Automatic date update in version.in
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
b3adc24a 1@c Copyright (C) 1991-2020 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
bc31405e 40* i386-ISA:: AMD64 ISA vs. Intel64 ISA
252b5132
RH
41* i386-Bugs:: AT&T Syntax bugs
42* i386-Notes:: Notes
43@end menu
44
45@node i386-Options
46@section Options
47
55b62671
AJ
48@cindex options for i386
49@cindex options for x86-64
50@cindex i386 options
34bca508 51@cindex x86-64 options
55b62671
AJ
52
53The i386 version of @code{@value{AS}} has a few machine
54dependent options:
55
731caf76
L
56@c man begin OPTIONS
57@table @gcctabopt
55b62671
AJ
58@cindex @samp{--32} option, i386
59@cindex @samp{--32} option, x86-64
570561f7
L
60@cindex @samp{--x32} option, i386
61@cindex @samp{--x32} option, x86-64
55b62671
AJ
62@cindex @samp{--64} option, i386
63@cindex @samp{--64} option, x86-64
570561f7 64@item --32 | --x32 | --64
35cc6a0b 65Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 66implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
67imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68respectively.
55b62671
AJ
69
70These options are only available with the ELF object file format, and
71require that the necessary BFD support has been included (on a 32-bit
72platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73usage and use x86-64 as target platform).
12b55ccc
L
74
75@item -n
76By default, x86 GAS replaces multiple nop instructions used for
77alignment within code sections with multi-byte nop instructions such
f9233288
JW
78as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
34bca508 95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
81486035 115@code{iamcu},
9103f4f4
L
116@code{k6},
117@code{k6_2},
118@code{athlon},
9103f4f4
L
119@code{opteron},
120@code{k8},
1ceab344 121@code{amdfam10},
68339fdf 122@code{bdver1},
af2f724e 123@code{bdver2},
5e5c50d3 124@code{bdver3},
c7b0bd56 125@code{bdver4},
029f3522 126@code{znver1},
a9660a6f 127@code{znver2},
7b458c12
L
128@code{btver1},
129@code{btver2},
9103f4f4
L
130@code{generic32} and
131@code{generic64}.
132
34bca508 133In addition to the basic instruction set, the assembler can be told to
6305a203
L
134accept various extension mnemonics. For example,
135@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136@var{vmx}. The following extensions are currently supported:
309d3373
JB
137@code{8087},
138@code{287},
139@code{387},
1848e567 140@code{687},
309d3373 141@code{no87},
1848e567
L
142@code{no287},
143@code{no387},
144@code{no687},
d871f3f4
L
145@code{cmov},
146@code{nocmov},
147@code{fxsr},
148@code{nofxsr},
6305a203 149@code{mmx},
309d3373 150@code{nommx},
6305a203
L
151@code{sse},
152@code{sse2},
153@code{sse3},
154@code{ssse3},
155@code{sse4.1},
156@code{sse4.2},
157@code{sse4},
309d3373 158@code{nosse},
1848e567
L
159@code{nosse2},
160@code{nosse3},
161@code{nossse3},
162@code{nosse4.1},
163@code{nosse4.2},
164@code{nosse4},
c0f3af97 165@code{avx},
6c30d220 166@code{avx2},
1848e567
L
167@code{noavx},
168@code{noavx2},
e2e1fcde
L
169@code{adx},
170@code{rdseed},
171@code{prfchw},
5c111e37 172@code{smap},
7e8b059b 173@code{mpx},
a0046408 174@code{sha},
8bc52696 175@code{rdpid},
6b40c462 176@code{ptwrite},
603555e5 177@code{cet},
48521003 178@code{gfni},
8dcf1fad 179@code{vaes},
ff1982d5 180@code{vpclmulqdq},
1dfc6506
L
181@code{prefetchwt1},
182@code{clflushopt},
183@code{se1},
c5e7287a 184@code{clwb},
c0a30a9f
L
185@code{movdiri},
186@code{movdir64b},
5d79adc4 187@code{enqcmd},
43234a1e
L
188@code{avx512f},
189@code{avx512cd},
190@code{avx512er},
191@code{avx512pf},
1dfc6506
L
192@code{avx512vl},
193@code{avx512bw},
194@code{avx512dq},
2cc1b5aa 195@code{avx512ifma},
14f195c9 196@code{avx512vbmi},
920d2ddc 197@code{avx512_4fmaps},
47acf0bd 198@code{avx512_4vnniw},
620214f7 199@code{avx512_vpopcntdq},
53467f57 200@code{avx512_vbmi2},
8cfcb765 201@code{avx512_vnni},
ee6872be 202@code{avx512_bitalg},
d6aab7a1 203@code{avx512_bf16},
144b71e2
L
204@code{noavx512f},
205@code{noavx512cd},
206@code{noavx512er},
207@code{noavx512pf},
208@code{noavx512vl},
209@code{noavx512bw},
210@code{noavx512dq},
211@code{noavx512ifma},
212@code{noavx512vbmi},
920d2ddc 213@code{noavx512_4fmaps},
47acf0bd 214@code{noavx512_4vnniw},
620214f7 215@code{noavx512_vpopcntdq},
53467f57 216@code{noavx512_vbmi2},
8cfcb765 217@code{noavx512_vnni},
ee6872be 218@code{noavx512_bitalg},
9186c494 219@code{noavx512_vp2intersect},
d6aab7a1 220@code{noavx512_bf16},
dd455cf5 221@code{noenqcmd},
6305a203 222@code{vmx},
8729a6f6 223@code{vmfunc},
6305a203 224@code{smx},
f03fe4c1 225@code{xsave},
c7b8aa3a 226@code{xsaveopt},
1dfc6506
L
227@code{xsavec},
228@code{xsaves},
c0f3af97 229@code{aes},
594ab6a3 230@code{pclmul},
c7b8aa3a
L
231@code{fsgsbase},
232@code{rdrnd},
233@code{f16c},
6c30d220 234@code{bmi2},
c0f3af97 235@code{fma},
f1f8f695
L
236@code{movbe},
237@code{ept},
6c30d220 238@code{lzcnt},
42164a71
L
239@code{hle},
240@code{rtm},
6c30d220 241@code{invpcid},
bd5295b2 242@code{clflush},
9916071f 243@code{mwaitx},
029f3522 244@code{clzero},
3233d7d0 245@code{wbnoinvd},
be3a8dca 246@code{pconfig},
de89d0a3 247@code{waitpkg},
c48935d7 248@code{cldemote},
142861df
JB
249@code{rdpru},
250@code{mcommit},
f88c9eb0 251@code{lwp},
5dd85c99
SP
252@code{fma4},
253@code{xop},
60aa667e 254@code{cx16},
bd5295b2 255@code{syscall},
1b7f3fb0 256@code{rdtscp},
6305a203
L
257@code{3dnow},
258@code{3dnowa},
259@code{sse4a},
260@code{sse5},
261@code{svme},
262@code{abm} and
263@code{padlock}.
