Replace references to Mitsubishi M32R with references to Renesas M32R.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
f7e42eb4
NC
1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001
2@c Free Software Foundation, Inc.
252b5132
RH
3@c This is part of the GAS manual.
4@c For copying conditions, see the file as.texinfo.
5@ifset GENERIC
6@page
7@node i386-Dependent
8@chapter 80386 Dependent Features
9@end ifset
10@ifclear GENERIC
11@node Machine Dependencies
12@chapter 80386 Dependent Features
13@end ifclear
14
15@cindex i386 support
16@cindex i80306 support
55b62671
AJ
17@cindex x86-64 support
18
19The i386 version @code{@value{AS}} supports both the original Intel 386
20architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
21extending the Intel architecture to 64-bits.
22
252b5132
RH
23@menu
24* i386-Options:: Options
25* i386-Syntax:: AT&T Syntax versus Intel Syntax
26* i386-Mnemonics:: Instruction Naming
27* i386-Regs:: Register Naming
28* i386-Prefixes:: Instruction Prefixes
29* i386-Memory:: Memory References
fddf5b5b 30* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
31* i386-Float:: Floating Point
32* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
33* i386-16bit:: Writing 16-bit Code
e413e4e9 34* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
35* i386-Bugs:: AT&T Syntax bugs
36* i386-Notes:: Notes
37@end menu
38
39@node i386-Options
40@section Options
41
55b62671
AJ
42@cindex options for i386
43@cindex options for x86-64
44@cindex i386 options
45@cindex x86-64 options
46
47The i386 version of @code{@value{AS}} has a few machine
48dependent options:
49
50@table @code
51@cindex @samp{--32} option, i386
52@cindex @samp{--32} option, x86-64
53@cindex @samp{--64} option, i386
54@cindex @samp{--64} option, x86-64
55@item --32 | --64
56Select the word size, either 32 bits or 64 bits. Selecting 32-bit
57implies Intel i386 architecture, while 64-bit implies AMD x86-64
58architecture.
59
60These options are only available with the ELF object file format, and
61require that the necessary BFD support has been included (on a 32-bit
62platform you have to add --enable-64-bit-bfd to configure enable 64-bit
63usage and use x86-64 as target platform).
64@end table
e413e4e9 65
252b5132
RH
66@node i386-Syntax
67@section AT&T Syntax versus Intel Syntax
68
e413e4e9
AM
69@cindex i386 intel_syntax pseudo op
70@cindex intel_syntax pseudo op, i386
71@cindex i386 att_syntax pseudo op
72@cindex att_syntax pseudo op, i386
252b5132
RH
73@cindex i386 syntax compatibility
74@cindex syntax compatibility, i386
55b62671
AJ
75@cindex x86-64 intel_syntax pseudo op
76@cindex intel_syntax pseudo op, x86-64
77@cindex x86-64 att_syntax pseudo op
78@cindex att_syntax pseudo op, x86-64
79@cindex x86-64 syntax compatibility
80@cindex syntax compatibility, x86-64
e413e4e9
AM
81
82@code{@value{AS}} now supports assembly using Intel assembler syntax.
83@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
84back to the usual AT&T mode for compatibility with the output of
85@code{@value{GCC}}. Either of these directives may have an optional
86argument, @code{prefix}, or @code{noprefix} specifying whether registers
87require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
88different from Intel syntax. We mention these differences because
89almost all 80386 documents use Intel syntax. Notable differences
90between the two syntaxes are:
91
92@cindex immediate operands, i386
93@cindex i386 immediate operands
94@cindex register operands, i386
95@cindex i386 register operands
96@cindex jump/call operands, i386
97@cindex i386 jump/call operands
98@cindex operand delimiters, i386
55b62671
AJ
99
100@cindex immediate operands, x86-64
101@cindex x86-64 immediate operands
102@cindex register operands, x86-64
103@cindex x86-64 register operands
104@cindex jump/call operands, x86-64
105@cindex x86-64 jump/call operands
106@cindex operand delimiters, x86-64
252b5132
RH
107@itemize @bullet
108@item
109AT&T immediate operands are preceded by @samp{$}; Intel immediate
110operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
111AT&T register operands are preceded by @samp{%}; Intel register operands
112are undelimited. AT&T absolute (as opposed to PC relative) jump/call
113operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
114
115@cindex i386 source, destination operands
116@cindex source, destination operands; i386
55b62671
AJ
117@cindex x86-64 source, destination operands
118@cindex source, destination operands; x86-64
252b5132
RH
119@item
120AT&T and Intel syntax use the opposite order for source and destination
121operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
122@samp{source, dest} convention is maintained for compatibility with
123previous Unix assemblers. Note that instructions with more than one
124source operand, such as the @samp{enter} instruction, do @emph{not} have
125reversed order. @ref{i386-Bugs}.
