RISC-V: Fix minor bugs in .insn docs.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
b3adc24a 1@c Copyright (C) 1991-2020 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
bc31405e 40* i386-ISA:: AMD64 ISA vs. Intel64 ISA
252b5132
RH
41* i386-Bugs:: AT&T Syntax bugs
42* i386-Notes:: Notes
43@end menu
44
45@node i386-Options
46@section Options
47
55b62671
AJ
48@cindex options for i386
49@cindex options for x86-64
50@cindex i386 options
34bca508 51@cindex x86-64 options
55b62671
AJ
52
53The i386 version of @code{@value{AS}} has a few machine
54dependent options:
55
731caf76
L
56@c man begin OPTIONS
57@table @gcctabopt
55b62671
AJ
58@cindex @samp{--32} option, i386
59@cindex @samp{--32} option, x86-64
570561f7
L
60@cindex @samp{--x32} option, i386
61@cindex @samp{--x32} option, x86-64
55b62671
AJ
62@cindex @samp{--64} option, i386
63@cindex @samp{--64} option, x86-64
570561f7 64@item --32 | --x32 | --64
35cc6a0b 65Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 66implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
67imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68respectively.
55b62671
AJ
69
70These options are only available with the ELF object file format, and
71require that the necessary BFD support has been included (on a 32-bit
72platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73usage and use x86-64 as target platform).
12b55ccc
L
74
75@item -n
76By default, x86 GAS replaces multiple nop instructions used for
77alignment within code sections with multi-byte nop instructions such
f9233288
JW
78as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
34bca508 95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
81486035 115@code{iamcu},
9103f4f4
L
116@code{k6},
117@code{k6_2},
118@code{athlon},
9103f4f4
L
119@code{opteron},
120@code{k8},
1ceab344 121@code{amdfam10},
68339fdf 122@code{bdver1},
af2f724e 123@code{bdver2},
5e5c50d3 124@code{bdver3},
c7b0bd56 125@code{bdver4},
029f3522 126@code{znver1},
a9660a6f 127@code{znver2},
7b458c12
L
128@code{btver1},
129@code{btver2},
9103f4f4
L
130@code{generic32} and
131@code{generic64}.
132
34bca508 133In addition to the basic instruction set, the assembler can be told to
6305a203
L
134accept various extension mnemonics. For example,
135@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136@var{vmx}. The following extensions are currently supported:
309d3373
JB
137@code{8087},
138@code{287},
139@code{387},
1848e567 140@code{687},
309d3373 141@code{no87},
1848e567
L
142@code{no287},
143@code{no387},
144@code{no687},
d871f3f4
L
145@code{cmov},
146@code{nocmov},
147@code{fxsr},
148@code{nofxsr},
6305a203 149@code{mmx},
309d3373 150@code{nommx},
6305a203
L
151@code{sse},
152@code{sse2},
153@code{sse3},
af5c13b0 154@code{sse4a},
6305a203
L
155@code{ssse3},
156@code{sse4.1},
157@code{sse4.2},
158@code{sse4},
309d3373 159@code{nosse},
1848e567
L
160@code{nosse2},
161@code{nosse3},
af5c13b0 162@code{nosse4a},
1848e567
L
163@code{nossse3},
164@code{nosse4.1},
165@code{nosse4.2},
166@code{nosse4},
c0f3af97 167@code{avx},
6c30d220 168@code{avx2},
1848e567
L
169@code{noavx},
170@code{noavx2},
e2e1fcde
L
171@code{adx},
172@code{rdseed},
173@code{prfchw},
5c111e37 174@code{smap},
7e8b059b 175@code{mpx},
a0046408 176@code{sha},
8bc52696 177@code{rdpid},
6b40c462 178@code{ptwrite},
603555e5 179@code{cet},
48521003 180@code{gfni},
8dcf1fad 181@code{vaes},
ff1982d5 182@code{vpclmulqdq},
1dfc6506
L
183@code{prefetchwt1},
184@code{clflushopt},
185@code{se1},
c5e7287a 186@code{clwb},
c0a30a9f
L
187@code{movdiri},
188@code{movdir64b},
5d79adc4 189@code{enqcmd},
4b27d27c 190@code{serialize},
bb651e8b 191@code{tsxldtrk},
43234a1e
L
192@code{avx512f},
193@code{avx512cd},
194@code{avx512er},
195@code{avx512pf},
1dfc6506
L
196@code{avx512vl},
197@code{avx512bw},
198@code{avx512dq},
2cc1b5aa 199@code{avx512ifma},
14f195c9 200@code{avx512vbmi},
920d2ddc 201@code{avx512_4fmaps},
47acf0bd 202@code{avx512_4vnniw},
620214f7 203@code{avx512_vpopcntdq},
53467f57 204@code{avx512_vbmi2},
8cfcb765 205@code{avx512_vnni},
ee6872be 206@code{avx512_bitalg},
d6aab7a1 207@code{avx512_bf16},
144b71e2
L
208@code{noavx512f},
209@code{noavx512cd},
210@code{noavx512er},
211@code{noavx512pf},
212@code{noavx512vl},
213@code{noavx512bw},
214@code{noavx512dq},
215@code{noavx512ifma},
216@code{noavx512vbmi},
920d2ddc 217@code{noavx512_4fmaps},
47acf0bd 218@code{noavx512_4vnniw},
620214f7 219@code{noavx512_vpopcntdq},
53467f57 220@code{noavx512_vbmi2},
8cfcb765 221@code{noavx512_vnni},
ee6872be 222@code{noavx512_bitalg},
9186c494 223@code{noavx512_vp2intersect},
d6aab7a1 224@code{noavx512_bf16},
dd455cf5 225@code{noenqcmd},
4b27d27c 226@code{noserialize},
bb651e8b 227@code{notsxldtrk},
6305a203 228@code{vmx},
8729a6f6 229@code{vmfunc},
6305a203 230@code{smx},
f03fe4c1 231@code{xsave},
c7b8aa3a 232@code{xsaveopt},
1dfc6506
L
233@code{xsavec},
234@code{xsaves},
c0f3af97 235@code{aes},
594ab6a3 236@code{pclmul},
c7b8aa3a
L
237@code{fsgsbase},
238@code{rdrnd},
239@code{f16c},
6c30d220 240@code{bmi2},
c0f3af97 241@code{fma},
f1f8f695
L
242@code{movbe},
243@code{ept},
6c30d220 244@code{lzcnt},
272a84b1 245@code{popcnt},
42164a71
L
246@code{hle},
247@code{rtm},
6c30d220 248@code{invpcid},
bd5295b2 249@code{clflush},
9916071f 250@code{mwaitx},
029f3522 251@code{clzero},
3233d7d0 252@code{wbnoinvd},
be3a8dca 253@code{pconfig},
de89d0a3 254@code{waitpkg},
c48935d7 255@code{cldemote},
142861df
JB
256@code{rdpru},
257@code{mcommit},
a847e322 258@code{sev_es},
f88c9eb0 259@code{lwp},
5dd85c99
SP
260@code{fma4},
261@code{xop},
60aa667e 262@code{cx16},
bd5295b2 263@code{syscall},
1b7f3fb0 264@code{rdtscp},
6305a203
L
265@code{3dnow},
266@code{3dnowa},
267@code{sse4a},
268@code{sse5},
272a84b1 269@code{svme} and
6305a203 270@code{padlock}.
