x86: Correct -mlfence-before-indirect-branch= documentation
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
b3adc24a 1@c Copyright (C) 1991-2020 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
bc31405e 40* i386-ISA:: AMD64 ISA vs. Intel64 ISA
252b5132
RH
41* i386-Bugs:: AT&T Syntax bugs
42* i386-Notes:: Notes
43@end menu
44
45@node i386-Options
46@section Options
47
55b62671
AJ
48@cindex options for i386
49@cindex options for x86-64
50@cindex i386 options
34bca508 51@cindex x86-64 options
55b62671
AJ
52
53The i386 version of @code{@value{AS}} has a few machine
54dependent options:
55
731caf76
L
56@c man begin OPTIONS
57@table @gcctabopt
55b62671
AJ
58@cindex @samp{--32} option, i386
59@cindex @samp{--32} option, x86-64
570561f7
L
60@cindex @samp{--x32} option, i386
61@cindex @samp{--x32} option, x86-64
55b62671
AJ
62@cindex @samp{--64} option, i386
63@cindex @samp{--64} option, x86-64
570561f7 64@item --32 | --x32 | --64
35cc6a0b 65Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 66implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
67imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68respectively.
55b62671
AJ
69
70These options are only available with the ELF object file format, and
71require that the necessary BFD support has been included (on a 32-bit
72platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73usage and use x86-64 as target platform).
12b55ccc
L
74
75@item -n
76By default, x86 GAS replaces multiple nop instructions used for
77alignment within code sections with multi-byte nop instructions such
f9233288
JW
78as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
34bca508 95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
81486035 115@code{iamcu},
9103f4f4
L
116@code{k6},
117@code{k6_2},
118@code{athlon},
9103f4f4
L
119@code{opteron},
120@code{k8},
1ceab344 121@code{amdfam10},
68339fdf 122@code{bdver1},
af2f724e 123@code{bdver2},
5e5c50d3 124@code{bdver3},
c7b0bd56 125@code{bdver4},
029f3522 126@code{znver1},
a9660a6f 127@code{znver2},
7b458c12
L
128@code{btver1},
129@code{btver2},
9103f4f4
L
130@code{generic32} and
131@code{generic64}.
132
34bca508 133In addition to the basic instruction set, the assembler can be told to
6305a203
L
134accept various extension mnemonics. For example,
135@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136@var{vmx}. The following extensions are currently supported:
309d3373
JB
137@code{8087},
138@code{287},
139@code{387},
1848e567 140@code{687},
309d3373 141@code{no87},
1848e567
L
142@code{no287},
143@code{no387},
144@code{no687},
d871f3f4
L
145@code{cmov},
146@code{nocmov},
147@code{fxsr},
148@code{nofxsr},
6305a203 149@code{mmx},
309d3373 150@code{nommx},
6305a203
L
151@code{sse},
152@code{sse2},
153@code{sse3},
af5c13b0 154@code{sse4a},
6305a203
L
155@code{ssse3},
156@code{sse4.1},
157@code{sse4.2},
158@code{sse4},
309d3373 159@code{nosse},
1848e567
L
160@code{nosse2},
161@code{nosse3},
af5c13b0 162@code{nosse4a},
1848e567
L
163@code{nossse3},
164@code{nosse4.1},
165@code{nosse4.2},
166@code{nosse4},
c0f3af97 167@code{avx},
6c30d220 168@code{avx2},
1848e567
L
169@code{noavx},
170@code{noavx2},
e2e1fcde
L
171@code{adx},
172@code{rdseed},
173@code{prfchw},
5c111e37 174@code{smap},
7e8b059b 175@code{mpx},
a0046408 176@code{sha},
8bc52696 177@code{rdpid},
6b40c462 178@code{ptwrite},
603555e5 179@code{cet},
48521003 180@code{gfni},
8dcf1fad 181@code{vaes},
ff1982d5 182@code{vpclmulqdq},
1dfc6506
L
183@code{prefetchwt1},
184@code{clflushopt},
185@code{se1},
c5e7287a 186@code{clwb},
c0a30a9f
L
187@code{movdiri},
188@code{movdir64b},
5d79adc4 189@code{enqcmd},
4b27d27c 190@code{serialize},
bb651e8b 191@code{tsxldtrk},
43234a1e
L
192@code{avx512f},
193@code{avx512cd},
194@code{avx512er},
195@code{avx512pf},
1dfc6506
L
196@code{avx512vl},
197@code{avx512bw},
198@code{avx512dq},
2cc1b5aa 199@code{avx512ifma},
14f195c9 200@code{avx512vbmi},
920d2ddc 201@code{avx512_4fmaps},
47acf0bd 202@code{avx512_4vnniw},
620214f7 203@code{avx512_vpopcntdq},
53467f57 204@code{avx512_vbmi2},
8cfcb765 205@code{avx512_vnni},
ee6872be 206@code{avx512_bitalg},
d6aab7a1 207@code{avx512_bf16},
144b71e2
L
208@code{noavx512f},
209@code{noavx512cd},
210@code{noavx512er},
211@code{noavx512pf},
212@code{noavx512vl},
213@code{noavx512bw},
214@code{noavx512dq},
215@code{noavx512ifma},
216@code{noavx512vbmi},
920d2ddc 217@code{noavx512_4fmaps},
47acf0bd 218@code{noavx512_4vnniw},
620214f7 219@code{noavx512_vpopcntdq},
53467f57 220@code{noavx512_vbmi2},
8cfcb765 221@code{noavx512_vnni},
ee6872be 222@code{noavx512_bitalg},
9186c494 223@code{noavx512_vp2intersect},
d6aab7a1 224@code{noavx512_bf16},
dd455cf5 225@code{noenqcmd},
4b27d27c 226@code{noserialize},
bb651e8b 227@code{notsxldtrk},
6305a203 228@code{vmx},
8729a6f6 229@code{vmfunc},
6305a203 230@code{smx},
f03fe4c1 231@code{xsave},
c7b8aa3a 232@code{xsaveopt},
1dfc6506
L
233@code{xsavec},
234@code{xsaves},
c0f3af97 235@code{aes},
594ab6a3 236@code{pclmul},
c7b8aa3a
L
237@code{fsgsbase},
238@code{rdrnd},
239@code{f16c},
6c30d220 240@code{bmi2},
c0f3af97 241@code{fma},
f1f8f695
L
242@code{movbe},
243@code{ept},
6c30d220 244@code{lzcnt},
272a84b1 245@code{popcnt},
42164a71
L
246@code{hle},
247@code{rtm},
6c30d220 248@code{invpcid},
bd5295b2 249@code{clflush},
9916071f 250@code{mwaitx},
029f3522 251@code{clzero},
3233d7d0 252@code{wbnoinvd},
be3a8dca 253@code{pconfig},
de89d0a3 254@code{waitpkg},
c48935d7 255@code{cldemote},
142861df
JB
256@code{rdpru},
257@code{mcommit},
a847e322 258@code{sev_es},
f88c9eb0 259@code{lwp},
5dd85c99
SP
260@code{fma4},
261@code{xop},
60aa667e 262@code{cx16},
bd5295b2 263@code{syscall},
1b7f3fb0 264@code{rdtscp},
6305a203
L
265@code{3dnow},
266@code{3dnowa},
267@code{sse4a},
268@code{sse5},
272a84b1 269@code{svme} and
6305a203 270@code{padlock}.
