2007-04-30 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gas / config / xtensa-relax.c
CommitLineData
e0001a05 1/* Table of relaxations for Xtensa assembly.
bc447904 2 Copyright 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
c138bc38 18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
4b4da160 19 MA 02110-1301, USA. */
e0001a05
NC
20
21/* This file contains the code for generating runtime data structures
22 for relaxation pattern matching from statically specified strings.
23 Each action contains an instruction pattern to match and
24 preconditions for the match as well as an expansion if the pattern
25 matches. The preconditions can specify that two operands are the
43cd72b9
BW
26 same or an operand is a specific constant or register. The expansion
27 uses the bound variables from the pattern to specify that specific
c138bc38 28 operands from the pattern should be used in the result.
43cd72b9
BW
29
30 The code determines whether the condition applies to a constant or
31 a register depending on the type of the operand. You may get
32 unexpected results if you don't match the rule against the operand
33 type correctly.
e0001a05
NC
34
35 The patterns match a language like:
36
43cd72b9 37 INSN_PATTERN ::= INSN_TEMPL ( '|' PRECOND )* ( '?' OPTIONPRED )*
e0001a05
NC
38 INSN_TEMPL ::= OPCODE ' ' [ OPERAND (',' OPERAND)* ]
39 OPCODE ::= id
40 OPERAND ::= CONSTANT | VARIABLE | SPECIALFN '(' VARIABLE ')'
41 SPECIALFN ::= 'HI24S' | 'F32MINUS' | 'LOW8'
43cd72b9 42 | 'HI16' | 'LOW16'
e0001a05
NC
43 VARIABLE ::= '%' id
44 PRECOND ::= OPERAND CMPOP OPERAND
45 CMPOP ::= '==' | '!='
43cd72b9
BW
46 OPTIONPRED ::= OPTIONNAME ('+' OPTIONNAME)
47 OPTIONNAME ::= '"' id '"'
e0001a05 48
c138bc38 49 The replacement language
e0001a05 50 INSN_REPL ::= INSN_LABEL_LIT ( ';' INSN_LABEL_LIT )*
c138bc38 51 INSN_LABEL_LIT ::= INSN_TEMPL
61376837
BW
52 | 'LABEL'
53 | 'LITERAL' VARIABLE
e0001a05
NC
54
55 The operands in a PRECOND must be constants or variables bound by
56 the INSN_PATTERN.
57
43cd72b9
BW
58 The configuration options define a predicate on the availability of
59 options which must be TRUE for this rule to be valid. Examples are
60 requiring "density" for replacements with density instructions,
61 requiring "const16" for replacements that require const16
62 instructions, etc. The names are interpreted by the assembler to a
63 truth value for a particular frag.
64
e0001a05
NC
65 The operands in the INSN_REPL must be constants, variables bound in
66 the associated INSN_PATTERN, special variables that are bound in
67 the INSN_REPL by LABEL or LITERAL definitions, or special value
68 manipulation functions.
69
70 A simple example of a replacement pattern:
71 {"movi.n %as,%imm", "movi %as,%imm"} would convert the narrow
72 movi.n instruction to the wide movi instruction.
73
74 A more complex example of a branch around:
61376837 75 {"beqz %as,%label", "bnez %as,%LABEL;j %label;LABEL"}
e0001a05
NC
76 would convert a branch to a negated branch to the following instruction
77 with a jump to the original label.
c138bc38 78
e0001a05 79 An Xtensa-specific example that generates a literal:
61376837 80 {"movi %at,%imm", "LITERAL %imm; l32r %at,%LITERAL"}
e0001a05
NC
81 will convert a movi instruction to an l32r of a literal
82 literal defined in the literal pool.
83
84 Even more complex is a conversion of a load with immediate offset
85 to a load of a freshly generated literal, an explicit add and
86 a load with 0 offset. This transformation is only valid, though
87 when the first and second operands are not the same as specified
88 by the "| %at!=%as" precondition clause.
89 {"l32i %at,%as,%imm | %at!=%as",
61376837 90 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l32i %at,%at,0"}
e0001a05
NC
91
92 There is special case for loop instructions here, but because we do
93 not currently have the ability to represent the difference of two
94 symbols, the conversion requires special code in the assembler to
95 write the operands of the addi/addmi pair representing the
96 difference of the old and new loop end label. */
97
98#include "as.h"
99#include "xtensa-isa.h"
100#include "xtensa-relax.h"
101#include <stddef.h>
43cd72b9 102#include "xtensa-config.h"
e0001a05 103
395fa56f
BW
104#ifndef XCHAL_HAVE_WIDE_BRANCHES
105#define XCHAL_HAVE_WIDE_BRANCHES 0
106#endif
107
e0001a05
NC
108/* Imported from bfd. */
109extern xtensa_isa xtensa_default_isa;
110
e0001a05
NC
111/* The opname_list is a small list of names that we use for opcode and
112 operand variable names to simplify ownership of these commonly used
113 strings. Strings entered in the table can be compared by pointer
114 equality. */
115
116typedef struct opname_list_struct opname_list;
117typedef opname_list opname_e;
118
119struct opname_list_struct
120{
121 char *opname;
122 opname_list *next;
123};
124
125static opname_list *local_opnames = NULL;
126
127
128/* The "opname_map" and its element structure "opname_map_e" are used
129 for binding an operand number to a name or a constant. */
130
131typedef struct opname_map_e_struct opname_map_e;
132typedef struct opname_map_struct opname_map;
133
134struct opname_map_e_struct
135{
136 const char *operand_name; /* If null, then use constant_value. */
43cd72b9 137 int operand_num;
e0001a05
NC
138 unsigned constant_value;
139 opname_map_e *next;
140};
141
142struct opname_map_struct
143{
144 opname_map_e *head;
145 opname_map_e **tail;
146};
147
148/* The "precond_list" and its element structure "precond_e" represents
149 explicit preconditions comparing operand variables and constants.
150 In the "precond_e" structure, a variable is identified by the name
151 in the "opname" field. If that field is NULL, then the operand
152 is the constant in field "opval". */
153
154typedef struct precond_e_struct precond_e;
155typedef struct precond_list_struct precond_list;
156
157struct precond_e_struct
158{
159 const char *opname1;
160 unsigned opval1;
161 CmpOp cmpop;
162 const char *opname2;
163 unsigned opval2;
164 precond_e *next;
165};
166
167struct precond_list_struct
168{
169 precond_e *head;
170 precond_e **tail;
171};
172
173
174/* The insn_templ represents the INSN_TEMPL instruction template. It
175 is an opcode name with a list of operands. These are used for
176 instruction patterns and replacement patterns. */
177
178typedef struct insn_templ_struct insn_templ;
179struct insn_templ_struct
180{
181 const char *opcode_name;
182 opname_map operand_map;
183};
184
185
186/* The insn_pattern represents an INSN_PATTERN instruction pattern.
187 It is an instruction template with preconditions that specify when
188 it actually matches a given instruction. */
189
190typedef struct insn_pattern_struct insn_pattern;
191struct insn_pattern_struct
192{
193 insn_templ t;
194 precond_list preconds;
43cd72b9 195 ReqOptionList *options;
e0001a05
NC
196};
197
198
199/* The "insn_repl" and associated element structure "insn_repl_e"
200 instruction replacement list is a list of
201 instructions/LITERALS/LABELS with constant operands or operands
202 with names bound to the operand names in the associated pattern. */
203
204typedef struct insn_repl_e_struct insn_repl_e;
205struct insn_repl_e_struct
206{
207 insn_templ t;
208 insn_repl_e *next;
209};
210
211typedef struct insn_repl_struct insn_repl;
212struct insn_repl_struct
213{
214 insn_repl_e *head;
215 insn_repl_e **tail;
216};
217
218
219/* The split_rec is a vector of allocated char * pointers. */
220
221typedef struct split_rec_struct split_rec;
222struct split_rec_struct
223{
224 char **vec;
43cd72b9 225 int count;
e0001a05
NC
226};
227
228/* The "string_pattern_pair" is a set of pairs containing instruction
229 patterns and replacement strings. */
230
231typedef struct string_pattern_pair_struct string_pattern_pair;
232struct string_pattern_pair_struct
233{
234 const char *pattern;
235 const char *replacement;
236};
237
238\f
239/* The widen_spec_list is a list of valid substitutions that generate
240 wider representations. These are generally used to specify
241 replacements for instructions whose immediates do not fit their
33b7f697 242 encodings. A valid transition may require multiple steps of
e0001a05
NC
243 one-to-one instruction replacements with a final multiple
244 instruction replacement. As an example, here are the transitions
245 required to replace an 'addi.n' with an 'addi', 'addmi'.
