* config/tc-xtensa.c (xtensa_post_relax_hook): Generate literal tables
[deliverable/binutils-gdb.git] / gas / config / tc-xtensa.c
CommitLineData
e0001a05 1/* tc-xtensa.c -- Assemble Xtensa instructions.
d47d412e 2 Copyright 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
4b4da160
NC
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
e0001a05
NC
20
21#include <string.h>
43cd72b9 22#include <limits.h>
e0001a05
NC
23#include "as.h"
24#include "sb.h"
25#include "safe-ctype.h"
26#include "tc-xtensa.h"
27#include "frags.h"
28#include "subsegs.h"
29#include "xtensa-relax.h"
30#include "xtensa-istack.h"
cda2eb9e 31#include "dwarf2dbg.h"
e0001a05
NC
32#include "struc-symbol.h"
33#include "xtensa-config.h"
34
35#ifndef uint32
36#define uint32 unsigned int
37#endif
38#ifndef int32
39#define int32 signed int
40#endif
41
42/* Notes:
43
e0001a05
NC
44 Naming conventions (used somewhat inconsistently):
45 The xtensa_ functions are exported
46 The xg_ functions are internal
47
48 We also have a couple of different extensibility mechanisms.
49 1) The idiom replacement:
50 This is used when a line is first parsed to
51 replace an instruction pattern with another instruction
52 It is currently limited to replacements of instructions
53 with constant operands.
54 2) The xtensa-relax.c mechanism that has stronger instruction
55 replacement patterns. When an instruction's immediate field
56 does not fit the next instruction sequence is attempted.
57 In addition, "narrow" opcodes are supported this way. */
58
59
60/* Define characters with special meanings to GAS. */
61const char comment_chars[] = "#";
62const char line_comment_chars[] = "#";
63const char line_separator_chars[] = ";";
64const char EXP_CHARS[] = "eE";
65const char FLT_CHARS[] = "rRsSfFdDxXpP";
66
67
43cd72b9
BW
68/* Flags to indicate whether the hardware supports the density and
69 absolute literals options. */
e0001a05 70
e0001a05 71bfd_boolean density_supported = XCHAL_HAVE_DENSITY;
43cd72b9
BW
72bfd_boolean absolute_literals_supported = XSHAL_USE_ABSOLUTE_LITERALS;
73
74/* Maximum width we would pad an unreachable frag to get alignment. */
75#define UNREACHABLE_MAX_WIDTH 8
e0001a05 76
43cd72b9
BW
77static vliw_insn cur_vinsn;
78
d77b99c9 79unsigned xtensa_fetch_width = XCHAL_INST_FETCH_WIDTH;
43cd72b9
BW
80
81static enum debug_info_type xt_saved_debug_type = DEBUG_NONE;
82
83/* Some functions are only valid in the front end. This variable
c138bc38 84 allows us to assert that we haven't crossed over into the
43cd72b9
BW
85 back end. */
86static bfd_boolean past_xtensa_end = FALSE;
e0001a05
NC
87
88/* Flags for properties of the last instruction in a segment. */
89#define FLAG_IS_A0_WRITER 0x1
90#define FLAG_IS_BAD_LOOPEND 0x2
91
92
93/* We define a special segment names ".literal" to place literals
94 into. The .fini and .init sections are special because they
95 contain code that is moved together by the linker. We give them
96 their own special .fini.literal and .init.literal sections. */
97
98#define LITERAL_SECTION_NAME xtensa_section_rename (".literal")
43cd72b9 99#define LIT4_SECTION_NAME xtensa_section_rename (".lit4")
e0001a05
NC
100#define FINI_SECTION_NAME xtensa_section_rename (".fini")
101#define INIT_SECTION_NAME xtensa_section_rename (".init")
102#define FINI_LITERAL_SECTION_NAME xtensa_section_rename (".fini.literal")
103#define INIT_LITERAL_SECTION_NAME xtensa_section_rename (".init.literal")
104
105
43cd72b9 106/* This type is used for the directive_stack to keep track of the
e0001a05
NC
107 state of the literal collection pools. */
108
109typedef struct lit_state_struct
110{
111 const char *lit_seg_name;
43cd72b9 112 const char *lit4_seg_name;
e0001a05
NC
113 const char *init_lit_seg_name;
114 const char *fini_lit_seg_name;
115 segT lit_seg;
43cd72b9 116 segT lit4_seg;
e0001a05
NC
117 segT init_lit_seg;
118 segT fini_lit_seg;
119} lit_state;
120
121static lit_state default_lit_sections;
122
123
124/* We keep lists of literal segments. The seg_list type is the node
125 for such a list. The *_literal_head locals are the heads of the
126 various lists. All of these lists have a dummy node at the start. */
127
128typedef struct seg_list_struct
129{
130 struct seg_list_struct *next;
131 segT seg;
132} seg_list;
133
134static seg_list literal_head_h;
135static seg_list *literal_head = &literal_head_h;
136static seg_list init_literal_head_h;
137static seg_list *init_literal_head = &init_literal_head_h;
138static seg_list fini_literal_head_h;
139static seg_list *fini_literal_head = &fini_literal_head_h;
140
141
82e7541d
BW
142/* Lists of symbols. We keep a list of symbols that label the current
143 instruction, so that we can adjust the symbols when inserting alignment
144 for various instructions. We also keep a list of all the symbols on
145 literals, so that we can fix up those symbols when the literals are
146 later moved into the text sections. */
147
148typedef struct sym_list_struct
149{
150 struct sym_list_struct *next;
151 symbolS *sym;
152} sym_list;
153
154static sym_list *insn_labels = NULL;
155static sym_list *free_insn_labels = NULL;
156static sym_list *saved_insn_labels = NULL;
157
158static sym_list *literal_syms;
159
160
43cd72b9
BW
161/* Flags to determine whether to prefer const16 or l32r
162 if both options are available. */
163int prefer_const16 = 0;
164int prefer_l32r = 0;
165
e0001a05
NC
166/* Global flag to indicate when we are emitting literals. */
167int generating_literals = 0;
168
43cd72b9
BW
169/* The following PROPERTY table definitions are copied from
170 <elf/xtensa.h> and must be kept in sync with the code there. */
171
172/* Flags in the property tables to specify whether blocks of memory
173 are literals, instructions, data, or unreachable. For
174 instructions, blocks that begin loop targets and branch targets are
175 designated. Blocks that do not allow density, instruction
176 reordering or transformation are also specified. Finally, for
177 branch targets, branch target alignment priority is included.
178 Alignment of the next block is specified in the current block
179 and the size of the current block does not include any fill required
180 to align to the next block. */
181
182#define XTENSA_PROP_LITERAL 0x00000001
183#define XTENSA_PROP_INSN 0x00000002
184#define XTENSA_PROP_DATA 0x00000004
185#define XTENSA_PROP_UNREACHABLE 0x00000008
186/* Instruction only properties at beginning of code. */
187#define XTENSA_PROP_INSN_LOOP_TARGET 0x00000010
188#define XTENSA_PROP_INSN_BRANCH_TARGET 0x00000020
189/* Instruction only properties about code. */
190#define XTENSA_PROP_INSN_NO_DENSITY 0x00000040
191#define XTENSA_PROP_INSN_NO_REORDER 0x00000080
192#define XTENSA_PROP_INSN_NO_TRANSFORM 0x00000100
193
194/* Branch target alignment information. This transmits information
195 to the linker optimization about the priority of aligning a
196 particular block for branch target alignment: None, low priority,
197 high priority, or required. These only need to be checked in
198 instruction blocks marked as XTENSA_PROP_INSN_BRANCH_TARGET.
199 Common usage is
200
201 switch (GET_XTENSA_PROP_BT_ALIGN (flags))
202 case XTENSA_PROP_BT_ALIGN_NONE:
203 case XTENSA_PROP_BT_ALIGN_LOW:
204 case XTENSA_PROP_BT_ALIGN_HIGH:
205 case XTENSA_PROP_BT_ALIGN_REQUIRE:
206*/
207#define XTENSA_PROP_BT_ALIGN_MASK 0x00000600
208
209/* No branch target alignment. */
210#define XTENSA_PROP_BT_ALIGN_NONE 0x0
211/* Low priority branch target alignment. */
212#define XTENSA_PROP_BT_ALIGN_LOW 0x1
213/* High priority branch target alignment. */
214#define XTENSA_PROP_BT_ALIGN_HIGH 0x2
215/* Required branch target alignment. */
216#define XTENSA_PROP_BT_ALIGN_REQUIRE 0x3
217
218#define GET_XTENSA_PROP_BT_ALIGN(flag) \
219 (((unsigned) ((flag) & (XTENSA_PROP_BT_ALIGN_MASK))) >> 9)
220#define SET_XTENSA_PROP_BT_ALIGN(flag, align) \
221 (((flag) & (~XTENSA_PROP_BT_ALIGN_MASK)) | \
222 (((align) << 9) & XTENSA_PROP_BT_ALIGN_MASK))
223
224
225/* Alignment is specified in the block BEFORE the one that needs
226 alignment. Up to 5 bits. Use GET_XTENSA_PROP_ALIGNMENT(flags) to
227 get the required alignment specified as a power of 2. Use
228 SET_XTENSA_PROP_ALIGNMENT(flags, pow2) to set the required
229 alignment. Be careful of side effects since the SET will evaluate
230 flags twice. Also, note that the SIZE of a block in the property
231 table does not include the alignment size, so the alignment fill
232 must be calculated to determine if two blocks are contiguous.
233 TEXT_ALIGN is not currently implemented but is a placeholder for a
234 possible future implementation. */
235
236#define XTENSA_PROP_ALIGN 0x00000800
237
238#define XTENSA_PROP_ALIGNMENT_MASK 0x0001f000
239
240#define GET_XTENSA_PROP_ALIGNMENT(flag) \
241 (((unsigned) ((flag) & (XTENSA_PROP_ALIGNMENT_MASK))) >> 12)
242#define SET_XTENSA_PROP_ALIGNMENT(flag, align) \
243 (((flag) & (~XTENSA_PROP_ALIGNMENT_MASK)) | \
244 (((align) << 12) & XTENSA_PROP_ALIGNMENT_MASK))
245
246#define XTENSA_PROP_INSN_ABSLIT 0x00020000
247
248
249/* Structure for saving instruction and alignment per-fragment data
250 that will be written to the object file. This structure is
251 equivalent to the actual data that will be written out to the file
252 but is easier to use. We provide a conversion to file flags
253 in frag_flags_to_number. */
254
255typedef struct frag_flags_struct frag_flags;
256
257struct frag_flags_struct
258{
259 /* is_literal should only be used after xtensa_move_literals.
260 If you need to check if you are generating a literal fragment,
261 then use the generating_literals global. */
262
263 unsigned is_literal : 1;
264 unsigned is_insn : 1;
265 unsigned is_data : 1;
266 unsigned is_unreachable : 1;
267
268 struct
269 {
270 unsigned is_loop_target : 1;
271 unsigned is_branch_target : 1; /* Branch targets have a priority. */
272 unsigned bt_align_priority : 2;
273
274 unsigned is_no_density : 1;
275 /* no_longcalls flag does not need to be placed in the object file. */
276 /* is_specific_opcode implies no_transform. */
277 unsigned is_no_transform : 1;
278
279 unsigned is_no_reorder : 1;
280
281 /* Uses absolute literal addressing for l32r. */
282 unsigned is_abslit : 1;
283 } insn;
284 unsigned is_align : 1;
285 unsigned alignment : 5;
286};
287
288
289/* Structure for saving information about a block of property data
290 for frags that have the same flags. */
291struct xtensa_block_info_struct
292{
293 segT sec;
294 bfd_vma offset;
295 size_t size;
296 frag_flags flags;
297 struct xtensa_block_info_struct *next;
298};
299
e0001a05
NC
300
301/* Structure for saving the current state before emitting literals. */
302typedef struct emit_state_struct
303{
304 const char *name;
305 segT now_seg;
306 subsegT now_subseg;
307 int generating_literals;
308} emit_state;
309
310
43cd72b9
BW
311/* Opcode placement information */
312
313typedef unsigned long long bitfield;
314#define bit_is_set(bit, bf) ((bf) & (0x01ll << (bit)))
315#define set_bit(bit, bf) ((bf) |= (0x01ll << (bit)))
316#define clear_bit(bit, bf) ((bf) &= ~(0x01ll << (bit)))
317
318#define MAX_FORMATS 32
319
320typedef struct op_placement_info_struct
321{
322 int num_formats;
323 /* A number describing how restrictive the issue is for this
324 opcode. For example, an opcode that fits lots of different
c138bc38 325 formats has a high freedom, as does an opcode that fits
43cd72b9 326 only one format but many slots in that format. The most
c138bc38 327 restrictive is the opcode that fits only one slot in one
43cd72b9
BW
328 format. */
329 int issuef;
43cd72b9 330 xtensa_format narrowest;
43cd72b9 331 char narrowest_size;
b2d179be 332 char narrowest_slot;
43cd72b9
BW
333
334 /* formats is a bitfield with the Nth bit set
335 if the opcode fits in the Nth xtensa_format. */
336 bitfield formats;
337
338 /* slots[N]'s Mth bit is set if the op fits in the
339 Mth slot of the Nth xtensa_format. */
340 bitfield slots[MAX_FORMATS];
341
342 /* A count of the number of slots in a given format
343 an op can fit (i.e., the bitcount of the slot field above). */
344 char slots_in_format[MAX_FORMATS];
345
346} op_placement_info, *op_placement_info_table;
347
348op_placement_info_table op_placement_table;
349
350
351/* Extra expression types. */
352
353#define O_pltrel O_md1 /* like O_symbol but use a PLT reloc */
354#define O_hi16 O_md2 /* use high 16 bits of symbolic value */
355#define O_lo16 O_md3 /* use low 16 bits of symbolic value */
356
357
e0001a05
NC
358/* Directives. */
359
360typedef enum
361{
362 directive_none = 0,
363 directive_literal,
364 directive_density,
43cd72b9 365 directive_transform,
e0001a05
NC
366 directive_freeregs,
367 directive_longcalls,
43cd72b9
BW
368 directive_literal_prefix,
369 directive_schedule,
370 directive_absolute_literals,
371 directive_last_directive
e0001a05
NC
372} directiveE;
373
374typedef struct
375{
376 const char *name;
377 bfd_boolean can_be_negated;
378} directive_infoS;
379
380const directive_infoS directive_info[] =
381{
43cd72b9
BW
382 { "none", FALSE },
383 { "literal", FALSE },
384 { "density", TRUE },
385 { "transform", TRUE },
386 { "freeregs", FALSE },
387 { "longcalls", TRUE },
388 { "literal_prefix", FALSE },
389 { "schedule", TRUE },
390 { "absolute-literals", TRUE }
e0001a05
NC
391};
392
393bfd_boolean directive_state[] =
394{
395 FALSE, /* none */
396 FALSE, /* literal */
43cd72b9 397#if !XCHAL_HAVE_DENSITY
e0001a05
NC
398 FALSE, /* density */
399#else
400 TRUE, /* density */
401#endif
43cd72b9 402 TRUE, /* transform */
e0001a05
NC
403 FALSE, /* freeregs */
404 FALSE, /* longcalls */
43cd72b9
BW
405 FALSE, /* literal_prefix */
406 TRUE, /* schedule */
407#if XSHAL_USE_ABSOLUTE_LITERALS
408 TRUE /* absolute_literals */
409#else
410 FALSE /* absolute_literals */
411#endif
e0001a05
NC
412};
413
e0001a05
NC
414
415/* Directive functions. */
416
7fa3d080
BW
417static void xtensa_begin_directive (int);
418static void xtensa_end_directive (int);
7fa3d080
BW
419static void xtensa_literal_prefix (char const *, int);
420static void xtensa_literal_position (int);
421static void xtensa_literal_pseudo (int);
422static void xtensa_frequency_pseudo (int);
423static void xtensa_elf_cons (int);
e0001a05 424
7fa3d080 425/* Parsing and Idiom Translation. */
e0001a05 426
7fa3d080 427static bfd_reloc_code_real_type xtensa_elf_suffix (char **, expressionS *);
e0001a05 428
e0001a05
NC
429/* Various Other Internal Functions. */
430
84b08ed9
BW
431extern bfd_boolean xg_is_single_relaxable_insn (TInsn *, TInsn *, bfd_boolean);
432static bfd_boolean xg_build_to_insn (TInsn *, TInsn *, BuildInstr *);
7fa3d080
BW
433static void xtensa_mark_literal_pool_location (void);
434static addressT get_expanded_loop_offset (xtensa_opcode);
435static fragS *get_literal_pool_location (segT);
436static void set_literal_pool_location (segT, fragS *);
437static void xtensa_set_frag_assembly_state (fragS *);
438static void finish_vinsn (vliw_insn *);
439static bfd_boolean emit_single_op (TInsn *);
34e41783 440static int total_frag_text_expansion (fragS *);
e0001a05
NC
441
442/* Alignment Functions. */
443
d77b99c9
BW
444static int get_text_align_power (unsigned);
445static int get_text_align_max_fill_size (int, bfd_boolean, bfd_boolean);
664df4e4 446static int branch_align_power (segT);
e0001a05
NC
447
448/* Helpers for xtensa_relax_frag(). */
449
7fa3d080 450static long relax_frag_add_nop (fragS *);
e0001a05 451
b08b5071 452/* Accessors for additional per-subsegment information. */
e0001a05 453
7fa3d080
BW
454static unsigned get_last_insn_flags (segT, subsegT);
455static void set_last_insn_flags (segT, subsegT, unsigned, bfd_boolean);
b08b5071
BW
456static float get_subseg_total_freq (segT, subsegT);
457static float get_subseg_target_freq (segT, subsegT);
458static void set_subseg_freq (segT, subsegT, float, float);
e0001a05
NC
459
460/* Segment list functions. */
461
7fa3d080
BW
462static void xtensa_move_literals (void);
463static void xtensa_reorder_segments (void);
464static void xtensa_switch_to_literal_fragment (emit_state *);
465static void xtensa_switch_to_non_abs_literal_fragment (emit_state *);
466static void xtensa_switch_section_emit_state (emit_state *, segT, subsegT);
467static void xtensa_restore_emit_state (emit_state *);
e0001a05 468static void cache_literal_section
7fa3d080 469 (seg_list *, const char *, segT *, bfd_boolean);
e0001a05 470
e0001a05 471/* Import from elf32-xtensa.c in BFD library. */
43cd72b9 472
7fa3d080 473extern char *xtensa_get_property_section_name (asection *, const char *);
e0001a05 474
43cd72b9
BW
475/* op_placement_info functions. */
476
7fa3d080
BW
477static void init_op_placement_info_table (void);
478extern bfd_boolean opcode_fits_format_slot (xtensa_opcode, xtensa_format, int);
479static int xg_get_single_size (xtensa_opcode);
480static xtensa_format xg_get_single_format (xtensa_opcode);
b2d179be 481static int xg_get_single_slot (xtensa_opcode);
43cd72b9 482
e0001a05 483/* TInsn and IStack functions. */
43cd72b9 484
7fa3d080
BW
485static bfd_boolean tinsn_has_symbolic_operands (const TInsn *);
486static bfd_boolean tinsn_has_invalid_symbolic_operands (const TInsn *);
487static bfd_boolean tinsn_has_complex_operands (const TInsn *);
488static bfd_boolean tinsn_to_insnbuf (TInsn *, xtensa_insnbuf);
489static bfd_boolean tinsn_check_arguments (const TInsn *);
490static void tinsn_from_chars (TInsn *, char *, int);
491static void tinsn_immed_from_frag (TInsn *, fragS *, int);
492static int get_num_stack_text_bytes (IStack *);
493static int get_num_stack_literal_bytes (IStack *);
e0001a05 494
43cd72b9
BW
495/* vliw_insn functions. */
496
7fa3d080
BW
497static void xg_init_vinsn (vliw_insn *);
498static void xg_clear_vinsn (vliw_insn *);
499static bfd_boolean vinsn_has_specific_opcodes (vliw_insn *);
500static void xg_free_vinsn (vliw_insn *);
43cd72b9 501static bfd_boolean vinsn_to_insnbuf
7fa3d080
BW
502 (vliw_insn *, char *, fragS *, bfd_boolean);
503static void vinsn_from_chars (vliw_insn *, char *);
43cd72b9 504
e0001a05 505/* Expression Utilities. */
43cd72b9 506
7fa3d080
BW
507bfd_boolean expr_is_const (const expressionS *);
508offsetT get_expr_const (const expressionS *);
509void set_expr_const (expressionS *, offsetT);
510bfd_boolean expr_is_register (const expressionS *);
511offsetT get_expr_register (const expressionS *);
512void set_expr_symbol_offset (expressionS *, symbolS *, offsetT);
7fa3d080
BW
513bfd_boolean expr_is_equal (expressionS *, expressionS *);
514static void copy_expr (expressionS *, const expressionS *);
e0001a05 515
9456465c
BW
516/* Section renaming. */
517
7fa3d080 518static void build_section_rename (const char *);
e0001a05 519
e0001a05
NC
520
521/* ISA imported from bfd. */
522extern xtensa_isa xtensa_default_isa;
523
524extern int target_big_endian;
525
526static xtensa_opcode xtensa_addi_opcode;
527static xtensa_opcode xtensa_addmi_opcode;
528static xtensa_opcode xtensa_call0_opcode;
529static xtensa_opcode xtensa_call4_opcode;
530static xtensa_opcode xtensa_call8_opcode;
531static xtensa_opcode xtensa_call12_opcode;
532static xtensa_opcode xtensa_callx0_opcode;
533static xtensa_opcode xtensa_callx4_opcode;
534static xtensa_opcode xtensa_callx8_opcode;
535static xtensa_opcode xtensa_callx12_opcode;
43cd72b9 536static xtensa_opcode xtensa_const16_opcode;
e0001a05 537static xtensa_opcode xtensa_entry_opcode;
43cd72b9
BW
538static xtensa_opcode xtensa_movi_opcode;
539static xtensa_opcode xtensa_movi_n_opcode;
e0001a05 540static xtensa_opcode xtensa_isync_opcode;
e0001a05 541static xtensa_opcode xtensa_jx_opcode;
43cd72b9 542static xtensa_opcode xtensa_l32r_opcode;
e0001a05
NC
543static xtensa_opcode xtensa_loop_opcode;
544static xtensa_opcode xtensa_loopnez_opcode;
545static xtensa_opcode xtensa_loopgtz_opcode;
43cd72b9 546static xtensa_opcode xtensa_nop_opcode;
e0001a05
NC
547static xtensa_opcode xtensa_nop_n_opcode;
548static xtensa_opcode xtensa_or_opcode;
549static xtensa_opcode xtensa_ret_opcode;
550static xtensa_opcode xtensa_ret_n_opcode;
551static xtensa_opcode xtensa_retw_opcode;
552static xtensa_opcode xtensa_retw_n_opcode;
43cd72b9 553static xtensa_opcode xtensa_rsr_lcount_opcode;
e0001a05
NC
554static xtensa_opcode xtensa_waiti_opcode;
555
556\f
557/* Command-line Options. */
558
559bfd_boolean use_literal_section = TRUE;
560static bfd_boolean align_targets = TRUE;
43cd72b9 561static bfd_boolean warn_unaligned_branch_targets = FALSE;
e0001a05 562static bfd_boolean has_a0_b_retw = FALSE;
43cd72b9
BW
563static bfd_boolean workaround_a0_b_retw = FALSE;
564static bfd_boolean workaround_b_j_loop_end = FALSE;
565static bfd_boolean workaround_short_loop = FALSE;
e0001a05 566static bfd_boolean maybe_has_short_loop = FALSE;
43cd72b9 567static bfd_boolean workaround_close_loop_end = FALSE;
e0001a05
NC
568static bfd_boolean maybe_has_close_loop_end = FALSE;
569
43cd72b9
BW
570/* When workaround_short_loops is TRUE, all loops with early exits must
571 have at least 3 instructions. workaround_all_short_loops is a modifier
572 to the workaround_short_loop flag. In addition to the
573 workaround_short_loop actions, all straightline loopgtz and loopnez
574 must have at least 3 instructions. */
e0001a05 575
43cd72b9 576static bfd_boolean workaround_all_short_loops = FALSE;
e0001a05 577
7fa3d080
BW
578
579static void
580xtensa_setup_hw_workarounds (int earliest, int latest)
581{
582 if (earliest > latest)
583 as_fatal (_("illegal range of target hardware versions"));
584
585 /* Enable all workarounds for pre-T1050.0 hardware. */
586 if (earliest < 105000 || latest < 105000)
587 {
588 workaround_a0_b_retw |= TRUE;
589 workaround_b_j_loop_end |= TRUE;
590 workaround_short_loop |= TRUE;
591 workaround_close_loop_end |= TRUE;
592 workaround_all_short_loops |= TRUE;
593 }
594}
595
596
e0001a05
NC
597enum
598{
599 option_density = OPTION_MD_BASE,
600 option_no_density,
601
602 option_relax,
603 option_no_relax,
604
43cd72b9
BW
605 option_link_relax,
606 option_no_link_relax,
607
e0001a05
NC
608 option_generics,
609 option_no_generics,
610
43cd72b9
BW
611 option_transform,
612 option_no_transform,
613
e0001a05
NC
614 option_text_section_literals,
615 option_no_text_section_literals,
616
43cd72b9
BW
617 option_absolute_literals,
618 option_no_absolute_literals,
619
e0001a05
NC
620 option_align_targets,
621 option_no_align_targets,
622
43cd72b9 623 option_warn_unaligned_targets,
e0001a05
NC
624
625 option_longcalls,
626 option_no_longcalls,
627
628 option_workaround_a0_b_retw,
629 option_no_workaround_a0_b_retw,
630
631 option_workaround_b_j_loop_end,
632 option_no_workaround_b_j_loop_end,
633
634 option_workaround_short_loop,
635 option_no_workaround_short_loop,
636
637 option_workaround_all_short_loops,
638 option_no_workaround_all_short_loops,
639
640 option_workaround_close_loop_end,
641 option_no_workaround_close_loop_end,
642
643 option_no_workarounds,
644
e0001a05 645 option_rename_section_name,
e0001a05 646
43cd72b9
BW
647 option_prefer_l32r,
648 option_prefer_const16,
649
650 option_target_hardware
e0001a05
NC
651};
652
653const char *md_shortopts = "";
654
655struct option md_longopts[] =
656{
43cd72b9
BW
657 { "density", no_argument, NULL, option_density },
658 { "no-density", no_argument, NULL, option_no_density },
659
660 /* Both "relax" and "generics" are deprecated and treated as equivalent
661 to the "transform" option. */
662 { "relax", no_argument, NULL, option_relax },
663 { "no-relax", no_argument, NULL, option_no_relax },
664 { "generics", no_argument, NULL, option_generics },
665 { "no-generics", no_argument, NULL, option_no_generics },
666
667 { "transform", no_argument, NULL, option_transform },
668 { "no-transform", no_argument, NULL, option_no_transform },
669 { "text-section-literals", no_argument, NULL, option_text_section_literals },
670 { "no-text-section-literals", no_argument, NULL,
671 option_no_text_section_literals },
672 { "absolute-literals", no_argument, NULL, option_absolute_literals },
673 { "no-absolute-literals", no_argument, NULL, option_no_absolute_literals },
e0001a05
NC
674 /* This option was changed from -align-target to -target-align
675 because it conflicted with the "-al" option. */
43cd72b9 676 { "target-align", no_argument, NULL, option_align_targets },
7fa3d080
BW
677 { "no-target-align", no_argument, NULL, option_no_align_targets },
678 { "warn-unaligned-targets", no_argument, NULL,
679 option_warn_unaligned_targets },
43cd72b9
BW
680 { "longcalls", no_argument, NULL, option_longcalls },
681 { "no-longcalls", no_argument, NULL, option_no_longcalls },
682
683 { "no-workaround-a0-b-retw", no_argument, NULL,
684 option_no_workaround_a0_b_retw },
685 { "workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw },
e0001a05 686
43cd72b9
BW
687 { "no-workaround-b-j-loop-end", no_argument, NULL,
688 option_no_workaround_b_j_loop_end },
689 { "workaround-b-j-loop-end", no_argument, NULL,
690 option_workaround_b_j_loop_end },
e0001a05 691
43cd72b9
BW
692 { "no-workaround-short-loops", no_argument, NULL,
693 option_no_workaround_short_loop },
7fa3d080
BW
694 { "workaround-short-loops", no_argument, NULL,
695 option_workaround_short_loop },
e0001a05 696
43cd72b9
BW
697 { "no-workaround-all-short-loops", no_argument, NULL,
698 option_no_workaround_all_short_loops },
699 { "workaround-all-short-loop", no_argument, NULL,
700 option_workaround_all_short_loops },
701
702 { "prefer-l32r", no_argument, NULL, option_prefer_l32r },
703 { "prefer-const16", no_argument, NULL, option_prefer_const16 },
704
705 { "no-workarounds", no_argument, NULL, option_no_workarounds },
706
707 { "no-workaround-close-loop-end", no_argument, NULL,
708 option_no_workaround_close_loop_end },
709 { "workaround-close-loop-end", no_argument, NULL,
710 option_workaround_close_loop_end },
e0001a05 711
7fa3d080 712 { "rename-section", required_argument, NULL, option_rename_section_name },
e0001a05 713
43cd72b9
BW
714 { "link-relax", no_argument, NULL, option_link_relax },
715 { "no-link-relax", no_argument, NULL, option_no_link_relax },
716
717 { "target-hardware", required_argument, NULL, option_target_hardware },
718
719 { NULL, no_argument, NULL, 0 }
e0001a05
NC
720};
721
722size_t md_longopts_size = sizeof md_longopts;
723
724
725int
7fa3d080 726md_parse_option (int c, char *arg)
e0001a05
NC
727{
728 switch (c)
729 {
730 case option_density:
43cd72b9 731 as_warn (_("--density option is ignored"));
e0001a05
NC
732 return 1;
733 case option_no_density:
43cd72b9 734 as_warn (_("--no-density option is ignored"));
e0001a05 735 return 1;
43cd72b9
BW
736 case option_link_relax:
737 linkrelax = 1;
e0001a05 738 return 1;
43cd72b9
BW
739 case option_no_link_relax:
740 linkrelax = 0;
e0001a05 741 return 1;
43cd72b9
BW
742 case option_generics:
743 as_warn (_("--generics is deprecated; use --transform instead"));
744 return md_parse_option (option_transform, arg);
745 case option_no_generics:
746 as_warn (_("--no-generics is deprecated; use --no-transform instead"));
747 return md_parse_option (option_no_transform, arg);
748 case option_relax:
749 as_warn (_("--relax is deprecated; use --transform instead"));
750 return md_parse_option (option_transform, arg);
751 case option_no_relax:
752 as_warn (_("--no-relax is deprecated; use --no-transform instead"));
753 return md_parse_option (option_no_transform, arg);
e0001a05
NC
754 case option_longcalls:
755 directive_state[directive_longcalls] = TRUE;
756 return 1;
757 case option_no_longcalls:
758 directive_state[directive_longcalls] = FALSE;
759 return 1;
760 case option_text_section_literals:
761 use_literal_section = FALSE;
762 return 1;
763 case option_no_text_section_literals:
764 use_literal_section = TRUE;
765 return 1;
43cd72b9
BW
766 case option_absolute_literals:
767 if (!absolute_literals_supported)
768 {
769 as_fatal (_("--absolute-literals option not supported in this Xtensa configuration"));
770 return 0;
771 }
772 directive_state[directive_absolute_literals] = TRUE;
773 return 1;
774 case option_no_absolute_literals:
775 directive_state[directive_absolute_literals] = FALSE;
776 return 1;
777
e0001a05
NC
778 case option_workaround_a0_b_retw:
779 workaround_a0_b_retw = TRUE;
e0001a05
NC
780 return 1;
781 case option_no_workaround_a0_b_retw:
782 workaround_a0_b_retw = FALSE;
e0001a05
NC
783 return 1;
784 case option_workaround_b_j_loop_end:
785 workaround_b_j_loop_end = TRUE;
e0001a05
NC
786 return 1;
787 case option_no_workaround_b_j_loop_end:
788 workaround_b_j_loop_end = FALSE;
e0001a05
NC
789 return 1;
790
791 case option_workaround_short_loop:
792 workaround_short_loop = TRUE;
e0001a05
NC
793 return 1;
794 case option_no_workaround_short_loop:
795 workaround_short_loop = FALSE;
e0001a05
NC
796 return 1;
797
798 case option_workaround_all_short_loops:
799 workaround_all_short_loops = TRUE;
e0001a05
NC
800 return 1;
801 case option_no_workaround_all_short_loops:
802 workaround_all_short_loops = FALSE;
e0001a05
NC
803 return 1;
804
805 case option_workaround_close_loop_end:
806 workaround_close_loop_end = TRUE;
e0001a05
NC
807 return 1;
808 case option_no_workaround_close_loop_end:
809 workaround_close_loop_end = FALSE;
e0001a05
NC
810 return 1;
811
812 case option_no_workarounds:
813 workaround_a0_b_retw = FALSE;
e0001a05 814 workaround_b_j_loop_end = FALSE;
e0001a05 815 workaround_short_loop = FALSE;
e0001a05 816 workaround_all_short_loops = FALSE;
e0001a05 817 workaround_close_loop_end = FALSE;
e0001a05 818 return 1;
43cd72b9 819
e0001a05
NC
820 case option_align_targets:
821 align_targets = TRUE;
822 return 1;
823 case option_no_align_targets:
824 align_targets = FALSE;
825 return 1;
826
43cd72b9
BW
827 case option_warn_unaligned_targets:
828 warn_unaligned_branch_targets = TRUE;
e0001a05
NC
829 return 1;
830
e0001a05
NC
831 case option_rename_section_name:
832 build_section_rename (arg);
833 return 1;
e0001a05
NC
834
835 case 'Q':
836 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
837 should be emitted or not. FIXME: Not implemented. */
838 return 1;
c138bc38 839
43cd72b9
BW
840 case option_prefer_l32r:
841 if (prefer_const16)
842 as_fatal (_("prefer-l32r conflicts with prefer-const16"));
843 prefer_l32r = 1;
844 return 1;
845
846 case option_prefer_const16:
847 if (prefer_l32r)
848 as_fatal (_("prefer-const16 conflicts with prefer-l32r"));
849 prefer_const16 = 1;
850 return 1;
851
c138bc38 852 case option_target_hardware:
43cd72b9
BW
853 {
854 int earliest, latest = 0;
855 if (*arg == 0 || *arg == '-')
856 as_fatal (_("invalid target hardware version"));
857
858 earliest = strtol (arg, &arg, 0);
859
860 if (*arg == 0)
861 latest = earliest;
862 else if (*arg == '-')
863 {
864 if (*++arg == 0)
865 as_fatal (_("invalid target hardware version"));
866 latest = strtol (arg, &arg, 0);
867 }
868 if (*arg != 0)
869 as_fatal (_("invalid target hardware version"));
870
871 xtensa_setup_hw_workarounds (earliest, latest);
872 return 1;
873 }
874
875 case option_transform:
876 /* This option has no affect other than to use the defaults,
877 which are already set. */
878 return 1;
879
880 case option_no_transform:
881 /* This option turns off all transformations of any kind.
882 However, because we want to preserve the state of other
883 directives, we only change its own field. Thus, before
884 you perform any transformation, always check if transform
885 is available. If you use the functions we provide for this
886 purpose, you will be ok. */
887 directive_state[directive_transform] = FALSE;
888 return 1;
889
e0001a05
NC
890 default:
891 return 0;
892 }
893}
894
895
896void
7fa3d080 897md_show_usage (FILE *stream)
e0001a05 898{
43cd72b9
BW
899 fputs ("\n\
900Xtensa options:\n\
9456465c
BW
901 --[no-]text-section-literals\n\
902 [Do not] put literals in the text section\n\
903 --[no-]absolute-literals\n\
904 [Do not] default to use non-PC-relative literals\n\
905 --[no-]target-align [Do not] try to align branch targets\n\
906 --[no-]longcalls [Do not] emit 32-bit call sequences\n\
907 --[no-]transform [Do not] transform instructions\n\
908 --rename-section old=new Rename section 'old' to 'new'\n", stream);
e0001a05
NC
909}
910
7fa3d080
BW
911\f
912/* Functions related to the list of current label symbols. */
43cd72b9
BW
913
914static void
7fa3d080 915xtensa_add_insn_label (symbolS *sym)
43cd72b9 916{
7fa3d080 917 sym_list *l;
43cd72b9 918
7fa3d080
BW
919 if (!free_insn_labels)
920 l = (sym_list *) xmalloc (sizeof (sym_list));
921 else
43cd72b9 922 {
7fa3d080
BW
923 l = free_insn_labels;
924 free_insn_labels = l->next;
925 }
926
927 l->sym = sym;
928 l->next = insn_labels;
929 insn_labels = l;
930}
931
932
933static void
934xtensa_clear_insn_labels (void)
935{
936 sym_list **pl;
937
938 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
939 ;
940 *pl = insn_labels;
941 insn_labels = NULL;
942}
943
944
c138bc38
BW
945/* The "loops_ok" argument is provided to allow ignoring labels that
946 define loop ends. This fixes a bug where the NOPs to align a
7fa3d080
BW
947 loop opcode were included in a previous zero-cost loop:
948
949 loop a0, loopend
950 <loop1 body>
951 loopend:
952
953 loop a2, loopend2
954 <loop2 body>
955
956 would become:
957
958 loop a0, loopend
959 <loop1 body>
960 nop.n <===== bad!
961 loopend:
962
963 loop a2, loopend2
964 <loop2 body>
965
966 This argument is used to prevent moving the NOP to before the
967 loop-end label, which is what you want in this special case. */
968
969static void
970xtensa_move_labels (fragS *new_frag, valueT new_offset, bfd_boolean loops_ok)
971{
972 sym_list *lit;
973
974 for (lit = insn_labels; lit; lit = lit->next)
975 {
976 symbolS *lit_sym = lit->sym;
977 if (loops_ok || ! symbol_get_tc (lit_sym)->is_loop_target)
978 {
979 S_SET_VALUE (lit_sym, new_offset);
980 symbol_set_frag (lit_sym, new_frag);
981 }
43cd72b9
BW
982 }
983}
984
e0001a05
NC
985\f
986/* Directive data and functions. */
987
988typedef struct state_stackS_struct
989{
990 directiveE directive;
991 bfd_boolean negated;
992 bfd_boolean old_state;
993 const char *file;
994 unsigned int line;
995 const void *datum;
996 struct state_stackS_struct *prev;
997} state_stackS;
998
999state_stackS *directive_state_stack;
1000
1001const pseudo_typeS md_pseudo_table[] =
1002{
43cd72b9
BW
1003 { "align", s_align_bytes, 0 }, /* Defaulting is invalid (0). */
1004 { "literal_position", xtensa_literal_position, 0 },
1005 { "frame", s_ignore, 0 }, /* Formerly used for STABS debugging. */
1006 { "long", xtensa_elf_cons, 4 },
1007 { "word", xtensa_elf_cons, 4 },
1008 { "short", xtensa_elf_cons, 2 },
1009 { "begin", xtensa_begin_directive, 0 },
1010 { "end", xtensa_end_directive, 0 },
43cd72b9
BW
1011 { "literal", xtensa_literal_pseudo, 0 },
1012 { "frequency", xtensa_frequency_pseudo, 0 },
1013 { NULL, 0, 0 },
e0001a05
NC
1014};
1015
1016
7fa3d080
BW
1017static bfd_boolean
1018use_transform (void)
e0001a05 1019{
43cd72b9
BW
1020 /* After md_end, you should be checking frag by frag, rather
1021 than state directives. */
1022 assert (!past_xtensa_end);
1023 return directive_state[directive_transform];
e0001a05
NC
1024}
1025
1026
7fa3d080
BW
1027static bfd_boolean
1028do_align_targets (void)
e0001a05 1029{
7b1cc377
BW
1030 /* Do not use this function after md_end; just look at align_targets
1031 instead. There is no target-align directive, so alignment is either
1032 enabled for all frags or not done at all. */
43cd72b9
BW
1033 assert (!past_xtensa_end);
1034 return align_targets && use_transform ();
e0001a05
NC
1035}
1036
1037
1038static void
7fa3d080 1039directive_push (directiveE directive, bfd_boolean negated, const void *datum)
e0001a05
NC
1040{
1041 char *file;
1042 unsigned int line;
1043 state_stackS *stack = (state_stackS *) xmalloc (sizeof (state_stackS));
1044
1045 as_where (&file, &line);
1046
1047 stack->directive = directive;
1048 stack->negated = negated;
1049 stack->old_state = directive_state[directive];
1050 stack->file = file;
1051 stack->line = line;
1052 stack->datum = datum;
1053 stack->prev = directive_state_stack;
1054 directive_state_stack = stack;
1055
1056 directive_state[directive] = !negated;
1057}
1058
7fa3d080 1059
e0001a05 1060static void
7fa3d080
BW
1061directive_pop (directiveE *directive,
1062 bfd_boolean *negated,
1063 const char **file,
1064 unsigned int *line,
1065 const void **datum)
e0001a05
NC
1066{
1067 state_stackS *top = directive_state_stack;
1068
1069 if (!directive_state_stack)
1070 {
1071 as_bad (_("unmatched end directive"));
1072 *directive = directive_none;
1073 return;
1074 }
1075
1076 directive_state[directive_state_stack->directive] = top->old_state;
1077 *directive = top->directive;
1078 *negated = top->negated;
1079 *file = top->file;
1080 *line = top->line;
1081 *datum = top->datum;
1082 directive_state_stack = top->prev;
1083 free (top);
1084}
1085
1086
1087static void
7fa3d080 1088directive_balance (void)
e0001a05
NC
1089{
1090 while (directive_state_stack)
1091 {
1092 directiveE directive;
1093 bfd_boolean negated;
1094 const char *file;
1095 unsigned int line;
1096 const void *datum;
1097
1098 directive_pop (&directive, &negated, &file, &line, &datum);
1099 as_warn_where ((char *) file, line,
1100 _(".begin directive with no matching .end directive"));
1101 }
1102}
1103
1104
1105static bfd_boolean
7fa3d080 1106inside_directive (directiveE dir)
e0001a05
NC
1107{
1108 state_stackS *top = directive_state_stack;
1109
1110 while (top && top->directive != dir)
1111 top = top->prev;
1112
1113 return (top != NULL);
1114}
1115
1116
1117static void
7fa3d080 1118get_directive (directiveE *directive, bfd_boolean *negated)
e0001a05
NC
1119{
1120 int len;
1121 unsigned i;
43cd72b9 1122 char *directive_string;
e0001a05
NC
1123
1124 if (strncmp (input_line_pointer, "no-", 3) != 0)
1125 *negated = FALSE;
1126 else
1127 {
1128 *negated = TRUE;
1129 input_line_pointer += 3;
1130 }
1131
1132 len = strspn (input_line_pointer,
43cd72b9
BW
1133 "abcdefghijklmnopqrstuvwxyz_-/0123456789.");
1134
1135 /* This code is a hack to make .begin [no-][generics|relax] exactly
1136 equivalent to .begin [no-]transform. We should remove it when
1137 we stop accepting those options. */
c138bc38 1138
43cd72b9
BW
1139 if (strncmp (input_line_pointer, "generics", strlen ("generics")) == 0)
1140 {
1141 as_warn (_("[no-]generics is deprecated; use [no-]transform instead"));
1142 directive_string = "transform";
1143 }
1144 else if (strncmp (input_line_pointer, "relax", strlen ("relax")) == 0)
1145 {
1146 as_warn (_("[no-]relax is deprecated; use [no-]transform instead"));
1147 directive_string = "transform";
c138bc38 1148 }
43cd72b9
BW
1149 else
1150 directive_string = input_line_pointer;
e0001a05
NC
1151
1152 for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i)
1153 {
43cd72b9 1154 if (strncmp (directive_string, directive_info[i].name, len) == 0)
e0001a05
NC
1155 {
1156 input_line_pointer += len;
1157 *directive = (directiveE) i;
1158 if (*negated && !directive_info[i].can_be_negated)
43cd72b9 1159 as_bad (_("directive %s cannot be negated"),
e0001a05
NC
1160 directive_info[i].name);
1161 return;
1162 }
1163 }
1164
1165 as_bad (_("unknown directive"));
1166 *directive = (directiveE) XTENSA_UNDEFINED;
1167}
1168
1169
1170static void
7fa3d080 1171xtensa_begin_directive (int ignore ATTRIBUTE_UNUSED)
e0001a05
NC
1172{
1173 directiveE directive;
1174 bfd_boolean negated;
1175 emit_state *state;
1176 int len;
1177 lit_state *ls;
1178
1179 get_directive (&directive, &negated);
1180 if (directive == (directiveE) XTENSA_UNDEFINED)
1181 {
1182 discard_rest_of_line ();
1183 return;
1184 }
1185
43cd72b9
BW
1186 if (cur_vinsn.inside_bundle)
1187 as_bad (_("directives are not valid inside bundles"));
1188
e0001a05
NC
1189 switch (directive)
1190 {
1191 case directive_literal:
82e7541d
BW
1192 if (!inside_directive (directive_literal))
1193 {
1194 /* Previous labels go with whatever follows this directive, not with
1195 the literal, so save them now. */
1196 saved_insn_labels = insn_labels;
1197 insn_labels = NULL;
1198 }
43cd72b9 1199 as_warn (_(".begin literal is deprecated; use .literal instead"));
e0001a05
NC
1200 state = (emit_state *) xmalloc (sizeof (emit_state));
1201 xtensa_switch_to_literal_fragment (state);
1202 directive_push (directive_literal, negated, state);
1203 break;
1204
1205 case directive_literal_prefix:
c138bc38 1206 /* Have to flush pending output because a movi relaxed to an l32r
43cd72b9
BW
1207 might produce a literal. */
1208 md_flush_pending_output ();
e0001a05
NC
1209 /* Check to see if the current fragment is a literal
1210 fragment. If it is, then this operation is not allowed. */
43cd72b9 1211 if (generating_literals)
e0001a05
NC
1212 {
1213 as_bad (_("cannot set literal_prefix inside literal fragment"));
1214 return;
1215 }
1216
1217 /* Allocate the literal state for this section and push
1218 onto the directive stack. */
1219 ls = xmalloc (sizeof (lit_state));
1220 assert (ls);
1221
1222 *ls = default_lit_sections;
1223
1224 directive_push (directive_literal_prefix, negated, ls);
1225
1226 /* Parse the new prefix from the input_line_pointer. */
1227 SKIP_WHITESPACE ();
1228 len = strspn (input_line_pointer,
1229 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
1230 "abcdefghijklmnopqrstuvwxyz_/0123456789.$");
1231
1232 /* Process the new prefix. */
1233 xtensa_literal_prefix (input_line_pointer, len);
1234
1235 /* Skip the name in the input line. */
1236 input_line_pointer += len;
1237 break;
1238
1239 case directive_freeregs:
1240 /* This information is currently unused, but we'll accept the statement
1241 and just discard the rest of the line. This won't check the syntax,
1242 but it will accept every correct freeregs directive. */
1243 input_line_pointer += strcspn (input_line_pointer, "\n");
1244 directive_push (directive_freeregs, negated, 0);
1245 break;
1246
43cd72b9
BW
1247 case directive_schedule:
1248 md_flush_pending_output ();
1249 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
1250 frag_now->fr_symbol, frag_now->fr_offset, NULL);
1251 directive_push (directive_schedule, negated, 0);
1252 xtensa_set_frag_assembly_state (frag_now);
1253 break;
1254
e0001a05 1255 case directive_density:
43cd72b9
BW
1256 as_warn (_(".begin [no-]density is ignored"));
1257 break;
1258
1259 case directive_absolute_literals:
1260 md_flush_pending_output ();
1261 if (!absolute_literals_supported && !negated)
e0001a05 1262 {
43cd72b9 1263 as_warn (_("Xtensa absolute literals option not supported; ignored"));
e0001a05
NC
1264 break;
1265 }
43cd72b9
BW
1266 xtensa_set_frag_assembly_state (frag_now);
1267 directive_push (directive, negated, 0);
1268 break;
e0001a05
NC
1269
1270 default:
43cd72b9
BW
1271 md_flush_pending_output ();
1272 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
1273 directive_push (directive, negated, 0);
1274 break;
1275 }
1276
1277 demand_empty_rest_of_line ();
1278}
1279
1280
1281static void
7fa3d080 1282xtensa_end_directive (int ignore ATTRIBUTE_UNUSED)
e0001a05
NC
1283{
1284 directiveE begin_directive, end_directive;
1285 bfd_boolean begin_negated, end_negated;
1286 const char *file;
1287 unsigned int line;
1288 emit_state *state;
43cd72b9 1289 emit_state **state_ptr;
e0001a05
NC
1290 lit_state *s;
1291
43cd72b9
BW
1292 if (cur_vinsn.inside_bundle)
1293 as_bad (_("directives are not valid inside bundles"));
82e7541d 1294
e0001a05 1295 get_directive (&end_directive, &end_negated);
43cd72b9
BW
1296
1297 md_flush_pending_output ();
1298
1299 switch (end_directive)
e0001a05 1300 {
43cd72b9 1301 case (directiveE) XTENSA_UNDEFINED:
e0001a05
NC
1302 discard_rest_of_line ();
1303 return;
e0001a05 1304
43cd72b9
BW
1305 case directive_density:
1306 as_warn (_(".end [no-]density is ignored"));
e0001a05 1307 demand_empty_rest_of_line ();
43cd72b9
BW
1308 break;
1309
1310 case directive_absolute_literals:
1311 if (!absolute_literals_supported && !end_negated)
1312 {
1313 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1314 demand_empty_rest_of_line ();
1315 return;
1316 }
1317 break;
1318
1319 default:
1320 break;
e0001a05
NC
1321 }
1322
43cd72b9 1323 state_ptr = &state; /* use state_ptr to avoid type-punning warning */
e0001a05 1324 directive_pop (&begin_directive, &begin_negated, &file, &line,
43cd72b9 1325 (const void **) state_ptr);
e0001a05
NC
1326
1327 if (begin_directive != directive_none)
1328 {
1329 if (begin_directive != end_directive || begin_negated != end_negated)
1330 {
1331 as_bad (_("does not match begin %s%s at %s:%d"),
1332 begin_negated ? "no-" : "",
1333 directive_info[begin_directive].name, file, line);
1334 }
1335 else
1336 {
1337 switch (end_directive)
1338 {
1339 case directive_literal:
1340 frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL);
1341 xtensa_restore_emit_state (state);
43cd72b9 1342 xtensa_set_frag_assembly_state (frag_now);
e0001a05 1343 free (state);
82e7541d
BW
1344 if (!inside_directive (directive_literal))
1345 {
1346 /* Restore the list of current labels. */
1347 xtensa_clear_insn_labels ();
1348 insn_labels = saved_insn_labels;
1349 }
e0001a05
NC
1350 break;
1351
e0001a05
NC
1352 case directive_literal_prefix:
1353 /* Restore the default collection sections from saved state. */
1354 s = (lit_state *) state;
1355 assert (s);
1356
e8247da7 1357 default_lit_sections = *s;
e0001a05
NC
1358
1359 /* free the state storage */
1360 free (s);
1361 break;
1362
43cd72b9
BW
1363 case directive_schedule:
1364 case directive_freeregs:
1365 break;
1366
e0001a05 1367 default:
43cd72b9 1368 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
1369 break;
1370 }
1371 }
1372 }
1373
1374 demand_empty_rest_of_line ();
1375}
1376
1377
1378/* Place an aligned literal fragment at the current location. */
1379
1380static void
7fa3d080 1381xtensa_literal_position (int ignore ATTRIBUTE_UNUSED)
e0001a05 1382{
43cd72b9
BW
1383 md_flush_pending_output ();
1384
e0001a05
NC
1385 if (inside_directive (directive_literal))
1386 as_warn (_(".literal_position inside literal directive; ignoring"));
43cd72b9 1387 xtensa_mark_literal_pool_location ();
e0001a05
NC
1388
1389 demand_empty_rest_of_line ();
82e7541d 1390 xtensa_clear_insn_labels ();
e0001a05
NC
1391}
1392
1393
43cd72b9 1394/* Support .literal label, expr, ... */
e0001a05
NC
1395
1396static void
7fa3d080 1397xtensa_literal_pseudo (int ignored ATTRIBUTE_UNUSED)
e0001a05
NC
1398{
1399 emit_state state;
1745fcba 1400 char *p, *base_name;
e0001a05 1401 char c;
e0001a05
NC
1402 segT dest_seg;
1403
82e7541d
BW
1404 if (inside_directive (directive_literal))
1405 {
1406 as_bad (_(".literal not allowed inside .begin literal region"));
1407 ignore_rest_of_line ();
1408 return;
1409 }
1410
43cd72b9
BW
1411 md_flush_pending_output ();
1412
82e7541d
BW
1413 /* Previous labels go with whatever follows this directive, not with
1414 the literal, so save them now. */
1415 saved_insn_labels = insn_labels;
1416 insn_labels = NULL;
1417
e0001a05
NC
1418 /* If we are using text-section literals, then this is the right value... */
1419 dest_seg = now_seg;
1420
1421 base_name = input_line_pointer;
1422
1423 xtensa_switch_to_literal_fragment (&state);
1424
43cd72b9 1425 /* ...but if we aren't using text-section-literals, then we
e0001a05 1426 need to put them in the section we just switched to. */
43cd72b9 1427 if (use_literal_section || directive_state[directive_absolute_literals])
e0001a05
NC
1428 dest_seg = now_seg;
1429
43cd72b9
BW
1430 /* All literals are aligned to four-byte boundaries. */
1431 frag_align (2, 0, 0);
1432 record_alignment (now_seg, 2);
e0001a05
NC
1433
1434 c = get_symbol_end ();
1435 /* Just after name is now '\0'. */
1436 p = input_line_pointer;
1437 *p = c;
1438 SKIP_WHITESPACE ();
1439
1440 if (*input_line_pointer != ',' && *input_line_pointer != ':')
1441 {
1442 as_bad (_("expected comma or colon after symbol name; "
1443 "rest of line ignored"));
1444 ignore_rest_of_line ();
1445 xtensa_restore_emit_state (&state);
1446 return;
1447 }
1448 *p = 0;
1449
e0001a05 1450 colon (base_name);
e0001a05 1451
e0001a05 1452 *p = c;
43cd72b9 1453 input_line_pointer++; /* skip ',' or ':' */
e0001a05 1454
43cd72b9 1455 xtensa_elf_cons (4);
e0001a05
NC
1456
1457 xtensa_restore_emit_state (&state);
82e7541d
BW
1458
1459 /* Restore the list of current labels. */
1460 xtensa_clear_insn_labels ();
1461 insn_labels = saved_insn_labels;
e0001a05
NC
1462}
1463
1464
1465static void
7fa3d080 1466xtensa_literal_prefix (char const *start, int len)
e0001a05 1467{
43cd72b9
BW
1468 char *name, *linkonce_suffix;
1469 char *newname, *newname4;
1470 size_t linkonce_len;
e0001a05
NC
1471
1472 /* Get a null-terminated copy of the name. */
1473 name = xmalloc (len + 1);
1474 assert (name);
1475
1476 strncpy (name, start, len);
1477 name[len] = 0;
1478
1479 /* Allocate the sections (interesting note: the memory pointing to
1480 the name is actually used for the name by the new section). */
43cd72b9 1481
e0001a05 1482 newname = xmalloc (len + strlen (".literal") + 1);
43cd72b9 1483 newname4 = xmalloc (len + strlen (".lit4") + 1);
e0001a05 1484
43cd72b9
BW
1485 linkonce_len = sizeof (".gnu.linkonce.") - 1;
1486 if (strncmp (name, ".gnu.linkonce.", linkonce_len) == 0
1487 && (linkonce_suffix = strchr (name + linkonce_len, '.')) != 0)
1488 {
1489 strcpy (newname, ".gnu.linkonce.literal");
1490 strcpy (newname4, ".gnu.linkonce.lit4");
e0001a05 1491
43cd72b9
BW
1492 strcat (newname, linkonce_suffix);
1493 strcat (newname4, linkonce_suffix);
1494 }
1495 else
1496 {
1497 int suffix_pos = len;
1498
1499 /* If the section name ends with ".text", then replace that suffix
1500 instead of appending an additional suffix. */
1501 if (len >= 5 && strcmp (name + len - 5, ".text") == 0)
1502 suffix_pos -= 5;
1503
1504 strcpy (newname, name);
1505 strcpy (newname4, name);
1506
1507 strcpy (newname + suffix_pos, ".literal");
1508 strcpy (newname4 + suffix_pos, ".lit4");
1509 }
1510
b08b5071 1511 /* Note that cache_literal_section does not create a segment if
43cd72b9
BW
1512 it already exists. */
1513 default_lit_sections.lit_seg = NULL;
1514 default_lit_sections.lit4_seg = NULL;
1515
1516 /* Canonicalizing section names allows renaming literal
e0001a05 1517 sections to occur correctly. */
43cd72b9
BW
1518 default_lit_sections.lit_seg_name = tc_canonicalize_symbol_name (newname);
1519 default_lit_sections.lit4_seg_name = tc_canonicalize_symbol_name (newname4);
e0001a05
NC
1520
1521 free (name);
43cd72b9
BW
1522}
1523
1524
1525/* Support ".frequency branch_target_frequency fall_through_frequency". */
1526
1527static void
7fa3d080 1528xtensa_frequency_pseudo (int ignored ATTRIBUTE_UNUSED)
43cd72b9
BW
1529{
1530 float fall_through_f, target_f;
43cd72b9
BW
1531
1532 fall_through_f = (float) strtod (input_line_pointer, &input_line_pointer);
1533 if (fall_through_f < 0)
1534 {
1535 as_bad (_("fall through frequency must be greater than 0"));
1536 ignore_rest_of_line ();
1537 return;
1538 }
1539
1540 target_f = (float) strtod (input_line_pointer, &input_line_pointer);
1541 if (target_f < 0)
1542 {
1543 as_bad (_("branch target frequency must be greater than 0"));
1544 ignore_rest_of_line ();
1545 return;
1546 }
1547
b08b5071 1548 set_subseg_freq (now_seg, now_subseg, target_f + fall_through_f, target_f);
43cd72b9
BW
1549
1550 demand_empty_rest_of_line ();
1551}
1552
1553
1554/* Like normal .long/.short/.word, except support @plt, etc.
