gas/
[deliverable/binutils-gdb.git] / gas / config / tc-xtensa.h
CommitLineData
e0001a05 1/* tc-xtensa.h -- Header file for tc-xtensa.c.
aa820537
AM
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
e0001a05
NC
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
ec2655a6 9 the Free Software Foundation; either version 3, or (at your option)
e0001a05
NC
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
19 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
20 02110-1301, USA. */
e0001a05
NC
21
22#ifndef TC_XTENSA
23#define TC_XTENSA 1
24
e0001a05 25struct fix;
e0001a05 26
e0001a05
NC
27#ifndef OBJ_ELF
28#error Xtensa support requires ELF object format
29#endif
30
43cd72b9 31#include "xtensa-isa.h"
e0001a05
NC
32#include "xtensa-config.h"
33
34#define TARGET_BYTES_BIG_ENDIAN XCHAL_HAVE_BE
35
36
43cd72b9 37/* Maximum number of opcode slots in a VLIW instruction. */
b08b5071 38#define MAX_SLOTS 15
43cd72b9
BW
39
40
41/* For all xtensa relax states except RELAX_DESIRE_ALIGN and
42 RELAX_DESIRE_ALIGN_IF_TARGET, the amount a frag might grow is stored
43 in the fr_var field. For the two exceptions, fr_var is a float value
44 that records the frequency with which the following instruction is
45 executed as a branch target. The aligner uses this information to
46 tell which targets are most important to be aligned. */
47
48enum xtensa_relax_statesE
49{
58502fec
BW
50 RELAX_XTENSA_NONE,
51
43cd72b9
BW
52 RELAX_ALIGN_NEXT_OPCODE,
53 /* Use the first opcode of the next fragment to determine the
54 alignment requirements. This is ONLY used for LOOPs currently. */
55
56 RELAX_CHECK_ALIGN_NEXT_OPCODE,
57 /* The next non-empty frag contains a loop instruction. Check to see
58 if it is correctly aligned, but do not align it. */
59
60 RELAX_DESIRE_ALIGN_IF_TARGET,
61 /* These are placed in front of labels and converted to either
62 RELAX_DESIRE_ALIGN / RELAX_LOOP_END or rs_fill of 0 before
63 relaxation begins. */
64
65 RELAX_ADD_NOP_IF_A0_B_RETW,
66 /* These are placed in front of conditional branches. Before
67 relaxation begins, they are turned into either NOPs for branches
68 immediately followed by RETW or RETW.N or rs_fills of 0. This is
69 used to avoid a hardware bug in some early versions of the
70 processor. */
71
72 RELAX_ADD_NOP_IF_PRE_LOOP_END,
73 /* These are placed after JX instructions. Before relaxation begins,
74 they are turned into either NOPs, if the JX is one instruction
75 before a loop end label, or rs_fills of 0. This is used to avoid a
76 hardware interlock issue prior to Xtensa version T1040. */
77
78 RELAX_ADD_NOP_IF_SHORT_LOOP,
79 /* These are placed after LOOP instructions and turned into NOPs when:
80 (1) there are less than 3 instructions in the loop; we place 2 of
81 these in a row to add up to 2 NOPS in short loops; or (2) the
82 instructions in the loop do not include a branch or jump.
83 Otherwise they are turned into rs_fills of 0 before relaxation
84 begins. This is used to avoid hardware bug PR3830. */
85
86 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
87 /* These are placed after LOOP instructions and turned into NOPs if
88 there are less than 12 bytes to the end of some other loop's end.
