Update year range in copyright notice of binutils files
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
219d1afa 1@c Copyright (C) 1991-2018 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
f9233288
JW
77as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
79
80@cindex @samp{--divide} option, i386
81@item --divide
82On SVR4-derived platforms, the character @samp{/} is treated as a comment
83character, which means that it cannot be used in expressions. The
84@samp{--divide} option turns @samp{/} into a normal character. This does
85not disable @samp{/} at the beginning of a line starting a comment, or
86affect using @samp{#} for starting a comment.
87
9103f4f4
L
88@cindex @samp{-march=} option, i386
89@cindex @samp{-march=} option, x86-64
6305a203
L
90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91This option specifies the target processor. The assembler will
92issue an error message if an attempt is made to assemble an instruction
93which will not execute on the target processor. The following
34bca508 94processor names are recognized:
9103f4f4
L
95@code{i8086},
96@code{i186},
97@code{i286},
98@code{i386},
99@code{i486},
100@code{i586},
101@code{i686},
102@code{pentium},
103@code{pentiumpro},
104@code{pentiumii},
105@code{pentiumiii},
106@code{pentium4},
107@code{prescott},
108@code{nocona},
ef05d495
L
109@code{core},
110@code{core2},
bd5295b2 111@code{corei7},
8a9036a4 112@code{l1om},
7a9068fe 113@code{k1om},
81486035 114@code{iamcu},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
c7b0bd56 124@code{bdver4},
029f3522 125@code{znver1},
7b458c12
L
126@code{btver1},
127@code{btver2},
9103f4f4
L
128@code{generic32} and
129@code{generic64}.
130
34bca508 131In addition to the basic instruction set, the assembler can be told to
6305a203
L
132accept various extension mnemonics. For example,
133@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
134@var{vmx}. The following extensions are currently supported:
309d3373
JB
135@code{8087},
136@code{287},
137@code{387},
1848e567 138@code{687},
309d3373 139@code{no87},
1848e567
L
140@code{no287},
141@code{no387},
142@code{no687},
6305a203 143@code{mmx},
309d3373 144@code{nommx},
6305a203
L
145@code{sse},
146@code{sse2},
147@code{sse3},
148@code{ssse3},
149@code{sse4.1},
150@code{sse4.2},
151@code{sse4},
309d3373 152@code{nosse},
1848e567
L
153@code{nosse2},
154@code{nosse3},
155@code{nossse3},
156@code{nosse4.1},
157@code{nosse4.2},
158@code{nosse4},
c0f3af97 159@code{avx},
6c30d220 160@code{avx2},
1848e567
L
161@code{noavx},
162@code{noavx2},
e2e1fcde
L
163@code{adx},
164@code{rdseed},
165@code{prfchw},
5c111e37 166@code{smap},
7e8b059b 167@code{mpx},
a0046408 168@code{sha},
8bc52696 169@code{rdpid},
6b40c462 170@code{ptwrite},
603555e5 171@code{cet},
48521003 172@code{gfni},
8dcf1fad 173@code{vaes},
ff1982d5 174@code{vpclmulqdq},
1dfc6506
L
175@code{prefetchwt1},
176@code{clflushopt},
177@code{se1},
c5e7287a 178@code{clwb},
43234a1e
L
179@code{avx512f},
180@code{avx512cd},
181@code{avx512er},
182@code{avx512pf},
1dfc6506
L
183@code{avx512vl},
184@code{avx512bw},
185@code{avx512dq},
2cc1b5aa 186@code{avx512ifma},
14f195c9 187@code{avx512vbmi},
920d2ddc 188@code{avx512_4fmaps},
47acf0bd 189@code{avx512_4vnniw},
620214f7 190@code{avx512_vpopcntdq},
53467f57 191@code{avx512_vbmi2},
8cfcb765 192@code{avx512_vnni},
ee6872be 193@code{avx512_bitalg},
144b71e2
L
194@code{noavx512f},
195@code{noavx512cd},
196@code{noavx512er},
197@code{noavx512pf},
198@code{noavx512vl},
199@code{noavx512bw},
200@code{noavx512dq},
201@code{noavx512ifma},
202@code{noavx512vbmi},
920d2ddc 203@code{noavx512_4fmaps},
47acf0bd 204@code{noavx512_4vnniw},
620214f7 205@code{noavx512_vpopcntdq},
53467f57 206@code{noavx512_vbmi2},
8cfcb765 207@code{noavx512_vnni},
ee6872be 208@code{noavx512_bitalg},
6305a203 209@code{vmx},
8729a6f6 210@code{vmfunc},
6305a203 211@code{smx},
f03fe4c1 212@code{xsave},
c7b8aa3a 213@code{xsaveopt},
1dfc6506
L
214@code{xsavec},
215@code{xsaves},
c0f3af97 216@code{aes},
594ab6a3 217@code{pclmul},
c7b8aa3a
L
218@code{fsgsbase},
219@code{rdrnd},
220@code{f16c},
6c30d220 221@code{bmi2},
c0f3af97 222@code{fma},
f1f8f695
L
223@code{movbe},
224@code{ept},
6c30d220 225@code{lzcnt},
42164a71
L
226@code{hle},
227@code{rtm},
6c30d220 228@code{invpcid},
bd5295b2 229@code{clflush},
9916071f 230@code{mwaitx},
029f3522 231@code{clzero},
f88c9eb0 232@code{lwp},
5dd85c99
SP
233@code{fma4},
234@code{xop},
60aa667e 235@code{cx16},
bd5295b2 236@code{syscall},
1b7f3fb0 237@code{rdtscp},
6305a203
L
238@code{3dnow},
239@code{3dnowa},
240@code{sse4a},
241@code{sse5},
242@code{svme},
243@code{abm} and
244@code{padlock}.