1555 Clobbers input_line_pointer, checks end-of-line. */
1556
1557static void
7fa3d080 1558xtensa_elf_cons (int nbytes)
43cd72b9
BW
1559{
1560 expressionS exp;
1561 bfd_reloc_code_real_type reloc;
1562
1563 md_flush_pending_output ();
1564
1565 if (cur_vinsn.inside_bundle)
1566 as_bad (_("directives are not valid inside bundles"));
1567
1568 if (is_it_end_of_statement ())
1569 {
1570 demand_empty_rest_of_line ();
1571 return;
1572 }
1573
1574 do
1575 {
1576 expression (&exp);
1577 if (exp.X_op == O_symbol
1578 && *input_line_pointer == '@'
1579 && ((reloc = xtensa_elf_suffix (&input_line_pointer, &exp))
1580 != BFD_RELOC_NONE))
1581 {
1582 reloc_howto_type *reloc_howto =
1583 bfd_reloc_type_lookup (stdoutput, reloc);
1584
1585 if (reloc == BFD_RELOC_UNUSED || !reloc_howto)
1586 as_bad (_("unsupported relocation"));
1587 else if ((reloc >= BFD_RELOC_XTENSA_SLOT0_OP
1588 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
1589 || (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
1590 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT))
1591 as_bad (_("opcode-specific %s relocation used outside "
1592 "an instruction"), reloc_howto->name);
1593 else if (nbytes != (int) bfd_get_reloc_size (reloc_howto))
1594 as_bad (_("%s relocations do not fit in %d bytes"),
1595 reloc_howto->name, nbytes);
1596 else
1597 {
1598 char *p = frag_more ((int) nbytes);
1599 xtensa_set_frag_assembly_state (frag_now);
1600 fix_new_exp (frag_now, p - frag_now->fr_literal,
1601 nbytes, &exp, 0, reloc);
1602 }
1603 }
1604 else
1605 emit_expr (&exp, (unsigned int) nbytes);
1606 }
1607 while (*input_line_pointer++ == ',');
1608
1609 input_line_pointer--; /* Put terminator back into stream. */
1610 demand_empty_rest_of_line ();
1611}
1612
7fa3d080
BW
1613\f
1614/* Parsing and Idiom Translation. */
43cd72b9
BW
1615
1616/* Parse @plt, etc. and return the desired relocation. */
1617static bfd_reloc_code_real_type
7fa3d080 1618xtensa_elf_suffix (char **str_p, expressionS *exp_p)
43cd72b9
BW
1619{
1620 struct map_bfd
1621 {
1622 char *string;
1623 int length;
1624 bfd_reloc_code_real_type reloc;
1625 };
1626
1627 char ident[20];
1628 char *str = *str_p;
1629 char *str2;
1630 int ch;
1631 int len;
1632 struct map_bfd *ptr;
1633
1634#define MAP(str,reloc) { str, sizeof (str) - 1, reloc }
e0001a05 1635
43cd72b9
BW
1636 static struct map_bfd mapping[] =
1637 {
1638 MAP ("l", BFD_RELOC_LO16),
1639 MAP ("h", BFD_RELOC_HI16),
1640 MAP ("plt", BFD_RELOC_XTENSA_PLT),
1641 { (char *) 0, 0, BFD_RELOC_UNUSED }
1642 };
1643
1644 if (*str++ != '@')
1645 return BFD_RELOC_NONE;
1646
1647 for (ch = *str, str2 = ident;
1648 (str2 < ident + sizeof (ident) - 1
1649 && (ISALNUM (ch) || ch == '@'));
1650 ch = *++str)
1651 {
1652 *str2++ = (ISLOWER (ch)) ? ch : TOLOWER (ch);
1653 }
1654
1655 *str2 = '\0';
1656 len = str2 - ident;
1657
1658 ch = ident[0];
1659 for (ptr = &mapping[0]; ptr->length > 0; ptr++)
1660 if (ch == ptr->string[0]
1661 && len == ptr->length
1662 && memcmp (ident, ptr->string, ptr->length) == 0)
1663 {
1664 /* Now check for "identifier@suffix+constant". */
1665 if (*str == '-' || *str == '+')
1666 {
1667 char *orig_line = input_line_pointer;
1668 expressionS new_exp;
1669
1670 input_line_pointer = str;
1671 expression (&new_exp);
1672 if (new_exp.X_op == O_constant)
1673 {
1674 exp_p->X_add_number += new_exp.X_add_number;
1675 str = input_line_pointer;
1676 }
1677
1678 if (&input_line_pointer != str_p)
1679 input_line_pointer = orig_line;
1680 }
1681
1682 *str_p = str;
1683 return ptr->reloc;
1684 }
1685
1686 return BFD_RELOC_UNUSED;
e0001a05
NC
1687}
1688
e0001a05
NC
1689
1690static const char *
7fa3d080 1691expression_end (const char *name)
e0001a05
NC
1692{
1693 while (1)
1694 {
1695 switch (*name)
1696 {
43cd72b9 1697 case '}':
e0001a05
NC
1698 case ';':
1699 case '\0':
1700 case ',':
43cd72b9 1701 case ':':
e0001a05
NC
1702 return name;
1703 case ' ':
1704 case '\t':
1705 ++name;
1706 continue;
1707 default:
1708 return 0;
1709 }
1710 }
1711}
1712
1713
1714#define ERROR_REG_NUM ((unsigned) -1)
1715
1716static unsigned
7fa3d080 1717tc_get_register (const char *prefix)
e0001a05
NC
1718{
1719 unsigned reg;
1720 const char *next_expr;
1721 const char *old_line_pointer;
1722
1723 SKIP_WHITESPACE ();
1724 old_line_pointer = input_line_pointer;
1725
1726 if (*input_line_pointer == '$')
1727 ++input_line_pointer;
1728
1729 /* Accept "sp" as a synonym for "a1". */
1730 if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p'
1731 && expression_end (input_line_pointer + 2))
1732 {
1733 input_line_pointer += 2;
1734 return 1; /* AR[1] */
1735 }
1736
1737 while (*input_line_pointer++ == *prefix++)
1738 ;
1739 --input_line_pointer;
1740 --prefix;
1741
1742 if (*prefix)
1743 {
1744 as_bad (_("bad register name: %s"), old_line_pointer);
1745 return ERROR_REG_NUM;
1746 }
1747
1748 if (!ISDIGIT ((unsigned char) *input_line_pointer))
1749 {
1750 as_bad (_("bad register number: %s"), input_line_pointer);
1751 return ERROR_REG_NUM;
1752 }
1753
1754 reg = 0;
1755
1756 while (ISDIGIT ((int) *input_line_pointer))
1757 reg = reg * 10 + *input_line_pointer++ - '0';
1758
1759 if (!(next_expr = expression_end (input_line_pointer)))
1760 {
1761 as_bad (_("bad register name: %s"), old_line_pointer);
1762 return ERROR_REG_NUM;
1763 }
1764
1765 input_line_pointer = (char *) next_expr;
1766
1767 return reg;
1768}
1769
1770
e0001a05 1771static void
7fa3d080 1772expression_maybe_register (xtensa_opcode opc, int opnd, expressionS *tok)
e0001a05 1773{
43cd72b9 1774 xtensa_isa isa = xtensa_default_isa;
e0001a05 1775
43cd72b9
BW
1776 /* Check if this is an immediate operand. */
1777 if (xtensa_operand_is_register (isa, opc, opnd) == 0)
e0001a05 1778 {
43cd72b9 1779 bfd_reloc_code_real_type reloc;
e0001a05 1780 segT t = expression (tok);
43cd72b9
BW
1781 if (t == absolute_section
1782 && xtensa_operand_is_PCrelative (isa, opc, opnd) == 1)
e0001a05
NC
1783 {
1784 assert (tok->X_op == O_constant);
1785 tok->X_op = O_symbol;
1786 tok->X_add_symbol = &abs_symbol;
1787 }
43cd72b9
BW
1788
1789 if ((tok->X_op == O_constant || tok->X_op == O_symbol)
1790 && (reloc = xtensa_elf_suffix (&input_line_pointer, tok))
1791 && (reloc != BFD_RELOC_NONE))
e0001a05 1792 {
43cd72b9
BW
1793 switch (reloc)
1794 {
1795 default:
1796 case BFD_RELOC_UNUSED:
1797 as_bad (_("unsupported relocation"));
1798 break;
1799
1800 case BFD_RELOC_XTENSA_PLT:
1801 tok->X_op = O_pltrel;
1802 break;
1803
1804 case BFD_RELOC_LO16:
1805 if (tok->X_op == O_constant)
1806 tok->X_add_number &= 0xffff;
1807 else
1808 tok->X_op = O_lo16;
1809 break;
1810
1811 case BFD_RELOC_HI16:
1812 if (tok->X_op == O_constant)
1813 tok->X_add_number = ((unsigned) tok->X_add_number) >> 16;
1814 else
1815 tok->X_op = O_hi16;
1816 break;
1817 }
e0001a05 1818 }
e0001a05
NC
1819 }
1820 else
1821 {
43cd72b9
BW
1822 xtensa_regfile opnd_rf = xtensa_operand_regfile (isa, opc, opnd);
1823 unsigned reg = tc_get_register (xtensa_regfile_shortname (isa, opnd_rf));
e0001a05
NC
1824
1825 if (reg != ERROR_REG_NUM) /* Already errored */
1826 {
1827 uint32 buf = reg;
43cd72b9 1828 if (xtensa_operand_encode (isa, opc, opnd, &buf))
e0001a05
NC
1829 as_bad (_("register number out of range"));
1830 }
1831
1832 tok->X_op = O_register;
1833 tok->X_add_symbol = 0;
1834 tok->X_add_number = reg;
1835 }
1836}
1837
1838
1839/* Split up the arguments for an opcode or pseudo-op. */
1840
1841static int
7fa3d080 1842tokenize_arguments (char **args, char *str)
e0001a05
NC
1843{
1844 char *old_input_line_pointer;
1845 bfd_boolean saw_comma = FALSE;
1846 bfd_boolean saw_arg = FALSE;
43cd72b9 1847 bfd_boolean saw_colon = FALSE;
e0001a05
NC
1848 int num_args = 0;
1849 char *arg_end, *arg;
1850 int arg_len;
43cd72b9
BW
1851
1852 /* Save and restore input_line_pointer around this function. */
e0001a05
NC
1853 old_input_line_pointer = input_line_pointer;
1854 input_line_pointer = str;
1855
1856 while (*input_line_pointer)
1857 {
1858 SKIP_WHITESPACE ();
1859 switch (*input_line_pointer)
1860 {
1861 case '\0':
43cd72b9 1862 case '}':
e0001a05
NC
1863 goto fini;
1864
43cd72b9
BW
1865 case ':':
1866 input_line_pointer++;
1867 if (saw_comma || saw_colon || !saw_arg)
1868 goto err;
1869 saw_colon = TRUE;
1870 break;
1871
e0001a05
NC
1872 case ',':
1873 input_line_pointer++;
43cd72b9 1874 if (saw_comma || saw_colon || !saw_arg)
e0001a05
NC
1875 goto err;
1876 saw_comma = TRUE;
1877 break;
1878
1879 default:
43cd72b9 1880 if (!saw_comma && !saw_colon && saw_arg)
e0001a05
NC
1881 goto err;
1882
1883 arg_end = input_line_pointer + 1;
1884 while (!expression_end (arg_end))
1885 arg_end += 1;
43cd72b9 1886
e0001a05 1887 arg_len = arg_end - input_line_pointer;
43cd72b9 1888 arg = (char *) xmalloc ((saw_colon ? 1 : 0) + arg_len + 1);
e0001a05
NC
1889 args[num_args] = arg;
1890
43cd72b9
BW
1891 if (saw_colon)
1892 *arg++ = ':';
e0001a05
NC
1893 strncpy (arg, input_line_pointer, arg_len);
1894 arg[arg_len] = '\0';
43cd72b9 1895
e0001a05
NC
1896 input_line_pointer = arg_end;
1897 num_args += 1;
c138bc38 1898 saw_comma = FALSE;
43cd72b9 1899 saw_colon = FALSE;
c138bc38 1900 saw_arg = TRUE;
e0001a05
NC
1901 break;
1902 }
1903 }
1904
1905fini:
43cd72b9 1906 if (saw_comma || saw_colon)
e0001a05
NC
1907 goto err;
1908 input_line_pointer = old_input_line_pointer;
1909 return num_args;
1910
1911err:
43cd72b9
BW
1912 if (saw_comma)
1913 as_bad (_("extra comma"));
1914 else if (saw_colon)
1915 as_bad (_("extra colon"));
1916 else if (!saw_arg)
c138bc38 1917 as_bad (_("missing argument"));
43cd72b9
BW
1918 else
1919 as_bad (_("missing comma or colon"));
e0001a05
NC
1920 input_line_pointer = old_input_line_pointer;
1921 return -1;
1922}
1923
1924
43cd72b9 1925/* Parse the arguments to an opcode. Return TRUE on error. */
e0001a05
NC
1926
1927static bfd_boolean
7fa3d080 1928parse_arguments (TInsn *insn, int num_args, char **arg_strings)
e0001a05 1929{
43cd72b9 1930 expressionS *tok, *last_tok;
e0001a05
NC
1931 xtensa_opcode opcode = insn->opcode;
1932 bfd_boolean had_error = TRUE;
43cd72b9
BW
1933 xtensa_isa isa = xtensa_default_isa;
1934 int n, num_regs = 0;
e0001a05 1935 int opcode_operand_count;
43cd72b9
BW
1936 int opnd_cnt, last_opnd_cnt;
1937 unsigned int next_reg = 0;
e0001a05
NC
1938 char *old_input_line_pointer;
1939
1940 if (insn->insn_type == ITYPE_LITERAL)
1941 opcode_operand_count = 1;
1942 else
43cd72b9 1943 opcode_operand_count = xtensa_opcode_num_operands (isa, opcode);
e0001a05 1944
43cd72b9 1945 tok = insn->tok;
e0001a05
NC
1946 memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS);
1947
1948 /* Save and restore input_line_pointer around this function. */
43cd72b9
BW
1949 old_input_line_pointer = input_line_pointer;
1950
1951 last_tok = 0;
1952 last_opnd_cnt = -1;
1953 opnd_cnt = 0;
1954
1955 /* Skip invisible operands. */
1956 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0)
1957 {
1958 opnd_cnt += 1;
1959 tok++;
1960 }
e0001a05
NC
1961
1962 for (n = 0; n < num_args; n++)
43cd72b9 1963 {
e0001a05 1964 input_line_pointer = arg_strings[n];
43cd72b9
BW
1965 if (*input_line_pointer == ':')
1966 {
1967 xtensa_regfile opnd_rf;
1968 input_line_pointer++;
1969 if (num_regs == 0)
1970 goto err;
1971 assert (opnd_cnt > 0);
1972 num_regs--;
1973 opnd_rf = xtensa_operand_regfile (isa, opcode, last_opnd_cnt);
1974 if (next_reg
1975 != tc_get_register (xtensa_regfile_shortname (isa, opnd_rf)))
1976 as_warn (_("incorrect register number, ignoring"));
1977 next_reg++;
1978 }
1979 else
1980 {
1981 if (opnd_cnt >= opcode_operand_count)
1982 {
1983 as_warn (_("too many arguments"));
1984 goto err;
1985 }
1986 assert (opnd_cnt < MAX_INSN_ARGS);
1987
1988 expression_maybe_register (opcode, opnd_cnt, tok);
1989 next_reg = tok->X_add_number + 1;
1990
1991 if (tok->X_op == O_illegal || tok->X_op == O_absent)
1992 goto err;
1993 if (xtensa_operand_is_register (isa, opcode, opnd_cnt) == 1)
1994 {
1995 num_regs = xtensa_operand_num_regs (isa, opcode, opnd_cnt) - 1;
1996 /* minus 1 because we are seeing one right now */
1997 }
1998 else
1999 num_regs = 0;
e0001a05 2000
43cd72b9
BW
2001 last_tok = tok;
2002 last_opnd_cnt = opnd_cnt;
e0001a05 2003
43cd72b9
BW
2004 do
2005 {
2006 opnd_cnt += 1;
2007 tok++;
2008 }
2009 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0);
2010 }
2011 }
e0001a05 2012
43cd72b9
BW
2013 if (num_regs > 0 && ((int) next_reg != last_tok->X_add_number + 1))
2014 goto err;
e0001a05
NC
2015
2016 insn->ntok = tok - insn->tok;
c138bc38 2017 had_error = FALSE;
e0001a05
NC
2018
2019 err:
43cd72b9 2020 input_line_pointer = old_input_line_pointer;
e0001a05
NC
2021 return had_error;
2022}
2023
2024
43cd72b9 2025static int
7fa3d080 2026get_invisible_operands (TInsn *insn)
43cd72b9
BW
2027{
2028 xtensa_isa isa = xtensa_default_isa;
2029 static xtensa_insnbuf slotbuf = NULL;
2030 xtensa_format fmt;
2031 xtensa_opcode opc = insn->opcode;
2032 int slot, opnd, fmt_found;
2033 unsigned val;
2034
2035 if (!slotbuf)
2036 slotbuf = xtensa_insnbuf_alloc (isa);
2037
2038 /* Find format/slot where this can be encoded. */
2039 fmt_found = 0;
2040 slot = 0;
2041 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
2042 {
2043 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
2044 {
2045 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opc) == 0)
2046 {
2047 fmt_found = 1;
2048 break;
2049 }
2050 }
2051 if (fmt_found) break;
2052 }
2053
2054 if (!fmt_found)
2055 {
2056 as_bad (_("cannot encode opcode \"%s\""), xtensa_opcode_name (isa, opc));
2057 return -1;
2058 }
2059
2060 /* First encode all the visible operands
2061 (to deal with shared field operands). */
2062 for (opnd = 0; opnd < insn->ntok; opnd++)
2063 {
2064 if (xtensa_operand_is_visible (isa, opc, opnd) == 1
2065 && (insn->tok[opnd].X_op == O_register
2066 || insn->tok[opnd].X_op == O_constant))
2067 {
2068 val = insn->tok[opnd].X_add_number;
2069 xtensa_operand_encode (isa, opc, opnd, &val);
2070 xtensa_operand_set_field (isa, opc, opnd, fmt, slot, slotbuf, val);
2071 }
2072 }
2073
2074 /* Then pull out the values for the invisible ones. */
2075 for (opnd = 0; opnd < insn->ntok; opnd++)
2076 {
2077 if (xtensa_operand_is_visible (isa, opc, opnd) == 0)
2078 {
2079 xtensa_operand_get_field (isa, opc, opnd, fmt, slot, slotbuf, &val);
2080 xtensa_operand_decode (isa, opc, opnd, &val);
2081 insn->tok[opnd].X_add_number = val;
2082 if (xtensa_operand_is_register (isa, opc, opnd) == 1)
2083 insn->tok[opnd].X_op = O_register;
2084 else
2085 insn->tok[opnd].X_op = O_constant;
2086 }
2087 }
2088
2089 return 0;
2090}
2091
2092
e0001a05 2093static void
7fa3d080 2094xg_reverse_shift_count (char **cnt_argp)
e0001a05
NC
2095{
2096 char *cnt_arg, *new_arg;
2097 cnt_arg = *cnt_argp;
2098
2099 /* replace the argument with "31-(argument)" */
2100 new_arg = (char *) xmalloc (strlen (cnt_arg) + 6);
2101 sprintf (new_arg, "31-(%s)", cnt_arg);
2102
2103 free (cnt_arg);
2104 *cnt_argp = new_arg;
2105}
2106
2107
2108/* If "arg" is a constant expression, return non-zero with the value
2109 in *valp. */
2110
2111static int
7fa3d080 2112xg_arg_is_constant (char *arg, offsetT *valp)
e0001a05
NC
2113{
2114 expressionS exp;
2115 char *save_ptr = input_line_pointer;
2116
2117 input_line_pointer = arg;
2118 expression (&exp);
2119 input_line_pointer = save_ptr;
2120
2121 if (exp.X_op == O_constant)
2122 {
2123 *valp = exp.X_add_number;
2124 return 1;
2125 }
2126
2127 return 0;
2128}
2129
2130
2131static void
7fa3d080 2132xg_replace_opname (char **popname, char *newop)
e0001a05
NC
2133{
2134 free (*popname);
2135 *popname = (char *) xmalloc (strlen (newop) + 1);
2136 strcpy (*popname, newop);
2137}
2138
2139
2140static int
7fa3d080
BW
2141xg_check_num_args (int *pnum_args,
2142 int expected_num,
2143 char *opname,
2144 char **arg_strings)
e0001a05
NC
2145{
2146 int num_args = *pnum_args;
2147
43cd72b9 2148 if (num_args < expected_num)
e0001a05
NC
2149 {
2150 as_bad (_("not enough operands (%d) for '%s'; expected %d"),
2151 num_args, opname, expected_num);
2152 return -1;
2153 }
2154
2155 if (num_args > expected_num)
2156 {
2157 as_warn (_("too many operands (%d) for '%s'; expected %d"),
2158 num_args, opname, expected_num);
2159 while (num_args-- > expected_num)
2160 {
2161 free (arg_strings[num_args]);
2162 arg_strings[num_args] = 0;
2163 }
2164 *pnum_args = expected_num;
2165 return -1;
2166 }
2167
2168 return 0;
2169}
2170
2171
43cd72b9
BW
2172/* If the register is not specified as part of the opcode,
2173 then get it from the operand and move it to the opcode. */
2174
e0001a05 2175static int
7fa3d080 2176xg_translate_sysreg_op (char **popname, int *pnum_args, char **arg_strings)
e0001a05 2177{
43cd72b9
BW
2178 xtensa_isa isa = xtensa_default_isa;
2179 xtensa_sysreg sr;
e0001a05 2180 char *opname, *new_opname;
43cd72b9
BW
2181 const char *sr_name;
2182 int is_user, is_write;
e0001a05
NC
2183 bfd_boolean has_underbar = FALSE;
2184
2185 opname = *popname;
2186 if (*opname == '_')
2187 {
2188 has_underbar = TRUE;
2189 opname += 1;
2190 }
43cd72b9
BW
2191 is_user = (opname[1] == 'u');
2192 is_write = (opname[0] == 'w');
e0001a05 2193
43cd72b9 2194 /* Opname == [rw]ur or [rwx]sr... */
e0001a05 2195
43cd72b9
BW
2196 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2197 return -1;
e0001a05 2198
43cd72b9
BW
2199 /* Check if the argument is a symbolic register name. */
2200 sr = xtensa_sysreg_lookup_name (isa, arg_strings[1]);
2201 /* Handle WSR to "INTSET" as a special case. */
2202 if (sr == XTENSA_UNDEFINED && is_write && !is_user
2203 && !strcasecmp (arg_strings[1], "intset"))
2204 sr = xtensa_sysreg_lookup_name (isa, "interrupt");
2205 if (sr == XTENSA_UNDEFINED
2206 || (xtensa_sysreg_is_user (isa, sr) == 1) != is_user)
2207 {
2208 /* Maybe it's a register number.... */
2209 offsetT val;
e0001a05
NC
2210 if (!xg_arg_is_constant (arg_strings[1], &val))
2211 {
43cd72b9
BW
2212 as_bad (_("invalid register '%s' for '%s' instruction"),
2213 arg_strings[1], opname);
e0001a05
NC
2214 return -1;
2215 }
43cd72b9
BW
2216 sr = xtensa_sysreg_lookup (isa, val, is_user);
2217 if (sr == XTENSA_UNDEFINED)
e0001a05 2218 {
43cd72b9 2219 as_bad (_("invalid register number (%ld) for '%s' instruction"),
dd49a749 2220 (long) val, opname);
e0001a05
NC
2221 return -1;
2222 }
43cd72b9 2223 }
e0001a05 2224
43cd72b9
BW
2225 /* Remove the last argument, which is now part of the opcode. */
2226 free (arg_strings[1]);
2227 arg_strings[1] = 0;
2228 *pnum_args = 1;
2229
2230 /* Translate the opcode. */
2231 sr_name = xtensa_sysreg_name (isa, sr);
2232 /* Another special case for "WSR.INTSET".... */
2233 if (is_write && !is_user && !strcasecmp ("interrupt", sr_name))
2234 sr_name = "intset";
2235 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2236 sprintf (new_opname, "%s%s.%s", (has_underbar ? "_" : ""),
2237 *popname, sr_name);
2238 free (*popname);
2239 *popname = new_opname;
2240
2241 return 0;
2242}
2243
2244
2245static int
7fa3d080 2246xtensa_translate_old_userreg_ops (char **popname)
43cd72b9
BW
2247{
2248 xtensa_isa isa = xtensa_default_isa;
2249 xtensa_sysreg sr;
2250 char *opname, *new_opname;
2251 const char *sr_name;
2252 bfd_boolean has_underbar = FALSE;
2253
2254 opname = *popname;
2255 if (opname[0] == '_')
2256 {
2257 has_underbar = TRUE;
2258 opname += 1;
2259 }
2260
2261 sr = xtensa_sysreg_lookup_name (isa, opname + 1);
2262 if (sr != XTENSA_UNDEFINED)
2263 {
2264 /* The new default name ("nnn") is different from the old default
2265 name ("URnnn"). The old default is handled below, and we don't
2266 want to recognize [RW]nnn, so do nothing if the name is the (new)
2267 default. */
2268 static char namebuf[10];
2269 sprintf (namebuf, "%d", xtensa_sysreg_number (isa, sr));
2270 if (strcmp (namebuf, opname + 1) == 0)
2271 return 0;
2272 }
2273 else
2274 {
2275 offsetT val;
2276 char *end;
2277
2278 /* Only continue if the reg name is "URnnn". */
2279 if (opname[1] != 'u' || opname[2] != 'r')
2280 return 0;
2281 val = strtoul (opname + 3, &end, 10);
2282 if (*end != '\0')
2283 return 0;
2284
2285 sr = xtensa_sysreg_lookup (isa, val, 1);
2286 if (sr == XTENSA_UNDEFINED)
2287 {
2288 as_bad (_("invalid register number (%ld) for '%s'"),
dd49a749 2289 (long) val, opname);
43cd72b9
BW
2290 return -1;
2291 }
2292 }
2293
2294 /* Translate the opcode. */
2295 sr_name = xtensa_sysreg_name (isa, sr);
2296 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2297 sprintf (new_opname, "%s%cur.%s", (has_underbar ? "_" : ""),
2298 opname[0], sr_name);
2299 free (*popname);
2300 *popname = new_opname;
2301
2302 return 0;
2303}
2304
2305
2306static int
7fa3d080
BW
2307xtensa_translate_zero_immed (char *old_op,
2308 char *new_op,
2309 char **popname,
2310 int *pnum_args,
2311 char **arg_strings)
43cd72b9
BW
2312{
2313 char *opname;
2314 offsetT val;
2315
2316 opname = *popname;
2317 assert (opname[0] != '_');
2318
2319 if (strcmp (opname, old_op) != 0)
2320 return 0;
e0001a05 2321
43cd72b9
BW
2322 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2323 return -1;
2324 if (xg_arg_is_constant (arg_strings[1], &val) && val == 0)
2325 {
2326 xg_replace_opname (popname, new_op);
2327 free (arg_strings[1]);
2328 arg_strings[1] = arg_strings[2];
2329 arg_strings[2] = 0;
2330 *pnum_args = 2;
e0001a05
NC
2331 }
2332
2333 return 0;
2334}
2335
2336
2337/* If the instruction is an idiom (i.e., a built-in macro), translate it.
2338 Returns non-zero if an error was found. */
2339
2340static int
7fa3d080 2341xg_translate_idioms (char **popname, int *pnum_args, char **arg_strings)
e0001a05
NC
2342{
2343 char *opname = *popname;
2344 bfd_boolean has_underbar = FALSE;
2345
43cd72b9
BW
2346 if (cur_vinsn.inside_bundle)
2347 return 0;
2348
e0001a05
NC
2349 if (*opname == '_')
2350 {
2351 has_underbar = TRUE;
2352 opname += 1;
2353 }
2354
2355 if (strcmp (opname, "mov") == 0)
2356 {
43cd72b9 2357 if (use_transform () && !has_underbar && density_supported)
e0001a05
NC
2358 xg_replace_opname (popname, "mov.n");
2359 else
2360 {
2361 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2362 return -1;
2363 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2364 arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1);
2365 strcpy (arg_strings[2], arg_strings[1]);
2366 *pnum_args = 3;
2367 }
2368 return 0;
2369 }
2370
2371 if (strcmp (opname, "bbsi.l") == 0)
2372 {
2373 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2374 return -1;
2375 xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi"));
2376 if (target_big_endian)
2377 xg_reverse_shift_count (&arg_strings[1]);
2378 return 0;
2379 }
2380
2381 if (strcmp (opname, "bbci.l") == 0)
2382 {
2383 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2384 return -1;
2385 xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci"));
2386 if (target_big_endian)
2387 xg_reverse_shift_count (&arg_strings[1]);
2388 return 0;
2389 }
2390
43cd72b9
BW
2391 if (xtensa_nop_opcode == XTENSA_UNDEFINED
2392 && strcmp (opname, "nop") == 0)
e0001a05 2393 {
43cd72b9 2394 if (use_transform () && !has_underbar && density_supported)
e0001a05
NC
2395 xg_replace_opname (popname, "nop.n");
2396 else
2397 {
2398 if (xg_check_num_args (pnum_args, 0, opname, arg_strings))
2399 return -1;
2400 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2401 arg_strings[0] = (char *) xmalloc (3);
2402 arg_strings[1] = (char *) xmalloc (3);
2403 arg_strings[2] = (char *) xmalloc (3);
2404 strcpy (arg_strings[0], "a1");
2405 strcpy (arg_strings[1], "a1");
2406 strcpy (arg_strings[2], "a1");
2407 *pnum_args = 3;
2408 }
2409 return 0;
2410 }
2411
43cd72b9
BW
2412 /* Recognize [RW]UR and [RWX]SR. */
2413 if ((((opname[0] == 'r' || opname[0] == 'w')
2414 && (opname[1] == 'u' || opname[1] == 's'))
2415 || (opname[0] == 'x' && opname[1] == 's'))
2416 && opname[2] == 'r'
2417 && opname[3] == '\0')
e0001a05
NC
2418 return xg_translate_sysreg_op (popname, pnum_args, arg_strings);
2419
43cd72b9
BW
2420 /* Backward compatibility for RUR and WUR: Recognize [RW]UR<nnn> and
2421 [RW]<name> if <name> is the non-default name of a user register. */
2422 if ((opname[0] == 'r' || opname[0] == 'w')
2423 && xtensa_opcode_lookup (xtensa_default_isa, opname) == XTENSA_UNDEFINED)
2424 return xtensa_translate_old_userreg_ops (popname);
e0001a05 2425
43cd72b9
BW
2426 /* Relax branches that don't allow comparisons against an immediate value
2427 of zero to the corresponding branches with implicit zero immediates. */
2428 if (!has_underbar && use_transform ())
2429 {
2430 if (xtensa_translate_zero_immed ("bnei", "bnez", popname,
2431 pnum_args, arg_strings))
2432 return -1;
e0001a05 2433
43cd72b9
BW
2434 if (xtensa_translate_zero_immed ("beqi", "beqz", popname,
2435 pnum_args, arg_strings))
2436 return -1;
e0001a05 2437
43cd72b9
BW
2438 if (xtensa_translate_zero_immed ("bgei", "bgez", popname,
2439 pnum_args, arg_strings))
2440 return -1;
e0001a05 2441
43cd72b9
BW
2442 if (xtensa_translate_zero_immed ("blti", "bltz", popname,
2443 pnum_args, arg_strings))
2444 return -1;
2445 }
e0001a05 2446
43cd72b9
BW
2447 return 0;
2448}
e0001a05 2449
43cd72b9
BW
2450\f
2451/* Functions for dealing with the Xtensa ISA. */
e0001a05 2452
43cd72b9
BW
2453/* Currently the assembler only allows us to use a single target per
2454 fragment. Because of this, only one operand for a given
2455 instruction may be symbolic. If there is a PC-relative operand,
2456 the last one is chosen. Otherwise, the result is the number of the
2457 last immediate operand, and if there are none of those, we fail and
2458 return -1. */
e0001a05 2459
7fa3d080
BW
2460static int
2461get_relaxable_immed (xtensa_opcode opcode)
43cd72b9
BW
2462{
2463 int last_immed = -1;
2464 int noperands, opi;
e0001a05 2465
43cd72b9
BW
2466 if (opcode == XTENSA_UNDEFINED)
2467 return -1;
e0001a05 2468
43cd72b9
BW
2469 noperands = xtensa_opcode_num_operands (xtensa_default_isa, opcode);
2470 for (opi = noperands - 1; opi >= 0; opi--)
2471 {
2472 if (xtensa_operand_is_visible (xtensa_default_isa, opcode, opi) == 0)
2473 continue;
2474 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, opi) == 1)
2475 return opi;
2476 if (last_immed == -1
2477 && xtensa_operand_is_register (xtensa_default_isa, opcode, opi) == 0)
2478 last_immed = opi;
e0001a05 2479 }
43cd72b9 2480 return last_immed;
e0001a05
NC
2481}
2482
e0001a05 2483
43cd72b9 2484static xtensa_opcode
7fa3d080 2485get_opcode_from_buf (const char *buf, int slot)
e0001a05 2486{
43cd72b9
BW
2487 static xtensa_insnbuf insnbuf = NULL;
2488 static xtensa_insnbuf slotbuf = NULL;
2489 xtensa_isa isa = xtensa_default_isa;
2490 xtensa_format fmt;
2491
2492 if (!insnbuf)
e0001a05 2493 {
43cd72b9
BW
2494 insnbuf = xtensa_insnbuf_alloc (isa);
2495 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 2496 }
e0001a05 2497
d77b99c9 2498 xtensa_insnbuf_from_chars (isa, insnbuf, (const unsigned char *) buf, 0);
43cd72b9
BW
2499 fmt = xtensa_format_decode (isa, insnbuf);
2500 if (fmt == XTENSA_UNDEFINED)
2501 return XTENSA_UNDEFINED;
e0001a05 2502
43cd72b9
BW
2503 if (slot >= xtensa_format_num_slots (isa, fmt))
2504 return XTENSA_UNDEFINED;
e0001a05 2505
43cd72b9
BW
2506 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
2507 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
e0001a05
NC
2508}
2509
2510
43cd72b9 2511#ifdef TENSILICA_DEBUG
e0001a05 2512
43cd72b9 2513/* For debugging, print out the mapping of opcode numbers to opcodes. */
e0001a05 2514
7fa3d080
BW
2515static void
2516xtensa_print_insn_table (void)
43cd72b9
BW
2517{
2518 int num_opcodes, num_operands;
2519 xtensa_opcode opcode;
2520 xtensa_isa isa = xtensa_default_isa;
e0001a05 2521
43cd72b9
BW
2522 num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
2523 for (opcode = 0; opcode < num_opcodes; opcode++)
e0001a05 2524 {
43cd72b9
BW
2525 int opn;
2526 fprintf (stderr, "%d: %s: ", opcode, xtensa_opcode_name (isa, opcode));
2527 num_operands = xtensa_opcode_num_operands (isa, opcode);
2528 for (opn = 0; opn < num_operands; opn++)
2529 {
2530 if (xtensa_operand_is_visible (isa, opcode, opn) == 0)
2531 continue;
2532 if (xtensa_operand_is_register (isa, opcode, opn) == 1)
2533 {
2534 xtensa_regfile opnd_rf =
2535 xtensa_operand_regfile (isa, opcode, opn);
2536 fprintf (stderr, "%s ", xtensa_regfile_shortname (isa, opnd_rf));
2537 }
2538 else if (xtensa_operand_is_PCrelative (isa, opcode, opn) == 1)
2539 fputs ("[lLr] ", stderr);
2540 else
2541 fputs ("i ", stderr);
2542 }
2543 fprintf (stderr, "\n");
e0001a05 2544 }
e0001a05
NC
2545}
2546
2547
43cd72b9 2548static void
7fa3d080 2549print_vliw_insn (xtensa_insnbuf vbuf)
e0001a05 2550{
e0001a05 2551 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
2552 xtensa_format f = xtensa_format_decode (isa, vbuf);
2553 xtensa_insnbuf sbuf = xtensa_insnbuf_alloc (isa);
2554 int op;
e0001a05 2555
43cd72b9 2556 fprintf (stderr, "format = %d\n", f);
e0001a05 2557
43cd72b9
BW
2558 for (op = 0; op < xtensa_format_num_slots (isa, f); op++)
2559 {
2560 xtensa_opcode opcode;
2561 const char *opname;
2562 int operands;
2563
2564 xtensa_format_get_slot (isa, f, op, vbuf, sbuf);
2565 opcode = xtensa_opcode_decode (isa, f, op, sbuf);
2566 opname = xtensa_opcode_name (isa, opcode);
2567
2568 fprintf (stderr, "op in slot %i is %s;\n", op, opname);
2569 fprintf (stderr, " operands = ");
2570 for (operands = 0;
2571 operands < xtensa_opcode_num_operands (isa, opcode);
2572 operands++)
2573 {
2574 unsigned int val;
2575 if (xtensa_operand_is_visible (isa, opcode, operands) == 0)
2576 continue;
2577 xtensa_operand_get_field (isa, opcode, operands, f, op, sbuf, &val);
2578 xtensa_operand_decode (isa, opcode, operands, &val);
2579 fprintf (stderr, "%d ", val);
2580 }
2581 fprintf (stderr, "\n");
2582 }
2583 xtensa_insnbuf_free (isa, sbuf);
e0001a05
NC
2584}
2585
43cd72b9
BW
2586#endif /* TENSILICA_DEBUG */
2587
e0001a05
NC
2588
2589static bfd_boolean
7fa3d080 2590is_direct_call_opcode (xtensa_opcode opcode)
e0001a05 2591{
43cd72b9
BW
2592 xtensa_isa isa = xtensa_default_isa;
2593 int n, num_operands;
e0001a05 2594
43cd72b9 2595 if (xtensa_opcode_is_call (isa, opcode) == 0)
e0001a05
NC
2596 return FALSE;
2597
43cd72b9
BW
2598 num_operands = xtensa_opcode_num_operands (isa, opcode);
2599 for (n = 0; n < num_operands; n++)
2600 {
2601 if (xtensa_operand_is_register (isa, opcode, n) == 0
2602 && xtensa_operand_is_PCrelative (isa, opcode, n) == 1)
2603 return TRUE;
2604 }
2605 return FALSE;
e0001a05
NC
2606}
2607
2608
43cd72b9
BW
2609/* Convert from BFD relocation type code to slot and operand number.
2610 Returns non-zero on failure. */
e0001a05 2611
43cd72b9 2612static int
7fa3d080 2613decode_reloc (bfd_reloc_code_real_type reloc, int *slot, bfd_boolean *is_alt)
e0001a05 2614{
43cd72b9
BW
2615 if (reloc >= BFD_RELOC_XTENSA_SLOT0_OP
2616 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
e0001a05 2617 {
43cd72b9
BW
2618 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_OP;
2619 *is_alt = FALSE;
e0001a05 2620 }
43cd72b9
BW
2621 else if (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
2622 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT)
e0001a05 2623 {
43cd72b9
BW
2624 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_ALT;
2625 *is_alt = TRUE;
e0001a05 2626 }
43cd72b9
BW
2627 else
2628 return -1;
2629
2630 return 0;
e0001a05
NC
2631}
2632
2633
43cd72b9
BW
2634/* Convert from slot number to BFD relocation type code for the
2635 standard PC-relative relocations. Return BFD_RELOC_NONE on
2636 failure. */
e0001a05 2637
43cd72b9 2638static bfd_reloc_code_real_type
7fa3d080 2639encode_reloc (int slot)
e0001a05 2640{
43cd72b9
BW
2641 if (slot < 0 || slot > 14)
2642 return BFD_RELOC_NONE;
2643
2644 return BFD_RELOC_XTENSA_SLOT0_OP + slot;
e0001a05
NC
2645}
2646
2647
43cd72b9
BW
2648/* Convert from slot numbers to BFD relocation type code for the
2649 "alternate" relocations. Return BFD_RELOC_NONE on failure. */
e0001a05 2650
43cd72b9 2651static bfd_reloc_code_real_type
7fa3d080 2652encode_alt_reloc (int slot)
e0001a05 2653{
43cd72b9
BW
2654 if (slot < 0 || slot > 14)
2655 return BFD_RELOC_NONE;
2656
2657 return BFD_RELOC_XTENSA_SLOT0_ALT + slot;
e0001a05
NC
2658}
2659
2660
2661static void
7fa3d080
BW
2662xtensa_insnbuf_set_operand (xtensa_insnbuf slotbuf,
2663 xtensa_format fmt,
2664 int slot,
2665 xtensa_opcode opcode,
2666 int operand,
2667 uint32 value,
2668 const char *file,
2669 unsigned int line)
e0001a05 2670{
e0001a05
NC
2671 uint32 valbuf = value;
2672
43cd72b9 2673 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
e0001a05 2674 {
43cd72b9
BW
2675 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, operand)
2676 == 1)
2677 as_bad_where ((char *) file, line,
d7c531cd
BW
2678 _("operand %d of '%s' has out of range value '%u'"),
2679 operand + 1,
2680 xtensa_opcode_name (xtensa_default_isa, opcode),
2681 value);
43cd72b9
BW
2682 else
2683 as_bad_where ((char *) file, line,
d7c531cd
BW
2684 _("operand %d of '%s' has invalid value '%u'"),
2685 operand + 1,
2686 xtensa_opcode_name (xtensa_default_isa, opcode),
2687 value);
43cd72b9 2688 return;
e0001a05
NC
2689 }
2690
43cd72b9
BW
2691 xtensa_operand_set_field (xtensa_default_isa, opcode, operand, fmt, slot,
2692 slotbuf, valbuf);
e0001a05
NC
2693}
2694
2695
2696static uint32
7fa3d080
BW
2697xtensa_insnbuf_get_operand (xtensa_insnbuf slotbuf,
2698 xtensa_format fmt,
2699 int slot,
2700 xtensa_opcode opcode,
2701 int opnum)
e0001a05 2702{
43cd72b9
BW
2703 uint32 val = 0;
2704 (void) xtensa_operand_get_field (xtensa_default_isa, opcode, opnum,
2705 fmt, slot, slotbuf, &val);
2706 (void) xtensa_operand_decode (xtensa_default_isa, opcode, opnum, &val);
2707 return val;
e0001a05
NC
2708}
2709
e0001a05 2710\f
7fa3d080 2711/* Checks for rules from xtensa-relax tables. */
e0001a05 2712
7fa3d080
BW
2713/* The routine xg_instruction_matches_option_term must return TRUE
2714 when a given option term is true. The meaning of all of the option
2715 terms is given interpretation by this function. This is needed when
2716 an option depends on the state of a directive, but there are no such
2717 options in use right now. */
e0001a05 2718
7fa3d080
BW
2719static bfd_boolean
2720xg_instruction_matches_option_term (TInsn *insn ATTRIBUTE_UNUSED,
2721 const ReqOrOption *option)
e0001a05 2722{
7fa3d080
BW
2723 if (strcmp (option->option_name, "realnop") == 0
2724 || strncmp (option->option_name, "IsaUse", 6) == 0)
2725 {
2726 /* These conditions were evaluated statically when building the
2727 relaxation table. There's no need to reevaluate them now. */
2728 return TRUE;
2729 }
2730 else
2731 {
2732 as_fatal (_("internal error: unknown option name '%s'"),
2733 option->option_name);
2734 }
e0001a05
NC
2735}
2736
2737
7fa3d080
BW
2738static bfd_boolean
2739xg_instruction_matches_or_options (TInsn *insn,
2740 const ReqOrOptionList *or_option)
e0001a05 2741{
7fa3d080
BW
2742 const ReqOrOption *option;
2743 /* Must match each of the AND terms. */
2744 for (option = or_option; option != NULL; option = option->next)
e0001a05 2745 {
7fa3d080
BW
2746 if (xg_instruction_matches_option_term (insn, option))
2747 return TRUE;
e0001a05 2748 }
7fa3d080 2749 return FALSE;
e0001a05
NC
2750}
2751
2752
7fa3d080
BW
2753static bfd_boolean
2754xg_instruction_matches_options (TInsn *insn, const ReqOptionList *options)
e0001a05 2755{
7fa3d080
BW
2756 const ReqOption *req_options;
2757 /* Must match each of the AND terms. */
2758 for (req_options = options;
2759 req_options != NULL;
2760 req_options = req_options->next)
e0001a05 2761 {
7fa3d080
BW
2762 /* Must match one of the OR clauses. */
2763 if (!xg_instruction_matches_or_options (insn,
2764 req_options->or_option_terms))
2765 return FALSE;
e0001a05 2766 }
7fa3d080 2767 return TRUE;
e0001a05
NC
2768}
2769
2770
7fa3d080 2771/* Return the transition rule that matches or NULL if none matches. */
e0001a05 2772
7fa3d080
BW
2773static bfd_boolean
2774xg_instruction_matches_rule (TInsn *insn, TransitionRule *rule)
e0001a05 2775{
7fa3d080 2776 PreconditionList *condition_l;
e0001a05 2777
7fa3d080
BW
2778 if (rule->opcode != insn->opcode)
2779 return FALSE;
e0001a05 2780
7fa3d080
BW
2781 for (condition_l = rule->conditions;
2782 condition_l != NULL;
2783 condition_l = condition_l->next)
e0001a05 2784 {
7fa3d080
BW
2785 expressionS *exp1;
2786 expressionS *exp2;
2787 Precondition *cond = condition_l->precond;
e0001a05 2788
7fa3d080 2789 switch (cond->typ)
e0001a05 2790 {
7fa3d080
BW
2791 case OP_CONSTANT:
2792 /* The expression must be the constant. */
2793 assert (cond->op_num < insn->ntok);
2794 exp1 = &insn->tok[cond->op_num];
2795 if (expr_is_const (exp1))
2796 {
2797 switch (cond->cmp)
2798 {
2799 case OP_EQUAL:
2800 if (get_expr_const (exp1) != cond->op_data)
2801 return FALSE;
2802 break;
2803 case OP_NOTEQUAL:
2804 if (get_expr_const (exp1) == cond->op_data)
2805 return FALSE;
2806 break;
2807 default:
2808 return FALSE;
2809 }
2810 }
2811 else if (expr_is_register (exp1))
2812 {
2813 switch (cond->cmp)
2814 {
2815 case OP_EQUAL:
2816 if (get_expr_register (exp1) != cond->op_data)
2817 return FALSE;
2818 break;
2819 case OP_NOTEQUAL:
2820 if (get_expr_register (exp1) == cond->op_data)
2821 return FALSE;
2822 break;
2823 default:
2824 return FALSE;
2825 }
2826 }
2827 else
2828 return FALSE;
2829 break;
2830
2831 case OP_OPERAND:
2832 assert (cond->op_num < insn->ntok);
2833 assert (cond->op_data < insn->ntok);
2834 exp1 = &insn->tok[cond->op_num];
2835 exp2 = &insn->tok[cond->op_data];
2836
2837 switch (cond->cmp)
2838 {
2839 case OP_EQUAL:
2840 if (!expr_is_equal (exp1, exp2))
2841 return FALSE;
2842 break;
2843 case OP_NOTEQUAL:
2844 if (expr_is_equal (exp1, exp2))
2845 return FALSE;
2846 break;
2847 }
2848 break;
2849
2850 case OP_LITERAL:
2851 case OP_LABEL:
2852 default:
2853 return FALSE;
2854 }
2855 }
2856 if (!xg_instruction_matches_options (insn, rule->options))
2857 return FALSE;
2858
2859 return TRUE;
2860}
2861
2862
2863static int
2864transition_rule_cmp (const TransitionRule *a, const TransitionRule *b)
2865{
2866 bfd_boolean a_greater = FALSE;
2867 bfd_boolean b_greater = FALSE;
2868
2869 ReqOptionList *l_a = a->options;
2870 ReqOptionList *l_b = b->options;
2871
2872 /* We only care if they both are the same except for
2873 a const16 vs. an l32r. */
2874
2875 while (l_a && l_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2876 {
2877 ReqOrOptionList *l_or_a = l_a->or_option_terms;
2878 ReqOrOptionList *l_or_b = l_b->or_option_terms;
2879 while (l_or_a && l_or_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2880 {
2881 if (l_or_a->is_true != l_or_b->is_true)
2882 return 0;
2883 if (strcmp (l_or_a->option_name, l_or_b->option_name) != 0)
2884 {
2885 /* This is the case we care about. */
2886 if (strcmp (l_or_a->option_name, "IsaUseConst16") == 0
2887 && strcmp (l_or_b->option_name, "IsaUseL32R") == 0)
2888 {
2889 if (prefer_const16)
2890 a_greater = TRUE;
2891 else
2892 b_greater = TRUE;
2893 }
2894 else if (strcmp (l_or_a->option_name, "IsaUseL32R") == 0
2895 && strcmp (l_or_b->option_name, "IsaUseConst16") == 0)
2896 {
2897 if (prefer_const16)
2898 b_greater = TRUE;
2899 else
2900 a_greater = TRUE;
2901 }
2902 else
2903 return 0;
2904 }
2905 l_or_a = l_or_a->next;
2906 l_or_b = l_or_b->next;
2907 }
2908 if (l_or_a || l_or_b)
2909 return 0;
2910
2911 l_a = l_a->next;
2912 l_b = l_b->next;
2913 }
2914 if (l_a || l_b)
2915 return 0;
2916
2917 /* Incomparable if the substitution was used differently in two cases. */
2918 if (a_greater && b_greater)
2919 return 0;
2920
2921 if (b_greater)
2922 return 1;
2923 if (a_greater)
2924 return -1;
2925
2926 return 0;
2927}
2928
2929
2930static TransitionRule *
2931xg_instruction_match (TInsn *insn)
2932{
2933 TransitionTable *table = xg_build_simplify_table (&transition_rule_cmp);
2934 TransitionList *l;
2935 assert (insn->opcode < table->num_opcodes);
2936
2937 /* Walk through all of the possible transitions. */
2938 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
2939 {
2940 TransitionRule *rule = l->rule;
2941 if (xg_instruction_matches_rule (insn, rule))
2942 return rule;
2943 }
2944 return NULL;
2945}
2946
2947\f
2948/* Various Other Internal Functions. */
2949
2950static bfd_boolean
2951is_unique_insn_expansion (TransitionRule *r)
2952{
2953 if (!r->to_instr || r->to_instr->next != NULL)
2954 return FALSE;
2955 if (r->to_instr->typ != INSTR_INSTR)
2956 return FALSE;
2957 return TRUE;
2958}
2959
2960
84b08ed9
BW
2961/* Check if there is exactly one relaxation for INSN that converts it to
2962 another instruction of equal or larger size. If so, and if TARG is
2963 non-null, go ahead and generate the relaxed instruction into TARG. If
2964 NARROW_ONLY is true, then only consider relaxations that widen a narrow
2965 instruction, i.e., ignore relaxations that convert to an instruction of
2966 equal size. In some contexts where this function is used, only
c138bc38 2967 a single widening is allowed and the NARROW_ONLY argument is used to
84b08ed9
BW
2968 exclude cases like ADDI being "widened" to an ADDMI, which may
2969 later be relaxed to an ADDMI/ADDI pair. */
7fa3d080 2970
84b08ed9
BW
2971bfd_boolean
2972xg_is_single_relaxable_insn (TInsn *insn, TInsn *targ, bfd_boolean narrow_only)
7fa3d080
BW
2973{
2974 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
2975 TransitionList *l;
84b08ed9 2976 TransitionRule *match = 0;
7fa3d080 2977
7fa3d080
BW
2978 assert (insn->insn_type == ITYPE_INSN);
2979 assert (insn->opcode < table->num_opcodes);
2980
2981 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
2982 {
2983 TransitionRule *rule = l->rule;
2984
2985 if (xg_instruction_matches_rule (insn, rule)
84b08ed9
BW
2986 && is_unique_insn_expansion (rule)
2987 && (xg_get_single_size (insn->opcode) + (narrow_only ? 1 : 0)
2988 <= xg_get_single_size (rule->to_instr->opcode)))
7fa3d080 2989 {
84b08ed9
BW
2990 if (match)
2991 return FALSE;
2992 match = rule;
7fa3d080
BW
2993 }
2994 }
84b08ed9
BW
2995 if (!match)
2996 return FALSE;
2997
2998 if (targ)
2999 xg_build_to_insn (targ, insn, match->to_instr);
3000 return TRUE;
7fa3d080
BW
3001}
3002
3003
3004/* Return the maximum number of bytes this opcode can expand to. */
3005
3006static int
3007xg_get_max_insn_widen_size (xtensa_opcode opcode)
3008{
3009 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3010 TransitionList *l;
3011 int max_size = xg_get_single_size (opcode);
3012
3013 assert (opcode < table->num_opcodes);
3014
3015 for (l = table->table[opcode]; l != NULL; l = l->next)
3016 {
3017 TransitionRule *rule = l->rule;
3018 BuildInstr *build_list;
3019 int this_size = 0;
3020
3021 if (!rule)
3022 continue;
3023 build_list = rule->to_instr;
3024 if (is_unique_insn_expansion (rule))
3025 {
3026 assert (build_list->typ == INSTR_INSTR);
3027 this_size = xg_get_max_insn_widen_size (build_list->opcode);
3028 }
3029 else
3030 for (; build_list != NULL; build_list = build_list->next)
3031 {
3032 switch (build_list->typ)
3033 {
3034 case INSTR_INSTR:
3035 this_size += xg_get_single_size (build_list->opcode);
3036 break;
3037 case INSTR_LITERAL_DEF:
3038 case INSTR_LABEL_DEF:
e0001a05
NC
3039 default:
3040 break;
3041 }
3042 }
3043 if (this_size > max_size)
3044 max_size = this_size;
3045 }
3046 return max_size;
3047}
3048
3049
3050/* Return the maximum number of literal bytes this opcode can generate. */
3051
7fa3d080
BW
3052static int
3053xg_get_max_insn_widen_literal_size (xtensa_opcode opcode)
e0001a05 3054{
43cd72b9 3055 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
e0001a05
NC
3056 TransitionList *l;
3057 int max_size = 0;
3058
3059 assert (opcode < table->num_opcodes);
3060
3061 for (l = table->table[opcode]; l != NULL; l = l->next)
3062 {
3063 TransitionRule *rule = l->rule;
3064 BuildInstr *build_list;
3065 int this_size = 0;
3066
3067 if (!rule)
3068 continue;
3069 build_list = rule->to_instr;
3070 if (is_unique_insn_expansion (rule))
3071 {
3072 assert (build_list->typ == INSTR_INSTR);
3073 this_size = xg_get_max_insn_widen_literal_size (build_list->opcode);
3074 }
3075 else
3076 for (; build_list != NULL; build_list = build_list->next)
3077 {
3078 switch (build_list->typ)
3079 {
3080 case INSTR_LITERAL_DEF:
43cd72b9 3081 /* Hard-coded 4-byte literal. */
e0001a05
NC
3082 this_size += 4;
3083 break;
3084 case INSTR_INSTR:
3085 case INSTR_LABEL_DEF:
3086 default:
3087 break;
3088 }
3089 }
3090 if (this_size > max_size)
3091 max_size = this_size;
3092 }
3093 return max_size;
3094}
3095
3096
7fa3d080
BW
3097static bfd_boolean
3098xg_is_relaxable_insn (TInsn *insn, int lateral_steps)
3099{
3100 int steps_taken = 0;
3101 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3102 TransitionList *l;
3103
3104 assert (insn->insn_type == ITYPE_INSN);
3105 assert (insn->opcode < table->num_opcodes);
3106
3107 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3108 {
3109 TransitionRule *rule = l->rule;
3110
3111 if (xg_instruction_matches_rule (insn, rule))
3112 {
3113 if (steps_taken == lateral_steps)
3114 return TRUE;
3115 steps_taken++;
3116 }
3117 }
3118 return FALSE;
3119}
3120
3121
3122static symbolS *
3123get_special_literal_symbol (void)
3124{
3125 static symbolS *sym = NULL;
3126
3127 if (sym == NULL)
3128 sym = symbol_find_or_make ("SPECIAL_LITERAL0\001");
3129 return sym;
3130}
3131
3132
3133static symbolS *
3134get_special_label_symbol (void)
3135{
3136 static symbolS *sym = NULL;
3137
3138 if (sym == NULL)
3139 sym = symbol_find_or_make ("SPECIAL_LABEL0\001");
3140 return sym;
3141}
3142
3143
3144static bfd_boolean
3145xg_valid_literal_expression (const expressionS *exp)
3146{
3147 switch (exp->X_op)
3148 {
3149 case O_constant:
3150 case O_symbol:
3151 case O_big:
3152 case O_uminus:
3153 case O_subtract:
3154 case O_pltrel:
3155 return TRUE;
3156 default:
3157 return FALSE;
3158 }
3159}
3160
3161
3162/* This will check to see if the value can be converted into the
3163 operand type. It will return TRUE if it does not fit. */
3164
3165static bfd_boolean
3166xg_check_operand (int32 value, xtensa_opcode opcode, int operand)
3167{
3168 uint32 valbuf = value;
3169 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
3170 return TRUE;
3171 return FALSE;
3172}
3173
3174
3175/* Assumes: All immeds are constants. Check that all constants fit
3176 into their immeds; return FALSE if not. */
3177
3178static bfd_boolean
3179xg_immeds_fit (const TInsn *insn)
3180{
3181 xtensa_isa isa = xtensa_default_isa;
3182 int i;
3183
3184 int n = insn->ntok;
3185 assert (insn->insn_type == ITYPE_INSN);
3186 for (i = 0; i < n; ++i)
3187 {
3188 const expressionS *expr = &insn->tok[i];
3189 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3190 continue;
3191
3192 switch (expr->X_op)
3193 {
3194 case O_register:
3195 case O_constant:
3196 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3197 return FALSE;
3198 break;
3199
3200 default:
3201 /* The symbol should have a fixup associated with it. */
3202 assert (FALSE);
3203 break;
3204 }
3205 }
3206 return TRUE;
3207}
3208
3209
3210/* This should only be called after we have an initial
3211 estimate of the addresses. */
3212
3213static bfd_boolean
3214xg_symbolic_immeds_fit (const TInsn *insn,
3215 segT pc_seg,
3216 fragS *pc_frag,
3217 offsetT pc_offset,
3218 long stretch)
e0001a05 3219{
7fa3d080
BW
3220 xtensa_isa isa = xtensa_default_isa;
3221 symbolS *symbolP;
3222 fragS *sym_frag;
3223 offsetT target, pc;
3224 uint32 new_offset;
3225 int i;
3226 int n = insn->ntok;
e0001a05
NC
3227
3228 assert (insn->insn_type == ITYPE_INSN);
e0001a05 3229
7fa3d080 3230 for (i = 0; i < n; ++i)
e0001a05 3231 {
7fa3d080
BW
3232 const expressionS *expr = &insn->tok[i];
3233 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3234 continue;
e0001a05 3235
7fa3d080 3236 switch (expr->X_op)
e0001a05 3237 {
7fa3d080
BW
3238 case O_register:
3239 case O_constant:
3240 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3241 return FALSE;
3242 break;
e0001a05 3243
7fa3d080
BW
3244 case O_lo16:
3245 case O_hi16:
3246 /* Check for the worst case. */
3247 if (xg_check_operand (0xffff, insn->opcode, i))
3248 return FALSE;
3249 break;
e0001a05 3250
7fa3d080 3251 case O_symbol:
7c834684 3252 /* We only allow symbols for PC-relative references.
