* linux-thread-db.c: Whitespace cleanup.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037 1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
7c31ae13 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
731caf76
L
6@c man end
7
252b5132
RH
8@ifset GENERIC
9@page
10@node i386-Dependent
11@chapter 80386 Dependent Features
12@end ifset
13@ifclear GENERIC
14@node Machine Dependencies
15@chapter 80386 Dependent Features
16@end ifclear
17
18@cindex i386 support
b6169b20 19@cindex i80386 support
55b62671
AJ
20@cindex x86-64 support
21
22The i386 version @code{@value{AS}} supports both the original Intel 386
23architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24extending the Intel architecture to 64-bits.
25
252b5132
RH
26@menu
27* i386-Options:: Options
a6c24e68 28* i386-Directives:: X86 specific directives
7c31ae13 29* i386-Syntax:: Syntactical considerations
252b5132
RH
30* i386-Mnemonics:: Instruction Naming
31* i386-Regs:: Register Naming
32* i386-Prefixes:: Instruction Prefixes
33* i386-Memory:: Memory References
fddf5b5b 34* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
35* i386-Float:: Floating Point
36* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 37* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 38* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 39* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 40* i386-16bit:: Writing 16-bit Code
e413e4e9 41* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
42* i386-Bugs:: AT&T Syntax bugs
43* i386-Notes:: Notes
44@end menu
45
46@node i386-Options
47@section Options
48
55b62671
AJ
49@cindex options for i386
50@cindex options for x86-64
51@cindex i386 options
52@cindex x86-64 options
53
54The i386 version of @code{@value{AS}} has a few machine
55dependent options:
56
731caf76
L
57@c man begin OPTIONS
58@table @gcctabopt
55b62671
AJ
59@cindex @samp{--32} option, i386
60@cindex @samp{--32} option, x86-64
570561f7
L
61@cindex @samp{--x32} option, i386
62@cindex @samp{--x32} option, x86-64
55b62671
AJ
63@cindex @samp{--64} option, i386
64@cindex @samp{--64} option, x86-64
570561f7 65@item --32 | --x32 | --64
35cc6a0b 66Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 67implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
68imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69respectively.
55b62671
AJ
70
71These options are only available with the ELF object file format, and
72require that the necessary BFD support has been included (on a 32-bit
73platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74usage and use x86-64 as target platform).
12b55ccc
L
75
76@item -n
77By default, x86 GAS replaces multiple nop instructions used for
78alignment within code sections with multi-byte nop instructions such
79as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
9103f4f4
L
114@code{k6},
115@code{k6_2},
116@code{athlon},
9103f4f4
L
117@code{opteron},
118@code{k8},
1ceab344 119@code{amdfam10},
68339fdf 120@code{bdver1},
9103f4f4
L
121@code{generic32} and
122@code{generic64}.
123
6305a203
L
124In addition to the basic instruction set, the assembler can be told to
125accept various extension mnemonics. For example,
126@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
127@var{vmx}. The following extensions are currently supported:
309d3373
JB
128@code{8087},
129@code{287},
130@code{387},
131@code{no87},
6305a203 132@code{mmx},
309d3373 133@code{nommx},
6305a203
L
134@code{sse},
135@code{sse2},
136@code{sse3},
137@code{ssse3},
138@code{sse4.1},
139@code{sse4.2},
140@code{sse4},
309d3373 141@code{nosse},
c0f3af97 142@code{avx},
309d3373 143@code{noavx},
6305a203
L
144@code{vmx},
145@code{smx},
f03fe4c1 146@code{xsave},
c7b8aa3a 147@code{xsaveopt},
c0f3af97 148@code{aes},
594ab6a3 149@code{pclmul},
c7b8aa3a
L
150@code{fsgsbase},
151@code{rdrnd},
152@code{f16c},
c0f3af97 153@code{fma},
f1f8f695
L
154@code{movbe},
155@code{ept},
bd5295b2 156@code{clflush},
f88c9eb0 157@code{lwp},
5dd85c99
SP
158@code{fma4},
159@code{xop},
bd5295b2 160@code{syscall},
1b7f3fb0 161@code{rdtscp},
6305a203
L
162@code{3dnow},
163@code{3dnowa},
164@code{sse4a},
165@code{sse5},
166@code{svme},
167@code{abm} and
168@code{padlock}.
