Improve -mlfence-after-load
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
b3adc24a 1@c Copyright (C) 1991-2020 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
bc31405e 40* i386-ISA:: AMD64 ISA vs. Intel64 ISA
252b5132
RH
41* i386-Bugs:: AT&T Syntax bugs
42* i386-Notes:: Notes
43@end menu
44
45@node i386-Options
46@section Options
47
55b62671
AJ
48@cindex options for i386
49@cindex options for x86-64
50@cindex i386 options
34bca508 51@cindex x86-64 options
55b62671
AJ
52
53The i386 version of @code{@value{AS}} has a few machine
54dependent options:
55
731caf76
L
56@c man begin OPTIONS
57@table @gcctabopt
55b62671
AJ
58@cindex @samp{--32} option, i386
59@cindex @samp{--32} option, x86-64
570561f7
L
60@cindex @samp{--x32} option, i386
61@cindex @samp{--x32} option, x86-64
55b62671
AJ
62@cindex @samp{--64} option, i386
63@cindex @samp{--64} option, x86-64
570561f7 64@item --32 | --x32 | --64
35cc6a0b 65Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 66implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
67imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68respectively.
55b62671
AJ
69
70These options are only available with the ELF object file format, and
71require that the necessary BFD support has been included (on a 32-bit
72platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73usage and use x86-64 as target platform).
12b55ccc
L
74
75@item -n
76By default, x86 GAS replaces multiple nop instructions used for
77alignment within code sections with multi-byte nop instructions such
f9233288
JW
78as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
34bca508 95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
81486035 115@code{iamcu},
9103f4f4
L
116@code{k6},
117@code{k6_2},
118@code{athlon},
9103f4f4
L
119@code{opteron},
120@code{k8},
1ceab344 121@code{amdfam10},
68339fdf 122@code{bdver1},
af2f724e 123@code{bdver2},
5e5c50d3 124@code{bdver3},
c7b0bd56 125@code{bdver4},
029f3522 126@code{znver1},
a9660a6f 127@code{znver2},
7b458c12
L
128@code{btver1},
129@code{btver2},
9103f4f4
L
130@code{generic32} and
131@code{generic64}.
132
34bca508 133In addition to the basic instruction set, the assembler can be told to
6305a203
L
134accept various extension mnemonics. For example,
135@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136@var{vmx}. The following extensions are currently supported:
309d3373
JB
137@code{8087},
138@code{287},
139@code{387},
1848e567 140@code{687},
309d3373 141@code{no87},
1848e567
L
142@code{no287},
143@code{no387},
144@code{no687},
d871f3f4
L
145@code{cmov},
146@code{nocmov},
147@code{fxsr},
148@code{nofxsr},
6305a203 149@code{mmx},
309d3373 150@code{nommx},
6305a203
L
151@code{sse},
152@code{sse2},
153@code{sse3},
af5c13b0 154@code{sse4a},
6305a203
L
155@code{ssse3},
156@code{sse4.1},
157@code{sse4.2},
158@code{sse4},
309d3373 159@code{nosse},
1848e567
L
160@code{nosse2},
161@code{nosse3},
af5c13b0 162@code{nosse4a},
1848e567
L
163@code{nossse3},
164@code{nosse4.1},
165@code{nosse4.2},
166@code{nosse4},
c0f3af97 167@code{avx},
6c30d220 168@code{avx2},
1848e567
L
169@code{noavx},
170@code{noavx2},
e2e1fcde
L
171@code{adx},
172@code{rdseed},
173@code{prfchw},
5c111e37 174@code{smap},
7e8b059b 175@code{mpx},
a0046408 176@code{sha},
8bc52696 177@code{rdpid},
6b40c462 178@code{ptwrite},
603555e5 179@code{cet},
48521003 180@code{gfni},
8dcf1fad 181@code{vaes},
ff1982d5 182@code{vpclmulqdq},
1dfc6506
L
183@code{prefetchwt1},
184@code{clflushopt},
185@code{se1},
c5e7287a 186@code{clwb},
c0a30a9f
L
187@code{movdiri},
188@code{movdir64b},
5d79adc4 189@code{enqcmd},
4b27d27c 190@code{serialize},
bb651e8b 191@code{tsxldtrk},
43234a1e
L
192@code{avx512f},
193@code{avx512cd},
194@code{avx512er},
195@code{avx512pf},
1dfc6506
L
196@code{avx512vl},
197@code{avx512bw},
198@code{avx512dq},
2cc1b5aa 199@code{avx512ifma},
14f195c9 200@code{avx512vbmi},
920d2ddc 201@code{avx512_4fmaps},
47acf0bd 202@code{avx512_4vnniw},
620214f7 203@code{avx512_vpopcntdq},
53467f57 204@code{avx512_vbmi2},
8cfcb765 205@code{avx512_vnni},
ee6872be 206@code{avx512_bitalg},
d6aab7a1 207@code{avx512_bf16},
144b71e2
L
208@code{noavx512f},
209@code{noavx512cd},
210@code{noavx512er},
211@code{noavx512pf},
212@code{noavx512vl},
213@code{noavx512bw},
214@code{noavx512dq},
215@code{noavx512ifma},
216@code{noavx512vbmi},
920d2ddc 217@code{noavx512_4fmaps},
47acf0bd 218@code{noavx512_4vnniw},
620214f7 219@code{noavx512_vpopcntdq},
53467f57 220@code{noavx512_vbmi2},
8cfcb765 221@code{noavx512_vnni},
