PR ld/15839
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037 1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
7c31ae13 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
731caf76
L
6@c man end
7
252b5132
RH
8@ifset GENERIC
9@page
10@node i386-Dependent
11@chapter 80386 Dependent Features
12@end ifset
13@ifclear GENERIC
14@node Machine Dependencies
15@chapter 80386 Dependent Features
16@end ifclear
17
18@cindex i386 support
b6169b20 19@cindex i80386 support
55b62671
AJ
20@cindex x86-64 support
21
22The i386 version @code{@value{AS}} supports both the original Intel 386
23architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24extending the Intel architecture to 64-bits.
25
252b5132
RH
26@menu
27* i386-Options:: Options
a6c24e68 28* i386-Directives:: X86 specific directives
7c31ae13 29* i386-Syntax:: Syntactical considerations
252b5132
RH
30* i386-Mnemonics:: Instruction Naming
31* i386-Regs:: Register Naming
32* i386-Prefixes:: Instruction Prefixes
33* i386-Memory:: Memory References
fddf5b5b 34* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
35* i386-Float:: Floating Point
36* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 37* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 38* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 39* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 40* i386-16bit:: Writing 16-bit Code
e413e4e9 41* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
42* i386-Bugs:: AT&T Syntax bugs
43* i386-Notes:: Notes
44@end menu
45
46@node i386-Options
47@section Options
48
55b62671
AJ
49@cindex options for i386
50@cindex options for x86-64
51@cindex i386 options
34bca508 52@cindex x86-64 options
55b62671
AJ
53
54The i386 version of @code{@value{AS}} has a few machine
55dependent options:
56
731caf76
L
57@c man begin OPTIONS
58@table @gcctabopt
55b62671
AJ
59@cindex @samp{--32} option, i386
60@cindex @samp{--32} option, x86-64
570561f7
L
61@cindex @samp{--x32} option, i386
62@cindex @samp{--x32} option, x86-64
55b62671
AJ
63@cindex @samp{--64} option, i386
64@cindex @samp{--64} option, x86-64
570561f7 65@item --32 | --x32 | --64
35cc6a0b 66Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 67implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
68imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69respectively.
55b62671
AJ
70
71These options are only available with the ELF object file format, and
72require that the necessary BFD support has been included (on a 32-bit
73platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74usage and use x86-64 as target platform).
12b55ccc
L
75
76@item -n
77By default, x86 GAS replaces multiple nop instructions used for
78alignment within code sections with multi-byte nop instructions such
79as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
34bca508 95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
7b458c12
L
124@code{btver1},
125@code{btver2},
9103f4f4
L
126@code{generic32} and
127@code{generic64}.
128
34bca508 129In addition to the basic instruction set, the assembler can be told to
6305a203
L
130accept various extension mnemonics. For example,
131@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
132@var{vmx}. The following extensions are currently supported:
309d3373
JB
133@code{8087},
134@code{287},
135@code{387},
136@code{no87},
6305a203 137@code{mmx},
309d3373 138@code{nommx},
6305a203
L
139@code{sse},
140@code{sse2},
141@code{sse3},
142@code{ssse3},
143@code{sse4.1},
144@code{sse4.2},
145@code{sse4},
309d3373 146@code{nosse},
c0f3af97 147@code{avx},
6c30d220 148@code{avx2},
e2e1fcde
L
149@code{adx},
150@code{rdseed},
151@code{prfchw},
5c111e37 152@code{smap},
7e8b059b 153@code{mpx},
a0046408 154@code{sha},
43234a1e
L
155@code{avx512f},
156@code{avx512cd},
157@code{avx512er},
158@code{avx512pf},
309d3373 159@code{noavx},
6305a203 160@code{vmx},
8729a6f6 161@code{vmfunc},
6305a203 162@code{smx},
f03fe4c1 163@code{xsave},
c7b8aa3a 164@code{xsaveopt},
c0f3af97 165@code{aes},
594ab6a3 166@code{pclmul},
c7b8aa3a
L
167@code{fsgsbase},
168@code{rdrnd},
169@code{f16c},
6c30d220 170@code{bmi2},
c0f3af97 171@code{fma},
f1f8f695
L
172@code{movbe},
173@code{ept},
6c30d220 174@code{lzcnt},
42164a71
L
175@code{hle},
176@code{rtm},
6c30d220 177@code{invpcid},
bd5295b2 178@code{clflush},
f88c9eb0 179@code{lwp},
5dd85c99
SP
180@code{fma4},
181@code{xop},
60aa667e 182@code{cx16},
bd5295b2 183@code{syscall},
1b7f3fb0 184@code{rdtscp},
6305a203
L
185@code{3dnow},
186@code{3dnowa},
187@code{sse4a},
188@code{sse5},
189@code{svme},
190@code{abm} and
191@code{padlock}.