309d3373
JB
169Note that rather than extending a basic instruction set, the extension
170mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
171
172When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
173@code{.arch} directive will take precedent.
174
175@cindex @samp{-mtune=} option, i386
176@cindex @samp{-mtune=} option, x86-64
177@item -mtune=@var{CPU}
178This option specifies a processor to optimize for. When used in
179conjunction with the @option{-march} option, only instructions
180of the processor specified by the @option{-march} option will be
181generated.
182
6305a203
L
183Valid @var{CPU} values are identical to the processor list of
184@option{-march=@var{CPU}}.
9103f4f4 185
c0f3af97
L
186@cindex @samp{-msse2avx} option, i386
187@cindex @samp{-msse2avx} option, x86-64
188@item -msse2avx
189This option specifies that the assembler should encode SSE instructions
190with VEX prefix.
191
daf50ae7
L
192@cindex @samp{-msse-check=} option, i386
193@cindex @samp{-msse-check=} option, x86-64
194@item -msse-check=@var{none}
1f9bb1ca
AS
195@itemx -msse-check=@var{warning}
196@itemx -msse-check=@var{error}
daf50ae7
L
197These options control if the assembler should check SSE intructions.
198@option{-msse-check=@var{none}} will make the assembler not to check SSE
199instructions, which is the default. @option{-msse-check=@var{warning}}
200will make the assembler issue a warning for any SSE intruction.
201@option{-msse-check=@var{error}} will make the assembler issue an error
202for any SSE intruction.
203
539f890d
L
204@cindex @samp{-mavxscalar=} option, i386
205@cindex @samp{-mavxscalar=} option, x86-64
206@item -mavxscalar=@var{128}
1f9bb1ca 207@itemx -mavxscalar=@var{256}
539f890d
L
208This options control how the assembler should encode scalar AVX
209instructions. @option{-mavxscalar=@var{128}} will encode scalar
210AVX instructions with 128bit vector length, which is the default.
211@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
212with 256bit vector length.
213
1efbbeb4
L
214@cindex @samp{-mmnemonic=} option, i386
215@cindex @samp{-mmnemonic=} option, x86-64
216@item -mmnemonic=@var{att}
1f9bb1ca 217@itemx -mmnemonic=@var{intel}
1efbbeb4
L
218This option specifies instruction mnemonic for matching instructions.
219The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
220take precedent.
221
222@cindex @samp{-msyntax=} option, i386
223@cindex @samp{-msyntax=} option, x86-64
224@item -msyntax=@var{att}
1f9bb1ca 225@itemx -msyntax=@var{intel}
1efbbeb4
L
226This option specifies instruction syntax when processing instructions.
227The @code{.att_syntax} and @code{.intel_syntax} directives will
228take precedent.
229
230@cindex @samp{-mnaked-reg} option, i386
231@cindex @samp{-mnaked-reg} option, x86-64
232@item -mnaked-reg
233This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 234The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 235
55b62671 236@end table
731caf76 237@c man end
e413e4e9 238
a6c24e68
NC
239@node i386-Directives
240@section x86 specific Directives
241
242@cindex machine directives, x86
243@cindex x86 machine directives
244@table @code
245
246@cindex @code{lcomm} directive, COFF
247@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
248Reserve @var{length} (an absolute expression) bytes for a local common
249denoted by @var{symbol}. The section and value of @var{symbol} are
250those of the new local common. The addresses are allocated in the bss
704209c0
NC
251section, so that at run-time the bytes start off zeroed. Since
252@var{symbol} is not declared global, it is normally not visible to
253@code{@value{LD}}. The optional third parameter, @var{alignment},
254specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
255
256This directive is only available for COFF based x86 targets.
