Add pcommit instruction
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
4b95cf5c 1@c Copyright (C) 1991-2014 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
9103f4f4
L
113@code{k6},
114@code{k6_2},
115@code{athlon},
9103f4f4
L
116@code{opteron},
117@code{k8},
1ceab344 118@code{amdfam10},
68339fdf 119@code{bdver1},
af2f724e 120@code{bdver2},
5e5c50d3 121@code{bdver3},
c7b0bd56 122@code{bdver4},
7b458c12
L
123@code{btver1},
124@code{btver2},
9103f4f4
L
125@code{generic32} and
126@code{generic64}.
127
34bca508 128In addition to the basic instruction set, the assembler can be told to
6305a203
L
129accept various extension mnemonics. For example,
130@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
131@var{vmx}. The following extensions are currently supported:
309d3373
JB
132@code{8087},
133@code{287},
134@code{387},
135@code{no87},
6305a203 136@code{mmx},
309d3373 137@code{nommx},
6305a203
L
138@code{sse},
139@code{sse2},
140@code{sse3},
141@code{ssse3},
142@code{sse4.1},
143@code{sse4.2},
144@code{sse4},
309d3373 145@code{nosse},
c0f3af97 146@code{avx},
6c30d220 147@code{avx2},
e2e1fcde
L
148@code{adx},
149@code{rdseed},
150@code{prfchw},
5c111e37 151@code{smap},
7e8b059b 152@code{mpx},
a0046408 153@code{sha},
1dfc6506
L
154@code{prefetchwt1},
155@code{clflushopt},
156@code{se1},
c5e7287a 157@code{clwb},
9d8596f0 158@code{pcommit},
43234a1e
L
159@code{avx512f},
160@code{avx512cd},
161@code{avx512er},
162@code{avx512pf},
1dfc6506
L
163@code{avx512vl},
164@code{avx512bw},
165@code{avx512dq},
309d3373 166@code{noavx},
6305a203 167@code{vmx},
8729a6f6 168@code{vmfunc},
6305a203 169@code{smx},
f03fe4c1 170@code{xsave},
c7b8aa3a 171@code{xsaveopt},
1dfc6506
L
172@code{xsavec},
173@code{xsaves},
c0f3af97 174@code{aes},
594ab6a3 175@code{pclmul},
c7b8aa3a
L
176@code{fsgsbase},
177@code{rdrnd},
178@code{f16c},
6c30d220 179@code{bmi2},
c0f3af97 180@code{fma},
f1f8f695
L
181@code{movbe},
182@code{ept},
6c30d220 183@code{lzcnt},
42164a71
L
184@code{hle},
185@code{rtm},
6c30d220 186@code{invpcid},
bd5295b2 187@code{clflush},
f88c9eb0 188@code{lwp},
5dd85c99
SP
189@code{fma4},
190@code{xop},
60aa667e 191@code{cx16},
bd5295b2 192@code{syscall},
1b7f3fb0 193@code{rdtscp},
6305a203
L
194@code{3dnow},
195@code{3dnowa},
196@code{sse4a},
197@code{sse5},
198@code{svme},
199@code{abm} and
200@code{padlock}.
309d3373
JB
201Note that rather than extending a basic instruction set, the extension
202mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
203
204When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
205@code{.arch} directive will take precedent.
206
207@cindex @samp{-mtune=} option, i386
208@cindex @samp{-mtune=} option, x86-64
209@item -mtune=@var{CPU}
210This option specifies a processor to optimize for. When used in
211conjunction with the @option{-march} option, only instructions
212of the processor specified by the @option{-march} option will be
213generated.
214
6305a203
L
215Valid @var{CPU} values are identical to the processor list of
216@option{-march=@var{CPU}}.
9103f4f4 217
c0f3af97
L
218@cindex @samp{-msse2avx} option, i386
219@cindex @samp{-msse2avx} option, x86-64
220@item -msse2avx
221This option specifies that the assembler should encode SSE instructions
222with VEX prefix.