309d3373
JB
192Note that rather than extending a basic instruction set, the extension
193mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
194
195When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
196@code{.arch} directive will take precedent.
197
198@cindex @samp{-mtune=} option, i386
199@cindex @samp{-mtune=} option, x86-64
200@item -mtune=@var{CPU}
201This option specifies a processor to optimize for. When used in
202conjunction with the @option{-march} option, only instructions
203of the processor specified by the @option{-march} option will be
204generated.
205
6305a203
L
206Valid @var{CPU} values are identical to the processor list of
207@option{-march=@var{CPU}}.
9103f4f4 208
c0f3af97
L
209@cindex @samp{-msse2avx} option, i386
210@cindex @samp{-msse2avx} option, x86-64
211@item -msse2avx
212This option specifies that the assembler should encode SSE instructions
213with VEX prefix.
214
daf50ae7
L
215@cindex @samp{-msse-check=} option, i386
216@cindex @samp{-msse-check=} option, x86-64
217@item -msse-check=@var{none}
1f9bb1ca
AS
218@itemx -msse-check=@var{warning}
219@itemx -msse-check=@var{error}
daf50ae7
L
220These options control if the assembler should check SSE intructions.
221@option{-msse-check=@var{none}} will make the assembler not to check SSE
222instructions, which is the default. @option{-msse-check=@var{warning}}
223will make the assembler issue a warning for any SSE intruction.
224@option{-msse-check=@var{error}} will make the assembler issue an error
225for any SSE intruction.
226
539f890d
L
227@cindex @samp{-mavxscalar=} option, i386
228@cindex @samp{-mavxscalar=} option, x86-64
229@item -mavxscalar=@var{128}
1f9bb1ca 230@itemx -mavxscalar=@var{256}
2aab8acd 231These options control how the assembler should encode scalar AVX
539f890d
L
232instructions. @option{-mavxscalar=@var{128}} will encode scalar
233AVX instructions with 128bit vector length, which is the default.
234@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
235with 256bit vector length.
236
43234a1e
L
237@cindex @samp{-mevexlig=} option, i386
238@cindex @samp{-mevexlig=} option, x86-64
239@item -mevexlig=@var{128}
240@itemx -mevexlig=@var{256}
241@itemx -mevexlig=@var{512}
242These options control how the assembler should encode length-ignored
243(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
244EVEX instructions with 128bit vector length, which is the default.
245@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
246encode LIG EVEX instructions with 256bit and 512bit vector length,
247respectively.
248
249@cindex @samp{-mevexwig=} option, i386
250@cindex @samp{-mevexwig=} option, x86-64
251@item -mevexwig=@var{0}
252@itemx -mevexwig=@var{1}
253These options control how the assembler should encode w-ignored (WIG)
254EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
255EVEX instructions with evex.w = 0, which is the default.
256@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
257evex.w = 1.
258
1efbbeb4
L
259@cindex @samp{-mmnemonic=} option, i386
260@cindex @samp{-mmnemonic=} option, x86-64
261@item -mmnemonic=@var{att}
1f9bb1ca 262@itemx -mmnemonic=@var{intel}
34bca508 263This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
264The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
265take precedent.
266
267@cindex @samp{-msyntax=} option, i386
268@cindex @samp{-msyntax=} option, x86-64
269@item -msyntax=@var{att}
1f9bb1ca 270@itemx -msyntax=@var{intel}
34bca508 271This option specifies instruction syntax when processing instructions.
1efbbeb4
L
272The @code{.att_syntax} and @code{.intel_syntax} directives will
273take precedent.
274
275@cindex @samp{-mnaked-reg} option, i386
276@cindex @samp{-mnaked-reg} option, x86-64
277@item -mnaked-reg
278This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 279The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 280
7e8b059b
L
281@cindex @samp{-madd-bnd-prefix} option, i386
282@cindex @samp{-madd-bnd-prefix} option, x86-64
283@item -madd-bnd-prefix
284This option forces the assembler to add BND prefix to all branches, even
285if such prefix was not explicitly specified in the source code.
