x86: support VMGEXIT
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
b3adc24a 1@c Copyright (C) 1991-2020 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
bc31405e 40* i386-ISA:: AMD64 ISA vs. Intel64 ISA
252b5132
RH
41* i386-Bugs:: AT&T Syntax bugs
42* i386-Notes:: Notes
43@end menu
44
45@node i386-Options
46@section Options
47
55b62671
AJ
48@cindex options for i386
49@cindex options for x86-64
50@cindex i386 options
34bca508 51@cindex x86-64 options
55b62671
AJ
52
53The i386 version of @code{@value{AS}} has a few machine
54dependent options:
55
731caf76
L
56@c man begin OPTIONS
57@table @gcctabopt
55b62671
AJ
58@cindex @samp{--32} option, i386
59@cindex @samp{--32} option, x86-64
570561f7
L
60@cindex @samp{--x32} option, i386
61@cindex @samp{--x32} option, x86-64
55b62671
AJ
62@cindex @samp{--64} option, i386
63@cindex @samp{--64} option, x86-64
570561f7 64@item --32 | --x32 | --64
35cc6a0b 65Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 66implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
67imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68respectively.
55b62671
AJ
69
70These options are only available with the ELF object file format, and
71require that the necessary BFD support has been included (on a 32-bit
72platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73usage and use x86-64 as target platform).
12b55ccc
L
74
75@item -n
76By default, x86 GAS replaces multiple nop instructions used for
77alignment within code sections with multi-byte nop instructions such
f9233288
JW
78as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
34bca508 95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
81486035 115@code{iamcu},
9103f4f4
L
116@code{k6},
117@code{k6_2},
118@code{athlon},
9103f4f4
L
119@code{opteron},
120@code{k8},
1ceab344 121@code{amdfam10},
68339fdf 122@code{bdver1},
af2f724e 123@code{bdver2},
5e5c50d3 124@code{bdver3},
c7b0bd56 125@code{bdver4},
029f3522 126@code{znver1},
a9660a6f 127@code{znver2},
7b458c12
L
128@code{btver1},
129@code{btver2},
9103f4f4
L
130@code{generic32} and
131@code{generic64}.
132
34bca508 133In addition to the basic instruction set, the assembler can be told to
6305a203
L
134accept various extension mnemonics. For example,
135@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136@var{vmx}. The following extensions are currently supported:
309d3373
JB
137@code{8087},
138@code{287},
139@code{387},
1848e567 140@code{687},
309d3373 141@code{no87},
1848e567
L
142@code{no287},
143@code{no387},
144@code{no687},
d871f3f4
L
145@code{cmov},
146@code{nocmov},
147@code{fxsr},
148@code{nofxsr},
6305a203 149@code{mmx},
309d3373 150@code{nommx},
6305a203
L
151@code{sse},
152@code{sse2},
153@code{sse3},
af5c13b0 154@code{sse4a},
6305a203
L
155@code{ssse3},
156@code{sse4.1},
157@code{sse4.2},
158@code{sse4},
309d3373 159@code{nosse},
1848e567
L
160@code{nosse2},
161@code{nosse3},
af5c13b0 162@code{nosse4a},
1848e567
L
163@code{nossse3},
164@code{nosse4.1},
165@code{nosse4.2},
166@code{nosse4},
c0f3af97 167@code{avx},
6c30d220 168@code{avx2},
1848e567
L
169@code{noavx},
170@code{noavx2},
e2e1fcde
L
171@code{adx},
172@code{rdseed},
173@code{prfchw},
5c111e37 174@code{smap},
7e8b059b 175@code{mpx},
a0046408 176@code{sha},
8bc52696 177@code{rdpid},
6b40c462 178@code{ptwrite},
603555e5 179@code{cet},
48521003 180@code{gfni},
8dcf1fad 181@code{vaes},
ff1982d5 182@code{vpclmulqdq},
1dfc6506
L
183@code{prefetchwt1},
184@code{clflushopt},
185@code{se1},
c5e7287a 186@code{clwb},
c0a30a9f
L
187@code{movdiri},
188@code{movdir64b},
5d79adc4 189@code{enqcmd},
43234a1e
L
190@code{avx512f},
191@code{avx512cd},
192@code{avx512er},
193@code{avx512pf},
1dfc6506
L
194@code{avx512vl},
195@code{avx512bw},
196@code{avx512dq},
2cc1b5aa 197@code{avx512ifma},
14f195c9 198@code{avx512vbmi},
920d2ddc 199@code{avx512_4fmaps},
47acf0bd 200@code{avx512_4vnniw},
620214f7 201@code{avx512_vpopcntdq},
53467f57 202@code{avx512_vbmi2},
8cfcb765 203@code{avx512_vnni},
ee6872be 204@code{avx512_bitalg},
d6aab7a1 205@code{avx512_bf16},
144b71e2
L
206@code{noavx512f},
207@code{noavx512cd},
208@code{noavx512er},
209@code{noavx512pf},
210@code{noavx512vl},
211@code{noavx512bw},
212@code{noavx512dq},
213@code{noavx512ifma},
214@code{noavx512vbmi},
920d2ddc 215@code{noavx512_4fmaps},
47acf0bd 216@code{noavx512_4vnniw},
620214f7 217@code{noavx512_vpopcntdq},
53467f57 218@code{noavx512_vbmi2},
8cfcb765 219@code{noavx512_vnni},
ee6872be 220@code{noavx512_bitalg},
9186c494 221@code{noavx512_vp2intersect},
d6aab7a1 222@code{noavx512_bf16},
dd455cf5 223@code{noenqcmd},
6305a203 224@code{vmx},
8729a6f6 225@code{vmfunc},
6305a203 226@code{smx},
f03fe4c1 227@code{xsave},
c7b8aa3a 228@code{xsaveopt},
1dfc6506
L
229@code{xsavec},
230@code{xsaves},
c0f3af97 231@code{aes},
594ab6a3 232@code{pclmul},
c7b8aa3a
L
233@code{fsgsbase},
234@code{rdrnd},
235@code{f16c},
6c30d220 236@code{bmi2},
c0f3af97 237@code{fma},
f1f8f695
L
238@code{movbe},
239@code{ept},
6c30d220 240@code{lzcnt},
272a84b1 241@code{popcnt},
42164a71
L
242@code{hle},
243@code{rtm},
6c30d220 244@code{invpcid},
bd5295b2 245@code{clflush},
9916071f 246@code{mwaitx},
029f3522 247@code{clzero},
3233d7d0 248@code{wbnoinvd},
be3a8dca 249@code{pconfig},
de89d0a3 250@code{waitpkg},
c48935d7 251@code{cldemote},
142861df
JB
252@code{rdpru},
253@code{mcommit},
a847e322 254@code{sev_es},
f88c9eb0 255@code{lwp},
5dd85c99
SP
256@code{fma4},
257@code{xop},
60aa667e 258@code{cx16},
bd5295b2 259@code{syscall},
1b7f3fb0 260@code{rdtscp},
6305a203
L
261@code{3dnow},
262@code{3dnowa},
263@code{sse4a},
264@code{sse5},
272a84b1 265@code{svme} and
6305a203 266@code{padlock}.