257
258@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
259@c .largecomm
260
261@end table
262
252b5132 263@node i386-Syntax
7c31ae13
NC
264@section i386 Syntactical Considerations
265@menu
266* i386-Variations:: AT&T Syntax versus Intel Syntax
267* i386-Chars:: Special Characters
268@end menu
269
270@node i386-Variations
271@subsection AT&T Syntax versus Intel Syntax
252b5132 272
e413e4e9
AM
273@cindex i386 intel_syntax pseudo op
274@cindex intel_syntax pseudo op, i386
275@cindex i386 att_syntax pseudo op
276@cindex att_syntax pseudo op, i386
252b5132
RH
277@cindex i386 syntax compatibility
278@cindex syntax compatibility, i386
55b62671
AJ
279@cindex x86-64 intel_syntax pseudo op
280@cindex intel_syntax pseudo op, x86-64
281@cindex x86-64 att_syntax pseudo op
282@cindex att_syntax pseudo op, x86-64
283@cindex x86-64 syntax compatibility
284@cindex syntax compatibility, x86-64
e413e4e9
AM
285
286@code{@value{AS}} now supports assembly using Intel assembler syntax.
287@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
288back to the usual AT&T mode for compatibility with the output of
289@code{@value{GCC}}. Either of these directives may have an optional
290argument, @code{prefix}, or @code{noprefix} specifying whether registers
291require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
292different from Intel syntax. We mention these differences because
293almost all 80386 documents use Intel syntax. Notable differences
294between the two syntaxes are:
295
296@cindex immediate operands, i386
297@cindex i386 immediate operands
298@cindex register operands, i386
299@cindex i386 register operands
300@cindex jump/call operands, i386
301@cindex i386 jump/call operands
302@cindex operand delimiters, i386
55b62671
AJ
303
304@cindex immediate operands, x86-64
305@cindex x86-64 immediate operands
306@cindex register operands, x86-64
307@cindex x86-64 register operands
308@cindex jump/call operands, x86-64
309@cindex x86-64 jump/call operands
310@cindex operand delimiters, x86-64
252b5132
RH
311@itemize @bullet
312@item
313AT&T immediate operands are preceded by @samp{$}; Intel immediate
314operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
315AT&T register operands are preceded by @samp{%}; Intel register operands
316are undelimited. AT&T absolute (as opposed to PC relative) jump/call
317operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
318
319@cindex i386 source, destination operands
320@cindex source, destination operands; i386
55b62671
AJ
321@cindex x86-64 source, destination operands
322@cindex source, destination operands; x86-64
252b5132
RH
323@item
324AT&T and Intel syntax use the opposite order for source and destination
325operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
326@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
327previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
328instructions with 2 immediate operands, such as the @samp{enter}
329instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
330
331@cindex mnemonic suffixes, i386
332@cindex sizes operands, i386
333@cindex i386 size suffixes
55b62671
AJ
334@cindex mnemonic suffixes, x86-64
335@cindex sizes operands, x86-64
336@cindex x86-64 size suffixes
252b5132
RH
337@item
338In AT&T syntax the size of memory operands is determined from the last
339character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
340@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
341(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
342this by prefixing memory operands (@emph{not} the instruction mnemonics) with
343@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
344Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
345syntax.
252b5132 346
4b06377f
L
347In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
348instruction with the 64-bit displacement or immediate operand.
349
252b5132
RH
350@cindex return instructions, i386
351@cindex i386 jump, call, return
55b62671
AJ
352@cindex return instructions, x86-64
353@cindex x86-64 jump, call, return
252b5132
RH
354@item
355Immediate form long jumps and calls are
356@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
357Intel syntax is
358@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
359instruction
360is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
361@samp{ret far @var{stack-adjust}}.
362
363@cindex sections, i386
364@cindex i386 sections
55b62671
AJ
365@cindex sections, x86-64
366@cindex x86-64 sections
252b5132
RH
367@item
368The AT&T assembler does not provide support for multiple section
369programs. Unix style systems expect all programs to be single sections.
370@end itemize
371
7c31ae13
NC
372@node i386-Chars
373@subsection Special Characters
374
375@cindex line comment character, i386
376@cindex i386 line comment character
377The presence of a @samp{#} appearing anywhere on a line indicates the
378start of a comment that extends to the end of that line.
379
380If a @samp{#} appears as the first character of a line then the whole
381line is treated as a comment, but in this case the line can also be a
382logical line number directive (@pxref{Comments}) or a preprocessor
383control command (@pxref{Preprocessing}).
384
385If the @option{--divide} command line option has not been specified
386then the @samp{/} character appearing anywhere on a line also
387introduces a line comment.
388
389@cindex line separator, i386
390@cindex statement separator, i386
391@cindex i386 line separator
392The @samp{;} character can be used to separate statements on the same
393line.
