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16824 worst-case length is computed, with UPDATE being used to indicate
16825 whether an unconditional (-1), branch-likely (+1) or regular (0)
16826 branch is to be computed. */
16827static int
17a2f251 16828relaxed_branch_length (fragS *fragp, asection *sec, int update)
4a6a3df4 16829{
b34976b6 16830 bfd_boolean toofar;
4a6a3df4
AO
16831 int length;
16832
16833 if (fragp
16834 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 16835 && !S_IS_WEAK (fragp->fr_symbol)
4a6a3df4
AO
16836 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16837 {
16838 addressT addr;
16839 offsetT val;
16840
16841 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16842
16843 addr = fragp->fr_address + fragp->fr_fix + 4;
16844
16845 val -= addr;
16846
16847 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16848 }
4a6a3df4 16849 else
c1f61bd2
MR
16850 /* If the symbol is not defined or it's in a different segment,
16851 we emit the long sequence. */
b34976b6 16852 toofar = TRUE;
4a6a3df4
AO
16853
16854 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16855 fragp->fr_subtype
66b3e8da
MR
16856 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16857 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
4a6a3df4
AO
16858 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16859 RELAX_BRANCH_LINK (fragp->fr_subtype),
16860 toofar);
16861
16862 length = 4;
16863 if (toofar)
16864 {
16865 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16866 length += 8;
16867
16868 if (mips_pic != NO_PIC)
16869 {
16870 /* Additional space for PIC loading of target address. */
16871 length += 8;
16872 if (mips_opts.isa == ISA_MIPS1)
16873 /* Additional space for $at-stabilizing nop. */
16874 length += 4;
16875 }
16876
16877 /* If branch is conditional. */
16878 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16879 length += 8;
16880 }
b34976b6 16881
4a6a3df4
AO
16882 return length;
16883}
16884
df58fc94
RS
16885/* Compute the length of a branch sequence, and adjust the
16886 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16887 worst-case length is computed, with UPDATE being used to indicate
16888 whether an unconditional (-1), or regular (0) branch is to be
16889 computed. */
16890
16891static int
16892relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16893{
16894 bfd_boolean toofar;
16895 int length;
16896
16897 if (fragp
16898 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 16899 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
16900 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16901 {
16902 addressT addr;
16903 offsetT val;
16904
16905 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16906 /* Ignore the low bit in the target, since it will be set
16907 for a text label. */
16908 if ((val & 1) != 0)
16909 --val;
16910
16911 addr = fragp->fr_address + fragp->fr_fix + 4;
16912
16913 val -= addr;
16914
16915 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16916 }
df58fc94 16917 else
c1f61bd2
MR
16918 /* If the symbol is not defined or it's in a different segment,
16919 we emit the long sequence. */
df58fc94
RS
16920 toofar = TRUE;
16921
16922 if (fragp && update
16923 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16924 fragp->fr_subtype = (toofar
16925 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16926 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16927
16928 length = 4;
16929 if (toofar)
16930 {
16931 bfd_boolean compact_known = fragp != NULL;
16932 bfd_boolean compact = FALSE;
16933 bfd_boolean uncond;
16934
16935 if (compact_known)
16936 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16937 if (fragp)
16938 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16939 else
16940 uncond = update < 0;
16941
16942 /* If label is out of range, we turn branch <br>:
16943
16944 <br> label # 4 bytes
16945 0:
16946
16947 into:
16948
16949 j label # 4 bytes
16950 nop # 2 bytes if compact && !PIC
16951 0:
16952 */
16953 if (mips_pic == NO_PIC && (!compact_known || compact))
16954 length += 2;
16955
16956 /* If assembling PIC code, we further turn:
16957
16958 j label # 4 bytes
16959
16960 into:
16961
16962 lw/ld at, %got(label)(gp) # 4 bytes
16963 d/addiu at, %lo(label) # 4 bytes
16964 jr/c at # 2 bytes
16965 */
16966 if (mips_pic != NO_PIC)
16967 length += 6;
16968
16969 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16970
16971 <brneg> 0f # 4 bytes
16972 nop # 2 bytes if !compact
16973 */
16974 if (!uncond)
16975 length += (compact_known && compact) ? 4 : 6;
16976 }
16977
16978 return length;
16979}
16980
16981/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16982 bit accordingly. */
16983
16984static int
16985relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16986{
16987 bfd_boolean toofar;
16988
df58fc94
RS
16989 if (fragp
16990 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 16991 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
16992 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16993 {
16994 addressT addr;
16995 offsetT val;
16996 int type;
16997
16998 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16999 /* Ignore the low bit in the target, since it will be set
17000 for a text label. */
17001 if ((val & 1) != 0)
17002 --val;
17003
17004 /* Assume this is a 2-byte branch. */
17005 addr = fragp->fr_address + fragp->fr_fix + 2;
17006
17007 /* We try to avoid the infinite loop by not adding 2 more bytes for
17008 long branches. */
17009
17010 val -= addr;
17011
17012 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17013 if (type == 'D')
17014 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17015 else if (type == 'E')
17016 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17017 else
17018 abort ();
17019 }
17020 else
17021 /* If the symbol is not defined or it's in a different segment,
17022 we emit a normal 32-bit branch. */
17023 toofar = TRUE;
17024
17025 if (fragp && update
17026 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17027 fragp->fr_subtype
17028 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17029 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17030
17031 if (toofar)
17032 return 4;
17033
17034 return 2;
17035}
17036
252b5132
RH
17037/* Estimate the size of a frag before relaxing. Unless this is the
17038 mips16, we are not really relaxing here, and the final size is
17039 encoded in the subtype information. For the mips16, we have to
17040 decide whether we are using an extended opcode or not. */
17041
252b5132 17042int
17a2f251 17043md_estimate_size_before_relax (fragS *fragp, asection *segtype)
252b5132 17044{
5919d012 17045 int change;
252b5132 17046
4a6a3df4
AO
17047 if (RELAX_BRANCH_P (fragp->fr_subtype))
17048 {
17049
b34976b6
AM
17050 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17051
4a6a3df4
AO
17052 return fragp->fr_var;
17053 }
17054
252b5132 17055 if (RELAX_MIPS16_P (fragp->fr_subtype))
177b4a6a
AO
17056 /* We don't want to modify the EXTENDED bit here; it might get us
17057 into infinite loops. We change it only in mips_relax_frag(). */
17058 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
252b5132 17059
df58fc94
RS
17060 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17061 {
17062 int length = 4;
17063
17064 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17065 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17066 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17067 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17068 fragp->fr_var = length;
17069
17070 return length;
17071 }
17072
252b5132 17073 if (mips_pic == NO_PIC)
5919d012 17074 change = nopic_need_relax (fragp->fr_symbol, 0);
252b5132 17075 else if (mips_pic == SVR4_PIC)
5919d012 17076 change = pic_need_relax (fragp->fr_symbol, segtype);
0a44bf69
RS
17077 else if (mips_pic == VXWORKS_PIC)
17078 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17079 change = 0;
252b5132
RH
17080 else
17081 abort ();
17082
17083 if (change)
17084 {
4d7206a2 17085 fragp->fr_subtype |= RELAX_USE_SECOND;
4d7206a2 17086 return -RELAX_FIRST (fragp->fr_subtype);
252b5132 17087 }
4d7206a2
RS
17088 else
17089 return -RELAX_SECOND (fragp->fr_subtype);
252b5132
RH
17090}
17091
17092/* This is called to see whether a reloc against a defined symbol
de7e6852 17093 should be converted into a reloc against a section. */
252b5132
RH
17094
17095int
17a2f251 17096mips_fix_adjustable (fixS *fixp)
252b5132 17097{
252b5132
RH
17098 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17099 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17100 return 0;
a161fe53 17101
252b5132
RH
17102 if (fixp->fx_addsy == NULL)
17103 return 1;
a161fe53 17104
2f0c68f2
CM
17105 /* Allow relocs used for EH tables. */
17106 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17107 return 1;
17108
de7e6852
RS
17109 /* If symbol SYM is in a mergeable section, relocations of the form
17110 SYM + 0 can usually be made section-relative. The mergeable data
17111 is then identified by the section offset rather than by the symbol.
17112
17113 However, if we're generating REL LO16 relocations, the offset is split
17114 between the LO16 and parterning high part relocation. The linker will
17115 need to recalculate the complete offset in order to correctly identify
17116 the merge data.
17117
17118 The linker has traditionally not looked for the parterning high part
17119 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17120 placed anywhere. Rather than break backwards compatibility by changing
17121 this, it seems better not to force the issue, and instead keep the
17122 original symbol. This will work with either linker behavior. */
738e5348 17123 if ((lo16_reloc_p (fixp->fx_r_type)
704803a9 17124 || reloc_needs_lo_p (fixp->fx_r_type))
de7e6852
RS
17125 && HAVE_IN_PLACE_ADDENDS
17126 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17127 return 0;
17128
ce70d90a 17129 /* There is no place to store an in-place offset for JALR relocations.
2de39019
CM
17130 Likewise an in-range offset of limited PC-relative relocations may
17131 overflow the in-place relocatable field if recalculated against the
7361da2c
AB
17132 start address of the symbol's containing section.
17133
17134 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17135 section relative to allow linker relaxations to be performed later on. */
17136 if ((HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (mips_opts.isa))
2de39019
CM
17137 && (limited_pcrel_reloc_p (fixp->fx_r_type)
17138 || jalr_reloc_p (fixp->fx_r_type)))
1180b5a4
RS
17139 return 0;
17140
b314ec0e
RS
17141 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17142 to a floating-point stub. The same is true for non-R_MIPS16_26
17143 relocations against MIPS16 functions; in this case, the stub becomes
17144 the function's canonical address.
17145
17146 Floating-point stubs are stored in unique .mips16.call.* or
17147 .mips16.fn.* sections. If a stub T for function F is in section S,
17148 the first relocation in section S must be against F; this is how the
17149 linker determines the target function. All relocations that might
17150 resolve to T must also be against F. We therefore have the following
17151 restrictions, which are given in an intentionally-redundant way:
17152
17153 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17154 symbols.
