Add support for the xdef and xref pseudo-ops to the Z80 assembler.
[deliverable/binutils-gdb.git] / gas / doc / c-arm.texi
CommitLineData
b3adc24a 1@c Copyright (C) 1996-2020 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
4
5@ifset GENERIC
6@page
7@node ARM-Dependent
8@chapter ARM Dependent Features
9@end ifset
10
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter ARM Dependent Features
14@end ifclear
15
16@cindex ARM support
17@cindex Thumb support
18@menu
19* ARM Options:: Options
20* ARM Syntax:: Syntax
21* ARM Floating Point:: Floating Point
22* ARM Directives:: ARM Machine Directives
23* ARM Opcodes:: Opcodes
6057a28f 24* ARM Mapping Symbols:: Mapping Symbols
7da4f750 25* ARM Unwinding Tutorial:: Unwinding
252b5132
RH
26@end menu
27
28@node ARM Options
29@section Options
30@cindex ARM options (none)
31@cindex options for ARM (none)
adcf07e6 32
252b5132 33@table @code
adcf07e6 34
a05a5b64 35@cindex @code{-mcpu=} command-line option, ARM
92081f48 36@item -mcpu=@var{processor}[+@var{extension}@dots{}]
252b5132
RH
37This option specifies the target processor. The assembler will issue an
38error message if an attempt is made to assemble an instruction which
03b1477f 39will not execute on the target processor. The following processor names are
34bca508 40recognized:
03b1477f
RE
41@code{arm1},
42@code{arm2},
43@code{arm250},
44@code{arm3},
45@code{arm6},
46@code{arm60},
47@code{arm600},
48@code{arm610},
49@code{arm620},
50@code{arm7},
51@code{arm7m},
52@code{arm7d},
53@code{arm7dm},
54@code{arm7di},
55@code{arm7dmi},
56@code{arm70},
57@code{arm700},
58@code{arm700i},
59@code{arm710},
60@code{arm710t},
61@code{arm720},
62@code{arm720t},
63@code{arm740t},
64@code{arm710c},
65@code{arm7100},
66@code{arm7500},
67@code{arm7500fe},
68@code{arm7t},
69@code{arm7tdmi},
1ff4677c 70@code{arm7tdmi-s},
03b1477f
RE
71@code{arm8},
72@code{arm810},
73@code{strongarm},
74@code{strongarm1},
75@code{strongarm110},
76@code{strongarm1100},
77@code{strongarm1110},
78@code{arm9},
79@code{arm920},
80@code{arm920t},
81@code{arm922t},
82@code{arm940t},
83@code{arm9tdmi},
7fac0536
NC
84@code{fa526} (Faraday FA526 processor),
85@code{fa626} (Faraday FA626 processor),
03b1477f 86@code{arm9e},
7de9afa2 87@code{arm926e},
1ff4677c 88@code{arm926ej-s},
03b1477f
RE
89@code{arm946e-r0},
90@code{arm946e},
db8ac8f9 91@code{arm946e-s},
03b1477f
RE
92@code{arm966e-r0},
93@code{arm966e},
db8ac8f9
PB
94@code{arm966e-s},
95@code{arm968e-s},
03b1477f 96@code{arm10t},
db8ac8f9 97@code{arm10tdmi},
03b1477f
RE
98@code{arm10e},
99@code{arm1020},
100@code{arm1020t},
7de9afa2 101@code{arm1020e},
db8ac8f9 102@code{arm1022e},
1ff4677c 103@code{arm1026ej-s},
4a58c4bd
NC
104@code{fa606te} (Faraday FA606TE processor),
105@code{fa616te} (Faraday FA616TE processor),
7fac0536 106@code{fa626te} (Faraday FA626TE processor),
4a58c4bd 107@code{fmp626} (Faraday FMP626 processor),
7fac0536 108@code{fa726te} (Faraday FA726TE processor),
1ff4677c
RE
109@code{arm1136j-s},
110@code{arm1136jf-s},
db8ac8f9
PB
111@code{arm1156t2-s},
112@code{arm1156t2f-s},
0dd132b6
NC
113@code{arm1176jz-s},
114@code{arm1176jzf-s},
115@code{mpcore},
116@code{mpcorenovfp},
b38f9f31 117@code{cortex-a5},
c90460e4 118@code{cortex-a7},
62b3e311 119@code{cortex-a8},
15290f0a 120@code{cortex-a9},
dbb1f804 121@code{cortex-a15},
ed5491b9 122@code{cortex-a17},
6735952f 123@code{cortex-a32},
43cdc0a8 124@code{cortex-a35},
4469186b 125@code{cortex-a53},
15a7695f 126@code{cortex-a55},
4469186b
KT
127@code{cortex-a57},
128@code{cortex-a72},
362a3eba 129@code{cortex-a73},
15a7695f 130@code{cortex-a75},
7ebd1359 131@code{cortex-a76},
0535e5d7
DZ
132@code{cortex-a76ae},
133@code{cortex-a77},
ef8df4ca 134@code{ares},
62b3e311 135@code{cortex-r4},
307c948d 136@code{cortex-r4f},
70a8bc5b 137@code{cortex-r5},
138@code{cortex-r7},
5f474010 139@code{cortex-r8},
0cda1e19 140@code{cortex-r52},
0535e5d7 141@code{cortex-m35p},
b19ea8d2 142@code{cortex-m33},
ce1b0a45 143@code{cortex-m23},
a715796b 144@code{cortex-m7},
7ef07ba0 145@code{cortex-m4},
62b3e311 146@code{cortex-m3},
5b19eaba
NC
147@code{cortex-m1},
148@code{cortex-m0},
ce32bd10 149@code{cortex-m0plus},
246496bb 150@code{exynos-m1},
ea0d6bb9
PT
151@code{marvell-pj4},
152@code{marvell-whitney},
83f43c83 153@code{neoverse-n1},
ea0d6bb9
PT
154@code{xgene1},
155@code{xgene2},
03b1477f
RE
156@code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
157@code{i80200} (Intel XScale processor)
334fe02b 158@code{iwmmxt} (Intel XScale processor with Wireless MMX technology coprocessor)
03b1477f 159and
34bca508 160@code{xscale}.
03b1477f
RE
161The special name @code{all} may be used to allow the
162assembler to accept instructions valid for any ARM processor.
163
34bca508
L
164In addition to the basic instruction set, the assembler can be told to
165accept various extension mnemonics that extend the processor using the
03b1477f 166co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
34bca508 167is equivalent to specifying @code{-mcpu=ep9312}.
69133863 168
34bca508 169Multiple extensions may be specified, separated by a @code{+}. The
69133863
MGD
170extensions should be specified in ascending alphabetical order.
171
34bca508 172Some extensions may be restricted to particular architectures; this is
60e5ef9f
MGD
173documented in the list of extensions below.
174
34bca508
L
175Extension mnemonics may also be removed from those the assembler accepts.
176This is done be prepending @code{no} to the option that adds the extension.
177Extensions that are removed should be listed after all extensions which have
178been added, again in ascending alphabetical order. For example,
69133863
MGD
179@code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
180
181
eea54501 182The following extensions are currently supported:
aab2c27d 183@code{bf16} (BFloat16 extensions for v8.6-A architecture),
616ce08e 184@code{i8mm} (Int8 Matrix Multiply extensions for v8.6-A architecture),
ea0d6bb9 185@code{crc}
bca38921 186@code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
c604a79a 187@code{dotprod} (Dot Product Extensions for v8.2-A architecture, implies @code{fp+simd}),
bca38921 188@code{fp} (Floating Point Extensions for v8-A architecture),
01f48020
TC
189@code{fp16} (FP16 Extensions for v8.2-A architecture, implies @code{fp}),
190@code{fp16fml} (FP16 Floating Point Multiplication Variant Extensions for v8.2-A architecture, implies @code{fp16}),
bca38921 191@code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
69133863
MGD
192@code{iwmmxt},
193@code{iwmmxt2},
ea0d6bb9 194@code{xscale},
69133863 195@code{maverick},
ea0d6bb9
PT
196@code{mp} (Multiprocessing Extensions for v7-A and v7-R
197architectures),
b2a5fbdc 198@code{os} (Operating System for v6M architecture),
dad0c3bf
SD
199@code{predres} (Execution and Data Prediction Restriction Instruction for
200v8-A architectures, added by default from v8.5-A),
7fadb25d
SD
201@code{sb} (Speculation Barrier Instruction for v8-A architectures, added by
202default from v8.5-A),
f4c65163 203@code{sec} (Security Extensions for v6K and v7-A architectures),
bca38921 204@code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
34bca508 205@code{virt} (Virtualization Extensions for v7-A architecture, implies
90ec0d68 206@code{idiv}),
33eaf5de 207@code{pan} (Privileged Access Never Extensions for v8-A architecture),
4d1464f2
MW
208@code{ras} (Reliability, Availability and Serviceability extensions
209for v8-A architecture),
d6b4b13e
MW
210@code{rdma} (ARMv8.1 Advanced SIMD extensions for v8-A architecture, implies
211@code{simd})
03b1477f 212and
69133863 213@code{xscale}.
