Fix unused function error
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
82704155 1@c Copyright (C) 1991-2019 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
f9233288
JW
77as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
79
80@cindex @samp{--divide} option, i386
81@item --divide
82On SVR4-derived platforms, the character @samp{/} is treated as a comment
83character, which means that it cannot be used in expressions. The
84@samp{--divide} option turns @samp{/} into a normal character. This does
85not disable @samp{/} at the beginning of a line starting a comment, or
86affect using @samp{#} for starting a comment.
87
9103f4f4
L
88@cindex @samp{-march=} option, i386
89@cindex @samp{-march=} option, x86-64
6305a203
L
90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91This option specifies the target processor. The assembler will
92issue an error message if an attempt is made to assemble an instruction
93which will not execute on the target processor. The following
34bca508 94processor names are recognized:
9103f4f4
L
95@code{i8086},
96@code{i186},
97@code{i286},
98@code{i386},
99@code{i486},
100@code{i586},
101@code{i686},
102@code{pentium},
103@code{pentiumpro},
104@code{pentiumii},
105@code{pentiumiii},
106@code{pentium4},
107@code{prescott},
108@code{nocona},
ef05d495
L
109@code{core},
110@code{core2},
bd5295b2 111@code{corei7},
8a9036a4 112@code{l1om},
7a9068fe 113@code{k1om},
81486035 114@code{iamcu},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
c7b0bd56 124@code{bdver4},
029f3522 125@code{znver1},
a9660a6f 126@code{znver2},
7b458c12
L
127@code{btver1},
128@code{btver2},
9103f4f4
L
129@code{generic32} and
130@code{generic64}.
131
34bca508 132In addition to the basic instruction set, the assembler can be told to
6305a203
L
133accept various extension mnemonics. For example,
134@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135@var{vmx}. The following extensions are currently supported:
309d3373
JB
136@code{8087},
137@code{287},
138@code{387},
1848e567 139@code{687},
309d3373 140@code{no87},
1848e567
L
141@code{no287},
142@code{no387},
143@code{no687},
d871f3f4
L
144@code{cmov},
145@code{nocmov},
146@code{fxsr},
147@code{nofxsr},
6305a203 148@code{mmx},
309d3373 149@code{nommx},
6305a203
L
150@code{sse},
151@code{sse2},
152@code{sse3},
153@code{ssse3},
154@code{sse4.1},
155@code{sse4.2},
156@code{sse4},
309d3373 157@code{nosse},
1848e567
L
158@code{nosse2},
159@code{nosse3},
160@code{nossse3},
161@code{nosse4.1},
162@code{nosse4.2},
163@code{nosse4},
c0f3af97 164@code{avx},
6c30d220 165@code{avx2},
1848e567
L
166@code{noavx},
167@code{noavx2},
e2e1fcde
L
168@code{adx},
169@code{rdseed},
170@code{prfchw},
5c111e37 171@code{smap},
7e8b059b 172@code{mpx},
a0046408 173@code{sha},
8bc52696 174@code{rdpid},
6b40c462 175@code{ptwrite},
603555e5 176@code{cet},
48521003 177@code{gfni},
8dcf1fad 178@code{vaes},
ff1982d5 179@code{vpclmulqdq},
1dfc6506
L
180@code{prefetchwt1},
181@code{clflushopt},
182@code{se1},
c5e7287a 183@code{clwb},
c0a30a9f
L
184@code{movdiri},
185@code{movdir64b},
5d79adc4 186@code{enqcmd},
43234a1e
L
187@code{avx512f},
188@code{avx512cd},
189@code{avx512er},
190@code{avx512pf},
1dfc6506
L
191@code{avx512vl},
192@code{avx512bw},
193@code{avx512dq},
2cc1b5aa 194@code{avx512ifma},
14f195c9 195@code{avx512vbmi},
920d2ddc 196@code{avx512_4fmaps},
47acf0bd 197@code{avx512_4vnniw},
620214f7 198@code{avx512_vpopcntdq},
53467f57 199@code{avx512_vbmi2},
8cfcb765 200@code{avx512_vnni},
ee6872be 201@code{avx512_bitalg},
d6aab7a1 202@code{avx512_bf16},
144b71e2
L
203@code{noavx512f},
204@code{noavx512cd},
205@code{noavx512er},
206@code{noavx512pf},
207@code{noavx512vl},
208@code{noavx512bw},
209@code{noavx512dq},
210@code{noavx512ifma},
211@code{noavx512vbmi},
920d2ddc 212@code{noavx512_4fmaps},
47acf0bd 213@code{noavx512_4vnniw},
620214f7 214@code{noavx512_vpopcntdq},
53467f57 215@code{noavx512_vbmi2},
8cfcb765 216@code{noavx512_vnni},
ee6872be 217@code{noavx512_bitalg},
9186c494 218@code{noavx512_vp2intersect},
d6aab7a1 219@code{noavx512_bf16},
dd455cf5 220@code{noenqcmd},
6305a203 221@code{vmx},
8729a6f6 222@code{vmfunc},
6305a203 223@code{smx},
f03fe4c1 224@code{xsave},
c7b8aa3a 225@code{xsaveopt},
1dfc6506
L
226@code{xsavec},
227@code{xsaves},
c0f3af97 228@code{aes},
594ab6a3 229@code{pclmul},
c7b8aa3a
L
230@code{fsgsbase},
231@code{rdrnd},
232@code{f16c},
6c30d220 233@code{bmi2},
c0f3af97 234@code{fma},
f1f8f695
L
235@code{movbe},
236@code{ept},
6c30d220 237@code{lzcnt},
42164a71
L
238@code{hle},
239@code{rtm},
6c30d220 240@code{invpcid},
bd5295b2 241@code{clflush},
9916071f 242@code{mwaitx},
029f3522 243@code{clzero},
3233d7d0 244@code{wbnoinvd},
be3a8dca 245@code{pconfig},
de89d0a3 246@code{waitpkg},
c48935d7 247@code{cldemote},
142861df
JB
248@code{rdpru},
249@code{mcommit},
f88c9eb0 250@code{lwp},
5dd85c99
SP
251@code{fma4},
252@code{xop},
60aa667e 253@code{cx16},
bd5295b2 254@code{syscall},
1b7f3fb0 255@code{rdtscp},
6305a203
L
256@code{3dnow},
257@code{3dnowa},
258@code{sse4a},
259@code{sse5},
260@code{svme},
261@code{abm} and
262@code{padlock}.
