Correct x86 assembler manual
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
4b95cf5c 1@c Copyright (C) 1991-2014 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
9103f4f4
L
113@code{k6},
114@code{k6_2},
115@code{athlon},
9103f4f4
L
116@code{opteron},
117@code{k8},
1ceab344 118@code{amdfam10},
68339fdf 119@code{bdver1},
af2f724e 120@code{bdver2},
5e5c50d3 121@code{bdver3},
c7b0bd56 122@code{bdver4},
7b458c12
L
123@code{btver1},
124@code{btver2},
9103f4f4
L
125@code{generic32} and
126@code{generic64}.
127
34bca508 128In addition to the basic instruction set, the assembler can be told to
6305a203
L
129accept various extension mnemonics. For example,
130@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
131@var{vmx}. The following extensions are currently supported:
309d3373
JB
132@code{8087},
133@code{287},
134@code{387},
135@code{no87},
6305a203 136@code{mmx},
309d3373 137@code{nommx},
6305a203
L
138@code{sse},
139@code{sse2},
140@code{sse3},
141@code{ssse3},
142@code{sse4.1},
143@code{sse4.2},
144@code{sse4},
309d3373 145@code{nosse},
c0f3af97 146@code{avx},
6c30d220 147@code{avx2},
e2e1fcde
L
148@code{adx},
149@code{rdseed},
150@code{prfchw},
5c111e37 151@code{smap},
7e8b059b 152@code{mpx},
a0046408 153@code{sha},
1dfc6506
L
154@code{prefetchwt1},
155@code{clflushopt},
156@code{se1},
43234a1e
L
157@code{avx512f},
158@code{avx512cd},
159@code{avx512er},
160@code{avx512pf},
1dfc6506
L
161@code{avx512vl},
162@code{avx512bw},
163@code{avx512dq},
309d3373 164@code{noavx},
6305a203 165@code{vmx},
8729a6f6 166@code{vmfunc},
6305a203 167@code{smx},
f03fe4c1 168@code{xsave},
c7b8aa3a 169@code{xsaveopt},
1dfc6506
L
170@code{xsavec},
171@code{xsaves},
c0f3af97 172@code{aes},
594ab6a3 173@code{pclmul},
c7b8aa3a
L
174@code{fsgsbase},
175@code{rdrnd},
176@code{f16c},
6c30d220 177@code{bmi2},
c0f3af97 178@code{fma},
f1f8f695
L
179@code{movbe},
180@code{ept},
6c30d220 181@code{lzcnt},
42164a71
L
182@code{hle},
183@code{rtm},
6c30d220 184@code{invpcid},
bd5295b2 185@code{clflush},
f88c9eb0 186@code{lwp},
5dd85c99
SP
187@code{fma4},
188@code{xop},
60aa667e 189@code{cx16},
bd5295b2 190@code{syscall},
1b7f3fb0 191@code{rdtscp},
6305a203
L
192@code{3dnow},
193@code{3dnowa},
194@code{sse4a},
195@code{sse5},
196@code{svme},
197@code{abm} and
198@code{padlock}.
309d3373
JB
199Note that rather than extending a basic instruction set, the extension
200mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
201
202When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
203@code{.arch} directive will take precedent.
204
205@cindex @samp{-mtune=} option, i386
206@cindex @samp{-mtune=} option, x86-64
207@item -mtune=@var{CPU}
208This option specifies a processor to optimize for. When used in
209conjunction with the @option{-march} option, only instructions
210of the processor specified by the @option{-march} option will be
211generated.
212
6305a203
L
213Valid @var{CPU} values are identical to the processor list of
214@option{-march=@var{CPU}}.
9103f4f4 215
c0f3af97
L
216@cindex @samp{-msse2avx} option, i386
217@cindex @samp{-msse2avx} option, x86-64
218@item -msse2avx
219This option specifies that the assembler should encode SSE instructions
220with VEX prefix.
