*** empty log message ***
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037 1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
7c31ae13 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
731caf76
L
6@c man end
7
252b5132
RH
8@ifset GENERIC
9@page
10@node i386-Dependent
11@chapter 80386 Dependent Features
12@end ifset
13@ifclear GENERIC
14@node Machine Dependencies
15@chapter 80386 Dependent Features
16@end ifclear
17
18@cindex i386 support
b6169b20 19@cindex i80386 support
55b62671
AJ
20@cindex x86-64 support
21
22The i386 version @code{@value{AS}} supports both the original Intel 386
23architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24extending the Intel architecture to 64-bits.
25
252b5132
RH
26@menu
27* i386-Options:: Options
a6c24e68 28* i386-Directives:: X86 specific directives
7c31ae13 29* i386-Syntax:: Syntactical considerations
252b5132
RH
30* i386-Mnemonics:: Instruction Naming
31* i386-Regs:: Register Naming
32* i386-Prefixes:: Instruction Prefixes
33* i386-Memory:: Memory References
fddf5b5b 34* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
35* i386-Float:: Floating Point
36* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 37* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 38* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 39* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 40* i386-16bit:: Writing 16-bit Code
e413e4e9 41* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
42* i386-Bugs:: AT&T Syntax bugs
43* i386-Notes:: Notes
44@end menu
45
46@node i386-Options
47@section Options
48
55b62671
AJ
49@cindex options for i386
50@cindex options for x86-64
51@cindex i386 options
52@cindex x86-64 options
53
54The i386 version of @code{@value{AS}} has a few machine
55dependent options:
56
731caf76
L
57@c man begin OPTIONS
58@table @gcctabopt
55b62671
AJ
59@cindex @samp{--32} option, i386
60@cindex @samp{--32} option, x86-64
570561f7
L
61@cindex @samp{--x32} option, i386
62@cindex @samp{--x32} option, x86-64
55b62671
AJ
63@cindex @samp{--64} option, i386
64@cindex @samp{--64} option, x86-64
570561f7 65@item --32 | --x32 | --64
35cc6a0b 66Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 67implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
68imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69respectively.
55b62671
AJ
70
71These options are only available with the ELF object file format, and
72require that the necessary BFD support has been included (on a 32-bit
73platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74usage and use x86-64 as target platform).
12b55ccc
L
75
76@item -n
77By default, x86 GAS replaces multiple nop instructions used for
78alignment within code sections with multi-byte nop instructions such
79as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
7b458c12
L
123@code{btver1},
124@code{btver2},
9103f4f4
L
125@code{generic32} and
126@code{generic64}.
127
6305a203
L
128In addition to the basic instruction set, the assembler can be told to
129accept various extension mnemonics. For example,
130@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
131@var{vmx}. The following extensions are currently supported:
309d3373
JB
132@code{8087},
133@code{287},
134@code{387},
135@code{no87},
6305a203 136@code{mmx},
309d3373 137@code{nommx},
6305a203
L
138@code{sse},
139@code{sse2},
140@code{sse3},
141@code{ssse3},
142@code{sse4.1},
143@code{sse4.2},
144@code{sse4},
309d3373 145@code{nosse},
c0f3af97 146@code{avx},
6c30d220 147@code{avx2},
e2e1fcde
L
148@code{adx},
149@code{rdseed},
150@code{prfchw},
309d3373 151@code{noavx},
6305a203 152@code{vmx},
8729a6f6 153@code{vmfunc},
6305a203 154@code{smx},
f03fe4c1 155@code{xsave},
c7b8aa3a 156@code{xsaveopt},
c0f3af97 157@code{aes},
594ab6a3 158@code{pclmul},
c7b8aa3a
L
159@code{fsgsbase},
160@code{rdrnd},
161@code{f16c},
6c30d220 162@code{bmi2},
c0f3af97 163@code{fma},
f1f8f695
L
164@code{movbe},
165@code{ept},
6c30d220 166@code{lzcnt},
42164a71
L
167@code{hle},
168@code{rtm},
6c30d220 169@code{invpcid},
bd5295b2 170@code{clflush},
f88c9eb0 171@code{lwp},
5dd85c99
SP
172@code{fma4},
173@code{xop},
60aa667e 174@code{cx16},
bd5295b2 175@code{syscall},
1b7f3fb0 176@code{rdtscp},
6305a203
L
177@code{3dnow},
178@code{3dnowa},
179@code{sse4a},
180@code{sse5},
181@code{svme},
182@code{abm} and
183@code{padlock}.