309d3373
JB
271Note that rather than extending a basic instruction set, the extension
272mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
273
274When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
275@code{.arch} directive will take precedent.
276
277@cindex @samp{-mtune=} option, i386
278@cindex @samp{-mtune=} option, x86-64
279@item -mtune=@var{CPU}
280This option specifies a processor to optimize for. When used in
281conjunction with the @option{-march} option, only instructions
282of the processor specified by the @option{-march} option will be
283generated.
284
6305a203
L
285Valid @var{CPU} values are identical to the processor list of
286@option{-march=@var{CPU}}.
9103f4f4 287
c0f3af97
L
288@cindex @samp{-msse2avx} option, i386
289@cindex @samp{-msse2avx} option, x86-64
290@item -msse2avx
291This option specifies that the assembler should encode SSE instructions
292with VEX prefix.
293
daf50ae7
L
294@cindex @samp{-msse-check=} option, i386
295@cindex @samp{-msse-check=} option, x86-64
296@item -msse-check=@var{none}
1f9bb1ca
AS
297@itemx -msse-check=@var{warning}
298@itemx -msse-check=@var{error}
9aff4b7a 299These options control if the assembler should check SSE instructions.
daf50ae7
L
300@option{-msse-check=@var{none}} will make the assembler not to check SSE
301instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 302will make the assembler issue a warning for any SSE instruction.
daf50ae7 303@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 304for any SSE instruction.
daf50ae7 305
539f890d
L
306@cindex @samp{-mavxscalar=} option, i386
307@cindex @samp{-mavxscalar=} option, x86-64
308@item -mavxscalar=@var{128}
1f9bb1ca 309@itemx -mavxscalar=@var{256}
2aab8acd 310These options control how the assembler should encode scalar AVX
539f890d
L
311instructions. @option{-mavxscalar=@var{128}} will encode scalar
312AVX instructions with 128bit vector length, which is the default.
313@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
314with 256bit vector length.
315
4970191f
JB
316WARNING: Don't use this for production code - due to CPU errata the
317resulting code may not work on certain models.
318
03751133
L
319@cindex @samp{-mvexwig=} option, i386
320@cindex @samp{-mvexwig=} option, x86-64
321@item -mvexwig=@var{0}
322@itemx -mvexwig=@var{1}
323These options control how the assembler should encode VEX.W-ignored (WIG)
324VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
325instructions with vex.w = 0, which is the default.
326@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
327vex.w = 1.
328
4970191f
JB
329WARNING: Don't use this for production code - due to CPU errata the
330resulting code may not work on certain models.
331
43234a1e
L
332@cindex @samp{-mevexlig=} option, i386
333@cindex @samp{-mevexlig=} option, x86-64
334@item -mevexlig=@var{128}
335@itemx -mevexlig=@var{256}
336@itemx -mevexlig=@var{512}
337These options control how the assembler should encode length-ignored
338(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
339EVEX instructions with 128bit vector length, which is the default.
340@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
341encode LIG EVEX instructions with 256bit and 512bit vector length,
342respectively.
343
344@cindex @samp{-mevexwig=} option, i386
345@cindex @samp{-mevexwig=} option, x86-64
346@item -mevexwig=@var{0}
347@itemx -mevexwig=@var{1}
348These options control how the assembler should encode w-ignored (WIG)
349EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
350EVEX instructions with evex.w = 0, which is the default.
351@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
352evex.w = 1.
353
1efbbeb4
L
354@cindex @samp{-mmnemonic=} option, i386
355@cindex @samp{-mmnemonic=} option, x86-64
356@item -mmnemonic=@var{att}
1f9bb1ca 357@itemx -mmnemonic=@var{intel}
34bca508 358This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
359The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
360take precedent.
361
362@cindex @samp{-msyntax=} option, i386
363@cindex @samp{-msyntax=} option, x86-64
364@item -msyntax=@var{att}
1f9bb1ca 365@itemx -msyntax=@var{intel}
34bca508 366This option specifies instruction syntax when processing instructions.
1efbbeb4
L
367The @code{.att_syntax} and @code{.intel_syntax} directives will
368take precedent.
369
370@cindex @samp{-mnaked-reg} option, i386
371@cindex @samp{-mnaked-reg} option, x86-64
372@item -mnaked-reg
33eaf5de 373This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 374The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 375
7e8b059b
L
376@cindex @samp{-madd-bnd-prefix} option, i386
377@cindex @samp{-madd-bnd-prefix} option, x86-64
378@item -madd-bnd-prefix
379This option forces the assembler to add BND prefix to all branches, even
380if such prefix was not explicitly specified in the source code.
381
8dcea932
L
382@cindex @samp{-mshared} option, i386
383@cindex @samp{-mshared} option, x86-64
384@item -mno-shared
385On ELF target, the assembler normally optimizes out non-PLT relocations
386against defined non-weak global branch targets with default visibility.
387The @samp{-mshared} option tells the assembler to generate code which
388may go into a shared library where all non-weak global branch targets
389with default visibility can be preempted. The resulting code is
390slightly bigger. This option only affects the handling of branch
391instructions.
392
251dae91 393@cindex @samp{-mbig-obj} option, i386
167ad85b
TG
394@cindex @samp{-mbig-obj} option, x86-64
395@item -mbig-obj
251dae91 396On PE/COFF target this option forces the use of big object file
167ad85b
TG
397format, which allows more than 32768 sections.
398
d022bddd
IT
399@cindex @samp{-momit-lock-prefix=} option, i386
400@cindex @samp{-momit-lock-prefix=} option, x86-64
401@item -momit-lock-prefix=@var{no}
402@itemx -momit-lock-prefix=@var{yes}
403These options control how the assembler should encode lock prefix.
404This option is intended as a workaround for processors, that fail on
405lock prefix. This option can only be safely used with single-core,
406single-thread computers
407@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
408@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
409which is the default.