309d3373
JB
271Note that rather than extending a basic instruction set, the extension
272mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
273
274When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
275@code{.arch} directive will take precedent.
276
277@cindex @samp{-mtune=} option, i386
278@cindex @samp{-mtune=} option, x86-64
279@item -mtune=@var{CPU}
280This option specifies a processor to optimize for. When used in
281conjunction with the @option{-march} option, only instructions
282of the processor specified by the @option{-march} option will be
283generated.
284
6305a203
L
285Valid @var{CPU} values are identical to the processor list of
286@option{-march=@var{CPU}}.
9103f4f4 287
c0f3af97
L
288@cindex @samp{-msse2avx} option, i386
289@cindex @samp{-msse2avx} option, x86-64
290@item -msse2avx
291This option specifies that the assembler should encode SSE instructions
292with VEX prefix.
293
daf50ae7
L
294@cindex @samp{-msse-check=} option, i386
295@cindex @samp{-msse-check=} option, x86-64
296@item -msse-check=@var{none}
1f9bb1ca
AS
297@itemx -msse-check=@var{warning}
298@itemx -msse-check=@var{error}
9aff4b7a 299These options control if the assembler should check SSE instructions.
daf50ae7
L
300@option{-msse-check=@var{none}} will make the assembler not to check SSE
301instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 302will make the assembler issue a warning for any SSE instruction.
daf50ae7 303@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 304for any SSE instruction.
daf50ae7 305
539f890d
L
306@cindex @samp{-mavxscalar=} option, i386
307@cindex @samp{-mavxscalar=} option, x86-64
308@item -mavxscalar=@var{128}
1f9bb1ca 309@itemx -mavxscalar=@var{256}
2aab8acd 310These options control how the assembler should encode scalar AVX
539f890d
L
311instructions. @option{-mavxscalar=@var{128}} will encode scalar
312AVX instructions with 128bit vector length, which is the default.
313@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
314with 256bit vector length.
315
4970191f
JB
316WARNING: Don't use this for production code - due to CPU errata the
317resulting code may not work on certain models.
318
03751133
L
319@cindex @samp{-mvexwig=} option, i386
320@cindex @samp{-mvexwig=} option, x86-64
321@item -mvexwig=@var{0}
322@itemx -mvexwig=@var{1}
323These options control how the assembler should encode VEX.W-ignored (WIG)
324VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
325instructions with vex.w = 0, which is the default.
326@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
327vex.w = 1.
328
4970191f
JB
329WARNING: Don't use this for production code - due to CPU errata the
330resulting code may not work on certain models.
331
43234a1e
L
332@cindex @samp{-mevexlig=} option, i386
333@cindex @samp{-mevexlig=} option, x86-64
334@item -mevexlig=@var{128}
335@itemx -mevexlig=@var{256}
336@itemx -mevexlig=@var{512}
337These options control how the assembler should encode length-ignored
338(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
339EVEX instructions with 128bit vector length, which is the default.
340@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
341encode LIG EVEX instructions with 256bit and 512bit vector length,
342respectively.
343
344@cindex @samp{-mevexwig=} option, i386
345@cindex @samp{-mevexwig=} option, x86-64
346@item -mevexwig=@var{0}
347@itemx -mevexwig=@var{1}
348These options control how the assembler should encode w-ignored (WIG)
349EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
350EVEX instructions with evex.w = 0, which is the default.
351@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
352evex.w = 1.
353
1efbbeb4
L
354@cindex @samp{-mmnemonic=} option, i386
355@cindex @samp{-mmnemonic=} option, x86-64
356@item -mmnemonic=@var{att}
1f9bb1ca 357@itemx -mmnemonic=@var{intel}
34bca508 358This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
359The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
360take precedent.
361
362@cindex @samp{-msyntax=} option, i386
363@cindex @samp{-msyntax=} option, x86-64
364@item -msyntax=@var{att}
1f9bb1ca 365@itemx -msyntax=@var{intel}
34bca508 366This option specifies instruction syntax when processing instructions.
1efbbeb4
L
367The @code{.att_syntax} and @code{.intel_syntax} directives will
368take precedent.
369
370@cindex @samp{-mnaked-reg} option, i386
371@cindex @samp{-mnaked-reg} option, x86-64
372@item -mnaked-reg
33eaf5de 373This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 374The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 375
7e8b059b
L
376@cindex @samp{-madd-bnd-prefix} option, i386
377@cindex @samp{-madd-bnd-prefix} option, x86-64
378@item -madd-bnd-prefix
379This option forces the assembler to add BND prefix to all branches, even
380if such prefix was not explicitly specified in the source code.
381
8dcea932
L
382@cindex @samp{-mshared} option, i386
383@cindex @samp{-mshared} option, x86-64
384@item -mno-shared
385On ELF target, the assembler normally optimizes out non-PLT relocations
386against defined non-weak global branch targets with default visibility.
387The @samp{-mshared} option tells the assembler to generate code which
388may go into a shared library where all non-weak global branch targets
389with default visibility can be preempted. The resulting code is
390slightly bigger. This option only affects the handling of branch
391instructions.
392
167ad85b
TG
393@cindex @samp{-mbig-obj} option, x86-64
394@item -mbig-obj
395On x86-64 PE/COFF target this option forces the use of big object file
396format, which allows more than 32768 sections.
397
d022bddd
IT
398@cindex @samp{-momit-lock-prefix=} option, i386
399@cindex @samp{-momit-lock-prefix=} option, x86-64
400@item -momit-lock-prefix=@var{no}
401@itemx -momit-lock-prefix=@var{yes}
402These options control how the assembler should encode lock prefix.
403This option is intended as a workaround for processors, that fail on
404lock prefix. This option can only be safely used with single-core,
405single-thread computers
406@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
407@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
408which is the default.