309d3373
JB
245Note that rather than extending a basic instruction set, the extension
246mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
247
248When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
249@code{.arch} directive will take precedent.
250
251@cindex @samp{-mtune=} option, i386
252@cindex @samp{-mtune=} option, x86-64
253@item -mtune=@var{CPU}
254This option specifies a processor to optimize for. When used in
255conjunction with the @option{-march} option, only instructions
256of the processor specified by the @option{-march} option will be
257generated.
258
6305a203
L
259Valid @var{CPU} values are identical to the processor list of
260@option{-march=@var{CPU}}.
9103f4f4 261
c0f3af97
L
262@cindex @samp{-msse2avx} option, i386
263@cindex @samp{-msse2avx} option, x86-64
264@item -msse2avx
265This option specifies that the assembler should encode SSE instructions
266with VEX prefix.
267
daf50ae7
L
268@cindex @samp{-msse-check=} option, i386
269@cindex @samp{-msse-check=} option, x86-64
270@item -msse-check=@var{none}
1f9bb1ca
AS
271@itemx -msse-check=@var{warning}
272@itemx -msse-check=@var{error}
9aff4b7a 273These options control if the assembler should check SSE instructions.
daf50ae7
L
274@option{-msse-check=@var{none}} will make the assembler not to check SSE
275instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 276will make the assembler issue a warning for any SSE instruction.
daf50ae7 277@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 278for any SSE instruction.
daf50ae7 279
539f890d
L
280@cindex @samp{-mavxscalar=} option, i386
281@cindex @samp{-mavxscalar=} option, x86-64
282@item -mavxscalar=@var{128}
1f9bb1ca 283@itemx -mavxscalar=@var{256}
2aab8acd 284These options control how the assembler should encode scalar AVX
539f890d
L
285instructions. @option{-mavxscalar=@var{128}} will encode scalar
286AVX instructions with 128bit vector length, which is the default.
287@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
288with 256bit vector length.
289
43234a1e
L
290@cindex @samp{-mevexlig=} option, i386
291@cindex @samp{-mevexlig=} option, x86-64
292@item -mevexlig=@var{128}
293@itemx -mevexlig=@var{256}
294@itemx -mevexlig=@var{512}
295These options control how the assembler should encode length-ignored
296(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
297EVEX instructions with 128bit vector length, which is the default.
298@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
299encode LIG EVEX instructions with 256bit and 512bit vector length,
300respectively.
301
302@cindex @samp{-mevexwig=} option, i386
303@cindex @samp{-mevexwig=} option, x86-64
304@item -mevexwig=@var{0}
305@itemx -mevexwig=@var{1}
306These options control how the assembler should encode w-ignored (WIG)
307EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
308EVEX instructions with evex.w = 0, which is the default.
309@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
310evex.w = 1.
311
1efbbeb4
L
312@cindex @samp{-mmnemonic=} option, i386
313@cindex @samp{-mmnemonic=} option, x86-64
314@item -mmnemonic=@var{att}
1f9bb1ca 315@itemx -mmnemonic=@var{intel}
34bca508 316This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
317The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
318take precedent.
319
320@cindex @samp{-msyntax=} option, i386
321@cindex @samp{-msyntax=} option, x86-64
322@item -msyntax=@var{att}
1f9bb1ca 323@itemx -msyntax=@var{intel}
34bca508 324This option specifies instruction syntax when processing instructions.
1efbbeb4
L
325The @code{.att_syntax} and @code{.intel_syntax} directives will
326take precedent.
327
328@cindex @samp{-mnaked-reg} option, i386
329@cindex @samp{-mnaked-reg} option, x86-64
330@item -mnaked-reg
33eaf5de 331This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 332The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 333
7e8b059b
L
334@cindex @samp{-madd-bnd-prefix} option, i386
335@cindex @samp{-madd-bnd-prefix} option, x86-64
336@item -madd-bnd-prefix
337This option forces the assembler to add BND prefix to all branches, even
338if such prefix was not explicitly specified in the source code.
339
8dcea932
L
340@cindex @samp{-mshared} option, i386
341@cindex @samp{-mshared} option, x86-64
342@item -mno-shared
343On ELF target, the assembler normally optimizes out non-PLT relocations
344against defined non-weak global branch targets with default visibility.
345The @samp{-mshared} option tells the assembler to generate code which
346may go into a shared library where all non-weak global branch targets
347with default visibility can be preempted. The resulting code is
348slightly bigger. This option only affects the handling of branch
349instructions.