309d3373
JB
184Note that rather than extending a basic instruction set, the extension
185mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
186
187When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
188@code{.arch} directive will take precedent.
189
190@cindex @samp{-mtune=} option, i386
191@cindex @samp{-mtune=} option, x86-64
192@item -mtune=@var{CPU}
193This option specifies a processor to optimize for. When used in
194conjunction with the @option{-march} option, only instructions
195of the processor specified by the @option{-march} option will be
196generated.
197
6305a203
L
198Valid @var{CPU} values are identical to the processor list of
199@option{-march=@var{CPU}}.
9103f4f4 200
c0f3af97
L
201@cindex @samp{-msse2avx} option, i386
202@cindex @samp{-msse2avx} option, x86-64
203@item -msse2avx
204This option specifies that the assembler should encode SSE instructions
205with VEX prefix.
206
daf50ae7
L
207@cindex @samp{-msse-check=} option, i386
208@cindex @samp{-msse-check=} option, x86-64
209@item -msse-check=@var{none}
1f9bb1ca
AS
210@itemx -msse-check=@var{warning}
211@itemx -msse-check=@var{error}
daf50ae7
L
212These options control if the assembler should check SSE intructions.
213@option{-msse-check=@var{none}} will make the assembler not to check SSE
214instructions, which is the default. @option{-msse-check=@var{warning}}
215will make the assembler issue a warning for any SSE intruction.
216@option{-msse-check=@var{error}} will make the assembler issue an error
217for any SSE intruction.
218
539f890d
L
219@cindex @samp{-mavxscalar=} option, i386
220@cindex @samp{-mavxscalar=} option, x86-64
221@item -mavxscalar=@var{128}
1f9bb1ca 222@itemx -mavxscalar=@var{256}
2aab8acd 223These options control how the assembler should encode scalar AVX
539f890d
L
224instructions. @option{-mavxscalar=@var{128}} will encode scalar
225AVX instructions with 128bit vector length, which is the default.
226@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
227with 256bit vector length.
228
1efbbeb4
L
229@cindex @samp{-mmnemonic=} option, i386
230@cindex @samp{-mmnemonic=} option, x86-64
231@item -mmnemonic=@var{att}
1f9bb1ca 232@itemx -mmnemonic=@var{intel}
1efbbeb4
L
233This option specifies instruction mnemonic for matching instructions.
234The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
235take precedent.
236
237@cindex @samp{-msyntax=} option, i386
238@cindex @samp{-msyntax=} option, x86-64
239@item -msyntax=@var{att}
1f9bb1ca 240@itemx -msyntax=@var{intel}
1efbbeb4
L
241This option specifies instruction syntax when processing instructions.
242The @code{.att_syntax} and @code{.intel_syntax} directives will
243take precedent.
244
245@cindex @samp{-mnaked-reg} option, i386
246@cindex @samp{-mnaked-reg} option, x86-64
247@item -mnaked-reg
248This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 249The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 250
55b62671 251@end table
731caf76 252@c man end
e413e4e9 253
a6c24e68
NC
254@node i386-Directives
255@section x86 specific Directives
256
257@cindex machine directives, x86
258@cindex x86 machine directives
259@table @code
260
261@cindex @code{lcomm} directive, COFF
262@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
263Reserve @var{length} (an absolute expression) bytes for a local common
264denoted by @var{symbol}. The section and value of @var{symbol} are
265those of the new local common. The addresses are allocated in the bss
704209c0
NC
266section, so that at run-time the bytes start off zeroed. Since
267@var{symbol} is not declared global, it is normally not visible to
268@code{@value{LD}}. The optional third parameter, @var{alignment},
269specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
270
271This directive is only available for COFF based x86 targets.
