gas/
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037
AM
1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2@c 2001, 2003, 2004
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
17@cindex i80306 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
26* i386-Syntax:: AT&T Syntax versus Intel Syntax
27* i386-Mnemonics:: Instruction Naming
28* i386-Regs:: Register Naming
29* i386-Prefixes:: Instruction Prefixes
30* i386-Memory:: Memory References
fddf5b5b 31* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
32* i386-Float:: Floating Point
33* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
34* i386-16bit:: Writing 16-bit Code
e413e4e9 35* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
36* i386-Bugs:: AT&T Syntax bugs
37* i386-Notes:: Notes
38@end menu
39
40@node i386-Options
41@section Options
42
55b62671
AJ
43@cindex options for i386
44@cindex options for x86-64
45@cindex i386 options
46@cindex x86-64 options
47
48The i386 version of @code{@value{AS}} has a few machine
49dependent options:
50
51@table @code
52@cindex @samp{--32} option, i386
53@cindex @samp{--32} option, x86-64
54@cindex @samp{--64} option, i386
55@cindex @samp{--64} option, x86-64
56@item --32 | --64
57Select the word size, either 32 bits or 64 bits. Selecting 32-bit
58implies Intel i386 architecture, while 64-bit implies AMD x86-64
59architecture.
60
61These options are only available with the ELF object file format, and
62require that the necessary BFD support has been included (on a 32-bit
63platform you have to add --enable-64-bit-bfd to configure enable 64-bit
64usage and use x86-64 as target platform).
12b55ccc
L
65
66@item -n
67By default, x86 GAS replaces multiple nop instructions used for
68alignment within code sections with multi-byte nop instructions such
69as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
70
71@cindex @samp{--divide} option, i386
72@item --divide
73On SVR4-derived platforms, the character @samp{/} is treated as a comment
74character, which means that it cannot be used in expressions. The
75@samp{--divide} option turns @samp{/} into a normal character. This does
76not disable @samp{/} at the beginning of a line starting a comment, or
77affect using @samp{#} for starting a comment.
78
9103f4f4
L
79@cindex @samp{-march=} option, i386
80@cindex @samp{-march=} option, x86-64
81@item -march=@var{CPU}
82This option specifies an instruction set architecture for generating
83instructions. The following architectures are recognized:
84@code{i8086},
85@code{i186},
86@code{i286},
87@code{i386},
88@code{i486},
89@code{i586},
90@code{i686},
91@code{pentium},
92@code{pentiumpro},
93@code{pentiumii},
94@code{pentiumiii},
95@code{pentium4},
96@code{prescott},
97@code{nocona},
ef05d495
L
98@code{core},
99@code{core2},
9103f4f4
L
100@code{k6},
101@code{k6_2},
102@code{athlon},
103@code{sledgehammer},
104@code{opteron},
105@code{k8},
106@code{generic32} and
107@code{generic64}.
108
109This option only affects instructions generated by the assembler. The
110@code{.arch} directive will take precedent.
111
112@cindex @samp{-mtune=} option, i386
113@cindex @samp{-mtune=} option, x86-64
114@item -mtune=@var{CPU}
115This option specifies a processor to optimize for. When used in
116conjunction with the @option{-march} option, only instructions
117of the processor specified by the @option{-march} option will be
118generated.
119
120Valid @var{CPU} values are identical to @option{-march=@var{CPU}}.
121
1efbbeb4
L
122@cindex @samp{-mmnemonic=} option, i386
123@cindex @samp{-mmnemonic=} option, x86-64
124@item -mmnemonic=@var{att}
125@item -mmnemonic=@var{intel}
126This option specifies instruction mnemonic for matching instructions.
127The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
128take precedent.
129
130@cindex @samp{-msyntax=} option, i386
131@cindex @samp{-msyntax=} option, x86-64
132@item -msyntax=@var{att}
133@item -msyntax=@var{intel}
134This option specifies instruction syntax when processing instructions.
