Add AVX512DQ instructions and their AVX512VL variants.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
4b95cf5c 1@c Copyright (C) 1991-2014 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
9103f4f4
L
113@code{k6},
114@code{k6_2},
115@code{athlon},
9103f4f4
L
116@code{opteron},
117@code{k8},
1ceab344 118@code{amdfam10},
68339fdf 119@code{bdver1},
af2f724e 120@code{bdver2},
5e5c50d3 121@code{bdver3},
c7b0bd56 122@code{bdver4},
7b458c12
L
123@code{btver1},
124@code{btver2},
9103f4f4
L
125@code{generic32} and
126@code{generic64}.
127
34bca508 128In addition to the basic instruction set, the assembler can be told to
6305a203
L
129accept various extension mnemonics. For example,
130@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
131@var{vmx}. The following extensions are currently supported:
309d3373
JB
132@code{8087},
133@code{287},
134@code{387},
135@code{no87},
6305a203 136@code{mmx},
309d3373 137@code{nommx},
6305a203
L
138@code{sse},
139@code{sse2},
140@code{sse3},
141@code{ssse3},
142@code{sse4.1},
143@code{sse4.2},
144@code{sse4},
309d3373 145@code{nosse},
c0f3af97 146@code{avx},
6c30d220 147@code{avx2},
e2e1fcde
L
148@code{adx},
149@code{rdseed},
150@code{prfchw},
5c111e37 151@code{smap},
7e8b059b 152@code{mpx},
a0046408 153@code{sha},
43234a1e
L
154@code{avx512f},
155@code{avx512cd},
156@code{avx512er},
157@code{avx512pf},
309d3373 158@code{noavx},
6305a203 159@code{vmx},
8729a6f6 160@code{vmfunc},
6305a203 161@code{smx},
f03fe4c1 162@code{xsave},
c7b8aa3a 163@code{xsaveopt},
c0f3af97 164@code{aes},
594ab6a3 165@code{pclmul},
c7b8aa3a
L
166@code{fsgsbase},
167@code{rdrnd},
168@code{f16c},
6c30d220 169@code{bmi2},
c0f3af97 170@code{fma},
f1f8f695
L
171@code{movbe},
172@code{ept},
6c30d220 173@code{lzcnt},
42164a71
L
174@code{hle},
175@code{rtm},
6c30d220 176@code{invpcid},
bd5295b2 177@code{clflush},
f88c9eb0 178@code{lwp},
5dd85c99
SP
179@code{fma4},
180@code{xop},
60aa667e 181@code{cx16},
bd5295b2 182@code{syscall},
1b7f3fb0 183@code{rdtscp},
6305a203
L
184@code{3dnow},
185@code{3dnowa},
186@code{sse4a},
187@code{sse5},
188@code{svme},
189@code{abm} and
190@code{padlock}.
90a915bf 191@code{avx512dq},
1ba585e8 192@code{avx512bw},
b28d1bda 193@code{avx512vl},
309d3373
JB
194Note that rather than extending a basic instruction set, the extension
195mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
196
197When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
198@code{.arch} directive will take precedent.
199
200@cindex @samp{-mtune=} option, i386
201@cindex @samp{-mtune=} option, x86-64
202@item -mtune=@var{CPU}
203This option specifies a processor to optimize for. When used in
204conjunction with the @option{-march} option, only instructions
205of the processor specified by the @option{-march} option will be
206generated.
207
6305a203
L
208Valid @var{CPU} values are identical to the processor list of
209@option{-march=@var{CPU}}.
9103f4f4 210
c0f3af97
L
211@cindex @samp{-msse2avx} option, i386
212@cindex @samp{-msse2avx} option, x86-64
213@item -msse2avx
214This option specifies that the assembler should encode SSE instructions
215with VEX prefix.
216
daf50ae7
L
217@cindex @samp{-msse-check=} option, i386
218@cindex @samp{-msse-check=} option, x86-64
219@item -msse-check=@var{none}
1f9bb1ca
AS
220@itemx -msse-check=@var{warning}
221@itemx -msse-check=@var{error}
9aff4b7a 222These options control if the assembler should check SSE instructions.
daf50ae7
L
223@option{-msse-check=@var{none}} will make the assembler not to check SSE
224instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 225will make the assembler issue a warning for any SSE instruction.
daf50ae7 226@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 227for any SSE instruction.
daf50ae7 228
539f890d
L
229@cindex @samp{-mavxscalar=} option, i386
230@cindex @samp{-mavxscalar=} option, x86-64
231@item -mavxscalar=@var{128}
1f9bb1ca 232@itemx -mavxscalar=@var{256}
2aab8acd 233These options control how the assembler should encode scalar AVX
539f890d
L
234instructions. @option{-mavxscalar=@var{128}} will encode scalar
235AVX instructions with 128bit vector length, which is the default.
