x86: Add -mvexwig=[0|1] option to assembler
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
219d1afa 1@c Copyright (C) 1991-2018 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
f9233288
JW
77as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
79
80@cindex @samp{--divide} option, i386
81@item --divide
82On SVR4-derived platforms, the character @samp{/} is treated as a comment
83character, which means that it cannot be used in expressions. The
84@samp{--divide} option turns @samp{/} into a normal character. This does
85not disable @samp{/} at the beginning of a line starting a comment, or
86affect using @samp{#} for starting a comment.
87
9103f4f4
L
88@cindex @samp{-march=} option, i386
89@cindex @samp{-march=} option, x86-64
6305a203
L
90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91This option specifies the target processor. The assembler will
92issue an error message if an attempt is made to assemble an instruction
93which will not execute on the target processor. The following
34bca508 94processor names are recognized:
9103f4f4
L
95@code{i8086},
96@code{i186},
97@code{i286},
98@code{i386},
99@code{i486},
100@code{i586},
101@code{i686},
102@code{pentium},
103@code{pentiumpro},
104@code{pentiumii},
105@code{pentiumiii},
106@code{pentium4},
107@code{prescott},
108@code{nocona},
ef05d495
L
109@code{core},
110@code{core2},
bd5295b2 111@code{corei7},
8a9036a4 112@code{l1om},
7a9068fe 113@code{k1om},
81486035 114@code{iamcu},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
c7b0bd56 124@code{bdver4},
029f3522 125@code{znver1},
a9660a6f 126@code{znver2},
7b458c12
L
127@code{btver1},
128@code{btver2},
9103f4f4
L
129@code{generic32} and
130@code{generic64}.
131
34bca508 132In addition to the basic instruction set, the assembler can be told to
6305a203
L
133accept various extension mnemonics. For example,
134@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135@var{vmx}. The following extensions are currently supported:
309d3373
JB
136@code{8087},
137@code{287},
138@code{387},
1848e567 139@code{687},
309d3373 140@code{no87},
1848e567
L
141@code{no287},
142@code{no387},
143@code{no687},
d871f3f4
L
144@code{cmov},
145@code{nocmov},
146@code{fxsr},
147@code{nofxsr},
6305a203 148@code{mmx},
309d3373 149@code{nommx},
6305a203
L
150@code{sse},
151@code{sse2},
152@code{sse3},
153@code{ssse3},
154@code{sse4.1},
155@code{sse4.2},
156@code{sse4},
309d3373 157@code{nosse},
1848e567
L
158@code{nosse2},
159@code{nosse3},
160@code{nossse3},
161@code{nosse4.1},
162@code{nosse4.2},
163@code{nosse4},
c0f3af97 164@code{avx},
6c30d220 165@code{avx2},
1848e567
L
166@code{noavx},
167@code{noavx2},
e2e1fcde
L
168@code{adx},
169@code{rdseed},
170@code{prfchw},
5c111e37 171@code{smap},
7e8b059b 172@code{mpx},
a0046408 173@code{sha},
8bc52696 174@code{rdpid},
6b40c462 175@code{ptwrite},
603555e5 176@code{cet},
48521003 177@code{gfni},
8dcf1fad 178@code{vaes},
ff1982d5 179@code{vpclmulqdq},
1dfc6506
L
180@code{prefetchwt1},
181@code{clflushopt},
182@code{se1},
c5e7287a 183@code{clwb},
c0a30a9f
L
184@code{movdiri},
185@code{movdir64b},
43234a1e
L
186@code{avx512f},
187@code{avx512cd},
188@code{avx512er},
189@code{avx512pf},
1dfc6506
L
190@code{avx512vl},
191@code{avx512bw},
192@code{avx512dq},
2cc1b5aa 193@code{avx512ifma},
14f195c9 194@code{avx512vbmi},
920d2ddc 195@code{avx512_4fmaps},
47acf0bd 196@code{avx512_4vnniw},
620214f7 197@code{avx512_vpopcntdq},
53467f57 198@code{avx512_vbmi2},
8cfcb765 199@code{avx512_vnni},
ee6872be 200@code{avx512_bitalg},
144b71e2
L
201@code{noavx512f},
202@code{noavx512cd},
203@code{noavx512er},
204@code{noavx512pf},
205@code{noavx512vl},
206@code{noavx512bw},
207@code{noavx512dq},
208@code{noavx512ifma},
209@code{noavx512vbmi},
920d2ddc 210@code{noavx512_4fmaps},
47acf0bd 211@code{noavx512_4vnniw},
620214f7 212@code{noavx512_vpopcntdq},
53467f57 213@code{noavx512_vbmi2},
8cfcb765 214@code{noavx512_vnni},
ee6872be 215@code{noavx512_bitalg},
6305a203 216@code{vmx},
8729a6f6 217@code{vmfunc},
6305a203 218@code{smx},
f03fe4c1 219@code{xsave},
c7b8aa3a 220@code{xsaveopt},
1dfc6506
L
221@code{xsavec},
222@code{xsaves},
c0f3af97 223@code{aes},
594ab6a3 224@code{pclmul},
c7b8aa3a
L
225@code{fsgsbase},
226@code{rdrnd},
227@code{f16c},
6c30d220 228@code{bmi2},
c0f3af97 229@code{fma},
f1f8f695
L
230@code{movbe},
231@code{ept},
6c30d220 232@code{lzcnt},
42164a71
L
233@code{hle},
234@code{rtm},
6c30d220 235@code{invpcid},
bd5295b2 236@code{clflush},
9916071f 237@code{mwaitx},
029f3522 238@code{clzero},
3233d7d0 239@code{wbnoinvd},
be3a8dca 240@code{pconfig},
de89d0a3 241@code{waitpkg},
c48935d7 242@code{cldemote},
f88c9eb0 243@code{lwp},
5dd85c99
SP
244@code{fma4},
245@code{xop},
60aa667e 246@code{cx16},
bd5295b2 247@code{syscall},
1b7f3fb0 248@code{rdtscp},
6305a203
L
249@code{3dnow},
250@code{3dnowa},
251@code{sse4a},
252@code{sse5},
253@code{svme},
254@code{abm} and
255@code{padlock}.
