Update x86 register name documentation.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
6f2750fe 1@c Copyright (C) 1991-2016 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
81486035 113@code{iamcu},
9103f4f4
L
114@code{k6},
115@code{k6_2},
116@code{athlon},
9103f4f4
L
117@code{opteron},
118@code{k8},
1ceab344 119@code{amdfam10},
68339fdf 120@code{bdver1},
af2f724e 121@code{bdver2},
5e5c50d3 122@code{bdver3},
c7b0bd56 123@code{bdver4},
029f3522 124@code{znver1},
7b458c12
L
125@code{btver1},
126@code{btver2},
9103f4f4
L
127@code{generic32} and
128@code{generic64}.
129
34bca508 130In addition to the basic instruction set, the assembler can be told to
6305a203
L
131accept various extension mnemonics. For example,
132@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133@var{vmx}. The following extensions are currently supported:
309d3373
JB
134@code{8087},
135@code{287},
136@code{387},
137@code{no87},
6305a203 138@code{mmx},
309d3373 139@code{nommx},
6305a203
L
140@code{sse},
141@code{sse2},
142@code{sse3},
143@code{ssse3},
144@code{sse4.1},
145@code{sse4.2},
146@code{sse4},
309d3373 147@code{nosse},
c0f3af97 148@code{avx},
6c30d220 149@code{avx2},
e2e1fcde
L
150@code{adx},
151@code{rdseed},
152@code{prfchw},
5c111e37 153@code{smap},
7e8b059b 154@code{mpx},
a0046408 155@code{sha},
1dfc6506
L
156@code{prefetchwt1},
157@code{clflushopt},
158@code{se1},
c5e7287a 159@code{clwb},
9d8596f0 160@code{pcommit},
43234a1e
L
161@code{avx512f},
162@code{avx512cd},
163@code{avx512er},
164@code{avx512pf},
1dfc6506
L
165@code{avx512vl},
166@code{avx512bw},
167@code{avx512dq},
2cc1b5aa 168@code{avx512ifma},
14f195c9 169@code{avx512vbmi},
309d3373 170@code{noavx},
6305a203 171@code{vmx},
8729a6f6 172@code{vmfunc},
6305a203 173@code{smx},
f03fe4c1 174@code{xsave},
c7b8aa3a 175@code{xsaveopt},
1dfc6506
L
176@code{xsavec},
177@code{xsaves},
c0f3af97 178@code{aes},
594ab6a3 179@code{pclmul},
c7b8aa3a
L
180@code{fsgsbase},
181@code{rdrnd},
182@code{f16c},
6c30d220 183@code{bmi2},
c0f3af97 184@code{fma},
f1f8f695
L
185@code{movbe},
186@code{ept},
6c30d220 187@code{lzcnt},
42164a71
L
188@code{hle},
189@code{rtm},
6c30d220 190@code{invpcid},
bd5295b2 191@code{clflush},
9916071f 192@code{mwaitx},
029f3522 193@code{clzero},
f88c9eb0 194@code{lwp},
5dd85c99
SP
195@code{fma4},
196@code{xop},
60aa667e 197@code{cx16},
bd5295b2 198@code{syscall},
1b7f3fb0 199@code{rdtscp},
6305a203
L
200@code{3dnow},
201@code{3dnowa},
202@code{sse4a},
203@code{sse5},
204@code{svme},
205@code{abm} and
206@code{padlock}.
309d3373
JB
207Note that rather than extending a basic instruction set, the extension
208mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
209
210When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
211@code{.arch} directive will take precedent.
212
213@cindex @samp{-mtune=} option, i386
214@cindex @samp{-mtune=} option, x86-64
215@item -mtune=@var{CPU}
216This option specifies a processor to optimize for. When used in
217conjunction with the @option{-march} option, only instructions
218of the processor specified by the @option{-march} option will be
219generated.
220
6305a203
L
221Valid @var{CPU} values are identical to the processor list of
222@option{-march=@var{CPU}}.
9103f4f4 223
c0f3af97
L
224@cindex @samp{-msse2avx} option, i386
225@cindex @samp{-msse2avx} option, x86-64
226@item -msse2avx
227This option specifies that the assembler should encode SSE instructions
228with VEX prefix.
229
daf50ae7
L
230@cindex @samp{-msse-check=} option, i386
231@cindex @samp{-msse-check=} option, x86-64
232@item -msse-check=@var{none}
1f9bb1ca
AS
233@itemx -msse-check=@var{warning}
234@itemx -msse-check=@var{error}
9aff4b7a 235These options control if the assembler should check SSE instructions.
daf50ae7
L
236@option{-msse-check=@var{none}} will make the assembler not to check SSE
237instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 238will make the assembler issue a warning for any SSE instruction.
daf50ae7 239@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 240for any SSE instruction.
daf50ae7 241
539f890d
L
242@cindex @samp{-mavxscalar=} option, i386
243@cindex @samp{-mavxscalar=} option, x86-64
244@item -mavxscalar=@var{128}
1f9bb1ca 245@itemx -mavxscalar=@var{256}
2aab8acd 246These options control how the assembler should encode scalar AVX
539f890d
L
247instructions. @option{-mavxscalar=@var{128}} will encode scalar
248AVX instructions with 128bit vector length, which is the default.
