Support AMD64/Intel ISAs in assembler/disassembler
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
b90efa5b 1@c Copyright (C) 1991-2015 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
81486035 113@code{iamcu},
9103f4f4
L
114@code{k6},
115@code{k6_2},
116@code{athlon},
9103f4f4
L
117@code{opteron},
118@code{k8},
1ceab344 119@code{amdfam10},
68339fdf 120@code{bdver1},
af2f724e 121@code{bdver2},
5e5c50d3 122@code{bdver3},
c7b0bd56 123@code{bdver4},
029f3522 124@code{znver1},
7b458c12
L
125@code{btver1},
126@code{btver2},
9103f4f4
L
127@code{generic32} and
128@code{generic64}.
129
34bca508 130In addition to the basic instruction set, the assembler can be told to
6305a203
L
131accept various extension mnemonics. For example,
132@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133@var{vmx}. The following extensions are currently supported:
309d3373
JB
134@code{8087},
135@code{287},
136@code{387},
137@code{no87},
6305a203 138@code{mmx},
309d3373 139@code{nommx},
6305a203
L
140@code{sse},
141@code{sse2},
142@code{sse3},
143@code{ssse3},
144@code{sse4.1},
145@code{sse4.2},
146@code{sse4},
309d3373 147@code{nosse},
c0f3af97 148@code{avx},
6c30d220 149@code{avx2},
e2e1fcde
L
150@code{adx},
151@code{rdseed},
152@code{prfchw},
5c111e37 153@code{smap},
7e8b059b 154@code{mpx},
a0046408 155@code{sha},
1dfc6506
L
156@code{prefetchwt1},
157@code{clflushopt},
158@code{se1},
c5e7287a 159@code{clwb},
9d8596f0 160@code{pcommit},
43234a1e
L
161@code{avx512f},
162@code{avx512cd},
163@code{avx512er},
164@code{avx512pf},
1dfc6506
L
165@code{avx512vl},
166@code{avx512bw},
167@code{avx512dq},
2cc1b5aa 168@code{avx512ifma},
14f195c9 169@code{avx512vbmi},
309d3373 170@code{noavx},
6305a203 171@code{vmx},
8729a6f6 172@code{vmfunc},
6305a203 173@code{smx},
f03fe4c1 174@code{xsave},
c7b8aa3a 175@code{xsaveopt},
1dfc6506
L
176@code{xsavec},
177@code{xsaves},
c0f3af97 178@code{aes},
594ab6a3 179@code{pclmul},
c7b8aa3a
L
180@code{fsgsbase},
181@code{rdrnd},
182@code{f16c},
6c30d220 183@code{bmi2},
c0f3af97 184@code{fma},
f1f8f695
L
185@code{movbe},
186@code{ept},
6c30d220 187@code{lzcnt},
42164a71
L
188@code{hle},
189@code{rtm},
6c30d220 190@code{invpcid},
bd5295b2 191@code{clflush},
029f3522 192@code{clzero},
f88c9eb0 193@code{lwp},
5dd85c99
SP
194@code{fma4},
195@code{xop},
60aa667e 196@code{cx16},
bd5295b2 197@code{syscall},
1b7f3fb0 198@code{rdtscp},
6305a203
L
199@code{3dnow},
200@code{3dnowa},
201@code{sse4a},
202@code{sse5},
203@code{svme},
204@code{abm} and
205@code{padlock}.
309d3373
JB
206Note that rather than extending a basic instruction set, the extension
207mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
208
209When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
210@code{.arch} directive will take precedent.
211
212@cindex @samp{-mtune=} option, i386
213@cindex @samp{-mtune=} option, x86-64
214@item -mtune=@var{CPU}
215This option specifies a processor to optimize for. When used in
216conjunction with the @option{-march} option, only instructions
217of the processor specified by the @option{-march} option will be
218generated.
219
6305a203
L
220Valid @var{CPU} values are identical to the processor list of
221@option{-march=@var{CPU}}.
9103f4f4 222
c0f3af97
L
223@cindex @samp{-msse2avx} option, i386
224@cindex @samp{-msse2avx} option, x86-64
225@item -msse2avx
226This option specifies that the assembler should encode SSE instructions
227with VEX prefix.