309d3373
JB
267Note that rather than extending a basic instruction set, the extension
268mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
269
270When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
271@code{.arch} directive will take precedent.
272
273@cindex @samp{-mtune=} option, i386
274@cindex @samp{-mtune=} option, x86-64
275@item -mtune=@var{CPU}
276This option specifies a processor to optimize for. When used in
277conjunction with the @option{-march} option, only instructions
278of the processor specified by the @option{-march} option will be
279generated.
280
6305a203
L
281Valid @var{CPU} values are identical to the processor list of
282@option{-march=@var{CPU}}.
9103f4f4 283
c0f3af97
L
284@cindex @samp{-msse2avx} option, i386
285@cindex @samp{-msse2avx} option, x86-64
286@item -msse2avx
287This option specifies that the assembler should encode SSE instructions
288with VEX prefix.
289
daf50ae7
L
290@cindex @samp{-msse-check=} option, i386
291@cindex @samp{-msse-check=} option, x86-64
292@item -msse-check=@var{none}
1f9bb1ca
AS
293@itemx -msse-check=@var{warning}
294@itemx -msse-check=@var{error}
9aff4b7a 295These options control if the assembler should check SSE instructions.
daf50ae7
L
296@option{-msse-check=@var{none}} will make the assembler not to check SSE
297instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 298will make the assembler issue a warning for any SSE instruction.
daf50ae7 299@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 300for any SSE instruction.
daf50ae7 301
539f890d
L
302@cindex @samp{-mavxscalar=} option, i386
303@cindex @samp{-mavxscalar=} option, x86-64
304@item -mavxscalar=@var{128}
1f9bb1ca 305@itemx -mavxscalar=@var{256}
2aab8acd 306These options control how the assembler should encode scalar AVX
539f890d
L
307instructions. @option{-mavxscalar=@var{128}} will encode scalar
308AVX instructions with 128bit vector length, which is the default.
309@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
310with 256bit vector length.
311
4970191f
JB
312WARNING: Don't use this for production code - due to CPU errata the
313resulting code may not work on certain models.
314
03751133
L
315@cindex @samp{-mvexwig=} option, i386
316@cindex @samp{-mvexwig=} option, x86-64
317@item -mvexwig=@var{0}
318@itemx -mvexwig=@var{1}
319These options control how the assembler should encode VEX.W-ignored (WIG)
320VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
321instructions with vex.w = 0, which is the default.
322@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
323vex.w = 1.
324
4970191f
JB
325WARNING: Don't use this for production code - due to CPU errata the
326resulting code may not work on certain models.
327
43234a1e
L
328@cindex @samp{-mevexlig=} option, i386
329@cindex @samp{-mevexlig=} option, x86-64
330@item -mevexlig=@var{128}
331@itemx -mevexlig=@var{256}
332@itemx -mevexlig=@var{512}
333These options control how the assembler should encode length-ignored
334(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
335EVEX instructions with 128bit vector length, which is the default.
336@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
337encode LIG EVEX instructions with 256bit and 512bit vector length,
338respectively.
339
340@cindex @samp{-mevexwig=} option, i386
341@cindex @samp{-mevexwig=} option, x86-64
342@item -mevexwig=@var{0}
343@itemx -mevexwig=@var{1}
344These options control how the assembler should encode w-ignored (WIG)
345EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
346EVEX instructions with evex.w = 0, which is the default.
347@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
348evex.w = 1.
349
1efbbeb4
L
350@cindex @samp{-mmnemonic=} option, i386
351@cindex @samp{-mmnemonic=} option, x86-64
352@item -mmnemonic=@var{att}
1f9bb1ca 353@itemx -mmnemonic=@var{intel}
34bca508 354This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
355The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
356take precedent.
357
358@cindex @samp{-msyntax=} option, i386
359@cindex @samp{-msyntax=} option, x86-64
360@item -msyntax=@var{att}
1f9bb1ca 361@itemx -msyntax=@var{intel}
34bca508 362This option specifies instruction syntax when processing instructions.
1efbbeb4
L
363The @code{.att_syntax} and @code{.intel_syntax} directives will
364take precedent.
365
366@cindex @samp{-mnaked-reg} option, i386
367@cindex @samp{-mnaked-reg} option, x86-64
368@item -mnaked-reg
33eaf5de 369This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 370The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 371
7e8b059b
L
372@cindex @samp{-madd-bnd-prefix} option, i386
373@cindex @samp{-madd-bnd-prefix} option, x86-64
374@item -madd-bnd-prefix
375This option forces the assembler to add BND prefix to all branches, even
376if such prefix was not explicitly specified in the source code.
377
8dcea932
L
378@cindex @samp{-mshared} option, i386
379@cindex @samp{-mshared} option, x86-64
380@item -mno-shared
381On ELF target, the assembler normally optimizes out non-PLT relocations
382against defined non-weak global branch targets with default visibility.
383The @samp{-mshared} option tells the assembler to generate code which
384may go into a shared library where all non-weak global branch targets
385with default visibility can be preempted. The resulting code is
386slightly bigger. This option only affects the handling of branch
387instructions.
388
167ad85b
TG
389@cindex @samp{-mbig-obj} option, x86-64
390@item -mbig-obj
391On x86-64 PE/COFF target this option forces the use of big object file
392format, which allows more than 32768 sections.