249@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
250with 256bit vector length.
251
43234a1e
L
252@cindex @samp{-mevexlig=} option, i386
253@cindex @samp{-mevexlig=} option, x86-64
254@item -mevexlig=@var{128}
255@itemx -mevexlig=@var{256}
256@itemx -mevexlig=@var{512}
257These options control how the assembler should encode length-ignored
258(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
259EVEX instructions with 128bit vector length, which is the default.
260@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
261encode LIG EVEX instructions with 256bit and 512bit vector length,
262respectively.
263
264@cindex @samp{-mevexwig=} option, i386
265@cindex @samp{-mevexwig=} option, x86-64
266@item -mevexwig=@var{0}
267@itemx -mevexwig=@var{1}
268These options control how the assembler should encode w-ignored (WIG)
269EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
270EVEX instructions with evex.w = 0, which is the default.
271@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
272evex.w = 1.
273
1efbbeb4
L
274@cindex @samp{-mmnemonic=} option, i386
275@cindex @samp{-mmnemonic=} option, x86-64
276@item -mmnemonic=@var{att}
1f9bb1ca 277@itemx -mmnemonic=@var{intel}
34bca508 278This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
279The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
280take precedent.
281
282@cindex @samp{-msyntax=} option, i386
283@cindex @samp{-msyntax=} option, x86-64
284@item -msyntax=@var{att}
1f9bb1ca 285@itemx -msyntax=@var{intel}
34bca508 286This option specifies instruction syntax when processing instructions.
1efbbeb4
L
287The @code{.att_syntax} and @code{.intel_syntax} directives will
288take precedent.
289
290@cindex @samp{-mnaked-reg} option, i386
291@cindex @samp{-mnaked-reg} option, x86-64
292@item -mnaked-reg
293This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 294The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 295
7e8b059b
L
296@cindex @samp{-madd-bnd-prefix} option, i386
297@cindex @samp{-madd-bnd-prefix} option, x86-64
298@item -madd-bnd-prefix
299This option forces the assembler to add BND prefix to all branches, even
300if such prefix was not explicitly specified in the source code.
301
8dcea932
L
302@cindex @samp{-mshared} option, i386
303@cindex @samp{-mshared} option, x86-64
304@item -mno-shared
305On ELF target, the assembler normally optimizes out non-PLT relocations
306against defined non-weak global branch targets with default visibility.
307The @samp{-mshared} option tells the assembler to generate code which
308may go into a shared library where all non-weak global branch targets
309with default visibility can be preempted. The resulting code is
310slightly bigger. This option only affects the handling of branch
311instructions.
312
167ad85b
TG
313@cindex @samp{-mbig-obj} option, x86-64
314@item -mbig-obj
315On x86-64 PE/COFF target this option forces the use of big object file
316format, which allows more than 32768 sections.
317
d022bddd
IT
318@cindex @samp{-momit-lock-prefix=} option, i386
319@cindex @samp{-momit-lock-prefix=} option, x86-64
320@item -momit-lock-prefix=@var{no}
321@itemx -momit-lock-prefix=@var{yes}
322These options control how the assembler should encode lock prefix.
323This option is intended as a workaround for processors, that fail on
324lock prefix. This option can only be safely used with single-core,
325single-thread computers
326@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
327@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
328which is the default.
329
e4e00185
AS
330@cindex @samp{-mfence-as-lock-add=} option, i386
331@cindex @samp{-mfence-as-lock-add=} option, x86-64
332@item -mfence-as-lock-add=@var{no}
333@itemx -mfence-as-lock-add=@var{yes}
334These options control how the assembler should encode lfence, mfence and
335sfence.
336@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
337sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
338@samp{lock addl $0x0, (%esp)} in 32-bit mode.
339@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
340sfence as usual, which is the default.
341
0cb4071e
L
342@cindex @samp{-mrelax-relocations=} option, i386
343@cindex @samp{-mrelax-relocations=} option, x86-64
344@item -mrelax-relocations=@var{no}
345@itemx -mrelax-relocations=@var{yes}
346These options control whether the assembler should generate relax
347relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
348R_X86_64_REX_GOTPCRELX, in 64-bit mode.
349@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
350@option{-mrelax-relocations=@var{no}} will not generate relax
351relocations. The default can be controlled by a configure option
352@option{--enable-x86-relax-relocations}.