286
55b62671 287@end table
731caf76 288@c man end
e413e4e9 289
a6c24e68
NC
290@node i386-Directives
291@section x86 specific Directives
292
293@cindex machine directives, x86
294@cindex x86 machine directives
295@table @code
296
297@cindex @code{lcomm} directive, COFF
298@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
299Reserve @var{length} (an absolute expression) bytes for a local common
300denoted by @var{symbol}. The section and value of @var{symbol} are
301those of the new local common. The addresses are allocated in the bss
704209c0
NC
302section, so that at run-time the bytes start off zeroed. Since
303@var{symbol} is not declared global, it is normally not visible to
304@code{@value{LD}}. The optional third parameter, @var{alignment},
305specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
306
307This directive is only available for COFF based x86 targets.
308
309@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
310@c .largecomm
311
312@end table
313
252b5132 314@node i386-Syntax
7c31ae13
NC
315@section i386 Syntactical Considerations
316@menu
317* i386-Variations:: AT&T Syntax versus Intel Syntax
318* i386-Chars:: Special Characters
319@end menu
320
321@node i386-Variations
322@subsection AT&T Syntax versus Intel Syntax
252b5132 323
e413e4e9
AM
324@cindex i386 intel_syntax pseudo op
325@cindex intel_syntax pseudo op, i386
326@cindex i386 att_syntax pseudo op
327@cindex att_syntax pseudo op, i386
252b5132
RH
328@cindex i386 syntax compatibility
329@cindex syntax compatibility, i386
55b62671
AJ
330@cindex x86-64 intel_syntax pseudo op
331@cindex intel_syntax pseudo op, x86-64
332@cindex x86-64 att_syntax pseudo op
333@cindex att_syntax pseudo op, x86-64
334@cindex x86-64 syntax compatibility
335@cindex syntax compatibility, x86-64
e413e4e9
AM
336
337@code{@value{AS}} now supports assembly using Intel assembler syntax.
338@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
339back to the usual AT&T mode for compatibility with the output of
340@code{@value{GCC}}. Either of these directives may have an optional
341argument, @code{prefix}, or @code{noprefix} specifying whether registers
342require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
343different from Intel syntax. We mention these differences because
344almost all 80386 documents use Intel syntax. Notable differences
345between the two syntaxes are:
346
347@cindex immediate operands, i386
348@cindex i386 immediate operands
349@cindex register operands, i386
350@cindex i386 register operands
351@cindex jump/call operands, i386
352@cindex i386 jump/call operands
353@cindex operand delimiters, i386
55b62671
AJ
354
355@cindex immediate operands, x86-64
356@cindex x86-64 immediate operands
357@cindex register operands, x86-64
358@cindex x86-64 register operands
359@cindex jump/call operands, x86-64
360@cindex x86-64 jump/call operands
361@cindex operand delimiters, x86-64
252b5132
RH
362@itemize @bullet
363@item
364AT&T immediate operands are preceded by @samp{$}; Intel immediate
365operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
366AT&T register operands are preceded by @samp{%}; Intel register operands
367are undelimited. AT&T absolute (as opposed to PC relative) jump/call
368operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
369
370@cindex i386 source, destination operands
371@cindex source, destination operands; i386
55b62671
AJ
372@cindex x86-64 source, destination operands
373@cindex source, destination operands; x86-64
252b5132
RH
374@item
375AT&T and Intel syntax use the opposite order for source and destination
376operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
377@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
378previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
379instructions with 2 immediate operands, such as the @samp{enter}
380instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
381
382@cindex mnemonic suffixes, i386
383@cindex sizes operands, i386
384@cindex i386 size suffixes
55b62671
AJ
385@cindex mnemonic suffixes, x86-64
386@cindex sizes operands, x86-64
387@cindex x86-64 size suffixes
252b5132
RH
388@item
389In AT&T syntax the size of memory operands is determined from the last
390character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
391@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
392(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
393this by prefixing memory operands (@emph{not} the instruction mnemonics) with
394@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
395Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
396syntax.
252b5132 397
4b06377f
L
398In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
399instruction with the 64-bit displacement or immediate operand.
400
252b5132
RH
401@cindex return instructions, i386
402@cindex i386 jump, call, return
55b62671
AJ
403@cindex return instructions, x86-64
404@cindex x86-64 jump, call, return
252b5132
RH
405@item
406Immediate form long jumps and calls are
407@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
408Intel syntax is
409@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
410instruction
411is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
412@samp{ret far @var{stack-adjust}}.
413
414@cindex sections, i386
415@cindex i386 sections
55b62671
AJ
416@cindex sections, x86-64
417@cindex x86-64 sections
252b5132
RH
418@item
419The AT&T assembler does not provide support for multiple section
420programs. Unix style systems expect all programs to be single sections.
