*** empty log message ***
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037 1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
aa820537 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
731caf76
L
6@c man end
7
252b5132
RH
8@ifset GENERIC
9@page
10@node i386-Dependent
11@chapter 80386 Dependent Features
12@end ifset
13@ifclear GENERIC
14@node Machine Dependencies
15@chapter 80386 Dependent Features
16@end ifclear
17
18@cindex i386 support
b6169b20 19@cindex i80386 support
55b62671
AJ
20@cindex x86-64 support
21
22The i386 version @code{@value{AS}} supports both the original Intel 386
23architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24extending the Intel architecture to 64-bits.
25
252b5132
RH
26@menu
27* i386-Options:: Options
a6c24e68 28* i386-Directives:: X86 specific directives
252b5132
RH
29* i386-Syntax:: AT&T Syntax versus Intel Syntax
30* i386-Mnemonics:: Instruction Naming
31* i386-Regs:: Register Naming
32* i386-Prefixes:: Instruction Prefixes
33* i386-Memory:: Memory References
fddf5b5b 34* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
35* i386-Float:: Floating Point
36* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 37* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 38* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 39* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 40* i386-16bit:: Writing 16-bit Code
e413e4e9 41* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
42* i386-Bugs:: AT&T Syntax bugs
43* i386-Notes:: Notes
44@end menu
45
46@node i386-Options
47@section Options
48
55b62671
AJ
49@cindex options for i386
50@cindex options for x86-64
51@cindex i386 options
52@cindex x86-64 options
53
54The i386 version of @code{@value{AS}} has a few machine
55dependent options:
56
731caf76
L
57@c man begin OPTIONS
58@table @gcctabopt
55b62671
AJ
59@cindex @samp{--32} option, i386
60@cindex @samp{--32} option, x86-64
570561f7
L
61@cindex @samp{--x32} option, i386
62@cindex @samp{--x32} option, x86-64
55b62671
AJ
63@cindex @samp{--64} option, i386
64@cindex @samp{--64} option, x86-64
570561f7 65@item --32 | --x32 | --64
35cc6a0b 66Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 67implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
68imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69respectively.
55b62671
AJ
70
71These options are only available with the ELF object file format, and
72require that the necessary BFD support has been included (on a 32-bit
73platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74usage and use x86-64 as target platform).
12b55ccc
L
75
76@item -n
77By default, x86 GAS replaces multiple nop instructions used for
78alignment within code sections with multi-byte nop instructions such
79as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
9103f4f4
L
114@code{k6},
115@code{k6_2},
116@code{athlon},
9103f4f4
L
117@code{opteron},
118@code{k8},
1ceab344 119@code{amdfam10},
68339fdf 120@code{bdver1},
9103f4f4
L
121@code{generic32} and
122@code{generic64}.
123
6305a203
L
124In addition to the basic instruction set, the assembler can be told to
125accept various extension mnemonics. For example,
126@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
127@var{vmx}. The following extensions are currently supported:
309d3373
JB
128@code{8087},
129@code{287},
130@code{387},
131@code{no87},
6305a203 132@code{mmx},
309d3373 133@code{nommx},
6305a203
L
134@code{sse},
135@code{sse2},
136@code{sse3},
137@code{ssse3},
138@code{sse4.1},
139@code{sse4.2},
140@code{sse4},
309d3373 141@code{nosse},
c0f3af97 142@code{avx},
309d3373 143@code{noavx},
6305a203
L
144@code{vmx},
145@code{smx},
f03fe4c1 146@code{xsave},
c7b8aa3a 147@code{xsaveopt},
c0f3af97 148@code{aes},
594ab6a3 149@code{pclmul},
c7b8aa3a
L
150@code{fsgsbase},
151@code{rdrnd},
152@code{f16c},
c0f3af97 153@code{fma},
f1f8f695
L
154@code{movbe},
155@code{ept},
bd5295b2 156@code{clflush},
f88c9eb0 157@code{lwp},
5dd85c99
SP
158@code{fma4},
159@code{xop},
bd5295b2 160@code{syscall},
1b7f3fb0 161@code{rdtscp},
6305a203
L
162@code{3dnow},
163@code{3dnowa},
164@code{sse4a},
165@code{sse5},
166@code{svme},
167@code{abm} and
168@code{padlock}.