350
167ad85b
TG
351@cindex @samp{-mbig-obj} option, x86-64
352@item -mbig-obj
353On x86-64 PE/COFF target this option forces the use of big object file
354format, which allows more than 32768 sections.
355
d022bddd
IT
356@cindex @samp{-momit-lock-prefix=} option, i386
357@cindex @samp{-momit-lock-prefix=} option, x86-64
358@item -momit-lock-prefix=@var{no}
359@itemx -momit-lock-prefix=@var{yes}
360These options control how the assembler should encode lock prefix.
361This option is intended as a workaround for processors, that fail on
362lock prefix. This option can only be safely used with single-core,
363single-thread computers
364@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
365@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
366which is the default.
367
e4e00185
AS
368@cindex @samp{-mfence-as-lock-add=} option, i386
369@cindex @samp{-mfence-as-lock-add=} option, x86-64
370@item -mfence-as-lock-add=@var{no}
371@itemx -mfence-as-lock-add=@var{yes}
372These options control how the assembler should encode lfence, mfence and
373sfence.
374@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
375sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
376@samp{lock addl $0x0, (%esp)} in 32-bit mode.
377@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
378sfence as usual, which is the default.
379
0cb4071e
L
380@cindex @samp{-mrelax-relocations=} option, i386
381@cindex @samp{-mrelax-relocations=} option, x86-64
382@item -mrelax-relocations=@var{no}
383@itemx -mrelax-relocations=@var{yes}
384These options control whether the assembler should generate relax
385relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
386R_X86_64_REX_GOTPCRELX, in 64-bit mode.
387@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
388@option{-mrelax-relocations=@var{no}} will not generate relax
389relocations. The default can be controlled by a configure option
390@option{--enable-x86-relax-relocations}.
391
d3d3c6db
IT
392@cindex @samp{-mevexrcig=} option, i386
393@cindex @samp{-mevexrcig=} option, x86-64
394@item -mevexrcig=@var{rne}
395@itemx -mevexrcig=@var{rd}
396@itemx -mevexrcig=@var{ru}
397@itemx -mevexrcig=@var{rz}
398These options control how the assembler should encode SAE-only
399EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
400of EVEX instruction with 00, which is the default.
401@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
402and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
403with 01, 10 and 11 RC bits, respectively.
404
5db04b09
L
405@cindex @samp{-mamd64} option, x86-64
406@cindex @samp{-mintel64} option, x86-64
407@item -mamd64
408@itemx -mintel64
409This option specifies that the assembler should accept only AMD64 or
410Intel64 ISA in 64-bit mode. The default is to accept both.
411
55b62671 412@end table
731caf76 413@c man end
e413e4e9 414
a6c24e68
NC
415@node i386-Directives
416@section x86 specific Directives
417
418@cindex machine directives, x86
419@cindex x86 machine directives
420@table @code
421
422@cindex @code{lcomm} directive, COFF
423@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
424Reserve @var{length} (an absolute expression) bytes for a local common
425denoted by @var{symbol}. The section and value of @var{symbol} are
426those of the new local common. The addresses are allocated in the bss
704209c0
NC
427section, so that at run-time the bytes start off zeroed. Since
428@var{symbol} is not declared global, it is normally not visible to
429@code{@value{LD}}. The optional third parameter, @var{alignment},
430specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
431
432This directive is only available for COFF based x86 targets.
433
434@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
435@c .largecomm
436
437@end table
438
252b5132 439@node i386-Syntax
7c31ae13
NC
440@section i386 Syntactical Considerations
441@menu
442* i386-Variations:: AT&T Syntax versus Intel Syntax
443* i386-Chars:: Special Characters
444@end menu
445
446@node i386-Variations
447@subsection AT&T Syntax versus Intel Syntax
252b5132 448
e413e4e9
AM
449@cindex i386 intel_syntax pseudo op
450@cindex intel_syntax pseudo op, i386
451@cindex i386 att_syntax pseudo op
452@cindex att_syntax pseudo op, i386
252b5132
RH
453@cindex i386 syntax compatibility
454@cindex syntax compatibility, i386
55b62671
AJ
455@cindex x86-64 intel_syntax pseudo op
456@cindex intel_syntax pseudo op, x86-64
457@cindex x86-64 att_syntax pseudo op
458@cindex att_syntax pseudo op, x86-64
459@cindex x86-64 syntax compatibility
460@cindex syntax compatibility, x86-64
e413e4e9
AM
461
462@code{@value{AS}} now supports assembly using Intel assembler syntax.