272
273@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
274@c .largecomm
275
276@end table
277
252b5132 278@node i386-Syntax
7c31ae13
NC
279@section i386 Syntactical Considerations
280@menu
281* i386-Variations:: AT&T Syntax versus Intel Syntax
282* i386-Chars:: Special Characters
283@end menu
284
285@node i386-Variations
286@subsection AT&T Syntax versus Intel Syntax
252b5132 287
e413e4e9
AM
288@cindex i386 intel_syntax pseudo op
289@cindex intel_syntax pseudo op, i386
290@cindex i386 att_syntax pseudo op
291@cindex att_syntax pseudo op, i386
252b5132
RH
292@cindex i386 syntax compatibility
293@cindex syntax compatibility, i386
55b62671
AJ
294@cindex x86-64 intel_syntax pseudo op
295@cindex intel_syntax pseudo op, x86-64
296@cindex x86-64 att_syntax pseudo op
297@cindex att_syntax pseudo op, x86-64
298@cindex x86-64 syntax compatibility
299@cindex syntax compatibility, x86-64
e413e4e9
AM
300
301@code{@value{AS}} now supports assembly using Intel assembler syntax.
302@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
303back to the usual AT&T mode for compatibility with the output of
304@code{@value{GCC}}. Either of these directives may have an optional
305argument, @code{prefix}, or @code{noprefix} specifying whether registers
306require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
307different from Intel syntax. We mention these differences because
308almost all 80386 documents use Intel syntax. Notable differences
309between the two syntaxes are:
310
311@cindex immediate operands, i386
312@cindex i386 immediate operands
313@cindex register operands, i386
314@cindex i386 register operands
315@cindex jump/call operands, i386
316@cindex i386 jump/call operands
317@cindex operand delimiters, i386
55b62671
AJ
318
319@cindex immediate operands, x86-64
320@cindex x86-64 immediate operands
321@cindex register operands, x86-64
322@cindex x86-64 register operands
323@cindex jump/call operands, x86-64
324@cindex x86-64 jump/call operands
325@cindex operand delimiters, x86-64
252b5132
RH
326@itemize @bullet
327@item
328AT&T immediate operands are preceded by @samp{$}; Intel immediate
329operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
330AT&T register operands are preceded by @samp{%}; Intel register operands
331are undelimited. AT&T absolute (as opposed to PC relative) jump/call
332operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
333
334@cindex i386 source, destination operands
335@cindex source, destination operands; i386
55b62671
AJ
336@cindex x86-64 source, destination operands
337@cindex source, destination operands; x86-64
252b5132
RH
338@item
339AT&T and Intel syntax use the opposite order for source and destination
340operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
341@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
342previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
343instructions with 2 immediate operands, such as the @samp{enter}
344instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
345
346@cindex mnemonic suffixes, i386
347@cindex sizes operands, i386
348@cindex i386 size suffixes
55b62671
AJ
349@cindex mnemonic suffixes, x86-64
350@cindex sizes operands, x86-64
351@cindex x86-64 size suffixes
252b5132
RH
352@item
353In AT&T syntax the size of memory operands is determined from the last
354character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
355@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
356(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
357this by prefixing memory operands (@emph{not} the instruction mnemonics) with
358@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
359Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
360syntax.
252b5132 361
4b06377f
L
362In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
363instruction with the 64-bit displacement or immediate operand.
364
252b5132
RH
365@cindex return instructions, i386
366@cindex i386 jump, call, return
55b62671
AJ
367@cindex return instructions, x86-64
368@cindex x86-64 jump, call, return
252b5132
RH
369@item
370Immediate form long jumps and calls are
371@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
372Intel syntax is
373@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
374instruction
375is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
376@samp{ret far @var{stack-adjust}}.
377
378@cindex sections, i386
379@cindex i386 sections
55b62671
AJ
380@cindex sections, x86-64
381@cindex x86-64 sections
252b5132
RH
382@item
383The AT&T assembler does not provide support for multiple section
384programs. Unix style systems expect all programs to be single sections.
385@end itemize
386
7c31ae13
NC
387@node i386-Chars
388@subsection Special Characters
389
390@cindex line comment character, i386
391@cindex i386 line comment character
392The presence of a @samp{#} appearing anywhere on a line indicates the
393start of a comment that extends to the end of that line.
394
395If a @samp{#} appears as the first character of a line then the whole
396line is treated as a comment, but in this case the line can also be a
397logical line number directive (@pxref{Comments}) or a preprocessor
398control command (@pxref{Preprocessing}).
399
400If the @option{--divide} command line option has not been specified
401then the @samp{/} character appearing anywhere on a line also
402introduces a line comment.