03b1477f 214
a05a5b64 215@cindex @code{-march=} command-line option, ARM
92081f48 216@item -march=@var{architecture}[+@var{extension}@dots{}]
252b5132
RH
217This option specifies the target architecture. The assembler will issue
218an error message if an attempt is made to assemble an instruction which
34bca508
L
219will not execute on the target architecture. The following architecture
220names are recognized:
03b1477f
RE
221@code{armv1},
222@code{armv2},
223@code{armv2a},
224@code{armv2s},
225@code{armv3},
226@code{armv3m},
227@code{armv4},
228@code{armv4xm},
229@code{armv4t},
230@code{armv4txm},
231@code{armv5},
232@code{armv5t},
233@code{armv5txm},
234@code{armv5te},
09d92015 235@code{armv5texp},
c5f98204 236@code{armv6},
1ddd7f43 237@code{armv6j},
0dd132b6
NC
238@code{armv6k},
239@code{armv6z},
f33026a9 240@code{armv6kz},
b2a5fbdc
MGD
241@code{armv6-m},
242@code{armv6s-m},
62b3e311 243@code{armv7},
c450d570 244@code{armv7-a},
c9fb6e58 245@code{armv7ve},
c450d570
PB
246@code{armv7-r},
247@code{armv7-m},
9e3c6df6 248@code{armv7e-m},
bca38921 249@code{armv8-a},
a5932920 250@code{armv8.1-a},
56a1b672 251@code{armv8.2-a},
a12fd8e1 252@code{armv8.3-a},
ced40572 253@code{armv8-r},
dec41383 254@code{armv8.4-a},
23f233a5 255@code{armv8.5-a},
34ef62f4
AV
256@code{armv8-m.base},
257@code{armv8-m.main},
e0991585 258@code{armv8.1-m.main},
aab2c27d 259@code{armv8.6-a},
34ef62f4 260@code{iwmmxt},
ea0d6bb9 261@code{iwmmxt2}
03b1477f
RE
262and
263@code{xscale}.
264If both @code{-mcpu} and
265@code{-march} are specified, the assembler will use
266the setting for @code{-mcpu}.
267
34ef62f4
AV
268The architecture option can be extended with a set extension options. These
269extensions are context sensitive, i.e. the same extension may mean different
270things when used with different architectures. When used together with a
271@code{-mfpu} option, the union of both feature enablement is taken.
272See their availability and meaning below:
273
274For @code{armv5te}, @code{armv5texp}, @code{armv5tej}, @code{armv6}, @code{armv6j}, @code{armv6k}, @code{armv6z}, @code{armv6kz}, @code{armv6zk}, @code{armv6t2}, @code{armv6kt2} and @code{armv6zt2}:
275
276@code{+fp}: Enables VFPv2 instructions.
277@code{+nofp}: Disables all FPU instrunctions.
278
279For @code{armv7}:
280
281@code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
282@code{+nofp}: Disables all FPU instructions.
283
284For @code{armv7-a}:
285
286@code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
287@code{+vfpv3-d16}: Alias for @code{+fp}.
288@code{+vfpv3}: Enables VFPv3 instructions with 32 double-word registers.
289@code{+vfpv3-d16-fp16}: Enables VFPv3 with half precision floating-point
290conversion instructions and 16 double-word registers.
291@code{+vfpv3-fp16}: Enables VFPv3 with half precision floating-point conversion
292instructions and 32 double-word registers.
293@code{+vfpv4-d16}: Enables VFPv4 instructions with 16 double-word registers.
294@code{+vfpv4}: Enables VFPv4 instructions with 32 double-word registers.
295@code{+simd}: Enables VFPv3 and NEONv1 instructions with 32 double-word
296registers.
297@code{+neon}: Alias for @code{+simd}.
298@code{+neon-vfpv3}: Alias for @code{+simd}.
299@code{+neon-fp16}: Enables VFPv3, half precision floating-point conversion and
300NEONv1 instructions with 32 double-word registers.
301@code{+neon-vfpv4}: Enables VFPv4 and NEONv1 with Fused-MAC instructions and 32
302double-word registers.
303@code{+mp}: Enables Multiprocessing Extensions.
304@code{+sec}: Enables Security Extensions.
305@code{+nofp}: Disables all FPU and NEON instructions.
306@code{+nosimd}: Disables all NEON instructions.
307
308For @code{armv7ve}:
309
310@code{+fp}: Enables VFPv4 instructions with 16 double-word registers.
311@code{+vfpv4-d16}: Alias for @code{+fp}.
312@code{+vfpv3-d16}: Enables VFPv3 instructions with 16 double-word registers.
313@code{+vfpv3}: Enables VFPv3 instructions with 32 double-word registers.
314@code{+vfpv3-d16-fp16}: Enables VFPv3 with half precision floating-point
315conversion instructions and 16 double-word registers.
316@code{+vfpv3-fp16}: Enables VFPv3 with half precision floating-point conversion
317instructions and 32 double-word registers.
318@code{+vfpv4}: Enables VFPv4 instructions with 32 double-word registers.
319@code{+simd}: Enables VFPv4 and NEONv1 with Fused-MAC instructions and 32
320double-word registers.
321@code{+neon-vfpv4}: Alias for @code{+simd}.
322@code{+neon}: Enables VFPv3 and NEONv1 instructions with 32 double-word
323registers.
324@code{+neon-vfpv3}: Alias for @code{+neon}.
325@code{+neon-fp16}: Enables VFPv3, half precision floating-point conversion and
326NEONv1 instructions with 32 double-word registers.
327double-word registers.
328@code{+nofp}: Disables all FPU and NEON instructions.
329@code{+nosimd}: Disables all NEON instructions.
330
331For @code{armv7-r}:
332
333@code{+fp.sp}: Enables single-precision only VFPv3 instructions with 16
334double-word registers.
335@code{+vfpv3xd}: Alias for @code{+fp.sp}.
336@code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
337@code{+vfpv3-d16}: Alias for @code{+fp}.
338@code{+vfpv3xd-fp16}: Enables single-precision only VFPv3 and half
339floating-point conversion instructions with 16 double-word registers.
340@code{+vfpv3-d16-fp16}: Enables VFPv3 and half precision floating-point
341conversion instructions with 16 double-word registers.
342@code{+idiv}: Enables integer division instructions in ARM mode.
343@code{+nofp}: Disables all FPU instructions.
344
345For @code{armv7e-m}:
346
347@code{+fp}: Enables single-precision only VFPv4 instructions with 16
348double-word registers.
349@code{+vfpvf4-sp-d16}: Alias for @code{+fp}.
350@code{+fpv5}: Enables single-precision only VFPv5 instructions with 16
351double-word registers.
352@code{+fp.dp}: Enables VFPv5 instructions with 16 double-word registers.
353@code{+fpv5-d16"}: Alias for @code{+fp.dp}.
354@code{+nofp}: Disables all FPU instructions.
355
356For @code{armv8-m.main}:
357
358@code{+dsp}: Enables DSP Extension.
359@code{+fp}: Enables single-precision only VFPv5 instructions with 16
360double-word registers.
361@code{+fp.dp}: Enables VFPv5 instructions with 16 double-word registers.