309d3373
JB
256Note that rather than extending a basic instruction set, the extension
257mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
258
259When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
260@code{.arch} directive will take precedent.
261
262@cindex @samp{-mtune=} option, i386
263@cindex @samp{-mtune=} option, x86-64
264@item -mtune=@var{CPU}
265This option specifies a processor to optimize for. When used in
266conjunction with the @option{-march} option, only instructions
267of the processor specified by the @option{-march} option will be
268generated.
269
6305a203
L
270Valid @var{CPU} values are identical to the processor list of
271@option{-march=@var{CPU}}.
9103f4f4 272
c0f3af97
L
273@cindex @samp{-msse2avx} option, i386
274@cindex @samp{-msse2avx} option, x86-64
275@item -msse2avx
276This option specifies that the assembler should encode SSE instructions
277with VEX prefix.
278
daf50ae7
L
279@cindex @samp{-msse-check=} option, i386
280@cindex @samp{-msse-check=} option, x86-64
281@item -msse-check=@var{none}
1f9bb1ca
AS
282@itemx -msse-check=@var{warning}
283@itemx -msse-check=@var{error}
9aff4b7a 284These options control if the assembler should check SSE instructions.
daf50ae7
L
285@option{-msse-check=@var{none}} will make the assembler not to check SSE
286instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 287will make the assembler issue a warning for any SSE instruction.
daf50ae7 288@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 289for any SSE instruction.
daf50ae7 290
539f890d
L
291@cindex @samp{-mavxscalar=} option, i386
292@cindex @samp{-mavxscalar=} option, x86-64
293@item -mavxscalar=@var{128}
1f9bb1ca 294@itemx -mavxscalar=@var{256}
2aab8acd 295These options control how the assembler should encode scalar AVX
539f890d
L
296instructions. @option{-mavxscalar=@var{128}} will encode scalar
297AVX instructions with 128bit vector length, which is the default.
298@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
299with 256bit vector length.
300
03751133
L
301@cindex @samp{-mvexwig=} option, i386
302@cindex @samp{-mvexwig=} option, x86-64
303@item -mvexwig=@var{0}
304@itemx -mvexwig=@var{1}
305These options control how the assembler should encode VEX.W-ignored (WIG)
306VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
307instructions with vex.w = 0, which is the default.
308@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
309vex.w = 1.
310
43234a1e
L
311@cindex @samp{-mevexlig=} option, i386
312@cindex @samp{-mevexlig=} option, x86-64
313@item -mevexlig=@var{128}
314@itemx -mevexlig=@var{256}
315@itemx -mevexlig=@var{512}
316These options control how the assembler should encode length-ignored
317(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
318EVEX instructions with 128bit vector length, which is the default.
319@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
320encode LIG EVEX instructions with 256bit and 512bit vector length,
321respectively.
322
323@cindex @samp{-mevexwig=} option, i386
324@cindex @samp{-mevexwig=} option, x86-64
325@item -mevexwig=@var{0}
326@itemx -mevexwig=@var{1}
327These options control how the assembler should encode w-ignored (WIG)
328EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
329EVEX instructions with evex.w = 0, which is the default.
330@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
331evex.w = 1.
332
1efbbeb4
L
333@cindex @samp{-mmnemonic=} option, i386
334@cindex @samp{-mmnemonic=} option, x86-64
335@item -mmnemonic=@var{att}
1f9bb1ca 336@itemx -mmnemonic=@var{intel}
34bca508 337This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
338The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
339take precedent.
340
341@cindex @samp{-msyntax=} option, i386
342@cindex @samp{-msyntax=} option, x86-64
343@item -msyntax=@var{att}
1f9bb1ca 344@itemx -msyntax=@var{intel}
34bca508 345This option specifies instruction syntax when processing instructions.
1efbbeb4
L
346The @code{.att_syntax} and @code{.intel_syntax} directives will
347take precedent.
348
349@cindex @samp{-mnaked-reg} option, i386
350@cindex @samp{-mnaked-reg} option, x86-64
351@item -mnaked-reg
33eaf5de 352This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 353The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 354
7e8b059b
L
355@cindex @samp{-madd-bnd-prefix} option, i386
356@cindex @samp{-madd-bnd-prefix} option, x86-64
357@item -madd-bnd-prefix
358This option forces the assembler to add BND prefix to all branches, even
359if such prefix was not explicitly specified in the source code.
360
8dcea932
L
361@cindex @samp{-mshared} option, i386
362@cindex @samp{-mshared} option, x86-64
363@item -mno-shared
364On ELF target, the assembler normally optimizes out non-PLT relocations
365against defined non-weak global branch targets with default visibility.
366The @samp{-mshared} option tells the assembler to generate code which
367may go into a shared library where all non-weak global branch targets
368with default visibility can be preempted. The resulting code is
369slightly bigger. This option only affects the handling of branch
370instructions.