309d3373
JB
169Note that rather than extending a basic instruction set, the extension
170mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
171
172When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
173@code{.arch} directive will take precedent.
174
175@cindex @samp{-mtune=} option, i386
176@cindex @samp{-mtune=} option, x86-64
177@item -mtune=@var{CPU}
178This option specifies a processor to optimize for. When used in
179conjunction with the @option{-march} option, only instructions
180of the processor specified by the @option{-march} option will be
181generated.
182
6305a203
L
183Valid @var{CPU} values are identical to the processor list of
184@option{-march=@var{CPU}}.
9103f4f4 185
c0f3af97
L
186@cindex @samp{-msse2avx} option, i386
187@cindex @samp{-msse2avx} option, x86-64
188@item -msse2avx
189This option specifies that the assembler should encode SSE instructions
190with VEX prefix.
191
daf50ae7
L
192@cindex @samp{-msse-check=} option, i386
193@cindex @samp{-msse-check=} option, x86-64
194@item -msse-check=@var{none}
1f9bb1ca
AS
195@itemx -msse-check=@var{warning}
196@itemx -msse-check=@var{error}
daf50ae7
L
197These options control if the assembler should check SSE intructions.
198@option{-msse-check=@var{none}} will make the assembler not to check SSE
199instructions, which is the default. @option{-msse-check=@var{warning}}
200will make the assembler issue a warning for any SSE intruction.
201@option{-msse-check=@var{error}} will make the assembler issue an error
202for any SSE intruction.
203
539f890d
L
204@cindex @samp{-mavxscalar=} option, i386
205@cindex @samp{-mavxscalar=} option, x86-64
206@item -mavxscalar=@var{128}
1f9bb1ca 207@itemx -mavxscalar=@var{256}
539f890d
L
208This options control how the assembler should encode scalar AVX
209instructions. @option{-mavxscalar=@var{128}} will encode scalar
210AVX instructions with 128bit vector length, which is the default.
211@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
212with 256bit vector length.
213
1efbbeb4
L
214@cindex @samp{-mmnemonic=} option, i386
215@cindex @samp{-mmnemonic=} option, x86-64
216@item -mmnemonic=@var{att}
1f9bb1ca 217@itemx -mmnemonic=@var{intel}
1efbbeb4
L
218This option specifies instruction mnemonic for matching instructions.
219The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
220take precedent.
221
222@cindex @samp{-msyntax=} option, i386
223@cindex @samp{-msyntax=} option, x86-64
224@item -msyntax=@var{att}
1f9bb1ca 225@itemx -msyntax=@var{intel}
1efbbeb4
L
226This option specifies instruction syntax when processing instructions.
227The @code{.att_syntax} and @code{.intel_syntax} directives will
228take precedent.
229
230@cindex @samp{-mnaked-reg} option, i386
231@cindex @samp{-mnaked-reg} option, x86-64
232@item -mnaked-reg
233This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 234The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 235
55b62671 236@end table
731caf76 237@c man end
e413e4e9 238
a6c24e68
NC
239@node i386-Directives
240@section x86 specific Directives
241
242@cindex machine directives, x86
243@cindex x86 machine directives
244@table @code
245
246@cindex @code{lcomm} directive, COFF
247@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
248Reserve @var{length} (an absolute expression) bytes for a local common
249denoted by @var{symbol}. The section and value of @var{symbol} are
250those of the new local common. The addresses are allocated in the bss
704209c0
NC
251section, so that at run-time the bytes start off zeroed. Since
252@var{symbol} is not declared global, it is normally not visible to
253@code{@value{LD}}. The optional third parameter, @var{alignment},
254specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
255
256This directive is only available for COFF based x86 targets.