4934a27c
MM
362@code{+cdecp0} (CDE extensions for v8-m architecture with coprocessor 0),
363@code{+cdecp1} (CDE extensions for v8-m architecture with coprocessor 1),
364@code{+cdecp2} (CDE extensions for v8-m architecture with coprocessor 2),
365@code{+cdecp3} (CDE extensions for v8-m architecture with coprocessor 3),
366@code{+cdecp4} (CDE extensions for v8-m architecture with coprocessor 4),
367@code{+cdecp5} (CDE extensions for v8-m architecture with coprocessor 5),
368@code{+cdecp6} (CDE extensions for v8-m architecture with coprocessor 6),
369@code{+cdecp7} (CDE extensions for v8-m architecture with coprocessor 7),
34ef62f4
AV
370@code{+nofp}: Disables all FPU instructions.
371@code{+nodsp}: Disables DSP Extension.
372
e0991585
AV
373For @code{armv8.1-m.main}:
374
375@code{+dsp}: Enables DSP Extension.
376@code{+fp}: Enables single and half precision scalar Floating Point Extensions
377for Armv8.1-M Mainline with 16 double-word registers.
378@code{+fp.dp}: Enables double precision scalar Floating Point Extensions for
379Armv8.1-M Mainline, implies @code{+fp}.
a7ad558c
AV
380@code{+mve}: Enables integer only M-profile Vector Extension for
381Armv8.1-M Mainline, implies @code{+dsp}.
382@code{+mve.fp}: Enables Floating Point M-profile Vector Extension for
383Armv8.1-M Mainline, implies @code{+mve} and @code{+fp}.
e0991585
AV
384@code{+nofp}: Disables all FPU instructions.
385@code{+nodsp}: Disables DSP Extension.
a7ad558c 386@code{+nomve}: Disables all M-profile Vector Extensions.
e0991585 387
34ef62f4
AV
388For @code{armv8-a}:
389
390@code{+crc}: Enables CRC32 Extension.
391@code{+simd}: Enables VFP and NEON for Armv8-A.
392@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
393@code{+simd}.
394@code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
395@code{+predres}: Enables Execution and Data Prediction Restriction Instruction
396for Armv8-A.
397@code{+nofp}: Disables all FPU, NEON and Cryptography Extensions.
398@code{+nocrypto}: Disables Cryptography Extensions.
399
400For @code{armv8.1-a}:
401
402@code{+simd}: Enables VFP and NEON for Armv8.1-A.
403@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
404@code{+simd}.
405@code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
406@code{+predres}: Enables Execution and Data Prediction Restriction Instruction
407for Armv8-A.
408@code{+nofp}: Disables all FPU, NEON and Cryptography Extensions.
409@code{+nocrypto}: Disables Cryptography Extensions.
410
411For @code{armv8.2-a} and @code{armv8.3-a}:
412
413@code{+simd}: Enables VFP and NEON for Armv8.1-A.
414@code{+fp16}: Enables FP16 Extension for Armv8.2-A, implies @code{+simd}.
415@code{+fp16fml}: Enables FP16 Floating Point Multiplication Variant Extensions
416for Armv8.2-A, implies @code{+fp16}.
417@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
418@code{+simd}.
419@code{+dotprod}: Enables Dot Product Extensions for Armv8.2-A, implies
420@code{+simd}.
421@code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
422@code{+predres}: Enables Execution and Data Prediction Restriction Instruction
423for Armv8-A.
424@code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
425@code{+nocrypto}: Disables Cryptography Extensions.
426
427For @code{armv8.4-a}:
428
429@code{+simd}: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions for
430Armv8.2-A.
431@code{+fp16}: Enables FP16 Floating Point and Floating Point Multiplication
432Variant Extensions for Armv8.2-A, implies @code{+simd}.
433@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
434@code{+simd}.
435@code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
436@code{+predres}: Enables Execution and Data Prediction Restriction Instruction
437for Armv8-A.
438@code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
439@code{+nocryptp}: Disables Cryptography Extensions.
440
441For @code{armv8.5-a}:
442
443@code{+simd}: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions for
444Armv8.2-A.
445@code{+fp16}: Enables FP16 Floating Point and Floating Point Multiplication
446Variant Extensions for Armv8.2-A, implies @code{+simd}.
447@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
448@code{+simd}.
449@code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
450@code{+nocryptp}: Disables Cryptography Extensions.
451
03b1477f 452
a05a5b64 453@cindex @code{-mfpu=} command-line option, ARM
03b1477f
RE
454@item -mfpu=@var{floating-point-format}
455
456This option specifies the floating point format to assemble for. The
457assembler will issue an error message if an attempt is made to assemble
34bca508 458an instruction which will not execute on the target floating point unit.
03b1477f
RE
459The following format options are recognized:
460@code{softfpa},
461@code{fpe},
bc89618b
RE
462@code{fpe2},
463@code{fpe3},
03b1477f
RE
464@code{fpa},
465@code{fpa10},
466@code{fpa11},
467@code{arm7500fe},
468@code{softvfp},
469@code{softvfp+vfp},
470@code{vfp},
471@code{vfp10},
472@code{vfp10-r0},
473@code{vfp9},
474@code{vfpxd},
62f3b8c8
PB
475@code{vfpv2},
476@code{vfpv3},
477@code{vfpv3-fp16},
478@code{vfpv3-d16},
479@code{vfpv3-d16-fp16},
480@code{vfpv3xd},
481@code{vfpv3xd-d16},
482@code{vfpv4},
483@code{vfpv4-d16},
f0cd0667 484@code{fpv4-sp-d16},
a715796b
TG
485@code{fpv5-sp-d16},
486@code{fpv5-d16},
bca38921 487@code{fp-armv8},
09d92015
MM
488@code{arm1020t},
489@code{arm1020e},
b1cc4aeb 490@code{arm1136jf-s},
62f3b8c8
PB
491@code{maverick},
492@code{neon},
d5e0ba9c
RE
493@code{neon-vfpv3},
494@code{neon-fp16},
bca38921
MGD
495@code{neon-vfpv4},
496@code{neon-fp-armv8},
081e4c7d
MW
497@code{crypto-neon-fp-armv8},
498@code{neon-fp-armv8.1}
d6b4b13e 499and
081e4c7d 500@code{crypto-neon-fp-armv8.1}.
03b1477f
RE
501
502In addition to determining which instructions are assembled, this option
503also affects the way in which the @code{.double} assembler directive behaves
504when assembling little-endian code.
505
34bca508 506The default is dependent on the processor selected. For Architecture 5 or
d5e0ba9c 507later, the default is to assemble for VFP instructions; for earlier
03b1477f 508architectures the default is to assemble for FPA instructions.
adcf07e6 509
5312fe52
BW
510@cindex @code{-mfp16-format=} command-line option
511@item -mfp16-format=@var{format}
512This option specifies the half-precision floating point format to use
513when assembling floating point numbers emitted by the @code{.float16}
514directive.
515The following format options are recognized:
516@code{ieee},
517@code{alternative}.
518If @code{ieee} is specified then the IEEE 754-2008 half-precision floating
519point format is used, if @code{alternative} is specified then the Arm
520alternative half-precision format is used. If this option is set on the
521command line then the format is fixed and cannot be changed with
522the @code{float16_format} directive. If this value is not set then
523the IEEE 754-2008 format is used until the format is explicitly set with
524the @code{float16_format} directive.
525
a05a5b64 526@cindex @code{-mthumb} command-line option, ARM
252b5132 527@item -mthumb
03b1477f 528This option specifies that the assembler should start assembling Thumb
34bca508 529instructions; that is, it should behave as though the file starts with a
03b1477f 530@code{.code 16} directive.
adcf07e6 531
a05a5b64 532@cindex @code{-mthumb-interwork} command-line option, ARM
252b5132
RH
533@item -mthumb-interwork
534This option specifies that the output generated by the assembler should
fc6141f0
NC
535be marked as supporting interworking. It also affects the behaviour
536of the @code{ADR} and @code{ADRL} pseudo opcodes.
adcf07e6 537
a05a5b64 538@cindex @code{-mimplicit-it} command-line option, ARM
52970753
NC
539@item -mimplicit-it=never
540@itemx -mimplicit-it=always
541@itemx -mimplicit-it=arm
542@itemx -mimplicit-it=thumb
543The @code{-mimplicit-it} option controls the behavior of the assembler when
544conditional instructions are not enclosed in IT blocks.