7fa3d080 3253 If pc_frag == 0, then we don't have frag locations yet. */
7c834684
BW
3254 if (pc_frag == 0
3255 || xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 0)
7fa3d080 3256 return FALSE;
e0001a05 3257
7c834684
BW
3258 /* If it is a weak symbol, then assume it won't reach. */
3259 if (S_IS_WEAK (expr->X_add_symbol))
7fa3d080 3260 return FALSE;
e0001a05 3261
7c834684
BW
3262 if (is_direct_call_opcode (insn->opcode)
3263 && ! pc_frag->tc_frag_data.use_longcalls)
3264 {
3265 /* If callee is undefined or in a different segment, be
3266 optimistic and assume it will be in range. */
3267 if (S_GET_SEGMENT (expr->X_add_symbol) != pc_seg)
3268 return TRUE;
3269 }
3270
3271 /* Only references within a segment can be known to fit in the
3272 operands at assembly time. */
3273 if (S_GET_SEGMENT (expr->X_add_symbol) != pc_seg)
7fa3d080 3274 return FALSE;
e0001a05 3275
7fa3d080
BW
3276 symbolP = expr->X_add_symbol;
3277 sym_frag = symbol_get_frag (symbolP);
3278 target = S_GET_VALUE (symbolP) + expr->X_add_number;
3279 pc = pc_frag->fr_address + pc_offset;
e0001a05 3280
7fa3d080
BW
3281 /* If frag has yet to be reached on this pass, assume it
3282 will move by STRETCH just as we did. If this is not so,
3283 it will be because some frag between grows, and that will
3284 force another pass. Beware zero-length frags. There
3285 should be a faster way to do this. */
3286
3287 if (stretch != 0
3288 && sym_frag->relax_marker != pc_frag->relax_marker
3289 && S_GET_SEGMENT (symbolP) == pc_seg)
3290 {
3291 target += stretch;
3292 }
c138bc38 3293
7fa3d080
BW
3294 new_offset = target;
3295 xtensa_operand_do_reloc (isa, insn->opcode, i, &new_offset, pc);
3296 if (xg_check_operand (new_offset, insn->opcode, i))
3297 return FALSE;
3298 break;
3299
3300 default:
3301 /* The symbol should have a fixup associated with it. */
3302 return FALSE;
3303 }
3304 }
3305
3306 return TRUE;
e0001a05
NC
3307}
3308
3309
43cd72b9 3310/* Return TRUE on success. */
e0001a05 3311
7fa3d080
BW
3312static bfd_boolean
3313xg_build_to_insn (TInsn *targ, TInsn *insn, BuildInstr *bi)
e0001a05
NC
3314{
3315 BuildOp *op;
3316 symbolS *sym;
3317
3318 memset (targ, 0, sizeof (TInsn));
7c430684 3319 targ->linenum = insn->linenum;
e0001a05
NC
3320 switch (bi->typ)
3321 {
3322 case INSTR_INSTR:
3323 op = bi->ops;
3324 targ->opcode = bi->opcode;
3325 targ->insn_type = ITYPE_INSN;
3326 targ->is_specific_opcode = FALSE;
3327
3328 for (; op != NULL; op = op->next)
3329 {
3330 int op_num = op->op_num;
3331 int op_data = op->op_data;
3332
3333 assert (op->op_num < MAX_INSN_ARGS);
3334
3335 if (targ->ntok <= op_num)
3336 targ->ntok = op_num + 1;
3337
3338 switch (op->typ)
3339 {
3340 case OP_CONSTANT:
3341 set_expr_const (&targ->tok[op_num], op_data);
3342 break;
3343 case OP_OPERAND:
3344 assert (op_data < insn->ntok);
3345 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3346 break;
3347 case OP_LITERAL:
3348 sym = get_special_literal_symbol ();
3349 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3350 break;
3351 case OP_LABEL:
3352 sym = get_special_label_symbol ();
3353 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3354 break;
43cd72b9
BW
3355 case OP_OPERAND_HI16U:
3356 case OP_OPERAND_LOW16U:
3357 assert (op_data < insn->ntok);
3358 if (expr_is_const (&insn->tok[op_data]))
3359 {
3360 long val;
3361 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3362 val = xg_apply_userdef_op_fn (op->typ,
3363 targ->tok[op_num].
3364 X_add_number);
3365 targ->tok[op_num].X_add_number = val;
3366 }
3367 else
3368 {
3369 /* For const16 we can create relocations for these. */
3370 if (targ->opcode == XTENSA_UNDEFINED
3371 || (targ->opcode != xtensa_const16_opcode))
3372 return FALSE;
3373 assert (op_data < insn->ntok);
3374 /* Need to build a O_lo16 or O_hi16. */
3375 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3376 if (targ->tok[op_num].X_op == O_symbol)
3377 {
3378 if (op->typ == OP_OPERAND_HI16U)
3379 targ->tok[op_num].X_op = O_hi16;
3380 else if (op->typ == OP_OPERAND_LOW16U)
3381 targ->tok[op_num].X_op = O_lo16;
3382 else
3383 return FALSE;
3384 }
3385 }
3386 break;
e0001a05
NC
3387 default:
3388 /* currently handles:
3389 OP_OPERAND_LOW8
3390 OP_OPERAND_HI24S
3391 OP_OPERAND_F32MINUS */
3392 if (xg_has_userdef_op_fn (op->typ))
3393 {
3394 assert (op_data < insn->ntok);
3395 if (expr_is_const (&insn->tok[op_data]))
3396 {
3397 long val;
3398 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3399 val = xg_apply_userdef_op_fn (op->typ,
3400 targ->tok[op_num].
3401 X_add_number);
3402 targ->tok[op_num].X_add_number = val;
3403 }
3404 else
3405 return FALSE; /* We cannot use a relocation for this. */
3406 break;
3407 }
3408 assert (0);
3409 break;
3410 }
3411 }
3412 break;
3413
3414 case INSTR_LITERAL_DEF:
3415 op = bi->ops;
3416 targ->opcode = XTENSA_UNDEFINED;
3417 targ->insn_type = ITYPE_LITERAL;
3418 targ->is_specific_opcode = FALSE;
3419 for (; op != NULL; op = op->next)
3420 {
3421 int op_num = op->op_num;
3422 int op_data = op->op_data;
3423 assert (op->op_num < MAX_INSN_ARGS);
3424
3425 if (targ->ntok <= op_num)
3426 targ->ntok = op_num + 1;
3427
3428 switch (op->typ)
3429 {
3430 case OP_OPERAND:
3431 assert (op_data < insn->ntok);
43cd72b9
BW
3432 /* We can only pass resolvable literals through. */
3433 if (!xg_valid_literal_expression (&insn->tok[op_data]))
3434 return FALSE;
e0001a05
NC
3435 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3436 break;
3437 case OP_LITERAL:
3438 case OP_CONSTANT:
3439 case OP_LABEL:
3440 default:
3441 assert (0);
3442 break;
3443 }
3444 }
3445 break;
3446
3447 case INSTR_LABEL_DEF:
3448 op = bi->ops;
3449 targ->opcode = XTENSA_UNDEFINED;
3450 targ->insn_type = ITYPE_LABEL;
3451 targ->is_specific_opcode = FALSE;
43cd72b9 3452 /* Literal with no ops is a label? */
e0001a05
NC
3453 assert (op == NULL);
3454 break;
3455
3456 default:
3457 assert (0);
3458 }
3459
3460 return TRUE;
3461}
3462
3463
43cd72b9 3464/* Return TRUE on success. */
e0001a05 3465
7fa3d080
BW
3466static bfd_boolean
3467xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi)
e0001a05
NC
3468{
3469 for (; bi != NULL; bi = bi->next)
3470 {
3471 TInsn *next_insn = istack_push_space (istack);
3472
3473 if (!xg_build_to_insn (next_insn, insn, bi))
3474 return FALSE;
3475 }
3476 return TRUE;
3477}
3478
3479
43cd72b9 3480/* Return TRUE on valid expansion. */
e0001a05 3481
7fa3d080
BW
3482static bfd_boolean
3483xg_expand_to_stack (IStack *istack, TInsn *insn, int lateral_steps)
e0001a05
NC
3484{
3485 int stack_size = istack->ninsn;
3486 int steps_taken = 0;
43cd72b9 3487 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
e0001a05
NC
3488 TransitionList *l;
3489
3490 assert (insn->insn_type == ITYPE_INSN);
3491 assert (insn->opcode < table->num_opcodes);
3492
3493 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3494 {
3495 TransitionRule *rule = l->rule;
3496
3497 if (xg_instruction_matches_rule (insn, rule))
3498 {
3499 if (lateral_steps == steps_taken)
3500 {
3501 int i;
3502
3503 /* This is it. Expand the rule to the stack. */
3504 if (!xg_build_to_stack (istack, insn, rule->to_instr))
3505 return FALSE;
3506
3507 /* Check to see if it fits. */
3508 for (i = stack_size; i < istack->ninsn; i++)
3509 {
3510 TInsn *insn = &istack->insn[i];
3511
3512 if (insn->insn_type == ITYPE_INSN
3513 && !tinsn_has_symbolic_operands (insn)
3514 && !xg_immeds_fit (insn))
3515 {
3516 istack->ninsn = stack_size;
3517 return FALSE;
3518 }
3519 }
3520 return TRUE;
3521 }
3522 steps_taken++;
3523 }
3524 }
3525 return FALSE;
3526}
3527
43cd72b9 3528\f
43cd72b9
BW
3529/* Relax the assembly instruction at least "min_steps".
3530 Return the number of steps taken. */
e0001a05 3531
7fa3d080
BW
3532static int
3533xg_assembly_relax (IStack *istack,
3534 TInsn *insn,
3535 segT pc_seg,
3536 fragS *pc_frag, /* if pc_frag == 0, not pc-relative */
3537 offsetT pc_offset, /* offset in fragment */
3538 int min_steps, /* minimum conversion steps */
3539 long stretch) /* number of bytes stretched so far */
e0001a05
NC
3540{
3541 int steps_taken = 0;
3542
3543 /* assert (has no symbolic operands)
3544 Some of its immeds don't fit.
3545 Try to build a relaxed version.
3546 This may go through a couple of stages
3547 of single instruction transformations before
3548 we get there. */
3549
3550 TInsn single_target;
3551 TInsn current_insn;
3552 int lateral_steps = 0;
3553 int istack_size = istack->ninsn;
3554
3555 if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch)
3556 && steps_taken >= min_steps)
3557 {
3558 istack_push (istack, insn);
3559 return steps_taken;
3560 }
43cd72b9 3561 current_insn = *insn;
e0001a05 3562
7c834684 3563 /* Walk through all of the single instruction expansions. */
84b08ed9 3564 while (xg_is_single_relaxable_insn (&current_insn, &single_target, FALSE))
e0001a05 3565 {
21af2bbd 3566 steps_taken++;
e0001a05
NC
3567 if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset,
3568 stretch))
3569 {
e0001a05
NC
3570 if (steps_taken >= min_steps)
3571 {
3572 istack_push (istack, &single_target);
3573 return steps_taken;
3574 }
3575 }
43cd72b9 3576 current_insn = single_target;
e0001a05
NC
3577 }
3578
3579 /* Now check for a multi-instruction expansion. */
3580 while (xg_is_relaxable_insn (&current_insn, lateral_steps))
3581 {
3582 if (xg_symbolic_immeds_fit (&current_insn, pc_seg, pc_frag, pc_offset,
3583 stretch))
3584 {
3585 if (steps_taken >= min_steps)
3586 {
3587 istack_push (istack, &current_insn);
3588 return steps_taken;
3589 }
3590 }
3591 steps_taken++;
3592 if (xg_expand_to_stack (istack, &current_insn, lateral_steps))
3593 {
3594 if (steps_taken >= min_steps)
3595 return steps_taken;
3596 }
3597 lateral_steps++;
3598 istack->ninsn = istack_size;
3599 }
3600
3601 /* It's not going to work -- use the original. */
3602 istack_push (istack, insn);
3603 return steps_taken;
3604}
3605
3606
3607static void
7fa3d080 3608xg_force_frag_space (int size)
e0001a05
NC
3609{
3610 /* This may have the side effect of creating a new fragment for the
3611 space to go into. I just do not like the name of the "frag"
3612 functions. */
3613 frag_grow (size);
3614}
3615
3616
7fa3d080
BW
3617static void
3618xg_finish_frag (char *last_insn,
3619 enum xtensa_relax_statesE frag_state,
3620 enum xtensa_relax_statesE slot0_state,
3621 int max_growth,
3622 bfd_boolean is_insn)
e0001a05
NC
3623{
3624 /* Finish off this fragment so that it has at LEAST the desired
3625 max_growth. If it doesn't fit in this fragment, close this one
3626 and start a new one. In either case, return a pointer to the
3627 beginning of the growth area. */
3628
3629 fragS *old_frag;
43cd72b9 3630
e0001a05
NC
3631 xg_force_frag_space (max_growth);
3632
3633 old_frag = frag_now;
3634
3635 frag_now->fr_opcode = last_insn;
3636 if (is_insn)
3637 frag_now->tc_frag_data.is_insn = TRUE;
3638
3639 frag_var (rs_machine_dependent, max_growth, max_growth,
43cd72b9
BW
3640 frag_state, frag_now->fr_symbol, frag_now->fr_offset, last_insn);
3641
3642 old_frag->tc_frag_data.slot_subtypes[0] = slot0_state;
3643 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
3644
3645 /* Just to make sure that we did not split it up. */
3646 assert (old_frag->fr_next == frag_now);
3647}
3648
3649
7fa3d080
BW
3650/* Return TRUE if the target frag is one of the next non-empty frags. */
3651
3652static bfd_boolean
3653is_next_frag_target (const fragS *fragP, const fragS *target)
3654{
3655 if (fragP == NULL)
3656 return FALSE;
3657
3658 for (; fragP; fragP = fragP->fr_next)
3659 {
3660 if (fragP == target)
3661 return TRUE;
3662 if (fragP->fr_fix != 0)
3663 return FALSE;
3664 if (fragP->fr_type == rs_fill && fragP->fr_offset != 0)
3665 return FALSE;
3666 if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code)
3667 && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0))
3668 return FALSE;
3669 if (fragP->fr_type == rs_space)
3670 return FALSE;
3671 }
3672 return FALSE;
3673}
3674
3675
e0001a05 3676static bfd_boolean
7fa3d080 3677is_branch_jmp_to_next (TInsn *insn, fragS *fragP)
e0001a05
NC
3678{
3679 xtensa_isa isa = xtensa_default_isa;
3680 int i;
43cd72b9 3681 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
e0001a05
NC
3682 int target_op = -1;
3683 symbolS *sym;
3684 fragS *target_frag;
3685
43cd72b9
BW
3686 if (xtensa_opcode_is_branch (isa, insn->opcode) == 0
3687 && xtensa_opcode_is_jump (isa, insn->opcode) == 0)
e0001a05
NC
3688 return FALSE;
3689
3690 for (i = 0; i < num_ops; i++)
3691 {
43cd72b9 3692 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1)
e0001a05
NC
3693 {
3694 target_op = i;
3695 break;
3696 }
3697 }
3698 if (target_op == -1)
3699 return FALSE;
3700
3701 if (insn->ntok <= target_op)
3702 return FALSE;
3703
3704 if (insn->tok[target_op].X_op != O_symbol)
3705 return FALSE;
3706
3707 sym = insn->tok[target_op].X_add_symbol;
3708 if (sym == NULL)
3709 return FALSE;
3710
3711 if (insn->tok[target_op].X_add_number != 0)
3712 return FALSE;
3713
3714 target_frag = symbol_get_frag (sym);
3715 if (target_frag == NULL)
3716 return FALSE;
3717
c138bc38 3718 if (is_next_frag_target (fragP->fr_next, target_frag)
e0001a05
NC
3719 && S_GET_VALUE (sym) == target_frag->fr_address)
3720 return TRUE;
3721
3722 return FALSE;
3723}
3724
3725
3726static void
7fa3d080 3727xg_add_branch_and_loop_targets (TInsn *insn)
e0001a05
NC
3728{
3729 xtensa_isa isa = xtensa_default_isa;
7fa3d080 3730 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
43cd72b9 3731
7fa3d080
BW
3732 if (xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3733 {
3734 int i = 1;
3735 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3736 && insn->tok[i].X_op == O_symbol)
3737 symbol_get_tc (insn->tok[i].X_add_symbol)->is_loop_target = TRUE;
3738 return;
3739 }
e0001a05 3740
7fa3d080
BW
3741 if (xtensa_opcode_is_branch (isa, insn->opcode) == 1
3742 || xtensa_opcode_is_loop (isa, insn->opcode) == 1)
e0001a05 3743 {
7fa3d080
BW
3744 int i;
3745
3746 for (i = 0; i < insn->ntok && i < num_ops; i++)
3747 {
3748 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3749 && insn->tok[i].X_op == O_symbol)
3750 {
3751 symbolS *sym = insn->tok[i].X_add_symbol;
3752 symbol_get_tc (sym)->is_branch_target = TRUE;
3753 if (S_IS_DEFINED (sym))
3754 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
3755 }
3756 }
e0001a05 3757 }
e0001a05
NC
3758}
3759
3760
43cd72b9 3761/* Return FALSE if no error. */
e0001a05 3762
7fa3d080
BW
3763static bfd_boolean
3764xg_build_token_insn (BuildInstr *instr_spec, TInsn *old_insn, TInsn *new_insn)
e0001a05
NC
3765{
3766 int num_ops = 0;
3767 BuildOp *b_op;
3768
3769 switch (instr_spec->typ)
3770 {
3771 case INSTR_INSTR:
3772 new_insn->insn_type = ITYPE_INSN;
3773 new_insn->opcode = instr_spec->opcode;
3774 new_insn->is_specific_opcode = FALSE;
7c430684 3775 new_insn->linenum = old_insn->linenum;
e0001a05
NC
3776 break;
3777 case INSTR_LITERAL_DEF:
3778 new_insn->insn_type = ITYPE_LITERAL;
3779 new_insn->opcode = XTENSA_UNDEFINED;
3780 new_insn->is_specific_opcode = FALSE;
7c430684 3781 new_insn->linenum = old_insn->linenum;
e0001a05
NC
3782 break;
3783 case INSTR_LABEL_DEF:
3784 as_bad (_("INSTR_LABEL_DEF not supported yet"));
3785 break;
3786 }
3787
3788 for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next)
3789 {
3790 expressionS *exp;
3791 const expressionS *src_exp;
3792
3793 num_ops++;
3794 switch (b_op->typ)
3795 {
3796 case OP_CONSTANT:
3797 /* The expression must be the constant. */
3798 assert (b_op->op_num < MAX_INSN_ARGS);
3799 exp = &new_insn->tok[b_op->op_num];
3800 set_expr_const (exp, b_op->op_data);
3801 break;
3802
3803 case OP_OPERAND:
3804 assert (b_op->op_num < MAX_INSN_ARGS);
3805 assert (b_op->op_data < (unsigned) old_insn->ntok);
3806 src_exp = &old_insn->tok[b_op->op_data];
3807 exp = &new_insn->tok[b_op->op_num];
3808 copy_expr (exp, src_exp);
3809 break;
3810
3811 case OP_LITERAL:
3812 case OP_LABEL:
3813 as_bad (_("can't handle generation of literal/labels yet"));
3814 assert (0);
3815
3816 default:
3817 as_bad (_("can't handle undefined OP TYPE"));
3818 assert (0);
3819 }
3820 }
3821
3822 new_insn->ntok = num_ops;
3823 return FALSE;
3824}
3825
3826
43cd72b9 3827/* Return TRUE if it was simplified. */
e0001a05 3828
7fa3d080
BW
3829static bfd_boolean
3830xg_simplify_insn (TInsn *old_insn, TInsn *new_insn)
e0001a05 3831{
43cd72b9 3832 TransitionRule *rule;
e0001a05 3833 BuildInstr *insn_spec;
43cd72b9
BW
3834
3835 if (old_insn->is_specific_opcode || !density_supported)
3836 return FALSE;
3837
3838 rule = xg_instruction_match (old_insn);
e0001a05
NC
3839 if (rule == NULL)
3840 return FALSE;
3841
3842 insn_spec = rule->to_instr;
3843 /* There should only be one. */
3844 assert (insn_spec != NULL);
3845 assert (insn_spec->next == NULL);
3846 if (insn_spec->next != NULL)
3847 return FALSE;
3848
3849 xg_build_token_insn (insn_spec, old_insn, new_insn);
3850
3851 return TRUE;
3852}
3853
3854
3855/* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i ->
3856 l32i.n. (2) Check the number of operands. (3) Place the instruction
7c834684
BW
3857 tokens into the stack or relax it and place multiple
3858 instructions/literals onto the stack. Return FALSE if no error. */
e0001a05
NC
3859
3860static bfd_boolean
7fa3d080 3861xg_expand_assembly_insn (IStack *istack, TInsn *orig_insn)
e0001a05
NC
3862{
3863 int noperands;
3864 TInsn new_insn;
7c834684
BW
3865 bfd_boolean do_expand;
3866
e0001a05
NC
3867 memset (&new_insn, 0, sizeof (TInsn));
3868
43cd72b9
BW
3869 /* Narrow it if we can. xg_simplify_insn now does all the
3870 appropriate checking (e.g., for the density option). */
3871 if (xg_simplify_insn (orig_insn, &new_insn))
3872 orig_insn = &new_insn;
e0001a05 3873
43cd72b9
BW
3874 noperands = xtensa_opcode_num_operands (xtensa_default_isa,
3875 orig_insn->opcode);
e0001a05
NC
3876 if (orig_insn->ntok < noperands)
3877 {
3878 as_bad (_("found %d operands for '%s': Expected %d"),
3879 orig_insn->ntok,
3880 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3881 noperands);
3882 return TRUE;
3883 }
3884 if (orig_insn->ntok > noperands)
3885 as_warn (_("found too many (%d) operands for '%s': Expected %d"),
3886 orig_insn->ntok,
3887 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3888 noperands);
3889
43cd72b9 3890 /* If there are not enough operands, we will assert above. If there
e0001a05 3891 are too many, just cut out the extras here. */
e0001a05
NC
3892 orig_insn->ntok = noperands;
3893
e0001a05
NC
3894 if (tinsn_has_invalid_symbolic_operands (orig_insn))
3895 return TRUE;
3896
7c834684
BW
3897 /* If the instruction will definitely need to be relaxed, it is better
3898 to expand it now for better scheduling. Decide whether to expand
3899 now.... */
3900 do_expand = (!orig_insn->is_specific_opcode && use_transform ());
3901
3902 /* Calls should be expanded to longcalls only in the backend relaxation
3903 so that the assembly scheduler will keep the L32R/CALLX instructions
3904 adjacent. */
3905 if (is_direct_call_opcode (orig_insn->opcode))
3906 do_expand = FALSE;
e0001a05
NC
3907
3908 if (tinsn_has_symbolic_operands (orig_insn))
3909 {
7c834684
BW
3910 /* The values of symbolic operands are not known yet, so only expand
3911 now if an operand is "complex" (e.g., difference of symbols) and
3912 will have to be stored as a literal regardless of the value. */
3913 if (!tinsn_has_complex_operands (orig_insn))
3914 do_expand = FALSE;
e0001a05 3915 }
7c834684
BW
3916 else if (xg_immeds_fit (orig_insn))
3917 do_expand = FALSE;
3918
3919 if (do_expand)
3920 xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0);
e0001a05 3921 else
7c834684 3922 istack_push (istack, orig_insn);
e0001a05 3923
e0001a05
NC
3924 return FALSE;
3925}
3926
3927
7fa3d080
BW
3928/* Return TRUE if the section flags are marked linkonce
3929 or the name is .gnu.linkonce*. */
3930
3931static bfd_boolean
3932get_is_linkonce_section (bfd *abfd ATTRIBUTE_UNUSED, segT sec)
3933{
3934 flagword flags, link_once_flags;
3935
3936 flags = bfd_get_section_flags (abfd, sec);
3937 link_once_flags = (flags & SEC_LINK_ONCE);
3938
3939 /* Flags might not be set yet. */
3940 if (!link_once_flags)
3941 {
3942 static size_t len = sizeof ".gnu.linkonce.t.";
3943
3944 if (strncmp (segment_name (sec), ".gnu.linkonce.t.", len - 1) == 0)
3945 link_once_flags = SEC_LINK_ONCE;
3946 }
3947 return (link_once_flags != 0);
3948}
3949
3950
3951static void
3952xtensa_add_literal_sym (symbolS *sym)
3953{
3954 sym_list *l;
3955
3956 l = (sym_list *) xmalloc (sizeof (sym_list));
3957 l->sym = sym;
3958 l->next = literal_syms;
3959 literal_syms = l;
3960}
3961
3962
3963static symbolS *
3964xtensa_create_literal_symbol (segT sec, fragS *frag)
3965{
3966 static int lit_num = 0;
3967 static char name[256];
3968 symbolS *symbolP;
3969
3970 sprintf (name, ".L_lit_sym%d", lit_num);
3971
3972 /* Create a local symbol. If it is in a linkonce section, we have to
3973 be careful to make sure that if it is used in a relocation that the
3974 symbol will be in the output file. */
3975 if (get_is_linkonce_section (stdoutput, sec))
3976 {
3977 symbolP = symbol_new (name, sec, 0, frag);
3978 S_CLEAR_EXTERNAL (symbolP);
3979 /* symbolP->local = 1; */
3980 }
3981 else
3982 symbolP = symbol_new (name, sec, 0, frag);
3983
3984 xtensa_add_literal_sym (symbolP);
3985
3986 frag->tc_frag_data.is_literal = TRUE;
3987 lit_num++;
3988 return symbolP;
3989}
3990
3991
e0001a05
NC
3992/* Currently all literals that are generated here are 32-bit L32R targets. */
3993
7fa3d080
BW
3994static symbolS *
3995xg_assemble_literal (/* const */ TInsn *insn)
e0001a05
NC
3996{
3997 emit_state state;
3998 symbolS *lit_sym = NULL;
3999
4000 /* size = 4 for L32R. It could easily be larger when we move to
4001 larger constants. Add a parameter later. */
4002 offsetT litsize = 4;
4003 offsetT litalign = 2; /* 2^2 = 4 */
4004 expressionS saved_loc;
43cd72b9
BW
4005 expressionS * emit_val;
4006
e0001a05
NC
4007 set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ());
4008
4009 assert (insn->insn_type == ITYPE_LITERAL);
77cd6497 4010 assert (insn->ntok == 1); /* must be only one token here */
e0001a05
NC
4011
4012 xtensa_switch_to_literal_fragment (&state);
4013
43cd72b9
BW
4014 emit_val = &insn->tok[0];
4015 if (emit_val->X_op == O_big)
4016 {
4017 int size = emit_val->X_add_number * CHARS_PER_LITTLENUM;
4018 if (size > litsize)
4019 {
4020 /* This happens when someone writes a "movi a2, big_number". */
c138bc38 4021 as_bad_where (frag_now->fr_file, frag_now->fr_line,
43cd72b9
BW
4022 _("invalid immediate"));
4023 xtensa_restore_emit_state (&state);
4024 return NULL;
4025 }
4026 }
4027
e0001a05
NC
4028 /* Force a 4-byte align here. Note that this opens a new frag, so all
4029 literals done with this function have a frag to themselves. That's
4030 important for the way text section literals work. */
4031 frag_align (litalign, 0, 0);
43cd72b9 4032 record_alignment (now_seg, litalign);
e0001a05 4033
43cd72b9
BW
4034 if (emit_val->X_op == O_pltrel)
4035 {
4036 char *p = frag_more (litsize);
4037 xtensa_set_frag_assembly_state (frag_now);
4038 if (emit_val->X_add_symbol)
4039 emit_val->X_op = O_symbol;
4040 else
4041 emit_val->X_op = O_constant;
4042 fix_new_exp (frag_now, p - frag_now->fr_literal,
4043 litsize, emit_val, 0, BFD_RELOC_XTENSA_PLT);
4044 }
4045 else
4046 emit_expr (emit_val, litsize);
e0001a05
NC
4047
4048 assert (frag_now->tc_frag_data.literal_frag == NULL);
4049 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4050 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4051 lit_sym = frag_now->fr_symbol;
4052 frag_now->tc_frag_data.is_literal = TRUE;
4053
4054 /* Go back. */
4055 xtensa_restore_emit_state (&state);
4056 return lit_sym;
4057}
4058
4059
4060static void
7fa3d080 4061xg_assemble_literal_space (/* const */ int size, int slot)
e0001a05
NC
4062{
4063 emit_state state;
43cd72b9 4064 /* We might have to do something about this alignment. It only
e0001a05
NC
4065 takes effect if something is placed here. */
4066 offsetT litalign = 2; /* 2^2 = 4 */
4067 fragS *lit_saved_frag;
4068
e0001a05 4069 assert (size % 4 == 0);
e0001a05
NC
4070
4071 xtensa_switch_to_literal_fragment (&state);
4072
4073 /* Force a 4-byte align here. */
4074 frag_align (litalign, 0, 0);
43cd72b9 4075 record_alignment (now_seg, litalign);
e0001a05
NC
4076
4077 xg_force_frag_space (size);
4078
4079 lit_saved_frag = frag_now;
4080 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4081 frag_now->tc_frag_data.is_literal = TRUE;
4082 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
43cd72b9 4083 xg_finish_frag (0, RELAX_LITERAL, 0, size, FALSE);
e0001a05
NC
4084
4085 /* Go back. */
4086 xtensa_restore_emit_state (&state);
43cd72b9 4087 frag_now->tc_frag_data.literal_frags[slot] = lit_saved_frag;
e0001a05
NC
4088}
4089
4090
e0001a05 4091/* Put in a fixup record based on the opcode.
43cd72b9 4092 Return TRUE on success. */
e0001a05 4093
7fa3d080
BW
4094static bfd_boolean
4095xg_add_opcode_fix (TInsn *tinsn,
4096 int opnum,
4097 xtensa_format fmt,
4098 int slot,
4099 expressionS *expr,
4100 fragS *fragP,
4101 offsetT offset)
43cd72b9
BW
4102{
4103 xtensa_opcode opcode = tinsn->opcode;
4104 bfd_reloc_code_real_type reloc;
4105 reloc_howto_type *howto;
4106 int fmt_length;
e0001a05
NC
4107 fixS *the_fix;
4108
43cd72b9
BW
4109 reloc = BFD_RELOC_NONE;
4110
4111 /* First try the special cases for "alternate" relocs. */
4112 if (opcode == xtensa_l32r_opcode)
4113 {
4114 if (fragP->tc_frag_data.use_absolute_literals)
4115 reloc = encode_alt_reloc (slot);
4116 }
4117 else if (opcode == xtensa_const16_opcode)
4118 {
4119 if (expr->X_op == O_lo16)
4120 {
4121 reloc = encode_reloc (slot);
4122 expr->X_op = O_symbol;
4123 }
4124 else if (expr->X_op == O_hi16)
4125 {
4126 reloc = encode_alt_reloc (slot);
4127 expr->X_op = O_symbol;
4128 }
4129 }
4130
4131 if (opnum != get_relaxable_immed (opcode))
e0001a05 4132 {
43cd72b9 4133 as_bad (_("invalid relocation for operand %i of '%s'"),
431ad2d0 4134 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
e0001a05
NC
4135 return FALSE;
4136 }
4137
43cd72b9
BW
4138 /* Handle erroneous "@h" and "@l" expressions here before they propagate
4139 into the symbol table where the generic portions of the assembler
4140 won't know what to do with them. */
4141 if (expr->X_op == O_lo16 || expr->X_op == O_hi16)
4142 {
4143 as_bad (_("invalid expression for operand %i of '%s'"),
431ad2d0 4144 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
43cd72b9
BW
4145 return FALSE;
4146 }
4147
4148 /* Next try the generic relocs. */
4149 if (reloc == BFD_RELOC_NONE)
4150 reloc = encode_reloc (slot);
4151 if (reloc == BFD_RELOC_NONE)
4152 {
4153 as_bad (_("invalid relocation in instruction slot %i"), slot);
4154 return FALSE;
4155 }
e0001a05 4156
43cd72b9 4157 howto = bfd_reloc_type_lookup (stdoutput, reloc);
e0001a05
NC
4158 if (!howto)
4159 {
43cd72b9 4160 as_bad (_("undefined symbol for opcode \"%s\""),
e0001a05
NC
4161 xtensa_opcode_name (xtensa_default_isa, opcode));
4162 return FALSE;
4163 }
4164
43cd72b9
BW
4165 fmt_length = xtensa_format_length (xtensa_default_isa, fmt);
4166 the_fix = fix_new_exp (fragP, offset, fmt_length, expr,
e0001a05 4167 howto->pc_relative, reloc);
d9740523 4168 the_fix->fx_no_overflow = 1;
e0001a05 4169
7fa3d080
BW
4170 if (expr->X_add_symbol
4171 && (S_IS_EXTERNAL (expr->X_add_symbol)
4172 || S_IS_WEAK (expr->X_add_symbol)))
4173 the_fix->fx_plt = TRUE;
4174
4175 the_fix->tc_fix_data.X_add_symbol = expr->X_add_symbol;
4176 the_fix->tc_fix_data.X_add_number = expr->X_add_number;
4177 the_fix->tc_fix_data.slot = slot;
c138bc38 4178
7fa3d080
BW
4179 return TRUE;
4180}
4181
4182
4183static bfd_boolean
4184xg_emit_insn_to_buf (TInsn *tinsn,
7fa3d080
BW
4185 char *buf,
4186 fragS *fragP,
4187 offsetT offset,
4188 bfd_boolean build_fix)
4189{
4190 static xtensa_insnbuf insnbuf = NULL;
4191 bfd_boolean has_symbolic_immed = FALSE;
4192 bfd_boolean ok = TRUE;
b2d179be 4193
7fa3d080
BW
4194 if (!insnbuf)
4195 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4196
4197 has_symbolic_immed = tinsn_to_insnbuf (tinsn, insnbuf);
4198 if (has_symbolic_immed && build_fix)
4199 {
4200 /* Add a fixup. */
b2d179be
BW
4201 xtensa_format fmt = xg_get_single_format (tinsn->opcode);
4202 int slot = xg_get_single_slot (tinsn->opcode);
7fa3d080
BW
4203 int opnum = get_relaxable_immed (tinsn->opcode);
4204 expressionS *exp = &tinsn->tok[opnum];
43cd72b9 4205
b2d179be 4206 if (!xg_add_opcode_fix (tinsn, opnum, fmt, slot, exp, fragP, offset))
7fa3d080
BW
4207 ok = FALSE;
4208 }
4209 fragP->tc_frag_data.is_insn = TRUE;
d77b99c9
BW
4210 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4211 (unsigned char *) buf, 0);
7fa3d080 4212 return ok;
e0001a05
NC
4213}
4214
4215
7fa3d080
BW
4216static void
4217xg_resolve_literals (TInsn *insn, symbolS *lit_sym)
e0001a05
NC
4218{
4219 symbolS *sym = get_special_literal_symbol ();
4220 int i;
4221 if (lit_sym == 0)
4222 return;
4223 assert (insn->insn_type == ITYPE_INSN);
4224 for (i = 0; i < insn->ntok; i++)
4225 if (insn->tok[i].X_add_symbol == sym)
4226 insn->tok[i].X_add_symbol = lit_sym;
4227
4228}
4229
4230
7fa3d080
BW
4231static void
4232xg_resolve_labels (TInsn *insn, symbolS *label_sym)
e0001a05
NC
4233{
4234 symbolS *sym = get_special_label_symbol ();
4235 int i;
43cd72b9 4236 /* assert (!insn->is_literal); */
e0001a05
NC
4237 for (i = 0; i < insn->ntok; i++)
4238 if (insn->tok[i].X_add_symbol == sym)
4239 insn->tok[i].X_add_symbol = label_sym;
4240
4241}
4242
4243
43cd72b9 4244/* Return TRUE if the instruction can write to the specified
e0001a05
NC
4245 integer register. */
4246
4247static bfd_boolean
7fa3d080 4248is_register_writer (const TInsn *insn, const char *regset, int regnum)
e0001a05
NC
4249{
4250 int i;
4251 int num_ops;
4252 xtensa_isa isa = xtensa_default_isa;
4253
43cd72b9 4254 num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
e0001a05
NC
4255
4256 for (i = 0; i < num_ops; i++)
4257 {
43cd72b9
BW
4258 char inout;
4259 inout = xtensa_operand_inout (isa, insn->opcode, i);
4260 if ((inout == 'o' || inout == 'm')
4261 && xtensa_operand_is_register (isa, insn->opcode, i) == 1)
e0001a05 4262 {
43cd72b9
BW
4263 xtensa_regfile opnd_rf =
4264 xtensa_operand_regfile (isa, insn->opcode, i);
4265 if (!strcmp (xtensa_regfile_shortname (isa, opnd_rf), regset))
e0001a05
NC
4266 {
4267 if ((insn->tok[i].X_op == O_register)
4268 && (insn->tok[i].X_add_number == regnum))
4269 return TRUE;
4270 }
4271 }
4272 }
4273 return FALSE;
4274}
4275
4276
4277static bfd_boolean
7fa3d080 4278is_bad_loopend_opcode (const TInsn *tinsn)
e0001a05
NC
4279{
4280 xtensa_opcode opcode = tinsn->opcode;
4281
4282 if (opcode == XTENSA_UNDEFINED)
4283 return FALSE;
4284
4285 if (opcode == xtensa_call0_opcode
4286 || opcode == xtensa_callx0_opcode
4287 || opcode == xtensa_call4_opcode
4288 || opcode == xtensa_callx4_opcode
4289 || opcode == xtensa_call8_opcode
4290 || opcode == xtensa_callx8_opcode
4291 || opcode == xtensa_call12_opcode
4292 || opcode == xtensa_callx12_opcode
4293 || opcode == xtensa_isync_opcode
4294 || opcode == xtensa_ret_opcode
4295 || opcode == xtensa_ret_n_opcode
4296 || opcode == xtensa_retw_opcode
4297 || opcode == xtensa_retw_n_opcode
43cd72b9
BW
4298 || opcode == xtensa_waiti_opcode
4299 || opcode == xtensa_rsr_lcount_opcode)
e0001a05 4300 return TRUE;
c138bc38 4301
e0001a05
NC
4302 return FALSE;
4303}
4304
4305
4306/* Labels that begin with ".Ln" or ".LM" are unaligned.
4307 This allows the debugger to add unaligned labels.
4308 Also, the assembler generates stabs labels that need
4309 not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */
4310
7fa3d080
BW
4311static bfd_boolean
4312is_unaligned_label (symbolS *sym)
e0001a05
NC
4313{
4314 const char *name = S_GET_NAME (sym);
4315 static size_t fake_size = 0;
4316
4317 if (name
4318 && name[0] == '.'
4319 && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M'))
4320 return TRUE;
4321
4322 /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */
4323 if (fake_size == 0)
4324 fake_size = strlen (FAKE_LABEL_NAME);
4325
43cd72b9 4326 if (name
e0001a05
NC
4327 && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0
4328 && (name[fake_size] == 'F'
4329 || name[fake_size] == 'L'
4330 || (name[fake_size] == 'e'
4331 && strncmp ("endfunc", name+fake_size, 7) == 0)))
4332 return TRUE;
4333
4334 return FALSE;
4335}
4336
4337
7fa3d080
BW
4338static fragS *
4339next_non_empty_frag (const fragS *fragP)
e0001a05
NC
4340{
4341 fragS *next_fragP = fragP->fr_next;
4342
c138bc38 4343 /* Sometimes an empty will end up here due storage allocation issues.
e0001a05
NC
4344 So we have to skip until we find something legit. */
4345 while (next_fragP && next_fragP->fr_fix == 0)
4346 next_fragP = next_fragP->fr_next;
4347
4348 if (next_fragP == NULL || next_fragP->fr_fix == 0)
4349 return NULL;
4350
4351 return next_fragP;
4352}
4353
4354
43cd72b9 4355static bfd_boolean
7fa3d080 4356next_frag_opcode_is_loop (const fragS *fragP, xtensa_opcode *opcode)
43cd72b9
BW
4357{
4358 xtensa_opcode out_opcode;
4359 const fragS *next_fragP = next_non_empty_frag (fragP);
4360
4361 if (next_fragP == NULL)
4362 return FALSE;
4363
4364 out_opcode = get_opcode_from_buf (next_fragP->fr_literal, 0);
4365 if (xtensa_opcode_is_loop (xtensa_default_isa, out_opcode) == 1)
4366 {
4367 *opcode = out_opcode;
4368 return TRUE;
4369 }
4370 return FALSE;
4371}
4372
4373
4374static int
7fa3d080 4375frag_format_size (const fragS *fragP)
43cd72b9 4376{
e0001a05
NC
4377 static xtensa_insnbuf insnbuf = NULL;
4378 xtensa_isa isa = xtensa_default_isa;
43cd72b9 4379 xtensa_format fmt;
c138bc38 4380 int fmt_size;
e0001a05
NC
4381
4382 if (!insnbuf)
4383 insnbuf = xtensa_insnbuf_alloc (isa);
4384
43cd72b9
BW
4385 if (fragP == NULL)
4386 return XTENSA_UNDEFINED;
4387
d77b99c9
BW
4388 xtensa_insnbuf_from_chars (isa, insnbuf,
4389 (unsigned char *) fragP->fr_literal, 0);
43cd72b9
BW
4390
4391 fmt = xtensa_format_decode (isa, insnbuf);
4392 if (fmt == XTENSA_UNDEFINED)
e0001a05 4393 return XTENSA_UNDEFINED;
43cd72b9
BW
4394 fmt_size = xtensa_format_length (isa, fmt);
4395
4396 /* If the next format won't be changing due to relaxation, just
4397 return the length of the first format. */
4398 if (fragP->fr_opcode != fragP->fr_literal)
4399 return fmt_size;
4400
c138bc38 4401 /* If during relaxation we have to pull an instruction out of a
43cd72b9
BW
4402 multi-slot instruction, we will return the more conservative
4403 number. This works because alignment on bigger instructions
4404 is more restrictive than alignment on smaller instructions.
4405 This is more conservative than we would like, but it happens
4406 infrequently. */
4407
4408 if (xtensa_format_num_slots (xtensa_default_isa, fmt) > 1)
4409 return fmt_size;
4410
4411 /* If we aren't doing one of our own relaxations or it isn't
4412 slot-based, then the insn size won't change. */
4413 if (fragP->fr_type != rs_machine_dependent)
4414 return fmt_size;
4415 if (fragP->fr_subtype != RELAX_SLOTS)
4416 return fmt_size;
4417
4418 /* If an instruction is about to grow, return the longer size. */
4419 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP1
4420 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP2)
4421 return 3;
c138bc38 4422
43cd72b9
BW
4423 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
4424 return 2 + fragP->tc_frag_data.text_expansion[0];
e0001a05 4425
43cd72b9 4426 return fmt_size;
e0001a05
NC
4427}
4428
4429
7fa3d080
BW
4430static int
4431next_frag_format_size (const fragS *fragP)
e0001a05 4432{
7fa3d080
BW
4433 const fragS *next_fragP = next_non_empty_frag (fragP);
4434 return frag_format_size (next_fragP);
e0001a05
NC
4435}
4436
4437
4438/* If the next legit fragment is an end-of-loop marker,
4439 switch its state so it will instantiate a NOP. */
4440
4441static void
1d19a770 4442update_next_frag_state (fragS *fragP)
e0001a05
NC
4443{
4444 fragS *next_fragP = fragP->fr_next;
43cd72b9 4445 fragS *new_target = NULL;
e0001a05 4446
7b1cc377 4447 if (align_targets)
43cd72b9
BW
4448 {
4449 /* We are guaranteed there will be one of these... */
4450 while (!(next_fragP->fr_type == rs_machine_dependent
4451 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4452 || next_fragP->fr_subtype == RELAX_UNREACHABLE)))
4453 next_fragP = next_fragP->fr_next;
4454
4455 assert (next_fragP->fr_type == rs_machine_dependent
4456 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4457 || next_fragP->fr_subtype == RELAX_UNREACHABLE));
4458
4459 /* ...and one of these. */
4460 new_target = next_fragP->fr_next;
4461 while (!(new_target->fr_type == rs_machine_dependent
4462 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4463 || new_target->fr_subtype == RELAX_DESIRE_ALIGN)))
4464 new_target = new_target->fr_next;
4465
4466 assert (new_target->fr_type == rs_machine_dependent
4467 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4468 || new_target->fr_subtype == RELAX_DESIRE_ALIGN));
4469 }
43cd72b9 4470
1d19a770 4471 while (next_fragP && next_fragP->fr_fix == 0)
43cd72b9 4472 {
1d19a770
BW
4473 if (next_fragP->fr_type == rs_machine_dependent
4474 && next_fragP->fr_subtype == RELAX_LOOP_END)
43cd72b9 4475 {
1d19a770
BW
4476 next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP;
4477 return;
e0001a05 4478 }
1d19a770
BW
4479
4480 next_fragP = next_fragP->fr_next;
e0001a05
NC
4481 }
4482}
4483
4484
4485static bfd_boolean
7fa3d080 4486next_frag_is_branch_target (const fragS *fragP)
e0001a05 4487{
43cd72b9 4488 /* Sometimes an empty will end up here due to storage allocation issues,
e0001a05
NC
4489 so we have to skip until we find something legit. */
4490 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4491 {
4492 if (fragP->tc_frag_data.is_branch_target)
4493 return TRUE;
4494 if (fragP->fr_fix != 0)
4495 break;
4496 }
4497 return FALSE;
4498}
4499
4500
4501static bfd_boolean
7fa3d080 4502next_frag_is_loop_target (const fragS *fragP)
e0001a05 4503{
c138bc38 4504 /* Sometimes an empty will end up here due storage allocation issues.
e0001a05
NC
4505 So we have to skip until we find something legit. */
4506 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4507 {
4508 if (fragP->tc_frag_data.is_loop_target)
4509 return TRUE;
4510 if (fragP->fr_fix != 0)
4511 break;
4512 }
4513 return FALSE;
4514}
4515
4516
4517static addressT
7fa3d080 4518next_frag_pre_opcode_bytes (const fragS *fragp)
e0001a05
NC
4519{
4520 const fragS *next_fragp = fragp->fr_next;
43cd72b9 4521 xtensa_opcode next_opcode;
e0001a05 4522
43cd72b9 4523 if (!next_frag_opcode_is_loop (fragp, &next_opcode))
e0001a05
NC
4524 return 0;
4525
43cd72b9
BW
4526 /* Sometimes an empty will end up here due to storage allocation issues,
4527 so we have to skip until we find something legit. */
e0001a05
NC
4528 while (next_fragp->fr_fix == 0)
4529 next_fragp = next_fragp->fr_next;
4530
4531 if (next_fragp->fr_type != rs_machine_dependent)
4532 return 0;
4533
4534 /* There is some implicit knowledge encoded in here.