409
e4e00185
AS
410@cindex @samp{-mfence-as-lock-add=} option, i386
411@cindex @samp{-mfence-as-lock-add=} option, x86-64
412@item -mfence-as-lock-add=@var{no}
413@itemx -mfence-as-lock-add=@var{yes}
414These options control how the assembler should encode lfence, mfence and
415sfence.
416@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
417sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
418@samp{lock addl $0x0, (%esp)} in 32-bit mode.
419@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
420sfence as usual, which is the default.
421
0cb4071e
L
422@cindex @samp{-mrelax-relocations=} option, i386
423@cindex @samp{-mrelax-relocations=} option, x86-64
424@item -mrelax-relocations=@var{no}
425@itemx -mrelax-relocations=@var{yes}
426These options control whether the assembler should generate relax
427relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
428R_X86_64_REX_GOTPCRELX, in 64-bit mode.
429@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
430@option{-mrelax-relocations=@var{no}} will not generate relax
431relocations. The default can be controlled by a configure option
432@option{--enable-x86-relax-relocations}.
433
e379e5f3
L
434@cindex @samp{-malign-branch-boundary=} option, i386
435@cindex @samp{-malign-branch-boundary=} option, x86-64
436@item -malign-branch-boundary=@var{NUM}
437This option controls how the assembler should align branches with segment
438prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
439no less than 16. Branches will be aligned within @var{NUM} byte
440boundary. @option{-malign-branch-boundary=0}, which is the default,
441doesn't align branches.
442
443@cindex @samp{-malign-branch=} option, i386
444@cindex @samp{-malign-branch=} option, x86-64
445@item -malign-branch=@var{TYPE}[+@var{TYPE}...]
446This option specifies types of branches to align. @var{TYPE} is
447combination of @samp{jcc}, which aligns conditional jumps,
448@samp{fused}, which aligns fused conditional jumps, @samp{jmp},
449which aligns unconditional jumps, @samp{call} which aligns calls,
450@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
451jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
452
453@cindex @samp{-malign-branch-prefix-size=} option, i386
454@cindex @samp{-malign-branch-prefix-size=} option, x86-64
455@item -malign-branch-prefix-size=@var{NUM}
456This option specifies the maximum number of prefixes on an instruction
457to align branches. @var{NUM} should be between 0 and 5. The default
458@var{NUM} is 5.
459
76cf450b
L
460@cindex @samp{-mbranches-within-32B-boundaries} option, i386
461@cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
462@item -mbranches-within-32B-boundaries
463This option aligns conditional jumps, fused conditional jumps and
464unconditional jumps within 32 byte boundary with up to 5 segment prefixes
465on an instruction. It is equivalent to
466@option{-malign-branch-boundary=32}
467@option{-malign-branch=jcc+fused+jmp}
468@option{-malign-branch-prefix-size=5}.
469The default doesn't align branches.
470
ae531041
L
471@cindex @samp{-mlfence-after-load=} option, i386
472@cindex @samp{-mlfence-after-load=} option, x86-64
473@item -mlfence-after-load=@var{no}
474@itemx -mlfence-after-load=@var{yes}
475These options control whether the assembler should generate lfence
476after load instructions. @option{-mlfence-after-load=@var{yes}} will
477generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
478lfence, which is the default.
479
480@cindex @samp{-mlfence-before-indirect-branch=} option, i386
481@cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
482@item -mlfence-before-indirect-branch=@var{none}
483@item -mlfence-before-indirect-branch=@var{all}
484@item -mlfence-before-indirect-branch=@var{register}
485@itemx -mlfence-before-indirect-branch=@var{memory}
486These options control whether the assembler should generate lfence
3071b197 487before indirect near branch instructions.
ae531041 488@option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
3071b197 489before indirect near branch via register and issue a warning before
ae531041
L
490indirect near branch via memory.
491@option{-mlfence-before-indirect-branch=@var{register}} will generate
3071b197 492lfence before indirect near branch via register.
ae531041
L
493@option{-mlfence-before-indirect-branch=@var{memory}} will issue a
494warning before indirect near branch via memory.
495@option{-mlfence-before-indirect-branch=@var{none}} will not generate
496lfence nor issue warning, which is the default. Note that lfence won't
497be generated before indirect near branch via register with
498@option{-mlfence-after-load=@var{yes}} since lfence will be generated
499after loading branch target register.
500
501@cindex @samp{-mlfence-before-ret=} option, i386
502@cindex @samp{-mlfence-before-ret=} option, x86-64
503@item -mlfence-before-ret=@var{none}
504@item -mlfence-before-ret=@var{or}
505@itemx -mlfence-before-ret=@var{not}
506These options control whether the assembler should generate lfence
507before ret. @option{-mlfence-before-ret=@var{or}} will generate
508generate or instruction with lfence.
509@option{-mlfence-before-ret=@var{not}} will generate not instruction
510with lfence.
511@option{-mlfence-before-ret=@var{none}} will not generate lfence,
512which is the default.
513
b4a3a7b4
L
514@cindex @samp{-mx86-used-note=} option, i386
515@cindex @samp{-mx86-used-note=} option, x86-64
516@item -mx86-used-note=@var{no}
517@itemx -mx86-used-note=@var{yes}
518These options control whether the assembler should generate
519GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
520GNU property notes. The default can be controlled by the
521@option{--enable-x86-used-note} configure option.
522
d3d3c6db
IT
523@cindex @samp{-mevexrcig=} option, i386
524@cindex @samp{-mevexrcig=} option, x86-64
525@item -mevexrcig=@var{rne}
526@itemx -mevexrcig=@var{rd}
527@itemx -mevexrcig=@var{ru}
528@itemx -mevexrcig=@var{rz}
529These options control how the assembler should encode SAE-only
530EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
531of EVEX instruction with 00, which is the default.
532@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
533and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
534with 01, 10 and 11 RC bits, respectively.
535
5db04b09
L
536@cindex @samp{-mamd64} option, x86-64
537@cindex @samp{-mintel64} option, x86-64
538@item -mamd64
539@itemx -mintel64
540This option specifies that the assembler should accept only AMD64 or
4b5aaf5f
L
541Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
542only and AMD64 ISAs.
