Add docs and arch tests to BMI.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037 1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
aa820537 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
731caf76
L
6@c man end
7
252b5132
RH
8@ifset GENERIC
9@page
10@node i386-Dependent
11@chapter 80386 Dependent Features
12@end ifset
13@ifclear GENERIC
14@node Machine Dependencies
15@chapter 80386 Dependent Features
16@end ifclear
17
18@cindex i386 support
b6169b20 19@cindex i80386 support
55b62671
AJ
20@cindex x86-64 support
21
22The i386 version @code{@value{AS}} supports both the original Intel 386
23architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24extending the Intel architecture to 64-bits.
25
252b5132
RH
26@menu
27* i386-Options:: Options
a6c24e68 28* i386-Directives:: X86 specific directives
252b5132
RH
29* i386-Syntax:: AT&T Syntax versus Intel Syntax
30* i386-Mnemonics:: Instruction Naming
31* i386-Regs:: Register Naming
32* i386-Prefixes:: Instruction Prefixes
33* i386-Memory:: Memory References
fddf5b5b 34* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
35* i386-Float:: Floating Point
36* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 37* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 38* i386-BMI:: Bit Manipulation Instruction
252b5132 39* i386-16bit:: Writing 16-bit Code
e413e4e9 40* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
41* i386-Bugs:: AT&T Syntax bugs
42* i386-Notes:: Notes
43@end menu
44
45@node i386-Options
46@section Options
47
55b62671
AJ
48@cindex options for i386
49@cindex options for x86-64
50@cindex i386 options
51@cindex x86-64 options
52
53The i386 version of @code{@value{AS}} has a few machine
54dependent options:
55
731caf76
L
56@c man begin OPTIONS
57@table @gcctabopt
55b62671
AJ
58@cindex @samp{--32} option, i386
59@cindex @samp{--32} option, x86-64
351f65ca
L
60@cindex @samp{--n32} option, i386
61@cindex @samp{--n32} option, x86-64
55b62671
AJ
62@cindex @samp{--64} option, i386
63@cindex @samp{--64} option, x86-64
351f65ca 64@item --32 | --n32 | --64
35cc6a0b
L
65Select the word size, either 32 bits or 64 bits. @samp{--32}
66implies Intel i386 architecture, while @samp{--n32} and @samp{--64}
67imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68respectively.
55b62671
AJ
69
70These options are only available with the ELF object file format, and
71require that the necessary BFD support has been included (on a 32-bit
72platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73usage and use x86-64 as target platform).
12b55ccc
L
74
75@item -n
76By default, x86 GAS replaces multiple nop instructions used for
77alignment within code sections with multi-byte nop instructions such
78as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
79
80@cindex @samp{--divide} option, i386
81@item --divide
82On SVR4-derived platforms, the character @samp{/} is treated as a comment
83character, which means that it cannot be used in expressions. The
84@samp{--divide} option turns @samp{/} into a normal character. This does
85not disable @samp{/} at the beginning of a line starting a comment, or
86affect using @samp{#} for starting a comment.
87
9103f4f4
L
88@cindex @samp{-march=} option, i386
89@cindex @samp{-march=} option, x86-64
6305a203
L
90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91This option specifies the target processor. The assembler will
92issue an error message if an attempt is made to assemble an instruction
93which will not execute on the target processor. The following
94processor names are recognized:
9103f4f4
L
95@code{i8086},
96@code{i186},
97@code{i286},
98@code{i386},
99@code{i486},
100@code{i586},
101@code{i686},
102@code{pentium},
103@code{pentiumpro},
104@code{pentiumii},
105@code{pentiumiii},
106@code{pentium4},
107@code{prescott},
108@code{nocona},
ef05d495
L
109@code{core},
110@code{core2},
bd5295b2 111@code{corei7},
8a9036a4 112@code{l1om},
9103f4f4
L
113@code{k6},
114@code{k6_2},
115@code{athlon},
9103f4f4
L
116@code{opteron},
117@code{k8},
1ceab344 118@code{amdfam10},
68339fdf 119@code{bdver1},
9103f4f4
L
120@code{generic32} and
121@code{generic64}.