394
252b5132
RH
395@node i386-Mnemonics
396@section Instruction Naming
397
398@cindex i386 instruction naming
399@cindex instruction naming, i386
55b62671
AJ
400@cindex x86-64 instruction naming
401@cindex instruction naming, x86-64
402
252b5132 403Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
404specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
405and @samp{q} specify byte, word, long and quadruple word operands. If
406no suffix is specified by an instruction then @code{@value{AS}} tries to
407fill in the missing suffix based on the destination register operand
408(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
409to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
410@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
411assembler which assumes that a missing mnemonic suffix implies long
412operand size. (This incompatibility does not affect compiler output
413since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
414
415Almost all instructions have the same names in AT&T and Intel format.
416There are a few exceptions. The sign extend and zero extend
417instructions need two sizes to specify them. They need a size to
418sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
419is accomplished by using two instruction mnemonic suffixes in AT&T
420syntax. Base names for sign extend and zero extend are
421@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
422and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
423are tacked on to this base name, the @emph{from} suffix before the
424@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
425``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
426thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
427@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
428@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
429quadruple word).
252b5132 430
b6169b20
L
431@cindex encoding options, i386
432@cindex encoding options, x86-64
433
434Different encoding options can be specified via optional mnemonic
435suffix. @samp{.s} suffix swaps 2 register operands in encoding when
f8a5c266
L
436moving from one register to another. @samp{.d32} suffix forces 32bit
437displacement in encoding.
b6169b20 438
252b5132
RH
439@cindex conversion instructions, i386
440@cindex i386 conversion instructions
55b62671
AJ
441@cindex conversion instructions, x86-64
442@cindex x86-64 conversion instructions
252b5132
RH
443The Intel-syntax conversion instructions
444
445@itemize @bullet
446@item
447@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
448
449@item
450@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
451
452@item
453@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
454
455@item
456@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
457
458@item
459@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
460(x86-64 only),
461
462@item
d5f0cf92 463@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 464@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
465@end itemize
466
467@noindent
55b62671
AJ
468are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
469@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
470instructions.
252b5132
RH
471
472@cindex jump instructions, i386
473@cindex call instructions, i386
55b62671
AJ
474@cindex jump instructions, x86-64
475@cindex call instructions, x86-64
252b5132
RH
476Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
477AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
478convention.
479
1efbbeb4
L
480@section AT&T Mnemonic versus Intel Mnemonic
481
482@cindex i386 mnemonic compatibility
483@cindex mnemonic compatibility, i386
484
485@code{@value{AS}} supports assembly using Intel mnemonic.
486@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
487@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
488syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
489Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
490@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
491@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
492assembler with different mnemonics from those in Intel IA32 specification.
493@code{@value{GCC}} generates those instructions with AT&T mnemonic.
494
252b5132
RH
495@node i386-Regs
496@section Register Naming
497
498@cindex i386 registers
499@cindex registers, i386
55b62671
AJ
500@cindex x86-64 registers
501@cindex registers, x86-64
252b5132
RH
502Register operands are always prefixed with @samp{%}. The 80386 registers
503consist of
504
505@itemize @bullet
506@item
507the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
508@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
509frame pointer), and @samp{%esp} (the stack pointer).
510
511@item
512the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
513@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
514
515@item
516the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
517@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
518are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
519@samp{%cx}, and @samp{%dx})
520
521@item
522the 6 section registers @samp{%cs} (code section), @samp{%ds}
523(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
524and @samp{%gs}.
525
526@item
527the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
528@samp{%cr3}.
529
530@item
531the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
532@samp{%db3}, @samp{%db6}, and @samp{%db7}.
533
534@item
535the 2 test registers @samp{%tr6} and @samp{%tr7}.
536
537@item
538the 8 floating point register stack @samp{%st} or equivalently
539@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
540@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
541These registers are overloaded by 8 MMX registers @samp{%mm0},
542@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
543@samp{%mm6} and @samp{%mm7}.
544
545@item
546the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
547@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
548@end itemize
549
550The AMD x86-64 architecture extends the register set by:
551
552@itemize @bullet
553@item
554enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
555accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
556@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
557pointer)
558
559@item
560the 8 extended registers @samp{%r8}--@samp{%r15}.