5db04b09 543
b6f8c7c4
L
544@cindex @samp{-O0} option, i386
545@cindex @samp{-O0} option, x86-64
546@cindex @samp{-O} option, i386
547@cindex @samp{-O} option, x86-64
548@cindex @samp{-O1} option, i386
549@cindex @samp{-O1} option, x86-64
550@cindex @samp{-O2} option, i386
551@cindex @samp{-O2} option, x86-64
552@cindex @samp{-Os} option, i386
553@cindex @samp{-Os} option, x86-64
554@item -O0 | -O | -O1 | -O2 | -Os
555Optimize instruction encoding with smaller instruction size. @samp{-O}
556and @samp{-O1} encode 64-bit register load instructions with 64-bit
557immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 558immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
559register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
560register clearing instructions with 128-bit VEX vector register
561clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 562register load/store instructions with VEX vector register load/store
a0a1771e
JB
563instructions, and encode 128-bit/256-bit EVEX packed integer logical
564instructions with 128-bit/256-bit VEX packed integer logical.
565
566@samp{-O2} includes @samp{-O1} optimization plus encodes
567256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
568EVEX vector register clearing instructions. In 64-bit mode VEX encoded
569instructions with commutative source operands will also have their
570source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
571instead of the 3-byte one. Certain forms of AND as well as OR with the
572same (register) operand specified twice will also be changed to TEST.
a0a1771e 573
b6f8c7c4
L
574@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
575and 64-bit register tests with immediate as 8-bit register test with
576immediate. @samp{-O0} turns off this optimization.
577
55b62671 578@end table
731caf76 579@c man end
e413e4e9 580
a6c24e68
NC
581@node i386-Directives
582@section x86 specific Directives
583
584@cindex machine directives, x86
585@cindex x86 machine directives
586@table @code
587
588@cindex @code{lcomm} directive, COFF
589@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
590Reserve @var{length} (an absolute expression) bytes for a local common
591denoted by @var{symbol}. The section and value of @var{symbol} are
592those of the new local common. The addresses are allocated in the bss
704209c0
NC
593section, so that at run-time the bytes start off zeroed. Since
594@var{symbol} is not declared global, it is normally not visible to
595@code{@value{LD}}. The optional third parameter, @var{alignment},
596specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
597
598This directive is only available for COFF based x86 targets.
599
102e9361
NC
600@cindex @code{largecomm} directive, ELF
601@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
602This directive behaves in the same way as the @code{comm} directive
603except that the data is placed into the @var{.lbss} section instead of
604the @var{.bss} section @ref{Comm}.
605
606The directive is intended to be used for data which requires a large
607amount of space, and it is only available for ELF based x86_64
608targets.
609
f2f51cd5
NC
610@cindex @code{value} directive
611@item .value @var{expression} [, @var{expression}]
612This directive behaves in the same way as the @code{.short} directive,
613taking a series of comma separated expressions and storing them as
614two-byte wide values into the current section.
615
a6c24e68 616@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
617
618@end table
619
252b5132 620@node i386-Syntax
7c31ae13
NC
621@section i386 Syntactical Considerations
622@menu
623* i386-Variations:: AT&T Syntax versus Intel Syntax
624* i386-Chars:: Special Characters
625@end menu
626
627@node i386-Variations
628@subsection AT&T Syntax versus Intel Syntax
252b5132 629
e413e4e9
AM
630@cindex i386 intel_syntax pseudo op
631@cindex intel_syntax pseudo op, i386
632@cindex i386 att_syntax pseudo op
633@cindex att_syntax pseudo op, i386
252b5132
RH
634@cindex i386 syntax compatibility
635@cindex syntax compatibility, i386
55b62671
AJ
636@cindex x86-64 intel_syntax pseudo op
637@cindex intel_syntax pseudo op, x86-64
638@cindex x86-64 att_syntax pseudo op
639@cindex att_syntax pseudo op, x86-64
640@cindex x86-64 syntax compatibility
641@cindex syntax compatibility, x86-64
e413e4e9
AM
642
643@code{@value{AS}} now supports assembly using Intel assembler syntax.
644@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
645back to the usual AT&T mode for compatibility with the output of
646@code{@value{GCC}}. Either of these directives may have an optional
647argument, @code{prefix}, or @code{noprefix} specifying whether registers
648require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
649different from Intel syntax. We mention these differences because
650almost all 80386 documents use Intel syntax. Notable differences
651between the two syntaxes are:
652
653@cindex immediate operands, i386
654@cindex i386 immediate operands
655@cindex register operands, i386
656@cindex i386 register operands
657@cindex jump/call operands, i386
658@cindex i386 jump/call operands
659@cindex operand delimiters, i386
55b62671
AJ
660
661@cindex immediate operands, x86-64
662@cindex x86-64 immediate operands
663@cindex register operands, x86-64
664@cindex x86-64 register operands
665@cindex jump/call operands, x86-64
666@cindex x86-64 jump/call operands
667@cindex operand delimiters, x86-64
252b5132
RH
668@itemize @bullet
669@item
670AT&T immediate operands are preceded by @samp{$}; Intel immediate
671operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
672AT&T register operands are preceded by @samp{%}; Intel register operands
673are undelimited. AT&T absolute (as opposed to PC relative) jump/call
674operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
675
676@cindex i386 source, destination operands
677@cindex source, destination operands; i386
55b62671
AJ
678@cindex x86-64 source, destination operands
679@cindex source, destination operands; x86-64
252b5132
RH
680@item
681AT&T and Intel syntax use the opposite order for source and destination
682operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
683@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
684previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
685instructions with 2 immediate operands, such as the @samp{enter}
686instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
687
688@cindex mnemonic suffixes, i386
689@cindex sizes operands, i386
690@cindex i386 size suffixes
55b62671
AJ
691@cindex mnemonic suffixes, x86-64
692@cindex sizes operands, x86-64
693@cindex x86-64 size suffixes
252b5132
RH
694@item
695In AT&T syntax the size of memory operands is determined from the last
696character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 697@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
698(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
699of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
700(256-bit vector) and zmm (512-bit vector) memory references, only when there's
701no other way to disambiguate an instruction. Intel syntax accomplishes this by
702prefixing memory operands (@emph{not} the instruction mnemonics) with
703@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
704@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
705syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
706syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
707@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 708
4b06377f
L
709In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
710instruction with the 64-bit displacement or immediate operand.
711
252b5132
RH
712@cindex return instructions, i386
713@cindex i386 jump, call, return
55b62671
AJ
714@cindex return instructions, x86-64
715@cindex x86-64 jump, call, return
252b5132
RH
716@item
717Immediate form long jumps and calls are
718@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
719Intel syntax is
720@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
721instruction
722is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
723@samp{ret far @var{stack-adjust}}.
724
725@cindex sections, i386
726@cindex i386 sections
55b62671
AJ
727@cindex sections, x86-64
728@cindex x86-64 sections
252b5132
RH
729@item
730The AT&T assembler does not provide support for multiple section
731programs. Unix style systems expect all programs to be single sections.