371
167ad85b
TG
372@cindex @samp{-mbig-obj} option, x86-64
373@item -mbig-obj
374On x86-64 PE/COFF target this option forces the use of big object file
375format, which allows more than 32768 sections.
376
d022bddd
IT
377@cindex @samp{-momit-lock-prefix=} option, i386
378@cindex @samp{-momit-lock-prefix=} option, x86-64
379@item -momit-lock-prefix=@var{no}
380@itemx -momit-lock-prefix=@var{yes}
381These options control how the assembler should encode lock prefix.
382This option is intended as a workaround for processors, that fail on
383lock prefix. This option can only be safely used with single-core,
384single-thread computers
385@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
386@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
387which is the default.
388
e4e00185
AS
389@cindex @samp{-mfence-as-lock-add=} option, i386
390@cindex @samp{-mfence-as-lock-add=} option, x86-64
391@item -mfence-as-lock-add=@var{no}
392@itemx -mfence-as-lock-add=@var{yes}
393These options control how the assembler should encode lfence, mfence and
394sfence.
395@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
396sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
397@samp{lock addl $0x0, (%esp)} in 32-bit mode.
398@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
399sfence as usual, which is the default.
400
0cb4071e
L
401@cindex @samp{-mrelax-relocations=} option, i386
402@cindex @samp{-mrelax-relocations=} option, x86-64
403@item -mrelax-relocations=@var{no}
404@itemx -mrelax-relocations=@var{yes}
405These options control whether the assembler should generate relax
406relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
407R_X86_64_REX_GOTPCRELX, in 64-bit mode.
408@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
409@option{-mrelax-relocations=@var{no}} will not generate relax
410relocations. The default can be controlled by a configure option
411@option{--enable-x86-relax-relocations}.
412
b4a3a7b4
L
413@cindex @samp{-mx86-used-note=} option, i386
414@cindex @samp{-mx86-used-note=} option, x86-64
415@item -mx86-used-note=@var{no}
416@itemx -mx86-used-note=@var{yes}
417These options control whether the assembler should generate
418GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
419GNU property notes. The default can be controlled by the
420@option{--enable-x86-used-note} configure option.
421
d3d3c6db
IT
422@cindex @samp{-mevexrcig=} option, i386
423@cindex @samp{-mevexrcig=} option, x86-64
424@item -mevexrcig=@var{rne}
425@itemx -mevexrcig=@var{rd}
426@itemx -mevexrcig=@var{ru}
427@itemx -mevexrcig=@var{rz}
428These options control how the assembler should encode SAE-only
429EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
430of EVEX instruction with 00, which is the default.
431@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
432and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
433with 01, 10 and 11 RC bits, respectively.
434
5db04b09
L
435@cindex @samp{-mamd64} option, x86-64
436@cindex @samp{-mintel64} option, x86-64
437@item -mamd64
438@itemx -mintel64
439This option specifies that the assembler should accept only AMD64 or
440Intel64 ISA in 64-bit mode. The default is to accept both.
441
b6f8c7c4
L
442@cindex @samp{-O0} option, i386
443@cindex @samp{-O0} option, x86-64
444@cindex @samp{-O} option, i386
445@cindex @samp{-O} option, x86-64
446@cindex @samp{-O1} option, i386
447@cindex @samp{-O1} option, x86-64
448@cindex @samp{-O2} option, i386
449@cindex @samp{-O2} option, x86-64
450@cindex @samp{-Os} option, i386
451@cindex @samp{-Os} option, x86-64
452@item -O0 | -O | -O1 | -O2 | -Os
453Optimize instruction encoding with smaller instruction size. @samp{-O}
454and @samp{-O1} encode 64-bit register load instructions with 64-bit
455immediate as 32-bit register load instructions with 31-bit or 32-bits
456immediates and encode 64-bit register clearing instructions with 32-bit
457register clearing instructions. @samp{-O2} includes @samp{-O1}
458optimization plus encodes 256-bit and 512-bit vector register clearing
459instructions with 128-bit vector register clearing instructions.
460@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
461and 64-bit register tests with immediate as 8-bit register test with
462immediate. @samp{-O0} turns off this optimization.
463
55b62671 464@end table
731caf76 465@c man end
e413e4e9 466
a6c24e68
NC
467@node i386-Directives
468@section x86 specific Directives
469
470@cindex machine directives, x86
471@cindex x86 machine directives
472@table @code
473
474@cindex @code{lcomm} directive, COFF
475@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
476Reserve @var{length} (an absolute expression) bytes for a local common
477denoted by @var{symbol}. The section and value of @var{symbol} are
478those of the new local common. The addresses are allocated in the bss
704209c0
NC
479section, so that at run-time the bytes start off zeroed. Since
480@var{symbol} is not declared global, it is normally not visible to
481@code{@value{LD}}. The optional third parameter, @var{alignment},
482specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
483
484This directive is only available for COFF based x86 targets.
485
102e9361
NC
486@cindex @code{largecomm} directive, ELF
487@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
488This directive behaves in the same way as the @code{comm} directive
489except that the data is placed into the @var{.lbss} section instead of
490the @var{.bss} section @ref{Comm}.
491
492The directive is intended to be used for data which requires a large
493amount of space, and it is only available for ELF based x86_64
494targets.