309d3373
JB
264Note that rather than extending a basic instruction set, the extension
265mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
266
267When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
268@code{.arch} directive will take precedent.
269
270@cindex @samp{-mtune=} option, i386
271@cindex @samp{-mtune=} option, x86-64
272@item -mtune=@var{CPU}
273This option specifies a processor to optimize for. When used in
274conjunction with the @option{-march} option, only instructions
275of the processor specified by the @option{-march} option will be
276generated.
277
6305a203
L
278Valid @var{CPU} values are identical to the processor list of
279@option{-march=@var{CPU}}.
9103f4f4 280
c0f3af97
L
281@cindex @samp{-msse2avx} option, i386
282@cindex @samp{-msse2avx} option, x86-64
283@item -msse2avx
284This option specifies that the assembler should encode SSE instructions
285with VEX prefix.
286
daf50ae7
L
287@cindex @samp{-msse-check=} option, i386
288@cindex @samp{-msse-check=} option, x86-64
289@item -msse-check=@var{none}
1f9bb1ca
AS
290@itemx -msse-check=@var{warning}
291@itemx -msse-check=@var{error}
9aff4b7a 292These options control if the assembler should check SSE instructions.
daf50ae7
L
293@option{-msse-check=@var{none}} will make the assembler not to check SSE
294instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 295will make the assembler issue a warning for any SSE instruction.
daf50ae7 296@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 297for any SSE instruction.
daf50ae7 298
539f890d
L
299@cindex @samp{-mavxscalar=} option, i386
300@cindex @samp{-mavxscalar=} option, x86-64
301@item -mavxscalar=@var{128}
1f9bb1ca 302@itemx -mavxscalar=@var{256}
2aab8acd 303These options control how the assembler should encode scalar AVX
539f890d
L
304instructions. @option{-mavxscalar=@var{128}} will encode scalar
305AVX instructions with 128bit vector length, which is the default.
306@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
307with 256bit vector length.
308
4970191f
JB
309WARNING: Don't use this for production code - due to CPU errata the
310resulting code may not work on certain models.
311
03751133
L
312@cindex @samp{-mvexwig=} option, i386
313@cindex @samp{-mvexwig=} option, x86-64
314@item -mvexwig=@var{0}
315@itemx -mvexwig=@var{1}
316These options control how the assembler should encode VEX.W-ignored (WIG)
317VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
318instructions with vex.w = 0, which is the default.
319@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
320vex.w = 1.
321
4970191f
JB
322WARNING: Don't use this for production code - due to CPU errata the
323resulting code may not work on certain models.
324
43234a1e
L
325@cindex @samp{-mevexlig=} option, i386
326@cindex @samp{-mevexlig=} option, x86-64
327@item -mevexlig=@var{128}
328@itemx -mevexlig=@var{256}
329@itemx -mevexlig=@var{512}
330These options control how the assembler should encode length-ignored
331(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
332EVEX instructions with 128bit vector length, which is the default.
333@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
334encode LIG EVEX instructions with 256bit and 512bit vector length,
335respectively.
336
337@cindex @samp{-mevexwig=} option, i386
338@cindex @samp{-mevexwig=} option, x86-64
339@item -mevexwig=@var{0}
340@itemx -mevexwig=@var{1}
341These options control how the assembler should encode w-ignored (WIG)
342EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
343EVEX instructions with evex.w = 0, which is the default.
344@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
345evex.w = 1.
346
1efbbeb4
L
347@cindex @samp{-mmnemonic=} option, i386
348@cindex @samp{-mmnemonic=} option, x86-64
349@item -mmnemonic=@var{att}
1f9bb1ca 350@itemx -mmnemonic=@var{intel}
34bca508 351This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
352The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
353take precedent.
354
355@cindex @samp{-msyntax=} option, i386
356@cindex @samp{-msyntax=} option, x86-64
357@item -msyntax=@var{att}
1f9bb1ca 358@itemx -msyntax=@var{intel}
34bca508 359This option specifies instruction syntax when processing instructions.
1efbbeb4
L
360The @code{.att_syntax} and @code{.intel_syntax} directives will
361take precedent.
362
363@cindex @samp{-mnaked-reg} option, i386
364@cindex @samp{-mnaked-reg} option, x86-64
365@item -mnaked-reg
33eaf5de 366This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 367The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 368
7e8b059b
L
369@cindex @samp{-madd-bnd-prefix} option, i386
370@cindex @samp{-madd-bnd-prefix} option, x86-64
371@item -madd-bnd-prefix
372This option forces the assembler to add BND prefix to all branches, even
373if such prefix was not explicitly specified in the source code.
374
8dcea932
L
375@cindex @samp{-mshared} option, i386
376@cindex @samp{-mshared} option, x86-64
377@item -mno-shared
378On ELF target, the assembler normally optimizes out non-PLT relocations
379against defined non-weak global branch targets with default visibility.
380The @samp{-mshared} option tells the assembler to generate code which
381may go into a shared library where all non-weak global branch targets
382with default visibility can be preempted. The resulting code is
383slightly bigger. This option only affects the handling of branch
384instructions.
385
167ad85b
TG
386@cindex @samp{-mbig-obj} option, x86-64
387@item -mbig-obj
388On x86-64 PE/COFF target this option forces the use of big object file
389format, which allows more than 32768 sections.
390
d022bddd
IT
391@cindex @samp{-momit-lock-prefix=} option, i386
392@cindex @samp{-momit-lock-prefix=} option, x86-64
393@item -momit-lock-prefix=@var{no}
394@itemx -momit-lock-prefix=@var{yes}
395These options control how the assembler should encode lock prefix.