257
258@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
259@c .largecomm
260
261@end table
262
252b5132
RH
263@node i386-Syntax
264@section AT&T Syntax versus Intel Syntax
265
e413e4e9
AM
266@cindex i386 intel_syntax pseudo op
267@cindex intel_syntax pseudo op, i386
268@cindex i386 att_syntax pseudo op
269@cindex att_syntax pseudo op, i386
252b5132
RH
270@cindex i386 syntax compatibility
271@cindex syntax compatibility, i386
55b62671
AJ
272@cindex x86-64 intel_syntax pseudo op
273@cindex intel_syntax pseudo op, x86-64
274@cindex x86-64 att_syntax pseudo op
275@cindex att_syntax pseudo op, x86-64
276@cindex x86-64 syntax compatibility
277@cindex syntax compatibility, x86-64
e413e4e9
AM
278
279@code{@value{AS}} now supports assembly using Intel assembler syntax.
280@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
281back to the usual AT&T mode for compatibility with the output of
282@code{@value{GCC}}. Either of these directives may have an optional
283argument, @code{prefix}, or @code{noprefix} specifying whether registers
284require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
285different from Intel syntax. We mention these differences because
286almost all 80386 documents use Intel syntax. Notable differences
287between the two syntaxes are:
288
289@cindex immediate operands, i386
290@cindex i386 immediate operands
291@cindex register operands, i386
292@cindex i386 register operands
293@cindex jump/call operands, i386
294@cindex i386 jump/call operands
295@cindex operand delimiters, i386
55b62671
AJ
296
297@cindex immediate operands, x86-64
298@cindex x86-64 immediate operands
299@cindex register operands, x86-64
300@cindex x86-64 register operands
301@cindex jump/call operands, x86-64
302@cindex x86-64 jump/call operands
303@cindex operand delimiters, x86-64
252b5132
RH
304@itemize @bullet
305@item
306AT&T immediate operands are preceded by @samp{$}; Intel immediate
307operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
308AT&T register operands are preceded by @samp{%}; Intel register operands
309are undelimited. AT&T absolute (as opposed to PC relative) jump/call
310operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
311
312@cindex i386 source, destination operands
313@cindex source, destination operands; i386
55b62671
AJ
314@cindex x86-64 source, destination operands
315@cindex source, destination operands; x86-64
252b5132
RH
316@item
317AT&T and Intel syntax use the opposite order for source and destination
318operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
319@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
320previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
321instructions with 2 immediate operands, such as the @samp{enter}
322instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
323
324@cindex mnemonic suffixes, i386
325@cindex sizes operands, i386
326@cindex i386 size suffixes
55b62671
AJ
327@cindex mnemonic suffixes, x86-64
328@cindex sizes operands, x86-64
329@cindex x86-64 size suffixes
252b5132
RH
330@item
331In AT&T syntax the size of memory operands is determined from the last
332character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
333@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
334(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
335this by prefixing memory operands (@emph{not} the instruction mnemonics) with
336@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
337Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
338syntax.
252b5132 339
4b06377f
L
340In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
341instruction with the 64-bit displacement or immediate operand.
342
252b5132
RH
343@cindex return instructions, i386
344@cindex i386 jump, call, return
55b62671
AJ
345@cindex return instructions, x86-64
346@cindex x86-64 jump, call, return
252b5132
RH
347@item
348Immediate form long jumps and calls are
349@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
350Intel syntax is
351@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
352instruction
353is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
354@samp{ret far @var{stack-adjust}}.
355
356@cindex sections, i386
357@cindex i386 sections
55b62671
AJ
358@cindex sections, x86-64
359@cindex x86-64 sections
252b5132
RH
360@item
361The AT&T assembler does not provide support for multiple section
362programs. Unix style systems expect all programs to be single sections.
363@end itemize
364
365@node i386-Mnemonics
366@section Instruction Naming
367
368@cindex i386 instruction naming
369@cindex instruction naming, i386
55b62671
AJ
370@cindex x86-64 instruction naming
371@cindex instruction naming, x86-64
372
252b5132 373Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
374specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
375and @samp{q} specify byte, word, long and quadruple word operands. If
376no suffix is specified by an instruction then @code{@value{AS}} tries to
377fill in the missing suffix based on the destination register operand
378(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
379to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
380@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
381assembler which assumes that a missing mnemonic suffix implies long
382operand size. (This incompatibility does not affect compiler output
383since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
384
385Almost all instructions have the same names in AT&T and Intel format.