223
daf50ae7
L
224@cindex @samp{-msse-check=} option, i386
225@cindex @samp{-msse-check=} option, x86-64
226@item -msse-check=@var{none}
1f9bb1ca
AS
227@itemx -msse-check=@var{warning}
228@itemx -msse-check=@var{error}
9aff4b7a 229These options control if the assembler should check SSE instructions.
daf50ae7
L
230@option{-msse-check=@var{none}} will make the assembler not to check SSE
231instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 232will make the assembler issue a warning for any SSE instruction.
daf50ae7 233@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 234for any SSE instruction.
daf50ae7 235
539f890d
L
236@cindex @samp{-mavxscalar=} option, i386
237@cindex @samp{-mavxscalar=} option, x86-64
238@item -mavxscalar=@var{128}
1f9bb1ca 239@itemx -mavxscalar=@var{256}
2aab8acd 240These options control how the assembler should encode scalar AVX
539f890d
L
241instructions. @option{-mavxscalar=@var{128}} will encode scalar
242AVX instructions with 128bit vector length, which is the default.
243@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
244with 256bit vector length.
245
43234a1e
L
246@cindex @samp{-mevexlig=} option, i386
247@cindex @samp{-mevexlig=} option, x86-64
248@item -mevexlig=@var{128}
249@itemx -mevexlig=@var{256}
250@itemx -mevexlig=@var{512}
251These options control how the assembler should encode length-ignored
252(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
253EVEX instructions with 128bit vector length, which is the default.
254@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
255encode LIG EVEX instructions with 256bit and 512bit vector length,
256respectively.
257
258@cindex @samp{-mevexwig=} option, i386
259@cindex @samp{-mevexwig=} option, x86-64
260@item -mevexwig=@var{0}
261@itemx -mevexwig=@var{1}
262These options control how the assembler should encode w-ignored (WIG)
263EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
264EVEX instructions with evex.w = 0, which is the default.
265@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
266evex.w = 1.
267
1efbbeb4
L
268@cindex @samp{-mmnemonic=} option, i386
269@cindex @samp{-mmnemonic=} option, x86-64
270@item -mmnemonic=@var{att}
1f9bb1ca 271@itemx -mmnemonic=@var{intel}
34bca508 272This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
273The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
274take precedent.
275
276@cindex @samp{-msyntax=} option, i386
277@cindex @samp{-msyntax=} option, x86-64
278@item -msyntax=@var{att}
1f9bb1ca 279@itemx -msyntax=@var{intel}
34bca508 280This option specifies instruction syntax when processing instructions.
1efbbeb4
L
281The @code{.att_syntax} and @code{.intel_syntax} directives will
282take precedent.
283
284@cindex @samp{-mnaked-reg} option, i386
285@cindex @samp{-mnaked-reg} option, x86-64
286@item -mnaked-reg
287This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 288The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 289
7e8b059b
L
290@cindex @samp{-madd-bnd-prefix} option, i386
291@cindex @samp{-madd-bnd-prefix} option, x86-64
292@item -madd-bnd-prefix
293This option forces the assembler to add BND prefix to all branches, even
294if such prefix was not explicitly specified in the source code.
295
167ad85b
TG
296@cindex @samp{-mbig-obj} option, x86-64
297@item -mbig-obj
298On x86-64 PE/COFF target this option forces the use of big object file
299format, which allows more than 32768 sections.
300
d022bddd
IT
301@cindex @samp{-momit-lock-prefix=} option, i386
302@cindex @samp{-momit-lock-prefix=} option, x86-64
303@item -momit-lock-prefix=@var{no}
304@itemx -momit-lock-prefix=@var{yes}
305These options control how the assembler should encode lock prefix.
306This option is intended as a workaround for processors, that fail on
307lock prefix. This option can only be safely used with single-core,
308single-thread computers
309@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
310@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
311which is the default.
312
d3d3c6db
IT
313@cindex @samp{-mevexrcig=} option, i386
314@cindex @samp{-mevexrcig=} option, x86-64
315@item -mevexrcig=@var{rne}
316@itemx -mevexrcig=@var{rd}
317@itemx -mevexrcig=@var{ru}
318@itemx -mevexrcig=@var{rz}
319These options control how the assembler should encode SAE-only
320EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
321of EVEX instruction with 00, which is the default.
322@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
323and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
324with 01, 10 and 11 RC bits, respectively.
325
55b62671 326@end table
731caf76 327@c man end
e413e4e9 328
a6c24e68
NC
329@node i386-Directives
330@section x86 specific Directives
331
332@cindex machine directives, x86
333@cindex x86 machine directives
334@table @code
335
336@cindex @code{lcomm} directive, COFF
337@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
338Reserve @var{length} (an absolute expression) bytes for a local common
339denoted by @var{symbol}. The section and value of @var{symbol} are
340those of the new local common. The addresses are allocated in the bss
704209c0
NC
341section, so that at run-time the bytes start off zeroed. Since
342@var{symbol} is not declared global, it is normally not visible to
343@code{@value{LD}}. The optional third parameter, @var{alignment},
344specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
345
346This directive is only available for COFF based x86 targets.