421@end itemize
422
7c31ae13
NC
423@node i386-Chars
424@subsection Special Characters
425
426@cindex line comment character, i386
427@cindex i386 line comment character
428The presence of a @samp{#} appearing anywhere on a line indicates the
429start of a comment that extends to the end of that line.
430
431If a @samp{#} appears as the first character of a line then the whole
432line is treated as a comment, but in this case the line can also be a
433logical line number directive (@pxref{Comments}) or a preprocessor
434control command (@pxref{Preprocessing}).
435
436If the @option{--divide} command line option has not been specified
437then the @samp{/} character appearing anywhere on a line also
438introduces a line comment.
439
440@cindex line separator, i386
441@cindex statement separator, i386
442@cindex i386 line separator
443The @samp{;} character can be used to separate statements on the same
444line.
445
252b5132
RH
446@node i386-Mnemonics
447@section Instruction Naming
448
449@cindex i386 instruction naming
450@cindex instruction naming, i386
55b62671
AJ
451@cindex x86-64 instruction naming
452@cindex instruction naming, x86-64
453
252b5132 454Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
455specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
456and @samp{q} specify byte, word, long and quadruple word operands. If
457no suffix is specified by an instruction then @code{@value{AS}} tries to
458fill in the missing suffix based on the destination register operand
459(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
460to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
461@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
462assembler which assumes that a missing mnemonic suffix implies long
463operand size. (This incompatibility does not affect compiler output
464since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
465
466Almost all instructions have the same names in AT&T and Intel format.
467There are a few exceptions. The sign extend and zero extend
468instructions need two sizes to specify them. They need a size to
469sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
470is accomplished by using two instruction mnemonic suffixes in AT&T
471syntax. Base names for sign extend and zero extend are
472@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
473and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
474are tacked on to this base name, the @emph{from} suffix before the
475@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
476``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
477thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
478@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
479@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
480quadruple word).
252b5132 481
b6169b20
L
482@cindex encoding options, i386
483@cindex encoding options, x86-64
484
485Different encoding options can be specified via optional mnemonic
486suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
487moving from one register to another. @samp{.d8} or @samp{.d32} suffix
488prefers 8bit or 32bit displacement in encoding.
b6169b20 489
252b5132
RH
490@cindex conversion instructions, i386
491@cindex i386 conversion instructions
55b62671
AJ
492@cindex conversion instructions, x86-64
493@cindex x86-64 conversion instructions
252b5132
RH
494The Intel-syntax conversion instructions
495
496@itemize @bullet
497@item
498@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
499
500@item
501@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
502
503@item
504@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
505
506@item
507@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
508
509@item
510@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
511(x86-64 only),
512
513@item
d5f0cf92 514@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 515@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
516@end itemize
517
518@noindent
55b62671
AJ
519are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
520@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
521instructions.
252b5132
RH
522
523@cindex jump instructions, i386
524@cindex call instructions, i386
55b62671
AJ
525@cindex jump instructions, x86-64
526@cindex call instructions, x86-64
252b5132
RH
527Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
528AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
529convention.
530
1efbbeb4
L
531@section AT&T Mnemonic versus Intel Mnemonic
532
533@cindex i386 mnemonic compatibility
534@cindex mnemonic compatibility, i386
535
536@code{@value{AS}} supports assembly using Intel mnemonic.
537@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
538@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
539syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
540Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
541@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
542@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
543assembler with different mnemonics from those in Intel IA32 specification.
544@code{@value{GCC}} generates those instructions with AT&T mnemonic.
545
252b5132
RH
546@node i386-Regs
547@section Register Naming
548
549@cindex i386 registers
550@cindex registers, i386
55b62671
AJ
551@cindex x86-64 registers
552@cindex registers, x86-64
252b5132
RH
553Register operands are always prefixed with @samp{%}. The 80386 registers
554consist of
555
556@itemize @bullet
557@item
558the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
559@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
560frame pointer), and @samp{%esp} (the stack pointer).
561
562@item
563the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
564@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
565
566@item
567the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
568@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
569are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
570@samp{%cx}, and @samp{%dx})
571
572@item
573the 6 section registers @samp{%cs} (code section), @samp{%ds}
574(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
575and @samp{%gs}.
576
577@item
578the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
579@samp{%cr3}.
580
581@item
582the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
583@samp{%db3}, @samp{%db6}, and @samp{%db7}.
584
585@item
586the 2 test registers @samp{%tr6} and @samp{%tr7}.