403
404@cindex line separator, i386
405@cindex statement separator, i386
406@cindex i386 line separator
407The @samp{;} character can be used to separate statements on the same
408line.
409
252b5132
RH
410@node i386-Mnemonics
411@section Instruction Naming
412
413@cindex i386 instruction naming
414@cindex instruction naming, i386
55b62671
AJ
415@cindex x86-64 instruction naming
416@cindex instruction naming, x86-64
417
252b5132 418Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
419specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
420and @samp{q} specify byte, word, long and quadruple word operands. If
421no suffix is specified by an instruction then @code{@value{AS}} tries to
422fill in the missing suffix based on the destination register operand
423(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
424to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
425@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
426assembler which assumes that a missing mnemonic suffix implies long
427operand size. (This incompatibility does not affect compiler output
428since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
429
430Almost all instructions have the same names in AT&T and Intel format.
431There are a few exceptions. The sign extend and zero extend
432instructions need two sizes to specify them. They need a size to
433sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
434is accomplished by using two instruction mnemonic suffixes in AT&T
435syntax. Base names for sign extend and zero extend are
436@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
437and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
438are tacked on to this base name, the @emph{from} suffix before the
439@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
440``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
441thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
442@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
443@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
444quadruple word).
252b5132 445
b6169b20
L
446@cindex encoding options, i386
447@cindex encoding options, x86-64
448
449Different encoding options can be specified via optional mnemonic
450suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
451moving from one register to another. @samp{.d8} or @samp{.d32} suffix
452prefers 8bit or 32bit displacement in encoding.
b6169b20 453
252b5132
RH
454@cindex conversion instructions, i386
455@cindex i386 conversion instructions
55b62671
AJ
456@cindex conversion instructions, x86-64
457@cindex x86-64 conversion instructions
252b5132
RH
458The Intel-syntax conversion instructions
459
460@itemize @bullet
461@item
462@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
463
464@item
465@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
466
467@item
468@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
469
470@item
471@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
472
473@item
474@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
475(x86-64 only),
476
477@item
d5f0cf92 478@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 479@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
480@end itemize
481
482@noindent
55b62671
AJ
483are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
484@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
485instructions.
252b5132
RH
486
487@cindex jump instructions, i386
488@cindex call instructions, i386
55b62671
AJ
489@cindex jump instructions, x86-64
490@cindex call instructions, x86-64
252b5132
RH
491Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
492AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
493convention.
494
1efbbeb4
L
495@section AT&T Mnemonic versus Intel Mnemonic
496
497@cindex i386 mnemonic compatibility
498@cindex mnemonic compatibility, i386
499
500@code{@value{AS}} supports assembly using Intel mnemonic.
501@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
502@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
503syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
504Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
505@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
506@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
507assembler with different mnemonics from those in Intel IA32 specification.
508@code{@value{GCC}} generates those instructions with AT&T mnemonic.
509
252b5132
RH
510@node i386-Regs
511@section Register Naming
512
513@cindex i386 registers
514@cindex registers, i386
55b62671
AJ
515@cindex x86-64 registers
516@cindex registers, x86-64
252b5132
RH
517Register operands are always prefixed with @samp{%}. The 80386 registers
518consist of
519
520@itemize @bullet
521@item
522the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
523@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
524frame pointer), and @samp{%esp} (the stack pointer).
525
526@item
527the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
528@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
529
530@item
531the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
532@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
533are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
534@samp{%cx}, and @samp{%dx})
535
536@item
537the 6 section registers @samp{%cs} (code section), @samp{%ds}
538(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
539and @samp{%gs}.
540
541@item
542the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
543@samp{%cr3}.
544
545@item
546the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
547@samp{%db3}, @samp{%db6}, and @samp{%db7}.
548
549@item
550the 2 test registers @samp{%tr6} and @samp{%tr7}.
551
552@item
553the 8 floating point register stack @samp{%st} or equivalently
554@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
555@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
556These registers are overloaded by 8 MMX registers @samp{%mm0},
557@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
558@samp{%mm6} and @samp{%mm7}.
559
560@item
561the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
562@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
563@end itemize
564
565The AMD x86-64 architecture extends the register set by:
566
567@itemize @bullet
568@item
569enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
570accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
571@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
572pointer)
573
574@item
575the 8 extended registers @samp{%r8}--@samp{%r15}.