122
6305a203
L
123In addition to the basic instruction set, the assembler can be told to
124accept various extension mnemonics. For example,
125@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
126@var{vmx}. The following extensions are currently supported:
309d3373
JB
127@code{8087},
128@code{287},
129@code{387},
130@code{no87},
6305a203 131@code{mmx},
309d3373 132@code{nommx},
6305a203
L
133@code{sse},
134@code{sse2},
135@code{sse3},
136@code{ssse3},
137@code{sse4.1},
138@code{sse4.2},
139@code{sse4},
309d3373 140@code{nosse},
c0f3af97 141@code{avx},
309d3373 142@code{noavx},
6305a203
L
143@code{vmx},
144@code{smx},
f03fe4c1 145@code{xsave},
c7b8aa3a 146@code{xsaveopt},
c0f3af97 147@code{aes},
594ab6a3 148@code{pclmul},
c7b8aa3a
L
149@code{fsgsbase},
150@code{rdrnd},
151@code{f16c},
c0f3af97 152@code{fma},
f1f8f695
L
153@code{movbe},
154@code{ept},
bd5295b2 155@code{clflush},
f88c9eb0 156@code{lwp},
5dd85c99
SP
157@code{fma4},
158@code{xop},
bd5295b2 159@code{syscall},
1b7f3fb0 160@code{rdtscp},
6305a203
L
161@code{3dnow},
162@code{3dnowa},
163@code{sse4a},
164@code{sse5},
165@code{svme},
166@code{abm} and
167@code{padlock}.
309d3373
JB
168Note that rather than extending a basic instruction set, the extension
169mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
170
171When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
172@code{.arch} directive will take precedent.
173
174@cindex @samp{-mtune=} option, i386
175@cindex @samp{-mtune=} option, x86-64
176@item -mtune=@var{CPU}
177This option specifies a processor to optimize for. When used in
178conjunction with the @option{-march} option, only instructions
179of the processor specified by the @option{-march} option will be
180generated.
181
6305a203
L
182Valid @var{CPU} values are identical to the processor list of
183@option{-march=@var{CPU}}.
9103f4f4 184
c0f3af97
L
185@cindex @samp{-msse2avx} option, i386
186@cindex @samp{-msse2avx} option, x86-64
187@item -msse2avx
188This option specifies that the assembler should encode SSE instructions
189with VEX prefix.
190
daf50ae7
L
191@cindex @samp{-msse-check=} option, i386
192@cindex @samp{-msse-check=} option, x86-64
193@item -msse-check=@var{none}
1f9bb1ca
AS
194@itemx -msse-check=@var{warning}
195@itemx -msse-check=@var{error}
daf50ae7
L
196These options control if the assembler should check SSE intructions.
197@option{-msse-check=@var{none}} will make the assembler not to check SSE
198instructions, which is the default. @option{-msse-check=@var{warning}}
199will make the assembler issue a warning for any SSE intruction.
200@option{-msse-check=@var{error}} will make the assembler issue an error
201for any SSE intruction.
202
539f890d
L
203@cindex @samp{-mavxscalar=} option, i386
204@cindex @samp{-mavxscalar=} option, x86-64
205@item -mavxscalar=@var{128}
1f9bb1ca 206@itemx -mavxscalar=@var{256}
539f890d
L
207This options control how the assembler should encode scalar AVX
208instructions. @option{-mavxscalar=@var{128}} will encode scalar
209AVX instructions with 128bit vector length, which is the default.
210@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
211with 256bit vector length.
212
1efbbeb4
L
213@cindex @samp{-mmnemonic=} option, i386
214@cindex @samp{-mmnemonic=} option, x86-64
215@item -mmnemonic=@var{att}
1f9bb1ca 216@itemx -mmnemonic=@var{intel}
1efbbeb4
L
217This option specifies instruction mnemonic for matching instructions.
218The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
219take precedent.
220
221@cindex @samp{-msyntax=} option, i386
222@cindex @samp{-msyntax=} option, x86-64
223@item -msyntax=@var{att}
1f9bb1ca 224@itemx -msyntax=@var{intel}
1efbbeb4
L
225This option specifies instruction syntax when processing instructions.
226The @code{.att_syntax} and @code{.intel_syntax} directives will
227take precedent.
