Document the .value directive supported by the x86 and x86_64 assemblers.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
82704155 1@c Copyright (C) 1991-2019 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
f9233288
JW
77as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
79
80@cindex @samp{--divide} option, i386
81@item --divide
82On SVR4-derived platforms, the character @samp{/} is treated as a comment
83character, which means that it cannot be used in expressions. The
84@samp{--divide} option turns @samp{/} into a normal character. This does
85not disable @samp{/} at the beginning of a line starting a comment, or
86affect using @samp{#} for starting a comment.
87
9103f4f4
L
88@cindex @samp{-march=} option, i386
89@cindex @samp{-march=} option, x86-64
6305a203
L
90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91This option specifies the target processor. The assembler will
92issue an error message if an attempt is made to assemble an instruction
93which will not execute on the target processor. The following
34bca508 94processor names are recognized:
9103f4f4
L
95@code{i8086},
96@code{i186},
97@code{i286},
98@code{i386},
99@code{i486},
100@code{i586},
101@code{i686},
102@code{pentium},
103@code{pentiumpro},
104@code{pentiumii},
105@code{pentiumiii},
106@code{pentium4},
107@code{prescott},
108@code{nocona},
ef05d495
L
109@code{core},
110@code{core2},
bd5295b2 111@code{corei7},
8a9036a4 112@code{l1om},
7a9068fe 113@code{k1om},
81486035 114@code{iamcu},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
c7b0bd56 124@code{bdver4},
029f3522 125@code{znver1},
a9660a6f 126@code{znver2},
7b458c12
L
127@code{btver1},
128@code{btver2},
9103f4f4
L
129@code{generic32} and
130@code{generic64}.
131
34bca508 132In addition to the basic instruction set, the assembler can be told to
6305a203
L
133accept various extension mnemonics. For example,
134@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135@var{vmx}. The following extensions are currently supported:
309d3373
JB
136@code{8087},
137@code{287},
138@code{387},
1848e567 139@code{687},
309d3373 140@code{no87},
1848e567
L
141@code{no287},
142@code{no387},
143@code{no687},
d871f3f4
L
144@code{cmov},
145@code{nocmov},
146@code{fxsr},
147@code{nofxsr},
6305a203 148@code{mmx},
309d3373 149@code{nommx},
6305a203
L
150@code{sse},
151@code{sse2},
152@code{sse3},
153@code{ssse3},
154@code{sse4.1},
155@code{sse4.2},
156@code{sse4},
309d3373 157@code{nosse},
1848e567
L
158@code{nosse2},
159@code{nosse3},
160@code{nossse3},
161@code{nosse4.1},
162@code{nosse4.2},
163@code{nosse4},
c0f3af97 164@code{avx},
6c30d220 165@code{avx2},
1848e567
L
166@code{noavx},
167@code{noavx2},
e2e1fcde
L
168@code{adx},
169@code{rdseed},
170@code{prfchw},
5c111e37 171@code{smap},
7e8b059b 172@code{mpx},
a0046408 173@code{sha},
8bc52696 174@code{rdpid},
6b40c462 175@code{ptwrite},
603555e5 176@code{cet},
48521003 177@code{gfni},
8dcf1fad 178@code{vaes},
ff1982d5 179@code{vpclmulqdq},
1dfc6506
L
180@code{prefetchwt1},
181@code{clflushopt},
182@code{se1},
c5e7287a 183@code{clwb},
c0a30a9f
L
184@code{movdiri},
185@code{movdir64b},
5d79adc4 186@code{enqcmd},
43234a1e
L
187@code{avx512f},
188@code{avx512cd},
189@code{avx512er},
190@code{avx512pf},
1dfc6506
L
191@code{avx512vl},
192@code{avx512bw},
193@code{avx512dq},
2cc1b5aa 194@code{avx512ifma},
14f195c9 195@code{avx512vbmi},
920d2ddc 196@code{avx512_4fmaps},
47acf0bd 197@code{avx512_4vnniw},
620214f7 198@code{avx512_vpopcntdq},
53467f57 199@code{avx512_vbmi2},
8cfcb765 200@code{avx512_vnni},
ee6872be 201@code{avx512_bitalg},
d6aab7a1 202@code{avx512_bf16},
144b71e2
L
203@code{noavx512f},
204@code{noavx512cd},
205@code{noavx512er},
206@code{noavx512pf},
207@code{noavx512vl},
208@code{noavx512bw},
209@code{noavx512dq},
210@code{noavx512ifma},
211@code{noavx512vbmi},
920d2ddc 212@code{noavx512_4fmaps},
47acf0bd 213@code{noavx512_4vnniw},
620214f7 214@code{noavx512_vpopcntdq},
53467f57 215@code{noavx512_vbmi2},
8cfcb765 216@code{noavx512_vnni},
ee6872be 217@code{noavx512_bitalg},
9186c494 218@code{noavx512_vp2intersect},
d6aab7a1 219@code{noavx512_bf16},
dd455cf5 220@code{noenqcmd},
6305a203 221@code{vmx},
8729a6f6 222@code{vmfunc},
6305a203 223@code{smx},
f03fe4c1 224@code{xsave},
c7b8aa3a 225@code{xsaveopt},
1dfc6506
L
226@code{xsavec},
227@code{xsaves},
c0f3af97 228@code{aes},
594ab6a3 229@code{pclmul},
c7b8aa3a
L
230@code{fsgsbase},
231@code{rdrnd},
232@code{f16c},
6c30d220 233@code{bmi2},
c0f3af97 234@code{fma},
f1f8f695
L
235@code{movbe},
236@code{ept},
6c30d220 237@code{lzcnt},
42164a71
L
238@code{hle},
239@code{rtm},
6c30d220 240@code{invpcid},
bd5295b2 241@code{clflush},
9916071f 242@code{mwaitx},
029f3522 243@code{clzero},
3233d7d0 244@code{wbnoinvd},
be3a8dca 245@code{pconfig},
de89d0a3 246@code{waitpkg},
c48935d7 247@code{cldemote},
f88c9eb0 248@code{lwp},
5dd85c99
SP
249@code{fma4},
250@code{xop},
60aa667e 251@code{cx16},
bd5295b2 252@code{syscall},
1b7f3fb0 253@code{rdtscp},
6305a203
L
254@code{3dnow},
255@code{3dnowa},
256@code{sse4a},
257@code{sse5},
258@code{svme},
259@code{abm} and
260@code{padlock}.