463@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
464back to the usual AT&T mode for compatibility with the output of
465@code{@value{GCC}}. Either of these directives may have an optional
466argument, @code{prefix}, or @code{noprefix} specifying whether registers
467require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
468different from Intel syntax. We mention these differences because
469almost all 80386 documents use Intel syntax. Notable differences
470between the two syntaxes are:
471
472@cindex immediate operands, i386
473@cindex i386 immediate operands
474@cindex register operands, i386
475@cindex i386 register operands
476@cindex jump/call operands, i386
477@cindex i386 jump/call operands
478@cindex operand delimiters, i386
55b62671
AJ
479
480@cindex immediate operands, x86-64
481@cindex x86-64 immediate operands
482@cindex register operands, x86-64
483@cindex x86-64 register operands
484@cindex jump/call operands, x86-64
485@cindex x86-64 jump/call operands
486@cindex operand delimiters, x86-64
252b5132
RH
487@itemize @bullet
488@item
489AT&T immediate operands are preceded by @samp{$}; Intel immediate
490operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
491AT&T register operands are preceded by @samp{%}; Intel register operands
492are undelimited. AT&T absolute (as opposed to PC relative) jump/call
493operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
494
495@cindex i386 source, destination operands
496@cindex source, destination operands; i386
55b62671
AJ
497@cindex x86-64 source, destination operands
498@cindex source, destination operands; x86-64
252b5132
RH
499@item
500AT&T and Intel syntax use the opposite order for source and destination
501operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
502@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
503previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
504instructions with 2 immediate operands, such as the @samp{enter}
505instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
506
507@cindex mnemonic suffixes, i386
508@cindex sizes operands, i386
509@cindex i386 size suffixes
55b62671
AJ
510@cindex mnemonic suffixes, x86-64
511@cindex sizes operands, x86-64
512@cindex x86-64 size suffixes
252b5132
RH
513@item
514In AT&T syntax the size of memory operands is determined from the last
515character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
516@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
517(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
518this by prefixing memory operands (@emph{not} the instruction mnemonics) with
519@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
520Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
521syntax.
252b5132 522
4b06377f
L
523In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
524instruction with the 64-bit displacement or immediate operand.
525
252b5132
RH
526@cindex return instructions, i386
527@cindex i386 jump, call, return
55b62671
AJ
528@cindex return instructions, x86-64
529@cindex x86-64 jump, call, return
252b5132
RH
530@item
531Immediate form long jumps and calls are
532@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
533Intel syntax is
534@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
535instruction
536is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
537@samp{ret far @var{stack-adjust}}.
538
539@cindex sections, i386
540@cindex i386 sections
55b62671
AJ
541@cindex sections, x86-64
542@cindex x86-64 sections
252b5132
RH
543@item
544The AT&T assembler does not provide support for multiple section
545programs. Unix style systems expect all programs to be single sections.
546@end itemize
547
7c31ae13
NC
548@node i386-Chars
549@subsection Special Characters
550
551@cindex line comment character, i386
552@cindex i386 line comment character
553The presence of a @samp{#} appearing anywhere on a line indicates the
554start of a comment that extends to the end of that line.
555
556If a @samp{#} appears as the first character of a line then the whole
557line is treated as a comment, but in this case the line can also be a
558logical line number directive (@pxref{Comments}) or a preprocessor
559control command (@pxref{Preprocessing}).
560
561If the @option{--divide} command line option has not been specified
562then the @samp{/} character appearing anywhere on a line also
563introduces a line comment.
564
565@cindex line separator, i386
566@cindex statement separator, i386
567@cindex i386 line separator
568The @samp{;} character can be used to separate statements on the same
569line.
570
252b5132 571@node i386-Mnemonics
d3b47e2b
L
572@section i386-Mnemonics
573@subsection Instruction Naming
252b5132
RH
574
575@cindex i386 instruction naming
576@cindex instruction naming, i386
55b62671
AJ
577@cindex x86-64 instruction naming
578@cindex instruction naming, x86-64
579
252b5132 580Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
581specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
582and @samp{q} specify byte, word, long and quadruple word operands. If
583no suffix is specified by an instruction then @code{@value{AS}} tries to
584fill in the missing suffix based on the destination register operand
585(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
586to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
587@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
588assembler which assumes that a missing mnemonic suffix implies long
589operand size. (This incompatibility does not affect compiler output
590since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
591
592Almost all instructions have the same names in AT&T and Intel format.
593There are a few exceptions. The sign extend and zero extend
594instructions need two sizes to specify them. They need a size to
595sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
596is accomplished by using two instruction mnemonic suffixes in AT&T
597syntax. Base names for sign extend and zero extend are
598@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
599and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
600are tacked on to this base name, the @emph{from} suffix before the
601@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
602``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
603thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
604@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
605@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
606quadruple word).
252b5132 607
b6169b20
L
608@cindex encoding options, i386
609@cindex encoding options, x86-64
610
86fa6981
L
611Different encoding options can be specified via pseudo prefixes:
612
613@itemize @bullet
614@item
615@samp{@{disp8@}} -- prefer 8-bit displacement.
616
617@item
618@samp{@{disp32@}} -- prefer 32-bit displacement.
619
620@item
621@samp{@{load@}} -- prefer load-form instruction.
622
623@item
624@samp{@{store@}} -- prefer store-form instruction.
625
626@item
627@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
628
629@item
630@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
631
632@item
633@samp{@{evex@}} -- encode with EVEX prefix.
634@end itemize
b6169b20 635
252b5132
RH
636@cindex conversion instructions, i386
637@cindex i386 conversion instructions
55b62671
AJ
638@cindex conversion instructions, x86-64
639@cindex x86-64 conversion instructions
252b5132
RH
640The Intel-syntax conversion instructions
641
642@itemize @bullet
643@item
644@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
645
646@item
647@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
648
649@item
650@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
651
652@item
653@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
654
655@item
656@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
657(x86-64 only),
658
659@item
d5f0cf92 660@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 661@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
662@end itemize
663
664@noindent
55b62671
AJ
665are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
666@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
667instructions.