228
229@cindex @samp{-mnaked-reg} option, i386
230@cindex @samp{-mnaked-reg} option, x86-64
231@item -mnaked-reg
232This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 233The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 234
55b62671 235@end table
731caf76 236@c man end
e413e4e9 237
a6c24e68
NC
238@node i386-Directives
239@section x86 specific Directives
240
241@cindex machine directives, x86
242@cindex x86 machine directives
243@table @code
244
245@cindex @code{lcomm} directive, COFF
246@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
247Reserve @var{length} (an absolute expression) bytes for a local common
248denoted by @var{symbol}. The section and value of @var{symbol} are
249those of the new local common. The addresses are allocated in the bss
704209c0
NC
250section, so that at run-time the bytes start off zeroed. Since
251@var{symbol} is not declared global, it is normally not visible to
252@code{@value{LD}}. The optional third parameter, @var{alignment},
253specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
254
255This directive is only available for COFF based x86 targets.
256
257@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
258@c .largecomm
259
260@end table
261
252b5132
RH
262@node i386-Syntax
263@section AT&T Syntax versus Intel Syntax
264
e413e4e9
AM
265@cindex i386 intel_syntax pseudo op
266@cindex intel_syntax pseudo op, i386
267@cindex i386 att_syntax pseudo op
268@cindex att_syntax pseudo op, i386
252b5132
RH
269@cindex i386 syntax compatibility
270@cindex syntax compatibility, i386
55b62671
AJ
271@cindex x86-64 intel_syntax pseudo op
272@cindex intel_syntax pseudo op, x86-64
273@cindex x86-64 att_syntax pseudo op
274@cindex att_syntax pseudo op, x86-64
275@cindex x86-64 syntax compatibility
276@cindex syntax compatibility, x86-64
e413e4e9
AM
277
278@code{@value{AS}} now supports assembly using Intel assembler syntax.
279@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
280back to the usual AT&T mode for compatibility with the output of
281@code{@value{GCC}}. Either of these directives may have an optional
282argument, @code{prefix}, or @code{noprefix} specifying whether registers
283require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
284different from Intel syntax. We mention these differences because
285almost all 80386 documents use Intel syntax. Notable differences
286between the two syntaxes are:
287
288@cindex immediate operands, i386
289@cindex i386 immediate operands
290@cindex register operands, i386
291@cindex i386 register operands
292@cindex jump/call operands, i386
293@cindex i386 jump/call operands
294@cindex operand delimiters, i386
55b62671
AJ
295
296@cindex immediate operands, x86-64
297@cindex x86-64 immediate operands
298@cindex register operands, x86-64
299@cindex x86-64 register operands
300@cindex jump/call operands, x86-64
301@cindex x86-64 jump/call operands
302@cindex operand delimiters, x86-64
252b5132
RH
303@itemize @bullet
304@item
305AT&T immediate operands are preceded by @samp{$}; Intel immediate
306operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
307AT&T register operands are preceded by @samp{%}; Intel register operands
308are undelimited. AT&T absolute (as opposed to PC relative) jump/call
309operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
310
311@cindex i386 source, destination operands
312@cindex source, destination operands; i386
55b62671
AJ
313@cindex x86-64 source, destination operands
314@cindex source, destination operands; x86-64
252b5132
RH
315@item
316AT&T and Intel syntax use the opposite order for source and destination
317operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
318@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
319previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
320instructions with 2 immediate operands, such as the @samp{enter}
321instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
322
323@cindex mnemonic suffixes, i386
324@cindex sizes operands, i386
325@cindex i386 size suffixes
55b62671
AJ
326@cindex mnemonic suffixes, x86-64
327@cindex sizes operands, x86-64
328@cindex x86-64 size suffixes
252b5132
RH
329@item
330In AT&T syntax the size of memory operands is determined from the last
331character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
332@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
333(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
334this by prefixing memory operands (@emph{not} the instruction mnemonics) with
335@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
336Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
337syntax.
252b5132 338
4b06377f
L
339In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
340instruction with the 64-bit displacement or immediate operand.
341
252b5132
RH
342@cindex return instructions, i386
343@cindex i386 jump, call, return
55b62671
AJ
344@cindex return instructions, x86-64
345@cindex x86-64 jump, call, return
252b5132
RH
346@item
347Immediate form long jumps and calls are
348@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
349Intel syntax is
350@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
351instruction
352is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
353@samp{ret far @var{stack-adjust}}.