309d3373
JB
261Note that rather than extending a basic instruction set, the extension
262mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
263
264When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
265@code{.arch} directive will take precedent.
266
267@cindex @samp{-mtune=} option, i386
268@cindex @samp{-mtune=} option, x86-64
269@item -mtune=@var{CPU}
270This option specifies a processor to optimize for. When used in
271conjunction with the @option{-march} option, only instructions
272of the processor specified by the @option{-march} option will be
273generated.
274
6305a203
L
275Valid @var{CPU} values are identical to the processor list of
276@option{-march=@var{CPU}}.
9103f4f4 277
c0f3af97
L
278@cindex @samp{-msse2avx} option, i386
279@cindex @samp{-msse2avx} option, x86-64
280@item -msse2avx
281This option specifies that the assembler should encode SSE instructions
282with VEX prefix.
283
daf50ae7
L
284@cindex @samp{-msse-check=} option, i386
285@cindex @samp{-msse-check=} option, x86-64
286@item -msse-check=@var{none}
1f9bb1ca
AS
287@itemx -msse-check=@var{warning}
288@itemx -msse-check=@var{error}
9aff4b7a 289These options control if the assembler should check SSE instructions.
daf50ae7
L
290@option{-msse-check=@var{none}} will make the assembler not to check SSE
291instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 292will make the assembler issue a warning for any SSE instruction.
daf50ae7 293@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 294for any SSE instruction.
daf50ae7 295
539f890d
L
296@cindex @samp{-mavxscalar=} option, i386
297@cindex @samp{-mavxscalar=} option, x86-64
298@item -mavxscalar=@var{128}
1f9bb1ca 299@itemx -mavxscalar=@var{256}
2aab8acd 300These options control how the assembler should encode scalar AVX
539f890d
L
301instructions. @option{-mavxscalar=@var{128}} will encode scalar
302AVX instructions with 128bit vector length, which is the default.
303@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
304with 256bit vector length.
305
4970191f
JB
306WARNING: Don't use this for production code - due to CPU errata the
307resulting code may not work on certain models.
308
03751133
L
309@cindex @samp{-mvexwig=} option, i386
310@cindex @samp{-mvexwig=} option, x86-64
311@item -mvexwig=@var{0}
312@itemx -mvexwig=@var{1}
313These options control how the assembler should encode VEX.W-ignored (WIG)
314VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
315instructions with vex.w = 0, which is the default.
316@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
317vex.w = 1.
318
4970191f
JB
319WARNING: Don't use this for production code - due to CPU errata the
320resulting code may not work on certain models.
321
43234a1e
L
322@cindex @samp{-mevexlig=} option, i386
323@cindex @samp{-mevexlig=} option, x86-64
324@item -mevexlig=@var{128}
325@itemx -mevexlig=@var{256}
326@itemx -mevexlig=@var{512}
327These options control how the assembler should encode length-ignored
328(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
329EVEX instructions with 128bit vector length, which is the default.
330@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
331encode LIG EVEX instructions with 256bit and 512bit vector length,
332respectively.
333
334@cindex @samp{-mevexwig=} option, i386
335@cindex @samp{-mevexwig=} option, x86-64
336@item -mevexwig=@var{0}
337@itemx -mevexwig=@var{1}
338These options control how the assembler should encode w-ignored (WIG)
339EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
340EVEX instructions with evex.w = 0, which is the default.
341@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
342evex.w = 1.
343
1efbbeb4
L
344@cindex @samp{-mmnemonic=} option, i386
345@cindex @samp{-mmnemonic=} option, x86-64
346@item -mmnemonic=@var{att}
1f9bb1ca 347@itemx -mmnemonic=@var{intel}
34bca508 348This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
349The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
350take precedent.
351
352@cindex @samp{-msyntax=} option, i386
353@cindex @samp{-msyntax=} option, x86-64
354@item -msyntax=@var{att}
1f9bb1ca 355@itemx -msyntax=@var{intel}
34bca508 356This option specifies instruction syntax when processing instructions.
1efbbeb4
L
357The @code{.att_syntax} and @code{.intel_syntax} directives will
358take precedent.
359
360@cindex @samp{-mnaked-reg} option, i386
361@cindex @samp{-mnaked-reg} option, x86-64
362@item -mnaked-reg
33eaf5de 363This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 364The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 365
7e8b059b
L
366@cindex @samp{-madd-bnd-prefix} option, i386
367@cindex @samp{-madd-bnd-prefix} option, x86-64
368@item -madd-bnd-prefix
369This option forces the assembler to add BND prefix to all branches, even
370if such prefix was not explicitly specified in the source code.
371
8dcea932
L
372@cindex @samp{-mshared} option, i386
373@cindex @samp{-mshared} option, x86-64
374@item -mno-shared
375On ELF target, the assembler normally optimizes out non-PLT relocations
376against defined non-weak global branch targets with default visibility.
