gas/
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037 1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
7c31ae13 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
731caf76
L
6@c man end
7
252b5132
RH
8@ifset GENERIC
9@page
10@node i386-Dependent
11@chapter 80386 Dependent Features
12@end ifset
13@ifclear GENERIC
14@node Machine Dependencies
15@chapter 80386 Dependent Features
16@end ifclear
17
18@cindex i386 support
b6169b20 19@cindex i80386 support
55b62671
AJ
20@cindex x86-64 support
21
22The i386 version @code{@value{AS}} supports both the original Intel 386
23architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24extending the Intel architecture to 64-bits.
25
252b5132
RH
26@menu
27* i386-Options:: Options
a6c24e68 28* i386-Directives:: X86 specific directives
7c31ae13 29* i386-Syntax:: Syntactical considerations
252b5132
RH
30* i386-Mnemonics:: Instruction Naming
31* i386-Regs:: Register Naming
32* i386-Prefixes:: Instruction Prefixes
33* i386-Memory:: Memory References
fddf5b5b 34* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
35* i386-Float:: Floating Point
36* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 37* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 38* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 39* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 40* i386-16bit:: Writing 16-bit Code
e413e4e9 41* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
42* i386-Bugs:: AT&T Syntax bugs
43* i386-Notes:: Notes
44@end menu
45
46@node i386-Options
47@section Options
48
55b62671
AJ
49@cindex options for i386
50@cindex options for x86-64
51@cindex i386 options
34bca508 52@cindex x86-64 options
55b62671
AJ
53
54The i386 version of @code{@value{AS}} has a few machine
55dependent options:
56
731caf76
L
57@c man begin OPTIONS
58@table @gcctabopt
55b62671
AJ
59@cindex @samp{--32} option, i386
60@cindex @samp{--32} option, x86-64
570561f7
L
61@cindex @samp{--x32} option, i386
62@cindex @samp{--x32} option, x86-64
55b62671
AJ
63@cindex @samp{--64} option, i386
64@cindex @samp{--64} option, x86-64
570561f7 65@item --32 | --x32 | --64
35cc6a0b 66Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 67implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
68imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69respectively.
55b62671
AJ
70
71These options are only available with the ELF object file format, and
72require that the necessary BFD support has been included (on a 32-bit
73platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74usage and use x86-64 as target platform).
12b55ccc
L
75
76@item -n
77By default, x86 GAS replaces multiple nop instructions used for
78alignment within code sections with multi-byte nop instructions such
79as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
34bca508 95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
7b458c12
L
124@code{btver1},
125@code{btver2},
9103f4f4
L
126@code{generic32} and
127@code{generic64}.
128
34bca508 129In addition to the basic instruction set, the assembler can be told to
6305a203
L
130accept various extension mnemonics. For example,
131@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
132@var{vmx}. The following extensions are currently supported:
309d3373
JB
133@code{8087},
134@code{287},
135@code{387},
136@code{no87},
6305a203 137@code{mmx},
309d3373 138@code{nommx},
6305a203
L
139@code{sse},
140@code{sse2},
141@code{sse3},
142@code{ssse3},
143@code{sse4.1},
144@code{sse4.2},
145@code{sse4},
309d3373 146@code{nosse},
c0f3af97 147@code{avx},
6c30d220 148@code{avx2},
e2e1fcde
L
149@code{adx},
150@code{rdseed},
151@code{prfchw},
5c111e37 152@code{smap},
309d3373 153@code{noavx},
6305a203 154@code{vmx},
8729a6f6 155@code{vmfunc},
6305a203 156@code{smx},
f03fe4c1 157@code{xsave},
c7b8aa3a 158@code{xsaveopt},
c0f3af97 159@code{aes},
594ab6a3 160@code{pclmul},
c7b8aa3a
L
161@code{fsgsbase},
162@code{rdrnd},
163@code{f16c},
6c30d220 164@code{bmi2},
c0f3af97 165@code{fma},
f1f8f695
L
166@code{movbe},
167@code{ept},
6c30d220 168@code{lzcnt},
42164a71
L
169@code{hle},
170@code{rtm},
6c30d220 171@code{invpcid},
bd5295b2 172@code{clflush},
f88c9eb0 173@code{lwp},
5dd85c99
SP
174@code{fma4},
175@code{xop},
60aa667e 176@code{cx16},
bd5295b2 177@code{syscall},
1b7f3fb0 178@code{rdtscp},
6305a203
L
179@code{3dnow},
180@code{3dnowa},
181@code{sse4a},
182@code{sse5},
183@code{svme},
184@code{abm} and
185@code{padlock}.