561
562@item
563the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
564
565@item
566the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
567
568@item
569the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
570
571@item
572the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
573
574@item
575the 8 debug registers: @samp{%db8}--@samp{%db15}.
576
577@item
578the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
579@end itemize
580
581@node i386-Prefixes
582@section Instruction Prefixes
583
584@cindex i386 instruction prefixes
585@cindex instruction prefixes, i386
586@cindex prefixes, i386
587Instruction prefixes are used to modify the following instruction. They
588are used to repeat string instructions, to provide section overrides, to
589perform bus lock operations, and to change operand and address sizes.
590(Most instructions that normally operate on 32-bit operands will use
59116-bit operands if the instruction has an ``operand size'' prefix.)
592Instruction prefixes are best written on the same line as the instruction
593they act upon. For example, the @samp{scas} (scan string) instruction is
594repeated with:
595
596@smallexample
597 repne scas %es:(%edi),%al
598@end smallexample
599
600You may also place prefixes on the lines immediately preceding the
601instruction, but this circumvents checks that @code{@value{AS}} does
602with prefixes, and will not work with all prefixes.
603
604Here is a list of instruction prefixes:
605
606@cindex section override prefixes, i386
607@itemize @bullet
608@item
609Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
610@samp{fs}, @samp{gs}. These are automatically added by specifying
611using the @var{section}:@var{memory-operand} form for memory references.
612
613@cindex size prefixes, i386
614@item
615Operand/Address size prefixes @samp{data16} and @samp{addr16}
616change 32-bit operands/addresses into 16-bit operands/addresses,
617while @samp{data32} and @samp{addr32} change 16-bit ones (in a
618@code{.code16} section) into 32-bit operands/addresses. These prefixes
619@emph{must} appear on the same line of code as the instruction they
620modify. For example, in a 16-bit @code{.code16} section, you might
621write:
622
623@smallexample
624 addr32 jmpl *(%ebx)
625@end smallexample
626
627@cindex bus lock prefixes, i386
628@cindex inhibiting interrupts, i386
629@item
630The bus lock prefix @samp{lock} inhibits interrupts during execution of
631the instruction it precedes. (This is only valid with certain
632instructions; see a 80386 manual for details).
633
634@cindex coprocessor wait, i386
635@item
636The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
637complete the current instruction. This should never be needed for the
63880386/80387 combination.
639
640@cindex repeat prefixes, i386
641@item
642The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
643to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
644times if the current address size is 16-bits).
55b62671
AJ
645@cindex REX prefixes, i386
646@item
647The @samp{rex} family of prefixes is used by x86-64 to encode
648extensions to i386 instruction set. The @samp{rex} prefix has four
649bits --- an operand size overwrite (@code{64}) used to change operand size
650from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
651register set.
652
653You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
654instruction emits @samp{rex} prefix with all the bits set. By omitting
655the @code{64}, @code{x}, @code{y} or @code{z} you may write other
656prefixes as well. Normally, there is no need to write the prefixes
657explicitly, since gas will automatically generate them based on the
658instruction operands.
252b5132
RH
659@end itemize
660
661@node i386-Memory
662@section Memory References
663
664@cindex i386 memory references
665@cindex memory references, i386
55b62671
AJ
666@cindex x86-64 memory references
667@cindex memory references, x86-64
252b5132
RH
668An Intel syntax indirect memory reference of the form
669
670@smallexample
671@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
672@end smallexample
673
674@noindent
675is translated into the AT&T syntax
676
677@smallexample
678@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
679@end smallexample
680
681@noindent
682where @var{base} and @var{index} are the optional 32-bit base and
683index registers, @var{disp} is the optional displacement, and
684@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
685to calculate the address of the operand. If no @var{scale} is
686specified, @var{scale} is taken to be 1. @var{section} specifies the
687optional section register for the memory operand, and may override the
688default section register (see a 80386 manual for section register
689defaults). Note that section overrides in AT&T syntax @emph{must}
690be preceded by a @samp{%}. If you specify a section override which
691coincides with the default section register, @code{@value{AS}} does @emph{not}
692output any section register override prefixes to assemble the given
693instruction. Thus, section overrides can be specified to emphasize which
694section register is used for a given memory operand.
695
696Here are some examples of Intel and AT&T style memory references:
697
698@table @asis
699@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
700@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
701missing, and the default section is used (@samp{%ss} for addressing with
702@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
703
704@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
705@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
706@samp{foo}. All other fields are missing. The section register here
707defaults to @samp{%ds}.