354
355@cindex sections, i386
356@cindex i386 sections
55b62671
AJ
357@cindex sections, x86-64
358@cindex x86-64 sections
252b5132
RH
359@item
360The AT&T assembler does not provide support for multiple section
361programs. Unix style systems expect all programs to be single sections.
362@end itemize
363
364@node i386-Mnemonics
365@section Instruction Naming
366
367@cindex i386 instruction naming
368@cindex instruction naming, i386
55b62671
AJ
369@cindex x86-64 instruction naming
370@cindex instruction naming, x86-64
371
252b5132 372Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
373specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
374and @samp{q} specify byte, word, long and quadruple word operands. If
375no suffix is specified by an instruction then @code{@value{AS}} tries to
376fill in the missing suffix based on the destination register operand
377(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
378to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
379@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
380assembler which assumes that a missing mnemonic suffix implies long
381operand size. (This incompatibility does not affect compiler output
382since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
383
384Almost all instructions have the same names in AT&T and Intel format.
385There are a few exceptions. The sign extend and zero extend
386instructions need two sizes to specify them. They need a size to
387sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
388is accomplished by using two instruction mnemonic suffixes in AT&T
389syntax. Base names for sign extend and zero extend are
390@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
391and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
392are tacked on to this base name, the @emph{from} suffix before the
393@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
394``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
395thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
396@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
397@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
398quadruple word).
252b5132 399
b6169b20
L
400@cindex encoding options, i386
401@cindex encoding options, x86-64
402
403Different encoding options can be specified via optional mnemonic
404suffix. @samp{.s} suffix swaps 2 register operands in encoding when
f8a5c266
L
405moving from one register to another. @samp{.d32} suffix forces 32bit
406displacement in encoding.
b6169b20 407
252b5132
RH
408@cindex conversion instructions, i386
409@cindex i386 conversion instructions
55b62671
AJ
410@cindex conversion instructions, x86-64
411@cindex x86-64 conversion instructions
252b5132
RH
412The Intel-syntax conversion instructions
413
414@itemize @bullet
415@item
416@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
417
418@item
419@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
420
421@item
422@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
423
424@item
425@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
426
427@item
428@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
429(x86-64 only),
430
431@item
d5f0cf92 432@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 433@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
434@end itemize
435
436@noindent
55b62671
AJ
437are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
438@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
439instructions.
252b5132
RH
440
441@cindex jump instructions, i386
442@cindex call instructions, i386
55b62671
AJ
443@cindex jump instructions, x86-64
444@cindex call instructions, x86-64
252b5132
RH
445Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
446AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
447convention.
448
1efbbeb4
L
449@section AT&T Mnemonic versus Intel Mnemonic
450
451@cindex i386 mnemonic compatibility
452@cindex mnemonic compatibility, i386
453
454@code{@value{AS}} supports assembly using Intel mnemonic.
455@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
456@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
457syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
458Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
459@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
460@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
461assembler with different mnemonics from those in Intel IA32 specification.
462@code{@value{GCC}} generates those instructions with AT&T mnemonic.
463
252b5132
RH
464@node i386-Regs
465@section Register Naming
466
467@cindex i386 registers
468@cindex registers, i386
55b62671
AJ
469@cindex x86-64 registers
470@cindex registers, x86-64
252b5132
RH
471Register operands are always prefixed with @samp{%}. The 80386 registers
472consist of
473
474@itemize @bullet
475@item
476the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
477@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
478frame pointer), and @samp{%esp} (the stack pointer).
479
480@item
481the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
482@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
483
484@item
485the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
486@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
487are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
488@samp{%cx}, and @samp{%dx})
489
490@item
491the 6 section registers @samp{%cs} (code section), @samp{%ds}
492(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
493and @samp{%gs}.
494
495@item
496the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
497@samp{%cr3}.
498
499@item
500the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
501@samp{%db3}, @samp{%db6}, and @samp{%db7}.
502
503@item
504the 2 test registers @samp{%tr6} and @samp{%tr7}.
505
506@item
507the 8 floating point register stack @samp{%st} or equivalently
508@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
509@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
510These registers are overloaded by 8 MMX registers @samp{%mm0},
511@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
512@samp{%mm6} and @samp{%mm7}.