252b5132
RH
668
669@cindex jump instructions, i386
670@cindex call instructions, i386
55b62671
AJ
671@cindex jump instructions, x86-64
672@cindex call instructions, x86-64
252b5132
RH
673Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
674AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
675convention.
676
d3b47e2b 677@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
678
679@cindex i386 mnemonic compatibility
680@cindex mnemonic compatibility, i386
681
682@code{@value{AS}} supports assembly using Intel mnemonic.
683@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
684@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
685syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
686Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
687@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
688@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
689assembler with different mnemonics from those in Intel IA32 specification.
690@code{@value{GCC}} generates those instructions with AT&T mnemonic.
691
252b5132
RH
692@node i386-Regs
693@section Register Naming
694
695@cindex i386 registers
696@cindex registers, i386
55b62671
AJ
697@cindex x86-64 registers
698@cindex registers, x86-64
252b5132
RH
699Register operands are always prefixed with @samp{%}. The 80386 registers
700consist of
701
702@itemize @bullet
703@item
704the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
705@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
706frame pointer), and @samp{%esp} (the stack pointer).
707
708@item
709the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
710@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
711
712@item
713the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
714@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
715are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
716@samp{%cx}, and @samp{%dx})
717
718@item
719the 6 section registers @samp{%cs} (code section), @samp{%ds}
720(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
721and @samp{%gs}.
722
723@item
4bde3cdd
UD
724the 5 processor control registers @samp{%cr0}, @samp{%cr2},
725@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
726
727@item
728the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
729@samp{%db3}, @samp{%db6}, and @samp{%db7}.
730
731@item
732the 2 test registers @samp{%tr6} and @samp{%tr7}.
733
734@item
735the 8 floating point register stack @samp{%st} or equivalently
736@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
737@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
738These registers are overloaded by 8 MMX registers @samp{%mm0},
739@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
740@samp{%mm6} and @samp{%mm7}.
741
742@item
4bde3cdd 743the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
744@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
745@end itemize
746
747The AMD x86-64 architecture extends the register set by:
748
749@itemize @bullet
750@item
751enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
752accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
753@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
754pointer)
755
756@item
757the 8 extended registers @samp{%r8}--@samp{%r15}.
758
759@item
4bde3cdd 760the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
761
762@item
4bde3cdd 763the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
764
765@item
4bde3cdd 766the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
767
768@item
769the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
770
771@item
772the 8 debug registers: @samp{%db8}--@samp{%db15}.
773
774@item
4bde3cdd
UD
775the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
776@end itemize
777
778With the AVX extensions more registers were made available:
779
780@itemize @bullet
781
782@item
783the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
784available in 32-bit mode). The bottom 128 bits are overlaid with the
785@samp{xmm0}--@samp{xmm15} registers.
786
787@end itemize
788
789The AVX2 extensions made in 64-bit mode more registers available:
790
791@itemize @bullet
792
793@item
794the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
795registers @samp{%ymm16}--@samp{%ymm31}.
796
797@end itemize
798
799The AVX512 extensions added the following registers:
800
801@itemize @bullet
802
803@item
804the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
805available in 32-bit mode). The bottom 128 bits are overlaid with the
806@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
807overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
808
809@item
810the 8 mask registers @samp{%k0}--@samp{%k7}.
811
252b5132
RH
812@end itemize
813
814@node i386-Prefixes
815@section Instruction Prefixes
816
817@cindex i386 instruction prefixes
818@cindex instruction prefixes, i386
819@cindex prefixes, i386
820Instruction prefixes are used to modify the following instruction. They
821are used to repeat string instructions, to provide section overrides, to
822perform bus lock operations, and to change operand and address sizes.
823(Most instructions that normally operate on 32-bit operands will use
82416-bit operands if the instruction has an ``operand size'' prefix.)
825Instruction prefixes are best written on the same line as the instruction
826they act upon. For example, the @samp{scas} (scan string) instruction is
827repeated with:
828
829@smallexample
830 repne scas %es:(%edi),%al
831@end smallexample
832
833You may also place prefixes on the lines immediately preceding the
834instruction, but this circumvents checks that @code{@value{AS}} does
835with prefixes, and will not work with all prefixes.
836
837Here is a list of instruction prefixes:
838
839@cindex section override prefixes, i386
840@itemize @bullet
841@item
842Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
843@samp{fs}, @samp{gs}. These are automatically added by specifying
844using the @var{section}:@var{memory-operand} form for memory references.
845
846@cindex size prefixes, i386
847@item
848Operand/Address size prefixes @samp{data16} and @samp{addr16}
849change 32-bit operands/addresses into 16-bit operands/addresses,
850while @samp{data32} and @samp{addr32} change 16-bit ones (in a
851@code{.code16} section) into 32-bit operands/addresses. These prefixes
852@emph{must} appear on the same line of code as the instruction they
853modify. For example, in a 16-bit @code{.code16} section, you might
854write:
855
856@smallexample
857 addr32 jmpl *(%ebx)
858@end smallexample
859
860@cindex bus lock prefixes, i386
861@cindex inhibiting interrupts, i386
862@item
863The bus lock prefix @samp{lock} inhibits interrupts during execution of
864the instruction it precedes. (This is only valid with certain
865instructions; see a 80386 manual for details).