17155
17156 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17157 if that stub might be used.
17158
17159 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17160 symbols.
17161
17162 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17163 that stub might be used.
17164
17165 There is a further restriction:
17166
df58fc94
RS
17167 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17168 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17169 targets with in-place addends; the relocation field cannot
b314ec0e
RS
17170 encode the low bit.
17171
df58fc94
RS
17172 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17173 against a MIPS16 symbol. We deal with (5) by by not reducing any
17174 such relocations on REL targets.
b314ec0e
RS
17175
17176 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17177 relocation against some symbol R, no relocation against R may be
17178 reduced. (Note that this deals with (2) as well as (1) because
17179 relocations against global symbols will never be reduced on ELF
17180 targets.) This approach is a little simpler than trying to detect
17181 stub sections, and gives the "all or nothing" per-symbol consistency
17182 that we have for MIPS16 symbols. */
f3ded42a 17183 if (fixp->fx_subsy == NULL
30c09090 17184 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
df58fc94
RS
17185 || *symbol_get_tc (fixp->fx_addsy)
17186 || (HAVE_IN_PLACE_ADDENDS
17187 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17188 && jmp_reloc_p (fixp->fx_r_type))))
252b5132 17189 return 0;
a161fe53 17190
252b5132
RH
17191 return 1;
17192}
17193
17194/* Translate internal representation of relocation info to BFD target
17195 format. */
17196
17197arelent **
17a2f251 17198tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
17199{
17200 static arelent *retval[4];
17201 arelent *reloc;
17202 bfd_reloc_code_real_type code;
17203
4b0cff4e 17204 memset (retval, 0, sizeof(retval));
325801bd
TS
17205 reloc = retval[0] = XCNEW (arelent);
17206 reloc->sym_ptr_ptr = XNEW (asymbol *);
49309057 17207 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
17208 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17209
bad36eac
DJ
17210 if (fixp->fx_pcrel)
17211 {
df58fc94
RS
17212 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17213 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17214 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6 17215 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
7361da2c
AB
17216 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17217 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17218 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17219 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17220 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17221 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17222 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
bad36eac
DJ
17223
17224 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17225 Relocations want only the symbol offset. */
17226 reloc->addend = fixp->fx_addnumber + reloc->address;
bad36eac
DJ
17227 }
17228 else
17229 reloc->addend = fixp->fx_addnumber;
252b5132 17230
438c16b8
TS
17231 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17232 entry to be used in the relocation's section offset. */
17233 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
252b5132
RH
17234 {
17235 reloc->address = reloc->addend;
17236 reloc->addend = 0;
17237 }
17238
252b5132 17239 code = fixp->fx_r_type;
252b5132 17240
bad36eac 17241 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
252b5132
RH
17242 if (reloc->howto == NULL)
17243 {
17244 as_bad_where (fixp->fx_file, fixp->fx_line,
1661c76c
RS
17245 _("cannot represent %s relocation in this object file"
17246 " format"),
252b5132
RH
17247 bfd_get_reloc_code_name (code));
17248 retval[0] = NULL;
17249 }
17250
17251 return retval;
17252}
17253
17254/* Relax a machine dependent frag. This returns the amount by which
17255 the current size of the frag should change. */
17256
17257int
17a2f251 17258mips_relax_frag (asection *sec, fragS *fragp, long stretch)
252b5132 17259{
4a6a3df4
AO
17260 if (RELAX_BRANCH_P (fragp->fr_subtype))
17261 {
17262 offsetT old_var = fragp->fr_var;
b34976b6
AM
17263
17264 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
4a6a3df4
AO
17265
17266 return fragp->fr_var - old_var;
17267 }
17268
df58fc94
RS
17269 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17270 {
17271 offsetT old_var = fragp->fr_var;
17272 offsetT new_var = 4;
17273
17274 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17275 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17276 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17277 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17278 fragp->fr_var = new_var;
17279
17280 return new_var - old_var;
17281 }
17282
252b5132
RH
17283 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17284 return 0;
17285
c4e7957c 17286 if (mips16_extended_frag (fragp, NULL, stretch))
252b5132
RH
17287 {
17288 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17289 return 0;
17290 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17291 return 2;
17292 }
17293 else
17294 {
17295 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17296 return 0;
17297 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17298 return -2;
17299 }
17300
17301 return 0;
17302}
17303
17304/* Convert a machine dependent frag. */
17305
17306void
17a2f251 17307md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
252b5132 17308{
4a6a3df4
AO
17309 if (RELAX_BRANCH_P (fragp->fr_subtype))
17310 {
4d68580a 17311 char *buf;
4a6a3df4
AO
17312 unsigned long insn;
17313 expressionS exp;
17314 fixS *fixp;
b34976b6 17315
4d68580a
RS
17316 buf = fragp->fr_literal + fragp->fr_fix;
17317 insn = read_insn (buf);
b34976b6 17318
4a6a3df4
AO
17319 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17320 {
17321 /* We generate a fixup instead of applying it right now
17322 because, if there are linker relaxations, we're going to
17323 need the relocations. */
17324 exp.X_op = O_symbol;
17325 exp.X_add_symbol = fragp->fr_symbol;
17326 exp.X_add_number = fragp->fr_offset;
17327
4d68580a
RS
17328 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17329 BFD_RELOC_16_PCREL_S2);
4a6a3df4
AO
17330 fixp->fx_file = fragp->fr_file;
17331 fixp->fx_line = fragp->fr_line;
b34976b6 17332
4d68580a 17333 buf = write_insn (buf, insn);
4a6a3df4
AO
17334 }
17335 else
17336 {
17337 int i;
17338
17339 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17340 _("relaxed out-of-range branch into a jump"));
4a6a3df4
AO
17341
17342 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17343 goto uncond;
17344
17345 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17346 {
17347 /* Reverse the branch. */
17348 switch ((insn >> 28) & 0xf)
17349 {
17350 case 4:
56d438b1
CF
17351 if ((insn & 0xff000000) == 0x47000000
17352 || (insn & 0xff600000) == 0x45600000)
17353 {
17354 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17355 reversed by tweaking bit 23. */
17356 insn ^= 0x00800000;
17357 }
17358 else
17359 {
17360 /* bc[0-3][tf]l? instructions can have the condition
17361 reversed by tweaking a single TF bit, and their
17362 opcodes all have 0x4???????. */
17363 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17364 insn ^= 0x00010000;
17365 }
4a6a3df4
AO
17366 break;
17367
17368 case 0:
17369 /* bltz 0x04000000 bgez 0x04010000
54f4ddb3 17370 bltzal 0x04100000 bgezal 0x04110000 */
9c2799c2 17371 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
4a6a3df4
AO
17372 insn ^= 0x00010000;
17373 break;
b34976b6 17374
4a6a3df4
AO
17375 case 1:
17376 /* beq 0x10000000 bne 0x14000000
54f4ddb3 17377 blez 0x18000000 bgtz 0x1c000000 */
4a6a3df4
AO
17378 insn ^= 0x04000000;
17379 break;
17380
17381 default:
17382 abort ();
17383 }
17384 }
17385
17386 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17387 {
17388 /* Clear the and-link bit. */
9c2799c2 17389 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
4a6a3df4 17390
54f4ddb3
TS
17391 /* bltzal 0x04100000 bgezal 0x04110000
17392 bltzall 0x04120000 bgezall 0x04130000 */
4a6a3df4
AO
17393 insn &= ~0x00100000;
17394 }
17395
17396 /* Branch over the branch (if the branch was likely) or the
17397 full jump (not likely case). Compute the offset from the
17398 current instruction to branch to. */
17399 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17400 i = 16;
17401 else
17402 {
17403 /* How many bytes in instructions we've already emitted? */
4d68580a 17404 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17405 /* How many bytes in instructions from here to the end? */
17406 i = fragp->fr_var - i;
17407 }
17408 /* Convert to instruction count. */
17409 i >>= 2;
17410 /* Branch counts from the next instruction. */
b34976b6 17411 i--;
4a6a3df4
AO
17412 insn |= i;
17413 /* Branch over the jump. */
4d68580a 17414 buf = write_insn (buf, insn);
4a6a3df4 17415
54f4ddb3 17416 /* nop */
4d68580a 17417 buf = write_insn (buf, 0);
4a6a3df4
AO
17418
17419 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17420 {
17421 /* beql $0, $0, 2f */
17422 insn = 0x50000000;
17423 /* Compute the PC offset from the current instruction to
17424 the end of the variable frag. */
17425 /* How many bytes in instructions we've already emitted? */
4d68580a 17426 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17427 /* How many bytes in instructions from here to the end? */
17428 i = fragp->fr_var - i;