221
daf50ae7
L
222@cindex @samp{-msse-check=} option, i386
223@cindex @samp{-msse-check=} option, x86-64
224@item -msse-check=@var{none}
1f9bb1ca
AS
225@itemx -msse-check=@var{warning}
226@itemx -msse-check=@var{error}
9aff4b7a 227These options control if the assembler should check SSE instructions.
daf50ae7
L
228@option{-msse-check=@var{none}} will make the assembler not to check SSE
229instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 230will make the assembler issue a warning for any SSE instruction.
daf50ae7 231@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 232for any SSE instruction.
daf50ae7 233
539f890d
L
234@cindex @samp{-mavxscalar=} option, i386
235@cindex @samp{-mavxscalar=} option, x86-64
236@item -mavxscalar=@var{128}
1f9bb1ca 237@itemx -mavxscalar=@var{256}
2aab8acd 238These options control how the assembler should encode scalar AVX
539f890d
L
239instructions. @option{-mavxscalar=@var{128}} will encode scalar
240AVX instructions with 128bit vector length, which is the default.
241@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
242with 256bit vector length.
243
43234a1e
L
244@cindex @samp{-mevexlig=} option, i386
245@cindex @samp{-mevexlig=} option, x86-64
246@item -mevexlig=@var{128}
247@itemx -mevexlig=@var{256}
248@itemx -mevexlig=@var{512}
249These options control how the assembler should encode length-ignored
250(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
251EVEX instructions with 128bit vector length, which is the default.
252@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
253encode LIG EVEX instructions with 256bit and 512bit vector length,
254respectively.
255
256@cindex @samp{-mevexwig=} option, i386
257@cindex @samp{-mevexwig=} option, x86-64
258@item -mevexwig=@var{0}
259@itemx -mevexwig=@var{1}
260These options control how the assembler should encode w-ignored (WIG)
261EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
262EVEX instructions with evex.w = 0, which is the default.
263@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
264evex.w = 1.
265
1efbbeb4
L
266@cindex @samp{-mmnemonic=} option, i386
267@cindex @samp{-mmnemonic=} option, x86-64
268@item -mmnemonic=@var{att}
1f9bb1ca 269@itemx -mmnemonic=@var{intel}
34bca508 270This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
271The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
272take precedent.
273
274@cindex @samp{-msyntax=} option, i386
275@cindex @samp{-msyntax=} option, x86-64
276@item -msyntax=@var{att}
1f9bb1ca 277@itemx -msyntax=@var{intel}
34bca508 278This option specifies instruction syntax when processing instructions.
1efbbeb4
L
279The @code{.att_syntax} and @code{.intel_syntax} directives will
280take precedent.
281
282@cindex @samp{-mnaked-reg} option, i386
283@cindex @samp{-mnaked-reg} option, x86-64
284@item -mnaked-reg
285This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 286The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 287
7e8b059b
L
288@cindex @samp{-madd-bnd-prefix} option, i386
289@cindex @samp{-madd-bnd-prefix} option, x86-64
290@item -madd-bnd-prefix
291This option forces the assembler to add BND prefix to all branches, even
292if such prefix was not explicitly specified in the source code.
293
167ad85b
TG
294@cindex @samp{-mbig-obj} option, x86-64
295@item -mbig-obj
296On x86-64 PE/COFF target this option forces the use of big object file
297format, which allows more than 32768 sections.
298
d022bddd
IT
299@cindex @samp{-momit-lock-prefix=} option, i386
300@cindex @samp{-momit-lock-prefix=} option, x86-64
301@item -momit-lock-prefix=@var{no}
302@itemx -momit-lock-prefix=@var{yes}
303These options control how the assembler should encode lock prefix.
304This option is intended as a workaround for processors, that fail on
305lock prefix. This option can only be safely used with single-core,
306single-thread computers
307@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
308@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
309which is the default.
310
d3d3c6db
IT
311@cindex @samp{-mevexrcig=} option, i386
312@cindex @samp{-mevexrcig=} option, x86-64
313@item -mevexrcig=@var{rne}
314@itemx -mevexrcig=@var{rd}
315@itemx -mevexrcig=@var{ru}
316@itemx -mevexrcig=@var{rz}
317These options control how the assembler should encode SAE-only
318EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
319of EVEX instruction with 00, which is the default.
320@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
321and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
322with 01, 10 and 11 RC bits, respectively.
323
55b62671 324@end table
731caf76 325@c man end
e413e4e9 326
a6c24e68
NC
327@node i386-Directives
328@section x86 specific Directives
329
330@cindex machine directives, x86
331@cindex x86 machine directives
332@table @code
333
334@cindex @code{lcomm} directive, COFF
335@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
336Reserve @var{length} (an absolute expression) bytes for a local common
337denoted by @var{symbol}. The section and value of @var{symbol} are
338those of the new local common. The addresses are allocated in the bss
704209c0
NC
339section, so that at run-time the bytes start off zeroed. Since
340@var{symbol} is not declared global, it is normally not visible to
341@code{@value{LD}}. The optional third parameter, @var{alignment},
342specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
343
344This directive is only available for COFF based x86 targets.