4535 The LOOP instructions that are NOT RELAX_IMMED have
43cd72b9
BW
4536 been relaxed. Note that we can assume that the LOOP
4537 instruction is in slot 0 because loops aren't bundleable. */
4538 if (next_fragp->tc_frag_data.slot_subtypes[0] > RELAX_IMMED)
e0001a05
NC
4539 return get_expanded_loop_offset (next_opcode);
4540
4541 return 0;
4542}
4543
4544
4545/* Mark a location where we can later insert literal frags. Update
4546 the section's literal_pool_loc, so subsequent literals can be
4547 placed nearest to their use. */
4548
4549static void
7fa3d080 4550xtensa_mark_literal_pool_location (void)
e0001a05
NC
4551{
4552 /* Any labels pointing to the current location need
4553 to be adjusted to after the literal pool. */
4554 emit_state s;
e0001a05 4555 fragS *pool_location;
e0001a05 4556
43cd72b9
BW
4557 if (use_literal_section && !directive_state[directive_absolute_literals])
4558 return;
4559
e0001a05 4560 frag_align (2, 0, 0);
43cd72b9 4561 record_alignment (now_seg, 2);
e0001a05 4562
dd49a749
BW
4563 /* We stash info in these frags so we can later move the literal's
4564 fixes into this frchain's fix list. */
e0001a05 4565 pool_location = frag_now;
dd49a749
BW
4566 frag_now->tc_frag_data.lit_frchain = frchain_now;
4567 frag_variant (rs_machine_dependent, 0, 0,
e0001a05 4568 RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL);
43cd72b9 4569 xtensa_set_frag_assembly_state (frag_now);
dd49a749
BW
4570 frag_now->tc_frag_data.lit_seg = now_seg;
4571 frag_variant (rs_machine_dependent, 0, 0,
e0001a05 4572 RELAX_LITERAL_POOL_END, NULL, 0, NULL);
43cd72b9 4573 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
4574
4575 /* Now put a frag into the literal pool that points to this location. */
4576 set_literal_pool_location (now_seg, pool_location);
43cd72b9
BW
4577 xtensa_switch_to_non_abs_literal_fragment (&s);
4578 frag_align (2, 0, 0);
4579 record_alignment (now_seg, 2);
e0001a05
NC
4580
4581 /* Close whatever frag is there. */
4582 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 4583 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
4584 frag_now->tc_frag_data.literal_frag = pool_location;
4585 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4586 xtensa_restore_emit_state (&s);
43cd72b9 4587 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
4588}
4589
4590
43cd72b9
BW
4591/* Build a nop of the correct size into tinsn. */
4592
4593static void
7fa3d080 4594build_nop (TInsn *tinsn, int size)
43cd72b9
BW
4595{
4596 tinsn_init (tinsn);
4597 switch (size)
4598 {
4599 case 2:
4600 tinsn->opcode = xtensa_nop_n_opcode;
4601 tinsn->ntok = 0;
4602 if (tinsn->opcode == XTENSA_UNDEFINED)
4603 as_fatal (_("opcode 'NOP.N' unavailable in this configuration"));
4604 break;
4605
4606 case 3:
4607 if (xtensa_nop_opcode == XTENSA_UNDEFINED)
4608 {
4609 tinsn->opcode = xtensa_or_opcode;
4610 set_expr_const (&tinsn->tok[0], 1);
4611 set_expr_const (&tinsn->tok[1], 1);
4612 set_expr_const (&tinsn->tok[2], 1);
4613 tinsn->ntok = 3;
4614 }
4615 else
4616 tinsn->opcode = xtensa_nop_opcode;
4617
4618 assert (tinsn->opcode != XTENSA_UNDEFINED);
4619 }
4620}
4621
4622
e0001a05
NC
4623/* Assemble a NOP of the requested size in the buffer. User must have
4624 allocated "buf" with at least "size" bytes. */
4625
7fa3d080 4626static void
d77b99c9 4627assemble_nop (int size, char *buf)
e0001a05
NC
4628{
4629 static xtensa_insnbuf insnbuf = NULL;
43cd72b9 4630 TInsn tinsn;
e0001a05 4631
43cd72b9 4632 build_nop (&tinsn, size);
e0001a05 4633
43cd72b9
BW
4634 if (!insnbuf)
4635 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
e0001a05 4636
43cd72b9 4637 tinsn_to_insnbuf (&tinsn, insnbuf);
d77b99c9
BW
4638 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4639 (unsigned char *) buf, 0);
e0001a05
NC
4640}
4641
4642
4643/* Return the number of bytes for the offset of the expanded loop
4644 instruction. This should be incorporated into the relaxation
4645 specification but is hard-coded here. This is used to auto-align
4646 the loop instruction. It is invalid to call this function if the
4647 configuration does not have loops or if the opcode is not a loop
4648 opcode. */
4649
4650static addressT
7fa3d080 4651get_expanded_loop_offset (xtensa_opcode opcode)
e0001a05
NC
4652{
4653 /* This is the OFFSET of the loop instruction in the expanded loop.
4654 This MUST correspond directly to the specification of the loop
4655 expansion. It will be validated on fragment conversion. */
43cd72b9 4656 assert (opcode != XTENSA_UNDEFINED);
e0001a05
NC
4657 if (opcode == xtensa_loop_opcode)
4658 return 0;
4659 if (opcode == xtensa_loopnez_opcode)
4660 return 3;
4661 if (opcode == xtensa_loopgtz_opcode)
4662 return 6;
4663 as_fatal (_("get_expanded_loop_offset: invalid opcode"));
4664 return 0;
4665}
4666
4667
7fa3d080
BW
4668static fragS *
4669get_literal_pool_location (segT seg)
e0001a05
NC
4670{
4671 return seg_info (seg)->tc_segment_info_data.literal_pool_loc;
4672}
4673
4674
4675static void
7fa3d080 4676set_literal_pool_location (segT seg, fragS *literal_pool_loc)
e0001a05
NC
4677{
4678 seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc;
4679}
4680
43cd72b9
BW
4681
4682/* Set frag assembly state should be called when a new frag is
4683 opened and after a frag has been closed. */
4684
7fa3d080
BW
4685static void
4686xtensa_set_frag_assembly_state (fragS *fragP)
43cd72b9
BW
4687{
4688 if (!density_supported)
4689 fragP->tc_frag_data.is_no_density = TRUE;
4690
4691 /* This function is called from subsegs_finish, which is called
c138bc38 4692 after xtensa_end, so we can't use "use_transform" or
43cd72b9
BW
4693 "use_schedule" here. */
4694 if (!directive_state[directive_transform])
4695 fragP->tc_frag_data.is_no_transform = TRUE;
7c834684
BW
4696 if (directive_state[directive_longcalls])
4697 fragP->tc_frag_data.use_longcalls = TRUE;
43cd72b9
BW
4698 fragP->tc_frag_data.use_absolute_literals =
4699 directive_state[directive_absolute_literals];
4700 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4701}
4702
4703
7fa3d080
BW
4704static bfd_boolean
4705relaxable_section (asection *sec)
43cd72b9
BW
4706{
4707 return (sec->flags & SEC_DEBUGGING) == 0;
4708}
4709
4710
4711static void
7fa3d080 4712xtensa_find_unmarked_state_frags (void)
43cd72b9
BW
4713{
4714 segT *seclist;
4715
4716 /* Walk over each fragment of all of the current segments. For each
4717 unmarked fragment, mark it with the same info as the previous
4718 fragment. */
4719 for (seclist = &stdoutput->sections;
4720 seclist && *seclist;
4721 seclist = &(*seclist)->next)
4722 {
4723 segT sec = *seclist;
4724 segment_info_type *seginfo;
4725 fragS *fragP;
4726 flagword flags;
4727 flags = bfd_get_section_flags (stdoutput, sec);
4728 if (flags & SEC_DEBUGGING)
4729 continue;
4730 if (!(flags & SEC_ALLOC))
4731 continue;
4732
4733 seginfo = seg_info (sec);
4734 if (seginfo && seginfo->frchainP)
4735 {
4736 fragS *last_fragP = 0;
4737 for (fragP = seginfo->frchainP->frch_root; fragP;
4738 fragP = fragP->fr_next)
4739 {
4740 if (fragP->fr_fix != 0
4741 && !fragP->tc_frag_data.is_assembly_state_set)
4742 {
4743 if (last_fragP == 0)
4744 {
4745 as_warn_where (fragP->fr_file, fragP->fr_line,
4746 _("assembly state not set for first frag in section %s"),
4747 sec->name);
4748 }
4749 else
4750 {
4751 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4752 fragP->tc_frag_data.is_no_density =
4753 last_fragP->tc_frag_data.is_no_density;
4754 fragP->tc_frag_data.is_no_transform =
4755 last_fragP->tc_frag_data.is_no_transform;
7c834684
BW
4756 fragP->tc_frag_data.use_longcalls =
4757 last_fragP->tc_frag_data.use_longcalls;
43cd72b9
BW
4758 fragP->tc_frag_data.use_absolute_literals =
4759 last_fragP->tc_frag_data.use_absolute_literals;
4760 }
4761 }
4762 if (fragP->tc_frag_data.is_assembly_state_set)
4763 last_fragP = fragP;
4764 }
4765 }
4766 }
4767}
4768
4769
4770static void
7fa3d080
BW
4771xtensa_find_unaligned_branch_targets (bfd *abfd ATTRIBUTE_UNUSED,
4772 asection *sec,
4773 void *unused ATTRIBUTE_UNUSED)
43cd72b9
BW
4774{
4775 flagword flags = bfd_get_section_flags (abfd, sec);
4776 segment_info_type *seginfo = seg_info (sec);
4777 fragS *frag = seginfo->frchainP->frch_root;
c138bc38 4778
43cd72b9 4779 if (flags & SEC_CODE)
c138bc38 4780 {
43cd72b9
BW
4781 xtensa_isa isa = xtensa_default_isa;
4782 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4783 while (frag != NULL)
4784 {
4785 if (frag->tc_frag_data.is_branch_target)
4786 {
4787 int op_size;
664df4e4 4788 addressT branch_align, frag_addr;
43cd72b9
BW
4789 xtensa_format fmt;
4790
d77b99c9
BW
4791 xtensa_insnbuf_from_chars
4792 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
43cd72b9
BW
4793 fmt = xtensa_format_decode (isa, insnbuf);
4794 op_size = xtensa_format_length (isa, fmt);
664df4e4
BW
4795 branch_align = 1 << branch_align_power (sec);
4796 frag_addr = frag->fr_address % branch_align;
4797 if (frag_addr + op_size > branch_align)
43cd72b9
BW
4798 as_warn_where (frag->fr_file, frag->fr_line,
4799 _("unaligned branch target: %d bytes at 0x%lx"),
dd49a749 4800 op_size, (long) frag->fr_address);
43cd72b9
BW
4801 }
4802 frag = frag->fr_next;
4803 }
4804 xtensa_insnbuf_free (isa, insnbuf);
4805 }
4806}
4807
4808
4809static void
7fa3d080
BW
4810xtensa_find_unaligned_loops (bfd *abfd ATTRIBUTE_UNUSED,
4811 asection *sec,
4812 void *unused ATTRIBUTE_UNUSED)
43cd72b9
BW
4813{
4814 flagword flags = bfd_get_section_flags (abfd, sec);
4815 segment_info_type *seginfo = seg_info (sec);
4816 fragS *frag = seginfo->frchainP->frch_root;
4817 xtensa_isa isa = xtensa_default_isa;
c138bc38 4818
43cd72b9 4819 if (flags & SEC_CODE)
c138bc38 4820 {
43cd72b9
BW
4821 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4822 while (frag != NULL)
4823 {
4824 if (frag->tc_frag_data.is_first_loop_insn)
4825 {
4826 int op_size;
d77b99c9 4827 addressT frag_addr;
43cd72b9
BW
4828 xtensa_format fmt;
4829
d77b99c9
BW
4830 xtensa_insnbuf_from_chars
4831 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
43cd72b9
BW
4832 fmt = xtensa_format_decode (isa, insnbuf);
4833 op_size = xtensa_format_length (isa, fmt);
4834 frag_addr = frag->fr_address % xtensa_fetch_width;
4835
d77b99c9 4836 if (frag_addr + op_size > xtensa_fetch_width)
43cd72b9
BW
4837 as_warn_where (frag->fr_file, frag->fr_line,
4838 _("unaligned loop: %d bytes at 0x%lx"),
dd49a749 4839 op_size, (long) frag->fr_address);
43cd72b9
BW
4840 }
4841 frag = frag->fr_next;
4842 }
4843 xtensa_insnbuf_free (isa, insnbuf);
4844 }
4845}
4846
4847
30f725a1
BW
4848static int
4849xg_apply_fix_value (fixS *fixP, valueT val)
43cd72b9
BW
4850{
4851 xtensa_isa isa = xtensa_default_isa;
4852 static xtensa_insnbuf insnbuf = NULL;
4853 static xtensa_insnbuf slotbuf = NULL;
4854 xtensa_format fmt;
4855 int slot;
4856 bfd_boolean alt_reloc;
4857 xtensa_opcode opcode;
4858 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
4859
4860 (void) decode_reloc (fixP->fx_r_type, &slot, &alt_reloc);
4861 if (alt_reloc)
4862 as_fatal (_("unexpected fix"));
4863
4864 if (!insnbuf)
4865 {
4866 insnbuf = xtensa_insnbuf_alloc (isa);
4867 slotbuf = xtensa_insnbuf_alloc (isa);
4868 }
4869
d77b99c9 4870 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
43cd72b9
BW
4871 fmt = xtensa_format_decode (isa, insnbuf);
4872 if (fmt == XTENSA_UNDEFINED)
4873 as_fatal (_("undecodable fix"));
4874 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4875 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4876 if (opcode == XTENSA_UNDEFINED)
4877 as_fatal (_("undecodable fix"));
4878
4879 /* CONST16 immediates are not PC-relative, despite the fact that we
4880 reuse the normal PC-relative operand relocations for the low part
30f725a1 4881 of a CONST16 operand. */
43cd72b9 4882 if (opcode == xtensa_const16_opcode)
30f725a1 4883 return 0;
43cd72b9
BW
4884
4885 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode,
4886 get_relaxable_immed (opcode), val,
4887 fixP->fx_file, fixP->fx_line);
4888
4889 xtensa_format_set_slot (isa, fmt, slot, insnbuf, slotbuf);
d77b99c9 4890 xtensa_insnbuf_to_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
30f725a1
BW
4891
4892 return 1;
43cd72b9
BW
4893}
4894
e0001a05
NC
4895\f
4896/* External Functions and Other GAS Hooks. */
4897
4898const char *
7fa3d080 4899xtensa_target_format (void)
e0001a05
NC
4900{
4901 return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le");
4902}
4903
4904
4905void
7fa3d080 4906xtensa_file_arch_init (bfd *abfd)
e0001a05
NC
4907{
4908 bfd_set_private_flags (abfd, 0x100 | 0x200);
4909}
4910
4911
4912void
7fa3d080 4913md_number_to_chars (char *buf, valueT val, int n)
e0001a05
NC
4914{
4915 if (target_big_endian)
4916 number_to_chars_bigendian (buf, val, n);
4917 else
4918 number_to_chars_littleendian (buf, val, n);
4919}
4920
4921
4922/* This function is called once, at assembler startup time. It should
4923 set up all the tables, etc. that the MD part of the assembler will
4924 need. */
4925
4926void
7fa3d080 4927md_begin (void)
e0001a05
NC
4928{
4929 segT current_section = now_seg;
4930 int current_subsec = now_subseg;
4931 xtensa_isa isa;
4932
43cd72b9 4933 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 4934 isa = xtensa_default_isa;
e0001a05 4935
43cd72b9
BW
4936 linkrelax = 1;
4937
4938 /* Set up the .literal, .fini.literal and .init.literal sections. */
e0001a05
NC
4939 memset (&default_lit_sections, 0, sizeof (default_lit_sections));
4940 default_lit_sections.init_lit_seg_name = INIT_LITERAL_SECTION_NAME;
4941 default_lit_sections.fini_lit_seg_name = FINI_LITERAL_SECTION_NAME;
4942 default_lit_sections.lit_seg_name = LITERAL_SECTION_NAME;
43cd72b9 4943 default_lit_sections.lit4_seg_name = LIT4_SECTION_NAME;
e0001a05
NC
4944
4945 subseg_set (current_section, current_subsec);
4946
43cd72b9
BW
4947 xg_init_vinsn (&cur_vinsn);
4948
e0001a05
NC
4949 xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi");
4950 xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi");
4951 xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0");
4952 xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4");
4953 xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8");
4954 xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12");
4955 xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0");
4956 xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4");
4957 xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8");
4958 xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12");
43cd72b9 4959 xtensa_const16_opcode = xtensa_opcode_lookup (isa, "const16");
e0001a05 4960 xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry");
43cd72b9
BW
4961 xtensa_movi_opcode = xtensa_opcode_lookup (isa, "movi");
4962 xtensa_movi_n_opcode = xtensa_opcode_lookup (isa, "movi.n");
e0001a05 4963 xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync");
e0001a05 4964 xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx");
43cd72b9 4965 xtensa_l32r_opcode = xtensa_opcode_lookup (isa, "l32r");
e0001a05
NC
4966 xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop");
4967 xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez");
4968 xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz");
43cd72b9 4969 xtensa_nop_opcode = xtensa_opcode_lookup (isa, "nop");
e0001a05
NC
4970 xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n");
4971 xtensa_or_opcode = xtensa_opcode_lookup (isa, "or");
4972 xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret");
4973 xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n");
4974 xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw");
4975 xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n");
43cd72b9 4976 xtensa_rsr_lcount_opcode = xtensa_opcode_lookup (isa, "rsr.lcount");
e0001a05 4977 xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti");
43cd72b9
BW
4978
4979 init_op_placement_info_table ();
4980
4981 /* Set up the assembly state. */
4982 if (!frag_now->tc_frag_data.is_assembly_state_set)
4983 xtensa_set_frag_assembly_state (frag_now);
4984}
4985
4986
4987/* TC_INIT_FIX_DATA hook */
4988
4989void
7fa3d080 4990xtensa_init_fix_data (fixS *x)
43cd72b9
BW
4991{
4992 x->tc_fix_data.slot = 0;
4993 x->tc_fix_data.X_add_symbol = NULL;
4994 x->tc_fix_data.X_add_number = 0;
e0001a05
NC
4995}
4996
4997
4998/* tc_frob_label hook */
4999
5000void
7fa3d080 5001xtensa_frob_label (symbolS *sym)
e0001a05 5002{
3ea38ac2
BW
5003 float freq;
5004
5005 if (cur_vinsn.inside_bundle)
5006 {
5007 as_bad (_("labels are not valid inside bundles"));
5008 return;
5009 }
5010
5011 freq = get_subseg_target_freq (now_seg, now_subseg);
7b1cc377 5012
43cd72b9
BW
5013 /* Since the label was already attached to a frag associated with the
5014 previous basic block, it now needs to be reset to the current frag. */
5015 symbol_set_frag (sym, frag_now);
5016 S_SET_VALUE (sym, (valueT) frag_now_fix ());
5017
82e7541d
BW
5018 if (generating_literals)
5019 xtensa_add_literal_sym (sym);
5020 else
5021 xtensa_add_insn_label (sym);
5022
7b1cc377
BW
5023 if (symbol_get_tc (sym)->is_loop_target)
5024 {
5025 if ((get_last_insn_flags (now_seg, now_subseg)
e0001a05 5026 & FLAG_IS_BAD_LOOPEND) != 0)
7b1cc377
BW
5027 as_bad (_("invalid last instruction for a zero-overhead loop"));
5028
5029 xtensa_set_frag_assembly_state (frag_now);
5030 frag_var (rs_machine_dependent, 4, 4, RELAX_LOOP_END,
5031 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5032
5033 xtensa_set_frag_assembly_state (frag_now);
5034 xtensa_move_labels (frag_now, 0, TRUE);
07a53e5c 5035 }
e0001a05
NC
5036
5037 /* No target aligning in the absolute section. */
61846f28 5038 if (now_seg != absolute_section
43cd72b9 5039 && do_align_targets ()
61846f28 5040 && !is_unaligned_label (sym)
43cd72b9
BW
5041 && !generating_literals)
5042 {
43cd72b9
BW
5043 xtensa_set_frag_assembly_state (frag_now);
5044
43cd72b9 5045 frag_var (rs_machine_dependent,
7b1cc377 5046 0, (int) freq,
e0001a05
NC
5047 RELAX_DESIRE_ALIGN_IF_TARGET,
5048 frag_now->fr_symbol, frag_now->fr_offset, NULL);
43cd72b9 5049 xtensa_set_frag_assembly_state (frag_now);
82e7541d 5050 xtensa_move_labels (frag_now, 0, TRUE);
43cd72b9
BW
5051 }
5052
5053 /* We need to mark the following properties even if we aren't aligning. */
5054
5055 /* If the label is already known to be a branch target, i.e., a
5056 forward branch, mark the frag accordingly. Backward branches
5057 are handled by xg_add_branch_and_loop_targets. */
5058 if (symbol_get_tc (sym)->is_branch_target)
5059 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
5060
5061 /* Loops only go forward, so they can be identified here. */
5062 if (symbol_get_tc (sym)->is_loop_target)
5063 symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE;
07a53e5c
RH
5064
5065 dwarf2_emit_label (sym);
43cd72b9
BW
5066}
5067
5068
5069/* tc_unrecognized_line hook */
5070
5071int
7fa3d080 5072xtensa_unrecognized_line (int ch)
43cd72b9
BW
5073{
5074 switch (ch)
5075 {
5076 case '{' :
5077 if (cur_vinsn.inside_bundle == 0)
5078 {
5079 /* PR8110: Cannot emit line number info inside a FLIX bundle
5080 when using --gstabs. Temporarily disable debug info. */
5081 generate_lineno_debug ();
5082 if (debug_type == DEBUG_STABS)
5083 {
5084 xt_saved_debug_type = debug_type;
5085 debug_type = DEBUG_NONE;
5086 }
82e7541d 5087
43cd72b9
BW
5088 cur_vinsn.inside_bundle = 1;
5089 }
5090 else
5091 {
5092 as_bad (_("extra opening brace"));
5093 return 0;
5094 }
5095 break;
82e7541d 5096
43cd72b9
BW
5097 case '}' :
5098 if (cur_vinsn.inside_bundle)
5099 finish_vinsn (&cur_vinsn);
5100 else
5101 {
5102 as_bad (_("extra closing brace"));
5103 return 0;
5104 }
5105 break;
5106 default:
5107 as_bad (_("syntax error"));
5108 return 0;
e0001a05 5109 }
43cd72b9 5110 return 1;
e0001a05
NC
5111}
5112
5113
5114/* md_flush_pending_output hook */
5115
5116void
7fa3d080 5117xtensa_flush_pending_output (void)
e0001a05 5118{
43cd72b9
BW
5119 if (cur_vinsn.inside_bundle)
5120 as_bad (_("missing closing brace"));
5121
e0001a05
NC
5122 /* If there is a non-zero instruction fragment, close it. */
5123 if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn)
5124 {
5125 frag_wane (frag_now);
5126 frag_new (0);
43cd72b9 5127 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
5128 }
5129 frag_now->tc_frag_data.is_insn = FALSE;
82e7541d
BW
5130
5131 xtensa_clear_insn_labels ();
e0001a05
NC
5132}
5133
5134
43cd72b9
BW
5135/* We had an error while parsing an instruction. The string might look
5136 like this: "insn arg1, arg2 }". If so, we need to see the closing
5137 brace and reset some fields. Otherwise, the vinsn never gets closed
5138 and the num_slots field will grow past the end of the array of slots,
5139 and bad things happen. */
5140
5141static void
7fa3d080 5142error_reset_cur_vinsn (void)
43cd72b9
BW
5143{
5144 if (cur_vinsn.inside_bundle)
5145 {
5146 if (*input_line_pointer == '}'
5147 || *(input_line_pointer - 1) == '}'
5148 || *(input_line_pointer - 2) == '}')
5149 xg_clear_vinsn (&cur_vinsn);
5150 }
5151}
5152
5153
e0001a05 5154void
7fa3d080 5155md_assemble (char *str)
e0001a05
NC
5156{
5157 xtensa_isa isa = xtensa_default_isa;
7c430684 5158 char *opname, *file_name;
e0001a05
NC
5159 unsigned opnamelen;
5160 bfd_boolean has_underbar = FALSE;
43cd72b9 5161 char *arg_strings[MAX_INSN_ARGS];
e0001a05 5162 int num_args;
e0001a05 5163 TInsn orig_insn; /* Original instruction from the input. */
e0001a05 5164
e0001a05
NC
5165 tinsn_init (&orig_insn);
5166
5167 /* Split off the opcode. */
5168 opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789.");
5169 opname = xmalloc (opnamelen + 1);
5170 memcpy (opname, str, opnamelen);
5171 opname[opnamelen] = '\0';
5172
5173 num_args = tokenize_arguments (arg_strings, str + opnamelen);
5174 if (num_args == -1)
5175 {
5176 as_bad (_("syntax error"));
5177 return;
5178 }
5179
5180 if (xg_translate_idioms (&opname, &num_args, arg_strings))
5181 return;
5182
5183 /* Check for an underbar prefix. */
5184 if (*opname == '_')
5185 {
5186 has_underbar = TRUE;
5187 opname += 1;
5188 }
5189
5190 orig_insn.insn_type = ITYPE_INSN;
5191 orig_insn.ntok = 0;
43cd72b9 5192 orig_insn.is_specific_opcode = (has_underbar || !use_transform ());
e0001a05
NC
5193
5194 orig_insn.opcode = xtensa_opcode_lookup (isa, opname);
5195 if (orig_insn.opcode == XTENSA_UNDEFINED)
5196 {
43cd72b9
BW
5197 xtensa_format fmt = xtensa_format_lookup (isa, opname);
5198 if (fmt == XTENSA_UNDEFINED)
5199 {
5200 as_bad (_("unknown opcode or format name '%s'"), opname);
5201 error_reset_cur_vinsn ();
5202 return;
5203 }
5204 if (!cur_vinsn.inside_bundle)
5205 {
5206 as_bad (_("format names only valid inside bundles"));
5207 error_reset_cur_vinsn ();
5208 return;
5209 }
5210 if (cur_vinsn.format != XTENSA_UNDEFINED)
5211 as_warn (_("multiple formats specified for one bundle; using '%s'"),
5212 opname);
5213 cur_vinsn.format = fmt;
5214 free (has_underbar ? opname - 1 : opname);
5215 error_reset_cur_vinsn ();
e0001a05
NC
5216 return;
5217 }
5218
e0001a05
NC
5219 /* Parse the arguments. */
5220 if (parse_arguments (&orig_insn, num_args, arg_strings))
5221 {
5222 as_bad (_("syntax error"));
43cd72b9 5223 error_reset_cur_vinsn ();
e0001a05
NC
5224 return;
5225 }
5226
5227 /* Free the opcode and argument strings, now that they've been parsed. */
5228 free (has_underbar ? opname - 1 : opname);
5229 opname = 0;
5230 while (num_args-- > 0)
5231 free (arg_strings[num_args]);
5232
43cd72b9
BW
5233 /* Get expressions for invisible operands. */
5234 if (get_invisible_operands (&orig_insn))
5235 {
5236 error_reset_cur_vinsn ();
5237 return;
5238 }
5239
e0001a05
NC
5240 /* Check for the right number and type of arguments. */
5241 if (tinsn_check_arguments (&orig_insn))
e0001a05 5242 {
43cd72b9
BW
5243 error_reset_cur_vinsn ();
5244 return;
e0001a05
NC
5245 }
5246
7c430684
BW
5247 /* A FLIX bundle may be spread across multiple input lines. We want to
5248 report the first such line in the debug information. Record the line
5249 number for each TInsn (assume the file name doesn't change), so the
5250 first line can be found later. */
5251 as_where (&file_name, &orig_insn.linenum);
c138bc38 5252
43cd72b9
BW
5253 xg_add_branch_and_loop_targets (&orig_insn);
5254
431ad2d0
BW
5255 /* Check that immediate value for ENTRY is >= 16. */
5256 if (orig_insn.opcode == xtensa_entry_opcode && orig_insn.ntok >= 3)
e0001a05 5257 {
431ad2d0
BW
5258 expressionS *exp = &orig_insn.tok[2];
5259 if (exp->X_op == O_constant && exp->X_add_number < 16)
5260 as_warn (_("entry instruction with stack decrement < 16"));
e0001a05
NC
5261 }
5262
e0001a05 5263 /* Finish it off:
43cd72b9
BW
5264 assemble_tokens (opcode, tok, ntok);
5265 expand the tokens from the orig_insn into the
5266 stack of instructions that will not expand
e0001a05 5267 unless required at relaxation time. */
e0001a05 5268
43cd72b9
BW
5269 if (!cur_vinsn.inside_bundle)
5270 emit_single_op (&orig_insn);
5271 else /* We are inside a bundle. */
e0001a05 5272 {
43cd72b9
BW
5273 cur_vinsn.slots[cur_vinsn.num_slots] = orig_insn;
5274 cur_vinsn.num_slots++;
5275 if (*input_line_pointer == '}'
5276 || *(input_line_pointer - 1) == '}'
5277 || *(input_line_pointer - 2) == '}')
5278 finish_vinsn (&cur_vinsn);
e0001a05
NC
5279 }
5280
43cd72b9
BW
5281 /* We've just emitted a new instruction so clear the list of labels. */
5282 xtensa_clear_insn_labels ();
e0001a05
NC
5283}
5284
5285
43cd72b9 5286/* HANDLE_ALIGN hook */
e0001a05 5287
43cd72b9
BW
5288/* For a .align directive, we mark the previous block with the alignment
5289 information. This will be placed in the object file in the
5290 property section corresponding to this section. */
e0001a05 5291
43cd72b9 5292void
7fa3d080 5293xtensa_handle_align (fragS *fragP)
43cd72b9
BW
5294{
5295 if (linkrelax
b08b5071 5296 && ! fragP->tc_frag_data.is_literal
43cd72b9
BW
5297 && (fragP->fr_type == rs_align
5298 || fragP->fr_type == rs_align_code)
5299 && fragP->fr_address + fragP->fr_fix > 0
5300 && fragP->fr_offset > 0
5301 && now_seg != bss_section)
e0001a05 5302 {
43cd72b9
BW
5303 fragP->tc_frag_data.is_align = TRUE;
5304 fragP->tc_frag_data.alignment = fragP->fr_offset;
e0001a05
NC
5305 }
5306
43cd72b9 5307 if (fragP->fr_type == rs_align_test)
e0001a05 5308 {
43cd72b9
BW
5309 int count;
5310 count = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5311 if (count != 0)
c138bc38 5312 as_bad_where (fragP->fr_file, fragP->fr_line,
43cd72b9 5313 _("unaligned entry instruction"));
e0001a05 5314 }
e0001a05 5315}
43cd72b9 5316
e0001a05
NC
5317
5318/* TC_FRAG_INIT hook */
5319
5320void
7fa3d080 5321xtensa_frag_init (fragS *frag)
e0001a05 5322{
43cd72b9 5323 xtensa_set_frag_assembly_state (frag);
e0001a05
NC
5324}
5325
5326
5327symbolS *
7fa3d080 5328md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
e0001a05
NC
5329{
5330 return NULL;
5331}
5332
5333
5334/* Round up a section size to the appropriate boundary. */
5335
5336valueT
7fa3d080 5337md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
e0001a05
NC
5338{
5339 return size; /* Byte alignment is fine. */
5340}
5341
5342
5343long
7fa3d080 5344md_pcrel_from (fixS *fixP)
e0001a05
NC
5345{
5346 char *insn_p;
5347 static xtensa_insnbuf insnbuf = NULL;
43cd72b9 5348 static xtensa_insnbuf slotbuf = NULL;
e0001a05 5349 int opnum;
43cd72b9 5350 uint32 opnd_value;
e0001a05 5351 xtensa_opcode opcode;
43cd72b9
BW
5352 xtensa_format fmt;
5353 int slot;
e0001a05
NC
5354 xtensa_isa isa = xtensa_default_isa;
5355 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
43cd72b9 5356 bfd_boolean alt_reloc;
e0001a05 5357
e0001a05 5358 if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND)
30f725a1 5359 return 0;
e0001a05
NC
5360
5361 if (!insnbuf)
43cd72b9
BW
5362 {
5363 insnbuf = xtensa_insnbuf_alloc (isa);
5364 slotbuf = xtensa_insnbuf_alloc (isa);
5365 }
e0001a05
NC
5366
5367 insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where];
d77b99c9 5368 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) insn_p, 0);
43cd72b9
BW
5369 fmt = xtensa_format_decode (isa, insnbuf);
5370
5371 if (fmt == XTENSA_UNDEFINED)
5372 as_fatal (_("bad instruction format"));
5373
5374 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc) != 0)
5375 as_fatal (_("invalid relocation"));
5376
5377 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5378 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5379
30f725a1
BW
5380 /* Check for "alternate" relocations (operand not specified). None
5381 of the current uses for these are really PC-relative. */
43cd72b9
BW
5382 if (alt_reloc || opcode == xtensa_const16_opcode)
5383 {
5384 if (opcode != xtensa_l32r_opcode
5385 && opcode != xtensa_const16_opcode)
5386 as_fatal (_("invalid relocation for '%s' instruction"),
5387 xtensa_opcode_name (isa, opcode));
30f725a1 5388 return 0;
e0001a05
NC
5389 }
5390
43cd72b9
BW
5391 opnum = get_relaxable_immed (opcode);
5392 opnd_value = 0;
5393 if (xtensa_operand_is_PCrelative (isa, opcode, opnum) != 1
5394 || xtensa_operand_do_reloc (isa, opcode, opnum, &opnd_value, addr))
e0001a05
NC
5395 {
5396 as_bad_where (fixP->fx_file,
5397 fixP->fx_line,
5398 _("invalid relocation for operand %d of '%s'"),
5399 opnum, xtensa_opcode_name (isa, opcode));
30f725a1 5400 return 0;
e0001a05 5401 }
43cd72b9
BW
5402 return 0 - opnd_value;
5403}
5404
5405
5406/* TC_FORCE_RELOCATION hook */
5407
5408int
7fa3d080 5409xtensa_force_relocation (fixS *fix)
43cd72b9
BW
5410{
5411 switch (fix->fx_r_type)
30f725a1
BW
5412 {
5413 case BFD_RELOC_XTENSA_ASM_EXPAND:
43cd72b9
BW
5414 case BFD_RELOC_XTENSA_SLOT0_ALT:
5415 case BFD_RELOC_XTENSA_SLOT1_ALT:
5416 case BFD_RELOC_XTENSA_SLOT2_ALT:
5417 case BFD_RELOC_XTENSA_SLOT3_ALT:
5418 case BFD_RELOC_XTENSA_SLOT4_ALT:
5419 case BFD_RELOC_XTENSA_SLOT5_ALT:
5420 case BFD_RELOC_XTENSA_SLOT6_ALT:
5421 case BFD_RELOC_XTENSA_SLOT7_ALT:
5422 case BFD_RELOC_XTENSA_SLOT8_ALT:
5423 case BFD_RELOC_XTENSA_SLOT9_ALT:
5424 case BFD_RELOC_XTENSA_SLOT10_ALT:
5425 case BFD_RELOC_XTENSA_SLOT11_ALT:
5426 case BFD_RELOC_XTENSA_SLOT12_ALT:
5427 case BFD_RELOC_XTENSA_SLOT13_ALT:
5428 case BFD_RELOC_XTENSA_SLOT14_ALT:
43cd72b9
BW
5429 return 1;
5430 default:
5431 break;
e0001a05
NC
5432 }
5433
43cd72b9
BW
5434 if (linkrelax && fix->fx_addsy
5435 && relaxable_section (S_GET_SEGMENT (fix->fx_addsy)))
5436 return 1;
5437
5438 return generic_force_reloc (fix);
5439}
5440
5441
30f725a1
BW
5442/* TC_VALIDATE_FIX_SUB hook */
5443
5444int
5445xtensa_validate_fix_sub (fixS *fix)
5446{
5447 segT add_symbol_segment, sub_symbol_segment;
5448
5449 /* The difference of two symbols should be resolved by the assembler when
5450 linkrelax is not set. If the linker may relax the section containing
5451 the symbols, then an Xtensa DIFF relocation must be generated so that
5452 the linker knows to adjust the difference value. */
5453 if (!linkrelax || fix->fx_addsy == NULL)
5454 return 0;
5455
5456 /* Make sure both symbols are in the same segment, and that segment is
5457 "normal" and relaxable. If the segment is not "normal", then the
5458 fix is not valid. If the segment is not "relaxable", then the fix
5459 should have been handled earlier. */
5460 add_symbol_segment = S_GET_SEGMENT (fix->fx_addsy);
5461 if (! SEG_NORMAL (add_symbol_segment) ||
5462 ! relaxable_section (add_symbol_segment))
5463 return 0;
5464 sub_symbol_segment = S_GET_SEGMENT (fix->fx_subsy);
5465 return (sub_symbol_segment == add_symbol_segment);
5466}
5467
5468
43cd72b9
BW
5469/* NO_PSEUDO_DOT hook */
5470
5471/* This function has nothing to do with pseudo dots, but this is the
5472 nearest macro to where the check needs to take place. FIXME: This
5473 seems wrong. */
5474
5475bfd_boolean
7fa3d080 5476xtensa_check_inside_bundle (void)
43cd72b9
BW
5477{
5478 if (cur_vinsn.inside_bundle && input_line_pointer[-1] == '.')
5479 as_bad (_("directives are not valid inside bundles"));
5480
5481 /* This function must always return FALSE because it is called via a
5482 macro that has nothing to do with bundling. */
5483 return FALSE;
e0001a05
NC
5484}
5485
5486
43cd72b9 5487/* md_elf_section_change_hook */
e0001a05
NC
5488
5489void
7fa3d080 5490xtensa_elf_section_change_hook (void)
e0001a05 5491{
43cd72b9
BW
5492 /* Set up the assembly state. */
5493 if (!frag_now->tc_frag_data.is_assembly_state_set)
5494 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
5495}
5496
5497
5498/* tc_fix_adjustable hook */
5499
5500bfd_boolean
7fa3d080 5501xtensa_fix_adjustable (fixS *fixP)
e0001a05 5502{
43cd72b9
BW
5503 /* An offset is not allowed in combination with the difference of two
5504 symbols, but that cannot be easily detected after a local symbol
5505 has been adjusted to a (section+offset) form. Return 0 so that such
5506 an fix will not be adjusted. */
5507 if (fixP->fx_subsy && fixP->fx_addsy && fixP->fx_offset
5508 && relaxable_section (S_GET_SEGMENT (fixP->fx_subsy)))
5509 return 0;
5510
e0001a05
NC
5511 /* We need the symbol name for the VTABLE entries. */
5512 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
5513 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5514 return 0;
5515
5516 return 1;
5517}
5518
5519
5520void
55cf6793 5521md_apply_fix (fixS *fixP, valueT *valP, segT seg)
e0001a05 5522{
30f725a1 5523 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
d47d412e 5524 valueT val = 0;
30f725a1 5525
e7da6241
BW
5526 /* Subtracted symbols are only allowed for a few relocation types, and
5527 unless linkrelax is enabled, they should not make it to this point. */
5528 if (fixP->fx_subsy && !(linkrelax && (fixP->fx_r_type == BFD_RELOC_32
5529 || fixP->fx_r_type == BFD_RELOC_16
5530 || fixP->fx_r_type == BFD_RELOC_8)))
5531 as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex"));
5532
30f725a1 5533 switch (fixP->fx_r_type)
e0001a05 5534 {
30f725a1
BW
5535 case BFD_RELOC_32:
5536 case BFD_RELOC_16:
5537 case BFD_RELOC_8:
e7da6241 5538 if (fixP->fx_subsy)
30f725a1
BW
5539 {
5540 switch (fixP->fx_r_type)
5541 {
5542 case BFD_RELOC_8:
5543 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF8;
5544 break;
5545 case BFD_RELOC_16:
5546 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF16;
5547 break;
5548 case BFD_RELOC_32:
5549 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF32;
5550 break;
5551 default:
5552 break;
5553 }
e0001a05 5554
30f725a1
BW
5555 /* An offset is only allowed when it results from adjusting a
5556 local symbol into a section-relative offset. If the offset
5557 came from the original expression, tc_fix_adjustable will have
5558 prevented the fix from being converted to a section-relative
5559 form so that we can flag the error here. */
5560 if (fixP->fx_offset != 0 && !symbol_section_p (fixP->fx_addsy))
5561 as_bad_where (fixP->fx_file, fixP->fx_line,
5562 _("cannot represent subtraction with an offset"));
5563
5564 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5565 - S_GET_VALUE (fixP->fx_subsy));
5566
5567 /* The difference value gets written out, and the DIFF reloc
5568 identifies the address of the subtracted symbol (i.e., the one
5569 with the lowest address). */
5570 *valP = val;
5571 fixP->fx_offset -= val;
5572 fixP->fx_subsy = NULL;
5573 }
5574 else if (! fixP->fx_addsy)
e0001a05 5575 {
30f725a1 5576 val = *valP;
e0001a05 5577 fixP->fx_done = 1;
30f725a1 5578 }
d47d412e
BW
5579 /* fall through */
5580
5581 case BFD_RELOC_XTENSA_PLT:
30f725a1
BW
5582 md_number_to_chars (fixpos, val, fixP->fx_size);
5583 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
5584 break;
e0001a05 5585
30f725a1
BW
5586 case BFD_RELOC_XTENSA_SLOT0_OP:
5587 case BFD_RELOC_XTENSA_SLOT1_OP:
5588 case BFD_RELOC_XTENSA_SLOT2_OP:
5589 case BFD_RELOC_XTENSA_SLOT3_OP:
5590 case BFD_RELOC_XTENSA_SLOT4_OP:
5591 case BFD_RELOC_XTENSA_SLOT5_OP:
5592 case BFD_RELOC_XTENSA_SLOT6_OP:
5593 case BFD_RELOC_XTENSA_SLOT7_OP:
5594 case BFD_RELOC_XTENSA_SLOT8_OP:
5595 case BFD_RELOC_XTENSA_SLOT9_OP:
5596 case BFD_RELOC_XTENSA_SLOT10_OP:
5597 case BFD_RELOC_XTENSA_SLOT11_OP:
5598 case BFD_RELOC_XTENSA_SLOT12_OP:
5599 case BFD_RELOC_XTENSA_SLOT13_OP:
5600 case BFD_RELOC_XTENSA_SLOT14_OP:
5601 if (linkrelax)
5602 {
5603 /* Write the tentative value of a PC-relative relocation to a
5604 local symbol into the instruction. The value will be ignored
5605 by the linker, and it makes the object file disassembly
5606 readable when all branch targets are encoded in relocations. */
5607
5608 assert (fixP->fx_addsy);
5609 if (S_GET_SEGMENT (fixP->fx_addsy) == seg && !fixP->fx_plt
5610 && !S_FORCE_RELOC (fixP->fx_addsy, 1))
5611 {
5612 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5613 - md_pcrel_from (fixP));
5614 (void) xg_apply_fix_value (fixP, val);
5615 }
5616 }
5617 else if (! fixP->fx_addsy)
5618 {
5619 val = *valP;
5620 if (xg_apply_fix_value (fixP, val))
5621 fixP->fx_done = 1;
5622 }
5623 break;
e0001a05 5624
30f725a1
BW
5625 case BFD_RELOC_XTENSA_ASM_EXPAND:
5626 case BFD_RELOC_XTENSA_SLOT0_ALT:
5627 case BFD_RELOC_XTENSA_SLOT1_ALT:
5628 case BFD_RELOC_XTENSA_SLOT2_ALT:
5629 case BFD_RELOC_XTENSA_SLOT3_ALT:
5630 case BFD_RELOC_XTENSA_SLOT4_ALT:
5631 case BFD_RELOC_XTENSA_SLOT5_ALT:
5632 case BFD_RELOC_XTENSA_SLOT6_ALT:
5633 case BFD_RELOC_XTENSA_SLOT7_ALT:
5634 case BFD_RELOC_XTENSA_SLOT8_ALT:
5635 case BFD_RELOC_XTENSA_SLOT9_ALT:
5636 case BFD_RELOC_XTENSA_SLOT10_ALT:
5637 case BFD_RELOC_XTENSA_SLOT11_ALT:
5638 case BFD_RELOC_XTENSA_SLOT12_ALT:
5639 case BFD_RELOC_XTENSA_SLOT13_ALT:
5640 case BFD_RELOC_XTENSA_SLOT14_ALT:
5641 /* These all need to be resolved at link-time. Do nothing now. */
5642 break;
e0001a05 5643
30f725a1
BW
5644 case BFD_RELOC_VTABLE_INHERIT:
5645 case BFD_RELOC_VTABLE_ENTRY:
5646 fixP->fx_done = 0;
5647 break;
e0001a05 5648
30f725a1
BW
5649 default:
5650 as_bad (_("unhandled local relocation fix %s"),
5651 bfd_get_reloc_code_name (fixP->fx_r_type));
e0001a05
NC
5652 }
5653}
5654
5655
5656char *
7fa3d080 5657md_atof (int type, char *litP, int *sizeP)
e0001a05
NC
5658{
5659 int prec;
5660 LITTLENUM_TYPE words[4];
5661 char *t;
5662 int i;
5663
5664 switch (type)
5665 {
5666 case 'f':
5667 prec = 2;
5668 break;
5669
5670 case 'd':
5671 prec = 4;
5672 break;
5673
5674 default:
5675 *sizeP = 0;
5676 return "bad call to md_atof";
5677 }
5678
5679 t = atof_ieee (input_line_pointer, type, words);
5680 if (t)
5681 input_line_pointer = t;
5682
5683 *sizeP = prec * 2;
5684
5685 for (i = prec - 1; i >= 0; i--)
5686 {
5687 int idx = i;
5688 if (target_big_endian)
5689 idx = (prec - 1 - i);
5690
5691 md_number_to_chars (litP, (valueT) words[idx], 2);
5692 litP += 2;
5693 }
5694
5695 return NULL;
5696}
5697
5698
5699int
7fa3d080 5700md_estimate_size_before_relax (fragS *fragP, segT seg ATTRIBUTE_UNUSED)
e0001a05 5701{
34e41783 5702 return total_frag_text_expansion (fragP);
e0001a05
NC
5703}
5704
5705
5706/* Translate internal representation of relocation info to BFD target
5707 format. */
5708
5709arelent *
30f725a1 5710tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
e0001a05
NC
5711{
5712 arelent *reloc;
5713
5714 reloc = (arelent *) xmalloc (sizeof (arelent));
5715 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5716 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5717 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
5718
5719 /* Make sure none of our internal relocations make it this far.
5720 They'd better have been fully resolved by this point. */
5721 assert ((int) fixp->fx_r_type > 0);
5722
30f725a1 5723 reloc->addend = fixp->fx_offset;
43cd72b9 5724
e0001a05
NC
5725 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
5726 if (reloc->howto == NULL)
5727 {
5728 as_bad_where (fixp->fx_file, fixp->fx_line,
5729 _("cannot represent `%s' relocation in object file"),
5730 bfd_get_reloc_code_name (fixp->fx_r_type));
43cd72b9
BW
5731 free (reloc->sym_ptr_ptr);
5732 free (reloc);
e0001a05
NC
5733 return NULL;
5734 }
5735
5736 if (!fixp->fx_pcrel != !reloc->howto->pc_relative)
43cd72b9
BW
5737 as_fatal (_("internal error? cannot generate `%s' relocation"),
5738 bfd_get_reloc_code_name (fixp->fx_r_type));
e0001a05 5739
e0001a05
NC
5740 return reloc;
5741}
5742
7fa3d080
BW
5743\f
5744/* Checks for resource conflicts between instructions. */
5745
c138bc38
BW
5746/* The func unit stuff could be implemented as bit-vectors rather
5747 than the iterative approach here. If it ends up being too
7fa3d080
BW
5748 slow, we will switch it. */
5749
c138bc38 5750resource_table *
7fa3d080
BW
5751new_resource_table (void *data,
5752 int cycles,
5753 int nu,
5754 unit_num_copies_func uncf,
5755 opcode_num_units_func onuf,
5756 opcode_funcUnit_use_unit_func ouuf,
5757 opcode_funcUnit_use_stage_func ousf)
5758{
5759 int i;
5760 resource_table *rt = (resource_table *) xmalloc (sizeof (resource_table));
5761 rt->data = data;
5762 rt->cycles = cycles;
5763 rt->allocated_cycles = cycles;
5764 rt->num_units = nu;
5765 rt->unit_num_copies = uncf;
5766 rt->opcode_num_units = onuf;
5767 rt->opcode_unit_use = ouuf;
5768 rt->opcode_unit_stage = ousf;
5769
0bf60745 5770 rt->units = (unsigned char **) xcalloc (cycles, sizeof (unsigned char *));
7fa3d080 5771 for (i = 0; i < cycles; i++)
0bf60745 5772 rt->units[i] = (unsigned char *) xcalloc (nu, sizeof (unsigned char));
7fa3d080
BW
5773
5774 return rt;
5775}
5776
5777
c138bc38 5778void
7fa3d080
BW
5779clear_resource_table (resource_table *rt)
5780{
5781 int i, j;
5782 for (i = 0; i < rt->allocated_cycles; i++)
5783 for (j = 0; j < rt->num_units; j++)
5784 rt->units[i][j] = 0;
5785}
5786
5787
5788/* We never shrink it, just fake it into thinking so. */
5789
c138bc38 5790void
7fa3d080
BW
5791resize_resource_table (resource_table *rt, int cycles)
5792{
5793 int i, old_cycles;
5794
5795 rt->cycles = cycles;
5796 if (cycles <= rt->allocated_cycles)
5797 return;
5798
5799 old_cycles = rt->allocated_cycles;
5800 rt->allocated_cycles = cycles;
5801
0bf60745
BW
5802 rt->units = xrealloc (rt->units,
5803 rt->allocated_cycles * sizeof (unsigned char *));
7fa3d080 5804 for (i = 0; i < old_cycles; i++)
0bf60745
BW
5805 rt->units[i] = xrealloc (rt->units[i],
5806 rt->num_units * sizeof (unsigned char));
7fa3d080 5807 for (i = old_cycles; i < cycles; i++)
0bf60745 5808 rt->units[i] = xcalloc (rt->num_units, sizeof (unsigned char));
7fa3d080
BW
5809}
5810
5811
c138bc38 5812bfd_boolean
7fa3d080
BW
5813resources_available (resource_table *rt, xtensa_opcode opcode, int cycle)
5814{
5815 int i;
5816 int uses = (rt->opcode_num_units) (rt->data, opcode);
5817
c138bc38 5818 for (i = 0; i < uses; i++)
7fa3d080
BW
5819 {
5820 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5821 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
5822 int copies_in_use = rt->units[stage + cycle][unit];
5823 int copies = (rt->unit_num_copies) (rt->data, unit);
5824 if (copies_in_use >= copies)
5825 return FALSE;
5826 }
5827 return TRUE;
5828}
7fa3d080 5829
c138bc38
BW
5830
5831void
7fa3d080
BW
5832reserve_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
5833{
5834 int i;
5835 int uses = (rt->opcode_num_units) (rt->data, opcode);
5836
c138bc38 5837 for (i = 0; i < uses; i++)
7fa3d080
BW
5838 {
5839 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5840 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
c138bc38
BW
5841 /* Note that this allows resources to be oversubscribed. That's
5842 essential to the way the optional scheduler works.