17429 /* Convert to instruction count. */
17430 i >>= 2;
17431 /* Don't decrement i, because we want to branch over the
17432 delay slot. */
4a6a3df4 17433 insn |= i;
4a6a3df4 17434
4d68580a
RS
17435 buf = write_insn (buf, insn);
17436 buf = write_insn (buf, 0);
4a6a3df4
AO
17437 }
17438
17439 uncond:
17440 if (mips_pic == NO_PIC)
17441 {
17442 /* j or jal. */
17443 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17444 ? 0x0c000000 : 0x08000000);
17445 exp.X_op = O_symbol;
17446 exp.X_add_symbol = fragp->fr_symbol;
17447 exp.X_add_number = fragp->fr_offset;
17448
4d68580a
RS
17449 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17450 FALSE, BFD_RELOC_MIPS_JMP);
4a6a3df4
AO
17451 fixp->fx_file = fragp->fr_file;
17452 fixp->fx_line = fragp->fr_line;
17453
4d68580a 17454 buf = write_insn (buf, insn);
4a6a3df4
AO
17455 }
17456 else
17457 {
66b3e8da
MR
17458 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17459
4a6a3df4 17460 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
66b3e8da
MR
17461 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17462 insn |= at << OP_SH_RT;
4a6a3df4
AO
17463 exp.X_op = O_symbol;
17464 exp.X_add_symbol = fragp->fr_symbol;
17465 exp.X_add_number = fragp->fr_offset;
17466
17467 if (fragp->fr_offset)
17468 {
17469 exp.X_add_symbol = make_expr_symbol (&exp);
17470 exp.X_add_number = 0;
17471 }
17472
4d68580a
RS
17473 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17474 FALSE, BFD_RELOC_MIPS_GOT16);
4a6a3df4
AO
17475 fixp->fx_file = fragp->fr_file;
17476 fixp->fx_line = fragp->fr_line;
17477
4d68580a 17478 buf = write_insn (buf, insn);
b34976b6 17479
4a6a3df4 17480 if (mips_opts.isa == ISA_MIPS1)
4d68580a
RS
17481 /* nop */
17482 buf = write_insn (buf, 0);
4a6a3df4
AO
17483
17484 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
66b3e8da
MR
17485 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17486 insn |= at << OP_SH_RS | at << OP_SH_RT;
4a6a3df4 17487
4d68580a
RS
17488 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17489 FALSE, BFD_RELOC_LO16);
4a6a3df4
AO
17490 fixp->fx_file = fragp->fr_file;
17491 fixp->fx_line = fragp->fr_line;
b34976b6 17492
4d68580a 17493 buf = write_insn (buf, insn);
4a6a3df4
AO
17494
17495 /* j(al)r $at. */
17496 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
66b3e8da 17497 insn = 0x0000f809;
4a6a3df4 17498 else
66b3e8da
MR
17499 insn = 0x00000008;
17500 insn |= at << OP_SH_RS;
4a6a3df4 17501
4d68580a 17502 buf = write_insn (buf, insn);
4a6a3df4
AO
17503 }
17504 }
17505
4a6a3df4 17506 fragp->fr_fix += fragp->fr_var;
4d68580a 17507 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
4a6a3df4
AO
17508 return;
17509 }
17510
df58fc94
RS
17511 /* Relax microMIPS branches. */
17512 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17513 {
4d68580a 17514 char *buf = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
17515 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17516 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17517 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
2309ddf2 17518 bfd_boolean short_ds;
df58fc94
RS
17519 unsigned long insn;
17520 expressionS exp;
17521 fixS *fixp;
17522
17523 exp.X_op = O_symbol;
17524 exp.X_add_symbol = fragp->fr_symbol;
17525 exp.X_add_number = fragp->fr_offset;
17526
17527 fragp->fr_fix += fragp->fr_var;
17528
17529 /* Handle 16-bit branches that fit or are forced to fit. */
17530 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17531 {
17532 /* We generate a fixup instead of applying it right now,
17533 because if there is linker relaxation, we're going to
17534 need the relocations. */
17535 if (type == 'D')
4d68580a 17536 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
17537 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17538 else if (type == 'E')
4d68580a 17539 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
17540 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17541 else
17542 abort ();
17543
17544 fixp->fx_file = fragp->fr_file;
17545 fixp->fx_line = fragp->fr_line;
17546
17547 /* These relocations can have an addend that won't fit in
17548 2 octets. */
17549 fixp->fx_no_overflow = 1;
17550
17551 return;
17552 }
17553
2309ddf2 17554 /* Handle 32-bit branches that fit or are forced to fit. */
df58fc94
RS
17555 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17556 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17557 {
17558 /* We generate a fixup instead of applying it right now,
17559 because if there is linker relaxation, we're going to
17560 need the relocations. */
4d68580a
RS
17561 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17562 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
17563 fixp->fx_file = fragp->fr_file;
17564 fixp->fx_line = fragp->fr_line;
17565
17566 if (type == 0)
17567 return;
17568 }
17569
17570 /* Relax 16-bit branches to 32-bit branches. */
17571 if (type != 0)
17572 {
4d68580a 17573 insn = read_compressed_insn (buf, 2);
df58fc94
RS
17574
17575 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17576 insn = 0x94000000; /* beq */
17577 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17578 {
17579 unsigned long regno;
17580
17581 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17582 regno = micromips_to_32_reg_d_map [regno];
17583 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17584 insn |= regno << MICROMIPSOP_SH_RS;
17585 }
17586 else
17587 abort ();
17588
17589 /* Nothing else to do, just write it out. */
17590 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17591 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17592 {
4d68580a
RS
17593 buf = write_compressed_insn (buf, insn, 4);
17594 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
17595 return;
17596 }
17597 }
17598 else
4d68580a 17599 insn = read_compressed_insn (buf, 4);
df58fc94
RS
17600
17601 /* Relax 32-bit branches to a sequence of instructions. */
17602 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17603 _("relaxed out-of-range branch into a jump"));
df58fc94 17604
2309ddf2
MR
17605 /* Set the short-delay-slot bit. */
17606 short_ds = al && (insn & 0x02000000) != 0;
df58fc94
RS
17607
17608 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17609 {
17610 symbolS *l;
17611
17612 /* Reverse the branch. */
17613 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17614 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17615 insn ^= 0x20000000;
17616 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17617 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17618 || (insn & 0xffe00000) == 0x40800000 /* blez */
17619 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17620 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17621 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17622 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17623 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17624 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17625 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17626 insn ^= 0x00400000;
17627 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17628 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17629 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17630 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17631 insn ^= 0x00200000;
56d438b1
CF
17632 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17633 BNZ.df */
17634 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17635 BNZ.V */
17636 insn ^= 0x00800000;
df58fc94
RS
17637 else
17638 abort ();
17639
17640 if (al)
17641 {
17642 /* Clear the and-link and short-delay-slot bits. */
17643 gas_assert ((insn & 0xfda00000) == 0x40200000);
17644
17645 /* bltzal 0x40200000 bgezal 0x40600000 */
17646 /* bltzals 0x42200000 bgezals 0x42600000 */
17647 insn &= ~0x02200000;
17648 }
17649
17650 /* Make a label at the end for use with the branch. */
17651 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17652 micromips_label_inc ();
f3ded42a 17653 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
df58fc94
RS
17654
17655 /* Refer to it. */
4d68580a
RS
17656 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17657 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
17658 fixp->fx_file = fragp->fr_file;
17659 fixp->fx_line = fragp->fr_line;
17660
17661 /* Branch over the jump. */
4d68580a 17662 buf = write_compressed_insn (buf, insn, 4);
df58fc94 17663 if (!compact)
4d68580a
RS
17664 /* nop */
17665 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
17666 }
17667
17668 if (mips_pic == NO_PIC)
17669 {
2309ddf2
MR
17670 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17671
df58fc94
RS
17672 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17673 insn = al ? jal : 0xd4000000;
17674
4d68580a
RS
17675 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17676 BFD_RELOC_MICROMIPS_JMP);
df58fc94
RS
17677 fixp->fx_file = fragp->fr_file;
17678 fixp->fx_line = fragp->fr_line;
17679
4d68580a 17680 buf = write_compressed_insn (buf, insn, 4);
df58fc94 17681 if (compact)
4d68580a
RS
17682 /* nop */
17683 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
17684 }
17685 else
17686 {
17687 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
2309ddf2
MR
17688 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17689 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
df58fc94
RS
17690
17691 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17692 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17693 insn |= at << MICROMIPSOP_SH_RT;
17694
17695 if (exp.X_add_number)
17696 {