708
709@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
710This uses the value pointed to by @samp{foo} as a memory operand.
711Note that @var{base} and @var{index} are both missing, but there is only
712@emph{one} @samp{,}. This is a syntactic exception.
713
714@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
715This selects the contents of the variable @samp{foo} with section
716register @var{section} being @samp{%gs}.
717@end table
718
719Absolute (as opposed to PC relative) call and jump operands must be
720prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
721always chooses PC relative addressing for jump/call labels.
722
723Any instruction that has a memory operand, but no register operand,
55b62671
AJ
724@emph{must} specify its size (byte, word, long, or quadruple) with an
725instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
726respectively).
727
728The x86-64 architecture adds an RIP (instruction pointer relative)
729addressing. This addressing mode is specified by using @samp{rip} as a
730base register. Only constant offsets are valid. For example:
731
732@table @asis
733@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
734Points to the address 1234 bytes past the end of the current
735instruction.
736
737@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
738Points to the @code{symbol} in RIP relative way, this is shorter than
739the default absolute addressing.
740@end table
741
742Other addressing modes remain unchanged in x86-64 architecture, except
743registers used are 64-bit instead of 32-bit.
252b5132 744
fddf5b5b 745@node i386-Jumps
252b5132
RH
746@section Handling of Jump Instructions
747
748@cindex jump optimization, i386
749@cindex i386 jump optimization
55b62671
AJ
750@cindex jump optimization, x86-64
751@cindex x86-64 jump optimization
252b5132
RH
752Jump instructions are always optimized to use the smallest possible
753displacements. This is accomplished by using byte (8-bit) displacement
754jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 755is insufficient a long displacement is used. We do not support
252b5132
RH
756word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
757instruction with the @samp{data16} instruction prefix), since the 80386
758insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 759is added. (See also @pxref{i386-Arch})
252b5132
RH
760
761Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
762@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
763displacements, so that if you use these instructions (@code{@value{GCC}} does
764not use them) you may get an error message (and incorrect code). The AT&T
76580386 assembler tries to get around this problem by expanding @samp{jcxz foo}
766to
767
768@smallexample
769 jcxz cx_zero
770 jmp cx_nonzero
771cx_zero: jmp foo
772cx_nonzero:
773@end smallexample
774
775@node i386-Float
776@section Floating Point
777
778@cindex i386 floating point
779@cindex floating point, i386
55b62671
AJ
780@cindex x86-64 floating point
781@cindex floating point, x86-64
252b5132
RH
782All 80387 floating point types except packed BCD are supported.
783(BCD support may be added without much difficulty). These data
784types are 16-, 32-, and 64- bit integers, and single (32-bit),
785double (64-bit), and extended (80-bit) precision floating point.
786Each supported type has an instruction mnemonic suffix and a constructor
787associated with it. Instruction mnemonic suffixes specify the operand's
788data type. Constructors build these data types into memory.
789
790@cindex @code{float} directive, i386
791@cindex @code{single} directive, i386
792@cindex @code{double} directive, i386
793@cindex @code{tfloat} directive, i386
55b62671
AJ
794@cindex @code{float} directive, x86-64
795@cindex @code{single} directive, x86-64
796@cindex @code{double} directive, x86-64
797@cindex @code{tfloat} directive, x86-64
252b5132
RH
798@itemize @bullet
799@item
800Floating point constructors are @samp{.float} or @samp{.single},
801@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
802These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
803and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
804only supports this format via the @samp{fldt} (load 80-bit real to stack
805top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
806
807@cindex @code{word} directive, i386
808@cindex @code{long} directive, i386
809@cindex @code{int} directive, i386
810@cindex @code{quad} directive, i386
55b62671
AJ
811@cindex @code{word} directive, x86-64
812@cindex @code{long} directive, x86-64
813@cindex @code{int} directive, x86-64
814@cindex @code{quad} directive, x86-64
252b5132
RH
815@item
816Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
817@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
818corresponding instruction mnemonic suffixes are @samp{s} (single),
819@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
820the 64-bit @samp{q} format is only present in the @samp{fildq} (load
821quad integer to stack top) and @samp{fistpq} (store quad integer and pop
822stack) instructions.