236@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
237with 256bit vector length.
238
43234a1e
L
239@cindex @samp{-mevexlig=} option, i386
240@cindex @samp{-mevexlig=} option, x86-64
241@item -mevexlig=@var{128}
242@itemx -mevexlig=@var{256}
243@itemx -mevexlig=@var{512}
244These options control how the assembler should encode length-ignored
245(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
246EVEX instructions with 128bit vector length, which is the default.
247@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
248encode LIG EVEX instructions with 256bit and 512bit vector length,
249respectively.
250
251@cindex @samp{-mevexwig=} option, i386
252@cindex @samp{-mevexwig=} option, x86-64
253@item -mevexwig=@var{0}
254@itemx -mevexwig=@var{1}
255These options control how the assembler should encode w-ignored (WIG)
256EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
257EVEX instructions with evex.w = 0, which is the default.
258@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
259evex.w = 1.
260
1efbbeb4
L
261@cindex @samp{-mmnemonic=} option, i386
262@cindex @samp{-mmnemonic=} option, x86-64
263@item -mmnemonic=@var{att}
1f9bb1ca 264@itemx -mmnemonic=@var{intel}
34bca508 265This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
266The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
267take precedent.
268
269@cindex @samp{-msyntax=} option, i386
270@cindex @samp{-msyntax=} option, x86-64
271@item -msyntax=@var{att}
1f9bb1ca 272@itemx -msyntax=@var{intel}
34bca508 273This option specifies instruction syntax when processing instructions.
1efbbeb4
L
274The @code{.att_syntax} and @code{.intel_syntax} directives will
275take precedent.
276
277@cindex @samp{-mnaked-reg} option, i386
278@cindex @samp{-mnaked-reg} option, x86-64
279@item -mnaked-reg
280This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 281The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 282
7e8b059b
L
283@cindex @samp{-madd-bnd-prefix} option, i386
284@cindex @samp{-madd-bnd-prefix} option, x86-64
285@item -madd-bnd-prefix
286This option forces the assembler to add BND prefix to all branches, even
287if such prefix was not explicitly specified in the source code.
288
167ad85b
TG
289@cindex @samp{-mbig-obj} option, x86-64
290@item -mbig-obj
291On x86-64 PE/COFF target this option forces the use of big object file
292format, which allows more than 32768 sections.
293
55b62671 294@end table
731caf76 295@c man end
e413e4e9 296
a6c24e68
NC
297@node i386-Directives
298@section x86 specific Directives
299
300@cindex machine directives, x86
301@cindex x86 machine directives
302@table @code
303
304@cindex @code{lcomm} directive, COFF
305@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
306Reserve @var{length} (an absolute expression) bytes for a local common
307denoted by @var{symbol}. The section and value of @var{symbol} are
308those of the new local common. The addresses are allocated in the bss
704209c0
NC
309section, so that at run-time the bytes start off zeroed. Since
310@var{symbol} is not declared global, it is normally not visible to
311@code{@value{LD}}. The optional third parameter, @var{alignment},
312specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
313
314This directive is only available for COFF based x86 targets.
315
316@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
317@c .largecomm
318
319@end table
320
252b5132 321@node i386-Syntax
7c31ae13
NC
322@section i386 Syntactical Considerations
323@menu
324* i386-Variations:: AT&T Syntax versus Intel Syntax
325* i386-Chars:: Special Characters
326@end menu
327
328@node i386-Variations
329@subsection AT&T Syntax versus Intel Syntax
252b5132 330
e413e4e9
AM
331@cindex i386 intel_syntax pseudo op
332@cindex intel_syntax pseudo op, i386
333@cindex i386 att_syntax pseudo op
334@cindex att_syntax pseudo op, i386
252b5132
RH
335@cindex i386 syntax compatibility
336@cindex syntax compatibility, i386
55b62671
AJ
337@cindex x86-64 intel_syntax pseudo op
338@cindex intel_syntax pseudo op, x86-64
339@cindex x86-64 att_syntax pseudo op
340@cindex att_syntax pseudo op, x86-64
341@cindex x86-64 syntax compatibility
342@cindex syntax compatibility, x86-64
e413e4e9
AM
343
344@code{@value{AS}} now supports assembly using Intel assembler syntax.