353
d3d3c6db
IT
354@cindex @samp{-mevexrcig=} option, i386
355@cindex @samp{-mevexrcig=} option, x86-64
356@item -mevexrcig=@var{rne}
357@itemx -mevexrcig=@var{rd}
358@itemx -mevexrcig=@var{ru}
359@itemx -mevexrcig=@var{rz}
360These options control how the assembler should encode SAE-only
361EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
362of EVEX instruction with 00, which is the default.
363@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
364and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
365with 01, 10 and 11 RC bits, respectively.
366
5db04b09
L
367@cindex @samp{-mamd64} option, x86-64
368@cindex @samp{-mintel64} option, x86-64
369@item -mamd64
370@itemx -mintel64
371This option specifies that the assembler should accept only AMD64 or
372Intel64 ISA in 64-bit mode. The default is to accept both.
373
55b62671 374@end table
731caf76 375@c man end
e413e4e9 376
a6c24e68
NC
377@node i386-Directives
378@section x86 specific Directives
379
380@cindex machine directives, x86
381@cindex x86 machine directives
382@table @code
383
384@cindex @code{lcomm} directive, COFF
385@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
386Reserve @var{length} (an absolute expression) bytes for a local common
387denoted by @var{symbol}. The section and value of @var{symbol} are
388those of the new local common. The addresses are allocated in the bss
704209c0
NC
389section, so that at run-time the bytes start off zeroed. Since
390@var{symbol} is not declared global, it is normally not visible to
391@code{@value{LD}}. The optional third parameter, @var{alignment},
392specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
393
394This directive is only available for COFF based x86 targets.
395
396@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
397@c .largecomm
398
399@end table
400
252b5132 401@node i386-Syntax
7c31ae13
NC
402@section i386 Syntactical Considerations
403@menu
404* i386-Variations:: AT&T Syntax versus Intel Syntax
405* i386-Chars:: Special Characters
406@end menu
407
408@node i386-Variations
409@subsection AT&T Syntax versus Intel Syntax
252b5132 410
e413e4e9
AM
411@cindex i386 intel_syntax pseudo op
412@cindex intel_syntax pseudo op, i386
413@cindex i386 att_syntax pseudo op
414@cindex att_syntax pseudo op, i386
252b5132
RH
415@cindex i386 syntax compatibility
416@cindex syntax compatibility, i386
55b62671
AJ
417@cindex x86-64 intel_syntax pseudo op
418@cindex intel_syntax pseudo op, x86-64
419@cindex x86-64 att_syntax pseudo op
420@cindex att_syntax pseudo op, x86-64
421@cindex x86-64 syntax compatibility
422@cindex syntax compatibility, x86-64
e413e4e9
AM
423
424@code{@value{AS}} now supports assembly using Intel assembler syntax.
425@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
426back to the usual AT&T mode for compatibility with the output of
427@code{@value{GCC}}. Either of these directives may have an optional
428argument, @code{prefix}, or @code{noprefix} specifying whether registers
429require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
430different from Intel syntax. We mention these differences because
431almost all 80386 documents use Intel syntax. Notable differences
432between the two syntaxes are:
433
434@cindex immediate operands, i386
435@cindex i386 immediate operands
436@cindex register operands, i386
437@cindex i386 register operands
438@cindex jump/call operands, i386
439@cindex i386 jump/call operands
440@cindex operand delimiters, i386
55b62671
AJ
441
442@cindex immediate operands, x86-64
443@cindex x86-64 immediate operands
444@cindex register operands, x86-64
445@cindex x86-64 register operands
446@cindex jump/call operands, x86-64
447@cindex x86-64 jump/call operands
448@cindex operand delimiters, x86-64
252b5132
RH
449@itemize @bullet
450@item
451AT&T immediate operands are preceded by @samp{$}; Intel immediate
452operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
453AT&T register operands are preceded by @samp{%}; Intel register operands
454are undelimited. AT&T absolute (as opposed to PC relative) jump/call
455operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
456
457@cindex i386 source, destination operands
458@cindex source, destination operands; i386
55b62671
AJ
459@cindex x86-64 source, destination operands
460@cindex source, destination operands; x86-64
252b5132
RH
461@item
462AT&T and Intel syntax use the opposite order for source and destination
463operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
464@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
465previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
466instructions with 2 immediate operands, such as the @samp{enter}
467instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
468
469@cindex mnemonic suffixes, i386
470@cindex sizes operands, i386
471@cindex i386 size suffixes
55b62671
AJ
472@cindex mnemonic suffixes, x86-64
473@cindex sizes operands, x86-64
474@cindex x86-64 size suffixes
252b5132
RH
475@item
476In AT&T syntax the size of memory operands is determined from the last
477character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
478@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
479(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
480this by prefixing memory operands (@emph{not} the instruction mnemonics) with
481@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
482Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
483syntax.