386There are a few exceptions. The sign extend and zero extend
387instructions need two sizes to specify them. They need a size to
388sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
389is accomplished by using two instruction mnemonic suffixes in AT&T
390syntax. Base names for sign extend and zero extend are
391@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
392and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
393are tacked on to this base name, the @emph{from} suffix before the
394@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
395``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
396thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
397@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
398@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
399quadruple word).
252b5132 400
b6169b20
L
401@cindex encoding options, i386
402@cindex encoding options, x86-64
403
404Different encoding options can be specified via optional mnemonic
405suffix. @samp{.s} suffix swaps 2 register operands in encoding when
f8a5c266
L
406moving from one register to another. @samp{.d32} suffix forces 32bit
407displacement in encoding.
b6169b20 408
252b5132
RH
409@cindex conversion instructions, i386
410@cindex i386 conversion instructions
55b62671
AJ
411@cindex conversion instructions, x86-64
412@cindex x86-64 conversion instructions
252b5132
RH
413The Intel-syntax conversion instructions
414
415@itemize @bullet
416@item
417@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
418
419@item
420@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
421
422@item
423@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
424
425@item
426@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
427
428@item
429@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
430(x86-64 only),
431
432@item
d5f0cf92 433@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 434@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
435@end itemize
436
437@noindent
55b62671
AJ
438are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
439@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
440instructions.
252b5132
RH
441
442@cindex jump instructions, i386
443@cindex call instructions, i386
55b62671
AJ
444@cindex jump instructions, x86-64
445@cindex call instructions, x86-64
252b5132
RH
446Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
447AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
448convention.
449
1efbbeb4
L
450@section AT&T Mnemonic versus Intel Mnemonic
451
452@cindex i386 mnemonic compatibility
453@cindex mnemonic compatibility, i386
454
455@code{@value{AS}} supports assembly using Intel mnemonic.
456@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
457@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
458syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
459Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
460@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
461@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
462assembler with different mnemonics from those in Intel IA32 specification.
463@code{@value{GCC}} generates those instructions with AT&T mnemonic.
464
252b5132
RH
465@node i386-Regs
466@section Register Naming
467
468@cindex i386 registers
469@cindex registers, i386
55b62671
AJ
470@cindex x86-64 registers
471@cindex registers, x86-64
252b5132
RH
472Register operands are always prefixed with @samp{%}. The 80386 registers
473consist of
474
475@itemize @bullet
476@item
477the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
478@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
479frame pointer), and @samp{%esp} (the stack pointer).
480
481@item
482the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
483@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
484
485@item
486the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
487@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
488are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
489@samp{%cx}, and @samp{%dx})
490
491@item
492the 6 section registers @samp{%cs} (code section), @samp{%ds}
493(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
494and @samp{%gs}.
495
496@item
497the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
498@samp{%cr3}.
499
500@item
501the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
502@samp{%db3}, @samp{%db6}, and @samp{%db7}.
503
504@item
505the 2 test registers @samp{%tr6} and @samp{%tr7}.
506
507@item
508the 8 floating point register stack @samp{%st} or equivalently
509@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
510@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
511These registers are overloaded by 8 MMX registers @samp{%mm0},
512@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
513@samp{%mm6} and @samp{%mm7}.
514
515@item
516the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
517@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
518@end itemize
519
520The AMD x86-64 architecture extends the register set by:
521
522@itemize @bullet
523@item
524enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
525accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
526@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
527pointer)
528
529@item
530the 8 extended registers @samp{%r8}--@samp{%r15}.
531
532@item
533the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
534
535@item
536the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
537
538@item
539the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
540
541@item
542the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
543
544@item
545the 8 debug registers: @samp{%db8}--@samp{%db15}.
546
547@item
548the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
549@end itemize
550
551@node i386-Prefixes
552@section Instruction Prefixes
553
554@cindex i386 instruction prefixes
555@cindex instruction prefixes, i386
556@cindex prefixes, i386
557Instruction prefixes are used to modify the following instruction. They
558are used to repeat string instructions, to provide section overrides, to
559perform bus lock operations, and to change operand and address sizes.