309d3373
JB
263Note that rather than extending a basic instruction set, the extension
264mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
265
266When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
267@code{.arch} directive will take precedent.
268
269@cindex @samp{-mtune=} option, i386
270@cindex @samp{-mtune=} option, x86-64
271@item -mtune=@var{CPU}
272This option specifies a processor to optimize for. When used in
273conjunction with the @option{-march} option, only instructions
274of the processor specified by the @option{-march} option will be
275generated.
276
6305a203
L
277Valid @var{CPU} values are identical to the processor list of
278@option{-march=@var{CPU}}.
9103f4f4 279
c0f3af97
L
280@cindex @samp{-msse2avx} option, i386
281@cindex @samp{-msse2avx} option, x86-64
282@item -msse2avx
283This option specifies that the assembler should encode SSE instructions
284with VEX prefix.
285
daf50ae7
L
286@cindex @samp{-msse-check=} option, i386
287@cindex @samp{-msse-check=} option, x86-64
288@item -msse-check=@var{none}
1f9bb1ca
AS
289@itemx -msse-check=@var{warning}
290@itemx -msse-check=@var{error}
9aff4b7a 291These options control if the assembler should check SSE instructions.
daf50ae7
L
292@option{-msse-check=@var{none}} will make the assembler not to check SSE
293instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 294will make the assembler issue a warning for any SSE instruction.
daf50ae7 295@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 296for any SSE instruction.
daf50ae7 297
539f890d
L
298@cindex @samp{-mavxscalar=} option, i386
299@cindex @samp{-mavxscalar=} option, x86-64
300@item -mavxscalar=@var{128}
1f9bb1ca 301@itemx -mavxscalar=@var{256}
2aab8acd 302These options control how the assembler should encode scalar AVX
539f890d
L
303instructions. @option{-mavxscalar=@var{128}} will encode scalar
304AVX instructions with 128bit vector length, which is the default.
305@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
306with 256bit vector length.
307
4970191f
JB
308WARNING: Don't use this for production code - due to CPU errata the
309resulting code may not work on certain models.
310
03751133
L
311@cindex @samp{-mvexwig=} option, i386
312@cindex @samp{-mvexwig=} option, x86-64
313@item -mvexwig=@var{0}
314@itemx -mvexwig=@var{1}
315These options control how the assembler should encode VEX.W-ignored (WIG)
316VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
317instructions with vex.w = 0, which is the default.
318@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
319vex.w = 1.
320
4970191f
JB
321WARNING: Don't use this for production code - due to CPU errata the
322resulting code may not work on certain models.
323
43234a1e
L
324@cindex @samp{-mevexlig=} option, i386
325@cindex @samp{-mevexlig=} option, x86-64
326@item -mevexlig=@var{128}
327@itemx -mevexlig=@var{256}
328@itemx -mevexlig=@var{512}
329These options control how the assembler should encode length-ignored
330(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
331EVEX instructions with 128bit vector length, which is the default.
332@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
333encode LIG EVEX instructions with 256bit and 512bit vector length,
334respectively.
335
336@cindex @samp{-mevexwig=} option, i386
337@cindex @samp{-mevexwig=} option, x86-64
338@item -mevexwig=@var{0}
339@itemx -mevexwig=@var{1}
340These options control how the assembler should encode w-ignored (WIG)
341EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
342EVEX instructions with evex.w = 0, which is the default.
343@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
344evex.w = 1.
345
1efbbeb4
L
346@cindex @samp{-mmnemonic=} option, i386
347@cindex @samp{-mmnemonic=} option, x86-64
348@item -mmnemonic=@var{att}
1f9bb1ca 349@itemx -mmnemonic=@var{intel}
34bca508 350This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
351The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
352take precedent.
353
354@cindex @samp{-msyntax=} option, i386
355@cindex @samp{-msyntax=} option, x86-64
356@item -msyntax=@var{att}
1f9bb1ca 357@itemx -msyntax=@var{intel}
34bca508 358This option specifies instruction syntax when processing instructions.
1efbbeb4
L
359The @code{.att_syntax} and @code{.intel_syntax} directives will
360take precedent.
361
362@cindex @samp{-mnaked-reg} option, i386
363@cindex @samp{-mnaked-reg} option, x86-64
364@item -mnaked-reg
33eaf5de 365This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 366The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 367
7e8b059b
L
368@cindex @samp{-madd-bnd-prefix} option, i386
369@cindex @samp{-madd-bnd-prefix} option, x86-64
370@item -madd-bnd-prefix
371This option forces the assembler to add BND prefix to all branches, even
372if such prefix was not explicitly specified in the source code.
373
8dcea932
L
374@cindex @samp{-mshared} option, i386
375@cindex @samp{-mshared} option, x86-64
376@item -mno-shared
377On ELF target, the assembler normally optimizes out non-PLT relocations
378against defined non-weak global branch targets with default visibility.
