Up version to 1.1, as the 1.1 binary was pushed to users today.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037
AM
1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2@c 2001, 2003, 2004
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
17@cindex i80306 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
26* i386-Syntax:: AT&T Syntax versus Intel Syntax
27* i386-Mnemonics:: Instruction Naming
28* i386-Regs:: Register Naming
29* i386-Prefixes:: Instruction Prefixes
30* i386-Memory:: Memory References
fddf5b5b 31* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
32* i386-Float:: Floating Point
33* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
34* i386-16bit:: Writing 16-bit Code
e413e4e9 35* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
36* i386-Bugs:: AT&T Syntax bugs
37* i386-Notes:: Notes
38@end menu
39
40@node i386-Options
41@section Options
42
55b62671
AJ
43@cindex options for i386
44@cindex options for x86-64
45@cindex i386 options
46@cindex x86-64 options
47
48The i386 version of @code{@value{AS}} has a few machine
49dependent options:
50
51@table @code
52@cindex @samp{--32} option, i386
53@cindex @samp{--32} option, x86-64
54@cindex @samp{--64} option, i386
55@cindex @samp{--64} option, x86-64
56@item --32 | --64
57Select the word size, either 32 bits or 64 bits. Selecting 32-bit
58implies Intel i386 architecture, while 64-bit implies AMD x86-64
59architecture.
60
61These options are only available with the ELF object file format, and
62require that the necessary BFD support has been included (on a 32-bit
63platform you have to add --enable-64-bit-bfd to configure enable 64-bit
64usage and use x86-64 as target platform).
12b55ccc
L
65
66@item -n
67By default, x86 GAS replaces multiple nop instructions used for
68alignment within code sections with multi-byte nop instructions such
69as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
70
71@cindex @samp{--divide} option, i386
72@item --divide
73On SVR4-derived platforms, the character @samp{/} is treated as a comment
74character, which means that it cannot be used in expressions. The
75@samp{--divide} option turns @samp{/} into a normal character. This does
76not disable @samp{/} at the beginning of a line starting a comment, or
77affect using @samp{#} for starting a comment.
78
9103f4f4
L
79@cindex @samp{-march=} option, i386
80@cindex @samp{-march=} option, x86-64
6305a203
L
81@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
82This option specifies the target processor. The assembler will
83issue an error message if an attempt is made to assemble an instruction
84which will not execute on the target processor. The following
85processor names are recognized:
9103f4f4
L
86@code{i8086},
87@code{i186},
88@code{i286},
89@code{i386},
90@code{i486},
91@code{i586},
92@code{i686},
93@code{pentium},
94@code{pentiumpro},
95@code{pentiumii},
96@code{pentiumiii},
97@code{pentium4},
98@code{prescott},
99@code{nocona},
ef05d495
L
100@code{core},
101@code{core2},
9103f4f4
L
102@code{k6},
103@code{k6_2},
104@code{athlon},
105@code{sledgehammer},
106@code{opteron},
107@code{k8},
108@code{generic32} and
109@code{generic64}.
110
6305a203
L
111In addition to the basic instruction set, the assembler can be told to
112accept various extension mnemonics. For example,
113@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
114@var{vmx}. The following extensions are currently supported:
115@code{mmx},
116@code{sse},
117@code{sse2},
118@code{sse3},
119@code{ssse3},
120@code{sse4.1},
121@code{sse4.2},
122@code{sse4},
123@code{vmx},
124@code{smx},
125@code{3dnow},
126@code{3dnowa},
127@code{sse4a},
128@code{sse5},
129@code{svme},
130@code{abm} and
131@code{padlock}.
132
133When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
134@code{.arch} directive will take precedent.
135
136@cindex @samp{-mtune=} option, i386
137@cindex @samp{-mtune=} option, x86-64
138@item -mtune=@var{CPU}
139This option specifies a processor to optimize for. When used in
140conjunction with the @option{-march} option, only instructions
141of the processor specified by the @option{-march} option will be
142generated.