228
daf50ae7
L
229@cindex @samp{-msse-check=} option, i386
230@cindex @samp{-msse-check=} option, x86-64
231@item -msse-check=@var{none}
1f9bb1ca
AS
232@itemx -msse-check=@var{warning}
233@itemx -msse-check=@var{error}
9aff4b7a 234These options control if the assembler should check SSE instructions.
daf50ae7
L
235@option{-msse-check=@var{none}} will make the assembler not to check SSE
236instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 237will make the assembler issue a warning for any SSE instruction.
daf50ae7 238@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 239for any SSE instruction.
daf50ae7 240
539f890d
L
241@cindex @samp{-mavxscalar=} option, i386
242@cindex @samp{-mavxscalar=} option, x86-64
243@item -mavxscalar=@var{128}
1f9bb1ca 244@itemx -mavxscalar=@var{256}
2aab8acd 245These options control how the assembler should encode scalar AVX
539f890d
L
246instructions. @option{-mavxscalar=@var{128}} will encode scalar
247AVX instructions with 128bit vector length, which is the default.
248@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
249with 256bit vector length.
250
43234a1e
L
251@cindex @samp{-mevexlig=} option, i386
252@cindex @samp{-mevexlig=} option, x86-64
253@item -mevexlig=@var{128}
254@itemx -mevexlig=@var{256}
255@itemx -mevexlig=@var{512}
256These options control how the assembler should encode length-ignored
257(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
258EVEX instructions with 128bit vector length, which is the default.
259@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
260encode LIG EVEX instructions with 256bit and 512bit vector length,
261respectively.
262
263@cindex @samp{-mevexwig=} option, i386
264@cindex @samp{-mevexwig=} option, x86-64
265@item -mevexwig=@var{0}
266@itemx -mevexwig=@var{1}
267These options control how the assembler should encode w-ignored (WIG)
268EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
269EVEX instructions with evex.w = 0, which is the default.
270@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
271evex.w = 1.
272
1efbbeb4
L
273@cindex @samp{-mmnemonic=} option, i386
274@cindex @samp{-mmnemonic=} option, x86-64
275@item -mmnemonic=@var{att}
1f9bb1ca 276@itemx -mmnemonic=@var{intel}
34bca508 277This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
278The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
279take precedent.
280
281@cindex @samp{-msyntax=} option, i386
282@cindex @samp{-msyntax=} option, x86-64
283@item -msyntax=@var{att}
1f9bb1ca 284@itemx -msyntax=@var{intel}
34bca508 285This option specifies instruction syntax when processing instructions.
1efbbeb4
L
286The @code{.att_syntax} and @code{.intel_syntax} directives will
287take precedent.
288
289@cindex @samp{-mnaked-reg} option, i386
290@cindex @samp{-mnaked-reg} option, x86-64
291@item -mnaked-reg
292This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 293The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 294
7e8b059b
L
295@cindex @samp{-madd-bnd-prefix} option, i386
296@cindex @samp{-madd-bnd-prefix} option, x86-64
297@item -madd-bnd-prefix
298This option forces the assembler to add BND prefix to all branches, even
299if such prefix was not explicitly specified in the source code.
300
8dcea932
L
301@cindex @samp{-mshared} option, i386
302@cindex @samp{-mshared} option, x86-64
303@item -mno-shared
304On ELF target, the assembler normally optimizes out non-PLT relocations
305against defined non-weak global branch targets with default visibility.
306The @samp{-mshared} option tells the assembler to generate code which
307may go into a shared library where all non-weak global branch targets
308with default visibility can be preempted. The resulting code is
309slightly bigger. This option only affects the handling of branch
310instructions.
311
167ad85b
TG
312@cindex @samp{-mbig-obj} option, x86-64
313@item -mbig-obj
314On x86-64 PE/COFF target this option forces the use of big object file
315format, which allows more than 32768 sections.
316
d022bddd
IT
317@cindex @samp{-momit-lock-prefix=} option, i386
318@cindex @samp{-momit-lock-prefix=} option, x86-64
319@item -momit-lock-prefix=@var{no}
320@itemx -momit-lock-prefix=@var{yes}
321These options control how the assembler should encode lock prefix.
322This option is intended as a workaround for processors, that fail on
323lock prefix. This option can only be safely used with single-core,
324single-thread computers
325@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
326@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
327which is the default.
328
d3d3c6db
IT
329@cindex @samp{-mevexrcig=} option, i386
330@cindex @samp{-mevexrcig=} option, x86-64
331@item -mevexrcig=@var{rne}
332@itemx -mevexrcig=@var{rd}
333@itemx -mevexrcig=@var{ru}
334@itemx -mevexrcig=@var{rz}
335These options control how the assembler should encode SAE-only
336EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
337of EVEX instruction with 00, which is the default.
338@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
339and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
340with 01, 10 and 11 RC bits, respectively.