246
247 addi.n a4, 0x1010
248 => addi a4, 0x1010
249 => addmi a4, 0x1010
250 => addmi a4, 0x1000, addi a4, 0x10. */
251
252static string_pattern_pair widen_spec_list[] =
253{
43cd72b9
BW
254 {"add.n %ar,%as,%at ? IsaUseDensityInstruction", "add %ar,%as,%at"},
255 {"addi.n %ar,%as,%imm ? IsaUseDensityInstruction", "addi %ar,%as,%imm"},
256 {"beqz.n %as,%label ? IsaUseDensityInstruction", "beqz %as,%label"},
257 {"bnez.n %as,%label ? IsaUseDensityInstruction", "bnez %as,%label"},
258 {"l32i.n %at,%as,%imm ? IsaUseDensityInstruction", "l32i %at,%as,%imm"},
259 {"mov.n %at,%as ? IsaUseDensityInstruction", "or %at,%as,%as"},
260 {"movi.n %as,%imm ? IsaUseDensityInstruction", "movi %as,%imm"},
261 {"nop.n ? IsaUseDensityInstruction ? realnop", "nop"},
262 {"nop.n ? IsaUseDensityInstruction ? no-realnop", "or 1,1,1"},
263 {"ret.n %as ? IsaUseDensityInstruction", "ret %as"},
264 {"retw.n %as ? IsaUseDensityInstruction", "retw %as"},
265 {"s32i.n %at,%as,%imm ? IsaUseDensityInstruction", "s32i %at,%as,%imm"},
e0001a05
NC
266 {"srli %at,%as,%imm", "extui %at,%as,%imm,F32MINUS(%imm)"},
267 {"slli %ar,%as,0", "or %ar,%as,%as"},
43cd72b9
BW
268
269 /* Widening with literals or const16. */
c138bc38 270 {"movi %at,%imm ? IsaUseL32R ",
61376837 271 "LITERAL %imm; l32r %at,%LITERAL"},
c138bc38 272 {"movi %at,%imm ? IsaUseConst16",
43cd72b9
BW
273 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm)"},
274
e0001a05
NC
275 {"addi %ar,%as,%imm", "addmi %ar,%as,%imm"},
276 /* LOW8 is the low 8 bits of the Immed
277 MID8S is the middle 8 bits of the Immed */
278 {"addmi %ar,%as,%imm", "addmi %ar,%as,HI24S(%imm); addi %ar,%ar,LOW8(%imm)"},
43cd72b9
BW
279
280 /* In the end convert to either an l32r or const16. */
281 {"addmi %ar,%as,%imm | %ar!=%as ? IsaUseL32R",
61376837 282 "LITERAL %imm; l32r %ar,%LITERAL; add %ar,%as,%ar"},
43cd72b9
BW
283 {"addmi %ar,%as,%imm | %ar!=%as ? IsaUseConst16",
284 "const16 %ar,HI16U(%imm); const16 %ar,LOW16U(%imm); add %ar,%as,%ar"},
e0001a05
NC
285
286 /* Widening the load instructions with too-large immediates */
43cd72b9 287 {"l8ui %at,%as,%imm | %at!=%as ? IsaUseL32R",
61376837 288 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l8ui %at,%at,0"},
43cd72b9 289 {"l16si %at,%as,%imm | %at!=%as ? IsaUseL32R",
61376837 290 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l16si %at,%at,0"},
43cd72b9 291 {"l16ui %at,%as,%imm | %at!=%as ? IsaUseL32R",
61376837 292 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l16ui %at,%at,0"},
43cd72b9 293 {"l32i %at,%as,%imm | %at!=%as ? IsaUseL32R",
61376837 294 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l32i %at,%at,0"},
43cd72b9
BW
295
296 /* Widening load instructions with const16s. */
297 {"l8ui %at,%as,%imm | %at!=%as ? IsaUseConst16",
298 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l8ui %at,%at,0"},
299 {"l16si %at,%as,%imm | %at!=%as ? IsaUseConst16",
300 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l16si %at,%at,0"},
301 {"l16ui %at,%as,%imm | %at!=%as ? IsaUseConst16",
302 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l16ui %at,%at,0"},
303 {"l32i %at,%as,%imm | %at!=%as ? IsaUseConst16",
304 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l32i %at,%at,0"},
305
43cd72b9
BW
306 /* This is only PART of the loop instruction. In addition,
307 hardcoded into its use is a modification of the final operand in
308 the instruction in bytes 9 and 12. */
309 {"loop %as,%label | %as!=1 ? IsaUseLoops",
61376837 310 "loop %as,%LABEL;"
43cd72b9
BW
311 "rsr.lend %as;" /* LEND */
312 "wsr.lbeg %as;" /* LBEG */
e0001a05
NC
313 "addi %as, %as, 0;" /* lo8(%label-%LABEL1) */
314 "addmi %as, %as, 0;" /* mid8(%label-%LABEL1) */
43cd72b9 315 "wsr.lend %as;"
e0001a05 316 "isync;"
43cd72b9 317 "rsr.lcount %as;" /* LCOUNT */
e0001a05 318 "addi %as, %as, 1;" /* density -> addi.n %as, %as, 1 */
61376837 319 "LABEL"},
43cd72b9
BW
320 {"loopgtz %as,%label | %as!=1 ? IsaUseLoops",
321 "beqz %as,%label;"
322 "bltz %as,%label;"
61376837 323 "loopgtz %as,%LABEL;"
43cd72b9
BW
324 "rsr.lend %as;" /* LEND */
325 "wsr.lbeg %as;" /* LBEG */
e0001a05
NC
326 "addi %as, %as, 0;" /* lo8(%label-%LABEL1) */
327 "addmi %as, %as, 0;" /* mid8(%label-%LABEL1) */
43cd72b9 328 "wsr.lend %as;"
e0001a05 329 "isync;"
43cd72b9 330 "rsr.lcount %as;" /* LCOUNT */
e0001a05 331 "addi %as, %as, 1;" /* density -> addi.n %as, %as, 1 */
61376837 332 "LABEL"},
43cd72b9 333 {"loopnez %as,%label | %as!=1 ? IsaUseLoops",
e0001a05 334 "beqz %as,%label;"
61376837 335 "loopnez %as,%LABEL;"
43cd72b9
BW
336 "rsr.lend %as;" /* LEND */
337 "wsr.lbeg %as;" /* LBEG */
e0001a05
NC
338 "addi %as, %as, 0;" /* lo8(%label-%LABEL1) */
339 "addmi %as, %as, 0;" /* mid8(%label-%LABEL1) */
43cd72b9 340 "wsr.lend %as;"
e0001a05 341 "isync;"
43cd72b9 342 "rsr.lcount %as;" /* LCOUNT */
e0001a05 343 "addi %as, %as, 1;" /* density -> addi.n %as, %as, 1 */
61376837 344 "LABEL"},
e0001a05 345
b2d179be
BW
346 /* Relaxing to wide branches. Order is important here. With wide
347 branches, there is more than one correct relaxation for an
348 out-of-range branch. Put the wide branch relaxations first in the
349 table since they are more efficient than the branch-around
350 relaxations. */
351
1946c96e
BW
352 {"beqz %as,%label ? IsaUseWideBranches", "WIDE.beqz %as,%label"},
353 {"bnez %as,%label ? IsaUseWideBranches", "WIDE.bnez %as,%label"},
354 {"bgez %as,%label ? IsaUseWideBranches", "WIDE.bgez %as,%label"},
355 {"bltz %as,%label ? IsaUseWideBranches", "WIDE.bltz %as,%label"},
356 {"beqi %as,%imm,%label ? IsaUseWideBranches", "WIDE.beqi %as,%imm,%label"},
357 {"bnei %as,%imm,%label ? IsaUseWideBranches", "WIDE.bnei %as,%imm,%label"},
358 {"bgei %as,%imm,%label ? IsaUseWideBranches", "WIDE.bgei %as,%imm,%label"},
359 {"blti %as,%imm,%label ? IsaUseWideBranches", "WIDE.blti %as,%imm,%label"},
360 {"bgeui %as,%imm,%label ? IsaUseWideBranches", "WIDE.bgeui %as,%imm,%label"},
361 {"bltui %as,%imm,%label ? IsaUseWideBranches", "WIDE.bltui %as,%imm,%label"},
362 {"bbci %as,%imm,%label ? IsaUseWideBranches", "WIDE.bbci %as,%imm,%label"},
363 {"bbsi %as,%imm,%label ? IsaUseWideBranches", "WIDE.bbsi %as,%imm,%label"},
364 {"beq %as,%at,%label ? IsaUseWideBranches", "WIDE.beq %as,%at,%label"},
365 {"bne %as,%at,%label ? IsaUseWideBranches", "WIDE.bne %as,%at,%label"},
366 {"bge %as,%at,%label ? IsaUseWideBranches", "WIDE.bge %as,%at,%label"},
367 {"blt %as,%at,%label ? IsaUseWideBranches", "WIDE.blt %as,%at,%label"},
368 {"bgeu %as,%at,%label ? IsaUseWideBranches", "WIDE.bgeu %as,%at,%label"},
369 {"bltu %as,%at,%label ? IsaUseWideBranches", "WIDE.bltu %as,%at,%label"},
370 {"bany %as,%at,%label ? IsaUseWideBranches", "WIDE.bany %as,%at,%label"},
371 {"bnone %as,%at,%label ? IsaUseWideBranches", "WIDE.bnone %as,%at,%label"},
372 {"ball %as,%at,%label ? IsaUseWideBranches", "WIDE.ball %as,%at,%label"},
373 {"bnall %as,%at,%label ? IsaUseWideBranches", "WIDE.bnall %as,%at,%label"},
374 {"bbc %as,%at,%label ? IsaUseWideBranches", "WIDE.bbc %as,%at,%label"},
375 {"bbs %as,%at,%label ? IsaUseWideBranches", "WIDE.bbs %as,%at,%label"},