126
127@cindex mnemonic suffixes, i386
128@cindex sizes operands, i386
129@cindex i386 size suffixes
55b62671
AJ
130@cindex mnemonic suffixes, x86-64
131@cindex sizes operands, x86-64
132@cindex x86-64 size suffixes
252b5132
RH
133@item
134In AT&T syntax the size of memory operands is determined from the last
135character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
136@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
137(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
138this by prefixing memory operands (@emph{not} the instruction mnemonics) with
139@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
140Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
141syntax.
252b5132
RH
142
143@cindex return instructions, i386
144@cindex i386 jump, call, return
55b62671
AJ
145@cindex return instructions, x86-64
146@cindex x86-64 jump, call, return
252b5132
RH
147@item
148Immediate form long jumps and calls are
149@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
150Intel syntax is
151@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
152instruction
153is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
154@samp{ret far @var{stack-adjust}}.
155
156@cindex sections, i386
157@cindex i386 sections
55b62671
AJ
158@cindex sections, x86-64
159@cindex x86-64 sections
252b5132
RH
160@item
161The AT&T assembler does not provide support for multiple section
162programs. Unix style systems expect all programs to be single sections.
163@end itemize
164
165@node i386-Mnemonics
166@section Instruction Naming
167
168@cindex i386 instruction naming
169@cindex instruction naming, i386
55b62671
AJ
170@cindex x86-64 instruction naming
171@cindex instruction naming, x86-64
172
252b5132 173Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
174specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
175and @samp{q} specify byte, word, long and quadruple word operands. If
176no suffix is specified by an instruction then @code{@value{AS}} tries to
177fill in the missing suffix based on the destination register operand
178(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
179to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
180@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
181assembler which assumes that a missing mnemonic suffix implies long
182operand size. (This incompatibility does not affect compiler output
183since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
184
185Almost all instructions have the same names in AT&T and Intel format.
186There are a few exceptions. The sign extend and zero extend
187instructions need two sizes to specify them. They need a size to
188sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
189is accomplished by using two instruction mnemonic suffixes in AT&T
190syntax. Base names for sign extend and zero extend are
191@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
192and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
193are tacked on to this base name, the @emph{from} suffix before the
194@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
195``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
196thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
197@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
198@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
199quadruple word).
252b5132
RH
200
201@cindex conversion instructions, i386
202@cindex i386 conversion instructions
55b62671
AJ
203@cindex conversion instructions, x86-64
204@cindex x86-64 conversion instructions
252b5132
RH
205The Intel-syntax conversion instructions
206
207@itemize @bullet
208@item
209@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
210
211@item
212@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
213
214@item
215@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
216
217@item
218@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
219
220@item
221@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
222(x86-64 only),
223
224@item
225@samp{cdo} --- sign-extend quad in @samp{%rax} to octuple in
226@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
227@end itemize
228
229@noindent
55b62671
AJ
230are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
231@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
232instructions.
252b5132
RH
233
234@cindex jump instructions, i386
235@cindex call instructions, i386
55b62671
AJ
236@cindex jump instructions, x86-64
237@cindex call instructions, x86-64
252b5132
RH
238Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
239AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
240convention.
241
242@node i386-Regs
243@section Register Naming
244
245@cindex i386 registers
246@cindex registers, i386
55b62671
AJ
247@cindex x86-64 registers
248@cindex registers, x86-64
252b5132
RH
249Register operands are always prefixed with @samp{%}. The 80386 registers
250consist of
251
252@itemize @bullet
253@item
254the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
255@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
256frame pointer), and @samp{%esp} (the stack pointer).