495
a6c24e68 496@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
497
498@end table
499
252b5132 500@node i386-Syntax
7c31ae13
NC
501@section i386 Syntactical Considerations
502@menu
503* i386-Variations:: AT&T Syntax versus Intel Syntax
504* i386-Chars:: Special Characters
505@end menu
506
507@node i386-Variations
508@subsection AT&T Syntax versus Intel Syntax
252b5132 509
e413e4e9
AM
510@cindex i386 intel_syntax pseudo op
511@cindex intel_syntax pseudo op, i386
512@cindex i386 att_syntax pseudo op
513@cindex att_syntax pseudo op, i386
252b5132
RH
514@cindex i386 syntax compatibility
515@cindex syntax compatibility, i386
55b62671
AJ
516@cindex x86-64 intel_syntax pseudo op
517@cindex intel_syntax pseudo op, x86-64
518@cindex x86-64 att_syntax pseudo op
519@cindex att_syntax pseudo op, x86-64
520@cindex x86-64 syntax compatibility
521@cindex syntax compatibility, x86-64
e413e4e9
AM
522
523@code{@value{AS}} now supports assembly using Intel assembler syntax.
524@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
525back to the usual AT&T mode for compatibility with the output of
526@code{@value{GCC}}. Either of these directives may have an optional
527argument, @code{prefix}, or @code{noprefix} specifying whether registers
528require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
529different from Intel syntax. We mention these differences because
530almost all 80386 documents use Intel syntax. Notable differences
531between the two syntaxes are:
532
533@cindex immediate operands, i386
534@cindex i386 immediate operands
535@cindex register operands, i386
536@cindex i386 register operands
537@cindex jump/call operands, i386
538@cindex i386 jump/call operands
539@cindex operand delimiters, i386
55b62671
AJ
540
541@cindex immediate operands, x86-64
542@cindex x86-64 immediate operands
543@cindex register operands, x86-64
544@cindex x86-64 register operands
545@cindex jump/call operands, x86-64
546@cindex x86-64 jump/call operands
547@cindex operand delimiters, x86-64
252b5132
RH
548@itemize @bullet
549@item
550AT&T immediate operands are preceded by @samp{$}; Intel immediate
551operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
552AT&T register operands are preceded by @samp{%}; Intel register operands
553are undelimited. AT&T absolute (as opposed to PC relative) jump/call
554operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
555
556@cindex i386 source, destination operands
557@cindex source, destination operands; i386
55b62671
AJ
558@cindex x86-64 source, destination operands
559@cindex source, destination operands; x86-64
252b5132
RH
560@item
561AT&T and Intel syntax use the opposite order for source and destination
562operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
563@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
564previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
565instructions with 2 immediate operands, such as the @samp{enter}
566instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
567
568@cindex mnemonic suffixes, i386
569@cindex sizes operands, i386
570@cindex i386 size suffixes
55b62671
AJ
571@cindex mnemonic suffixes, x86-64
572@cindex sizes operands, x86-64
573@cindex x86-64 size suffixes
252b5132
RH
574@item
575In AT&T syntax the size of memory operands is determined from the last
576character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
577@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
578(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
579this by prefixing memory operands (@emph{not} the instruction mnemonics) with
580@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
581Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
582syntax.
252b5132 583
4b06377f
L
584In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
585instruction with the 64-bit displacement or immediate operand.
586
252b5132
RH
587@cindex return instructions, i386
588@cindex i386 jump, call, return
55b62671
AJ
589@cindex return instructions, x86-64
590@cindex x86-64 jump, call, return
252b5132
RH
591@item
592Immediate form long jumps and calls are
593@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
594Intel syntax is
595@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
596instruction
597is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
598@samp{ret far @var{stack-adjust}}.
599
600@cindex sections, i386
601@cindex i386 sections
55b62671
AJ
602@cindex sections, x86-64
603@cindex x86-64 sections
252b5132
RH
604@item
605The AT&T assembler does not provide support for multiple section
606programs. Unix style systems expect all programs to be single sections.
607@end itemize
608
7c31ae13
NC
609@node i386-Chars
610@subsection Special Characters
611
612@cindex line comment character, i386
613@cindex i386 line comment character
614The presence of a @samp{#} appearing anywhere on a line indicates the
615start of a comment that extends to the end of that line.
616
617If a @samp{#} appears as the first character of a line then the whole
618line is treated as a comment, but in this case the line can also be a
619logical line number directive (@pxref{Comments}) or a preprocessor
620control command (@pxref{Preprocessing}).
621
a05a5b64 622If the @option{--divide} command-line option has not been specified
7c31ae13
NC
623then the @samp{/} character appearing anywhere on a line also
624introduces a line comment.
625
626@cindex line separator, i386
627@cindex statement separator, i386
628@cindex i386 line separator
629The @samp{;} character can be used to separate statements on the same
630line.
631
252b5132 632@node i386-Mnemonics
d3b47e2b
L
633@section i386-Mnemonics
634@subsection Instruction Naming
252b5132
RH
635
636@cindex i386 instruction naming
637@cindex instruction naming, i386
55b62671
AJ
638@cindex x86-64 instruction naming
639@cindex instruction naming, x86-64
640
252b5132 641Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
642specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
643and @samp{q} specify byte, word, long and quadruple word operands. If
644no suffix is specified by an instruction then @code{@value{AS}} tries to
645fill in the missing suffix based on the destination register operand
646(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
647to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
648@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
649assembler which assumes that a missing mnemonic suffix implies long
650operand size. (This incompatibility does not affect compiler output
651since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
652
653Almost all instructions have the same names in AT&T and Intel format.
654There are a few exceptions. The sign extend and zero extend
655instructions need two sizes to specify them. They need a size to
656sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
657is accomplished by using two instruction mnemonic suffixes in AT&T
658syntax. Base names for sign extend and zero extend are
659@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
660and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
661are tacked on to this base name, the @emph{from} suffix before the
662@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
663``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
664thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
665@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
666@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
667quadruple word).