7fa3d080
BW
5843 resources_available reports when a resource is over-subscribed,
5844 so it's easy to tell. */
5845 rt->units[stage + cycle][unit]++;
5846 }
5847}
5848
5849
c138bc38 5850void
7fa3d080
BW
5851release_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
5852{
5853 int i;
5854 int uses = (rt->opcode_num_units) (rt->data, opcode);
5855
c138bc38 5856 for (i = 0; i < uses; i++)
7fa3d080
BW
5857 {
5858 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5859 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
0bf60745 5860 assert (rt->units[stage + cycle][unit] > 0);
7fa3d080 5861 rt->units[stage + cycle][unit]--;
7fa3d080
BW
5862 }
5863}
c138bc38 5864
7fa3d080
BW
5865
5866/* Wrapper functions make parameterized resource reservation
5867 more convenient. */
5868
c138bc38 5869int
7fa3d080
BW
5870opcode_funcUnit_use_unit (void *data, xtensa_opcode opcode, int idx)
5871{
5872 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
c138bc38 5873 return use->unit;
7fa3d080
BW
5874}
5875
5876
c138bc38 5877int
7fa3d080
BW
5878opcode_funcUnit_use_stage (void *data, xtensa_opcode opcode, int idx)
5879{
5880 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
5881 return use->stage;
5882}
5883
5884
5885/* Note that this function does not check issue constraints, but
5886 solely whether the hardware is available to execute the given
c138bc38 5887 instructions together. It also doesn't check if the tinsns
7fa3d080 5888 write the same state, or access the same tieports. That is
a1ace8d8 5889 checked by check_t1_t2_reads_and_writes. */
7fa3d080
BW
5890
5891static bfd_boolean
5892resources_conflict (vliw_insn *vinsn)
5893{
5894 int i;
5895 static resource_table *rt = NULL;
5896
5897 /* This is the most common case by far. Optimize it. */
5898 if (vinsn->num_slots == 1)
5899 return FALSE;
43cd72b9 5900
c138bc38 5901 if (rt == NULL)
7fa3d080
BW
5902 {
5903 xtensa_isa isa = xtensa_default_isa;
5904 rt = new_resource_table
5905 (isa, xtensa_isa_num_pipe_stages (isa),
5906 xtensa_isa_num_funcUnits (isa),
5907 (unit_num_copies_func) xtensa_funcUnit_num_copies,
5908 (opcode_num_units_func) xtensa_opcode_num_funcUnit_uses,
5909 opcode_funcUnit_use_unit,
5910 opcode_funcUnit_use_stage);
5911 }
43cd72b9 5912
7fa3d080 5913 clear_resource_table (rt);
43cd72b9 5914
7fa3d080
BW
5915 for (i = 0; i < vinsn->num_slots; i++)
5916 {
5917 if (!resources_available (rt, vinsn->slots[i].opcode, 0))
5918 return TRUE;
5919 reserve_resources (rt, vinsn->slots[i].opcode, 0);
5920 }
e0001a05 5921
7fa3d080
BW
5922 return FALSE;
5923}
e0001a05 5924
7fa3d080
BW
5925\f
5926/* finish_vinsn, emit_single_op and helper functions. */
e0001a05 5927
7fa3d080
BW
5928static bfd_boolean find_vinsn_conflicts (vliw_insn *);
5929static xtensa_format xg_find_narrowest_format (vliw_insn *);
7fa3d080 5930static void xg_assemble_vliw_tokens (vliw_insn *);
e0001a05
NC
5931
5932
43cd72b9
BW
5933/* We have reached the end of a bundle; emit into the frag. */
5934
e0001a05 5935static void
7fa3d080 5936finish_vinsn (vliw_insn *vinsn)
e0001a05 5937{
43cd72b9
BW
5938 IStack slotstack;
5939 int i;
5940 char *file_name;
d77b99c9 5941 unsigned line;
e0001a05 5942
43cd72b9 5943 if (find_vinsn_conflicts (vinsn))
a1ace8d8
BW
5944 {
5945 xg_clear_vinsn (vinsn);
5946 return;
5947 }
43cd72b9
BW
5948
5949 /* First, find a format that works. */
5950 if (vinsn->format == XTENSA_UNDEFINED)
5951 vinsn->format = xg_find_narrowest_format (vinsn);
5952
5953 if (vinsn->format == XTENSA_UNDEFINED)
5954 {
5955 as_where (&file_name, &line);
5956 as_bad_where (file_name, line,
5957 _("couldn't find a valid instruction format"));
5958 fprintf (stderr, _(" ops were: "));
5959 for (i = 0; i < vinsn->num_slots; i++)
5960 fprintf (stderr, _(" %s;"),
5961 xtensa_opcode_name (xtensa_default_isa,
5962 vinsn->slots[i].opcode));
5963 fprintf (stderr, _("\n"));
5964 xg_clear_vinsn (vinsn);
5965 return;
5966 }
5967
5968 if (vinsn->num_slots
5969 != xtensa_format_num_slots (xtensa_default_isa, vinsn->format))
e0001a05 5970 {
43cd72b9
BW
5971 as_bad (_("format '%s' allows %d slots, but there are %d opcodes"),
5972 xtensa_format_name (xtensa_default_isa, vinsn->format),
5973 xtensa_format_num_slots (xtensa_default_isa, vinsn->format),
5974 vinsn->num_slots);
5975 xg_clear_vinsn (vinsn);
5976 return;
5977 }
e0001a05 5978
c138bc38 5979 if (resources_conflict (vinsn))
43cd72b9
BW
5980 {
5981 as_where (&file_name, &line);
5982 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
5983 fprintf (stderr, " ops were: ");
5984 for (i = 0; i < vinsn->num_slots; i++)
5985 fprintf (stderr, " %s;",
5986 xtensa_opcode_name (xtensa_default_isa,
5987 vinsn->slots[i].opcode));
5988 fprintf (stderr, "\n");
5989 xg_clear_vinsn (vinsn);
5990 return;
5991 }
5992
5993 for (i = 0; i < vinsn->num_slots; i++)
5994 {
5995 if (vinsn->slots[i].opcode != XTENSA_UNDEFINED)
e0001a05 5996 {
43cd72b9
BW
5997 symbolS *lit_sym = NULL;
5998 int j;
5999 bfd_boolean e = FALSE;
6000 bfd_boolean saved_density = density_supported;
6001
6002 /* We don't want to narrow ops inside multi-slot bundles. */
6003 if (vinsn->num_slots > 1)
6004 density_supported = FALSE;
6005
6006 istack_init (&slotstack);
6007 if (vinsn->slots[i].opcode == xtensa_nop_opcode)
e0001a05 6008 {
43cd72b9
BW
6009 vinsn->slots[i].opcode =
6010 xtensa_format_slot_nop_opcode (xtensa_default_isa,
6011 vinsn->format, i);
6012 vinsn->slots[i].ntok = 0;
6013 }
e0001a05 6014
43cd72b9
BW
6015 if (xg_expand_assembly_insn (&slotstack, &vinsn->slots[i]))
6016 {
6017 e = TRUE;
6018 continue;
e0001a05 6019 }
e0001a05 6020
43cd72b9 6021 density_supported = saved_density;
e0001a05 6022
43cd72b9
BW
6023 if (e)
6024 {
6025 xg_clear_vinsn (vinsn);
6026 return;
6027 }
e0001a05 6028
0fa77c95 6029 for (j = 0; j < slotstack.ninsn; j++)
43cd72b9
BW
6030 {
6031 TInsn *insn = &slotstack.insn[j];
6032 if (insn->insn_type == ITYPE_LITERAL)
6033 {
6034 assert (lit_sym == NULL);
6035 lit_sym = xg_assemble_literal (insn);
6036 }
6037 else
6038 {
0fa77c95 6039 assert (insn->insn_type == ITYPE_INSN);
43cd72b9
BW
6040 if (lit_sym)
6041 xg_resolve_literals (insn, lit_sym);
0fa77c95
BW
6042 if (j != slotstack.ninsn - 1)
6043 emit_single_op (insn);
43cd72b9
BW
6044 }
6045 }
6046
6047 if (vinsn->num_slots > 1)
6048 {
6049 if (opcode_fits_format_slot
6050 (slotstack.insn[slotstack.ninsn - 1].opcode,
6051 vinsn->format, i))
6052 {
6053 vinsn->slots[i] = slotstack.insn[slotstack.ninsn - 1];
6054 }
6055 else
6056 {
b2d179be 6057 emit_single_op (&slotstack.insn[slotstack.ninsn - 1]);
43cd72b9
BW
6058 if (vinsn->format == XTENSA_UNDEFINED)
6059 vinsn->slots[i].opcode = xtensa_nop_opcode;
6060 else
c138bc38 6061 vinsn->slots[i].opcode
43cd72b9
BW
6062 = xtensa_format_slot_nop_opcode (xtensa_default_isa,
6063 vinsn->format, i);
6064
6065 vinsn->slots[i].ntok = 0;
6066 }
6067 }
6068 else
6069 {
6070 vinsn->slots[0] = slotstack.insn[slotstack.ninsn - 1];
6071 vinsn->format = XTENSA_UNDEFINED;
6072 }
6073 }
6074 }
6075
6076 /* Now check resource conflicts on the modified bundle. */
c138bc38 6077 if (resources_conflict (vinsn))
43cd72b9
BW
6078 {
6079 as_where (&file_name, &line);
6080 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
6081 fprintf (stderr, " ops were: ");
6082 for (i = 0; i < vinsn->num_slots; i++)
6083 fprintf (stderr, " %s;",
6084 xtensa_opcode_name (xtensa_default_isa,
6085 vinsn->slots[i].opcode));
6086 fprintf (stderr, "\n");
6087 xg_clear_vinsn (vinsn);
6088 return;
6089 }
6090
6091 /* First, find a format that works. */
6092 if (vinsn->format == XTENSA_UNDEFINED)
6093 vinsn->format = xg_find_narrowest_format (vinsn);
6094
6095 xg_assemble_vliw_tokens (vinsn);
6096
6097 xg_clear_vinsn (vinsn);
6098}
6099
6100
6101/* Given an vliw instruction, what conflicts are there in register
6102 usage and in writes to states and queues?
6103
6104 This function does two things:
6105 1. Reports an error when a vinsn contains illegal combinations
6106 of writes to registers states or queues.
6107 2. Marks individual tinsns as not relaxable if the combination
6108 contains antidependencies.
6109
6110 Job 2 handles things like swap semantics in instructions that need
6111 to be relaxed. For example,
6112
6113 addi a0, a1, 100000
6114
6115 normally would be relaxed to
6116
6117 l32r a0, some_label
6118 add a0, a1, a0
6119
6120 _but_, if the above instruction is bundled with an a0 reader, e.g.,
6121
6122 { addi a0, a1, 10000 ; add a2, a0, a4 ; }
6123
6124 then we can't relax it into
6125
6126 l32r a0, some_label
6127 { add a0, a1, a0 ; add a2, a0, a4 ; }
6128
6129 because the value of a0 is trashed before the second add can read it. */
6130
7fa3d080
BW
6131static char check_t1_t2_reads_and_writes (TInsn *, TInsn *);
6132
43cd72b9 6133static bfd_boolean
7fa3d080 6134find_vinsn_conflicts (vliw_insn *vinsn)
43cd72b9
BW
6135{
6136 int i, j;
6137 int branches = 0;
6138 xtensa_isa isa = xtensa_default_isa;
6139
6140 assert (!past_xtensa_end);
6141
6142 for (i = 0 ; i < vinsn->num_slots; i++)
6143 {
6144 TInsn *op1 = &vinsn->slots[i];
6145 if (op1->is_specific_opcode)
6146 op1->keep_wide = TRUE;
6147 else
6148 op1->keep_wide = FALSE;
6149 }
6150
6151 for (i = 0 ; i < vinsn->num_slots; i++)
6152 {
6153 TInsn *op1 = &vinsn->slots[i];
6154
6155 if (xtensa_opcode_is_branch (isa, op1->opcode) == 1)
6156 branches++;
6157
6158 for (j = 0; j < vinsn->num_slots; j++)
6159 {
6160 if (i != j)
6161 {
6162 TInsn *op2 = &vinsn->slots[j];
6163 char conflict_type = check_t1_t2_reads_and_writes (op1, op2);
6164 switch (conflict_type)
6165 {
6166 case 'c':
6167 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same register"),
6168 xtensa_opcode_name (isa, op1->opcode), i,
6169 xtensa_opcode_name (isa, op2->opcode), j);
6170 return TRUE;
6171 case 'd':
6172 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same state"),
6173 xtensa_opcode_name (isa, op1->opcode), i,
6174 xtensa_opcode_name (isa, op2->opcode), j);
6175 return TRUE;
6176 case 'e':
53dfbcc7 6177 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same port"),
43cd72b9
BW
6178 xtensa_opcode_name (isa, op1->opcode), i,
6179 xtensa_opcode_name (isa, op2->opcode), j);
6180 return TRUE;
6181 case 'f':
53dfbcc7 6182 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) both have volatile port accesses"),
43cd72b9
BW
6183 xtensa_opcode_name (isa, op1->opcode), i,
6184 xtensa_opcode_name (isa, op2->opcode), j);
6185 return TRUE;
6186 default:
6187 /* Everything is OK. */
6188 break;
6189 }
6190 op2->is_specific_opcode = (op2->is_specific_opcode
6191 || conflict_type == 'a');
6192 }
6193 }
6194 }
6195
6196 if (branches > 1)
6197 {
6198 as_bad (_("multiple branches or jumps in the same bundle"));
6199 return TRUE;
6200 }
6201
6202 return FALSE;
6203}
6204
6205
a1ace8d8 6206/* Check how the state used by t1 and t2 relate.
43cd72b9
BW
6207 Cases found are:
6208
6209 case A: t1 reads a register t2 writes (an antidependency within a bundle)
6210 case B: no relationship between what is read and written (both could
6211 read the same reg though)
c138bc38 6212 case C: t1 writes a register t2 writes (a register conflict within a
43cd72b9
BW
6213 bundle)
6214 case D: t1 writes a state that t2 also writes
6215 case E: t1 writes a tie queue that t2 also writes
a1ace8d8 6216 case F: two volatile queue accesses
43cd72b9
BW
6217*/
6218
6219static char
7fa3d080 6220check_t1_t2_reads_and_writes (TInsn *t1, TInsn *t2)
43cd72b9
BW
6221{
6222 xtensa_isa isa = xtensa_default_isa;
6223 xtensa_regfile t1_regfile, t2_regfile;
6224 int t1_reg, t2_reg;
6225 int t1_base_reg, t1_last_reg;
6226 int t2_base_reg, t2_last_reg;
6227 char t1_inout, t2_inout;
6228 int i, j;
6229 char conflict = 'b';
6230 int t1_states;
6231 int t2_states;
6232 int t1_interfaces;
6233 int t2_interfaces;
6234 bfd_boolean t1_volatile = FALSE;
6235 bfd_boolean t2_volatile = FALSE;
6236
6237 /* Check registers. */
6238 for (j = 0; j < t2->ntok; j++)
6239 {
6240 if (xtensa_operand_is_register (isa, t2->opcode, j) != 1)
6241 continue;
6242
6243 t2_regfile = xtensa_operand_regfile (isa, t2->opcode, j);
6244 t2_base_reg = t2->tok[j].X_add_number;
6245 t2_last_reg = t2_base_reg + xtensa_operand_num_regs (isa, t2->opcode, j);
6246
6247 for (i = 0; i < t1->ntok; i++)
6248 {
6249 if (xtensa_operand_is_register (isa, t1->opcode, i) != 1)
6250 continue;
6251
6252 t1_regfile = xtensa_operand_regfile (isa, t1->opcode, i);
6253
6254 if (t1_regfile != t2_regfile)
6255 continue;
6256
6257 t1_inout = xtensa_operand_inout (isa, t1->opcode, i);
6258 t2_inout = xtensa_operand_inout (isa, t2->opcode, j);
6259
6260 if (xtensa_operand_is_known_reg (isa, t1->opcode, i) == 0
6261 || xtensa_operand_is_known_reg (isa, t2->opcode, j) == 0)
6262 {
6263 if (t1_inout == 'm' || t1_inout == 'o'
6264 || t2_inout == 'm' || t2_inout == 'o')
6265 {
6266 conflict = 'a';
6267 continue;
6268 }
6269 }
6270
6271 t1_base_reg = t1->tok[i].X_add_number;
6272 t1_last_reg = (t1_base_reg
6273 + xtensa_operand_num_regs (isa, t1->opcode, i));
6274
6275 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
6276 {
6277 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
6278 {
6279 if (t1_reg != t2_reg)
6280 continue;
6281
6282 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
7fa3d080
BW
6283 {
6284 conflict = 'a';
6285 continue;
6286 }
43cd72b9 6287
7fa3d080
BW
6288 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6289 {
6290 conflict = 'a';
6291 continue;
6292 }
43cd72b9 6293
7fa3d080
BW
6294 if (t1_inout != 'i' && t2_inout != 'i')
6295 return 'c';
6296 }
6297 }
6298 }
6299 }
43cd72b9 6300
7fa3d080
BW
6301 /* Check states. */
6302 t1_states = xtensa_opcode_num_stateOperands (isa, t1->opcode);
6303 t2_states = xtensa_opcode_num_stateOperands (isa, t2->opcode);
6304 for (j = 0; j < t2_states; j++)
43cd72b9 6305 {
7fa3d080
BW
6306 xtensa_state t2_so = xtensa_stateOperand_state (isa, t2->opcode, j);
6307 t2_inout = xtensa_stateOperand_inout (isa, t2->opcode, j);
6308 for (i = 0; i < t1_states; i++)
6309 {
6310 xtensa_state t1_so = xtensa_stateOperand_state (isa, t1->opcode, i);
6311 t1_inout = xtensa_stateOperand_inout (isa, t1->opcode, i);
c138bc38 6312 if (t1_so != t2_so)
7fa3d080 6313 continue;
43cd72b9 6314
7fa3d080
BW
6315 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6316 {
6317 conflict = 'a';
6318 continue;
6319 }
c138bc38 6320
7fa3d080
BW
6321 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6322 {
6323 conflict = 'a';
6324 continue;
6325 }
c138bc38 6326
7fa3d080
BW
6327 if (t1_inout != 'i' && t2_inout != 'i')
6328 return 'd';
c138bc38 6329 }
7fa3d080 6330 }
43cd72b9 6331
7fa3d080
BW
6332 /* Check tieports. */
6333 t1_interfaces = xtensa_opcode_num_interfaceOperands (isa, t1->opcode);
6334 t2_interfaces = xtensa_opcode_num_interfaceOperands (isa, t2->opcode);
c138bc38 6335 for (j = 0; j < t2_interfaces; j++)
43cd72b9 6336 {
7fa3d080
BW
6337 xtensa_interface t2_int
6338 = xtensa_interfaceOperand_interface (isa, t2->opcode, j);
a1ace8d8
BW
6339 int t2_class = xtensa_interface_class_id (isa, t2_int);
6340
53dfbcc7 6341 t2_inout = xtensa_interface_inout (isa, t2_int);
a1ace8d8 6342 if (xtensa_interface_has_side_effect (isa, t2_int) == 1)
7fa3d080 6343 t2_volatile = TRUE;
a1ace8d8 6344
7fa3d080
BW
6345 for (i = 0; i < t1_interfaces; i++)
6346 {
6347 xtensa_interface t1_int
6348 = xtensa_interfaceOperand_interface (isa, t1->opcode, j);
2eccd1b4 6349 int t1_class = xtensa_interface_class_id (isa, t1_int);
a1ace8d8 6350
53dfbcc7 6351 t1_inout = xtensa_interface_inout (isa, t1_int);
a1ace8d8 6352 if (xtensa_interface_has_side_effect (isa, t1_int) == 1)
7fa3d080 6353 t1_volatile = TRUE;
a1ace8d8
BW
6354
6355 if (t1_volatile && t2_volatile && (t1_class == t2_class))
6356 return 'f';
c138bc38 6357
7fa3d080
BW
6358 if (t1_int != t2_int)
6359 continue;
c138bc38 6360
7fa3d080
BW
6361 if (t2_inout == 'i' && t1_inout == 'o')
6362 {
6363 conflict = 'a';
6364 continue;
6365 }
c138bc38 6366
7fa3d080
BW
6367 if (t1_inout == 'i' && t2_inout == 'o')
6368 {
6369 conflict = 'a';
6370 continue;
6371 }
c138bc38 6372
7fa3d080
BW
6373 if (t1_inout != 'i' && t2_inout != 'i')
6374 return 'e';
6375 }
43cd72b9 6376 }
c138bc38 6377
7fa3d080 6378 return conflict;
43cd72b9
BW
6379}
6380
6381
6382static xtensa_format
7fa3d080 6383xg_find_narrowest_format (vliw_insn *vinsn)
43cd72b9
BW
6384{
6385 /* Right now we assume that the ops within the vinsn are properly
6386 ordered for the slots that the programmer wanted them in. In
6387 other words, we don't rearrange the ops in hopes of finding a
6388 better format. The scheduler handles that. */
6389
6390 xtensa_isa isa = xtensa_default_isa;
6391 xtensa_format format;
6392 vliw_insn v_copy = *vinsn;
6393 xtensa_opcode nop_opcode = xtensa_nop_opcode;
6394
65738a7d
BW
6395 if (vinsn->num_slots == 1)
6396 return xg_get_single_format (vinsn->slots[0].opcode);
6397
43cd72b9
BW
6398 for (format = 0; format < xtensa_isa_num_formats (isa); format++)
6399 {
6400 v_copy = *vinsn;
6401 if (xtensa_format_num_slots (isa, format) == v_copy.num_slots)
6402 {
6403 int slot;
6404 int fit = 0;
6405 for (slot = 0; slot < v_copy.num_slots; slot++)
6406 {
6407 if (v_copy.slots[slot].opcode == nop_opcode)
6408 {
6409 v_copy.slots[slot].opcode =
6410 xtensa_format_slot_nop_opcode (isa, format, slot);
6411 v_copy.slots[slot].ntok = 0;
6412 }
6413
6414 if (opcode_fits_format_slot (v_copy.slots[slot].opcode,
6415 format, slot))
6416 fit++;
7fa3d080 6417 else if (v_copy.num_slots > 1)
43cd72b9 6418 {
7fa3d080
BW
6419 TInsn widened;
6420 /* Try the widened version. */
6421 if (!v_copy.slots[slot].keep_wide
6422 && !v_copy.slots[slot].is_specific_opcode
84b08ed9
BW
6423 && xg_is_single_relaxable_insn (&v_copy.slots[slot],
6424 &widened, TRUE)
7fa3d080
BW
6425 && opcode_fits_format_slot (widened.opcode,
6426 format, slot))
43cd72b9 6427 {
7fa3d080
BW
6428 v_copy.slots[slot] = widened;
6429 fit++;
43cd72b9
BW
6430 }
6431 }
6432 }
6433 if (fit == v_copy.num_slots)
6434 {
6435 *vinsn = v_copy;
6436 xtensa_format_encode (isa, format, vinsn->insnbuf);
6437 vinsn->format = format;
6438 break;
6439 }
6440 }
6441 }
6442
6443 if (format == xtensa_isa_num_formats (isa))
6444 return XTENSA_UNDEFINED;
6445
6446 return format;
6447}
6448
6449
6450/* Return the additional space needed in a frag
6451 for possible relaxations of any ops in a VLIW insn.
6452 Also fill out the relaxations that might be required of
6453 each tinsn in the vinsn. */
6454
6455static int
e7da6241 6456relaxation_requirements (vliw_insn *vinsn, bfd_boolean *pfinish_frag)
43cd72b9 6457{
e7da6241 6458 bfd_boolean finish_frag = FALSE;
43cd72b9
BW
6459 int extra_space = 0;
6460 int slot;
6461
6462 for (slot = 0; slot < vinsn->num_slots; slot++)
6463 {
6464 TInsn *tinsn = &vinsn->slots[slot];
6465 if (!tinsn_has_symbolic_operands (tinsn))
6466 {
6467 /* A narrow instruction could be widened later to help
6468 alignment issues. */
84b08ed9 6469 if (xg_is_single_relaxable_insn (tinsn, 0, TRUE)
43cd72b9
BW
6470 && !tinsn->is_specific_opcode
6471 && vinsn->num_slots == 1)
6472 {
6473 /* Difference in bytes between narrow and wide insns... */
6474 extra_space += 1;
6475 tinsn->subtype = RELAX_NARROW;
43cd72b9
BW
6476 }
6477 }
6478 else
6479 {
b08b5071
BW
6480 if (workaround_b_j_loop_end
6481 && tinsn->opcode == xtensa_jx_opcode
43cd72b9
BW
6482 && use_transform ())
6483 {
6484 /* Add 2 of these. */
6485 extra_space += 3; /* for the nop size */
6486 tinsn->subtype = RELAX_ADD_NOP_IF_PRE_LOOP_END;
6487 }
c138bc38 6488
43cd72b9
BW
6489 /* Need to assemble it with space for the relocation. */
6490 if (xg_is_relaxable_insn (tinsn, 0)
6491 && !tinsn->is_specific_opcode)
6492 {
6493 int max_size = xg_get_max_insn_widen_size (tinsn->opcode);
6494 int max_literal_size =
6495 xg_get_max_insn_widen_literal_size (tinsn->opcode);
c138bc38 6496
43cd72b9 6497 tinsn->literal_space = max_literal_size;
c138bc38 6498
43cd72b9 6499 tinsn->subtype = RELAX_IMMED;
43cd72b9
BW
6500 extra_space += max_size;
6501 }
6502 else
6503 {
e7da6241
BW
6504 /* A fix record will be added for this instruction prior
6505 to relaxation, so make it end the frag. */
6506 finish_frag = TRUE;
43cd72b9
BW
6507 }
6508 }
6509 }
e7da6241 6510 *pfinish_frag = finish_frag;
43cd72b9
BW
6511 return extra_space;
6512}
6513
6514
6515static void
b2d179be 6516bundle_tinsn (TInsn *tinsn, vliw_insn *vinsn)
43cd72b9
BW
6517{
6518 xtensa_isa isa = xtensa_default_isa;
b2d179be 6519 int slot, chosen_slot;
43cd72b9 6520
b2d179be
BW
6521 vinsn->format = xg_get_single_format (tinsn->opcode);
6522 assert (vinsn->format != XTENSA_UNDEFINED);
6523 vinsn->num_slots = xtensa_format_num_slots (isa, vinsn->format);
43cd72b9 6524
b2d179be
BW
6525 chosen_slot = xg_get_single_slot (tinsn->opcode);
6526 for (slot = 0; slot < vinsn->num_slots; slot++)
43cd72b9 6527 {
b2d179be
BW
6528 if (slot == chosen_slot)
6529 vinsn->slots[slot] = *tinsn;
6530 else
6531 {
6532 vinsn->slots[slot].opcode =
6533 xtensa_format_slot_nop_opcode (isa, vinsn->format, slot);
6534 vinsn->slots[slot].ntok = 0;
6535 vinsn->slots[slot].insn_type = ITYPE_INSN;
6536 }
43cd72b9 6537 }
43cd72b9
BW
6538}
6539
6540
6541static bfd_boolean
7fa3d080 6542emit_single_op (TInsn *orig_insn)
43cd72b9
BW
6543{
6544 int i;
6545 IStack istack; /* put instructions into here */
6546 symbolS *lit_sym = NULL;
6547 symbolS *label_sym = NULL;
6548
6549 istack_init (&istack);
6550
6551 /* Special-case for "movi aX, foo" which is guaranteed to need relaxing.
c138bc38
BW
6552 Because the scheduling and bundling characteristics of movi and
6553 l32r or const16 are so different, we can do much better if we relax
43cd72b9 6554 it prior to scheduling and bundling, rather than after. */
c138bc38 6555 if ((orig_insn->opcode == xtensa_movi_opcode
b08b5071
BW
6556 || orig_insn->opcode == xtensa_movi_n_opcode)
6557 && !cur_vinsn.inside_bundle
43cd72b9
BW
6558 && (orig_insn->tok[1].X_op == O_symbol
6559 || orig_insn->tok[1].X_op == O_pltrel))
6560 xg_assembly_relax (&istack, orig_insn, now_seg, frag_now, 0, 1, 0);
6561 else
6562 if (xg_expand_assembly_insn (&istack, orig_insn))
6563 return TRUE;
6564
6565 for (i = 0; i < istack.ninsn; i++)
6566 {
6567 TInsn *insn = &istack.insn[i];
c138bc38 6568 switch (insn->insn_type)
43cd72b9
BW
6569 {
6570 case ITYPE_LITERAL:
6571 assert (lit_sym == NULL);
6572 lit_sym = xg_assemble_literal (insn);
6573 break;
6574 case ITYPE_LABEL:
6575 {
6576 static int relaxed_sym_idx = 0;
6577 char *label = xmalloc (strlen (FAKE_LABEL_NAME) + 12);
6578 sprintf (label, "%s_rl_%x", FAKE_LABEL_NAME, relaxed_sym_idx++);
6579 colon (label);
6580 assert (label_sym == NULL);
6581 label_sym = symbol_find_or_make (label);
6582 assert (label_sym);
6583 free (label);
6584 }
6585 break;
6586 case ITYPE_INSN:
b2d179be
BW
6587 {
6588 vliw_insn v;
6589 if (lit_sym)
6590 xg_resolve_literals (insn, lit_sym);
6591 if (label_sym)
6592 xg_resolve_labels (insn, label_sym);
6593 xg_init_vinsn (&v);
6594 bundle_tinsn (insn, &v);
6595 finish_vinsn (&v);
6596 xg_free_vinsn (&v);
6597 }
43cd72b9
BW
6598 break;
6599 default:
6600 assert (0);
6601 break;
6602 }
6603 }
6604 return FALSE;
6605}
6606
6607
34e41783
BW
6608static int
6609total_frag_text_expansion (fragS *fragP)
6610{
6611 int slot;
6612 int total_expansion = 0;
6613
6614 for (slot = 0; slot < MAX_SLOTS; slot++)
6615 total_expansion += fragP->tc_frag_data.text_expansion[slot];
6616
6617 return total_expansion;
6618}
6619
6620
43cd72b9
BW
6621/* Emit a vliw instruction to the current fragment. */
6622
7fa3d080
BW
6623static void
6624xg_assemble_vliw_tokens (vliw_insn *vinsn)
43cd72b9 6625{
e7da6241 6626 bfd_boolean finish_frag;
43cd72b9
BW
6627 bfd_boolean is_jump = FALSE;
6628 bfd_boolean is_branch = FALSE;
6629 xtensa_isa isa = xtensa_default_isa;
6630 int i;
6631 int insn_size;
6632 int extra_space;
6633 char *f = NULL;
6634 int slot;
7c430684
BW
6635 unsigned current_line, best_linenum;
6636 char *current_file;
43cd72b9 6637
7c430684 6638 best_linenum = UINT_MAX;
43cd72b9
BW
6639
6640 if (generating_literals)
6641 {
6642 static int reported = 0;
6643 if (reported < 4)
6644 as_bad_where (frag_now->fr_file, frag_now->fr_line,
6645 _("cannot assemble into a literal fragment"));
6646 if (reported == 3)
6647 as_bad (_("..."));
6648 reported++;
6649 return;
6650 }
6651
6652 if (frag_now_fix () != 0
b08b5071 6653 && (! frag_now->tc_frag_data.is_insn
43cd72b9 6654 || (vinsn_has_specific_opcodes (vinsn) && use_transform ())
b08b5071 6655 || !use_transform () != frag_now->tc_frag_data.is_no_transform
7c834684
BW
6656 || (directive_state[directive_longcalls]
6657 != frag_now->tc_frag_data.use_longcalls)
43cd72b9
BW
6658 || (directive_state[directive_absolute_literals]
6659 != frag_now->tc_frag_data.use_absolute_literals)))
6660 {
6661 frag_wane (frag_now);
6662 frag_new (0);
6663 xtensa_set_frag_assembly_state (frag_now);
6664 }
6665
6666 if (workaround_a0_b_retw
6667 && vinsn->num_slots == 1
6668 && (get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0
6669 && xtensa_opcode_is_branch (isa, vinsn->slots[0].opcode) == 1
6670 && use_transform ())
6671 {
6672 has_a0_b_retw = TRUE;
6673
6674 /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW.
6675 After the first assembly pass we will check all of them and
6676 add a nop if needed. */
6677 frag_now->tc_frag_data.is_insn = TRUE;
6678 frag_var (rs_machine_dependent, 4, 4,
6679 RELAX_ADD_NOP_IF_A0_B_RETW,
6680 frag_now->fr_symbol,
6681 frag_now->fr_offset,
6682 NULL);
6683 xtensa_set_frag_assembly_state (frag_now);
6684 frag_now->tc_frag_data.is_insn = TRUE;
6685 frag_var (rs_machine_dependent, 4, 4,
6686 RELAX_ADD_NOP_IF_A0_B_RETW,
6687 frag_now->fr_symbol,
6688 frag_now->fr_offset,
6689 NULL);
6690 xtensa_set_frag_assembly_state (frag_now);
6691 }
6692
6693 for (i = 0; i < vinsn->num_slots; i++)
6694 {
6695 /* See if the instruction implies an aligned section. */
6696 if (xtensa_opcode_is_loop (isa, vinsn->slots[i].opcode) == 1)
6697 record_alignment (now_seg, 2);
c138bc38 6698
43cd72b9 6699 /* Also determine the best line number for debug info. */
7c430684
BW
6700 best_linenum = vinsn->slots[i].linenum < best_linenum
6701 ? vinsn->slots[i].linenum : best_linenum;
43cd72b9
BW
6702 }
6703
6704 /* Special cases for instructions that force an alignment... */
6705 /* None of these opcodes are bundle-able. */
6706 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1)
6707 {
d77b99c9 6708 int max_fill;
c138bc38 6709
43cd72b9
BW
6710 xtensa_set_frag_assembly_state (frag_now);
6711 frag_now->tc_frag_data.is_insn = TRUE;
c138bc38 6712
43cd72b9
BW
6713 max_fill = get_text_align_max_fill_size
6714 (get_text_align_power (xtensa_fetch_width),
6715 TRUE, frag_now->tc_frag_data.is_no_density);
6716
6717 if (use_transform ())
6718 frag_var (rs_machine_dependent, max_fill, max_fill,
6719 RELAX_ALIGN_NEXT_OPCODE,
6720 frag_now->fr_symbol,
6721 frag_now->fr_offset,
6722 NULL);
6723 else
c138bc38 6724 frag_var (rs_machine_dependent, 0, 0,
43cd72b9
BW
6725 RELAX_CHECK_ALIGN_NEXT_OPCODE, 0, 0, NULL);
6726 xtensa_set_frag_assembly_state (frag_now);
c138bc38 6727
43cd72b9
BW
6728 xtensa_move_labels (frag_now, 0, FALSE);
6729 }
6730
b08b5071 6731 if (vinsn->slots[0].opcode == xtensa_entry_opcode
43cd72b9
BW
6732 && !vinsn->slots[0].is_specific_opcode)
6733 {
6734 xtensa_mark_literal_pool_location ();
6735 xtensa_move_labels (frag_now, 0, TRUE);
6736 frag_var (rs_align_test, 1, 1, 0, NULL, 2, NULL);
6737 }
6738
6739 if (vinsn->num_slots == 1)
6740 {
6741 if (workaround_a0_b_retw && use_transform ())
6742 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER,
6743 is_register_writer (&vinsn->slots[0], "a", 0));
6744
6745 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND,
6746 is_bad_loopend_opcode (&vinsn->slots[0]));
6747 }
6748 else
6749 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, FALSE);
6750
6751 insn_size = xtensa_format_length (isa, vinsn->format);
6752
e7da6241 6753 extra_space = relaxation_requirements (vinsn, &finish_frag);
43cd72b9
BW
6754
6755 /* vinsn_to_insnbuf will produce the error. */
6756 if (vinsn->format != XTENSA_UNDEFINED)
6757 {
d77b99c9 6758 f = frag_more (insn_size + extra_space);
43cd72b9
BW
6759 xtensa_set_frag_assembly_state (frag_now);
6760 frag_now->tc_frag_data.is_insn = TRUE;
6761 }
6762
e7da6241 6763 vinsn_to_insnbuf (vinsn, f, frag_now, FALSE);
43cd72b9
BW
6764 if (vinsn->format == XTENSA_UNDEFINED)
6765 return;
6766
d77b99c9 6767 xtensa_insnbuf_to_chars (isa, vinsn->insnbuf, (unsigned char *) f, 0);
c138bc38 6768
7c430684
BW
6769 /* Temporarily set the logical line number to the one we want to appear
6770 in the debug information. */
6771 as_where (&current_file, &current_line);
6772 new_logical_line (current_file, best_linenum);
6773 dwarf2_emit_insn (insn_size + extra_space);
6774 new_logical_line (current_file, current_line);
43cd72b9
BW
6775
6776 for (slot = 0; slot < vinsn->num_slots; slot++)
6777 {
6778 TInsn *tinsn = &vinsn->slots[slot];
6779 frag_now->tc_frag_data.slot_subtypes[slot] = tinsn->subtype;
7c834684 6780 frag_now->tc_frag_data.slot_symbols[slot] = tinsn->symbol;
7c834684 6781 frag_now->tc_frag_data.slot_offsets[slot] = tinsn->offset;
43cd72b9
BW
6782 frag_now->tc_frag_data.literal_frags[slot] = tinsn->literal_frag;
6783 if (tinsn->literal_space != 0)
6784 xg_assemble_literal_space (tinsn->literal_space, slot);
6785
6786 if (tinsn->subtype == RELAX_NARROW)
6787 assert (vinsn->num_slots == 1);
6788 if (xtensa_opcode_is_jump (isa, tinsn->opcode) == 1)
6789 is_jump = TRUE;
6790 if (xtensa_opcode_is_branch (isa, tinsn->opcode) == 1)
6791 is_branch = TRUE;
6792
e7da6241
BW
6793 if (tinsn->subtype || tinsn->symbol || tinsn->offset
6794 || tinsn->literal_frag || is_jump || is_branch)
43cd72b9
BW
6795 finish_frag = TRUE;
6796 }
6797
6798 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
b08b5071 6799 frag_now->tc_frag_data.is_specific_opcode = TRUE;
43cd72b9
BW
6800
6801 if (finish_frag)
6802 {
6803 frag_variant (rs_machine_dependent,
6804 extra_space, extra_space, RELAX_SLOTS,
6805 frag_now->fr_symbol, frag_now->fr_offset, f);
6806 xtensa_set_frag_assembly_state (frag_now);
6807 }
6808
6809 /* Special cases for loops:
6810 close_loop_end should be inserted AFTER short_loop.
6811 Make sure that CLOSE loops are processed BEFORE short_loops
6812 when converting them. */
6813
6814 /* "short_loop": Add a NOP if the loop is < 4 bytes. */
6815 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode)
6816 && !vinsn->slots[0].is_specific_opcode)
6817 {
6818 if (workaround_short_loop && use_transform ())
6819 {
6820 maybe_has_short_loop = TRUE;
6821 frag_now->tc_frag_data.is_insn = TRUE;
6822 frag_var (rs_machine_dependent, 4, 4,
6823 RELAX_ADD_NOP_IF_SHORT_LOOP,
6824 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6825 frag_now->tc_frag_data.is_insn = TRUE;
6826 frag_var (rs_machine_dependent, 4, 4,
6827 RELAX_ADD_NOP_IF_SHORT_LOOP,
6828 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6829 }
6830
6831 /* "close_loop_end": Add up to 12 bytes of NOPs to keep a
6832 loop at least 12 bytes away from another loop's end. */
6833 if (workaround_close_loop_end && use_transform ())
6834 {
6835 maybe_has_close_loop_end = TRUE;
6836 frag_now->tc_frag_data.is_insn = TRUE;
6837 frag_var (rs_machine_dependent, 12, 12,
6838 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
6839 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6840 }
6841 }
6842
6843 if (use_transform ())
6844 {
6845 if (is_jump)
6846 {
6847 assert (finish_frag);
6848 frag_var (rs_machine_dependent,
6849 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
6850 RELAX_UNREACHABLE,
6851 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6852 xtensa_set_frag_assembly_state (frag_now);
6853 }
7b1cc377 6854 else if (is_branch && do_align_targets ())
43cd72b9
BW
6855 {
6856 assert (finish_frag);
6857 frag_var (rs_machine_dependent,
6858 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
6859 RELAX_MAYBE_UNREACHABLE,
6860 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6861 xtensa_set_frag_assembly_state (frag_now);
6862 frag_var (rs_machine_dependent,
6863 0, 0,
6864 RELAX_MAYBE_DESIRE_ALIGN,
6865 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6866 xtensa_set_frag_assembly_state (frag_now);
6867 }
6868 }
6869
6870 /* Now, if the original opcode was a call... */
6871 if (do_align_targets ()
6872 && xtensa_opcode_is_call (isa, vinsn->slots[0].opcode) == 1)
6873 {
b08b5071 6874 float freq = get_subseg_total_freq (now_seg, now_subseg);
43cd72b9
BW
6875 frag_now->tc_frag_data.is_insn = TRUE;
6876 frag_var (rs_machine_dependent, 4, (int) freq, RELAX_DESIRE_ALIGN,
6877 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6878 xtensa_set_frag_assembly_state (frag_now);
6879 }
6880
6881 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6882 {
6883 frag_wane (frag_now);
6884 frag_new (0);
6885 xtensa_set_frag_assembly_state (frag_now);
6886 }
6887}
6888
6889\f
7fa3d080
BW
6890/* xtensa_end and helper functions. */
6891
6892static void xtensa_cleanup_align_frags (void);
6893static void xtensa_fix_target_frags (void);
6894static void xtensa_mark_narrow_branches (void);
6895static void xtensa_mark_zcl_first_insns (void);
6896static void xtensa_fix_a0_b_retw_frags (void);
6897static void xtensa_fix_b_j_loop_end_frags (void);
6898static void xtensa_fix_close_loop_end_frags (void);
6899static void xtensa_fix_short_loop_frags (void);
6900static void xtensa_sanity_check (void);
6901
43cd72b9 6902void
7fa3d080 6903xtensa_end (void)
43cd72b9
BW
6904{
6905 directive_balance ();
6906 xtensa_flush_pending_output ();
6907
6908 past_xtensa_end = TRUE;
6909
6910 xtensa_move_literals ();
6911
6912 xtensa_reorder_segments ();
6913 xtensa_cleanup_align_frags ();
6914 xtensa_fix_target_frags ();
6915 if (workaround_a0_b_retw && has_a0_b_retw)
6916 xtensa_fix_a0_b_retw_frags ();
6917 if (workaround_b_j_loop_end)
6918 xtensa_fix_b_j_loop_end_frags ();
6919
6920 /* "close_loop_end" should be processed BEFORE "short_loop". */
6921 if (workaround_close_loop_end && maybe_has_close_loop_end)
6922 xtensa_fix_close_loop_end_frags ();
6923
6924 if (workaround_short_loop && maybe_has_short_loop)
6925 xtensa_fix_short_loop_frags ();
6926 xtensa_mark_narrow_branches ();
6927 xtensa_mark_zcl_first_insns ();
6928
6929 xtensa_sanity_check ();
6930}
6931
6932
6933static void
7fa3d080 6934xtensa_cleanup_align_frags (void)
43cd72b9
BW
6935{
6936 frchainS *frchP;
6937
6938 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
6939 {
6940 fragS *fragP;
6941 /* Walk over all of the fragments in a subsection. */
6942 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
6943 {
6944 if ((fragP->fr_type == rs_align
6945 || fragP->fr_type == rs_align_code
6946 || (fragP->fr_type == rs_machine_dependent
6947 && (fragP->fr_subtype == RELAX_DESIRE_ALIGN
6948 || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)))
6949 && fragP->fr_fix == 0)
6950 {
6951 fragS *next = fragP->fr_next;
6952
6953 while (next
6954 && next->fr_fix == 0
6955 && next->fr_type == rs_machine_dependent
6956 && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
6957 {
6958 frag_wane (next);
6959 next = next->fr_next;
6960 }
6961 }
6962 /* If we don't widen branch targets, then they
6963 will be easier to align. */
6964 if (fragP->tc_frag_data.is_branch_target
6965 && fragP->fr_opcode == fragP->fr_literal
6966 && fragP->fr_type == rs_machine_dependent
6967 && fragP->fr_subtype == RELAX_SLOTS
6968 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
6969 frag_wane (fragP);
c138bc38 6970 if (fragP->fr_type == rs_machine_dependent
43cd72b9
BW
6971 && fragP->fr_subtype == RELAX_UNREACHABLE)
6972 fragP->tc_frag_data.is_unreachable = TRUE;
6973 }
6974 }
6975}
6976
6977
6978/* Re-process all of the fragments looking to convert all of the
6979 RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch
6980 target in the next fragment, convert this to RELAX_DESIRE_ALIGN.
7b1cc377 6981 Otherwise, convert to a .fill 0. */
7fa3d080 6982
43cd72b9 6983static void
7fa3d080 6984xtensa_fix_target_frags (void)
e0001a05
NC
6985{
6986 frchainS *frchP;
6987
6988 /* When this routine is called, all of the subsections are still intact
6989 so we walk over subsections instead of sections. */
6990 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
6991 {
e0001a05
NC
6992 fragS *fragP;
6993
6994 /* Walk over all of the fragments in a subsection. */
6995 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
6996 {
6997 if (fragP->fr_type == rs_machine_dependent
6998 && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
6999 {
7b1cc377 7000 if (next_frag_is_branch_target (fragP))
e0001a05
NC
7001 fragP->fr_subtype = RELAX_DESIRE_ALIGN;
7002 else
7003 frag_wane (fragP);
7004 }
e0001a05
NC
7005 }
7006 }
7007}
7008
7009
7fa3d080
BW
7010static bfd_boolean is_narrow_branch_guaranteed_in_range (fragS *, TInsn *);
7011
43cd72b9 7012static void
7fa3d080 7013xtensa_mark_narrow_branches (void)
43cd72b9
BW
7014{
7015 frchainS *frchP;
7016
7017 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7018 {
7019 fragS *fragP;
7020 /* Walk over all of the fragments in a subsection. */
7021 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7022 {
7023 if (fragP->fr_type == rs_machine_dependent
7024 && fragP->fr_subtype == RELAX_SLOTS
7025 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
7026 {
7027 vliw_insn vinsn;
43cd72b9
BW
7028
7029 vinsn_from_chars (&vinsn, fragP->fr_opcode);
7030 tinsn_immed_from_frag (&vinsn.slots[0], fragP, 0);
7031
43cd72b9
BW
7032 if (vinsn.num_slots == 1
7033 && xtensa_opcode_is_branch (xtensa_default_isa,
7034 vinsn.slots[0].opcode)
7035 && xg_get_single_size (vinsn.slots[0].opcode) == 2
7036 && is_narrow_branch_guaranteed_in_range (fragP,
7037 &vinsn.slots[0]))
7038 {
7039 fragP->fr_subtype = RELAX_SLOTS;
7040 fragP->tc_frag_data.slot_subtypes[0] = RELAX_NARROW;
b5e4a23d 7041 fragP->tc_frag_data.is_aligning_branch = 1;
43cd72b9
BW
7042 }
7043 }
7044 }
7045 }
7046}
7047
7048
7049/* A branch is typically widened only when its target is out of
7050 range. However, we would like to widen them to align a subsequent
7051 branch target when possible.
7052
7053 Because the branch relaxation code is so convoluted, the optimal solution
7054 (combining the two cases) is difficult to get right in all circumstances.
7055 We therefore go with an "almost as good" solution, where we only
7056 use for alignment narrow branches that definitely will not expand to a
7057 jump and a branch. These functions find and mark these cases. */
7058
a67517f4
BW
7059/* The range in bytes of BNEZ.N and BEQZ.N. The target operand is encoded
7060 as PC + 4 + imm6, where imm6 is a 6-bit immediate ranging from 0 to 63.
7061 We start counting beginning with the frag after the 2-byte branch, so the
7062 maximum offset is (4 - 2) + 63 = 65. */
7063#define MAX_IMMED6 65
43cd72b9 7064
d77b99c9 7065static offsetT unrelaxed_frag_max_size (fragS *);
7fa3d080 7066
43cd72b9 7067static bfd_boolean
7fa3d080 7068is_narrow_branch_guaranteed_in_range (fragS *fragP, TInsn *tinsn)
43cd72b9
BW
7069{
7070 const expressionS *expr = &tinsn->tok[1];
7071 symbolS *symbolP = expr->X_add_symbol;
d77b99c9 7072 offsetT max_distance = expr->X_add_number;
e7da6241
BW
7073 fragS *target_frag;
7074
7075 if (expr->X_op != O_symbol)
7076 return FALSE;
7077
7078 target_frag = symbol_get_frag (symbolP);
7079
43cd72b9
BW
7080 max_distance += (S_GET_VALUE (symbolP) - target_frag->fr_address);
7081 if (is_branch_jmp_to_next (tinsn, fragP))
7082 return FALSE;
7083
7084 /* The branch doesn't branch over it's own frag,
7085 but over the subsequent ones. */
7086 fragP = fragP->fr_next;
7087 while (fragP != NULL && fragP != target_frag && max_distance <= MAX_IMMED6)
7088 {
7089 max_distance += unrelaxed_frag_max_size (fragP);
7090 fragP = fragP->fr_next;
7091 }
7092 if (max_distance <= MAX_IMMED6 && fragP == target_frag)
7093 return TRUE;
e0001a05
NC
7094 return FALSE;
7095}
7096
7097
43cd72b9 7098static void
7fa3d080 7099xtensa_mark_zcl_first_insns (void)
43cd72b9
BW
7100{
7101 frchainS *frchP;
7102
7103 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7104 {
7105 fragS *fragP;
7106 /* Walk over all of the fragments in a subsection. */
7107 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7108 {
7109 if (fragP->fr_type == rs_machine_dependent
7110 && (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
7111 || fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE))
7112 {
7113 /* Find the loop frag. */
7114 fragS *targ_frag = next_non_empty_frag (fragP);
7115 /* Find the first insn frag. */
7116 targ_frag = next_non_empty_frag (targ_frag);
7117
7118 /* Of course, sometimes (mostly for toy test cases) a
7119 zero-cost loop instruction is the last in a section. */
c138bc38 7120 if (targ_frag)
d7c531cd
BW
7121 targ_frag->tc_frag_data.is_first_loop_insn = TRUE;
7122 if (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)
7123 frag_wane (fragP);
43cd72b9
BW
7124 }
7125 }
7126 }
7127}
7128
7129
e0001a05
NC
7130/* Re-process all of the fragments looking to convert all of the
7131 RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a
7132 conditional branch or a retw/retw.n, convert this frag to one that
7133 will generate a NOP. In any case close it off with a .fill 0. */
7134
7fa3d080
BW
7135static bfd_boolean next_instrs_are_b_retw (fragS *);
7136
e0001a05 7137static void
7fa3d080 7138xtensa_fix_a0_b_retw_frags (void)
e0001a05
NC
7139{
7140 frchainS *frchP;
7141
7142 /* When this routine is called, all of the subsections are still intact
7143 so we walk over subsections instead of sections. */
7144 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7145 {
7146 fragS *fragP;
7147
7148 /* Walk over all of the fragments in a subsection. */
7149 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7150 {
7151 if (fragP->fr_type == rs_machine_dependent
7152 && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW)
7153 {
7154 if (next_instrs_are_b_retw (fragP))
43cd72b9 7155 {
b08b5071 7156 if (fragP->tc_frag_data.is_no_transform)
43cd72b9
BW
7157 as_bad (_("instruction sequence (write a0, branch, retw) may trigger hardware errata"));
7158 else
7159 relax_frag_add_nop (fragP);
7160 }
7161 frag_wane (fragP);
e0001a05
NC
7162 }
7163 }
7164 }
7165}
7166
7167
7fa3d080
BW
7168static bfd_boolean
7169next_instrs_are_b_retw (fragS *fragP)
e0001a05
NC
7170{
7171 xtensa_opcode opcode;
43cd72b9 7172 xtensa_format fmt;
e0001a05
NC
7173 const fragS *next_fragP = next_non_empty_frag (fragP);
7174 static xtensa_insnbuf insnbuf = NULL;
43cd72b9 7175 static xtensa_insnbuf slotbuf = NULL;
e0001a05
NC
7176 xtensa_isa isa = xtensa_default_isa;
7177 int offset = 0;
43cd72b9
BW
7178 int slot;
7179 bfd_boolean branch_seen = FALSE;
e0001a05
NC
7180
7181 if (!insnbuf)
43cd72b9
BW
7182 {
7183 insnbuf = xtensa_insnbuf_alloc (isa);
7184 slotbuf = xtensa_insnbuf_alloc (isa);
7185 }
e0001a05
NC
7186
7187 if (next_fragP == NULL)
7188 return FALSE;
7189
7190 /* Check for the conditional branch. */
d77b99c9
BW
7191 xtensa_insnbuf_from_chars
7192 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
43cd72b9
BW
7193 fmt = xtensa_format_decode (isa, insnbuf);
7194 if (fmt == XTENSA_UNDEFINED)
7195 return FALSE;
7196
7197 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
7198 {
7199 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
7200 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
7201
7202 branch_seen = (branch_seen
7203 || xtensa_opcode_is_branch (isa, opcode) == 1);
7204 }
e0001a05 7205
43cd72b9 7206 if (!branch_seen)
e0001a05
NC
7207 return FALSE;
7208
43cd72b9 7209 offset += xtensa_format_length (isa, fmt);
e0001a05
NC
7210 if (offset == next_fragP->fr_fix)
7211 {
7212 next_fragP = next_non_empty_frag (next_fragP);
7213 offset = 0;
7214 }
43cd72b9 7215
e0001a05
NC
7216 if (next_fragP == NULL)
7217 return FALSE;
7218
7219 /* Check for the retw/retw.n. */
d77b99c9
BW
7220 xtensa_insnbuf_from_chars
7221 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
43cd72b9
BW
7222 fmt = xtensa_format_decode (isa, insnbuf);
7223
7224 /* Because RETW[.N] is not bundleable, a VLIW bundle here means that we
7225 have no problems. */
7226 if (fmt == XTENSA_UNDEFINED
7227 || xtensa_format_num_slots (isa, fmt) != 1)
7228 return FALSE;
7229
7230 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7231 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
e0001a05 7232
b08b5071 7233 if (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode)
e0001a05 7234 return TRUE;
43cd72b9 7235
e0001a05
NC
7236 return FALSE;
7237}
7238
7239
7240/* Re-process all of the fragments looking to convert all of the
7241 RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a
7242 loop end label, convert this frag to one that will generate a NOP.
7243 In any case close it off with a .fill 0. */
7244
7fa3d080
BW
7245static bfd_boolean next_instr_is_loop_end (fragS *);
7246
e0001a05 7247static void
7fa3d080 7248xtensa_fix_b_j_loop_end_frags (void)
e0001a05
NC
7249{
7250 frchainS *frchP;
7251
7252 /* When this routine is called, all of the subsections are still intact
7253 so we walk over subsections instead of sections. */
7254 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7255 {
7256 fragS *fragP;
7257
7258 /* Walk over all of the fragments in a subsection. */
7259 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7260 {
7261 if (fragP->fr_type == rs_machine_dependent
7262 && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END)
7263 {
7264 if (next_instr_is_loop_end (fragP))
43cd72b9 7265 {
b08b5071 7266 if (fragP->tc_frag_data.is_no_transform)
43cd72b9
BW
7267 as_bad (_("branching or jumping to a loop end may trigger hardware errata"));
7268 else
7269 relax_frag_add_nop (fragP);
7270 }
7271 frag_wane (fragP);
e0001a05
NC
7272 }
7273 }
7274 }
7275}
7276
7277
7fa3d080
BW
7278static bfd_boolean
7279next_instr_is_loop_end (fragS *fragP)
e0001a05
NC
7280{
7281 const fragS *next_fragP;
7282
7283 if (next_frag_is_loop_target (fragP))
7284 return FALSE;
7285
7286 next_fragP = next_non_empty_frag (fragP);
7287 if (next_fragP == NULL)
7288 return FALSE;
7289
7290 if (!next_frag_is_loop_target (next_fragP))
7291 return FALSE;
7292
7293 /* If the size is >= 3 then there is more than one instruction here.