379The @samp{-mshared} option tells the assembler to generate code which
380may go into a shared library where all non-weak global branch targets
381with default visibility can be preempted. The resulting code is
382slightly bigger. This option only affects the handling of branch
383instructions.
384
167ad85b
TG
385@cindex @samp{-mbig-obj} option, x86-64
386@item -mbig-obj
387On x86-64 PE/COFF target this option forces the use of big object file
388format, which allows more than 32768 sections.
389
d022bddd
IT
390@cindex @samp{-momit-lock-prefix=} option, i386
391@cindex @samp{-momit-lock-prefix=} option, x86-64
392@item -momit-lock-prefix=@var{no}
393@itemx -momit-lock-prefix=@var{yes}
394These options control how the assembler should encode lock prefix.
395This option is intended as a workaround for processors, that fail on
396lock prefix. This option can only be safely used with single-core,
397single-thread computers
398@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
399@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
400which is the default.
401
e4e00185
AS
402@cindex @samp{-mfence-as-lock-add=} option, i386
403@cindex @samp{-mfence-as-lock-add=} option, x86-64
404@item -mfence-as-lock-add=@var{no}
405@itemx -mfence-as-lock-add=@var{yes}
406These options control how the assembler should encode lfence, mfence and
407sfence.
408@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
409sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
410@samp{lock addl $0x0, (%esp)} in 32-bit mode.
411@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
412sfence as usual, which is the default.
413
0cb4071e
L
414@cindex @samp{-mrelax-relocations=} option, i386
415@cindex @samp{-mrelax-relocations=} option, x86-64
416@item -mrelax-relocations=@var{no}
417@itemx -mrelax-relocations=@var{yes}
418These options control whether the assembler should generate relax
419relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
420R_X86_64_REX_GOTPCRELX, in 64-bit mode.
421@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
422@option{-mrelax-relocations=@var{no}} will not generate relax
423relocations. The default can be controlled by a configure option
424@option{--enable-x86-relax-relocations}.
425
b4a3a7b4
L
426@cindex @samp{-mx86-used-note=} option, i386
427@cindex @samp{-mx86-used-note=} option, x86-64
428@item -mx86-used-note=@var{no}
429@itemx -mx86-used-note=@var{yes}
430These options control whether the assembler should generate
431GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
432GNU property notes. The default can be controlled by the
433@option{--enable-x86-used-note} configure option.
434
d3d3c6db
IT
435@cindex @samp{-mevexrcig=} option, i386
436@cindex @samp{-mevexrcig=} option, x86-64
437@item -mevexrcig=@var{rne}
438@itemx -mevexrcig=@var{rd}
439@itemx -mevexrcig=@var{ru}
440@itemx -mevexrcig=@var{rz}
441These options control how the assembler should encode SAE-only
442EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
443of EVEX instruction with 00, which is the default.
444@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
445and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
446with 01, 10 and 11 RC bits, respectively.
447
5db04b09
L
448@cindex @samp{-mamd64} option, x86-64
449@cindex @samp{-mintel64} option, x86-64
450@item -mamd64
451@itemx -mintel64
452This option specifies that the assembler should accept only AMD64 or
453Intel64 ISA in 64-bit mode. The default is to accept both.
454
b6f8c7c4
L
455@cindex @samp{-O0} option, i386
456@cindex @samp{-O0} option, x86-64
457@cindex @samp{-O} option, i386
458@cindex @samp{-O} option, x86-64
459@cindex @samp{-O1} option, i386
460@cindex @samp{-O1} option, x86-64
461@cindex @samp{-O2} option, i386
462@cindex @samp{-O2} option, x86-64
463@cindex @samp{-Os} option, i386
464@cindex @samp{-Os} option, x86-64
465@item -O0 | -O | -O1 | -O2 | -Os
466Optimize instruction encoding with smaller instruction size. @samp{-O}
467and @samp{-O1} encode 64-bit register load instructions with 64-bit
468immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 469immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
470register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
471register clearing instructions with 128-bit VEX vector register
472clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 473register load/store instructions with VEX vector register load/store
a0a1771e
JB
474instructions, and encode 128-bit/256-bit EVEX packed integer logical
475instructions with 128-bit/256-bit VEX packed integer logical.
476
477@samp{-O2} includes @samp{-O1} optimization plus encodes
478256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
479EVEX vector register clearing instructions. In 64-bit mode VEX encoded
480instructions with commutative source operands will also have their
481source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
482instead of the 3-byte one. Certain forms of AND as well as OR with the
483same (register) operand specified twice will also be changed to TEST.
a0a1771e 484
b6f8c7c4
L
485@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
486and 64-bit register tests with immediate as 8-bit register test with
487immediate. @samp{-O0} turns off this optimization.
488
55b62671 489@end table
731caf76 490@c man end
e413e4e9 491
a6c24e68
NC
492@node i386-Directives
493@section x86 specific Directives
494
495@cindex machine directives, x86
496@cindex x86 machine directives
497@table @code
498
499@cindex @code{lcomm} directive, COFF
500@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
501Reserve @var{length} (an absolute expression) bytes for a local common
502denoted by @var{symbol}. The section and value of @var{symbol} are
503those of the new local common. The addresses are allocated in the bss
704209c0
NC
504section, so that at run-time the bytes start off zeroed. Since
505@var{symbol} is not declared global, it is normally not visible to
506@code{@value{LD}}. The optional third parameter, @var{alignment},
507specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
508
509This directive is only available for COFF based x86 targets.
510
102e9361
NC
511@cindex @code{largecomm} directive, ELF
512@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
513This directive behaves in the same way as the @code{comm} directive
514except that the data is placed into the @var{.lbss} section instead of
515the @var{.bss} section @ref{Comm}.