347
348@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
349@c .largecomm
350
351@end table
352
252b5132 353@node i386-Syntax
7c31ae13
NC
354@section i386 Syntactical Considerations
355@menu
356* i386-Variations:: AT&T Syntax versus Intel Syntax
357* i386-Chars:: Special Characters
358@end menu
359
360@node i386-Variations
361@subsection AT&T Syntax versus Intel Syntax
252b5132 362
e413e4e9
AM
363@cindex i386 intel_syntax pseudo op
364@cindex intel_syntax pseudo op, i386
365@cindex i386 att_syntax pseudo op
366@cindex att_syntax pseudo op, i386
252b5132
RH
367@cindex i386 syntax compatibility
368@cindex syntax compatibility, i386
55b62671
AJ
369@cindex x86-64 intel_syntax pseudo op
370@cindex intel_syntax pseudo op, x86-64
371@cindex x86-64 att_syntax pseudo op
372@cindex att_syntax pseudo op, x86-64
373@cindex x86-64 syntax compatibility
374@cindex syntax compatibility, x86-64
e413e4e9
AM
375
376@code{@value{AS}} now supports assembly using Intel assembler syntax.
377@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
378back to the usual AT&T mode for compatibility with the output of
379@code{@value{GCC}}. Either of these directives may have an optional
380argument, @code{prefix}, or @code{noprefix} specifying whether registers
381require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
382different from Intel syntax. We mention these differences because
383almost all 80386 documents use Intel syntax. Notable differences
384between the two syntaxes are:
385
386@cindex immediate operands, i386
387@cindex i386 immediate operands
388@cindex register operands, i386
389@cindex i386 register operands
390@cindex jump/call operands, i386
391@cindex i386 jump/call operands
392@cindex operand delimiters, i386
55b62671
AJ
393
394@cindex immediate operands, x86-64
395@cindex x86-64 immediate operands
396@cindex register operands, x86-64
397@cindex x86-64 register operands
398@cindex jump/call operands, x86-64
399@cindex x86-64 jump/call operands
400@cindex operand delimiters, x86-64
252b5132
RH
401@itemize @bullet
402@item
403AT&T immediate operands are preceded by @samp{$}; Intel immediate
404operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
405AT&T register operands are preceded by @samp{%}; Intel register operands
406are undelimited. AT&T absolute (as opposed to PC relative) jump/call
407operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
408
409@cindex i386 source, destination operands
410@cindex source, destination operands; i386
55b62671
AJ
411@cindex x86-64 source, destination operands
412@cindex source, destination operands; x86-64
252b5132
RH
413@item
414AT&T and Intel syntax use the opposite order for source and destination
415operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
416@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
417previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
418instructions with 2 immediate operands, such as the @samp{enter}
419instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
420
421@cindex mnemonic suffixes, i386
422@cindex sizes operands, i386
423@cindex i386 size suffixes
55b62671
AJ
424@cindex mnemonic suffixes, x86-64
425@cindex sizes operands, x86-64
426@cindex x86-64 size suffixes
252b5132
RH
427@item
428In AT&T syntax the size of memory operands is determined from the last
429character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
430@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
431(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
432this by prefixing memory operands (@emph{not} the instruction mnemonics) with
433@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
434Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
435syntax.
252b5132 436
4b06377f
L
437In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
438instruction with the 64-bit displacement or immediate operand.
439
252b5132
RH
440@cindex return instructions, i386
441@cindex i386 jump, call, return
55b62671
AJ
442@cindex return instructions, x86-64
443@cindex x86-64 jump, call, return
252b5132
RH
444@item
445Immediate form long jumps and calls are
446@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
447Intel syntax is
448@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
449instruction
450is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
451@samp{ret far @var{stack-adjust}}.
452
453@cindex sections, i386
454@cindex i386 sections
55b62671
AJ
455@cindex sections, x86-64
456@cindex x86-64 sections
252b5132
RH
457@item
458The AT&T assembler does not provide support for multiple section
459programs. Unix style systems expect all programs to be single sections.
460@end itemize
461
7c31ae13
NC
462@node i386-Chars
463@subsection Special Characters
464
465@cindex line comment character, i386
466@cindex i386 line comment character
467The presence of a @samp{#} appearing anywhere on a line indicates the
468start of a comment that extends to the end of that line.