393
d022bddd
IT
394@cindex @samp{-momit-lock-prefix=} option, i386
395@cindex @samp{-momit-lock-prefix=} option, x86-64
396@item -momit-lock-prefix=@var{no}
397@itemx -momit-lock-prefix=@var{yes}
398These options control how the assembler should encode lock prefix.
399This option is intended as a workaround for processors, that fail on
400lock prefix. This option can only be safely used with single-core,
401single-thread computers
402@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
403@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
404which is the default.
405
e4e00185
AS
406@cindex @samp{-mfence-as-lock-add=} option, i386
407@cindex @samp{-mfence-as-lock-add=} option, x86-64
408@item -mfence-as-lock-add=@var{no}
409@itemx -mfence-as-lock-add=@var{yes}
410These options control how the assembler should encode lfence, mfence and
411sfence.
412@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
413sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
414@samp{lock addl $0x0, (%esp)} in 32-bit mode.
415@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
416sfence as usual, which is the default.
417
0cb4071e
L
418@cindex @samp{-mrelax-relocations=} option, i386
419@cindex @samp{-mrelax-relocations=} option, x86-64
420@item -mrelax-relocations=@var{no}
421@itemx -mrelax-relocations=@var{yes}
422These options control whether the assembler should generate relax
423relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
424R_X86_64_REX_GOTPCRELX, in 64-bit mode.
425@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
426@option{-mrelax-relocations=@var{no}} will not generate relax
427relocations. The default can be controlled by a configure option
428@option{--enable-x86-relax-relocations}.
429
e379e5f3
L
430@cindex @samp{-malign-branch-boundary=} option, i386
431@cindex @samp{-malign-branch-boundary=} option, x86-64
432@item -malign-branch-boundary=@var{NUM}
433This option controls how the assembler should align branches with segment
434prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
435no less than 16. Branches will be aligned within @var{NUM} byte
436boundary. @option{-malign-branch-boundary=0}, which is the default,
437doesn't align branches.
438
439@cindex @samp{-malign-branch=} option, i386
440@cindex @samp{-malign-branch=} option, x86-64
441@item -malign-branch=@var{TYPE}[+@var{TYPE}...]
442This option specifies types of branches to align. @var{TYPE} is
443combination of @samp{jcc}, which aligns conditional jumps,
444@samp{fused}, which aligns fused conditional jumps, @samp{jmp},
445which aligns unconditional jumps, @samp{call} which aligns calls,
446@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
447jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
448
449@cindex @samp{-malign-branch-prefix-size=} option, i386
450@cindex @samp{-malign-branch-prefix-size=} option, x86-64
451@item -malign-branch-prefix-size=@var{NUM}
452This option specifies the maximum number of prefixes on an instruction
453to align branches. @var{NUM} should be between 0 and 5. The default
454@var{NUM} is 5.
455
76cf450b
L
456@cindex @samp{-mbranches-within-32B-boundaries} option, i386
457@cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
458@item -mbranches-within-32B-boundaries
459This option aligns conditional jumps, fused conditional jumps and
460unconditional jumps within 32 byte boundary with up to 5 segment prefixes
461on an instruction. It is equivalent to
462@option{-malign-branch-boundary=32}
463@option{-malign-branch=jcc+fused+jmp}
464@option{-malign-branch-prefix-size=5}.
465The default doesn't align branches.
466
b4a3a7b4
L
467@cindex @samp{-mx86-used-note=} option, i386
468@cindex @samp{-mx86-used-note=} option, x86-64
469@item -mx86-used-note=@var{no}
470@itemx -mx86-used-note=@var{yes}
471These options control whether the assembler should generate
472GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
473GNU property notes. The default can be controlled by the
474@option{--enable-x86-used-note} configure option.
475
d3d3c6db
IT
476@cindex @samp{-mevexrcig=} option, i386
477@cindex @samp{-mevexrcig=} option, x86-64
478@item -mevexrcig=@var{rne}
479@itemx -mevexrcig=@var{rd}
480@itemx -mevexrcig=@var{ru}
481@itemx -mevexrcig=@var{rz}
482These options control how the assembler should encode SAE-only
483EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
484of EVEX instruction with 00, which is the default.
485@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
486and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
487with 01, 10 and 11 RC bits, respectively.
488
5db04b09
L
489@cindex @samp{-mamd64} option, x86-64
490@cindex @samp{-mintel64} option, x86-64
491@item -mamd64
492@itemx -mintel64
493This option specifies that the assembler should accept only AMD64 or
4b5aaf5f
L
494Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
495only and AMD64 ISAs.
5db04b09 496
b6f8c7c4
L
497@cindex @samp{-O0} option, i386
498@cindex @samp{-O0} option, x86-64
499@cindex @samp{-O} option, i386
500@cindex @samp{-O} option, x86-64
501@cindex @samp{-O1} option, i386
502@cindex @samp{-O1} option, x86-64
503@cindex @samp{-O2} option, i386
504@cindex @samp{-O2} option, x86-64
505@cindex @samp{-Os} option, i386
506@cindex @samp{-Os} option, x86-64
507@item -O0 | -O | -O1 | -O2 | -Os
508Optimize instruction encoding with smaller instruction size. @samp{-O}
509and @samp{-O1} encode 64-bit register load instructions with 64-bit
510immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 511immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
512register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
513register clearing instructions with 128-bit VEX vector register
514clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 515register load/store instructions with VEX vector register load/store
a0a1771e
JB
516instructions, and encode 128-bit/256-bit EVEX packed integer logical
517instructions with 128-bit/256-bit VEX packed integer logical.
518
519@samp{-O2} includes @samp{-O1} optimization plus encodes
520256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
521EVEX vector register clearing instructions. In 64-bit mode VEX encoded
522instructions with commutative source operands will also have their
523source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
524instead of the 3-byte one. Certain forms of AND as well as OR with the
525same (register) operand specified twice will also be changed to TEST.
a0a1771e 526
b6f8c7c4
L
527@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
528and 64-bit register tests with immediate as 8-bit register test with
529immediate. @samp{-O0} turns off this optimization.
530
55b62671 531@end table
731caf76 532@c man end
e413e4e9 533
a6c24e68
NC
534@node i386-Directives
535@section x86 specific Directives
536
537@cindex machine directives, x86
538@cindex x86 machine directives
539@table @code
540
541@cindex @code{lcomm} directive, COFF
542@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
543Reserve @var{length} (an absolute expression) bytes for a local common
544denoted by @var{symbol}. The section and value of @var{symbol} are
545those of the new local common. The addresses are allocated in the bss
704209c0
NC
546section, so that at run-time the bytes start off zeroed. Since
547@var{symbol} is not declared global, it is normally not visible to
548@code{@value{LD}}. The optional third parameter, @var{alignment},
549specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
550
551This directive is only available for COFF based x86 targets.