560(Most instructions that normally operate on 32-bit operands will use
56116-bit operands if the instruction has an ``operand size'' prefix.)
562Instruction prefixes are best written on the same line as the instruction
563they act upon. For example, the @samp{scas} (scan string) instruction is
564repeated with:
565
566@smallexample
567 repne scas %es:(%edi),%al
568@end smallexample
569
570You may also place prefixes on the lines immediately preceding the
571instruction, but this circumvents checks that @code{@value{AS}} does
572with prefixes, and will not work with all prefixes.
573
574Here is a list of instruction prefixes:
575
576@cindex section override prefixes, i386
577@itemize @bullet
578@item
579Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
580@samp{fs}, @samp{gs}. These are automatically added by specifying
581using the @var{section}:@var{memory-operand} form for memory references.
582
583@cindex size prefixes, i386
584@item
585Operand/Address size prefixes @samp{data16} and @samp{addr16}
586change 32-bit operands/addresses into 16-bit operands/addresses,
587while @samp{data32} and @samp{addr32} change 16-bit ones (in a
588@code{.code16} section) into 32-bit operands/addresses. These prefixes
589@emph{must} appear on the same line of code as the instruction they
590modify. For example, in a 16-bit @code{.code16} section, you might
591write:
592
593@smallexample
594 addr32 jmpl *(%ebx)
595@end smallexample
596
597@cindex bus lock prefixes, i386
598@cindex inhibiting interrupts, i386
599@item
600The bus lock prefix @samp{lock} inhibits interrupts during execution of
601the instruction it precedes. (This is only valid with certain
602instructions; see a 80386 manual for details).
603
604@cindex coprocessor wait, i386
605@item
606The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
607complete the current instruction. This should never be needed for the
60880386/80387 combination.
609
610@cindex repeat prefixes, i386
611@item
612The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
613to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
614times if the current address size is 16-bits).
55b62671
AJ
615@cindex REX prefixes, i386
616@item
617The @samp{rex} family of prefixes is used by x86-64 to encode
618extensions to i386 instruction set. The @samp{rex} prefix has four
619bits --- an operand size overwrite (@code{64}) used to change operand size
620from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
621register set.
622
623You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
624instruction emits @samp{rex} prefix with all the bits set. By omitting
625the @code{64}, @code{x}, @code{y} or @code{z} you may write other
626prefixes as well. Normally, there is no need to write the prefixes
627explicitly, since gas will automatically generate them based on the
628instruction operands.
252b5132
RH
629@end itemize
630
631@node i386-Memory
632@section Memory References
633
634@cindex i386 memory references
635@cindex memory references, i386
55b62671
AJ
636@cindex x86-64 memory references
637@cindex memory references, x86-64
252b5132
RH
638An Intel syntax indirect memory reference of the form
639
640@smallexample
641@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
642@end smallexample
643
644@noindent
645is translated into the AT&T syntax
646
647@smallexample
648@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
649@end smallexample
650
651@noindent
652where @var{base} and @var{index} are the optional 32-bit base and
653index registers, @var{disp} is the optional displacement, and
654@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
655to calculate the address of the operand. If no @var{scale} is
656specified, @var{scale} is taken to be 1. @var{section} specifies the
657optional section register for the memory operand, and may override the
658default section register (see a 80386 manual for section register
659defaults). Note that section overrides in AT&T syntax @emph{must}
660be preceded by a @samp{%}. If you specify a section override which
661coincides with the default section register, @code{@value{AS}} does @emph{not}
662output any section register override prefixes to assemble the given
663instruction. Thus, section overrides can be specified to emphasize which
664section register is used for a given memory operand.
665
666Here are some examples of Intel and AT&T style memory references:
667
668@table @asis
669@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
670@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
671missing, and the default section is used (@samp{%ss} for addressing with
672@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
673
674@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
675@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
676@samp{foo}. All other fields are missing. The section register here
677defaults to @samp{%ds}.
678
679@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
680This uses the value pointed to by @samp{foo} as a memory operand.
681Note that @var{base} and @var{index} are both missing, but there is only
682@emph{one} @samp{,}. This is a syntactic exception.
683
684@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
685This selects the contents of the variable @samp{foo} with section
686register @var{section} being @samp{%gs}.