89 Otherwise they are turned into rs_fills of 0 before relaxation
90 begins. This is used to avoid hardware bug PR3830. */
91
92 RELAX_DESIRE_ALIGN,
93 /* The next fragment would like its first instruction to NOT cross an
94 instruction fetch boundary. */
95
96 RELAX_MAYBE_DESIRE_ALIGN,
97 /* The next fragment might like its first instruction to NOT cross an
98 instruction fetch boundary. These are placed after a branch that
99 might be relaxed. If the branch is relaxed, then this frag will be
100 a branch target and this frag will be changed to RELAX_DESIRE_ALIGN
101 frag. */
102
103 RELAX_LOOP_END,
104 /* This will be turned into a NOP or NOP.N if the previous instruction
105 is expanded to negate a loop. */
106
107 RELAX_LOOP_END_ADD_NOP,
108 /* When the code density option is available, this will generate a
109 NOP.N marked RELAX_NARROW. Otherwise, it will create an rs_fill
3b492825
BW
110 fragment with a NOP in it. Once a frag has been converted to
111 RELAX_LOOP_END_ADD_NOP, it should never be changed back to
112 RELAX_LOOP_END. */
43cd72b9
BW
113
114 RELAX_LITERAL,
115 /* Another fragment could generate an expansion here but has not yet. */
116
117 RELAX_LITERAL_NR,
118 /* Expansion has been generated by an instruction that generates a
119 literal. However, the stretch has NOT been reported yet in this
120 fragment. */
121
122 RELAX_LITERAL_FINAL,
123 /* Expansion has been generated by an instruction that generates a
124 literal. */
125
126 RELAX_LITERAL_POOL_BEGIN,
127 RELAX_LITERAL_POOL_END,
128 /* Technically these are not relaxations at all but mark a location
129 to store literals later. Note that fr_var stores the frchain for
130 BEGIN frags and fr_var stores now_seg for END frags. */
131
132 RELAX_NARROW,
133 /* The last instruction in this fragment (at->fr_opcode) can be
134 freely replaced with a single wider instruction if a future
135 alignment desires or needs it. */
136
137 RELAX_IMMED,
138 /* The last instruction in this fragment (at->fr_opcode) contains
b81bf389
BW
139 an immediate or symbol. If the value does not fit, relax the
140 opcode using expansions from the relax table. */
c138bc38 141
43cd72b9
BW
142 RELAX_IMMED_STEP1,
143 /* The last instruction in this fragment (at->fr_opcode) contains a
b81bf389 144 literal. It has already been expanded 1 step. */
43cd72b9
BW
145
146 RELAX_IMMED_STEP2,
147 /* The last instruction in this fragment (at->fr_opcode) contains a
b81bf389
BW
148 literal. It has already been expanded 2 steps. */
149
150 RELAX_IMMED_STEP3,
151 /* The last instruction in this fragment (at->fr_opcode) contains a
152 literal. It has already been expanded 3 steps. */
43cd72b9
BW
153
154 RELAX_SLOTS,
155 /* There are instructions within the last VLIW instruction that need
156 relaxation. Find the relaxation based on the slot info in
157 xtensa_frag_type. Relaxations that deal with particular opcodes
158 are slot-based (e.g., converting a MOVI to an L32R). Relaxations
159 that deal with entire instructions, such as alignment, are not
160 slot-based. */
161
162 RELAX_FILL_NOP,
163 /* This marks the location of a pipeline stall. We can fill these guys
164 in for alignment of any size. */
165
166 RELAX_UNREACHABLE,
167 /* This marks the location as unreachable. The assembler may widen or
168 narrow this area to meet alignment requirements of nearby
169 instructions. */
170
171 RELAX_MAYBE_UNREACHABLE,
172 /* This marks the location as possibly unreachable. These are placed
173 after a branch that may be relaxed into a branch and jump. If the
c138bc38 174 branch is relaxed, then this frag will be converted to a
43cd72b9
BW
175 RELAX_UNREACHABLE frag. */
176
99ded152
BW
177 RELAX_ORG,
178 /* This marks the location as having previously been an rs_org frag.
179 rs_org frags are converted to fill-zero frags immediately after
180 relaxation. However, we need to remember where they were so we can
181 prevent the linker from changing the size of any frag between the
182 section start and the org frag. */
183
43cd72b9
BW
184 RELAX_NONE
185};
186
187/* This is used as a stopper to bound the number of steps that
188 can be taken. */
b81bf389 189#define RELAX_IMMED_MAXSTEPS (RELAX_IMMED_STEP3 - RELAX_IMMED)
43cd72b9 190
e0001a05
NC
191struct xtensa_frag_type
192{
43cd72b9
BW
193 /* Info about the current state of assembly, e.g., transform,
194 absolute_literals, etc. These need to be passed to the backend and
195 then to the object file.