552
102e9361
NC
553@cindex @code{largecomm} directive, ELF
554@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
555This directive behaves in the same way as the @code{comm} directive
556except that the data is placed into the @var{.lbss} section instead of
557the @var{.bss} section @ref{Comm}.
558
559The directive is intended to be used for data which requires a large
560amount of space, and it is only available for ELF based x86_64
561targets.
562
f2f51cd5
NC
563@cindex @code{value} directive
564@item .value @var{expression} [, @var{expression}]
565This directive behaves in the same way as the @code{.short} directive,
566taking a series of comma separated expressions and storing them as
567two-byte wide values into the current section.
568
a6c24e68 569@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
570
571@end table
572
252b5132 573@node i386-Syntax
7c31ae13
NC
574@section i386 Syntactical Considerations
575@menu
576* i386-Variations:: AT&T Syntax versus Intel Syntax
577* i386-Chars:: Special Characters
578@end menu
579
580@node i386-Variations
581@subsection AT&T Syntax versus Intel Syntax
252b5132 582
e413e4e9
AM
583@cindex i386 intel_syntax pseudo op
584@cindex intel_syntax pseudo op, i386
585@cindex i386 att_syntax pseudo op
586@cindex att_syntax pseudo op, i386
252b5132
RH
587@cindex i386 syntax compatibility
588@cindex syntax compatibility, i386
55b62671
AJ
589@cindex x86-64 intel_syntax pseudo op
590@cindex intel_syntax pseudo op, x86-64
591@cindex x86-64 att_syntax pseudo op
592@cindex att_syntax pseudo op, x86-64
593@cindex x86-64 syntax compatibility
594@cindex syntax compatibility, x86-64
e413e4e9
AM
595
596@code{@value{AS}} now supports assembly using Intel assembler syntax.
597@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
598back to the usual AT&T mode for compatibility with the output of
599@code{@value{GCC}}. Either of these directives may have an optional
600argument, @code{prefix}, or @code{noprefix} specifying whether registers
601require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
602different from Intel syntax. We mention these differences because
603almost all 80386 documents use Intel syntax. Notable differences
604between the two syntaxes are:
605
606@cindex immediate operands, i386
607@cindex i386 immediate operands
608@cindex register operands, i386
609@cindex i386 register operands
610@cindex jump/call operands, i386
611@cindex i386 jump/call operands
612@cindex operand delimiters, i386
55b62671
AJ
613
614@cindex immediate operands, x86-64
615@cindex x86-64 immediate operands
616@cindex register operands, x86-64
617@cindex x86-64 register operands
618@cindex jump/call operands, x86-64
619@cindex x86-64 jump/call operands
620@cindex operand delimiters, x86-64
252b5132
RH
621@itemize @bullet
622@item
623AT&T immediate operands are preceded by @samp{$}; Intel immediate
624operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
625AT&T register operands are preceded by @samp{%}; Intel register operands
626are undelimited. AT&T absolute (as opposed to PC relative) jump/call
627operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
628
629@cindex i386 source, destination operands
630@cindex source, destination operands; i386
55b62671
AJ
631@cindex x86-64 source, destination operands
632@cindex source, destination operands; x86-64
252b5132
RH
633@item
634AT&T and Intel syntax use the opposite order for source and destination
635operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
636@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
637previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
638instructions with 2 immediate operands, such as the @samp{enter}
639instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
640
641@cindex mnemonic suffixes, i386
642@cindex sizes operands, i386
643@cindex i386 size suffixes
55b62671
AJ
644@cindex mnemonic suffixes, x86-64
645@cindex sizes operands, x86-64
646@cindex x86-64 size suffixes
252b5132
RH
647@item
648In AT&T syntax the size of memory operands is determined from the last
649character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 650@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
651(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
652of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
653(256-bit vector) and zmm (512-bit vector) memory references, only when there's
654no other way to disambiguate an instruction. Intel syntax accomplishes this by
655prefixing memory operands (@emph{not} the instruction mnemonics) with
656@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
657@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
658syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
659syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
660@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 661
4b06377f
L
662In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
663instruction with the 64-bit displacement or immediate operand.
664
252b5132
RH
665@cindex return instructions, i386
666@cindex i386 jump, call, return
55b62671
AJ
667@cindex return instructions, x86-64
668@cindex x86-64 jump, call, return
252b5132
RH
669@item
670Immediate form long jumps and calls are
671@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
672Intel syntax is
673@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
674instruction
675is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
676@samp{ret far @var{stack-adjust}}.
677
678@cindex sections, i386
679@cindex i386 sections
55b62671
AJ
680@cindex sections, x86-64
681@cindex x86-64 sections
252b5132
RH
682@item
683The AT&T assembler does not provide support for multiple section
684programs. Unix style systems expect all programs to be single sections.
685@end itemize
686
7c31ae13
NC
687@node i386-Chars
688@subsection Special Characters
689
690@cindex line comment character, i386
691@cindex i386 line comment character
692The presence of a @samp{#} appearing anywhere on a line indicates the
693start of a comment that extends to the end of that line.
694
695If a @samp{#} appears as the first character of a line then the whole
696line is treated as a comment, but in this case the line can also be a
697logical line number directive (@pxref{Comments}) or a preprocessor
698control command (@pxref{Preprocessing}).
699
a05a5b64 700If the @option{--divide} command-line option has not been specified
7c31ae13
NC
701then the @samp{/} character appearing anywhere on a line also
702introduces a line comment.
703
704@cindex line separator, i386
705@cindex statement separator, i386
706@cindex i386 line separator
707The @samp{;} character can be used to separate statements on the same
708line.