545There are four possible behaviors.
546If @code{never} is specified, such constructs cause a warning in ARM
547code and an error in Thumb-2 code.
548If @code{always} is specified, such constructs are accepted in both
549ARM and Thumb-2 code, where the IT instruction is added implicitly.
550If @code{arm} is specified, such constructs are accepted in ARM code
551and cause an error in Thumb-2 code.
552If @code{thumb} is specified, such constructs cause a warning in ARM
553code and are accepted in Thumb-2 code. If you omit this option, the
554behavior is equivalent to @code{-mimplicit-it=arm}.
e07e6e58 555
a05a5b64
TP
556@cindex @code{-mapcs-26} command-line option, ARM
557@cindex @code{-mapcs-32} command-line option, ARM
5a5829dd
NS
558@item -mapcs-26
559@itemx -mapcs-32
560These options specify that the output generated by the assembler should
252b5132
RH
561be marked as supporting the indicated version of the Arm Procedure.
562Calling Standard.
adcf07e6 563
a05a5b64 564@cindex @code{-matpcs} command-line option, ARM
077b8428 565@item -matpcs
34bca508 566This option specifies that the output generated by the assembler should
077b8428
NC
567be marked as supporting the Arm/Thumb Procedure Calling Standard. If
568enabled this option will cause the assembler to create an empty
569debugging section in the object file called .arm.atpcs. Debuggers can
570use this to determine the ABI being used by.
571
a05a5b64 572@cindex @code{-mapcs-float} command-line option, ARM
252b5132 573@item -mapcs-float
1be59579 574This indicates the floating point variant of the APCS should be
252b5132 575used. In this variant floating point arguments are passed in FP
550262c4 576registers rather than integer registers.
adcf07e6 577
a05a5b64 578@cindex @code{-mapcs-reentrant} command-line option, ARM
252b5132
RH
579@item -mapcs-reentrant
580This indicates that the reentrant variant of the APCS should be used.
581This variant supports position independent code.
adcf07e6 582
a05a5b64 583@cindex @code{-mfloat-abi=} command-line option, ARM
33a392fb
PB
584@item -mfloat-abi=@var{abi}
585This option specifies that the output generated by the assembler should be
586marked as using specified floating point ABI.
587The following values are recognized:
588@code{soft},
589@code{softfp}
590and
591@code{hard}.
592
a05a5b64 593@cindex @code{-eabi=} command-line option, ARM
d507cf36
PB
594@item -meabi=@var{ver}
595This option specifies which EABI version the produced object files should
596conform to.
b45619c0 597The following values are recognized:
3a4a14e9
PB
598@code{gnu},
599@code{4}
d507cf36 600and
3a4a14e9 601@code{5}.
d507cf36 602
a05a5b64 603@cindex @code{-EB} command-line option, ARM
252b5132
RH
604@item -EB
605This option specifies that the output generated by the assembler should
606be marked as being encoded for a big-endian processor.
adcf07e6 607
080bb7bb
NC
608Note: If a program is being built for a system with big-endian data
609and little-endian instructions then it should be assembled with the
610@option{-EB} option, (all of it, code and data) and then linked with
611the @option{--be8} option. This will reverse the endianness of the
612instructions back to little-endian, but leave the data as big-endian.
613
a05a5b64 614@cindex @code{-EL} command-line option, ARM
252b5132
RH
615@item -EL
616This option specifies that the output generated by the assembler should
617be marked as being encoded for a little-endian processor.
adcf07e6 618
a05a5b64 619@cindex @code{-k} command-line option, ARM
252b5132
RH
620@cindex PIC code generation for ARM
621@item -k
a349d9dd
PB
622This option specifies that the output of the assembler should be marked
623as position-independent code (PIC).
adcf07e6 624
a05a5b64 625@cindex @code{--fix-v4bx} command-line option, ARM
845b51d6
PB
626@item --fix-v4bx
627Allow @code{BX} instructions in ARMv4 code. This is intended for use with
628the linker option of the same name.
629
a05a5b64 630@cindex @code{-mwarn-deprecated} command-line option, ARM
278df34e
NS
631@item -mwarn-deprecated
632@itemx -mno-warn-deprecated
633Enable or disable warnings about using deprecated options or
634features. The default is to warn.
635
a05a5b64 636@cindex @code{-mccs} command-line option, ARM
2e6976a8
DG
637@item -mccs
638Turns on CodeComposer Studio assembly syntax compatibility mode.
639
a05a5b64 640@cindex @code{-mwarn-syms} command-line option, ARM
8b2d793c
NC
641@item -mwarn-syms
642@itemx -mno-warn-syms
643Enable or disable warnings about symbols that match the names of ARM
644instructions. The default is to warn.
645
252b5132
RH
646@end table
647
648
649@node ARM Syntax
650@section Syntax
651@menu
cab7e4d9 652* ARM-Instruction-Set:: Instruction Set
252b5132
RH
653* ARM-Chars:: Special Characters
654* ARM-Regs:: Register Names
b6895b4f 655* ARM-Relocations:: Relocations
99f1a7a7 656* ARM-Neon-Alignment:: NEON Alignment Specifiers
252b5132
RH
657@end menu
658
cab7e4d9
NC
659@node ARM-Instruction-Set
660@subsection Instruction Set Syntax
661Two slightly different syntaxes are support for ARM and THUMB
662instructions. The default, @code{divided}, uses the old style where
663ARM and THUMB instructions had their own, separate syntaxes. The new,
664@code{unified} syntax, which can be selected via the @code{.syntax}
665directive, and has the following main features:
666
9e6f3811
AS
667@itemize @bullet
668@item
cab7e4d9
NC
669Immediate operands do not require a @code{#} prefix.
670
9e6f3811 671@item
cab7e4d9
NC
672The @code{IT} instruction may appear, and if it does it is validated
673against subsequent conditional affixes. In ARM mode it does not
674generate machine code, in THUMB mode it does.
675
9e6f3811 676@item
cab7e4d9
NC
677For ARM instructions the conditional affixes always appear at the end
678of the instruction. For THUMB instructions conditional affixes can be
679used, but only inside the scope of an @code{IT} instruction.
680
9e6f3811 681@item
cab7e4d9
NC
682All of the instructions new to the V6T2 architecture (and later) are
683available. (Only a few such instructions can be written in the
684@code{divided} syntax).
685
9e6f3811 686@item
cab7e4d9
NC
687The @code{.N} and @code{.W} suffixes are recognized and honored.
688
9e6f3811 689@item
cab7e4d9
NC
690All instructions set the flags if and only if they have an @code{s}
691affix.
9e6f3811 692@end itemize
cab7e4d9 693
252b5132
RH
694@node ARM-Chars
695@subsection Special Characters
696
697@cindex line comment character, ARM
698@cindex ARM line comment character
7c31ae13
NC
699The presence of a @samp{@@} anywhere on a line indicates the start of
700a comment that extends to the end of that line.
701
702If a @samp{#} appears as the first character of a line then the whole
703line is treated as a comment, but in this case the line could also be
704a logical line number directive (@pxref{Comments}) or a preprocessor
705control command (@pxref{Preprocessing}).
550262c4
NC
706
707@cindex line separator, ARM
708@cindex statement separator, ARM
709@cindex ARM line separator
a349d9dd
PB
710The @samp{;} character can be used instead of a newline to separate
711statements.
550262c4
NC
712
713@cindex immediate character, ARM
714@cindex ARM immediate character
715Either @samp{#} or @samp{$} can be used to indicate immediate operands.
252b5132
RH
716
717@cindex identifiers, ARM
718@cindex ARM identifiers
719*TODO* Explain about /data modifier on symbols.
720
721@node ARM-Regs
722@subsection Register Names
723
724@cindex ARM register names
725@cindex register names, ARM
726*TODO* Explain about ARM register naming, and the predefined names.