732@end itemize
733
7c31ae13
NC
734@node i386-Chars
735@subsection Special Characters
736
737@cindex line comment character, i386
738@cindex i386 line comment character
739The presence of a @samp{#} appearing anywhere on a line indicates the
740start of a comment that extends to the end of that line.
741
742If a @samp{#} appears as the first character of a line then the whole
743line is treated as a comment, but in this case the line can also be a
744logical line number directive (@pxref{Comments}) or a preprocessor
745control command (@pxref{Preprocessing}).
746
a05a5b64 747If the @option{--divide} command-line option has not been specified
7c31ae13
NC
748then the @samp{/} character appearing anywhere on a line also
749introduces a line comment.
750
751@cindex line separator, i386
752@cindex statement separator, i386
753@cindex i386 line separator
754The @samp{;} character can be used to separate statements on the same
755line.
756
252b5132 757@node i386-Mnemonics
d3b47e2b
L
758@section i386-Mnemonics
759@subsection Instruction Naming
252b5132
RH
760
761@cindex i386 instruction naming
762@cindex instruction naming, i386
55b62671
AJ
763@cindex x86-64 instruction naming
764@cindex instruction naming, x86-64
765
252b5132 766Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
767specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
768and @samp{q} specify byte, word, long and quadruple word operands. If
769no suffix is specified by an instruction then @code{@value{AS}} tries to
770fill in the missing suffix based on the destination register operand
771(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
772to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
773@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
774assembler which assumes that a missing mnemonic suffix implies long
775operand size. (This incompatibility does not affect compiler output
776since compilers always explicitly specify the mnemonic suffix.)
252b5132 777
c006a730
JB
778When there is no sizing suffix and no (suitable) register operands to
779deduce the size of memory operands, with a few exceptions and where long
780operand size is possible in the first place, operand size will default
781to long in 32- and 64-bit modes. Similarly it will default to short in
78216-bit mode. Noteworthy exceptions are
783
784@itemize @bullet
785@item
786Instructions with an implicit on-stack operand as well as branches,
787which default to quad in 64-bit mode.
788
789@item
790Sign- and zero-extending moves, which default to byte size source
791operands.
792
793@item
794Floating point insns with integer operands, which default to short (for
795perhaps historical reasons).
796
797@item
798CRC32 with a 64-bit destination, which defaults to a quad source
799operand.
800
801@end itemize
802
b6169b20
L
803@cindex encoding options, i386
804@cindex encoding options, x86-64
805
86fa6981
L
806Different encoding options can be specified via pseudo prefixes:
807
808@itemize @bullet
809@item
810@samp{@{disp8@}} -- prefer 8-bit displacement.
811
812@item
813@samp{@{disp32@}} -- prefer 32-bit displacement.
814
815@item
816@samp{@{load@}} -- prefer load-form instruction.
817
818@item
819@samp{@{store@}} -- prefer store-form instruction.
820
821@item
42e04b36 822@samp{@{vex@}} -- encode with VEX prefix.
86fa6981
L
823
824@item
42e04b36 825@samp{@{vex3@}} -- encode with 3-byte VEX prefix.
86fa6981
L
826
827@item
828@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
829
830@item
831@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
832instructions (x86-64 only). Note that this differs from the @samp{rex}
833prefix which generates REX prefix unconditionally.
b6f8c7c4
L
834
835@item
836@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 837@end itemize
b6169b20 838
252b5132
RH
839@cindex conversion instructions, i386
840@cindex i386 conversion instructions
55b62671
AJ
841@cindex conversion instructions, x86-64
842@cindex x86-64 conversion instructions
252b5132
RH
843The Intel-syntax conversion instructions
844
845@itemize @bullet
846@item
847@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
848
849@item
850@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
851
852@item
853@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
854
855@item
856@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
857
858@item
859@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
860(x86-64 only),
861
862@item
d5f0cf92 863@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 864@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
865@end itemize
866
867@noindent
55b62671
AJ
868are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
869@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
870instructions.
252b5132 871
0e6724de
L
872@cindex extension instructions, i386
873@cindex i386 extension instructions
874@cindex extension instructions, x86-64
875@cindex x86-64 extension instructions
876The Intel-syntax extension instructions
877
878@itemize @bullet
879@item
880@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
881
882@item
883@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
884
885@item
886@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
887(x86-64 only).
888
889@item
890@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
891
892@item
893@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
894(x86-64 only).
895
896@item
897@samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
898(x86-64 only).
899
900@item
901@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
902
903@item
904@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
905
906@item
907@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
908(x86-64 only).
909
910@item
911@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
912
913@item
914@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
915(x86-64 only).
916@end itemize
917
918@noindent
919are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
920@samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
921@samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
922@samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
923@samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
924
252b5132
RH
925@cindex jump instructions, i386
926@cindex call instructions, i386
55b62671
AJ
927@cindex jump instructions, x86-64
928@cindex call instructions, x86-64
252b5132
RH
929Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
930AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
931convention.
932
d3b47e2b 933@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
934
935@cindex i386 mnemonic compatibility
936@cindex mnemonic compatibility, i386
937
938@code{@value{AS}} supports assembly using Intel mnemonic.
939@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
940@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
941syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
942Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
943@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
944@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
945assembler with different mnemonics from those in Intel IA32 specification.
946@code{@value{GCC}} generates those instructions with AT&T mnemonic.
947
bc31405e
L
948@itemize @bullet
949@item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
950register. @samp{movsxd} should be used to encode 16-bit or 32-bit
951destination register with both AT&T and Intel mnemonics.
952@end itemize
953
252b5132
RH
954@node i386-Regs
955@section Register Naming
956
957@cindex i386 registers
958@cindex registers, i386
55b62671
AJ
959@cindex x86-64 registers
960@cindex registers, x86-64
252b5132
RH
961Register operands are always prefixed with @samp{%}. The 80386 registers
962consist of
963
964@itemize @bullet
965@item
966the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
967@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
968frame pointer), and @samp{%esp} (the stack pointer).
969
970@item
971the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
972@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
973
974@item
975the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
976@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
977are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
978@samp{%cx}, and @samp{%dx})
979
980@item
981the 6 section registers @samp{%cs} (code section), @samp{%ds}
982(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
983and @samp{%gs}.
984
985@item
4bde3cdd
UD
986the 5 processor control registers @samp{%cr0}, @samp{%cr2},
987@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
988
989@item
990the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
991@samp{%db3}, @samp{%db6}, and @samp{%db7}.
992
993@item
994the 2 test registers @samp{%tr6} and @samp{%tr7}.