b2d179be
BW
376
377 /* Widening branch comparisons eq/ne to zero. Prefer relaxing to narrow
378 branches if the density option is available. */
61376837
BW
379 {"beqz %as,%label ? IsaUseDensityInstruction", "bnez.n %as,%LABEL;j %label;LABEL"},
380 {"bnez %as,%label ? IsaUseDensityInstruction", "beqz.n %as,%LABEL;j %label;LABEL"},
381 {"beqz %as,%label", "bnez %as,%LABEL;j %label;LABEL"},
382 {"bnez %as,%label", "beqz %as,%LABEL;j %label;LABEL"},
b2d179be
BW
383
384 /* Widening expect-taken branches. */
61376837
BW
385 {"beqzt %as,%label ? IsaUsePredictedBranches", "bnez %as,%LABEL;j %label;LABEL"},
386 {"bnezt %as,%label ? IsaUsePredictedBranches", "beqz %as,%LABEL;j %label;LABEL"},
387 {"beqt %as,%at,%label ? IsaUsePredictedBranches", "bne %as,%at,%LABEL;j %label;LABEL"},
388 {"bnet %as,%at,%label ? IsaUsePredictedBranches", "beq %as,%at,%LABEL;j %label;LABEL"},
b2d179be
BW
389
390 /* Widening branches from the Xtensa boolean option. */
61376837
BW
391 {"bt %bs,%label ? IsaUseBooleans", "bf %bs,%LABEL;j %label;LABEL"},
392 {"bf %bs,%label ? IsaUseBooleans", "bt %bs,%LABEL;j %label;LABEL"},
e0001a05 393
b2d179be 394 /* Other branch-around-jump widenings. */
61376837
BW
395 {"bgez %as,%label", "bltz %as,%LABEL;j %label;LABEL"},
396 {"bltz %as,%label", "bgez %as,%LABEL;j %label;LABEL"},
397 {"beqi %as,%imm,%label", "bnei %as,%imm,%LABEL;j %label;LABEL"},
398 {"bnei %as,%imm,%label", "beqi %as,%imm,%LABEL;j %label;LABEL"},
399 {"bgei %as,%imm,%label", "blti %as,%imm,%LABEL;j %label;LABEL"},
400 {"blti %as,%imm,%label", "bgei %as,%imm,%LABEL;j %label;LABEL"},
401 {"bgeui %as,%imm,%label", "bltui %as,%imm,%LABEL;j %label;LABEL"},
402 {"bltui %as,%imm,%label", "bgeui %as,%imm,%LABEL;j %label;LABEL"},
403 {"bbci %as,%imm,%label", "bbsi %as,%imm,%LABEL;j %label;LABEL"},
404 {"bbsi %as,%imm,%label", "bbci %as,%imm,%LABEL;j %label;LABEL"},
405 {"beq %as,%at,%label", "bne %as,%at,%LABEL;j %label;LABEL"},
406 {"bne %as,%at,%label", "beq %as,%at,%LABEL;j %label;LABEL"},
407 {"bge %as,%at,%label", "blt %as,%at,%LABEL;j %label;LABEL"},
408 {"blt %as,%at,%label", "bge %as,%at,%LABEL;j %label;LABEL"},
409 {"bgeu %as,%at,%label", "bltu %as,%at,%LABEL;j %label;LABEL"},
410 {"bltu %as,%at,%label", "bgeu %as,%at,%LABEL;j %label;LABEL"},
411 {"bany %as,%at,%label", "bnone %as,%at,%LABEL;j %label;LABEL"},
412 {"bnone %as,%at,%label", "bany %as,%at,%LABEL;j %label;LABEL"},
413 {"ball %as,%at,%label", "bnall %as,%at,%LABEL;j %label;LABEL"},
414 {"bnall %as,%at,%label", "ball %as,%at,%LABEL;j %label;LABEL"},
415 {"bbc %as,%at,%label", "bbs %as,%at,%LABEL;j %label;LABEL"},
416 {"bbs %as,%at,%label", "bbc %as,%at,%LABEL;j %label;LABEL"},
43cd72b9
BW
417
418 /* Expanding calls with literals. */
419 {"call0 %label,%ar0 ? IsaUseL32R",
61376837 420 "LITERAL %label; l32r a0,%LITERAL; callx0 a0,%ar0"},
43cd72b9 421 {"call4 %label,%ar4 ? IsaUseL32R",
61376837 422 "LITERAL %label; l32r a4,%LITERAL; callx4 a4,%ar4"},
43cd72b9 423 {"call8 %label,%ar8 ? IsaUseL32R",
61376837 424 "LITERAL %label; l32r a8,%LITERAL; callx8 a8,%ar8"},
43cd72b9 425 {"call12 %label,%ar12 ? IsaUseL32R",
61376837 426 "LITERAL %label; l32r a12,%LITERAL; callx12 a12,%ar12"},
43cd72b9
BW
427
428 /* Expanding calls with const16. */
429 {"call0 %label,%ar0 ? IsaUseConst16",
430 "const16 a0,HI16U(%label); const16 a0,LOW16U(%label); callx0 a0,%ar0"},
431 {"call4 %label,%ar4 ? IsaUseConst16",
432 "const16 a4,HI16U(%label); const16 a4,LOW16U(%label); callx4 a4,%ar4"},
433 {"call8 %label,%ar8 ? IsaUseConst16",
434 "const16 a8,HI16U(%label); const16 a8,LOW16U(%label); callx8 a8,%ar8"},
435 {"call12 %label,%ar12 ? IsaUseConst16",
436 "const16 a12,HI16U(%label); const16 a12,LOW16U(%label); callx12 a12,%ar12"}
e0001a05
NC
437};
438
439#define WIDEN_COUNT (sizeof (widen_spec_list) / sizeof (string_pattern_pair))
440
441
442/* The simplify_spec_list specifies simplifying transformations that
443 will reduce the instruction width or otherwise simplify an
444 instruction. These are usually applied before relaxation in the
445 assembler. It is always legal to simplify. Even for "addi as, 0",
446 the "addi.n as, 0" will eventually be widened back to an "addi 0"
447 after the widening table is applied. Note: The usage of this table
448 has changed somewhat so that it is entirely specific to "narrowing"
449 instructions to use the density option. This table is not used at
450 all when the density option is not available. */
451
452string_pattern_pair simplify_spec_list[] =
453{
43cd72b9
BW
454 {"add %ar,%as,%at ? IsaUseDensityInstruction", "add.n %ar,%as,%at"},
455 {"addi.n %ar,%as,0 ? IsaUseDensityInstruction", "mov.n %ar,%as"},
456 {"addi %ar,%as,0 ? IsaUseDensityInstruction", "mov.n %ar,%as"},
457 {"addi %ar,%as,%imm ? IsaUseDensityInstruction", "addi.n %ar,%as,%imm"},
458 {"addmi %ar,%as,%imm ? IsaUseDensityInstruction", "addi.n %ar,%as,%imm"},
459 {"beqz %as,%label ? IsaUseDensityInstruction", "beqz.n %as,%label"},
460 {"bnez %as,%label ? IsaUseDensityInstruction", "bnez.n %as,%label"},
461 {"l32i %at,%as,%imm ? IsaUseDensityInstruction", "l32i.n %at,%as,%imm"},
462 {"movi %as,%imm ? IsaUseDensityInstruction", "movi.n %as,%imm"},
463 {"nop ? realnop ? IsaUseDensityInstruction", "nop.n"},
464 {"or %ar,%as,%at | %ar==%as | %as==%at ? IsaUseDensityInstruction", "nop.n"},
465 {"or %ar,%as,%at | %ar!=%as | %as==%at ? IsaUseDensityInstruction", "mov.n %ar,%as"},
466 {"ret %as ? IsaUseDensityInstruction", "ret.n %as"},
467 {"retw %as ? IsaUseDensityInstruction", "retw.n %as"},
468 {"s32i %at,%as,%imm ? IsaUseDensityInstruction", "s32i.n %at,%as,%imm"},
469 {"slli %ar,%as,0 ? IsaUseDensityInstruction", "mov.n %ar,%as"}
e0001a05
NC
470};
471
472#define SIMPLIFY_COUNT \
473 (sizeof (simplify_spec_list) / sizeof (string_pattern_pair))
474
475\f
e0001a05
NC
476/* Externally visible functions. */
477
7fa3d080
BW
478extern bfd_boolean xg_has_userdef_op_fn (OpType);
479extern long xg_apply_userdef_op_fn (OpType, long);
e0001a05 480
7fa3d080
BW
481
482static void
483append_transition (TransitionTable *tt,
484 xtensa_opcode opcode,
485 TransitionRule *t,
486 transition_cmp_fn cmp)
e0001a05
NC
487{
488 TransitionList *tl = (TransitionList *) xmalloc (sizeof (TransitionList));
489 TransitionList *prev;
43cd72b9 490 TransitionList **t_p;
e0001a05
NC
491 assert (tt != NULL);
492 assert (opcode < tt->num_opcodes);
493
494 prev = tt->table[opcode];
495 tl->rule = t;
496 tl->next = NULL;
497 if (prev == NULL)
498 {
499 tt->table[opcode] = tl;
500 return;
501 }
43cd72b9
BW
502
503 for (t_p = &tt->table[opcode]; (*t_p) != NULL; t_p = &(*t_p)->next)
e0001a05 504 {
43cd72b9
BW
505 if (cmp && cmp (t, (*t_p)->rule) < 0)
506 {
507 /* Insert it here. */
508 tl->next = *t_p;
509 *t_p = tl;
510 return;
511 }
e0001a05 512 }
43cd72b9 513 (*t_p) = tl;
e0001a05
NC
514}
515
516
7fa3d080
BW
517static void
518append_condition (TransitionRule *tr, Precondition *cond)
e0001a05
NC
519{
520 PreconditionList *pl =
521 (PreconditionList *) xmalloc (sizeof (PreconditionList));
522 PreconditionList *prev = tr->conditions;
523 PreconditionList *nxt;
524
525 pl->precond = cond;