341
5db04b09
L
342@cindex @samp{-mamd64} option, x86-64
343@cindex @samp{-mintel64} option, x86-64
344@item -mamd64
345@itemx -mintel64
346This option specifies that the assembler should accept only AMD64 or
347Intel64 ISA in 64-bit mode. The default is to accept both.
348
55b62671 349@end table
731caf76 350@c man end
e413e4e9 351
a6c24e68
NC
352@node i386-Directives
353@section x86 specific Directives
354
355@cindex machine directives, x86
356@cindex x86 machine directives
357@table @code
358
359@cindex @code{lcomm} directive, COFF
360@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
361Reserve @var{length} (an absolute expression) bytes for a local common
362denoted by @var{symbol}. The section and value of @var{symbol} are
363those of the new local common. The addresses are allocated in the bss
704209c0
NC
364section, so that at run-time the bytes start off zeroed. Since
365@var{symbol} is not declared global, it is normally not visible to
366@code{@value{LD}}. The optional third parameter, @var{alignment},
367specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
368
369This directive is only available for COFF based x86 targets.
370
371@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
372@c .largecomm
373
374@end table
375
252b5132 376@node i386-Syntax
7c31ae13
NC
377@section i386 Syntactical Considerations
378@menu
379* i386-Variations:: AT&T Syntax versus Intel Syntax
380* i386-Chars:: Special Characters
381@end menu
382
383@node i386-Variations
384@subsection AT&T Syntax versus Intel Syntax
252b5132 385
e413e4e9
AM
386@cindex i386 intel_syntax pseudo op
387@cindex intel_syntax pseudo op, i386
388@cindex i386 att_syntax pseudo op
389@cindex att_syntax pseudo op, i386
252b5132
RH
390@cindex i386 syntax compatibility
391@cindex syntax compatibility, i386
55b62671
AJ
392@cindex x86-64 intel_syntax pseudo op
393@cindex intel_syntax pseudo op, x86-64
394@cindex x86-64 att_syntax pseudo op
395@cindex att_syntax pseudo op, x86-64
396@cindex x86-64 syntax compatibility
397@cindex syntax compatibility, x86-64
e413e4e9
AM
398
399@code{@value{AS}} now supports assembly using Intel assembler syntax.
400@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
401back to the usual AT&T mode for compatibility with the output of
402@code{@value{GCC}}. Either of these directives may have an optional
403argument, @code{prefix}, or @code{noprefix} specifying whether registers
404require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
405different from Intel syntax. We mention these differences because
406almost all 80386 documents use Intel syntax. Notable differences
407between the two syntaxes are:
408
409@cindex immediate operands, i386
410@cindex i386 immediate operands
411@cindex register operands, i386
412@cindex i386 register operands
413@cindex jump/call operands, i386
414@cindex i386 jump/call operands
415@cindex operand delimiters, i386
55b62671
AJ
416
417@cindex immediate operands, x86-64
418@cindex x86-64 immediate operands
419@cindex register operands, x86-64
420@cindex x86-64 register operands
421@cindex jump/call operands, x86-64
422@cindex x86-64 jump/call operands
423@cindex operand delimiters, x86-64
252b5132
RH
424@itemize @bullet
425@item
426AT&T immediate operands are preceded by @samp{$}; Intel immediate
427operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
428AT&T register operands are preceded by @samp{%}; Intel register operands
429are undelimited. AT&T absolute (as opposed to PC relative) jump/call
430operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
431
432@cindex i386 source, destination operands
433@cindex source, destination operands; i386
55b62671
AJ
434@cindex x86-64 source, destination operands
435@cindex source, destination operands; x86-64
252b5132
RH
436@item
437AT&T and Intel syntax use the opposite order for source and destination
438operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
439@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
440previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
441instructions with 2 immediate operands, such as the @samp{enter}
442instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
443
444@cindex mnemonic suffixes, i386
445@cindex sizes operands, i386
446@cindex i386 size suffixes
55b62671
AJ
447@cindex mnemonic suffixes, x86-64
448@cindex sizes operands, x86-64
449@cindex x86-64 size suffixes
252b5132
RH
450@item
451In AT&T syntax the size of memory operands is determined from the last
452character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
453@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
454(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
455this by prefixing memory operands (@emph{not} the instruction mnemonics) with
456@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
457Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
458syntax.
252b5132 459
4b06377f
L
460In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
461instruction with the 64-bit displacement or immediate operand.