995
996@item
997the 8 floating point register stack @samp{%st} or equivalently
998@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
999@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
1000These registers are overloaded by 8 MMX registers @samp{%mm0},
1001@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1002@samp{%mm6} and @samp{%mm7}.
1003
1004@item
4bde3cdd 1005the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
1006@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1007@end itemize
1008
1009The AMD x86-64 architecture extends the register set by:
1010
1011@itemize @bullet
1012@item
1013enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1014accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1015@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1016pointer)
1017
1018@item
1019the 8 extended registers @samp{%r8}--@samp{%r15}.
1020
1021@item
4bde3cdd 1022the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
1023
1024@item
4bde3cdd 1025the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
1026
1027@item
4bde3cdd 1028the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
1029
1030@item
1031the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1032
1033@item
1034the 8 debug registers: @samp{%db8}--@samp{%db15}.
1035
1036@item
4bde3cdd
UD
1037the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1038@end itemize
1039
1040With the AVX extensions more registers were made available:
1041
1042@itemize @bullet
1043
1044@item
1045the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1046available in 32-bit mode). The bottom 128 bits are overlaid with the
1047@samp{xmm0}--@samp{xmm15} registers.
1048
1049@end itemize
1050
1051The AVX2 extensions made in 64-bit mode more registers available:
1052
1053@itemize @bullet
1054
1055@item
1056the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
1057registers @samp{%ymm16}--@samp{%ymm31}.
1058
1059@end itemize
1060
1061The AVX512 extensions added the following registers:
1062
1063@itemize @bullet
1064
1065@item
1066the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1067available in 32-bit mode). The bottom 128 bits are overlaid with the
1068@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1069overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1070
1071@item
1072the 8 mask registers @samp{%k0}--@samp{%k7}.
1073
252b5132
RH
1074@end itemize
1075
1076@node i386-Prefixes
1077@section Instruction Prefixes
1078
1079@cindex i386 instruction prefixes
1080@cindex instruction prefixes, i386
1081@cindex prefixes, i386
1082Instruction prefixes are used to modify the following instruction. They
1083are used to repeat string instructions, to provide section overrides, to
1084perform bus lock operations, and to change operand and address sizes.
1085(Most instructions that normally operate on 32-bit operands will use
108616-bit operands if the instruction has an ``operand size'' prefix.)
1087Instruction prefixes are best written on the same line as the instruction
1088they act upon. For example, the @samp{scas} (scan string) instruction is
1089repeated with:
1090
1091@smallexample
1092 repne scas %es:(%edi),%al
1093@end smallexample
1094
1095You may also place prefixes on the lines immediately preceding the
1096instruction, but this circumvents checks that @code{@value{AS}} does
1097with prefixes, and will not work with all prefixes.
1098
1099Here is a list of instruction prefixes:
1100
1101@cindex section override prefixes, i386
1102@itemize @bullet
1103@item
1104Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1105@samp{fs}, @samp{gs}. These are automatically added by specifying
1106using the @var{section}:@var{memory-operand} form for memory references.
1107
1108@cindex size prefixes, i386
1109@item
1110Operand/Address size prefixes @samp{data16} and @samp{addr16}
1111change 32-bit operands/addresses into 16-bit operands/addresses,
1112while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1113@code{.code16} section) into 32-bit operands/addresses. These prefixes
1114@emph{must} appear on the same line of code as the instruction they
1115modify. For example, in a 16-bit @code{.code16} section, you might
1116write:
1117
1118@smallexample
1119 addr32 jmpl *(%ebx)
1120@end smallexample
1121
1122@cindex bus lock prefixes, i386
1123@cindex inhibiting interrupts, i386
1124@item
1125The bus lock prefix @samp{lock} inhibits interrupts during execution of
1126the instruction it precedes. (This is only valid with certain
1127instructions; see a 80386 manual for details).
1128
1129@cindex coprocessor wait, i386
1130@item
1131The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1132complete the current instruction. This should never be needed for the
113380386/80387 combination.
1134
1135@cindex repeat prefixes, i386
1136@item
1137The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1138to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1139times if the current address size is 16-bits).
55b62671
AJ
1140@cindex REX prefixes, i386
1141@item
1142The @samp{rex} family of prefixes is used by x86-64 to encode
1143extensions to i386 instruction set. The @samp{rex} prefix has four
1144bits --- an operand size overwrite (@code{64}) used to change operand size
1145from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1146register set.
1147
1148You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1149instruction emits @samp{rex} prefix with all the bits set. By omitting
1150the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1151prefixes as well. Normally, there is no need to write the prefixes
1152explicitly, since gas will automatically generate them based on the
1153instruction operands.
252b5132
RH
1154@end itemize
1155
1156@node i386-Memory
1157@section Memory References
1158
1159@cindex i386 memory references
1160@cindex memory references, i386
55b62671
AJ
1161@cindex x86-64 memory references
1162@cindex memory references, x86-64
252b5132
RH
1163An Intel syntax indirect memory reference of the form
1164
1165@smallexample
1166@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1167@end smallexample
1168
1169@noindent
1170is translated into the AT&T syntax
1171
1172@smallexample
1173@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1174@end smallexample
1175
1176@noindent
1177where @var{base} and @var{index} are the optional 32-bit base and
1178index registers, @var{disp} is the optional displacement, and
1179@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1180to calculate the address of the operand. If no @var{scale} is
1181specified, @var{scale} is taken to be 1. @var{section} specifies the
1182optional section register for the memory operand, and may override the
1183default section register (see a 80386 manual for section register
1184defaults). Note that section overrides in AT&T syntax @emph{must}
1185be preceded by a @samp{%}. If you specify a section override which
1186coincides with the default section register, @code{@value{AS}} does @emph{not}
1187output any section register override prefixes to assemble the given
1188instruction. Thus, section overrides can be specified to emphasize which
1189section register is used for a given memory operand.
1190
1191Here are some examples of Intel and AT&T style memory references:
1192
1193@table @asis
1194@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1195@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1196missing, and the default section is used (@samp{%ss} for addressing with
1197@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1198
1199@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1200@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1201@samp{foo}. All other fields are missing. The section register here
1202defaults to @samp{%ds}.
1203
1204@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1205This uses the value pointed to by @samp{foo} as a memory operand.
1206Note that @var{base} and @var{index} are both missing, but there is only
1207@emph{one} @samp{,}. This is a syntactic exception.
1208
1209@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1210This selects the contents of the variable @samp{foo} with section
1211register @var{section} being @samp{%gs}.
1212@end table
1213
1214Absolute (as opposed to PC relative) call and jump operands must be
1215prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1216always chooses PC relative addressing for jump/call labels.
1217
1218Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1219@emph{must} specify its size (byte, word, long, or quadruple) with an
1220instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1221respectively).