309d3373
JB
186Note that rather than extending a basic instruction set, the extension
187mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
188
189When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
190@code{.arch} directive will take precedent.
191
192@cindex @samp{-mtune=} option, i386
193@cindex @samp{-mtune=} option, x86-64
194@item -mtune=@var{CPU}
195This option specifies a processor to optimize for. When used in
196conjunction with the @option{-march} option, only instructions
197of the processor specified by the @option{-march} option will be
198generated.
199
6305a203
L
200Valid @var{CPU} values are identical to the processor list of
201@option{-march=@var{CPU}}.
9103f4f4 202
c0f3af97
L
203@cindex @samp{-msse2avx} option, i386
204@cindex @samp{-msse2avx} option, x86-64
205@item -msse2avx
206This option specifies that the assembler should encode SSE instructions
207with VEX prefix.
208
daf50ae7
L
209@cindex @samp{-msse-check=} option, i386
210@cindex @samp{-msse-check=} option, x86-64
211@item -msse-check=@var{none}
1f9bb1ca
AS
212@itemx -msse-check=@var{warning}
213@itemx -msse-check=@var{error}
daf50ae7
L
214These options control if the assembler should check SSE intructions.
215@option{-msse-check=@var{none}} will make the assembler not to check SSE
216instructions, which is the default. @option{-msse-check=@var{warning}}
217will make the assembler issue a warning for any SSE intruction.
218@option{-msse-check=@var{error}} will make the assembler issue an error
219for any SSE intruction.
220
539f890d
L
221@cindex @samp{-mavxscalar=} option, i386
222@cindex @samp{-mavxscalar=} option, x86-64
223@item -mavxscalar=@var{128}
1f9bb1ca 224@itemx -mavxscalar=@var{256}
2aab8acd 225These options control how the assembler should encode scalar AVX
539f890d
L
226instructions. @option{-mavxscalar=@var{128}} will encode scalar
227AVX instructions with 128bit vector length, which is the default.
228@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
229with 256bit vector length.
230
1efbbeb4
L
231@cindex @samp{-mmnemonic=} option, i386
232@cindex @samp{-mmnemonic=} option, x86-64
233@item -mmnemonic=@var{att}
1f9bb1ca 234@itemx -mmnemonic=@var{intel}
34bca508 235This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
236The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
237take precedent.
238
239@cindex @samp{-msyntax=} option, i386
240@cindex @samp{-msyntax=} option, x86-64
241@item -msyntax=@var{att}
1f9bb1ca 242@itemx -msyntax=@var{intel}
34bca508 243This option specifies instruction syntax when processing instructions.
1efbbeb4
L
244The @code{.att_syntax} and @code{.intel_syntax} directives will
245take precedent.
246
247@cindex @samp{-mnaked-reg} option, i386
248@cindex @samp{-mnaked-reg} option, x86-64
249@item -mnaked-reg
250This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 251The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 252
55b62671 253@end table
731caf76 254@c man end
e413e4e9 255
a6c24e68
NC
256@node i386-Directives
257@section x86 specific Directives
258
259@cindex machine directives, x86
260@cindex x86 machine directives
261@table @code
262
263@cindex @code{lcomm} directive, COFF
264@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
265Reserve @var{length} (an absolute expression) bytes for a local common
266denoted by @var{symbol}. The section and value of @var{symbol} are
267those of the new local common. The addresses are allocated in the bss
704209c0
NC
268section, so that at run-time the bytes start off zeroed. Since
269@var{symbol} is not declared global, it is normally not visible to
270@code{@value{LD}}. The optional third parameter, @var{alignment},
271specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
272
273This directive is only available for COFF based x86 targets.