252b5132 668
b6169b20
L
669@cindex encoding options, i386
670@cindex encoding options, x86-64
671
86fa6981
L
672Different encoding options can be specified via pseudo prefixes:
673
674@itemize @bullet
675@item
676@samp{@{disp8@}} -- prefer 8-bit displacement.
677
678@item
679@samp{@{disp32@}} -- prefer 32-bit displacement.
680
681@item
682@samp{@{load@}} -- prefer load-form instruction.
683
684@item
685@samp{@{store@}} -- prefer store-form instruction.
686
687@item
688@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
689
690@item
691@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
692
693@item
694@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
695
696@item
697@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
698instructions (x86-64 only). Note that this differs from the @samp{rex}
699prefix which generates REX prefix unconditionally.
b6f8c7c4
L
700
701@item
702@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 703@end itemize
b6169b20 704
252b5132
RH
705@cindex conversion instructions, i386
706@cindex i386 conversion instructions
55b62671
AJ
707@cindex conversion instructions, x86-64
708@cindex x86-64 conversion instructions
252b5132
RH
709The Intel-syntax conversion instructions
710
711@itemize @bullet
712@item
713@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
714
715@item
716@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
717
718@item
719@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
720
721@item
722@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
723
724@item
725@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
726(x86-64 only),
727
728@item
d5f0cf92 729@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 730@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
731@end itemize
732
733@noindent
55b62671
AJ
734are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
735@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
736instructions.
252b5132
RH
737
738@cindex jump instructions, i386
739@cindex call instructions, i386
55b62671
AJ
740@cindex jump instructions, x86-64
741@cindex call instructions, x86-64
252b5132
RH
742Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
743AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
744convention.
745
d3b47e2b 746@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
747
748@cindex i386 mnemonic compatibility
749@cindex mnemonic compatibility, i386
750
751@code{@value{AS}} supports assembly using Intel mnemonic.
752@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
753@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
754syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
755Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
756@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
757@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
758assembler with different mnemonics from those in Intel IA32 specification.
759@code{@value{GCC}} generates those instructions with AT&T mnemonic.
760
252b5132
RH
761@node i386-Regs
762@section Register Naming
763
764@cindex i386 registers
765@cindex registers, i386
55b62671
AJ
766@cindex x86-64 registers
767@cindex registers, x86-64
252b5132
RH
768Register operands are always prefixed with @samp{%}. The 80386 registers
769consist of
770
771@itemize @bullet
772@item
773the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
774@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
775frame pointer), and @samp{%esp} (the stack pointer).
776
777@item
778the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
779@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
780
781@item
782the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
783@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
784are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
785@samp{%cx}, and @samp{%dx})
786
787@item
788the 6 section registers @samp{%cs} (code section), @samp{%ds}
789(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
790and @samp{%gs}.
791
792@item
4bde3cdd
UD
793the 5 processor control registers @samp{%cr0}, @samp{%cr2},
794@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
795
796@item
797the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
798@samp{%db3}, @samp{%db6}, and @samp{%db7}.
799
800@item
801the 2 test registers @samp{%tr6} and @samp{%tr7}.
802
803@item
804the 8 floating point register stack @samp{%st} or equivalently
805@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
806@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
807These registers are overloaded by 8 MMX registers @samp{%mm0},
808@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
809@samp{%mm6} and @samp{%mm7}.
810
811@item
4bde3cdd 812the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
813@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
814@end itemize
815
816The AMD x86-64 architecture extends the register set by:
817
818@itemize @bullet
819@item
820enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
821accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
822@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
823pointer)
824
825@item
826the 8 extended registers @samp{%r8}--@samp{%r15}.
827
828@item
4bde3cdd 829the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
830
831@item
4bde3cdd 832the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
833
834@item
4bde3cdd 835the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
836
837@item
838the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
839
840@item
841the 8 debug registers: @samp{%db8}--@samp{%db15}.
842
843@item
4bde3cdd
UD
844the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
845@end itemize
846
847With the AVX extensions more registers were made available:
848
849@itemize @bullet
850
851@item
852the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
853available in 32-bit mode). The bottom 128 bits are overlaid with the
854@samp{xmm0}--@samp{xmm15} registers.
855
856@end itemize
857
858The AVX2 extensions made in 64-bit mode more registers available:
859
860@itemize @bullet
861
862@item
863the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
864registers @samp{%ymm16}--@samp{%ymm31}.
865
866@end itemize
867
868The AVX512 extensions added the following registers:
869
870@itemize @bullet
871
872@item
873the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
874available in 32-bit mode). The bottom 128 bits are overlaid with the
875@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
876overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
877
878@item
879the 8 mask registers @samp{%k0}--@samp{%k7}.
880
252b5132
RH
881@end itemize
882
883@node i386-Prefixes
884@section Instruction Prefixes
885
886@cindex i386 instruction prefixes
887@cindex instruction prefixes, i386
888@cindex prefixes, i386
889Instruction prefixes are used to modify the following instruction. They
890are used to repeat string instructions, to provide section overrides, to
891perform bus lock operations, and to change operand and address sizes.
892(Most instructions that normally operate on 32-bit operands will use
89316-bit operands if the instruction has an ``operand size'' prefix.)