516
517The directive is intended to be used for data which requires a large
518amount of space, and it is only available for ELF based x86_64
519targets.
520
f2f51cd5
NC
521@cindex @code{value} directive
522@item .value @var{expression} [, @var{expression}]
523This directive behaves in the same way as the @code{.short} directive,
524taking a series of comma separated expressions and storing them as
525two-byte wide values into the current section.
526
a6c24e68 527@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
528
529@end table
530
252b5132 531@node i386-Syntax
7c31ae13
NC
532@section i386 Syntactical Considerations
533@menu
534* i386-Variations:: AT&T Syntax versus Intel Syntax
535* i386-Chars:: Special Characters
536@end menu
537
538@node i386-Variations
539@subsection AT&T Syntax versus Intel Syntax
252b5132 540
e413e4e9
AM
541@cindex i386 intel_syntax pseudo op
542@cindex intel_syntax pseudo op, i386
543@cindex i386 att_syntax pseudo op
544@cindex att_syntax pseudo op, i386
252b5132
RH
545@cindex i386 syntax compatibility
546@cindex syntax compatibility, i386
55b62671
AJ
547@cindex x86-64 intel_syntax pseudo op
548@cindex intel_syntax pseudo op, x86-64
549@cindex x86-64 att_syntax pseudo op
550@cindex att_syntax pseudo op, x86-64
551@cindex x86-64 syntax compatibility
552@cindex syntax compatibility, x86-64
e413e4e9
AM
553
554@code{@value{AS}} now supports assembly using Intel assembler syntax.
555@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
556back to the usual AT&T mode for compatibility with the output of
557@code{@value{GCC}}. Either of these directives may have an optional
558argument, @code{prefix}, or @code{noprefix} specifying whether registers
559require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
560different from Intel syntax. We mention these differences because
561almost all 80386 documents use Intel syntax. Notable differences
562between the two syntaxes are:
563
564@cindex immediate operands, i386
565@cindex i386 immediate operands
566@cindex register operands, i386
567@cindex i386 register operands
568@cindex jump/call operands, i386
569@cindex i386 jump/call operands
570@cindex operand delimiters, i386
55b62671
AJ
571
572@cindex immediate operands, x86-64
573@cindex x86-64 immediate operands
574@cindex register operands, x86-64
575@cindex x86-64 register operands
576@cindex jump/call operands, x86-64
577@cindex x86-64 jump/call operands
578@cindex operand delimiters, x86-64
252b5132
RH
579@itemize @bullet
580@item
581AT&T immediate operands are preceded by @samp{$}; Intel immediate
582operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
583AT&T register operands are preceded by @samp{%}; Intel register operands
584are undelimited. AT&T absolute (as opposed to PC relative) jump/call
585operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
586
587@cindex i386 source, destination operands
588@cindex source, destination operands; i386
55b62671
AJ
589@cindex x86-64 source, destination operands
590@cindex source, destination operands; x86-64
252b5132
RH
591@item
592AT&T and Intel syntax use the opposite order for source and destination
593operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
594@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
595previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
596instructions with 2 immediate operands, such as the @samp{enter}
597instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
598
599@cindex mnemonic suffixes, i386
600@cindex sizes operands, i386
601@cindex i386 size suffixes
55b62671
AJ
602@cindex mnemonic suffixes, x86-64
603@cindex sizes operands, x86-64
604@cindex x86-64 size suffixes
252b5132
RH
605@item
606In AT&T syntax the size of memory operands is determined from the last
607character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 608@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
609(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
610of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
611(256-bit vector) and zmm (512-bit vector) memory references, only when there's
612no other way to disambiguate an instruction. Intel syntax accomplishes this by
613prefixing memory operands (@emph{not} the instruction mnemonics) with
614@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
615@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
616syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
617syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
618@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 619
4b06377f
L
620In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
621instruction with the 64-bit displacement or immediate operand.
622
252b5132
RH
623@cindex return instructions, i386
624@cindex i386 jump, call, return
55b62671
AJ
625@cindex return instructions, x86-64
626@cindex x86-64 jump, call, return
252b5132
RH
627@item
628Immediate form long jumps and calls are
629@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
630Intel syntax is
631@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
632instruction
633is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
634@samp{ret far @var{stack-adjust}}.
635
636@cindex sections, i386
637@cindex i386 sections
55b62671
AJ
638@cindex sections, x86-64
639@cindex x86-64 sections
252b5132
RH
640@item
641The AT&T assembler does not provide support for multiple section
642programs. Unix style systems expect all programs to be single sections.
643@end itemize
644
7c31ae13
NC
645@node i386-Chars
646@subsection Special Characters
647
648@cindex line comment character, i386
649@cindex i386 line comment character
650The presence of a @samp{#} appearing anywhere on a line indicates the
651start of a comment that extends to the end of that line.
652
653If a @samp{#} appears as the first character of a line then the whole
654line is treated as a comment, but in this case the line can also be a
655logical line number directive (@pxref{Comments}) or a preprocessor
656control command (@pxref{Preprocessing}).
657
a05a5b64 658If the @option{--divide} command-line option has not been specified
7c31ae13
NC
659then the @samp{/} character appearing anywhere on a line also
660introduces a line comment.
661
662@cindex line separator, i386
663@cindex statement separator, i386
664@cindex i386 line separator
665The @samp{;} character can be used to separate statements on the same
666line.