252b5132 484
4b06377f
L
485In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
486instruction with the 64-bit displacement or immediate operand.
487
252b5132
RH
488@cindex return instructions, i386
489@cindex i386 jump, call, return
55b62671
AJ
490@cindex return instructions, x86-64
491@cindex x86-64 jump, call, return
252b5132
RH
492@item
493Immediate form long jumps and calls are
494@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
495Intel syntax is
496@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
497instruction
498is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
499@samp{ret far @var{stack-adjust}}.
500
501@cindex sections, i386
502@cindex i386 sections
55b62671
AJ
503@cindex sections, x86-64
504@cindex x86-64 sections
252b5132
RH
505@item
506The AT&T assembler does not provide support for multiple section
507programs. Unix style systems expect all programs to be single sections.
508@end itemize
509
7c31ae13
NC
510@node i386-Chars
511@subsection Special Characters
512
513@cindex line comment character, i386
514@cindex i386 line comment character
515The presence of a @samp{#} appearing anywhere on a line indicates the
516start of a comment that extends to the end of that line.
517
518If a @samp{#} appears as the first character of a line then the whole
519line is treated as a comment, but in this case the line can also be a
520logical line number directive (@pxref{Comments}) or a preprocessor
521control command (@pxref{Preprocessing}).
522
523If the @option{--divide} command line option has not been specified
524then the @samp{/} character appearing anywhere on a line also
525introduces a line comment.
526
527@cindex line separator, i386
528@cindex statement separator, i386
529@cindex i386 line separator
530The @samp{;} character can be used to separate statements on the same
531line.
532
252b5132 533@node i386-Mnemonics
d3b47e2b
L
534@section i386-Mnemonics
535@subsection Instruction Naming
252b5132
RH
536
537@cindex i386 instruction naming
538@cindex instruction naming, i386
55b62671
AJ
539@cindex x86-64 instruction naming
540@cindex instruction naming, x86-64
541
252b5132 542Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
543specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
544and @samp{q} specify byte, word, long and quadruple word operands. If
545no suffix is specified by an instruction then @code{@value{AS}} tries to
546fill in the missing suffix based on the destination register operand
547(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
548to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
549@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
550assembler which assumes that a missing mnemonic suffix implies long
551operand size. (This incompatibility does not affect compiler output
552since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
553
554Almost all instructions have the same names in AT&T and Intel format.
555There are a few exceptions. The sign extend and zero extend
556instructions need two sizes to specify them. They need a size to
557sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
558is accomplished by using two instruction mnemonic suffixes in AT&T
559syntax. Base names for sign extend and zero extend are
560@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
561and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
562are tacked on to this base name, the @emph{from} suffix before the
563@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
564``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
565thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
566@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
567@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
568quadruple word).
252b5132 569
b6169b20
L
570@cindex encoding options, i386
571@cindex encoding options, x86-64
572
573Different encoding options can be specified via optional mnemonic
574suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
575moving from one register to another. @samp{.d8} or @samp{.d32} suffix
576prefers 8bit or 32bit displacement in encoding.
b6169b20 577
252b5132
RH
578@cindex conversion instructions, i386
579@cindex i386 conversion instructions
55b62671
AJ
580@cindex conversion instructions, x86-64
581@cindex x86-64 conversion instructions
252b5132
RH
582The Intel-syntax conversion instructions
583
584@itemize @bullet
585@item
586@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
587
588@item
589@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
590
591@item
592@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
593
594@item
595@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
596
597@item
598@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
599(x86-64 only),
600
601@item
d5f0cf92 602@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 603@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
604@end itemize
605
606@noindent
55b62671
AJ
607are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
608@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
609instructions.
252b5132
RH
610
611@cindex jump instructions, i386
612@cindex call instructions, i386
55b62671
AJ
613@cindex jump instructions, x86-64
614@cindex call instructions, x86-64
252b5132
RH
615Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
616AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
617convention.
618
d3b47e2b 619@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
620
621@cindex i386 mnemonic compatibility
622@cindex mnemonic compatibility, i386
623
624@code{@value{AS}} supports assembly using Intel mnemonic.
625@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
626@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
627syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
628Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
629@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
630@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
631assembler with different mnemonics from those in Intel IA32 specification.
632@code{@value{GCC}} generates those instructions with AT&T mnemonic.
633
252b5132
RH
634@node i386-Regs
635@section Register Naming
636
637@cindex i386 registers
638@cindex registers, i386
55b62671
AJ
639@cindex x86-64 registers
640@cindex registers, x86-64
252b5132
RH
641Register operands are always prefixed with @samp{%}. The 80386 registers
642consist of
643
644@itemize @bullet
645@item
646the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
647@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
648frame pointer), and @samp{%esp} (the stack pointer).