257
258@item
259the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
260@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
261
262@item
263the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
264@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
265are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
266@samp{%cx}, and @samp{%dx})
267
268@item
269the 6 section registers @samp{%cs} (code section), @samp{%ds}
270(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
271and @samp{%gs}.
272
273@item
274the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
275@samp{%cr3}.
276
277@item
278the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
279@samp{%db3}, @samp{%db6}, and @samp{%db7}.
280
281@item
282the 2 test registers @samp{%tr6} and @samp{%tr7}.
283
284@item
285the 8 floating point register stack @samp{%st} or equivalently
286@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
287@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
288These registers are overloaded by 8 MMX registers @samp{%mm0},
289@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
290@samp{%mm6} and @samp{%mm7}.
291
292@item
293the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
294@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
295@end itemize
296
297The AMD x86-64 architecture extends the register set by:
298
299@itemize @bullet
300@item
301enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
302accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
303@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
304pointer)
305
306@item
307the 8 extended registers @samp{%r8}--@samp{%r15}.
308
309@item
310the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
311
312@item
313the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
314
315@item
316the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
317
318@item
319the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
320
321@item
322the 8 debug registers: @samp{%db8}--@samp{%db15}.
323
324@item
325the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
326@end itemize
327
328@node i386-Prefixes
329@section Instruction Prefixes
330
331@cindex i386 instruction prefixes
332@cindex instruction prefixes, i386
333@cindex prefixes, i386
334Instruction prefixes are used to modify the following instruction. They
335are used to repeat string instructions, to provide section overrides, to
336perform bus lock operations, and to change operand and address sizes.
337(Most instructions that normally operate on 32-bit operands will use
33816-bit operands if the instruction has an ``operand size'' prefix.)
339Instruction prefixes are best written on the same line as the instruction
340they act upon. For example, the @samp{scas} (scan string) instruction is
341repeated with:
342
343@smallexample
344 repne scas %es:(%edi),%al
345@end smallexample
346
347You may also place prefixes on the lines immediately preceding the
348instruction, but this circumvents checks that @code{@value{AS}} does
349with prefixes, and will not work with all prefixes.
350
351Here is a list of instruction prefixes:
352
353@cindex section override prefixes, i386
354@itemize @bullet
355@item
356Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
357@samp{fs}, @samp{gs}. These are automatically added by specifying
358using the @var{section}:@var{memory-operand} form for memory references.
359
360@cindex size prefixes, i386
361@item
362Operand/Address size prefixes @samp{data16} and @samp{addr16}
363change 32-bit operands/addresses into 16-bit operands/addresses,
364while @samp{data32} and @samp{addr32} change 16-bit ones (in a
365@code{.code16} section) into 32-bit operands/addresses. These prefixes
366@emph{must} appear on the same line of code as the instruction they
367modify. For example, in a 16-bit @code{.code16} section, you might
368write:
369
370@smallexample
371 addr32 jmpl *(%ebx)
372@end smallexample
373
374@cindex bus lock prefixes, i386
375@cindex inhibiting interrupts, i386
376@item
377The bus lock prefix @samp{lock} inhibits interrupts during execution of
378the instruction it precedes. (This is only valid with certain
379instructions; see a 80386 manual for details).
380
381@cindex coprocessor wait, i386
382@item
383The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
384complete the current instruction. This should never be needed for the
38580386/80387 combination.
386
387@cindex repeat prefixes, i386
388@item
389The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
390to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
391times if the current address size is 16-bits).
55b62671
AJ
392@cindex REX prefixes, i386
393@item
394The @samp{rex} family of prefixes is used by x86-64 to encode
395extensions to i386 instruction set. The @samp{rex} prefix has four
396bits --- an operand size overwrite (@code{64}) used to change operand size
397from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
398register set.
399
400You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
401instruction emits @samp{rex} prefix with all the bits set. By omitting
402the @code{64}, @code{x}, @code{y} or @code{z} you may write other
403prefixes as well. Normally, there is no need to write the prefixes
404explicitly, since gas will automatically generate them based on the
405instruction operands.