526 pl->next = NULL;
527 if (prev == NULL)
528 {
529 tr->conditions = pl;
530 return;
531 }
532 nxt = prev->next;
533 while (nxt != NULL)
534 {
535 prev = nxt;
536 nxt = nxt->next;
537 }
538 prev->next = pl;
539}
540
541
7fa3d080
BW
542static void
543append_value_condition (TransitionRule *tr,
544 CmpOp cmp,
545 unsigned op1,
546 unsigned op2)
e0001a05
NC
547{
548 Precondition *cond = (Precondition *) xmalloc (sizeof (Precondition));
549
550 cond->cmp = cmp;
551 cond->op_num = op1;
552 cond->typ = OP_OPERAND;
553 cond->op_data = op2;
554 append_condition (tr, cond);
555}
556
557
7fa3d080
BW
558static void
559append_constant_value_condition (TransitionRule *tr,
560 CmpOp cmp,
561 unsigned op1,
562 unsigned cnst)
e0001a05
NC
563{
564 Precondition *cond = (Precondition *) xmalloc (sizeof (Precondition));
565
566 cond->cmp = cmp;
567 cond->op_num = op1;
568 cond->typ = OP_CONSTANT;
569 cond->op_data = cnst;
570 append_condition (tr, cond);
571}
572
573
7fa3d080
BW
574static void
575append_build_insn (TransitionRule *tr, BuildInstr *bi)
e0001a05
NC
576{
577 BuildInstr *prev = tr->to_instr;
578 BuildInstr *nxt;
579
580 bi->next = NULL;
581 if (prev == NULL)
582 {
583 tr->to_instr = bi;
584 return;
585 }
586 nxt = prev->next;
587 while (nxt != 0)
588 {
589 prev = nxt;
590 nxt = prev->next;
591 }
592 prev->next = bi;
593}
594
595
7fa3d080
BW
596static void
597append_op (BuildInstr *bi, BuildOp *b_op)
e0001a05
NC
598{
599 BuildOp *prev = bi->ops;
600 BuildOp *nxt;
601
602 if (prev == NULL)
603 {
604 bi->ops = b_op;
605 return;
606 }
607 nxt = prev->next;
608 while (nxt != NULL)
609 {
610 prev = nxt;
611 nxt = nxt->next;
612 }
613 prev->next = b_op;
614}
615
616
7fa3d080 617static void
61376837 618append_literal_op (BuildInstr *bi, unsigned op1)
e0001a05
NC
619{
620 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
621
622 b_op->op_num = op1;
623 b_op->typ = OP_LITERAL;
61376837 624 b_op->op_data = 0;
e0001a05
NC
625 b_op->next = NULL;
626 append_op (bi, b_op);
627}
628
629
7fa3d080 630static void
61376837 631append_label_op (BuildInstr *bi, unsigned op1)
e0001a05
NC
632{
633 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
634
635 b_op->op_num = op1;
636 b_op->typ = OP_LABEL;
61376837 637 b_op->op_data = 0;
e0001a05
NC
638 b_op->next = NULL;
639 append_op (bi, b_op);
640}
641
642
7fa3d080
BW
643static void
644append_constant_op (BuildInstr *bi, unsigned op1, unsigned cnst)
e0001a05
NC
645{
646 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
647
648 b_op->op_num = op1;
649 b_op->typ = OP_CONSTANT;
650 b_op->op_data = cnst;
651 b_op->next = NULL;
652 append_op (bi, b_op);
653}
654
655
7fa3d080
BW
656static void
657append_field_op (BuildInstr *bi, unsigned op1, unsigned src_op)
e0001a05
NC
658{
659 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
660
661 b_op->op_num = op1;
662 b_op->typ = OP_OPERAND;
663 b_op->op_data = src_op;
664 b_op->next = NULL;
665 append_op (bi, b_op);
666}
667
668
669/* These could be generated but are not currently. */
670
7fa3d080
BW
671static void
672append_user_fn_field_op (BuildInstr *bi,
673 unsigned op1,
674 OpType typ,
675 unsigned src_op)
e0001a05
NC
676{
677 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
678
679 b_op->op_num = op1;
680 b_op->typ = typ;
681 b_op->op_data = src_op;
682 b_op->next = NULL;
683 append_op (bi, b_op);
684}
685
686
687/* These operand functions are the semantics of user-defined
688 operand functions. */
689
7fa3d080
BW
690static long
691operand_function_HI24S (long a)
e0001a05
NC
692{
693 if (a & 0x80)
694 return (a & (~0xff)) + 0x100;
695 else
696 return (a & (~0xff));
697}
698
699
7fa3d080
BW
700static long
701operand_function_F32MINUS (long a)
e0001a05
NC
702{
703 return (32 - a);
704}
705
706
7fa3d080
BW
707static long
708operand_function_LOW8 (long a)
e0001a05
NC
709{
710 if (a & 0x80)
711 return (a & 0xff) | ~0xff;
712 else
713 return (a & 0xff);
714}
715
716
7fa3d080
BW
717static long
718operand_function_LOW16U (long a)
43cd72b9
BW
719{
720 return (a & 0xffff);
721}
722
723
7fa3d080
BW
724static long
725operand_function_HI16U (long a)
43cd72b9
BW
726{
727 unsigned long b = a & 0xffff0000;
728 return (long) (b >> 16);
729}
730
731
e0001a05 732bfd_boolean
7fa3d080 733xg_has_userdef_op_fn (OpType op)
e0001a05
NC
734{
735 switch (op)
736 {
737 case OP_OPERAND_F32MINUS:
738 case OP_OPERAND_LOW8:
739 case OP_OPERAND_HI24S:
43cd72b9
BW
740 case OP_OPERAND_LOW16U:
741 case OP_OPERAND_HI16U:
e0001a05
NC
742 return TRUE;
743 default:
744 break;
745 }
746 return FALSE;
747}
748
749
750long
7fa3d080 751xg_apply_userdef_op_fn (OpType op, long a)
e0001a05
NC
752{
753 switch (op)
754 {
755 case OP_OPERAND_F32MINUS:
756 return operand_function_F32MINUS (a);
757 case OP_OPERAND_LOW8:
758 return operand_function_LOW8 (a);
759 case OP_OPERAND_HI24S:
760 return operand_function_HI24S (a);
43cd72b9
BW
761 case OP_OPERAND_LOW16U:
762 return operand_function_LOW16U (a);
763 case OP_OPERAND_HI16U:
764 return operand_function_HI16U (a);
e0001a05
NC
765 default:
766 break;
767 }
768 return FALSE;
769}
770
771
772/* Generate a transition table. */
773
7fa3d080
BW
774static const char *
775enter_opname_n (const char *name, int len)
e0001a05
NC
776{
777 opname_e *op;
778
779 for (op = local_opnames; op != NULL; op = op->next)
780 {
43cd72b9
BW
781 if (strlen (op->opname) == (unsigned) len
782 && strncmp (op->opname, name, len) == 0)
e0001a05
NC
783 return op->opname;
784 }
785 op = (opname_e *) xmalloc (sizeof (opname_e));
786 op->opname = (char *) xmalloc (len + 1);
787 strncpy (op->opname, name, len);
788 op->opname[len] = '\0';
789 return op->opname;
790}
791
792
793static const char *
7fa3d080 794enter_opname (const char *name)
e0001a05
NC
795{
796 opname_e *op;
797
798 for (op = local_opnames; op != NULL; op = op->next)
799 {
800 if (strcmp (op->opname, name) == 0)
801 return op->opname;
802 }
803 op = (opname_e *) xmalloc (sizeof (opname_e));
43cd72b9 804 op->opname = xstrdup (name);
e0001a05
NC
805 return op->opname;
806}
807
808
7fa3d080
BW
809static void
810init_opname_map (opname_map *m)
e0001a05
NC
811{
812 m->head = NULL;
813 m->tail = &m->head;
814}
815
816
7fa3d080
BW
817static void
818clear_opname_map (opname_map *m)
e0001a05
NC
819{
820 opname_map_e *e;
821
822 while (m->head != NULL)
823 {
824 e = m->head;
825 m->head = e->next;
826 free (e);
827 }
828 m->tail = &m->head;
829}
830
831
832static bfd_boolean
7fa3d080 833same_operand_name (const opname_map_e *m1, const opname_map_e *m2)
e0001a05
NC
834{
835 if (m1->operand_name == NULL || m1->operand_name == NULL)
836 return FALSE;
837 return (m1->operand_name == m2->operand_name);
838}
839
840
7fa3d080
BW
841static opname_map_e *
842get_opmatch (opname_map *map, const char *operand_name)
e0001a05
NC
843{
844 opname_map_e *m;
845
846 for (m = map->head; m != NULL; m = m->next)
847 {
848 if (strcmp (m->operand_name, operand_name) == 0)
849 return m;
850 }
851 return NULL;
852}
853
854
7fa3d080
BW
855static bfd_boolean
856op_is_constant (const opname_map_e *m1)
e0001a05
NC
857{
858 return (m1->operand_name == NULL);