396This option is intended as a workaround for processors, that fail on
397lock prefix. This option can only be safely used with single-core,
398single-thread computers
399@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
400@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
401which is the default.
402
e4e00185
AS
403@cindex @samp{-mfence-as-lock-add=} option, i386
404@cindex @samp{-mfence-as-lock-add=} option, x86-64
405@item -mfence-as-lock-add=@var{no}
406@itemx -mfence-as-lock-add=@var{yes}
407These options control how the assembler should encode lfence, mfence and
408sfence.
409@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
410sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
411@samp{lock addl $0x0, (%esp)} in 32-bit mode.
412@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
413sfence as usual, which is the default.
414
0cb4071e
L
415@cindex @samp{-mrelax-relocations=} option, i386
416@cindex @samp{-mrelax-relocations=} option, x86-64
417@item -mrelax-relocations=@var{no}
418@itemx -mrelax-relocations=@var{yes}
419These options control whether the assembler should generate relax
420relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
421R_X86_64_REX_GOTPCRELX, in 64-bit mode.
422@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
423@option{-mrelax-relocations=@var{no}} will not generate relax
424relocations. The default can be controlled by a configure option
425@option{--enable-x86-relax-relocations}.
426
e379e5f3
L
427@cindex @samp{-malign-branch-boundary=} option, i386
428@cindex @samp{-malign-branch-boundary=} option, x86-64
429@item -malign-branch-boundary=@var{NUM}
430This option controls how the assembler should align branches with segment
431prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
432no less than 16. Branches will be aligned within @var{NUM} byte
433boundary. @option{-malign-branch-boundary=0}, which is the default,
434doesn't align branches.
435
436@cindex @samp{-malign-branch=} option, i386
437@cindex @samp{-malign-branch=} option, x86-64
438@item -malign-branch=@var{TYPE}[+@var{TYPE}...]
439This option specifies types of branches to align. @var{TYPE} is
440combination of @samp{jcc}, which aligns conditional jumps,
441@samp{fused}, which aligns fused conditional jumps, @samp{jmp},
442which aligns unconditional jumps, @samp{call} which aligns calls,
443@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
444jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
445
446@cindex @samp{-malign-branch-prefix-size=} option, i386
447@cindex @samp{-malign-branch-prefix-size=} option, x86-64
448@item -malign-branch-prefix-size=@var{NUM}
449This option specifies the maximum number of prefixes on an instruction
450to align branches. @var{NUM} should be between 0 and 5. The default
451@var{NUM} is 5.
452
76cf450b
L
453@cindex @samp{-mbranches-within-32B-boundaries} option, i386
454@cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
455@item -mbranches-within-32B-boundaries
456This option aligns conditional jumps, fused conditional jumps and
457unconditional jumps within 32 byte boundary with up to 5 segment prefixes
458on an instruction. It is equivalent to
459@option{-malign-branch-boundary=32}
460@option{-malign-branch=jcc+fused+jmp}
461@option{-malign-branch-prefix-size=5}.
462The default doesn't align branches.
463
b4a3a7b4
L
464@cindex @samp{-mx86-used-note=} option, i386
465@cindex @samp{-mx86-used-note=} option, x86-64
466@item -mx86-used-note=@var{no}
467@itemx -mx86-used-note=@var{yes}
468These options control whether the assembler should generate
469GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
470GNU property notes. The default can be controlled by the
471@option{--enable-x86-used-note} configure option.
472
d3d3c6db
IT
473@cindex @samp{-mevexrcig=} option, i386
474@cindex @samp{-mevexrcig=} option, x86-64
475@item -mevexrcig=@var{rne}
476@itemx -mevexrcig=@var{rd}
477@itemx -mevexrcig=@var{ru}
478@itemx -mevexrcig=@var{rz}
479These options control how the assembler should encode SAE-only
480EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
481of EVEX instruction with 00, which is the default.
482@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
483and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
484with 01, 10 and 11 RC bits, respectively.
485
5db04b09
L
486@cindex @samp{-mamd64} option, x86-64
487@cindex @samp{-mintel64} option, x86-64
488@item -mamd64
489@itemx -mintel64
490This option specifies that the assembler should accept only AMD64 or
4b5aaf5f
L
491Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
492only and AMD64 ISAs.
5db04b09 493
b6f8c7c4
L
494@cindex @samp{-O0} option, i386
495@cindex @samp{-O0} option, x86-64
496@cindex @samp{-O} option, i386
497@cindex @samp{-O} option, x86-64
498@cindex @samp{-O1} option, i386
499@cindex @samp{-O1} option, x86-64
500@cindex @samp{-O2} option, i386
501@cindex @samp{-O2} option, x86-64
502@cindex @samp{-Os} option, i386
503@cindex @samp{-Os} option, x86-64
504@item -O0 | -O | -O1 | -O2 | -Os
505Optimize instruction encoding with smaller instruction size. @samp{-O}
506and @samp{-O1} encode 64-bit register load instructions with 64-bit
507immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 508immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
509register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
510register clearing instructions with 128-bit VEX vector register
511clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 512register load/store instructions with VEX vector register load/store
a0a1771e
JB
513instructions, and encode 128-bit/256-bit EVEX packed integer logical
514instructions with 128-bit/256-bit VEX packed integer logical.
515
516@samp{-O2} includes @samp{-O1} optimization plus encodes
517256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
518EVEX vector register clearing instructions. In 64-bit mode VEX encoded
519instructions with commutative source operands will also have their
520source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
521instead of the 3-byte one. Certain forms of AND as well as OR with the
522same (register) operand specified twice will also be changed to TEST.
a0a1771e 523
b6f8c7c4
L
524@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
525and 64-bit register tests with immediate as 8-bit register test with
526immediate. @samp{-O0} turns off this optimization.
527
55b62671 528@end table
731caf76 529@c man end
e413e4e9 530
a6c24e68
NC
531@node i386-Directives
532@section x86 specific Directives
533
534@cindex machine directives, x86
535@cindex x86 machine directives
536@table @code
537
538@cindex @code{lcomm} directive, COFF
539@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
540Reserve @var{length} (an absolute expression) bytes for a local common
541denoted by @var{symbol}. The section and value of @var{symbol} are
542those of the new local common. The addresses are allocated in the bss
704209c0
NC
543section, so that at run-time the bytes start off zeroed. Since
544@var{symbol} is not declared global, it is normally not visible to
545@code{@value{LD}}. The optional third parameter, @var{alignment},
546specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
547
548This directive is only available for COFF based x86 targets.