576
577@item
578the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
579
580@item
581the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
582
583@item
584the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
585
586@item
587the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
588
589@item
590the 8 debug registers: @samp{%db8}--@samp{%db15}.
591
592@item
593the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
594@end itemize
595
596@node i386-Prefixes
597@section Instruction Prefixes
598
599@cindex i386 instruction prefixes
600@cindex instruction prefixes, i386
601@cindex prefixes, i386
602Instruction prefixes are used to modify the following instruction. They
603are used to repeat string instructions, to provide section overrides, to
604perform bus lock operations, and to change operand and address sizes.
605(Most instructions that normally operate on 32-bit operands will use
60616-bit operands if the instruction has an ``operand size'' prefix.)
607Instruction prefixes are best written on the same line as the instruction
608they act upon. For example, the @samp{scas} (scan string) instruction is
609repeated with:
610
611@smallexample
612 repne scas %es:(%edi),%al
613@end smallexample
614
615You may also place prefixes on the lines immediately preceding the
616instruction, but this circumvents checks that @code{@value{AS}} does
617with prefixes, and will not work with all prefixes.
618
619Here is a list of instruction prefixes:
620
621@cindex section override prefixes, i386
622@itemize @bullet
623@item
624Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
625@samp{fs}, @samp{gs}. These are automatically added by specifying
626using the @var{section}:@var{memory-operand} form for memory references.
627
628@cindex size prefixes, i386
629@item
630Operand/Address size prefixes @samp{data16} and @samp{addr16}
631change 32-bit operands/addresses into 16-bit operands/addresses,
632while @samp{data32} and @samp{addr32} change 16-bit ones (in a
633@code{.code16} section) into 32-bit operands/addresses. These prefixes
634@emph{must} appear on the same line of code as the instruction they
635modify. For example, in a 16-bit @code{.code16} section, you might
636write:
637
638@smallexample
639 addr32 jmpl *(%ebx)
640@end smallexample
641
642@cindex bus lock prefixes, i386
643@cindex inhibiting interrupts, i386
644@item
645The bus lock prefix @samp{lock} inhibits interrupts during execution of
646the instruction it precedes. (This is only valid with certain
647instructions; see a 80386 manual for details).
648
649@cindex coprocessor wait, i386
650@item
651The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
652complete the current instruction. This should never be needed for the
65380386/80387 combination.
654
655@cindex repeat prefixes, i386
656@item
657The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
658to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
659times if the current address size is 16-bits).
55b62671
AJ
660@cindex REX prefixes, i386
661@item
662The @samp{rex} family of prefixes is used by x86-64 to encode
663extensions to i386 instruction set. The @samp{rex} prefix has four
664bits --- an operand size overwrite (@code{64}) used to change operand size
665from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
666register set.
667
668You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
669instruction emits @samp{rex} prefix with all the bits set. By omitting
670the @code{64}, @code{x}, @code{y} or @code{z} you may write other
671prefixes as well. Normally, there is no need to write the prefixes
672explicitly, since gas will automatically generate them based on the
673instruction operands.
252b5132
RH
674@end itemize
675
676@node i386-Memory
677@section Memory References
678
679@cindex i386 memory references
680@cindex memory references, i386
55b62671
AJ
681@cindex x86-64 memory references
682@cindex memory references, x86-64
252b5132
RH
683An Intel syntax indirect memory reference of the form
684
685@smallexample
686@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
687@end smallexample
688
689@noindent
690is translated into the AT&T syntax
691
692@smallexample
693@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
694@end smallexample
695
696@noindent
697where @var{base} and @var{index} are the optional 32-bit base and
698index registers, @var{disp} is the optional displacement, and
699@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
700to calculate the address of the operand. If no @var{scale} is
701specified, @var{scale} is taken to be 1. @var{section} specifies the
702optional section register for the memory operand, and may override the
703default section register (see a 80386 manual for section register
704defaults). Note that section overrides in AT&T syntax @emph{must}
705be preceded by a @samp{%}. If you specify a section override which
706coincides with the default section register, @code{@value{AS}} does @emph{not}
707output any section register override prefixes to assemble the given
708instruction. Thus, section overrides can be specified to emphasize which
709section register is used for a given memory operand.