513
514@item
515the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
516@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
517@end itemize
518
519The AMD x86-64 architecture extends the register set by:
520
521@itemize @bullet
522@item
523enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
524accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
525@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
526pointer)
527
528@item
529the 8 extended registers @samp{%r8}--@samp{%r15}.
530
531@item
532the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
533
534@item
535the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
536
537@item
538the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
539
540@item
541the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
542
543@item
544the 8 debug registers: @samp{%db8}--@samp{%db15}.
545
546@item
547the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
548@end itemize
549
550@node i386-Prefixes
551@section Instruction Prefixes
552
553@cindex i386 instruction prefixes
554@cindex instruction prefixes, i386
555@cindex prefixes, i386
556Instruction prefixes are used to modify the following instruction. They
557are used to repeat string instructions, to provide section overrides, to
558perform bus lock operations, and to change operand and address sizes.
559(Most instructions that normally operate on 32-bit operands will use
56016-bit operands if the instruction has an ``operand size'' prefix.)
561Instruction prefixes are best written on the same line as the instruction
562they act upon. For example, the @samp{scas} (scan string) instruction is
563repeated with:
564
565@smallexample
566 repne scas %es:(%edi),%al
567@end smallexample
568
569You may also place prefixes on the lines immediately preceding the
570instruction, but this circumvents checks that @code{@value{AS}} does
571with prefixes, and will not work with all prefixes.
572
573Here is a list of instruction prefixes:
574
575@cindex section override prefixes, i386
576@itemize @bullet
577@item
578Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
579@samp{fs}, @samp{gs}. These are automatically added by specifying
580using the @var{section}:@var{memory-operand} form for memory references.
581
582@cindex size prefixes, i386
583@item
584Operand/Address size prefixes @samp{data16} and @samp{addr16}
585change 32-bit operands/addresses into 16-bit operands/addresses,
586while @samp{data32} and @samp{addr32} change 16-bit ones (in a
587@code{.code16} section) into 32-bit operands/addresses. These prefixes
588@emph{must} appear on the same line of code as the instruction they
589modify. For example, in a 16-bit @code{.code16} section, you might
590write:
591
592@smallexample
593 addr32 jmpl *(%ebx)
594@end smallexample
595
596@cindex bus lock prefixes, i386
597@cindex inhibiting interrupts, i386
598@item
599The bus lock prefix @samp{lock} inhibits interrupts during execution of
600the instruction it precedes. (This is only valid with certain
601instructions; see a 80386 manual for details).
602
603@cindex coprocessor wait, i386
604@item
605The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
606complete the current instruction. This should never be needed for the
60780386/80387 combination.
608
609@cindex repeat prefixes, i386
610@item
611The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
612to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
613times if the current address size is 16-bits).
55b62671
AJ
614@cindex REX prefixes, i386
615@item
616The @samp{rex} family of prefixes is used by x86-64 to encode
617extensions to i386 instruction set. The @samp{rex} prefix has four
618bits --- an operand size overwrite (@code{64}) used to change operand size
619from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
620register set.
621
622You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
623instruction emits @samp{rex} prefix with all the bits set. By omitting
624the @code{64}, @code{x}, @code{y} or @code{z} you may write other
625prefixes as well. Normally, there is no need to write the prefixes
626explicitly, since gas will automatically generate them based on the
627instruction operands.
252b5132
RH
628@end itemize
629
630@node i386-Memory
631@section Memory References
632
633@cindex i386 memory references
634@cindex memory references, i386
55b62671
AJ
635@cindex x86-64 memory references
636@cindex memory references, x86-64
252b5132
RH
637An Intel syntax indirect memory reference of the form
638
639@smallexample
640@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
641@end smallexample
642
643@noindent
644is translated into the AT&T syntax
645
646@smallexample
647@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
648@end smallexample
649
650@noindent
651where @var{base} and @var{index} are the optional 32-bit base and
652index registers, @var{disp} is the optional displacement, and
653@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
654to calculate the address of the operand. If no @var{scale} is
655specified, @var{scale} is taken to be 1. @var{section} specifies the
656optional section register for the memory operand, and may override the
657default section register (see a 80386 manual for section register
658defaults). Note that section overrides in AT&T syntax @emph{must}
659be preceded by a @samp{%}. If you specify a section override which
660coincides with the default section register, @code{@value{AS}} does @emph{not}
661output any section register override prefixes to assemble the given
662instruction. Thus, section overrides can be specified to emphasize which
663section register is used for a given memory operand.