17697 exp.X_add_symbol = make_expr_symbol (&exp);
17698 exp.X_add_number = 0;
17699 }
17700
4d68580a
RS
17701 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17702 BFD_RELOC_MICROMIPS_GOT16);
df58fc94
RS
17703 fixp->fx_file = fragp->fr_file;
17704 fixp->fx_line = fragp->fr_line;
17705
4d68580a 17706 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
17707
17708 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17709 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17710 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17711
4d68580a
RS
17712 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17713 BFD_RELOC_MICROMIPS_LO16);
df58fc94
RS
17714 fixp->fx_file = fragp->fr_file;
17715 fixp->fx_line = fragp->fr_line;
17716
4d68580a 17717 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
17718
17719 /* jr/jrc/jalr/jalrs $at */
17720 insn = al ? jalr : jr;
17721 insn |= at << MICROMIPSOP_SH_MJ;
17722
4d68580a 17723 buf = write_compressed_insn (buf, insn, 2);
df58fc94
RS
17724 }
17725
4d68580a 17726 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
17727 return;
17728 }
17729
252b5132
RH
17730 if (RELAX_MIPS16_P (fragp->fr_subtype))
17731 {
17732 int type;
3ccad066 17733 const struct mips_int_operand *operand;
252b5132 17734 offsetT val;
5c04167a
RS
17735 char *buf;
17736 unsigned int user_length, length;
252b5132 17737 unsigned long insn;
5c04167a 17738 bfd_boolean ext;
252b5132
RH
17739
17740 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 17741 operand = mips16_immed_operand (type, FALSE);
252b5132 17742
5c04167a 17743 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
5f5f22c0 17744 val = resolve_symbol_value (fragp->fr_symbol);
3ccad066 17745 if (operand->root.type == OP_PCREL)
252b5132 17746 {
3ccad066 17747 const struct mips_pcrel_operand *pcrel_op;
252b5132
RH
17748 addressT addr;
17749
3ccad066 17750 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
17751 addr = fragp->fr_address + fragp->fr_fix;
17752
17753 /* The rules for the base address of a PC relative reloc are
17754 complicated; see mips16_extended_frag. */
3ccad066 17755 if (pcrel_op->include_isa_bit)
252b5132
RH
17756 {
17757 addr += 2;
17758 if (ext)
17759 addr += 2;
17760 /* Ignore the low bit in the target, since it will be
17761 set for a text label. */
3ccad066 17762 val &= -2;
252b5132
RH
17763 }
17764 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17765 addr -= 4;
17766 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17767 addr -= 2;
17768
3ccad066 17769 addr &= -(1 << pcrel_op->align_log2);
252b5132
RH
17770 val -= addr;
17771
17772 /* Make sure the section winds up with the alignment we have
17773 assumed. */
3ccad066
RS
17774 if (operand->shift > 0)
17775 record_alignment (asec, operand->shift);
252b5132
RH
17776 }
17777
17778 if (ext
17779 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17780 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17781 as_warn_where (fragp->fr_file, fragp->fr_line,
17782 _("extended instruction in delay slot"));
17783
5c04167a 17784 buf = fragp->fr_literal + fragp->fr_fix;
252b5132 17785
4d68580a 17786 insn = read_compressed_insn (buf, 2);
5c04167a
RS
17787 if (ext)
17788 insn |= MIPS16_EXTEND;
252b5132 17789
5c04167a
RS
17790 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17791 user_length = 4;
17792 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17793 user_length = 2;
17794 else
17795 user_length = 0;
17796
43c0598f 17797 mips16_immed (fragp->fr_file, fragp->fr_line, type,
c150d1d2 17798 BFD_RELOC_UNUSED, val, user_length, &insn);
252b5132 17799
5c04167a
RS
17800 length = (ext ? 4 : 2);
17801 gas_assert (mips16_opcode_length (insn) == length);
17802 write_compressed_insn (buf, insn, length);
17803 fragp->fr_fix += length;
252b5132
RH
17804 }
17805 else
17806 {
df58fc94
RS
17807 relax_substateT subtype = fragp->fr_subtype;
17808 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17809 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
4d7206a2
RS
17810 int first, second;
17811 fixS *fixp;
252b5132 17812
df58fc94
RS
17813 first = RELAX_FIRST (subtype);
17814 second = RELAX_SECOND (subtype);
4d7206a2 17815 fixp = (fixS *) fragp->fr_opcode;
252b5132 17816
df58fc94
RS
17817 /* If the delay slot chosen does not match the size of the instruction,
17818 then emit a warning. */
17819 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17820 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17821 {
17822 relax_substateT s;
17823 const char *msg;
17824
17825 s = subtype & (RELAX_DELAY_SLOT_16BIT
17826 | RELAX_DELAY_SLOT_SIZE_FIRST
17827 | RELAX_DELAY_SLOT_SIZE_SECOND);
17828 msg = macro_warning (s);
17829 if (msg != NULL)
db9b2be4 17830 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94
RS
17831 subtype &= ~s;
17832 }
17833
584892a6 17834 /* Possibly emit a warning if we've chosen the longer option. */
df58fc94 17835 if (use_second == second_longer)
584892a6 17836 {
df58fc94
RS
17837 relax_substateT s;
17838 const char *msg;
17839
17840 s = (subtype
17841 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17842 msg = macro_warning (s);
17843 if (msg != NULL)
db9b2be4 17844 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94 17845 subtype &= ~s;
584892a6
RS
17846 }
17847
4d7206a2
RS
17848 /* Go through all the fixups for the first sequence. Disable them
17849 (by marking them as done) if we're going to use the second
17850 sequence instead. */
17851 while (fixp
17852 && fixp->fx_frag == fragp
17853 && fixp->fx_where < fragp->fr_fix - second)
17854 {
df58fc94 17855 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17856 fixp->fx_done = 1;
17857 fixp = fixp->fx_next;
17858 }
252b5132 17859
4d7206a2
RS
17860 /* Go through the fixups for the second sequence. Disable them if
17861 we're going to use the first sequence, otherwise adjust their
17862 addresses to account for the relaxation. */
17863 while (fixp && fixp->fx_frag == fragp)
17864 {
df58fc94 17865 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17866 fixp->fx_where -= first;
17867 else
17868 fixp->fx_done = 1;
17869 fixp = fixp->fx_next;
17870 }
17871
17872 /* Now modify the frag contents. */
df58fc94 17873 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17874 {
17875 char *start;
17876
17877 start = fragp->fr_literal + fragp->fr_fix - first - second;
17878 memmove (start, start + first, second);
17879 fragp->fr_fix -= first;
17880 }
17881 else
17882 fragp->fr_fix -= second;
252b5132
RH
17883 }
17884}
17885
252b5132
RH
17886/* This function is called after the relocs have been generated.
17887 We've been storing mips16 text labels as odd. Here we convert them
17888 back to even for the convenience of the debugger. */
17889
17890void
17a2f251 17891mips_frob_file_after_relocs (void)
252b5132
RH
17892{
17893 asymbol **syms;
17894 unsigned int count, i;
17895
252b5132
RH
17896 syms = bfd_get_outsymbols (stdoutput);
17897 count = bfd_get_symcount (stdoutput);
17898 for (i = 0; i < count; i++, syms++)
df58fc94
RS
17899 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17900 && ((*syms)->value & 1) != 0)
17901 {
17902 (*syms)->value &= ~1;
17903 /* If the symbol has an odd size, it was probably computed
17904 incorrectly, so adjust that as well. */
17905 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17906 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17907 }
252b5132
RH
17908}
17909
a1facbec
MR
17910/* This function is called whenever a label is defined, including fake
17911 labels instantiated off the dot special symbol. It is used when
17912 handling branch delays; if a branch has a label, we assume we cannot
17913 move it. This also bumps the value of the symbol by 1 in compressed
17914 code. */
252b5132 17915
e1b47bd5 17916static void
a1facbec 17917mips_record_label (symbolS *sym)
252b5132 17918{
a8dbcb85 17919 segment_info_type *si = seg_info (now_seg);
252b5132
RH
17920 struct insn_label_list *l;
17921
17922 if (free_insn_labels == NULL)
325801bd 17923 l = XNEW (struct insn_label_list);
252b5132
RH
17924 else
17925 {
17926 l = free_insn_labels;
17927 free_insn_labels = l->next;
17928 }
17929
17930 l->label = sym;
a8dbcb85
TS
17931 l->next = si->label_list;
17932 si->label_list = l;
a1facbec 17933}
07a53e5c 17934
a1facbec
MR
17935/* This function is called as tc_frob_label() whenever a label is defined
17936 and adds a DWARF-2 record we only want for true labels. */
17937
17938void
17939mips_define_label (symbolS *sym)
17940{
17941 mips_record_label (sym);
07a53e5c 17942 dwarf2_emit_label (sym);
252b5132 17943}
e1b47bd5
RS
17944
17945/* This function is called by tc_new_dot_label whenever a new dot symbol
17946 is defined. */
17947
17948void
17949mips_add_dot_label (symbolS *sym)
17950{
17951 mips_record_label (sym);
17952 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17953 mips_compressed_mark_label (sym);
17954}
252b5132 17955\f
351cdf24
MF
17956/* Converting ASE flags from internal to .MIPS.abiflags values. */
17957static unsigned int
17958mips_convert_ase_flags (int ase)
17959{
17960 unsigned int ext_ases = 0;
17961
17962 if (ase & ASE_DSP)
17963 ext_ases |= AFL_ASE_DSP;
17964 if (ase & ASE_DSPR2)
17965 ext_ases |= AFL_ASE_DSPR2;
8f4f9071
MF
17966 if (ase & ASE_DSPR3)
17967 ext_ases |= AFL_ASE_DSPR3;
351cdf24
MF
17968 if (ase & ASE_EVA)
17969 ext_ases |= AFL_ASE_EVA;
17970 if (ase & ASE_MCU)
17971 ext_ases |= AFL_ASE_MCU;
17972 if (ase & ASE_MDMX)
17973 ext_ases |= AFL_ASE_MDMX;
17974 if (ase & ASE_MIPS3D)
17975 ext_ases |= AFL_ASE_MIPS3D;
17976 if (ase & ASE_MT)
17977 ext_ases |= AFL_ASE_MT;