196
197 When is_assembly_state_set is false, the frag inherits some of the
198 state settings from the previous frag in this segment. Because it
199 is not possible to intercept all fragment closures (frag_more and
200 frag_append_1_char can close a frag), we use a pass after initial
201 assembly to fill in the assembly states. */
202
203 unsigned int is_assembly_state_set : 1;
204 unsigned int is_no_density : 1;
205 unsigned int is_no_transform : 1;
7c834684 206 unsigned int use_longcalls : 1;
43cd72b9
BW
207 unsigned int use_absolute_literals : 1;
208
209 /* Inhibits relaxation of machine-dependent alignment frags the
210 first time through a relaxation.... */
211 unsigned int relax_seen : 1;
212
0fa77c95 213 /* Information that is needed in the object file and set when known. */
43cd72b9
BW
214 unsigned int is_literal : 1;
215 unsigned int is_loop_target : 1;
216 unsigned int is_branch_target : 1;
217 unsigned int is_insn : 1;
218 unsigned int is_unreachable : 1;
e0001a05 219
43cd72b9 220 unsigned int is_specific_opcode : 1; /* also implies no_transform */
e0001a05 221
43cd72b9
BW
222 unsigned int is_align : 1;
223 unsigned int is_text_align : 1;
224 unsigned int alignment : 5;
225
226 /* A frag with this bit set is the first in a loop that actually
227 contains an instruction. */
228 unsigned int is_first_loop_insn : 1;
e0001a05 229
b5e4a23d
BW
230 /* A frag with this bit set is a branch that we are using to
231 align branch targets as if it were a normal narrow instruction. */
232 unsigned int is_aligning_branch : 1;
233
e0001a05
NC
234 /* For text fragments that can generate literals at relax time, this
235 variable points to the frag where the literal will be stored. For
236 literal frags, this variable points to the nearest literal pool
237 location frag. This literal frag will be moved to after this
c48aaca0
BW
238 location. For RELAX_LITERAL_POOL_BEGIN frags, this field points
239 to the frag immediately before the corresponding RELAX_LITERAL_POOL_END
240 frag, to make moving frags for this literal pool efficient. */
e0001a05
NC
241 fragS *literal_frag;
242
243 /* The destination segment for literal frags. (Note that this is only
dd49a749
BW
244 valid after xtensa_move_literals.) This field is also used for
245 LITERAL_POOL_END frags. */
e0001a05
NC
246 segT lit_seg;
247
dd49a749
BW
248 /* Frag chain for LITERAL_POOL_BEGIN frags. */
249 struct frchain *lit_frchain;
250
e0001a05
NC
251 /* For the relaxation scheme, some literal fragments can have their
252 expansions modified by an instruction that relaxes. */
43cd72b9
BW
253 int text_expansion[MAX_SLOTS];
254 int literal_expansion[MAX_SLOTS];
255 int unreported_expansion;
256
19e8f41a
BW
257 /* For slots that have a free register for relaxation, record that
258 register. */
259 expressionS free_reg[MAX_SLOTS];
260
43cd72b9
BW
261 /* For text fragments that can generate literals at relax time: */
262 fragS *literal_frags[MAX_SLOTS];
263 enum xtensa_relax_statesE slot_subtypes[MAX_SLOTS];
264 symbolS *slot_symbols[MAX_SLOTS];
43cd72b9
BW
265 offsetT slot_offsets[MAX_SLOTS];
266
983f90e3
SA
267 /* When marking frags after this one in the chain as no transform,
268 cache the last one in the chain, so that we can skip to the
269 end of the chain. */
270 fragS *no_transform_end;
e0001a05
NC
271};
272
43cd72b9
BW
273
274/* For VLIW support, we need to know what slot a fixup applies to. */
275typedef struct xtensa_fix_data_struct
276{
277 int slot;
278 symbolS *X_add_symbol;
279 offsetT X_add_number;
280} xtensa_fix_data;
281
282
283/* Structure to record xtensa-specific symbol information. */
284typedef struct xtensa_symfield_type
e0001a05 285{
43cd72b9
BW
286 unsigned int is_loop_target : 1;
287 unsigned int is_branch_target : 1;
6a7eedfe 288 symbolS *next_expr_symbol;
43cd72b9
BW
289} xtensa_symfield_type;