252b5132
RH
406@end itemize
407
408@node i386-Memory
409@section Memory References
410
411@cindex i386 memory references
412@cindex memory references, i386
55b62671
AJ
413@cindex x86-64 memory references
414@cindex memory references, x86-64
252b5132
RH
415An Intel syntax indirect memory reference of the form
416
417@smallexample
418@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
419@end smallexample
420
421@noindent
422is translated into the AT&T syntax
423
424@smallexample
425@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
426@end smallexample
427
428@noindent
429where @var{base} and @var{index} are the optional 32-bit base and
430index registers, @var{disp} is the optional displacement, and
431@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
432to calculate the address of the operand. If no @var{scale} is
433specified, @var{scale} is taken to be 1. @var{section} specifies the
434optional section register for the memory operand, and may override the
435default section register (see a 80386 manual for section register
436defaults). Note that section overrides in AT&T syntax @emph{must}
437be preceded by a @samp{%}. If you specify a section override which
438coincides with the default section register, @code{@value{AS}} does @emph{not}
439output any section register override prefixes to assemble the given
440instruction. Thus, section overrides can be specified to emphasize which
441section register is used for a given memory operand.
442
443Here are some examples of Intel and AT&T style memory references:
444
445@table @asis
446@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
447@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
448missing, and the default section is used (@samp{%ss} for addressing with
449@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
450
451@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
452@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
453@samp{foo}. All other fields are missing. The section register here
454defaults to @samp{%ds}.
455
456@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
457This uses the value pointed to by @samp{foo} as a memory operand.
458Note that @var{base} and @var{index} are both missing, but there is only
459@emph{one} @samp{,}. This is a syntactic exception.
460
461@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
462This selects the contents of the variable @samp{foo} with section
463register @var{section} being @samp{%gs}.
464@end table
465
466Absolute (as opposed to PC relative) call and jump operands must be
467prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
468always chooses PC relative addressing for jump/call labels.
469
470Any instruction that has a memory operand, but no register operand,
55b62671
AJ
471@emph{must} specify its size (byte, word, long, or quadruple) with an
472instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
473respectively).
474
475The x86-64 architecture adds an RIP (instruction pointer relative)
476addressing. This addressing mode is specified by using @samp{rip} as a
477base register. Only constant offsets are valid. For example:
478
479@table @asis
480@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
481Points to the address 1234 bytes past the end of the current
482instruction.
483
484@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
485Points to the @code{symbol} in RIP relative way, this is shorter than
486the default absolute addressing.
487@end table
488
489Other addressing modes remain unchanged in x86-64 architecture, except
490registers used are 64-bit instead of 32-bit.
252b5132 491
fddf5b5b 492@node i386-Jumps
252b5132
RH
493@section Handling of Jump Instructions
494
495@cindex jump optimization, i386
496@cindex i386 jump optimization
55b62671
AJ
497@cindex jump optimization, x86-64
498@cindex x86-64 jump optimization
252b5132
RH
499Jump instructions are always optimized to use the smallest possible
500displacements. This is accomplished by using byte (8-bit) displacement
501jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 502is insufficient a long displacement is used. We do not support
252b5132
RH
503word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
504instruction with the @samp{data16} instruction prefix), since the 80386
505insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 506is added. (See also @pxref{i386-Arch})
252b5132
RH
507
508Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
509@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
510displacements, so that if you use these instructions (@code{@value{GCC}} does
511not use them) you may get an error message (and incorrect code). The AT&T
51280386 assembler tries to get around this problem by expanding @samp{jcxz foo}
513to
514
515@smallexample
516 jcxz cx_zero
517 jmp cx_nonzero
518cx_zero: jmp foo
519cx_nonzero:
520@end smallexample
521
522@node i386-Float
523@section Floating Point
524
525@cindex i386 floating point
526@cindex floating point, i386
55b62671
AJ
527@cindex x86-64 floating point
528@cindex floating point, x86-64
252b5132
RH
529All 80387 floating point types except packed BCD are supported.
530(BCD support may be added without much difficulty). These data
531types are 16-, 32-, and 64- bit integers, and single (32-bit),
532double (64-bit), and extended (80-bit) precision floating point.