727
b6895b4f
PB
728@node ARM-Relocations
729@subsection ARM relocation generation
730
731@cindex data relocations, ARM
732@cindex ARM data relocations
733Specific data relocations can be generated by putting the relocation name
734in parentheses after the symbol name. For example:
735
736@smallexample
737 .word foo(TARGET1)
738@end smallexample
739
740This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
741@var{foo}.
742The following relocations are supported:
743@code{GOT},
744@code{GOTOFF},
745@code{TARGET1},
746@code{TARGET2},
747@code{SBREL},
748@code{TLSGD},
749@code{TLSLDM},
750@code{TLSLDO},
0855e32b
NS
751@code{TLSDESC},
752@code{TLSCALL},
b43420e6
NC
753@code{GOTTPOFF},
754@code{GOT_PREL}
b6895b4f
PB
755and
756@code{TPOFF}.
757
758For compatibility with older toolchains the assembler also accepts
3da1d841
NC
759@code{(PLT)} after branch targets. On legacy targets this will
760generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
761targets it will encode either the @samp{R_ARM_CALL} or
762@samp{R_ARM_JUMP24} relocation, as appropriate.
b6895b4f
PB
763
764@cindex MOVW and MOVT relocations, ARM
765Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
766by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
b45619c0 767respectively. For example to load the 32-bit address of foo into r0:
252b5132 768
b6895b4f
PB
769@smallexample
770 MOVW r0, #:lower16:foo
771 MOVT r0, #:upper16:foo
772@end smallexample
252b5132 773
72d98d16
MG
774Relocations @samp{R_ARM_THM_ALU_ABS_G0_NC}, @samp{R_ARM_THM_ALU_ABS_G1_NC},
775@samp{R_ARM_THM_ALU_ABS_G2_NC} and @samp{R_ARM_THM_ALU_ABS_G3_NC} can be
776generated by prefixing the value with @samp{#:lower0_7:#},
777@samp{#:lower8_15:#}, @samp{#:upper0_7:#} and @samp{#:upper8_15:#}
778respectively. For example to load the 32-bit address of foo into r0:
779
780@smallexample
781 MOVS r0, #:upper8_15:#foo
782 LSLS r0, r0, #8
783 ADDS r0, #:upper0_7:#foo
784 LSLS r0, r0, #8
785 ADDS r0, #:lower8_15:#foo
786 LSLS r0, r0, #8
787 ADDS r0, #:lower0_7:#foo
788@end smallexample
789
ba724cfc
NC
790@node ARM-Neon-Alignment
791@subsection NEON Alignment Specifiers
792
793@cindex alignment for NEON instructions
794Some NEON load/store instructions allow an optional address
795alignment qualifier.
796The ARM documentation specifies that this is indicated by
797@samp{@@ @var{align}}. However GAS already interprets
798the @samp{@@} character as a "line comment" start,
799so @samp{: @var{align}} is used instead. For example:
800
801@smallexample
802 vld1.8 @{q0@}, [r0, :128]
803@end smallexample
804
805@node ARM Floating Point
806@section Floating Point
807
808@cindex floating point, ARM (@sc{ieee})
809@cindex ARM floating point (@sc{ieee})
810The ARM family uses @sc{ieee} floating-point numbers.
811
252b5132
RH
812@node ARM Directives
813@section ARM Machine Directives
814
815@cindex machine directives, ARM
816@cindex ARM machine directives
817@table @code
818
4a6bc624
NS
819@c AAAAAAAAAAAAAAAAAAAAAAAAA
820
2b841ec2 821@ifclear ELF
4a6bc624
NS
822@cindex @code{.2byte} directive, ARM
823@cindex @code{.4byte} directive, ARM
824@cindex @code{.8byte} directive, ARM
825@item .2byte @var{expression} [, @var{expression}]*
826@itemx .4byte @var{expression} [, @var{expression}]*
827@itemx .8byte @var{expression} [, @var{expression}]*
828These directives write 2, 4 or 8 byte values to the output section.
2b841ec2 829@end ifclear
4a6bc624
NS
830
831@cindex @code{.align} directive, ARM
adcf07e6
NC
832@item .align @var{expression} [, @var{expression}]
833This is the generic @var{.align} directive. For the ARM however if the
834first argument is zero (ie no alignment is needed) the assembler will
835behave as if the argument had been 2 (ie pad to the next four byte
062b7c0c 836boundary). This is for compatibility with ARM's own assembler.
adcf07e6 837
4a6bc624
NS
838@cindex @code{.arch} directive, ARM
839@item .arch @var{name}
840Select the target architecture. Valid values for @var{name} are the same as
54691107
TP
841for the @option{-march} command-line option without the instruction set
842extension.
252b5132 843
34bca508 844Specifying @code{.arch} clears any previously selected architecture
69133863
MGD
845extensions.
846
847@cindex @code{.arch_extension} directive, ARM
848@item .arch_extension @var{name}
34bca508
L
849Add or remove an architecture extension to the target architecture. Valid
850values for @var{name} are the same as those accepted as architectural
a05a5b64 851extensions by the @option{-mcpu} and @option{-march} command-line options.
69133863
MGD
852
853@code{.arch_extension} may be used multiple times to add or remove extensions
854incrementally to the architecture being compiled for.
855
4a6bc624
NS
856@cindex @code{.arm} directive, ARM
857@item .arm
858This performs the same action as @var{.code 32}.
252b5132 859
4a6bc624 860@c BBBBBBBBBBBBBBBBBBBBBBBBBB
0bbf2aa4 861
4a6bc624
NS
862@cindex @code{.bss} directive, ARM
863@item .bss
864This directive switches to the @code{.bss} section.
0bbf2aa4 865
4a6bc624
NS
866@c CCCCCCCCCCCCCCCCCCCCCCCCCC
867
868@cindex @code{.cantunwind} directive, ARM
869@item .cantunwind
870Prevents unwinding through the current function. No personality routine
871or exception table data is required or permitted.
872
873@cindex @code{.code} directive, ARM
874@item .code @code{[16|32]}
875This directive selects the instruction set being generated. The value 16
876selects Thumb, with the value 32 selecting ARM.
877
878@cindex @code{.cpu} directive, ARM
879@item .cpu @var{name}
880Select the target processor. Valid values for @var{name} are the same as
54691107
TP
881for the @option{-mcpu} command-line option without the instruction set
882extension.
4a6bc624 883
34bca508 884Specifying @code{.cpu} clears any previously selected architecture
69133863
MGD
885extensions.
886
4a6bc624
NS
887@c DDDDDDDDDDDDDDDDDDDDDDDDDD
888
889@cindex @code{.dn} and @code{.qn} directives, ARM
f467aa98 890@item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
1f9bb1ca 891@itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
23753660
JB
892
893The @code{dn} and @code{qn} directives are used to create typed
894and/or indexed register aliases for use in Advanced SIMD Extension
895(Neon) instructions. The former should be used to create aliases
896of double-precision registers, and the latter to create aliases of
897quad-precision registers.
898
899If these directives are used to create typed aliases, those aliases can
900be used in Neon instructions instead of writing types after the mnemonic
901or after each operand. For example:
902
903@smallexample
904 x .dn d2.f32
905 y .dn d3.f32
906 z .dn d4.f32[1]
907 vmul x,y,z
908@end smallexample
909
910This is equivalent to writing the following:
911
912@smallexample
913 vmul.f32 d2,d3,d4[1]
914@end smallexample
915
916Aliases created using @code{dn} or @code{qn} can be destroyed using
917@code{unreq}.
918
4a6bc624 919@c EEEEEEEEEEEEEEEEEEEEEEEEEE
252b5132 920
4a6bc624
NS
921@cindex @code{.eabi_attribute} directive, ARM
922@item .eabi_attribute @var{tag}, @var{value}
923Set the EABI object attribute @var{tag} to @var{value}.