345@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
346back to the usual AT&T mode for compatibility with the output of
347@code{@value{GCC}}. Either of these directives may have an optional
348argument, @code{prefix}, or @code{noprefix} specifying whether registers
349require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
350different from Intel syntax. We mention these differences because
351almost all 80386 documents use Intel syntax. Notable differences
352between the two syntaxes are:
353
354@cindex immediate operands, i386
355@cindex i386 immediate operands
356@cindex register operands, i386
357@cindex i386 register operands
358@cindex jump/call operands, i386
359@cindex i386 jump/call operands
360@cindex operand delimiters, i386
55b62671
AJ
361
362@cindex immediate operands, x86-64
363@cindex x86-64 immediate operands
364@cindex register operands, x86-64
365@cindex x86-64 register operands
366@cindex jump/call operands, x86-64
367@cindex x86-64 jump/call operands
368@cindex operand delimiters, x86-64
252b5132
RH
369@itemize @bullet
370@item
371AT&T immediate operands are preceded by @samp{$}; Intel immediate
372operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
373AT&T register operands are preceded by @samp{%}; Intel register operands
374are undelimited. AT&T absolute (as opposed to PC relative) jump/call
375operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
376
377@cindex i386 source, destination operands
378@cindex source, destination operands; i386
55b62671
AJ
379@cindex x86-64 source, destination operands
380@cindex source, destination operands; x86-64
252b5132
RH
381@item
382AT&T and Intel syntax use the opposite order for source and destination
383operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
384@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
385previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
386instructions with 2 immediate operands, such as the @samp{enter}
387instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
388
389@cindex mnemonic suffixes, i386
390@cindex sizes operands, i386
391@cindex i386 size suffixes
55b62671
AJ
392@cindex mnemonic suffixes, x86-64
393@cindex sizes operands, x86-64
394@cindex x86-64 size suffixes
252b5132
RH
395@item
396In AT&T syntax the size of memory operands is determined from the last
397character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
398@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
399(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
400this by prefixing memory operands (@emph{not} the instruction mnemonics) with
401@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
402Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
403syntax.
252b5132 404
4b06377f
L
405In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
406instruction with the 64-bit displacement or immediate operand.
407
252b5132
RH
408@cindex return instructions, i386
409@cindex i386 jump, call, return
55b62671
AJ
410@cindex return instructions, x86-64
411@cindex x86-64 jump, call, return
252b5132
RH
412@item
413Immediate form long jumps and calls are
414@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
415Intel syntax is
416@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
417instruction
418is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
419@samp{ret far @var{stack-adjust}}.
420
421@cindex sections, i386
422@cindex i386 sections
55b62671
AJ
423@cindex sections, x86-64
424@cindex x86-64 sections
252b5132
RH
425@item
426The AT&T assembler does not provide support for multiple section
427programs. Unix style systems expect all programs to be single sections.
428@end itemize
429
7c31ae13
NC
430@node i386-Chars
431@subsection Special Characters
432
433@cindex line comment character, i386
434@cindex i386 line comment character
435The presence of a @samp{#} appearing anywhere on a line indicates the
436start of a comment that extends to the end of that line.
437
438If a @samp{#} appears as the first character of a line then the whole
439line is treated as a comment, but in this case the line can also be a
440logical line number directive (@pxref{Comments}) or a preprocessor
441control command (@pxref{Preprocessing}).
442
443If the @option{--divide} command line option has not been specified
444then the @samp{/} character appearing anywhere on a line also
445introduces a line comment.
446
447@cindex line separator, i386
448@cindex statement separator, i386
449@cindex i386 line separator
450The @samp{;} character can be used to separate statements on the same
451line.