410
e4e00185
AS
411@cindex @samp{-mfence-as-lock-add=} option, i386
412@cindex @samp{-mfence-as-lock-add=} option, x86-64
413@item -mfence-as-lock-add=@var{no}
414@itemx -mfence-as-lock-add=@var{yes}
415These options control how the assembler should encode lfence, mfence and
416sfence.
417@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
418sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
419@samp{lock addl $0x0, (%esp)} in 32-bit mode.
420@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
421sfence as usual, which is the default.
422
0cb4071e
L
423@cindex @samp{-mrelax-relocations=} option, i386
424@cindex @samp{-mrelax-relocations=} option, x86-64
425@item -mrelax-relocations=@var{no}
426@itemx -mrelax-relocations=@var{yes}
427These options control whether the assembler should generate relax
428relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
429R_X86_64_REX_GOTPCRELX, in 64-bit mode.
430@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
431@option{-mrelax-relocations=@var{no}} will not generate relax
432relocations. The default can be controlled by a configure option
433@option{--enable-x86-relax-relocations}.
434
e379e5f3
L
435@cindex @samp{-malign-branch-boundary=} option, i386
436@cindex @samp{-malign-branch-boundary=} option, x86-64
437@item -malign-branch-boundary=@var{NUM}
438This option controls how the assembler should align branches with segment
439prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
440no less than 16. Branches will be aligned within @var{NUM} byte
441boundary. @option{-malign-branch-boundary=0}, which is the default,
442doesn't align branches.
443
444@cindex @samp{-malign-branch=} option, i386
445@cindex @samp{-malign-branch=} option, x86-64
446@item -malign-branch=@var{TYPE}[+@var{TYPE}...]
447This option specifies types of branches to align. @var{TYPE} is
448combination of @samp{jcc}, which aligns conditional jumps,
449@samp{fused}, which aligns fused conditional jumps, @samp{jmp},
450which aligns unconditional jumps, @samp{call} which aligns calls,
451@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
452jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
453
454@cindex @samp{-malign-branch-prefix-size=} option, i386
455@cindex @samp{-malign-branch-prefix-size=} option, x86-64
456@item -malign-branch-prefix-size=@var{NUM}
457This option specifies the maximum number of prefixes on an instruction
458to align branches. @var{NUM} should be between 0 and 5. The default
459@var{NUM} is 5.
460
76cf450b
L
461@cindex @samp{-mbranches-within-32B-boundaries} option, i386
462@cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
463@item -mbranches-within-32B-boundaries
464This option aligns conditional jumps, fused conditional jumps and
465unconditional jumps within 32 byte boundary with up to 5 segment prefixes
466on an instruction. It is equivalent to
467@option{-malign-branch-boundary=32}
468@option{-malign-branch=jcc+fused+jmp}
469@option{-malign-branch-prefix-size=5}.
470The default doesn't align branches.
471
ae531041
L
472@cindex @samp{-mlfence-after-load=} option, i386
473@cindex @samp{-mlfence-after-load=} option, x86-64
474@item -mlfence-after-load=@var{no}
475@itemx -mlfence-after-load=@var{yes}
476These options control whether the assembler should generate lfence
477after load instructions. @option{-mlfence-after-load=@var{yes}} will
478generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
479lfence, which is the default.
480
481@cindex @samp{-mlfence-before-indirect-branch=} option, i386
482@cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
483@item -mlfence-before-indirect-branch=@var{none}
484@item -mlfence-before-indirect-branch=@var{all}
485@item -mlfence-before-indirect-branch=@var{register}
486@itemx -mlfence-before-indirect-branch=@var{memory}
487These options control whether the assembler should generate lfence
3071b197 488before indirect near branch instructions.
ae531041 489@option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
3071b197 490before indirect near branch via register and issue a warning before
ae531041 491indirect near branch via memory.
a09f656b 492It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when
493there's no explict @option{-mlfence-before-ret=}.
ae531041 494@option{-mlfence-before-indirect-branch=@var{register}} will generate
3071b197 495lfence before indirect near branch via register.
ae531041
L
496@option{-mlfence-before-indirect-branch=@var{memory}} will issue a
497warning before indirect near branch via memory.
498@option{-mlfence-before-indirect-branch=@var{none}} will not generate
499lfence nor issue warning, which is the default. Note that lfence won't
500be generated before indirect near branch via register with
501@option{-mlfence-after-load=@var{yes}} since lfence will be generated
502after loading branch target register.
503
504@cindex @samp{-mlfence-before-ret=} option, i386
505@cindex @samp{-mlfence-before-ret=} option, x86-64
506@item -mlfence-before-ret=@var{none}
a09f656b 507@item -mlfence-before-ret=@var{shl}
ae531041 508@item -mlfence-before-ret=@var{or}
a09f656b 509@item -mlfence-before-ret=@var{yes}
ae531041
L
510@itemx -mlfence-before-ret=@var{not}
511These options control whether the assembler should generate lfence
512before ret. @option{-mlfence-before-ret=@var{or}} will generate
513generate or instruction with lfence.
a09f656b 514@option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction
515with lfence. @option{-mlfence-before-ret=@var{not}} will generate not
516instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not
517generate lfence, which is the default.
ae531041 518
b4a3a7b4
L
519@cindex @samp{-mx86-used-note=} option, i386
520@cindex @samp{-mx86-used-note=} option, x86-64
521@item -mx86-used-note=@var{no}
522@itemx -mx86-used-note=@var{yes}
523These options control whether the assembler should generate
524GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
525GNU property notes. The default can be controlled by the
526@option{--enable-x86-used-note} configure option.
527
d3d3c6db
IT
528@cindex @samp{-mevexrcig=} option, i386
529@cindex @samp{-mevexrcig=} option, x86-64
530@item -mevexrcig=@var{rne}
531@itemx -mevexrcig=@var{rd}
532@itemx -mevexrcig=@var{ru}
533@itemx -mevexrcig=@var{rz}
534These options control how the assembler should encode SAE-only
535EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
536of EVEX instruction with 00, which is the default.
537@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
538and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
539with 01, 10 and 11 RC bits, respectively.
540
5db04b09
L
541@cindex @samp{-mamd64} option, x86-64
542@cindex @samp{-mintel64} option, x86-64
543@item -mamd64
544@itemx -mintel64
545This option specifies that the assembler should accept only AMD64 or
4b5aaf5f
L
546Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
547only and AMD64 ISAs.