549
102e9361
NC
550@cindex @code{largecomm} directive, ELF
551@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
552This directive behaves in the same way as the @code{comm} directive
553except that the data is placed into the @var{.lbss} section instead of
554the @var{.bss} section @ref{Comm}.
555
556The directive is intended to be used for data which requires a large
557amount of space, and it is only available for ELF based x86_64
558targets.
559
f2f51cd5
NC
560@cindex @code{value} directive
561@item .value @var{expression} [, @var{expression}]
562This directive behaves in the same way as the @code{.short} directive,
563taking a series of comma separated expressions and storing them as
564two-byte wide values into the current section.
565
a6c24e68 566@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
567
568@end table
569
252b5132 570@node i386-Syntax
7c31ae13
NC
571@section i386 Syntactical Considerations
572@menu
573* i386-Variations:: AT&T Syntax versus Intel Syntax
574* i386-Chars:: Special Characters
575@end menu
576
577@node i386-Variations
578@subsection AT&T Syntax versus Intel Syntax
252b5132 579
e413e4e9
AM
580@cindex i386 intel_syntax pseudo op
581@cindex intel_syntax pseudo op, i386
582@cindex i386 att_syntax pseudo op
583@cindex att_syntax pseudo op, i386
252b5132
RH
584@cindex i386 syntax compatibility
585@cindex syntax compatibility, i386
55b62671
AJ
586@cindex x86-64 intel_syntax pseudo op
587@cindex intel_syntax pseudo op, x86-64
588@cindex x86-64 att_syntax pseudo op
589@cindex att_syntax pseudo op, x86-64
590@cindex x86-64 syntax compatibility
591@cindex syntax compatibility, x86-64
e413e4e9
AM
592
593@code{@value{AS}} now supports assembly using Intel assembler syntax.
594@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
595back to the usual AT&T mode for compatibility with the output of
596@code{@value{GCC}}. Either of these directives may have an optional
597argument, @code{prefix}, or @code{noprefix} specifying whether registers
598require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
599different from Intel syntax. We mention these differences because
600almost all 80386 documents use Intel syntax. Notable differences
601between the two syntaxes are:
602
603@cindex immediate operands, i386
604@cindex i386 immediate operands
605@cindex register operands, i386
606@cindex i386 register operands
607@cindex jump/call operands, i386
608@cindex i386 jump/call operands
609@cindex operand delimiters, i386
55b62671
AJ
610
611@cindex immediate operands, x86-64
612@cindex x86-64 immediate operands
613@cindex register operands, x86-64
614@cindex x86-64 register operands
615@cindex jump/call operands, x86-64
616@cindex x86-64 jump/call operands
617@cindex operand delimiters, x86-64
252b5132
RH
618@itemize @bullet
619@item
620AT&T immediate operands are preceded by @samp{$}; Intel immediate
621operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
622AT&T register operands are preceded by @samp{%}; Intel register operands
623are undelimited. AT&T absolute (as opposed to PC relative) jump/call
624operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
625
626@cindex i386 source, destination operands
627@cindex source, destination operands; i386
55b62671
AJ
628@cindex x86-64 source, destination operands
629@cindex source, destination operands; x86-64
252b5132
RH
630@item
631AT&T and Intel syntax use the opposite order for source and destination
632operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
633@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
634previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
635instructions with 2 immediate operands, such as the @samp{enter}
636instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
637
638@cindex mnemonic suffixes, i386
639@cindex sizes operands, i386
640@cindex i386 size suffixes
55b62671
AJ
641@cindex mnemonic suffixes, x86-64
642@cindex sizes operands, x86-64
643@cindex x86-64 size suffixes
252b5132
RH
644@item
645In AT&T syntax the size of memory operands is determined from the last
646character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 647@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
648(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
649of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
650(256-bit vector) and zmm (512-bit vector) memory references, only when there's
651no other way to disambiguate an instruction. Intel syntax accomplishes this by
652prefixing memory operands (@emph{not} the instruction mnemonics) with
653@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
654@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
655syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
656syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
657@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 658
4b06377f
L
659In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
660instruction with the 64-bit displacement or immediate operand.
661
252b5132
RH
662@cindex return instructions, i386
663@cindex i386 jump, call, return
55b62671
AJ
664@cindex return instructions, x86-64
665@cindex x86-64 jump, call, return
252b5132
RH
666@item
667Immediate form long jumps and calls are
668@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
669Intel syntax is
670@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
671instruction
672is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
673@samp{ret far @var{stack-adjust}}.
674
675@cindex sections, i386
676@cindex i386 sections
55b62671
AJ
677@cindex sections, x86-64
678@cindex x86-64 sections
252b5132
RH
679@item
680The AT&T assembler does not provide support for multiple section
681programs. Unix style systems expect all programs to be single sections.
682@end itemize
683
7c31ae13
NC
684@node i386-Chars
685@subsection Special Characters
686
687@cindex line comment character, i386
688@cindex i386 line comment character
689The presence of a @samp{#} appearing anywhere on a line indicates the
690start of a comment that extends to the end of that line.
691
692If a @samp{#} appears as the first character of a line then the whole
693line is treated as a comment, but in this case the line can also be a
694logical line number directive (@pxref{Comments}) or a preprocessor
695control command (@pxref{Preprocessing}).
696
a05a5b64 697If the @option{--divide} command-line option has not been specified
7c31ae13
NC
698then the @samp{/} character appearing anywhere on a line also
699introduces a line comment.
700
701@cindex line separator, i386
702@cindex statement separator, i386
703@cindex i386 line separator
704The @samp{;} character can be used to separate statements on the same
705line.