135The @code{.att_syntax} and @code{.intel_syntax} directives will
136take precedent.
137
138@cindex @samp{-mnaked-reg} option, i386
139@cindex @samp{-mnaked-reg} option, x86-64
140@item -mnaked-reg
141This opetion specifies that registers don't require a @samp{%} prefix.
142The @code{.att_mnemonic}, @code{.intel_mnemonic}, @code{.att_syntax} and
143@code{.intel_syntax} directives will take precedent.
144
55b62671 145@end table
e413e4e9 146
252b5132
RH
147@node i386-Syntax
148@section AT&T Syntax versus Intel Syntax
149
e413e4e9
AM
150@cindex i386 intel_syntax pseudo op
151@cindex intel_syntax pseudo op, i386
152@cindex i386 att_syntax pseudo op
153@cindex att_syntax pseudo op, i386
252b5132
RH
154@cindex i386 syntax compatibility
155@cindex syntax compatibility, i386
55b62671
AJ
156@cindex x86-64 intel_syntax pseudo op
157@cindex intel_syntax pseudo op, x86-64
158@cindex x86-64 att_syntax pseudo op
159@cindex att_syntax pseudo op, x86-64
160@cindex x86-64 syntax compatibility
161@cindex syntax compatibility, x86-64
e413e4e9
AM
162
163@code{@value{AS}} now supports assembly using Intel assembler syntax.
164@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
165back to the usual AT&T mode for compatibility with the output of
166@code{@value{GCC}}. Either of these directives may have an optional
167argument, @code{prefix}, or @code{noprefix} specifying whether registers
168require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
169different from Intel syntax. We mention these differences because
170almost all 80386 documents use Intel syntax. Notable differences
171between the two syntaxes are:
172
173@cindex immediate operands, i386
174@cindex i386 immediate operands
175@cindex register operands, i386
176@cindex i386 register operands
177@cindex jump/call operands, i386
178@cindex i386 jump/call operands
179@cindex operand delimiters, i386
55b62671
AJ
180
181@cindex immediate operands, x86-64
182@cindex x86-64 immediate operands
183@cindex register operands, x86-64
184@cindex x86-64 register operands
185@cindex jump/call operands, x86-64
186@cindex x86-64 jump/call operands
187@cindex operand delimiters, x86-64
252b5132
RH
188@itemize @bullet
189@item
190AT&T immediate operands are preceded by @samp{$}; Intel immediate
191operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
192AT&T register operands are preceded by @samp{%}; Intel register operands
193are undelimited. AT&T absolute (as opposed to PC relative) jump/call
194operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
195
196@cindex i386 source, destination operands
197@cindex source, destination operands; i386
55b62671
AJ
198@cindex x86-64 source, destination operands
199@cindex source, destination operands; x86-64
252b5132
RH
200@item
201AT&T and Intel syntax use the opposite order for source and destination
202operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
203@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
204previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
205instructions with 2 immediate operands, such as the @samp{enter}
206instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
207
208@cindex mnemonic suffixes, i386
209@cindex sizes operands, i386
210@cindex i386 size suffixes
55b62671
AJ
211@cindex mnemonic suffixes, x86-64
212@cindex sizes operands, x86-64
213@cindex x86-64 size suffixes
252b5132
RH
214@item
215In AT&T syntax the size of memory operands is determined from the last
216character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
217@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
218(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
219this by prefixing memory operands (@emph{not} the instruction mnemonics) with
220@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
221Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
222syntax.
252b5132
RH
223
224@cindex return instructions, i386
225@cindex i386 jump, call, return
55b62671
AJ
226@cindex return instructions, x86-64
227@cindex x86-64 jump, call, return
252b5132
RH
228@item
229Immediate form long jumps and calls are
230@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
231Intel syntax is
232@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
233instruction
234is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
235@samp{ret far @var{stack-adjust}}.