377The @samp{-mshared} option tells the assembler to generate code which
378may go into a shared library where all non-weak global branch targets
379with default visibility can be preempted. The resulting code is
380slightly bigger. This option only affects the handling of branch
381instructions.
382
167ad85b
TG
383@cindex @samp{-mbig-obj} option, x86-64
384@item -mbig-obj
385On x86-64 PE/COFF target this option forces the use of big object file
386format, which allows more than 32768 sections.
387
d022bddd
IT
388@cindex @samp{-momit-lock-prefix=} option, i386
389@cindex @samp{-momit-lock-prefix=} option, x86-64
390@item -momit-lock-prefix=@var{no}
391@itemx -momit-lock-prefix=@var{yes}
392These options control how the assembler should encode lock prefix.
393This option is intended as a workaround for processors, that fail on
394lock prefix. This option can only be safely used with single-core,
395single-thread computers
396@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
397@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
398which is the default.
399
e4e00185
AS
400@cindex @samp{-mfence-as-lock-add=} option, i386
401@cindex @samp{-mfence-as-lock-add=} option, x86-64
402@item -mfence-as-lock-add=@var{no}
403@itemx -mfence-as-lock-add=@var{yes}
404These options control how the assembler should encode lfence, mfence and
405sfence.
406@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
407sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
408@samp{lock addl $0x0, (%esp)} in 32-bit mode.
409@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
410sfence as usual, which is the default.
411
0cb4071e
L
412@cindex @samp{-mrelax-relocations=} option, i386
413@cindex @samp{-mrelax-relocations=} option, x86-64
414@item -mrelax-relocations=@var{no}
415@itemx -mrelax-relocations=@var{yes}
416These options control whether the assembler should generate relax
417relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
418R_X86_64_REX_GOTPCRELX, in 64-bit mode.
419@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
420@option{-mrelax-relocations=@var{no}} will not generate relax
421relocations. The default can be controlled by a configure option
422@option{--enable-x86-relax-relocations}.
423
b4a3a7b4
L
424@cindex @samp{-mx86-used-note=} option, i386
425@cindex @samp{-mx86-used-note=} option, x86-64
426@item -mx86-used-note=@var{no}
427@itemx -mx86-used-note=@var{yes}
428These options control whether the assembler should generate
429GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
430GNU property notes. The default can be controlled by the
431@option{--enable-x86-used-note} configure option.
432
d3d3c6db
IT
433@cindex @samp{-mevexrcig=} option, i386
434@cindex @samp{-mevexrcig=} option, x86-64
435@item -mevexrcig=@var{rne}
436@itemx -mevexrcig=@var{rd}
437@itemx -mevexrcig=@var{ru}
438@itemx -mevexrcig=@var{rz}
439These options control how the assembler should encode SAE-only
440EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
441of EVEX instruction with 00, which is the default.
442@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
443and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
444with 01, 10 and 11 RC bits, respectively.
445
5db04b09
L
446@cindex @samp{-mamd64} option, x86-64
447@cindex @samp{-mintel64} option, x86-64
448@item -mamd64
449@itemx -mintel64
450This option specifies that the assembler should accept only AMD64 or
451Intel64 ISA in 64-bit mode. The default is to accept both.
452
b6f8c7c4
L
453@cindex @samp{-O0} option, i386
454@cindex @samp{-O0} option, x86-64
455@cindex @samp{-O} option, i386
456@cindex @samp{-O} option, x86-64
457@cindex @samp{-O1} option, i386
458@cindex @samp{-O1} option, x86-64
459@cindex @samp{-O2} option, i386
460@cindex @samp{-O2} option, x86-64
461@cindex @samp{-Os} option, i386
462@cindex @samp{-Os} option, x86-64
463@item -O0 | -O | -O1 | -O2 | -Os
464Optimize instruction encoding with smaller instruction size. @samp{-O}
465and @samp{-O1} encode 64-bit register load instructions with 64-bit
466immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 467immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
468register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
469register clearing instructions with 128-bit VEX vector register
470clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 471register load/store instructions with VEX vector register load/store
a0a1771e
JB
472instructions, and encode 128-bit/256-bit EVEX packed integer logical
473instructions with 128-bit/256-bit VEX packed integer logical.
474
475@samp{-O2} includes @samp{-O1} optimization plus encodes
476256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
477EVEX vector register clearing instructions. In 64-bit mode VEX encoded
478instructions with commutative source operands will also have their
479source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
480instead of the 3-byte one. Certain forms of AND as well as OR with the
481same (register) operand specified twice will also be changed to TEST.
a0a1771e 482
b6f8c7c4
L
483@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
484and 64-bit register tests with immediate as 8-bit register test with
485immediate. @samp{-O0} turns off this optimization.
486
55b62671 487@end table
731caf76 488@c man end
e413e4e9 489
a6c24e68
NC
490@node i386-Directives
491@section x86 specific Directives
492
493@cindex machine directives, x86
494@cindex x86 machine directives
495@table @code
496
497@cindex @code{lcomm} directive, COFF
498@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
499Reserve @var{length} (an absolute expression) bytes for a local common
500denoted by @var{symbol}. The section and value of @var{symbol} are
501those of the new local common. The addresses are allocated in the bss
704209c0
NC
502section, so that at run-time the bytes start off zeroed. Since
503@var{symbol} is not declared global, it is normally not visible to
504@code{@value{LD}}. The optional third parameter, @var{alignment},
505specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
506
507This directive is only available for COFF based x86 targets.
508
102e9361
NC
509@cindex @code{largecomm} directive, ELF
510@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
511This directive behaves in the same way as the @code{comm} directive
512except that the data is placed into the @var{.lbss} section instead of
513the @var{.bss} section @ref{Comm}.