452
252b5132
RH
453@node i386-Mnemonics
454@section Instruction Naming
455
456@cindex i386 instruction naming
457@cindex instruction naming, i386
55b62671
AJ
458@cindex x86-64 instruction naming
459@cindex instruction naming, x86-64
460
252b5132 461Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
462specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
463and @samp{q} specify byte, word, long and quadruple word operands. If
464no suffix is specified by an instruction then @code{@value{AS}} tries to
465fill in the missing suffix based on the destination register operand
466(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
467to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
468@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
469assembler which assumes that a missing mnemonic suffix implies long
470operand size. (This incompatibility does not affect compiler output
471since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
472
473Almost all instructions have the same names in AT&T and Intel format.
474There are a few exceptions. The sign extend and zero extend
475instructions need two sizes to specify them. They need a size to
476sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
477is accomplished by using two instruction mnemonic suffixes in AT&T
478syntax. Base names for sign extend and zero extend are
479@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
480and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
481are tacked on to this base name, the @emph{from} suffix before the
482@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
483``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
484thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
485@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
486@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
487quadruple word).
252b5132 488
b6169b20
L
489@cindex encoding options, i386
490@cindex encoding options, x86-64
491
492Different encoding options can be specified via optional mnemonic
493suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
494moving from one register to another. @samp{.d8} or @samp{.d32} suffix
495prefers 8bit or 32bit displacement in encoding.
b6169b20 496
252b5132
RH
497@cindex conversion instructions, i386
498@cindex i386 conversion instructions
55b62671
AJ
499@cindex conversion instructions, x86-64
500@cindex x86-64 conversion instructions
252b5132
RH
501The Intel-syntax conversion instructions
502
503@itemize @bullet
504@item
505@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
506
507@item
508@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
509
510@item
511@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
512
513@item
514@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
515
516@item
517@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
518(x86-64 only),
519
520@item
d5f0cf92 521@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 522@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
523@end itemize
524
525@noindent
55b62671
AJ
526are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
527@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
528instructions.
252b5132
RH
529
530@cindex jump instructions, i386
531@cindex call instructions, i386
55b62671
AJ
532@cindex jump instructions, x86-64
533@cindex call instructions, x86-64
252b5132
RH
534Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
535AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
536convention.
537
1efbbeb4
L
538@section AT&T Mnemonic versus Intel Mnemonic
539
540@cindex i386 mnemonic compatibility
541@cindex mnemonic compatibility, i386
542
543@code{@value{AS}} supports assembly using Intel mnemonic.
544@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
545@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
546syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
547Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
548@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
549@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
550assembler with different mnemonics from those in Intel IA32 specification.
551@code{@value{GCC}} generates those instructions with AT&T mnemonic.
552
252b5132
RH
553@node i386-Regs
554@section Register Naming
555
556@cindex i386 registers
557@cindex registers, i386
55b62671
AJ
558@cindex x86-64 registers
559@cindex registers, x86-64
252b5132
RH
560Register operands are always prefixed with @samp{%}. The 80386 registers
561consist of
562
563@itemize @bullet
564@item
565the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
566@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
567frame pointer), and @samp{%esp} (the stack pointer).
568
569@item
570the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
571@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
572
573@item
574the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
575@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
576are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
577@samp{%cx}, and @samp{%dx})
578
579@item
580the 6 section registers @samp{%cs} (code section), @samp{%ds}
581(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
582and @samp{%gs}.
583
584@item
585the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
586@samp{%cr3}.
587
588@item
589the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
590@samp{%db3}, @samp{%db6}, and @samp{%db7}.
591
592@item
593the 2 test registers @samp{%tr6} and @samp{%tr7}.
594
595@item
596the 8 floating point register stack @samp{%st} or equivalently
597@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
598@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
599These registers are overloaded by 8 MMX registers @samp{%mm0},
600@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
601@samp{%mm6} and @samp{%mm7}.
602
603@item
604the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
605@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
606@end itemize
607
608The AMD x86-64 architecture extends the register set by:
609
610@itemize @bullet
611@item
612enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
613accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
614@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
615pointer)
616
617@item
618the 8 extended registers @samp{%r8}--@samp{%r15}.
619
620@item
621the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
622
623@item
624the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
625
626@item
627the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
628
629@item
630the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
631
632@item
633the 8 debug registers: @samp{%db8}--@samp{%db15}.
634
635@item
636the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
637@end itemize
638
639@node i386-Prefixes
640@section Instruction Prefixes
641
642@cindex i386 instruction prefixes
643@cindex instruction prefixes, i386
644@cindex prefixes, i386
645Instruction prefixes are used to modify the following instruction. They
646are used to repeat string instructions, to provide section overrides, to
647perform bus lock operations, and to change operand and address sizes.