462
252b5132
RH
463@cindex return instructions, i386
464@cindex i386 jump, call, return
55b62671
AJ
465@cindex return instructions, x86-64
466@cindex x86-64 jump, call, return
252b5132
RH
467@item
468Immediate form long jumps and calls are
469@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
470Intel syntax is
471@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
472instruction
473is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
474@samp{ret far @var{stack-adjust}}.
475
476@cindex sections, i386
477@cindex i386 sections
55b62671
AJ
478@cindex sections, x86-64
479@cindex x86-64 sections
252b5132
RH
480@item
481The AT&T assembler does not provide support for multiple section
482programs. Unix style systems expect all programs to be single sections.
483@end itemize
484
7c31ae13
NC
485@node i386-Chars
486@subsection Special Characters
487
488@cindex line comment character, i386
489@cindex i386 line comment character
490The presence of a @samp{#} appearing anywhere on a line indicates the
491start of a comment that extends to the end of that line.
492
493If a @samp{#} appears as the first character of a line then the whole
494line is treated as a comment, but in this case the line can also be a
495logical line number directive (@pxref{Comments}) or a preprocessor
496control command (@pxref{Preprocessing}).
497
498If the @option{--divide} command line option has not been specified
499then the @samp{/} character appearing anywhere on a line also
500introduces a line comment.
501
502@cindex line separator, i386
503@cindex statement separator, i386
504@cindex i386 line separator
505The @samp{;} character can be used to separate statements on the same
506line.
507
252b5132 508@node i386-Mnemonics
d3b47e2b
L
509@section i386-Mnemonics
510@subsection Instruction Naming
252b5132
RH
511
512@cindex i386 instruction naming
513@cindex instruction naming, i386
55b62671
AJ
514@cindex x86-64 instruction naming
515@cindex instruction naming, x86-64
516
252b5132 517Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
518specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
519and @samp{q} specify byte, word, long and quadruple word operands. If
520no suffix is specified by an instruction then @code{@value{AS}} tries to
521fill in the missing suffix based on the destination register operand
522(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
523to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
524@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
525assembler which assumes that a missing mnemonic suffix implies long
526operand size. (This incompatibility does not affect compiler output
527since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
528
529Almost all instructions have the same names in AT&T and Intel format.
530There are a few exceptions. The sign extend and zero extend
531instructions need two sizes to specify them. They need a size to
532sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
533is accomplished by using two instruction mnemonic suffixes in AT&T
534syntax. Base names for sign extend and zero extend are
535@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
536and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
537are tacked on to this base name, the @emph{from} suffix before the
538@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
539``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
540thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
541@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
542@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
543quadruple word).
252b5132 544
b6169b20
L
545@cindex encoding options, i386
546@cindex encoding options, x86-64
547
548Different encoding options can be specified via optional mnemonic
549suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
550moving from one register to another. @samp{.d8} or @samp{.d32} suffix
551prefers 8bit or 32bit displacement in encoding.
b6169b20 552
252b5132
RH
553@cindex conversion instructions, i386
554@cindex i386 conversion instructions
55b62671
AJ
555@cindex conversion instructions, x86-64
556@cindex x86-64 conversion instructions
252b5132
RH
557The Intel-syntax conversion instructions
558
559@itemize @bullet
560@item
561@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
562
563@item
564@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
565
566@item
567@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
568
569@item
570@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
571
572@item
573@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
574(x86-64 only),
575
576@item
d5f0cf92 577@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 578@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
579@end itemize
580
581@noindent
55b62671
AJ
582are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
583@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
584instructions.
252b5132
RH
585
586@cindex jump instructions, i386
587@cindex call instructions, i386
55b62671
AJ
588@cindex jump instructions, x86-64
589@cindex call instructions, x86-64
252b5132
RH
590Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
591AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
592convention.
593
d3b47e2b 594@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
595
596@cindex i386 mnemonic compatibility
597@cindex mnemonic compatibility, i386
598
599@code{@value{AS}} supports assembly using Intel mnemonic.
600@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
601@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
602syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
603Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
604@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
605@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
606assembler with different mnemonics from those in Intel IA32 specification.
607@code{@value{GCC}} generates those instructions with AT&T mnemonic.
608
252b5132
RH
609@node i386-Regs
610@section Register Naming
611
612@cindex i386 registers
613@cindex registers, i386
55b62671
AJ
614@cindex x86-64 registers
615@cindex registers, x86-64
252b5132
RH
616Register operands are always prefixed with @samp{%}. The 80386 registers
617consist of
618
619@itemize @bullet
620@item
621the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
622@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
623frame pointer), and @samp{%esp} (the stack pointer).