514
515The directive is intended to be used for data which requires a large
516amount of space, and it is only available for ELF based x86_64
517targets.
518
f2f51cd5
NC
519@cindex @code{value} directive
520@item .value @var{expression} [, @var{expression}]
521This directive behaves in the same way as the @code{.short} directive,
522taking a series of comma separated expressions and storing them as
523two-byte wide values into the current section.
524
a6c24e68 525@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
526
527@end table
528
252b5132 529@node i386-Syntax
7c31ae13
NC
530@section i386 Syntactical Considerations
531@menu
532* i386-Variations:: AT&T Syntax versus Intel Syntax
533* i386-Chars:: Special Characters
534@end menu
535
536@node i386-Variations
537@subsection AT&T Syntax versus Intel Syntax
252b5132 538
e413e4e9
AM
539@cindex i386 intel_syntax pseudo op
540@cindex intel_syntax pseudo op, i386
541@cindex i386 att_syntax pseudo op
542@cindex att_syntax pseudo op, i386
252b5132
RH
543@cindex i386 syntax compatibility
544@cindex syntax compatibility, i386
55b62671
AJ
545@cindex x86-64 intel_syntax pseudo op
546@cindex intel_syntax pseudo op, x86-64
547@cindex x86-64 att_syntax pseudo op
548@cindex att_syntax pseudo op, x86-64
549@cindex x86-64 syntax compatibility
550@cindex syntax compatibility, x86-64
e413e4e9
AM
551
552@code{@value{AS}} now supports assembly using Intel assembler syntax.
553@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
554back to the usual AT&T mode for compatibility with the output of
555@code{@value{GCC}}. Either of these directives may have an optional
556argument, @code{prefix}, or @code{noprefix} specifying whether registers
557require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
558different from Intel syntax. We mention these differences because
559almost all 80386 documents use Intel syntax. Notable differences
560between the two syntaxes are:
561
562@cindex immediate operands, i386
563@cindex i386 immediate operands
564@cindex register operands, i386
565@cindex i386 register operands
566@cindex jump/call operands, i386
567@cindex i386 jump/call operands
568@cindex operand delimiters, i386
55b62671
AJ
569
570@cindex immediate operands, x86-64
571@cindex x86-64 immediate operands
572@cindex register operands, x86-64
573@cindex x86-64 register operands
574@cindex jump/call operands, x86-64
575@cindex x86-64 jump/call operands
576@cindex operand delimiters, x86-64
252b5132
RH
577@itemize @bullet
578@item
579AT&T immediate operands are preceded by @samp{$}; Intel immediate
580operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
581AT&T register operands are preceded by @samp{%}; Intel register operands
582are undelimited. AT&T absolute (as opposed to PC relative) jump/call
583operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
584
585@cindex i386 source, destination operands
586@cindex source, destination operands; i386
55b62671
AJ
587@cindex x86-64 source, destination operands
588@cindex source, destination operands; x86-64
252b5132
RH
589@item
590AT&T and Intel syntax use the opposite order for source and destination
591operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
592@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
593previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
594instructions with 2 immediate operands, such as the @samp{enter}
595instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
596
597@cindex mnemonic suffixes, i386
598@cindex sizes operands, i386
599@cindex i386 size suffixes
55b62671
AJ
600@cindex mnemonic suffixes, x86-64
601@cindex sizes operands, x86-64
602@cindex x86-64 size suffixes
252b5132
RH
603@item
604In AT&T syntax the size of memory operands is determined from the last
605character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 606@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
607(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
608of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
609(256-bit vector) and zmm (512-bit vector) memory references, only when there's
610no other way to disambiguate an instruction. Intel syntax accomplishes this by
611prefixing memory operands (@emph{not} the instruction mnemonics) with
612@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
613@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
614syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
615syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
616@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 617
4b06377f
L
618In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
619instruction with the 64-bit displacement or immediate operand.
620
252b5132
RH
621@cindex return instructions, i386
622@cindex i386 jump, call, return
55b62671
AJ
623@cindex return instructions, x86-64
624@cindex x86-64 jump, call, return
252b5132
RH
625@item
626Immediate form long jumps and calls are
627@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
628Intel syntax is
629@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
630instruction
631is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
632@samp{ret far @var{stack-adjust}}.
633
634@cindex sections, i386
635@cindex i386 sections
55b62671
AJ
636@cindex sections, x86-64
637@cindex x86-64 sections
252b5132
RH
638@item
639The AT&T assembler does not provide support for multiple section
640programs. Unix style systems expect all programs to be single sections.
641@end itemize
642
7c31ae13
NC
643@node i386-Chars
644@subsection Special Characters
645
646@cindex line comment character, i386
647@cindex i386 line comment character
648The presence of a @samp{#} appearing anywhere on a line indicates the
649start of a comment that extends to the end of that line.
650
651If a @samp{#} appears as the first character of a line then the whole
652line is treated as a comment, but in this case the line can also be a
653logical line number directive (@pxref{Comments}) or a preprocessor
654control command (@pxref{Preprocessing}).
655
a05a5b64 656If the @option{--divide} command-line option has not been specified
7c31ae13
NC
657then the @samp{/} character appearing anywhere on a line also
658introduces a line comment.
659
660@cindex line separator, i386
661@cindex statement separator, i386
662@cindex i386 line separator
663The @samp{;} character can be used to separate statements on the same
664line.