649
650@item
651the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
652@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
653
654@item
655the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
656@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
657are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
658@samp{%cx}, and @samp{%dx})
659
660@item
661the 6 section registers @samp{%cs} (code section), @samp{%ds}
662(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
663and @samp{%gs}.
664
665@item
4bde3cdd
UD
666the 5 processor control registers @samp{%cr0}, @samp{%cr2},
667@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
668
669@item
670the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
671@samp{%db3}, @samp{%db6}, and @samp{%db7}.
672
673@item
674the 2 test registers @samp{%tr6} and @samp{%tr7}.
675
676@item
677the 8 floating point register stack @samp{%st} or equivalently
678@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
679@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
680These registers are overloaded by 8 MMX registers @samp{%mm0},
681@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
682@samp{%mm6} and @samp{%mm7}.
683
684@item
4bde3cdd 685the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
686@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
687@end itemize
688
689The AMD x86-64 architecture extends the register set by:
690
691@itemize @bullet
692@item
693enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
694accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
695@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
696pointer)
697
698@item
699the 8 extended registers @samp{%r8}--@samp{%r15}.
700
701@item
4bde3cdd 702the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
703
704@item
4bde3cdd 705the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
706
707@item
4bde3cdd 708the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
709
710@item
711the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
712
713@item
714the 8 debug registers: @samp{%db8}--@samp{%db15}.
715
716@item
4bde3cdd
UD
717the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
718@end itemize
719
720With the AVX extensions more registers were made available:
721
722@itemize @bullet
723
724@item
725the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
726available in 32-bit mode). The bottom 128 bits are overlaid with the
727@samp{xmm0}--@samp{xmm15} registers.
728
729@end itemize
730
731The AVX2 extensions made in 64-bit mode more registers available:
732
733@itemize @bullet
734
735@item
736the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
737registers @samp{%ymm16}--@samp{%ymm31}.
738
739@end itemize
740
741The AVX512 extensions added the following registers:
742
743@itemize @bullet
744
745@item
746the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
747available in 32-bit mode). The bottom 128 bits are overlaid with the
748@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
749overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
750
751@item
752the 8 mask registers @samp{%k0}--@samp{%k7}.
753
252b5132
RH
754@end itemize
755
756@node i386-Prefixes
757@section Instruction Prefixes
758
759@cindex i386 instruction prefixes
760@cindex instruction prefixes, i386
761@cindex prefixes, i386
762Instruction prefixes are used to modify the following instruction. They
763are used to repeat string instructions, to provide section overrides, to
764perform bus lock operations, and to change operand and address sizes.
765(Most instructions that normally operate on 32-bit operands will use
76616-bit operands if the instruction has an ``operand size'' prefix.)
767Instruction prefixes are best written on the same line as the instruction
768they act upon. For example, the @samp{scas} (scan string) instruction is
769repeated with:
770
771@smallexample
772 repne scas %es:(%edi),%al
773@end smallexample
774
775You may also place prefixes on the lines immediately preceding the
776instruction, but this circumvents checks that @code{@value{AS}} does
777with prefixes, and will not work with all prefixes.
778
779Here is a list of instruction prefixes:
780
781@cindex section override prefixes, i386
782@itemize @bullet
783@item
784Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
785@samp{fs}, @samp{gs}. These are automatically added by specifying
786using the @var{section}:@var{memory-operand} form for memory references.
787
788@cindex size prefixes, i386
789@item
790Operand/Address size prefixes @samp{data16} and @samp{addr16}
791change 32-bit operands/addresses into 16-bit operands/addresses,
792while @samp{data32} and @samp{addr32} change 16-bit ones (in a
793@code{.code16} section) into 32-bit operands/addresses. These prefixes
794@emph{must} appear on the same line of code as the instruction they
795modify. For example, in a 16-bit @code{.code16} section, you might
796write:
797
798@smallexample
799 addr32 jmpl *(%ebx)
800@end smallexample
801
802@cindex bus lock prefixes, i386
803@cindex inhibiting interrupts, i386
804@item
805The bus lock prefix @samp{lock} inhibits interrupts during execution of
806the instruction it precedes. (This is only valid with certain
807instructions; see a 80386 manual for details).
808
809@cindex coprocessor wait, i386
810@item
811The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
812complete the current instruction. This should never be needed for the
81380386/80387 combination.
814
815@cindex repeat prefixes, i386
816@item
817The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
818to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
819times if the current address size is 16-bits).
55b62671
AJ
820@cindex REX prefixes, i386
821@item
822The @samp{rex} family of prefixes is used by x86-64 to encode
823extensions to i386 instruction set. The @samp{rex} prefix has four
824bits --- an operand size overwrite (@code{64}) used to change operand size
825from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
826register set.