687@end table
688
689Absolute (as opposed to PC relative) call and jump operands must be
690prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
691always chooses PC relative addressing for jump/call labels.
692
693Any instruction that has a memory operand, but no register operand,
55b62671
AJ
694@emph{must} specify its size (byte, word, long, or quadruple) with an
695instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
696respectively).
697
698The x86-64 architecture adds an RIP (instruction pointer relative)
699addressing. This addressing mode is specified by using @samp{rip} as a
700base register. Only constant offsets are valid. For example:
701
702@table @asis
703@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
704Points to the address 1234 bytes past the end of the current
705instruction.
706
707@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
708Points to the @code{symbol} in RIP relative way, this is shorter than
709the default absolute addressing.
710@end table
711
712Other addressing modes remain unchanged in x86-64 architecture, except
713registers used are 64-bit instead of 32-bit.
252b5132 714
fddf5b5b 715@node i386-Jumps
252b5132
RH
716@section Handling of Jump Instructions
717
718@cindex jump optimization, i386
719@cindex i386 jump optimization
55b62671
AJ
720@cindex jump optimization, x86-64
721@cindex x86-64 jump optimization
252b5132
RH
722Jump instructions are always optimized to use the smallest possible
723displacements. This is accomplished by using byte (8-bit) displacement
724jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 725is insufficient a long displacement is used. We do not support
252b5132
RH
726word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
727instruction with the @samp{data16} instruction prefix), since the 80386
728insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 729is added. (See also @pxref{i386-Arch})
252b5132
RH
730
731Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
732@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
733displacements, so that if you use these instructions (@code{@value{GCC}} does
734not use them) you may get an error message (and incorrect code). The AT&T
73580386 assembler tries to get around this problem by expanding @samp{jcxz foo}
736to
737
738@smallexample
739 jcxz cx_zero
740 jmp cx_nonzero
741cx_zero: jmp foo
742cx_nonzero:
743@end smallexample
744
745@node i386-Float
746@section Floating Point
747
748@cindex i386 floating point
749@cindex floating point, i386
55b62671
AJ
750@cindex x86-64 floating point
751@cindex floating point, x86-64
252b5132
RH
752All 80387 floating point types except packed BCD are supported.
753(BCD support may be added without much difficulty). These data
754types are 16-, 32-, and 64- bit integers, and single (32-bit),
755double (64-bit), and extended (80-bit) precision floating point.
756Each supported type has an instruction mnemonic suffix and a constructor
757associated with it. Instruction mnemonic suffixes specify the operand's
758data type. Constructors build these data types into memory.
759
760@cindex @code{float} directive, i386
761@cindex @code{single} directive, i386
762@cindex @code{double} directive, i386
763@cindex @code{tfloat} directive, i386
55b62671
AJ
764@cindex @code{float} directive, x86-64
765@cindex @code{single} directive, x86-64
766@cindex @code{double} directive, x86-64
767@cindex @code{tfloat} directive, x86-64
252b5132
RH
768@itemize @bullet
769@item
770Floating point constructors are @samp{.float} or @samp{.single},
771@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
772These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
773and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
774only supports this format via the @samp{fldt} (load 80-bit real to stack
775top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
776
777@cindex @code{word} directive, i386
778@cindex @code{long} directive, i386
779@cindex @code{int} directive, i386
780@cindex @code{quad} directive, i386
55b62671
AJ
781@cindex @code{word} directive, x86-64
782@cindex @code{long} directive, x86-64
783@cindex @code{int} directive, x86-64
784@cindex @code{quad} directive, x86-64
252b5132
RH
785@item
786Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
787@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
788corresponding instruction mnemonic suffixes are @samp{s} (single),
789@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
790the 64-bit @samp{q} format is only present in the @samp{fildq} (load
791quad integer to stack top) and @samp{fistpq} (store quad integer and pop
792stack) instructions.
793@end itemize
794
795Register to register operations should not use instruction mnemonic suffixes.