648(Most instructions that normally operate on 32-bit operands will use
64916-bit operands if the instruction has an ``operand size'' prefix.)
650Instruction prefixes are best written on the same line as the instruction
651they act upon. For example, the @samp{scas} (scan string) instruction is
652repeated with:
653
654@smallexample
655 repne scas %es:(%edi),%al
656@end smallexample
657
658You may also place prefixes on the lines immediately preceding the
659instruction, but this circumvents checks that @code{@value{AS}} does
660with prefixes, and will not work with all prefixes.
661
662Here is a list of instruction prefixes:
663
664@cindex section override prefixes, i386
665@itemize @bullet
666@item
667Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
668@samp{fs}, @samp{gs}. These are automatically added by specifying
669using the @var{section}:@var{memory-operand} form for memory references.
670
671@cindex size prefixes, i386
672@item
673Operand/Address size prefixes @samp{data16} and @samp{addr16}
674change 32-bit operands/addresses into 16-bit operands/addresses,
675while @samp{data32} and @samp{addr32} change 16-bit ones (in a
676@code{.code16} section) into 32-bit operands/addresses. These prefixes
677@emph{must} appear on the same line of code as the instruction they
678modify. For example, in a 16-bit @code{.code16} section, you might
679write:
680
681@smallexample
682 addr32 jmpl *(%ebx)
683@end smallexample
684
685@cindex bus lock prefixes, i386
686@cindex inhibiting interrupts, i386
687@item
688The bus lock prefix @samp{lock} inhibits interrupts during execution of
689the instruction it precedes. (This is only valid with certain
690instructions; see a 80386 manual for details).
691
692@cindex coprocessor wait, i386
693@item
694The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
695complete the current instruction. This should never be needed for the
69680386/80387 combination.
697
698@cindex repeat prefixes, i386
699@item
700The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
701to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
702times if the current address size is 16-bits).
55b62671
AJ
703@cindex REX prefixes, i386
704@item
705The @samp{rex} family of prefixes is used by x86-64 to encode
706extensions to i386 instruction set. The @samp{rex} prefix has four
707bits --- an operand size overwrite (@code{64}) used to change operand size
708from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
709register set.
710
711You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
712instruction emits @samp{rex} prefix with all the bits set. By omitting
713the @code{64}, @code{x}, @code{y} or @code{z} you may write other
714prefixes as well. Normally, there is no need to write the prefixes
715explicitly, since gas will automatically generate them based on the
716instruction operands.
252b5132
RH
717@end itemize
718
719@node i386-Memory
720@section Memory References
721
722@cindex i386 memory references
723@cindex memory references, i386
55b62671
AJ
724@cindex x86-64 memory references
725@cindex memory references, x86-64
252b5132
RH
726An Intel syntax indirect memory reference of the form
727
728@smallexample
729@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
730@end smallexample
731
732@noindent
733is translated into the AT&T syntax
734
735@smallexample
736@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
737@end smallexample
738
739@noindent
740where @var{base} and @var{index} are the optional 32-bit base and
741index registers, @var{disp} is the optional displacement, and
742@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
743to calculate the address of the operand. If no @var{scale} is
744specified, @var{scale} is taken to be 1. @var{section} specifies the
745optional section register for the memory operand, and may override the
746default section register (see a 80386 manual for section register
747defaults). Note that section overrides in AT&T syntax @emph{must}
748be preceded by a @samp{%}. If you specify a section override which
749coincides with the default section register, @code{@value{AS}} does @emph{not}
750output any section register override prefixes to assemble the given
751instruction. Thus, section overrides can be specified to emphasize which
752section register is used for a given memory operand.
753
754Here are some examples of Intel and AT&T style memory references:
755
756@table @asis
757@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
758@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
759missing, and the default section is used (@samp{%ss} for addressing with
760@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
761
762@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
763@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
764@samp{foo}. All other fields are missing. The section register here
765defaults to @samp{%ds}.
766
767@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
768This uses the value pointed to by @samp{foo} as a memory operand.
769Note that @var{base} and @var{index} are both missing, but there is only
770@emph{one} @samp{,}. This is a syntactic exception.
771
772@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
773This selects the contents of the variable @samp{foo} with section
774register @var{section} being @samp{%gs}.