5db04b09 548
b6f8c7c4
L
549@cindex @samp{-O0} option, i386
550@cindex @samp{-O0} option, x86-64
551@cindex @samp{-O} option, i386
552@cindex @samp{-O} option, x86-64
553@cindex @samp{-O1} option, i386
554@cindex @samp{-O1} option, x86-64
555@cindex @samp{-O2} option, i386
556@cindex @samp{-O2} option, x86-64
557@cindex @samp{-Os} option, i386
558@cindex @samp{-Os} option, x86-64
559@item -O0 | -O | -O1 | -O2 | -Os
560Optimize instruction encoding with smaller instruction size. @samp{-O}
561and @samp{-O1} encode 64-bit register load instructions with 64-bit
562immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 563immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
564register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
565register clearing instructions with 128-bit VEX vector register
566clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 567register load/store instructions with VEX vector register load/store
a0a1771e
JB
568instructions, and encode 128-bit/256-bit EVEX packed integer logical
569instructions with 128-bit/256-bit VEX packed integer logical.
570
571@samp{-O2} includes @samp{-O1} optimization plus encodes
572256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
573EVEX vector register clearing instructions. In 64-bit mode VEX encoded
574instructions with commutative source operands will also have their
575source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
576instead of the 3-byte one. Certain forms of AND as well as OR with the
577same (register) operand specified twice will also be changed to TEST.
a0a1771e 578
b6f8c7c4
L
579@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
580and 64-bit register tests with immediate as 8-bit register test with
581immediate. @samp{-O0} turns off this optimization.
582
55b62671 583@end table
731caf76 584@c man end
e413e4e9 585
a6c24e68
NC
586@node i386-Directives
587@section x86 specific Directives
588
589@cindex machine directives, x86
590@cindex x86 machine directives
591@table @code
592
593@cindex @code{lcomm} directive, COFF
594@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
595Reserve @var{length} (an absolute expression) bytes for a local common
596denoted by @var{symbol}. The section and value of @var{symbol} are
597those of the new local common. The addresses are allocated in the bss
704209c0
NC
598section, so that at run-time the bytes start off zeroed. Since
599@var{symbol} is not declared global, it is normally not visible to
600@code{@value{LD}}. The optional third parameter, @var{alignment},
601specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
602
603This directive is only available for COFF based x86 targets.
604
102e9361
NC
605@cindex @code{largecomm} directive, ELF
606@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
607This directive behaves in the same way as the @code{comm} directive
608except that the data is placed into the @var{.lbss} section instead of
609the @var{.bss} section @ref{Comm}.
610
611The directive is intended to be used for data which requires a large
612amount of space, and it is only available for ELF based x86_64
613targets.
614
f2f51cd5
NC
615@cindex @code{value} directive
616@item .value @var{expression} [, @var{expression}]
617This directive behaves in the same way as the @code{.short} directive,
618taking a series of comma separated expressions and storing them as
619two-byte wide values into the current section.
620
a6c24e68 621@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
622
623@end table
624
252b5132 625@node i386-Syntax
7c31ae13
NC
626@section i386 Syntactical Considerations
627@menu
628* i386-Variations:: AT&T Syntax versus Intel Syntax
629* i386-Chars:: Special Characters
630@end menu
631
632@node i386-Variations
633@subsection AT&T Syntax versus Intel Syntax
252b5132 634
e413e4e9
AM
635@cindex i386 intel_syntax pseudo op
636@cindex intel_syntax pseudo op, i386
637@cindex i386 att_syntax pseudo op
638@cindex att_syntax pseudo op, i386
252b5132
RH
639@cindex i386 syntax compatibility
640@cindex syntax compatibility, i386
55b62671
AJ
641@cindex x86-64 intel_syntax pseudo op
642@cindex intel_syntax pseudo op, x86-64
643@cindex x86-64 att_syntax pseudo op
644@cindex att_syntax pseudo op, x86-64
645@cindex x86-64 syntax compatibility
646@cindex syntax compatibility, x86-64
e413e4e9
AM
647
648@code{@value{AS}} now supports assembly using Intel assembler syntax.
649@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
650back to the usual AT&T mode for compatibility with the output of
651@code{@value{GCC}}. Either of these directives may have an optional
652argument, @code{prefix}, or @code{noprefix} specifying whether registers
653require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
654different from Intel syntax. We mention these differences because
655almost all 80386 documents use Intel syntax. Notable differences
656between the two syntaxes are:
657
658@cindex immediate operands, i386
659@cindex i386 immediate operands
660@cindex register operands, i386
661@cindex i386 register operands
662@cindex jump/call operands, i386
663@cindex i386 jump/call operands
664@cindex operand delimiters, i386
55b62671
AJ
665
666@cindex immediate operands, x86-64
667@cindex x86-64 immediate operands
668@cindex register operands, x86-64
669@cindex x86-64 register operands
670@cindex jump/call operands, x86-64
671@cindex x86-64 jump/call operands
672@cindex operand delimiters, x86-64
252b5132
RH
673@itemize @bullet
674@item
675AT&T immediate operands are preceded by @samp{$}; Intel immediate
676operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
677AT&T register operands are preceded by @samp{%}; Intel register operands
678are undelimited. AT&T absolute (as opposed to PC relative) jump/call
679operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
680
681@cindex i386 source, destination operands
682@cindex source, destination operands; i386
55b62671
AJ
683@cindex x86-64 source, destination operands
684@cindex source, destination operands; x86-64
252b5132
RH
685@item
686AT&T and Intel syntax use the opposite order for source and destination
687operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
688@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
689previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
690instructions with 2 immediate operands, such as the @samp{enter}
691instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
692
693@cindex mnemonic suffixes, i386
694@cindex sizes operands, i386
695@cindex i386 size suffixes
55b62671
AJ
696@cindex mnemonic suffixes, x86-64
697@cindex sizes operands, x86-64
698@cindex x86-64 size suffixes
252b5132
RH
699@item
700In AT&T syntax the size of memory operands is determined from the last
701character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 702@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
703(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
704of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
705(256-bit vector) and zmm (512-bit vector) memory references, only when there's
706no other way to disambiguate an instruction. Intel syntax accomplishes this by
707prefixing memory operands (@emph{not} the instruction mnemonics) with
708@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
709@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
710syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
711syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
712@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 713
4b06377f
L
714In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
715instruction with the 64-bit displacement or immediate operand.
716
252b5132
RH
717@cindex return instructions, i386
718@cindex i386 jump, call, return
55b62671
AJ
719@cindex return instructions, x86-64
720@cindex x86-64 jump, call, return
252b5132
RH
721@item
722Immediate form long jumps and calls are
723@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
724Intel syntax is
725@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
726instruction
727is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
728@samp{ret far @var{stack-adjust}}.
729
730@cindex sections, i386
731@cindex i386 sections
55b62671
AJ
732@cindex sections, x86-64
733@cindex x86-64 sections
252b5132
RH
734@item
735The AT&T assembler does not provide support for multiple section
736programs. Unix style systems expect all programs to be single sections.