587
588@item
589the 8 floating point register stack @samp{%st} or equivalently
590@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
591@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
592These registers are overloaded by 8 MMX registers @samp{%mm0},
593@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
594@samp{%mm6} and @samp{%mm7}.
595
596@item
597the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
598@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
599@end itemize
600
601The AMD x86-64 architecture extends the register set by:
602
603@itemize @bullet
604@item
605enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
606accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
607@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
608pointer)
609
610@item
611the 8 extended registers @samp{%r8}--@samp{%r15}.
612
613@item
614the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
615
616@item
617the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
618
619@item
620the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
621
622@item
623the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
624
625@item
626the 8 debug registers: @samp{%db8}--@samp{%db15}.
627
628@item
629the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
630@end itemize
631
632@node i386-Prefixes
633@section Instruction Prefixes
634
635@cindex i386 instruction prefixes
636@cindex instruction prefixes, i386
637@cindex prefixes, i386
638Instruction prefixes are used to modify the following instruction. They
639are used to repeat string instructions, to provide section overrides, to
640perform bus lock operations, and to change operand and address sizes.
641(Most instructions that normally operate on 32-bit operands will use
64216-bit operands if the instruction has an ``operand size'' prefix.)
643Instruction prefixes are best written on the same line as the instruction
644they act upon. For example, the @samp{scas} (scan string) instruction is
645repeated with:
646
647@smallexample
648 repne scas %es:(%edi),%al
649@end smallexample
650
651You may also place prefixes on the lines immediately preceding the
652instruction, but this circumvents checks that @code{@value{AS}} does
653with prefixes, and will not work with all prefixes.
654
655Here is a list of instruction prefixes:
656
657@cindex section override prefixes, i386
658@itemize @bullet
659@item
660Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
661@samp{fs}, @samp{gs}. These are automatically added by specifying
662using the @var{section}:@var{memory-operand} form for memory references.
663
664@cindex size prefixes, i386
665@item
666Operand/Address size prefixes @samp{data16} and @samp{addr16}
667change 32-bit operands/addresses into 16-bit operands/addresses,
668while @samp{data32} and @samp{addr32} change 16-bit ones (in a
669@code{.code16} section) into 32-bit operands/addresses. These prefixes
670@emph{must} appear on the same line of code as the instruction they
671modify. For example, in a 16-bit @code{.code16} section, you might
672write:
673
674@smallexample
675 addr32 jmpl *(%ebx)
676@end smallexample
677
678@cindex bus lock prefixes, i386
679@cindex inhibiting interrupts, i386
680@item
681The bus lock prefix @samp{lock} inhibits interrupts during execution of
682the instruction it precedes. (This is only valid with certain
683instructions; see a 80386 manual for details).
684
685@cindex coprocessor wait, i386
686@item
687The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
688complete the current instruction. This should never be needed for the
68980386/80387 combination.
690
691@cindex repeat prefixes, i386
692@item
693The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
694to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
695times if the current address size is 16-bits).
55b62671
AJ
696@cindex REX prefixes, i386
697@item
698The @samp{rex} family of prefixes is used by x86-64 to encode
699extensions to i386 instruction set. The @samp{rex} prefix has four
700bits --- an operand size overwrite (@code{64}) used to change operand size
701from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
702register set.
703
704You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
705instruction emits @samp{rex} prefix with all the bits set. By omitting
706the @code{64}, @code{x}, @code{y} or @code{z} you may write other
707prefixes as well. Normally, there is no need to write the prefixes
708explicitly, since gas will automatically generate them based on the
709instruction operands.
252b5132
RH
710@end itemize
711
712@node i386-Memory
713@section Memory References
714
715@cindex i386 memory references
716@cindex memory references, i386
55b62671
AJ
717@cindex x86-64 memory references
718@cindex memory references, x86-64
252b5132
RH
719An Intel syntax indirect memory reference of the form
720
721@smallexample
722@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
723@end smallexample
724
725@noindent
726is translated into the AT&T syntax
727
728@smallexample
729@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
730@end smallexample
731
732@noindent
733where @var{base} and @var{index} are the optional 32-bit base and
734index registers, @var{disp} is the optional displacement, and
735@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
736to calculate the address of the operand. If no @var{scale} is
737specified, @var{scale} is taken to be 1. @var{section} specifies the
738optional section register for the memory operand, and may override the
739default section register (see a 80386 manual for section register
740defaults). Note that section overrides in AT&T syntax @emph{must}
741be preceded by a @samp{%}. If you specify a section override which
742coincides with the default section register, @code{@value{AS}} does @emph{not}
743output any section register override prefixes to assemble the given
744instruction. Thus, section overrides can be specified to emphasize which
745section register is used for a given memory operand.