775@end table
776
777Absolute (as opposed to PC relative) call and jump operands must be
778prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
779always chooses PC relative addressing for jump/call labels.
780
781Any instruction that has a memory operand, but no register operand,
55b62671
AJ
782@emph{must} specify its size (byte, word, long, or quadruple) with an
783instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
784respectively).
785
786The x86-64 architecture adds an RIP (instruction pointer relative)
787addressing. This addressing mode is specified by using @samp{rip} as a
788base register. Only constant offsets are valid. For example:
789
790@table @asis
791@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
792Points to the address 1234 bytes past the end of the current
793instruction.
794
795@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
796Points to the @code{symbol} in RIP relative way, this is shorter than
797the default absolute addressing.
798@end table
799
800Other addressing modes remain unchanged in x86-64 architecture, except
801registers used are 64-bit instead of 32-bit.
252b5132 802
fddf5b5b 803@node i386-Jumps
252b5132
RH
804@section Handling of Jump Instructions
805
806@cindex jump optimization, i386
807@cindex i386 jump optimization
55b62671
AJ
808@cindex jump optimization, x86-64
809@cindex x86-64 jump optimization
252b5132
RH
810Jump instructions are always optimized to use the smallest possible
811displacements. This is accomplished by using byte (8-bit) displacement
812jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 813is insufficient a long displacement is used. We do not support
252b5132
RH
814word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
815instruction with the @samp{data16} instruction prefix), since the 80386
816insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 817is added. (See also @pxref{i386-Arch})
252b5132
RH
818
819Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
820@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
821displacements, so that if you use these instructions (@code{@value{GCC}} does
822not use them) you may get an error message (and incorrect code). The AT&T
82380386 assembler tries to get around this problem by expanding @samp{jcxz foo}
824to
825
826@smallexample
827 jcxz cx_zero
828 jmp cx_nonzero
829cx_zero: jmp foo
830cx_nonzero:
831@end smallexample
832
833@node i386-Float
834@section Floating Point
835
836@cindex i386 floating point
837@cindex floating point, i386
55b62671
AJ
838@cindex x86-64 floating point
839@cindex floating point, x86-64
252b5132
RH
840All 80387 floating point types except packed BCD are supported.
841(BCD support may be added without much difficulty). These data
842types are 16-, 32-, and 64- bit integers, and single (32-bit),
843double (64-bit), and extended (80-bit) precision floating point.
844Each supported type has an instruction mnemonic suffix and a constructor
845associated with it. Instruction mnemonic suffixes specify the operand's
846data type. Constructors build these data types into memory.
847
848@cindex @code{float} directive, i386
849@cindex @code{single} directive, i386
850@cindex @code{double} directive, i386
851@cindex @code{tfloat} directive, i386
55b62671
AJ
852@cindex @code{float} directive, x86-64
853@cindex @code{single} directive, x86-64
854@cindex @code{double} directive, x86-64
855@cindex @code{tfloat} directive, x86-64
252b5132
RH
856@itemize @bullet
857@item
858Floating point constructors are @samp{.float} or @samp{.single},
859@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
860These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
861and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
862only supports this format via the @samp{fldt} (load 80-bit real to stack
863top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
864
865@cindex @code{word} directive, i386
866@cindex @code{long} directive, i386
867@cindex @code{int} directive, i386
868@cindex @code{quad} directive, i386
55b62671
AJ
869@cindex @code{word} directive, x86-64
870@cindex @code{long} directive, x86-64
871@cindex @code{int} directive, x86-64
872@cindex @code{quad} directive, x86-64
252b5132
RH
873@item
874Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
875@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
876corresponding instruction mnemonic suffixes are @samp{s} (single),
877@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
878the 64-bit @samp{q} format is only present in the @samp{fildq} (load
879quad integer to stack top) and @samp{fistpq} (store quad integer and pop
880stack) instructions.
881@end itemize
882
883Register to register operations should not use instruction mnemonic suffixes.