ee6872be 222@code{noavx512_bitalg},
9186c494 223@code{noavx512_vp2intersect},
d6aab7a1 224@code{noavx512_bf16},
dd455cf5 225@code{noenqcmd},
4b27d27c 226@code{noserialize},
bb651e8b 227@code{notsxldtrk},
6305a203 228@code{vmx},
8729a6f6 229@code{vmfunc},
6305a203 230@code{smx},
f03fe4c1 231@code{xsave},
c7b8aa3a 232@code{xsaveopt},
1dfc6506
L
233@code{xsavec},
234@code{xsaves},
c0f3af97 235@code{aes},
594ab6a3 236@code{pclmul},
c7b8aa3a
L
237@code{fsgsbase},
238@code{rdrnd},
239@code{f16c},
6c30d220 240@code{bmi2},
c0f3af97 241@code{fma},
f1f8f695
L
242@code{movbe},
243@code{ept},
6c30d220 244@code{lzcnt},
272a84b1 245@code{popcnt},
42164a71
L
246@code{hle},
247@code{rtm},
6c30d220 248@code{invpcid},
bd5295b2 249@code{clflush},
9916071f 250@code{mwaitx},
029f3522 251@code{clzero},
3233d7d0 252@code{wbnoinvd},
be3a8dca 253@code{pconfig},
de89d0a3 254@code{waitpkg},
c48935d7 255@code{cldemote},
142861df
JB
256@code{rdpru},
257@code{mcommit},
a847e322 258@code{sev_es},
f88c9eb0 259@code{lwp},
5dd85c99
SP
260@code{fma4},
261@code{xop},
60aa667e 262@code{cx16},
bd5295b2 263@code{syscall},
1b7f3fb0 264@code{rdtscp},
6305a203
L
265@code{3dnow},
266@code{3dnowa},
267@code{sse4a},
268@code{sse5},
272a84b1 269@code{svme} and
6305a203 270@code{padlock}.
309d3373
JB
271Note that rather than extending a basic instruction set, the extension
272mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
273
274When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
275@code{.arch} directive will take precedent.
276
277@cindex @samp{-mtune=} option, i386
278@cindex @samp{-mtune=} option, x86-64
279@item -mtune=@var{CPU}
280This option specifies a processor to optimize for. When used in
281conjunction with the @option{-march} option, only instructions
282of the processor specified by the @option{-march} option will be
283generated.
284
6305a203
L
285Valid @var{CPU} values are identical to the processor list of
286@option{-march=@var{CPU}}.
9103f4f4 287
c0f3af97
L
288@cindex @samp{-msse2avx} option, i386
289@cindex @samp{-msse2avx} option, x86-64
290@item -msse2avx
291This option specifies that the assembler should encode SSE instructions
292with VEX prefix.
293
daf50ae7
L
294@cindex @samp{-msse-check=} option, i386
295@cindex @samp{-msse-check=} option, x86-64
296@item -msse-check=@var{none}
1f9bb1ca
AS
297@itemx -msse-check=@var{warning}
298@itemx -msse-check=@var{error}
9aff4b7a 299These options control if the assembler should check SSE instructions.
daf50ae7
L
300@option{-msse-check=@var{none}} will make the assembler not to check SSE
301instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 302will make the assembler issue a warning for any SSE instruction.
daf50ae7 303@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 304for any SSE instruction.
daf50ae7 305
539f890d
L
306@cindex @samp{-mavxscalar=} option, i386
307@cindex @samp{-mavxscalar=} option, x86-64
308@item -mavxscalar=@var{128}
1f9bb1ca 309@itemx -mavxscalar=@var{256}
2aab8acd 310These options control how the assembler should encode scalar AVX
539f890d
L
311instructions. @option{-mavxscalar=@var{128}} will encode scalar
312AVX instructions with 128bit vector length, which is the default.
313@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
314with 256bit vector length.
315
4970191f
JB
316WARNING: Don't use this for production code - due to CPU errata the
317resulting code may not work on certain models.
318
03751133
L
319@cindex @samp{-mvexwig=} option, i386
320@cindex @samp{-mvexwig=} option, x86-64
321@item -mvexwig=@var{0}
322@itemx -mvexwig=@var{1}
323These options control how the assembler should encode VEX.W-ignored (WIG)
324VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
325instructions with vex.w = 0, which is the default.
326@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
327vex.w = 1.
328
4970191f
JB
329WARNING: Don't use this for production code - due to CPU errata the
330resulting code may not work on certain models.
331
43234a1e
L
332@cindex @samp{-mevexlig=} option, i386
333@cindex @samp{-mevexlig=} option, x86-64
334@item -mevexlig=@var{128}
335@itemx -mevexlig=@var{256}
336@itemx -mevexlig=@var{512}
337These options control how the assembler should encode length-ignored
338(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
339EVEX instructions with 128bit vector length, which is the default.
340@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
341encode LIG EVEX instructions with 256bit and 512bit vector length,
342respectively.