469
470If a @samp{#} appears as the first character of a line then the whole
471line is treated as a comment, but in this case the line can also be a
472logical line number directive (@pxref{Comments}) or a preprocessor
473control command (@pxref{Preprocessing}).
474
475If the @option{--divide} command line option has not been specified
476then the @samp{/} character appearing anywhere on a line also
477introduces a line comment.
478
479@cindex line separator, i386
480@cindex statement separator, i386
481@cindex i386 line separator
482The @samp{;} character can be used to separate statements on the same
483line.
484
252b5132
RH
485@node i386-Mnemonics
486@section Instruction Naming
487
488@cindex i386 instruction naming
489@cindex instruction naming, i386
55b62671
AJ
490@cindex x86-64 instruction naming
491@cindex instruction naming, x86-64
492
252b5132 493Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
494specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
495and @samp{q} specify byte, word, long and quadruple word operands. If
496no suffix is specified by an instruction then @code{@value{AS}} tries to
497fill in the missing suffix based on the destination register operand
498(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
499to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
500@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
501assembler which assumes that a missing mnemonic suffix implies long
502operand size. (This incompatibility does not affect compiler output
503since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
504
505Almost all instructions have the same names in AT&T and Intel format.
506There are a few exceptions. The sign extend and zero extend
507instructions need two sizes to specify them. They need a size to
508sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
509is accomplished by using two instruction mnemonic suffixes in AT&T
510syntax. Base names for sign extend and zero extend are
511@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
512and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
513are tacked on to this base name, the @emph{from} suffix before the
514@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
515``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
516thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
517@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
518@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
519quadruple word).
252b5132 520
b6169b20
L
521@cindex encoding options, i386
522@cindex encoding options, x86-64
523
524Different encoding options can be specified via optional mnemonic
525suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
526moving from one register to another. @samp{.d8} or @samp{.d32} suffix
527prefers 8bit or 32bit displacement in encoding.
b6169b20 528
252b5132
RH
529@cindex conversion instructions, i386
530@cindex i386 conversion instructions
55b62671
AJ
531@cindex conversion instructions, x86-64
532@cindex x86-64 conversion instructions
252b5132
RH
533The Intel-syntax conversion instructions
534
535@itemize @bullet
536@item
537@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
538
539@item
540@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
541
542@item
543@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
544
545@item
546@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
547
548@item
549@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
550(x86-64 only),
551
552@item
d5f0cf92 553@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 554@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
555@end itemize
556
557@noindent
55b62671
AJ
558are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
559@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
560instructions.
252b5132
RH
561
562@cindex jump instructions, i386
563@cindex call instructions, i386
55b62671
AJ
564@cindex jump instructions, x86-64
565@cindex call instructions, x86-64
252b5132
RH
566Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
567AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
568convention.
569
1efbbeb4
L
570@section AT&T Mnemonic versus Intel Mnemonic
571
572@cindex i386 mnemonic compatibility
573@cindex mnemonic compatibility, i386
574
575@code{@value{AS}} supports assembly using Intel mnemonic.
576@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
577@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
578syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
579Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
580@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
581@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
582assembler with different mnemonics from those in Intel IA32 specification.
583@code{@value{GCC}} generates those instructions with AT&T mnemonic.
584
252b5132
RH
585@node i386-Regs
586@section Register Naming
587
588@cindex i386 registers
589@cindex registers, i386
55b62671
AJ
590@cindex x86-64 registers
591@cindex registers, x86-64
252b5132
RH
592Register operands are always prefixed with @samp{%}. The 80386 registers
593consist of
594
595@itemize @bullet
596@item
597the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
598@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
599frame pointer), and @samp{%esp} (the stack pointer).
600
601@item
602the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
603@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
604
605@item
606the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
607@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
608are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
609@samp{%cx}, and @samp{%dx})
610
611@item
612the 6 section registers @samp{%cs} (code section), @samp{%ds}
613(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
614and @samp{%gs}.
615
616@item
617the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
618@samp{%cr3}.
619
620@item
621the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
622@samp{%db3}, @samp{%db6}, and @samp{%db7}.
623
624@item
625the 2 test registers @samp{%tr6} and @samp{%tr7}.
626
627@item
628the 8 floating point register stack @samp{%st} or equivalently
629@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
630@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
631These registers are overloaded by 8 MMX registers @samp{%mm0},
632@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
633@samp{%mm6} and @samp{%mm7}.