823@end itemize
824
825Register to register operations should not use instruction mnemonic suffixes.
826@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
827wrote @samp{fst %st, %st(1)}, since all register to register operations
828use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
829which converts @samp{%st} from 80-bit to 64-bit floating point format,
830then stores the result in the 4 byte location @samp{mem})
831
832@node i386-SIMD
833@section Intel's MMX and AMD's 3DNow! SIMD Operations
834
835@cindex MMX, i386
836@cindex 3DNow!, i386
837@cindex SIMD, i386
55b62671
AJ
838@cindex MMX, x86-64
839@cindex 3DNow!, x86-64
840@cindex SIMD, x86-64
252b5132
RH
841
842@code{@value{AS}} supports Intel's MMX instruction set (SIMD
843instructions for integer data), available on Intel's Pentium MMX
844processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 845Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
846instruction set (SIMD instructions for 32-bit floating point data)
847available on AMD's K6-2 processor and possibly others in the future.
848
849Currently, @code{@value{AS}} does not support Intel's floating point
850SIMD, Katmai (KNI).
851
852The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
853@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
85416-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
855floating point values. The MMX registers cannot be used at the same time
856as the floating point stack.
857
858See Intel and AMD documentation, keeping in mind that the operand order in
859instructions is reversed from the Intel syntax.
860
f88c9eb0
SP
861@node i386-LWP
862@section AMD's Lightweight Profiling Instructions
863
864@cindex LWP, i386
865@cindex LWP, x86-64
866
867@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
868instruction set, available on AMD's Family 15h (Orochi) processors.
869
870LWP enables applications to collect and manage performance data, and
871react to performance events. The collection of performance data
872requires no context switches. LWP runs in the context of a thread and
873so several counters can be used independently across multiple threads.
874LWP can be used in both 64-bit and legacy 32-bit modes.
875
876For detailed information on the LWP instruction set, see the
877@cite{AMD Lightweight Profiling Specification} available at
878@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
879
87973e9f
QN
880@node i386-BMI
881@section Bit Manipulation Instructions
882
883@cindex BMI, i386
884@cindex BMI, x86-64
885
886@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
887
888BMI instructions provide several instructions implementing individual
889bit manipulation operations such as isolation, masking, setting, or
890resetting.
891
892@c Need to add a specification citation here when available.
893
2a2a0f38
QN
894@node i386-TBM
895@section AMD's Trailing Bit Manipulation Instructions
896
897@cindex TBM, i386
898@cindex TBM, x86-64
899
900@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
901instruction set, available on AMD's BDVER2 processors (Trinity and
902Viperfish).
903
904TBM instructions provide instructions implementing individual bit
905manipulation operations such as isolating, masking, setting, resetting,
906complementing, and operations on trailing zeros and ones.
907
908@c Need to add a specification citation here when available.
87973e9f 909
252b5132
RH
910@node i386-16bit
911@section Writing 16-bit Code
912
913@cindex i386 16-bit code
914@cindex 16-bit code, i386
915@cindex real-mode code, i386
eecb386c 916@cindex @code{code16gcc} directive, i386
252b5132
RH
917@cindex @code{code16} directive, i386
918@cindex @code{code32} directive, i386
55b62671
AJ
919@cindex @code{code64} directive, i386
920@cindex @code{code64} directive, x86-64
921While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
922or 64-bit x86-64 code depending on the default configuration,
252b5132 923it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
924mode code segments. To do this, put a @samp{.code16} or
925@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
926be run in 16-bit mode. You can switch @code{@value{AS}} to writing
92732-bit code with the @samp{.code32} directive or 64-bit code with the
928@samp{.code64} directive.
eecb386c
AM
929
930@samp{.code16gcc} provides experimental support for generating 16-bit
931code from gcc, and differs from @samp{.code16} in that @samp{call},
932@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
933@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
934default to 32-bit size. This is so that the stack pointer is
935manipulated in the same way over function calls, allowing access to
936function parameters at the same stack offsets as in 32-bit mode.
937@samp{.code16gcc} also automatically adds address size prefixes where
938necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
939
940The code which @code{@value{AS}} generates in 16-bit mode will not
941necessarily run on a 16-bit pre-80386 processor. To write code that
942runs on such a processor, you must refrain from using @emph{any} 32-bit
943constructs which require @code{@value{AS}} to output address or operand
944size prefixes.