343
344@cindex @samp{-mevexwig=} option, i386
345@cindex @samp{-mevexwig=} option, x86-64
346@item -mevexwig=@var{0}
347@itemx -mevexwig=@var{1}
348These options control how the assembler should encode w-ignored (WIG)
349EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
350EVEX instructions with evex.w = 0, which is the default.
351@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
352evex.w = 1.
353
1efbbeb4
L
354@cindex @samp{-mmnemonic=} option, i386
355@cindex @samp{-mmnemonic=} option, x86-64
356@item -mmnemonic=@var{att}
1f9bb1ca 357@itemx -mmnemonic=@var{intel}
34bca508 358This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
359The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
360take precedent.
361
362@cindex @samp{-msyntax=} option, i386
363@cindex @samp{-msyntax=} option, x86-64
364@item -msyntax=@var{att}
1f9bb1ca 365@itemx -msyntax=@var{intel}
34bca508 366This option specifies instruction syntax when processing instructions.
1efbbeb4
L
367The @code{.att_syntax} and @code{.intel_syntax} directives will
368take precedent.
369
370@cindex @samp{-mnaked-reg} option, i386
371@cindex @samp{-mnaked-reg} option, x86-64
372@item -mnaked-reg
33eaf5de 373This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 374The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 375
7e8b059b
L
376@cindex @samp{-madd-bnd-prefix} option, i386
377@cindex @samp{-madd-bnd-prefix} option, x86-64
378@item -madd-bnd-prefix
379This option forces the assembler to add BND prefix to all branches, even
380if such prefix was not explicitly specified in the source code.
381
8dcea932
L
382@cindex @samp{-mshared} option, i386
383@cindex @samp{-mshared} option, x86-64
384@item -mno-shared
385On ELF target, the assembler normally optimizes out non-PLT relocations
386against defined non-weak global branch targets with default visibility.
387The @samp{-mshared} option tells the assembler to generate code which
388may go into a shared library where all non-weak global branch targets
389with default visibility can be preempted. The resulting code is
390slightly bigger. This option only affects the handling of branch
391instructions.
392
167ad85b
TG
393@cindex @samp{-mbig-obj} option, x86-64
394@item -mbig-obj
395On x86-64 PE/COFF target this option forces the use of big object file
396format, which allows more than 32768 sections.
397
d022bddd
IT
398@cindex @samp{-momit-lock-prefix=} option, i386
399@cindex @samp{-momit-lock-prefix=} option, x86-64
400@item -momit-lock-prefix=@var{no}
401@itemx -momit-lock-prefix=@var{yes}
402These options control how the assembler should encode lock prefix.
403This option is intended as a workaround for processors, that fail on
404lock prefix. This option can only be safely used with single-core,
405single-thread computers
406@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
407@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
408which is the default.
409
e4e00185
AS
410@cindex @samp{-mfence-as-lock-add=} option, i386
411@cindex @samp{-mfence-as-lock-add=} option, x86-64
412@item -mfence-as-lock-add=@var{no}
413@itemx -mfence-as-lock-add=@var{yes}
414These options control how the assembler should encode lfence, mfence and
415sfence.
416@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
417sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
418@samp{lock addl $0x0, (%esp)} in 32-bit mode.
419@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
420sfence as usual, which is the default.
421
0cb4071e
L
422@cindex @samp{-mrelax-relocations=} option, i386
423@cindex @samp{-mrelax-relocations=} option, x86-64
424@item -mrelax-relocations=@var{no}
425@itemx -mrelax-relocations=@var{yes}
426These options control whether the assembler should generate relax
427relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
428R_X86_64_REX_GOTPCRELX, in 64-bit mode.
429@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
430@option{-mrelax-relocations=@var{no}} will not generate relax
431relocations. The default can be controlled by a configure option
432@option{--enable-x86-relax-relocations}.
433
e379e5f3
L
434@cindex @samp{-malign-branch-boundary=} option, i386
435@cindex @samp{-malign-branch-boundary=} option, x86-64
436@item -malign-branch-boundary=@var{NUM}
437This option controls how the assembler should align branches with segment
438prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
439no less than 16. Branches will be aligned within @var{NUM} byte
440boundary. @option{-malign-branch-boundary=0}, which is the default,
441doesn't align branches.
442
443@cindex @samp{-malign-branch=} option, i386
444@cindex @samp{-malign-branch=} option, x86-64
445@item -malign-branch=@var{TYPE}[+@var{TYPE}...]
446This option specifies types of branches to align. @var{TYPE} is
447combination of @samp{jcc}, which aligns conditional jumps,
448@samp{fused}, which aligns fused conditional jumps, @samp{jmp},
449which aligns unconditional jumps, @samp{call} which aligns calls,
450@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
451jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
452
453@cindex @samp{-malign-branch-prefix-size=} option, i386
454@cindex @samp{-malign-branch-prefix-size=} option, x86-64
455@item -malign-branch-prefix-size=@var{NUM}
456This option specifies the maximum number of prefixes on an instruction
457to align branches. @var{NUM} should be between 0 and 5. The default
458@var{NUM} is 5.
459
76cf450b
L
460@cindex @samp{-mbranches-within-32B-boundaries} option, i386
461@cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
462@item -mbranches-within-32B-boundaries
463This option aligns conditional jumps, fused conditional jumps and
464unconditional jumps within 32 byte boundary with up to 5 segment prefixes
465on an instruction. It is equivalent to
466@option{-malign-branch-boundary=32}
467@option{-malign-branch=jcc+fused+jmp}
468@option{-malign-branch-prefix-size=5}.