143
6305a203
L
144Valid @var{CPU} values are identical to the processor list of
145@option{-march=@var{CPU}}.
9103f4f4 146
1efbbeb4
L
147@cindex @samp{-mmnemonic=} option, i386
148@cindex @samp{-mmnemonic=} option, x86-64
149@item -mmnemonic=@var{att}
150@item -mmnemonic=@var{intel}
151This option specifies instruction mnemonic for matching instructions.
152The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
153take precedent.
154
155@cindex @samp{-msyntax=} option, i386
156@cindex @samp{-msyntax=} option, x86-64
157@item -msyntax=@var{att}
158@item -msyntax=@var{intel}
159This option specifies instruction syntax when processing instructions.
160The @code{.att_syntax} and @code{.intel_syntax} directives will
161take precedent.
162
163@cindex @samp{-mnaked-reg} option, i386
164@cindex @samp{-mnaked-reg} option, x86-64
165@item -mnaked-reg
166This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 167The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 168
55b62671 169@end table
e413e4e9 170
252b5132
RH
171@node i386-Syntax
172@section AT&T Syntax versus Intel Syntax
173
e413e4e9
AM
174@cindex i386 intel_syntax pseudo op
175@cindex intel_syntax pseudo op, i386
176@cindex i386 att_syntax pseudo op
177@cindex att_syntax pseudo op, i386
252b5132
RH
178@cindex i386 syntax compatibility
179@cindex syntax compatibility, i386
55b62671
AJ
180@cindex x86-64 intel_syntax pseudo op
181@cindex intel_syntax pseudo op, x86-64
182@cindex x86-64 att_syntax pseudo op
183@cindex att_syntax pseudo op, x86-64
184@cindex x86-64 syntax compatibility
185@cindex syntax compatibility, x86-64
e413e4e9
AM
186
187@code{@value{AS}} now supports assembly using Intel assembler syntax.
188@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
189back to the usual AT&T mode for compatibility with the output of
190@code{@value{GCC}}. Either of these directives may have an optional
191argument, @code{prefix}, or @code{noprefix} specifying whether registers
192require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
193different from Intel syntax. We mention these differences because
194almost all 80386 documents use Intel syntax. Notable differences
195between the two syntaxes are:
196
197@cindex immediate operands, i386
198@cindex i386 immediate operands
199@cindex register operands, i386
200@cindex i386 register operands
201@cindex jump/call operands, i386
202@cindex i386 jump/call operands
203@cindex operand delimiters, i386
55b62671
AJ
204
205@cindex immediate operands, x86-64
206@cindex x86-64 immediate operands
207@cindex register operands, x86-64
208@cindex x86-64 register operands
209@cindex jump/call operands, x86-64
210@cindex x86-64 jump/call operands
211@cindex operand delimiters, x86-64
252b5132
RH
212@itemize @bullet
213@item
214AT&T immediate operands are preceded by @samp{$}; Intel immediate
215operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
216AT&T register operands are preceded by @samp{%}; Intel register operands
217are undelimited. AT&T absolute (as opposed to PC relative) jump/call
218operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
219
220@cindex i386 source, destination operands
221@cindex source, destination operands; i386
55b62671
AJ
222@cindex x86-64 source, destination operands
223@cindex source, destination operands; x86-64
252b5132
RH
224@item
225AT&T and Intel syntax use the opposite order for source and destination
226operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
227@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
228previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
229instructions with 2 immediate operands, such as the @samp{enter}
230instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
231
232@cindex mnemonic suffixes, i386
233@cindex sizes operands, i386
234@cindex i386 size suffixes
55b62671
AJ
235@cindex mnemonic suffixes, x86-64
236@cindex sizes operands, x86-64
237@cindex x86-64 size suffixes
252b5132
RH
238@item
239In AT&T syntax the size of memory operands is determined from the last
240character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
241@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
242(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
243this by prefixing memory operands (@emph{not} the instruction mnemonics) with
244@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
245Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
246syntax.