866
867@cindex coprocessor wait, i386
868@item
869The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
870complete the current instruction. This should never be needed for the
87180386/80387 combination.
872
873@cindex repeat prefixes, i386
874@item
875The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
876to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
877times if the current address size is 16-bits).
55b62671
AJ
878@cindex REX prefixes, i386
879@item
880The @samp{rex} family of prefixes is used by x86-64 to encode
881extensions to i386 instruction set. The @samp{rex} prefix has four
882bits --- an operand size overwrite (@code{64}) used to change operand size
883from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
884register set.
885
886You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
887instruction emits @samp{rex} prefix with all the bits set. By omitting
888the @code{64}, @code{x}, @code{y} or @code{z} you may write other
889prefixes as well. Normally, there is no need to write the prefixes
890explicitly, since gas will automatically generate them based on the
891instruction operands.
252b5132
RH
892@end itemize
893
894@node i386-Memory
895@section Memory References
896
897@cindex i386 memory references
898@cindex memory references, i386
55b62671
AJ
899@cindex x86-64 memory references
900@cindex memory references, x86-64
252b5132
RH
901An Intel syntax indirect memory reference of the form
902
903@smallexample
904@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
905@end smallexample
906
907@noindent
908is translated into the AT&T syntax
909
910@smallexample
911@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
912@end smallexample
913
914@noindent
915where @var{base} and @var{index} are the optional 32-bit base and
916index registers, @var{disp} is the optional displacement, and
917@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
918to calculate the address of the operand. If no @var{scale} is
919specified, @var{scale} is taken to be 1. @var{section} specifies the
920optional section register for the memory operand, and may override the
921default section register (see a 80386 manual for section register
922defaults). Note that section overrides in AT&T syntax @emph{must}
923be preceded by a @samp{%}. If you specify a section override which
924coincides with the default section register, @code{@value{AS}} does @emph{not}
925output any section register override prefixes to assemble the given
926instruction. Thus, section overrides can be specified to emphasize which
927section register is used for a given memory operand.
928
929Here are some examples of Intel and AT&T style memory references:
930
931@table @asis
932@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
933@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
934missing, and the default section is used (@samp{%ss} for addressing with
935@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
936
937@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
938@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
939@samp{foo}. All other fields are missing. The section register here
940defaults to @samp{%ds}.
941
942@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
943This uses the value pointed to by @samp{foo} as a memory operand.
944Note that @var{base} and @var{index} are both missing, but there is only
945@emph{one} @samp{,}. This is a syntactic exception.
946
947@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
948This selects the contents of the variable @samp{foo} with section
949register @var{section} being @samp{%gs}.
950@end table
951
952Absolute (as opposed to PC relative) call and jump operands must be
953prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
954always chooses PC relative addressing for jump/call labels.
955
956Any instruction that has a memory operand, but no register operand,
55b62671
AJ
957@emph{must} specify its size (byte, word, long, or quadruple) with an
958instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
959respectively).
960
961The x86-64 architecture adds an RIP (instruction pointer relative)
962addressing. This addressing mode is specified by using @samp{rip} as a
963base register. Only constant offsets are valid. For example:
964
965@table @asis
966@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
967Points to the address 1234 bytes past the end of the current
968instruction.
969
970@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
971Points to the @code{symbol} in RIP relative way, this is shorter than
972the default absolute addressing.
973@end table
974
975Other addressing modes remain unchanged in x86-64 architecture, except
976registers used are 64-bit instead of 32-bit.
252b5132 977
fddf5b5b 978@node i386-Jumps
252b5132
RH
979@section Handling of Jump Instructions
980
981@cindex jump optimization, i386
982@cindex i386 jump optimization
55b62671
AJ
983@cindex jump optimization, x86-64
984@cindex x86-64 jump optimization
252b5132
RH
985Jump instructions are always optimized to use the smallest possible
986displacements. This is accomplished by using byte (8-bit) displacement
987jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 988is insufficient a long displacement is used. We do not support
252b5132
RH
989word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
990instruction with the @samp{data16} instruction prefix), since the 80386
991insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 992is added. (See also @pxref{i386-Arch})
252b5132
RH
993
994Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
995@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
996displacements, so that if you use these instructions (@code{@value{GCC}} does
997not use them) you may get an error message (and incorrect code). The AT&T
99880386 assembler tries to get around this problem by expanding @samp{jcxz foo}
999to
1000
1001@smallexample
1002 jcxz cx_zero
1003 jmp cx_nonzero
1004cx_zero: jmp foo
1005cx_nonzero:
1006@end smallexample
1007
1008@node i386-Float
1009@section Floating Point
1010
1011@cindex i386 floating point
1012@cindex floating point, i386
55b62671
AJ
1013@cindex x86-64 floating point
1014@cindex floating point, x86-64
252b5132
RH
1015All 80387 floating point types except packed BCD are supported.