634
635@item
636the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
637@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
638@end itemize
639
640The AMD x86-64 architecture extends the register set by:
641
642@itemize @bullet
643@item
644enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
645accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
646@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
647pointer)
648
649@item
650the 8 extended registers @samp{%r8}--@samp{%r15}.
651
652@item
653the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
654
655@item
656the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
657
658@item
659the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
660
661@item
662the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
663
664@item
665the 8 debug registers: @samp{%db8}--@samp{%db15}.
666
667@item
668the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
669@end itemize
670
671@node i386-Prefixes
672@section Instruction Prefixes
673
674@cindex i386 instruction prefixes
675@cindex instruction prefixes, i386
676@cindex prefixes, i386
677Instruction prefixes are used to modify the following instruction. They
678are used to repeat string instructions, to provide section overrides, to
679perform bus lock operations, and to change operand and address sizes.
680(Most instructions that normally operate on 32-bit operands will use
68116-bit operands if the instruction has an ``operand size'' prefix.)
682Instruction prefixes are best written on the same line as the instruction
683they act upon. For example, the @samp{scas} (scan string) instruction is
684repeated with:
685
686@smallexample
687 repne scas %es:(%edi),%al
688@end smallexample
689
690You may also place prefixes on the lines immediately preceding the
691instruction, but this circumvents checks that @code{@value{AS}} does
692with prefixes, and will not work with all prefixes.
693
694Here is a list of instruction prefixes:
695
696@cindex section override prefixes, i386
697@itemize @bullet
698@item
699Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
700@samp{fs}, @samp{gs}. These are automatically added by specifying
701using the @var{section}:@var{memory-operand} form for memory references.
702
703@cindex size prefixes, i386
704@item
705Operand/Address size prefixes @samp{data16} and @samp{addr16}
706change 32-bit operands/addresses into 16-bit operands/addresses,
707while @samp{data32} and @samp{addr32} change 16-bit ones (in a
708@code{.code16} section) into 32-bit operands/addresses. These prefixes
709@emph{must} appear on the same line of code as the instruction they
710modify. For example, in a 16-bit @code{.code16} section, you might
711write:
712
713@smallexample
714 addr32 jmpl *(%ebx)
715@end smallexample
716
717@cindex bus lock prefixes, i386
718@cindex inhibiting interrupts, i386
719@item
720The bus lock prefix @samp{lock} inhibits interrupts during execution of
721the instruction it precedes. (This is only valid with certain
722instructions; see a 80386 manual for details).
723
724@cindex coprocessor wait, i386
725@item
726The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
727complete the current instruction. This should never be needed for the
72880386/80387 combination.
729
730@cindex repeat prefixes, i386
731@item
732The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
733to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
734times if the current address size is 16-bits).
55b62671
AJ
735@cindex REX prefixes, i386
736@item
737The @samp{rex} family of prefixes is used by x86-64 to encode
738extensions to i386 instruction set. The @samp{rex} prefix has four
739bits --- an operand size overwrite (@code{64}) used to change operand size
740from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
741register set.
742
743You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
744instruction emits @samp{rex} prefix with all the bits set. By omitting
745the @code{64}, @code{x}, @code{y} or @code{z} you may write other
746prefixes as well. Normally, there is no need to write the prefixes
747explicitly, since gas will automatically generate them based on the
748instruction operands.
252b5132
RH
749@end itemize
750
751@node i386-Memory
752@section Memory References
753
754@cindex i386 memory references
755@cindex memory references, i386
55b62671
AJ
756@cindex x86-64 memory references
757@cindex memory references, x86-64
252b5132
RH
758An Intel syntax indirect memory reference of the form
759
760@smallexample
761@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
762@end smallexample
763
764@noindent
765is translated into the AT&T syntax
766
767@smallexample
768@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
769@end smallexample
770
771@noindent
772where @var{base} and @var{index} are the optional 32-bit base and
773index registers, @var{disp} is the optional displacement, and
774@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
775to calculate the address of the operand. If no @var{scale} is
776specified, @var{scale} is taken to be 1. @var{section} specifies the
777optional section register for the memory operand, and may override the
778default section register (see a 80386 manual for section register
779defaults). Note that section overrides in AT&T syntax @emph{must}
780be preceded by a @samp{%}. If you specify a section override which
781coincides with the default section register, @code{@value{AS}} does @emph{not}
782output any section register override prefixes to assemble the given
783instruction. Thus, section overrides can be specified to emphasize which
784section register is used for a given memory operand.