252b5132
RH
247
248@cindex return instructions, i386
249@cindex i386 jump, call, return
55b62671
AJ
250@cindex return instructions, x86-64
251@cindex x86-64 jump, call, return
252b5132
RH
252@item
253Immediate form long jumps and calls are
254@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
255Intel syntax is
256@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
257instruction
258is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
259@samp{ret far @var{stack-adjust}}.
260
261@cindex sections, i386
262@cindex i386 sections
55b62671
AJ
263@cindex sections, x86-64
264@cindex x86-64 sections
252b5132
RH
265@item
266The AT&T assembler does not provide support for multiple section
267programs. Unix style systems expect all programs to be single sections.
268@end itemize
269
270@node i386-Mnemonics
271@section Instruction Naming
272
273@cindex i386 instruction naming
274@cindex instruction naming, i386
55b62671
AJ
275@cindex x86-64 instruction naming
276@cindex instruction naming, x86-64
277
252b5132 278Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
279specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
280and @samp{q} specify byte, word, long and quadruple word operands. If
281no suffix is specified by an instruction then @code{@value{AS}} tries to
282fill in the missing suffix based on the destination register operand
283(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
284to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
285@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
286assembler which assumes that a missing mnemonic suffix implies long
287operand size. (This incompatibility does not affect compiler output
288since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
289
290Almost all instructions have the same names in AT&T and Intel format.
291There are a few exceptions. The sign extend and zero extend
292instructions need two sizes to specify them. They need a size to
293sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
294is accomplished by using two instruction mnemonic suffixes in AT&T
295syntax. Base names for sign extend and zero extend are
296@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
297and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
298are tacked on to this base name, the @emph{from} suffix before the
299@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
300``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
301thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
302@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
303@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
304quadruple word).
252b5132
RH
305
306@cindex conversion instructions, i386
307@cindex i386 conversion instructions
55b62671
AJ
308@cindex conversion instructions, x86-64
309@cindex x86-64 conversion instructions
252b5132
RH
310The Intel-syntax conversion instructions
311
312@itemize @bullet
313@item
314@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
315
316@item
317@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
318
319@item
320@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
321
322@item
323@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
324
325@item
326@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
327(x86-64 only),
328
329@item
d5f0cf92 330@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 331@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
332@end itemize
333
334@noindent
55b62671
AJ
335are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
336@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
337instructions.
252b5132
RH
338
339@cindex jump instructions, i386
340@cindex call instructions, i386
55b62671
AJ
341@cindex jump instructions, x86-64
342@cindex call instructions, x86-64
252b5132
RH
343Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
344AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
345convention.
346
1efbbeb4
L
347@section AT&T Mnemonic versus Intel Mnemonic
348
349@cindex i386 mnemonic compatibility
350@cindex mnemonic compatibility, i386
351
352@code{@value{AS}} supports assembly using Intel mnemonic.
353@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
354@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
355syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
356Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
357@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
358@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
359assembler with different mnemonics from those in Intel IA32 specification.
360@code{@value{GCC}} generates those instructions with AT&T mnemonic.
361
252b5132
RH
362@node i386-Regs
363@section Register Naming
364
365@cindex i386 registers
366@cindex registers, i386
55b62671
AJ
367@cindex x86-64 registers
368@cindex registers, x86-64
252b5132
RH
369Register operands are always prefixed with @samp{%}. The 80386 registers
370consist of
371
372@itemize @bullet
373@item
374the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
375@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
376frame pointer), and @samp{%esp} (the stack pointer).
377
378@item
379the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
380@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
381
382@item
383the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
384@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
385are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
386@samp{%cx}, and @samp{%dx})
387
388@item
389the 6 section registers @samp{%cs} (code section), @samp{%ds}
390(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
391and @samp{%gs}.
392
393@item
394the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
395@samp{%cr3}.
396
397@item
398the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
399@samp{%db3}, @samp{%db6}, and @samp{%db7}.
400
401@item
402the 2 test registers @samp{%tr6} and @samp{%tr7}.