706
252b5132 707@node i386-Mnemonics
d3b47e2b
L
708@section i386-Mnemonics
709@subsection Instruction Naming
252b5132
RH
710
711@cindex i386 instruction naming
712@cindex instruction naming, i386
55b62671
AJ
713@cindex x86-64 instruction naming
714@cindex instruction naming, x86-64
715
252b5132 716Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
717specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
718and @samp{q} specify byte, word, long and quadruple word operands. If
719no suffix is specified by an instruction then @code{@value{AS}} tries to
720fill in the missing suffix based on the destination register operand
721(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
722to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
723@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
724assembler which assumes that a missing mnemonic suffix implies long
725operand size. (This incompatibility does not affect compiler output
726since compilers always explicitly specify the mnemonic suffix.)
252b5132 727
c006a730
JB
728When there is no sizing suffix and no (suitable) register operands to
729deduce the size of memory operands, with a few exceptions and where long
730operand size is possible in the first place, operand size will default
731to long in 32- and 64-bit modes. Similarly it will default to short in
73216-bit mode. Noteworthy exceptions are
733
734@itemize @bullet
735@item
736Instructions with an implicit on-stack operand as well as branches,
737which default to quad in 64-bit mode.
738
739@item
740Sign- and zero-extending moves, which default to byte size source
741operands.
742
743@item
744Floating point insns with integer operands, which default to short (for
745perhaps historical reasons).
746
747@item
748CRC32 with a 64-bit destination, which defaults to a quad source
749operand.
750
751@end itemize
752
b6169b20
L
753@cindex encoding options, i386
754@cindex encoding options, x86-64
755
86fa6981
L
756Different encoding options can be specified via pseudo prefixes:
757
758@itemize @bullet
759@item
760@samp{@{disp8@}} -- prefer 8-bit displacement.
761
762@item
763@samp{@{disp32@}} -- prefer 32-bit displacement.
764
765@item
766@samp{@{load@}} -- prefer load-form instruction.
767
768@item
769@samp{@{store@}} -- prefer store-form instruction.
770
771@item
42e04b36 772@samp{@{vex@}} -- encode with VEX prefix.
86fa6981
L
773
774@item
42e04b36 775@samp{@{vex3@}} -- encode with 3-byte VEX prefix.
86fa6981
L
776
777@item
778@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
779
780@item
781@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
782instructions (x86-64 only). Note that this differs from the @samp{rex}
783prefix which generates REX prefix unconditionally.
b6f8c7c4
L
784
785@item
786@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 787@end itemize
b6169b20 788
252b5132
RH
789@cindex conversion instructions, i386
790@cindex i386 conversion instructions
55b62671
AJ
791@cindex conversion instructions, x86-64
792@cindex x86-64 conversion instructions
252b5132
RH
793The Intel-syntax conversion instructions
794
795@itemize @bullet
796@item
797@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
798
799@item
800@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
801
802@item
803@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
804
805@item
806@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
807
808@item
809@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
810(x86-64 only),
811
812@item
d5f0cf92 813@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 814@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
815@end itemize
816
817@noindent
55b62671
AJ
818are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
819@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
820instructions.
252b5132 821
0e6724de
L
822@cindex extension instructions, i386
823@cindex i386 extension instructions
824@cindex extension instructions, x86-64
825@cindex x86-64 extension instructions
826The Intel-syntax extension instructions
827
828@itemize @bullet
829@item
830@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
831
832@item
833@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
834
835@item
836@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
837(x86-64 only).
838
839@item
840@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
841
842@item
843@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
844(x86-64 only).
845
846@item
847@samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
848(x86-64 only).
849
850@item
851@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
852
853@item
854@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
855
856@item
857@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
858(x86-64 only).
859
860@item
861@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
862
863@item
864@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
865(x86-64 only).
866@end itemize
867
868@noindent
869are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
870@samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
871@samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
872@samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
873@samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
874
252b5132
RH
875@cindex jump instructions, i386
876@cindex call instructions, i386
55b62671
AJ
877@cindex jump instructions, x86-64
878@cindex call instructions, x86-64
252b5132
RH
879Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
880AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
881convention.
882
d3b47e2b 883@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
884
885@cindex i386 mnemonic compatibility
886@cindex mnemonic compatibility, i386
887
888@code{@value{AS}} supports assembly using Intel mnemonic.
889@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
890@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
891syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
892Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
893@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
894@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
895assembler with different mnemonics from those in Intel IA32 specification.
896@code{@value{GCC}} generates those instructions with AT&T mnemonic.
897
bc31405e
L
898@itemize @bullet
899@item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
900register. @samp{movsxd} should be used to encode 16-bit or 32-bit
901destination register with both AT&T and Intel mnemonics.
902@end itemize
903
252b5132
RH
904@node i386-Regs
905@section Register Naming
906
907@cindex i386 registers
908@cindex registers, i386
55b62671
AJ
909@cindex x86-64 registers
910@cindex registers, x86-64
252b5132
RH
911Register operands are always prefixed with @samp{%}. The 80386 registers
912consist of
913
914@itemize @bullet
915@item
916the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
917@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
918frame pointer), and @samp{%esp} (the stack pointer).
919
920@item
921the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
922@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
923
924@item
925the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
926@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
927are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
928@samp{%cx}, and @samp{%dx})
929
930@item
931the 6 section registers @samp{%cs} (code section), @samp{%ds}
932(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
933and @samp{%gs}.
934
935@item
4bde3cdd
UD
936the 5 processor control registers @samp{%cr0}, @samp{%cr2},
937@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
938
939@item
940the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
941@samp{%db3}, @samp{%db6}, and @samp{%db7}.
942
943@item
944the 2 test registers @samp{%tr6} and @samp{%tr7}.
945
946@item
947the 8 floating point register stack @samp{%st} or equivalently
948@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
949@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
950These registers are overloaded by 8 MMX registers @samp{%mm0},
951@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
952@samp{%mm6} and @samp{%mm7}.
953
954@item
4bde3cdd 955the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
956@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
957@end itemize
958
959The AMD x86-64 architecture extends the register set by:
960
961@itemize @bullet
962@item
963enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
964accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
965@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
966pointer)
967
968@item
969the 8 extended registers @samp{%r8}--@samp{%r15}.
970
971@item
4bde3cdd 972the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
973
974@item
4bde3cdd 975the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
976
977@item
4bde3cdd 978the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
979
980@item
981the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
982
983@item
984the 8 debug registers: @samp{%db8}--@samp{%db15}.