746
747Here are some examples of Intel and AT&T style memory references:
748
749@table @asis
750@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
751@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
752missing, and the default section is used (@samp{%ss} for addressing with
753@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
754
755@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
756@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
757@samp{foo}. All other fields are missing. The section register here
758defaults to @samp{%ds}.
759
760@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
761This uses the value pointed to by @samp{foo} as a memory operand.
762Note that @var{base} and @var{index} are both missing, but there is only
763@emph{one} @samp{,}. This is a syntactic exception.
764
765@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
766This selects the contents of the variable @samp{foo} with section
767register @var{section} being @samp{%gs}.
768@end table
769
770Absolute (as opposed to PC relative) call and jump operands must be
771prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
772always chooses PC relative addressing for jump/call labels.
773
774Any instruction that has a memory operand, but no register operand,
55b62671
AJ
775@emph{must} specify its size (byte, word, long, or quadruple) with an
776instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
777respectively).
778
779The x86-64 architecture adds an RIP (instruction pointer relative)
780addressing. This addressing mode is specified by using @samp{rip} as a
781base register. Only constant offsets are valid. For example:
782
783@table @asis
784@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
785Points to the address 1234 bytes past the end of the current
786instruction.
787
788@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
789Points to the @code{symbol} in RIP relative way, this is shorter than
790the default absolute addressing.
791@end table
792
793Other addressing modes remain unchanged in x86-64 architecture, except
794registers used are 64-bit instead of 32-bit.
252b5132 795
fddf5b5b 796@node i386-Jumps
252b5132
RH
797@section Handling of Jump Instructions
798
799@cindex jump optimization, i386
800@cindex i386 jump optimization
55b62671
AJ
801@cindex jump optimization, x86-64
802@cindex x86-64 jump optimization
252b5132
RH
803Jump instructions are always optimized to use the smallest possible
804displacements. This is accomplished by using byte (8-bit) displacement
805jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 806is insufficient a long displacement is used. We do not support
252b5132
RH
807word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
808instruction with the @samp{data16} instruction prefix), since the 80386
809insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 810is added. (See also @pxref{i386-Arch})
252b5132
RH
811
812Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
813@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
814displacements, so that if you use these instructions (@code{@value{GCC}} does
815not use them) you may get an error message (and incorrect code). The AT&T
81680386 assembler tries to get around this problem by expanding @samp{jcxz foo}
817to
818
819@smallexample
820 jcxz cx_zero
821 jmp cx_nonzero
822cx_zero: jmp foo
823cx_nonzero:
824@end smallexample
825
826@node i386-Float
827@section Floating Point
828
829@cindex i386 floating point
830@cindex floating point, i386
55b62671
AJ
831@cindex x86-64 floating point
832@cindex floating point, x86-64
252b5132
RH
833All 80387 floating point types except packed BCD are supported.
834(BCD support may be added without much difficulty). These data
835types are 16-, 32-, and 64- bit integers, and single (32-bit),
836double (64-bit), and extended (80-bit) precision floating point.
837Each supported type has an instruction mnemonic suffix and a constructor
838associated with it. Instruction mnemonic suffixes specify the operand's
839data type. Constructors build these data types into memory.
840
841@cindex @code{float} directive, i386
842@cindex @code{single} directive, i386
843@cindex @code{double} directive, i386
844@cindex @code{tfloat} directive, i386
55b62671
AJ
845@cindex @code{float} directive, x86-64
846@cindex @code{single} directive, x86-64
847@cindex @code{double} directive, x86-64
848@cindex @code{tfloat} directive, x86-64
252b5132
RH
849@itemize @bullet
850@item
851Floating point constructors are @samp{.float} or @samp{.single},
852@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
853These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
854and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
855only supports this format via the @samp{fldt} (load 80-bit real to stack
856top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
857
858@cindex @code{word} directive, i386
859@cindex @code{long} directive, i386
860@cindex @code{int} directive, i386
861@cindex @code{quad} directive, i386
55b62671
AJ
862@cindex @code{word} directive, x86-64
863@cindex @code{long} directive, x86-64
864@cindex @code{int} directive, x86-64
865@cindex @code{quad} directive, x86-64
252b5132
RH
866@item
867Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
868@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
869corresponding instruction mnemonic suffixes are @samp{s} (single),
870@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
871the 64-bit @samp{q} format is only present in the @samp{fildq} (load
872quad integer to stack top) and @samp{fistpq} (store quad integer and pop
873stack) instructions.