345
346@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
347@c .largecomm
348
349@end table
350
252b5132 351@node i386-Syntax
7c31ae13
NC
352@section i386 Syntactical Considerations
353@menu
354* i386-Variations:: AT&T Syntax versus Intel Syntax
355* i386-Chars:: Special Characters
356@end menu
357
358@node i386-Variations
359@subsection AT&T Syntax versus Intel Syntax
252b5132 360
e413e4e9
AM
361@cindex i386 intel_syntax pseudo op
362@cindex intel_syntax pseudo op, i386
363@cindex i386 att_syntax pseudo op
364@cindex att_syntax pseudo op, i386
252b5132
RH
365@cindex i386 syntax compatibility
366@cindex syntax compatibility, i386
55b62671
AJ
367@cindex x86-64 intel_syntax pseudo op
368@cindex intel_syntax pseudo op, x86-64
369@cindex x86-64 att_syntax pseudo op
370@cindex att_syntax pseudo op, x86-64
371@cindex x86-64 syntax compatibility
372@cindex syntax compatibility, x86-64
e413e4e9
AM
373
374@code{@value{AS}} now supports assembly using Intel assembler syntax.
375@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
376back to the usual AT&T mode for compatibility with the output of
377@code{@value{GCC}}. Either of these directives may have an optional
378argument, @code{prefix}, or @code{noprefix} specifying whether registers
379require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
380different from Intel syntax. We mention these differences because
381almost all 80386 documents use Intel syntax. Notable differences
382between the two syntaxes are:
383
384@cindex immediate operands, i386
385@cindex i386 immediate operands
386@cindex register operands, i386
387@cindex i386 register operands
388@cindex jump/call operands, i386
389@cindex i386 jump/call operands
390@cindex operand delimiters, i386
55b62671
AJ
391
392@cindex immediate operands, x86-64
393@cindex x86-64 immediate operands
394@cindex register operands, x86-64
395@cindex x86-64 register operands
396@cindex jump/call operands, x86-64
397@cindex x86-64 jump/call operands
398@cindex operand delimiters, x86-64
252b5132
RH
399@itemize @bullet
400@item
401AT&T immediate operands are preceded by @samp{$}; Intel immediate
402operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
403AT&T register operands are preceded by @samp{%}; Intel register operands
404are undelimited. AT&T absolute (as opposed to PC relative) jump/call
405operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
406
407@cindex i386 source, destination operands
408@cindex source, destination operands; i386
55b62671
AJ
409@cindex x86-64 source, destination operands
410@cindex source, destination operands; x86-64
252b5132
RH
411@item
412AT&T and Intel syntax use the opposite order for source and destination
413operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
414@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
415previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
416instructions with 2 immediate operands, such as the @samp{enter}
417instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
418
419@cindex mnemonic suffixes, i386
420@cindex sizes operands, i386
421@cindex i386 size suffixes
55b62671
AJ
422@cindex mnemonic suffixes, x86-64
423@cindex sizes operands, x86-64
424@cindex x86-64 size suffixes
252b5132
RH
425@item
426In AT&T syntax the size of memory operands is determined from the last
427character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
428@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
429(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
430this by prefixing memory operands (@emph{not} the instruction mnemonics) with
431@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
432Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
433syntax.
252b5132 434
4b06377f
L
435In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
436instruction with the 64-bit displacement or immediate operand.
437
252b5132
RH
438@cindex return instructions, i386
439@cindex i386 jump, call, return
55b62671
AJ
440@cindex return instructions, x86-64
441@cindex x86-64 jump, call, return
252b5132
RH
442@item
443Immediate form long jumps and calls are
444@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
445Intel syntax is
446@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
447instruction
448is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
449@samp{ret far @var{stack-adjust}}.
450
451@cindex sections, i386
452@cindex i386 sections
55b62671
AJ
453@cindex sections, x86-64
454@cindex x86-64 sections
252b5132
RH
455@item
456The AT&T assembler does not provide support for multiple section
457programs. Unix style systems expect all programs to be single sections.
458@end itemize
459
7c31ae13
NC
460@node i386-Chars
461@subsection Special Characters
462
463@cindex line comment character, i386
464@cindex i386 line comment character
465The presence of a @samp{#} appearing anywhere on a line indicates the
466start of a comment that extends to the end of that line.