274
275@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
276@c .largecomm
277
278@end table
279
252b5132 280@node i386-Syntax
7c31ae13
NC
281@section i386 Syntactical Considerations
282@menu
283* i386-Variations:: AT&T Syntax versus Intel Syntax
284* i386-Chars:: Special Characters
285@end menu
286
287@node i386-Variations
288@subsection AT&T Syntax versus Intel Syntax
252b5132 289
e413e4e9
AM
290@cindex i386 intel_syntax pseudo op
291@cindex intel_syntax pseudo op, i386
292@cindex i386 att_syntax pseudo op
293@cindex att_syntax pseudo op, i386
252b5132
RH
294@cindex i386 syntax compatibility
295@cindex syntax compatibility, i386
55b62671
AJ
296@cindex x86-64 intel_syntax pseudo op
297@cindex intel_syntax pseudo op, x86-64
298@cindex x86-64 att_syntax pseudo op
299@cindex att_syntax pseudo op, x86-64
300@cindex x86-64 syntax compatibility
301@cindex syntax compatibility, x86-64
e413e4e9
AM
302
303@code{@value{AS}} now supports assembly using Intel assembler syntax.
304@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
305back to the usual AT&T mode for compatibility with the output of
306@code{@value{GCC}}. Either of these directives may have an optional
307argument, @code{prefix}, or @code{noprefix} specifying whether registers
308require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
309different from Intel syntax. We mention these differences because
310almost all 80386 documents use Intel syntax. Notable differences
311between the two syntaxes are:
312
313@cindex immediate operands, i386
314@cindex i386 immediate operands
315@cindex register operands, i386
316@cindex i386 register operands
317@cindex jump/call operands, i386
318@cindex i386 jump/call operands
319@cindex operand delimiters, i386
55b62671
AJ
320
321@cindex immediate operands, x86-64
322@cindex x86-64 immediate operands
323@cindex register operands, x86-64
324@cindex x86-64 register operands
325@cindex jump/call operands, x86-64
326@cindex x86-64 jump/call operands
327@cindex operand delimiters, x86-64
252b5132
RH
328@itemize @bullet
329@item
330AT&T immediate operands are preceded by @samp{$}; Intel immediate
331operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
332AT&T register operands are preceded by @samp{%}; Intel register operands
333are undelimited. AT&T absolute (as opposed to PC relative) jump/call
334operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
335
336@cindex i386 source, destination operands
337@cindex source, destination operands; i386
55b62671
AJ
338@cindex x86-64 source, destination operands
339@cindex source, destination operands; x86-64
252b5132
RH
340@item
341AT&T and Intel syntax use the opposite order for source and destination
342operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
343@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
344previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
345instructions with 2 immediate operands, such as the @samp{enter}
346instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
347
348@cindex mnemonic suffixes, i386
349@cindex sizes operands, i386
350@cindex i386 size suffixes
55b62671
AJ
351@cindex mnemonic suffixes, x86-64
352@cindex sizes operands, x86-64
353@cindex x86-64 size suffixes
252b5132
RH
354@item
355In AT&T syntax the size of memory operands is determined from the last
356character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
357@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
358(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
359this by prefixing memory operands (@emph{not} the instruction mnemonics) with
360@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
361Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
362syntax.
252b5132 363
4b06377f
L
364In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
365instruction with the 64-bit displacement or immediate operand.
366
252b5132
RH
367@cindex return instructions, i386
368@cindex i386 jump, call, return
55b62671
AJ
369@cindex return instructions, x86-64
370@cindex x86-64 jump, call, return
252b5132
RH
371@item
372Immediate form long jumps and calls are
373@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
374Intel syntax is
375@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
376instruction
377is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
378@samp{ret far @var{stack-adjust}}.
379
380@cindex sections, i386
381@cindex i386 sections
55b62671
AJ
382@cindex sections, x86-64
383@cindex x86-64 sections
252b5132
RH
384@item
385The AT&T assembler does not provide support for multiple section
386programs. Unix style systems expect all programs to be single sections.
387@end itemize
388
7c31ae13
NC
389@node i386-Chars
390@subsection Special Characters
391
392@cindex line comment character, i386
393@cindex i386 line comment character
394The presence of a @samp{#} appearing anywhere on a line indicates the
395start of a comment that extends to the end of that line.
396
397If a @samp{#} appears as the first character of a line then the whole
398line is treated as a comment, but in this case the line can also be a
399logical line number directive (@pxref{Comments}) or a preprocessor
400control command (@pxref{Preprocessing}).
401
402If the @option{--divide} command line option has not been specified
403then the @samp{/} character appearing anywhere on a line also
404introduces a line comment.