874@end itemize
875
876Register to register operations should not use instruction mnemonic suffixes.
877@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
878wrote @samp{fst %st, %st(1)}, since all register to register operations
879use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
880which converts @samp{%st} from 80-bit to 64-bit floating point format,
881then stores the result in the 4 byte location @samp{mem})
882
883@node i386-SIMD
884@section Intel's MMX and AMD's 3DNow! SIMD Operations
885
886@cindex MMX, i386
887@cindex 3DNow!, i386
888@cindex SIMD, i386
55b62671
AJ
889@cindex MMX, x86-64
890@cindex 3DNow!, x86-64
891@cindex SIMD, x86-64
252b5132
RH
892
893@code{@value{AS}} supports Intel's MMX instruction set (SIMD
894instructions for integer data), available on Intel's Pentium MMX
895processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 896Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
897instruction set (SIMD instructions for 32-bit floating point data)
898available on AMD's K6-2 processor and possibly others in the future.
899
900Currently, @code{@value{AS}} does not support Intel's floating point
901SIMD, Katmai (KNI).
902
903The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
904@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
90516-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
906floating point values. The MMX registers cannot be used at the same time
907as the floating point stack.
908
909See Intel and AMD documentation, keeping in mind that the operand order in
910instructions is reversed from the Intel syntax.
911
f88c9eb0
SP
912@node i386-LWP
913@section AMD's Lightweight Profiling Instructions
914
915@cindex LWP, i386
916@cindex LWP, x86-64
917
918@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
919instruction set, available on AMD's Family 15h (Orochi) processors.
920
921LWP enables applications to collect and manage performance data, and
922react to performance events. The collection of performance data
923requires no context switches. LWP runs in the context of a thread and
924so several counters can be used independently across multiple threads.
925LWP can be used in both 64-bit and legacy 32-bit modes.
926
927For detailed information on the LWP instruction set, see the
928@cite{AMD Lightweight Profiling Specification} available at
929@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
930
87973e9f
QN
931@node i386-BMI
932@section Bit Manipulation Instructions
933
934@cindex BMI, i386
935@cindex BMI, x86-64
936
937@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
938
939BMI instructions provide several instructions implementing individual
940bit manipulation operations such as isolation, masking, setting, or
34bca508 941resetting.
87973e9f
QN
942
943@c Need to add a specification citation here when available.
944
2a2a0f38
QN
945@node i386-TBM
946@section AMD's Trailing Bit Manipulation Instructions
947
948@cindex TBM, i386
949@cindex TBM, x86-64
950
951@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
952instruction set, available on AMD's BDVER2 processors (Trinity and
953Viperfish).
954
955TBM instructions provide instructions implementing individual bit
956manipulation operations such as isolating, masking, setting, resetting,
957complementing, and operations on trailing zeros and ones.
958
959@c Need to add a specification citation here when available.
87973e9f 960
252b5132
RH
961@node i386-16bit
962@section Writing 16-bit Code
963
964@cindex i386 16-bit code
965@cindex 16-bit code, i386
966@cindex real-mode code, i386
eecb386c 967@cindex @code{code16gcc} directive, i386
252b5132
RH
968@cindex @code{code16} directive, i386
969@cindex @code{code32} directive, i386
55b62671
AJ
970@cindex @code{code64} directive, i386
971@cindex @code{code64} directive, x86-64
972While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
973or 64-bit x86-64 code depending on the default configuration,
252b5132 974it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
975mode code segments. To do this, put a @samp{.code16} or
976@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
977be run in 16-bit mode. You can switch @code{@value{AS}} to writing
97832-bit code with the @samp{.code32} directive or 64-bit code with the
979@samp{.code64} directive.
eecb386c
AM
980
981@samp{.code16gcc} provides experimental support for generating 16-bit
982code from gcc, and differs from @samp{.code16} in that @samp{call},
983@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
984@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
985default to 32-bit size. This is so that the stack pointer is
986manipulated in the same way over function calls, allowing access to
987function parameters at the same stack offsets as in 32-bit mode.
988@samp{.code16gcc} also automatically adds address size prefixes where
989necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
990
991The code which @code{@value{AS}} generates in 16-bit mode will not
992necessarily run on a 16-bit pre-80386 processor. To write code that
993runs on such a processor, you must refrain from using @emph{any} 32-bit
994constructs which require @code{@value{AS}} to output address or operand
995size prefixes.
