formatting, tack emacs control vars at end
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
f7e42eb4
NC
1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001
2@c Free Software Foundation, Inc.
252b5132
RH
3@c This is part of the GAS manual.
4@c For copying conditions, see the file as.texinfo.
5@ifset GENERIC
6@page
7@node i386-Dependent
8@chapter 80386 Dependent Features
9@end ifset
10@ifclear GENERIC
11@node Machine Dependencies
12@chapter 80386 Dependent Features
13@end ifclear
14
15@cindex i386 support
16@cindex i80306 support
55b62671
AJ
17@cindex x86-64 support
18
19The i386 version @code{@value{AS}} supports both the original Intel 386
20architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
21extending the Intel architecture to 64-bits.
22
252b5132
RH
23@menu
24* i386-Options:: Options
25* i386-Syntax:: AT&T Syntax versus Intel Syntax
26* i386-Mnemonics:: Instruction Naming
27* i386-Regs:: Register Naming
28* i386-Prefixes:: Instruction Prefixes
29* i386-Memory:: Memory References
fddf5b5b 30* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
31* i386-Float:: Floating Point
32* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
33* i386-16bit:: Writing 16-bit Code
e413e4e9 34* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
35* i386-Bugs:: AT&T Syntax bugs
36* i386-Notes:: Notes
37@end menu
38
39@node i386-Options
40@section Options
41
55b62671
AJ
42@cindex options for i386
43@cindex options for x86-64
44@cindex i386 options
45@cindex x86-64 options
46
47The i386 version of @code{@value{AS}} has a few machine
48dependent options:
49
50@table @code
51@cindex @samp{--32} option, i386
52@cindex @samp{--32} option, x86-64
53@cindex @samp{--64} option, i386
54@cindex @samp{--64} option, x86-64
55@item --32 | --64
56Select the word size, either 32 bits or 64 bits. Selecting 32-bit
57implies Intel i386 architecture, while 64-bit implies AMD x86-64
58architecture.
59
60These options are only available with the ELF object file format, and
61require that the necessary BFD support has been included (on a 32-bit
62platform you have to add --enable-64-bit-bfd to configure enable 64-bit
63usage and use x86-64 as target platform).
12b55ccc
L
64
65@item -n
66By default, x86 GAS replaces multiple nop instructions used for
67alignment within code sections with multi-byte nop instructions such
68as leal 0(%esi,1),%esi. This switch disables the optimization.
55b62671 69@end table
e413e4e9 70
252b5132
RH
71@node i386-Syntax
72@section AT&T Syntax versus Intel Syntax
73
e413e4e9
AM
74@cindex i386 intel_syntax pseudo op
75@cindex intel_syntax pseudo op, i386
76@cindex i386 att_syntax pseudo op
77@cindex att_syntax pseudo op, i386
252b5132
RH
78@cindex i386 syntax compatibility
79@cindex syntax compatibility, i386
55b62671
AJ
80@cindex x86-64 intel_syntax pseudo op
81@cindex intel_syntax pseudo op, x86-64
82@cindex x86-64 att_syntax pseudo op
83@cindex att_syntax pseudo op, x86-64
84@cindex x86-64 syntax compatibility
85@cindex syntax compatibility, x86-64
e413e4e9
AM
86
87@code{@value{AS}} now supports assembly using Intel assembler syntax.