405
406@cindex line separator, i386
407@cindex statement separator, i386
408@cindex i386 line separator
409The @samp{;} character can be used to separate statements on the same
410line.
411
252b5132
RH
412@node i386-Mnemonics
413@section Instruction Naming
414
415@cindex i386 instruction naming
416@cindex instruction naming, i386
55b62671
AJ
417@cindex x86-64 instruction naming
418@cindex instruction naming, x86-64
419
252b5132 420Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
421specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
422and @samp{q} specify byte, word, long and quadruple word operands. If
423no suffix is specified by an instruction then @code{@value{AS}} tries to
424fill in the missing suffix based on the destination register operand
425(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
426to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
427@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
428assembler which assumes that a missing mnemonic suffix implies long
429operand size. (This incompatibility does not affect compiler output
430since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
431
432Almost all instructions have the same names in AT&T and Intel format.
433There are a few exceptions. The sign extend and zero extend
434instructions need two sizes to specify them. They need a size to
435sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
436is accomplished by using two instruction mnemonic suffixes in AT&T
437syntax. Base names for sign extend and zero extend are
438@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
439and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
440are tacked on to this base name, the @emph{from} suffix before the
441@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
442``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
443thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
444@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
445@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
446quadruple word).
252b5132 447
b6169b20
L
448@cindex encoding options, i386
449@cindex encoding options, x86-64
450
451Different encoding options can be specified via optional mnemonic
452suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
453moving from one register to another. @samp{.d8} or @samp{.d32} suffix
454prefers 8bit or 32bit displacement in encoding.
b6169b20 455
252b5132
RH
456@cindex conversion instructions, i386
457@cindex i386 conversion instructions
55b62671
AJ
458@cindex conversion instructions, x86-64
459@cindex x86-64 conversion instructions
252b5132
RH
460The Intel-syntax conversion instructions
461
462@itemize @bullet
463@item
464@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
465
466@item
467@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
468
469@item
470@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
471
472@item
473@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
474
475@item
476@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
477(x86-64 only),
478
479@item
d5f0cf92 480@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 481@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
482@end itemize
483
484@noindent
55b62671
AJ
485are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
486@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
487instructions.
252b5132
RH
488
489@cindex jump instructions, i386
490@cindex call instructions, i386
55b62671
AJ
491@cindex jump instructions, x86-64
492@cindex call instructions, x86-64
252b5132
RH
493Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
494AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
495convention.
496
1efbbeb4
L
497@section AT&T Mnemonic versus Intel Mnemonic
498
499@cindex i386 mnemonic compatibility
500@cindex mnemonic compatibility, i386
501
502@code{@value{AS}} supports assembly using Intel mnemonic.
503@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
504@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
505syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
506Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
507@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
508@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
509assembler with different mnemonics from those in Intel IA32 specification.
510@code{@value{GCC}} generates those instructions with AT&T mnemonic.
511
252b5132
RH
512@node i386-Regs
513@section Register Naming
514
515@cindex i386 registers
516@cindex registers, i386
55b62671
AJ
517@cindex x86-64 registers
518@cindex registers, x86-64
252b5132
RH
519Register operands are always prefixed with @samp{%}. The 80386 registers
520consist of
521
522@itemize @bullet
523@item
524the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
525@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
526frame pointer), and @samp{%esp} (the stack pointer).
527
528@item
529the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
530@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
531
532@item
533the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
534@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
535are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
536@samp{%cx}, and @samp{%dx})
537
538@item
539the 6 section registers @samp{%cs} (code section), @samp{%ds}
540(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
541and @samp{%gs}.
542
543@item
544the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
545@samp{%cr3}.
546
547@item
548the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
549@samp{%db3}, @samp{%db6}, and @samp{%db7}.
550
551@item
552the 2 test registers @samp{%tr6} and @samp{%tr7}.
553
554@item
555the 8 floating point register stack @samp{%st} or equivalently
556@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
557@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
558These registers are overloaded by 8 MMX registers @samp{%mm0},
559@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
560@samp{%mm6} and @samp{%mm7}.
561
562@item
563the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
564@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
565@end itemize
566
567The AMD x86-64 architecture extends the register set by:
568
569@itemize @bullet
570@item
571enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
572accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
573@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
574pointer)
575
576@item
577the 8 extended registers @samp{%r8}--@samp{%r15}.