996
997Note that writing 16-bit code instructions by explicitly specifying a
998prefix or an instruction mnemonic suffix within a 32-bit code section
999generates different machine instructions than those generated for a
100016-bit code segment. In a 32-bit code section, the following code
1001generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1002value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1003
1004@smallexample
1005 pushw $4
1006@end smallexample
1007
1008The same code in a 16-bit code section would generate the machine
b45619c0 1009opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1010is correct since the processor default operand size is assumed to be 16
1011bits in a 16-bit code section.
1012
1013@node i386-Bugs
1014@section AT&T Syntax bugs
1015
1016The UnixWare assembler, and probably other AT&T derived ix86 Unix
1017assemblers, generate floating point instructions with reversed source
1018and destination registers in certain cases. Unfortunately, gcc and
1019possibly many other programs use this reversed syntax, so we're stuck
1020with it.
1021
1022For example
1023
1024@smallexample
1025 fsub %st,%st(3)
1026@end smallexample
1027@noindent
1028results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1029than the expected @samp{%st(3) - %st}. This happens with all the
1030non-commutative arithmetic floating point operations with two register
1031operands where the source register is @samp{%st} and the destination
1032register is @samp{%st(i)}.
1033
e413e4e9
AM
1034@node i386-Arch
1035@section Specifying CPU Architecture
1036
1037@cindex arch directive, i386
1038@cindex i386 arch directive
55b62671
AJ
1039@cindex arch directive, x86-64
1040@cindex x86-64 arch directive
e413e4e9
AM
1041
1042@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1043(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1044directive enables a warning when gas detects an instruction that is not
1045supported on the CPU specified. The choices for @var{cpu_type} are:
1046
1047@multitable @columnfractions .20 .20 .20 .20
1048@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1049@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1050@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1051@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7a9068fe 1052@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1543849b 1053@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1054@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
7b458c12 1055@item @samp{btver1} @tab @samp{btver2}
1ceab344 1056@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1057@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1058@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1059@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1060@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1061@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1062@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1063@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1064@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
7e8b059b 1065@item @samp{.smap} @tab @samp{.mpx}
a0046408 1066@item @samp{.smap} @tab @samp{.sha}
1ceab344 1067@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1068@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1069@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1ceab344 1070@item @samp{.padlock}
43234a1e
L
1071@item @samp{.smap} @tab @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er}
1072@item @samp{.avx512pf} @tab @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a}
1073@item @samp{.sse5} @tab @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1074@item @samp{.abm} @tab @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1075@item @samp{.cx16} @tab @samp{.padlock}
e413e4e9
AM
1076@end multitable
1077
fddf5b5b
AM
1078Apart from the warning, there are only two other effects on
1079@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1080@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1081will automatically use a two byte opcode sequence. The larger three
1082byte opcode sequence is used on the 486 (and when no architecture is
1083specified) because it executes faster on the 486. Note that you can
1084explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1085Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1086@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1087conditional jumps will be promoted when necessary to a two instruction
1088sequence consisting of a conditional jump of the opposite sense around
1089an unconditional jump to the target.
1090
5c6af06e
JB
1091Following the CPU architecture (but not a sub-architecture, which are those
1092starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1093control automatic promotion of conditional jumps. @samp{jumps} is the
1094default, and enables jump promotion; All external jumps will be of the long
1095variety, and file-local jumps will be promoted as necessary.
1096(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1097byte offset jumps, and warns about file-local conditional jumps that
1098@code{@value{AS}} promotes.
fddf5b5b
AM
1099Unconditional jumps are treated as for @samp{jumps}.
1100
1101For example
1102
1103@smallexample
1104 .arch i8086,nojumps
1105@end smallexample
e413e4e9 1106
252b5132
RH
1107@node i386-Notes
1108@section Notes
1109
1110@cindex i386 @code{mul}, @code{imul} instructions
1111@cindex @code{mul} instruction, i386
1112@cindex @code{imul} instruction, i386
55b62671
AJ
1113@cindex @code{mul} instruction, x86-64
1114@cindex @code{imul} instruction, x86-64
252b5132 1115There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1116instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1117multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1118for @samp{imul}) can be output only in the one operand form. Thus,
1119@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1120the expanding multiply would clobber the @samp{%edx} register, and this
1121would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
112264-bit product in @samp{%edx:%eax}.
1123
1124We have added a two operand form of @samp{imul} when the first operand
1125is an immediate mode expression and the second operand is a register.
1126This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1127example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1128$69, %eax, %eax}.
1129
This page took 0.607044 seconds and 4 git commands to generate.