469The default doesn't align branches.
470
ae531041
L
471@cindex @samp{-mlfence-after-load=} option, i386
472@cindex @samp{-mlfence-after-load=} option, x86-64
473@item -mlfence-after-load=@var{no}
474@itemx -mlfence-after-load=@var{yes}
475These options control whether the assembler should generate lfence
476after load instructions. @option{-mlfence-after-load=@var{yes}} will
477generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
478lfence, which is the default.
479
480@cindex @samp{-mlfence-before-indirect-branch=} option, i386
481@cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
482@item -mlfence-before-indirect-branch=@var{none}
483@item -mlfence-before-indirect-branch=@var{all}
484@item -mlfence-before-indirect-branch=@var{register}
485@itemx -mlfence-before-indirect-branch=@var{memory}
486These options control whether the assembler should generate lfence
3071b197 487before indirect near branch instructions.
ae531041 488@option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
3071b197 489before indirect near branch via register and issue a warning before
ae531041 490indirect near branch via memory.
a09f656b 491It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when
492there's no explict @option{-mlfence-before-ret=}.
ae531041 493@option{-mlfence-before-indirect-branch=@var{register}} will generate
3071b197 494lfence before indirect near branch via register.
ae531041
L
495@option{-mlfence-before-indirect-branch=@var{memory}} will issue a
496warning before indirect near branch via memory.
497@option{-mlfence-before-indirect-branch=@var{none}} will not generate
498lfence nor issue warning, which is the default. Note that lfence won't
499be generated before indirect near branch via register with
500@option{-mlfence-after-load=@var{yes}} since lfence will be generated
501after loading branch target register.
502
503@cindex @samp{-mlfence-before-ret=} option, i386
504@cindex @samp{-mlfence-before-ret=} option, x86-64
505@item -mlfence-before-ret=@var{none}
a09f656b 506@item -mlfence-before-ret=@var{shl}
ae531041 507@item -mlfence-before-ret=@var{or}
a09f656b 508@item -mlfence-before-ret=@var{yes}
ae531041
L
509@itemx -mlfence-before-ret=@var{not}
510These options control whether the assembler should generate lfence
511before ret. @option{-mlfence-before-ret=@var{or}} will generate
512generate or instruction with lfence.
a09f656b 513@option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction
514with lfence. @option{-mlfence-before-ret=@var{not}} will generate not
515instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not
516generate lfence, which is the default.
ae531041 517
b4a3a7b4
L
518@cindex @samp{-mx86-used-note=} option, i386
519@cindex @samp{-mx86-used-note=} option, x86-64
520@item -mx86-used-note=@var{no}
521@itemx -mx86-used-note=@var{yes}
522These options control whether the assembler should generate
523GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
524GNU property notes. The default can be controlled by the
525@option{--enable-x86-used-note} configure option.
526
d3d3c6db
IT
527@cindex @samp{-mevexrcig=} option, i386
528@cindex @samp{-mevexrcig=} option, x86-64
529@item -mevexrcig=@var{rne}
530@itemx -mevexrcig=@var{rd}
531@itemx -mevexrcig=@var{ru}
532@itemx -mevexrcig=@var{rz}
533These options control how the assembler should encode SAE-only
534EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
535of EVEX instruction with 00, which is the default.
536@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
537and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
538with 01, 10 and 11 RC bits, respectively.
539
5db04b09
L
540@cindex @samp{-mamd64} option, x86-64
541@cindex @samp{-mintel64} option, x86-64
542@item -mamd64
543@itemx -mintel64
544This option specifies that the assembler should accept only AMD64 or
4b5aaf5f
L
545Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
546only and AMD64 ISAs.
5db04b09 547
b6f8c7c4
L
548@cindex @samp{-O0} option, i386
549@cindex @samp{-O0} option, x86-64
550@cindex @samp{-O} option, i386
551@cindex @samp{-O} option, x86-64
552@cindex @samp{-O1} option, i386
553@cindex @samp{-O1} option, x86-64
554@cindex @samp{-O2} option, i386
555@cindex @samp{-O2} option, x86-64
556@cindex @samp{-Os} option, i386
557@cindex @samp{-Os} option, x86-64
558@item -O0 | -O | -O1 | -O2 | -Os
559Optimize instruction encoding with smaller instruction size. @samp{-O}
560and @samp{-O1} encode 64-bit register load instructions with 64-bit
561immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 562immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
563register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
564register clearing instructions with 128-bit VEX vector register
565clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 566register load/store instructions with VEX vector register load/store
a0a1771e
JB
567instructions, and encode 128-bit/256-bit EVEX packed integer logical
568instructions with 128-bit/256-bit VEX packed integer logical.
569
570@samp{-O2} includes @samp{-O1} optimization plus encodes
571256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
572EVEX vector register clearing instructions. In 64-bit mode VEX encoded
573instructions with commutative source operands will also have their
574source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
575instead of the 3-byte one. Certain forms of AND as well as OR with the
576same (register) operand specified twice will also be changed to TEST.
a0a1771e 577
b6f8c7c4
L
578@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
579and 64-bit register tests with immediate as 8-bit register test with
580immediate. @samp{-O0} turns off this optimization.