578
579@item
580the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
581
582@item
583the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
584
585@item
586the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
587
588@item
589the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
590
591@item
592the 8 debug registers: @samp{%db8}--@samp{%db15}.
593
594@item
595the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
596@end itemize
597
598@node i386-Prefixes
599@section Instruction Prefixes
600
601@cindex i386 instruction prefixes
602@cindex instruction prefixes, i386
603@cindex prefixes, i386
604Instruction prefixes are used to modify the following instruction. They
605are used to repeat string instructions, to provide section overrides, to
606perform bus lock operations, and to change operand and address sizes.
607(Most instructions that normally operate on 32-bit operands will use
60816-bit operands if the instruction has an ``operand size'' prefix.)
609Instruction prefixes are best written on the same line as the instruction
610they act upon. For example, the @samp{scas} (scan string) instruction is
611repeated with:
612
613@smallexample
614 repne scas %es:(%edi),%al
615@end smallexample
616
617You may also place prefixes on the lines immediately preceding the
618instruction, but this circumvents checks that @code{@value{AS}} does
619with prefixes, and will not work with all prefixes.
620
621Here is a list of instruction prefixes:
622
623@cindex section override prefixes, i386
624@itemize @bullet
625@item
626Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
627@samp{fs}, @samp{gs}. These are automatically added by specifying
628using the @var{section}:@var{memory-operand} form for memory references.
629
630@cindex size prefixes, i386
631@item
632Operand/Address size prefixes @samp{data16} and @samp{addr16}
633change 32-bit operands/addresses into 16-bit operands/addresses,
634while @samp{data32} and @samp{addr32} change 16-bit ones (in a
635@code{.code16} section) into 32-bit operands/addresses. These prefixes
636@emph{must} appear on the same line of code as the instruction they
637modify. For example, in a 16-bit @code{.code16} section, you might
638write:
639
640@smallexample
641 addr32 jmpl *(%ebx)
642@end smallexample
643
644@cindex bus lock prefixes, i386
645@cindex inhibiting interrupts, i386
646@item
647The bus lock prefix @samp{lock} inhibits interrupts during execution of
648the instruction it precedes. (This is only valid with certain
649instructions; see a 80386 manual for details).
650
651@cindex coprocessor wait, i386
652@item
653The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
654complete the current instruction. This should never be needed for the
65580386/80387 combination.
656
657@cindex repeat prefixes, i386
658@item
659The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
660to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
661times if the current address size is 16-bits).
55b62671
AJ
662@cindex REX prefixes, i386
663@item
664The @samp{rex} family of prefixes is used by x86-64 to encode
665extensions to i386 instruction set. The @samp{rex} prefix has four
666bits --- an operand size overwrite (@code{64}) used to change operand size
667from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
668register set.
669
670You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
671instruction emits @samp{rex} prefix with all the bits set. By omitting
672the @code{64}, @code{x}, @code{y} or @code{z} you may write other
673prefixes as well. Normally, there is no need to write the prefixes
674explicitly, since gas will automatically generate them based on the
675instruction operands.
252b5132
RH
676@end itemize
677
678@node i386-Memory
679@section Memory References
680
681@cindex i386 memory references
682@cindex memory references, i386
55b62671
AJ
683@cindex x86-64 memory references
684@cindex memory references, x86-64
252b5132
RH
685An Intel syntax indirect memory reference of the form
686
687@smallexample
688@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
689@end smallexample
690
691@noindent
692is translated into the AT&T syntax
693
694@smallexample
695@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
696@end smallexample
697
698@noindent
699where @var{base} and @var{index} are the optional 32-bit base and
700index registers, @var{disp} is the optional displacement, and
701@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
702to calculate the address of the operand. If no @var{scale} is
703specified, @var{scale} is taken to be 1. @var{section} specifies the
704optional section register for the memory operand, and may override the
705default section register (see a 80386 manual for section register
706defaults). Note that section overrides in AT&T syntax @emph{must}
707be preceded by a @samp{%}. If you specify a section override which
708coincides with the default section register, @code{@value{AS}} does @emph{not}
709output any section register override prefixes to assemble the given
710instruction. Thus, section overrides can be specified to emphasize which
711section register is used for a given memory operand.