710
711Here are some examples of Intel and AT&T style memory references:
712
713@table @asis
714@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
715@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
716missing, and the default section is used (@samp{%ss} for addressing with
717@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
718
719@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
720@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
721@samp{foo}. All other fields are missing. The section register here
722defaults to @samp{%ds}.
723
724@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
725This uses the value pointed to by @samp{foo} as a memory operand.
726Note that @var{base} and @var{index} are both missing, but there is only
727@emph{one} @samp{,}. This is a syntactic exception.
728
729@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
730This selects the contents of the variable @samp{foo} with section
731register @var{section} being @samp{%gs}.
732@end table
733
734Absolute (as opposed to PC relative) call and jump operands must be
735prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
736always chooses PC relative addressing for jump/call labels.
737
738Any instruction that has a memory operand, but no register operand,
55b62671
AJ
739@emph{must} specify its size (byte, word, long, or quadruple) with an
740instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
741respectively).
742
743The x86-64 architecture adds an RIP (instruction pointer relative)
744addressing. This addressing mode is specified by using @samp{rip} as a
745base register. Only constant offsets are valid. For example:
746
747@table @asis
748@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
749Points to the address 1234 bytes past the end of the current
750instruction.
751
752@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
753Points to the @code{symbol} in RIP relative way, this is shorter than
754the default absolute addressing.
755@end table
756
757Other addressing modes remain unchanged in x86-64 architecture, except
758registers used are 64-bit instead of 32-bit.
252b5132 759
fddf5b5b 760@node i386-Jumps
252b5132
RH
761@section Handling of Jump Instructions
762
763@cindex jump optimization, i386
764@cindex i386 jump optimization
55b62671
AJ
765@cindex jump optimization, x86-64
766@cindex x86-64 jump optimization
252b5132
RH
767Jump instructions are always optimized to use the smallest possible
768displacements. This is accomplished by using byte (8-bit) displacement
769jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 770is insufficient a long displacement is used. We do not support
252b5132
RH
771word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
772instruction with the @samp{data16} instruction prefix), since the 80386
773insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 774is added. (See also @pxref{i386-Arch})
252b5132
RH
775
776Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
777@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
778displacements, so that if you use these instructions (@code{@value{GCC}} does
779not use them) you may get an error message (and incorrect code). The AT&T
78080386 assembler tries to get around this problem by expanding @samp{jcxz foo}
781to
782
783@smallexample
784 jcxz cx_zero
785 jmp cx_nonzero
786cx_zero: jmp foo
787cx_nonzero:
788@end smallexample
789
790@node i386-Float
791@section Floating Point
792
793@cindex i386 floating point
794@cindex floating point, i386
55b62671
AJ
795@cindex x86-64 floating point
796@cindex floating point, x86-64
252b5132
RH
797All 80387 floating point types except packed BCD are supported.
798(BCD support may be added without much difficulty). These data
799types are 16-, 32-, and 64- bit integers, and single (32-bit),
800double (64-bit), and extended (80-bit) precision floating point.
801Each supported type has an instruction mnemonic suffix and a constructor
802associated with it. Instruction mnemonic suffixes specify the operand's
803data type. Constructors build these data types into memory.
804
805@cindex @code{float} directive, i386
806@cindex @code{single} directive, i386
807@cindex @code{double} directive, i386
808@cindex @code{tfloat} directive, i386
55b62671
AJ
809@cindex @code{float} directive, x86-64
810@cindex @code{single} directive, x86-64
811@cindex @code{double} directive, x86-64
812@cindex @code{tfloat} directive, x86-64
252b5132
RH
813@itemize @bullet
814@item
815Floating point constructors are @samp{.float} or @samp{.single},
816@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
817These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
818and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
819only supports this format via the @samp{fldt} (load 80-bit real to stack
820top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
821
822@cindex @code{word} directive, i386
823@cindex @code{long} directive, i386
824@cindex @code{int} directive, i386
825@cindex @code{quad} directive, i386
55b62671
AJ
826@cindex @code{word} directive, x86-64
827@cindex @code{long} directive, x86-64
828@cindex @code{int} directive, x86-64
829@cindex @code{quad} directive, x86-64
252b5132
RH
830@item
831Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
832@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
833corresponding instruction mnemonic suffixes are @samp{s} (single),
834@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
835the 64-bit @samp{q} format is only present in the @samp{fildq} (load
836quad integer to stack top) and @samp{fistpq} (store quad integer and pop
837stack) instructions.