236
237@cindex sections, i386
238@cindex i386 sections
55b62671
AJ
239@cindex sections, x86-64
240@cindex x86-64 sections
252b5132
RH
241@item
242The AT&T assembler does not provide support for multiple section
243programs. Unix style systems expect all programs to be single sections.
244@end itemize
245
246@node i386-Mnemonics
247@section Instruction Naming
248
249@cindex i386 instruction naming
250@cindex instruction naming, i386
55b62671
AJ
251@cindex x86-64 instruction naming
252@cindex instruction naming, x86-64
253
252b5132 254Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
255specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
256and @samp{q} specify byte, word, long and quadruple word operands. If
257no suffix is specified by an instruction then @code{@value{AS}} tries to
258fill in the missing suffix based on the destination register operand
259(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
260to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
261@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
262assembler which assumes that a missing mnemonic suffix implies long
263operand size. (This incompatibility does not affect compiler output
264since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
265
266Almost all instructions have the same names in AT&T and Intel format.
267There are a few exceptions. The sign extend and zero extend
268instructions need two sizes to specify them. They need a size to
269sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
270is accomplished by using two instruction mnemonic suffixes in AT&T
271syntax. Base names for sign extend and zero extend are
272@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
273and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
274are tacked on to this base name, the @emph{from} suffix before the
275@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
276``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
277thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
278@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
279@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
280quadruple word).
252b5132
RH
281
282@cindex conversion instructions, i386
283@cindex i386 conversion instructions
55b62671
AJ
284@cindex conversion instructions, x86-64
285@cindex x86-64 conversion instructions
252b5132
RH
286The Intel-syntax conversion instructions
287
288@itemize @bullet
289@item
290@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
291
292@item
293@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
294
295@item
296@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
297
298@item
299@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
300
301@item
302@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
303(x86-64 only),
304
305@item
d5f0cf92 306@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 307@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
308@end itemize
309
310@noindent
55b62671
AJ
311are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
312@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
313instructions.
252b5132
RH
314
315@cindex jump instructions, i386
316@cindex call instructions, i386
55b62671
AJ
317@cindex jump instructions, x86-64
318@cindex call instructions, x86-64
252b5132
RH
319Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
320AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
321convention.
322
1efbbeb4
L
323@section AT&T Mnemonic versus Intel Mnemonic
324
325@cindex i386 mnemonic compatibility
326@cindex mnemonic compatibility, i386
327
328@code{@value{AS}} supports assembly using Intel mnemonic.
329@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
330@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
331syntax for compatibility with the output of @code{@value{GCC}}.
332Either of these directives may have an optional argument, @code{prefix},
333or @code{noprefix} specifying whether registers require a @samp{%} prefix.
334Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
335@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
336@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
337assembler with different mnemonics from those in Intel IA32 specification.
338@code{@value{GCC}} generates those instructions with AT&T mnemonic.
339
252b5132
RH
340@node i386-Regs
341@section Register Naming
342
343@cindex i386 registers
344@cindex registers, i386
55b62671
AJ
345@cindex x86-64 registers
346@cindex registers, x86-64
252b5132
RH
347Register operands are always prefixed with @samp{%}. The 80386 registers
348consist of
349
350@itemize @bullet
351@item
352the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
353@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
354frame pointer), and @samp{%esp} (the stack pointer).
355
356@item
357the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
358@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
359
360@item
361the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
362@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
363are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
364@samp{%cx}, and @samp{%dx})
365
366@item
367the 6 section registers @samp{%cs} (code section), @samp{%ds}
368(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
369and @samp{%gs}.
370
371@item
372the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
373@samp{%cr3}.
374
375@item
376the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
377@samp{%db3}, @samp{%db6}, and @samp{%db7}.
378
379@item
380the 2 test registers @samp{%tr6} and @samp{%tr7}.
381
382@item
383the 8 floating point register stack @samp{%st} or equivalently
384@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
385@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
386These registers are overloaded by 8 MMX registers @samp{%mm0},
387@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
388@samp{%mm6} and @samp{%mm7}.