1222
1223The x86-64 architecture adds an RIP (instruction pointer relative)
1224addressing. This addressing mode is specified by using @samp{rip} as a
1225base register. Only constant offsets are valid. For example:
1226
1227@table @asis
1228@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1229Points to the address 1234 bytes past the end of the current
1230instruction.
1231
1232@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1233Points to the @code{symbol} in RIP relative way, this is shorter than
1234the default absolute addressing.
1235@end table
1236
1237Other addressing modes remain unchanged in x86-64 architecture, except
1238registers used are 64-bit instead of 32-bit.
252b5132 1239
fddf5b5b 1240@node i386-Jumps
252b5132
RH
1241@section Handling of Jump Instructions
1242
1243@cindex jump optimization, i386
1244@cindex i386 jump optimization
55b62671
AJ
1245@cindex jump optimization, x86-64
1246@cindex x86-64 jump optimization
252b5132
RH
1247Jump instructions are always optimized to use the smallest possible
1248displacements. This is accomplished by using byte (8-bit) displacement
1249jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1250is insufficient a long displacement is used. We do not support
252b5132
RH
1251word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1252instruction with the @samp{data16} instruction prefix), since the 80386
1253insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1254is added. (See also @pxref{i386-Arch})
252b5132
RH
1255
1256Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1257@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1258displacements, so that if you use these instructions (@code{@value{GCC}} does
1259not use them) you may get an error message (and incorrect code). The AT&T
126080386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1261to
1262
1263@smallexample
1264 jcxz cx_zero
1265 jmp cx_nonzero
1266cx_zero: jmp foo
1267cx_nonzero:
1268@end smallexample
1269
1270@node i386-Float
1271@section Floating Point
1272
1273@cindex i386 floating point
1274@cindex floating point, i386
55b62671
AJ
1275@cindex x86-64 floating point
1276@cindex floating point, x86-64
252b5132
RH
1277All 80387 floating point types except packed BCD are supported.
1278(BCD support may be added without much difficulty). These data
1279types are 16-, 32-, and 64- bit integers, and single (32-bit),
1280double (64-bit), and extended (80-bit) precision floating point.
1281Each supported type has an instruction mnemonic suffix and a constructor
1282associated with it. Instruction mnemonic suffixes specify the operand's
1283data type. Constructors build these data types into memory.
1284
1285@cindex @code{float} directive, i386
1286@cindex @code{single} directive, i386
1287@cindex @code{double} directive, i386
1288@cindex @code{tfloat} directive, i386
55b62671
AJ
1289@cindex @code{float} directive, x86-64
1290@cindex @code{single} directive, x86-64
1291@cindex @code{double} directive, x86-64
1292@cindex @code{tfloat} directive, x86-64
252b5132
RH
1293@itemize @bullet
1294@item
1295Floating point constructors are @samp{.float} or @samp{.single},
1296@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1297These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1298and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1299only supports this format via the @samp{fldt} (load 80-bit real to stack
1300top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1301
1302@cindex @code{word} directive, i386
1303@cindex @code{long} directive, i386
1304@cindex @code{int} directive, i386
1305@cindex @code{quad} directive, i386
55b62671
AJ
1306@cindex @code{word} directive, x86-64
1307@cindex @code{long} directive, x86-64
1308@cindex @code{int} directive, x86-64
1309@cindex @code{quad} directive, x86-64
252b5132
RH
1310@item
1311Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1312@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1313corresponding instruction mnemonic suffixes are @samp{s} (single),
1314@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1315the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1316quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1317stack) instructions.
1318@end itemize
1319
1320Register to register operations should not use instruction mnemonic suffixes.
1321@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1322wrote @samp{fst %st, %st(1)}, since all register to register operations
1323use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1324which converts @samp{%st} from 80-bit to 64-bit floating point format,
1325then stores the result in the 4 byte location @samp{mem})
1326
1327@node i386-SIMD
1328@section Intel's MMX and AMD's 3DNow! SIMD Operations
1329
1330@cindex MMX, i386
1331@cindex 3DNow!, i386
1332@cindex SIMD, i386
55b62671
AJ
1333@cindex MMX, x86-64
1334@cindex 3DNow!, x86-64
1335@cindex SIMD, x86-64
252b5132
RH
1336
1337@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1338instructions for integer data), available on Intel's Pentium MMX
1339processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1340Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1341instruction set (SIMD instructions for 32-bit floating point data)
1342available on AMD's K6-2 processor and possibly others in the future.
1343
1344Currently, @code{@value{AS}} does not support Intel's floating point
1345SIMD, Katmai (KNI).
1346
1347The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1348@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
134916-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1350floating point values. The MMX registers cannot be used at the same time
1351as the floating point stack.
1352
1353See Intel and AMD documentation, keeping in mind that the operand order in
1354instructions is reversed from the Intel syntax.
1355
f88c9eb0
SP
1356@node i386-LWP
1357@section AMD's Lightweight Profiling Instructions
1358
1359@cindex LWP, i386
1360@cindex LWP, x86-64
1361
1362@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1363instruction set, available on AMD's Family 15h (Orochi) processors.
1364
1365LWP enables applications to collect and manage performance data, and
1366react to performance events. The collection of performance data
1367requires no context switches. LWP runs in the context of a thread and
1368so several counters can be used independently across multiple threads.
1369LWP can be used in both 64-bit and legacy 32-bit modes.
1370
1371For detailed information on the LWP instruction set, see the
1372@cite{AMD Lightweight Profiling Specification} available at
1373@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1374
87973e9f
QN
1375@node i386-BMI
1376@section Bit Manipulation Instructions
1377
1378@cindex BMI, i386
1379@cindex BMI, x86-64
1380
1381@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1382
1383BMI instructions provide several instructions implementing individual
1384bit manipulation operations such as isolation, masking, setting, or
34bca508 1385resetting.
87973e9f
QN
1386
1387@c Need to add a specification citation here when available.
1388
2a2a0f38
QN
1389@node i386-TBM
1390@section AMD's Trailing Bit Manipulation Instructions
1391
1392@cindex TBM, i386
1393@cindex TBM, x86-64
1394
1395@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1396instruction set, available on AMD's BDVER2 processors (Trinity and
1397Viperfish).
1398
1399TBM instructions provide instructions implementing individual bit
1400manipulation operations such as isolating, masking, setting, resetting,
1401complementing, and operations on trailing zeros and ones.
1402
1403@c Need to add a specification citation here when available.