709
252b5132 710@node i386-Mnemonics
d3b47e2b
L
711@section i386-Mnemonics
712@subsection Instruction Naming
252b5132
RH
713
714@cindex i386 instruction naming
715@cindex instruction naming, i386
55b62671
AJ
716@cindex x86-64 instruction naming
717@cindex instruction naming, x86-64
718
252b5132 719Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
720specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
721and @samp{q} specify byte, word, long and quadruple word operands. If
722no suffix is specified by an instruction then @code{@value{AS}} tries to
723fill in the missing suffix based on the destination register operand
724(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
725to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
726@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
727assembler which assumes that a missing mnemonic suffix implies long
728operand size. (This incompatibility does not affect compiler output
729since compilers always explicitly specify the mnemonic suffix.)
252b5132 730
c006a730
JB
731When there is no sizing suffix and no (suitable) register operands to
732deduce the size of memory operands, with a few exceptions and where long
733operand size is possible in the first place, operand size will default
734to long in 32- and 64-bit modes. Similarly it will default to short in
73516-bit mode. Noteworthy exceptions are
736
737@itemize @bullet
738@item
739Instructions with an implicit on-stack operand as well as branches,
740which default to quad in 64-bit mode.
741
742@item
743Sign- and zero-extending moves, which default to byte size source
744operands.
745
746@item
747Floating point insns with integer operands, which default to short (for
748perhaps historical reasons).
749
750@item
751CRC32 with a 64-bit destination, which defaults to a quad source
752operand.
753
754@end itemize
755
b6169b20
L
756@cindex encoding options, i386
757@cindex encoding options, x86-64
758
86fa6981
L
759Different encoding options can be specified via pseudo prefixes:
760
761@itemize @bullet
762@item
763@samp{@{disp8@}} -- prefer 8-bit displacement.
764
765@item
766@samp{@{disp32@}} -- prefer 32-bit displacement.
767
768@item
769@samp{@{load@}} -- prefer load-form instruction.
770
771@item
772@samp{@{store@}} -- prefer store-form instruction.
773
774@item
42e04b36 775@samp{@{vex@}} -- encode with VEX prefix.
86fa6981
L
776
777@item
42e04b36 778@samp{@{vex3@}} -- encode with 3-byte VEX prefix.
86fa6981
L
779
780@item
781@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
782
783@item
784@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
785instructions (x86-64 only). Note that this differs from the @samp{rex}
786prefix which generates REX prefix unconditionally.
b6f8c7c4
L
787
788@item
789@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 790@end itemize
b6169b20 791
252b5132
RH
792@cindex conversion instructions, i386
793@cindex i386 conversion instructions
55b62671
AJ
794@cindex conversion instructions, x86-64
795@cindex x86-64 conversion instructions
252b5132
RH
796The Intel-syntax conversion instructions
797
798@itemize @bullet
799@item
800@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
801
802@item
803@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
804
805@item
806@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
807
808@item
809@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
810
811@item
812@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
813(x86-64 only),
814
815@item
d5f0cf92 816@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 817@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
818@end itemize
819
820@noindent
55b62671
AJ
821are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
822@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
823instructions.
252b5132 824
0e6724de
L
825@cindex extension instructions, i386
826@cindex i386 extension instructions
827@cindex extension instructions, x86-64
828@cindex x86-64 extension instructions
829The Intel-syntax extension instructions
830
831@itemize @bullet
832@item
833@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
834
835@item
836@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
837
838@item
839@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
840(x86-64 only).
841
842@item
843@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
844
845@item
846@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
847(x86-64 only).
848
849@item
850@samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
851(x86-64 only).
852
853@item
854@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
855
856@item
857@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
858
859@item
860@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
861(x86-64 only).
862
863@item
864@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
865
866@item
867@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
868(x86-64 only).
869@end itemize
870
871@noindent
872are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
873@samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
874@samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
875@samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
876@samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
877
252b5132
RH
878@cindex jump instructions, i386
879@cindex call instructions, i386
55b62671
AJ
880@cindex jump instructions, x86-64
881@cindex call instructions, x86-64
252b5132
RH
882Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
883AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
884convention.
885
d3b47e2b 886@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
887
888@cindex i386 mnemonic compatibility
889@cindex mnemonic compatibility, i386
890
891@code{@value{AS}} supports assembly using Intel mnemonic.
892@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
893@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
894syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
895Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
896@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
897@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
898assembler with different mnemonics from those in Intel IA32 specification.
899@code{@value{GCC}} generates those instructions with AT&T mnemonic.
900
bc31405e
L
901@itemize @bullet
902@item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
903register. @samp{movsxd} should be used to encode 16-bit or 32-bit
904destination register with both AT&T and Intel mnemonics.
905@end itemize
906
252b5132
RH
907@node i386-Regs
908@section Register Naming
909
910@cindex i386 registers
911@cindex registers, i386
55b62671
AJ
912@cindex x86-64 registers
913@cindex registers, x86-64
252b5132
RH
914Register operands are always prefixed with @samp{%}. The 80386 registers
915consist of
916
917@itemize @bullet
918@item
919the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
920@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
921frame pointer), and @samp{%esp} (the stack pointer).
922
923@item
924the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
925@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
926
927@item
928the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
929@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
930are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
931@samp{%cx}, and @samp{%dx})
932
933@item
934the 6 section registers @samp{%cs} (code section), @samp{%ds}
935(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
936and @samp{%gs}.
937
938@item
4bde3cdd
UD
939the 5 processor control registers @samp{%cr0}, @samp{%cr2},
940@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
941
942@item
943the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
944@samp{%db3}, @samp{%db6}, and @samp{%db7}.
945
946@item
947the 2 test registers @samp{%tr6} and @samp{%tr7}.
948
949@item
950the 8 floating point register stack @samp{%st} or equivalently
951@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
952@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
953These registers are overloaded by 8 MMX registers @samp{%mm0},
954@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
955@samp{%mm6} and @samp{%mm7}.
956
957@item
4bde3cdd 958the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
959@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
960@end itemize
961
962The AMD x86-64 architecture extends the register set by:
963
964@itemize @bullet
965@item
966enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
967accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
968@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
969pointer)
970
971@item
972the 8 extended registers @samp{%r8}--@samp{%r15}.
973
974@item
4bde3cdd 975the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
976
977@item
4bde3cdd 978the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
979
980@item
4bde3cdd 981the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
982
983@item
984the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
985
986@item
987the 8 debug registers: @samp{%db8}--@samp{%db15}.