945
946Note that writing 16-bit code instructions by explicitly specifying a
947prefix or an instruction mnemonic suffix within a 32-bit code section
948generates different machine instructions than those generated for a
94916-bit code segment. In a 32-bit code section, the following code
950generates the machine opcode bytes @samp{66 6a 04}, which pushes the
951value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
952
953@smallexample
954 pushw $4
955@end smallexample
956
957The same code in a 16-bit code section would generate the machine
b45619c0 958opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
959is correct since the processor default operand size is assumed to be 16
960bits in a 16-bit code section.
961
962@node i386-Bugs
963@section AT&T Syntax bugs
964
965The UnixWare assembler, and probably other AT&T derived ix86 Unix
966assemblers, generate floating point instructions with reversed source
967and destination registers in certain cases. Unfortunately, gcc and
968possibly many other programs use this reversed syntax, so we're stuck
969with it.
970
971For example
972
973@smallexample
974 fsub %st,%st(3)
975@end smallexample
976@noindent
977results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
978than the expected @samp{%st(3) - %st}. This happens with all the
979non-commutative arithmetic floating point operations with two register
980operands where the source register is @samp{%st} and the destination
981register is @samp{%st(i)}.
982
e413e4e9
AM
983@node i386-Arch
984@section Specifying CPU Architecture
985
986@cindex arch directive, i386
987@cindex i386 arch directive
55b62671
AJ
988@cindex arch directive, x86-64
989@cindex x86-64 arch directive
e413e4e9
AM
990
991@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 992(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
993directive enables a warning when gas detects an instruction that is not
994supported on the CPU specified. The choices for @var{cpu_type} are:
995
996@multitable @columnfractions .20 .20 .20 .20
997@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
998@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 999@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1000@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
8a9036a4 1001@item @samp{corei7} @tab @samp{l1om}
1543849b 1002@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
68339fdf 1003@item @samp{amdfam10} @tab @samp{bdver1}
1ceab344 1004@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1005@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1006@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1007@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1008@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1009@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1010@item @samp{.rdrnd} @tab @samp{.f16c}
1ceab344 1011@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1012@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
f0ae4a24 1013@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1ceab344 1014@item @samp{.padlock}
e413e4e9
AM
1015@end multitable
1016
fddf5b5b
AM
1017Apart from the warning, there are only two other effects on
1018@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1019@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1020will automatically use a two byte opcode sequence. The larger three
1021byte opcode sequence is used on the 486 (and when no architecture is
1022specified) because it executes faster on the 486. Note that you can
1023explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1024Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1025@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1026conditional jumps will be promoted when necessary to a two instruction
1027sequence consisting of a conditional jump of the opposite sense around
1028an unconditional jump to the target.
1029
5c6af06e
JB
1030Following the CPU architecture (but not a sub-architecture, which are those
1031starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1032control automatic promotion of conditional jumps. @samp{jumps} is the
1033default, and enables jump promotion; All external jumps will be of the long
1034variety, and file-local jumps will be promoted as necessary.
1035(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1036byte offset jumps, and warns about file-local conditional jumps that
1037@code{@value{AS}} promotes.
fddf5b5b
AM
1038Unconditional jumps are treated as for @samp{jumps}.
1039
1040For example
1041
1042@smallexample
1043 .arch i8086,nojumps
1044@end smallexample
e413e4e9 1045
252b5132
RH
1046@node i386-Notes
1047@section Notes
1048
1049@cindex i386 @code{mul}, @code{imul} instructions
1050@cindex @code{mul} instruction, i386
1051@cindex @code{imul} instruction, i386
55b62671
AJ
1052@cindex @code{mul} instruction, x86-64
1053@cindex @code{imul} instruction, x86-64
252b5132 1054There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1055instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1056multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1057for @samp{imul}) can be output only in the one operand form. Thus,
1058@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1059the expanding multiply would clobber the @samp{%edx} register, and this
1060would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
106164-bit product in @samp{%edx:%eax}.
1062
1063We have added a two operand form of @samp{imul} when the first operand
1064is an immediate mode expression and the second operand is a register.
1065This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1066example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1067$69, %eax, %eax}.
1068
This page took 0.497698 seconds and 4 git commands to generate.