403
404@item
405the 8 floating point register stack @samp{%st} or equivalently
406@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
407@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
408These registers are overloaded by 8 MMX registers @samp{%mm0},
409@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
410@samp{%mm6} and @samp{%mm7}.
411
412@item
413the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
414@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
415@end itemize
416
417The AMD x86-64 architecture extends the register set by:
418
419@itemize @bullet
420@item
421enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
422accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
423@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
424pointer)
425
426@item
427the 8 extended registers @samp{%r8}--@samp{%r15}.
428
429@item
430the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
431
432@item
433the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
434
435@item
436the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
437
438@item
439the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
440
441@item
442the 8 debug registers: @samp{%db8}--@samp{%db15}.
443
444@item
445the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
446@end itemize
447
448@node i386-Prefixes
449@section Instruction Prefixes
450
451@cindex i386 instruction prefixes
452@cindex instruction prefixes, i386
453@cindex prefixes, i386
454Instruction prefixes are used to modify the following instruction. They
455are used to repeat string instructions, to provide section overrides, to
456perform bus lock operations, and to change operand and address sizes.
457(Most instructions that normally operate on 32-bit operands will use
45816-bit operands if the instruction has an ``operand size'' prefix.)
459Instruction prefixes are best written on the same line as the instruction
460they act upon. For example, the @samp{scas} (scan string) instruction is
461repeated with:
462
463@smallexample
464 repne scas %es:(%edi),%al
465@end smallexample
466
467You may also place prefixes on the lines immediately preceding the
468instruction, but this circumvents checks that @code{@value{AS}} does
469with prefixes, and will not work with all prefixes.
470
471Here is a list of instruction prefixes:
472
473@cindex section override prefixes, i386
474@itemize @bullet
475@item
476Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
477@samp{fs}, @samp{gs}. These are automatically added by specifying
478using the @var{section}:@var{memory-operand} form for memory references.
479
480@cindex size prefixes, i386
481@item
482Operand/Address size prefixes @samp{data16} and @samp{addr16}
483change 32-bit operands/addresses into 16-bit operands/addresses,
484while @samp{data32} and @samp{addr32} change 16-bit ones (in a
485@code{.code16} section) into 32-bit operands/addresses. These prefixes
486@emph{must} appear on the same line of code as the instruction they
487modify. For example, in a 16-bit @code{.code16} section, you might
488write:
489
490@smallexample
491 addr32 jmpl *(%ebx)
492@end smallexample
493
494@cindex bus lock prefixes, i386
495@cindex inhibiting interrupts, i386
496@item
497The bus lock prefix @samp{lock} inhibits interrupts during execution of
498the instruction it precedes. (This is only valid with certain
499instructions; see a 80386 manual for details).
500
501@cindex coprocessor wait, i386
502@item
503The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
504complete the current instruction. This should never be needed for the
50580386/80387 combination.
506
507@cindex repeat prefixes, i386
508@item
509The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
510to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
511times if the current address size is 16-bits).
55b62671
AJ
512@cindex REX prefixes, i386
513@item
514The @samp{rex} family of prefixes is used by x86-64 to encode
515extensions to i386 instruction set. The @samp{rex} prefix has four
516bits --- an operand size overwrite (@code{64}) used to change operand size
517from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
518register set.
519
520You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
521instruction emits @samp{rex} prefix with all the bits set. By omitting
522the @code{64}, @code{x}, @code{y} or @code{z} you may write other
523prefixes as well. Normally, there is no need to write the prefixes
524explicitly, since gas will automatically generate them based on the
525instruction operands.