712
713Here are some examples of Intel and AT&T style memory references:
714
715@table @asis
716@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
717@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
718missing, and the default section is used (@samp{%ss} for addressing with
719@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
720
721@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
722@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
723@samp{foo}. All other fields are missing. The section register here
724defaults to @samp{%ds}.
725
726@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
727This uses the value pointed to by @samp{foo} as a memory operand.
728Note that @var{base} and @var{index} are both missing, but there is only
729@emph{one} @samp{,}. This is a syntactic exception.
730
731@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
732This selects the contents of the variable @samp{foo} with section
733register @var{section} being @samp{%gs}.
734@end table
735
736Absolute (as opposed to PC relative) call and jump operands must be
737prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
738always chooses PC relative addressing for jump/call labels.
739
740Any instruction that has a memory operand, but no register operand,
55b62671
AJ
741@emph{must} specify its size (byte, word, long, or quadruple) with an
742instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
743respectively).
744
745The x86-64 architecture adds an RIP (instruction pointer relative)
746addressing. This addressing mode is specified by using @samp{rip} as a
747base register. Only constant offsets are valid. For example:
748
749@table @asis
750@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
751Points to the address 1234 bytes past the end of the current
752instruction.
753
754@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
755Points to the @code{symbol} in RIP relative way, this is shorter than
756the default absolute addressing.
757@end table
758
759Other addressing modes remain unchanged in x86-64 architecture, except
760registers used are 64-bit instead of 32-bit.
252b5132 761
fddf5b5b 762@node i386-Jumps
252b5132
RH
763@section Handling of Jump Instructions
764
765@cindex jump optimization, i386
766@cindex i386 jump optimization
55b62671
AJ
767@cindex jump optimization, x86-64
768@cindex x86-64 jump optimization
252b5132
RH
769Jump instructions are always optimized to use the smallest possible
770displacements. This is accomplished by using byte (8-bit) displacement
771jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 772is insufficient a long displacement is used. We do not support
252b5132
RH
773word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
774instruction with the @samp{data16} instruction prefix), since the 80386
775insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 776is added. (See also @pxref{i386-Arch})
252b5132
RH
777
778Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
779@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
780displacements, so that if you use these instructions (@code{@value{GCC}} does
781not use them) you may get an error message (and incorrect code). The AT&T
78280386 assembler tries to get around this problem by expanding @samp{jcxz foo}
783to
784
785@smallexample
786 jcxz cx_zero
787 jmp cx_nonzero
788cx_zero: jmp foo
789cx_nonzero:
790@end smallexample
791
792@node i386-Float
793@section Floating Point
794
795@cindex i386 floating point
796@cindex floating point, i386
55b62671
AJ
797@cindex x86-64 floating point
798@cindex floating point, x86-64
252b5132
RH
799All 80387 floating point types except packed BCD are supported.
800(BCD support may be added without much difficulty). These data
801types are 16-, 32-, and 64- bit integers, and single (32-bit),
802double (64-bit), and extended (80-bit) precision floating point.
803Each supported type has an instruction mnemonic suffix and a constructor
804associated with it. Instruction mnemonic suffixes specify the operand's
805data type. Constructors build these data types into memory.
806
807@cindex @code{float} directive, i386
808@cindex @code{single} directive, i386
809@cindex @code{double} directive, i386
810@cindex @code{tfloat} directive, i386
55b62671
AJ
811@cindex @code{float} directive, x86-64
812@cindex @code{single} directive, x86-64
813@cindex @code{double} directive, x86-64
814@cindex @code{tfloat} directive, x86-64
252b5132
RH
815@itemize @bullet
816@item
817Floating point constructors are @samp{.float} or @samp{.single},
818@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
819These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
820and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
821only supports this format via the @samp{fldt} (load 80-bit real to stack
822top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
823
824@cindex @code{word} directive, i386
825@cindex @code{long} directive, i386
826@cindex @code{int} directive, i386
827@cindex @code{quad} directive, i386
55b62671
AJ
828@cindex @code{word} directive, x86-64
829@cindex @code{long} directive, x86-64
830@cindex @code{int} directive, x86-64
831@cindex @code{quad} directive, x86-64
252b5132
RH
832@item
833Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
834@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
835corresponding instruction mnemonic suffixes are @samp{s} (single),
836@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
837the 64-bit @samp{q} format is only present in the @samp{fildq} (load
838quad integer to stack top) and @samp{fistpq} (store quad integer and pop
839stack) instructions.