667
252b5132 668@node i386-Mnemonics
d3b47e2b
L
669@section i386-Mnemonics
670@subsection Instruction Naming
252b5132
RH
671
672@cindex i386 instruction naming
673@cindex instruction naming, i386
55b62671
AJ
674@cindex x86-64 instruction naming
675@cindex instruction naming, x86-64
676
252b5132 677Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
678specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
679and @samp{q} specify byte, word, long and quadruple word operands. If
680no suffix is specified by an instruction then @code{@value{AS}} tries to
681fill in the missing suffix based on the destination register operand
682(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
683to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
684@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
685assembler which assumes that a missing mnemonic suffix implies long
686operand size. (This incompatibility does not affect compiler output
687since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
688
689Almost all instructions have the same names in AT&T and Intel format.
690There are a few exceptions. The sign extend and zero extend
691instructions need two sizes to specify them. They need a size to
692sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
693is accomplished by using two instruction mnemonic suffixes in AT&T
694syntax. Base names for sign extend and zero extend are
695@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
696and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
697are tacked on to this base name, the @emph{from} suffix before the
698@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
699``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
700thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
701@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
702@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
703quadruple word).
252b5132 704
b6169b20
L
705@cindex encoding options, i386
706@cindex encoding options, x86-64
707
86fa6981
L
708Different encoding options can be specified via pseudo prefixes:
709
710@itemize @bullet
711@item
712@samp{@{disp8@}} -- prefer 8-bit displacement.
713
714@item
715@samp{@{disp32@}} -- prefer 32-bit displacement.
716
717@item
718@samp{@{load@}} -- prefer load-form instruction.
719
720@item
721@samp{@{store@}} -- prefer store-form instruction.
722
723@item
724@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
725
726@item
727@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
728
729@item
730@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
731
732@item
733@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
734instructions (x86-64 only). Note that this differs from the @samp{rex}
735prefix which generates REX prefix unconditionally.
b6f8c7c4
L
736
737@item
738@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 739@end itemize
b6169b20 740
252b5132
RH
741@cindex conversion instructions, i386
742@cindex i386 conversion instructions
55b62671
AJ
743@cindex conversion instructions, x86-64
744@cindex x86-64 conversion instructions
252b5132
RH
745The Intel-syntax conversion instructions
746
747@itemize @bullet
748@item
749@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
750
751@item
752@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
753
754@item
755@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
756
757@item
758@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
759
760@item
761@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
762(x86-64 only),
763
764@item
d5f0cf92 765@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 766@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
767@end itemize
768
769@noindent
55b62671
AJ
770are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
771@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
772instructions.
252b5132
RH
773
774@cindex jump instructions, i386
775@cindex call instructions, i386
55b62671
AJ
776@cindex jump instructions, x86-64
777@cindex call instructions, x86-64
252b5132
RH
778Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
779AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
780convention.
781
d3b47e2b 782@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
783
784@cindex i386 mnemonic compatibility
785@cindex mnemonic compatibility, i386
786
787@code{@value{AS}} supports assembly using Intel mnemonic.
788@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
789@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
790syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
791Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
792@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
793@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
794assembler with different mnemonics from those in Intel IA32 specification.
795@code{@value{GCC}} generates those instructions with AT&T mnemonic.
796
252b5132
RH
797@node i386-Regs
798@section Register Naming
799
800@cindex i386 registers
801@cindex registers, i386
55b62671
AJ
802@cindex x86-64 registers
803@cindex registers, x86-64
252b5132
RH
804Register operands are always prefixed with @samp{%}. The 80386 registers
805consist of
806
807@itemize @bullet
808@item
809the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
810@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
811frame pointer), and @samp{%esp} (the stack pointer).
812
813@item
814the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
815@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
816
817@item
818the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
819@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
820are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
821@samp{%cx}, and @samp{%dx})
822
823@item
824the 6 section registers @samp{%cs} (code section), @samp{%ds}
825(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
826and @samp{%gs}.
827
828@item
4bde3cdd
UD
829the 5 processor control registers @samp{%cr0}, @samp{%cr2},
830@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
831
832@item
833the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
834@samp{%db3}, @samp{%db6}, and @samp{%db7}.
835
836@item
837the 2 test registers @samp{%tr6} and @samp{%tr7}.
838
839@item
840the 8 floating point register stack @samp{%st} or equivalently
841@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
842@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
843These registers are overloaded by 8 MMX registers @samp{%mm0},
844@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
845@samp{%mm6} and @samp{%mm7}.
846
847@item
4bde3cdd 848the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
849@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
850@end itemize
851
852The AMD x86-64 architecture extends the register set by:
853
854@itemize @bullet
855@item
856enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
857accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
858@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
859pointer)
860
861@item
862the 8 extended registers @samp{%r8}--@samp{%r15}.
863
864@item
4bde3cdd 865the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
866
867@item
4bde3cdd 868the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
869
870@item
4bde3cdd 871the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
872
873@item
874the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
875
876@item
877the 8 debug registers: @samp{%db8}--@samp{%db15}.
878
879@item
4bde3cdd
UD
880the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
881@end itemize
882
883With the AVX extensions more registers were made available:
884
885@itemize @bullet
886
887@item
888the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
889available in 32-bit mode). The bottom 128 bits are overlaid with the
890@samp{xmm0}--@samp{xmm15} registers.
891
892@end itemize
893
894The AVX2 extensions made in 64-bit mode more registers available:
895
896@itemize @bullet
897
898@item
899the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
900registers @samp{%ymm16}--@samp{%ymm31}.
901
902@end itemize
903
904The AVX512 extensions added the following registers:
905
906@itemize @bullet
907
908@item
909the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
910available in 32-bit mode). The bottom 128 bits are overlaid with the
911@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
912overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
913
914@item
915the 8 mask registers @samp{%k0}--@samp{%k7}.