894Instruction prefixes are best written on the same line as the instruction
895they act upon. For example, the @samp{scas} (scan string) instruction is
896repeated with:
897
898@smallexample
899 repne scas %es:(%edi),%al
900@end smallexample
901
902You may also place prefixes on the lines immediately preceding the
903instruction, but this circumvents checks that @code{@value{AS}} does
904with prefixes, and will not work with all prefixes.
905
906Here is a list of instruction prefixes:
907
908@cindex section override prefixes, i386
909@itemize @bullet
910@item
911Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
912@samp{fs}, @samp{gs}. These are automatically added by specifying
913using the @var{section}:@var{memory-operand} form for memory references.
914
915@cindex size prefixes, i386
916@item
917Operand/Address size prefixes @samp{data16} and @samp{addr16}
918change 32-bit operands/addresses into 16-bit operands/addresses,
919while @samp{data32} and @samp{addr32} change 16-bit ones (in a
920@code{.code16} section) into 32-bit operands/addresses. These prefixes
921@emph{must} appear on the same line of code as the instruction they
922modify. For example, in a 16-bit @code{.code16} section, you might
923write:
924
925@smallexample
926 addr32 jmpl *(%ebx)
927@end smallexample
928
929@cindex bus lock prefixes, i386
930@cindex inhibiting interrupts, i386
931@item
932The bus lock prefix @samp{lock} inhibits interrupts during execution of
933the instruction it precedes. (This is only valid with certain
934instructions; see a 80386 manual for details).
935
936@cindex coprocessor wait, i386
937@item
938The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
939complete the current instruction. This should never be needed for the
94080386/80387 combination.
941
942@cindex repeat prefixes, i386
943@item
944The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
945to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
946times if the current address size is 16-bits).
55b62671
AJ
947@cindex REX prefixes, i386
948@item
949The @samp{rex} family of prefixes is used by x86-64 to encode
950extensions to i386 instruction set. The @samp{rex} prefix has four
951bits --- an operand size overwrite (@code{64}) used to change operand size
952from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
953register set.
954
955You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
956instruction emits @samp{rex} prefix with all the bits set. By omitting
957the @code{64}, @code{x}, @code{y} or @code{z} you may write other
958prefixes as well. Normally, there is no need to write the prefixes
959explicitly, since gas will automatically generate them based on the
960instruction operands.
252b5132
RH
961@end itemize
962
963@node i386-Memory
964@section Memory References
965
966@cindex i386 memory references
967@cindex memory references, i386
55b62671
AJ
968@cindex x86-64 memory references
969@cindex memory references, x86-64
252b5132
RH
970An Intel syntax indirect memory reference of the form
971
972@smallexample
973@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
974@end smallexample
975
976@noindent
977is translated into the AT&T syntax
978
979@smallexample
980@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
981@end smallexample
982
983@noindent
984where @var{base} and @var{index} are the optional 32-bit base and
985index registers, @var{disp} is the optional displacement, and
986@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
987to calculate the address of the operand. If no @var{scale} is
988specified, @var{scale} is taken to be 1. @var{section} specifies the
989optional section register for the memory operand, and may override the
990default section register (see a 80386 manual for section register
991defaults). Note that section overrides in AT&T syntax @emph{must}
992be preceded by a @samp{%}. If you specify a section override which
993coincides with the default section register, @code{@value{AS}} does @emph{not}
994output any section register override prefixes to assemble the given
995instruction. Thus, section overrides can be specified to emphasize which
996section register is used for a given memory operand.
997
998Here are some examples of Intel and AT&T style memory references:
999
1000@table @asis
1001@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1002@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1003missing, and the default section is used (@samp{%ss} for addressing with
1004@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1005
1006@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1007@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1008@samp{foo}. All other fields are missing. The section register here
1009defaults to @samp{%ds}.
1010
1011@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1012This uses the value pointed to by @samp{foo} as a memory operand.
1013Note that @var{base} and @var{index} are both missing, but there is only
1014@emph{one} @samp{,}. This is a syntactic exception.
1015
1016@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1017This selects the contents of the variable @samp{foo} with section
1018register @var{section} being @samp{%gs}.
1019@end table
1020
1021Absolute (as opposed to PC relative) call and jump operands must be
1022prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1023always chooses PC relative addressing for jump/call labels.
1024
1025Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1026@emph{must} specify its size (byte, word, long, or quadruple) with an
1027instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1028respectively).
1029
1030The x86-64 architecture adds an RIP (instruction pointer relative)
1031addressing. This addressing mode is specified by using @samp{rip} as a
1032base register. Only constant offsets are valid. For example:
1033
1034@table @asis
1035@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1036Points to the address 1234 bytes past the end of the current
1037instruction.
1038
1039@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1040Points to the @code{symbol} in RIP relative way, this is shorter than
1041the default absolute addressing.
1042@end table
1043
1044Other addressing modes remain unchanged in x86-64 architecture, except
1045registers used are 64-bit instead of 32-bit.
252b5132 1046
fddf5b5b 1047@node i386-Jumps
252b5132
RH
1048@section Handling of Jump Instructions
1049
1050@cindex jump optimization, i386
1051@cindex i386 jump optimization
55b62671
AJ
1052@cindex jump optimization, x86-64
1053@cindex x86-64 jump optimization
252b5132
RH
1054Jump instructions are always optimized to use the smallest possible
1055displacements. This is accomplished by using byte (8-bit) displacement
1056jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1057is insufficient a long displacement is used. We do not support
252b5132
RH
1058word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1059instruction with the @samp{data16} instruction prefix), since the 80386
1060insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1061is added. (See also @pxref{i386-Arch})
252b5132
RH
1062
1063Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1064@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1065displacements, so that if you use these instructions (@code{@value{GCC}} does
1066not use them) you may get an error message (and incorrect code). The AT&T
106780386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1068to
1069
1070@smallexample
1071 jcxz cx_zero
1072 jmp cx_nonzero
1073cx_zero: jmp foo
1074cx_nonzero:
1075@end smallexample
1076
1077@node i386-Float
1078@section Floating Point
1079
1080@cindex i386 floating point
1081@cindex floating point, i386
55b62671
AJ
1082@cindex x86-64 floating point
1083@cindex floating point, x86-64
252b5132
RH
1084All 80387 floating point types except packed BCD are supported.