290
291
292/* Structure for saving information about a block of property data
293 for frags that have the same flags. The forward reference is
294 in this header file. The actual definition is in tc-xtensa.c. */
295struct xtensa_block_info_struct;
296typedef struct xtensa_block_info_struct xtensa_block_info;
297
e0001a05 298
43cd72b9 299/* Property section types. */
e0001a05
NC
300typedef enum
301{
e0001a05 302 xt_literal_sec,
43cd72b9 303 xt_prop_sec,
e0001a05
NC
304 max_xt_sec
305} xt_section_type;
306
307typedef struct xtensa_segment_info_struct
308{
309 fragS *literal_pool_loc;
310 xtensa_block_info *blocks[max_xt_sec];
311} xtensa_segment_info;
312
e0001a05 313
7fa3d080
BW
314extern const char *xtensa_target_format (void);
315extern void xtensa_init_fix_data (struct fix *);
316extern void xtensa_frag_init (fragS *);
317extern int xtensa_force_relocation (struct fix *);
30f725a1 318extern int xtensa_validate_fix_sub (struct fix *);
7fa3d080
BW
319extern void xtensa_frob_label (struct symbol *);
320extern void xtensa_end (void);
321extern void xtensa_post_relax_hook (void);
322extern void xtensa_file_arch_init (bfd *);
323extern void xtensa_flush_pending_output (void);
324extern bfd_boolean xtensa_fix_adjustable (struct fix *);
325extern void xtensa_symbol_new_hook (symbolS *);
326extern long xtensa_relax_frag (fragS *, long, int *);
327extern void xtensa_elf_section_change_hook (void);
328extern int xtensa_unrecognized_line (int);
329extern bfd_boolean xtensa_check_inside_bundle (void);
330extern void xtensa_handle_align (fragS *);
9456465c 331extern char *xtensa_section_rename (char *);
e0001a05
NC
332
333#define TARGET_FORMAT xtensa_target_format ()
334#define TARGET_ARCH bfd_arch_xtensa
335#define TC_SEGMENT_INFO_TYPE xtensa_segment_info
43cd72b9
BW
336#define TC_SYMFIELD_TYPE struct xtensa_symfield_type
337#define TC_FIX_TYPE xtensa_fix_data
338#define TC_INIT_FIX_DATA(x) xtensa_init_fix_data (x)
e0001a05
NC
339#define TC_FRAG_TYPE struct xtensa_frag_type
340#define TC_FRAG_INIT(frag) xtensa_frag_init (frag)
43cd72b9 341#define TC_FORCE_RELOCATION(fix) xtensa_force_relocation (fix)
30f725a1
BW
342#define TC_FORCE_RELOCATION_SUB_SAME(fix, seg) \
343 (! SEG_NORMAL (seg) || xtensa_force_relocation (fix))
5db484ff 344#define TC_VALIDATE_FIX_SUB(fix, seg) xtensa_validate_fix_sub (fix)
43cd72b9 345#define NO_PSEUDO_DOT xtensa_check_inside_bundle ()
e0001a05 346#define tc_canonicalize_symbol_name(s) xtensa_section_rename (s)
9456465c 347#define tc_canonicalize_section_name(s) xtensa_section_rename (s)
e0001a05
NC
348#define tc_init_after_args() xtensa_file_arch_init (stdoutput)
349#define tc_fix_adjustable(fix) xtensa_fix_adjustable (fix)
350#define tc_frob_label(sym) xtensa_frob_label (sym)
43cd72b9 351#define tc_unrecognized_line(ch) xtensa_unrecognized_line (ch)
6a7eedfe 352#define tc_symbol_new_hook(sym) xtensa_symbol_new_hook (sym)
43cd72b9
BW
353#define md_do_align(a,b,c,d,e) xtensa_flush_pending_output ()
354#define md_elf_section_change_hook xtensa_elf_section_change_hook
e0001a05
NC
355#define md_end xtensa_end
356#define md_flush_pending_output() xtensa_flush_pending_output ()
357#define md_operand(x)
358#define TEXT_SECTION_NAME xtensa_section_rename (".text")
359#define DATA_SECTION_NAME xtensa_section_rename (".data")
360#define BSS_SECTION_NAME xtensa_section_rename (".bss")
43cd72b9 361#define HANDLE_ALIGN(fragP) xtensa_handle_align (fragP)
cf523b8e 362#define MAX_MEM_FOR_RS_ALIGN_CODE 1
e0001a05
NC
363
364
365/* The renumber_section function must be mapped over all the sections
366 after calling xtensa_post_relax_hook. That function is static in
367 write.c so it cannot be called from xtensa_post_relax_hook itself. */
368
369#define md_post_relax_hook \
370 do \
371 { \
372 int i = 0; \
373 xtensa_post_relax_hook (); \