916
252b5132
RH
917@end itemize
918
919@node i386-Prefixes
920@section Instruction Prefixes
921
922@cindex i386 instruction prefixes
923@cindex instruction prefixes, i386
924@cindex prefixes, i386
925Instruction prefixes are used to modify the following instruction. They
926are used to repeat string instructions, to provide section overrides, to
927perform bus lock operations, and to change operand and address sizes.
928(Most instructions that normally operate on 32-bit operands will use
92916-bit operands if the instruction has an ``operand size'' prefix.)
930Instruction prefixes are best written on the same line as the instruction
931they act upon. For example, the @samp{scas} (scan string) instruction is
932repeated with:
933
934@smallexample
935 repne scas %es:(%edi),%al
936@end smallexample
937
938You may also place prefixes on the lines immediately preceding the
939instruction, but this circumvents checks that @code{@value{AS}} does
940with prefixes, and will not work with all prefixes.
941
942Here is a list of instruction prefixes:
943
944@cindex section override prefixes, i386
945@itemize @bullet
946@item
947Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
948@samp{fs}, @samp{gs}. These are automatically added by specifying
949using the @var{section}:@var{memory-operand} form for memory references.
950
951@cindex size prefixes, i386
952@item
953Operand/Address size prefixes @samp{data16} and @samp{addr16}
954change 32-bit operands/addresses into 16-bit operands/addresses,
955while @samp{data32} and @samp{addr32} change 16-bit ones (in a
956@code{.code16} section) into 32-bit operands/addresses. These prefixes
957@emph{must} appear on the same line of code as the instruction they
958modify. For example, in a 16-bit @code{.code16} section, you might
959write:
960
961@smallexample
962 addr32 jmpl *(%ebx)
963@end smallexample
964
965@cindex bus lock prefixes, i386
966@cindex inhibiting interrupts, i386
967@item
968The bus lock prefix @samp{lock} inhibits interrupts during execution of
969the instruction it precedes. (This is only valid with certain
970instructions; see a 80386 manual for details).
971
972@cindex coprocessor wait, i386
973@item
974The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
975complete the current instruction. This should never be needed for the
97680386/80387 combination.
977
978@cindex repeat prefixes, i386
979@item
980The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
981to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
982times if the current address size is 16-bits).
55b62671
AJ
983@cindex REX prefixes, i386
984@item
985The @samp{rex} family of prefixes is used by x86-64 to encode
986extensions to i386 instruction set. The @samp{rex} prefix has four
987bits --- an operand size overwrite (@code{64}) used to change operand size
988from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
989register set.
990
991You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
992instruction emits @samp{rex} prefix with all the bits set. By omitting
993the @code{64}, @code{x}, @code{y} or @code{z} you may write other
994prefixes as well. Normally, there is no need to write the prefixes
995explicitly, since gas will automatically generate them based on the
996instruction operands.
252b5132
RH
997@end itemize
998
999@node i386-Memory
1000@section Memory References
1001
1002@cindex i386 memory references
1003@cindex memory references, i386
55b62671
AJ
1004@cindex x86-64 memory references
1005@cindex memory references, x86-64
252b5132
RH
1006An Intel syntax indirect memory reference of the form
1007
1008@smallexample
1009@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1010@end smallexample
1011
1012@noindent
1013is translated into the AT&T syntax
1014
1015@smallexample
1016@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1017@end smallexample
1018
1019@noindent
1020where @var{base} and @var{index} are the optional 32-bit base and
1021index registers, @var{disp} is the optional displacement, and
1022@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1023to calculate the address of the operand. If no @var{scale} is
1024specified, @var{scale} is taken to be 1. @var{section} specifies the
1025optional section register for the memory operand, and may override the
1026default section register (see a 80386 manual for section register
1027defaults). Note that section overrides in AT&T syntax @emph{must}
1028be preceded by a @samp{%}. If you specify a section override which
1029coincides with the default section register, @code{@value{AS}} does @emph{not}
1030output any section register override prefixes to assemble the given
1031instruction. Thus, section overrides can be specified to emphasize which
1032section register is used for a given memory operand.
1033
1034Here are some examples of Intel and AT&T style memory references:
1035
1036@table @asis
1037@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1038@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1039missing, and the default section is used (@samp{%ss} for addressing with
1040@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1041
1042@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1043@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1044@samp{foo}. All other fields are missing. The section register here
1045defaults to @samp{%ds}.
1046
1047@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1048This uses the value pointed to by @samp{foo} as a memory operand.
1049Note that @var{base} and @var{index} are both missing, but there is only
1050@emph{one} @samp{,}. This is a syntactic exception.
1051
1052@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1053This selects the contents of the variable @samp{foo} with section
1054register @var{section} being @samp{%gs}.
1055@end table
1056
1057Absolute (as opposed to PC relative) call and jump operands must be
1058prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1059always chooses PC relative addressing for jump/call labels.
1060
1061Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1062@emph{must} specify its size (byte, word, long, or quadruple) with an
1063instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1064respectively).
1065
1066The x86-64 architecture adds an RIP (instruction pointer relative)
1067addressing. This addressing mode is specified by using @samp{rip} as a
1068base register. Only constant offsets are valid. For example:
1069
1070@table @asis
1071@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1072Points to the address 1234 bytes past the end of the current
1073instruction.
1074
1075@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1076Points to the @code{symbol} in RIP relative way, this is shorter than
1077the default absolute addressing.
1078@end table
1079
1080Other addressing modes remain unchanged in x86-64 architecture, except
1081registers used are 64-bit instead of 32-bit.