389
390@item
391the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
392@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
393@end itemize
394
395The AMD x86-64 architecture extends the register set by:
396
397@itemize @bullet
398@item
399enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
400accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
401@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
402pointer)
403
404@item
405the 8 extended registers @samp{%r8}--@samp{%r15}.
406
407@item
408the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
409
410@item
411the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
412
413@item
414the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
415
416@item
417the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
418
419@item
420the 8 debug registers: @samp{%db8}--@samp{%db15}.
421
422@item
423the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
424@end itemize
425
426@node i386-Prefixes
427@section Instruction Prefixes
428
429@cindex i386 instruction prefixes
430@cindex instruction prefixes, i386
431@cindex prefixes, i386
432Instruction prefixes are used to modify the following instruction. They
433are used to repeat string instructions, to provide section overrides, to
434perform bus lock operations, and to change operand and address sizes.
435(Most instructions that normally operate on 32-bit operands will use
43616-bit operands if the instruction has an ``operand size'' prefix.)
437Instruction prefixes are best written on the same line as the instruction
438they act upon. For example, the @samp{scas} (scan string) instruction is
439repeated with:
440
441@smallexample
442 repne scas %es:(%edi),%al
443@end smallexample
444
445You may also place prefixes on the lines immediately preceding the
446instruction, but this circumvents checks that @code{@value{AS}} does
447with prefixes, and will not work with all prefixes.
448
449Here is a list of instruction prefixes:
450
451@cindex section override prefixes, i386
452@itemize @bullet
453@item
454Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
455@samp{fs}, @samp{gs}. These are automatically added by specifying
456using the @var{section}:@var{memory-operand} form for memory references.
457
458@cindex size prefixes, i386
459@item
460Operand/Address size prefixes @samp{data16} and @samp{addr16}
461change 32-bit operands/addresses into 16-bit operands/addresses,
462while @samp{data32} and @samp{addr32} change 16-bit ones (in a
463@code{.code16} section) into 32-bit operands/addresses. These prefixes
464@emph{must} appear on the same line of code as the instruction they
465modify. For example, in a 16-bit @code{.code16} section, you might
466write:
467
468@smallexample
469 addr32 jmpl *(%ebx)
470@end smallexample
471
472@cindex bus lock prefixes, i386
473@cindex inhibiting interrupts, i386
474@item
475The bus lock prefix @samp{lock} inhibits interrupts during execution of
476the instruction it precedes. (This is only valid with certain
477instructions; see a 80386 manual for details).
478
479@cindex coprocessor wait, i386
480@item
481The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
482complete the current instruction. This should never be needed for the
48380386/80387 combination.
484
485@cindex repeat prefixes, i386
486@item
487The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
488to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
489times if the current address size is 16-bits).
55b62671
AJ
490@cindex REX prefixes, i386
491@item
492The @samp{rex} family of prefixes is used by x86-64 to encode
493extensions to i386 instruction set. The @samp{rex} prefix has four
494bits --- an operand size overwrite (@code{64}) used to change operand size
495from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
496register set.
497
498You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
499instruction emits @samp{rex} prefix with all the bits set. By omitting
500the @code{64}, @code{x}, @code{y} or @code{z} you may write other
501prefixes as well. Normally, there is no need to write the prefixes
502explicitly, since gas will automatically generate them based on the
503instruction operands.
252b5132
RH
504@end itemize
505
506@node i386-Memory
507@section Memory References
508
509@cindex i386 memory references
510@cindex memory references, i386
55b62671
AJ
511@cindex x86-64 memory references
512@cindex memory references, x86-64
252b5132
RH
513An Intel syntax indirect memory reference of the form
514
515@smallexample
516@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
517@end smallexample
518
519@noindent
520is translated into the AT&T syntax
521
522@smallexample
523@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
524@end smallexample
525
526@noindent
527where @var{base} and @var{index} are the optional 32-bit base and
528index registers, @var{disp} is the optional displacement, and
529@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
530to calculate the address of the operand. If no @var{scale} is
531specified, @var{scale} is taken to be 1. @var{section} specifies the
532optional section register for the memory operand, and may override the
533default section register (see a 80386 manual for section register
534defaults). Note that section overrides in AT&T syntax @emph{must}
535be preceded by a @samp{%}. If you specify a section override which
536coincides with the default section register, @code{@value{AS}} does @emph{not}
537output any section register override prefixes to assemble the given
538instruction. Thus, section overrides can be specified to emphasize which
539section register is used for a given memory operand.