17978 if (ase & ASE_SMARTMIPS)
17979 ext_ases |= AFL_ASE_SMARTMIPS;
17980 if (ase & ASE_VIRT)
17981 ext_ases |= AFL_ASE_VIRT;
17982 if (ase & ASE_MSA)
17983 ext_ases |= AFL_ASE_MSA;
17984 if (ase & ASE_XPA)
17985 ext_ases |= AFL_ASE_XPA;
17986
17987 return ext_ases;
17988}
252b5132
RH
17989/* Some special processing for a MIPS ELF file. */
17990
17991void
17a2f251 17992mips_elf_final_processing (void)
252b5132 17993{
351cdf24
MF
17994 int fpabi;
17995 Elf_Internal_ABIFlags_v0 flags;
17996
17997 flags.version = 0;
17998 flags.isa_rev = 0;
17999 switch (file_mips_opts.isa)
18000 {
18001 case INSN_ISA1:
18002 flags.isa_level = 1;
18003 break;
18004 case INSN_ISA2:
18005 flags.isa_level = 2;
18006 break;
18007 case INSN_ISA3:
18008 flags.isa_level = 3;
18009 break;
18010 case INSN_ISA4:
18011 flags.isa_level = 4;
18012 break;
18013 case INSN_ISA5:
18014 flags.isa_level = 5;
18015 break;
18016 case INSN_ISA32:
18017 flags.isa_level = 32;
18018 flags.isa_rev = 1;
18019 break;
18020 case INSN_ISA32R2:
18021 flags.isa_level = 32;
18022 flags.isa_rev = 2;
18023 break;
18024 case INSN_ISA32R3:
18025 flags.isa_level = 32;
18026 flags.isa_rev = 3;
18027 break;
18028 case INSN_ISA32R5:
18029 flags.isa_level = 32;
18030 flags.isa_rev = 5;
18031 break;
09c14161
MF
18032 case INSN_ISA32R6:
18033 flags.isa_level = 32;
18034 flags.isa_rev = 6;
18035 break;
351cdf24
MF
18036 case INSN_ISA64:
18037 flags.isa_level = 64;
18038 flags.isa_rev = 1;
18039 break;
18040 case INSN_ISA64R2:
18041 flags.isa_level = 64;
18042 flags.isa_rev = 2;
18043 break;
18044 case INSN_ISA64R3:
18045 flags.isa_level = 64;
18046 flags.isa_rev = 3;
18047 break;
18048 case INSN_ISA64R5:
18049 flags.isa_level = 64;
18050 flags.isa_rev = 5;
18051 break;
09c14161
MF
18052 case INSN_ISA64R6:
18053 flags.isa_level = 64;
18054 flags.isa_rev = 6;
18055 break;
351cdf24
MF
18056 }
18057
18058 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18059 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18060 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18061 : (file_mips_opts.fp == 64) ? AFL_REG_64
18062 : AFL_REG_32;
18063 flags.cpr2_size = AFL_REG_NONE;
18064 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18065 Tag_GNU_MIPS_ABI_FP);
18066 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18067 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18068 if (file_ase_mips16)
18069 flags.ases |= AFL_ASE_MIPS16;
18070 if (file_ase_micromips)
18071 flags.ases |= AFL_ASE_MICROMIPS;
18072 flags.flags1 = 0;
18073 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18074 || file_mips_opts.fp == 64)
18075 && file_mips_opts.oddspreg)
18076 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18077 flags.flags2 = 0;
18078
18079 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18080 ((Elf_External_ABIFlags_v0 *)
18081 mips_flags_frag));
18082
252b5132 18083 /* Write out the register information. */
316f5878 18084 if (mips_abi != N64_ABI)
252b5132
RH
18085 {
18086 Elf32_RegInfo s;
18087
18088 s.ri_gprmask = mips_gprmask;
18089 s.ri_cprmask[0] = mips_cprmask[0];
18090 s.ri_cprmask[1] = mips_cprmask[1];
18091 s.ri_cprmask[2] = mips_cprmask[2];
18092 s.ri_cprmask[3] = mips_cprmask[3];
18093 /* The gp_value field is set by the MIPS ELF backend. */
18094
18095 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18096 ((Elf32_External_RegInfo *)
18097 mips_regmask_frag));
18098 }
18099 else
18100 {
18101 Elf64_Internal_RegInfo s;
18102
18103 s.ri_gprmask = mips_gprmask;
18104 s.ri_pad = 0;
18105 s.ri_cprmask[0] = mips_cprmask[0];
18106 s.ri_cprmask[1] = mips_cprmask[1];
18107 s.ri_cprmask[2] = mips_cprmask[2];
18108 s.ri_cprmask[3] = mips_cprmask[3];
18109 /* The gp_value field is set by the MIPS ELF backend. */
18110
18111 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18112 ((Elf64_External_RegInfo *)
18113 mips_regmask_frag));
18114 }
18115
18116 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18117 sort of BFD interface for this. */
18118 if (mips_any_noreorder)
18119 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18120 if (mips_pic != NO_PIC)
143d77c5 18121 {
8b828383 18122 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
143d77c5
EC
18123 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18124 }
18125 if (mips_abicalls)
18126 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
252b5132 18127
b015e599
AP
18128 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18129 defined at present; this might need to change in future. */
a4672219
TS
18130 if (file_ase_mips16)
18131 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
df58fc94
RS
18132 if (file_ase_micromips)
18133 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
919731af 18134 if (file_mips_opts.ase & ASE_MDMX)
deec1734 18135 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
1f25f5d3 18136
bdaaa2e1 18137 /* Set the MIPS ELF ABI flags. */
316f5878 18138 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
252b5132 18139 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
316f5878 18140 else if (mips_abi == O64_ABI)
252b5132 18141 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
316f5878 18142 else if (mips_abi == EABI_ABI)
252b5132 18143 {
bad1aba3 18144 if (file_mips_opts.gp == 64)
252b5132
RH
18145 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18146 else
18147 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18148 }
316f5878 18149 else if (mips_abi == N32_ABI)
be00bddd
TS
18150 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18151
c9914766 18152 /* Nothing to do for N64_ABI. */
252b5132
RH
18153
18154 if (mips_32bitmode)
18155 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
ad3fea08 18156
7361da2c 18157 if (mips_nan2008 == 1)
ba92f887
MR
18158 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18159
ad3fea08 18160 /* 32 bit code with 64 bit FP registers. */
351cdf24
MF
18161 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18162 Tag_GNU_MIPS_ABI_FP);
18163 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
f1c38003 18164 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
252b5132 18165}
252b5132 18166\f
beae10d5 18167typedef struct proc {
9b2f1d35
EC
18168 symbolS *func_sym;
18169 symbolS *func_end_sym;
beae10d5
KH
18170 unsigned long reg_mask;
18171 unsigned long reg_offset;
18172 unsigned long fpreg_mask;
18173 unsigned long fpreg_offset;
18174 unsigned long frame_offset;
18175 unsigned long frame_reg;
18176 unsigned long pc_reg;
18177} procS;
252b5132
RH
18178
18179static procS cur_proc;
18180static procS *cur_proc_ptr;
18181static int numprocs;
18182
df58fc94
RS
18183/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18184 as "2", and a normal nop as "0". */
18185
18186#define NOP_OPCODE_MIPS 0
18187#define NOP_OPCODE_MIPS16 1
18188#define NOP_OPCODE_MICROMIPS 2
742a56fe
RS
18189
18190char
18191mips_nop_opcode (void)
18192{
df58fc94
RS
18193 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18194 return NOP_OPCODE_MICROMIPS;
18195 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18196 return NOP_OPCODE_MIPS16;
18197 else
18198 return NOP_OPCODE_MIPS;
742a56fe
RS
18199}
18200
df58fc94
RS
18201/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18202 32-bit microMIPS NOPs here (if applicable). */
a19d8eb0 18203
0a9ef439 18204void
17a2f251 18205mips_handle_align (fragS *fragp)
a19d8eb0 18206{
df58fc94 18207 char nop_opcode;
742a56fe 18208 char *p;
c67a084a
NC
18209 int bytes, size, excess;
18210 valueT opcode;
742a56fe 18211
0a9ef439
RH
18212 if (fragp->fr_type != rs_align_code)
18213 return;
18214
742a56fe 18215 p = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
18216 nop_opcode = *p;
18217 switch (nop_opcode)
a19d8eb0 18218 {
df58fc94
RS
18219 case NOP_OPCODE_MICROMIPS:
18220 opcode = micromips_nop32_insn.insn_opcode;
18221 size = 4;
18222 break;
18223 case NOP_OPCODE_MIPS16:
c67a084a
NC
18224 opcode = mips16_nop_insn.insn_opcode;
18225 size = 2;
df58fc94
RS
18226 break;
18227 case NOP_OPCODE_MIPS:
18228 default:
c67a084a
NC
18229 opcode = nop_insn.insn_opcode;
18230 size = 4;
df58fc94 18231 break;
c67a084a 18232 }
a19d8eb0 18233
c67a084a
NC
18234 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18235 excess = bytes % size;
df58fc94
RS
18236
18237 /* Handle the leading part if we're not inserting a whole number of
18238 instructions, and make it the end of the fixed part of the frag.
18239 Try to fit in a short microMIPS NOP if applicable and possible,
18240 and use zeroes otherwise. */
18241 gas_assert (excess < 4);
18242 fragp->fr_fix += excess;
18243 switch (excess)
c67a084a 18244 {
df58fc94
RS
18245 case 3:
18246 *p++ = '\0';
18247 /* Fall through. */
18248 case 2:
833794fc 18249 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
df58fc94 18250 {
4d68580a 18251 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
df58fc94
RS
18252 break;
18253 }
18254 *p++ = '\0';
18255 /* Fall through. */
18256 case 1:
18257 *p++ = '\0';
18258 /* Fall through. */
18259 case 0:
18260 break;
a19d8eb0 18261 }
c67a084a
NC
18262
18263 md_number_to_chars (p, opcode, size);
18264 fragp->fr_var = size;
a19d8eb0
CP
18265}
18266
252b5132 18267static long
17a2f251 18268get_number (void)
252b5132
RH
18269{
18270 int negative = 0;
18271 long val = 0;
18272
18273 if (*input_line_pointer == '-')
18274 {
18275 ++input_line_pointer;
18276 negative = 1;
18277 }
3882b010 18278 if (!ISDIGIT (*input_line_pointer))
956cd1d6 18279 as_bad (_("expected simple number"));
252b5132
RH
18280 if (input_line_pointer[0] == '0')
18281 {