467
468If a @samp{#} appears as the first character of a line then the whole
469line is treated as a comment, but in this case the line can also be a
470logical line number directive (@pxref{Comments}) or a preprocessor
471control command (@pxref{Preprocessing}).
472
473If the @option{--divide} command line option has not been specified
474then the @samp{/} character appearing anywhere on a line also
475introduces a line comment.
476
477@cindex line separator, i386
478@cindex statement separator, i386
479@cindex i386 line separator
480The @samp{;} character can be used to separate statements on the same
481line.
482
252b5132
RH
483@node i386-Mnemonics
484@section Instruction Naming
485
486@cindex i386 instruction naming
487@cindex instruction naming, i386
55b62671
AJ
488@cindex x86-64 instruction naming
489@cindex instruction naming, x86-64
490
252b5132 491Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
492specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
493and @samp{q} specify byte, word, long and quadruple word operands. If
494no suffix is specified by an instruction then @code{@value{AS}} tries to
495fill in the missing suffix based on the destination register operand
496(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
497to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
498@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
499assembler which assumes that a missing mnemonic suffix implies long
500operand size. (This incompatibility does not affect compiler output
501since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
502
503Almost all instructions have the same names in AT&T and Intel format.
504There are a few exceptions. The sign extend and zero extend
505instructions need two sizes to specify them. They need a size to
506sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
507is accomplished by using two instruction mnemonic suffixes in AT&T
508syntax. Base names for sign extend and zero extend are
509@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
510and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
511are tacked on to this base name, the @emph{from} suffix before the
512@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
513``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
514thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
515@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
516@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
517quadruple word).
252b5132 518
b6169b20
L
519@cindex encoding options, i386
520@cindex encoding options, x86-64
521
522Different encoding options can be specified via optional mnemonic
523suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
524moving from one register to another. @samp{.d8} or @samp{.d32} suffix
525prefers 8bit or 32bit displacement in encoding.
b6169b20 526
252b5132
RH
527@cindex conversion instructions, i386
528@cindex i386 conversion instructions
55b62671
AJ
529@cindex conversion instructions, x86-64
530@cindex x86-64 conversion instructions
252b5132
RH
531The Intel-syntax conversion instructions
532
533@itemize @bullet
534@item
535@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
536
537@item
538@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
539
540@item
541@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
542
543@item
544@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
545
546@item
547@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
548(x86-64 only),
549
550@item
d5f0cf92 551@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 552@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
553@end itemize
554
555@noindent
55b62671
AJ
556are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
557@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
558instructions.
252b5132
RH
559
560@cindex jump instructions, i386
561@cindex call instructions, i386
55b62671
AJ
562@cindex jump instructions, x86-64
563@cindex call instructions, x86-64
252b5132
RH
564Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
565AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
566convention.
567
1efbbeb4
L
568@section AT&T Mnemonic versus Intel Mnemonic
569
570@cindex i386 mnemonic compatibility
571@cindex mnemonic compatibility, i386
572
573@code{@value{AS}} supports assembly using Intel mnemonic.
574@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
575@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
576syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
577Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
578@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
579@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
580assembler with different mnemonics from those in Intel IA32 specification.
581@code{@value{GCC}} generates those instructions with AT&T mnemonic.
582
252b5132
RH
583@node i386-Regs
584@section Register Naming
585
586@cindex i386 registers
587@cindex registers, i386
55b62671
AJ
588@cindex x86-64 registers
589@cindex registers, x86-64
252b5132
RH
590Register operands are always prefixed with @samp{%}. The 80386 registers
591consist of
592
593@itemize @bullet
594@item
595the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
596@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
597frame pointer), and @samp{%esp} (the stack pointer).
598
599@item
600the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
601@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
602
603@item
604the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
605@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
606are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
607@samp{%cx}, and @samp{%dx})
608
609@item
610the 6 section registers @samp{%cs} (code section), @samp{%ds}
611(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
612and @samp{%gs}.
613
614@item
615the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
616@samp{%cr3}.
617
618@item
619the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
620@samp{%db3}, @samp{%db6}, and @samp{%db7}.
621
622@item
623the 2 test registers @samp{%tr6} and @samp{%tr7}.
624
625@item
626the 8 floating point register stack @samp{%st} or equivalently
627@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
628@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
629These registers are overloaded by 8 MMX registers @samp{%mm0},
630@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
631@samp{%mm6} and @samp{%mm7}.