624
625@item
626the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
627@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
628
629@item
630the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
631@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
632are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
633@samp{%cx}, and @samp{%dx})
634
635@item
636the 6 section registers @samp{%cs} (code section), @samp{%ds}
637(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
638and @samp{%gs}.
639
640@item
641the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
642@samp{%cr3}.
643
644@item
645the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
646@samp{%db3}, @samp{%db6}, and @samp{%db7}.
647
648@item
649the 2 test registers @samp{%tr6} and @samp{%tr7}.
650
651@item
652the 8 floating point register stack @samp{%st} or equivalently
653@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
654@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
655These registers are overloaded by 8 MMX registers @samp{%mm0},
656@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
657@samp{%mm6} and @samp{%mm7}.
658
659@item
660the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
661@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
662@end itemize
663
664The AMD x86-64 architecture extends the register set by:
665
666@itemize @bullet
667@item
668enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
669accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
670@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
671pointer)
672
673@item
674the 8 extended registers @samp{%r8}--@samp{%r15}.
675
676@item
677the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
678
679@item
680the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
681
682@item
683the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
684
685@item
686the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
687
688@item
689the 8 debug registers: @samp{%db8}--@samp{%db15}.
690
691@item
692the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
693@end itemize
694
695@node i386-Prefixes
696@section Instruction Prefixes
697
698@cindex i386 instruction prefixes
699@cindex instruction prefixes, i386
700@cindex prefixes, i386
701Instruction prefixes are used to modify the following instruction. They
702are used to repeat string instructions, to provide section overrides, to
703perform bus lock operations, and to change operand and address sizes.
704(Most instructions that normally operate on 32-bit operands will use
70516-bit operands if the instruction has an ``operand size'' prefix.)
706Instruction prefixes are best written on the same line as the instruction
707they act upon. For example, the @samp{scas} (scan string) instruction is
708repeated with:
709
710@smallexample
711 repne scas %es:(%edi),%al
712@end smallexample
713
714You may also place prefixes on the lines immediately preceding the
715instruction, but this circumvents checks that @code{@value{AS}} does
716with prefixes, and will not work with all prefixes.
717
718Here is a list of instruction prefixes:
719
720@cindex section override prefixes, i386
721@itemize @bullet
722@item
723Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
724@samp{fs}, @samp{gs}. These are automatically added by specifying
725using the @var{section}:@var{memory-operand} form for memory references.
726
727@cindex size prefixes, i386
728@item
729Operand/Address size prefixes @samp{data16} and @samp{addr16}
730change 32-bit operands/addresses into 16-bit operands/addresses,
731while @samp{data32} and @samp{addr32} change 16-bit ones (in a
732@code{.code16} section) into 32-bit operands/addresses. These prefixes
733@emph{must} appear on the same line of code as the instruction they
734modify. For example, in a 16-bit @code{.code16} section, you might
735write:
736
737@smallexample
738 addr32 jmpl *(%ebx)
739@end smallexample
740
741@cindex bus lock prefixes, i386
742@cindex inhibiting interrupts, i386
743@item
744The bus lock prefix @samp{lock} inhibits interrupts during execution of
745the instruction it precedes. (This is only valid with certain
746instructions; see a 80386 manual for details).
747
748@cindex coprocessor wait, i386
749@item
750The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
751complete the current instruction. This should never be needed for the
75280386/80387 combination.
753
754@cindex repeat prefixes, i386
755@item
756The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
757to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
758times if the current address size is 16-bits).
55b62671
AJ
759@cindex REX prefixes, i386
760@item
761The @samp{rex} family of prefixes is used by x86-64 to encode
762extensions to i386 instruction set. The @samp{rex} prefix has four
763bits --- an operand size overwrite (@code{64}) used to change operand size
764from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
765register set.
766
767You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
768instruction emits @samp{rex} prefix with all the bits set. By omitting
769the @code{64}, @code{x}, @code{y} or @code{z} you may write other
770prefixes as well. Normally, there is no need to write the prefixes
771explicitly, since gas will automatically generate them based on the
772instruction operands.
252b5132
RH
773@end itemize
774
775@node i386-Memory
776@section Memory References
777
778@cindex i386 memory references
779@cindex memory references, i386
55b62671
AJ
780@cindex x86-64 memory references
781@cindex memory references, x86-64
252b5132
RH
782An Intel syntax indirect memory reference of the form
783
784@smallexample
785@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
786@end smallexample
787
788@noindent
789is translated into the AT&T syntax
790
791@smallexample
792@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
793@end smallexample
794
795@noindent
796where @var{base} and @var{index} are the optional 32-bit base and
797index registers, @var{disp} is the optional displacement, and
798@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
799to calculate the address of the operand. If no @var{scale} is
800specified, @var{scale} is taken to be 1. @var{section} specifies the
801optional section register for the memory operand, and may override the
802default section register (see a 80386 manual for section register
803defaults). Note that section overrides in AT&T syntax @emph{must}
804be preceded by a @samp{%}. If you specify a section override which
805coincides with the default section register, @code{@value{AS}} does @emph{not}
806output any section register override prefixes to assemble the given
807instruction. Thus, section overrides can be specified to emphasize which
808section register is used for a given memory operand.