18282 if (input_line_pointer[1] == 'x')
18283 {
18284 input_line_pointer += 2;
3882b010 18285 while (ISXDIGIT (*input_line_pointer))
252b5132
RH
18286 {
18287 val <<= 4;
18288 val |= hex_value (*input_line_pointer++);
18289 }
18290 return negative ? -val : val;
18291 }
18292 else
18293 {
18294 ++input_line_pointer;
3882b010 18295 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18296 {
18297 val <<= 3;
18298 val |= *input_line_pointer++ - '0';
18299 }
18300 return negative ? -val : val;
18301 }
18302 }
3882b010 18303 if (!ISDIGIT (*input_line_pointer))
252b5132
RH
18304 {
18305 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18306 *input_line_pointer, *input_line_pointer);
956cd1d6 18307 as_warn (_("invalid number"));
252b5132
RH
18308 return -1;
18309 }
3882b010 18310 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18311 {
18312 val *= 10;
18313 val += *input_line_pointer++ - '0';
18314 }
18315 return negative ? -val : val;
18316}
18317
18318/* The .file directive; just like the usual .file directive, but there
c5dd6aab
DJ
18319 is an initial number which is the ECOFF file index. In the non-ECOFF
18320 case .file implies DWARF-2. */
18321
18322static void
17a2f251 18323s_mips_file (int x ATTRIBUTE_UNUSED)
c5dd6aab 18324{
ecb4347a
DJ
18325 static int first_file_directive = 0;
18326
c5dd6aab
DJ
18327 if (ECOFF_DEBUGGING)
18328 {
18329 get_number ();
18330 s_app_file (0);
18331 }
18332 else
ecb4347a
DJ
18333 {
18334 char *filename;
18335
18336 filename = dwarf2_directive_file (0);
18337
18338 /* Versions of GCC up to 3.1 start files with a ".file"
18339 directive even for stabs output. Make sure that this
18340 ".file" is handled. Note that you need a version of GCC
18341 after 3.1 in order to support DWARF-2 on MIPS. */
18342 if (filename != NULL && ! first_file_directive)
18343 {
18344 (void) new_logical_line (filename, -1);
c04f5787 18345 s_app_file_string (filename, 0);
ecb4347a
DJ
18346 }
18347 first_file_directive = 1;
18348 }
c5dd6aab
DJ
18349}
18350
18351/* The .loc directive, implying DWARF-2. */
252b5132
RH
18352
18353static void
17a2f251 18354s_mips_loc (int x ATTRIBUTE_UNUSED)
252b5132 18355{
c5dd6aab
DJ
18356 if (!ECOFF_DEBUGGING)
18357 dwarf2_directive_loc (0);
252b5132
RH
18358}
18359
252b5132
RH
18360/* The .end directive. */
18361
18362static void
17a2f251 18363s_mips_end (int x ATTRIBUTE_UNUSED)
252b5132
RH
18364{
18365 symbolS *p;
252b5132 18366
7a621144
DJ
18367 /* Following functions need their own .frame and .cprestore directives. */
18368 mips_frame_reg_valid = 0;
18369 mips_cprestore_valid = 0;
18370
252b5132
RH
18371 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18372 {
18373 p = get_symbol ();
18374 demand_empty_rest_of_line ();
18375 }
18376 else
18377 p = NULL;
18378
14949570 18379 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
18380 as_warn (_(".end not in text section"));
18381
18382 if (!cur_proc_ptr)
18383 {
1661c76c 18384 as_warn (_(".end directive without a preceding .ent directive"));
252b5132
RH
18385 demand_empty_rest_of_line ();
18386 return;
18387 }
18388
18389 if (p != NULL)
18390 {
9c2799c2 18391 gas_assert (S_GET_NAME (p));
9b2f1d35 18392 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
1661c76c 18393 as_warn (_(".end symbol does not match .ent symbol"));
ecb4347a
DJ
18394
18395 if (debug_type == DEBUG_STABS)
18396 stabs_generate_asm_endfunc (S_GET_NAME (p),
18397 S_GET_NAME (p));
252b5132
RH
18398 }
18399 else
18400 as_warn (_(".end directive missing or unknown symbol"));
18401
9b2f1d35
EC
18402 /* Create an expression to calculate the size of the function. */
18403 if (p && cur_proc_ptr)
18404 {
18405 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
325801bd 18406 expressionS *exp = XNEW (expressionS);
9b2f1d35
EC
18407
18408 obj->size = exp;
18409 exp->X_op = O_subtract;
18410 exp->X_add_symbol = symbol_temp_new_now ();
18411 exp->X_op_symbol = p;
18412 exp->X_add_number = 0;
18413
18414 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18415 }
18416
ecb4347a 18417 /* Generate a .pdr section. */
f3ded42a 18418 if (!ECOFF_DEBUGGING && mips_flag_pdr)
ecb4347a
DJ
18419 {
18420 segT saved_seg = now_seg;
18421 subsegT saved_subseg = now_subseg;
ecb4347a
DJ
18422 expressionS exp;
18423 char *fragp;
252b5132 18424
252b5132 18425#ifdef md_flush_pending_output
ecb4347a 18426 md_flush_pending_output ();
252b5132
RH
18427#endif
18428
9c2799c2 18429 gas_assert (pdr_seg);
ecb4347a 18430 subseg_set (pdr_seg, 0);
252b5132 18431
ecb4347a
DJ
18432 /* Write the symbol. */
18433 exp.X_op = O_symbol;
18434 exp.X_add_symbol = p;
18435 exp.X_add_number = 0;
18436 emit_expr (&exp, 4);
252b5132 18437
ecb4347a 18438 fragp = frag_more (7 * 4);
252b5132 18439
17a2f251
TS
18440 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18441 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18442 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18443 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18444 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18445 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18446 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
252b5132 18447
ecb4347a
DJ
18448 subseg_set (saved_seg, saved_subseg);
18449 }
252b5132
RH
18450
18451 cur_proc_ptr = NULL;
18452}
18453
18454/* The .aent and .ent directives. */
18455
18456static void
17a2f251 18457s_mips_ent (int aent)
252b5132 18458{
252b5132 18459 symbolS *symbolP;
252b5132
RH
18460
18461 symbolP = get_symbol ();
18462 if (*input_line_pointer == ',')
f9419b05 18463 ++input_line_pointer;
252b5132 18464 SKIP_WHITESPACE ();
3882b010 18465 if (ISDIGIT (*input_line_pointer)
d9a62219 18466 || *input_line_pointer == '-')
874e8986 18467 get_number ();
252b5132 18468
14949570 18469 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
1661c76c 18470 as_warn (_(".ent or .aent not in text section"));
252b5132
RH
18471
18472 if (!aent && cur_proc_ptr)
9a41af64 18473 as_warn (_("missing .end"));
252b5132
RH
18474
18475 if (!aent)
18476 {
7a621144
DJ
18477 /* This function needs its own .frame and .cprestore directives. */
18478 mips_frame_reg_valid = 0;
18479 mips_cprestore_valid = 0;
18480
252b5132
RH
18481 cur_proc_ptr = &cur_proc;
18482 memset (cur_proc_ptr, '\0', sizeof (procS));
18483
9b2f1d35 18484 cur_proc_ptr->func_sym = symbolP;
252b5132 18485
f9419b05 18486 ++numprocs;
ecb4347a
DJ
18487
18488 if (debug_type == DEBUG_STABS)
18489 stabs_generate_asm_func (S_GET_NAME (symbolP),
18490 S_GET_NAME (symbolP));
252b5132
RH
18491 }
18492
7c0fc524
MR
18493 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18494
252b5132
RH
18495 demand_empty_rest_of_line ();
18496}
18497
18498/* The .frame directive. If the mdebug section is present (IRIX 5 native)
bdaaa2e1 18499 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
252b5132 18500 s_mips_frame is used so that we can set the PDR information correctly.
bdaaa2e1 18501 We can't use the ecoff routines because they make reference to the ecoff
252b5132
RH
18502 symbol table (in the mdebug section). */
18503
18504static void
17a2f251 18505s_mips_frame (int ignore ATTRIBUTE_UNUSED)
252b5132 18506{
f3ded42a
RS
18507 if (ECOFF_DEBUGGING)
18508 s_ignore (ignore);
18509 else
ecb4347a
DJ
18510 {
18511 long val;
252b5132 18512
ecb4347a
DJ
18513 if (cur_proc_ptr == (procS *) NULL)
18514 {
18515 as_warn (_(".frame outside of .ent"));
18516 demand_empty_rest_of_line ();
18517 return;
18518 }
252b5132 18519
ecb4347a
DJ
18520 cur_proc_ptr->frame_reg = tc_get_register (1);
18521
18522 SKIP_WHITESPACE ();
18523 if (*input_line_pointer++ != ','
18524 || get_absolute_expression_and_terminator (&val) != ',')
18525 {
1661c76c 18526 as_warn (_("bad .frame directive"));
ecb4347a
DJ
18527 --input_line_pointer;
18528 demand_empty_rest_of_line ();
18529 return;
18530 }
252b5132 18531
ecb4347a
DJ
18532 cur_proc_ptr->frame_offset = val;
18533 cur_proc_ptr->pc_reg = tc_get_register (0);
252b5132 18534
252b5132 18535 demand_empty_rest_of_line ();
252b5132 18536 }
252b5132
RH
18537}
18538
bdaaa2e1
KH
18539/* The .fmask and .mask directives. If the mdebug section is present
18540 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
252b5132 18541 embedded targets, s_mips_mask is used so that we can set the PDR
bdaaa2e1 18542 information correctly. We can't use the ecoff routines because they
252b5132
RH
18543 make reference to the ecoff symbol table (in the mdebug section). */
18544
18545static void
17a2f251 18546s_mips_mask (int reg_type)
252b5132 18547{
f3ded42a
RS
18548 if (ECOFF_DEBUGGING)
18549 s_ignore (reg_type);
18550 else
252b5132 18551 {
ecb4347a 18552 long mask, off;
252b5132 18553
ecb4347a
DJ
18554 if (cur_proc_ptr == (procS *) NULL)
18555 {
18556 as_warn (_(".mask/.fmask outside of .ent"));
18557 demand_empty_rest_of_line ();
18558 return;
18559 }
252b5132 18560
ecb4347a
DJ
18561 if (get_absolute_expression_and_terminator (&mask) != ',')
18562 {
1661c76c 18563 as_warn (_("bad .mask/.fmask directive"));
ecb4347a
DJ
18564 --input_line_pointer;
18565 demand_empty_rest_of_line ();
18566 return;
18567 }
252b5132 18568
ecb4347a
DJ
18569 off = get_absolute_expression ();
18570
18571 if (reg_type == 'F')
18572 {
18573 cur_proc_ptr->fpreg_mask = mask;
18574 cur_proc_ptr->fpreg_offset = off;
18575 }
18576 else
18577 {
18578 cur_proc_ptr->reg_mask = mask;
18579 cur_proc_ptr->reg_offset = off;
18580 }
18581
18582 demand_empty_rest_of_line ();
252b5132 18583 }
252b5132
RH
18584}
18585
316f5878
RS
18586/* A table describing all the processors gas knows about. Names are
18587 matched in the order listed.