859}
860
861
862static unsigned
7fa3d080 863op_get_constant (const opname_map_e *m1)
e0001a05
NC
864{
865 assert (m1->operand_name == NULL);
866 return m1->constant_value;
867}
868
869
7fa3d080
BW
870static void
871init_precond_list (precond_list *l)
e0001a05
NC
872{
873 l->head = NULL;
874 l->tail = &l->head;
875}
876
877
7fa3d080
BW
878static void
879clear_precond_list (precond_list *l)
e0001a05
NC
880{
881 precond_e *e;
882
883 while (l->head != NULL)
884 {
885 e = l->head;
886 l->head = e->next;
887 free (e);
888 }
889 l->tail = &l->head;
890}
891
892
7fa3d080
BW
893static void
894init_insn_templ (insn_templ *t)
e0001a05
NC
895{
896 t->opcode_name = NULL;
897 init_opname_map (&t->operand_map);
898}
899
900
7fa3d080
BW
901static void
902clear_insn_templ (insn_templ *t)
e0001a05
NC
903{
904 clear_opname_map (&t->operand_map);
905}
906
907
7fa3d080
BW
908static void
909init_insn_pattern (insn_pattern *p)
e0001a05
NC
910{
911 init_insn_templ (&p->t);
912 init_precond_list (&p->preconds);
43cd72b9 913 p->options = NULL;
e0001a05
NC
914}
915
916
7fa3d080
BW
917static void
918clear_insn_pattern (insn_pattern *p)
e0001a05
NC
919{
920 clear_insn_templ (&p->t);
921 clear_precond_list (&p->preconds);
922}
923
924
7fa3d080
BW
925static void
926init_insn_repl (insn_repl *r)
e0001a05
NC
927{
928 r->head = NULL;
929 r->tail = &r->head;
930}
931
932
7fa3d080
BW
933static void
934clear_insn_repl (insn_repl *r)
e0001a05
NC
935{
936 insn_repl_e *e;
937
938 while (r->head != NULL)
939 {
940 e = r->head;
941 r->head = e->next;
942 clear_insn_templ (&e->t);
943 }
944 r->tail = &r->head;
945}
946
947
43cd72b9 948static int
7fa3d080 949insn_templ_operand_count (const insn_templ *t)
e0001a05 950{
43cd72b9 951 int i = 0;
e0001a05
NC
952 const opname_map_e *op;
953
43cd72b9 954 for (op = t->operand_map.head; op != NULL; op = op->next, i++)
e0001a05
NC
955 ;
956 return i;
957}
958
959
960/* Convert a string to a number. E.G.: parse_constant("10", &num) */
961
7fa3d080
BW
962static bfd_boolean
963parse_constant (const char *in, unsigned *val_p)
e0001a05
NC
964{
965 unsigned val = 0;
966 const char *p;
967
968 if (in == NULL)
969 return FALSE;
970 p = in;
971
972 while (*p != '\0')
973 {
974 if (*p >= '0' && *p <= '9')
975 val = val * 10 + (*p - '0');
976 else
977 return FALSE;
978 ++p;
979 }
980 *val_p = val;
981 return TRUE;
982}
983
984
e0001a05 985static bfd_boolean
7fa3d080
BW
986parse_special_fn (const char *name,
987 const char **fn_name_p,
988 const char **arg_name_p)
e0001a05
NC
989{
990 char *p_start;
991 const char *p_end;
992
993 p_start = strchr (name, '(');
994 if (p_start == NULL)
995 return FALSE;
996
997 p_end = strchr (p_start, ')');
998
999 if (p_end == NULL)
1000 return FALSE;
1001
1002 if (p_end[1] != '\0')
1003 return FALSE;
1004
1005 *fn_name_p = enter_opname_n (name, p_start - name);
1006 *arg_name_p = enter_opname_n (p_start + 1, p_end - p_start - 1);
1007 return TRUE;
1008}
1009
1010
7fa3d080
BW
1011static const char *
1012skip_white (const char *p)
e0001a05
NC
1013{
1014 if (p == NULL)
1015 return p;
1016 while (*p == ' ')
1017 ++p;
1018 return p;
1019}
1020
1021
7fa3d080
BW
1022static void
1023trim_whitespace (char *in)
e0001a05
NC
1024{
1025 char *last_white = NULL;
1026 char *p = in;
1027
1028 while (p && *p != '\0')
1029 {
1030 while (*p == ' ')
1031 {
1032 if (last_white == NULL)
1033 last_white = p;
1034 p++;
1035 }
1036 if (*p != '\0')
1037 {
1038 last_white = NULL;
1039 p++;
1040 }
1041 }
1042 if (last_white)
1043 *last_white = '\0';
1044}
1045
1046
1047/* Split a string into component strings where "c" is the
1048 delimiter. Place the result in the split_rec. */
1049
7fa3d080
BW
1050static void
1051split_string (split_rec *rec,
1052 const char *in,
1053 char c,
1054 bfd_boolean elide_whitespace)
e0001a05 1055{
43cd72b9
BW
1056 int cnt = 0;
1057 int i;
e0001a05
NC
1058 const char *p = in;
1059
1060 while (p != NULL && *p != '\0')
1061 {
1062 cnt++;
1063 p = strchr (p, c);
1064 if (p)
1065 p++;
1066 }
1067 rec->count = cnt;
1068 rec->vec = NULL;
1069
1070 if (rec->count == 0)
1071 return;
1072
1073 rec->vec = (char **) xmalloc (sizeof (char *) * cnt);
1074 for (i = 0; i < cnt; i++)
1075 rec->vec[i] = 0;
1076
1077 p = in;
1078 for (i = 0; i < cnt; i++)
1079 {
1080 const char *q;
43cd72b9 1081 int len;
e0001a05
NC
1082
1083 q = p;
1084 if (elide_whitespace)
1085 q = skip_white (q);
1086
1087 p = strchr (q, c);
1088 if (p == NULL)
43cd72b9 1089 rec->vec[i] = xstrdup (q);
e0001a05
NC
1090 else
1091 {
1092 len = p - q;
1093 rec->vec[i] = (char *) xmalloc (sizeof (char) * (len + 1));
1094 strncpy (rec->vec[i], q, len);
1095 rec->vec[i][len] = '\0';
1096 p++;
1097 }
1098
1099 if (elide_whitespace)
1100 trim_whitespace (rec->vec[i]);
1101 }
1102}
1103
1104
7fa3d080
BW
1105static void
1106clear_split_rec (split_rec *rec)
e0001a05 1107{
43cd72b9 1108 int i;
e0001a05 1109
43cd72b9 1110 for (i = 0; i < rec->count; i++)
e0001a05
NC
1111 free (rec->vec[i]);
1112
1113 if (rec->count > 0)
1114 free (rec->vec);
1115}
1116
1117
43cd72b9
BW
1118/* Initialize a split record. The split record must be initialized
1119 before split_string is called. */
1120
7fa3d080
BW
1121static void
1122init_split_rec (split_rec *rec)
e0001a05
NC
1123{
1124 rec->vec = NULL;
1125 rec->count = 0;
1126}
1127
1128
1129/* Parse an instruction template like "insn op1, op2, op3". */
1130
7fa3d080
BW
1131static bfd_boolean
1132parse_insn_templ (const char *s, insn_templ *t)
e0001a05
NC
1133{
1134 const char *p = s;
43cd72b9 1135 int insn_name_len;
e0001a05 1136 split_rec oprec;
43cd72b9
BW
1137 int i;
1138
1139 /* First find the first whitespace. */
e0001a05
NC
1140
1141 init_split_rec (&oprec);
1142
1143 p = skip_white (p);
1144 insn_name_len = strcspn (s, " ");
1145 if (insn_name_len == 0)
1146 return FALSE;
1147
1148 init_insn_templ (t);
1149 t->opcode_name = enter_opname_n (p, insn_name_len);
1150
1151 p = p + insn_name_len;
1152
1153 /* Split by ',' and skip beginning and trailing whitespace. */
1154 split_string (&oprec, p, ',', TRUE);
1155
1156 for (i = 0; i < oprec.count; i++)
1157 {
1158 const char *opname = oprec.vec[i];
1159 opname_map_e *e = (opname_map_e *) xmalloc (sizeof (opname_map_e));
1160 e->next = NULL;
1161 e->operand_name = NULL;
1162 e->constant_value = 0;
1163 e->operand_num = i;
1164
1165 /* If it begins with a number, assume that it is a number. */
1166 if (opname && opname[0] >= '0' && opname[0] <= '9')
1167 {
1168 unsigned val;
1169
1170 if (parse_constant (opname, &val))
1171 e->constant_value = val;
1172 else
1173 {
1174 free (e);
1175 clear_split_rec (&oprec);
1176 clear_insn_templ (t);
1177 return FALSE;
1178 }
1179 }
1180 else
1181 e->operand_name = enter_opname (oprec.vec[i]);
1182
1183 *t->operand_map.tail = e;
1184 t->operand_map.tail = &e->next;
1185 }
1186 clear_split_rec (&oprec);
1187 return TRUE;
1188}
1189
1190
7fa3d080
BW
1191static bfd_boolean
1192parse_precond (const char *s, precond_e *precond)
e0001a05
NC
1193{
1194 /* All preconditions are currently of the form:
1195 a == b or a != b or a == k (where k is a constant).