1016(BCD support may be added without much difficulty). These data
1017types are 16-, 32-, and 64- bit integers, and single (32-bit),
1018double (64-bit), and extended (80-bit) precision floating point.
1019Each supported type has an instruction mnemonic suffix and a constructor
1020associated with it. Instruction mnemonic suffixes specify the operand's
1021data type. Constructors build these data types into memory.
1022
1023@cindex @code{float} directive, i386
1024@cindex @code{single} directive, i386
1025@cindex @code{double} directive, i386
1026@cindex @code{tfloat} directive, i386
55b62671
AJ
1027@cindex @code{float} directive, x86-64
1028@cindex @code{single} directive, x86-64
1029@cindex @code{double} directive, x86-64
1030@cindex @code{tfloat} directive, x86-64
252b5132
RH
1031@itemize @bullet
1032@item
1033Floating point constructors are @samp{.float} or @samp{.single},
1034@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1035These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1036and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1037only supports this format via the @samp{fldt} (load 80-bit real to stack
1038top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1039
1040@cindex @code{word} directive, i386
1041@cindex @code{long} directive, i386
1042@cindex @code{int} directive, i386
1043@cindex @code{quad} directive, i386
55b62671
AJ
1044@cindex @code{word} directive, x86-64
1045@cindex @code{long} directive, x86-64
1046@cindex @code{int} directive, x86-64
1047@cindex @code{quad} directive, x86-64
252b5132
RH
1048@item
1049Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1050@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1051corresponding instruction mnemonic suffixes are @samp{s} (single),
1052@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1053the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1054quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1055stack) instructions.
1056@end itemize
1057
1058Register to register operations should not use instruction mnemonic suffixes.
1059@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1060wrote @samp{fst %st, %st(1)}, since all register to register operations
1061use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1062which converts @samp{%st} from 80-bit to 64-bit floating point format,
1063then stores the result in the 4 byte location @samp{mem})
1064
1065@node i386-SIMD
1066@section Intel's MMX and AMD's 3DNow! SIMD Operations
1067
1068@cindex MMX, i386
1069@cindex 3DNow!, i386
1070@cindex SIMD, i386
55b62671
AJ
1071@cindex MMX, x86-64
1072@cindex 3DNow!, x86-64
1073@cindex SIMD, x86-64
252b5132
RH
1074
1075@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1076instructions for integer data), available on Intel's Pentium MMX
1077processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1078Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1079instruction set (SIMD instructions for 32-bit floating point data)
1080available on AMD's K6-2 processor and possibly others in the future.
1081
1082Currently, @code{@value{AS}} does not support Intel's floating point
1083SIMD, Katmai (KNI).
1084
1085The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1086@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
108716-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1088floating point values. The MMX registers cannot be used at the same time
1089as the floating point stack.
1090
1091See Intel and AMD documentation, keeping in mind that the operand order in
1092instructions is reversed from the Intel syntax.
1093
f88c9eb0
SP
1094@node i386-LWP
1095@section AMD's Lightweight Profiling Instructions
1096
1097@cindex LWP, i386
1098@cindex LWP, x86-64
1099
1100@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1101instruction set, available on AMD's Family 15h (Orochi) processors.
1102
1103LWP enables applications to collect and manage performance data, and
1104react to performance events. The collection of performance data
1105requires no context switches. LWP runs in the context of a thread and
1106so several counters can be used independently across multiple threads.
1107LWP can be used in both 64-bit and legacy 32-bit modes.
1108
1109For detailed information on the LWP instruction set, see the
1110@cite{AMD Lightweight Profiling Specification} available at
1111@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1112
87973e9f
QN
1113@node i386-BMI
1114@section Bit Manipulation Instructions
1115
1116@cindex BMI, i386
1117@cindex BMI, x86-64
1118
1119@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1120
1121BMI instructions provide several instructions implementing individual
1122bit manipulation operations such as isolation, masking, setting, or
34bca508 1123resetting.
87973e9f
QN
1124
1125@c Need to add a specification citation here when available.
1126
2a2a0f38
QN
1127@node i386-TBM
1128@section AMD's Trailing Bit Manipulation Instructions
1129
1130@cindex TBM, i386
1131@cindex TBM, x86-64
1132
1133@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1134instruction set, available on AMD's BDVER2 processors (Trinity and
1135Viperfish).
1136
1137TBM instructions provide instructions implementing individual bit
1138manipulation operations such as isolating, masking, setting, resetting,
1139complementing, and operations on trailing zeros and ones.
1140
1141@c Need to add a specification citation here when available.
87973e9f 1142
252b5132
RH
1143@node i386-16bit
1144@section Writing 16-bit Code
1145
1146@cindex i386 16-bit code
1147@cindex 16-bit code, i386
1148@cindex real-mode code, i386
eecb386c 1149@cindex @code{code16gcc} directive, i386
252b5132
RH
1150@cindex @code{code16} directive, i386
1151@cindex @code{code32} directive, i386
55b62671
AJ
1152@cindex @code{code64} directive, i386
1153@cindex @code{code64} directive, x86-64
1154While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1155or 64-bit x86-64 code depending on the default configuration,
252b5132 1156it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1157mode code segments. To do this, put a @samp{.code16} or
1158@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1159be run in 16-bit mode. You can switch @code{@value{AS}} to writing
116032-bit code with the @samp{.code32} directive or 64-bit code with the
1161@samp{.code64} directive.
eecb386c
AM
1162
1163@samp{.code16gcc} provides experimental support for generating 16-bit
1164code from gcc, and differs from @samp{.code16} in that @samp{call},
1165@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1166@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1167default to 32-bit size. This is so that the stack pointer is
1168manipulated in the same way over function calls, allowing access to
1169function parameters at the same stack offsets as in 32-bit mode.