664
665Here are some examples of Intel and AT&T style memory references:
666
667@table @asis
668@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
669@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
670missing, and the default section is used (@samp{%ss} for addressing with
671@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
672
673@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
674@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
675@samp{foo}. All other fields are missing. The section register here
676defaults to @samp{%ds}.
677
678@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
679This uses the value pointed to by @samp{foo} as a memory operand.
680Note that @var{base} and @var{index} are both missing, but there is only
681@emph{one} @samp{,}. This is a syntactic exception.
682
683@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
684This selects the contents of the variable @samp{foo} with section
685register @var{section} being @samp{%gs}.
686@end table
687
688Absolute (as opposed to PC relative) call and jump operands must be
689prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
690always chooses PC relative addressing for jump/call labels.
691
692Any instruction that has a memory operand, but no register operand,
55b62671
AJ
693@emph{must} specify its size (byte, word, long, or quadruple) with an
694instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
695respectively).
696
697The x86-64 architecture adds an RIP (instruction pointer relative)
698addressing. This addressing mode is specified by using @samp{rip} as a
699base register. Only constant offsets are valid. For example:
700
701@table @asis
702@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
703Points to the address 1234 bytes past the end of the current
704instruction.
705
706@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
707Points to the @code{symbol} in RIP relative way, this is shorter than
708the default absolute addressing.
709@end table
710
711Other addressing modes remain unchanged in x86-64 architecture, except
712registers used are 64-bit instead of 32-bit.
252b5132 713
fddf5b5b 714@node i386-Jumps
252b5132
RH
715@section Handling of Jump Instructions
716
717@cindex jump optimization, i386
718@cindex i386 jump optimization
55b62671
AJ
719@cindex jump optimization, x86-64
720@cindex x86-64 jump optimization
252b5132
RH
721Jump instructions are always optimized to use the smallest possible
722displacements. This is accomplished by using byte (8-bit) displacement
723jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 724is insufficient a long displacement is used. We do not support
252b5132
RH
725word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
726instruction with the @samp{data16} instruction prefix), since the 80386
727insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 728is added. (See also @pxref{i386-Arch})
252b5132
RH
729
730Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
731@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
732displacements, so that if you use these instructions (@code{@value{GCC}} does
733not use them) you may get an error message (and incorrect code). The AT&T
73480386 assembler tries to get around this problem by expanding @samp{jcxz foo}
735to
736
737@smallexample
738 jcxz cx_zero
739 jmp cx_nonzero
740cx_zero: jmp foo
741cx_nonzero:
742@end smallexample
743
744@node i386-Float
745@section Floating Point
746
747@cindex i386 floating point
748@cindex floating point, i386
55b62671
AJ
749@cindex x86-64 floating point
750@cindex floating point, x86-64
252b5132
RH
751All 80387 floating point types except packed BCD are supported.
752(BCD support may be added without much difficulty). These data
753types are 16-, 32-, and 64- bit integers, and single (32-bit),
754double (64-bit), and extended (80-bit) precision floating point.
755Each supported type has an instruction mnemonic suffix and a constructor
756associated with it. Instruction mnemonic suffixes specify the operand's
757data type. Constructors build these data types into memory.
758
759@cindex @code{float} directive, i386
760@cindex @code{single} directive, i386
761@cindex @code{double} directive, i386
762@cindex @code{tfloat} directive, i386
55b62671
AJ
763@cindex @code{float} directive, x86-64
764@cindex @code{single} directive, x86-64
765@cindex @code{double} directive, x86-64
766@cindex @code{tfloat} directive, x86-64
252b5132
RH
767@itemize @bullet
768@item
769Floating point constructors are @samp{.float} or @samp{.single},
770@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
771These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
772and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
773only supports this format via the @samp{fldt} (load 80-bit real to stack
774top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
775
776@cindex @code{word} directive, i386
777@cindex @code{long} directive, i386
778@cindex @code{int} directive, i386
779@cindex @code{quad} directive, i386
55b62671
AJ
780@cindex @code{word} directive, x86-64
781@cindex @code{long} directive, x86-64
782@cindex @code{int} directive, x86-64
783@cindex @code{quad} directive, x86-64
252b5132
RH
784@item
785Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
786@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
787corresponding instruction mnemonic suffixes are @samp{s} (single),
788@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
789the 64-bit @samp{q} format is only present in the @samp{fildq} (load
790quad integer to stack top) and @samp{fistpq} (store quad integer and pop
791stack) instructions.