1196 Later we may use some special functions like DENSITY == 1
1197 to identify when density is available. */
1198
1199 const char *p = s;
43cd72b9 1200 int len;
e0001a05
NC
1201 precond->opname1 = NULL;
1202 precond->opval1 = 0;
1203 precond->cmpop = OP_EQUAL;
1204 precond->opname2 = NULL;
1205 precond->opval2 = 0;
1206 precond->next = NULL;
1207
1208 p = skip_white (p);
1209
1210 len = strcspn (p, " !=");
1211
1212 if (len == 0)
1213 return FALSE;
1214
1215 precond->opname1 = enter_opname_n (p, len);
1216 p = p + len;
1217 p = skip_white (p);
1218
1219 /* Check for "==" and "!=". */
1220 if (strncmp (p, "==", 2) == 0)
1221 precond->cmpop = OP_EQUAL;
1222 else if (strncmp (p, "!=", 2) == 0)
1223 precond->cmpop = OP_NOTEQUAL;
1224 else
1225 return FALSE;
1226
1227 p = p + 2;
1228 p = skip_white (p);
1229
1230 /* No trailing whitespace from earlier parsing. */
1231 if (p[0] >= '0' && p[0] <= '9')
1232 {
1233 unsigned val;
1234 if (parse_constant (p, &val))
1235 precond->opval2 = val;
1236 else
1237 return FALSE;
1238 }
1239 else
1240 precond->opname2 = enter_opname (p);
1241 return TRUE;
1242}
1243
1244
7fa3d080
BW
1245static void
1246clear_req_or_option_list (ReqOrOption **r_p)
43cd72b9
BW
1247{
1248 if (*r_p == NULL)
1249 return;
1250
1251 free ((*r_p)->option_name);
1252 clear_req_or_option_list (&(*r_p)->next);
1253 *r_p = NULL;
1254}
1255
1256
7fa3d080
BW
1257static void
1258clear_req_option_list (ReqOption **r_p)
43cd72b9
BW
1259{
1260 if (*r_p == NULL)
1261 return;
1262
1263 clear_req_or_option_list (&(*r_p)->or_option_terms);
1264 clear_req_option_list (&(*r_p)->next);
1265 *r_p = NULL;
1266}
1267
1268
7fa3d080
BW
1269static ReqOrOption *
1270clone_req_or_option_list (ReqOrOption *req_or_option)
43cd72b9
BW
1271{
1272 ReqOrOption *new_req_or_option;
1273
1274 if (req_or_option == NULL)
1275 return NULL;
1276
1277 new_req_or_option = (ReqOrOption *) xmalloc (sizeof (ReqOrOption));
1278 new_req_or_option->option_name = xstrdup (req_or_option->option_name);
1279 new_req_or_option->is_true = req_or_option->is_true;
1280 new_req_or_option->next = NULL;
1281 new_req_or_option->next = clone_req_or_option_list (req_or_option->next);
1282 return new_req_or_option;
1283}
1284
1285
7fa3d080
BW
1286static ReqOption *
1287clone_req_option_list (ReqOption *req_option)
43cd72b9
BW
1288{
1289 ReqOption *new_req_option;
1290
1291 if (req_option == NULL)
1292 return NULL;
1293
1294 new_req_option = (ReqOption *) xmalloc (sizeof (ReqOption));
1295 new_req_option->or_option_terms = NULL;
1296 new_req_option->next = NULL;
c138bc38 1297 new_req_option->or_option_terms =
43cd72b9
BW
1298 clone_req_or_option_list (req_option->or_option_terms);
1299 new_req_option->next = clone_req_option_list (req_option->next);
1300 return new_req_option;
1301}
1302
1303
7fa3d080
BW
1304static bfd_boolean
1305parse_option_cond (const char *s, ReqOption *option)
43cd72b9
BW
1306{
1307 int i;
1308 split_rec option_term_rec;
1309
1310 /* All option or conditions are of the form:
1311 optionA + no-optionB + ...
1312 "Ands" are divided by "?". */
1313
1314 init_split_rec (&option_term_rec);
1315 split_string (&option_term_rec, s, '+', TRUE);
1316
1317 if (option_term_rec.count == 0)
1318 {
1319 clear_split_rec (&option_term_rec);
1320 return FALSE;
1321 }
1322
1323 for (i = 0; i < option_term_rec.count; i++)
1324 {
1325 char *option_name = option_term_rec.vec[i];
1326 bfd_boolean is_true = TRUE;
1327 ReqOrOption *req;
1328 ReqOrOption **r_p;
1329
1330 if (strncmp (option_name, "no-", 3) == 0)
1331 {
1332 option_name = xstrdup (&option_name[3]);
1333 is_true = FALSE;
1334 }
1335 else
1336 option_name = xstrdup (option_name);
1337
1338 req = (ReqOrOption *) xmalloc (sizeof (ReqOrOption));
1339 req->option_name = option_name;
1340 req->is_true = is_true;
1341 req->next = NULL;
1342
1343 /* Append to list. */
c138bc38 1344 for (r_p = &option->or_option_terms; (*r_p) != NULL;
43cd72b9
BW
1345 r_p = &(*r_p)->next)
1346 ;
1347 (*r_p) = req;
1348 }
1349 return TRUE;
1350}
1351
1352
e0001a05
NC
1353/* Parse a string like:
1354 "insn op1, op2, op3, op4 | op1 != op2 | op2 == op3 | op4 == 1".
1355 I.E., instruction "insn" with 4 operands where operand 1 and 2 are not
43cd72b9
BW
1356 the same and operand 2 and 3 are the same and operand 4 is 1.
1357
1358 or:
1359
1360 "insn op1 | op1 == 1 / density + boolean / no-useroption".
1361 i.e. instruction "insn" with 1 operands where operand 1 is 1
1362 when "density" or "boolean" options are available and
1363 "useroption" is not available.