796@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
797wrote @samp{fst %st, %st(1)}, since all register to register operations
798use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
799which converts @samp{%st} from 80-bit to 64-bit floating point format,
800then stores the result in the 4 byte location @samp{mem})
801
802@node i386-SIMD
803@section Intel's MMX and AMD's 3DNow! SIMD Operations
804
805@cindex MMX, i386
806@cindex 3DNow!, i386
807@cindex SIMD, i386
55b62671
AJ
808@cindex MMX, x86-64
809@cindex 3DNow!, x86-64
810@cindex SIMD, x86-64
252b5132
RH
811
812@code{@value{AS}} supports Intel's MMX instruction set (SIMD
813instructions for integer data), available on Intel's Pentium MMX
814processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 815Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
816instruction set (SIMD instructions for 32-bit floating point data)
817available on AMD's K6-2 processor and possibly others in the future.
818
819Currently, @code{@value{AS}} does not support Intel's floating point
820SIMD, Katmai (KNI).
821
822The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
823@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
82416-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
825floating point values. The MMX registers cannot be used at the same time
826as the floating point stack.
827
828See Intel and AMD documentation, keeping in mind that the operand order in
829instructions is reversed from the Intel syntax.
830
f88c9eb0
SP
831@node i386-LWP
832@section AMD's Lightweight Profiling Instructions
833
834@cindex LWP, i386
835@cindex LWP, x86-64
836
837@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
838instruction set, available on AMD's Family 15h (Orochi) processors.
839
840LWP enables applications to collect and manage performance data, and
841react to performance events. The collection of performance data
842requires no context switches. LWP runs in the context of a thread and
843so several counters can be used independently across multiple threads.
844LWP can be used in both 64-bit and legacy 32-bit modes.
845
846For detailed information on the LWP instruction set, see the
847@cite{AMD Lightweight Profiling Specification} available at
848@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
849
87973e9f
QN
850@node i386-BMI
851@section Bit Manipulation Instructions
852
853@cindex BMI, i386
854@cindex BMI, x86-64
855
856@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
857
858BMI instructions provide several instructions implementing individual
859bit manipulation operations such as isolation, masking, setting, or
860resetting.
861
862@c Need to add a specification citation here when available.
863
2a2a0f38
QN
864@node i386-TBM
865@section AMD's Trailing Bit Manipulation Instructions
866
867@cindex TBM, i386
868@cindex TBM, x86-64
869
870@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
871instruction set, available on AMD's BDVER2 processors (Trinity and
872Viperfish).
873
874TBM instructions provide instructions implementing individual bit
875manipulation operations such as isolating, masking, setting, resetting,
876complementing, and operations on trailing zeros and ones.
877
878@c Need to add a specification citation here when available.
87973e9f 879
252b5132
RH
880@node i386-16bit
881@section Writing 16-bit Code
882
883@cindex i386 16-bit code
884@cindex 16-bit code, i386
885@cindex real-mode code, i386
eecb386c 886@cindex @code{code16gcc} directive, i386
252b5132
RH
887@cindex @code{code16} directive, i386
888@cindex @code{code32} directive, i386
55b62671
AJ
889@cindex @code{code64} directive, i386
890@cindex @code{code64} directive, x86-64
891While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
892or 64-bit x86-64 code depending on the default configuration,
252b5132 893it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
894mode code segments. To do this, put a @samp{.code16} or
895@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
896be run in 16-bit mode. You can switch @code{@value{AS}} to writing
89732-bit code with the @samp{.code32} directive or 64-bit code with the
898@samp{.code64} directive.
eecb386c
AM
899
900@samp{.code16gcc} provides experimental support for generating 16-bit
901code from gcc, and differs from @samp{.code16} in that @samp{call},
902@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
903@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
904default to 32-bit size. This is so that the stack pointer is
905manipulated in the same way over function calls, allowing access to
906function parameters at the same stack offsets as in 32-bit mode.
907@samp{.code16gcc} also automatically adds address size prefixes where
908necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
909
910The code which @code{@value{AS}} generates in 16-bit mode will not
911necessarily run on a 16-bit pre-80386 processor. To write code that
912runs on such a processor, you must refrain from using @emph{any} 32-bit
913constructs which require @code{@value{AS}} to output address or operand
914size prefixes.