1170@samp{.code16gcc} also automatically adds address size prefixes where
1171necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1172
1173The code which @code{@value{AS}} generates in 16-bit mode will not
1174necessarily run on a 16-bit pre-80386 processor. To write code that
1175runs on such a processor, you must refrain from using @emph{any} 32-bit
1176constructs which require @code{@value{AS}} to output address or operand
1177size prefixes.
1178
1179Note that writing 16-bit code instructions by explicitly specifying a
1180prefix or an instruction mnemonic suffix within a 32-bit code section
1181generates different machine instructions than those generated for a
118216-bit code segment. In a 32-bit code section, the following code
1183generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1184value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1185
1186@smallexample
1187 pushw $4
1188@end smallexample
1189
1190The same code in a 16-bit code section would generate the machine
b45619c0 1191opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1192is correct since the processor default operand size is assumed to be 16
1193bits in a 16-bit code section.
1194
e413e4e9
AM
1195@node i386-Arch
1196@section Specifying CPU Architecture
1197
1198@cindex arch directive, i386
1199@cindex i386 arch directive
55b62671
AJ
1200@cindex arch directive, x86-64
1201@cindex x86-64 arch directive
e413e4e9
AM
1202
1203@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1204(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1205directive enables a warning when gas detects an instruction that is not
1206supported on the CPU specified. The choices for @var{cpu_type} are:
1207
1208@multitable @columnfractions .20 .20 .20 .20
1209@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1210@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1211@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1212@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1213@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1214@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1215@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1216@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1217@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1218@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1219@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1220@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1221@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1222@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1223@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1224@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1225@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1226@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1227@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1228@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1229@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1230@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1231@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
ee6872be 1232@item @samp{.avx512_bitalg}
53467f57 1233@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.cet}
1ceab344 1234@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1235@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1236@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
48521003 1237@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.gfni}
ff1982d5 1238@item @samp{.vaes} @tab @samp{.vpclmulqdq}
e413e4e9
AM
1239@end multitable
1240
fddf5b5b
AM
1241Apart from the warning, there are only two other effects on
1242@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1243@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1244will automatically use a two byte opcode sequence. The larger three
1245byte opcode sequence is used on the 486 (and when no architecture is
1246specified) because it executes faster on the 486. Note that you can
1247explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1248Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1249@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1250conditional jumps will be promoted when necessary to a two instruction
1251sequence consisting of a conditional jump of the opposite sense around
1252an unconditional jump to the target.
1253
5c6af06e
JB
1254Following the CPU architecture (but not a sub-architecture, which are those
1255starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1256control automatic promotion of conditional jumps. @samp{jumps} is the
1257default, and enables jump promotion; All external jumps will be of the long
1258variety, and file-local jumps will be promoted as necessary.
1259(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1260byte offset jumps, and warns about file-local conditional jumps that
1261@code{@value{AS}} promotes.
fddf5b5b
AM
1262Unconditional jumps are treated as for @samp{jumps}.
1263
1264For example
1265
1266@smallexample
1267 .arch i8086,nojumps
1268@end smallexample
e413e4e9 1269
5c9352f3
AM
1270@node i386-Bugs
1271@section AT&T Syntax bugs
1272
1273The UnixWare assembler, and probably other AT&T derived ix86 Unix
1274assemblers, generate floating point instructions with reversed source
1275and destination registers in certain cases. Unfortunately, gcc and
1276possibly many other programs use this reversed syntax, so we're stuck
1277with it.
1278
1279For example
1280
1281@smallexample
1282 fsub %st,%st(3)
1283@end smallexample
1284@noindent
1285results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1286than the expected @samp{%st(3) - %st}. This happens with all the
1287non-commutative arithmetic floating point operations with two register
1288operands where the source register is @samp{%st} and the destination
1289register is @samp{%st(i)}.
1290
252b5132
RH
1291@node i386-Notes
1292@section Notes
1293
1294@cindex i386 @code{mul}, @code{imul} instructions
1295@cindex @code{mul} instruction, i386
1296@cindex @code{imul} instruction, i386
55b62671
AJ
1297@cindex @code{mul} instruction, x86-64
1298@cindex @code{imul} instruction, x86-64
252b5132 1299There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1300instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1301multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1302for @samp{imul}) can be output only in the one operand form. Thus,
1303@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1304the expanding multiply would clobber the @samp{%edx} register, and this
1305would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
130664-bit product in @samp{%edx:%eax}.
1307
1308We have added a two operand form of @samp{imul} when the first operand
1309is an immediate mode expression and the second operand is a register.
1310This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1311example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1312$69, %eax, %eax}.
1313
This page took 0.817168 seconds and 4 git commands to generate.