985
986@item
4bde3cdd
UD
987the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
988@end itemize
989
990With the AVX extensions more registers were made available:
991
992@itemize @bullet
993
994@item
995the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
996available in 32-bit mode). The bottom 128 bits are overlaid with the
997@samp{xmm0}--@samp{xmm15} registers.
998
999@end itemize
1000
1001The AVX2 extensions made in 64-bit mode more registers available:
1002
1003@itemize @bullet
1004
1005@item
1006the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
1007registers @samp{%ymm16}--@samp{%ymm31}.
1008
1009@end itemize
1010
1011The AVX512 extensions added the following registers:
1012
1013@itemize @bullet
1014
1015@item
1016the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1017available in 32-bit mode). The bottom 128 bits are overlaid with the
1018@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1019overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1020
1021@item
1022the 8 mask registers @samp{%k0}--@samp{%k7}.
1023
252b5132
RH
1024@end itemize
1025
1026@node i386-Prefixes
1027@section Instruction Prefixes
1028
1029@cindex i386 instruction prefixes
1030@cindex instruction prefixes, i386
1031@cindex prefixes, i386
1032Instruction prefixes are used to modify the following instruction. They
1033are used to repeat string instructions, to provide section overrides, to
1034perform bus lock operations, and to change operand and address sizes.
1035(Most instructions that normally operate on 32-bit operands will use
103616-bit operands if the instruction has an ``operand size'' prefix.)
1037Instruction prefixes are best written on the same line as the instruction
1038they act upon. For example, the @samp{scas} (scan string) instruction is
1039repeated with:
1040
1041@smallexample
1042 repne scas %es:(%edi),%al
1043@end smallexample
1044
1045You may also place prefixes on the lines immediately preceding the
1046instruction, but this circumvents checks that @code{@value{AS}} does
1047with prefixes, and will not work with all prefixes.
1048
1049Here is a list of instruction prefixes:
1050
1051@cindex section override prefixes, i386
1052@itemize @bullet
1053@item
1054Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1055@samp{fs}, @samp{gs}. These are automatically added by specifying
1056using the @var{section}:@var{memory-operand} form for memory references.
1057
1058@cindex size prefixes, i386
1059@item
1060Operand/Address size prefixes @samp{data16} and @samp{addr16}
1061change 32-bit operands/addresses into 16-bit operands/addresses,
1062while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1063@code{.code16} section) into 32-bit operands/addresses. These prefixes
1064@emph{must} appear on the same line of code as the instruction they
1065modify. For example, in a 16-bit @code{.code16} section, you might
1066write:
1067
1068@smallexample
1069 addr32 jmpl *(%ebx)
1070@end smallexample
1071
1072@cindex bus lock prefixes, i386
1073@cindex inhibiting interrupts, i386
1074@item
1075The bus lock prefix @samp{lock} inhibits interrupts during execution of
1076the instruction it precedes. (This is only valid with certain
1077instructions; see a 80386 manual for details).
1078
1079@cindex coprocessor wait, i386
1080@item
1081The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1082complete the current instruction. This should never be needed for the
108380386/80387 combination.
1084
1085@cindex repeat prefixes, i386
1086@item
1087The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1088to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1089times if the current address size is 16-bits).
55b62671
AJ
1090@cindex REX prefixes, i386
1091@item
1092The @samp{rex} family of prefixes is used by x86-64 to encode
1093extensions to i386 instruction set. The @samp{rex} prefix has four
1094bits --- an operand size overwrite (@code{64}) used to change operand size
1095from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1096register set.
1097
1098You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1099instruction emits @samp{rex} prefix with all the bits set. By omitting
1100the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1101prefixes as well. Normally, there is no need to write the prefixes
1102explicitly, since gas will automatically generate them based on the
1103instruction operands.
252b5132
RH
1104@end itemize
1105
1106@node i386-Memory
1107@section Memory References
1108
1109@cindex i386 memory references
1110@cindex memory references, i386
55b62671
AJ
1111@cindex x86-64 memory references
1112@cindex memory references, x86-64
252b5132
RH
1113An Intel syntax indirect memory reference of the form
1114
1115@smallexample
1116@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1117@end smallexample
1118
1119@noindent
1120is translated into the AT&T syntax
1121
1122@smallexample
1123@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1124@end smallexample
1125
1126@noindent
1127where @var{base} and @var{index} are the optional 32-bit base and
1128index registers, @var{disp} is the optional displacement, and
1129@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1130to calculate the address of the operand. If no @var{scale} is
1131specified, @var{scale} is taken to be 1. @var{section} specifies the
1132optional section register for the memory operand, and may override the
1133default section register (see a 80386 manual for section register
1134defaults). Note that section overrides in AT&T syntax @emph{must}
1135be preceded by a @samp{%}. If you specify a section override which
1136coincides with the default section register, @code{@value{AS}} does @emph{not}
1137output any section register override prefixes to assemble the given
1138instruction. Thus, section overrides can be specified to emphasize which
1139section register is used for a given memory operand.
1140
1141Here are some examples of Intel and AT&T style memory references:
1142
1143@table @asis
1144@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1145@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1146missing, and the default section is used (@samp{%ss} for addressing with
1147@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1148
1149@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1150@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1151@samp{foo}. All other fields are missing. The section register here
1152defaults to @samp{%ds}.
1153
1154@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1155This uses the value pointed to by @samp{foo} as a memory operand.
1156Note that @var{base} and @var{index} are both missing, but there is only
1157@emph{one} @samp{,}. This is a syntactic exception.
1158
1159@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1160This selects the contents of the variable @samp{foo} with section
1161register @var{section} being @samp{%gs}.
1162@end table
1163
1164Absolute (as opposed to PC relative) call and jump operands must be
1165prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1166always chooses PC relative addressing for jump/call labels.
1167
1168Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1169@emph{must} specify its size (byte, word, long, or quadruple) with an
1170instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1171respectively).
1172
1173The x86-64 architecture adds an RIP (instruction pointer relative)
1174addressing. This addressing mode is specified by using @samp{rip} as a
1175base register. Only constant offsets are valid. For example:
1176
1177@table @asis
1178@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1179Points to the address 1234 bytes past the end of the current
1180instruction.
1181
1182@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1183Points to the @code{symbol} in RIP relative way, this is shorter than
1184the default absolute addressing.