252b5132 1082
fddf5b5b 1083@node i386-Jumps
252b5132
RH
1084@section Handling of Jump Instructions
1085
1086@cindex jump optimization, i386
1087@cindex i386 jump optimization
55b62671
AJ
1088@cindex jump optimization, x86-64
1089@cindex x86-64 jump optimization
252b5132
RH
1090Jump instructions are always optimized to use the smallest possible
1091displacements. This is accomplished by using byte (8-bit) displacement
1092jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1093is insufficient a long displacement is used. We do not support
252b5132
RH
1094word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1095instruction with the @samp{data16} instruction prefix), since the 80386
1096insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1097is added. (See also @pxref{i386-Arch})
252b5132
RH
1098
1099Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1100@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1101displacements, so that if you use these instructions (@code{@value{GCC}} does
1102not use them) you may get an error message (and incorrect code). The AT&T
110380386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1104to
1105
1106@smallexample
1107 jcxz cx_zero
1108 jmp cx_nonzero
1109cx_zero: jmp foo
1110cx_nonzero:
1111@end smallexample
1112
1113@node i386-Float
1114@section Floating Point
1115
1116@cindex i386 floating point
1117@cindex floating point, i386
55b62671
AJ
1118@cindex x86-64 floating point
1119@cindex floating point, x86-64
252b5132
RH
1120All 80387 floating point types except packed BCD are supported.
1121(BCD support may be added without much difficulty). These data
1122types are 16-, 32-, and 64- bit integers, and single (32-bit),
1123double (64-bit), and extended (80-bit) precision floating point.
1124Each supported type has an instruction mnemonic suffix and a constructor
1125associated with it. Instruction mnemonic suffixes specify the operand's
1126data type. Constructors build these data types into memory.
1127
1128@cindex @code{float} directive, i386
1129@cindex @code{single} directive, i386
1130@cindex @code{double} directive, i386
1131@cindex @code{tfloat} directive, i386
55b62671
AJ
1132@cindex @code{float} directive, x86-64
1133@cindex @code{single} directive, x86-64
1134@cindex @code{double} directive, x86-64
1135@cindex @code{tfloat} directive, x86-64
252b5132
RH
1136@itemize @bullet
1137@item
1138Floating point constructors are @samp{.float} or @samp{.single},
1139@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1140These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1141and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1142only supports this format via the @samp{fldt} (load 80-bit real to stack
1143top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1144
1145@cindex @code{word} directive, i386
1146@cindex @code{long} directive, i386
1147@cindex @code{int} directive, i386
1148@cindex @code{quad} directive, i386
55b62671
AJ
1149@cindex @code{word} directive, x86-64
1150@cindex @code{long} directive, x86-64
1151@cindex @code{int} directive, x86-64
1152@cindex @code{quad} directive, x86-64
252b5132
RH
1153@item
1154Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1155@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1156corresponding instruction mnemonic suffixes are @samp{s} (single),
1157@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1158the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1159quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1160stack) instructions.
1161@end itemize
1162
1163Register to register operations should not use instruction mnemonic suffixes.
1164@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1165wrote @samp{fst %st, %st(1)}, since all register to register operations
1166use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1167which converts @samp{%st} from 80-bit to 64-bit floating point format,
1168then stores the result in the 4 byte location @samp{mem})
1169
1170@node i386-SIMD
1171@section Intel's MMX and AMD's 3DNow! SIMD Operations
1172
1173@cindex MMX, i386
1174@cindex 3DNow!, i386
1175@cindex SIMD, i386
55b62671
AJ
1176@cindex MMX, x86-64
1177@cindex 3DNow!, x86-64
1178@cindex SIMD, x86-64
252b5132
RH
1179
1180@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1181instructions for integer data), available on Intel's Pentium MMX
1182processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1183Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1184instruction set (SIMD instructions for 32-bit floating point data)
1185available on AMD's K6-2 processor and possibly others in the future.
1186
1187Currently, @code{@value{AS}} does not support Intel's floating point
1188SIMD, Katmai (KNI).
1189
1190The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1191@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
119216-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1193floating point values. The MMX registers cannot be used at the same time
1194as the floating point stack.
1195
1196See Intel and AMD documentation, keeping in mind that the operand order in
1197instructions is reversed from the Intel syntax.
1198
f88c9eb0
SP
1199@node i386-LWP
1200@section AMD's Lightweight Profiling Instructions
1201
1202@cindex LWP, i386
1203@cindex LWP, x86-64
1204
1205@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1206instruction set, available on AMD's Family 15h (Orochi) processors.
1207
1208LWP enables applications to collect and manage performance data, and
1209react to performance events. The collection of performance data
1210requires no context switches. LWP runs in the context of a thread and
1211so several counters can be used independently across multiple threads.
1212LWP can be used in both 64-bit and legacy 32-bit modes.
1213
1214For detailed information on the LWP instruction set, see the
1215@cite{AMD Lightweight Profiling Specification} available at
1216@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1217
87973e9f
QN
1218@node i386-BMI
1219@section Bit Manipulation Instructions
1220
1221@cindex BMI, i386
1222@cindex BMI, x86-64
1223
1224@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1225
1226BMI instructions provide several instructions implementing individual
1227bit manipulation operations such as isolation, masking, setting, or
34bca508 1228resetting.
87973e9f
QN
1229
1230@c Need to add a specification citation here when available.
1231
2a2a0f38
QN
1232@node i386-TBM
1233@section AMD's Trailing Bit Manipulation Instructions
1234
1235@cindex TBM, i386
1236@cindex TBM, x86-64
1237
1238@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1239instruction set, available on AMD's BDVER2 processors (Trinity and
1240Viperfish).
1241
1242TBM instructions provide instructions implementing individual bit
1243manipulation operations such as isolating, masking, setting, resetting,
1244complementing, and operations on trailing zeros and ones.
1245
1246@c Need to add a specification citation here when available.