88@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
89back to the usual AT&T mode for compatibility with the output of
90@code{@value{GCC}}. Either of these directives may have an optional
91argument, @code{prefix}, or @code{noprefix} specifying whether registers
92require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
93different from Intel syntax. We mention these differences because
94almost all 80386 documents use Intel syntax. Notable differences
95between the two syntaxes are:
96
97@cindex immediate operands, i386
98@cindex i386 immediate operands
99@cindex register operands, i386
100@cindex i386 register operands
101@cindex jump/call operands, i386
102@cindex i386 jump/call operands
103@cindex operand delimiters, i386
55b62671
AJ
104
105@cindex immediate operands, x86-64
106@cindex x86-64 immediate operands
107@cindex register operands, x86-64
108@cindex x86-64 register operands
109@cindex jump/call operands, x86-64
110@cindex x86-64 jump/call operands
111@cindex operand delimiters, x86-64
252b5132
RH
112@itemize @bullet
113@item
114AT&T immediate operands are preceded by @samp{$}; Intel immediate
115operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
116AT&T register operands are preceded by @samp{%}; Intel register operands
117are undelimited. AT&T absolute (as opposed to PC relative) jump/call
118operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
119
120@cindex i386 source, destination operands
121@cindex source, destination operands; i386
55b62671
AJ
122@cindex x86-64 source, destination operands
123@cindex source, destination operands; x86-64
252b5132
RH
124@item
125AT&T and Intel syntax use the opposite order for source and destination
126operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
127@samp{source, dest} convention is maintained for compatibility with
128previous Unix assemblers. Note that instructions with more than one
129source operand, such as the @samp{enter} instruction, do @emph{not} have
130reversed order. @ref{i386-Bugs}.
131
132@cindex mnemonic suffixes, i386
133@cindex sizes operands, i386
134@cindex i386 size suffixes
55b62671
AJ
135@cindex mnemonic suffixes, x86-64
136@cindex sizes operands, x86-64
137@cindex x86-64 size suffixes
252b5132
RH
138@item
139In AT&T syntax the size of memory operands is determined from the last
140character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
141@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
142(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
143this by prefixing memory operands (@emph{not} the instruction mnemonics) with
144@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
145Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
146syntax.
252b5132
RH
147
148@cindex return instructions, i386
149@cindex i386 jump, call, return
55b62671
AJ
150@cindex return instructions, x86-64
151@cindex x86-64 jump, call, return
252b5132
RH
152@item
153Immediate form long jumps and calls are
154@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
155Intel syntax is
156@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
157instruction
158is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
159@samp{ret far @var{stack-adjust}}.
160
161@cindex sections, i386
162@cindex i386 sections
55b62671
AJ
163@cindex sections, x86-64
164@cindex x86-64 sections
252b5132
RH
165@item
166The AT&T assembler does not provide support for multiple section
167programs. Unix style systems expect all programs to be single sections.
168@end itemize
169
170@node i386-Mnemonics
171@section Instruction Naming
172
173@cindex i386 instruction naming
174@cindex instruction naming, i386
55b62671
AJ
175@cindex x86-64 instruction naming
176@cindex instruction naming, x86-64
177
252b5132 178Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
179specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
180and @samp{q} specify byte, word, long and quadruple word operands. If
181no suffix is specified by an instruction then @code{@value{AS}} tries to
182fill in the missing suffix based on the destination register operand
183(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
184to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
185@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
186assembler which assumes that a missing mnemonic suffix implies long
187operand size. (This incompatibility does not affect compiler output
188since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
189
190Almost all instructions have the same names in AT&T and Intel format.
191There are a few exceptions. The sign extend and zero extend
192instructions need two sizes to specify them. They need a size to
193sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
194is accomplished by using two instruction mnemonic suffixes in AT&T
195syntax. Base names for sign extend and zero extend are
196@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
197and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
198are tacked on to this base name, the @emph{from} suffix before the
199@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
200``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
201thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
202@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
203@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
204quadruple word).
252b5132
RH
205
206@cindex conversion instructions, i386
207@cindex i386 conversion instructions
55b62671
AJ
208@cindex conversion instructions, x86-64
209@cindex x86-64 conversion instructions
252b5132
RH
210The Intel-syntax conversion instructions
211
212@itemize @bullet
213@item
214@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
215
216@item
217@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
218
219@item
220@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
221
222@item
223@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
224
225@item
226@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
227(x86-64 only),
228
229@item
d5f0cf92 230@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 231@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
232@end itemize
233
234@noindent
55b62671
AJ
235are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
236@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
237instructions.
252b5132
RH
238
239@cindex jump instructions, i386
240@cindex call instructions, i386
55b62671
AJ
241@cindex jump instructions, x86-64
242@cindex call instructions, x86-64
252b5132
RH
243Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
244AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
245convention.
246
247@node i386-Regs
248@section Register Naming
249
250@cindex i386 registers
251@cindex registers, i386
55b62671
AJ
252@cindex x86-64 registers
253@cindex registers, x86-64
252b5132
RH
254Register operands are always prefixed with @samp{%}. The 80386 registers
255consist of
256
257@itemize @bullet
258@item
259the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
260@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
261frame pointer), and @samp{%esp} (the stack pointer).