1085(BCD support may be added without much difficulty). These data
1086types are 16-, 32-, and 64- bit integers, and single (32-bit),
1087double (64-bit), and extended (80-bit) precision floating point.
1088Each supported type has an instruction mnemonic suffix and a constructor
1089associated with it. Instruction mnemonic suffixes specify the operand's
1090data type. Constructors build these data types into memory.
1091
1092@cindex @code{float} directive, i386
1093@cindex @code{single} directive, i386
1094@cindex @code{double} directive, i386
1095@cindex @code{tfloat} directive, i386
55b62671
AJ
1096@cindex @code{float} directive, x86-64
1097@cindex @code{single} directive, x86-64
1098@cindex @code{double} directive, x86-64
1099@cindex @code{tfloat} directive, x86-64
252b5132
RH
1100@itemize @bullet
1101@item
1102Floating point constructors are @samp{.float} or @samp{.single},
1103@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1104These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1105and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1106only supports this format via the @samp{fldt} (load 80-bit real to stack
1107top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1108
1109@cindex @code{word} directive, i386
1110@cindex @code{long} directive, i386
1111@cindex @code{int} directive, i386
1112@cindex @code{quad} directive, i386
55b62671
AJ
1113@cindex @code{word} directive, x86-64
1114@cindex @code{long} directive, x86-64
1115@cindex @code{int} directive, x86-64
1116@cindex @code{quad} directive, x86-64
252b5132
RH
1117@item
1118Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1119@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1120corresponding instruction mnemonic suffixes are @samp{s} (single),
1121@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1122the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1123quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1124stack) instructions.
1125@end itemize
1126
1127Register to register operations should not use instruction mnemonic suffixes.
1128@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1129wrote @samp{fst %st, %st(1)}, since all register to register operations
1130use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1131which converts @samp{%st} from 80-bit to 64-bit floating point format,
1132then stores the result in the 4 byte location @samp{mem})
1133
1134@node i386-SIMD
1135@section Intel's MMX and AMD's 3DNow! SIMD Operations
1136
1137@cindex MMX, i386
1138@cindex 3DNow!, i386
1139@cindex SIMD, i386
55b62671
AJ
1140@cindex MMX, x86-64
1141@cindex 3DNow!, x86-64
1142@cindex SIMD, x86-64
252b5132
RH
1143
1144@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1145instructions for integer data), available on Intel's Pentium MMX
1146processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1147Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1148instruction set (SIMD instructions for 32-bit floating point data)
1149available on AMD's K6-2 processor and possibly others in the future.
1150
1151Currently, @code{@value{AS}} does not support Intel's floating point
1152SIMD, Katmai (KNI).
1153
1154The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1155@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
115616-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1157floating point values. The MMX registers cannot be used at the same time
1158as the floating point stack.
1159
1160See Intel and AMD documentation, keeping in mind that the operand order in
1161instructions is reversed from the Intel syntax.
1162
f88c9eb0
SP
1163@node i386-LWP
1164@section AMD's Lightweight Profiling Instructions
1165
1166@cindex LWP, i386
1167@cindex LWP, x86-64
1168
1169@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1170instruction set, available on AMD's Family 15h (Orochi) processors.
1171
1172LWP enables applications to collect and manage performance data, and
1173react to performance events. The collection of performance data
1174requires no context switches. LWP runs in the context of a thread and
1175so several counters can be used independently across multiple threads.
1176LWP can be used in both 64-bit and legacy 32-bit modes.
1177
1178For detailed information on the LWP instruction set, see the
1179@cite{AMD Lightweight Profiling Specification} available at
1180@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1181
87973e9f
QN
1182@node i386-BMI
1183@section Bit Manipulation Instructions
1184
1185@cindex BMI, i386
1186@cindex BMI, x86-64
1187
1188@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1189
1190BMI instructions provide several instructions implementing individual
1191bit manipulation operations such as isolation, masking, setting, or
34bca508 1192resetting.
87973e9f
QN
1193
1194@c Need to add a specification citation here when available.
1195
2a2a0f38
QN
1196@node i386-TBM
1197@section AMD's Trailing Bit Manipulation Instructions
1198
1199@cindex TBM, i386
1200@cindex TBM, x86-64
1201
1202@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1203instruction set, available on AMD's BDVER2 processors (Trinity and
1204Viperfish).
1205
1206TBM instructions provide instructions implementing individual bit
1207manipulation operations such as isolating, masking, setting, resetting,
1208complementing, and operations on trailing zeros and ones.
1209
1210@c Need to add a specification citation here when available.