785
786Here are some examples of Intel and AT&T style memory references:
787
788@table @asis
789@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
790@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
791missing, and the default section is used (@samp{%ss} for addressing with
792@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
793
794@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
795@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
796@samp{foo}. All other fields are missing. The section register here
797defaults to @samp{%ds}.
798
799@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
800This uses the value pointed to by @samp{foo} as a memory operand.
801Note that @var{base} and @var{index} are both missing, but there is only
802@emph{one} @samp{,}. This is a syntactic exception.
803
804@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
805This selects the contents of the variable @samp{foo} with section
806register @var{section} being @samp{%gs}.
807@end table
808
809Absolute (as opposed to PC relative) call and jump operands must be
810prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
811always chooses PC relative addressing for jump/call labels.
812
813Any instruction that has a memory operand, but no register operand,
55b62671
AJ
814@emph{must} specify its size (byte, word, long, or quadruple) with an
815instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
816respectively).
817
818The x86-64 architecture adds an RIP (instruction pointer relative)
819addressing. This addressing mode is specified by using @samp{rip} as a
820base register. Only constant offsets are valid. For example:
821
822@table @asis
823@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
824Points to the address 1234 bytes past the end of the current
825instruction.
826
827@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
828Points to the @code{symbol} in RIP relative way, this is shorter than
829the default absolute addressing.
830@end table
831
832Other addressing modes remain unchanged in x86-64 architecture, except
833registers used are 64-bit instead of 32-bit.
252b5132 834
fddf5b5b 835@node i386-Jumps
252b5132
RH
836@section Handling of Jump Instructions
837
838@cindex jump optimization, i386
839@cindex i386 jump optimization
55b62671
AJ
840@cindex jump optimization, x86-64
841@cindex x86-64 jump optimization
252b5132
RH
842Jump instructions are always optimized to use the smallest possible
843displacements. This is accomplished by using byte (8-bit) displacement
844jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 845is insufficient a long displacement is used. We do not support
252b5132
RH
846word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
847instruction with the @samp{data16} instruction prefix), since the 80386
848insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 849is added. (See also @pxref{i386-Arch})
252b5132
RH
850
851Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
852@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
853displacements, so that if you use these instructions (@code{@value{GCC}} does
854not use them) you may get an error message (and incorrect code). The AT&T
85580386 assembler tries to get around this problem by expanding @samp{jcxz foo}
856to
857
858@smallexample
859 jcxz cx_zero
860 jmp cx_nonzero
861cx_zero: jmp foo
862cx_nonzero:
863@end smallexample
864
865@node i386-Float
866@section Floating Point
867
868@cindex i386 floating point
869@cindex floating point, i386
55b62671
AJ
870@cindex x86-64 floating point
871@cindex floating point, x86-64
252b5132
RH
872All 80387 floating point types except packed BCD are supported.
873(BCD support may be added without much difficulty). These data
874types are 16-, 32-, and 64- bit integers, and single (32-bit),
875double (64-bit), and extended (80-bit) precision floating point.
876Each supported type has an instruction mnemonic suffix and a constructor
877associated with it. Instruction mnemonic suffixes specify the operand's
878data type. Constructors build these data types into memory.
879
880@cindex @code{float} directive, i386
881@cindex @code{single} directive, i386
882@cindex @code{double} directive, i386
883@cindex @code{tfloat} directive, i386
55b62671
AJ
884@cindex @code{float} directive, x86-64
885@cindex @code{single} directive, x86-64
886@cindex @code{double} directive, x86-64
887@cindex @code{tfloat} directive, x86-64
252b5132
RH
888@itemize @bullet
889@item
890Floating point constructors are @samp{.float} or @samp{.single},
891@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
892These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
893and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
894only supports this format via the @samp{fldt} (load 80-bit real to stack
895top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
896
897@cindex @code{word} directive, i386
898@cindex @code{long} directive, i386
899@cindex @code{int} directive, i386
900@cindex @code{quad} directive, i386
55b62671
AJ
901@cindex @code{word} directive, x86-64
902@cindex @code{long} directive, x86-64
903@cindex @code{int} directive, x86-64
904@cindex @code{quad} directive, x86-64
252b5132
RH
905@item
906Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
907@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
908corresponding instruction mnemonic suffixes are @samp{s} (single),
909@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
910the 64-bit @samp{q} format is only present in the @samp{fildq} (load
911quad integer to stack top) and @samp{fistpq} (store quad integer and pop
912stack) instructions.