665
252b5132 666@node i386-Mnemonics
d3b47e2b
L
667@section i386-Mnemonics
668@subsection Instruction Naming
252b5132
RH
669
670@cindex i386 instruction naming
671@cindex instruction naming, i386
55b62671
AJ
672@cindex x86-64 instruction naming
673@cindex instruction naming, x86-64
674
252b5132 675Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
676specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
677and @samp{q} specify byte, word, long and quadruple word operands. If
678no suffix is specified by an instruction then @code{@value{AS}} tries to
679fill in the missing suffix based on the destination register operand
680(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
681to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
682@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
683assembler which assumes that a missing mnemonic suffix implies long
684operand size. (This incompatibility does not affect compiler output
685since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
686
687Almost all instructions have the same names in AT&T and Intel format.
688There are a few exceptions. The sign extend and zero extend
689instructions need two sizes to specify them. They need a size to
690sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
691is accomplished by using two instruction mnemonic suffixes in AT&T
692syntax. Base names for sign extend and zero extend are
693@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
694and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
695are tacked on to this base name, the @emph{from} suffix before the
696@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
697``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
698thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
699@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
700@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
701quadruple word).
252b5132 702
b6169b20
L
703@cindex encoding options, i386
704@cindex encoding options, x86-64
705
86fa6981
L
706Different encoding options can be specified via pseudo prefixes:
707
708@itemize @bullet
709@item
710@samp{@{disp8@}} -- prefer 8-bit displacement.
711
712@item
713@samp{@{disp32@}} -- prefer 32-bit displacement.
714
715@item
716@samp{@{load@}} -- prefer load-form instruction.
717
718@item
719@samp{@{store@}} -- prefer store-form instruction.
720
721@item
722@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
723
724@item
725@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
726
727@item
728@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
729
730@item
731@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
732instructions (x86-64 only). Note that this differs from the @samp{rex}
733prefix which generates REX prefix unconditionally.
b6f8c7c4
L
734
735@item
736@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 737@end itemize
b6169b20 738
252b5132
RH
739@cindex conversion instructions, i386
740@cindex i386 conversion instructions
55b62671
AJ
741@cindex conversion instructions, x86-64
742@cindex x86-64 conversion instructions
252b5132
RH
743The Intel-syntax conversion instructions
744
745@itemize @bullet
746@item
747@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
748
749@item
750@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
751
752@item
753@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
754
755@item
756@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
757
758@item
759@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
760(x86-64 only),
761
762@item
d5f0cf92 763@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 764@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
765@end itemize
766
767@noindent
55b62671
AJ
768are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
769@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
770instructions.
252b5132
RH
771
772@cindex jump instructions, i386
773@cindex call instructions, i386
55b62671
AJ
774@cindex jump instructions, x86-64
775@cindex call instructions, x86-64
252b5132
RH
776Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
777AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
778convention.
779
d3b47e2b 780@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
781
782@cindex i386 mnemonic compatibility
783@cindex mnemonic compatibility, i386
784
785@code{@value{AS}} supports assembly using Intel mnemonic.
786@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
787@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
788syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
789Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
790@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
791@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
792assembler with different mnemonics from those in Intel IA32 specification.
793@code{@value{GCC}} generates those instructions with AT&T mnemonic.
794
252b5132
RH
795@node i386-Regs
796@section Register Naming
797
798@cindex i386 registers
799@cindex registers, i386
55b62671
AJ
800@cindex x86-64 registers
801@cindex registers, x86-64
252b5132
RH
802Register operands are always prefixed with @samp{%}. The 80386 registers
803consist of
804
805@itemize @bullet
806@item
807the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
808@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
809frame pointer), and @samp{%esp} (the stack pointer).
810
811@item
812the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
813@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
814
815@item
816the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
817@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
818are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
819@samp{%cx}, and @samp{%dx})
820
821@item
822the 6 section registers @samp{%cs} (code section), @samp{%ds}
823(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
824and @samp{%gs}.
825
826@item
4bde3cdd
UD
827the 5 processor control registers @samp{%cr0}, @samp{%cr2},
828@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
829
830@item
831the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
832@samp{%db3}, @samp{%db6}, and @samp{%db7}.
833
834@item
835the 2 test registers @samp{%tr6} and @samp{%tr7}.
836
837@item
838the 8 floating point register stack @samp{%st} or equivalently
839@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
840@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
841These registers are overloaded by 8 MMX registers @samp{%mm0},
842@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
843@samp{%mm6} and @samp{%mm7}.
844
845@item
4bde3cdd 846the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
847@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
848@end itemize
849
850The AMD x86-64 architecture extends the register set by:
851
852@itemize @bullet
853@item
854enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
855accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
856@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
857pointer)
858
859@item
860the 8 extended registers @samp{%r8}--@samp{%r15}.
861
862@item
4bde3cdd 863the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
864
865@item
4bde3cdd 866the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
867
868@item
4bde3cdd 869the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
870
871@item
872the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
873
874@item
875the 8 debug registers: @samp{%db8}--@samp{%db15}.
876
877@item
4bde3cdd
UD
878the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
879@end itemize
880
881With the AVX extensions more registers were made available:
882
883@itemize @bullet
884
885@item
886the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
887available in 32-bit mode). The bottom 128 bits are overlaid with the
888@samp{xmm0}--@samp{xmm15} registers.
889
890@end itemize
891
892The AVX2 extensions made in 64-bit mode more registers available:
893
894@itemize @bullet
895
896@item
897the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
898registers @samp{%ymm16}--@samp{%ymm31}.
899
900@end itemize
901
902The AVX512 extensions added the following registers:
903
904@itemize @bullet
905
906@item
907the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
908available in 32-bit mode). The bottom 128 bits are overlaid with the
909@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
910overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
911
912@item
913the 8 mask registers @samp{%k0}--@samp{%k7}.