1364
1365 Because the current implementation of this parsing scheme uses
1366 split_string, it requires that '|' and '?' are only used as
1367 delimiters for predicates and required options. */
e0001a05 1368
7fa3d080
BW
1369static bfd_boolean
1370parse_insn_pattern (const char *in, insn_pattern *insn)
e0001a05 1371{
e0001a05 1372 split_rec rec;
43cd72b9
BW
1373 split_rec optionrec;
1374 int i;
e0001a05 1375
e0001a05
NC
1376 init_insn_pattern (insn);
1377
43cd72b9
BW
1378 init_split_rec (&optionrec);
1379 split_string (&optionrec, in, '?', TRUE);
1380 if (optionrec.count == 0)
1381 {
1382 clear_split_rec (&optionrec);
1383 return FALSE;
1384 }
c138bc38 1385
43cd72b9
BW
1386 init_split_rec (&rec);
1387
1388 split_string (&rec, optionrec.vec[0], '|', TRUE);
e0001a05
NC
1389
1390 if (rec.count == 0)
1391 {
1392 clear_split_rec (&rec);
43cd72b9 1393 clear_split_rec (&optionrec);
e0001a05
NC
1394 return FALSE;
1395 }
1396
1397 if (!parse_insn_templ (rec.vec[0], &insn->t))
1398 {
1399 clear_split_rec (&rec);
43cd72b9 1400 clear_split_rec (&optionrec);
e0001a05
NC
1401 return FALSE;
1402 }
1403
1404 for (i = 1; i < rec.count; i++)
1405 {
1406 precond_e *cond = (precond_e *) xmalloc (sizeof (precond_e));
1407
1408 if (!parse_precond (rec.vec[i], cond))
1409 {
1410 clear_split_rec (&rec);
43cd72b9 1411 clear_split_rec (&optionrec);
e0001a05
NC
1412 clear_insn_pattern (insn);
1413 return FALSE;
1414 }
1415
1416 /* Append the condition. */
1417 *insn->preconds.tail = cond;
1418 insn->preconds.tail = &cond->next;
1419 }
1420
43cd72b9
BW
1421 for (i = 1; i < optionrec.count; i++)
1422 {
1423 /* Handle the option conditions. */
1424 ReqOption **r_p;
1425 ReqOption *req_option = (ReqOption *) xmalloc (sizeof (ReqOption));
1426 req_option->or_option_terms = NULL;
1427 req_option->next = NULL;
c138bc38 1428
43cd72b9
BW
1429 if (!parse_option_cond (optionrec.vec[i], req_option))
1430 {
1431 clear_split_rec (&rec);
1432 clear_split_rec (&optionrec);
1433 clear_insn_pattern (insn);
1434 clear_req_option_list (&req_option);
1435 return FALSE;
1436 }
1437
1438 /* Append the condition. */
1439 for (r_p = &insn->options; (*r_p) != NULL; r_p = &(*r_p)->next)
1440 ;
1441
1442 (*r_p) = req_option;
1443 }
1444
e0001a05 1445 clear_split_rec (&rec);
43cd72b9 1446 clear_split_rec (&optionrec);
e0001a05
NC
1447 return TRUE;
1448}
1449
1450
7fa3d080
BW
1451static bfd_boolean
1452parse_insn_repl (const char *in, insn_repl *r_p)
e0001a05
NC
1453{
1454 /* This is a list of instruction templates separated by ';'. */
1455 split_rec rec;
43cd72b9 1456 int i;
e0001a05
NC
1457
1458 split_string (&rec, in, ';', TRUE);
1459
1460 for (i = 0; i < rec.count; i++)
1461 {
1462 insn_repl_e *e = (insn_repl_e *) xmalloc (sizeof (insn_repl_e));
1463
1464 e->next = NULL;
1465
1466 if (!parse_insn_templ (rec.vec[i], &e->t))
1467 {
1468 free (e);
1469 clear_insn_repl (r_p);
1470 return FALSE;
1471 }
1472 *r_p->tail = e;
1473 r_p->tail = &e->next;
1474 }
1475 return TRUE;
1476}
1477
1478
7fa3d080
BW
1479static bfd_boolean
1480transition_applies (insn_pattern *initial_insn,
1481 const char *from_string ATTRIBUTE_UNUSED,
1482 const char *to_string ATTRIBUTE_UNUSED)
43cd72b9
BW
1483{
1484 ReqOption *req_option;
1485
1486 for (req_option = initial_insn->options;
1487 req_option != NULL;
1488 req_option = req_option->next)
1489 {
1490 ReqOrOption *req_or_option = req_option->or_option_terms;
1491
1492 if (req_or_option == NULL
1493 || req_or_option->next != NULL)
1494 continue;
1495
c138bc38 1496 if (strncmp (req_or_option->option_name, "IsaUse", 6) == 0)
43cd72b9
BW
1497 {
1498 bfd_boolean option_available = FALSE;
1499 char *option_name = req_or_option->option_name + 6;
1500 if (!strcmp (option_name, "DensityInstruction"))
1501 option_available = (XCHAL_HAVE_DENSITY == 1);
1502 else if (!strcmp (option_name, "L32R"))
1503 option_available = (XCHAL_HAVE_L32R == 1);
1504 else if (!strcmp (option_name, "Const16"))
1505 option_available = (XCHAL_HAVE_CONST16 == 1);
1506 else if (!strcmp (option_name, "Loops"))
1507 option_available = (XCHAL_HAVE_LOOPS == 1);
b2d179be
BW
1508 else if (!strcmp (option_name, "WideBranches"))
1509 option_available = (XCHAL_HAVE_WIDE_BRANCHES == 1);
43cd72b9
BW
1510 else if (!strcmp (option_name, "PredictedBranches"))
1511 option_available = (XCHAL_HAVE_PREDICTED_BRANCHES == 1);
1512 else if (!strcmp (option_name, "Booleans"))
1513 option_available = (XCHAL_HAVE_BOOLEANS == 1);
1514 else
1515 as_warn (_("invalid configuration option '%s' in transition rule '%s'"),
1516 req_or_option->option_name, from_string);
1517 if ((option_available ^ req_or_option->is_true) != 0)
1518 return FALSE;
1519 }
1520 else if (strcmp (req_or_option->option_name, "realnop") == 0)
1521 {
c138bc38 1522 bfd_boolean nop_available =
43cd72b9
BW
1523 (xtensa_opcode_lookup (xtensa_default_isa, "nop")
1524 != XTENSA_UNDEFINED);
1525 if ((nop_available ^ req_or_option->is_true) != 0)
1526 return FALSE;
1527 }
1528 }
1529 return TRUE;
1530}
1531
1532
1946c96e
BW
1533static bfd_boolean
1534wide_branch_opcode (const char *opcode_name,
1535 char *suffix,
1536 xtensa_opcode *popcode)
1537{
1538 xtensa_isa isa = xtensa_default_isa;
1539 xtensa_opcode opcode;
1540 static char wbr_name_buf[20];
1541
1542 if (strncmp (opcode_name, "WIDE.", 5) != 0)
1543 return FALSE;
1544
1545 strcpy (wbr_name_buf, opcode_name + 5);
1546 strcat (wbr_name_buf, suffix);
1547 opcode = xtensa_opcode_lookup (isa, wbr_name_buf);
1548 if (opcode != XTENSA_UNDEFINED)
1549 {
1550 *popcode = opcode;
1551 return TRUE;
1552 }
1553
1554 return FALSE;
1555}
1556
1557
7fa3d080
BW
1558static TransitionRule *
1559build_transition (insn_pattern *initial_insn,
1560 insn_repl *replace_insns,
1561 const char *from_string,
1562 const char *to_string)
e0001a05
NC
1563{
1564 TransitionRule *tr = NULL;
1565 xtensa_opcode opcode;
1566 xtensa_isa isa = xtensa_default_isa;
1567
1568 opname_map_e *op1;
1569 opname_map_e *op2;
1570
1571 precond_e *precond;
1572 insn_repl_e *r;
e0001a05
NC
1573
1574 opcode = xtensa_opcode_lookup (isa, initial_insn->t.opcode_name);
1575 if (opcode == XTENSA_UNDEFINED)
1576 {
1577 /* It is OK to not be able to translate some of these opcodes. */
e0001a05
NC
1578 return NULL;
1579 }
1580
1581
43cd72b9
BW
1582 if (xtensa_opcode_num_operands (isa, opcode)
1583 != insn_templ_operand_count (&initial_insn->t))
e0001a05
NC
1584 {
1585 /* This is also OK because there are opcodes that
1586 have different numbers of operands on different
1587 architecture variations. */
e0001a05
NC
1588 return NULL;
1589 }
1590
1591 tr = (TransitionRule *) xmalloc (sizeof (TransitionRule));
1592 tr->opcode = opcode;
1593 tr->conditions = NULL;
1594 tr->to_instr = NULL;
1595
1596 /* Build the conditions. First, equivalent operand condition.... */
1597 for (op1 = initial_insn->t.operand_map.head; op1 != NULL; op1 = op1->next)
1598 {
1599 for (op2 = op1->next; op2 != NULL; op2 = op2->next)
1600 {
1601 if (same_operand_name (op1, op2))
1602 {
1603 append_value_condition (tr, OP_EQUAL,
1604 op1->operand_num, op2->operand_num);
1605 }
1606 }
1607 }
1608
1609 /* Now the condition that an operand value must be a constant.... */
1610 for (op1 = initial_insn->t.operand_map.head; op1 != NULL; op1 = op1->next)
1611 {
1612 if (op_is_constant (op1))
1613 {
1614 append_constant_value_condition (tr,
1615 OP_EQUAL,
1616 op1->operand_num,
1617 op_get_constant (op1));
1618 }
1619 }
1620
1621
1622 /* Now add the explicit preconditions listed after the "|" in the spec.