262
263@item
264the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
265@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
266
267@item
268the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
269@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
270are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
271@samp{%cx}, and @samp{%dx})
272
273@item
274the 6 section registers @samp{%cs} (code section), @samp{%ds}
275(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
276and @samp{%gs}.
277
278@item
279the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
280@samp{%cr3}.
281
282@item
283the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
284@samp{%db3}, @samp{%db6}, and @samp{%db7}.
285
286@item
287the 2 test registers @samp{%tr6} and @samp{%tr7}.
288
289@item
290the 8 floating point register stack @samp{%st} or equivalently
291@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
292@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
293These registers are overloaded by 8 MMX registers @samp{%mm0},
294@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
295@samp{%mm6} and @samp{%mm7}.
296
297@item
298the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
299@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
300@end itemize
301
302The AMD x86-64 architecture extends the register set by:
303
304@itemize @bullet
305@item
306enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
307accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
308@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
309pointer)
310
311@item
312the 8 extended registers @samp{%r8}--@samp{%r15}.
313
314@item
315the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
316
317@item
318the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
319
320@item
321the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
322
323@item
324the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
325
326@item
327the 8 debug registers: @samp{%db8}--@samp{%db15}.
328
329@item
330the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
331@end itemize
332
333@node i386-Prefixes
334@section Instruction Prefixes
335
336@cindex i386 instruction prefixes
337@cindex instruction prefixes, i386
338@cindex prefixes, i386
339Instruction prefixes are used to modify the following instruction. They
340are used to repeat string instructions, to provide section overrides, to
341perform bus lock operations, and to change operand and address sizes.
342(Most instructions that normally operate on 32-bit operands will use
34316-bit operands if the instruction has an ``operand size'' prefix.)
344Instruction prefixes are best written on the same line as the instruction
345they act upon. For example, the @samp{scas} (scan string) instruction is
346repeated with:
347
348@smallexample
349 repne scas %es:(%edi),%al
350@end smallexample
351
352You may also place prefixes on the lines immediately preceding the
353instruction, but this circumvents checks that @code{@value{AS}} does
354with prefixes, and will not work with all prefixes.
355
356Here is a list of instruction prefixes:
357
358@cindex section override prefixes, i386
359@itemize @bullet
360@item
361Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
362@samp{fs}, @samp{gs}. These are automatically added by specifying
363using the @var{section}:@var{memory-operand} form for memory references.
364
365@cindex size prefixes, i386
366@item
367Operand/Address size prefixes @samp{data16} and @samp{addr16}
368change 32-bit operands/addresses into 16-bit operands/addresses,
369while @samp{data32} and @samp{addr32} change 16-bit ones (in a
370@code{.code16} section) into 32-bit operands/addresses. These prefixes
371@emph{must} appear on the same line of code as the instruction they
372modify. For example, in a 16-bit @code{.code16} section, you might
373write:
374
375@smallexample
376 addr32 jmpl *(%ebx)
377@end smallexample
378
379@cindex bus lock prefixes, i386
380@cindex inhibiting interrupts, i386
381@item
382The bus lock prefix @samp{lock} inhibits interrupts during execution of
383the instruction it precedes. (This is only valid with certain
384instructions; see a 80386 manual for details).
385
386@cindex coprocessor wait, i386
387@item
388The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
389complete the current instruction. This should never be needed for the
39080386/80387 combination.
391
392@cindex repeat prefixes, i386
393@item
394The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
395to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
396times if the current address size is 16-bits).
55b62671
AJ
397@cindex REX prefixes, i386
398@item
399The @samp{rex} family of prefixes is used by x86-64 to encode
400extensions to i386 instruction set. The @samp{rex} prefix has four
401bits --- an operand size overwrite (@code{64}) used to change operand size
402from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
403register set.
404
405You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
406instruction emits @samp{rex} prefix with all the bits set. By omitting
407the @code{64}, @code{x}, @code{y} or @code{z} you may write other
408prefixes as well. Normally, there is no need to write the prefixes
409explicitly, since gas will automatically generate them based on the
410instruction operands.