1185@end table
1186
1187Other addressing modes remain unchanged in x86-64 architecture, except
1188registers used are 64-bit instead of 32-bit.
252b5132 1189
fddf5b5b 1190@node i386-Jumps
252b5132
RH
1191@section Handling of Jump Instructions
1192
1193@cindex jump optimization, i386
1194@cindex i386 jump optimization
55b62671
AJ
1195@cindex jump optimization, x86-64
1196@cindex x86-64 jump optimization
252b5132
RH
1197Jump instructions are always optimized to use the smallest possible
1198displacements. This is accomplished by using byte (8-bit) displacement
1199jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1200is insufficient a long displacement is used. We do not support
252b5132
RH
1201word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1202instruction with the @samp{data16} instruction prefix), since the 80386
1203insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1204is added. (See also @pxref{i386-Arch})
252b5132
RH
1205
1206Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1207@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1208displacements, so that if you use these instructions (@code{@value{GCC}} does
1209not use them) you may get an error message (and incorrect code). The AT&T
121080386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1211to
1212
1213@smallexample
1214 jcxz cx_zero
1215 jmp cx_nonzero
1216cx_zero: jmp foo
1217cx_nonzero:
1218@end smallexample
1219
1220@node i386-Float
1221@section Floating Point
1222
1223@cindex i386 floating point
1224@cindex floating point, i386
55b62671
AJ
1225@cindex x86-64 floating point
1226@cindex floating point, x86-64
252b5132
RH
1227All 80387 floating point types except packed BCD are supported.
1228(BCD support may be added without much difficulty). These data
1229types are 16-, 32-, and 64- bit integers, and single (32-bit),
1230double (64-bit), and extended (80-bit) precision floating point.
1231Each supported type has an instruction mnemonic suffix and a constructor
1232associated with it. Instruction mnemonic suffixes specify the operand's
1233data type. Constructors build these data types into memory.
1234
1235@cindex @code{float} directive, i386
1236@cindex @code{single} directive, i386
1237@cindex @code{double} directive, i386
1238@cindex @code{tfloat} directive, i386
55b62671
AJ
1239@cindex @code{float} directive, x86-64
1240@cindex @code{single} directive, x86-64
1241@cindex @code{double} directive, x86-64
1242@cindex @code{tfloat} directive, x86-64
252b5132
RH
1243@itemize @bullet
1244@item
1245Floating point constructors are @samp{.float} or @samp{.single},
1246@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1247These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1248and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1249only supports this format via the @samp{fldt} (load 80-bit real to stack
1250top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1251
1252@cindex @code{word} directive, i386
1253@cindex @code{long} directive, i386
1254@cindex @code{int} directive, i386
1255@cindex @code{quad} directive, i386
55b62671
AJ
1256@cindex @code{word} directive, x86-64
1257@cindex @code{long} directive, x86-64
1258@cindex @code{int} directive, x86-64
1259@cindex @code{quad} directive, x86-64
252b5132
RH
1260@item
1261Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1262@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1263corresponding instruction mnemonic suffixes are @samp{s} (single),
1264@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1265the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1266quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1267stack) instructions.
1268@end itemize
1269
1270Register to register operations should not use instruction mnemonic suffixes.
1271@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1272wrote @samp{fst %st, %st(1)}, since all register to register operations
1273use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1274which converts @samp{%st} from 80-bit to 64-bit floating point format,
1275then stores the result in the 4 byte location @samp{mem})
1276
1277@node i386-SIMD
1278@section Intel's MMX and AMD's 3DNow! SIMD Operations
1279
1280@cindex MMX, i386
1281@cindex 3DNow!, i386
1282@cindex SIMD, i386
55b62671
AJ
1283@cindex MMX, x86-64
1284@cindex 3DNow!, x86-64
1285@cindex SIMD, x86-64
252b5132
RH
1286
1287@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1288instructions for integer data), available on Intel's Pentium MMX
1289processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1290Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1291instruction set (SIMD instructions for 32-bit floating point data)
1292available on AMD's K6-2 processor and possibly others in the future.
1293
1294Currently, @code{@value{AS}} does not support Intel's floating point
1295SIMD, Katmai (KNI).
1296
1297The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1298@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
129916-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1300floating point values. The MMX registers cannot be used at the same time
1301as the floating point stack.
1302
1303See Intel and AMD documentation, keeping in mind that the operand order in
1304instructions is reversed from the Intel syntax.
1305
f88c9eb0
SP
1306@node i386-LWP
1307@section AMD's Lightweight Profiling Instructions
1308
1309@cindex LWP, i386
1310@cindex LWP, x86-64
1311
1312@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1313instruction set, available on AMD's Family 15h (Orochi) processors.
1314
1315LWP enables applications to collect and manage performance data, and
1316react to performance events. The collection of performance data
1317requires no context switches. LWP runs in the context of a thread and
1318so several counters can be used independently across multiple threads.
1319LWP can be used in both 64-bit and legacy 32-bit modes.
1320
1321For detailed information on the LWP instruction set, see the
1322@cite{AMD Lightweight Profiling Specification} available at
1323@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1324
87973e9f
QN
1325@node i386-BMI
1326@section Bit Manipulation Instructions
1327
1328@cindex BMI, i386
1329@cindex BMI, x86-64
1330
1331@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1332
1333BMI instructions provide several instructions implementing individual
1334bit manipulation operations such as isolation, masking, setting, or
34bca508 1335resetting.
87973e9f
QN
1336
1337@c Need to add a specification citation here when available.
1338
2a2a0f38
QN
1339@node i386-TBM
1340@section AMD's Trailing Bit Manipulation Instructions
1341
1342@cindex TBM, i386
1343@cindex TBM, x86-64
1344
1345@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1346instruction set, available on AMD's BDVER2 processors (Trinity and
1347Viperfish).
1348
1349TBM instructions provide instructions implementing individual bit
1350manipulation operations such as isolating, masking, setting, resetting,
1351complementing, and operations on trailing zeros and ones.
1352
1353@c Need to add a specification citation here when available.