737@end itemize
738
7c31ae13
NC
739@node i386-Chars
740@subsection Special Characters
741
742@cindex line comment character, i386
743@cindex i386 line comment character
744The presence of a @samp{#} appearing anywhere on a line indicates the
745start of a comment that extends to the end of that line.
746
747If a @samp{#} appears as the first character of a line then the whole
748line is treated as a comment, but in this case the line can also be a
749logical line number directive (@pxref{Comments}) or a preprocessor
750control command (@pxref{Preprocessing}).
751
a05a5b64 752If the @option{--divide} command-line option has not been specified
7c31ae13
NC
753then the @samp{/} character appearing anywhere on a line also
754introduces a line comment.
755
756@cindex line separator, i386
757@cindex statement separator, i386
758@cindex i386 line separator
759The @samp{;} character can be used to separate statements on the same
760line.
761
252b5132 762@node i386-Mnemonics
d3b47e2b
L
763@section i386-Mnemonics
764@subsection Instruction Naming
252b5132
RH
765
766@cindex i386 instruction naming
767@cindex instruction naming, i386
55b62671
AJ
768@cindex x86-64 instruction naming
769@cindex instruction naming, x86-64
770
252b5132 771Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
772specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
773and @samp{q} specify byte, word, long and quadruple word operands. If
774no suffix is specified by an instruction then @code{@value{AS}} tries to
775fill in the missing suffix based on the destination register operand
776(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
777to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
778@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
779assembler which assumes that a missing mnemonic suffix implies long
780operand size. (This incompatibility does not affect compiler output
781since compilers always explicitly specify the mnemonic suffix.)
252b5132 782
c006a730
JB
783When there is no sizing suffix and no (suitable) register operands to
784deduce the size of memory operands, with a few exceptions and where long
785operand size is possible in the first place, operand size will default
786to long in 32- and 64-bit modes. Similarly it will default to short in
78716-bit mode. Noteworthy exceptions are
788
789@itemize @bullet
790@item
791Instructions with an implicit on-stack operand as well as branches,
792which default to quad in 64-bit mode.
793
794@item
795Sign- and zero-extending moves, which default to byte size source
796operands.
797
798@item
799Floating point insns with integer operands, which default to short (for
800perhaps historical reasons).
801
802@item
803CRC32 with a 64-bit destination, which defaults to a quad source
804operand.
805
806@end itemize
807
b6169b20
L
808@cindex encoding options, i386
809@cindex encoding options, x86-64
810
86fa6981
L
811Different encoding options can be specified via pseudo prefixes:
812
813@itemize @bullet
814@item
815@samp{@{disp8@}} -- prefer 8-bit displacement.
816
817@item
818@samp{@{disp32@}} -- prefer 32-bit displacement.
819
820@item
821@samp{@{load@}} -- prefer load-form instruction.
822
823@item
824@samp{@{store@}} -- prefer store-form instruction.
825
826@item
42e04b36 827@samp{@{vex@}} -- encode with VEX prefix.
86fa6981
L
828
829@item
42e04b36 830@samp{@{vex3@}} -- encode with 3-byte VEX prefix.
86fa6981
L
831
832@item
833@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
834
835@item
836@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
837instructions (x86-64 only). Note that this differs from the @samp{rex}
838prefix which generates REX prefix unconditionally.
b6f8c7c4
L
839
840@item
841@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 842@end itemize
b6169b20 843
252b5132
RH
844@cindex conversion instructions, i386
845@cindex i386 conversion instructions
55b62671
AJ
846@cindex conversion instructions, x86-64
847@cindex x86-64 conversion instructions
252b5132
RH
848The Intel-syntax conversion instructions
849
850@itemize @bullet
851@item
852@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
853
854@item
855@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
856
857@item
858@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
859
860@item
861@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
862
863@item
864@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
865(x86-64 only),
866
867@item
d5f0cf92 868@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 869@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
870@end itemize
871
872@noindent
55b62671
AJ
873are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
874@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
875instructions.
252b5132 876
0e6724de
L
877@cindex extension instructions, i386
878@cindex i386 extension instructions
879@cindex extension instructions, x86-64
880@cindex x86-64 extension instructions
881The Intel-syntax extension instructions
882
883@itemize @bullet
884@item
885@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
886
887@item
888@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
889
890@item
891@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
892(x86-64 only).
893
894@item
895@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
896
897@item
898@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
899(x86-64 only).
900
901@item
902@samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
903(x86-64 only).
904
905@item
906@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
907
908@item
909@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
910
911@item
912@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
913(x86-64 only).
914
915@item
916@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
917
918@item
919@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
920(x86-64 only).
921@end itemize
922
923@noindent
924are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
925@samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
926@samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
927@samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
928@samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
929
252b5132
RH
930@cindex jump instructions, i386
931@cindex call instructions, i386
55b62671
AJ
932@cindex jump instructions, x86-64
933@cindex call instructions, x86-64
252b5132
RH
934Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
935AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
936convention.
937
d3b47e2b 938@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
939
940@cindex i386 mnemonic compatibility
941@cindex mnemonic compatibility, i386
942
943@code{@value{AS}} supports assembly using Intel mnemonic.
944@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
945@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
946syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
947Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
948@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
949@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
950assembler with different mnemonics from those in Intel IA32 specification.
951@code{@value{GCC}} generates those instructions with AT&T mnemonic.
952
bc31405e
L
953@itemize @bullet
954@item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
955register. @samp{movsxd} should be used to encode 16-bit or 32-bit
956destination register with both AT&T and Intel mnemonics.
957@end itemize
958
252b5132
RH
959@node i386-Regs
960@section Register Naming
961
962@cindex i386 registers
963@cindex registers, i386
55b62671
AJ
964@cindex x86-64 registers
965@cindex registers, x86-64
252b5132
RH
966Register operands are always prefixed with @samp{%}. The 80386 registers
967consist of
968
969@itemize @bullet
970@item
971the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
972@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
973frame pointer), and @samp{%esp} (the stack pointer).
974
975@item
976the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
977@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
978
979@item
980the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
981@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
982are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
983@samp{%cx}, and @samp{%dx})
984
985@item
986the 6 section registers @samp{%cs} (code section), @samp{%ds}
987(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
988and @samp{%gs}.
989
990@item
4bde3cdd
UD
991the 5 processor control registers @samp{%cr0}, @samp{%cr2},
992@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
993
994@item
995the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
996@samp{%db3}, @samp{%db6}, and @samp{%db7}.
997
998@item
999the 2 test registers @samp{%tr6} and @samp{%tr7}.