1623 These are currently very limited, so we do a special case
1624 parse for them. We expect spaces, opname != opname. */
1625 for (precond = initial_insn->preconds.head;
1626 precond != NULL;
1627 precond = precond->next)
1628 {
1629 op1 = NULL;
1630 op2 = NULL;
1631
1632 if (precond->opname1)
1633 {
1634 op1 = get_opmatch (&initial_insn->t.operand_map, precond->opname1);
1635 if (op1 == NULL)
bc447904
BW
1636 as_fatal (_("opcode '%s': no bound opname '%s' "
1637 "for precondition in '%s'"),
1638 xtensa_opcode_name (isa, opcode),
1639 precond->opname1, from_string);
e0001a05
NC
1640 }
1641
1642 if (precond->opname2)
1643 {
1644 op2 = get_opmatch (&initial_insn->t.operand_map, precond->opname2);
1645 if (op2 == NULL)
bc447904
BW
1646 as_fatal (_("opcode '%s': no bound opname '%s' "
1647 "for precondition in %s"),
1648 xtensa_opcode_name (isa, opcode),
1649 precond->opname2, from_string);
e0001a05
NC
1650 }
1651
1652 if (op1 == NULL && op2 == NULL)
bc447904
BW
1653 as_fatal (_("opcode '%s': precondition only contains "
1654 "constants in '%s'"),
1655 xtensa_opcode_name (isa, opcode), from_string);
e0001a05
NC
1656 else if (op1 != NULL && op2 != NULL)
1657 append_value_condition (tr, precond->cmpop,
1658 op1->operand_num, op2->operand_num);
1659 else if (op2 == NULL)
1660 append_constant_value_condition (tr, precond->cmpop,
43cd72b9 1661 op1->operand_num, precond->opval2);
e0001a05
NC
1662 else
1663 append_constant_value_condition (tr, precond->cmpop,
43cd72b9 1664 op2->operand_num, precond->opval1);
e0001a05
NC
1665 }
1666
43cd72b9
BW
1667 tr->options = clone_req_option_list (initial_insn->options);
1668
e0001a05 1669 /* Generate the replacement instructions. Some of these
61376837
BW
1670 "instructions" are actually labels and literals. There can be at
1671 most one literal and at most one label. A literal must be defined
1672 (e.g., "LITERAL %imm") before use (e.g., "%LITERAL"). The labels
1673 can be used before they are defined. Also there are a number of
1674 special operands (e.g., HI24S). */
e0001a05
NC
1675
1676 for (r = replace_insns->head; r != NULL; r = r->next)
1677 {
1678 BuildInstr *bi;
1679 const char *opcode_name;
43cd72b9 1680 int operand_count;
e0001a05 1681 opname_map_e *op;
e0001a05
NC
1682 const char *fn_name;
1683 const char *operand_arg_name;
1684
1685 bi = (BuildInstr *) xmalloc (sizeof (BuildInstr));
1686 append_build_insn (tr, bi);
1687
e0001a05
NC
1688 bi->opcode = XTENSA_UNDEFINED;
1689 bi->ops = NULL;
1690 bi->next = NULL;
1691
1692 opcode_name = r->t.opcode_name;
1693 operand_count = insn_templ_operand_count (&r->t);
1694
61376837 1695 if (strcmp (opcode_name, "LITERAL") == 0)
e0001a05
NC
1696 {
1697 bi->typ = INSTR_LITERAL_DEF;
e0001a05
NC
1698 if (operand_count != 1)
1699 as_fatal (_("expected one operand for generated literal"));
e0001a05 1700 }
61376837 1701 else if (strcmp (opcode_name, "LABEL") == 0)
e0001a05
NC
1702 {
1703 bi->typ = INSTR_LABEL_DEF;
e0001a05
NC
1704 if (operand_count != 0)
1705 as_fatal (_("expected 0 operands for generated label"));
1706 }
1707 else
1708 {
1709 bi->typ = INSTR_INSTR;
1946c96e
BW
1710 if (wide_branch_opcode (opcode_name, ".w18", &bi->opcode)
1711 || wide_branch_opcode (opcode_name, ".w15", &bi->opcode))
1712 opcode_name = xtensa_opcode_name (isa, bi->opcode);
1713 else
1714 bi->opcode = xtensa_opcode_lookup (isa, opcode_name);
1715
e0001a05 1716 if (bi->opcode == XTENSA_UNDEFINED)
43cd72b9
BW
1717 {
1718 as_warn (_("invalid opcode '%s' in transition rule '%s'"),
1946c96e 1719 opcode_name, to_string);
43cd72b9
BW
1720 return NULL;
1721 }
1946c96e 1722
e0001a05 1723 /* Check for the right number of ops. */
c138bc38 1724 if (xtensa_opcode_num_operands (isa, bi->opcode)
e0001a05
NC
1725 != (int) operand_count)
1726 as_fatal (_("opcode '%s': replacement does not have %d ops"),
43cd72b9
BW
1727 opcode_name,
1728 xtensa_opcode_num_operands (isa, bi->opcode));
e0001a05
NC
1729 }
1730
1731 for (op = r->t.operand_map.head; op != NULL; op = op->next)
1732 {
1733 unsigned idnum;
1734
1735 if (op_is_constant (op))
1736 append_constant_op (bi, op->operand_num, op_get_constant (op));
61376837
BW
1737 else if (strcmp (op->operand_name, "%LITERAL") == 0)
1738 append_literal_op (bi, op->operand_num);
1739 else if (strcmp (op->operand_name, "%LABEL") == 0)
1740 append_label_op (bi, op->operand_num);
1741 else if (op->operand_name[0] == 'a'
1742 && parse_constant (op->operand_name + 1, &idnum))
e0001a05
NC
1743 append_constant_op (bi, op->operand_num, idnum);
1744 else if (op->operand_name[0] == '%')
1745 {
1746 opname_map_e *orig_op;
1747 orig_op = get_opmatch (&initial_insn->t.operand_map,
1748 op->operand_name);
1749 if (orig_op == NULL)
bc447904
BW
1750 as_fatal (_("opcode %s: unidentified operand '%s' in '%s'"),
1751 opcode_name, op->operand_name, to_string);
1752 append_field_op (bi, op->operand_num, orig_op->operand_num);
e0001a05
NC
1753 }
1754 else if (parse_special_fn (op->operand_name,
1755 &fn_name, &operand_arg_name))
1756 {
1757 opname_map_e *orig_op;
1758 OpType typ = OP_CONSTANT;
1759
1760 if (strcmp (fn_name, "LOW8") == 0)
1761 typ = OP_OPERAND_LOW8;
1762 else if (strcmp (fn_name, "HI24S") == 0)
1763 typ = OP_OPERAND_HI24S;
1764 else if (strcmp (fn_name, "F32MINUS") == 0)
1765 typ = OP_OPERAND_F32MINUS;
43cd72b9
BW
1766 else if (strcmp (fn_name, "LOW16U") == 0)
1767 typ = OP_OPERAND_LOW16U;
1768 else if (strcmp (fn_name, "HI16U") == 0)
1769 typ = OP_OPERAND_HI16U;
e0001a05 1770 else
43cd72b9 1771 as_fatal (_("unknown user-defined function %s"), fn_name);
e0001a05
NC
1772
1773 orig_op = get_opmatch (&initial_insn->t.operand_map,
1774 operand_arg_name);
1775 if (orig_op == NULL)
bc447904
BW
1776 as_fatal (_("opcode %s: unidentified operand '%s' in '%s'"),
1777 opcode_name, op->operand_name, to_string);
1778 append_user_fn_field_op (bi, op->operand_num,
1779 typ, orig_op->operand_num);
e0001a05
NC
1780 }
1781 else
bc447904
BW
1782 as_fatal (_("opcode %s: could not parse operand '%s' in '%s'"),
1783 opcode_name, op->operand_name, to_string);
e0001a05
NC
1784 }
1785 }
e0001a05
NC
1786
1787 return tr;
1788}
1789
1790
7fa3d080
BW
1791static TransitionTable *
1792build_transition_table (const string_pattern_pair *transitions,
1793 int transition_count,
1794 transition_cmp_fn cmp)
e0001a05
NC
1795{
1796 TransitionTable *table = NULL;
43cd72b9
BW
1797 int num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
1798 int i, tnum;
e0001a05
NC
1799
1800 if (table != NULL)
1801 return table;
1802
1803 /* Otherwise, build it now. */
1804 table = (TransitionTable *) xmalloc (sizeof (TransitionTable));
1805 table->num_opcodes = num_opcodes;
1806 table->table =
1807 (TransitionList **) xmalloc (sizeof (TransitionTable *) * num_opcodes);
1808
1809 for (i = 0; i < num_opcodes; i++)
1810 table->table[i] = NULL;
1811
1812 for (tnum = 0; tnum < transition_count; tnum++)
1813 {
1814 const char *from_string = transitions[tnum].pattern;
1815 const char *to_string = transitions[tnum].replacement;
1816
1817 insn_pattern initial_insn;
1818 insn_repl replace_insns;
1819 TransitionRule *tr;
1820
1821 init_insn_pattern (&initial_insn);
1822 if (!parse_insn_pattern (from_string, &initial_insn))
bc447904 1823 as_fatal (_("could not parse INSN_PATTERN '%s'"), from_string);
e0001a05
NC
1824
1825 init_insn_repl (&replace_insns);
1826 if (!parse_insn_repl (to_string, &replace_insns))
bc447904 1827 as_fatal (_("could not parse INSN_REPL '%s'"), to_string);
e0001a05 1828
43cd72b9
BW
1829 if (transition_applies (&initial_insn, from_string, to_string))
1830 {
1831 tr = build_transition (&initial_insn, &replace_insns,
1832 from_string, to_string);
1833 if (tr)
1834 append_transition (table, tr->opcode, tr, cmp);
1835 else
1836 {
1837#if TENSILICA_DEBUG
1838 as_warn (_("could not build transition for %s => %s"),
1839 from_string, to_string);
1840#endif
1841 }
1842 }
e0001a05
NC
1843
1844 clear_insn_repl (&replace_insns);
1845 clear_insn_pattern (&initial_insn);
1846 }
1847 return table;
1848}
1849
1850\f
1851extern TransitionTable *
7fa3d080 1852xg_build_widen_table (transition_cmp_fn cmp)
e0001a05
NC
1853{
1854 static TransitionTable *table = NULL;
1855 if (table == NULL)
43cd72b9 1856 table = build_transition_table (widen_spec_list, WIDEN_COUNT, cmp);
e0001a05
NC
1857 return table;
1858}
1859
1860
1861extern TransitionTable *
7fa3d080 1862xg_build_simplify_table (transition_cmp_fn cmp)
e0001a05
NC
1863{
1864 static TransitionTable *table = NULL;
1865 if (table == NULL)
43cd72b9 1866 table = build_transition_table (simplify_spec_list, SIMPLIFY_COUNT, cmp);
e0001a05
NC
1867 return table;
1868}
This page took 0.284812 seconds and 4 git commands to generate.