840@end itemize
841
842Register to register operations should not use instruction mnemonic suffixes.
843@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
844wrote @samp{fst %st, %st(1)}, since all register to register operations
845use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
846which converts @samp{%st} from 80-bit to 64-bit floating point format,
847then stores the result in the 4 byte location @samp{mem})
848
849@node i386-SIMD
850@section Intel's MMX and AMD's 3DNow! SIMD Operations
851
852@cindex MMX, i386
853@cindex 3DNow!, i386
854@cindex SIMD, i386
55b62671
AJ
855@cindex MMX, x86-64
856@cindex 3DNow!, x86-64
857@cindex SIMD, x86-64
252b5132
RH
858
859@code{@value{AS}} supports Intel's MMX instruction set (SIMD
860instructions for integer data), available on Intel's Pentium MMX
861processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 862Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
863instruction set (SIMD instructions for 32-bit floating point data)
864available on AMD's K6-2 processor and possibly others in the future.
865
866Currently, @code{@value{AS}} does not support Intel's floating point
867SIMD, Katmai (KNI).
868
869The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
870@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
87116-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
872floating point values. The MMX registers cannot be used at the same time
873as the floating point stack.
874
875See Intel and AMD documentation, keeping in mind that the operand order in
876instructions is reversed from the Intel syntax.
877
f88c9eb0
SP
878@node i386-LWP
879@section AMD's Lightweight Profiling Instructions
880
881@cindex LWP, i386
882@cindex LWP, x86-64
883
884@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
885instruction set, available on AMD's Family 15h (Orochi) processors.
886
887LWP enables applications to collect and manage performance data, and
888react to performance events. The collection of performance data
889requires no context switches. LWP runs in the context of a thread and
890so several counters can be used independently across multiple threads.
891LWP can be used in both 64-bit and legacy 32-bit modes.
892
893For detailed information on the LWP instruction set, see the
894@cite{AMD Lightweight Profiling Specification} available at
895@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
896
87973e9f
QN
897@node i386-BMI
898@section Bit Manipulation Instructions
899
900@cindex BMI, i386
901@cindex BMI, x86-64
902
903@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
904
905BMI instructions provide several instructions implementing individual
906bit manipulation operations such as isolation, masking, setting, or
34bca508 907resetting.
87973e9f
QN
908
909@c Need to add a specification citation here when available.
910
2a2a0f38
QN
911@node i386-TBM
912@section AMD's Trailing Bit Manipulation Instructions
913
914@cindex TBM, i386
915@cindex TBM, x86-64
916
917@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
918instruction set, available on AMD's BDVER2 processors (Trinity and
919Viperfish).
920
921TBM instructions provide instructions implementing individual bit
922manipulation operations such as isolating, masking, setting, resetting,
923complementing, and operations on trailing zeros and ones.
924
925@c Need to add a specification citation here when available.
87973e9f 926
252b5132
RH
927@node i386-16bit
928@section Writing 16-bit Code
929
930@cindex i386 16-bit code
931@cindex 16-bit code, i386
932@cindex real-mode code, i386
eecb386c 933@cindex @code{code16gcc} directive, i386
252b5132
RH
934@cindex @code{code16} directive, i386
935@cindex @code{code32} directive, i386
55b62671
AJ
936@cindex @code{code64} directive, i386
937@cindex @code{code64} directive, x86-64
938While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
939or 64-bit x86-64 code depending on the default configuration,
252b5132 940it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
941mode code segments. To do this, put a @samp{.code16} or
942@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
943be run in 16-bit mode. You can switch @code{@value{AS}} to writing
94432-bit code with the @samp{.code32} directive or 64-bit code with the
945@samp{.code64} directive.
eecb386c
AM
946
947@samp{.code16gcc} provides experimental support for generating 16-bit
948code from gcc, and differs from @samp{.code16} in that @samp{call},
949@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
950@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
951default to 32-bit size. This is so that the stack pointer is
952manipulated in the same way over function calls, allowing access to
953function parameters at the same stack offsets as in 32-bit mode.
954@samp{.code16gcc} also automatically adds address size prefixes where
955necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
956
957The code which @code{@value{AS}} generates in 16-bit mode will not
958necessarily run on a 16-bit pre-80386 processor. To write code that
959runs on such a processor, you must refrain from using @emph{any} 32-bit
960constructs which require @code{@value{AS}} to output address or operand
961size prefixes.