540
541Here are some examples of Intel and AT&T style memory references:
542
543@table @asis
544@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
545@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
546missing, and the default section is used (@samp{%ss} for addressing with
547@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
548
549@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
550@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
551@samp{foo}. All other fields are missing. The section register here
552defaults to @samp{%ds}.
553
554@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
555This uses the value pointed to by @samp{foo} as a memory operand.
556Note that @var{base} and @var{index} are both missing, but there is only
557@emph{one} @samp{,}. This is a syntactic exception.
558
559@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
560This selects the contents of the variable @samp{foo} with section
561register @var{section} being @samp{%gs}.
562@end table
563
564Absolute (as opposed to PC relative) call and jump operands must be
565prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
566always chooses PC relative addressing for jump/call labels.
567
568Any instruction that has a memory operand, but no register operand,
55b62671
AJ
569@emph{must} specify its size (byte, word, long, or quadruple) with an
570instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
571respectively).
572
573The x86-64 architecture adds an RIP (instruction pointer relative)
574addressing. This addressing mode is specified by using @samp{rip} as a
575base register. Only constant offsets are valid. For example:
576
577@table @asis
578@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
579Points to the address 1234 bytes past the end of the current
580instruction.
581
582@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
583Points to the @code{symbol} in RIP relative way, this is shorter than
584the default absolute addressing.
585@end table
586
587Other addressing modes remain unchanged in x86-64 architecture, except
588registers used are 64-bit instead of 32-bit.
252b5132 589
fddf5b5b 590@node i386-Jumps
252b5132
RH
591@section Handling of Jump Instructions
592
593@cindex jump optimization, i386
594@cindex i386 jump optimization
55b62671
AJ
595@cindex jump optimization, x86-64
596@cindex x86-64 jump optimization
252b5132
RH
597Jump instructions are always optimized to use the smallest possible
598displacements. This is accomplished by using byte (8-bit) displacement
599jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 600is insufficient a long displacement is used. We do not support
252b5132
RH
601word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
602instruction with the @samp{data16} instruction prefix), since the 80386
603insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 604is added. (See also @pxref{i386-Arch})
252b5132
RH
605
606Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
607@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
608displacements, so that if you use these instructions (@code{@value{GCC}} does
609not use them) you may get an error message (and incorrect code). The AT&T
61080386 assembler tries to get around this problem by expanding @samp{jcxz foo}
611to
612
613@smallexample
614 jcxz cx_zero
615 jmp cx_nonzero
616cx_zero: jmp foo
617cx_nonzero:
618@end smallexample
619
620@node i386-Float
621@section Floating Point
622
623@cindex i386 floating point
624@cindex floating point, i386
55b62671
AJ
625@cindex x86-64 floating point
626@cindex floating point, x86-64
252b5132
RH
627All 80387 floating point types except packed BCD are supported.
628(BCD support may be added without much difficulty). These data
629types are 16-, 32-, and 64- bit integers, and single (32-bit),
630double (64-bit), and extended (80-bit) precision floating point.
631Each supported type has an instruction mnemonic suffix and a constructor
632associated with it. Instruction mnemonic suffixes specify the operand's
633data type. Constructors build these data types into memory.