533Each supported type has an instruction mnemonic suffix and a constructor
534associated with it. Instruction mnemonic suffixes specify the operand's
535data type. Constructors build these data types into memory.
536
537@cindex @code{float} directive, i386
538@cindex @code{single} directive, i386
539@cindex @code{double} directive, i386
540@cindex @code{tfloat} directive, i386
55b62671
AJ
541@cindex @code{float} directive, x86-64
542@cindex @code{single} directive, x86-64
543@cindex @code{double} directive, x86-64
544@cindex @code{tfloat} directive, x86-64
252b5132
RH
545@itemize @bullet
546@item
547Floating point constructors are @samp{.float} or @samp{.single},
548@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
549These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
550and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
551only supports this format via the @samp{fldt} (load 80-bit real to stack
552top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
553
554@cindex @code{word} directive, i386
555@cindex @code{long} directive, i386
556@cindex @code{int} directive, i386
557@cindex @code{quad} directive, i386
55b62671
AJ
558@cindex @code{word} directive, x86-64
559@cindex @code{long} directive, x86-64
560@cindex @code{int} directive, x86-64
561@cindex @code{quad} directive, x86-64
252b5132
RH
562@item
563Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
564@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
565corresponding instruction mnemonic suffixes are @samp{s} (single),
566@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
567the 64-bit @samp{q} format is only present in the @samp{fildq} (load
568quad integer to stack top) and @samp{fistpq} (store quad integer and pop
569stack) instructions.
570@end itemize
571
572Register to register operations should not use instruction mnemonic suffixes.
573@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
574wrote @samp{fst %st, %st(1)}, since all register to register operations
575use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
576which converts @samp{%st} from 80-bit to 64-bit floating point format,
577then stores the result in the 4 byte location @samp{mem})
578
579@node i386-SIMD
580@section Intel's MMX and AMD's 3DNow! SIMD Operations
581
582@cindex MMX, i386
583@cindex 3DNow!, i386
584@cindex SIMD, i386
55b62671
AJ
585@cindex MMX, x86-64
586@cindex 3DNow!, x86-64
587@cindex SIMD, x86-64
252b5132
RH
588
589@code{@value{AS}} supports Intel's MMX instruction set (SIMD
590instructions for integer data), available on Intel's Pentium MMX
591processors and Pentium II processors, AMD's K6 and K6-2 processors,
592Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!
593instruction set (SIMD instructions for 32-bit floating point data)
594available on AMD's K6-2 processor and possibly others in the future.
595
596Currently, @code{@value{AS}} does not support Intel's floating point
597SIMD, Katmai (KNI).
598
599The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
600@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
60116-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
602floating point values. The MMX registers cannot be used at the same time
603as the floating point stack.
604
605See Intel and AMD documentation, keeping in mind that the operand order in
606instructions is reversed from the Intel syntax.
607
608@node i386-16bit
609@section Writing 16-bit Code
610
611@cindex i386 16-bit code
612@cindex 16-bit code, i386
613@cindex real-mode code, i386
eecb386c 614@cindex @code{code16gcc} directive, i386
252b5132
RH
615@cindex @code{code16} directive, i386
616@cindex @code{code32} directive, i386
55b62671
AJ
617@cindex @code{code64} directive, i386
618@cindex @code{code64} directive, x86-64
619While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
620or 64-bit x86-64 code depending on the default configuration,
252b5132 621it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
622mode code segments. To do this, put a @samp{.code16} or
623@samp{.code16gcc} directive before the assembly language instructions to
624be run in 16-bit mode. You can switch @code{@value{AS}} back to writing
625normal 32-bit code with the @samp{.code32} directive.
626
627@samp{.code16gcc} provides experimental support for generating 16-bit
628code from gcc, and differs from @samp{.code16} in that @samp{call},
629@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
630@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
631default to 32-bit size. This is so that the stack pointer is
632manipulated in the same way over function calls, allowing access to
633function parameters at the same stack offsets as in 32-bit mode.
634@samp{.code16gcc} also automatically adds address size prefixes where
635necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
636
637The code which @code{@value{AS}} generates in 16-bit mode will not
638necessarily run on a 16-bit pre-80386 processor. To write code that
639runs on such a processor, you must refrain from using @emph{any} 32-bit
640constructs which require @code{@value{AS}} to output address or operand
641size prefixes.