87973e9f 1211
252b5132
RH
1212@node i386-16bit
1213@section Writing 16-bit Code
1214
1215@cindex i386 16-bit code
1216@cindex 16-bit code, i386
1217@cindex real-mode code, i386
eecb386c 1218@cindex @code{code16gcc} directive, i386
252b5132
RH
1219@cindex @code{code16} directive, i386
1220@cindex @code{code32} directive, i386
55b62671
AJ
1221@cindex @code{code64} directive, i386
1222@cindex @code{code64} directive, x86-64
1223While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1224or 64-bit x86-64 code depending on the default configuration,
252b5132 1225it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1226mode code segments. To do this, put a @samp{.code16} or
1227@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1228be run in 16-bit mode. You can switch @code{@value{AS}} to writing
122932-bit code with the @samp{.code32} directive or 64-bit code with the
1230@samp{.code64} directive.
eecb386c
AM
1231
1232@samp{.code16gcc} provides experimental support for generating 16-bit
1233code from gcc, and differs from @samp{.code16} in that @samp{call},
1234@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1235@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1236default to 32-bit size. This is so that the stack pointer is
1237manipulated in the same way over function calls, allowing access to
1238function parameters at the same stack offsets as in 32-bit mode.
1239@samp{.code16gcc} also automatically adds address size prefixes where
1240necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1241
1242The code which @code{@value{AS}} generates in 16-bit mode will not
1243necessarily run on a 16-bit pre-80386 processor. To write code that
1244runs on such a processor, you must refrain from using @emph{any} 32-bit
1245constructs which require @code{@value{AS}} to output address or operand
1246size prefixes.
1247
1248Note that writing 16-bit code instructions by explicitly specifying a
1249prefix or an instruction mnemonic suffix within a 32-bit code section
1250generates different machine instructions than those generated for a
125116-bit code segment. In a 32-bit code section, the following code
1252generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1253value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1254
1255@smallexample
1256 pushw $4
1257@end smallexample
1258
1259The same code in a 16-bit code section would generate the machine
b45619c0 1260opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1261is correct since the processor default operand size is assumed to be 16
1262bits in a 16-bit code section.
1263
e413e4e9
AM
1264@node i386-Arch
1265@section Specifying CPU Architecture
1266
1267@cindex arch directive, i386
1268@cindex i386 arch directive
55b62671
AJ
1269@cindex arch directive, x86-64
1270@cindex x86-64 arch directive
e413e4e9
AM
1271
1272@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1273(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1274directive enables a warning when gas detects an instruction that is not
1275supported on the CPU specified. The choices for @var{cpu_type} are:
1276
1277@multitable @columnfractions .20 .20 .20 .20
1278@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1279@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1280@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1281@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1282@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1283@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1284@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1285@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1286@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1287@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1288@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1289@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1290@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1291@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1292@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1293@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1294@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1295@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1296@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1297@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1298@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1299@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1300@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1301@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
ee6872be 1302@item @samp{.avx512_bitalg}
d777820b 1303@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1304@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1305@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
c0a30a9f 1306@item @samp{.movdiri} @tab @samp{.movdir64b}
1ceab344 1307@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1308@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1309@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
d777820b 1310@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1311@end multitable
1312
fddf5b5b
AM
1313Apart from the warning, there are only two other effects on
1314@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1315@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1316will automatically use a two byte opcode sequence. The larger three
1317byte opcode sequence is used on the 486 (and when no architecture is
1318specified) because it executes faster on the 486. Note that you can
1319explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1320Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1321@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1322conditional jumps will be promoted when necessary to a two instruction
1323sequence consisting of a conditional jump of the opposite sense around
1324an unconditional jump to the target.
1325
5c6af06e
JB
1326Following the CPU architecture (but not a sub-architecture, which are those
1327starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1328control automatic promotion of conditional jumps. @samp{jumps} is the
1329default, and enables jump promotion; All external jumps will be of the long
1330variety, and file-local jumps will be promoted as necessary.
1331(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1332byte offset jumps, and warns about file-local conditional jumps that
1333@code{@value{AS}} promotes.
fddf5b5b
AM
1334Unconditional jumps are treated as for @samp{jumps}.
1335
1336For example
1337
1338@smallexample
1339 .arch i8086,nojumps
1340@end smallexample
e413e4e9 1341
5c9352f3
AM
1342@node i386-Bugs
1343@section AT&T Syntax bugs
1344
1345The UnixWare assembler, and probably other AT&T derived ix86 Unix
1346assemblers, generate floating point instructions with reversed source
1347and destination registers in certain cases. Unfortunately, gcc and
1348possibly many other programs use this reversed syntax, so we're stuck
1349with it.
1350
1351For example
1352
1353@smallexample
1354 fsub %st,%st(3)
1355@end smallexample
1356@noindent
1357results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1358than the expected @samp{%st(3) - %st}. This happens with all the
1359non-commutative arithmetic floating point operations with two register
1360operands where the source register is @samp{%st} and the destination
1361register is @samp{%st(i)}.
1362
252b5132
RH
1363@node i386-Notes
1364@section Notes
1365
1366@cindex i386 @code{mul}, @code{imul} instructions
1367@cindex @code{mul} instruction, i386
1368@cindex @code{imul} instruction, i386
55b62671
AJ
1369@cindex @code{mul} instruction, x86-64
1370@cindex @code{imul} instruction, x86-64
252b5132 1371There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1372instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1373multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1374for @samp{imul}) can be output only in the one operand form. Thus,
1375@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1376the expanding multiply would clobber the @samp{%edx} register, and this
1377would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
137864-bit product in @samp{%edx:%eax}.
1379
1380We have added a two operand form of @samp{imul} when the first operand
1381is an immediate mode expression and the second operand is a register.
1382This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1383example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1384$69, %eax, %eax}.
1385
This page took 0.84533 seconds and 4 git commands to generate.