809
810Here are some examples of Intel and AT&T style memory references:
811
812@table @asis
813@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
814@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
815missing, and the default section is used (@samp{%ss} for addressing with
816@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
817
818@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
819@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
820@samp{foo}. All other fields are missing. The section register here
821defaults to @samp{%ds}.
822
823@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
824This uses the value pointed to by @samp{foo} as a memory operand.
825Note that @var{base} and @var{index} are both missing, but there is only
826@emph{one} @samp{,}. This is a syntactic exception.
827
828@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
829This selects the contents of the variable @samp{foo} with section
830register @var{section} being @samp{%gs}.
831@end table
832
833Absolute (as opposed to PC relative) call and jump operands must be
834prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
835always chooses PC relative addressing for jump/call labels.
836
837Any instruction that has a memory operand, but no register operand,
55b62671
AJ
838@emph{must} specify its size (byte, word, long, or quadruple) with an
839instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
840respectively).
841
842The x86-64 architecture adds an RIP (instruction pointer relative)
843addressing. This addressing mode is specified by using @samp{rip} as a
844base register. Only constant offsets are valid. For example:
845
846@table @asis
847@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
848Points to the address 1234 bytes past the end of the current
849instruction.
850
851@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
852Points to the @code{symbol} in RIP relative way, this is shorter than
853the default absolute addressing.
854@end table
855
856Other addressing modes remain unchanged in x86-64 architecture, except
857registers used are 64-bit instead of 32-bit.
252b5132 858
fddf5b5b 859@node i386-Jumps
252b5132
RH
860@section Handling of Jump Instructions
861
862@cindex jump optimization, i386
863@cindex i386 jump optimization
55b62671
AJ
864@cindex jump optimization, x86-64
865@cindex x86-64 jump optimization
252b5132
RH
866Jump instructions are always optimized to use the smallest possible
867displacements. This is accomplished by using byte (8-bit) displacement
868jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 869is insufficient a long displacement is used. We do not support
252b5132
RH
870word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
871instruction with the @samp{data16} instruction prefix), since the 80386
872insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 873is added. (See also @pxref{i386-Arch})
252b5132
RH
874
875Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
876@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
877displacements, so that if you use these instructions (@code{@value{GCC}} does
878not use them) you may get an error message (and incorrect code). The AT&T
87980386 assembler tries to get around this problem by expanding @samp{jcxz foo}
880to
881
882@smallexample
883 jcxz cx_zero
884 jmp cx_nonzero
885cx_zero: jmp foo
886cx_nonzero:
887@end smallexample
888
889@node i386-Float
890@section Floating Point
891
892@cindex i386 floating point
893@cindex floating point, i386
55b62671
AJ
894@cindex x86-64 floating point
895@cindex floating point, x86-64
252b5132
RH
896All 80387 floating point types except packed BCD are supported.
897(BCD support may be added without much difficulty). These data
898types are 16-, 32-, and 64- bit integers, and single (32-bit),
899double (64-bit), and extended (80-bit) precision floating point.
900Each supported type has an instruction mnemonic suffix and a constructor
901associated with it. Instruction mnemonic suffixes specify the operand's
902data type. Constructors build these data types into memory.
903
904@cindex @code{float} directive, i386
905@cindex @code{single} directive, i386
906@cindex @code{double} directive, i386
907@cindex @code{tfloat} directive, i386
55b62671
AJ
908@cindex @code{float} directive, x86-64
909@cindex @code{single} directive, x86-64
910@cindex @code{double} directive, x86-64
911@cindex @code{tfloat} directive, x86-64
252b5132
RH
912@itemize @bullet
913@item
914Floating point constructors are @samp{.float} or @samp{.single},
915@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
916These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
917and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
918only supports this format via the @samp{fldt} (load 80-bit real to stack
919top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
920
921@cindex @code{word} directive, i386
922@cindex @code{long} directive, i386
923@cindex @code{int} directive, i386
924@cindex @code{quad} directive, i386
55b62671
AJ
925@cindex @code{word} directive, x86-64
926@cindex @code{long} directive, x86-64
927@cindex @code{int} directive, x86-64
928@cindex @code{quad} directive, x86-64
252b5132
RH
929@item
930Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
931@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
932corresponding instruction mnemonic suffixes are @samp{s} (single),
933@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
934the 64-bit @samp{q} format is only present in the @samp{fildq} (load
935quad integer to stack top) and @samp{fistpq} (store quad integer and pop
936stack) instructions.