632
633@item
634the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
635@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
636@end itemize
637
638The AMD x86-64 architecture extends the register set by:
639
640@itemize @bullet
641@item
642enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
643accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
644@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
645pointer)
646
647@item
648the 8 extended registers @samp{%r8}--@samp{%r15}.
649
650@item
651the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
652
653@item
654the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
655
656@item
657the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
658
659@item
660the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
661
662@item
663the 8 debug registers: @samp{%db8}--@samp{%db15}.
664
665@item
666the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
667@end itemize
668
669@node i386-Prefixes
670@section Instruction Prefixes
671
672@cindex i386 instruction prefixes
673@cindex instruction prefixes, i386
674@cindex prefixes, i386
675Instruction prefixes are used to modify the following instruction. They
676are used to repeat string instructions, to provide section overrides, to
677perform bus lock operations, and to change operand and address sizes.
678(Most instructions that normally operate on 32-bit operands will use
67916-bit operands if the instruction has an ``operand size'' prefix.)
680Instruction prefixes are best written on the same line as the instruction
681they act upon. For example, the @samp{scas} (scan string) instruction is
682repeated with:
683
684@smallexample
685 repne scas %es:(%edi),%al
686@end smallexample
687
688You may also place prefixes on the lines immediately preceding the
689instruction, but this circumvents checks that @code{@value{AS}} does
690with prefixes, and will not work with all prefixes.
691
692Here is a list of instruction prefixes:
693
694@cindex section override prefixes, i386
695@itemize @bullet
696@item
697Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
698@samp{fs}, @samp{gs}. These are automatically added by specifying
699using the @var{section}:@var{memory-operand} form for memory references.
700
701@cindex size prefixes, i386
702@item
703Operand/Address size prefixes @samp{data16} and @samp{addr16}
704change 32-bit operands/addresses into 16-bit operands/addresses,
705while @samp{data32} and @samp{addr32} change 16-bit ones (in a
706@code{.code16} section) into 32-bit operands/addresses. These prefixes
707@emph{must} appear on the same line of code as the instruction they
708modify. For example, in a 16-bit @code{.code16} section, you might
709write:
710
711@smallexample
712 addr32 jmpl *(%ebx)
713@end smallexample
714
715@cindex bus lock prefixes, i386
716@cindex inhibiting interrupts, i386
717@item
718The bus lock prefix @samp{lock} inhibits interrupts during execution of
719the instruction it precedes. (This is only valid with certain
720instructions; see a 80386 manual for details).
721
722@cindex coprocessor wait, i386
723@item
724The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
725complete the current instruction. This should never be needed for the
72680386/80387 combination.
727
728@cindex repeat prefixes, i386
729@item
730The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
731to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
732times if the current address size is 16-bits).
55b62671
AJ
733@cindex REX prefixes, i386
734@item
735The @samp{rex} family of prefixes is used by x86-64 to encode
736extensions to i386 instruction set. The @samp{rex} prefix has four
737bits --- an operand size overwrite (@code{64}) used to change operand size
738from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
739register set.
740
741You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
742instruction emits @samp{rex} prefix with all the bits set. By omitting
743the @code{64}, @code{x}, @code{y} or @code{z} you may write other
744prefixes as well. Normally, there is no need to write the prefixes
745explicitly, since gas will automatically generate them based on the
746instruction operands.
252b5132
RH
747@end itemize
748
749@node i386-Memory
750@section Memory References
751
752@cindex i386 memory references
753@cindex memory references, i386
55b62671
AJ
754@cindex x86-64 memory references
755@cindex memory references, x86-64
252b5132
RH
756An Intel syntax indirect memory reference of the form
757
758@smallexample
759@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
760@end smallexample
761
762@noindent
763is translated into the AT&T syntax
764
765@smallexample
766@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
767@end smallexample
768
769@noindent
770where @var{base} and @var{index} are the optional 32-bit base and
771index registers, @var{disp} is the optional displacement, and
772@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
773to calculate the address of the operand. If no @var{scale} is
774specified, @var{scale} is taken to be 1. @var{section} specifies the
775optional section register for the memory operand, and may override the
776default section register (see a 80386 manual for section register
777defaults). Note that section overrides in AT&T syntax @emph{must}
778be preceded by a @samp{%}. If you specify a section override which
779coincides with the default section register, @code{@value{AS}} does @emph{not}
780output any section register override prefixes to assemble the given
781instruction. Thus, section overrides can be specified to emphasize which
782section register is used for a given memory operand.