634
635@cindex @code{float} directive, i386
636@cindex @code{single} directive, i386
637@cindex @code{double} directive, i386
638@cindex @code{tfloat} directive, i386
55b62671
AJ
639@cindex @code{float} directive, x86-64
640@cindex @code{single} directive, x86-64
641@cindex @code{double} directive, x86-64
642@cindex @code{tfloat} directive, x86-64
252b5132
RH
643@itemize @bullet
644@item
645Floating point constructors are @samp{.float} or @samp{.single},
646@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
647These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
648and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
649only supports this format via the @samp{fldt} (load 80-bit real to stack
650top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
651
652@cindex @code{word} directive, i386
653@cindex @code{long} directive, i386
654@cindex @code{int} directive, i386
655@cindex @code{quad} directive, i386
55b62671
AJ
656@cindex @code{word} directive, x86-64
657@cindex @code{long} directive, x86-64
658@cindex @code{int} directive, x86-64
659@cindex @code{quad} directive, x86-64
252b5132
RH
660@item
661Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
662@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
663corresponding instruction mnemonic suffixes are @samp{s} (single),
664@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
665the 64-bit @samp{q} format is only present in the @samp{fildq} (load
666quad integer to stack top) and @samp{fistpq} (store quad integer and pop
667stack) instructions.
668@end itemize
669
670Register to register operations should not use instruction mnemonic suffixes.
671@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
672wrote @samp{fst %st, %st(1)}, since all register to register operations
673use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
674which converts @samp{%st} from 80-bit to 64-bit floating point format,
675then stores the result in the 4 byte location @samp{mem})
676
677@node i386-SIMD
678@section Intel's MMX and AMD's 3DNow! SIMD Operations
679
680@cindex MMX, i386
681@cindex 3DNow!, i386
682@cindex SIMD, i386
55b62671
AJ
683@cindex MMX, x86-64
684@cindex 3DNow!, x86-64
685@cindex SIMD, x86-64
252b5132
RH
686
687@code{@value{AS}} supports Intel's MMX instruction set (SIMD
688instructions for integer data), available on Intel's Pentium MMX
689processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 690Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
691instruction set (SIMD instructions for 32-bit floating point data)
692available on AMD's K6-2 processor and possibly others in the future.
693
694Currently, @code{@value{AS}} does not support Intel's floating point
695SIMD, Katmai (KNI).
696
697The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
698@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
69916-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
700floating point values. The MMX registers cannot be used at the same time
701as the floating point stack.
702
703See Intel and AMD documentation, keeping in mind that the operand order in
704instructions is reversed from the Intel syntax.
705
706@node i386-16bit
707@section Writing 16-bit Code
708
709@cindex i386 16-bit code
710@cindex 16-bit code, i386
711@cindex real-mode code, i386
eecb386c 712@cindex @code{code16gcc} directive, i386
252b5132
RH
713@cindex @code{code16} directive, i386
714@cindex @code{code32} directive, i386
55b62671
AJ
715@cindex @code{code64} directive, i386
716@cindex @code{code64} directive, x86-64
717While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
718or 64-bit x86-64 code depending on the default configuration,
252b5132 719it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
720mode code segments. To do this, put a @samp{.code16} or
721@samp{.code16gcc} directive before the assembly language instructions to
722be run in 16-bit mode. You can switch @code{@value{AS}} back to writing
723normal 32-bit code with the @samp{.code32} directive.
724
725@samp{.code16gcc} provides experimental support for generating 16-bit
726code from gcc, and differs from @samp{.code16} in that @samp{call},
727@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
728@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
729default to 32-bit size. This is so that the stack pointer is
730manipulated in the same way over function calls, allowing access to
731function parameters at the same stack offsets as in 32-bit mode.
732@samp{.code16gcc} also automatically adds address size prefixes where
733necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
734
735The code which @code{@value{AS}} generates in 16-bit mode will not
736necessarily run on a 16-bit pre-80386 processor. To write code that
737runs on such a processor, you must refrain from using @emph{any} 32-bit
738constructs which require @code{@value{AS}} to output address or operand
739size prefixes.