937@end itemize
938
939Register to register operations should not use instruction mnemonic suffixes.
940@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
941wrote @samp{fst %st, %st(1)}, since all register to register operations
942use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
943which converts @samp{%st} from 80-bit to 64-bit floating point format,
944then stores the result in the 4 byte location @samp{mem})
945
946@node i386-SIMD
947@section Intel's MMX and AMD's 3DNow! SIMD Operations
948
949@cindex MMX, i386
950@cindex 3DNow!, i386
951@cindex SIMD, i386
55b62671
AJ
952@cindex MMX, x86-64
953@cindex 3DNow!, x86-64
954@cindex SIMD, x86-64
252b5132
RH
955
956@code{@value{AS}} supports Intel's MMX instruction set (SIMD
957instructions for integer data), available on Intel's Pentium MMX
958processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 959Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
960instruction set (SIMD instructions for 32-bit floating point data)
961available on AMD's K6-2 processor and possibly others in the future.
962
963Currently, @code{@value{AS}} does not support Intel's floating point
964SIMD, Katmai (KNI).
965
966The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
967@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
96816-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
969floating point values. The MMX registers cannot be used at the same time
970as the floating point stack.
971
972See Intel and AMD documentation, keeping in mind that the operand order in
973instructions is reversed from the Intel syntax.
974
f88c9eb0
SP
975@node i386-LWP
976@section AMD's Lightweight Profiling Instructions
977
978@cindex LWP, i386
979@cindex LWP, x86-64
980
981@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
982instruction set, available on AMD's Family 15h (Orochi) processors.
983
984LWP enables applications to collect and manage performance data, and
985react to performance events. The collection of performance data
986requires no context switches. LWP runs in the context of a thread and
987so several counters can be used independently across multiple threads.
988LWP can be used in both 64-bit and legacy 32-bit modes.
989
990For detailed information on the LWP instruction set, see the
991@cite{AMD Lightweight Profiling Specification} available at
992@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
993
87973e9f
QN
994@node i386-BMI
995@section Bit Manipulation Instructions
996
997@cindex BMI, i386
998@cindex BMI, x86-64
999
1000@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1001
1002BMI instructions provide several instructions implementing individual
1003bit manipulation operations such as isolation, masking, setting, or
34bca508 1004resetting.
87973e9f
QN
1005
1006@c Need to add a specification citation here when available.
1007
2a2a0f38
QN
1008@node i386-TBM
1009@section AMD's Trailing Bit Manipulation Instructions
1010
1011@cindex TBM, i386
1012@cindex TBM, x86-64
1013
1014@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1015instruction set, available on AMD's BDVER2 processors (Trinity and
1016Viperfish).
1017
1018TBM instructions provide instructions implementing individual bit
1019manipulation operations such as isolating, masking, setting, resetting,
1020complementing, and operations on trailing zeros and ones.
1021
1022@c Need to add a specification citation here when available.
87973e9f 1023
252b5132
RH
1024@node i386-16bit
1025@section Writing 16-bit Code
1026
1027@cindex i386 16-bit code
1028@cindex 16-bit code, i386
1029@cindex real-mode code, i386
eecb386c 1030@cindex @code{code16gcc} directive, i386
252b5132
RH
1031@cindex @code{code16} directive, i386
1032@cindex @code{code32} directive, i386
55b62671
AJ
1033@cindex @code{code64} directive, i386
1034@cindex @code{code64} directive, x86-64
1035While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1036or 64-bit x86-64 code depending on the default configuration,
252b5132 1037it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1038mode code segments. To do this, put a @samp{.code16} or
1039@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1040be run in 16-bit mode. You can switch @code{@value{AS}} to writing
104132-bit code with the @samp{.code32} directive or 64-bit code with the
1042@samp{.code64} directive.
eecb386c
AM
1043
1044@samp{.code16gcc} provides experimental support for generating 16-bit
1045code from gcc, and differs from @samp{.code16} in that @samp{call},
1046@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1047@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1048default to 32-bit size. This is so that the stack pointer is
1049manipulated in the same way over function calls, allowing access to
1050function parameters at the same stack offsets as in 32-bit mode.