783
784Here are some examples of Intel and AT&T style memory references:
785
786@table @asis
787@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
788@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
789missing, and the default section is used (@samp{%ss} for addressing with
790@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
791
792@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
793@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
794@samp{foo}. All other fields are missing. The section register here
795defaults to @samp{%ds}.
796
797@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
798This uses the value pointed to by @samp{foo} as a memory operand.
799Note that @var{base} and @var{index} are both missing, but there is only
800@emph{one} @samp{,}. This is a syntactic exception.
801
802@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
803This selects the contents of the variable @samp{foo} with section
804register @var{section} being @samp{%gs}.
805@end table
806
807Absolute (as opposed to PC relative) call and jump operands must be
808prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
809always chooses PC relative addressing for jump/call labels.
810
811Any instruction that has a memory operand, but no register operand,
55b62671
AJ
812@emph{must} specify its size (byte, word, long, or quadruple) with an
813instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
814respectively).
815
816The x86-64 architecture adds an RIP (instruction pointer relative)
817addressing. This addressing mode is specified by using @samp{rip} as a
818base register. Only constant offsets are valid. For example:
819
820@table @asis
821@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
822Points to the address 1234 bytes past the end of the current
823instruction.
824
825@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
826Points to the @code{symbol} in RIP relative way, this is shorter than
827the default absolute addressing.
828@end table
829
830Other addressing modes remain unchanged in x86-64 architecture, except
831registers used are 64-bit instead of 32-bit.
252b5132 832
fddf5b5b 833@node i386-Jumps
252b5132
RH
834@section Handling of Jump Instructions
835
836@cindex jump optimization, i386
837@cindex i386 jump optimization
55b62671
AJ
838@cindex jump optimization, x86-64
839@cindex x86-64 jump optimization
252b5132
RH
840Jump instructions are always optimized to use the smallest possible
841displacements. This is accomplished by using byte (8-bit) displacement
842jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 843is insufficient a long displacement is used. We do not support
252b5132
RH
844word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
845instruction with the @samp{data16} instruction prefix), since the 80386
846insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 847is added. (See also @pxref{i386-Arch})
252b5132
RH
848
849Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
850@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
851displacements, so that if you use these instructions (@code{@value{GCC}} does
852not use them) you may get an error message (and incorrect code). The AT&T
85380386 assembler tries to get around this problem by expanding @samp{jcxz foo}
854to
855
856@smallexample
857 jcxz cx_zero
858 jmp cx_nonzero
859cx_zero: jmp foo
860cx_nonzero:
861@end smallexample
862
863@node i386-Float
864@section Floating Point
865
866@cindex i386 floating point
867@cindex floating point, i386
55b62671
AJ
868@cindex x86-64 floating point
869@cindex floating point, x86-64
252b5132
RH
870All 80387 floating point types except packed BCD are supported.
871(BCD support may be added without much difficulty). These data
872types are 16-, 32-, and 64- bit integers, and single (32-bit),
873double (64-bit), and extended (80-bit) precision floating point.
874Each supported type has an instruction mnemonic suffix and a constructor
875associated with it. Instruction mnemonic suffixes specify the operand's
876data type. Constructors build these data types into memory.
877
878@cindex @code{float} directive, i386
879@cindex @code{single} directive, i386
880@cindex @code{double} directive, i386
881@cindex @code{tfloat} directive, i386
55b62671
AJ
882@cindex @code{float} directive, x86-64
883@cindex @code{single} directive, x86-64
884@cindex @code{double} directive, x86-64
885@cindex @code{tfloat} directive, x86-64
252b5132
RH
886@itemize @bullet
887@item
888Floating point constructors are @samp{.float} or @samp{.single},
889@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
890These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
891and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
892only supports this format via the @samp{fldt} (load 80-bit real to stack
893top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
894
895@cindex @code{word} directive, i386
896@cindex @code{long} directive, i386
897@cindex @code{int} directive, i386
898@cindex @code{quad} directive, i386
55b62671
AJ
899@cindex @code{word} directive, x86-64
900@cindex @code{long} directive, x86-64
901@cindex @code{int} directive, x86-64
902@cindex @code{quad} directive, x86-64
252b5132
RH
903@item
904Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
905@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
906corresponding instruction mnemonic suffixes are @samp{s} (single),
907@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
908the 64-bit @samp{q} format is only present in the @samp{fildq} (load
909quad integer to stack top) and @samp{fistpq} (store quad integer and pop
910stack) instructions.