252b5132 924
4a6bc624
NS
925The @var{tag} is either an attribute number, or one of the following:
926@code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
927@code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
75375b3e 928@code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
a7ad558c 929@code{Tag_Advanced_SIMD_arch}, @code{Tag_MVE_arch}, @code{Tag_PCS_config},
4a6bc624
NS
930@code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
931@code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
932@code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
933@code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
934@code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
75375b3e 935@code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
4a6bc624
NS
936@code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
937@code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
938@code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
939@code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
75375b3e 940@code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
cd21e546 941@code{Tag_MPextension_use}, @code{Tag_DIV_use},
4a6bc624
NS
942@code{Tag_nodefaults}, @code{Tag_also_compatible_with},
943@code{Tag_conformance}, @code{Tag_T2EE_use},
cd21e546 944@code{Tag_Virtualization_use}
4a6bc624
NS
945
946The @var{value} is either a @code{number}, @code{"string"}, or
947@code{number, "string"} depending on the tag.
948
75375b3e 949Note - the following legacy values are also accepted by @var{tag}:
34bca508 950@code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
75375b3e
MGD
951@code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
952
4a6bc624
NS
953@cindex @code{.even} directive, ARM
954@item .even
955This directive aligns to an even-numbered address.
956
957@cindex @code{.extend} directive, ARM
958@cindex @code{.ldouble} directive, ARM
959@item .extend @var{expression} [, @var{expression}]*
960@itemx .ldouble @var{expression} [, @var{expression}]*
961These directives write 12byte long double floating-point values to the
962output section. These are not compatible with current ARM processors
963or ABIs.
964
965@c FFFFFFFFFFFFFFFFFFFFFFFFFF
966
5312fe52
BW
967@cindex @code{.float16} directive, ARM
968@item .float16 @var{value [,...,value_n]}
969Place the half precision floating point representation of one or more
970floating-point values into the current section. The exact format of the
971encoding is specified by @code{.float16_format}. If the format has not
972been explicitly set yet (either via the @code{.float16_format} directive or
973the command line option) then the IEEE 754-2008 format is used.
974
975@cindex @code{.float16_format} directive, ARM
976@item .float16_format @var{format}
977Set the format to use when encoding float16 values emitted by
978the @code{.float16} directive.
979Once the format has been set it cannot be changed.
980@code{format} should be one of the following: @code{ieee} (encode in
981the IEEE 754-2008 half precision format) or @code{alternative} (encode in
982the Arm alternative half precision format).
983
4a6bc624
NS
984@anchor{arm_fnend}
985@cindex @code{.fnend} directive, ARM
986@item .fnend
987Marks the end of a function with an unwind table entry. The unwind index
988table entry is created when this directive is processed.
252b5132 989
4a6bc624
NS
990If no personality routine has been specified then standard personality
991routine 0 or 1 will be used, depending on the number of unwind opcodes
992required.
993
994@anchor{arm_fnstart}
995@cindex @code{.fnstart} directive, ARM
996@item .fnstart
997Marks the start of a function with an unwind table entry.
998
999@cindex @code{.force_thumb} directive, ARM
252b5132
RH
1000@item .force_thumb
1001This directive forces the selection of Thumb instructions, even if the
1002target processor does not support those instructions
1003
4a6bc624
NS
1004@cindex @code{.fpu} directive, ARM
1005@item .fpu @var{name}
1006Select the floating-point unit to assemble for. Valid values for @var{name}
a05a5b64 1007are the same as for the @option{-mfpu} command-line option.
252b5132 1008
4a6bc624
NS
1009@c GGGGGGGGGGGGGGGGGGGGGGGGGG
1010@c HHHHHHHHHHHHHHHHHHHHHHHHHH
e1da3f5b 1011
4a6bc624
NS
1012@cindex @code{.handlerdata} directive, ARM
1013@item .handlerdata
1014Marks the end of the current function, and the start of the exception table
1015entry for that function. Anything between this directive and the
1016@code{.fnend} directive will be added to the exception table entry.
1017
1018Must be preceded by a @code{.personality} or @code{.personalityindex}
1019directive.
1020
1021@c IIIIIIIIIIIIIIIIIIIIIIIIII
c921be7d
NC
1022
1023@cindex @code{.inst} directive, ARM
1024@item .inst @var{opcode} [ , @dots{} ]
1f9bb1ca
AS
1025@itemx .inst.n @var{opcode} [ , @dots{} ]
1026@itemx .inst.w @var{opcode} [ , @dots{} ]
c921be7d
NC
1027Generates the instruction corresponding to the numerical value @var{opcode}.
1028@code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
1029specified explicitly, overriding the normal encoding rules.
1030
4a6bc624
NS
1031@c JJJJJJJJJJJJJJJJJJJJJJJJJJ
1032@c KKKKKKKKKKKKKKKKKKKKKKKKKK
1033@c LLLLLLLLLLLLLLLLLLLLLLLLLL
1034
1035@item .ldouble @var{expression} [, @var{expression}]*
1036See @code{.extend}.
5395a469 1037
252b5132
RH
1038@cindex @code{.ltorg} directive, ARM
1039@item .ltorg
1040This directive causes the current contents of the literal pool to be
1041dumped into the current section (which is assumed to be the .text
1042section) at the current location (aligned to a word boundary).
3d0c9500
NC
1043@code{GAS} maintains a separate literal pool for each section and each
1044sub-section. The @code{.ltorg} directive will only affect the literal
1045pool of the current section and sub-section. At the end of assembly
1046all remaining, un-empty literal pools will automatically be dumped.
1047
1048Note - older versions of @code{GAS} would dump the current literal
1049pool any time a section change occurred. This is no longer done, since
1050it prevents accurate control of the placement of literal pools.
252b5132 1051
4a6bc624 1052@c MMMMMMMMMMMMMMMMMMMMMMMMMM
252b5132 1053
4a6bc624
NS
1054@cindex @code{.movsp} directive, ARM
1055@item .movsp @var{reg} [, #@var{offset}]
1056Tell the unwinder that @var{reg} contains an offset from the current
1057stack pointer. If @var{offset} is not specified then it is assumed to be
1058zero.
7ed4c4c5 1059
4a6bc624
NS
1060@c NNNNNNNNNNNNNNNNNNNNNNNNNN
1061@c OOOOOOOOOOOOOOOOOOOOOOOOOO
7ed4c4c5 1062
4a6bc624
NS
1063@cindex @code{.object_arch} directive, ARM
1064@item .object_arch @var{name}
1065Override the architecture recorded in the EABI object attribute section.
1066Valid values for @var{name} are the same as for the @code{.arch} directive.
1067Typically this is useful when code uses runtime detection of CPU features.
7ed4c4c5 1068
4a6bc624
NS
1069@c PPPPPPPPPPPPPPPPPPPPPPPPPP
1070
1071@cindex @code{.packed} directive, ARM
1072@item .packed @var{expression} [, @var{expression}]*
1073This directive writes 12-byte packed floating-point values to the
1074output section. These are not compatible with current ARM processors
1075or ABIs.
1076
ea4cff4f 1077@anchor{arm_pad}
4a6bc624
NS
1078@cindex @code{.pad} directive, ARM
1079@item .pad #@var{count}
1080Generate unwinder annotations for a stack adjustment of @var{count} bytes.
1081A positive value indicates the function prologue allocated stack space by
1082decrementing the stack pointer.
7ed4c4c5
NC
1083
1084@cindex @code{.personality} directive, ARM
1085@item .personality @var{name}
1086Sets the personality routine for the current function to @var{name}.
1087
1088@cindex @code{.personalityindex} directive, ARM
1089@item .personalityindex @var{index}
1090Sets the personality routine for the current function to the EABI standard
1091routine number @var{index}
1092
4a6bc624
NS
1093@cindex @code{.pool} directive, ARM
1094@item .pool
1095This is a synonym for .ltorg.
7ed4c4c5 1096
4a6bc624
NS
1097@c QQQQQQQQQQQQQQQQQQQQQQQQQQ
1098@c RRRRRRRRRRRRRRRRRRRRRRRRRR
1099
1100@cindex @code{.req} directive, ARM
1101@item @var{name} .req @var{register name}
1102This creates an alias for @var{register name} called @var{name}. For
1103example:
1104
1105@smallexample
1106 foo .req r0
1107@end smallexample
1108
1109@c SSSSSSSSSSSSSSSSSSSSSSSSSS
7ed4c4c5 1110
7da4f750 1111@anchor{arm_save}
7ed4c4c5
NC
1112@cindex @code{.save} directive, ARM
1113@item .save @var{reglist}
1114Generate unwinder annotations to restore the registers in @var{reglist}.