581
55b62671 582@end table
731caf76 583@c man end
e413e4e9 584
a6c24e68
NC
585@node i386-Directives
586@section x86 specific Directives
587
588@cindex machine directives, x86
589@cindex x86 machine directives
590@table @code
591
592@cindex @code{lcomm} directive, COFF
593@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
594Reserve @var{length} (an absolute expression) bytes for a local common
595denoted by @var{symbol}. The section and value of @var{symbol} are
596those of the new local common. The addresses are allocated in the bss
704209c0
NC
597section, so that at run-time the bytes start off zeroed. Since
598@var{symbol} is not declared global, it is normally not visible to
599@code{@value{LD}}. The optional third parameter, @var{alignment},
600specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
601
602This directive is only available for COFF based x86 targets.
603
102e9361
NC
604@cindex @code{largecomm} directive, ELF
605@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
606This directive behaves in the same way as the @code{comm} directive
607except that the data is placed into the @var{.lbss} section instead of
608the @var{.bss} section @ref{Comm}.
609
610The directive is intended to be used for data which requires a large
611amount of space, and it is only available for ELF based x86_64
612targets.
613
f2f51cd5
NC
614@cindex @code{value} directive
615@item .value @var{expression} [, @var{expression}]
616This directive behaves in the same way as the @code{.short} directive,
617taking a series of comma separated expressions and storing them as
618two-byte wide values into the current section.
619
a6c24e68 620@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
621
622@end table
623
252b5132 624@node i386-Syntax
7c31ae13
NC
625@section i386 Syntactical Considerations
626@menu
627* i386-Variations:: AT&T Syntax versus Intel Syntax
628* i386-Chars:: Special Characters
629@end menu
630
631@node i386-Variations
632@subsection AT&T Syntax versus Intel Syntax
252b5132 633
e413e4e9
AM
634@cindex i386 intel_syntax pseudo op
635@cindex intel_syntax pseudo op, i386
636@cindex i386 att_syntax pseudo op
637@cindex att_syntax pseudo op, i386
252b5132
RH
638@cindex i386 syntax compatibility
639@cindex syntax compatibility, i386
55b62671
AJ
640@cindex x86-64 intel_syntax pseudo op
641@cindex intel_syntax pseudo op, x86-64
642@cindex x86-64 att_syntax pseudo op
643@cindex att_syntax pseudo op, x86-64
644@cindex x86-64 syntax compatibility
645@cindex syntax compatibility, x86-64
e413e4e9
AM
646
647@code{@value{AS}} now supports assembly using Intel assembler syntax.
648@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
649back to the usual AT&T mode for compatibility with the output of
650@code{@value{GCC}}. Either of these directives may have an optional
651argument, @code{prefix}, or @code{noprefix} specifying whether registers
652require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
653different from Intel syntax. We mention these differences because
654almost all 80386 documents use Intel syntax. Notable differences
655between the two syntaxes are:
656
657@cindex immediate operands, i386
658@cindex i386 immediate operands
659@cindex register operands, i386
660@cindex i386 register operands
661@cindex jump/call operands, i386
662@cindex i386 jump/call operands
663@cindex operand delimiters, i386
55b62671
AJ
664
665@cindex immediate operands, x86-64
666@cindex x86-64 immediate operands
667@cindex register operands, x86-64
668@cindex x86-64 register operands
669@cindex jump/call operands, x86-64
670@cindex x86-64 jump/call operands
671@cindex operand delimiters, x86-64
252b5132
RH
672@itemize @bullet
673@item
674AT&T immediate operands are preceded by @samp{$}; Intel immediate
675operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
676AT&T register operands are preceded by @samp{%}; Intel register operands
677are undelimited. AT&T absolute (as opposed to PC relative) jump/call
678operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
679
680@cindex i386 source, destination operands
681@cindex source, destination operands; i386
55b62671
AJ
682@cindex x86-64 source, destination operands
683@cindex source, destination operands; x86-64
252b5132
RH
684@item
685AT&T and Intel syntax use the opposite order for source and destination
686operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
687@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
688previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
689instructions with 2 immediate operands, such as the @samp{enter}
690instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
691
692@cindex mnemonic suffixes, i386
693@cindex sizes operands, i386
694@cindex i386 size suffixes
55b62671
AJ
695@cindex mnemonic suffixes, x86-64
696@cindex sizes operands, x86-64
697@cindex x86-64 size suffixes
252b5132
RH
698@item
699In AT&T syntax the size of memory operands is determined from the last
700character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 701@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
702(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
703of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
704(256-bit vector) and zmm (512-bit vector) memory references, only when there's
705no other way to disambiguate an instruction. Intel syntax accomplishes this by
706prefixing memory operands (@emph{not} the instruction mnemonics) with
707@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
708@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
709syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
710syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
711@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 712
4b06377f
L
713In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
714instruction with the 64-bit displacement or immediate operand.
715
252b5132
RH
716@cindex return instructions, i386
717@cindex i386 jump, call, return
55b62671
AJ
718@cindex return instructions, x86-64
719@cindex x86-64 jump, call, return
252b5132
RH
720@item
721Immediate form long jumps and calls are
722@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
723Intel syntax is
724@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
725instruction
726is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
727@samp{ret far @var{stack-adjust}}.