87973e9f 1247
252b5132
RH
1248@node i386-16bit
1249@section Writing 16-bit Code
1250
1251@cindex i386 16-bit code
1252@cindex 16-bit code, i386
1253@cindex real-mode code, i386
eecb386c 1254@cindex @code{code16gcc} directive, i386
252b5132
RH
1255@cindex @code{code16} directive, i386
1256@cindex @code{code32} directive, i386
55b62671
AJ
1257@cindex @code{code64} directive, i386
1258@cindex @code{code64} directive, x86-64
1259While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1260or 64-bit x86-64 code depending on the default configuration,
252b5132 1261it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1262mode code segments. To do this, put a @samp{.code16} or
1263@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1264be run in 16-bit mode. You can switch @code{@value{AS}} to writing
126532-bit code with the @samp{.code32} directive or 64-bit code with the
1266@samp{.code64} directive.
eecb386c
AM
1267
1268@samp{.code16gcc} provides experimental support for generating 16-bit
1269code from gcc, and differs from @samp{.code16} in that @samp{call},
1270@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1271@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1272default to 32-bit size. This is so that the stack pointer is
1273manipulated in the same way over function calls, allowing access to
1274function parameters at the same stack offsets as in 32-bit mode.
1275@samp{.code16gcc} also automatically adds address size prefixes where
1276necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1277
1278The code which @code{@value{AS}} generates in 16-bit mode will not
1279necessarily run on a 16-bit pre-80386 processor. To write code that
1280runs on such a processor, you must refrain from using @emph{any} 32-bit
1281constructs which require @code{@value{AS}} to output address or operand
1282size prefixes.
1283
1284Note that writing 16-bit code instructions by explicitly specifying a
1285prefix or an instruction mnemonic suffix within a 32-bit code section
1286generates different machine instructions than those generated for a
128716-bit code segment. In a 32-bit code section, the following code
1288generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1289value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1290
1291@smallexample
1292 pushw $4
1293@end smallexample
1294
1295The same code in a 16-bit code section would generate the machine
b45619c0 1296opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1297is correct since the processor default operand size is assumed to be 16
1298bits in a 16-bit code section.
1299
e413e4e9
AM
1300@node i386-Arch
1301@section Specifying CPU Architecture
1302
1303@cindex arch directive, i386
1304@cindex i386 arch directive
55b62671
AJ
1305@cindex arch directive, x86-64
1306@cindex x86-64 arch directive
e413e4e9
AM
1307
1308@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1309(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1310directive enables a warning when gas detects an instruction that is not
1311supported on the CPU specified. The choices for @var{cpu_type} are:
1312
1313@multitable @columnfractions .20 .20 .20 .20
1314@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1315@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1316@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1317@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1318@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1319@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1320@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1321@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1322@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1323@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1324@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1325@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1326@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1327@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1328@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1329@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1330@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1331@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1332@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1333@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1334@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1335@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1336@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1337@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1338@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
d777820b 1339@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1340@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1341@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
5d79adc4 1342@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1ceab344 1343@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1344@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1345@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
142861df
JB
1346@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1347@item @samp{.mcommit}
e413e4e9
AM
1348@end multitable
1349
fddf5b5b
AM
1350Apart from the warning, there are only two other effects on
1351@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1352@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1353will automatically use a two byte opcode sequence. The larger three
1354byte opcode sequence is used on the 486 (and when no architecture is
1355specified) because it executes faster on the 486. Note that you can
1356explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1357Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1358@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1359conditional jumps will be promoted when necessary to a two instruction
1360sequence consisting of a conditional jump of the opposite sense around
1361an unconditional jump to the target.
1362
5c6af06e
JB
1363Following the CPU architecture (but not a sub-architecture, which are those
1364starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1365control automatic promotion of conditional jumps. @samp{jumps} is the
1366default, and enables jump promotion; All external jumps will be of the long
1367variety, and file-local jumps will be promoted as necessary.
1368(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1369byte offset jumps, and warns about file-local conditional jumps that
1370@code{@value{AS}} promotes.
fddf5b5b
AM
1371Unconditional jumps are treated as for @samp{jumps}.
1372
1373For example
1374
1375@smallexample
1376 .arch i8086,nojumps
1377@end smallexample
e413e4e9 1378
5c9352f3
AM
1379@node i386-Bugs
1380@section AT&T Syntax bugs
1381
1382The UnixWare assembler, and probably other AT&T derived ix86 Unix
1383assemblers, generate floating point instructions with reversed source
1384and destination registers in certain cases. Unfortunately, gcc and
1385possibly many other programs use this reversed syntax, so we're stuck
1386with it.
1387
1388For example
1389
1390@smallexample
1391 fsub %st,%st(3)
1392@end smallexample
1393@noindent
1394results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1395than the expected @samp{%st(3) - %st}. This happens with all the
1396non-commutative arithmetic floating point operations with two register
1397operands where the source register is @samp{%st} and the destination
1398register is @samp{%st(i)}.
1399
252b5132
RH
1400@node i386-Notes
1401@section Notes
1402
1403@cindex i386 @code{mul}, @code{imul} instructions
1404@cindex @code{mul} instruction, i386
1405@cindex @code{imul} instruction, i386
55b62671
AJ
1406@cindex @code{mul} instruction, x86-64
1407@cindex @code{imul} instruction, x86-64
252b5132 1408There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1409instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1410multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1411for @samp{imul}) can be output only in the one operand form. Thus,
1412@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1413the expanding multiply would clobber the @samp{%edx} register, and this
1414would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
141564-bit product in @samp{%edx:%eax}.
1416
1417We have added a two operand form of @samp{imul} when the first operand
1418is an immediate mode expression and the second operand is a register.
1419This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1420example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1421$69, %eax, %eax}.
1422
This page took 1.058832 seconds and 4 git commands to generate.