827
828You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
829instruction emits @samp{rex} prefix with all the bits set. By omitting
830the @code{64}, @code{x}, @code{y} or @code{z} you may write other
831prefixes as well. Normally, there is no need to write the prefixes
832explicitly, since gas will automatically generate them based on the
833instruction operands.
252b5132
RH
834@end itemize
835
836@node i386-Memory
837@section Memory References
838
839@cindex i386 memory references
840@cindex memory references, i386
55b62671
AJ
841@cindex x86-64 memory references
842@cindex memory references, x86-64
252b5132
RH
843An Intel syntax indirect memory reference of the form
844
845@smallexample
846@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
847@end smallexample
848
849@noindent
850is translated into the AT&T syntax
851
852@smallexample
853@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
854@end smallexample
855
856@noindent
857where @var{base} and @var{index} are the optional 32-bit base and
858index registers, @var{disp} is the optional displacement, and
859@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
860to calculate the address of the operand. If no @var{scale} is
861specified, @var{scale} is taken to be 1. @var{section} specifies the
862optional section register for the memory operand, and may override the
863default section register (see a 80386 manual for section register
864defaults). Note that section overrides in AT&T syntax @emph{must}
865be preceded by a @samp{%}. If you specify a section override which
866coincides with the default section register, @code{@value{AS}} does @emph{not}
867output any section register override prefixes to assemble the given
868instruction. Thus, section overrides can be specified to emphasize which
869section register is used for a given memory operand.
870
871Here are some examples of Intel and AT&T style memory references:
872
873@table @asis
874@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
875@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
876missing, and the default section is used (@samp{%ss} for addressing with
877@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
878
879@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
880@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
881@samp{foo}. All other fields are missing. The section register here
882defaults to @samp{%ds}.
883
884@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
885This uses the value pointed to by @samp{foo} as a memory operand.
886Note that @var{base} and @var{index} are both missing, but there is only
887@emph{one} @samp{,}. This is a syntactic exception.
888
889@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
890This selects the contents of the variable @samp{foo} with section
891register @var{section} being @samp{%gs}.
892@end table
893
894Absolute (as opposed to PC relative) call and jump operands must be
895prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
896always chooses PC relative addressing for jump/call labels.
897
898Any instruction that has a memory operand, but no register operand,
55b62671
AJ
899@emph{must} specify its size (byte, word, long, or quadruple) with an
900instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
901respectively).
902
903The x86-64 architecture adds an RIP (instruction pointer relative)
904addressing. This addressing mode is specified by using @samp{rip} as a
905base register. Only constant offsets are valid. For example:
906
907@table @asis
908@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
909Points to the address 1234 bytes past the end of the current
910instruction.
911
912@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
913Points to the @code{symbol} in RIP relative way, this is shorter than
914the default absolute addressing.
915@end table
916
917Other addressing modes remain unchanged in x86-64 architecture, except
918registers used are 64-bit instead of 32-bit.
252b5132 919
fddf5b5b 920@node i386-Jumps
252b5132
RH
921@section Handling of Jump Instructions
922
923@cindex jump optimization, i386
924@cindex i386 jump optimization
55b62671
AJ
925@cindex jump optimization, x86-64
926@cindex x86-64 jump optimization
252b5132
RH
927Jump instructions are always optimized to use the smallest possible
928displacements. This is accomplished by using byte (8-bit) displacement
929jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 930is insufficient a long displacement is used. We do not support
252b5132
RH
931word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
932instruction with the @samp{data16} instruction prefix), since the 80386
933insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 934is added. (See also @pxref{i386-Arch})
252b5132
RH
935
936Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
937@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
938displacements, so that if you use these instructions (@code{@value{GCC}} does
939not use them) you may get an error message (and incorrect code). The AT&T
94080386 assembler tries to get around this problem by expanding @samp{jcxz foo}
941to
942
943@smallexample
944 jcxz cx_zero
945 jmp cx_nonzero
946cx_zero: jmp foo
947cx_nonzero:
948@end smallexample
949
950@node i386-Float
951@section Floating Point
952
953@cindex i386 floating point
954@cindex floating point, i386
55b62671
AJ
955@cindex x86-64 floating point
956@cindex floating point, x86-64
252b5132
RH
957All 80387 floating point types except packed BCD are supported.
958(BCD support may be added without much difficulty). These data
959types are 16-, 32-, and 64- bit integers, and single (32-bit),
960double (64-bit), and extended (80-bit) precision floating point.
961Each supported type has an instruction mnemonic suffix and a constructor
962associated with it. Instruction mnemonic suffixes specify the operand's
963data type. Constructors build these data types into memory.