728
729@cindex sections, i386
730@cindex i386 sections
55b62671
AJ
731@cindex sections, x86-64
732@cindex x86-64 sections
252b5132
RH
733@item
734The AT&T assembler does not provide support for multiple section
735programs. Unix style systems expect all programs to be single sections.
736@end itemize
737
7c31ae13
NC
738@node i386-Chars
739@subsection Special Characters
740
741@cindex line comment character, i386
742@cindex i386 line comment character
743The presence of a @samp{#} appearing anywhere on a line indicates the
744start of a comment that extends to the end of that line.
745
746If a @samp{#} appears as the first character of a line then the whole
747line is treated as a comment, but in this case the line can also be a
748logical line number directive (@pxref{Comments}) or a preprocessor
749control command (@pxref{Preprocessing}).
750
a05a5b64 751If the @option{--divide} command-line option has not been specified
7c31ae13
NC
752then the @samp{/} character appearing anywhere on a line also
753introduces a line comment.
754
755@cindex line separator, i386
756@cindex statement separator, i386
757@cindex i386 line separator
758The @samp{;} character can be used to separate statements on the same
759line.
760
252b5132 761@node i386-Mnemonics
d3b47e2b
L
762@section i386-Mnemonics
763@subsection Instruction Naming
252b5132
RH
764
765@cindex i386 instruction naming
766@cindex instruction naming, i386
55b62671
AJ
767@cindex x86-64 instruction naming
768@cindex instruction naming, x86-64
769
252b5132 770Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
771specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
772and @samp{q} specify byte, word, long and quadruple word operands. If
773no suffix is specified by an instruction then @code{@value{AS}} tries to
774fill in the missing suffix based on the destination register operand
775(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
776to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
777@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
778assembler which assumes that a missing mnemonic suffix implies long
779operand size. (This incompatibility does not affect compiler output
780since compilers always explicitly specify the mnemonic suffix.)
252b5132 781
c006a730
JB
782When there is no sizing suffix and no (suitable) register operands to
783deduce the size of memory operands, with a few exceptions and where long
784operand size is possible in the first place, operand size will default
785to long in 32- and 64-bit modes. Similarly it will default to short in
78616-bit mode. Noteworthy exceptions are
787
788@itemize @bullet
789@item
790Instructions with an implicit on-stack operand as well as branches,
791which default to quad in 64-bit mode.
792
793@item
794Sign- and zero-extending moves, which default to byte size source
795operands.
796
797@item
798Floating point insns with integer operands, which default to short (for
799perhaps historical reasons).
800
801@item
802CRC32 with a 64-bit destination, which defaults to a quad source
803operand.
804
805@end itemize
806
b6169b20
L
807@cindex encoding options, i386
808@cindex encoding options, x86-64
809
86fa6981
L
810Different encoding options can be specified via pseudo prefixes:
811
812@itemize @bullet
813@item
814@samp{@{disp8@}} -- prefer 8-bit displacement.
815
816@item
817@samp{@{disp32@}} -- prefer 32-bit displacement.
818
819@item
820@samp{@{load@}} -- prefer load-form instruction.
821
822@item
823@samp{@{store@}} -- prefer store-form instruction.
824
825@item
42e04b36 826@samp{@{vex@}} -- encode with VEX prefix.
86fa6981
L
827
828@item
42e04b36 829@samp{@{vex3@}} -- encode with 3-byte VEX prefix.
86fa6981
L
830
831@item
832@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
833
834@item
835@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
836instructions (x86-64 only). Note that this differs from the @samp{rex}
837prefix which generates REX prefix unconditionally.
b6f8c7c4
L
838
839@item
840@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 841@end itemize
b6169b20 842
252b5132
RH
843@cindex conversion instructions, i386
844@cindex i386 conversion instructions
55b62671
AJ
845@cindex conversion instructions, x86-64
846@cindex x86-64 conversion instructions
252b5132
RH
847The Intel-syntax conversion instructions
848
849@itemize @bullet
850@item
851@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
852
853@item
854@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
855
856@item
857@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
858
859@item
860@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
861
862@item
863@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
864(x86-64 only),
865
866@item
d5f0cf92 867@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 868@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
869@end itemize
870
871@noindent
55b62671
AJ
872are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
873@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
874instructions.
252b5132 875
0e6724de
L
876@cindex extension instructions, i386
877@cindex i386 extension instructions
878@cindex extension instructions, x86-64
879@cindex x86-64 extension instructions
880The Intel-syntax extension instructions
881
882@itemize @bullet
883@item
884@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
885
886@item
887@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
888
889@item
890@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
891(x86-64 only).
892
893@item
894@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
895
896@item
897@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
898(x86-64 only).
899
900@item
901@samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
902(x86-64 only).
903
904@item
905@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
906
907@item
908@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
909
910@item
911@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
912(x86-64 only).
913
914@item
915@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
916
917@item
918@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
919(x86-64 only).
920@end itemize
921
922@noindent
923are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
924@samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
925@samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
926@samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
927@samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
928
252b5132
RH
929@cindex jump instructions, i386
930@cindex call instructions, i386
55b62671
AJ
931@cindex jump instructions, x86-64
932@cindex call instructions, x86-64
252b5132
RH
933Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
934AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
935convention.