252b5132
RH
411@end itemize
412
413@node i386-Memory
414@section Memory References
415
416@cindex i386 memory references
417@cindex memory references, i386
55b62671
AJ
418@cindex x86-64 memory references
419@cindex memory references, x86-64
252b5132
RH
420An Intel syntax indirect memory reference of the form
421
422@smallexample
423@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
424@end smallexample
425
426@noindent
427is translated into the AT&T syntax
428
429@smallexample
430@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
431@end smallexample
432
433@noindent
434where @var{base} and @var{index} are the optional 32-bit base and
435index registers, @var{disp} is the optional displacement, and
436@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
437to calculate the address of the operand. If no @var{scale} is
438specified, @var{scale} is taken to be 1. @var{section} specifies the
439optional section register for the memory operand, and may override the
440default section register (see a 80386 manual for section register
441defaults). Note that section overrides in AT&T syntax @emph{must}
442be preceded by a @samp{%}. If you specify a section override which
443coincides with the default section register, @code{@value{AS}} does @emph{not}
444output any section register override prefixes to assemble the given
445instruction. Thus, section overrides can be specified to emphasize which
446section register is used for a given memory operand.
447
448Here are some examples of Intel and AT&T style memory references:
449
450@table @asis
451@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
452@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
453missing, and the default section is used (@samp{%ss} for addressing with
454@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
455
456@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
457@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
458@samp{foo}. All other fields are missing. The section register here
459defaults to @samp{%ds}.
460
461@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
462This uses the value pointed to by @samp{foo} as a memory operand.
463Note that @var{base} and @var{index} are both missing, but there is only
464@emph{one} @samp{,}. This is a syntactic exception.
465
466@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
467This selects the contents of the variable @samp{foo} with section
468register @var{section} being @samp{%gs}.
469@end table
470
471Absolute (as opposed to PC relative) call and jump operands must be
472prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
473always chooses PC relative addressing for jump/call labels.
474
475Any instruction that has a memory operand, but no register operand,
55b62671
AJ
476@emph{must} specify its size (byte, word, long, or quadruple) with an
477instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
478respectively).
479
480The x86-64 architecture adds an RIP (instruction pointer relative)
481addressing. This addressing mode is specified by using @samp{rip} as a
482base register. Only constant offsets are valid. For example:
483
484@table @asis
485@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
486Points to the address 1234 bytes past the end of the current
487instruction.
488
489@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
490Points to the @code{symbol} in RIP relative way, this is shorter than
491the default absolute addressing.
492@end table
493
494Other addressing modes remain unchanged in x86-64 architecture, except
495registers used are 64-bit instead of 32-bit.
252b5132 496
fddf5b5b 497@node i386-Jumps
252b5132
RH
498@section Handling of Jump Instructions
499
500@cindex jump optimization, i386
501@cindex i386 jump optimization
55b62671
AJ
502@cindex jump optimization, x86-64
503@cindex x86-64 jump optimization
252b5132
RH
504Jump instructions are always optimized to use the smallest possible
505displacements. This is accomplished by using byte (8-bit) displacement
506jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 507is insufficient a long displacement is used. We do not support
252b5132
RH
508word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
509instruction with the @samp{data16} instruction prefix), since the 80386
510insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 511is added. (See also @pxref{i386-Arch})
252b5132
RH
512
513Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
514@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
515displacements, so that if you use these instructions (@code{@value{GCC}} does
516not use them) you may get an error message (and incorrect code). The AT&T
51780386 assembler tries to get around this problem by expanding @samp{jcxz foo}
518to
519
520@smallexample
521 jcxz cx_zero
522 jmp cx_nonzero
523cx_zero: jmp foo
524cx_nonzero:
525@end smallexample
526
527@node i386-Float
528@section Floating Point
529
530@cindex i386 floating point
531@cindex floating point, i386
55b62671
AJ
532@cindex x86-64 floating point
533@cindex floating point, x86-64
252b5132
RH
534All 80387 floating point types except packed BCD are supported.
535(BCD support may be added without much difficulty). These data
536types are 16-, 32-, and 64- bit integers, and single (32-bit),
537double (64-bit), and extended (80-bit) precision floating point.