1000
1001@item
1002the 8 floating point register stack @samp{%st} or equivalently
1003@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
1004@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
1005These registers are overloaded by 8 MMX registers @samp{%mm0},
1006@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1007@samp{%mm6} and @samp{%mm7}.
1008
1009@item
4bde3cdd 1010the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
1011@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1012@end itemize
1013
1014The AMD x86-64 architecture extends the register set by:
1015
1016@itemize @bullet
1017@item
1018enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1019accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1020@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1021pointer)
1022
1023@item
1024the 8 extended registers @samp{%r8}--@samp{%r15}.
1025
1026@item
4bde3cdd 1027the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
1028
1029@item
4bde3cdd 1030the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
1031
1032@item
4bde3cdd 1033the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
1034
1035@item
1036the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1037
1038@item
1039the 8 debug registers: @samp{%db8}--@samp{%db15}.
1040
1041@item
4bde3cdd
UD
1042the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1043@end itemize
1044
1045With the AVX extensions more registers were made available:
1046
1047@itemize @bullet
1048
1049@item
1050the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1051available in 32-bit mode). The bottom 128 bits are overlaid with the
1052@samp{xmm0}--@samp{xmm15} registers.
1053
1054@end itemize
1055
1056The AVX2 extensions made in 64-bit mode more registers available:
1057
1058@itemize @bullet
1059
1060@item
1061the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
1062registers @samp{%ymm16}--@samp{%ymm31}.
1063
1064@end itemize
1065
1066The AVX512 extensions added the following registers:
1067
1068@itemize @bullet
1069
1070@item
1071the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1072available in 32-bit mode). The bottom 128 bits are overlaid with the
1073@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1074overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1075
1076@item
1077the 8 mask registers @samp{%k0}--@samp{%k7}.
1078
252b5132
RH
1079@end itemize
1080
1081@node i386-Prefixes
1082@section Instruction Prefixes
1083
1084@cindex i386 instruction prefixes
1085@cindex instruction prefixes, i386
1086@cindex prefixes, i386
1087Instruction prefixes are used to modify the following instruction. They
1088are used to repeat string instructions, to provide section overrides, to
1089perform bus lock operations, and to change operand and address sizes.
1090(Most instructions that normally operate on 32-bit operands will use
109116-bit operands if the instruction has an ``operand size'' prefix.)
1092Instruction prefixes are best written on the same line as the instruction
1093they act upon. For example, the @samp{scas} (scan string) instruction is
1094repeated with:
1095
1096@smallexample
1097 repne scas %es:(%edi),%al
1098@end smallexample
1099
1100You may also place prefixes on the lines immediately preceding the
1101instruction, but this circumvents checks that @code{@value{AS}} does
1102with prefixes, and will not work with all prefixes.
1103
1104Here is a list of instruction prefixes:
1105
1106@cindex section override prefixes, i386
1107@itemize @bullet
1108@item
1109Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1110@samp{fs}, @samp{gs}. These are automatically added by specifying
1111using the @var{section}:@var{memory-operand} form for memory references.
1112
1113@cindex size prefixes, i386
1114@item
1115Operand/Address size prefixes @samp{data16} and @samp{addr16}
1116change 32-bit operands/addresses into 16-bit operands/addresses,
1117while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1118@code{.code16} section) into 32-bit operands/addresses. These prefixes
1119@emph{must} appear on the same line of code as the instruction they
1120modify. For example, in a 16-bit @code{.code16} section, you might
1121write:
1122
1123@smallexample
1124 addr32 jmpl *(%ebx)
1125@end smallexample
1126
1127@cindex bus lock prefixes, i386
1128@cindex inhibiting interrupts, i386
1129@item
1130The bus lock prefix @samp{lock} inhibits interrupts during execution of
1131the instruction it precedes. (This is only valid with certain
1132instructions; see a 80386 manual for details).
1133
1134@cindex coprocessor wait, i386
1135@item
1136The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1137complete the current instruction. This should never be needed for the
113880386/80387 combination.
1139
1140@cindex repeat prefixes, i386
1141@item
1142The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1143to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1144times if the current address size is 16-bits).
55b62671
AJ
1145@cindex REX prefixes, i386
1146@item
1147The @samp{rex} family of prefixes is used by x86-64 to encode
1148extensions to i386 instruction set. The @samp{rex} prefix has four
1149bits --- an operand size overwrite (@code{64}) used to change operand size
1150from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1151register set.
1152
1153You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1154instruction emits @samp{rex} prefix with all the bits set. By omitting
1155the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1156prefixes as well. Normally, there is no need to write the prefixes
1157explicitly, since gas will automatically generate them based on the
1158instruction operands.
252b5132
RH
1159@end itemize
1160
1161@node i386-Memory
1162@section Memory References
1163
1164@cindex i386 memory references
1165@cindex memory references, i386
55b62671
AJ
1166@cindex x86-64 memory references
1167@cindex memory references, x86-64
252b5132
RH
1168An Intel syntax indirect memory reference of the form
1169
1170@smallexample
1171@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1172@end smallexample
1173
1174@noindent
1175is translated into the AT&T syntax
1176
1177@smallexample
1178@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1179@end smallexample
1180
1181@noindent
1182where @var{base} and @var{index} are the optional 32-bit base and
1183index registers, @var{disp} is the optional displacement, and
1184@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1185to calculate the address of the operand. If no @var{scale} is
1186specified, @var{scale} is taken to be 1. @var{section} specifies the
1187optional section register for the memory operand, and may override the
1188default section register (see a 80386 manual for section register
1189defaults). Note that section overrides in AT&T syntax @emph{must}
1190be preceded by a @samp{%}. If you specify a section override which
1191coincides with the default section register, @code{@value{AS}} does @emph{not}
1192output any section register override prefixes to assemble the given
1193instruction. Thus, section overrides can be specified to emphasize which
1194section register is used for a given memory operand.
1195
1196Here are some examples of Intel and AT&T style memory references:
1197
1198@table @asis
1199@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1200@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1201missing, and the default section is used (@samp{%ss} for addressing with
1202@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1203
1204@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1205@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1206@samp{foo}. All other fields are missing. The section register here
1207defaults to @samp{%ds}.
1208
1209@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1210This uses the value pointed to by @samp{foo} as a memory operand.
1211Note that @var{base} and @var{index} are both missing, but there is only
1212@emph{one} @samp{,}. This is a syntactic exception.
1213
1214@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1215This selects the contents of the variable @samp{foo} with section
1216register @var{section} being @samp{%gs}.
1217@end table
1218
1219Absolute (as opposed to PC relative) call and jump operands must be
1220prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1221always chooses PC relative addressing for jump/call labels.