988
989@item
4bde3cdd
UD
990the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
991@end itemize
992
993With the AVX extensions more registers were made available:
994
995@itemize @bullet
996
997@item
998the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
999available in 32-bit mode). The bottom 128 bits are overlaid with the
1000@samp{xmm0}--@samp{xmm15} registers.
1001
1002@end itemize
1003
1004The AVX2 extensions made in 64-bit mode more registers available:
1005
1006@itemize @bullet
1007
1008@item
1009the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
1010registers @samp{%ymm16}--@samp{%ymm31}.
1011
1012@end itemize
1013
1014The AVX512 extensions added the following registers:
1015
1016@itemize @bullet
1017
1018@item
1019the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1020available in 32-bit mode). The bottom 128 bits are overlaid with the
1021@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1022overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1023
1024@item
1025the 8 mask registers @samp{%k0}--@samp{%k7}.
1026
252b5132
RH
1027@end itemize
1028
1029@node i386-Prefixes
1030@section Instruction Prefixes
1031
1032@cindex i386 instruction prefixes
1033@cindex instruction prefixes, i386
1034@cindex prefixes, i386
1035Instruction prefixes are used to modify the following instruction. They
1036are used to repeat string instructions, to provide section overrides, to
1037perform bus lock operations, and to change operand and address sizes.
1038(Most instructions that normally operate on 32-bit operands will use
103916-bit operands if the instruction has an ``operand size'' prefix.)
1040Instruction prefixes are best written on the same line as the instruction
1041they act upon. For example, the @samp{scas} (scan string) instruction is
1042repeated with:
1043
1044@smallexample
1045 repne scas %es:(%edi),%al
1046@end smallexample
1047
1048You may also place prefixes on the lines immediately preceding the
1049instruction, but this circumvents checks that @code{@value{AS}} does
1050with prefixes, and will not work with all prefixes.
1051
1052Here is a list of instruction prefixes:
1053
1054@cindex section override prefixes, i386
1055@itemize @bullet
1056@item
1057Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1058@samp{fs}, @samp{gs}. These are automatically added by specifying
1059using the @var{section}:@var{memory-operand} form for memory references.
1060
1061@cindex size prefixes, i386
1062@item
1063Operand/Address size prefixes @samp{data16} and @samp{addr16}
1064change 32-bit operands/addresses into 16-bit operands/addresses,
1065while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1066@code{.code16} section) into 32-bit operands/addresses. These prefixes
1067@emph{must} appear on the same line of code as the instruction they
1068modify. For example, in a 16-bit @code{.code16} section, you might
1069write:
1070
1071@smallexample
1072 addr32 jmpl *(%ebx)
1073@end smallexample
1074
1075@cindex bus lock prefixes, i386
1076@cindex inhibiting interrupts, i386
1077@item
1078The bus lock prefix @samp{lock} inhibits interrupts during execution of
1079the instruction it precedes. (This is only valid with certain
1080instructions; see a 80386 manual for details).
1081
1082@cindex coprocessor wait, i386
1083@item
1084The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1085complete the current instruction. This should never be needed for the
108680386/80387 combination.
1087
1088@cindex repeat prefixes, i386
1089@item
1090The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1091to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1092times if the current address size is 16-bits).
55b62671
AJ
1093@cindex REX prefixes, i386
1094@item
1095The @samp{rex} family of prefixes is used by x86-64 to encode
1096extensions to i386 instruction set. The @samp{rex} prefix has four
1097bits --- an operand size overwrite (@code{64}) used to change operand size
1098from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1099register set.
1100
1101You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1102instruction emits @samp{rex} prefix with all the bits set. By omitting
1103the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1104prefixes as well. Normally, there is no need to write the prefixes
1105explicitly, since gas will automatically generate them based on the
1106instruction operands.
252b5132
RH
1107@end itemize
1108
1109@node i386-Memory
1110@section Memory References
1111
1112@cindex i386 memory references
1113@cindex memory references, i386
55b62671
AJ
1114@cindex x86-64 memory references
1115@cindex memory references, x86-64
252b5132
RH
1116An Intel syntax indirect memory reference of the form
1117
1118@smallexample
1119@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1120@end smallexample
1121
1122@noindent
1123is translated into the AT&T syntax
1124
1125@smallexample
1126@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1127@end smallexample
1128
1129@noindent
1130where @var{base} and @var{index} are the optional 32-bit base and
1131index registers, @var{disp} is the optional displacement, and
1132@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1133to calculate the address of the operand. If no @var{scale} is
1134specified, @var{scale} is taken to be 1. @var{section} specifies the
1135optional section register for the memory operand, and may override the
1136default section register (see a 80386 manual for section register
1137defaults). Note that section overrides in AT&T syntax @emph{must}
1138be preceded by a @samp{%}. If you specify a section override which
1139coincides with the default section register, @code{@value{AS}} does @emph{not}
1140output any section register override prefixes to assemble the given
1141instruction. Thus, section overrides can be specified to emphasize which
1142section register is used for a given memory operand.
1143
1144Here are some examples of Intel and AT&T style memory references:
1145
1146@table @asis
1147@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1148@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1149missing, and the default section is used (@samp{%ss} for addressing with
1150@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1151
1152@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1153@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1154@samp{foo}. All other fields are missing. The section register here
1155defaults to @samp{%ds}.
1156
1157@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1158This uses the value pointed to by @samp{foo} as a memory operand.
1159Note that @var{base} and @var{index} are both missing, but there is only
1160@emph{one} @samp{,}. This is a syntactic exception.
1161
1162@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1163This selects the contents of the variable @samp{foo} with section
1164register @var{section} being @samp{%gs}.
1165@end table
1166
1167Absolute (as opposed to PC relative) call and jump operands must be
1168prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1169always chooses PC relative addressing for jump/call labels.
1170
1171Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1172@emph{must} specify its size (byte, word, long, or quadruple) with an
1173instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1174respectively).
1175
1176The x86-64 architecture adds an RIP (instruction pointer relative)
1177addressing. This addressing mode is specified by using @samp{rip} as a
1178base register. Only constant offsets are valid. For example:
1179
1180@table @asis
1181@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1182Points to the address 1234 bytes past the end of the current
1183instruction.
1184
1185@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1186Points to the @code{symbol} in RIP relative way, this is shorter than
1187the default absolute addressing.
1188@end table
1189
1190Other addressing modes remain unchanged in x86-64 architecture, except
1191registers used are 64-bit instead of 32-bit.