914
252b5132
RH
915@end itemize
916
917@node i386-Prefixes
918@section Instruction Prefixes
919
920@cindex i386 instruction prefixes
921@cindex instruction prefixes, i386
922@cindex prefixes, i386
923Instruction prefixes are used to modify the following instruction. They
924are used to repeat string instructions, to provide section overrides, to
925perform bus lock operations, and to change operand and address sizes.
926(Most instructions that normally operate on 32-bit operands will use
92716-bit operands if the instruction has an ``operand size'' prefix.)
928Instruction prefixes are best written on the same line as the instruction
929they act upon. For example, the @samp{scas} (scan string) instruction is
930repeated with:
931
932@smallexample
933 repne scas %es:(%edi),%al
934@end smallexample
935
936You may also place prefixes on the lines immediately preceding the
937instruction, but this circumvents checks that @code{@value{AS}} does
938with prefixes, and will not work with all prefixes.
939
940Here is a list of instruction prefixes:
941
942@cindex section override prefixes, i386
943@itemize @bullet
944@item
945Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
946@samp{fs}, @samp{gs}. These are automatically added by specifying
947using the @var{section}:@var{memory-operand} form for memory references.
948
949@cindex size prefixes, i386
950@item
951Operand/Address size prefixes @samp{data16} and @samp{addr16}
952change 32-bit operands/addresses into 16-bit operands/addresses,
953while @samp{data32} and @samp{addr32} change 16-bit ones (in a
954@code{.code16} section) into 32-bit operands/addresses. These prefixes
955@emph{must} appear on the same line of code as the instruction they
956modify. For example, in a 16-bit @code{.code16} section, you might
957write:
958
959@smallexample
960 addr32 jmpl *(%ebx)
961@end smallexample
962
963@cindex bus lock prefixes, i386
964@cindex inhibiting interrupts, i386
965@item
966The bus lock prefix @samp{lock} inhibits interrupts during execution of
967the instruction it precedes. (This is only valid with certain
968instructions; see a 80386 manual for details).
969
970@cindex coprocessor wait, i386
971@item
972The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
973complete the current instruction. This should never be needed for the
97480386/80387 combination.
975
976@cindex repeat prefixes, i386
977@item
978The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
979to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
980times if the current address size is 16-bits).
55b62671
AJ
981@cindex REX prefixes, i386
982@item
983The @samp{rex} family of prefixes is used by x86-64 to encode
984extensions to i386 instruction set. The @samp{rex} prefix has four
985bits --- an operand size overwrite (@code{64}) used to change operand size
986from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
987register set.
988
989You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
990instruction emits @samp{rex} prefix with all the bits set. By omitting
991the @code{64}, @code{x}, @code{y} or @code{z} you may write other
992prefixes as well. Normally, there is no need to write the prefixes
993explicitly, since gas will automatically generate them based on the
994instruction operands.
252b5132
RH
995@end itemize
996
997@node i386-Memory
998@section Memory References
999
1000@cindex i386 memory references
1001@cindex memory references, i386
55b62671
AJ
1002@cindex x86-64 memory references
1003@cindex memory references, x86-64
252b5132
RH
1004An Intel syntax indirect memory reference of the form
1005
1006@smallexample
1007@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1008@end smallexample
1009
1010@noindent
1011is translated into the AT&T syntax
1012
1013@smallexample
1014@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1015@end smallexample
1016
1017@noindent
1018where @var{base} and @var{index} are the optional 32-bit base and
1019index registers, @var{disp} is the optional displacement, and
1020@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1021to calculate the address of the operand. If no @var{scale} is
1022specified, @var{scale} is taken to be 1. @var{section} specifies the
1023optional section register for the memory operand, and may override the
1024default section register (see a 80386 manual for section register
1025defaults). Note that section overrides in AT&T syntax @emph{must}
1026be preceded by a @samp{%}. If you specify a section override which
1027coincides with the default section register, @code{@value{AS}} does @emph{not}
1028output any section register override prefixes to assemble the given
1029instruction. Thus, section overrides can be specified to emphasize which
1030section register is used for a given memory operand.
1031
1032Here are some examples of Intel and AT&T style memory references:
1033
1034@table @asis
1035@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1036@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1037missing, and the default section is used (@samp{%ss} for addressing with
1038@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1039
1040@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1041@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1042@samp{foo}. All other fields are missing. The section register here
1043defaults to @samp{%ds}.
1044
1045@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1046This uses the value pointed to by @samp{foo} as a memory operand.
1047Note that @var{base} and @var{index} are both missing, but there is only
1048@emph{one} @samp{,}. This is a syntactic exception.
1049
1050@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1051This selects the contents of the variable @samp{foo} with section
1052register @var{section} being @samp{%gs}.
1053@end table
1054
1055Absolute (as opposed to PC relative) call and jump operands must be
1056prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1057always chooses PC relative addressing for jump/call labels.
1058
1059Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1060@emph{must} specify its size (byte, word, long, or quadruple) with an
1061instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1062respectively).
1063
1064The x86-64 architecture adds an RIP (instruction pointer relative)
1065addressing. This addressing mode is specified by using @samp{rip} as a
1066base register. Only constant offsets are valid. For example:
1067
1068@table @asis
1069@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1070Points to the address 1234 bytes past the end of the current
1071instruction.
1072
1073@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1074Points to the @code{symbol} in RIP relative way, this is shorter than
1075the default absolute addressing.
1076@end table
1077
1078Other addressing modes remain unchanged in x86-64 architecture, except
1079registers used are 64-bit instead of 32-bit.