1222
1223Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1224@emph{must} specify its size (byte, word, long, or quadruple) with an
1225instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1226respectively).
1227
1228The x86-64 architecture adds an RIP (instruction pointer relative)
1229addressing. This addressing mode is specified by using @samp{rip} as a
1230base register. Only constant offsets are valid. For example:
1231
1232@table @asis
1233@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1234Points to the address 1234 bytes past the end of the current
1235instruction.
1236
1237@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1238Points to the @code{symbol} in RIP relative way, this is shorter than
1239the default absolute addressing.
1240@end table
1241
1242Other addressing modes remain unchanged in x86-64 architecture, except
1243registers used are 64-bit instead of 32-bit.
252b5132 1244
fddf5b5b 1245@node i386-Jumps
252b5132
RH
1246@section Handling of Jump Instructions
1247
1248@cindex jump optimization, i386
1249@cindex i386 jump optimization
55b62671
AJ
1250@cindex jump optimization, x86-64
1251@cindex x86-64 jump optimization
252b5132
RH
1252Jump instructions are always optimized to use the smallest possible
1253displacements. This is accomplished by using byte (8-bit) displacement
1254jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1255is insufficient a long displacement is used. We do not support
252b5132
RH
1256word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1257instruction with the @samp{data16} instruction prefix), since the 80386
1258insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1259is added. (See also @pxref{i386-Arch})
252b5132
RH
1260
1261Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1262@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1263displacements, so that if you use these instructions (@code{@value{GCC}} does
1264not use them) you may get an error message (and incorrect code). The AT&T
126580386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1266to
1267
1268@smallexample
1269 jcxz cx_zero
1270 jmp cx_nonzero
1271cx_zero: jmp foo
1272cx_nonzero:
1273@end smallexample
1274
1275@node i386-Float
1276@section Floating Point
1277
1278@cindex i386 floating point
1279@cindex floating point, i386
55b62671
AJ
1280@cindex x86-64 floating point
1281@cindex floating point, x86-64
252b5132
RH
1282All 80387 floating point types except packed BCD are supported.
1283(BCD support may be added without much difficulty). These data
1284types are 16-, 32-, and 64- bit integers, and single (32-bit),
1285double (64-bit), and extended (80-bit) precision floating point.
1286Each supported type has an instruction mnemonic suffix and a constructor
1287associated with it. Instruction mnemonic suffixes specify the operand's
1288data type. Constructors build these data types into memory.
1289
1290@cindex @code{float} directive, i386
1291@cindex @code{single} directive, i386
1292@cindex @code{double} directive, i386
1293@cindex @code{tfloat} directive, i386
55b62671
AJ
1294@cindex @code{float} directive, x86-64
1295@cindex @code{single} directive, x86-64
1296@cindex @code{double} directive, x86-64
1297@cindex @code{tfloat} directive, x86-64
252b5132
RH
1298@itemize @bullet
1299@item
1300Floating point constructors are @samp{.float} or @samp{.single},
1301@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1302These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1303and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1304only supports this format via the @samp{fldt} (load 80-bit real to stack
1305top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1306
1307@cindex @code{word} directive, i386
1308@cindex @code{long} directive, i386
1309@cindex @code{int} directive, i386
1310@cindex @code{quad} directive, i386
55b62671
AJ
1311@cindex @code{word} directive, x86-64
1312@cindex @code{long} directive, x86-64
1313@cindex @code{int} directive, x86-64
1314@cindex @code{quad} directive, x86-64
252b5132
RH
1315@item
1316Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1317@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1318corresponding instruction mnemonic suffixes are @samp{s} (single),
1319@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1320the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1321quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1322stack) instructions.
1323@end itemize
1324
1325Register to register operations should not use instruction mnemonic suffixes.
1326@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1327wrote @samp{fst %st, %st(1)}, since all register to register operations
1328use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1329which converts @samp{%st} from 80-bit to 64-bit floating point format,
1330then stores the result in the 4 byte location @samp{mem})
1331
1332@node i386-SIMD
1333@section Intel's MMX and AMD's 3DNow! SIMD Operations
1334
1335@cindex MMX, i386
1336@cindex 3DNow!, i386
1337@cindex SIMD, i386
55b62671
AJ
1338@cindex MMX, x86-64
1339@cindex 3DNow!, x86-64
1340@cindex SIMD, x86-64
252b5132
RH
1341
1342@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1343instructions for integer data), available on Intel's Pentium MMX
1344processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1345Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1346instruction set (SIMD instructions for 32-bit floating point data)
1347available on AMD's K6-2 processor and possibly others in the future.
1348
1349Currently, @code{@value{AS}} does not support Intel's floating point
1350SIMD, Katmai (KNI).
1351
1352The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1353@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
135416-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1355floating point values. The MMX registers cannot be used at the same time
1356as the floating point stack.
1357
1358See Intel and AMD documentation, keeping in mind that the operand order in
1359instructions is reversed from the Intel syntax.
1360
f88c9eb0
SP
1361@node i386-LWP
1362@section AMD's Lightweight Profiling Instructions
1363
1364@cindex LWP, i386
1365@cindex LWP, x86-64
1366
1367@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1368instruction set, available on AMD's Family 15h (Orochi) processors.
1369
1370LWP enables applications to collect and manage performance data, and
1371react to performance events. The collection of performance data
1372requires no context switches. LWP runs in the context of a thread and
1373so several counters can be used independently across multiple threads.
1374LWP can be used in both 64-bit and legacy 32-bit modes.
1375
1376For detailed information on the LWP instruction set, see the
1377@cite{AMD Lightweight Profiling Specification} available at
1378@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1379
87973e9f
QN
1380@node i386-BMI
1381@section Bit Manipulation Instructions
1382
1383@cindex BMI, i386
1384@cindex BMI, x86-64
1385
1386@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1387
1388BMI instructions provide several instructions implementing individual
1389bit manipulation operations such as isolation, masking, setting, or
34bca508 1390resetting.
87973e9f
QN
1391
1392@c Need to add a specification citation here when available.
1393
2a2a0f38
QN
1394@node i386-TBM
1395@section AMD's Trailing Bit Manipulation Instructions
1396
1397@cindex TBM, i386
1398@cindex TBM, x86-64
1399
1400@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1401instruction set, available on AMD's BDVER2 processors (Trinity and
1402Viperfish).
1403
1404TBM instructions provide instructions implementing individual bit
1405manipulation operations such as isolating, masking, setting, resetting,
1406complementing, and operations on trailing zeros and ones.
1407
1408@c Need to add a specification citation here when available.