87973e9f 1354
252b5132
RH
1355@node i386-16bit
1356@section Writing 16-bit Code
1357
1358@cindex i386 16-bit code
1359@cindex 16-bit code, i386
1360@cindex real-mode code, i386
eecb386c 1361@cindex @code{code16gcc} directive, i386
252b5132
RH
1362@cindex @code{code16} directive, i386
1363@cindex @code{code32} directive, i386
55b62671
AJ
1364@cindex @code{code64} directive, i386
1365@cindex @code{code64} directive, x86-64
1366While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1367or 64-bit x86-64 code depending on the default configuration,
252b5132 1368it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1369mode code segments. To do this, put a @samp{.code16} or
1370@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1371be run in 16-bit mode. You can switch @code{@value{AS}} to writing
137232-bit code with the @samp{.code32} directive or 64-bit code with the
1373@samp{.code64} directive.
eecb386c
AM
1374
1375@samp{.code16gcc} provides experimental support for generating 16-bit
1376code from gcc, and differs from @samp{.code16} in that @samp{call},
1377@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1378@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1379default to 32-bit size. This is so that the stack pointer is
1380manipulated in the same way over function calls, allowing access to
1381function parameters at the same stack offsets as in 32-bit mode.
1382@samp{.code16gcc} also automatically adds address size prefixes where
1383necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1384
1385The code which @code{@value{AS}} generates in 16-bit mode will not
1386necessarily run on a 16-bit pre-80386 processor. To write code that
1387runs on such a processor, you must refrain from using @emph{any} 32-bit
1388constructs which require @code{@value{AS}} to output address or operand
1389size prefixes.
1390
1391Note that writing 16-bit code instructions by explicitly specifying a
1392prefix or an instruction mnemonic suffix within a 32-bit code section
1393generates different machine instructions than those generated for a
139416-bit code segment. In a 32-bit code section, the following code
1395generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1396value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1397
1398@smallexample
1399 pushw $4
1400@end smallexample
1401
1402The same code in a 16-bit code section would generate the machine
b45619c0 1403opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1404is correct since the processor default operand size is assumed to be 16
1405bits in a 16-bit code section.
1406
e413e4e9
AM
1407@node i386-Arch
1408@section Specifying CPU Architecture
1409
1410@cindex arch directive, i386
1411@cindex i386 arch directive
55b62671
AJ
1412@cindex arch directive, x86-64
1413@cindex x86-64 arch directive
e413e4e9
AM
1414
1415@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1416(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1417directive enables a warning when gas detects an instruction that is not
1418supported on the CPU specified. The choices for @var{cpu_type} are:
1419
1420@multitable @columnfractions .20 .20 .20 .20
1421@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1422@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1423@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1424@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1425@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1426@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1427@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1428@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1429@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1430@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1431@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1432@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1433@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1434@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1435@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1436@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1437@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1438@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1439@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1440@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1441@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1442@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1443@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1444@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1445@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
d777820b 1446@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1447@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1448@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
5d79adc4 1449@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1ceab344 1450@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1451@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1452@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
142861df
JB
1453@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1454@item @samp{.mcommit}
e413e4e9
AM
1455@end multitable
1456
fddf5b5b
AM
1457Apart from the warning, there are only two other effects on
1458@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1459@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1460will automatically use a two byte opcode sequence. The larger three
1461byte opcode sequence is used on the 486 (and when no architecture is
1462specified) because it executes faster on the 486. Note that you can
1463explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1464Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1465@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1466conditional jumps will be promoted when necessary to a two instruction
1467sequence consisting of a conditional jump of the opposite sense around
1468an unconditional jump to the target.
1469
5c6af06e
JB
1470Following the CPU architecture (but not a sub-architecture, which are those
1471starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1472control automatic promotion of conditional jumps. @samp{jumps} is the
1473default, and enables jump promotion; All external jumps will be of the long
1474variety, and file-local jumps will be promoted as necessary.
1475(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1476byte offset jumps, and warns about file-local conditional jumps that
1477@code{@value{AS}} promotes.
fddf5b5b
AM
1478Unconditional jumps are treated as for @samp{jumps}.
1479
1480For example
1481
1482@smallexample
1483 .arch i8086,nojumps
1484@end smallexample
e413e4e9 1485
bc31405e
L
1486@node i386-ISA
1487@section AMD64 ISA vs. Intel64 ISA
1488
1489There are some discrepancies between AMD64 and Intel64 ISAs.
1490
1491@itemize @bullet
1492@item For @samp{movsxd} with 16-bit destination register, AMD64
1493supports 32-bit source operand and Intel64 supports 16-bit source
1494operand.
5990e377
JB
1495
1496@item For far branches (with explicit memory operand), both ISAs support
149732- and 16-bit operand size. Intel64 additionally supports 64-bit
1498operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1499and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1500syntax.
1501
1502@item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1503and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1504while Intel64 additionally supports 64-bit operand sise (80-bit memory
1505operands).
1506
bc31405e
L
1507@end itemize
1508
5c9352f3
AM
1509@node i386-Bugs
1510@section AT&T Syntax bugs
1511
1512The UnixWare assembler, and probably other AT&T derived ix86 Unix
1513assemblers, generate floating point instructions with reversed source
1514and destination registers in certain cases. Unfortunately, gcc and
1515possibly many other programs use this reversed syntax, so we're stuck
1516with it.
1517
1518For example
1519
1520@smallexample
1521 fsub %st,%st(3)
1522@end smallexample
1523@noindent
1524results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1525than the expected @samp{%st(3) - %st}. This happens with all the
1526non-commutative arithmetic floating point operations with two register
1527operands where the source register is @samp{%st} and the destination
1528register is @samp{%st(i)}.
1529
252b5132
RH
1530@node i386-Notes
1531@section Notes
1532
1533@cindex i386 @code{mul}, @code{imul} instructions
1534@cindex @code{mul} instruction, i386
1535@cindex @code{imul} instruction, i386
55b62671
AJ
1536@cindex @code{mul} instruction, x86-64
1537@cindex @code{imul} instruction, x86-64
252b5132 1538There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1539instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1540multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1541for @samp{imul}) can be output only in the one operand form. Thus,
1542@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1543the expanding multiply would clobber the @samp{%edx} register, and this
1544would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
154564-bit product in @samp{%edx:%eax}.
1546
1547We have added a two operand form of @samp{imul} when the first operand
1548is an immediate mode expression and the second operand is a register.
1549This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1550example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1551$69, %eax, %eax}.
1552
This page took 1.046173 seconds and 4 git commands to generate.