e7af610e 18588
316f5878
RS
18589 To ease comparison, please keep this table in the same order as
18590 gcc's mips_cpu_info_table[]. */
e972090a
NC
18591static const struct mips_cpu_info mips_cpu_info_table[] =
18592{
316f5878 18593 /* Entries for generic ISAs */
d16afab6
RS
18594 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18595 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18596 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18597 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18598 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18599 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18600 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
ae52f483
AB
18601 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18602 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
7361da2c 18603 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
d16afab6
RS
18604 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18605 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
ae52f483
AB
18606 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18607 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
7361da2c 18608 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
316f5878
RS
18609
18610 /* MIPS I */
d16afab6
RS
18611 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18612 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18613 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
316f5878
RS
18614
18615 /* MIPS II */
d16afab6 18616 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
316f5878
RS
18617
18618 /* MIPS III */
d16afab6
RS
18619 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18620 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18621 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18622 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18623 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18624 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18625 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18626 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18627 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18628 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18629 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18630 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18631 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
b15591bb 18632 /* ST Microelectronics Loongson 2E and 2F cores */
d16afab6
RS
18633 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18634 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
316f5878
RS
18635
18636 /* MIPS IV */
d16afab6
RS
18637 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18638 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18639 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18640 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18641 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18642 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18643 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18644 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18645 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18646 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18647 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18648 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18649 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18650 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18651 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
316f5878
RS
18652
18653 /* MIPS 32 */
d16afab6
RS
18654 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18655 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18656 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18657 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
ad3fea08
TS
18658
18659 /* MIPS 32 Release 2 */
d16afab6
RS
18660 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18661 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18662 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18663 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18664 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18665 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18666 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18667 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18668 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18669 ISA_MIPS32R2, CPU_MIPS32R2 },
18670 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18671 ISA_MIPS32R2, CPU_MIPS32R2 },
18672 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18673 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18674 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18675 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18676 /* Deprecated forms of the above. */
d16afab6
RS
18677 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18678 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18679 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
d16afab6
RS
18680 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18681 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18682 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18683 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18684 /* Deprecated forms of the above. */
d16afab6
RS
18685 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18686 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18687 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
d16afab6
RS
18688 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18689 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18690 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18691 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18692 /* Deprecated forms of the above. */
d16afab6
RS
18693 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18694 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
711eefe4 18695 /* 34Kn is a 34kc without DSP. */
d16afab6 18696 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18697 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
d16afab6
RS
18698 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18699 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18700 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18701 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18702 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18703 /* Deprecated forms of the above. */
d16afab6
RS
18704 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18705 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
30f8113a 18706 /* 1004K cores are multiprocessor versions of the 34K. */
d16afab6
RS
18707 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18708 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18709 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18710 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
77403ce9
RS
18711 /* interaptiv is the new name for 1004kf */
18712 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
c6e5c03a
RS
18713 /* M5100 family */
18714 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18715 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
bbaa46c0 18716 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
ae52f483 18717 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
32b26a03 18718
316f5878 18719 /* MIPS 64 */
d16afab6
RS
18720 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18721 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18722 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18723 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
ad3fea08 18724
c7a23324 18725 /* Broadcom SB-1 CPU core */
d16afab6 18726 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
1e85aad8 18727 /* Broadcom SB-1A CPU core */
d16afab6 18728 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
3739860c 18729
4ba154f5 18730 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
e7af610e 18731
ed163775
MR
18732 /* MIPS 64 Release 2 */
18733
967344c6 18734 /* Cavium Networks Octeon CPU core */
d16afab6
RS
18735 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18736 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18737 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
2c629856 18738 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
967344c6 18739
52b6b6b9 18740 /* RMI Xlr */
d16afab6 18741 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
52b6b6b9 18742
55a36193
MK
18743 /* Broadcom XLP.
18744 XLP is mostly like XLR, with the prominent exception that it is
18745 MIPS64R2 rather than MIPS64. */
d16afab6 18746 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
55a36193 18747
7ef0d297
AB
18748 /* i6400. */
18749 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18750
316f5878 18751 /* End marker */
d16afab6 18752 { NULL, 0, 0, 0, 0 }
316f5878 18753};
e7af610e 18754
84ea6cf2 18755
316f5878
RS
18756/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18757 with a final "000" replaced by "k". Ignore case.
e7af610e 18758
316f5878 18759 Note: this function is shared between GCC and GAS. */
c6c98b38 18760
b34976b6 18761static bfd_boolean
17a2f251 18762mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
18763{
18764 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18765 given++, canonical++;
18766
18767 return ((*given == 0 && *canonical == 0)
18768 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18769}
18770
18771
18772/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18773 CPU name. We've traditionally allowed a lot of variation here.
18774
18775 Note: this function is shared between GCC and GAS. */
18776
b34976b6 18777static bfd_boolean
17a2f251 18778mips_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
18779{
18780 /* First see if the name matches exactly, or with a final "000"
18781 turned into "k". */
18782 if (mips_strict_matching_cpu_name_p (canonical, given))
b34976b6 18783 return TRUE;
316f5878
RS
18784
18785 /* If not, try comparing based on numerical designation alone.
18786 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18787 if (TOLOWER (*given) == 'r')
18788 given++;
18789 if (!ISDIGIT (*given))
b34976b6 18790 return FALSE;
316f5878
RS
18791
18792 /* Skip over some well-known prefixes in the canonical name,
18793 hoping to find a number there too. */
18794 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18795 canonical += 2;
18796 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18797 canonical += 2;
18798 else if (TOLOWER (canonical[0]) == 'r')
18799 canonical += 1;
18800
18801 return mips_strict_matching_cpu_name_p (canonical, given);
18802}
18803
18804
18805/* Parse an option that takes the name of a processor as its argument.
18806 OPTION is the name of the option and CPU_STRING is the argument.
18807 Return the corresponding processor enumeration if the CPU_STRING is
18808 recognized, otherwise report an error and return null.
18809
18810 A similar function exists in GCC. */
e7af610e
NC
18811
18812static const struct mips_cpu_info *
17a2f251 18813mips_parse_cpu (const char *option, const char *cpu_string)
e7af610e 18814{
316f5878 18815 const struct mips_cpu_info *p;
e7af610e 18816
316f5878
RS
18817 /* 'from-abi' selects the most compatible architecture for the given
18818 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18819 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18820 version. Look first at the -mgp options, if given, otherwise base
18821 the choice on MIPS_DEFAULT_64BIT.
e7af610e 18822
316f5878
RS
18823 Treat NO_ABI like the EABIs. One reason to do this is that the
18824 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18825 architecture. This code picks MIPS I for 'mips' and MIPS III for
18826 'mips64', just as we did in the days before 'from-abi'. */
18827 if (strcasecmp (cpu_string, "from-abi") == 0)
18828 {
18829 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18830 return mips_cpu_info_from_isa (ISA_MIPS1);
18831
18832 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18833 return mips_cpu_info_from_isa (ISA_MIPS3);
18834
bad1aba3 18835 if (file_mips_opts.gp >= 0)
18836 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
0b35dfee 18837 ? ISA_MIPS1 : ISA_MIPS3);
316f5878
RS
18838
18839 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18840 ? ISA_MIPS3
18841 : ISA_MIPS1);
18842 }
18843
18844 /* 'default' has traditionally been a no-op. Probably not very useful. */