962
963Note that writing 16-bit code instructions by explicitly specifying a
964prefix or an instruction mnemonic suffix within a 32-bit code section
965generates different machine instructions than those generated for a
96616-bit code segment. In a 32-bit code section, the following code
967generates the machine opcode bytes @samp{66 6a 04}, which pushes the
968value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
969
970@smallexample
971 pushw $4
972@end smallexample
973
974The same code in a 16-bit code section would generate the machine
b45619c0 975opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
976is correct since the processor default operand size is assumed to be 16
977bits in a 16-bit code section.
978
979@node i386-Bugs
980@section AT&T Syntax bugs
981
982The UnixWare assembler, and probably other AT&T derived ix86 Unix
983assemblers, generate floating point instructions with reversed source
984and destination registers in certain cases. Unfortunately, gcc and
985possibly many other programs use this reversed syntax, so we're stuck
986with it.
987
988For example
989
990@smallexample
991 fsub %st,%st(3)
992@end smallexample
993@noindent
994results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
995than the expected @samp{%st(3) - %st}. This happens with all the
996non-commutative arithmetic floating point operations with two register
997operands where the source register is @samp{%st} and the destination
998register is @samp{%st(i)}.
999
e413e4e9
AM
1000@node i386-Arch
1001@section Specifying CPU Architecture
1002
1003@cindex arch directive, i386
1004@cindex i386 arch directive
55b62671
AJ
1005@cindex arch directive, x86-64
1006@cindex x86-64 arch directive
e413e4e9
AM
1007
1008@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1009(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1010directive enables a warning when gas detects an instruction that is not
1011supported on the CPU specified. The choices for @var{cpu_type} are:
1012
1013@multitable @columnfractions .20 .20 .20 .20
1014@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1015@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1016@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1017@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7a9068fe 1018@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1543849b 1019@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1020@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
7b458c12 1021@item @samp{btver1} @tab @samp{btver2}
1ceab344 1022@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1023@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1024@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1025@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1026@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1027@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1028@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1029@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1030@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
5c111e37 1031@item @samp{.smap}
1ceab344 1032@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1033@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1034@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1ceab344 1035@item @samp{.padlock}
e413e4e9
AM
1036@end multitable
1037
fddf5b5b
AM
1038Apart from the warning, there are only two other effects on
1039@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1040@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1041will automatically use a two byte opcode sequence. The larger three
1042byte opcode sequence is used on the 486 (and when no architecture is
1043specified) because it executes faster on the 486. Note that you can
1044explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1045Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1046@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1047conditional jumps will be promoted when necessary to a two instruction
1048sequence consisting of a conditional jump of the opposite sense around
1049an unconditional jump to the target.
1050
5c6af06e
JB
1051Following the CPU architecture (but not a sub-architecture, which are those
1052starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1053control automatic promotion of conditional jumps. @samp{jumps} is the
1054default, and enables jump promotion; All external jumps will be of the long
1055variety, and file-local jumps will be promoted as necessary.
1056(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1057byte offset jumps, and warns about file-local conditional jumps that
1058@code{@value{AS}} promotes.
fddf5b5b
AM
1059Unconditional jumps are treated as for @samp{jumps}.
1060
1061For example
1062
1063@smallexample
1064 .arch i8086,nojumps
1065@end smallexample
e413e4e9 1066
252b5132
RH
1067@node i386-Notes
1068@section Notes
1069
1070@cindex i386 @code{mul}, @code{imul} instructions
1071@cindex @code{mul} instruction, i386
1072@cindex @code{imul} instruction, i386
55b62671
AJ
1073@cindex @code{mul} instruction, x86-64
1074@cindex @code{imul} instruction, x86-64
252b5132 1075There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1076instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1077multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1078for @samp{imul}) can be output only in the one operand form. Thus,
1079@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1080the expanding multiply would clobber the @samp{%edx} register, and this
1081would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
108264-bit product in @samp{%edx:%eax}.
1083
1084We have added a two operand form of @samp{imul} when the first operand
1085is an immediate mode expression and the second operand is a register.
1086This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1087example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1088$69, %eax, %eax}.
1089
This page took 0.915273 seconds and 4 git commands to generate.