7294 The hardware bug will not fire. */
7295 if (next_fragP->fr_fix > 3)
7296 return FALSE;
7297
7298 return TRUE;
7299}
7300
7301
7302/* Re-process all of the fragments looking to convert all of the
7303 RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is
7304 not MY loop's loop end within 12 bytes, add enough nops here to
7305 make it at least 12 bytes away. In any case close it off with a
7306 .fill 0. */
7307
d77b99c9
BW
7308static offsetT min_bytes_to_other_loop_end
7309 (fragS *, fragS *, offsetT, offsetT);
7fa3d080 7310
e0001a05 7311static void
7fa3d080 7312xtensa_fix_close_loop_end_frags (void)
e0001a05
NC
7313{
7314 frchainS *frchP;
7315
7316 /* When this routine is called, all of the subsections are still intact
7317 so we walk over subsections instead of sections. */
7318 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7319 {
7320 fragS *fragP;
7321
7322 fragS *current_target = NULL;
7323 offsetT current_offset = 0;
7324
7325 /* Walk over all of the fragments in a subsection. */
7326 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7327 {
7328 if (fragP->fr_type == rs_machine_dependent
43cd72b9
BW
7329 && ((fragP->fr_subtype == RELAX_IMMED)
7330 || ((fragP->fr_subtype == RELAX_SLOTS)
7331 && (fragP->tc_frag_data.slot_subtypes[0]
7332 == RELAX_IMMED))))
e0001a05
NC
7333 {
7334 /* Read it. If the instruction is a loop, get the target. */
43cd72b9
BW
7335 TInsn t_insn;
7336 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
7337 if (xtensa_opcode_is_loop (xtensa_default_isa,
7338 t_insn.opcode) == 1)
e0001a05 7339 {
e0001a05 7340 /* Get the current fragment target. */
43cd72b9 7341 if (fragP->tc_frag_data.slot_symbols[0])
e0001a05 7342 {
43cd72b9
BW
7343 symbolS *sym = fragP->tc_frag_data.slot_symbols[0];
7344 current_target = symbol_get_frag (sym);
e0001a05
NC
7345 current_offset = fragP->fr_offset;
7346 }
7347 }
7348 }
7349
7350 if (current_target
7351 && fragP->fr_type == rs_machine_dependent
7352 && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END)
7353 {
d77b99c9
BW
7354 offsetT min_bytes;
7355 int bytes_added = 0;
e0001a05
NC
7356
7357#define REQUIRED_LOOP_DIVIDING_BYTES 12
7358 /* Max out at 12. */
7359 min_bytes = min_bytes_to_other_loop_end
7360 (fragP->fr_next, current_target, current_offset,
7361 REQUIRED_LOOP_DIVIDING_BYTES);
7362
7363 if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES)
7364 {
b08b5071 7365 if (fragP->tc_frag_data.is_no_transform)
43cd72b9
BW
7366 as_bad (_("loop end too close to another loop end may trigger hardware errata"));
7367 else
e0001a05 7368 {
43cd72b9
BW
7369 while (min_bytes + bytes_added
7370 < REQUIRED_LOOP_DIVIDING_BYTES)
e0001a05 7371 {
43cd72b9 7372 int length = 3;
c138bc38 7373
43cd72b9
BW
7374 if (fragP->fr_var < length)
7375 as_fatal (_("fr_var %lu < length %d"),
dd49a749 7376 (long) fragP->fr_var, length);
43cd72b9
BW
7377 else
7378 {
7379 assemble_nop (length,
7380 fragP->fr_literal + fragP->fr_fix);
7381 fragP->fr_fix += length;
7382 fragP->fr_var -= length;
7383 }
7384 bytes_added += length;
e0001a05 7385 }
e0001a05
NC
7386 }
7387 }
7388 frag_wane (fragP);
7389 }
43cd72b9
BW
7390 assert (fragP->fr_type != rs_machine_dependent
7391 || fragP->fr_subtype != RELAX_ADD_NOP_IF_CLOSE_LOOP_END);
e0001a05
NC
7392 }
7393 }
7394}
7395
7396
d77b99c9 7397static offsetT unrelaxed_frag_min_size (fragS *);
7fa3d080 7398
d77b99c9 7399static offsetT
7fa3d080
BW
7400min_bytes_to_other_loop_end (fragS *fragP,
7401 fragS *current_target,
7402 offsetT current_offset,
d77b99c9 7403 offsetT max_size)
e0001a05 7404{
d77b99c9 7405 offsetT offset = 0;
e0001a05
NC
7406 fragS *current_fragP;
7407
7408 for (current_fragP = fragP;
7409 current_fragP;
7410 current_fragP = current_fragP->fr_next)
7411 {
7412 if (current_fragP->tc_frag_data.is_loop_target
7413 && current_fragP != current_target)
7414 return offset + current_offset;
7415
7416 offset += unrelaxed_frag_min_size (current_fragP);
7417
7418 if (offset + current_offset >= max_size)
7419 return max_size;
7420 }
7421 return max_size;
7422}
7423
7424
d77b99c9 7425static offsetT
7fa3d080 7426unrelaxed_frag_min_size (fragS *fragP)
e0001a05 7427{
d77b99c9 7428 offsetT size = fragP->fr_fix;
e0001a05 7429
d77b99c9 7430 /* Add fill size. */
e0001a05
NC
7431 if (fragP->fr_type == rs_fill)
7432 size += fragP->fr_offset;
7433
7434 return size;
7435}
7436
7437
d77b99c9 7438static offsetT
7fa3d080 7439unrelaxed_frag_max_size (fragS *fragP)
43cd72b9 7440{
d77b99c9 7441 offsetT size = fragP->fr_fix;
43cd72b9
BW
7442 switch (fragP->fr_type)
7443 {
7444 case 0:
c138bc38 7445 /* Empty frags created by the obstack allocation scheme
43cd72b9
BW
7446 end up with type 0. */
7447 break;
7448 case rs_fill:
7449 case rs_org:
7450 case rs_space:
7451 size += fragP->fr_offset;
7452 break;
7453 case rs_align:
7454 case rs_align_code:
7455 case rs_align_test:
7456 case rs_leb128:
7457 case rs_cfa:
7458 case rs_dwarf2dbg:
7459 /* No further adjustments needed. */
7460 break;
7461 case rs_machine_dependent:
7462 if (fragP->fr_subtype != RELAX_DESIRE_ALIGN)
7463 size += fragP->fr_var;
7464 break;
7465 default:
7466 /* We had darn well better know how big it is. */
7467 assert (0);
7468 break;
7469 }
7470
7471 return size;
7472}
7473
7474
e0001a05
NC
7475/* Re-process all of the fragments looking to convert all
7476 of the RELAX_ADD_NOP_IF_SHORT_LOOP. If:
7477
7478 A)
7479 1) the instruction size count to the loop end label
7480 is too short (<= 2 instructions),
7481 2) loop has a jump or branch in it
7482
7483 or B)
43cd72b9 7484 1) workaround_all_short_loops is TRUE
e0001a05
NC
7485 2) The generating loop was a 'loopgtz' or 'loopnez'
7486 3) the instruction size count to the loop end label is too short
7487 (<= 2 instructions)
7488 then convert this frag (and maybe the next one) to generate a NOP.
7489 In any case close it off with a .fill 0. */
7490
d77b99c9 7491static int count_insns_to_loop_end (fragS *, bfd_boolean, int);
7fa3d080
BW
7492static bfd_boolean branch_before_loop_end (fragS *);
7493
e0001a05 7494static void
7fa3d080 7495xtensa_fix_short_loop_frags (void)
e0001a05
NC
7496{
7497 frchainS *frchP;
7498
7499 /* When this routine is called, all of the subsections are still intact
7500 so we walk over subsections instead of sections. */
7501 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7502 {
7503 fragS *fragP;
7504 fragS *current_target = NULL;
7505 offsetT current_offset = 0;
7506 xtensa_opcode current_opcode = XTENSA_UNDEFINED;
7507
7508 /* Walk over all of the fragments in a subsection. */
7509 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7510 {
43cd72b9 7511 /* Check on the current loop. */
e0001a05 7512 if (fragP->fr_type == rs_machine_dependent
43cd72b9
BW
7513 && ((fragP->fr_subtype == RELAX_IMMED)
7514 || ((fragP->fr_subtype == RELAX_SLOTS)
7515 && (fragP->tc_frag_data.slot_subtypes[0]
7516 == RELAX_IMMED))))
e0001a05 7517 {
43cd72b9
BW
7518 TInsn t_insn;
7519
e0001a05 7520 /* Read it. If the instruction is a loop, get the target. */
43cd72b9
BW
7521 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
7522 if (xtensa_opcode_is_loop (xtensa_default_isa,
7523 t_insn.opcode) == 1)
e0001a05 7524 {
e0001a05 7525 /* Get the current fragment target. */
43cd72b9 7526 if (fragP->tc_frag_data.slot_symbols[0])
e0001a05 7527 {
43cd72b9
BW
7528 symbolS *sym = fragP->tc_frag_data.slot_symbols[0];
7529 current_target = symbol_get_frag (sym);
e0001a05 7530 current_offset = fragP->fr_offset;
43cd72b9 7531 current_opcode = t_insn.opcode;
e0001a05
NC
7532 }
7533 }
7534 }
7535
7536 if (fragP->fr_type == rs_machine_dependent
7537 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7538 {
d77b99c9 7539 if (count_insns_to_loop_end (fragP->fr_next, TRUE, 3) < 3
e0001a05 7540 && (branch_before_loop_end (fragP->fr_next)
43cd72b9 7541 || (workaround_all_short_loops
e0001a05 7542 && current_opcode != XTENSA_UNDEFINED
b08b5071 7543 && current_opcode != xtensa_loop_opcode)))
43cd72b9 7544 {
b08b5071 7545 if (fragP->tc_frag_data.is_no_transform)
43cd72b9
BW
7546 as_bad (_("loop containing less than three instructions may trigger hardware errata"));
7547 else
7548 relax_frag_add_nop (fragP);
7549 }
7550 frag_wane (fragP);
e0001a05
NC
7551 }
7552 }
7553 }
7554}
7555
7556
d77b99c9 7557static int unrelaxed_frag_min_insn_count (fragS *);
7fa3d080 7558
d77b99c9 7559static int
7fa3d080
BW
7560count_insns_to_loop_end (fragS *base_fragP,
7561 bfd_boolean count_relax_add,
d77b99c9 7562 int max_count)
e0001a05
NC
7563{
7564 fragS *fragP = NULL;
d77b99c9 7565 int insn_count = 0;
e0001a05
NC
7566
7567 fragP = base_fragP;
7568
7569 for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next)
7570 {
7571 insn_count += unrelaxed_frag_min_insn_count (fragP);
7572 if (insn_count >= max_count)
7573 return max_count;
7574
7575 if (count_relax_add)
7576 {
7577 if (fragP->fr_type == rs_machine_dependent
7578 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7579 {
7580 /* In order to add the appropriate number of
7581 NOPs, we count an instruction for downstream
7582 occurrences. */
7583 insn_count++;
7584 if (insn_count >= max_count)
7585 return max_count;
7586 }
7587 }
7588 }
7589 return insn_count;
7590}
7591
7592
d77b99c9 7593static int
7fa3d080 7594unrelaxed_frag_min_insn_count (fragS *fragP)
e0001a05 7595{
43cd72b9
BW
7596 xtensa_isa isa = xtensa_default_isa;
7597 static xtensa_insnbuf insnbuf = NULL;
d77b99c9 7598 int insn_count = 0;
e0001a05
NC
7599 int offset = 0;
7600
7601 if (!fragP->tc_frag_data.is_insn)
7602 return insn_count;
7603
43cd72b9
BW
7604 if (!insnbuf)
7605 insnbuf = xtensa_insnbuf_alloc (isa);
7606
e0001a05
NC
7607 /* Decode the fixed instructions. */
7608 while (offset < fragP->fr_fix)
7609 {
43cd72b9
BW
7610 xtensa_format fmt;
7611
d77b99c9
BW
7612 xtensa_insnbuf_from_chars
7613 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
43cd72b9
BW
7614 fmt = xtensa_format_decode (isa, insnbuf);
7615
7616 if (fmt == XTENSA_UNDEFINED)
e0001a05
NC
7617 {
7618 as_fatal (_("undecodable instruction in instruction frag"));
7619 return insn_count;
7620 }
43cd72b9 7621 offset += xtensa_format_length (isa, fmt);
e0001a05
NC
7622 insn_count++;
7623 }
7624
7625 return insn_count;
7626}
7627
7628
7fa3d080
BW
7629static bfd_boolean unrelaxed_frag_has_b_j (fragS *);
7630
43cd72b9 7631static bfd_boolean
7fa3d080 7632branch_before_loop_end (fragS *base_fragP)
e0001a05
NC
7633{
7634 fragS *fragP;
7635
7636 for (fragP = base_fragP;
7637 fragP && !fragP->tc_frag_data.is_loop_target;
7638 fragP = fragP->fr_next)
7639 {
7640 if (unrelaxed_frag_has_b_j (fragP))
7641 return TRUE;
7642 }
7643 return FALSE;
7644}
7645
7646
43cd72b9 7647static bfd_boolean
7fa3d080 7648unrelaxed_frag_has_b_j (fragS *fragP)
e0001a05 7649{
43cd72b9
BW
7650 static xtensa_insnbuf insnbuf = NULL;
7651 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
7652 int offset = 0;
7653
7654 if (!fragP->tc_frag_data.is_insn)
7655 return FALSE;
7656
43cd72b9
BW
7657 if (!insnbuf)
7658 insnbuf = xtensa_insnbuf_alloc (isa);
7659
e0001a05
NC
7660 /* Decode the fixed instructions. */
7661 while (offset < fragP->fr_fix)
7662 {
43cd72b9
BW
7663 xtensa_format fmt;
7664 int slot;
7665
d77b99c9
BW
7666 xtensa_insnbuf_from_chars
7667 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
43cd72b9
BW
7668 fmt = xtensa_format_decode (isa, insnbuf);
7669 if (fmt == XTENSA_UNDEFINED)
7670 return FALSE;
7671
7672 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
e0001a05 7673 {
43cd72b9
BW
7674 xtensa_opcode opcode =
7675 get_opcode_from_buf (fragP->fr_literal + offset, slot);
7676 if (xtensa_opcode_is_branch (isa, opcode) == 1
7677 || xtensa_opcode_is_jump (isa, opcode) == 1)
7678 return TRUE;
e0001a05 7679 }
43cd72b9 7680 offset += xtensa_format_length (isa, fmt);
e0001a05
NC
7681 }
7682 return FALSE;
7683}
7684
7685
7686/* Checks to be made after initial assembly but before relaxation. */
7687
7fa3d080
BW
7688static bfd_boolean is_empty_loop (const TInsn *, fragS *);
7689static bfd_boolean is_local_forward_loop (const TInsn *, fragS *);
7690
e0001a05 7691static void
7fa3d080 7692xtensa_sanity_check (void)
e0001a05
NC
7693{
7694 char *file_name;
d77b99c9 7695 unsigned line;
e0001a05
NC
7696
7697 frchainS *frchP;
7698
7699 as_where (&file_name, &line);
7700 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7701 {
7702 fragS *fragP;
7703
7704 /* Walk over all of the fragments in a subsection. */
7705 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7706 {
7707 /* Currently we only check for empty loops here. */
7708 if (fragP->fr_type == rs_machine_dependent
7709 && fragP->fr_subtype == RELAX_IMMED)
7710 {
7711 static xtensa_insnbuf insnbuf = NULL;
7712 TInsn t_insn;
7713
7714 if (fragP->fr_opcode != NULL)
7715 {
7716 if (!insnbuf)
7717 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
43cd72b9
BW
7718 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
7719 tinsn_immed_from_frag (&t_insn, fragP, 0);
e0001a05 7720
43cd72b9
BW
7721 if (xtensa_opcode_is_loop (xtensa_default_isa,
7722 t_insn.opcode) == 1)
e0001a05
NC
7723 {
7724 if (is_empty_loop (&t_insn, fragP))
7725 {
7726 new_logical_line (fragP->fr_file, fragP->fr_line);
7727 as_bad (_("invalid empty loop"));
7728 }
7729 if (!is_local_forward_loop (&t_insn, fragP))
7730 {
7731 new_logical_line (fragP->fr_file, fragP->fr_line);
7732 as_bad (_("loop target does not follow "
7733 "loop instruction in section"));
7734 }
7735 }
7736 }
7737 }
7738 }
7739 }
7740 new_logical_line (file_name, line);
7741}
7742
7743
7744#define LOOP_IMMED_OPN 1
7745
43cd72b9 7746/* Return TRUE if the loop target is the next non-zero fragment. */
e0001a05 7747
7fa3d080
BW
7748static bfd_boolean
7749is_empty_loop (const TInsn *insn, fragS *fragP)
e0001a05
NC
7750{
7751 const expressionS *expr;
7752 symbolS *symbolP;
7753 fragS *next_fragP;
7754
7755 if (insn->insn_type != ITYPE_INSN)
7756 return FALSE;
7757
43cd72b9 7758 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
e0001a05
NC
7759 return FALSE;
7760
7761 if (insn->ntok <= LOOP_IMMED_OPN)
7762 return FALSE;
7763
7764 expr = &insn->tok[LOOP_IMMED_OPN];
7765
7766 if (expr->X_op != O_symbol)
7767 return FALSE;
7768
7769 symbolP = expr->X_add_symbol;
7770 if (!symbolP)
7771 return FALSE;
7772
7773 if (symbol_get_frag (symbolP) == NULL)
7774 return FALSE;
7775
7776 if (S_GET_VALUE (symbolP) != 0)
7777 return FALSE;
7778
7779 /* Walk through the zero-size fragments from this one. If we find
7780 the target fragment, then this is a zero-size loop. */
43cd72b9 7781
e0001a05
NC
7782 for (next_fragP = fragP->fr_next;
7783 next_fragP != NULL;
7784 next_fragP = next_fragP->fr_next)
7785 {
7786 if (next_fragP == symbol_get_frag (symbolP))
7787 return TRUE;
7788 if (next_fragP->fr_fix != 0)
7789 return FALSE;
7790 }
7791 return FALSE;
7792}
7793
7794
7fa3d080
BW
7795static bfd_boolean
7796is_local_forward_loop (const TInsn *insn, fragS *fragP)
e0001a05
NC
7797{
7798 const expressionS *expr;
7799 symbolS *symbolP;
7800 fragS *next_fragP;
7801
7802 if (insn->insn_type != ITYPE_INSN)
7803 return FALSE;
7804
43cd72b9 7805 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) == 0)
e0001a05
NC
7806 return FALSE;
7807
7808 if (insn->ntok <= LOOP_IMMED_OPN)
7809 return FALSE;
7810
7811 expr = &insn->tok[LOOP_IMMED_OPN];
7812
7813 if (expr->X_op != O_symbol)
7814 return FALSE;
7815
7816 symbolP = expr->X_add_symbol;
7817 if (!symbolP)
7818 return FALSE;
7819
7820 if (symbol_get_frag (symbolP) == NULL)
7821 return FALSE;
7822
7823 /* Walk through fragments until we find the target.
7824 If we do not find the target, then this is an invalid loop. */
43cd72b9 7825
e0001a05
NC
7826 for (next_fragP = fragP->fr_next;
7827 next_fragP != NULL;
7828 next_fragP = next_fragP->fr_next)
43cd72b9
BW
7829 {
7830 if (next_fragP == symbol_get_frag (symbolP))
7831 return TRUE;
7832 }
e0001a05
NC
7833
7834 return FALSE;
7835}
7836
7837\f
7838/* Alignment Functions. */
7839
d77b99c9
BW
7840static int
7841get_text_align_power (unsigned target_size)
e0001a05 7842{
d77b99c9
BW
7843 int i = 0;
7844 unsigned power = 1;
7845
7846 assert (target_size <= INT_MAX);
7847 while (target_size > power)
e0001a05 7848 {
d77b99c9
BW
7849 power <<= 1;
7850 i += 1;
e0001a05 7851 }
d77b99c9 7852 return i;
e0001a05
NC
7853}
7854
7855
d77b99c9 7856static int
7fa3d080
BW
7857get_text_align_max_fill_size (int align_pow,
7858 bfd_boolean use_nops,
7859 bfd_boolean use_no_density)
e0001a05
NC
7860{
7861 if (!use_nops)
7862 return (1 << align_pow);
7863 if (use_no_density)
7864 return 3 * (1 << align_pow);
7865
7866 return 1 + (1 << align_pow);
7867}
7868
7869
d77b99c9
BW
7870/* Calculate the minimum bytes of fill needed at "address" to align a
7871 target instruction of size "target_size" so that it does not cross a
7872 power-of-two boundary specified by "align_pow". If "use_nops" is FALSE,
7873 the fill can be an arbitrary number of bytes. Otherwise, the space must
7874 be filled by NOP instructions. */
e0001a05 7875
d77b99c9 7876static int
7fa3d080
BW
7877get_text_align_fill_size (addressT address,
7878 int align_pow,
7879 int target_size,
7880 bfd_boolean use_nops,
7881 bfd_boolean use_no_density)
e0001a05 7882{
d77b99c9
BW
7883 addressT alignment, fill, fill_limit, fill_step;
7884 bfd_boolean skip_one = FALSE;
e0001a05 7885
d77b99c9
BW
7886 alignment = (1 << align_pow);
7887 assert (target_size > 0 && alignment >= (addressT) target_size);
c138bc38 7888
e0001a05
NC
7889 if (!use_nops)
7890 {
d77b99c9
BW
7891 fill_limit = alignment;
7892 fill_step = 1;
e0001a05 7893 }
d77b99c9 7894 else if (!use_no_density)
e0001a05 7895 {
d77b99c9
BW
7896 /* Combine 2- and 3-byte NOPs to fill anything larger than one. */
7897 fill_limit = alignment * 2;
7898 fill_step = 1;
7899 skip_one = TRUE;
e0001a05
NC
7900 }
7901 else
7902 {
d77b99c9
BW
7903 /* Fill with 3-byte NOPs -- can only fill multiples of 3. */
7904 fill_limit = alignment * 3;
7905 fill_step = 3;
7906 }
e0001a05 7907
d77b99c9
BW
7908 /* Try all fill sizes until finding one that works. */
7909 for (fill = 0; fill < fill_limit; fill += fill_step)
7910 {
7911 if (skip_one && fill == 1)
7912 continue;
7913 if ((address + fill) >> align_pow
7914 == (address + fill + target_size - 1) >> align_pow)
7915 return fill;
e0001a05
NC
7916 }
7917 assert (0);
7918 return 0;
7919}
7920
7921
664df4e4
BW
7922static int
7923branch_align_power (segT sec)
7924{
7925 /* If the Xtensa processor has a fetch width of 8 bytes, and the section
7926 is aligned to at least an 8-byte boundary, then a branch target need
7927 only fit within an 8-byte aligned block of memory to avoid a stall.
7928 Otherwise, try to fit branch targets within 4-byte aligned blocks
7929 (which may be insufficient, e.g., if the section has no alignment, but
7930 it's good enough). */
7931 if (xtensa_fetch_width == 8)
7932 {
7933 if (get_recorded_alignment (sec) >= 3)
7934 return 3;
7935 }
7936 else
7937 assert (xtensa_fetch_width == 4);
7938
7939 return 2;
7940}
7941
7942
e0001a05
NC
7943/* This will assert if it is not possible. */
7944
d77b99c9
BW
7945static int
7946get_text_align_nop_count (offsetT fill_size, bfd_boolean use_no_density)
e0001a05 7947{
d77b99c9
BW
7948 int count = 0;
7949
e0001a05
NC
7950 if (use_no_density)
7951 {
7952 assert (fill_size % 3 == 0);
7953 return (fill_size / 3);
7954 }
7955
7956 assert (fill_size != 1); /* Bad argument. */
7957
7958 while (fill_size > 1)
7959 {
d77b99c9 7960 int insn_size = 3;
e0001a05
NC
7961 if (fill_size == 2 || fill_size == 4)
7962 insn_size = 2;
7963 fill_size -= insn_size;
7964 count++;
7965 }
7966 assert (fill_size != 1); /* Bad algorithm. */
7967 return count;
7968}
7969
7970
d77b99c9
BW
7971static int
7972get_text_align_nth_nop_size (offsetT fill_size,
7973 int n,
7fa3d080 7974 bfd_boolean use_no_density)
e0001a05 7975{
d77b99c9 7976 int count = 0;
e0001a05
NC
7977
7978 if (use_no_density)
7979 return 3;
7980
d77b99c9
BW
7981 assert (fill_size != 1); /* Bad argument. */
7982
e0001a05
NC
7983 while (fill_size > 1)
7984 {
d77b99c9 7985 int insn_size = 3;
e0001a05
NC
7986 if (fill_size == 2 || fill_size == 4)
7987 insn_size = 2;
7988 fill_size -= insn_size;
7989 count++;
7990 if (n + 1 == count)
7991 return insn_size;
7992 }
7993 assert (0);
7994 return 0;
7995}
7996
7997
7998/* For the given fragment, find the appropriate address
7999 for it to begin at if we are using NOPs to align it. */
8000
8001static addressT
7fa3d080 8002get_noop_aligned_address (fragS *fragP, addressT address)
e0001a05 8003{
43cd72b9
BW
8004 /* The rule is: get next fragment's FIRST instruction. Find
8005 the smallest number of bytes that need to be added to
8006 ensure that the next fragment's FIRST instruction will fit
8007 in a single word.
c138bc38 8008
43cd72b9
BW
8009 E.G., 2 bytes : 0, 1, 2 mod 4
8010 3 bytes: 0, 1 mod 4
c138bc38 8011
43cd72b9
BW
8012 If the FIRST instruction MIGHT be relaxed,
8013 assume that it will become a 3-byte instruction.
c138bc38 8014
43cd72b9
BW
8015 Note again here that LOOP instructions are not bundleable,
8016 and this relaxation only applies to LOOP opcodes. */
c138bc38 8017
d77b99c9 8018 int fill_size = 0;
43cd72b9
BW
8019 int first_insn_size;
8020 int loop_insn_size;
8021 addressT pre_opcode_bytes;
d77b99c9 8022 int align_power;
43cd72b9
BW
8023 fragS *first_insn;
8024 xtensa_opcode opcode;
8025 bfd_boolean is_loop;
e0001a05 8026
43cd72b9
BW
8027 assert (fragP->fr_type == rs_machine_dependent);
8028 assert (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE);
e0001a05 8029
43cd72b9
BW
8030 /* Find the loop frag. */
8031 first_insn = next_non_empty_frag (fragP);
8032 /* Now find the first insn frag. */
8033 first_insn = next_non_empty_frag (first_insn);
e0001a05 8034
43cd72b9
BW
8035 is_loop = next_frag_opcode_is_loop (fragP, &opcode);
8036 assert (is_loop);
8037 loop_insn_size = xg_get_single_size (opcode);
e0001a05 8038
43cd72b9
BW
8039 pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP);
8040 pre_opcode_bytes += loop_insn_size;
e0001a05 8041
43cd72b9
BW
8042 /* For loops, the alignment depends on the size of the
8043 instruction following the loop, not the LOOP instruction. */
e0001a05 8044
43cd72b9
BW
8045 if (first_insn == NULL)
8046 return address;
e0001a05 8047
43cd72b9 8048 assert (first_insn->tc_frag_data.is_first_loop_insn);
e0001a05 8049
43cd72b9 8050 first_insn_size = frag_format_size (first_insn);
e0001a05 8051
43cd72b9
BW
8052 if (first_insn_size == 2 || first_insn_size == XTENSA_UNDEFINED)
8053 first_insn_size = 3; /* ISA specifies this */
e0001a05 8054
43cd72b9 8055 /* If it was 8, then we'll need a larger alignment for the section. */
d77b99c9
BW
8056 align_power = get_text_align_power (first_insn_size);
8057 record_alignment (now_seg, align_power);
c138bc38 8058
43cd72b9 8059 fill_size = get_text_align_fill_size
d77b99c9
BW
8060 (address + pre_opcode_bytes, align_power, first_insn_size, TRUE,
8061 fragP->tc_frag_data.is_no_density);
e0001a05
NC
8062
8063 return address + fill_size;
8064}
8065
8066
43cd72b9
BW
8067/* 3 mechanisms for relaxing an alignment:
8068
8069 Align to a power of 2.
8070 Align so the next fragment's instruction does not cross a word boundary.
8071 Align the current instruction so that if the next instruction
8072 were 3 bytes, it would not cross a word boundary.
8073
e0001a05
NC
8074 We can align with:
8075
43cd72b9
BW
8076 zeros - This is easy; always insert zeros.
8077 nops - 3-byte and 2-byte instructions
8078 2 - 2-byte nop
8079 3 - 3-byte nop
8080 4 - 2 2-byte nops
8081 >=5 : 3-byte instruction + fn (n-3)
e0001a05
NC
8082 widening - widen previous instructions. */
8083
d77b99c9
BW
8084static offsetT
8085get_aligned_diff (fragS *fragP, addressT address, offsetT *max_diff)
e0001a05 8086{
43cd72b9
BW
8087 addressT target_address, loop_insn_offset;
8088 int target_size;
8089 xtensa_opcode loop_opcode;
8090 bfd_boolean is_loop;
d77b99c9
BW
8091 int align_power;
8092 offsetT opt_diff;
5f9084e9 8093 offsetT branch_align;
e0001a05 8094
43cd72b9
BW
8095 assert (fragP->fr_type == rs_machine_dependent);
8096 switch (fragP->fr_subtype)
e0001a05 8097 {
43cd72b9
BW
8098 case RELAX_DESIRE_ALIGN:
8099 target_size = next_frag_format_size (fragP);
8100 if (target_size == XTENSA_UNDEFINED)
8101 target_size = 3;
664df4e4
BW
8102 align_power = branch_align_power (now_seg);
8103 branch_align = 1 << align_power;
0e5cd789
BW
8104 /* Don't count on the section alignment being as large as the target. */
8105 if (target_size > branch_align)
8106 target_size = branch_align;
d77b99c9 8107 opt_diff = get_text_align_fill_size (address, align_power,
43cd72b9
BW
8108 target_size, FALSE, FALSE);
8109
664df4e4
BW
8110 *max_diff = (opt_diff + branch_align
8111 - (target_size + ((address + opt_diff) % branch_align)));
43cd72b9
BW
8112 assert (*max_diff >= opt_diff);
8113 return opt_diff;
e0001a05 8114
43cd72b9
BW
8115 case RELAX_ALIGN_NEXT_OPCODE:
8116 target_size = next_frag_format_size (fragP);
8117 loop_insn_offset = 0;
8118 is_loop = next_frag_opcode_is_loop (fragP, &loop_opcode);
8119 assert (is_loop);
8120
8121 /* If the loop has been expanded then the LOOP instruction
8122 could be at an offset from this fragment. */
8123 if (next_non_empty_frag(fragP)->tc_frag_data.slot_subtypes[0]
8124 != RELAX_IMMED)
8125 loop_insn_offset = get_expanded_loop_offset (loop_opcode);
8126
8127 if (target_size == 2)
8128 target_size = 3; /* ISA specifies this */
8129
8130 /* In an ideal world, which is what we are shooting for here,
8131 we wouldn't need to use any NOPs immediately prior to the
8132 LOOP instruction. If this approach fails, relax_frag_loop_align
8133 will call get_noop_aligned_address. */
8134 target_address =
8135 address + loop_insn_offset + xg_get_single_size (loop_opcode);
d77b99c9
BW
8136 align_power = get_text_align_power (target_size),
8137 opt_diff = get_text_align_fill_size (target_address, align_power,
43cd72b9
BW
8138 target_size, FALSE, FALSE);
8139
8140 *max_diff = xtensa_fetch_width
8141 - ((target_address + opt_diff) % xtensa_fetch_width)
8142 - target_size + opt_diff;
8143 assert (*max_diff >= opt_diff);
8144 return opt_diff;
e0001a05 8145
43cd72b9
BW
8146 default:
8147 break;
e0001a05 8148 }
43cd72b9
BW
8149 assert (0);
8150 return 0;
e0001a05
NC
8151}
8152
8153\f
8154/* md_relax_frag Hook and Helper Functions. */
8155
7fa3d080
BW
8156static long relax_frag_loop_align (fragS *, long);
8157static long relax_frag_for_align (fragS *, long);
8158static long relax_frag_immed
8159 (segT, fragS *, long, int, xtensa_format, int, int *, bfd_boolean);
8160
8161
e0001a05
NC
8162/* Return the number of bytes added to this fragment, given that the
8163 input has been stretched already by "stretch". */
8164
8165long
7fa3d080 8166xtensa_relax_frag (fragS *fragP, long stretch, int *stretched_p)
e0001a05 8167{
43cd72b9 8168 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
8169 int unreported = fragP->tc_frag_data.unreported_expansion;
8170 long new_stretch = 0;
8171 char *file_name;
d77b99c9
BW
8172 unsigned line;
8173 int lit_size;
43cd72b9
BW
8174 static xtensa_insnbuf vbuf = NULL;
8175 int slot, num_slots;
8176 xtensa_format fmt;
e0001a05
NC
8177
8178 as_where (&file_name, &line);
8179 new_logical_line (fragP->fr_file, fragP->fr_line);
8180
8181 fragP->tc_frag_data.unreported_expansion = 0;
8182
8183 switch (fragP->fr_subtype)
8184 {
8185 case RELAX_ALIGN_NEXT_OPCODE:
8186 /* Always convert. */
43cd72b9
BW
8187 if (fragP->tc_frag_data.relax_seen)
8188 new_stretch = relax_frag_loop_align (fragP, stretch);
e0001a05
NC
8189 break;
8190
8191 case RELAX_LOOP_END:
8192 /* Do nothing. */
8193 break;
8194
8195 case RELAX_LOOP_END_ADD_NOP:
8196 /* Add a NOP and switch to .fill 0. */
8197 new_stretch = relax_frag_add_nop (fragP);
43cd72b9 8198 frag_wane (fragP);
e0001a05
NC
8199 break;
8200
8201 case RELAX_DESIRE_ALIGN:
43cd72b9 8202 /* Do nothing. The narrowing before this frag will either align
e0001a05
NC
8203 it or not. */
8204 break;
8205
8206 case RELAX_LITERAL:
8207 case RELAX_LITERAL_FINAL:
8208 return 0;
8209
8210 case RELAX_LITERAL_NR:
8211 lit_size = 4;
8212 fragP->fr_subtype = RELAX_LITERAL_FINAL;
8213 assert (unreported == lit_size);
8214 memset (&fragP->fr_literal[fragP->fr_fix], 0, 4);
8215 fragP->fr_var -= lit_size;
8216 fragP->fr_fix += lit_size;
8217 new_stretch = 4;
8218 break;
8219
43cd72b9
BW
8220 case RELAX_SLOTS:
8221 if (vbuf == NULL)
8222 vbuf = xtensa_insnbuf_alloc (isa);
8223
d77b99c9
BW
8224 xtensa_insnbuf_from_chars
8225 (isa, vbuf, (unsigned char *) fragP->fr_opcode, 0);
43cd72b9
BW
8226 fmt = xtensa_format_decode (isa, vbuf);
8227 num_slots = xtensa_format_num_slots (isa, fmt);
e0001a05 8228
43cd72b9
BW
8229 for (slot = 0; slot < num_slots; slot++)
8230 {
8231 switch (fragP->tc_frag_data.slot_subtypes[slot])
8232 {
8233 case RELAX_NARROW:
8234 if (fragP->tc_frag_data.relax_seen)
8235 new_stretch += relax_frag_for_align (fragP, stretch);
8236 break;
8237
8238 case RELAX_IMMED:
8239 case RELAX_IMMED_STEP1:
8240 case RELAX_IMMED_STEP2:
8241 /* Place the immediate. */
8242 new_stretch += relax_frag_immed
8243 (now_seg, fragP, stretch,
8244 fragP->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
8245 fmt, slot, stretched_p, FALSE);
8246 break;
8247
8248 default:
8249 /* This is OK; see the note in xg_assemble_vliw_tokens. */
8250 break;
8251 }
8252 }
e0001a05
NC
8253 break;
8254
8255 case RELAX_LITERAL_POOL_BEGIN:
8256 case RELAX_LITERAL_POOL_END:
43cd72b9
BW
8257 case RELAX_MAYBE_UNREACHABLE:
8258 case RELAX_MAYBE_DESIRE_ALIGN:
e0001a05
NC
8259 /* No relaxation required. */
8260 break;
8261
43cd72b9
BW
8262 case RELAX_FILL_NOP:
8263 case RELAX_UNREACHABLE:
8264 if (fragP->tc_frag_data.relax_seen)
8265 new_stretch += relax_frag_for_align (fragP, stretch);
8266 break;
8267
e0001a05
NC
8268 default:
8269 as_bad (_("bad relaxation state"));
8270 }
8271
43cd72b9 8272 /* Tell gas we need another relaxation pass. */
c138bc38 8273 if (! fragP->tc_frag_data.relax_seen)
43cd72b9
BW
8274 {
8275 fragP->tc_frag_data.relax_seen = TRUE;
8276 *stretched_p = 1;
8277 }
8278
e0001a05
NC
8279 new_logical_line (file_name, line);
8280 return new_stretch;
8281}
8282
8283
8284static long
7fa3d080 8285relax_frag_loop_align (fragS *fragP, long stretch)
e0001a05
NC
8286{
8287 addressT old_address, old_next_address, old_size;
8288 addressT new_address, new_next_address, new_size;
8289 addressT growth;
8290
43cd72b9
BW
8291 /* All the frags with relax_frag_for_alignment prior to this one in the
8292 section have been done, hopefully eliminating the need for a NOP here.
8293 But, this will put it in if necessary. */
e0001a05
NC
8294
8295 /* Calculate the old address of this fragment and the next fragment. */
8296 old_address = fragP->fr_address - stretch;
8297 old_next_address = (fragP->fr_address - stretch + fragP->fr_fix +
43cd72b9 8298 fragP->tc_frag_data.text_expansion[0]);
e0001a05
NC
8299 old_size = old_next_address - old_address;
8300
8301 /* Calculate the new address of this fragment and the next fragment. */
8302 new_address = fragP->fr_address;
8303 new_next_address =
8304 get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix);
8305 new_size = new_next_address - new_address;
8306
8307 growth = new_size - old_size;
8308
8309 /* Fix up the text_expansion field and return the new growth. */
43cd72b9 8310 fragP->tc_frag_data.text_expansion[0] += growth;
e0001a05
NC
8311 return growth;
8312}
8313
8314
43cd72b9 8315/* Add a NOP instruction. */
e0001a05
NC
8316
8317static long
7fa3d080 8318relax_frag_add_nop (fragS *fragP)
e0001a05 8319{
e0001a05 8320 char *nop_buf = fragP->fr_literal + fragP->fr_fix;
43cd72b9
BW
8321 int length = fragP->tc_frag_data.is_no_density ? 3 : 2;
8322 assemble_nop (length, nop_buf);
e0001a05 8323 fragP->tc_frag_data.is_insn = TRUE;
e0001a05 8324
e0001a05
NC
8325 if (fragP->fr_var < length)
8326 {
dd49a749 8327 as_fatal (_("fr_var (%ld) < length (%d)"), (long) fragP->fr_var, length);
e0001a05
NC
8328 return 0;
8329 }
8330
8331 fragP->fr_fix += length;
8332 fragP->fr_var -= length;
e0001a05
NC
8333 return length;
8334}
8335
8336
7fa3d080
BW
8337static long future_alignment_required (fragS *, long);
8338
e0001a05 8339static long
7fa3d080 8340relax_frag_for_align (fragS *fragP, long stretch)
e0001a05 8341{
43cd72b9
BW
8342 /* Overview of the relaxation procedure for alignment:
8343 We can widen with NOPs or by widening instructions or by filling
8344 bytes after jump instructions. Find the opportune places and widen
8345 them if necessary. */
8346
8347 long stretch_me;
8348 long diff;
e0001a05 8349
43cd72b9
BW
8350 assert (fragP->fr_subtype == RELAX_FILL_NOP
8351 || fragP->fr_subtype == RELAX_UNREACHABLE
8352 || (fragP->fr_subtype == RELAX_SLOTS
8353 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW));
8354
8355 stretch_me = future_alignment_required (fragP, stretch);
8356 diff = stretch_me - fragP->tc_frag_data.text_expansion[0];
8357 if (diff == 0)
8358 return 0;
e0001a05 8359
43cd72b9 8360 if (diff < 0)
e0001a05 8361 {
43cd72b9
BW
8362 /* We expanded on a previous pass. Can we shrink now? */
8363 long shrink = fragP->tc_frag_data.text_expansion[0] - stretch_me;
8364 if (shrink <= stretch && stretch > 0)
e0001a05 8365 {
43cd72b9
BW
8366 fragP->tc_frag_data.text_expansion[0] = stretch_me;
8367 return -shrink;
e0001a05
NC
8368 }
8369 return 0;
8370 }
8371
43cd72b9
BW
8372 /* Below here, diff > 0. */
8373 fragP->tc_frag_data.text_expansion[0] = stretch_me;
e0001a05 8374
43cd72b9 8375 return diff;
e0001a05
NC
8376}
8377
8378
43cd72b9
BW
8379/* Return the address of the next frag that should be aligned.
8380
8381 By "address" we mean the address it _would_ be at if there
8382 is no action taken to align it between here and the target frag.
8383 In other words, if no narrows and no fill nops are used between
8384 here and the frag to align, _even_if_ some of the frags we use
8385 to align targets have already expanded on a previous relaxation
8386 pass.
8387
8388 Also, count each frag that may be used to help align the target.
8389
8390 Return 0 if there are no frags left in the chain that need to be
8391 aligned. */
8392
8393static addressT
7fa3d080
BW
8394find_address_of_next_align_frag (fragS **fragPP,
8395 int *wide_nops,
8396 int *narrow_nops,
8397 int *widens,
8398 bfd_boolean *paddable)
e0001a05 8399{
43cd72b9
BW
8400 fragS *fragP = *fragPP;
8401 addressT address = fragP->fr_address;
8402
8403 /* Do not reset the counts to 0. */
e0001a05
NC
8404
8405 while (fragP)
8406 {
8407 /* Limit this to a small search. */
b5e4a23d 8408 if (*widens >= (int) xtensa_fetch_width)
43cd72b9
BW
8409 {
8410 *fragPP = fragP;
8411 return 0;
8412 }
e0001a05
NC
8413 address += fragP->fr_fix;
8414
43cd72b9
BW
8415 if (fragP->fr_type == rs_fill)
8416 address += fragP->fr_offset * fragP->fr_var;
8417 else if (fragP->fr_type == rs_machine_dependent)
e0001a05 8418 {
e0001a05
NC
8419 switch (fragP->fr_subtype)
8420 {
43cd72b9
BW
8421 case RELAX_UNREACHABLE:
8422 *paddable = TRUE;
8423 break;
8424
8425 case RELAX_FILL_NOP:
8426 (*wide_nops)++;
8427 if (!fragP->tc_frag_data.is_no_density)
8428 (*narrow_nops)++;
8429 break;
8430
8431 case RELAX_SLOTS:
8432 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8433 {
8434 (*widens)++;
8435 break;
8436 }
34e41783 8437 address += total_frag_text_expansion (fragP);;
e0001a05
NC
8438 break;
8439
8440 case RELAX_IMMED:
43cd72b9 8441 address += fragP->tc_frag_data.text_expansion[0];
e0001a05
NC
8442 break;
8443
8444 case RELAX_ALIGN_NEXT_OPCODE:
8445 case RELAX_DESIRE_ALIGN:
43cd72b9
BW
8446 *fragPP = fragP;
8447 return address;
8448
8449 case RELAX_MAYBE_UNREACHABLE:
8450 case RELAX_MAYBE_DESIRE_ALIGN:
8451 /* Do nothing. */
e0001a05
NC
8452 break;
8453
8454 default:
43cd72b9
BW
8455 /* Just punt if we don't know the type. */
8456 *fragPP = fragP;
8457 return 0;
e0001a05 8458 }
43cd72b9 8459 }
c138bc38 8460 else
43cd72b9
BW
8461 {
8462 /* Just punt if we don't know the type. */
8463 *fragPP = fragP;
8464 return 0;
8465 }
8466 fragP = fragP->fr_next;
8467 }
8468
8469 *fragPP = fragP;
8470 return 0;
8471}
8472
8473
7fa3d080
BW
8474static long bytes_to_stretch (fragS *, int, int, int, int);
8475
43cd72b9 8476static long
7fa3d080 8477future_alignment_required (fragS *fragP, long stretch ATTRIBUTE_UNUSED)
43cd72b9
BW
8478{
8479 fragS *this_frag = fragP;
8480 long address;
8481 int num_widens = 0;
8482 int wide_nops = 0;
8483 int narrow_nops = 0;
8484 bfd_boolean paddable = FALSE;
8485 offsetT local_opt_diff;
8486 offsetT opt_diff;
8487 offsetT max_diff;
8488 int stretch_amount = 0;
8489 int local_stretch_amount;
8490 int global_stretch_amount;
8491
7fa3d080
BW
8492 address = find_address_of_next_align_frag
8493 (&fragP, &wide_nops, &narrow_nops, &num_widens, &paddable);
43cd72b9 8494
b5e4a23d
BW
8495 if (!address)
8496 {
8497 if (this_frag->tc_frag_data.is_aligning_branch)
8498 this_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
8499 else
8500 frag_wane (this_frag);
8501 }
8502 else
43cd72b9
BW
8503 {
8504 local_opt_diff = get_aligned_diff (fragP, address, &max_diff);
8505 opt_diff = local_opt_diff;
8506 assert (opt_diff >= 0);
8507 assert (max_diff >= opt_diff);
c138bc38 8508 if (max_diff == 0)
43cd72b9 8509 return 0;
d2a033cd 8510
43cd72b9
BW
8511 if (fragP)
8512 fragP = fragP->fr_next;
8513
8514 while (fragP && opt_diff < max_diff && address)
8515 {
8516 /* We only use these to determine if we can exit early
c138bc38 8517 because there will be plenty of ways to align future
43cd72b9 8518 align frags. */
d77b99c9 8519 int glob_widens = 0;
43cd72b9
BW
8520 int dnn = 0;
8521 int dw = 0;
8522 bfd_boolean glob_pad = 0;
7fa3d080
BW
8523 address = find_address_of_next_align_frag
8524 (&fragP, &glob_widens, &dnn, &dw, &glob_pad);
43cd72b9 8525 /* If there is a padable portion, then skip. */
664df4e4 8526 if (glob_pad || glob_widens >= (1 << branch_align_power (now_seg)))
b5e4a23d 8527 address = 0;
43cd72b9 8528
c138bc38 8529 if (address)
43cd72b9
BW
8530 {
8531 offsetT next_m_diff;
8532 offsetT next_o_diff;
8533
8534 /* Downrange frags haven't had stretch added to them yet. */
8535 address += stretch;
8536
8537 /* The address also includes any text expansion from this
8538 frag in a previous pass, but we don't want that. */
8539 address -= this_frag->tc_frag_data.text_expansion[0];
8540
8541 /* Assume we are going to move at least opt_diff. In
8542 reality, we might not be able to, but assuming that
8543 we will helps catch cases where moving opt_diff pushes
8544 the next target from aligned to unaligned. */
8545 address += opt_diff;
8546
8547 next_o_diff = get_aligned_diff (fragP, address, &next_m_diff);
8548
8549 /* Now cleanup for the adjustments to address. */
8550 next_o_diff += opt_diff;
8551 next_m_diff += opt_diff;
8552 if (next_o_diff <= max_diff && next_o_diff > opt_diff)
8553 opt_diff = next_o_diff;
8554 if (next_m_diff < max_diff)
8555 max_diff = next_m_diff;
8556 fragP = fragP->fr_next;
8557 }
8558 }
d2a033cd 8559
43cd72b9
BW
8560 /* If there are enough wideners in between, do it. */
8561 if (paddable)
8562 {
8563 if (this_frag->fr_subtype == RELAX_UNREACHABLE)
8564 {
8565 assert (opt_diff <= UNREACHABLE_MAX_WIDTH);
8566 return opt_diff;
8567 }
8568 return 0;
8569 }
c138bc38 8570 local_stretch_amount
43cd72b9
BW
8571 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
8572 num_widens, local_opt_diff);
c138bc38
BW
8573 global_stretch_amount
8574 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
43cd72b9 8575 num_widens, opt_diff);
c138bc38
BW
8576 /* If the condition below is true, then the frag couldn't
8577 stretch the correct amount for the global case, so we just
8578 optimize locally. We'll rely on the subsequent frags to get
43cd72b9
BW
8579 the correct alignment in the global case. */
8580 if (global_stretch_amount < local_stretch_amount)
8581 stretch_amount = local_stretch_amount;
8582 else
8583 stretch_amount = global_stretch_amount;
d2a033cd 8584
43cd72b9
BW
8585 if (this_frag->fr_subtype == RELAX_SLOTS
8586 && this_frag->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8587 assert (stretch_amount <= 1);
8588 else if (this_frag->fr_subtype == RELAX_FILL_NOP)
8589 {
8590 if (this_frag->tc_frag_data.is_no_density)
8591 assert (stretch_amount == 3 || stretch_amount == 0);
8592 else
8593 assert (stretch_amount <= 3);
8594 }
8595 }
8596 return stretch_amount;
8597}
8598
8599
8600/* The idea: widen everything you can to get a target or loop aligned,
8601 then start using NOPs.
8602
8603 When we must have a NOP, here is a table of how we decide
8604 (so you don't have to fight through the control flow below):
8605
8606 wide_nops = the number of wide NOPs available for aligning
8607 narrow_nops = the number of narrow NOPs available for aligning
8608 (a subset of wide_nops)
8609 widens = the number of narrow instructions that should be widened
8610
8611 Desired wide narrow
8612 Diff nop nop widens
8613 1 0 0 1
8614 2 0 1 0
8615 3a 1 0 0
8616 b 0 1 1 (case 3a makes this case unnecessary)
8617 4a 1 0 1
8618 b 0 2 0
8619 c 0 1 2 (case 4a makes this case unnecessary)
8620 5a 1 0 2
8621 b 1 1 0
8622 c 0 2 1 (case 5b makes this case unnecessary)
8623 6a 2 0 0
8624 b 1 0 3
8625 c 0 1 4 (case 6b makes this case unneccesary)
8626 d 1 1 1 (case 6a makes this case unnecessary)
8627 e 0 2 2 (case 6a makes this case unnecessary)
8628 f 0 3 0 (case 6a makes this case unnecessary)
8629 7a 1 0 4
8630 b 2 0 1
8631 c 1 1 2 (case 7b makes this case unnecessary)
8632 d 0 1 5 (case 7a makes this case unnecessary)
8633 e 0 2 3 (case 7b makes this case unnecessary)
8634 f 0 3 1 (case 7b makes this case unnecessary)
8635 g 1 2 1 (case 7b makes this case unnecessary)
8636*/
8637
8638static long
7fa3d080
BW
8639bytes_to_stretch (fragS *this_frag,
8640 int wide_nops,
8641 int narrow_nops,
8642 int num_widens,
8643 int desired_diff)
43cd72b9
BW
8644{
8645 int bytes_short = desired_diff - num_widens;
8646
8647 assert (desired_diff >= 0 && desired_diff < 8);
8648 if (desired_diff == 0)
8649 return 0;
c138bc38 8650
43cd72b9 8651 assert (wide_nops > 0 || num_widens > 0);
e0001a05 8652
43cd72b9
BW
8653 /* Always prefer widening to NOP-filling. */
8654 if (bytes_short < 0)
8655 {
8656 /* There are enough RELAX_NARROW frags after this one
8657 to align the target without widening this frag in any way. */
8658 return 0;
8659 }
c138bc38 8660
43cd72b9
BW
8661 if (bytes_short == 0)
8662 {
8663 /* Widen every narrow between here and the align target
8664 and the align target will be properly aligned. */
8665 if (this_frag->fr_subtype == RELAX_FILL_NOP)
8666 return 0;
8667 else
8668 return 1;
8669 }
c138bc38 8670
43cd72b9
BW
8671 /* From here we will need at least one NOP to get an alignment.
8672 However, we may not be able to align at all, in which case,
8673 don't widen. */
8674 if (this_frag->fr_subtype == RELAX_FILL_NOP)
8675 {
8676 switch (desired_diff)
8677 {
8678 case 1:
8679 return 0;
8680 case 2:
8681 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 1)
8682 return 2; /* case 2 */
8683 return 0;
c138bc38 8684 case 3:
43cd72b9
BW
8685 if (wide_nops > 1)
8686 return 0;
8687 else
8688 return 3; /* case 3a */
8689 case 4:
8690 if (num_widens >= 1 && wide_nops == 1)
8691 return 3; /* case 4a */
8692 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 2)
8693 return 2; /* case 4b */
8694 return 0;
8695 case 5:
8696 if (num_widens >= 2 && wide_nops == 1)
8697 return 3; /* case 5a */
c138bc38 8698 /* We will need two nops. Are there enough nops
43cd72b9
BW
8699 between here and the align target? */
8700 if (wide_nops < 2 || narrow_nops == 0)
8701 return 0;
8702 /* Are there other nops closer that can serve instead? */
8703 if (wide_nops > 2 && narrow_nops > 1)
8704 return 0;
8705 /* Take the density one first, because there might not be
8706 another density one available. */
8707 if (!this_frag->tc_frag_data.is_no_density)
8708 return 2; /* case 5b narrow */
8709 else
8710 return 3; /* case 5b wide */
8711 return 0;
8712 case 6:
8713 if (wide_nops == 2)
8714 return 3; /* case 6a */
8715 else if (num_widens >= 3 && wide_nops == 1)
8716 return 3; /* case 6b */
8717 return 0;
8718 case 7:
8719 if (wide_nops == 1 && num_widens >= 4)
8720 return 3; /* case 7a */
8721 else if (wide_nops == 2 && num_widens >= 1)
8722 return 3; /* case 7b */
8723 return 0;
e0001a05 8724 default:
43cd72b9 8725 assert (0);
e0001a05 8726 }
e0001a05 8727 }
43cd72b9
BW
8728 else
8729 {
c138bc38 8730 /* We will need a NOP no matter what, but should we widen
43cd72b9 8731 this instruction to help?
e0001a05 8732
43cd72b9
BW
8733 This is a RELAX_FRAG_NARROW frag. */
8734 switch (desired_diff)
8735 {
8736 case 1:
8737 assert (0);
8738 return 0;
8739 case 2:
8740 case 3:
8741 return 0;
8742 case 4:
8743 if (wide_nops >= 1 && num_widens == 1)
8744 return 1; /* case 4a */
8745 return 0;
8746 case 5:
8747 if (wide_nops >= 1 && num_widens == 2)
8748 return 1; /* case 5a */
8749 return 0;
8750 case 6:
8751 if (wide_nops >= 2)
8752 return 0; /* case 6a */
8753 else if (wide_nops >= 1 && num_widens == 3)
8754 return 1; /* case 6b */
8755 return 0;
8756 case 7:
8757 if (wide_nops >= 1 && num_widens == 4)
8758 return 1; /* case 7a */
8759 else if (wide_nops >= 2 && num_widens == 1)
8760 return 1; /* case 7b */
8761 return 0;
8762 default:
8763 assert (0);
8764 return 0;
8765 }
8766 }
8767 assert (0);
8768 return 0;
e0001a05
NC
8769}
8770
8771
8772static long
7fa3d080
BW
8773relax_frag_immed (segT segP,
8774 fragS *fragP,
8775 long stretch,
8776 int min_steps,
8777 xtensa_format fmt,
8778 int slot,
8779 int *stretched_p,
8780 bfd_boolean estimate_only)
e0001a05 8781{
43cd72b9 8782 TInsn tinsn;
e0001a05
NC
8783 int old_size;
8784 bfd_boolean negatable_branch = FALSE;
8785 bfd_boolean branch_jmp_to_next = FALSE;
43cd72b9
BW
8786 bfd_boolean wide_insn = FALSE;
8787 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
8788 IStack istack;
8789 offsetT frag_offset;
8790 int num_steps;
8791 fragS *lit_fragP;
8792 int num_text_bytes, num_literal_bytes;
43cd72b9 8793 int literal_diff, total_text_diff, this_text_diff, first;
e0001a05
NC
8794
8795 assert (fragP->fr_opcode != NULL);
8796
b5e4a23d
BW
8797 xg_clear_vinsn (&cur_vinsn);
8798 vinsn_from_chars (&cur_vinsn, fragP->fr_opcode);
b2d179be 8799 if (cur_vinsn.num_slots > 1)
43cd72b9
BW
8800 wide_insn = TRUE;
8801
b5e4a23d 8802 tinsn = cur_vinsn.slots[slot];
43cd72b9 8803 tinsn_immed_from_frag (&tinsn, fragP, slot);
e0001a05 8804
43cd72b9
BW
8805 if (estimate_only && xtensa_opcode_is_loop (isa, tinsn.opcode))
8806 return 0;
e0001a05 8807
b08b5071 8808 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
43cd72b9 8809 branch_jmp_to_next = is_branch_jmp_to_next (&tinsn, fragP);
e0001a05 8810
43cd72b9 8811 negatable_branch = (xtensa_opcode_is_branch (isa, tinsn.opcode) == 1);
e0001a05 8812
43cd72b9 8813 old_size = xtensa_format_length (isa, fmt);
e0001a05
NC
8814
8815 /* Special case: replace a branch to the next instruction with a NOP.