87973e9f 1404
252b5132
RH
1405@node i386-16bit
1406@section Writing 16-bit Code
1407
1408@cindex i386 16-bit code
1409@cindex 16-bit code, i386
1410@cindex real-mode code, i386
eecb386c 1411@cindex @code{code16gcc} directive, i386
252b5132
RH
1412@cindex @code{code16} directive, i386
1413@cindex @code{code32} directive, i386
55b62671
AJ
1414@cindex @code{code64} directive, i386
1415@cindex @code{code64} directive, x86-64
1416While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1417or 64-bit x86-64 code depending on the default configuration,
252b5132 1418it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1419mode code segments. To do this, put a @samp{.code16} or
1420@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1421be run in 16-bit mode. You can switch @code{@value{AS}} to writing
142232-bit code with the @samp{.code32} directive or 64-bit code with the
1423@samp{.code64} directive.
eecb386c
AM
1424
1425@samp{.code16gcc} provides experimental support for generating 16-bit
1426code from gcc, and differs from @samp{.code16} in that @samp{call},
1427@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1428@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1429default to 32-bit size. This is so that the stack pointer is
1430manipulated in the same way over function calls, allowing access to
1431function parameters at the same stack offsets as in 32-bit mode.
1432@samp{.code16gcc} also automatically adds address size prefixes where
1433necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1434
1435The code which @code{@value{AS}} generates in 16-bit mode will not
1436necessarily run on a 16-bit pre-80386 processor. To write code that
1437runs on such a processor, you must refrain from using @emph{any} 32-bit
1438constructs which require @code{@value{AS}} to output address or operand
1439size prefixes.
1440
1441Note that writing 16-bit code instructions by explicitly specifying a
1442prefix or an instruction mnemonic suffix within a 32-bit code section
1443generates different machine instructions than those generated for a
144416-bit code segment. In a 32-bit code section, the following code
1445generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1446value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1447
1448@smallexample
1449 pushw $4
1450@end smallexample
1451
1452The same code in a 16-bit code section would generate the machine
b45619c0 1453opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1454is correct since the processor default operand size is assumed to be 16
1455bits in a 16-bit code section.
1456
e413e4e9
AM
1457@node i386-Arch
1458@section Specifying CPU Architecture
1459
1460@cindex arch directive, i386
1461@cindex i386 arch directive
55b62671
AJ
1462@cindex arch directive, x86-64
1463@cindex x86-64 arch directive
e413e4e9
AM
1464
1465@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1466(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1467directive enables a warning when gas detects an instruction that is not
1468supported on the CPU specified. The choices for @var{cpu_type} are:
1469
1470@multitable @columnfractions .20 .20 .20 .20
1471@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1472@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1473@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1474@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1475@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1476@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1477@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1478@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1479@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1480@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
272a84b1 1481@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
d76f7bc1 1482@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1483@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1484@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1485@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1486@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
272a84b1
L
1487@item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1488@item @samp{.hle}
e2e1fcde 1489@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1490@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1491@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1492@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1493@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1494@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1495@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1496@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
d777820b 1497@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1498@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1499@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
bb651e8b 1500@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
1ceab344 1501@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
272a84b1 1502@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
60aa667e 1503@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
142861df 1504@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
a847e322 1505@item @samp{.mcommit} @tab @samp{.sev_es}
e413e4e9
AM
1506@end multitable
1507
fddf5b5b
AM
1508Apart from the warning, there are only two other effects on
1509@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1510@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1511will automatically use a two byte opcode sequence. The larger three
1512byte opcode sequence is used on the 486 (and when no architecture is
1513specified) because it executes faster on the 486. Note that you can
1514explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1515Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1516@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1517conditional jumps will be promoted when necessary to a two instruction
1518sequence consisting of a conditional jump of the opposite sense around
1519an unconditional jump to the target.
1520
5c6af06e
JB
1521Following the CPU architecture (but not a sub-architecture, which are those
1522starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1523control automatic promotion of conditional jumps. @samp{jumps} is the
1524default, and enables jump promotion; All external jumps will be of the long
1525variety, and file-local jumps will be promoted as necessary.
1526(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1527byte offset jumps, and warns about file-local conditional jumps that
1528@code{@value{AS}} promotes.
fddf5b5b
AM
1529Unconditional jumps are treated as for @samp{jumps}.
1530
1531For example
1532
1533@smallexample
1534 .arch i8086,nojumps
1535@end smallexample
e413e4e9 1536
bc31405e
L
1537@node i386-ISA
1538@section AMD64 ISA vs. Intel64 ISA
1539
1540There are some discrepancies between AMD64 and Intel64 ISAs.
1541
1542@itemize @bullet
1543@item For @samp{movsxd} with 16-bit destination register, AMD64
1544supports 32-bit source operand and Intel64 supports 16-bit source
1545operand.
5990e377
JB
1546
1547@item For far branches (with explicit memory operand), both ISAs support
154832- and 16-bit operand size. Intel64 additionally supports 64-bit
1549operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1550and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1551syntax.
1552
1553@item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1554and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1555while Intel64 additionally supports 64-bit operand sise (80-bit memory
1556operands).
1557
bc31405e
L
1558@end itemize
1559
5c9352f3
AM
1560@node i386-Bugs
1561@section AT&T Syntax bugs
1562
1563The UnixWare assembler, and probably other AT&T derived ix86 Unix
1564assemblers, generate floating point instructions with reversed source
1565and destination registers in certain cases. Unfortunately, gcc and
1566possibly many other programs use this reversed syntax, so we're stuck
1567with it.
1568
1569For example
1570
1571@smallexample
1572 fsub %st,%st(3)
1573@end smallexample
1574@noindent
1575results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1576than the expected @samp{%st(3) - %st}. This happens with all the
1577non-commutative arithmetic floating point operations with two register
1578operands where the source register is @samp{%st} and the destination
1579register is @samp{%st(i)}.
1580
252b5132
RH
1581@node i386-Notes
1582@section Notes
1583
1584@cindex i386 @code{mul}, @code{imul} instructions
1585@cindex @code{mul} instruction, i386
1586@cindex @code{imul} instruction, i386
55b62671
AJ
1587@cindex @code{mul} instruction, x86-64
1588@cindex @code{imul} instruction, x86-64
252b5132 1589There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1590instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1591multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1592for @samp{imul}) can be output only in the one operand form. Thus,
1593@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1594the expanding multiply would clobber the @samp{%edx} register, and this
1595would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
159664-bit product in @samp{%edx:%eax}.
1597
1598We have added a two operand form of @samp{imul} when the first operand
1599is an immediate mode expression and the second operand is a register.
1600This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1601example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1602$69, %eax, %eax}.
1603
This page took 0.957066 seconds and 4 git commands to generate.