792@end itemize
793
794Register to register operations should not use instruction mnemonic suffixes.
795@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
796wrote @samp{fst %st, %st(1)}, since all register to register operations
797use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
798which converts @samp{%st} from 80-bit to 64-bit floating point format,
799then stores the result in the 4 byte location @samp{mem})
800
801@node i386-SIMD
802@section Intel's MMX and AMD's 3DNow! SIMD Operations
803
804@cindex MMX, i386
805@cindex 3DNow!, i386
806@cindex SIMD, i386
55b62671
AJ
807@cindex MMX, x86-64
808@cindex 3DNow!, x86-64
809@cindex SIMD, x86-64
252b5132
RH
810
811@code{@value{AS}} supports Intel's MMX instruction set (SIMD
812instructions for integer data), available on Intel's Pentium MMX
813processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 814Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
815instruction set (SIMD instructions for 32-bit floating point data)
816available on AMD's K6-2 processor and possibly others in the future.
817
818Currently, @code{@value{AS}} does not support Intel's floating point
819SIMD, Katmai (KNI).
820
821The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
822@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
82316-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
824floating point values. The MMX registers cannot be used at the same time
825as the floating point stack.
826
827See Intel and AMD documentation, keeping in mind that the operand order in
828instructions is reversed from the Intel syntax.
829
f88c9eb0
SP
830@node i386-LWP
831@section AMD's Lightweight Profiling Instructions
832
833@cindex LWP, i386
834@cindex LWP, x86-64
835
836@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
837instruction set, available on AMD's Family 15h (Orochi) processors.
838
839LWP enables applications to collect and manage performance data, and
840react to performance events. The collection of performance data
841requires no context switches. LWP runs in the context of a thread and
842so several counters can be used independently across multiple threads.
843LWP can be used in both 64-bit and legacy 32-bit modes.
844
845For detailed information on the LWP instruction set, see the
846@cite{AMD Lightweight Profiling Specification} available at
847@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
848
87973e9f
QN
849@node i386-BMI
850@section Bit Manipulation Instructions
851
852@cindex BMI, i386
853@cindex BMI, x86-64
854
855@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
856
857BMI instructions provide several instructions implementing individual
858bit manipulation operations such as isolation, masking, setting, or
859resetting.
860
861@c Need to add a specification citation here when available.
862
863
252b5132
RH
864@node i386-16bit
865@section Writing 16-bit Code
866
867@cindex i386 16-bit code
868@cindex 16-bit code, i386
869@cindex real-mode code, i386
eecb386c 870@cindex @code{code16gcc} directive, i386
252b5132
RH
871@cindex @code{code16} directive, i386
872@cindex @code{code32} directive, i386
55b62671
AJ
873@cindex @code{code64} directive, i386
874@cindex @code{code64} directive, x86-64
875While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
876or 64-bit x86-64 code depending on the default configuration,
252b5132 877it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
878mode code segments. To do this, put a @samp{.code16} or
879@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
880be run in 16-bit mode. You can switch @code{@value{AS}} to writing
88132-bit code with the @samp{.code32} directive or 64-bit code with the
882@samp{.code64} directive.
eecb386c
AM
883
884@samp{.code16gcc} provides experimental support for generating 16-bit
885code from gcc, and differs from @samp{.code16} in that @samp{call},
886@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
887@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
888default to 32-bit size. This is so that the stack pointer is
889manipulated in the same way over function calls, allowing access to
890function parameters at the same stack offsets as in 32-bit mode.
891@samp{.code16gcc} also automatically adds address size prefixes where
892necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
893
894The code which @code{@value{AS}} generates in 16-bit mode will not
895necessarily run on a 16-bit pre-80386 processor. To write code that
896runs on such a processor, you must refrain from using @emph{any} 32-bit
897constructs which require @code{@value{AS}} to output address or operand
898size prefixes.