8816 This is required to work around a hardware bug in T1040.0 and also
8817 serves as an optimization. */
8818
8819 if (branch_jmp_to_next
8820 && ((old_size == 2) || (old_size == 3))
8821 && !next_frag_is_loop_target (fragP))
8822 return 0;
8823
8824 /* Here is the fun stuff: Get the immediate field from this
8825 instruction. If it fits, we are done. If not, find the next
8826 instruction sequence that fits. */
8827
8828 frag_offset = fragP->fr_opcode - fragP->fr_literal;
8829 istack_init (&istack);
43cd72b9 8830 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP, frag_offset,
e0001a05
NC
8831 min_steps, stretch);
8832 if (num_steps < min_steps)
8833 {
8834 as_fatal (_("internal error: relaxation failed"));
8835 return 0;
8836 }
8837
8838 if (num_steps > RELAX_IMMED_MAXSTEPS)
8839 {
8840 as_fatal (_("internal error: relaxation requires too many steps"));
8841 return 0;
8842 }
8843
43cd72b9 8844 fragP->tc_frag_data.slot_subtypes[slot] = (int) RELAX_IMMED + num_steps;
e0001a05
NC
8845
8846 /* Figure out the number of bytes needed. */
8847 lit_fragP = 0;
e0001a05 8848 num_literal_bytes = get_num_stack_literal_bytes (&istack);
43cd72b9
BW
8849 literal_diff =
8850 num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
8851 first = 0;
8852 while (istack.insn[first].opcode == XTENSA_UNDEFINED)
8853 first++;
8854 num_text_bytes = get_num_stack_text_bytes (&istack);
8855 if (wide_insn)
8856 {
8857 num_text_bytes += old_size;
8858 if (opcode_fits_format_slot (istack.insn[first].opcode, fmt, slot))
8859 num_text_bytes -= xg_get_single_size (istack.insn[first].opcode);
8860 }
8861 total_text_diff = num_text_bytes - old_size;
8862 this_text_diff = total_text_diff - fragP->tc_frag_data.text_expansion[slot];
e0001a05
NC
8863
8864 /* It MUST get larger. If not, we could get an infinite loop. */
43cd72b9
BW
8865 assert (num_text_bytes >= 0);
8866 assert (literal_diff >= 0);
8867 assert (total_text_diff >= 0);
e0001a05 8868
43cd72b9
BW
8869 fragP->tc_frag_data.text_expansion[slot] = total_text_diff;
8870 fragP->tc_frag_data.literal_expansion[slot] = num_literal_bytes;
8871 assert (fragP->tc_frag_data.text_expansion[slot] >= 0);
8872 assert (fragP->tc_frag_data.literal_expansion[slot] >= 0);
e0001a05
NC
8873
8874 /* Find the associated expandable literal for this. */
8875 if (literal_diff != 0)
8876 {
43cd72b9 8877 lit_fragP = fragP->tc_frag_data.literal_frags[slot];
e0001a05
NC
8878 if (lit_fragP)
8879 {
8880 assert (literal_diff == 4);
8881 lit_fragP->tc_frag_data.unreported_expansion += literal_diff;
8882
8883 /* We expect that the literal section state has NOT been
8884 modified yet. */
8885 assert (lit_fragP->fr_type == rs_machine_dependent
8886 && lit_fragP->fr_subtype == RELAX_LITERAL);
8887 lit_fragP->fr_subtype = RELAX_LITERAL_NR;
8888
8889 /* We need to mark this section for another iteration
8890 of relaxation. */
8891 (*stretched_p)++;
8892 }
8893 }
8894
43cd72b9 8895 if (negatable_branch && istack.ninsn > 1)
1d19a770 8896 update_next_frag_state (fragP);
e0001a05 8897
43cd72b9 8898 return this_text_diff;
e0001a05
NC
8899}
8900
8901\f
8902/* md_convert_frag Hook and Helper Functions. */
8903
7fa3d080
BW
8904static void convert_frag_align_next_opcode (fragS *);
8905static void convert_frag_narrow (segT, fragS *, xtensa_format, int);
8906static void convert_frag_fill_nop (fragS *);
8907static void convert_frag_immed (segT, fragS *, int, xtensa_format, int);
8908
e0001a05 8909void
7fa3d080 8910md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec, fragS *fragp)
e0001a05 8911{
43cd72b9
BW
8912 static xtensa_insnbuf vbuf = NULL;
8913 xtensa_isa isa = xtensa_default_isa;
8914 int slot;
8915 int num_slots;
8916 xtensa_format fmt;
e0001a05 8917 char *file_name;
d77b99c9 8918 unsigned line;
e0001a05
NC
8919
8920 as_where (&file_name, &line);
8921 new_logical_line (fragp->fr_file, fragp->fr_line);
8922
8923 switch (fragp->fr_subtype)
8924 {
8925 case RELAX_ALIGN_NEXT_OPCODE:
8926 /* Always convert. */
8927 convert_frag_align_next_opcode (fragp);
8928 break;
8929
8930 case RELAX_DESIRE_ALIGN:
8931 /* Do nothing. If not aligned already, too bad. */
8932 break;
8933
43cd72b9
BW
8934 case RELAX_LITERAL:
8935 case RELAX_LITERAL_FINAL:
8936 break;
8937
8938 case RELAX_SLOTS:
8939 if (vbuf == NULL)
8940 vbuf = xtensa_insnbuf_alloc (isa);
8941
d77b99c9
BW
8942 xtensa_insnbuf_from_chars
8943 (isa, vbuf, (unsigned char *) fragp->fr_opcode, 0);
43cd72b9
BW
8944 fmt = xtensa_format_decode (isa, vbuf);
8945 num_slots = xtensa_format_num_slots (isa, fmt);
8946
8947 for (slot = 0; slot < num_slots; slot++)
8948 {
8949 switch (fragp->tc_frag_data.slot_subtypes[slot])
8950 {
8951 case RELAX_NARROW:
8952 convert_frag_narrow (sec, fragp, fmt, slot);
8953 break;
8954
8955 case RELAX_IMMED:
8956 case RELAX_IMMED_STEP1:
8957 case RELAX_IMMED_STEP2:
8958 /* Place the immediate. */
8959 convert_frag_immed
8960 (sec, fragp,
8961 fragp->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
8962 fmt, slot);
8963 break;
8964
8965 default:
8966 /* This is OK because some slots could have
8967 relaxations and others have none. */
8968 break;
8969 }
8970 }
8971 break;
8972
8973 case RELAX_UNREACHABLE:
8974 memset (&fragp->fr_literal[fragp->fr_fix], 0, fragp->fr_var);
8975 fragp->fr_fix += fragp->tc_frag_data.text_expansion[0];
8976 fragp->fr_var -= fragp->tc_frag_data.text_expansion[0];
8977 frag_wane (fragp);
e0001a05
NC
8978 break;
8979
43cd72b9
BW
8980 case RELAX_MAYBE_UNREACHABLE:
8981 case RELAX_MAYBE_DESIRE_ALIGN:
8982 frag_wane (fragp);
e0001a05
NC
8983 break;
8984
43cd72b9
BW
8985 case RELAX_FILL_NOP:
8986 convert_frag_fill_nop (fragp);
e0001a05
NC
8987 break;
8988
8989 case RELAX_LITERAL_NR:
8990 if (use_literal_section)
8991 {
8992 /* This should have been handled during relaxation. When
8993 relaxing a code segment, literals sometimes need to be
8994 added to the corresponding literal segment. If that
8995 literal segment has already been relaxed, then we end up
8996 in this situation. Marking the literal segments as data
8997 would make this happen less often (since GAS always relaxes
8998 code before data), but we could still get into trouble if
8999 there are instructions in a segment that is not marked as
9000 containing code. Until we can implement a better solution,
9001 cheat and adjust the addresses of all the following frags.
9002 This could break subsequent alignments, but the linker's
9003 literal coalescing will do that anyway. */
9004
9005 fragS *f;
9006 fragp->fr_subtype = RELAX_LITERAL_FINAL;
9007 assert (fragp->tc_frag_data.unreported_expansion == 4);
9008 memset (&fragp->fr_literal[fragp->fr_fix], 0, 4);
9009 fragp->fr_var -= 4;
9010 fragp->fr_fix += 4;
9011 for (f = fragp->fr_next; f; f = f->fr_next)
9012 f->fr_address += 4;
9013 }
9014 else
9015 as_bad (_("invalid relaxation fragment result"));
9016 break;
9017 }
9018
9019 fragp->fr_var = 0;
9020 new_logical_line (file_name, line);
9021}
9022
9023
7fa3d080
BW
9024static void
9025convert_frag_align_next_opcode (fragS *fragp)
e0001a05
NC
9026{
9027 char *nop_buf; /* Location for Writing. */
e0001a05
NC
9028 bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density;
9029 addressT aligned_address;
d77b99c9
BW
9030 offsetT fill_size;
9031 int nop, nop_count;
e0001a05
NC
9032
9033 aligned_address = get_noop_aligned_address (fragp, fragp->fr_address +
9034 fragp->fr_fix);
9035 fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix);
9036 nop_count = get_text_align_nop_count (fill_size, use_no_density);
9037 nop_buf = fragp->fr_literal + fragp->fr_fix;
9038
d77b99c9 9039 for (nop = 0; nop < nop_count; nop++)
e0001a05 9040 {
d77b99c9
BW
9041 int nop_size;
9042 nop_size = get_text_align_nth_nop_size (fill_size, nop, use_no_density);
e0001a05
NC
9043
9044 assemble_nop (nop_size, nop_buf);
9045 nop_buf += nop_size;
9046 }
9047
9048 fragp->fr_fix += fill_size;
9049 fragp->fr_var -= fill_size;
9050}
9051
9052
9053static void
7fa3d080 9054convert_frag_narrow (segT segP, fragS *fragP, xtensa_format fmt, int slot)
e0001a05 9055{
43cd72b9 9056 TInsn tinsn, single_target;
84b08ed9 9057 int size, old_size, diff;
e0001a05
NC
9058 offsetT frag_offset;
9059
43cd72b9
BW
9060 assert (slot == 0);
9061 tinsn_from_chars (&tinsn, fragP->fr_opcode, 0);
9062
b5e4a23d 9063 if (fragP->tc_frag_data.is_aligning_branch == 1)
43cd72b9
BW
9064 {
9065 assert (fragP->tc_frag_data.text_expansion[0] == 1
9066 || fragP->tc_frag_data.text_expansion[0] == 0);
9067 convert_frag_immed (segP, fragP, fragP->tc_frag_data.text_expansion[0],
9068 fmt, slot);
9069 return;
9070 }
9071
9072 if (fragP->tc_frag_data.text_expansion[0] == 0)
e0001a05
NC
9073 {
9074 /* No conversion. */
9075 fragP->fr_var = 0;
9076 return;
9077 }
9078
9079 assert (fragP->fr_opcode != NULL);
9080
43cd72b9
BW
9081 /* Frags in this relaxation state should only contain
9082 single instruction bundles. */
9083 tinsn_immed_from_frag (&tinsn, fragP, 0);
e0001a05
NC
9084
9085 /* Just convert it to a wide form.... */
9086 size = 0;
43cd72b9 9087 old_size = xg_get_single_size (tinsn.opcode);
e0001a05
NC
9088
9089 tinsn_init (&single_target);
9090 frag_offset = fragP->fr_opcode - fragP->fr_literal;
9091
84b08ed9 9092 if (! xg_is_single_relaxable_insn (&tinsn, &single_target, FALSE))
43cd72b9
BW
9093 {
9094 as_bad (_("unable to widen instruction"));
9095 return;
9096 }
9097
9098 size = xg_get_single_size (single_target.opcode);
b2d179be
BW
9099 xg_emit_insn_to_buf (&single_target, fragP->fr_opcode, fragP,
9100 frag_offset, TRUE);
e0001a05
NC
9101
9102 diff = size - old_size;
9103 assert (diff >= 0);
9104 assert (diff <= fragP->fr_var);
9105 fragP->fr_var -= diff;
9106 fragP->fr_fix += diff;
9107
9108 /* clean it up */
9109 fragP->fr_var = 0;
9110}
9111
9112
9113static void
7fa3d080 9114convert_frag_fill_nop (fragS *fragP)
43cd72b9
BW
9115{
9116 char *loc = &fragP->fr_literal[fragP->fr_fix];
9117 int size = fragP->tc_frag_data.text_expansion[0];
9118 assert ((unsigned) size == (fragP->fr_next->fr_address
9119 - fragP->fr_address - fragP->fr_fix));
9120 if (size == 0)
9121 {
9122 /* No conversion. */
9123 fragP->fr_var = 0;
9124 return;
9125 }
9126 assemble_nop (size, loc);
9127 fragP->tc_frag_data.is_insn = TRUE;
9128 fragP->fr_var -= size;
9129 fragP->fr_fix += size;
9130 frag_wane (fragP);
9131}
9132
9133
7fa3d080
BW
9134static fixS *fix_new_exp_in_seg
9135 (segT, subsegT, fragS *, int, int, expressionS *, int,
9136 bfd_reloc_code_real_type);
9137static void convert_frag_immed_finish_loop (segT, fragS *, TInsn *);
9138
43cd72b9 9139static void
7fa3d080
BW
9140convert_frag_immed (segT segP,
9141 fragS *fragP,
9142 int min_steps,
9143 xtensa_format fmt,
9144 int slot)
e0001a05
NC
9145{
9146 char *immed_instr = fragP->fr_opcode;
43cd72b9 9147 TInsn orig_tinsn;
e0001a05 9148 bfd_boolean expanded = FALSE;
e0001a05 9149 bfd_boolean branch_jmp_to_next = FALSE;
43cd72b9 9150 char *fr_opcode = fragP->fr_opcode;
43cd72b9
BW
9151 xtensa_isa isa = xtensa_default_isa;
9152 bfd_boolean wide_insn = FALSE;
9153 int bytes;
9154 bfd_boolean is_loop;
e0001a05 9155
43cd72b9 9156 assert (fr_opcode != NULL);
e0001a05 9157
b5e4a23d 9158 xg_clear_vinsn (&cur_vinsn);
e0001a05 9159
b5e4a23d 9160 vinsn_from_chars (&cur_vinsn, fr_opcode);
b2d179be 9161 if (cur_vinsn.num_slots > 1)
43cd72b9 9162 wide_insn = TRUE;
e0001a05 9163
b5e4a23d 9164 orig_tinsn = cur_vinsn.slots[slot];
43cd72b9
BW
9165 tinsn_immed_from_frag (&orig_tinsn, fragP, slot);
9166
9167 is_loop = xtensa_opcode_is_loop (xtensa_default_isa, orig_tinsn.opcode) == 1;
e0001a05 9168
b08b5071 9169 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
43cd72b9 9170 branch_jmp_to_next = is_branch_jmp_to_next (&orig_tinsn, fragP);
e0001a05
NC
9171
9172 if (branch_jmp_to_next && !next_frag_is_loop_target (fragP))
9173 {
9174 /* Conversion just inserts a NOP and marks the fix as completed. */
43cd72b9
BW
9175 bytes = xtensa_format_length (isa, fmt);
9176 if (bytes >= 4)
9177 {
b5e4a23d
BW
9178 cur_vinsn.slots[slot].opcode =
9179 xtensa_format_slot_nop_opcode (isa, cur_vinsn.format, slot);
9180 cur_vinsn.slots[slot].ntok = 0;
43cd72b9
BW
9181 }
9182 else
9183 {
9184 bytes += fragP->tc_frag_data.text_expansion[0];
9185 assert (bytes == 2 || bytes == 3);
b5e4a23d 9186 build_nop (&cur_vinsn.slots[0], bytes);
43cd72b9
BW
9187 fragP->fr_fix += fragP->tc_frag_data.text_expansion[0];
9188 }
e7da6241 9189 vinsn_to_insnbuf (&cur_vinsn, fr_opcode, frag_now, TRUE);
d77b99c9 9190 xtensa_insnbuf_to_chars
b5e4a23d 9191 (isa, cur_vinsn.insnbuf, (unsigned char *) fr_opcode, 0);
e0001a05
NC
9192 fragP->fr_var = 0;
9193 }
7c834684 9194 else
e0001a05 9195 {
43cd72b9
BW
9196 /* Here is the fun stuff: Get the immediate field from this
9197 instruction. If it fits, we're done. If not, find the next
9198 instruction sequence that fits. */
9199
e0001a05
NC
9200 IStack istack;
9201 int i;
9202 symbolS *lit_sym = NULL;
9203 int total_size = 0;
43cd72b9 9204 int target_offset = 0;
e0001a05
NC
9205 int old_size;
9206 int diff;
9207 symbolS *gen_label = NULL;
9208 offsetT frag_offset;
43cd72b9
BW
9209 bfd_boolean first = TRUE;
9210 bfd_boolean last_is_jump;
e0001a05 9211
43cd72b9 9212 /* It does not fit. Find something that does and
e0001a05 9213 convert immediately. */
43cd72b9 9214 frag_offset = fr_opcode - fragP->fr_literal;
e0001a05 9215 istack_init (&istack);
43cd72b9 9216 xg_assembly_relax (&istack, &orig_tinsn,
e0001a05
NC
9217 segP, fragP, frag_offset, min_steps, 0);
9218
43cd72b9 9219 old_size = xtensa_format_length (isa, fmt);
e0001a05
NC
9220
9221 /* Assemble this right inline. */
9222
9223 /* First, create the mapping from a label name to the REAL label. */
43cd72b9 9224 target_offset = 0;
e0001a05
NC
9225 for (i = 0; i < istack.ninsn; i++)
9226 {
43cd72b9 9227 TInsn *tinsn = &istack.insn[i];
e0001a05
NC
9228 fragS *lit_frag;
9229
43cd72b9 9230 switch (tinsn->insn_type)
e0001a05
NC
9231 {
9232 case ITYPE_LITERAL:
9233 if (lit_sym != NULL)
9234 as_bad (_("multiple literals in expansion"));
9235 /* First find the appropriate space in the literal pool. */
43cd72b9 9236 lit_frag = fragP->tc_frag_data.literal_frags[slot];
e0001a05
NC
9237 if (lit_frag == NULL)
9238 as_bad (_("no registered fragment for literal"));
43cd72b9 9239 if (tinsn->ntok != 1)
e0001a05
NC
9240 as_bad (_("number of literal tokens != 1"));
9241
9242 /* Set the literal symbol and add a fixup. */
9243 lit_sym = lit_frag->fr_symbol;
9244 break;
9245
9246 case ITYPE_LABEL:
43cd72b9
BW
9247 if (align_targets && !is_loop)
9248 {
9249 fragS *unreach = fragP->fr_next;
9250 while (!(unreach->fr_type == rs_machine_dependent
9251 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9252 || unreach->fr_subtype == RELAX_UNREACHABLE)))
9253 {
9254 unreach = unreach->fr_next;
9255 }
9256
9257 assert (unreach->fr_type == rs_machine_dependent
9258 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9259 || unreach->fr_subtype == RELAX_UNREACHABLE));
9260
9261 target_offset += unreach->tc_frag_data.text_expansion[0];
9262 }
e0001a05
NC
9263 assert (gen_label == NULL);
9264 gen_label = symbol_new (FAKE_LABEL_NAME, now_seg,
43cd72b9
BW
9265 fr_opcode - fragP->fr_literal
9266 + target_offset, fragP);
e0001a05
NC
9267 break;
9268
9269 case ITYPE_INSN:
43cd72b9
BW
9270 if (first && wide_insn)
9271 {
9272 target_offset += xtensa_format_length (isa, fmt);
9273 first = FALSE;
9274 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9275 target_offset += xg_get_single_size (tinsn->opcode);
9276 }
9277 else
9278 target_offset += xg_get_single_size (tinsn->opcode);
e0001a05
NC
9279 break;
9280 }
9281 }
9282
9283 total_size = 0;
43cd72b9
BW
9284 first = TRUE;
9285 last_is_jump = FALSE;
e0001a05
NC
9286 for (i = 0; i < istack.ninsn; i++)
9287 {
43cd72b9 9288 TInsn *tinsn = &istack.insn[i];
e0001a05
NC
9289 fragS *lit_frag;
9290 int size;
9291 segT target_seg;
43cd72b9 9292 bfd_reloc_code_real_type reloc_type;
e0001a05 9293
43cd72b9 9294 switch (tinsn->insn_type)
e0001a05
NC
9295 {
9296 case ITYPE_LITERAL:
43cd72b9
BW
9297 lit_frag = fragP->tc_frag_data.literal_frags[slot];
9298 /* Already checked. */
e0001a05
NC
9299 assert (lit_frag != NULL);
9300 assert (lit_sym != NULL);
43cd72b9
BW
9301 assert (tinsn->ntok == 1);
9302 /* Add a fixup. */
e0001a05
NC
9303 target_seg = S_GET_SEGMENT (lit_sym);
9304 assert (target_seg);
43cd72b9
BW
9305 if (tinsn->tok[0].X_op == O_pltrel)
9306 reloc_type = BFD_RELOC_XTENSA_PLT;
9307 else
9308 reloc_type = BFD_RELOC_32;
e0001a05 9309 fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4,
43cd72b9 9310 &tinsn->tok[0], FALSE, reloc_type);
e0001a05
NC
9311 break;
9312
9313 case ITYPE_LABEL:
9314 break;
9315
9316 case ITYPE_INSN:
43cd72b9
BW
9317 xg_resolve_labels (tinsn, gen_label);
9318 xg_resolve_literals (tinsn, lit_sym);
9319 if (wide_insn && first)
9320 {
9321 first = FALSE;
9322 if (opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9323 {
b5e4a23d 9324 cur_vinsn.slots[slot] = *tinsn;
43cd72b9
BW
9325 }
9326 else
9327 {
b5e4a23d 9328 cur_vinsn.slots[slot].opcode =
43cd72b9 9329 xtensa_format_slot_nop_opcode (isa, fmt, slot);
b5e4a23d 9330 cur_vinsn.slots[slot].ntok = 0;
43cd72b9 9331 }
b5e4a23d
BW
9332 vinsn_to_insnbuf (&cur_vinsn, immed_instr, fragP, TRUE);
9333 xtensa_insnbuf_to_chars (isa, cur_vinsn.insnbuf,
d77b99c9 9334 (unsigned char *) immed_instr, 0);
43cd72b9
BW
9335 fragP->tc_frag_data.is_insn = TRUE;
9336 size = xtensa_format_length (isa, fmt);
9337 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9338 {
43cd72b9 9339 xg_emit_insn_to_buf
b2d179be 9340 (tinsn, immed_instr + size, fragP,
43cd72b9
BW
9341 immed_instr - fragP->fr_literal + size, TRUE);
9342 size += xg_get_single_size (tinsn->opcode);
9343 }
9344 }
9345 else
9346 {
43cd72b9 9347 size = xg_get_single_size (tinsn->opcode);
b2d179be 9348 xg_emit_insn_to_buf (tinsn, immed_instr, fragP,
43cd72b9 9349 immed_instr - fragP->fr_literal, TRUE);
43cd72b9 9350 }
e0001a05 9351 immed_instr += size;
43cd72b9 9352 total_size += size;
e0001a05
NC
9353 break;
9354 }
9355 }
9356
9357 diff = total_size - old_size;
9358 assert (diff >= 0);
9359 if (diff != 0)
9360 expanded = TRUE;
9361 assert (diff <= fragP->fr_var);
9362 fragP->fr_var -= diff;
9363 fragP->fr_fix += diff;
9364 }
9365
e0001a05 9366 /* Check for undefined immediates in LOOP instructions. */
43cd72b9 9367 if (is_loop)
e0001a05
NC
9368 {
9369 symbolS *sym;
43cd72b9 9370 sym = orig_tinsn.tok[1].X_add_symbol;
e0001a05
NC
9371 if (sym != NULL && !S_IS_DEFINED (sym))
9372 {
9373 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9374 return;
9375 }
43cd72b9 9376 sym = orig_tinsn.tok[1].X_op_symbol;
e0001a05
NC
9377 if (sym != NULL && !S_IS_DEFINED (sym))
9378 {
9379 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9380 return;
9381 }
9382 }
9383
43cd72b9
BW
9384 if (expanded && xtensa_opcode_is_loop (isa, orig_tinsn.opcode) == 1)
9385 convert_frag_immed_finish_loop (segP, fragP, &orig_tinsn);
e0001a05 9386
43cd72b9 9387 if (expanded && is_direct_call_opcode (orig_tinsn.opcode))
e0001a05
NC
9388 {
9389 /* Add an expansion note on the expanded instruction. */
9390 fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4,
43cd72b9 9391 &orig_tinsn.tok[0], TRUE,
e0001a05 9392 BFD_RELOC_XTENSA_ASM_EXPAND);
e0001a05
NC
9393 }
9394}
9395
9396
9397/* Add a new fix expression into the desired segment. We have to
9398 switch to that segment to do this. */
9399
9400static fixS *
7fa3d080
BW
9401fix_new_exp_in_seg (segT new_seg,
9402 subsegT new_subseg,
9403 fragS *frag,
9404 int where,
9405 int size,
9406 expressionS *exp,
9407 int pcrel,
9408 bfd_reloc_code_real_type r_type)
e0001a05
NC
9409{
9410 fixS *new_fix;
9411 segT seg = now_seg;
9412 subsegT subseg = now_subseg;
43cd72b9 9413
e0001a05
NC
9414 assert (new_seg != 0);
9415 subseg_set (new_seg, new_subseg);
9416
e0001a05
NC
9417 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
9418 subseg_set (seg, subseg);
9419 return new_fix;
9420}
9421
9422
43cd72b9
BW
9423/* Relax a loop instruction so that it can span loop >256 bytes.
9424
9425 loop as, .L1
9426 .L0:
9427 rsr as, LEND
9428 wsr as, LBEG
9429 addi as, as, lo8 (label-.L1)
9430 addmi as, as, mid8 (label-.L1)
9431 wsr as, LEND
9432 isync
9433 rsr as, LCOUNT
9434 addi as, as, 1
9435 .L1:
9436 <<body>>
9437 label:
9438*/
e0001a05
NC
9439
9440static void
7fa3d080 9441convert_frag_immed_finish_loop (segT segP, fragS *fragP, TInsn *tinsn)
e0001a05
NC
9442{
9443 TInsn loop_insn;
9444 TInsn addi_insn;
9445 TInsn addmi_insn;
9446 unsigned long target;
9447 static xtensa_insnbuf insnbuf = NULL;
9448 unsigned int loop_length, loop_length_hi, loop_length_lo;
9449 xtensa_isa isa = xtensa_default_isa;
9450 addressT loop_offset;
9451 addressT addi_offset = 9;
9452 addressT addmi_offset = 12;
43cd72b9 9453 fragS *next_fragP;
d77b99c9 9454 int target_count;
e0001a05
NC
9455
9456 if (!insnbuf)
9457 insnbuf = xtensa_insnbuf_alloc (isa);
9458
9459 /* Get the loop offset. */
43cd72b9 9460 loop_offset = get_expanded_loop_offset (tinsn->opcode);
e0001a05 9461
43cd72b9
BW
9462 /* Validate that there really is a LOOP at the loop_offset. Because
9463 loops are not bundleable, we can assume that the instruction will be
9464 in slot 0. */
9465 tinsn_from_chars (&loop_insn, fragP->fr_opcode + loop_offset, 0);
9466 tinsn_immed_from_frag (&loop_insn, fragP, 0);
9467
9468 assert (xtensa_opcode_is_loop (isa, loop_insn.opcode) == 1);
e0001a05
NC
9469 addi_offset += loop_offset;
9470 addmi_offset += loop_offset;
9471
43cd72b9 9472 assert (tinsn->ntok == 2);
b08b5071
BW
9473 if (tinsn->tok[1].X_op == O_constant)
9474 target = tinsn->tok[1].X_add_number;
9475 else if (tinsn->tok[1].X_op == O_symbol)
9476 {
9477 /* Find the fragment. */
9478 symbolS *sym = tinsn->tok[1].X_add_symbol;
9479 assert (S_GET_SEGMENT (sym) == segP
9480 || S_GET_SEGMENT (sym) == absolute_section);
9481 target = (S_GET_VALUE (sym) + tinsn->tok[1].X_add_number);
9482 }
9483 else
9484 {
9485 as_bad (_("invalid expression evaluation type %d"), tinsn->tok[1].X_op);
9486 target = 0;
9487 }
e0001a05
NC
9488
9489 know (symbolP);
9490 know (symbolP->sy_frag);
9491 know (!(S_GET_SEGMENT (symbolP) == absolute_section)
9492 || symbol_get_frag (symbolP) == &zero_address_frag);
9493
9494 loop_length = target - (fragP->fr_address + fragP->fr_fix);
9495 loop_length_hi = loop_length & ~0x0ff;
9496 loop_length_lo = loop_length & 0x0ff;
9497 if (loop_length_lo >= 128)
9498 {
9499 loop_length_lo -= 256;
9500 loop_length_hi += 256;
9501 }
9502
43cd72b9 9503 /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most
e0001a05
NC
9504 32512. If the loop is larger than that, then we just fail. */
9505 if (loop_length_hi > 32512)
9506 as_bad_where (fragP->fr_file, fragP->fr_line,
9507 _("loop too long for LOOP instruction"));
9508
43cd72b9 9509 tinsn_from_chars (&addi_insn, fragP->fr_opcode + addi_offset, 0);
e0001a05
NC
9510 assert (addi_insn.opcode == xtensa_addi_opcode);
9511
43cd72b9 9512 tinsn_from_chars (&addmi_insn, fragP->fr_opcode + addmi_offset, 0);
e0001a05
NC
9513 assert (addmi_insn.opcode == xtensa_addmi_opcode);
9514
9515 set_expr_const (&addi_insn.tok[2], loop_length_lo);
9516 tinsn_to_insnbuf (&addi_insn, insnbuf);
43cd72b9 9517
e0001a05 9518 fragP->tc_frag_data.is_insn = TRUE;
d77b99c9
BW
9519 xtensa_insnbuf_to_chars
9520 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addi_offset, 0);
e0001a05
NC
9521
9522 set_expr_const (&addmi_insn.tok[2], loop_length_hi);
9523 tinsn_to_insnbuf (&addmi_insn, insnbuf);
d77b99c9
BW
9524 xtensa_insnbuf_to_chars
9525 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addmi_offset, 0);
43cd72b9
BW
9526
9527 /* Walk through all of the frags from here to the loop end
9528 and mark them as no_transform to keep them from being modified
9529 by the linker. If we ever have a relocation for the
9530 addi/addmi of the difference of two symbols we can remove this. */
9531
9532 target_count = 0;
9533 for (next_fragP = fragP; next_fragP != NULL;
9534 next_fragP = next_fragP->fr_next)
9535 {
b08b5071 9536 next_fragP->tc_frag_data.is_no_transform = TRUE;
43cd72b9
BW
9537 if (next_fragP->tc_frag_data.is_loop_target)
9538 target_count++;
9539 if (target_count == 2)
9540 break;
9541 }
e0001a05
NC
9542}
9543
b08b5071
BW
9544\f
9545/* A map that keeps information on a per-subsegment basis. This is
9546 maintained during initial assembly, but is invalid once the
9547 subsegments are smashed together. I.E., it cannot be used during
9548 the relaxation. */
e0001a05 9549
b08b5071 9550typedef struct subseg_map_struct
e0001a05 9551{
b08b5071
BW
9552 /* the key */
9553 segT seg;
9554 subsegT subseg;
e0001a05 9555
b08b5071
BW
9556 /* the data */
9557 unsigned flags;
9558 float total_freq; /* fall-through + branch target frequency */
9559 float target_freq; /* branch target frequency alone */
9560
9561 struct subseg_map_struct *next;
9562} subseg_map;
e0001a05 9563
e0001a05 9564
e0001a05
NC
9565static subseg_map *sseg_map = NULL;
9566
43cd72b9 9567static subseg_map *
7fa3d080 9568get_subseg_info (segT seg, subsegT subseg)
e0001a05
NC
9569{
9570 subseg_map *subseg_e;
9571
9572 for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next)
e0001a05 9573 {
43cd72b9 9574 if (seg == subseg_e->seg && subseg == subseg_e->subseg)
b08b5071 9575 break;
e0001a05 9576 }
b08b5071
BW
9577 return subseg_e;
9578}
9579
9580
9581static subseg_map *
9582add_subseg_info (segT seg, subsegT subseg)
9583{
9584 subseg_map *subseg_e = (subseg_map *) xmalloc (sizeof (subseg_map));
43cd72b9
BW
9585 memset (subseg_e, 0, sizeof (subseg_map));
9586 subseg_e->seg = seg;
9587 subseg_e->subseg = subseg;
9588 subseg_e->flags = 0;
9589 /* Start off considering every branch target very important. */
b08b5071
BW
9590 subseg_e->target_freq = 1.0;
9591 subseg_e->total_freq = 1.0;
43cd72b9
BW
9592 subseg_e->next = sseg_map;
9593 sseg_map = subseg_e;
43cd72b9
BW
9594 return subseg_e;
9595}
e0001a05 9596
7fa3d080
BW
9597
9598static unsigned
9599get_last_insn_flags (segT seg, subsegT subseg)
9600{
9601 subseg_map *subseg_e = get_subseg_info (seg, subseg);
b08b5071
BW
9602 if (subseg_e)
9603 return subseg_e->flags;
9604 return 0;
7fa3d080
BW
9605}
9606
9607
43cd72b9 9608static void
7fa3d080
BW
9609set_last_insn_flags (segT seg,
9610 subsegT subseg,
9611 unsigned fl,
9612 bfd_boolean val)
43cd72b9
BW
9613{
9614 subseg_map *subseg_e = get_subseg_info (seg, subseg);
b08b5071
BW
9615 if (! subseg_e)
9616 subseg_e = add_subseg_info (seg, subseg);
e0001a05
NC
9617 if (val)
9618 subseg_e->flags |= fl;
9619 else
9620 subseg_e->flags &= ~fl;
9621}
9622
b08b5071
BW
9623
9624static float
9625get_subseg_total_freq (segT seg, subsegT subseg)
9626{
9627 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9628 if (subseg_e)
9629 return subseg_e->total_freq;
9630 return 1.0;
9631}
9632
9633
9634static float
9635get_subseg_target_freq (segT seg, subsegT subseg)
9636{
9637 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9638 if (subseg_e)
9639 return subseg_e->target_freq;
9640 return 1.0;
9641}
9642
9643
9644static void
9645set_subseg_freq (segT seg, subsegT subseg, float total_f, float target_f)
9646{
9647 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9648 if (! subseg_e)
9649 subseg_e = add_subseg_info (seg, subseg);
9650 subseg_e->total_freq = total_f;
9651 subseg_e->target_freq = target_f;
9652}
9653
e0001a05
NC
9654\f
9655/* Segment Lists and emit_state Stuff. */
9656
e0001a05 9657static void
7fa3d080 9658xtensa_move_seg_list_to_beginning (seg_list *head)
e0001a05
NC
9659{
9660 head = head->next;
9661 while (head)
9662 {
9663 segT literal_section = head->seg;
9664
9665 /* Move the literal section to the front of the section list. */
9666 assert (literal_section);
69852798
AM
9667 if (literal_section != stdoutput->sections)
9668 {
9669 bfd_section_list_remove (stdoutput, literal_section);
9670 bfd_section_list_prepend (stdoutput, literal_section);
9671 }
e0001a05
NC
9672 head = head->next;
9673 }
9674}
9675
9676
7fa3d080
BW
9677static void mark_literal_frags (seg_list *);
9678
9679static void
9680xtensa_move_literals (void)
e0001a05
NC
9681{
9682 seg_list *segment;
9683 frchainS *frchain_from, *frchain_to;
9684 fragS *search_frag, *next_frag, *last_frag, *literal_pool, *insert_after;
9685 fragS **frag_splice;
9686 emit_state state;
9687 segT dest_seg;
9688 fixS *fix, *next_fix, **fix_splice;
82e7541d 9689 sym_list *lit;
e0001a05 9690
a7877748
BW
9691 mark_literal_frags (literal_head->next);
9692 mark_literal_frags (init_literal_head->next);
9693 mark_literal_frags (fini_literal_head->next);
e0001a05
NC
9694
9695 if (use_literal_section)
9696 return;
9697
9698 segment = literal_head->next;
9699 while (segment)
9700 {
9701 frchain_from = seg_info (segment->seg)->frchainP;
9702 search_frag = frchain_from->frch_root;
9703 literal_pool = NULL;
9704 frchain_to = NULL;
9705 frag_splice = &(frchain_from->frch_root);
9706
9707 while (!search_frag->tc_frag_data.literal_frag)
9708 {
9709 assert (search_frag->fr_fix == 0
9710 || search_frag->fr_type == rs_align);
9711 search_frag = search_frag->fr_next;
9712 }
9713
9714 assert (search_frag->tc_frag_data.literal_frag->fr_subtype
9715 == RELAX_LITERAL_POOL_BEGIN);
9716 xtensa_switch_section_emit_state (&state, segment->seg, 0);
9717
9718 /* Make sure that all the frags in this series are closed, and
9719 that there is at least one left over of zero-size. This
9720 prevents us from making a segment with an frchain without any
9721 frags in it. */
9722 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 9723 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
9724 last_frag = frag_now;
9725 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 9726 xtensa_set_frag_assembly_state (frag_now);
e0001a05 9727
43cd72b9 9728 while (search_frag != frag_now)
e0001a05
NC
9729 {
9730 next_frag = search_frag->fr_next;
9731
43cd72b9 9732 /* First, move the frag out of the literal section and
e0001a05
NC
9733 to the appropriate place. */
9734 if (search_frag->tc_frag_data.literal_frag)
9735 {
9736 literal_pool = search_frag->tc_frag_data.literal_frag;
9737 assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN);
dd49a749
BW
9738 frchain_to = literal_pool->tc_frag_data.lit_frchain;
9739 assert (frchain_to);
e0001a05
NC
9740 }
9741 insert_after = literal_pool;
43cd72b9 9742
e0001a05
NC
9743 while (insert_after->fr_next->fr_subtype != RELAX_LITERAL_POOL_END)
9744 insert_after = insert_after->fr_next;
9745
dd49a749 9746 dest_seg = insert_after->fr_next->tc_frag_data.lit_seg;
43cd72b9 9747
e0001a05
NC
9748 *frag_splice = next_frag;
9749 search_frag->fr_next = insert_after->fr_next;
9750 insert_after->fr_next = search_frag;
9751 search_frag->tc_frag_data.lit_seg = dest_seg;
9752
9753 /* Now move any fixups associated with this frag to the
9754 right section. */
9755 fix = frchain_from->fix_root;
9756 fix_splice = &(frchain_from->fix_root);
9757 while (fix)
9758 {
9759 next_fix = fix->fx_next;
9760 if (fix->fx_frag == search_frag)
9761 {
9762 *fix_splice = next_fix;
9763 fix->fx_next = frchain_to->fix_root;
9764 frchain_to->fix_root = fix;
9765 if (frchain_to->fix_tail == NULL)
9766 frchain_to->fix_tail = fix;
9767 }
9768 else
9769 fix_splice = &(fix->fx_next);
9770 fix = next_fix;
9771 }
9772 search_frag = next_frag;
9773 }
9774
9775 if (frchain_from->fix_root != NULL)
9776 {
9777 frchain_from = seg_info (segment->seg)->frchainP;
9778 as_warn (_("fixes not all moved from %s"), segment->seg->name);
9779
9780 assert (frchain_from->fix_root == NULL);
9781 }
9782 frchain_from->fix_tail = NULL;
9783 xtensa_restore_emit_state (&state);
9784 segment = segment->next;
9785 }
9786
82e7541d
BW
9787 /* Now fix up the SEGMENT value for all the literal symbols. */
9788 for (lit = literal_syms; lit; lit = lit->next)
9789 {
9790 symbolS *lit_sym = lit->sym;
9791 segT dest_seg = symbol_get_frag (lit_sym)->tc_frag_data.lit_seg;
43cd72b9
BW
9792 if (dest_seg)
9793 S_SET_SEGMENT (lit_sym, dest_seg);
82e7541d 9794 }
e0001a05
NC
9795}
9796
9797
a7877748
BW
9798/* Walk over all the frags for segments in a list and mark them as
9799 containing literals. As clunky as this is, we can't rely on frag_var
9800 and frag_variant to get called in all situations. */
9801
9802static void
7fa3d080 9803mark_literal_frags (seg_list *segment)
a7877748
BW
9804{
9805 frchainS *frchain_from;
9806 fragS *search_frag;
9807
9808 while (segment)
9809 {
9810 frchain_from = seg_info (segment->seg)->frchainP;
9811 search_frag = frchain_from->frch_root;
c138bc38 9812 while (search_frag)
a7877748
BW
9813 {
9814 search_frag->tc_frag_data.is_literal = TRUE;
9815 search_frag = search_frag->fr_next;
9816 }
9817 segment = segment->next;
9818 }
9819}
9820
9821
e0001a05 9822static void
7fa3d080 9823xtensa_reorder_seg_list (seg_list *head, segT after)
e0001a05
NC
9824{
9825 /* Move all of the sections in the section list to come
9826 after "after" in the gnu segment list. */
9827
9828 head = head->next;
9829 while (head)
9830 {
9831 segT literal_section = head->seg;
9832
9833 /* Move the literal section after "after". */
9834 assert (literal_section);
9835 if (literal_section != after)
9836 {
69852798
AM
9837 bfd_section_list_remove (stdoutput, literal_section);
9838 bfd_section_list_insert_after (stdoutput, after, literal_section);
e0001a05
NC
9839 }
9840
9841 head = head->next;
9842 }
9843}
9844
9845
9846/* Push all the literal segments to the end of the gnu list. */
9847
7fa3d080
BW
9848static void
9849xtensa_reorder_segments (void)
e0001a05
NC
9850{
9851 segT sec;
b08b5071 9852 segT last_sec = 0;
e0001a05
NC
9853 int old_count = 0;
9854 int new_count = 0;
9855
9856 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
b08b5071
BW
9857 {
9858 last_sec = sec;
9859 old_count++;
9860 }
e0001a05
NC
9861
9862 /* Now that we have the last section, push all the literal
9863 sections to the end. */
e0001a05
NC
9864 xtensa_reorder_seg_list (literal_head, last_sec);
9865 xtensa_reorder_seg_list (init_literal_head, last_sec);
9866 xtensa_reorder_seg_list (fini_literal_head, last_sec);
9867
9868 /* Now perform the final error check. */
9869 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
9870 new_count++;
9871 assert (new_count == old_count);
9872}
9873
9874
e0001a05
NC
9875/* Change the emit state (seg, subseg, and frag related stuff) to the
9876 correct location. Return a emit_state which can be passed to
9877 xtensa_restore_emit_state to return to current fragment. */
9878
7fa3d080
BW
9879static void
9880xtensa_switch_to_literal_fragment (emit_state *result)
43cd72b9
BW
9881{
9882 if (directive_state[directive_absolute_literals])
9883 {
9884 cache_literal_section (0, default_lit_sections.lit4_seg_name,
9885 &default_lit_sections.lit4_seg, FALSE);
9886 xtensa_switch_section_emit_state (result,
9887 default_lit_sections.lit4_seg, 0);
9888 }
9889 else
9890 xtensa_switch_to_non_abs_literal_fragment (result);
9891
9892 /* Do a 4-byte align here. */
9893 frag_align (2, 0, 0);
9894 record_alignment (now_seg, 2);
9895}
9896
9897
7fa3d080
BW
9898static void
9899xtensa_switch_to_non_abs_literal_fragment (emit_state *result)
e0001a05
NC
9900{
9901 /* When we mark a literal pool location, we want to put a frag in
9902 the literal pool that points to it. But to do that, we want to
9903 switch_to_literal_fragment. But literal sections don't have
9904 literal pools, so their location is always null, so we would
9905 recurse forever. This is kind of hacky, but it works. */
9906
9907 static bfd_boolean recursive = FALSE;
9908 fragS *pool_location = get_literal_pool_location (now_seg);
c138bc38 9909 bfd_boolean is_init =
e0001a05
NC
9910 (now_seg && !strcmp (segment_name (now_seg), INIT_SECTION_NAME));
9911
c138bc38 9912 bfd_boolean is_fini =
e0001a05 9913 (now_seg && !strcmp (segment_name (now_seg), FINI_SECTION_NAME));
e0001a05 9914
43cd72b9
BW
9915 if (pool_location == NULL
9916 && !use_literal_section
e0001a05
NC
9917 && !recursive
9918 && !is_init && ! is_fini)
9919 {
43cd72b9 9920 as_bad (_("literal pool location required for text-section-literals; specify with .literal_position"));
e0001a05 9921 recursive = TRUE;
61846f28 9922 xtensa_mark_literal_pool_location ();
e0001a05
NC
9923 recursive = FALSE;
9924 }
9925
9926 /* Special case: If we are in the ".fini" or ".init" section, then
9927 we will ALWAYS be generating to the ".fini.literal" and
9928 ".init.literal" sections. */
9929
9930 if (is_init)
9931 {
9932 cache_literal_section (init_literal_head,
9933 default_lit_sections.init_lit_seg_name,
43cd72b9 9934 &default_lit_sections.init_lit_seg, TRUE);
e0001a05
NC
9935 xtensa_switch_section_emit_state (result,
9936 default_lit_sections.init_lit_seg, 0);
9937 }
9938 else if (is_fini)
9939 {
9940 cache_literal_section (fini_literal_head,
9941 default_lit_sections.fini_lit_seg_name,
43cd72b9 9942 &default_lit_sections.fini_lit_seg, TRUE);
e0001a05
NC
9943 xtensa_switch_section_emit_state (result,
9944 default_lit_sections.fini_lit_seg, 0);
9945 }
43cd72b9 9946 else
e0001a05
NC
9947 {
9948 cache_literal_section (literal_head,
9949 default_lit_sections.lit_seg_name,
43cd72b9 9950 &default_lit_sections.lit_seg, TRUE);
e0001a05
NC
9951 xtensa_switch_section_emit_state (result,
9952 default_lit_sections.lit_seg, 0);
9953 }
9954
43cd72b9
BW
9955 if (!use_literal_section
9956 && !is_init && !is_fini
9957 && get_literal_pool_location (now_seg) != pool_location)
e0001a05
NC
9958 {
9959 /* Close whatever frag is there. */
9960 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 9961 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
9962 frag_now->tc_frag_data.literal_frag = pool_location;
9963 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 9964 xtensa_set_frag_assembly_state (frag_now);
e0001a05 9965 }
e0001a05
NC
9966}
9967
9968
9969/* Call this function before emitting data into the literal section.
9970 This is a helper function for xtensa_switch_to_literal_fragment.
9971 This is similar to a .section new_now_seg subseg. */
9972
7fa3d080
BW
9973static void
9974xtensa_switch_section_emit_state (emit_state *state,
9975 segT new_now_seg,
9976 subsegT new_now_subseg)
e0001a05
NC
9977{
9978 state->name = now_seg->name;
9979 state->now_seg = now_seg;
9980 state->now_subseg = now_subseg;
9981 state->generating_literals = generating_literals;
9982 generating_literals++;
2b0210eb 9983 subseg_set (new_now_seg, new_now_subseg);
e0001a05
NC
9984}
9985
9986
9987/* Use to restore the emitting into the normal place. */
9988
7fa3d080
BW
9989static void
9990xtensa_restore_emit_state (emit_state *state)
e0001a05
NC
9991{
9992 generating_literals = state->generating_literals;
2b0210eb 9993 subseg_set (state->now_seg, state->now_subseg);
e0001a05
NC
9994}
9995
9996
9997/* Get a segment of a given name. If the segment is already
9998 present, return it; otherwise, create a new one. */
9999
10000static void
7fa3d080
BW
10001cache_literal_section (seg_list *head,
10002 const char *name,
b08b5071 10003 segT *pseg,
7fa3d080 10004 bfd_boolean is_code)
e0001a05
NC
10005{
10006 segT current_section = now_seg;
10007 int current_subsec = now_subseg;
b08b5071 10008 segT seg;
e0001a05 10009
b08b5071 10010 if (*pseg != 0)
e0001a05 10011 return;
e0001a05 10012
b08b5071
BW
10013 /* Check if the named section exists. */
10014 for (seg = stdoutput->sections; seg; seg = seg->next)
10015 {
10016 if (!strcmp (segment_name (seg), name))
10017 break;
10018 }
e0001a05 10019
b08b5071 10020 if (!seg)
e0001a05 10021 {
b08b5071
BW
10022 /* Create a new literal section. */
10023 seg = subseg_new (name, (subsegT) 0);
43cd72b9 10024 if (head)
b08b5071
BW
10025 {
10026 /* Add the newly created literal segment to the specified list. */
10027 seg_list *n = (seg_list *) xmalloc (sizeof (seg_list));
10028 n->seg = seg;
10029 n->next = head->next;
10030 head->next = n;
10031 }
10032 bfd_set_section_flags (stdoutput, seg, SEC_HAS_CONTENTS |
43cd72b9
BW
10033 SEC_READONLY | SEC_ALLOC | SEC_LOAD
10034 | (is_code ? SEC_CODE : SEC_DATA));
b08b5071 10035 bfd_set_section_alignment (stdoutput, seg, 2);
e0001a05
NC
10036 }
10037
b08b5071
BW
10038 *pseg = seg;
10039 subseg_set (current_section, current_subsec);
e0001a05
NC
10040}
10041
43cd72b9
BW
10042\f
10043/* Property Tables Stuff. */
10044
7fa3d080
BW
10045#define XTENSA_INSN_SEC_NAME ".xt.insn"
10046#define XTENSA_LIT_SEC_NAME ".xt.lit"
10047#define XTENSA_PROP_SEC_NAME ".xt.prop"
10048
10049typedef bfd_boolean (*frag_predicate) (const fragS *);
10050typedef void (*frag_flags_fn) (const fragS *, frag_flags *);
10051
b08b5071 10052static bfd_boolean get_frag_is_literal (const fragS *);
7fa3d080
BW
10053static void xtensa_create_property_segments
10054 (frag_predicate, frag_predicate, const char *, xt_section_type);
10055static void xtensa_create_xproperty_segments
10056 (frag_flags_fn, const char *, xt_section_type);
10057static segment_info_type *retrieve_segment_info (segT);
10058static segT retrieve_xtensa_section (char *);
10059static bfd_boolean section_has_property (segT, frag_predicate);
10060static bfd_boolean section_has_xproperty (segT, frag_flags_fn);
10061static void add_xt_block_frags
10062 (segT, segT, xtensa_block_info **, frag_predicate, frag_predicate);
10063static bfd_boolean xtensa_frag_flags_is_empty (const frag_flags *);
10064static void xtensa_frag_flags_init (frag_flags *);
10065static void get_frag_property_flags (const fragS *, frag_flags *);
10066static bfd_vma frag_flags_to_number (const frag_flags *);
10067static void add_xt_prop_frags
10068 (segT, segT, xtensa_block_info **, frag_flags_fn);
10069
10070/* Set up property tables after relaxation. */
10071
10072void
10073xtensa_post_relax_hook (void)
10074{
10075 xtensa_move_seg_list_to_beginning (literal_head);
10076 xtensa_move_seg_list_to_beginning (init_literal_head);
10077 xtensa_move_seg_list_to_beginning (fini_literal_head);
10078
10079 xtensa_find_unmarked_state_frags ();
10080
b29757dc
BW
10081 xtensa_create_property_segments (get_frag_is_literal,
10082 NULL,
10083 XTENSA_LIT_SEC_NAME,
10084 xt_literal_sec);
7fa3d080
BW
10085 xtensa_create_xproperty_segments (get_frag_property_flags,
10086 XTENSA_PROP_SEC_NAME,
10087 xt_prop_sec);
10088
10089 if (warn_unaligned_branch_targets)
10090 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_branch_targets, 0);
10091 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_loops, 0);
10092}
10093
10094
43cd72b9
BW
10095/* This function is only meaningful after xtensa_move_literals. */
10096
10097static bfd_boolean
7fa3d080 10098get_frag_is_literal (const fragS *fragP)
43cd72b9
BW
10099{
10100 assert (fragP != NULL);
10101 return fragP->tc_frag_data.is_literal;
10102}
10103
10104
43cd72b9 10105static void
7fa3d080
BW
10106xtensa_create_property_segments (frag_predicate property_function,
10107 frag_predicate end_property_function,
10108 const char *section_name_base,
10109 xt_section_type sec_type)
43cd72b9
BW
10110{
10111 segT *seclist;
10112
10113 /* Walk over all of the current segments.