252b5132 1192
fddf5b5b 1193@node i386-Jumps
252b5132
RH
1194@section Handling of Jump Instructions
1195
1196@cindex jump optimization, i386
1197@cindex i386 jump optimization
55b62671
AJ
1198@cindex jump optimization, x86-64
1199@cindex x86-64 jump optimization
252b5132
RH
1200Jump instructions are always optimized to use the smallest possible
1201displacements. This is accomplished by using byte (8-bit) displacement
1202jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1203is insufficient a long displacement is used. We do not support
252b5132
RH
1204word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1205instruction with the @samp{data16} instruction prefix), since the 80386
1206insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1207is added. (See also @pxref{i386-Arch})
252b5132
RH
1208
1209Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1210@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1211displacements, so that if you use these instructions (@code{@value{GCC}} does
1212not use them) you may get an error message (and incorrect code). The AT&T
121380386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1214to
1215
1216@smallexample
1217 jcxz cx_zero
1218 jmp cx_nonzero
1219cx_zero: jmp foo
1220cx_nonzero:
1221@end smallexample
1222
1223@node i386-Float
1224@section Floating Point
1225
1226@cindex i386 floating point
1227@cindex floating point, i386
55b62671
AJ
1228@cindex x86-64 floating point
1229@cindex floating point, x86-64
252b5132
RH
1230All 80387 floating point types except packed BCD are supported.
1231(BCD support may be added without much difficulty). These data
1232types are 16-, 32-, and 64- bit integers, and single (32-bit),
1233double (64-bit), and extended (80-bit) precision floating point.
1234Each supported type has an instruction mnemonic suffix and a constructor
1235associated with it. Instruction mnemonic suffixes specify the operand's
1236data type. Constructors build these data types into memory.
1237
1238@cindex @code{float} directive, i386
1239@cindex @code{single} directive, i386
1240@cindex @code{double} directive, i386
1241@cindex @code{tfloat} directive, i386
55b62671
AJ
1242@cindex @code{float} directive, x86-64
1243@cindex @code{single} directive, x86-64
1244@cindex @code{double} directive, x86-64
1245@cindex @code{tfloat} directive, x86-64
252b5132
RH
1246@itemize @bullet
1247@item
1248Floating point constructors are @samp{.float} or @samp{.single},
1249@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1250These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1251and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1252only supports this format via the @samp{fldt} (load 80-bit real to stack
1253top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1254
1255@cindex @code{word} directive, i386
1256@cindex @code{long} directive, i386
1257@cindex @code{int} directive, i386
1258@cindex @code{quad} directive, i386
55b62671
AJ
1259@cindex @code{word} directive, x86-64
1260@cindex @code{long} directive, x86-64
1261@cindex @code{int} directive, x86-64
1262@cindex @code{quad} directive, x86-64
252b5132
RH
1263@item
1264Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1265@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1266corresponding instruction mnemonic suffixes are @samp{s} (single),
1267@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1268the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1269quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1270stack) instructions.
1271@end itemize
1272
1273Register to register operations should not use instruction mnemonic suffixes.
1274@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1275wrote @samp{fst %st, %st(1)}, since all register to register operations
1276use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1277which converts @samp{%st} from 80-bit to 64-bit floating point format,
1278then stores the result in the 4 byte location @samp{mem})
1279
1280@node i386-SIMD
1281@section Intel's MMX and AMD's 3DNow! SIMD Operations
1282
1283@cindex MMX, i386
1284@cindex 3DNow!, i386
1285@cindex SIMD, i386
55b62671
AJ
1286@cindex MMX, x86-64
1287@cindex 3DNow!, x86-64
1288@cindex SIMD, x86-64
252b5132
RH
1289
1290@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1291instructions for integer data), available on Intel's Pentium MMX
1292processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1293Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1294instruction set (SIMD instructions for 32-bit floating point data)
1295available on AMD's K6-2 processor and possibly others in the future.
1296
1297Currently, @code{@value{AS}} does not support Intel's floating point
1298SIMD, Katmai (KNI).
1299
1300The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1301@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
130216-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1303floating point values. The MMX registers cannot be used at the same time
1304as the floating point stack.
1305
1306See Intel and AMD documentation, keeping in mind that the operand order in
1307instructions is reversed from the Intel syntax.
1308
f88c9eb0
SP
1309@node i386-LWP
1310@section AMD's Lightweight Profiling Instructions
1311
1312@cindex LWP, i386
1313@cindex LWP, x86-64
1314
1315@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1316instruction set, available on AMD's Family 15h (Orochi) processors.
1317
1318LWP enables applications to collect and manage performance data, and
1319react to performance events. The collection of performance data
1320requires no context switches. LWP runs in the context of a thread and
1321so several counters can be used independently across multiple threads.
1322LWP can be used in both 64-bit and legacy 32-bit modes.
1323
1324For detailed information on the LWP instruction set, see the
1325@cite{AMD Lightweight Profiling Specification} available at
1326@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1327
87973e9f
QN
1328@node i386-BMI
1329@section Bit Manipulation Instructions
1330
1331@cindex BMI, i386
1332@cindex BMI, x86-64
1333
1334@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1335
1336BMI instructions provide several instructions implementing individual
1337bit manipulation operations such as isolation, masking, setting, or
34bca508 1338resetting.
87973e9f
QN
1339
1340@c Need to add a specification citation here when available.
1341
2a2a0f38
QN
1342@node i386-TBM
1343@section AMD's Trailing Bit Manipulation Instructions
1344
1345@cindex TBM, i386
1346@cindex TBM, x86-64
1347
1348@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1349instruction set, available on AMD's BDVER2 processors (Trinity and
1350Viperfish).
1351
1352TBM instructions provide instructions implementing individual bit
1353manipulation operations such as isolating, masking, setting, resetting,
1354complementing, and operations on trailing zeros and ones.
1355
1356@c Need to add a specification citation here when available.