884@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
885wrote @samp{fst %st, %st(1)}, since all register to register operations
886use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
887which converts @samp{%st} from 80-bit to 64-bit floating point format,
888then stores the result in the 4 byte location @samp{mem})
889
890@node i386-SIMD
891@section Intel's MMX and AMD's 3DNow! SIMD Operations
892
893@cindex MMX, i386
894@cindex 3DNow!, i386
895@cindex SIMD, i386
55b62671
AJ
896@cindex MMX, x86-64
897@cindex 3DNow!, x86-64
898@cindex SIMD, x86-64
252b5132
RH
899
900@code{@value{AS}} supports Intel's MMX instruction set (SIMD
901instructions for integer data), available on Intel's Pentium MMX
902processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 903Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
904instruction set (SIMD instructions for 32-bit floating point data)
905available on AMD's K6-2 processor and possibly others in the future.
906
907Currently, @code{@value{AS}} does not support Intel's floating point
908SIMD, Katmai (KNI).
909
910The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
911@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
91216-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
913floating point values. The MMX registers cannot be used at the same time
914as the floating point stack.
915
916See Intel and AMD documentation, keeping in mind that the operand order in
917instructions is reversed from the Intel syntax.
918
f88c9eb0
SP
919@node i386-LWP
920@section AMD's Lightweight Profiling Instructions
921
922@cindex LWP, i386
923@cindex LWP, x86-64
924
925@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
926instruction set, available on AMD's Family 15h (Orochi) processors.
927
928LWP enables applications to collect and manage performance data, and
929react to performance events. The collection of performance data
930requires no context switches. LWP runs in the context of a thread and
931so several counters can be used independently across multiple threads.
932LWP can be used in both 64-bit and legacy 32-bit modes.
933
934For detailed information on the LWP instruction set, see the
935@cite{AMD Lightweight Profiling Specification} available at
936@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
937
87973e9f
QN
938@node i386-BMI
939@section Bit Manipulation Instructions
940
941@cindex BMI, i386
942@cindex BMI, x86-64
943
944@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
945
946BMI instructions provide several instructions implementing individual
947bit manipulation operations such as isolation, masking, setting, or
34bca508 948resetting.
87973e9f
QN
949
950@c Need to add a specification citation here when available.
951
2a2a0f38
QN
952@node i386-TBM
953@section AMD's Trailing Bit Manipulation Instructions
954
955@cindex TBM, i386
956@cindex TBM, x86-64
957
958@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
959instruction set, available on AMD's BDVER2 processors (Trinity and
960Viperfish).
961
962TBM instructions provide instructions implementing individual bit
963manipulation operations such as isolating, masking, setting, resetting,
964complementing, and operations on trailing zeros and ones.
965
966@c Need to add a specification citation here when available.
87973e9f 967
252b5132
RH
968@node i386-16bit
969@section Writing 16-bit Code
970
971@cindex i386 16-bit code
972@cindex 16-bit code, i386
973@cindex real-mode code, i386
eecb386c 974@cindex @code{code16gcc} directive, i386
252b5132
RH
975@cindex @code{code16} directive, i386
976@cindex @code{code32} directive, i386
55b62671
AJ
977@cindex @code{code64} directive, i386
978@cindex @code{code64} directive, x86-64
979While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
980or 64-bit x86-64 code depending on the default configuration,
252b5132 981it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
982mode code segments. To do this, put a @samp{.code16} or
983@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
984be run in 16-bit mode. You can switch @code{@value{AS}} to writing
98532-bit code with the @samp{.code32} directive or 64-bit code with the
986@samp{.code64} directive.
eecb386c
AM
987
988@samp{.code16gcc} provides experimental support for generating 16-bit
989code from gcc, and differs from @samp{.code16} in that @samp{call},
990@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
991@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
992default to 32-bit size. This is so that the stack pointer is
993manipulated in the same way over function calls, allowing access to
994function parameters at the same stack offsets as in 32-bit mode.
995@samp{.code16gcc} also automatically adds address size prefixes where
996necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
997
998The code which @code{@value{AS}} generates in 16-bit mode will not
999necessarily run on a 16-bit pre-80386 processor. To write code that
1000runs on such a processor, you must refrain from using @emph{any} 32-bit
1001constructs which require @code{@value{AS}} to output address or operand
1002size prefixes.
1003
1004Note that writing 16-bit code instructions by explicitly specifying a
1005prefix or an instruction mnemonic suffix within a 32-bit code section
1006generates different machine instructions than those generated for a
100716-bit code segment. In a 32-bit code section, the following code
1008generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1009value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1010
1011@smallexample
1012 pushw $4
1013@end smallexample
1014
1015The same code in a 16-bit code section would generate the machine
b45619c0 1016opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1017is correct since the processor default operand size is assumed to be 16
1018bits in a 16-bit code section.