740
741Note that writing 16-bit code instructions by explicitly specifying a
742prefix or an instruction mnemonic suffix within a 32-bit code section
743generates different machine instructions than those generated for a
74416-bit code segment. In a 32-bit code section, the following code
745generates the machine opcode bytes @samp{66 6a 04}, which pushes the
746value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
747
748@smallexample
749 pushw $4
750@end smallexample
751
752The same code in a 16-bit code section would generate the machine
b45619c0 753opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
754is correct since the processor default operand size is assumed to be 16
755bits in a 16-bit code section.
756
757@node i386-Bugs
758@section AT&T Syntax bugs
759
760The UnixWare assembler, and probably other AT&T derived ix86 Unix
761assemblers, generate floating point instructions with reversed source
762and destination registers in certain cases. Unfortunately, gcc and
763possibly many other programs use this reversed syntax, so we're stuck
764with it.
765
766For example
767
768@smallexample
769 fsub %st,%st(3)
770@end smallexample
771@noindent
772results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
773than the expected @samp{%st(3) - %st}. This happens with all the
774non-commutative arithmetic floating point operations with two register
775operands where the source register is @samp{%st} and the destination
776register is @samp{%st(i)}.
777
e413e4e9
AM
778@node i386-Arch
779@section Specifying CPU Architecture
780
781@cindex arch directive, i386
782@cindex i386 arch directive
55b62671
AJ
783@cindex arch directive, x86-64
784@cindex x86-64 arch directive
e413e4e9
AM
785
786@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 787(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
788directive enables a warning when gas detects an instruction that is not
789supported on the CPU specified. The choices for @var{cpu_type} are:
790
791@multitable @columnfractions .20 .20 .20 .20
792@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
793@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 794@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 795@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7918206c 796@item @samp{amdfam10}
9103f4f4
L
797@item @samp{k6} @tab @samp{athlon} @tab @samp{sledgehammer} @tab @samp{k8}
798@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 799@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
7918206c
MM
800@item @samp{.sse4a} @tab @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.padlock}
801@item @samp{.pacifica} @tab @samp{.svme} @tab @samp{.abm}
e413e4e9
AM
802@end multitable
803
fddf5b5b
AM
804Apart from the warning, there are only two other effects on
805@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
806@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
807will automatically use a two byte opcode sequence. The larger three
808byte opcode sequence is used on the 486 (and when no architecture is
809specified) because it executes faster on the 486. Note that you can
810explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
811Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
812@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
813conditional jumps will be promoted when necessary to a two instruction
814sequence consisting of a conditional jump of the opposite sense around
815an unconditional jump to the target.
816
5c6af06e
JB
817Following the CPU architecture (but not a sub-architecture, which are those
818starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
819control automatic promotion of conditional jumps. @samp{jumps} is the
820default, and enables jump promotion; All external jumps will be of the long
821variety, and file-local jumps will be promoted as necessary.
822(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
823byte offset jumps, and warns about file-local conditional jumps that
824@code{@value{AS}} promotes.
fddf5b5b
AM
825Unconditional jumps are treated as for @samp{jumps}.
826
827For example
828
829@smallexample
830 .arch i8086,nojumps
831@end smallexample
e413e4e9 832
252b5132
RH
833@node i386-Notes
834@section Notes
835
836@cindex i386 @code{mul}, @code{imul} instructions
837@cindex @code{mul} instruction, i386
838@cindex @code{imul} instruction, i386
55b62671
AJ
839@cindex @code{mul} instruction, x86-64
840@cindex @code{imul} instruction, x86-64
252b5132 841There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 842instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
843multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
844for @samp{imul}) can be output only in the one operand form. Thus,
845@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
846the expanding multiply would clobber the @samp{%edx} register, and this
847would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
84864-bit product in @samp{%edx:%eax}.
849
850We have added a two operand form of @samp{imul} when the first operand
851is an immediate mode expression and the second operand is a register.
852This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
853example, can be done with @samp{imul $69, %eax} rather than @samp{imul
854$69, %eax, %eax}.
855
This page took 0.361014 seconds and 4 git commands to generate.