911@end itemize
912
913Register to register operations should not use instruction mnemonic suffixes.
914@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
915wrote @samp{fst %st, %st(1)}, since all register to register operations
916use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
917which converts @samp{%st} from 80-bit to 64-bit floating point format,
918then stores the result in the 4 byte location @samp{mem})
919
920@node i386-SIMD
921@section Intel's MMX and AMD's 3DNow! SIMD Operations
922
923@cindex MMX, i386
924@cindex 3DNow!, i386
925@cindex SIMD, i386
55b62671
AJ
926@cindex MMX, x86-64
927@cindex 3DNow!, x86-64
928@cindex SIMD, x86-64
252b5132
RH
929
930@code{@value{AS}} supports Intel's MMX instruction set (SIMD
931instructions for integer data), available on Intel's Pentium MMX
932processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 933Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
934instruction set (SIMD instructions for 32-bit floating point data)
935available on AMD's K6-2 processor and possibly others in the future.
936
937Currently, @code{@value{AS}} does not support Intel's floating point
938SIMD, Katmai (KNI).
939
940The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
941@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
94216-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
943floating point values. The MMX registers cannot be used at the same time
944as the floating point stack.
945
946See Intel and AMD documentation, keeping in mind that the operand order in
947instructions is reversed from the Intel syntax.
948
f88c9eb0
SP
949@node i386-LWP
950@section AMD's Lightweight Profiling Instructions
951
952@cindex LWP, i386
953@cindex LWP, x86-64
954
955@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
956instruction set, available on AMD's Family 15h (Orochi) processors.
957
958LWP enables applications to collect and manage performance data, and
959react to performance events. The collection of performance data
960requires no context switches. LWP runs in the context of a thread and
961so several counters can be used independently across multiple threads.
962LWP can be used in both 64-bit and legacy 32-bit modes.
963
964For detailed information on the LWP instruction set, see the
965@cite{AMD Lightweight Profiling Specification} available at
966@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
967
87973e9f
QN
968@node i386-BMI
969@section Bit Manipulation Instructions
970
971@cindex BMI, i386
972@cindex BMI, x86-64
973
974@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
975
976BMI instructions provide several instructions implementing individual
977bit manipulation operations such as isolation, masking, setting, or
34bca508 978resetting.
87973e9f
QN
979
980@c Need to add a specification citation here when available.
981
2a2a0f38
QN
982@node i386-TBM
983@section AMD's Trailing Bit Manipulation Instructions
984
985@cindex TBM, i386
986@cindex TBM, x86-64
987
988@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
989instruction set, available on AMD's BDVER2 processors (Trinity and
990Viperfish).
991
992TBM instructions provide instructions implementing individual bit
993manipulation operations such as isolating, masking, setting, resetting,
994complementing, and operations on trailing zeros and ones.
995
996@c Need to add a specification citation here when available.
87973e9f 997
252b5132
RH
998@node i386-16bit
999@section Writing 16-bit Code
1000
1001@cindex i386 16-bit code
1002@cindex 16-bit code, i386
1003@cindex real-mode code, i386
eecb386c 1004@cindex @code{code16gcc} directive, i386
252b5132
RH
1005@cindex @code{code16} directive, i386
1006@cindex @code{code32} directive, i386
55b62671
AJ
1007@cindex @code{code64} directive, i386
1008@cindex @code{code64} directive, x86-64
1009While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1010or 64-bit x86-64 code depending on the default configuration,
252b5132 1011it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1012mode code segments. To do this, put a @samp{.code16} or
1013@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1014be run in 16-bit mode. You can switch @code{@value{AS}} to writing
101532-bit code with the @samp{.code32} directive or 64-bit code with the
1016@samp{.code64} directive.
eecb386c
AM
1017
1018@samp{.code16gcc} provides experimental support for generating 16-bit
1019code from gcc, and differs from @samp{.code16} in that @samp{call},
1020@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1021@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1022default to 32-bit size. This is so that the stack pointer is
1023manipulated in the same way over function calls, allowing access to
1024function parameters at the same stack offsets as in 32-bit mode.