252b5132
RH
526@end itemize
527
528@node i386-Memory
529@section Memory References
530
531@cindex i386 memory references
532@cindex memory references, i386
55b62671
AJ
533@cindex x86-64 memory references
534@cindex memory references, x86-64
252b5132
RH
535An Intel syntax indirect memory reference of the form
536
537@smallexample
538@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
539@end smallexample
540
541@noindent
542is translated into the AT&T syntax
543
544@smallexample
545@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
546@end smallexample
547
548@noindent
549where @var{base} and @var{index} are the optional 32-bit base and
550index registers, @var{disp} is the optional displacement, and
551@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
552to calculate the address of the operand. If no @var{scale} is
553specified, @var{scale} is taken to be 1. @var{section} specifies the
554optional section register for the memory operand, and may override the
555default section register (see a 80386 manual for section register
556defaults). Note that section overrides in AT&T syntax @emph{must}
557be preceded by a @samp{%}. If you specify a section override which
558coincides with the default section register, @code{@value{AS}} does @emph{not}
559output any section register override prefixes to assemble the given
560instruction. Thus, section overrides can be specified to emphasize which
561section register is used for a given memory operand.
562
563Here are some examples of Intel and AT&T style memory references:
564
565@table @asis
566@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
567@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
568missing, and the default section is used (@samp{%ss} for addressing with
569@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
570
571@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
572@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
573@samp{foo}. All other fields are missing. The section register here
574defaults to @samp{%ds}.
575
576@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
577This uses the value pointed to by @samp{foo} as a memory operand.
578Note that @var{base} and @var{index} are both missing, but there is only
579@emph{one} @samp{,}. This is a syntactic exception.
580
581@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
582This selects the contents of the variable @samp{foo} with section
583register @var{section} being @samp{%gs}.
584@end table
585
586Absolute (as opposed to PC relative) call and jump operands must be
587prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
588always chooses PC relative addressing for jump/call labels.
589
590Any instruction that has a memory operand, but no register operand,
55b62671
AJ
591@emph{must} specify its size (byte, word, long, or quadruple) with an
592instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
593respectively).
594
595The x86-64 architecture adds an RIP (instruction pointer relative)
596addressing. This addressing mode is specified by using @samp{rip} as a
597base register. Only constant offsets are valid. For example:
598
599@table @asis
600@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
601Points to the address 1234 bytes past the end of the current
602instruction.
603
604@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
605Points to the @code{symbol} in RIP relative way, this is shorter than
606the default absolute addressing.
607@end table
608
609Other addressing modes remain unchanged in x86-64 architecture, except
610registers used are 64-bit instead of 32-bit.
252b5132 611
fddf5b5b 612@node i386-Jumps
252b5132
RH
613@section Handling of Jump Instructions
614
615@cindex jump optimization, i386
616@cindex i386 jump optimization
55b62671
AJ
617@cindex jump optimization, x86-64
618@cindex x86-64 jump optimization
252b5132
RH
619Jump instructions are always optimized to use the smallest possible
620displacements. This is accomplished by using byte (8-bit) displacement
621jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 622is insufficient a long displacement is used. We do not support
252b5132
RH
623word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
624instruction with the @samp{data16} instruction prefix), since the 80386
625insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 626is added. (See also @pxref{i386-Arch})
252b5132
RH
627
628Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
629@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
630displacements, so that if you use these instructions (@code{@value{GCC}} does
631not use them) you may get an error message (and incorrect code). The AT&T
63280386 assembler tries to get around this problem by expanding @samp{jcxz foo}
633to
634
635@smallexample
636 jcxz cx_zero
637 jmp cx_nonzero
638cx_zero: jmp foo
639cx_nonzero:
640@end smallexample
641
642@node i386-Float
643@section Floating Point
644
645@cindex i386 floating point
646@cindex floating point, i386
55b62671
AJ
647@cindex x86-64 floating point
648@cindex floating point, x86-64
252b5132
RH
649All 80387 floating point types except packed BCD are supported.
650(BCD support may be added without much difficulty). These data
651types are 16-, 32-, and 64- bit integers, and single (32-bit),
652double (64-bit), and extended (80-bit) precision floating point.
653Each supported type has an instruction mnemonic suffix and a constructor
654associated with it. Instruction mnemonic suffixes specify the operand's
655data type. Constructors build these data types into memory.