936
d3b47e2b 937@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
938
939@cindex i386 mnemonic compatibility
940@cindex mnemonic compatibility, i386
941
942@code{@value{AS}} supports assembly using Intel mnemonic.
943@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
944@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
945syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
946Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
947@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
948@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
949assembler with different mnemonics from those in Intel IA32 specification.
950@code{@value{GCC}} generates those instructions with AT&T mnemonic.
951
bc31405e
L
952@itemize @bullet
953@item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
954register. @samp{movsxd} should be used to encode 16-bit or 32-bit
955destination register with both AT&T and Intel mnemonics.
956@end itemize
957
252b5132
RH
958@node i386-Regs
959@section Register Naming
960
961@cindex i386 registers
962@cindex registers, i386
55b62671
AJ
963@cindex x86-64 registers
964@cindex registers, x86-64
252b5132
RH
965Register operands are always prefixed with @samp{%}. The 80386 registers
966consist of
967
968@itemize @bullet
969@item
970the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
971@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
972frame pointer), and @samp{%esp} (the stack pointer).
973
974@item
975the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
976@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
977
978@item
979the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
980@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
981are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
982@samp{%cx}, and @samp{%dx})
983
984@item
985the 6 section registers @samp{%cs} (code section), @samp{%ds}
986(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
987and @samp{%gs}.
988
989@item
4bde3cdd
UD
990the 5 processor control registers @samp{%cr0}, @samp{%cr2},
991@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
992
993@item
994the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
995@samp{%db3}, @samp{%db6}, and @samp{%db7}.
996
997@item
998the 2 test registers @samp{%tr6} and @samp{%tr7}.
999
1000@item
1001the 8 floating point register stack @samp{%st} or equivalently
1002@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
1003@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
1004These registers are overloaded by 8 MMX registers @samp{%mm0},
1005@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1006@samp{%mm6} and @samp{%mm7}.
1007
1008@item
4bde3cdd 1009the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
1010@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1011@end itemize
1012
1013The AMD x86-64 architecture extends the register set by:
1014
1015@itemize @bullet
1016@item
1017enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1018accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1019@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1020pointer)
1021
1022@item
1023the 8 extended registers @samp{%r8}--@samp{%r15}.
1024
1025@item
4bde3cdd 1026the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
1027
1028@item
4bde3cdd 1029the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
1030
1031@item
4bde3cdd 1032the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
1033
1034@item
1035the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1036
1037@item
1038the 8 debug registers: @samp{%db8}--@samp{%db15}.
1039
1040@item
4bde3cdd
UD
1041the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1042@end itemize
1043
1044With the AVX extensions more registers were made available:
1045
1046@itemize @bullet
1047
1048@item
1049the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1050available in 32-bit mode). The bottom 128 bits are overlaid with the
1051@samp{xmm0}--@samp{xmm15} registers.
1052
1053@end itemize
1054
1055The AVX2 extensions made in 64-bit mode more registers available:
1056
1057@itemize @bullet
1058
1059@item
1060the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
1061registers @samp{%ymm16}--@samp{%ymm31}.
1062
1063@end itemize
1064
1065The AVX512 extensions added the following registers:
1066
1067@itemize @bullet
1068
1069@item
1070the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1071available in 32-bit mode). The bottom 128 bits are overlaid with the
1072@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1073overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1074
1075@item
1076the 8 mask registers @samp{%k0}--@samp{%k7}.
1077
252b5132
RH
1078@end itemize
1079
1080@node i386-Prefixes
1081@section Instruction Prefixes
1082
1083@cindex i386 instruction prefixes
1084@cindex instruction prefixes, i386
1085@cindex prefixes, i386
1086Instruction prefixes are used to modify the following instruction. They
1087are used to repeat string instructions, to provide section overrides, to
1088perform bus lock operations, and to change operand and address sizes.
1089(Most instructions that normally operate on 32-bit operands will use
109016-bit operands if the instruction has an ``operand size'' prefix.)
1091Instruction prefixes are best written on the same line as the instruction
1092they act upon. For example, the @samp{scas} (scan string) instruction is
1093repeated with:
1094
1095@smallexample
1096 repne scas %es:(%edi),%al
1097@end smallexample
1098
1099You may also place prefixes on the lines immediately preceding the
1100instruction, but this circumvents checks that @code{@value{AS}} does
1101with prefixes, and will not work with all prefixes.
1102
1103Here is a list of instruction prefixes:
1104
1105@cindex section override prefixes, i386
1106@itemize @bullet
1107@item
1108Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1109@samp{fs}, @samp{gs}. These are automatically added by specifying
1110using the @var{section}:@var{memory-operand} form for memory references.
1111
1112@cindex size prefixes, i386
1113@item
1114Operand/Address size prefixes @samp{data16} and @samp{addr16}
1115change 32-bit operands/addresses into 16-bit operands/addresses,
1116while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1117@code{.code16} section) into 32-bit operands/addresses. These prefixes
1118@emph{must} appear on the same line of code as the instruction they
1119modify. For example, in a 16-bit @code{.code16} section, you might
1120write:
1121
1122@smallexample
1123 addr32 jmpl *(%ebx)
1124@end smallexample
1125
1126@cindex bus lock prefixes, i386
1127@cindex inhibiting interrupts, i386
1128@item
1129The bus lock prefix @samp{lock} inhibits interrupts during execution of
1130the instruction it precedes. (This is only valid with certain
1131instructions; see a 80386 manual for details).