1025@samp{.code16gcc} also automatically adds address size prefixes where
1026necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1027
1028The code which @code{@value{AS}} generates in 16-bit mode will not
1029necessarily run on a 16-bit pre-80386 processor. To write code that
1030runs on such a processor, you must refrain from using @emph{any} 32-bit
1031constructs which require @code{@value{AS}} to output address or operand
1032size prefixes.
1033
1034Note that writing 16-bit code instructions by explicitly specifying a
1035prefix or an instruction mnemonic suffix within a 32-bit code section
1036generates different machine instructions than those generated for a
103716-bit code segment. In a 32-bit code section, the following code
1038generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1039value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1040
1041@smallexample
1042 pushw $4
1043@end smallexample
1044
1045The same code in a 16-bit code section would generate the machine
b45619c0 1046opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1047is correct since the processor default operand size is assumed to be 16
1048bits in a 16-bit code section.
1049
1050@node i386-Bugs
1051@section AT&T Syntax bugs
1052
1053The UnixWare assembler, and probably other AT&T derived ix86 Unix
1054assemblers, generate floating point instructions with reversed source
1055and destination registers in certain cases. Unfortunately, gcc and
1056possibly many other programs use this reversed syntax, so we're stuck
1057with it.
1058
1059For example
1060
1061@smallexample
1062 fsub %st,%st(3)
1063@end smallexample
1064@noindent
1065results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1066than the expected @samp{%st(3) - %st}. This happens with all the
1067non-commutative arithmetic floating point operations with two register
1068operands where the source register is @samp{%st} and the destination
1069register is @samp{%st(i)}.
1070
e413e4e9
AM
1071@node i386-Arch
1072@section Specifying CPU Architecture
1073
1074@cindex arch directive, i386
1075@cindex i386 arch directive
55b62671
AJ
1076@cindex arch directive, x86-64
1077@cindex x86-64 arch directive
e413e4e9
AM
1078
1079@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1080(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1081directive enables a warning when gas detects an instruction that is not
1082supported on the CPU specified. The choices for @var{cpu_type} are:
1083
1084@multitable @columnfractions .20 .20 .20 .20
1085@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1086@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1087@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1088@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7a9068fe 1089@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1543849b 1090@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1091@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
c7b0bd56 1092@item @samp{bdver4} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1093@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1094@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1095@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1096@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1097@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1098@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1099@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1100@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1101@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1102@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1103@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1104@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1105@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq}
1ceab344 1106@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1107@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1108@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1ceab344 1109@item @samp{.padlock}
e413e4e9
AM
1110@end multitable
1111
fddf5b5b
AM
1112Apart from the warning, there are only two other effects on
1113@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1114@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1115will automatically use a two byte opcode sequence. The larger three
1116byte opcode sequence is used on the 486 (and when no architecture is
1117specified) because it executes faster on the 486. Note that you can
1118explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1119Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1120@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1121conditional jumps will be promoted when necessary to a two instruction
1122sequence consisting of a conditional jump of the opposite sense around
1123an unconditional jump to the target.
1124
5c6af06e
JB
1125Following the CPU architecture (but not a sub-architecture, which are those
1126starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1127control automatic promotion of conditional jumps. @samp{jumps} is the
1128default, and enables jump promotion; All external jumps will be of the long
1129variety, and file-local jumps will be promoted as necessary.
1130(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1131byte offset jumps, and warns about file-local conditional jumps that
1132@code{@value{AS}} promotes.
fddf5b5b
AM
1133Unconditional jumps are treated as for @samp{jumps}.
1134
1135For example
1136
1137@smallexample
1138 .arch i8086,nojumps
1139@end smallexample
e413e4e9 1140
252b5132
RH
1141@node i386-Notes
1142@section Notes
1143
1144@cindex i386 @code{mul}, @code{imul} instructions
1145@cindex @code{mul} instruction, i386
1146@cindex @code{imul} instruction, i386
55b62671
AJ
1147@cindex @code{mul} instruction, x86-64
1148@cindex @code{imul} instruction, x86-64
252b5132 1149There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1150instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1151multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1152for @samp{imul}) can be output only in the one operand form. Thus,
1153@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1154the expanding multiply would clobber the @samp{%edx} register, and this
1155would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
115664-bit product in @samp{%edx:%eax}.
1157
1158We have added a two operand form of @samp{imul} when the first operand
1159is an immediate mode expression and the second operand is a register.
1160This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1161example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1162$69, %eax, %eax}.
1163
This page took 0.720806 seconds and 4 git commands to generate.