964
965@cindex @code{float} directive, i386
966@cindex @code{single} directive, i386
967@cindex @code{double} directive, i386
968@cindex @code{tfloat} directive, i386
55b62671
AJ
969@cindex @code{float} directive, x86-64
970@cindex @code{single} directive, x86-64
971@cindex @code{double} directive, x86-64
972@cindex @code{tfloat} directive, x86-64
252b5132
RH
973@itemize @bullet
974@item
975Floating point constructors are @samp{.float} or @samp{.single},
976@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
977These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
978and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
979only supports this format via the @samp{fldt} (load 80-bit real to stack
980top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
981
982@cindex @code{word} directive, i386
983@cindex @code{long} directive, i386
984@cindex @code{int} directive, i386
985@cindex @code{quad} directive, i386
55b62671
AJ
986@cindex @code{word} directive, x86-64
987@cindex @code{long} directive, x86-64
988@cindex @code{int} directive, x86-64
989@cindex @code{quad} directive, x86-64
252b5132
RH
990@item
991Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
992@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
993corresponding instruction mnemonic suffixes are @samp{s} (single),
994@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
995the 64-bit @samp{q} format is only present in the @samp{fildq} (load
996quad integer to stack top) and @samp{fistpq} (store quad integer and pop
997stack) instructions.
998@end itemize
999
1000Register to register operations should not use instruction mnemonic suffixes.
1001@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1002wrote @samp{fst %st, %st(1)}, since all register to register operations
1003use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1004which converts @samp{%st} from 80-bit to 64-bit floating point format,
1005then stores the result in the 4 byte location @samp{mem})
1006
1007@node i386-SIMD
1008@section Intel's MMX and AMD's 3DNow! SIMD Operations
1009
1010@cindex MMX, i386
1011@cindex 3DNow!, i386
1012@cindex SIMD, i386
55b62671
AJ
1013@cindex MMX, x86-64
1014@cindex 3DNow!, x86-64
1015@cindex SIMD, x86-64
252b5132
RH
1016
1017@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1018instructions for integer data), available on Intel's Pentium MMX
1019processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1020Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1021instruction set (SIMD instructions for 32-bit floating point data)
1022available on AMD's K6-2 processor and possibly others in the future.
1023
1024Currently, @code{@value{AS}} does not support Intel's floating point
1025SIMD, Katmai (KNI).
1026
1027The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1028@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
102916-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1030floating point values. The MMX registers cannot be used at the same time
1031as the floating point stack.
1032
1033See Intel and AMD documentation, keeping in mind that the operand order in
1034instructions is reversed from the Intel syntax.
1035
f88c9eb0
SP
1036@node i386-LWP
1037@section AMD's Lightweight Profiling Instructions
1038
1039@cindex LWP, i386
1040@cindex LWP, x86-64
1041
1042@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1043instruction set, available on AMD's Family 15h (Orochi) processors.
1044
1045LWP enables applications to collect and manage performance data, and
1046react to performance events. The collection of performance data
1047requires no context switches. LWP runs in the context of a thread and
1048so several counters can be used independently across multiple threads.
1049LWP can be used in both 64-bit and legacy 32-bit modes.
1050
1051For detailed information on the LWP instruction set, see the
1052@cite{AMD Lightweight Profiling Specification} available at
1053@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1054
87973e9f
QN
1055@node i386-BMI
1056@section Bit Manipulation Instructions
1057
1058@cindex BMI, i386
1059@cindex BMI, x86-64
1060
1061@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1062
1063BMI instructions provide several instructions implementing individual
1064bit manipulation operations such as isolation, masking, setting, or
34bca508 1065resetting.
87973e9f
QN
1066
1067@c Need to add a specification citation here when available.
1068
2a2a0f38
QN
1069@node i386-TBM
1070@section AMD's Trailing Bit Manipulation Instructions
1071
1072@cindex TBM, i386
1073@cindex TBM, x86-64
1074
1075@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1076instruction set, available on AMD's BDVER2 processors (Trinity and
1077Viperfish).
1078
1079TBM instructions provide instructions implementing individual bit
1080manipulation operations such as isolating, masking, setting, resetting,
1081complementing, and operations on trailing zeros and ones.
1082
1083@c Need to add a specification citation here when available.
87973e9f 1084
252b5132
RH
1085@node i386-16bit
1086@section Writing 16-bit Code
1087
1088@cindex i386 16-bit code
1089@cindex 16-bit code, i386
1090@cindex real-mode code, i386
eecb386c 1091@cindex @code{code16gcc} directive, i386
252b5132
RH
1092@cindex @code{code16} directive, i386
1093@cindex @code{code32} directive, i386
55b62671
AJ
1094@cindex @code{code64} directive, i386
1095@cindex @code{code64} directive, x86-64
1096While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1097or 64-bit x86-64 code depending on the default configuration,
252b5132 1098it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1099mode code segments. To do this, put a @samp{.code16} or
1100@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1101be run in 16-bit mode. You can switch @code{@value{AS}} to writing
110232-bit code with the @samp{.code32} directive or 64-bit code with the
1103@samp{.code64} directive.
eecb386c
AM
1104
1105@samp{.code16gcc} provides experimental support for generating 16-bit
1106code from gcc, and differs from @samp{.code16} in that @samp{call},
1107@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1108@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1109default to 32-bit size. This is so that the stack pointer is
1110manipulated in the same way over function calls, allowing access to
1111function parameters at the same stack offsets as in 32-bit mode.