538Each supported type has an instruction mnemonic suffix and a constructor
539associated with it. Instruction mnemonic suffixes specify the operand's
540data type. Constructors build these data types into memory.
541
542@cindex @code{float} directive, i386
543@cindex @code{single} directive, i386
544@cindex @code{double} directive, i386
545@cindex @code{tfloat} directive, i386
55b62671
AJ
546@cindex @code{float} directive, x86-64
547@cindex @code{single} directive, x86-64
548@cindex @code{double} directive, x86-64
549@cindex @code{tfloat} directive, x86-64
252b5132
RH
550@itemize @bullet
551@item
552Floating point constructors are @samp{.float} or @samp{.single},
553@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
554These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
555and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
556only supports this format via the @samp{fldt} (load 80-bit real to stack
557top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
558
559@cindex @code{word} directive, i386
560@cindex @code{long} directive, i386
561@cindex @code{int} directive, i386
562@cindex @code{quad} directive, i386
55b62671
AJ
563@cindex @code{word} directive, x86-64
564@cindex @code{long} directive, x86-64
565@cindex @code{int} directive, x86-64
566@cindex @code{quad} directive, x86-64
252b5132
RH
567@item
568Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
569@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
570corresponding instruction mnemonic suffixes are @samp{s} (single),
571@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
572the 64-bit @samp{q} format is only present in the @samp{fildq} (load
573quad integer to stack top) and @samp{fistpq} (store quad integer and pop
574stack) instructions.
575@end itemize
576
577Register to register operations should not use instruction mnemonic suffixes.
578@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
579wrote @samp{fst %st, %st(1)}, since all register to register operations
580use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
581which converts @samp{%st} from 80-bit to 64-bit floating point format,
582then stores the result in the 4 byte location @samp{mem})
583
584@node i386-SIMD
585@section Intel's MMX and AMD's 3DNow! SIMD Operations
586
587@cindex MMX, i386
588@cindex 3DNow!, i386
589@cindex SIMD, i386
55b62671
AJ
590@cindex MMX, x86-64
591@cindex 3DNow!, x86-64
592@cindex SIMD, x86-64
252b5132
RH
593
594@code{@value{AS}} supports Intel's MMX instruction set (SIMD
595instructions for integer data), available on Intel's Pentium MMX
596processors and Pentium II processors, AMD's K6 and K6-2 processors,
597Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!
598instruction set (SIMD instructions for 32-bit floating point data)
599available on AMD's K6-2 processor and possibly others in the future.
600
601Currently, @code{@value{AS}} does not support Intel's floating point
602SIMD, Katmai (KNI).
603
604The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
605@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
60616-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
607floating point values. The MMX registers cannot be used at the same time
608as the floating point stack.
609
610See Intel and AMD documentation, keeping in mind that the operand order in
611instructions is reversed from the Intel syntax.
612
613@node i386-16bit
614@section Writing 16-bit Code
615
616@cindex i386 16-bit code
617@cindex 16-bit code, i386
618@cindex real-mode code, i386
eecb386c 619@cindex @code{code16gcc} directive, i386
252b5132
RH
620@cindex @code{code16} directive, i386
621@cindex @code{code32} directive, i386
55b62671
AJ
622@cindex @code{code64} directive, i386
623@cindex @code{code64} directive, x86-64
624While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
625or 64-bit x86-64 code depending on the default configuration,
252b5132 626it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
627mode code segments. To do this, put a @samp{.code16} or
628@samp{.code16gcc} directive before the assembly language instructions to
629be run in 16-bit mode. You can switch @code{@value{AS}} back to writing
630normal 32-bit code with the @samp{.code32} directive.
631
632@samp{.code16gcc} provides experimental support for generating 16-bit
633code from gcc, and differs from @samp{.code16} in that @samp{call},
634@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
635@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
636default to 32-bit size. This is so that the stack pointer is
637manipulated in the same way over function calls, allowing access to
638function parameters at the same stack offsets as in 32-bit mode.