838@end itemize
839
840Register to register operations should not use instruction mnemonic suffixes.
841@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
842wrote @samp{fst %st, %st(1)}, since all register to register operations
843use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
844which converts @samp{%st} from 80-bit to 64-bit floating point format,
845then stores the result in the 4 byte location @samp{mem})
846
847@node i386-SIMD
848@section Intel's MMX and AMD's 3DNow! SIMD Operations
849
850@cindex MMX, i386
851@cindex 3DNow!, i386
852@cindex SIMD, i386
55b62671
AJ
853@cindex MMX, x86-64
854@cindex 3DNow!, x86-64
855@cindex SIMD, x86-64
252b5132
RH
856
857@code{@value{AS}} supports Intel's MMX instruction set (SIMD
858instructions for integer data), available on Intel's Pentium MMX
859processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 860Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
861instruction set (SIMD instructions for 32-bit floating point data)
862available on AMD's K6-2 processor and possibly others in the future.
863
864Currently, @code{@value{AS}} does not support Intel's floating point
865SIMD, Katmai (KNI).
866
867The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
868@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
86916-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
870floating point values. The MMX registers cannot be used at the same time
871as the floating point stack.
872
873See Intel and AMD documentation, keeping in mind that the operand order in
874instructions is reversed from the Intel syntax.
875
f88c9eb0
SP
876@node i386-LWP
877@section AMD's Lightweight Profiling Instructions
878
879@cindex LWP, i386
880@cindex LWP, x86-64
881
882@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
883instruction set, available on AMD's Family 15h (Orochi) processors.
884
885LWP enables applications to collect and manage performance data, and
886react to performance events. The collection of performance data
887requires no context switches. LWP runs in the context of a thread and
888so several counters can be used independently across multiple threads.
889LWP can be used in both 64-bit and legacy 32-bit modes.
890
891For detailed information on the LWP instruction set, see the
892@cite{AMD Lightweight Profiling Specification} available at
893@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
894
87973e9f
QN
895@node i386-BMI
896@section Bit Manipulation Instructions
897
898@cindex BMI, i386
899@cindex BMI, x86-64
900
901@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
902
903BMI instructions provide several instructions implementing individual
904bit manipulation operations such as isolation, masking, setting, or
905resetting.
906
907@c Need to add a specification citation here when available.
908
2a2a0f38
QN
909@node i386-TBM
910@section AMD's Trailing Bit Manipulation Instructions
911
912@cindex TBM, i386
913@cindex TBM, x86-64
914
915@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
916instruction set, available on AMD's BDVER2 processors (Trinity and
917Viperfish).
918
919TBM instructions provide instructions implementing individual bit
920manipulation operations such as isolating, masking, setting, resetting,
921complementing, and operations on trailing zeros and ones.
922
923@c Need to add a specification citation here when available.
87973e9f 924
252b5132
RH
925@node i386-16bit
926@section Writing 16-bit Code
927
928@cindex i386 16-bit code
929@cindex 16-bit code, i386
930@cindex real-mode code, i386
eecb386c 931@cindex @code{code16gcc} directive, i386
252b5132
RH
932@cindex @code{code16} directive, i386
933@cindex @code{code32} directive, i386
55b62671
AJ
934@cindex @code{code64} directive, i386
935@cindex @code{code64} directive, x86-64
936While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
937or 64-bit x86-64 code depending on the default configuration,
252b5132 938it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
939mode code segments. To do this, put a @samp{.code16} or
940@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
941be run in 16-bit mode. You can switch @code{@value{AS}} to writing
94232-bit code with the @samp{.code32} directive or 64-bit code with the
943@samp{.code64} directive.
eecb386c
AM
944
945@samp{.code16gcc} provides experimental support for generating 16-bit
946code from gcc, and differs from @samp{.code16} in that @samp{call},
947@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
948@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
949default to 32-bit size. This is so that the stack pointer is
950manipulated in the same way over function calls, allowing access to
951function parameters at the same stack offsets as in 32-bit mode.
952@samp{.code16gcc} also automatically adds address size prefixes where
953necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
954
955The code which @code{@value{AS}} generates in 16-bit mode will not
956necessarily run on a 16-bit pre-80386 processor. To write code that
957runs on such a processor, you must refrain from using @emph{any} 32-bit
958constructs which require @code{@value{AS}} to output address or operand
959size prefixes.