87973e9f 1409
252b5132
RH
1410@node i386-16bit
1411@section Writing 16-bit Code
1412
1413@cindex i386 16-bit code
1414@cindex 16-bit code, i386
1415@cindex real-mode code, i386
eecb386c 1416@cindex @code{code16gcc} directive, i386
252b5132
RH
1417@cindex @code{code16} directive, i386
1418@cindex @code{code32} directive, i386
55b62671
AJ
1419@cindex @code{code64} directive, i386
1420@cindex @code{code64} directive, x86-64
1421While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1422or 64-bit x86-64 code depending on the default configuration,
252b5132 1423it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1424mode code segments. To do this, put a @samp{.code16} or
1425@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1426be run in 16-bit mode. You can switch @code{@value{AS}} to writing
142732-bit code with the @samp{.code32} directive or 64-bit code with the
1428@samp{.code64} directive.
eecb386c
AM
1429
1430@samp{.code16gcc} provides experimental support for generating 16-bit
1431code from gcc, and differs from @samp{.code16} in that @samp{call},
1432@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1433@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1434default to 32-bit size. This is so that the stack pointer is
1435manipulated in the same way over function calls, allowing access to
1436function parameters at the same stack offsets as in 32-bit mode.
1437@samp{.code16gcc} also automatically adds address size prefixes where
1438necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1439
1440The code which @code{@value{AS}} generates in 16-bit mode will not
1441necessarily run on a 16-bit pre-80386 processor. To write code that
1442runs on such a processor, you must refrain from using @emph{any} 32-bit
1443constructs which require @code{@value{AS}} to output address or operand
1444size prefixes.
1445
1446Note that writing 16-bit code instructions by explicitly specifying a
1447prefix or an instruction mnemonic suffix within a 32-bit code section
1448generates different machine instructions than those generated for a
144916-bit code segment. In a 32-bit code section, the following code
1450generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1451value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1452
1453@smallexample
1454 pushw $4
1455@end smallexample
1456
1457The same code in a 16-bit code section would generate the machine
b45619c0 1458opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1459is correct since the processor default operand size is assumed to be 16
1460bits in a 16-bit code section.
1461
e413e4e9
AM
1462@node i386-Arch
1463@section Specifying CPU Architecture
1464
1465@cindex arch directive, i386
1466@cindex i386 arch directive
55b62671
AJ
1467@cindex arch directive, x86-64
1468@cindex x86-64 arch directive
e413e4e9
AM
1469
1470@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1471(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1472directive enables a warning when gas detects an instruction that is not
1473supported on the CPU specified. The choices for @var{cpu_type} are:
1474
1475@multitable @columnfractions .20 .20 .20 .20
1476@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1477@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1478@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1479@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1480@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1481@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1482@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1483@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1484@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1485@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
272a84b1 1486@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
d76f7bc1 1487@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1488@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1489@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1490@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1491@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
272a84b1
L
1492@item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1493@item @samp{.hle}
e2e1fcde 1494@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1495@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1496@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1497@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1498@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1499@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1500@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1501@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
d777820b 1502@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1503@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1504@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
bb651e8b 1505@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
1ceab344 1506@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
272a84b1 1507@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
60aa667e 1508@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
142861df 1509@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
a847e322 1510@item @samp{.mcommit} @tab @samp{.sev_es}
e413e4e9
AM
1511@end multitable
1512
fddf5b5b
AM
1513Apart from the warning, there are only two other effects on
1514@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1515@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1516will automatically use a two byte opcode sequence. The larger three
1517byte opcode sequence is used on the 486 (and when no architecture is
1518specified) because it executes faster on the 486. Note that you can
1519explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1520Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1521@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1522conditional jumps will be promoted when necessary to a two instruction
1523sequence consisting of a conditional jump of the opposite sense around
1524an unconditional jump to the target.
1525
5c6af06e
JB
1526Following the CPU architecture (but not a sub-architecture, which are those
1527starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1528control automatic promotion of conditional jumps. @samp{jumps} is the
1529default, and enables jump promotion; All external jumps will be of the long
1530variety, and file-local jumps will be promoted as necessary.
1531(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1532byte offset jumps, and warns about file-local conditional jumps that
1533@code{@value{AS}} promotes.
fddf5b5b
AM
1534Unconditional jumps are treated as for @samp{jumps}.
1535
1536For example
1537
1538@smallexample
1539 .arch i8086,nojumps
1540@end smallexample
e413e4e9 1541
bc31405e
L
1542@node i386-ISA
1543@section AMD64 ISA vs. Intel64 ISA
1544
1545There are some discrepancies between AMD64 and Intel64 ISAs.
1546
1547@itemize @bullet
1548@item For @samp{movsxd} with 16-bit destination register, AMD64
1549supports 32-bit source operand and Intel64 supports 16-bit source
1550operand.
5990e377
JB
1551
1552@item For far branches (with explicit memory operand), both ISAs support
155332- and 16-bit operand size. Intel64 additionally supports 64-bit
1554operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1555and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1556syntax.
1557
1558@item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1559and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1560while Intel64 additionally supports 64-bit operand sise (80-bit memory
1561operands).
1562
bc31405e
L
1563@end itemize
1564
5c9352f3
AM
1565@node i386-Bugs
1566@section AT&T Syntax bugs
1567
1568The UnixWare assembler, and probably other AT&T derived ix86 Unix
1569assemblers, generate floating point instructions with reversed source
1570and destination registers in certain cases. Unfortunately, gcc and
1571possibly many other programs use this reversed syntax, so we're stuck
1572with it.
1573
1574For example
1575
1576@smallexample
1577 fsub %st,%st(3)
1578@end smallexample
1579@noindent
1580results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1581than the expected @samp{%st(3) - %st}. This happens with all the
1582non-commutative arithmetic floating point operations with two register
1583operands where the source register is @samp{%st} and the destination
1584register is @samp{%st(i)}.
1585
252b5132
RH
1586@node i386-Notes
1587@section Notes
1588
1589@cindex i386 @code{mul}, @code{imul} instructions
1590@cindex @code{mul} instruction, i386
1591@cindex @code{imul} instruction, i386
55b62671
AJ
1592@cindex @code{mul} instruction, x86-64
1593@cindex @code{imul} instruction, x86-64
252b5132 1594There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1595instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1596multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1597for @samp{imul}) can be output only in the one operand form. Thus,
1598@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1599the expanding multiply would clobber the @samp{%edx} register, and this
1600would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
160164-bit product in @samp{%edx:%eax}.
1602
1603We have added a two operand form of @samp{imul} when the first operand
1604is an immediate mode expression and the second operand is a register.
1605This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1606example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1607$69, %eax, %eax}.
1608
This page took 1.060215 seconds and 4 git commands to generate.