639@samp{.code16gcc} also automatically adds address size prefixes where
640necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
641
642The code which @code{@value{AS}} generates in 16-bit mode will not
643necessarily run on a 16-bit pre-80386 processor. To write code that
644runs on such a processor, you must refrain from using @emph{any} 32-bit
645constructs which require @code{@value{AS}} to output address or operand
646size prefixes.
647
648Note that writing 16-bit code instructions by explicitly specifying a
649prefix or an instruction mnemonic suffix within a 32-bit code section
650generates different machine instructions than those generated for a
65116-bit code segment. In a 32-bit code section, the following code
652generates the machine opcode bytes @samp{66 6a 04}, which pushes the
653value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
654
655@smallexample
656 pushw $4
657@end smallexample
658
659The same code in a 16-bit code section would generate the machine
660opcode bytes @samp{6a 04} (ie. without the operand size prefix), which
661is correct since the processor default operand size is assumed to be 16
662bits in a 16-bit code section.
663
664@node i386-Bugs
665@section AT&T Syntax bugs
666
667The UnixWare assembler, and probably other AT&T derived ix86 Unix
668assemblers, generate floating point instructions with reversed source
669and destination registers in certain cases. Unfortunately, gcc and
670possibly many other programs use this reversed syntax, so we're stuck
671with it.
672
673For example
674
675@smallexample
676 fsub %st,%st(3)
677@end smallexample
678@noindent
679results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
680than the expected @samp{%st(3) - %st}. This happens with all the
681non-commutative arithmetic floating point operations with two register
682operands where the source register is @samp{%st} and the destination
683register is @samp{%st(i)}.
684
e413e4e9
AM
685@node i386-Arch
686@section Specifying CPU Architecture
687
688@cindex arch directive, i386
689@cindex i386 arch directive
55b62671
AJ
690@cindex arch directive, x86-64
691@cindex x86-64 arch directive
e413e4e9
AM
692
693@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 694(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
695directive enables a warning when gas detects an instruction that is not
696supported on the CPU specified. The choices for @var{cpu_type} are:
697
698@multitable @columnfractions .20 .20 .20 .20
699@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
700@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e
JB
701@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
702@item @samp{k6} @tab @samp{athlon} @samp{sledgehammer}
703@item @samp{.mmx} @samp{.sse} @samp{.sse2} @samp{.3dnow}
e413e4e9
AM
704@end multitable
705
fddf5b5b
AM
706Apart from the warning, there are only two other effects on
707@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
708@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
709will automatically use a two byte opcode sequence. The larger three
710byte opcode sequence is used on the 486 (and when no architecture is
711specified) because it executes faster on the 486. Note that you can
712explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
713Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
714@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
715conditional jumps will be promoted when necessary to a two instruction
716sequence consisting of a conditional jump of the opposite sense around
717an unconditional jump to the target.
718
5c6af06e
JB
719Following the CPU architecture (but not a sub-architecture, which are those
720starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
721control automatic promotion of conditional jumps. @samp{jumps} is the
722default, and enables jump promotion; All external jumps will be of the long
723variety, and file-local jumps will be promoted as necessary.
724(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
725byte offset jumps, and warns about file-local conditional jumps that
726@code{@value{AS}} promotes.
fddf5b5b
AM
727Unconditional jumps are treated as for @samp{jumps}.
728
729For example
730
731@smallexample
732 .arch i8086,nojumps
733@end smallexample
e413e4e9 734
252b5132
RH
735@node i386-Notes
736@section Notes
737
738@cindex i386 @code{mul}, @code{imul} instructions
739@cindex @code{mul} instruction, i386
740@cindex @code{imul} instruction, i386
55b62671
AJ
741@cindex @code{mul} instruction, x86-64
742@cindex @code{imul} instruction, x86-64
252b5132 743There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 744instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
745multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
746for @samp{imul}) can be output only in the one operand form. Thus,
747@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
748the expanding multiply would clobber the @samp{%edx} register, and this
749would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
75064-bit product in @samp{%edx:%eax}.
751
752We have added a two operand form of @samp{imul} when the first operand
753is an immediate mode expression and the second operand is a register.
754This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
755example, can be done with @samp{imul $69, %eax} rather than @samp{imul
756$69, %eax, %eax}.
757
This page took 0.267185 seconds and 4 git commands to generate.