656
657@cindex @code{float} directive, i386
658@cindex @code{single} directive, i386
659@cindex @code{double} directive, i386
660@cindex @code{tfloat} directive, i386
55b62671
AJ
661@cindex @code{float} directive, x86-64
662@cindex @code{single} directive, x86-64
663@cindex @code{double} directive, x86-64
664@cindex @code{tfloat} directive, x86-64
252b5132
RH
665@itemize @bullet
666@item
667Floating point constructors are @samp{.float} or @samp{.single},
668@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
669These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
670and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
671only supports this format via the @samp{fldt} (load 80-bit real to stack
672top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
673
674@cindex @code{word} directive, i386
675@cindex @code{long} directive, i386
676@cindex @code{int} directive, i386
677@cindex @code{quad} directive, i386
55b62671
AJ
678@cindex @code{word} directive, x86-64
679@cindex @code{long} directive, x86-64
680@cindex @code{int} directive, x86-64
681@cindex @code{quad} directive, x86-64
252b5132
RH
682@item
683Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
684@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
685corresponding instruction mnemonic suffixes are @samp{s} (single),
686@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
687the 64-bit @samp{q} format is only present in the @samp{fildq} (load
688quad integer to stack top) and @samp{fistpq} (store quad integer and pop
689stack) instructions.
690@end itemize
691
692Register to register operations should not use instruction mnemonic suffixes.
693@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
694wrote @samp{fst %st, %st(1)}, since all register to register operations
695use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
696which converts @samp{%st} from 80-bit to 64-bit floating point format,
697then stores the result in the 4 byte location @samp{mem})
698
699@node i386-SIMD
700@section Intel's MMX and AMD's 3DNow! SIMD Operations
701
702@cindex MMX, i386
703@cindex 3DNow!, i386
704@cindex SIMD, i386
55b62671
AJ
705@cindex MMX, x86-64
706@cindex 3DNow!, x86-64
707@cindex SIMD, x86-64
252b5132
RH
708
709@code{@value{AS}} supports Intel's MMX instruction set (SIMD
710instructions for integer data), available on Intel's Pentium MMX
711processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 712Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
713instruction set (SIMD instructions for 32-bit floating point data)
714available on AMD's K6-2 processor and possibly others in the future.
715
716Currently, @code{@value{AS}} does not support Intel's floating point
717SIMD, Katmai (KNI).
718
719The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
720@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
72116-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
722floating point values. The MMX registers cannot be used at the same time
723as the floating point stack.
724
725See Intel and AMD documentation, keeping in mind that the operand order in
726instructions is reversed from the Intel syntax.
727
728@node i386-16bit
729@section Writing 16-bit Code
730
731@cindex i386 16-bit code
732@cindex 16-bit code, i386
733@cindex real-mode code, i386
eecb386c 734@cindex @code{code16gcc} directive, i386
252b5132
RH
735@cindex @code{code16} directive, i386
736@cindex @code{code32} directive, i386
55b62671
AJ
737@cindex @code{code64} directive, i386
738@cindex @code{code64} directive, x86-64
739While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
740or 64-bit x86-64 code depending on the default configuration,
252b5132 741it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
742mode code segments. To do this, put a @samp{.code16} or
743@samp{.code16gcc} directive before the assembly language instructions to
744be run in 16-bit mode. You can switch @code{@value{AS}} back to writing
745normal 32-bit code with the @samp{.code32} directive.
746
747@samp{.code16gcc} provides experimental support for generating 16-bit
748code from gcc, and differs from @samp{.code16} in that @samp{call},
749@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
750@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
751default to 32-bit size. This is so that the stack pointer is
752manipulated in the same way over function calls, allowing access to
753function parameters at the same stack offsets as in 32-bit mode.
754@samp{.code16gcc} also automatically adds address size prefixes where
755necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
756
757The code which @code{@value{AS}} generates in 16-bit mode will not
758necessarily run on a 16-bit pre-80386 processor. To write code that
759runs on such a processor, you must refrain from using @emph{any} 32-bit
760constructs which require @code{@value{AS}} to output address or operand
761size prefixes.