642
643Note that writing 16-bit code instructions by explicitly specifying a
644prefix or an instruction mnemonic suffix within a 32-bit code section
645generates different machine instructions than those generated for a
64616-bit code segment. In a 32-bit code section, the following code
647generates the machine opcode bytes @samp{66 6a 04}, which pushes the
648value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
649
650@smallexample
651 pushw $4
652@end smallexample
653
654The same code in a 16-bit code section would generate the machine
655opcode bytes @samp{6a 04} (ie. without the operand size prefix), which
656is correct since the processor default operand size is assumed to be 16
657bits in a 16-bit code section.
658
659@node i386-Bugs
660@section AT&T Syntax bugs
661
662The UnixWare assembler, and probably other AT&T derived ix86 Unix
663assemblers, generate floating point instructions with reversed source
664and destination registers in certain cases. Unfortunately, gcc and
665possibly many other programs use this reversed syntax, so we're stuck
666with it.
667
668For example
669
670@smallexample
671 fsub %st,%st(3)
672@end smallexample
673@noindent
674results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
675than the expected @samp{%st(3) - %st}. This happens with all the
676non-commutative arithmetic floating point operations with two register
677operands where the source register is @samp{%st} and the destination
678register is @samp{%st(i)}.
679
e413e4e9
AM
680@node i386-Arch
681@section Specifying CPU Architecture
682
683@cindex arch directive, i386
684@cindex i386 arch directive
55b62671
AJ
685@cindex arch directive, x86-64
686@cindex x86-64 arch directive
e413e4e9
AM
687
688@code{@value{AS}} may be told to assemble for a particular CPU
689architecture with the @code{.arch @var{cpu_type}} directive. This
690directive enables a warning when gas detects an instruction that is not
691supported on the CPU specified. The choices for @var{cpu_type} are:
692
693@multitable @columnfractions .20 .20 .20 .20
694@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
695@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c2bd011 696@item @samp{pentiumpro} @tab @samp{pentium4} @tab @samp{k6} @tab @samp{athlon}
55b62671 697@item @samp{sledgehammer}
e413e4e9
AM
698@end multitable
699
fddf5b5b
AM
700Apart from the warning, there are only two other effects on
701@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
702@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
703will automatically use a two byte opcode sequence. The larger three
704byte opcode sequence is used on the 486 (and when no architecture is
705specified) because it executes faster on the 486. Note that you can
706explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
707Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
708@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
709conditional jumps will be promoted when necessary to a two instruction
710sequence consisting of a conditional jump of the opposite sense around
711an unconditional jump to the target.
712
713Following the CPU architecture, you may specify @samp{jumps} or
714@samp{nojumps} to control automatic promotion of conditional jumps.
715@samp{jumps} is the default, and enables jump promotion; All external
716jumps will be of the long variety, and file-local jumps will be promoted
717as necessary. (@pxref{i386-Jumps}) @samp{nojumps} leaves external
718conditional jumps as byte offset jumps, and warns about file-local
719conditional jumps that @code{@value{AS}} promotes.
720Unconditional jumps are treated as for @samp{jumps}.
721
722For example
723
724@smallexample
725 .arch i8086,nojumps
726@end smallexample
e413e4e9 727
252b5132
RH
728@node i386-Notes
729@section Notes
730
731@cindex i386 @code{mul}, @code{imul} instructions
732@cindex @code{mul} instruction, i386
733@cindex @code{imul} instruction, i386
55b62671
AJ
734@cindex @code{mul} instruction, x86-64
735@cindex @code{imul} instruction, x86-64
252b5132 736There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 737instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
738multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
739for @samp{imul}) can be output only in the one operand form. Thus,
740@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
741the expanding multiply would clobber the @samp{%edx} register, and this
742would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
74364-bit product in @samp{%edx:%eax}.
744
745We have added a two operand form of @samp{imul} when the first operand
746is an immediate mode expression and the second operand is a register.
747This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
748example, can be done with @samp{imul $69, %eax} rather than @samp{imul
749$69, %eax, %eax}.
750
This page took 0.194406 seconds and 4 git commands to generate.