252b5132 1080
fddf5b5b 1081@node i386-Jumps
252b5132
RH
1082@section Handling of Jump Instructions
1083
1084@cindex jump optimization, i386
1085@cindex i386 jump optimization
55b62671
AJ
1086@cindex jump optimization, x86-64
1087@cindex x86-64 jump optimization
252b5132
RH
1088Jump instructions are always optimized to use the smallest possible
1089displacements. This is accomplished by using byte (8-bit) displacement
1090jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1091is insufficient a long displacement is used. We do not support
252b5132
RH
1092word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1093instruction with the @samp{data16} instruction prefix), since the 80386
1094insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1095is added. (See also @pxref{i386-Arch})
252b5132
RH
1096
1097Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1098@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1099displacements, so that if you use these instructions (@code{@value{GCC}} does
1100not use them) you may get an error message (and incorrect code). The AT&T
110180386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1102to
1103
1104@smallexample
1105 jcxz cx_zero
1106 jmp cx_nonzero
1107cx_zero: jmp foo
1108cx_nonzero:
1109@end smallexample
1110
1111@node i386-Float
1112@section Floating Point
1113
1114@cindex i386 floating point
1115@cindex floating point, i386
55b62671
AJ
1116@cindex x86-64 floating point
1117@cindex floating point, x86-64
252b5132
RH
1118All 80387 floating point types except packed BCD are supported.
1119(BCD support may be added without much difficulty). These data
1120types are 16-, 32-, and 64- bit integers, and single (32-bit),
1121double (64-bit), and extended (80-bit) precision floating point.
1122Each supported type has an instruction mnemonic suffix and a constructor
1123associated with it. Instruction mnemonic suffixes specify the operand's
1124data type. Constructors build these data types into memory.
1125
1126@cindex @code{float} directive, i386
1127@cindex @code{single} directive, i386
1128@cindex @code{double} directive, i386
1129@cindex @code{tfloat} directive, i386
55b62671
AJ
1130@cindex @code{float} directive, x86-64
1131@cindex @code{single} directive, x86-64
1132@cindex @code{double} directive, x86-64
1133@cindex @code{tfloat} directive, x86-64
252b5132
RH
1134@itemize @bullet
1135@item
1136Floating point constructors are @samp{.float} or @samp{.single},
1137@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1138These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1139and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1140only supports this format via the @samp{fldt} (load 80-bit real to stack
1141top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1142
1143@cindex @code{word} directive, i386
1144@cindex @code{long} directive, i386
1145@cindex @code{int} directive, i386
1146@cindex @code{quad} directive, i386
55b62671
AJ
1147@cindex @code{word} directive, x86-64
1148@cindex @code{long} directive, x86-64
1149@cindex @code{int} directive, x86-64
1150@cindex @code{quad} directive, x86-64
252b5132
RH
1151@item
1152Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1153@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1154corresponding instruction mnemonic suffixes are @samp{s} (single),
1155@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1156the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1157quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1158stack) instructions.
1159@end itemize
1160
1161Register to register operations should not use instruction mnemonic suffixes.
1162@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1163wrote @samp{fst %st, %st(1)}, since all register to register operations
1164use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1165which converts @samp{%st} from 80-bit to 64-bit floating point format,
1166then stores the result in the 4 byte location @samp{mem})
1167
1168@node i386-SIMD
1169@section Intel's MMX and AMD's 3DNow! SIMD Operations
1170
1171@cindex MMX, i386
1172@cindex 3DNow!, i386
1173@cindex SIMD, i386
55b62671
AJ
1174@cindex MMX, x86-64
1175@cindex 3DNow!, x86-64
1176@cindex SIMD, x86-64
252b5132
RH
1177
1178@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1179instructions for integer data), available on Intel's Pentium MMX
1180processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1181Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1182instruction set (SIMD instructions for 32-bit floating point data)
1183available on AMD's K6-2 processor and possibly others in the future.
1184
1185Currently, @code{@value{AS}} does not support Intel's floating point
1186SIMD, Katmai (KNI).
1187
1188The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1189@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
119016-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1191floating point values. The MMX registers cannot be used at the same time
1192as the floating point stack.
1193
1194See Intel and AMD documentation, keeping in mind that the operand order in
1195instructions is reversed from the Intel syntax.
1196
f88c9eb0
SP
1197@node i386-LWP
1198@section AMD's Lightweight Profiling Instructions
1199
1200@cindex LWP, i386
1201@cindex LWP, x86-64
1202
1203@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1204instruction set, available on AMD's Family 15h (Orochi) processors.
1205
1206LWP enables applications to collect and manage performance data, and
1207react to performance events. The collection of performance data
1208requires no context switches. LWP runs in the context of a thread and
1209so several counters can be used independently across multiple threads.
1210LWP can be used in both 64-bit and legacy 32-bit modes.
1211
1212For detailed information on the LWP instruction set, see the
1213@cite{AMD Lightweight Profiling Specification} available at
1214@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1215
87973e9f
QN
1216@node i386-BMI
1217@section Bit Manipulation Instructions
1218
1219@cindex BMI, i386
1220@cindex BMI, x86-64
1221
1222@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1223
1224BMI instructions provide several instructions implementing individual
1225bit manipulation operations such as isolation, masking, setting, or
34bca508 1226resetting.
87973e9f
QN
1227
1228@c Need to add a specification citation here when available.
1229
2a2a0f38
QN
1230@node i386-TBM
1231@section AMD's Trailing Bit Manipulation Instructions
1232
1233@cindex TBM, i386
1234@cindex TBM, x86-64
1235
1236@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1237instruction set, available on AMD's BDVER2 processors (Trinity and
1238Viperfish).
1239
1240TBM instructions provide instructions implementing individual bit
1241manipulation operations such as isolating, masking, setting, resetting,
1242complementing, and operations on trailing zeros and ones.
1243
1244@c Need to add a specification citation here when available.