18845 if (strcasecmp (cpu_string, "default") == 0)
18846 return 0;
18847
18848 for (p = mips_cpu_info_table; p->name != 0; p++)
18849 if (mips_matching_cpu_name_p (p->name, cpu_string))
18850 return p;
18851
1661c76c 18852 as_bad (_("bad value (%s) for %s"), cpu_string, option);
316f5878 18853 return 0;
e7af610e
NC
18854}
18855
316f5878
RS
18856/* Return the canonical processor information for ISA (a member of the
18857 ISA_MIPS* enumeration). */
18858
e7af610e 18859static const struct mips_cpu_info *
17a2f251 18860mips_cpu_info_from_isa (int isa)
e7af610e
NC
18861{
18862 int i;
18863
18864 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
ad3fea08 18865 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
316f5878 18866 && isa == mips_cpu_info_table[i].isa)
e7af610e
NC
18867 return (&mips_cpu_info_table[i]);
18868
e972090a 18869 return NULL;
e7af610e 18870}
fef14a42
TS
18871
18872static const struct mips_cpu_info *
17a2f251 18873mips_cpu_info_from_arch (int arch)
fef14a42
TS
18874{
18875 int i;
18876
18877 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18878 if (arch == mips_cpu_info_table[i].cpu)
18879 return (&mips_cpu_info_table[i]);
18880
18881 return NULL;
18882}
316f5878
RS
18883\f
18884static void
17a2f251 18885show (FILE *stream, const char *string, int *col_p, int *first_p)
316f5878
RS
18886{
18887 if (*first_p)
18888 {
18889 fprintf (stream, "%24s", "");
18890 *col_p = 24;
18891 }
18892 else
18893 {
18894 fprintf (stream, ", ");
18895 *col_p += 2;
18896 }
e7af610e 18897
316f5878
RS
18898 if (*col_p + strlen (string) > 72)
18899 {
18900 fprintf (stream, "\n%24s", "");
18901 *col_p = 24;
18902 }
18903
18904 fprintf (stream, "%s", string);
18905 *col_p += strlen (string);
18906
18907 *first_p = 0;
18908}
18909
18910void
17a2f251 18911md_show_usage (FILE *stream)
e7af610e 18912{
316f5878
RS
18913 int column, first;
18914 size_t i;
18915
18916 fprintf (stream, _("\
18917MIPS options:\n\
316f5878
RS
18918-EB generate big endian output\n\
18919-EL generate little endian output\n\
18920-g, -g2 do not remove unneeded NOPs or swap branches\n\
18921-G NUM allow referencing objects up to NUM bytes\n\
18922 implicitly with the gp register [default 8]\n"));
18923 fprintf (stream, _("\
18924-mips1 generate MIPS ISA I instructions\n\
18925-mips2 generate MIPS ISA II instructions\n\
18926-mips3 generate MIPS ISA III instructions\n\
18927-mips4 generate MIPS ISA IV instructions\n\
18928-mips5 generate MIPS ISA V instructions\n\
18929-mips32 generate MIPS32 ISA instructions\n\
af7ee8bf 18930-mips32r2 generate MIPS32 release 2 ISA instructions\n\
ae52f483
AB
18931-mips32r3 generate MIPS32 release 3 ISA instructions\n\
18932-mips32r5 generate MIPS32 release 5 ISA instructions\n\
7361da2c 18933-mips32r6 generate MIPS32 release 6 ISA instructions\n\
316f5878 18934-mips64 generate MIPS64 ISA instructions\n\
5f74bc13 18935-mips64r2 generate MIPS64 release 2 ISA instructions\n\
ae52f483
AB
18936-mips64r3 generate MIPS64 release 3 ISA instructions\n\
18937-mips64r5 generate MIPS64 release 5 ISA instructions\n\
7361da2c 18938-mips64r6 generate MIPS64 release 6 ISA instructions\n\
316f5878
RS
18939-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18940
18941 first = 1;
e7af610e
NC
18942
18943 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
316f5878
RS
18944 show (stream, mips_cpu_info_table[i].name, &column, &first);
18945 show (stream, "from-abi", &column, &first);
18946 fputc ('\n', stream);
e7af610e 18947
316f5878
RS
18948 fprintf (stream, _("\
18949-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18950-no-mCPU don't generate code specific to CPU.\n\
18951 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18952
18953 first = 1;
18954
18955 show (stream, "3900", &column, &first);
18956 show (stream, "4010", &column, &first);
18957 show (stream, "4100", &column, &first);
18958 show (stream, "4650", &column, &first);
18959 fputc ('\n', stream);
18960
18961 fprintf (stream, _("\
18962-mips16 generate mips16 instructions\n\
18963-no-mips16 do not generate mips16 instructions\n"));
18964 fprintf (stream, _("\
df58fc94
RS
18965-mmicromips generate microMIPS instructions\n\
18966-mno-micromips do not generate microMIPS instructions\n"));
18967 fprintf (stream, _("\
e16bfa71 18968-msmartmips generate smartmips instructions\n\
3739860c 18969-mno-smartmips do not generate smartmips instructions\n"));
e16bfa71 18970 fprintf (stream, _("\
74cd071d
CF
18971-mdsp generate DSP instructions\n\
18972-mno-dsp do not generate DSP instructions\n"));
18973 fprintf (stream, _("\
8b082fb1
TS
18974-mdspr2 generate DSP R2 instructions\n\
18975-mno-dspr2 do not generate DSP R2 instructions\n"));
18976 fprintf (stream, _("\
8f4f9071
MF
18977-mdspr3 generate DSP R3 instructions\n\
18978-mno-dspr3 do not generate DSP R3 instructions\n"));
18979 fprintf (stream, _("\
ef2e4d86
CF
18980-mmt generate MT instructions\n\
18981-mno-mt do not generate MT instructions\n"));
18982 fprintf (stream, _("\
dec0624d
MR
18983-mmcu generate MCU instructions\n\
18984-mno-mcu do not generate MCU instructions\n"));
18985 fprintf (stream, _("\
56d438b1
CF
18986-mmsa generate MSA instructions\n\
18987-mno-msa do not generate MSA instructions\n"));
18988 fprintf (stream, _("\
7d64c587
AB
18989-mxpa generate eXtended Physical Address (XPA) instructions\n\
18990-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
18991 fprintf (stream, _("\
b015e599
AP
18992-mvirt generate Virtualization instructions\n\
18993-mno-virt do not generate Virtualization instructions\n"));
18994 fprintf (stream, _("\
833794fc
MR
18995-minsn32 only generate 32-bit microMIPS instructions\n\
18996-mno-insn32 generate all microMIPS instructions\n"));
18997 fprintf (stream, _("\
c67a084a
NC
18998-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18999-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
d766e8ec 19000-mfix-vr4120 work around certain VR4120 errata\n\
7d8e00cf 19001-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
6a32d874 19002-mfix-24k insert a nop after ERET and DERET instructions\n\
d954098f 19003-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
316f5878
RS
19004-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19005-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
aed1a261 19006-msym32 assume all symbols have 32-bit values\n\
316f5878
RS
19007-O0 remove unneeded NOPs, do not swap branches\n\
19008-O remove unneeded NOPs and swap branches\n\
316f5878
RS
19009--trap, --no-break trap exception on div by 0 and mult overflow\n\
19010--break, --no-trap break exception on div by 0 and mult overflow\n"));
037b32b9
AN
19011 fprintf (stream, _("\
19012-mhard-float allow floating-point instructions\n\
19013-msoft-float do not allow floating-point instructions\n\
19014-msingle-float only allow 32-bit floating-point operations\n\
19015-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
3bf0dbfb 19016--[no-]construct-floats [dis]allow floating point values to be constructed\n\
ba92f887
MR
19017--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19018-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19019
19020 first = 1;
19021
19022 show (stream, "legacy", &column, &first);
19023 show (stream, "2008", &column, &first);
19024
19025 fputc ('\n', stream);
19026
316f5878
RS
19027 fprintf (stream, _("\
19028-KPIC, -call_shared generate SVR4 position independent code\n\
861fb55a 19029-call_nonpic generate non-PIC code that can operate with DSOs\n\
0c000745 19030-mvxworks-pic generate VxWorks position independent code\n\
861fb55a 19031-non_shared do not generate code that can operate with DSOs\n\
316f5878 19032-xgot assume a 32 bit GOT\n\
dcd410fe 19033-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
bbe506e8 19034-mshared, -mno-shared disable/enable .cpload optimization for\n\
d821e36b 19035 position dependent (non shared) code\n\
316f5878
RS
19036-mabi=ABI create ABI conformant object file for:\n"));
19037
19038 first = 1;
19039
19040 show (stream, "32", &column, &first);
19041 show (stream, "o64", &column, &first);
19042 show (stream, "n32", &column, &first);
19043 show (stream, "64", &column, &first);
19044 show (stream, "eabi", &column, &first);
19045
19046 fputc ('\n', stream);
19047
19048 fprintf (stream, _("\
19049-32 create o32 ABI object file (default)\n\
19050-n32 create n32 ABI object file\n\
19051-64 create 64 ABI object file\n"));
e7af610e 19052}
14e777e0 19053
1575952e 19054#ifdef TE_IRIX
14e777e0 19055enum dwarf2_format
413a266c 19056mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
14e777e0 19057{
369943fe 19058 if (HAVE_64BIT_SYMBOLS)
1575952e 19059 return dwarf2_format_64bit_irix;
14e777e0
KB
19060 else
19061 return dwarf2_format_32bit;
19062}
1575952e 19063#endif
73369e65
EC
19064
19065int
19066mips_dwarf2_addr_size (void)
19067{
6b6b3450 19068 if (HAVE_64BIT_OBJECTS)
73369e65 19069 return 8;
73369e65
EC
19070 else
19071 return 4;
19072}
5862107c
EC
19073
19074/* Standard calling conventions leave the CFA at SP on entry. */
19075void
19076mips_cfi_frame_initial_instructions (void)
19077{
19078 cfi_add_CFA_def_cfa_register (SP);
19079}
19080
707bfff6
TS
19081int
19082tc_mips_regname_to_dw2regnum (char *regname)
19083{
19084 unsigned int regnum = -1;
19085 unsigned int reg;
19086
19087 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19088 regnum = reg;
19089
19090 return regnum;
19091}
263b2574 19092
19093/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19094 Given a symbolic attribute NAME, return the proper integer value.
19095 Returns -1 if the attribute is not known. */
19096
19097int
19098mips_convert_symbolic_attribute (const char *name)
19099{
19100 static const struct
19101 {
19102 const char * name;
19103 const int tag;
19104 }
19105 attribute_table[] =
19106 {
19107#define T(tag) {#tag, tag}
19108 T (Tag_GNU_MIPS_ABI_FP),
19109 T (Tag_GNU_MIPS_ABI_MSA),
19110#undef T
19111 };
19112 unsigned int i;
19113
19114 if (name == NULL)
19115 return -1;
19116
19117 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19118 if (streq (name, attribute_table[i].name))
19119 return attribute_table[i].tag;
19120
19121 return -1;
19122}
fd5c94ab
RS
19123
19124void
19125md_mips_end (void)
19126{
351cdf24
MF
19127 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19128
fd5c94ab
RS
19129 mips_emit_delays ();
19130 if (cur_proc_ptr)
19131 as_warn (_("missing .end at end of assembly"));
919731af 19132
19133 /* Just in case no code was emitted, do the consistency check. */
19134 file_mips_check_options ();
351cdf24
MF
19135
19136 /* Set a floating-point ABI if the user did not. */
19137 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19138 {
19139 /* Perform consistency checks on the floating-point ABI. */
19140 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19141 Tag_GNU_MIPS_ABI_FP);
19142 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19143 check_fpabi (fpabi);
19144 }
19145 else
19146 {
19147 /* Soft-float gets precedence over single-float, the two options should
19148 not be used together so this should not matter. */
19149 if (file_mips_opts.soft_float == 1)
19150 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19151 /* Single-float gets precedence over all double_float cases. */
19152 else if (file_mips_opts.single_float == 1)
19153 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19154 else
19155 {
19156 switch (file_mips_opts.fp)
19157 {
19158 case 32:
19159 if (file_mips_opts.gp == 32)
19160 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19161 break;
19162 case 0:
19163 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19164 break;
19165 case 64:
19166 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19167 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19168 else if (file_mips_opts.gp == 32)
19169 fpabi = Val_GNU_MIPS_ABI_FP_64;
19170 else
19171 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19172 break;
19173 }
19174 }
19175
19176 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19177 Tag_GNU_MIPS_ABI_FP, fpabi);
19178 }
fd5c94ab 19179}
2f0c68f2
CM
19180
19181/* Returns the relocation type required for a particular CFI encoding. */
19182
19183bfd_reloc_code_real_type
19184mips_cfi_reloc_for_encoding (int encoding)
19185{
19186 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19187 return BFD_RELOC_32_PCREL;
19188 else return BFD_RELOC_NONE;
19189}
This page took 2.958733 seconds and 4 git commands to generate.