960
961Note that writing 16-bit code instructions by explicitly specifying a
962prefix or an instruction mnemonic suffix within a 32-bit code section
963generates different machine instructions than those generated for a
96416-bit code segment. In a 32-bit code section, the following code
965generates the machine opcode bytes @samp{66 6a 04}, which pushes the
966value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
967
968@smallexample
969 pushw $4
970@end smallexample
971
972The same code in a 16-bit code section would generate the machine
b45619c0 973opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
974is correct since the processor default operand size is assumed to be 16
975bits in a 16-bit code section.
976
977@node i386-Bugs
978@section AT&T Syntax bugs
979
980The UnixWare assembler, and probably other AT&T derived ix86 Unix
981assemblers, generate floating point instructions with reversed source
982and destination registers in certain cases. Unfortunately, gcc and
983possibly many other programs use this reversed syntax, so we're stuck
984with it.
985
986For example
987
988@smallexample
989 fsub %st,%st(3)
990@end smallexample
991@noindent
992results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
993than the expected @samp{%st(3) - %st}. This happens with all the
994non-commutative arithmetic floating point operations with two register
995operands where the source register is @samp{%st} and the destination
996register is @samp{%st(i)}.
997
e413e4e9
AM
998@node i386-Arch
999@section Specifying CPU Architecture
1000
1001@cindex arch directive, i386
1002@cindex i386 arch directive
55b62671
AJ
1003@cindex arch directive, x86-64
1004@cindex x86-64 arch directive
e413e4e9
AM
1005
1006@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1007(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1008directive enables a warning when gas detects an instruction that is not
1009supported on the CPU specified. The choices for @var{cpu_type} are:
1010
1011@multitable @columnfractions .20 .20 .20 .20
1012@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1013@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1014@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1015@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7a9068fe 1016@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1543849b 1017@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
af2f724e 1018@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2}
7b458c12 1019@item @samp{btver1} @tab @samp{btver2}
1ceab344 1020@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1021@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1022@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1023@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1024@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1025@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1026@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1027@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1028@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1ceab344 1029@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1030@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1031@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1ceab344 1032@item @samp{.padlock}
e413e4e9
AM
1033@end multitable
1034
fddf5b5b
AM
1035Apart from the warning, there are only two other effects on
1036@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1037@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1038will automatically use a two byte opcode sequence. The larger three
1039byte opcode sequence is used on the 486 (and when no architecture is
1040specified) because it executes faster on the 486. Note that you can
1041explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1042Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1043@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1044conditional jumps will be promoted when necessary to a two instruction
1045sequence consisting of a conditional jump of the opposite sense around
1046an unconditional jump to the target.
1047
5c6af06e
JB
1048Following the CPU architecture (but not a sub-architecture, which are those
1049starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1050control automatic promotion of conditional jumps. @samp{jumps} is the
1051default, and enables jump promotion; All external jumps will be of the long
1052variety, and file-local jumps will be promoted as necessary.
1053(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1054byte offset jumps, and warns about file-local conditional jumps that
1055@code{@value{AS}} promotes.
fddf5b5b
AM
1056Unconditional jumps are treated as for @samp{jumps}.
1057
1058For example
1059
1060@smallexample
1061 .arch i8086,nojumps
1062@end smallexample
e413e4e9 1063
252b5132
RH
1064@node i386-Notes
1065@section Notes
1066
1067@cindex i386 @code{mul}, @code{imul} instructions
1068@cindex @code{mul} instruction, i386
1069@cindex @code{imul} instruction, i386
55b62671
AJ
1070@cindex @code{mul} instruction, x86-64
1071@cindex @code{imul} instruction, x86-64
252b5132 1072There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1073instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1074multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1075for @samp{imul}) can be output only in the one operand form. Thus,
1076@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1077the expanding multiply would clobber the @samp{%edx} register, and this
1078would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
107964-bit product in @samp{%edx:%eax}.
1080
1081We have added a two operand form of @samp{imul} when the first operand
1082is an immediate mode expression and the second operand is a register.
1083This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1084example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1085$69, %eax, %eax}.
1086
This page took 0.65833 seconds and 4 git commands to generate.