915
916Note that writing 16-bit code instructions by explicitly specifying a
917prefix or an instruction mnemonic suffix within a 32-bit code section
918generates different machine instructions than those generated for a
91916-bit code segment. In a 32-bit code section, the following code
920generates the machine opcode bytes @samp{66 6a 04}, which pushes the
921value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
922
923@smallexample
924 pushw $4
925@end smallexample
926
927The same code in a 16-bit code section would generate the machine
b45619c0 928opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
929is correct since the processor default operand size is assumed to be 16
930bits in a 16-bit code section.
931
932@node i386-Bugs
933@section AT&T Syntax bugs
934
935The UnixWare assembler, and probably other AT&T derived ix86 Unix
936assemblers, generate floating point instructions with reversed source
937and destination registers in certain cases. Unfortunately, gcc and
938possibly many other programs use this reversed syntax, so we're stuck
939with it.
940
941For example
942
943@smallexample
944 fsub %st,%st(3)
945@end smallexample
946@noindent
947results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
948than the expected @samp{%st(3) - %st}. This happens with all the
949non-commutative arithmetic floating point operations with two register
950operands where the source register is @samp{%st} and the destination
951register is @samp{%st(i)}.
952
e413e4e9
AM
953@node i386-Arch
954@section Specifying CPU Architecture
955
956@cindex arch directive, i386
957@cindex i386 arch directive
55b62671
AJ
958@cindex arch directive, x86-64
959@cindex x86-64 arch directive
e413e4e9
AM
960
961@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 962(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
963directive enables a warning when gas detects an instruction that is not
964supported on the CPU specified. The choices for @var{cpu_type} are:
965
966@multitable @columnfractions .20 .20 .20 .20
967@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
968@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 969@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 970@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
8a9036a4 971@item @samp{corei7} @tab @samp{l1om}
1543849b 972@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
68339fdf 973@item @samp{amdfam10} @tab @samp{bdver1}
1ceab344 974@item @samp{generic32} @tab @samp{generic64}
9103f4f4 975@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 976@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
977@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
978@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
979@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
980@item @samp{.rdrnd} @tab @samp{.f16c}
1ceab344 981@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 982@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
f0ae4a24 983@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1ceab344 984@item @samp{.padlock}
e413e4e9
AM
985@end multitable
986
fddf5b5b
AM
987Apart from the warning, there are only two other effects on
988@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
989@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
990will automatically use a two byte opcode sequence. The larger three
991byte opcode sequence is used on the 486 (and when no architecture is
992specified) because it executes faster on the 486. Note that you can
993explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
994Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
995@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
996conditional jumps will be promoted when necessary to a two instruction
997sequence consisting of a conditional jump of the opposite sense around
998an unconditional jump to the target.
999
5c6af06e
JB
1000Following the CPU architecture (but not a sub-architecture, which are those
1001starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1002control automatic promotion of conditional jumps. @samp{jumps} is the
1003default, and enables jump promotion; All external jumps will be of the long
1004variety, and file-local jumps will be promoted as necessary.
1005(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1006byte offset jumps, and warns about file-local conditional jumps that
1007@code{@value{AS}} promotes.
fddf5b5b
AM
1008Unconditional jumps are treated as for @samp{jumps}.
1009
1010For example
1011
1012@smallexample
1013 .arch i8086,nojumps
1014@end smallexample
e413e4e9 1015
252b5132
RH
1016@node i386-Notes
1017@section Notes
1018
1019@cindex i386 @code{mul}, @code{imul} instructions
1020@cindex @code{mul} instruction, i386
1021@cindex @code{imul} instruction, i386
55b62671
AJ
1022@cindex @code{mul} instruction, x86-64
1023@cindex @code{imul} instruction, x86-64
252b5132 1024There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1025instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1026multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1027for @samp{imul}) can be output only in the one operand form. Thus,
1028@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1029the expanding multiply would clobber the @samp{%edx} register, and this
1030would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
103164-bit product in @samp{%edx:%eax}.
1032
1033We have added a two operand form of @samp{imul} when the first operand
1034is an immediate mode expression and the second operand is a register.
1035This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1036example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1037$69, %eax, %eax}.
1038
This page took 0.56637 seconds and 4 git commands to generate.