1051@samp{.code16gcc} also automatically adds address size prefixes where
1052necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1053
1054The code which @code{@value{AS}} generates in 16-bit mode will not
1055necessarily run on a 16-bit pre-80386 processor. To write code that
1056runs on such a processor, you must refrain from using @emph{any} 32-bit
1057constructs which require @code{@value{AS}} to output address or operand
1058size prefixes.
1059
1060Note that writing 16-bit code instructions by explicitly specifying a
1061prefix or an instruction mnemonic suffix within a 32-bit code section
1062generates different machine instructions than those generated for a
106316-bit code segment. In a 32-bit code section, the following code
1064generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1065value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1066
1067@smallexample
1068 pushw $4
1069@end smallexample
1070
1071The same code in a 16-bit code section would generate the machine
b45619c0 1072opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1073is correct since the processor default operand size is assumed to be 16
1074bits in a 16-bit code section.
1075
e413e4e9
AM
1076@node i386-Arch
1077@section Specifying CPU Architecture
1078
1079@cindex arch directive, i386
1080@cindex i386 arch directive
55b62671
AJ
1081@cindex arch directive, x86-64
1082@cindex x86-64 arch directive
e413e4e9
AM
1083
1084@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1085(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1086directive enables a warning when gas detects an instruction that is not
1087supported on the CPU specified. The choices for @var{cpu_type} are:
1088
1089@multitable @columnfractions .20 .20 .20 .20
1090@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1091@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1092@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1093@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1094@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1095@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1096@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1097@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1098@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1099@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1100@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1101@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1102@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1103@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1104@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1105@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1106@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1107@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1108@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1109@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1110@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
14f195c9 1111@item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1ceab344 1112@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1113@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1114@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
029f3522 1115@item @samp{.padlock} @tab @samp{.clzero}
e413e4e9
AM
1116@end multitable
1117
fddf5b5b
AM
1118Apart from the warning, there are only two other effects on
1119@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1120@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1121will automatically use a two byte opcode sequence. The larger three
1122byte opcode sequence is used on the 486 (and when no architecture is
1123specified) because it executes faster on the 486. Note that you can
1124explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1125Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1126@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1127conditional jumps will be promoted when necessary to a two instruction
1128sequence consisting of a conditional jump of the opposite sense around
1129an unconditional jump to the target.
1130
5c6af06e
JB
1131Following the CPU architecture (but not a sub-architecture, which are those
1132starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1133control automatic promotion of conditional jumps. @samp{jumps} is the
1134default, and enables jump promotion; All external jumps will be of the long
1135variety, and file-local jumps will be promoted as necessary.
1136(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1137byte offset jumps, and warns about file-local conditional jumps that
1138@code{@value{AS}} promotes.
fddf5b5b
AM
1139Unconditional jumps are treated as for @samp{jumps}.
1140
1141For example
1142
1143@smallexample
1144 .arch i8086,nojumps
1145@end smallexample
e413e4e9 1146
5c9352f3
AM
1147@node i386-Bugs
1148@section AT&T Syntax bugs
1149
1150The UnixWare assembler, and probably other AT&T derived ix86 Unix
1151assemblers, generate floating point instructions with reversed source
1152and destination registers in certain cases. Unfortunately, gcc and
1153possibly many other programs use this reversed syntax, so we're stuck
1154with it.
1155
1156For example
1157
1158@smallexample
1159 fsub %st,%st(3)
1160@end smallexample
1161@noindent
1162results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1163than the expected @samp{%st(3) - %st}. This happens with all the
1164non-commutative arithmetic floating point operations with two register
1165operands where the source register is @samp{%st} and the destination
1166register is @samp{%st(i)}.
1167
252b5132
RH
1168@node i386-Notes
1169@section Notes
1170
1171@cindex i386 @code{mul}, @code{imul} instructions
1172@cindex @code{mul} instruction, i386
1173@cindex @code{imul} instruction, i386
55b62671
AJ
1174@cindex @code{mul} instruction, x86-64
1175@cindex @code{imul} instruction, x86-64
252b5132 1176There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1177instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1178multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1179for @samp{imul}) can be output only in the one operand form. Thus,
1180@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1181the expanding multiply would clobber the @samp{%edx} register, and this
1182would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
118364-bit product in @samp{%edx:%eax}.
1184
1185We have added a two operand form of @samp{imul} when the first operand
1186is an immediate mode expression and the second operand is a register.
1187This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1188example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1189$69, %eax, %eax}.
1190
This page took 0.710511 seconds and 4 git commands to generate.