374 bfd_map_over_sections (stdoutput, renumber_sections, &i); \
375 } \
376 while (0)
377
378
379/* Because xtensa relaxation can insert a new literal into the middle of
380 fragment and thus require re-running the relaxation pass on the
381 section, we need an explicit flag here. We explicitly use the name
382 "stretched" here to avoid changing the source code in write.c. */
383
384#define md_relax_frag(segment, fragP, stretch) \
385 xtensa_relax_frag (fragP, stretch, &stretched)
386
ee6365aa
BW
387/* Only allow call frame debug info optimization when linker relaxation is
388 not enabled as otherwise we could generate the DWARF directives without
389 the relocs necessary to patch them up. */
390#define md_allow_eh_opt (linkrelax == 0)
e0001a05
NC
391
392#define LOCAL_LABELS_FB 1
393#define WORKING_DOT_WORD 1
394#define DOUBLESLASH_LINE_COMMENTS
395#define TC_HANDLES_FX_DONE
396#define TC_FINALIZE_SYMS_BEFORE_SIZE_SEG 0
43cd72b9 397#define TC_LINKRELAX_FIXUP(SEG) 0
e0001a05 398#define MD_APPLY_SYM_VALUE(FIX) 0
43cd72b9
BW
399#define SUB_SEGMENT_ALIGN(SEG, FRCHAIN) 0
400
1737851b
BW
401/* Use line number format that is amenable to linker relaxation. */
402#define DWARF2_USE_FIXED_ADVANCE_PC (linkrelax != 0)
403
43cd72b9
BW
404
405/* Resource reservation info functions. */
406
407/* Returns the number of copies of a particular unit. */
408typedef int (*unit_num_copies_func) (void *, xtensa_funcUnit);
409
410/* Returns the number of units the opcode uses. */
411typedef int (*opcode_num_units_func) (void *, xtensa_opcode);
412
c138bc38 413/* Given an opcode and an index into the opcode's funcUnit list,
43cd72b9
BW
414 returns the unit used for the index. */
415typedef int (*opcode_funcUnit_use_unit_func) (void *, xtensa_opcode, int);
416
c138bc38 417/* Given an opcode and an index into the opcode's funcUnit list,
43cd72b9
BW
418 returns the cycle during which the unit is used. */
419typedef int (*opcode_funcUnit_use_stage_func) (void *, xtensa_opcode, int);
420
c138bc38 421/* The above typedefs parameterize the resource_table so that the
43cd72b9 422 optional scheduler doesn't need its own resource reservation system.
c138bc38
BW
423
424 For simple resource checking, which is all that happens normally,
425 the functions will be as follows (with some wrapping to make the
426 interface more convenient):
43cd72b9
BW
427
428 unit_num_copies_func = xtensa_funcUnit_num_copies
429 opcode_num_units_func = xtensa_opcode_num_funcUnit_uses
430 opcode_funcUnit_use_unit_func = xtensa_opcode_funcUnit_use->unit
431 opcode_funcUnit_use_stage_func = xtensa_opcode_funcUnit_use->stage
432
c138bc38 433 Of course the optional scheduler has its own reservation table
43cd72b9
BW
434 and functions. */
435
7fa3d080
BW
436int opcode_funcUnit_use_unit (void *, xtensa_opcode, int);
437int opcode_funcUnit_use_stage (void *, xtensa_opcode, int);
43cd72b9
BW
438
439typedef struct
440{
441 void *data;
442 int cycles;
443 int allocated_cycles;
444 int num_units;
445 unit_num_copies_func unit_num_copies;
446 opcode_num_units_func opcode_num_units;
447 opcode_funcUnit_use_unit_func opcode_unit_use;
448 opcode_funcUnit_use_stage_func opcode_unit_stage;
0bf60745 449 unsigned char **units;
43cd72b9
BW
450} resource_table;
451
c138bc38
BW
452resource_table *new_resource_table
453 (void *, int, int, unit_num_copies_func, opcode_num_units_func,
7fa3d080
BW
454 opcode_funcUnit_use_unit_func, opcode_funcUnit_use_stage_func);
455void resize_resource_table (resource_table *, int);
456void clear_resource_table (resource_table *);
457bfd_boolean resources_available (resource_table *, xtensa_opcode, int);
458void reserve_resources (resource_table *, xtensa_opcode, int);
459void release_resources (resource_table *, xtensa_opcode, int);
e0001a05 460
e0001a05 461#endif /* TC_XTENSA */
This page took 0.342815 seconds and 4 git commands to generate.