1115The format of @var{reglist} is the same as the corresponding store-multiple
1116instruction.
1117
1118@smallexample
1119@exdent @emph{core registers}
1120 .save @{r4, r5, r6, lr@}
1121 stmfd sp!, @{r4, r5, r6, lr@}
1122@exdent @emph{FPA registers}
1123 .save f4, 2
1124 sfmfd f4, 2, [sp]!
1125@exdent @emph{VFP registers}
1126 .save @{d8, d9, d10@}
fa073d69 1127 fstmdx sp!, @{d8, d9, d10@}
7ed4c4c5
NC
1128@exdent @emph{iWMMXt registers}
1129 .save @{wr10, wr11@}
1130 wstrd wr11, [sp, #-8]!
1131 wstrd wr10, [sp, #-8]!
1132or
1133 .save wr11
1134 wstrd wr11, [sp, #-8]!
1135 .save wr10
1136 wstrd wr10, [sp, #-8]!
1137@end smallexample
1138
7da4f750 1139@anchor{arm_setfp}
7ed4c4c5
NC
1140@cindex @code{.setfp} directive, ARM
1141@item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
4a6bc624 1142Make all unwinder annotations relative to a frame pointer. Without this
7ed4c4c5
NC
1143the unwinder will use offsets from the stack pointer.
1144
a5b82cbe 1145The syntax of this directive is the same as the @code{add} or @code{mov}
7ed4c4c5
NC
1146instruction used to set the frame pointer. @var{spreg} must be either
1147@code{sp} or mentioned in a previous @code{.movsp} directive.
1148
1149@smallexample
1150.movsp ip
1151mov ip, sp
1152@dots{}
1153.setfp fp, ip, #4
a5b82cbe 1154add fp, ip, #4
7ed4c4c5
NC
1155@end smallexample
1156
4a6bc624
NS
1157@cindex @code{.secrel32} directive, ARM
1158@item .secrel32 @var{expression} [, @var{expression}]*
1159This directive emits relocations that evaluate to the section-relative
1160offset of each expression's symbol. This directive is only supported
1161for PE targets.
1162
cab7e4d9
NC
1163@cindex @code{.syntax} directive, ARM
1164@item .syntax [@code{unified} | @code{divided}]
1165This directive sets the Instruction Set Syntax as described in the
1166@ref{ARM-Instruction-Set} section.
1167
4a6bc624
NS
1168@c TTTTTTTTTTTTTTTTTTTTTTTTTT
1169
1170@cindex @code{.thumb} directive, ARM
1171@item .thumb
1172This performs the same action as @var{.code 16}.
1173
1174@cindex @code{.thumb_func} directive, ARM
1175@item .thumb_func
1176This directive specifies that the following symbol is the name of a
1177Thumb encoded function. This information is necessary in order to allow
1178the assembler and linker to generate correct code for interworking
1179between Arm and Thumb instructions and should be used even if
1180interworking is not going to be performed. The presence of this
1181directive also implies @code{.thumb}
1182
33eaf5de 1183This directive is not necessary when generating EABI objects. On these
4a6bc624
NS
1184targets the encoding is implicit when generating Thumb code.
1185
1186@cindex @code{.thumb_set} directive, ARM
1187@item .thumb_set
1188This performs the equivalent of a @code{.set} directive in that it
1189creates a symbol which is an alias for another symbol (possibly not yet
1190defined). This directive also has the added property in that it marks
1191the aliased symbol as being a thumb function entry point, in the same
1192way that the @code{.thumb_func} directive does.
1193
0855e32b
NS
1194@cindex @code{.tlsdescseq} directive, ARM
1195@item .tlsdescseq @var{tls-variable}
1196This directive is used to annotate parts of an inlined TLS descriptor
1197trampoline. Normally the trampoline is provided by the linker, and
1198this directive is not needed.
1199
4a6bc624
NS
1200@c UUUUUUUUUUUUUUUUUUUUUUUUUU
1201
1202@cindex @code{.unreq} directive, ARM
1203@item .unreq @var{alias-name}
1204This undefines a register alias which was previously defined using the
1205@code{req}, @code{dn} or @code{qn} directives. For example:
1206
1207@smallexample
1208 foo .req r0
1209 .unreq foo
1210@end smallexample
1211
1212An error occurs if the name is undefined. Note - this pseudo op can
1213be used to delete builtin in register name aliases (eg 'r0'). This
1214should only be done if it is really necessary.
1215
7ed4c4c5 1216@cindex @code{.unwind_raw} directive, ARM
4a6bc624 1217@item .unwind_raw @var{offset}, @var{byte1}, @dots{}
33eaf5de 1218Insert one of more arbitrary unwind opcode bytes, which are known to adjust
7ed4c4c5
NC
1219the stack pointer by @var{offset} bytes.
1220
1221For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
1222@code{.save @{r0@}}
1223
4a6bc624 1224@c VVVVVVVVVVVVVVVVVVVVVVVVVV
ee065d83 1225
4a6bc624
NS
1226@cindex @code{.vsave} directive, ARM
1227@item .vsave @var{vfp-reglist}
1228Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
1229using FLDMD. Also works for VFPv3 registers
1230that are to be restored using VLDM.
1231The format of @var{vfp-reglist} is the same as the corresponding store-multiple
1232instruction.
ee065d83 1233
4a6bc624
NS
1234@smallexample
1235@exdent @emph{VFP registers}
1236 .vsave @{d8, d9, d10@}
1237 fstmdd sp!, @{d8, d9, d10@}
1238@exdent @emph{VFPv3 registers}
1239 .vsave @{d15, d16, d17@}
1240 vstm sp!, @{d15, d16, d17@}
1241@end smallexample
e04befd0 1242
4a6bc624
NS
1243Since FLDMX and FSTMX are now deprecated, this directive should be
1244used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
e04befd0 1245
4a6bc624
NS
1246@c WWWWWWWWWWWWWWWWWWWWWWWWWW
1247@c XXXXXXXXXXXXXXXXXXXXXXXXXX
1248@c YYYYYYYYYYYYYYYYYYYYYYYYYY
1249@c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
ee065d83 1250
252b5132
RH
1251@end table
1252
1253@node ARM Opcodes
1254@section Opcodes
1255
1256@cindex ARM opcodes
1257@cindex opcodes for ARM
49a5575c
NC
1258@code{@value{AS}} implements all the standard ARM opcodes. It also
1259implements several pseudo opcodes, including several synthetic load
34bca508 1260instructions.
252b5132 1261
49a5575c
NC
1262@table @code
1263
1264@cindex @code{NOP} pseudo op, ARM
1265@item NOP
1266@smallexample
1267 nop
1268@end smallexample
252b5132 1269
49a5575c
NC
1270This pseudo op will always evaluate to a legal ARM instruction that does
1271nothing. Currently it will evaluate to MOV r0, r0.
252b5132 1272
49a5575c 1273@cindex @code{LDR reg,=<label>} pseudo op, ARM
34bca508 1274@item LDR
252b5132
RH
1275@smallexample
1276 ldr <register> , = <expression>
1277@end smallexample
1278
1279If expression evaluates to a numeric constant then a MOV or MVN
1280instruction will be used in place of the LDR instruction, if the
1281constant can be generated by either of these instructions. Otherwise
1282the constant will be placed into the nearest literal pool (if it not
1283already there) and a PC relative LDR instruction will be generated.
1284
49a5575c
NC
1285@cindex @code{ADR reg,<label>} pseudo op, ARM
1286@item ADR
1287@smallexample
1288 adr <register> <label>
1289@end smallexample
1290
1291This instruction will load the address of @var{label} into the indicated
1292register. The instruction will evaluate to a PC relative ADD or SUB
1293instruction depending upon where the label is located. If the label is
1294out of range, or if it is not defined in the same file (and section) as
1295the ADR instruction, then an error will be generated. This instruction
1296will not make use of the literal pool.