87973e9f 1245
252b5132
RH
1246@node i386-16bit
1247@section Writing 16-bit Code
1248
1249@cindex i386 16-bit code
1250@cindex 16-bit code, i386
1251@cindex real-mode code, i386
eecb386c 1252@cindex @code{code16gcc} directive, i386
252b5132
RH
1253@cindex @code{code16} directive, i386
1254@cindex @code{code32} directive, i386
55b62671
AJ
1255@cindex @code{code64} directive, i386
1256@cindex @code{code64} directive, x86-64
1257While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1258or 64-bit x86-64 code depending on the default configuration,
252b5132 1259it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1260mode code segments. To do this, put a @samp{.code16} or
1261@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1262be run in 16-bit mode. You can switch @code{@value{AS}} to writing
126332-bit code with the @samp{.code32} directive or 64-bit code with the
1264@samp{.code64} directive.
eecb386c
AM
1265
1266@samp{.code16gcc} provides experimental support for generating 16-bit
1267code from gcc, and differs from @samp{.code16} in that @samp{call},
1268@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1269@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1270default to 32-bit size. This is so that the stack pointer is
1271manipulated in the same way over function calls, allowing access to
1272function parameters at the same stack offsets as in 32-bit mode.
1273@samp{.code16gcc} also automatically adds address size prefixes where
1274necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1275
1276The code which @code{@value{AS}} generates in 16-bit mode will not
1277necessarily run on a 16-bit pre-80386 processor. To write code that
1278runs on such a processor, you must refrain from using @emph{any} 32-bit
1279constructs which require @code{@value{AS}} to output address or operand
1280size prefixes.
1281
1282Note that writing 16-bit code instructions by explicitly specifying a
1283prefix or an instruction mnemonic suffix within a 32-bit code section
1284generates different machine instructions than those generated for a
128516-bit code segment. In a 32-bit code section, the following code
1286generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1287value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1288
1289@smallexample
1290 pushw $4
1291@end smallexample
1292
1293The same code in a 16-bit code section would generate the machine
b45619c0 1294opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1295is correct since the processor default operand size is assumed to be 16
1296bits in a 16-bit code section.
1297
e413e4e9
AM
1298@node i386-Arch
1299@section Specifying CPU Architecture
1300
1301@cindex arch directive, i386
1302@cindex i386 arch directive
55b62671
AJ
1303@cindex arch directive, x86-64
1304@cindex x86-64 arch directive
e413e4e9
AM
1305
1306@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1307(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1308directive enables a warning when gas detects an instruction that is not
1309supported on the CPU specified. The choices for @var{cpu_type} are:
1310
1311@multitable @columnfractions .20 .20 .20 .20
1312@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1313@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1314@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1315@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1316@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1317@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1318@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1319@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1320@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1321@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1322@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1323@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1324@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1325@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1326@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1327@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1328@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1329@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1330@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1331@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1332@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1333@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1334@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1335@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1336@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
d777820b 1337@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1338@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1339@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
5d79adc4 1340@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1ceab344 1341@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1342@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1343@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
d777820b 1344@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1345@end multitable
1346
fddf5b5b
AM
1347Apart from the warning, there are only two other effects on
1348@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1349@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1350will automatically use a two byte opcode sequence. The larger three
1351byte opcode sequence is used on the 486 (and when no architecture is
1352specified) because it executes faster on the 486. Note that you can
1353explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1354Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1355@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1356conditional jumps will be promoted when necessary to a two instruction
1357sequence consisting of a conditional jump of the opposite sense around
1358an unconditional jump to the target.
1359
5c6af06e
JB
1360Following the CPU architecture (but not a sub-architecture, which are those
1361starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1362control automatic promotion of conditional jumps. @samp{jumps} is the
1363default, and enables jump promotion; All external jumps will be of the long
1364variety, and file-local jumps will be promoted as necessary.
1365(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1366byte offset jumps, and warns about file-local conditional jumps that
1367@code{@value{AS}} promotes.
fddf5b5b
AM
1368Unconditional jumps are treated as for @samp{jumps}.
1369
1370For example
1371
1372@smallexample
1373 .arch i8086,nojumps
1374@end smallexample
e413e4e9 1375
5c9352f3
AM
1376@node i386-Bugs
1377@section AT&T Syntax bugs
1378
1379The UnixWare assembler, and probably other AT&T derived ix86 Unix
1380assemblers, generate floating point instructions with reversed source
1381and destination registers in certain cases. Unfortunately, gcc and
1382possibly many other programs use this reversed syntax, so we're stuck
1383with it.
1384
1385For example
1386
1387@smallexample
1388 fsub %st,%st(3)
1389@end smallexample
1390@noindent
1391results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1392than the expected @samp{%st(3) - %st}. This happens with all the
1393non-commutative arithmetic floating point operations with two register
1394operands where the source register is @samp{%st} and the destination
1395register is @samp{%st(i)}.
1396
252b5132
RH
1397@node i386-Notes
1398@section Notes
1399
1400@cindex i386 @code{mul}, @code{imul} instructions
1401@cindex @code{mul} instruction, i386
1402@cindex @code{imul} instruction, i386
55b62671
AJ
1403@cindex @code{mul} instruction, x86-64
1404@cindex @code{imul} instruction, x86-64
252b5132 1405There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1406instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1407multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1408for @samp{imul}) can be output only in the one operand form. Thus,
1409@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1410the expanding multiply would clobber the @samp{%edx} register, and this
1411would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
141264-bit product in @samp{%edx:%eax}.
1413
1414We have added a two operand form of @samp{imul} when the first operand
1415is an immediate mode expression and the second operand is a register.
1416This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1417example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1418$69, %eax, %eax}.
1419
This page took 0.871121 seconds and 4 git commands to generate.