913@end itemize
914
915Register to register operations should not use instruction mnemonic suffixes.
916@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
917wrote @samp{fst %st, %st(1)}, since all register to register operations
918use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
919which converts @samp{%st} from 80-bit to 64-bit floating point format,
920then stores the result in the 4 byte location @samp{mem})
921
922@node i386-SIMD
923@section Intel's MMX and AMD's 3DNow! SIMD Operations
924
925@cindex MMX, i386
926@cindex 3DNow!, i386
927@cindex SIMD, i386
55b62671
AJ
928@cindex MMX, x86-64
929@cindex 3DNow!, x86-64
930@cindex SIMD, x86-64
252b5132
RH
931
932@code{@value{AS}} supports Intel's MMX instruction set (SIMD
933instructions for integer data), available on Intel's Pentium MMX
934processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 935Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
936instruction set (SIMD instructions for 32-bit floating point data)
937available on AMD's K6-2 processor and possibly others in the future.
938
939Currently, @code{@value{AS}} does not support Intel's floating point
940SIMD, Katmai (KNI).
941
942The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
943@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
94416-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
945floating point values. The MMX registers cannot be used at the same time
946as the floating point stack.
947
948See Intel and AMD documentation, keeping in mind that the operand order in
949instructions is reversed from the Intel syntax.
950
f88c9eb0
SP
951@node i386-LWP
952@section AMD's Lightweight Profiling Instructions
953
954@cindex LWP, i386
955@cindex LWP, x86-64
956
957@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
958instruction set, available on AMD's Family 15h (Orochi) processors.
959
960LWP enables applications to collect and manage performance data, and
961react to performance events. The collection of performance data
962requires no context switches. LWP runs in the context of a thread and
963so several counters can be used independently across multiple threads.
964LWP can be used in both 64-bit and legacy 32-bit modes.
965
966For detailed information on the LWP instruction set, see the
967@cite{AMD Lightweight Profiling Specification} available at
968@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
969
87973e9f
QN
970@node i386-BMI
971@section Bit Manipulation Instructions
972
973@cindex BMI, i386
974@cindex BMI, x86-64
975
976@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
977
978BMI instructions provide several instructions implementing individual
979bit manipulation operations such as isolation, masking, setting, or
34bca508 980resetting.
87973e9f
QN
981
982@c Need to add a specification citation here when available.
983
2a2a0f38
QN
984@node i386-TBM
985@section AMD's Trailing Bit Manipulation Instructions
986
987@cindex TBM, i386
988@cindex TBM, x86-64
989
990@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
991instruction set, available on AMD's BDVER2 processors (Trinity and
992Viperfish).
993
994TBM instructions provide instructions implementing individual bit
995manipulation operations such as isolating, masking, setting, resetting,
996complementing, and operations on trailing zeros and ones.
997
998@c Need to add a specification citation here when available.
87973e9f 999
252b5132
RH
1000@node i386-16bit
1001@section Writing 16-bit Code
1002
1003@cindex i386 16-bit code
1004@cindex 16-bit code, i386
1005@cindex real-mode code, i386
eecb386c 1006@cindex @code{code16gcc} directive, i386
252b5132
RH
1007@cindex @code{code16} directive, i386
1008@cindex @code{code32} directive, i386
55b62671
AJ
1009@cindex @code{code64} directive, i386
1010@cindex @code{code64} directive, x86-64
1011While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1012or 64-bit x86-64 code depending on the default configuration,
252b5132 1013it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1014mode code segments. To do this, put a @samp{.code16} or
1015@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1016be run in 16-bit mode. You can switch @code{@value{AS}} to writing
101732-bit code with the @samp{.code32} directive or 64-bit code with the
1018@samp{.code64} directive.
eecb386c
AM
1019
1020@samp{.code16gcc} provides experimental support for generating 16-bit
1021code from gcc, and differs from @samp{.code16} in that @samp{call},
1022@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1023@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1024default to 32-bit size. This is so that the stack pointer is
1025manipulated in the same way over function calls, allowing access to
1026function parameters at the same stack offsets as in 32-bit mode.