1297
fc6141f0
NC
1298If @var{label} is a thumb function symbol, and thumb interworking has
1299been enabled via the @option{-mthumb-interwork} option then the bottom
1300bit of the value stored into @var{register} will be set. This allows
1301the following sequence to work as expected:
1302
1303@smallexample
1304 adr r0, thumb_function
1305 blx r0
1306@end smallexample
1307
49a5575c 1308@cindex @code{ADRL reg,<label>} pseudo op, ARM
34bca508 1309@item ADRL
49a5575c
NC
1310@smallexample
1311 adrl <register> <label>
1312@end smallexample
1313
1314This instruction will load the address of @var{label} into the indicated
a349d9dd 1315register. The instruction will evaluate to one or two PC relative ADD
49a5575c
NC
1316or SUB instructions depending upon where the label is located. If a
1317second instruction is not needed a NOP instruction will be generated in
1318its place, so that this instruction is always 8 bytes long.
1319
1320If the label is out of range, or if it is not defined in the same file
1321(and section) as the ADRL instruction, then an error will be generated.
1322This instruction will not make use of the literal pool.
1323
fc6141f0
NC
1324If @var{label} is a thumb function symbol, and thumb interworking has
1325been enabled via the @option{-mthumb-interwork} option then the bottom
1326bit of the value stored into @var{register} will be set.
1327
49a5575c
NC
1328@end table
1329
252b5132
RH
1330For information on the ARM or Thumb instruction sets, see @cite{ARM
1331Software Development Toolkit Reference Manual}, Advanced RISC Machines
1332Ltd.
1333
6057a28f
NC
1334@node ARM Mapping Symbols
1335@section Mapping Symbols
1336
1337The ARM ELF specification requires that special symbols be inserted
1338into object files to mark certain features:
1339
1340@table @code
1341
1342@cindex @code{$a}
1343@item $a
1344At the start of a region of code containing ARM instructions.
1345
1346@cindex @code{$t}
1347@item $t
1348At the start of a region of code containing THUMB instructions.
1349
1350@cindex @code{$d}
1351@item $d
1352At the start of a region of data.
1353
1354@end table
1355
1356The assembler will automatically insert these symbols for you - there
1357is no need to code them yourself. Support for tagging symbols ($b,
1358$f, $p and $m) which is also mentioned in the current ARM ELF
1359specification is not implemented. This is because they have been
1360dropped from the new EABI and so tools cannot rely upon their
1361presence.
1362
7da4f750
MM
1363@node ARM Unwinding Tutorial
1364@section Unwinding
1365
1366The ABI for the ARM Architecture specifies a standard format for
1367exception unwind information. This information is used when an
1368exception is thrown to determine where control should be transferred.
1369In particular, the unwind information is used to determine which
1370function called the function that threw the exception, and which
1371function called that one, and so forth. This information is also used
1372to restore the values of callee-saved registers in the function
1373catching the exception.
1374
1375If you are writing functions in assembly code, and those functions
1376call other functions that throw exceptions, you must use assembly
1377pseudo ops to ensure that appropriate exception unwind information is
1378generated. Otherwise, if one of the functions called by your assembly
1379code throws an exception, the run-time library will be unable to
1380unwind the stack through your assembly code and your program will not
1381behave correctly.
1382
1383To illustrate the use of these pseudo ops, we will examine the code
1384that G++ generates for the following C++ input:
1385
1386@verbatim
1387void callee (int *);
1388
34bca508
L
1389int
1390caller ()
7da4f750
MM
1391{
1392 int i;
1393 callee (&i);
34bca508 1394 return i;
7da4f750
MM
1395}
1396@end verbatim
1397
1398This example does not show how to throw or catch an exception from
1399assembly code. That is a much more complex operation and should
1400always be done in a high-level language, such as C++, that directly
1401supports exceptions.
1402
1403The code generated by one particular version of G++ when compiling the
1404example above is:
1405
1406@verbatim
1407_Z6callerv:
1408 .fnstart
1409.LFB2:
1410 @ Function supports interworking.
1411 @ args = 0, pretend = 0, frame = 8
1412 @ frame_needed = 1, uses_anonymous_args = 0
1413 stmfd sp!, {fp, lr}
1414 .save {fp, lr}
1415.LCFI0:
1416 .setfp fp, sp, #4
1417 add fp, sp, #4
1418.LCFI1:
1419 .pad #8
1420 sub sp, sp, #8
1421.LCFI2:
1422 sub r3, fp, #8
1423 mov r0, r3
1424 bl _Z6calleePi
1425 ldr r3, [fp, #-8]
1426 mov r0, r3
1427 sub sp, fp, #4
1428 ldmfd sp!, {fp, lr}
1429 bx lr
1430.LFE2:
1431 .fnend
1432@end verbatim
1433
1434Of course, the sequence of instructions varies based on the options
1435you pass to GCC and on the version of GCC in use. The exact
1436instructions are not important since we are focusing on the pseudo ops
1437that are used to generate unwind information.
1438
1439An important assumption made by the unwinder is that the stack frame
1440does not change during the body of the function. In particular, since
1441we assume that the assembly code does not itself throw an exception,
1442the only point where an exception can be thrown is from a call, such
1443as the @code{bl} instruction above. At each call site, the same saved
1444registers (including @code{lr}, which indicates the return address)
1445must be located in the same locations relative to the frame pointer.
1446
1447The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1448op appears immediately before the first instruction of the function
1449while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1450op appears immediately after the last instruction of the function.
34bca508 1451These pseudo ops specify the range of the function.
7da4f750
MM
1452
1453Only the order of the other pseudos ops (e.g., @code{.setfp} or
1454@code{.pad}) matters; their exact locations are irrelevant. In the
1455example above, the compiler emits the pseudo ops with particular
1456instructions. That makes it easier to understand the code, but it is
1457not required for correctness. It would work just as well to emit all
1458of the pseudo ops other than @code{.fnend} in the same order, but
1459immediately after @code{.fnstart}.
1460
1461The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1462indicates registers that have been saved to the stack so that they can
1463be restored before the function returns. The argument to the
1464@code{.save} pseudo op is a list of registers to save. If a register
1465is ``callee-saved'' (as specified by the ABI) and is modified by the
1466function you are writing, then your code must save the value before it
1467is modified and restore the original value before the function
1468returns. If an exception is thrown, the run-time library restores the
1469values of these registers from their locations on the stack before
1470returning control to the exception handler. (Of course, if an
1471exception is not thrown, the function that contains the @code{.save}
1472pseudo op restores these registers in the function epilogue, as is
1473done with the @code{ldmfd} instruction above.)
1474
1475You do not have to save callee-saved registers at the very beginning
1476of the function and you do not need to use the @code{.save} pseudo op
1477immediately following the point at which the registers are saved.
1478However, if you modify a callee-saved register, you must save it on
1479the stack before modifying it and before calling any functions which
1480might throw an exception. And, you must use the @code{.save} pseudo
1481op to indicate that you have done so.
1482
1483The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1484modification of the stack pointer that does not save any registers.
1485The argument is the number of bytes (in decimal) that are subtracted
1486from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1487subtracting from the stack pointer increases the size of the stack.)
1488
1489The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1490indicates the register that contains the frame pointer. The first
1491argument is the register that is set, which is typically @code{fp}.
1492The second argument indicates the register from which the frame
1493pointer takes its value. The third argument, if present, is the value
1494(in decimal) added to the register specified by the second argument to
1495compute the value of the frame pointer. You should not modify the
1496frame pointer in the body of the function.
1497
1498If you do not use a frame pointer, then you should not use the
1499@code{.setfp} pseudo op. If you do not use a frame pointer, then you
1500should avoid modifying the stack pointer outside of the function
1501prologue. Otherwise, the run-time library will be unable to find
1502saved registers when it is unwinding the stack.
1503
1504The pseudo ops described above are sufficient for writing assembly
1505code that calls functions which may throw exceptions. If you need to
1506know more about the object-file format used to represent unwind
1507information, you may consult the @cite{Exception Handling ABI for the
1508ARM Architecture} available from @uref{http://infocenter.arm.com}.
91f68a68 1509
This page took 1.023388 seconds and 4 git commands to generate.