1019
1020@node i386-Bugs
1021@section AT&T Syntax bugs
1022
1023The UnixWare assembler, and probably other AT&T derived ix86 Unix
1024assemblers, generate floating point instructions with reversed source
1025and destination registers in certain cases. Unfortunately, gcc and
1026possibly many other programs use this reversed syntax, so we're stuck
1027with it.
1028
1029For example
1030
1031@smallexample
1032 fsub %st,%st(3)
1033@end smallexample
1034@noindent
1035results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1036than the expected @samp{%st(3) - %st}. This happens with all the
1037non-commutative arithmetic floating point operations with two register
1038operands where the source register is @samp{%st} and the destination
1039register is @samp{%st(i)}.
1040
e413e4e9
AM
1041@node i386-Arch
1042@section Specifying CPU Architecture
1043
1044@cindex arch directive, i386
1045@cindex i386 arch directive
55b62671
AJ
1046@cindex arch directive, x86-64
1047@cindex x86-64 arch directive
e413e4e9
AM
1048
1049@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1050(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1051directive enables a warning when gas detects an instruction that is not
1052supported on the CPU specified. The choices for @var{cpu_type} are:
1053
1054@multitable @columnfractions .20 .20 .20 .20
1055@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1056@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1057@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1058@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7a9068fe 1059@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1543849b 1060@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1061@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
c7b0bd56 1062@item @samp{bdver4} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1063@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1064@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1065@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1066@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1067@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1068@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1069@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1070@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1071@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
7e8b059b 1072@item @samp{.smap} @tab @samp{.mpx}
a0046408 1073@item @samp{.smap} @tab @samp{.sha}
963f3586 1074@item @samp{.smap} @tab @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves}
dcf893b5 1075@item @samp{.smap} @tab @samp{.prefetchwt1}
90a915bf 1076@item @samp{.smap} @tab @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq}
1ceab344 1077@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1078@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1079@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1ceab344 1080@item @samp{.padlock}
43234a1e
L
1081@item @samp{.smap} @tab @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er}
1082@item @samp{.avx512pf} @tab @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a}
1083@item @samp{.sse5} @tab @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1084@item @samp{.abm} @tab @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1085@item @samp{.cx16} @tab @samp{.padlock}
e413e4e9
AM
1086@end multitable
1087
fddf5b5b
AM
1088Apart from the warning, there are only two other effects on
1089@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1090@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1091will automatically use a two byte opcode sequence. The larger three
1092byte opcode sequence is used on the 486 (and when no architecture is
1093specified) because it executes faster on the 486. Note that you can
1094explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1095Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1096@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1097conditional jumps will be promoted when necessary to a two instruction
1098sequence consisting of a conditional jump of the opposite sense around
1099an unconditional jump to the target.
1100
5c6af06e
JB
1101Following the CPU architecture (but not a sub-architecture, which are those
1102starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1103control automatic promotion of conditional jumps. @samp{jumps} is the
1104default, and enables jump promotion; All external jumps will be of the long
1105variety, and file-local jumps will be promoted as necessary.
1106(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1107byte offset jumps, and warns about file-local conditional jumps that
1108@code{@value{AS}} promotes.
fddf5b5b
AM
1109Unconditional jumps are treated as for @samp{jumps}.
1110
1111For example
1112
1113@smallexample
1114 .arch i8086,nojumps
1115@end smallexample
e413e4e9 1116
252b5132
RH
1117@node i386-Notes
1118@section Notes
1119
1120@cindex i386 @code{mul}, @code{imul} instructions
1121@cindex @code{mul} instruction, i386
1122@cindex @code{imul} instruction, i386
55b62671
AJ
1123@cindex @code{mul} instruction, x86-64
1124@cindex @code{imul} instruction, x86-64
252b5132 1125There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1126instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1127multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1128for @samp{imul}) can be output only in the one operand form. Thus,
1129@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1130the expanding multiply would clobber the @samp{%edx} register, and this
1131would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
113264-bit product in @samp{%edx:%eax}.
1133
1134We have added a two operand form of @samp{imul} when the first operand
1135is an immediate mode expression and the second operand is a register.
1136This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1137example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1138$69, %eax, %eax}.
1139
This page took 0.656768 seconds and 4 git commands to generate.