1027@samp{.code16gcc} also automatically adds address size prefixes where
1028necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1029
1030The code which @code{@value{AS}} generates in 16-bit mode will not
1031necessarily run on a 16-bit pre-80386 processor. To write code that
1032runs on such a processor, you must refrain from using @emph{any} 32-bit
1033constructs which require @code{@value{AS}} to output address or operand
1034size prefixes.
1035
1036Note that writing 16-bit code instructions by explicitly specifying a
1037prefix or an instruction mnemonic suffix within a 32-bit code section
1038generates different machine instructions than those generated for a
103916-bit code segment. In a 32-bit code section, the following code
1040generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1041value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1042
1043@smallexample
1044 pushw $4
1045@end smallexample
1046
1047The same code in a 16-bit code section would generate the machine
b45619c0 1048opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1049is correct since the processor default operand size is assumed to be 16
1050bits in a 16-bit code section.
1051
1052@node i386-Bugs
1053@section AT&T Syntax bugs
1054
1055The UnixWare assembler, and probably other AT&T derived ix86 Unix
1056assemblers, generate floating point instructions with reversed source
1057and destination registers in certain cases. Unfortunately, gcc and
1058possibly many other programs use this reversed syntax, so we're stuck
1059with it.
1060
1061For example
1062
1063@smallexample
1064 fsub %st,%st(3)
1065@end smallexample
1066@noindent
1067results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1068than the expected @samp{%st(3) - %st}. This happens with all the
1069non-commutative arithmetic floating point operations with two register
1070operands where the source register is @samp{%st} and the destination
1071register is @samp{%st(i)}.
1072
e413e4e9
AM
1073@node i386-Arch
1074@section Specifying CPU Architecture
1075
1076@cindex arch directive, i386
1077@cindex i386 arch directive
55b62671
AJ
1078@cindex arch directive, x86-64
1079@cindex x86-64 arch directive
e413e4e9
AM
1080
1081@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1082(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1083directive enables a warning when gas detects an instruction that is not
1084supported on the CPU specified. The choices for @var{cpu_type} are:
1085
1086@multitable @columnfractions .20 .20 .20 .20
1087@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1088@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1089@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1090@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7a9068fe 1091@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1543849b 1092@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1093@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
c7b0bd56 1094@item @samp{bdver4} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1095@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1096@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1097@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1098@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1099@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1100@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1101@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1102@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1103@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1104@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1105@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1106@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1107@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq}
9d8596f0 1108@item @samp{.clwb} @tab @samp{.pcommit}
1ceab344 1109@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1110@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1111@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1ceab344 1112@item @samp{.padlock}
e413e4e9
AM
1113@end multitable
1114
fddf5b5b
AM
1115Apart from the warning, there are only two other effects on
1116@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1117@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1118will automatically use a two byte opcode sequence. The larger three
1119byte opcode sequence is used on the 486 (and when no architecture is
1120specified) because it executes faster on the 486. Note that you can
1121explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1122Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1123@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1124conditional jumps will be promoted when necessary to a two instruction
1125sequence consisting of a conditional jump of the opposite sense around
1126an unconditional jump to the target.
1127
5c6af06e
JB
1128Following the CPU architecture (but not a sub-architecture, which are those
1129starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1130control automatic promotion of conditional jumps. @samp{jumps} is the
1131default, and enables jump promotion; All external jumps will be of the long
1132variety, and file-local jumps will be promoted as necessary.
1133(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1134byte offset jumps, and warns about file-local conditional jumps that
1135@code{@value{AS}} promotes.
fddf5b5b
AM
1136Unconditional jumps are treated as for @samp{jumps}.
1137
1138For example
1139
1140@smallexample
1141 .arch i8086,nojumps
1142@end smallexample
e413e4e9 1143
252b5132
RH
1144@node i386-Notes
1145@section Notes
1146
1147@cindex i386 @code{mul}, @code{imul} instructions
1148@cindex @code{mul} instruction, i386
1149@cindex @code{imul} instruction, i386
55b62671
AJ
1150@cindex @code{mul} instruction, x86-64
1151@cindex @code{imul} instruction, x86-64
252b5132 1152There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1153instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1154multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1155for @samp{imul}) can be output only in the one operand form. Thus,
1156@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1157the expanding multiply would clobber the @samp{%edx} register, and this
1158would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
115964-bit product in @samp{%edx:%eax}.
1160
1161We have added a two operand form of @samp{imul} when the first operand
1162is an immediate mode expression and the second operand is a register.
1163This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1164example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1165$69, %eax, %eax}.
1166
This page took 1.149012 seconds and 4 git commands to generate.