87973e9f 1357
252b5132
RH
1358@node i386-16bit
1359@section Writing 16-bit Code
1360
1361@cindex i386 16-bit code
1362@cindex 16-bit code, i386
1363@cindex real-mode code, i386
eecb386c 1364@cindex @code{code16gcc} directive, i386
252b5132
RH
1365@cindex @code{code16} directive, i386
1366@cindex @code{code32} directive, i386
55b62671
AJ
1367@cindex @code{code64} directive, i386
1368@cindex @code{code64} directive, x86-64
1369While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1370or 64-bit x86-64 code depending on the default configuration,
252b5132 1371it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1372mode code segments. To do this, put a @samp{.code16} or
1373@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1374be run in 16-bit mode. You can switch @code{@value{AS}} to writing
137532-bit code with the @samp{.code32} directive or 64-bit code with the
1376@samp{.code64} directive.
eecb386c
AM
1377
1378@samp{.code16gcc} provides experimental support for generating 16-bit
1379code from gcc, and differs from @samp{.code16} in that @samp{call},
1380@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1381@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1382default to 32-bit size. This is so that the stack pointer is
1383manipulated in the same way over function calls, allowing access to
1384function parameters at the same stack offsets as in 32-bit mode.
1385@samp{.code16gcc} also automatically adds address size prefixes where
1386necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1387
1388The code which @code{@value{AS}} generates in 16-bit mode will not
1389necessarily run on a 16-bit pre-80386 processor. To write code that
1390runs on such a processor, you must refrain from using @emph{any} 32-bit
1391constructs which require @code{@value{AS}} to output address or operand
1392size prefixes.
1393
1394Note that writing 16-bit code instructions by explicitly specifying a
1395prefix or an instruction mnemonic suffix within a 32-bit code section
1396generates different machine instructions than those generated for a
139716-bit code segment. In a 32-bit code section, the following code
1398generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1399value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1400
1401@smallexample
1402 pushw $4
1403@end smallexample
1404
1405The same code in a 16-bit code section would generate the machine
b45619c0 1406opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1407is correct since the processor default operand size is assumed to be 16
1408bits in a 16-bit code section.
1409
e413e4e9
AM
1410@node i386-Arch
1411@section Specifying CPU Architecture
1412
1413@cindex arch directive, i386
1414@cindex i386 arch directive
55b62671
AJ
1415@cindex arch directive, x86-64
1416@cindex x86-64 arch directive
e413e4e9
AM
1417
1418@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1419(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1420directive enables a warning when gas detects an instruction that is not
1421supported on the CPU specified. The choices for @var{cpu_type} are:
1422
1423@multitable @columnfractions .20 .20 .20 .20
1424@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1425@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1426@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1427@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1428@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1429@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1430@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1431@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1432@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1433@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
272a84b1 1434@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
d76f7bc1 1435@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1436@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1437@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1438@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1439@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
272a84b1
L
1440@item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1441@item @samp{.hle}
e2e1fcde 1442@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1443@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1444@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1445@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1446@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1447@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1448@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1449@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
d777820b 1450@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1451@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1452@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
5d79adc4 1453@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1ceab344 1454@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
272a84b1 1455@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
60aa667e 1456@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
142861df 1457@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
a847e322 1458@item @samp{.mcommit} @tab @samp{.sev_es}
e413e4e9
AM
1459@end multitable
1460
fddf5b5b
AM
1461Apart from the warning, there are only two other effects on
1462@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1463@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1464will automatically use a two byte opcode sequence. The larger three
1465byte opcode sequence is used on the 486 (and when no architecture is
1466specified) because it executes faster on the 486. Note that you can
1467explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1468Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1469@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1470conditional jumps will be promoted when necessary to a two instruction
1471sequence consisting of a conditional jump of the opposite sense around
1472an unconditional jump to the target.
1473
5c6af06e
JB
1474Following the CPU architecture (but not a sub-architecture, which are those
1475starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1476control automatic promotion of conditional jumps. @samp{jumps} is the
1477default, and enables jump promotion; All external jumps will be of the long
1478variety, and file-local jumps will be promoted as necessary.
1479(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1480byte offset jumps, and warns about file-local conditional jumps that
1481@code{@value{AS}} promotes.
fddf5b5b
AM
1482Unconditional jumps are treated as for @samp{jumps}.
1483
1484For example
1485
1486@smallexample
1487 .arch i8086,nojumps
1488@end smallexample
e413e4e9 1489
bc31405e
L
1490@node i386-ISA
1491@section AMD64 ISA vs. Intel64 ISA
1492
1493There are some discrepancies between AMD64 and Intel64 ISAs.
1494
1495@itemize @bullet
1496@item For @samp{movsxd} with 16-bit destination register, AMD64
1497supports 32-bit source operand and Intel64 supports 16-bit source
1498operand.
5990e377
JB
1499
1500@item For far branches (with explicit memory operand), both ISAs support
150132- and 16-bit operand size. Intel64 additionally supports 64-bit
1502operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1503and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1504syntax.
1505
1506@item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1507and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1508while Intel64 additionally supports 64-bit operand sise (80-bit memory
1509operands).
1510
bc31405e
L
1511@end itemize
1512
5c9352f3
AM
1513@node i386-Bugs
1514@section AT&T Syntax bugs
1515
1516The UnixWare assembler, and probably other AT&T derived ix86 Unix
1517assemblers, generate floating point instructions with reversed source
1518and destination registers in certain cases. Unfortunately, gcc and
1519possibly many other programs use this reversed syntax, so we're stuck
1520with it.
1521
1522For example
1523
1524@smallexample
1525 fsub %st,%st(3)
1526@end smallexample
1527@noindent
1528results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1529than the expected @samp{%st(3) - %st}. This happens with all the
1530non-commutative arithmetic floating point operations with two register
1531operands where the source register is @samp{%st} and the destination
1532register is @samp{%st(i)}.
1533
252b5132
RH
1534@node i386-Notes
1535@section Notes
1536
1537@cindex i386 @code{mul}, @code{imul} instructions
1538@cindex @code{mul} instruction, i386
1539@cindex @code{imul} instruction, i386
55b62671
AJ
1540@cindex @code{mul} instruction, x86-64
1541@cindex @code{imul} instruction, x86-64
252b5132 1542There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1543instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1544multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1545for @samp{imul}) can be output only in the one operand form. Thus,
1546@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1547the expanding multiply would clobber the @samp{%edx} register, and this
1548would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
154964-bit product in @samp{%edx:%eax}.
1550
1551We have added a two operand form of @samp{imul} when the first operand
1552is an immediate mode expression and the second operand is a register.
1553This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1554example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1555$69, %eax, %eax}.
1556
This page took 1.306 seconds and 4 git commands to generate.