10114 Walk over each fragment
10115 For each non-empty fragment,
10116 Build a property record (append where possible). */
10117
10118 for (seclist = &stdoutput->sections;
10119 seclist && *seclist;
10120 seclist = &(*seclist)->next)
10121 {
10122 segT sec = *seclist;
10123 flagword flags;
10124
10125 flags = bfd_get_section_flags (stdoutput, sec);
10126 if (flags & SEC_DEBUGGING)
10127 continue;
10128 if (!(flags & SEC_ALLOC))
10129 continue;
10130
10131 if (section_has_property (sec, property_function))
10132 {
10133 char *property_section_name =
10134 xtensa_get_property_section_name (sec, section_name_base);
10135 segT insn_sec = retrieve_xtensa_section (property_section_name);
10136 segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec);
10137 xtensa_block_info **xt_blocks =
10138 &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10139 /* Walk over all of the frchains here and add new sections. */
10140 add_xt_block_frags (sec, insn_sec, xt_blocks, property_function,
10141 end_property_function);
10142 }
10143 }
10144
10145 /* Now we fill them out.... */
10146
10147 for (seclist = &stdoutput->sections;
10148 seclist && *seclist;
10149 seclist = &(*seclist)->next)
10150 {
10151 segment_info_type *seginfo;
10152 xtensa_block_info *block;
10153 segT sec = *seclist;
10154
10155 seginfo = seg_info (sec);
10156 block = seginfo->tc_segment_info_data.blocks[sec_type];
10157
10158 if (block)
10159 {
10160 xtensa_block_info *cur_block;
10161 /* This is a section with some data. */
10162 int num_recs = 0;
d77b99c9 10163 bfd_size_type rec_size;
43cd72b9
BW
10164
10165 for (cur_block = block; cur_block; cur_block = cur_block->next)
10166 num_recs++;
10167
10168 rec_size = num_recs * 8;
10169 bfd_set_section_size (stdoutput, sec, rec_size);
10170
10171 /* In order to make this work with the assembler, we have to
10172 build some frags and then build the "fixups" for it. It
10173 would be easier to just set the contents then set the
10174 arlents. */
10175
10176 if (num_recs)
10177 {
10178 /* Allocate a fragment and leak it. */
10179 fragS *fragP;
d77b99c9 10180 bfd_size_type frag_size;
43cd72b9
BW
10181 fixS *fixes;
10182 frchainS *frchainP;
10183 int i;
10184 char *frag_data;
10185
10186 frag_size = sizeof (fragS) + rec_size;
10187 fragP = (fragS *) xmalloc (frag_size);
e0001a05 10188
43cd72b9
BW
10189 memset (fragP, 0, frag_size);
10190 fragP->fr_address = 0;
10191 fragP->fr_next = NULL;
10192 fragP->fr_fix = rec_size;
10193 fragP->fr_var = 0;
10194 fragP->fr_type = rs_fill;
10195 /* The rest are zeros. */
e0001a05 10196
43cd72b9
BW
10197 frchainP = seginfo->frchainP;
10198 frchainP->frch_root = fragP;
10199 frchainP->frch_last = fragP;
e0001a05 10200
43cd72b9
BW
10201 fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs);
10202 memset (fixes, 0, sizeof (fixS) * num_recs);
e0001a05 10203
43cd72b9
BW
10204 seginfo->fix_root = fixes;
10205 seginfo->fix_tail = &fixes[num_recs - 1];
10206 cur_block = block;
10207 frag_data = &fragP->fr_literal[0];
10208 for (i = 0; i < num_recs; i++)
10209 {
10210 fixS *fix = &fixes[i];
10211 assert (cur_block);
e0001a05 10212
43cd72b9
BW
10213 /* Write the fixup. */
10214 if (i != num_recs - 1)
10215 fix->fx_next = &fixes[i + 1];
10216 else
10217 fix->fx_next = NULL;
10218 fix->fx_size = 4;
10219 fix->fx_done = 0;
10220 fix->fx_frag = fragP;
10221 fix->fx_where = i * 8;
10222 fix->fx_addsy = section_symbol (cur_block->sec);
10223 fix->fx_offset = cur_block->offset;
10224 fix->fx_r_type = BFD_RELOC_32;
10225 fix->fx_file = "Internal Assembly";
10226 fix->fx_line = 0;
e0001a05 10227
43cd72b9
BW
10228 /* Write the length. */
10229 md_number_to_chars (&frag_data[4 + 8 * i],
10230 cur_block->size, 4);
10231 cur_block = cur_block->next;
10232 }
10233 }
10234 }
10235 }
e0001a05
NC
10236}
10237
10238
7fa3d080
BW
10239static void
10240xtensa_create_xproperty_segments (frag_flags_fn flag_fn,
10241 const char *section_name_base,
10242 xt_section_type sec_type)
e0001a05
NC
10243{
10244 segT *seclist;
10245
10246 /* Walk over all of the current segments.
43cd72b9
BW
10247 Walk over each fragment.
10248 For each fragment that has instructions,
10249 build an instruction record (append where possible). */
e0001a05
NC
10250
10251 for (seclist = &stdoutput->sections;
10252 seclist && *seclist;
10253 seclist = &(*seclist)->next)
10254 {
10255 segT sec = *seclist;
43cd72b9
BW
10256 flagword flags;
10257
10258 flags = bfd_get_section_flags (stdoutput, sec);
6624cbde
BW
10259 if ((flags & SEC_DEBUGGING)
10260 || !(flags & SEC_ALLOC)
10261 || (flags & SEC_MERGE))
43cd72b9
BW
10262 continue;
10263
10264 if (section_has_xproperty (sec, flag_fn))
e0001a05 10265 {
b614a702
BW
10266 char *property_section_name =
10267 xtensa_get_property_section_name (sec, section_name_base);
e0001a05
NC
10268 segT insn_sec = retrieve_xtensa_section (property_section_name);
10269 segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec);
43cd72b9 10270 xtensa_block_info **xt_blocks =
e0001a05
NC
10271 &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10272 /* Walk over all of the frchains here and add new sections. */
43cd72b9 10273 add_xt_prop_frags (sec, insn_sec, xt_blocks, flag_fn);
e0001a05
NC
10274 }
10275 }
10276
10277 /* Now we fill them out.... */
10278
10279 for (seclist = &stdoutput->sections;
10280 seclist && *seclist;
10281 seclist = &(*seclist)->next)
10282 {
10283 segment_info_type *seginfo;
10284 xtensa_block_info *block;
10285 segT sec = *seclist;
43cd72b9 10286
e0001a05
NC
10287 seginfo = seg_info (sec);
10288 block = seginfo->tc_segment_info_data.blocks[sec_type];
10289
10290 if (block)
10291 {
10292 xtensa_block_info *cur_block;
10293 /* This is a section with some data. */
43cd72b9 10294 int num_recs = 0;
d77b99c9 10295 bfd_size_type rec_size;
e0001a05
NC
10296
10297 for (cur_block = block; cur_block; cur_block = cur_block->next)
10298 num_recs++;
10299
43cd72b9 10300 rec_size = num_recs * (8 + 4);
e0001a05
NC
10301 bfd_set_section_size (stdoutput, sec, rec_size);
10302
43cd72b9
BW
10303 /* elf_section_data (sec)->this_hdr.sh_entsize = 12; */
10304
10305 /* In order to make this work with the assembler, we have to build
10306 some frags then build the "fixups" for it. It would be easier to
10307 just set the contents then set the arlents. */
e0001a05
NC
10308
10309 if (num_recs)
10310 {
43cd72b9 10311 /* Allocate a fragment and (unfortunately) leak it. */
e0001a05 10312 fragS *fragP;
d77b99c9 10313 bfd_size_type frag_size;
e0001a05
NC
10314 fixS *fixes;
10315 frchainS *frchainP;
43cd72b9 10316 int i;
e0001a05
NC
10317 char *frag_data;
10318
10319 frag_size = sizeof (fragS) + rec_size;
10320 fragP = (fragS *) xmalloc (frag_size);
10321
10322 memset (fragP, 0, frag_size);
10323 fragP->fr_address = 0;
10324 fragP->fr_next = NULL;
10325 fragP->fr_fix = rec_size;
10326 fragP->fr_var = 0;
10327 fragP->fr_type = rs_fill;
43cd72b9 10328 /* The rest are zeros. */
e0001a05
NC
10329
10330 frchainP = seginfo->frchainP;
10331 frchainP->frch_root = fragP;
10332 frchainP->frch_last = fragP;
10333
10334 fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs);
10335 memset (fixes, 0, sizeof (fixS) * num_recs);
10336
10337 seginfo->fix_root = fixes;
10338 seginfo->fix_tail = &fixes[num_recs - 1];
10339 cur_block = block;
10340 frag_data = &fragP->fr_literal[0];
10341 for (i = 0; i < num_recs; i++)
10342 {
10343 fixS *fix = &fixes[i];
10344 assert (cur_block);
10345
10346 /* Write the fixup. */
10347 if (i != num_recs - 1)
10348 fix->fx_next = &fixes[i + 1];
10349 else
10350 fix->fx_next = NULL;
10351 fix->fx_size = 4;
10352 fix->fx_done = 0;
10353 fix->fx_frag = fragP;
43cd72b9 10354 fix->fx_where = i * (8 + 4);
e0001a05
NC
10355 fix->fx_addsy = section_symbol (cur_block->sec);
10356 fix->fx_offset = cur_block->offset;
10357 fix->fx_r_type = BFD_RELOC_32;
10358 fix->fx_file = "Internal Assembly";
10359 fix->fx_line = 0;
10360
10361 /* Write the length. */
43cd72b9 10362 md_number_to_chars (&frag_data[4 + (8+4) * i],
e0001a05 10363 cur_block->size, 4);
43cd72b9
BW
10364 md_number_to_chars (&frag_data[8 + (8+4) * i],
10365 frag_flags_to_number (&cur_block->flags),
10366 4);
e0001a05
NC
10367 cur_block = cur_block->next;
10368 }
10369 }
10370 }
10371 }
10372}
10373
10374
7fa3d080
BW
10375static segment_info_type *
10376retrieve_segment_info (segT seg)
e0001a05
NC
10377{
10378 segment_info_type *seginfo;
10379 seginfo = (segment_info_type *) bfd_get_section_userdata (stdoutput, seg);
10380 if (!seginfo)
10381 {
10382 frchainS *frchainP;
10383
10384 seginfo = (segment_info_type *) xmalloc (sizeof (*seginfo));
7fa3d080 10385 memset ((void *) seginfo, 0, sizeof (*seginfo));
e0001a05
NC
10386 seginfo->fix_root = NULL;
10387 seginfo->fix_tail = NULL;
10388 seginfo->bfd_section = seg;
10389 seginfo->sym = 0;
10390 /* We will not be dealing with these, only our special ones. */
65ec77d2 10391 bfd_set_section_userdata (stdoutput, seg, (void *) seginfo);
e0001a05
NC
10392
10393 frchainP = (frchainS *) xmalloc (sizeof (frchainS));
10394 frchainP->frch_root = NULL;
10395 frchainP->frch_last = NULL;
10396 frchainP->frch_next = NULL;
10397 frchainP->frch_seg = seg;
10398 frchainP->frch_subseg = 0;
10399 frchainP->fix_root = NULL;
10400 frchainP->fix_tail = NULL;
10401 /* Do not init the objstack. */
10402 /* obstack_begin (&frchainP->frch_obstack, chunksize); */
10403 /* frchainP->frch_frag_now = fragP; */
10404 frchainP->frch_frag_now = NULL;
10405
10406 seginfo->frchainP = frchainP;
10407 }
10408
10409 return seginfo;
10410}
10411
10412
7fa3d080
BW
10413static segT
10414retrieve_xtensa_section (char *sec_name)
e0001a05
NC
10415{
10416 bfd *abfd = stdoutput;
10417 flagword flags, out_flags, link_once_flags;
10418 segT s;
10419
10420 flags = bfd_get_section_flags (abfd, now_seg);
10421 link_once_flags = (flags & SEC_LINK_ONCE);
10422 if (link_once_flags)
10423 link_once_flags |= (flags & SEC_LINK_DUPLICATES);
10424 out_flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY | link_once_flags);
10425
10426 s = bfd_make_section_old_way (abfd, sec_name);
10427 if (s == NULL)
10428 as_bad (_("could not create section %s"), sec_name);
10429 if (!bfd_set_section_flags (abfd, s, out_flags))
10430 as_bad (_("invalid flag combination on section %s"), sec_name);
10431
10432 return s;
10433}
10434
10435
7fa3d080
BW
10436static bfd_boolean
10437section_has_property (segT sec, frag_predicate property_function)
e0001a05
NC
10438{
10439 segment_info_type *seginfo = seg_info (sec);
10440 fragS *fragP;
10441
10442 if (seginfo && seginfo->frchainP)
10443 {
10444 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10445 {
10446 if (property_function (fragP)
10447 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10448 return TRUE;
10449 }
10450 }
10451 return FALSE;
10452}
10453
10454
7fa3d080
BW
10455static bfd_boolean
10456section_has_xproperty (segT sec, frag_flags_fn property_function)
43cd72b9
BW
10457{
10458 segment_info_type *seginfo = seg_info (sec);
10459 fragS *fragP;
10460
10461 if (seginfo && seginfo->frchainP)
10462 {
10463 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10464 {
10465 frag_flags prop_flags;
10466 property_function (fragP, &prop_flags);
10467 if (!xtensa_frag_flags_is_empty (&prop_flags))
10468 return TRUE;
10469 }
10470 }
10471 return FALSE;
10472}
10473
10474
e0001a05
NC
10475/* Two types of block sections exist right now: literal and insns. */
10476
7fa3d080
BW
10477static void
10478add_xt_block_frags (segT sec,
10479 segT xt_block_sec,
10480 xtensa_block_info **xt_block,
10481 frag_predicate property_function,
10482 frag_predicate end_property_function)
e0001a05
NC
10483{
10484 segment_info_type *seg_info;
10485 segment_info_type *xt_seg_info;
10486 bfd_vma seg_offset;
10487 fragS *fragP;
10488
10489 xt_seg_info = retrieve_segment_info (xt_block_sec);
10490 seg_info = retrieve_segment_info (sec);
10491
10492 /* Build it if needed. */
10493 while (*xt_block != NULL)
10494 xt_block = &(*xt_block)->next;
10495 /* We are either at NULL at the beginning or at the end. */
10496
10497 /* Walk through the frags. */
10498 seg_offset = 0;
10499
10500 if (seg_info->frchainP)
10501 {
10502 for (fragP = seg_info->frchainP->frch_root;
10503 fragP;
10504 fragP = fragP->fr_next)
10505 {
10506 if (property_function (fragP)
10507 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10508 {
10509 if (*xt_block != NULL)
10510 {
10511 if ((*xt_block)->offset + (*xt_block)->size
10512 == fragP->fr_address)
10513 (*xt_block)->size += fragP->fr_fix;
10514 else
10515 xt_block = &((*xt_block)->next);
10516 }
10517 if (*xt_block == NULL)
10518 {
43cd72b9
BW
10519 xtensa_block_info *new_block = (xtensa_block_info *)
10520 xmalloc (sizeof (xtensa_block_info));
10521 new_block->sec = sec;
10522 new_block->offset = fragP->fr_address;
10523 new_block->size = fragP->fr_fix;
10524 new_block->next = NULL;
10525 xtensa_frag_flags_init (&new_block->flags);
10526 *xt_block = new_block;
10527 }
10528 if (end_property_function
10529 && end_property_function (fragP))
10530 {
10531 xt_block = &((*xt_block)->next);
10532 }
10533 }
10534 }
10535 }
10536}
10537
10538
10539/* Break the encapsulation of add_xt_prop_frags here. */
10540
7fa3d080
BW
10541static bfd_boolean
10542xtensa_frag_flags_is_empty (const frag_flags *prop_flags)
43cd72b9
BW
10543{
10544 if (prop_flags->is_literal
10545 || prop_flags->is_insn
10546 || prop_flags->is_data
10547 || prop_flags->is_unreachable)
10548 return FALSE;
10549 return TRUE;
10550}
10551
10552
7fa3d080
BW
10553static void
10554xtensa_frag_flags_init (frag_flags *prop_flags)
43cd72b9
BW
10555{
10556 memset (prop_flags, 0, sizeof (frag_flags));
10557}
10558
10559
7fa3d080
BW
10560static void
10561get_frag_property_flags (const fragS *fragP, frag_flags *prop_flags)
43cd72b9
BW
10562{
10563 xtensa_frag_flags_init (prop_flags);
10564 if (fragP->tc_frag_data.is_literal)
10565 prop_flags->is_literal = TRUE;
10566 if (fragP->tc_frag_data.is_unreachable)
7fa3d080 10567 prop_flags->is_unreachable = TRUE;
43cd72b9
BW
10568 else if (fragP->tc_frag_data.is_insn)
10569 {
10570 prop_flags->is_insn = TRUE;
10571 if (fragP->tc_frag_data.is_loop_target)
10572 prop_flags->insn.is_loop_target = TRUE;
10573 if (fragP->tc_frag_data.is_branch_target)
10574 prop_flags->insn.is_branch_target = TRUE;
10575 if (fragP->tc_frag_data.is_specific_opcode
10576 || fragP->tc_frag_data.is_no_transform)
10577 prop_flags->insn.is_no_transform = TRUE;
10578 if (fragP->tc_frag_data.is_no_density)
10579 prop_flags->insn.is_no_density = TRUE;
10580 if (fragP->tc_frag_data.use_absolute_literals)
10581 prop_flags->insn.is_abslit = TRUE;
10582 }
10583 if (fragP->tc_frag_data.is_align)
10584 {
10585 prop_flags->is_align = TRUE;
10586 prop_flags->alignment = fragP->tc_frag_data.alignment;
10587 if (xtensa_frag_flags_is_empty (prop_flags))
10588 prop_flags->is_data = TRUE;
10589 }
10590}
10591
10592
7fa3d080
BW
10593static bfd_vma
10594frag_flags_to_number (const frag_flags *prop_flags)
43cd72b9
BW
10595{
10596 bfd_vma num = 0;
10597 if (prop_flags->is_literal)
10598 num |= XTENSA_PROP_LITERAL;
10599 if (prop_flags->is_insn)
10600 num |= XTENSA_PROP_INSN;
10601 if (prop_flags->is_data)
10602 num |= XTENSA_PROP_DATA;
10603 if (prop_flags->is_unreachable)
10604 num |= XTENSA_PROP_UNREACHABLE;
10605 if (prop_flags->insn.is_loop_target)
10606 num |= XTENSA_PROP_INSN_LOOP_TARGET;
10607 if (prop_flags->insn.is_branch_target)
10608 {
10609 num |= XTENSA_PROP_INSN_BRANCH_TARGET;
10610 num = SET_XTENSA_PROP_BT_ALIGN (num, prop_flags->insn.bt_align_priority);
10611 }
10612
10613 if (prop_flags->insn.is_no_density)
10614 num |= XTENSA_PROP_INSN_NO_DENSITY;
10615 if (prop_flags->insn.is_no_transform)
10616 num |= XTENSA_PROP_INSN_NO_TRANSFORM;
10617 if (prop_flags->insn.is_no_reorder)
10618 num |= XTENSA_PROP_INSN_NO_REORDER;
10619 if (prop_flags->insn.is_abslit)
10620 num |= XTENSA_PROP_INSN_ABSLIT;
10621
10622 if (prop_flags->is_align)
10623 {
10624 num |= XTENSA_PROP_ALIGN;
10625 num = SET_XTENSA_PROP_ALIGNMENT (num, prop_flags->alignment);
10626 }
10627
10628 return num;
10629}
10630
10631
10632static bfd_boolean
7fa3d080
BW
10633xtensa_frag_flags_combinable (const frag_flags *prop_flags_1,
10634 const frag_flags *prop_flags_2)
43cd72b9
BW
10635{
10636 /* Cannot combine with an end marker. */
10637
10638 if (prop_flags_1->is_literal != prop_flags_2->is_literal)
10639 return FALSE;
10640 if (prop_flags_1->is_insn != prop_flags_2->is_insn)
10641 return FALSE;
10642 if (prop_flags_1->is_data != prop_flags_2->is_data)
10643 return FALSE;
10644
10645 if (prop_flags_1->is_insn)
10646 {
10647 /* Properties of the beginning of the frag. */
10648 if (prop_flags_2->insn.is_loop_target)
10649 return FALSE;
10650 if (prop_flags_2->insn.is_branch_target)
10651 return FALSE;
10652 if (prop_flags_1->insn.is_no_density !=
10653 prop_flags_2->insn.is_no_density)
10654 return FALSE;
10655 if (prop_flags_1->insn.is_no_transform !=
10656 prop_flags_2->insn.is_no_transform)
10657 return FALSE;
10658 if (prop_flags_1->insn.is_no_reorder !=
10659 prop_flags_2->insn.is_no_reorder)
10660 return FALSE;
10661 if (prop_flags_1->insn.is_abslit !=
10662 prop_flags_2->insn.is_abslit)
10663 return FALSE;
10664 }
10665
10666 if (prop_flags_1->is_align)
10667 return FALSE;
10668
10669 return TRUE;
10670}
10671
10672
7fa3d080
BW
10673static bfd_vma
10674xt_block_aligned_size (const xtensa_block_info *xt_block)
43cd72b9
BW
10675{
10676 bfd_vma end_addr;
d77b99c9 10677 unsigned align_bits;
43cd72b9
BW
10678
10679 if (!xt_block->flags.is_align)
10680 return xt_block->size;
10681
10682 end_addr = xt_block->offset + xt_block->size;
10683 align_bits = xt_block->flags.alignment;
10684 end_addr = ((end_addr + ((1 << align_bits) -1)) >> align_bits) << align_bits;
10685 return end_addr - xt_block->offset;
10686}
10687
10688
10689static bfd_boolean
7fa3d080
BW
10690xtensa_xt_block_combine (xtensa_block_info *xt_block,
10691 const xtensa_block_info *xt_block_2)
43cd72b9
BW
10692{
10693 if (xt_block->sec != xt_block_2->sec)
10694 return FALSE;
10695 if (xt_block->offset + xt_block_aligned_size (xt_block)
10696 != xt_block_2->offset)
10697 return FALSE;
10698
10699 if (xt_block_2->size == 0
10700 && (!xt_block_2->flags.is_unreachable
10701 || xt_block->flags.is_unreachable))
10702 {
10703 if (xt_block_2->flags.is_align
10704 && xt_block->flags.is_align)
10705 {
10706 /* Nothing needed. */
10707 if (xt_block->flags.alignment >= xt_block_2->flags.alignment)
10708 return TRUE;
10709 }
10710 else
10711 {
10712 if (xt_block_2->flags.is_align)
10713 {
10714 /* Push alignment to previous entry. */
10715 xt_block->flags.is_align = xt_block_2->flags.is_align;
10716 xt_block->flags.alignment = xt_block_2->flags.alignment;
10717 }
10718 return TRUE;
10719 }
10720 }
10721 if (!xtensa_frag_flags_combinable (&xt_block->flags,
10722 &xt_block_2->flags))
10723 return FALSE;
10724
10725 xt_block->size += xt_block_2->size;
10726
10727 if (xt_block_2->flags.is_align)
10728 {
10729 xt_block->flags.is_align = TRUE;
10730 xt_block->flags.alignment = xt_block_2->flags.alignment;
10731 }
10732
10733 return TRUE;
10734}
10735
10736
7fa3d080
BW
10737static void
10738add_xt_prop_frags (segT sec,
10739 segT xt_block_sec,
10740 xtensa_block_info **xt_block,
10741 frag_flags_fn property_function)
43cd72b9
BW
10742{
10743 segment_info_type *seg_info;
10744 segment_info_type *xt_seg_info;
10745 bfd_vma seg_offset;
10746 fragS *fragP;
10747
10748 xt_seg_info = retrieve_segment_info (xt_block_sec);
10749 seg_info = retrieve_segment_info (sec);
10750 /* Build it if needed. */
10751 while (*xt_block != NULL)
10752 {
10753 xt_block = &(*xt_block)->next;
10754 }
10755 /* We are either at NULL at the beginning or at the end. */
10756
10757 /* Walk through the frags. */
10758 seg_offset = 0;
10759
10760 if (seg_info->frchainP)
10761 {
10762 for (fragP = seg_info->frchainP->frch_root; fragP;
10763 fragP = fragP->fr_next)
10764 {
10765 xtensa_block_info tmp_block;
10766 tmp_block.sec = sec;
10767 tmp_block.offset = fragP->fr_address;
10768 tmp_block.size = fragP->fr_fix;
10769 tmp_block.next = NULL;
10770 property_function (fragP, &tmp_block.flags);
10771
10772 if (!xtensa_frag_flags_is_empty (&tmp_block.flags))
10773 /* && fragP->fr_fix != 0) */
10774 {
10775 if ((*xt_block) == NULL
10776 || !xtensa_xt_block_combine (*xt_block, &tmp_block))
10777 {
10778 xtensa_block_info *new_block;
10779 if ((*xt_block) != NULL)
10780 xt_block = &(*xt_block)->next;
10781 new_block = (xtensa_block_info *)
10782 xmalloc (sizeof (xtensa_block_info));
10783 *new_block = tmp_block;
10784 *xt_block = new_block;
10785 }
10786 }
10787 }
10788 }
10789}
10790
10791\f
10792/* op_placement_info_table */
10793
10794/* op_placement_info makes it easier to determine which
10795 ops can go in which slots. */
10796
10797static void
7fa3d080 10798init_op_placement_info_table (void)
43cd72b9
BW
10799{
10800 xtensa_isa isa = xtensa_default_isa;
10801 xtensa_insnbuf ibuf = xtensa_insnbuf_alloc (isa);
10802 xtensa_opcode opcode;
10803 xtensa_format fmt;
10804 int slot;
10805 int num_opcodes = xtensa_isa_num_opcodes (isa);
10806
10807 op_placement_table = (op_placement_info_table)
10808 xmalloc (sizeof (op_placement_info) * num_opcodes);
10809 assert (xtensa_isa_num_formats (isa) < MAX_FORMATS);
10810
10811 for (opcode = 0; opcode < num_opcodes; opcode++)
10812 {
10813 op_placement_info *opi = &op_placement_table[opcode];
10814 /* FIXME: Make tinsn allocation dynamic. */
10815 if (xtensa_opcode_num_operands (isa, opcode) >= MAX_INSN_ARGS)
10816 as_fatal (_("too many operands in instruction"));
43cd72b9
BW
10817 opi->narrowest = XTENSA_UNDEFINED;
10818 opi->narrowest_size = 0x7F;
b2d179be 10819 opi->narrowest_slot = 0;
43cd72b9
BW
10820 opi->formats = 0;
10821 opi->num_formats = 0;
10822 opi->issuef = 0;
10823 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
10824 {
10825 opi->slots[fmt] = 0;
10826 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
10827 {
10828 if (xtensa_opcode_encode (isa, fmt, slot, ibuf, opcode) == 0)
10829 {
10830 int fmt_length = xtensa_format_length (isa, fmt);
10831 opi->issuef++;
10832 set_bit (fmt, opi->formats);
10833 set_bit (slot, opi->slots[fmt]);
10834 /* opi->slot_count[fmt]++; */
10835 if (fmt_length < opi->narrowest_size)
10836 {
10837 opi->narrowest = fmt;
10838 opi->narrowest_size = fmt_length;
b2d179be 10839 opi->narrowest_slot = slot;
43cd72b9 10840 }
e0001a05
NC
10841 }
10842 }
43cd72b9
BW
10843 if (opi->formats)
10844 opi->num_formats++;
e0001a05
NC
10845 }
10846 }
43cd72b9
BW
10847 xtensa_insnbuf_free (isa, ibuf);
10848}
10849
10850
10851bfd_boolean
7fa3d080 10852opcode_fits_format_slot (xtensa_opcode opcode, xtensa_format fmt, int slot)
43cd72b9
BW
10853{
10854 return bit_is_set (slot, op_placement_table[opcode].slots[fmt]);
10855}
10856
10857
10858/* If the opcode is available in a single slot format, return its size. */
10859
7fa3d080
BW
10860static int
10861xg_get_single_size (xtensa_opcode opcode)
43cd72b9 10862{
b2d179be 10863 return op_placement_table[opcode].narrowest_size;
43cd72b9
BW
10864}
10865
10866
7fa3d080
BW
10867static xtensa_format
10868xg_get_single_format (xtensa_opcode opcode)
43cd72b9 10869{
b2d179be
BW
10870 return op_placement_table[opcode].narrowest;
10871}
10872
10873
10874static int
10875xg_get_single_slot (xtensa_opcode opcode)
10876{
10877 return op_placement_table[opcode].narrowest_slot;
e0001a05
NC
10878}
10879
10880\f
10881/* Instruction Stack Functions (from "xtensa-istack.h"). */
10882
10883void
7fa3d080 10884istack_init (IStack *stack)
e0001a05
NC
10885{
10886 memset (stack, 0, sizeof (IStack));
10887 stack->ninsn = 0;
10888}
10889
10890
10891bfd_boolean
7fa3d080 10892istack_empty (IStack *stack)
e0001a05
NC
10893{
10894 return (stack->ninsn == 0);
10895}
10896
10897
10898bfd_boolean
7fa3d080 10899istack_full (IStack *stack)
e0001a05
NC
10900{
10901 return (stack->ninsn == MAX_ISTACK);
10902}
10903
10904
10905/* Return a pointer to the top IStack entry.
43cd72b9 10906 It is an error to call this if istack_empty () is TRUE. */
e0001a05
NC
10907
10908TInsn *
7fa3d080 10909istack_top (IStack *stack)
e0001a05
NC
10910{
10911 int rec = stack->ninsn - 1;
10912 assert (!istack_empty (stack));
10913 return &stack->insn[rec];
10914}
10915
10916
10917/* Add a new TInsn to an IStack.
43cd72b9 10918 It is an error to call this if istack_full () is TRUE. */
e0001a05
NC
10919
10920void
7fa3d080 10921istack_push (IStack *stack, TInsn *insn)
e0001a05
NC
10922{
10923 int rec = stack->ninsn;
10924 assert (!istack_full (stack));
43cd72b9 10925 stack->insn[rec] = *insn;
e0001a05
NC
10926 stack->ninsn++;
10927}
10928
10929
10930/* Clear space for the next TInsn on the IStack and return a pointer
43cd72b9 10931 to it. It is an error to call this if istack_full () is TRUE. */
e0001a05
NC
10932
10933TInsn *
7fa3d080 10934istack_push_space (IStack *stack)
e0001a05
NC
10935{
10936 int rec = stack->ninsn;
10937 TInsn *insn;
10938 assert (!istack_full (stack));
10939 insn = &stack->insn[rec];
10940 memset (insn, 0, sizeof (TInsn));
10941 stack->ninsn++;
10942 return insn;
10943}
10944
10945
10946/* Remove the last pushed instruction. It is an error to call this if
43cd72b9 10947 istack_empty () returns TRUE. */
e0001a05
NC
10948
10949void
7fa3d080 10950istack_pop (IStack *stack)
e0001a05
NC
10951{
10952 int rec = stack->ninsn - 1;
10953 assert (!istack_empty (stack));
10954 stack->ninsn--;
10955 memset (&stack->insn[rec], 0, sizeof (TInsn));
10956}
10957
10958\f
10959/* TInsn functions. */
10960
10961void
7fa3d080 10962tinsn_init (TInsn *dst)
e0001a05
NC
10963{
10964 memset (dst, 0, sizeof (TInsn));
10965}
10966
10967
e0001a05
NC
10968/* Get the ``num''th token of the TInsn.
10969 It is illegal to call this if num > insn->ntoks. */
10970
10971expressionS *
7fa3d080 10972tinsn_get_tok (TInsn *insn, int num)
e0001a05
NC
10973{
10974 assert (num < insn->ntok);
10975 return &insn->tok[num];
10976}
10977
10978
43cd72b9 10979/* Return TRUE if ANY of the operands in the insn are symbolic. */
e0001a05
NC
10980
10981static bfd_boolean
7fa3d080 10982tinsn_has_symbolic_operands (const TInsn *insn)
e0001a05
NC
10983{
10984 int i;
10985 int n = insn->ntok;
10986
10987 assert (insn->insn_type == ITYPE_INSN);
10988
10989 for (i = 0; i < n; ++i)
10990 {
10991 switch (insn->tok[i].X_op)
10992 {
10993 case O_register:
10994 case O_constant:
10995 break;
10996 default:
10997 return TRUE;
10998 }
10999 }
11000 return FALSE;
11001}
11002
11003
11004bfd_boolean
7fa3d080 11005tinsn_has_invalid_symbolic_operands (const TInsn *insn)
e0001a05 11006{
43cd72b9 11007 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
11008 int i;
11009 int n = insn->ntok;
11010
11011 assert (insn->insn_type == ITYPE_INSN);
11012
11013 for (i = 0; i < n; ++i)
11014 {
11015 switch (insn->tok[i].X_op)
11016 {
11017 case O_register:
11018 case O_constant:
11019 break;
43cd72b9
BW
11020 case O_big:
11021 case O_illegal:
11022 case O_absent:
11023 /* Errors for these types are caught later. */
11024 break;
11025 case O_hi16:
11026 case O_lo16:
e0001a05 11027 default:
43cd72b9
BW
11028 /* Symbolic immediates are only allowed on the last immediate
11029 operand. At this time, CONST16 is the only opcode where we
e7da6241 11030 support non-PC-relative relocations. */
43cd72b9
BW
11031 if (i != get_relaxable_immed (insn->opcode)
11032 || (xtensa_operand_is_PCrelative (isa, insn->opcode, i) != 1
11033 && insn->opcode != xtensa_const16_opcode))
11034 {
431ad2d0 11035 as_bad (_("invalid symbolic operand"));
43cd72b9
BW
11036 return TRUE;
11037 }
e0001a05
NC
11038 }
11039 }
11040 return FALSE;
11041}
11042
11043
11044/* For assembly code with complex expressions (e.g. subtraction),
11045 we have to build them in the literal pool so that
11046 their results are calculated correctly after relaxation.
11047 The relaxation only handles expressions that
11048 boil down to SYMBOL + OFFSET. */
11049
11050static bfd_boolean
7fa3d080 11051tinsn_has_complex_operands (const TInsn *insn)
e0001a05
NC
11052{
11053 int i;
11054 int n = insn->ntok;
11055 assert (insn->insn_type == ITYPE_INSN);
11056 for (i = 0; i < n; ++i)
11057 {
11058 switch (insn->tok[i].X_op)
11059 {
11060 case O_register:
11061 case O_constant:
11062 case O_symbol:
43cd72b9
BW
11063 case O_lo16:
11064 case O_hi16:
e0001a05
NC
11065 break;
11066 default:
11067 return TRUE;
11068 }
11069 }
11070 return FALSE;
11071}
11072
11073
b2d179be
BW
11074/* Encode a TInsn opcode and its constant operands into slotbuf.
11075 Return TRUE if there is a symbol in the immediate field. This
11076 function assumes that:
11077 1) The number of operands are correct.
11078 2) The insn_type is ITYPE_INSN.
11079 3) The opcode can be encoded in the specified format and slot.
11080 4) Operands are either O_constant or O_symbol, and all constants fit. */
43cd72b9
BW
11081
11082static bfd_boolean
7fa3d080
BW
11083tinsn_to_slotbuf (xtensa_format fmt,
11084 int slot,
11085 TInsn *tinsn,
11086 xtensa_insnbuf slotbuf)
43cd72b9
BW
11087{
11088 xtensa_isa isa = xtensa_default_isa;
11089 xtensa_opcode opcode = tinsn->opcode;
11090 bfd_boolean has_fixup = FALSE;
11091 int noperands = xtensa_opcode_num_operands (isa, opcode);
11092 int i;
11093
43cd72b9
BW
11094 assert (tinsn->insn_type == ITYPE_INSN);
11095 if (noperands != tinsn->ntok)
11096 as_fatal (_("operand number mismatch"));
11097
11098 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opcode))
11099 {
11100 as_bad (_("cannot encode opcode \"%s\" in the given format \"%s\""),
11101 xtensa_opcode_name (isa, opcode), xtensa_format_name (isa, fmt));
11102 return FALSE;
11103 }
11104
11105 for (i = 0; i < noperands; i++)
11106 {
11107 expressionS *expr = &tinsn->tok[i];
d77b99c9
BW
11108 int rc;
11109 unsigned line;
43cd72b9
BW
11110 char *file_name;
11111 uint32 opnd_value;
11112
11113 switch (expr->X_op)
11114 {
11115 case O_register:
11116 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11117 break;
11118 /* The register number has already been checked in
11119 expression_maybe_register, so we don't need to check here. */
11120 opnd_value = expr->X_add_number;
11121 (void) xtensa_operand_encode (isa, opcode, i, &opnd_value);
11122 rc = xtensa_operand_set_field (isa, opcode, i, fmt, slot, slotbuf,
11123 opnd_value);
11124 if (rc != 0)
11125 as_warn (_("xtensa-isa failure: %s"), xtensa_isa_error_msg (isa));
11126 break;
11127
11128 case O_constant:
11129 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11130 break;
11131 as_where (&file_name, &line);
11132 /* It is a constant and we called this function
11133 then we have to try to fit it. */
11134 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, i,
e0001a05
NC
11135 expr->X_add_number, file_name, line);
11136 break;
11137
e0001a05
NC
11138 default:
11139 has_fixup = TRUE;
11140 break;
11141 }
11142 }
43cd72b9 11143
e0001a05
NC
11144 return has_fixup;
11145}
11146
11147
b2d179be
BW
11148/* Encode a single TInsn into an insnbuf. If the opcode can only be encoded
11149 into a multi-slot instruction, fill the other slots with NOPs.
11150 Return TRUE if there is a symbol in the immediate field. See also the
11151 assumptions listed for tinsn_to_slotbuf. */
11152
11153static bfd_boolean
11154tinsn_to_insnbuf (TInsn *tinsn, xtensa_insnbuf insnbuf)
11155{
11156 static xtensa_insnbuf slotbuf = 0;
11157 static vliw_insn vinsn;
11158 xtensa_isa isa = xtensa_default_isa;
11159 bfd_boolean has_fixup = FALSE;
11160 int i;
11161
11162 if (!slotbuf)
11163 {
11164 slotbuf = xtensa_insnbuf_alloc (isa);
11165 xg_init_vinsn (&vinsn);
11166 }
11167
11168 xg_clear_vinsn (&vinsn);
11169
11170 bundle_tinsn (tinsn, &vinsn);
11171
11172 xtensa_format_encode (isa, vinsn.format, insnbuf);
11173
11174 for (i = 0; i < vinsn.num_slots; i++)
11175 {
11176 /* Only one slot may have a fix-up because the rest contains NOPs. */
11177 has_fixup |=
11178 tinsn_to_slotbuf (vinsn.format, i, &vinsn.slots[i], vinsn.slotbuf[i]);
11179 xtensa_format_set_slot (isa, vinsn.format, i, insnbuf, vinsn.slotbuf[i]);
11180 }
11181
11182 return has_fixup;
11183}
11184
11185
43cd72b9 11186/* Check the instruction arguments. Return TRUE on failure. */
e0001a05 11187
7fa3d080
BW
11188static bfd_boolean
11189tinsn_check_arguments (const TInsn *insn)
e0001a05
NC
11190{
11191 xtensa_isa isa = xtensa_default_isa;
11192 xtensa_opcode opcode = insn->opcode;
11193
11194 if (opcode == XTENSA_UNDEFINED)
11195 {
11196 as_bad (_("invalid opcode"));
11197 return TRUE;
11198 }
11199
43cd72b9 11200 if (xtensa_opcode_num_operands (isa, opcode) > insn->ntok)
e0001a05
NC
11201 {
11202 as_bad (_("too few operands"));
11203 return TRUE;
11204 }
11205
43cd72b9 11206 if (xtensa_opcode_num_operands (isa, opcode) < insn->ntok)
e0001a05
NC
11207 {
11208 as_bad (_("too many operands"));
11209 return TRUE;
11210 }
11211 return FALSE;
11212}
11213
11214
11215/* Load an instruction from its encoded form. */
11216
11217static void
7fa3d080 11218tinsn_from_chars (TInsn *tinsn, char *f, int slot)
e0001a05 11219{
43cd72b9 11220 vliw_insn vinsn;
e0001a05 11221
43cd72b9
BW
11222 xg_init_vinsn (&vinsn);
11223 vinsn_from_chars (&vinsn, f);
11224
11225 *tinsn = vinsn.slots[slot];
11226 xg_free_vinsn (&vinsn);
11227}
e0001a05 11228
43cd72b9
BW
11229
11230static void
7fa3d080
BW
11231tinsn_from_insnbuf (TInsn *tinsn,
11232 xtensa_insnbuf slotbuf,
11233 xtensa_format fmt,
11234 int slot)
43cd72b9
BW
11235{
11236 int i;
11237 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
11238
11239 /* Find the immed. */
43cd72b9
BW
11240 tinsn_init (tinsn);
11241 tinsn->insn_type = ITYPE_INSN;
11242 tinsn->is_specific_opcode = FALSE; /* must not be specific */
11243 tinsn->opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
11244 tinsn->ntok = xtensa_opcode_num_operands (isa, tinsn->opcode);
11245 for (i = 0; i < tinsn->ntok; i++)
e0001a05 11246 {
43cd72b9
BW
11247 set_expr_const (&tinsn->tok[i],
11248 xtensa_insnbuf_get_operand (slotbuf, fmt, slot,
11249 tinsn->opcode, i));
e0001a05
NC
11250 }
11251}
11252
11253
11254/* Read the value of the relaxable immed from the fr_symbol and fr_offset. */
11255
11256static void
7fa3d080 11257tinsn_immed_from_frag (TInsn *tinsn, fragS *fragP, int slot)
e0001a05 11258{
43cd72b9 11259 xtensa_opcode opcode = tinsn->opcode;
e0001a05
NC
11260 int opnum;
11261
43cd72b9 11262 if (fragP->tc_frag_data.slot_symbols[slot])
e0001a05
NC
11263 {
11264 opnum = get_relaxable_immed (opcode);
43cd72b9 11265 assert (opnum >= 0);
e7da6241
BW
11266 set_expr_symbol_offset (&tinsn->tok[opnum],
11267 fragP->tc_frag_data.slot_symbols[slot],
11268 fragP->tc_frag_data.slot_offsets[slot]);
e0001a05
NC
11269 }
11270}
11271
11272
11273static int
7fa3d080 11274get_num_stack_text_bytes (IStack *istack)
e0001a05
NC
11275{
11276 int i;
11277 int text_bytes = 0;
11278
11279 for (i = 0; i < istack->ninsn; i++)
11280 {
43cd72b9
BW
11281 TInsn *tinsn = &istack->insn[i];
11282 if (tinsn->insn_type == ITYPE_INSN)
11283 text_bytes += xg_get_single_size (tinsn->opcode);
e0001a05
NC
11284 }
11285 return text_bytes;
11286}
11287
11288
11289static int
7fa3d080 11290get_num_stack_literal_bytes (IStack *istack)
e0001a05
NC
11291{
11292 int i;
11293 int lit_bytes = 0;
11294
11295 for (i = 0; i < istack->ninsn; i++)
11296 {
43cd72b9
BW
11297 TInsn *tinsn = &istack->insn[i];
11298 if (tinsn->insn_type == ITYPE_LITERAL && tinsn->ntok == 1)
e0001a05
NC
11299 lit_bytes += 4;
11300 }
11301 return lit_bytes;
11302}
11303
43cd72b9
BW
11304\f
11305/* vliw_insn functions. */
11306
7fa3d080
BW
11307static void
11308xg_init_vinsn (vliw_insn *v)
43cd72b9
BW
11309{
11310 int i;
11311 xtensa_isa isa = xtensa_default_isa;
11312
11313 xg_clear_vinsn (v);
11314
11315 v->insnbuf = xtensa_insnbuf_alloc (isa);
11316 if (v->insnbuf == NULL)
11317 as_fatal (_("out of memory"));
11318
11319 for (i = 0; i < MAX_SLOTS; i++)
11320 {
43cd72b9
BW
11321 v->slotbuf[i] = xtensa_insnbuf_alloc (isa);
11322 if (v->slotbuf[i] == NULL)
11323 as_fatal (_("out of memory"));
11324 }
11325}
11326
11327
7fa3d080
BW
11328static void
11329xg_clear_vinsn (vliw_insn *v)
43cd72b9
BW
11330{
11331 int i;
65738a7d
BW
11332
11333 memset (v, 0, offsetof (vliw_insn, insnbuf));
11334
43cd72b9
BW
11335 v->format = XTENSA_UNDEFINED;
11336 v->num_slots = 0;
11337 v->inside_bundle = FALSE;
11338
11339 if (xt_saved_debug_type != DEBUG_NONE)
11340 debug_type = xt_saved_debug_type;
11341
11342 for (i = 0; i < MAX_SLOTS; i++)
65738a7d 11343 v->slots[i].opcode = XTENSA_UNDEFINED;
43cd72b9
BW
11344}
11345
11346
7fa3d080
BW
11347static bfd_boolean
11348vinsn_has_specific_opcodes (vliw_insn *v)
43cd72b9
BW
11349{
11350 int i;
c138bc38 11351
43cd72b9
BW
11352 for (i = 0; i < v->num_slots; i++)
11353 {
11354 if (v->slots[i].is_specific_opcode)
11355 return TRUE;
11356 }
11357 return FALSE;
11358}
11359
11360
7fa3d080
BW
11361static void
11362xg_free_vinsn (vliw_insn *v)
43cd72b9
BW
11363{
11364 int i;
11365 xtensa_insnbuf_free (xtensa_default_isa, v->insnbuf);
11366 for (i = 0; i < MAX_SLOTS; i++)
11367 xtensa_insnbuf_free (xtensa_default_isa, v->slotbuf[i]);
11368}
11369
11370
e7da6241
BW
11371/* Encode a vliw_insn into an insnbuf. Return TRUE if there are any symbolic
11372 operands. See also the assumptions listed for tinsn_to_slotbuf. */
43cd72b9
BW
11373
11374static bfd_boolean
7fa3d080
BW
11375vinsn_to_insnbuf (vliw_insn *vinsn,
11376 char *frag_offset,
11377 fragS *fragP,
11378 bfd_boolean record_fixup)
43cd72b9
BW
11379{
11380 xtensa_isa isa = xtensa_default_isa;
11381 xtensa_format fmt = vinsn->format;
11382 xtensa_insnbuf insnbuf = vinsn->insnbuf;
11383 int slot;
11384 bfd_boolean has_fixup = FALSE;
11385
11386 xtensa_format_encode (isa, fmt, insnbuf);
11387
11388 for (slot = 0; slot < vinsn->num_slots; slot++)
11389 {
11390 TInsn *tinsn = &vinsn->slots[slot];
11391 bfd_boolean tinsn_has_fixup =
11392 tinsn_to_slotbuf (vinsn->format, slot, tinsn,
11393 vinsn->slotbuf[slot]);
11394
11395 xtensa_format_set_slot (isa, fmt, slot,
11396 insnbuf, vinsn->slotbuf[slot]);
e7da6241 11397 if (tinsn_has_fixup)
43cd72b9
BW
11398 {
11399 int i;
11400 xtensa_opcode opcode = tinsn->opcode;
11401 int noperands = xtensa_opcode_num_operands (isa, opcode);
11402 has_fixup = TRUE;
11403
11404 for (i = 0; i < noperands; i++)
11405 {
11406 expressionS* expr = &tinsn->tok[i];
11407 switch (expr->X_op)
11408 {
11409 case O_symbol:
11410 case O_lo16:
11411 case O_hi16:
11412 if (get_relaxable_immed (opcode) == i)
11413 {
e7da6241
BW
11414 /* Add a fix record for the instruction, except if this
11415 function is being called prior to relaxation, i.e.,
11416 if record_fixup is false, and the instruction might
11417 be relaxed later. */
11418 if (record_fixup
11419 || tinsn->is_specific_opcode
11420 || !xg_is_relaxable_insn (tinsn, 0))
43cd72b9 11421 {
e7da6241
BW
11422 xg_add_opcode_fix (tinsn, i, fmt, slot, expr, fragP,
11423 frag_offset - fragP->fr_literal);
43cd72b9
BW
11424 }
11425 else
11426 {
e7da6241
BW
11427 if (expr->X_op != O_symbol)
11428 as_bad (_("invalid operand"));
43cd72b9
BW
11429 tinsn->symbol = expr->X_add_symbol;
11430 tinsn->offset = expr->X_add_number;
11431 }
11432 }
11433 else
e7da6241 11434 as_bad (_("symbolic operand not allowed"));
43cd72b9
BW
11435 break;
11436
11437 case O_constant:
11438 case O_register:
11439 break;
11440
43cd72b9 11441 default:
e7da6241 11442 as_bad (_("expression too complex"));
43cd72b9
BW
11443 break;
11444 }
11445 }
11446 }
11447 }
11448
11449 return has_fixup;
11450}
11451
11452
11453static void
7fa3d080 11454vinsn_from_chars (vliw_insn *vinsn, char *f)
43cd72b9
BW
11455{
11456 static xtensa_insnbuf insnbuf = NULL;
11457 static xtensa_insnbuf slotbuf = NULL;
11458 int i;
11459 xtensa_format fmt;
11460 xtensa_isa isa = xtensa_default_isa;
11461
11462 if (!insnbuf)
11463 {
11464 insnbuf = xtensa_insnbuf_alloc (isa);
11465 slotbuf = xtensa_insnbuf_alloc (isa);
11466 }
11467
d77b99c9 11468 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) f, 0);
43cd72b9
BW
11469 fmt = xtensa_format_decode (isa, insnbuf);
11470 if (fmt == XTENSA_UNDEFINED)
11471 as_fatal (_("cannot decode instruction format"));
11472 vinsn->format = fmt;
11473 vinsn->num_slots = xtensa_format_num_slots (isa, fmt);
11474
11475 for (i = 0; i < vinsn->num_slots; i++)
11476 {
11477 TInsn *tinsn = &vinsn->slots[i];
11478 xtensa_format_get_slot (isa, fmt, i, insnbuf, slotbuf);
11479 tinsn_from_insnbuf (tinsn, slotbuf, fmt, i);
11480 }
11481}
11482
e0001a05
NC
11483\f
11484/* Expression utilities. */
11485
43cd72b9 11486/* Return TRUE if the expression is an integer constant. */
e0001a05
NC
11487
11488bfd_boolean
7fa3d080 11489expr_is_const (const expressionS *s)
e0001a05
NC
11490{
11491 return (s->X_op == O_constant);
11492}
11493
11494
11495/* Get the expression constant.
43cd72b9 11496 Calling this is illegal if expr_is_const () returns TRUE. */
e0001a05
NC
11497
11498offsetT
7fa3d080 11499get_expr_const (const expressionS *s)
e0001a05
NC
11500{
11501 assert (expr_is_const (s));
11502 return s->X_add_number;
11503}
11504
11505
11506/* Set the expression to a constant value. */
11507
11508void
7fa3d080 11509set_expr_const (expressionS *s, offsetT val)
e0001a05
NC
11510{
11511 s->X_op = O_constant;
11512 s->X_add_number = val;
11513 s->X_add_symbol = NULL;
11514 s->X_op_symbol = NULL;
11515}
11516
11517
43cd72b9 11518bfd_boolean
7fa3d080 11519expr_is_register (const expressionS *s)
43cd72b9
BW
11520{
11521 return (s->X_op == O_register);
11522}
11523
11524
11525/* Get the expression constant.
11526 Calling this is illegal if expr_is_const () returns TRUE. */
11527
11528offsetT
7fa3d080 11529get_expr_register (const expressionS *s)
43cd72b9
BW
11530{
11531 assert (expr_is_register (s));
11532 return s->X_add_number;
11533}
11534
11535
e0001a05
NC
11536/* Set the expression to a symbol + constant offset. */
11537
11538void
7fa3d080 11539set_expr_symbol_offset (expressionS *s, symbolS *sym, offsetT offset)
e0001a05
NC
11540{
11541 s->X_op = O_symbol;
11542 s->X_add_symbol = sym;
11543 s->X_op_symbol = NULL; /* unused */
11544 s->X_add_number = offset;
11545}
11546
11547
43cd72b9
BW
11548/* Return TRUE if the two expressions are equal. */
11549
e0001a05 11550bfd_boolean
7fa3d080 11551expr_is_equal (expressionS *s1, expressionS *s2)
e0001a05
NC
11552{
11553 if (s1->X_op != s2->X_op)
11554 return FALSE;
11555 if (s1->X_add_symbol != s2->X_add_symbol)
11556 return FALSE;
11557 if (s1->X_op_symbol != s2->X_op_symbol)
11558 return FALSE;
11559 if (s1->X_add_number != s2->X_add_number)
11560 return FALSE;
11561 return TRUE;
11562}
11563
11564
11565static void
7fa3d080 11566copy_expr (expressionS *dst, const expressionS *src)
e0001a05
NC
11567{
11568 memcpy (dst, src, sizeof (expressionS));
11569}
11570
11571\f
9456465c 11572/* Support for the "--rename-section" option. */
e0001a05
NC
11573
11574struct rename_section_struct
11575{
11576 char *old_name;
11577 char *new_name;
11578 struct rename_section_struct *next;
11579};
11580
11581static struct rename_section_struct *section_rename;
11582
11583
9456465c
BW
11584/* Parse the string "oldname=new_name(:oldname2=new_name2)*" and add
11585 entries to the section_rename list. Note: Specifying multiple
11586 renamings separated by colons is not documented and is retained only
11587 for backward compatibility. */
e0001a05 11588
7fa3d080
BW
11589static void
11590build_section_rename (const char *arg)
e0001a05 11591{
9456465c 11592 struct rename_section_struct *r;
e0001a05
NC
11593 char *this_arg = NULL;
11594 char *next_arg = NULL;
11595
9456465c 11596 for (this_arg = xstrdup (arg); this_arg != NULL; this_arg = next_arg)
e0001a05 11597 {
9456465c
BW
11598 char *old_name, *new_name;
11599
e0001a05
NC
11600 if (this_arg)
11601 {
11602 next_arg = strchr (this_arg, ':');
11603 if (next_arg)
11604 {
11605 *next_arg = '\0';
11606 next_arg++;
11607 }
11608 }
e0001a05 11609
9456465c
BW
11610 old_name = this_arg;
11611 new_name = strchr (this_arg, '=');
e0001a05 11612
9456465c
BW
11613 if (*old_name == '\0')
11614 {
11615 as_warn (_("ignoring extra '-rename-section' delimiter ':'"));
11616 continue;
11617 }
11618 if (!new_name || new_name[1] == '\0')
11619 {
11620 as_warn (_("ignoring invalid '-rename-section' specification: '%s'"),
11621 old_name);
11622 continue;
11623 }
11624 *new_name = '\0';
11625 new_name++;
e0001a05 11626
9456465c
BW
11627 /* Check for invalid section renaming. */
11628 for (r = section_rename; r != NULL; r = r->next)
11629 {
11630 if (strcmp (r->old_name, old_name) == 0)
11631 as_bad (_("section %s renamed multiple times"), old_name);
11632 if (strcmp (r->new_name, new_name) == 0)
11633 as_bad (_("multiple sections remapped to output section %s"),
11634 new_name);
11635 }
e0001a05 11636
9456465c
BW
11637 /* Now add it. */
11638 r = (struct rename_section_struct *)
11639 xmalloc (sizeof (struct rename_section_struct));
11640 r->old_name = xstrdup (old_name);
11641 r->new_name = xstrdup (new_name);
11642 r->next = section_rename;
11643 section_rename = r;
e0001a05 11644 }
e0001a05
NC
11645}
11646
11647
9456465c
BW
11648char *
11649xtensa_section_rename (char *name)
e0001a05
NC
11650{
11651 struct rename_section_struct *r = section_rename;
11652
11653 for (r = section_rename; r != NULL; r = r->next)
43cd72b9
BW
11654 {
11655 if (strcmp (r->old_name, name) == 0)
11656 return r->new_name;
11657 }
e0001a05
NC
11658
11659 return name;
11660}
This page took 0.831408 seconds and 4 git commands to generate.