762
763Note that writing 16-bit code instructions by explicitly specifying a
764prefix or an instruction mnemonic suffix within a 32-bit code section
765generates different machine instructions than those generated for a
76616-bit code segment. In a 32-bit code section, the following code
767generates the machine opcode bytes @samp{66 6a 04}, which pushes the
768value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
769
770@smallexample
771 pushw $4
772@end smallexample
773
774The same code in a 16-bit code section would generate the machine
b45619c0 775opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
776is correct since the processor default operand size is assumed to be 16
777bits in a 16-bit code section.
778
779@node i386-Bugs
780@section AT&T Syntax bugs
781
782The UnixWare assembler, and probably other AT&T derived ix86 Unix
783assemblers, generate floating point instructions with reversed source
784and destination registers in certain cases. Unfortunately, gcc and
785possibly many other programs use this reversed syntax, so we're stuck
786with it.
787
788For example
789
790@smallexample
791 fsub %st,%st(3)
792@end smallexample
793@noindent
794results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
795than the expected @samp{%st(3) - %st}. This happens with all the
796non-commutative arithmetic floating point operations with two register
797operands where the source register is @samp{%st} and the destination
798register is @samp{%st(i)}.
799
e413e4e9
AM
800@node i386-Arch
801@section Specifying CPU Architecture
802
803@cindex arch directive, i386
804@cindex i386 arch directive
55b62671
AJ
805@cindex arch directive, x86-64
806@cindex x86-64 arch directive
e413e4e9
AM
807
808@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 809(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
810directive enables a warning when gas detects an instruction that is not
811supported on the CPU specified. The choices for @var{cpu_type} are:
812
813@multitable @columnfractions .20 .20 .20 .20
814@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
815@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 816@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 817@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7918206c 818@item @samp{amdfam10}
9103f4f4
L
819@item @samp{k6} @tab @samp{athlon} @tab @samp{sledgehammer} @tab @samp{k8}
820@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 821@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
7918206c
MM
822@item @samp{.sse4a} @tab @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.padlock}
823@item @samp{.pacifica} @tab @samp{.svme} @tab @samp{.abm}
e413e4e9
AM
824@end multitable
825
fddf5b5b
AM
826Apart from the warning, there are only two other effects on
827@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
828@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
829will automatically use a two byte opcode sequence. The larger three
830byte opcode sequence is used on the 486 (and when no architecture is
831specified) because it executes faster on the 486. Note that you can
832explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
833Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
834@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
835conditional jumps will be promoted when necessary to a two instruction
836sequence consisting of a conditional jump of the opposite sense around
837an unconditional jump to the target.
838
5c6af06e
JB
839Following the CPU architecture (but not a sub-architecture, which are those
840starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
841control automatic promotion of conditional jumps. @samp{jumps} is the
842default, and enables jump promotion; All external jumps will be of the long
843variety, and file-local jumps will be promoted as necessary.
844(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
845byte offset jumps, and warns about file-local conditional jumps that
846@code{@value{AS}} promotes.
fddf5b5b
AM
847Unconditional jumps are treated as for @samp{jumps}.
848
849For example
850
851@smallexample
852 .arch i8086,nojumps
853@end smallexample
e413e4e9 854
252b5132
RH
855@node i386-Notes
856@section Notes
857
858@cindex i386 @code{mul}, @code{imul} instructions
859@cindex @code{mul} instruction, i386
860@cindex @code{imul} instruction, i386
55b62671
AJ
861@cindex @code{mul} instruction, x86-64
862@cindex @code{imul} instruction, x86-64
252b5132 863There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 864instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
865multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
866for @samp{imul}) can be output only in the one operand form. Thus,
867@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
868the expanding multiply would clobber the @samp{%edx} register, and this
869would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
87064-bit product in @samp{%edx:%eax}.
871
872We have added a two operand form of @samp{imul} when the first operand
873is an immediate mode expression and the second operand is a register.
874This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
875example, can be done with @samp{imul $69, %eax} rather than @samp{imul
876$69, %eax, %eax}.
877
This page took 0.463806 seconds and 4 git commands to generate.