899
900Note that writing 16-bit code instructions by explicitly specifying a
901prefix or an instruction mnemonic suffix within a 32-bit code section
902generates different machine instructions than those generated for a
90316-bit code segment. In a 32-bit code section, the following code
904generates the machine opcode bytes @samp{66 6a 04}, which pushes the
905value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
906
907@smallexample
908 pushw $4
909@end smallexample
910
911The same code in a 16-bit code section would generate the machine
b45619c0 912opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
913is correct since the processor default operand size is assumed to be 16
914bits in a 16-bit code section.
915
916@node i386-Bugs
917@section AT&T Syntax bugs
918
919The UnixWare assembler, and probably other AT&T derived ix86 Unix
920assemblers, generate floating point instructions with reversed source
921and destination registers in certain cases. Unfortunately, gcc and
922possibly many other programs use this reversed syntax, so we're stuck
923with it.
924
925For example
926
927@smallexample
928 fsub %st,%st(3)
929@end smallexample
930@noindent
931results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
932than the expected @samp{%st(3) - %st}. This happens with all the
933non-commutative arithmetic floating point operations with two register
934operands where the source register is @samp{%st} and the destination
935register is @samp{%st(i)}.
936
e413e4e9
AM
937@node i386-Arch
938@section Specifying CPU Architecture
939
940@cindex arch directive, i386
941@cindex i386 arch directive
55b62671
AJ
942@cindex arch directive, x86-64
943@cindex x86-64 arch directive
e413e4e9
AM
944
945@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 946(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
947directive enables a warning when gas detects an instruction that is not
948supported on the CPU specified. The choices for @var{cpu_type} are:
949
950@multitable @columnfractions .20 .20 .20 .20
951@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
952@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 953@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 954@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
8a9036a4 955@item @samp{corei7} @tab @samp{l1om}
1543849b 956@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
68339fdf 957@item @samp{amdfam10} @tab @samp{bdver1}
1ceab344 958@item @samp{generic32} @tab @samp{generic64}
9103f4f4 959@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 960@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
961@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
962@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
963@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
964@item @samp{.rdrnd} @tab @samp{.f16c}
1ceab344 965@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 966@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
f0ae4a24 967@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1ceab344 968@item @samp{.padlock}
e413e4e9
AM
969@end multitable
970
fddf5b5b
AM
971Apart from the warning, there are only two other effects on
972@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
973@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
974will automatically use a two byte opcode sequence. The larger three
975byte opcode sequence is used on the 486 (and when no architecture is
976specified) because it executes faster on the 486. Note that you can
977explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
978Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
979@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
980conditional jumps will be promoted when necessary to a two instruction
981sequence consisting of a conditional jump of the opposite sense around
982an unconditional jump to the target.
983
5c6af06e
JB
984Following the CPU architecture (but not a sub-architecture, which are those
985starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
986control automatic promotion of conditional jumps. @samp{jumps} is the
987default, and enables jump promotion; All external jumps will be of the long
988variety, and file-local jumps will be promoted as necessary.
989(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
990byte offset jumps, and warns about file-local conditional jumps that
991@code{@value{AS}} promotes.
fddf5b5b
AM
992Unconditional jumps are treated as for @samp{jumps}.
993
994For example
995
996@smallexample
997 .arch i8086,nojumps
998@end smallexample
e413e4e9 999
252b5132
RH
1000@node i386-Notes
1001@section Notes
1002
1003@cindex i386 @code{mul}, @code{imul} instructions
1004@cindex @code{mul} instruction, i386
1005@cindex @code{imul} instruction, i386
55b62671
AJ
1006@cindex @code{mul} instruction, x86-64
1007@cindex @code{imul} instruction, x86-64
252b5132 1008There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1009instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1010multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1011for @samp{imul}) can be output only in the one operand form. Thus,
1012@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1013the expanding multiply would clobber the @samp{%edx} register, and this
1014would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
101564-bit product in @samp{%edx:%eax}.
1016
1017We have added a two operand form of @samp{imul} when the first operand
1018is an immediate mode expression and the second operand is a register.
1019This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1020example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1021$69, %eax, %eax}.
1022
This page took 0.502289 seconds and 4 git commands to generate.