1112@samp{.code16gcc} also automatically adds address size prefixes where
1113necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1114
1115The code which @code{@value{AS}} generates in 16-bit mode will not
1116necessarily run on a 16-bit pre-80386 processor. To write code that
1117runs on such a processor, you must refrain from using @emph{any} 32-bit
1118constructs which require @code{@value{AS}} to output address or operand
1119size prefixes.
1120
1121Note that writing 16-bit code instructions by explicitly specifying a
1122prefix or an instruction mnemonic suffix within a 32-bit code section
1123generates different machine instructions than those generated for a
112416-bit code segment. In a 32-bit code section, the following code
1125generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1126value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1127
1128@smallexample
1129 pushw $4
1130@end smallexample
1131
1132The same code in a 16-bit code section would generate the machine
b45619c0 1133opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1134is correct since the processor default operand size is assumed to be 16
1135bits in a 16-bit code section.
1136
e413e4e9
AM
1137@node i386-Arch
1138@section Specifying CPU Architecture
1139
1140@cindex arch directive, i386
1141@cindex i386 arch directive
55b62671
AJ
1142@cindex arch directive, x86-64
1143@cindex x86-64 arch directive
e413e4e9
AM
1144
1145@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1146(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1147directive enables a warning when gas detects an instruction that is not
1148supported on the CPU specified. The choices for @var{cpu_type} are:
1149
1150@multitable @columnfractions .20 .20 .20 .20
1151@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1152@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1153@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1154@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1155@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1156@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1157@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1158@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1159@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1160@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1161@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1162@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1163@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1164@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1165@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1166@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1167@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1168@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1169@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1170@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1171@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
14f195c9 1172@item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1ceab344 1173@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1174@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1175@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
9916071f 1176@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1177@end multitable
1178
fddf5b5b
AM
1179Apart from the warning, there are only two other effects on
1180@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1181@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1182will automatically use a two byte opcode sequence. The larger three
1183byte opcode sequence is used on the 486 (and when no architecture is
1184specified) because it executes faster on the 486. Note that you can
1185explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1186Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1187@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1188conditional jumps will be promoted when necessary to a two instruction
1189sequence consisting of a conditional jump of the opposite sense around
1190an unconditional jump to the target.
1191
5c6af06e
JB
1192Following the CPU architecture (but not a sub-architecture, which are those
1193starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1194control automatic promotion of conditional jumps. @samp{jumps} is the
1195default, and enables jump promotion; All external jumps will be of the long
1196variety, and file-local jumps will be promoted as necessary.
1197(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1198byte offset jumps, and warns about file-local conditional jumps that
1199@code{@value{AS}} promotes.
fddf5b5b
AM
1200Unconditional jumps are treated as for @samp{jumps}.
1201
1202For example
1203
1204@smallexample
1205 .arch i8086,nojumps
1206@end smallexample
e413e4e9 1207
5c9352f3
AM
1208@node i386-Bugs
1209@section AT&T Syntax bugs
1210
1211The UnixWare assembler, and probably other AT&T derived ix86 Unix
1212assemblers, generate floating point instructions with reversed source
1213and destination registers in certain cases. Unfortunately, gcc and
1214possibly many other programs use this reversed syntax, so we're stuck
1215with it.
1216
1217For example
1218
1219@smallexample
1220 fsub %st,%st(3)
1221@end smallexample
1222@noindent
1223results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1224than the expected @samp{%st(3) - %st}. This happens with all the
1225non-commutative arithmetic floating point operations with two register
1226operands where the source register is @samp{%st} and the destination
1227register is @samp{%st(i)}.
1228
252b5132
RH
1229@node i386-Notes
1230@section Notes
1231
1232@cindex i386 @code{mul}, @code{imul} instructions
1233@cindex @code{mul} instruction, i386
1234@cindex @code{imul} instruction, i386
55b62671
AJ
1235@cindex @code{mul} instruction, x86-64
1236@cindex @code{imul} instruction, x86-64
252b5132 1237There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1238instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1239multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1240for @samp{imul}) can be output only in the one operand form. Thus,
1241@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1242the expanding multiply would clobber the @samp{%edx} register, and this
1243would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
124464-bit product in @samp{%edx:%eax}.
1245
1246We have added a two operand form of @samp{imul} when the first operand
1247is an immediate mode expression and the second operand is a register.
1248This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1249example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1250$69, %eax, %eax}.
1251
This page took 0.733156 seconds and 4 git commands to generate.