1132
1133@cindex coprocessor wait, i386
1134@item
1135The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1136complete the current instruction. This should never be needed for the
113780386/80387 combination.
1138
1139@cindex repeat prefixes, i386
1140@item
1141The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1142to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1143times if the current address size is 16-bits).
55b62671
AJ
1144@cindex REX prefixes, i386
1145@item
1146The @samp{rex} family of prefixes is used by x86-64 to encode
1147extensions to i386 instruction set. The @samp{rex} prefix has four
1148bits --- an operand size overwrite (@code{64}) used to change operand size
1149from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1150register set.
1151
1152You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1153instruction emits @samp{rex} prefix with all the bits set. By omitting
1154the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1155prefixes as well. Normally, there is no need to write the prefixes
1156explicitly, since gas will automatically generate them based on the
1157instruction operands.
252b5132
RH
1158@end itemize
1159
1160@node i386-Memory
1161@section Memory References
1162
1163@cindex i386 memory references
1164@cindex memory references, i386
55b62671
AJ
1165@cindex x86-64 memory references
1166@cindex memory references, x86-64
252b5132
RH
1167An Intel syntax indirect memory reference of the form
1168
1169@smallexample
1170@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1171@end smallexample
1172
1173@noindent
1174is translated into the AT&T syntax
1175
1176@smallexample
1177@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1178@end smallexample
1179
1180@noindent
1181where @var{base} and @var{index} are the optional 32-bit base and
1182index registers, @var{disp} is the optional displacement, and
1183@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1184to calculate the address of the operand. If no @var{scale} is
1185specified, @var{scale} is taken to be 1. @var{section} specifies the
1186optional section register for the memory operand, and may override the
1187default section register (see a 80386 manual for section register
1188defaults). Note that section overrides in AT&T syntax @emph{must}
1189be preceded by a @samp{%}. If you specify a section override which
1190coincides with the default section register, @code{@value{AS}} does @emph{not}
1191output any section register override prefixes to assemble the given
1192instruction. Thus, section overrides can be specified to emphasize which
1193section register is used for a given memory operand.
1194
1195Here are some examples of Intel and AT&T style memory references:
1196
1197@table @asis
1198@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1199@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1200missing, and the default section is used (@samp{%ss} for addressing with
1201@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1202
1203@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1204@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1205@samp{foo}. All other fields are missing. The section register here
1206defaults to @samp{%ds}.
1207
1208@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1209This uses the value pointed to by @samp{foo} as a memory operand.
1210Note that @var{base} and @var{index} are both missing, but there is only
1211@emph{one} @samp{,}. This is a syntactic exception.
1212
1213@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1214This selects the contents of the variable @samp{foo} with section
1215register @var{section} being @samp{%gs}.
1216@end table
1217
1218Absolute (as opposed to PC relative) call and jump operands must be
1219prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1220always chooses PC relative addressing for jump/call labels.
1221
1222Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1223@emph{must} specify its size (byte, word, long, or quadruple) with an
1224instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1225respectively).
1226
1227The x86-64 architecture adds an RIP (instruction pointer relative)
1228addressing. This addressing mode is specified by using @samp{rip} as a
1229base register. Only constant offsets are valid. For example:
1230
1231@table @asis
1232@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1233Points to the address 1234 bytes past the end of the current
1234instruction.
1235
1236@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1237Points to the @code{symbol} in RIP relative way, this is shorter than
1238the default absolute addressing.
1239@end table
1240
1241Other addressing modes remain unchanged in x86-64 architecture, except
1242registers used are 64-bit instead of 32-bit.
252b5132 1243
fddf5b5b 1244@node i386-Jumps
252b5132
RH
1245@section Handling of Jump Instructions
1246
1247@cindex jump optimization, i386
1248@cindex i386 jump optimization
55b62671
AJ
1249@cindex jump optimization, x86-64
1250@cindex x86-64 jump optimization
252b5132
RH
1251Jump instructions are always optimized to use the smallest possible
1252displacements. This is accomplished by using byte (8-bit) displacement
1253jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1254is insufficient a long displacement is used. We do not support
252b5132
RH
1255word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1256instruction with the @samp{data16} instruction prefix), since the 80386
1257insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1258is added. (See also @pxref{i386-Arch})
252b5132
RH
1259
1260Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1261@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1262displacements, so that if you use these instructions (@code{@value{GCC}} does
1263not use them) you may get an error message (and incorrect code). The AT&T
126480386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1265to
1266
1267@smallexample
1268 jcxz cx_zero
1269 jmp cx_nonzero
1270cx_zero: jmp foo
1271cx_nonzero:
1272@end smallexample
1273
1274@node i386-Float
1275@section Floating Point
1276
1277@cindex i386 floating point
1278@cindex floating point, i386
55b62671
AJ
1279@cindex x86-64 floating point
1280@cindex floating point, x86-64
252b5132
RH
1281All 80387 floating point types except packed BCD are supported.
1282(BCD support may be added without much difficulty). These data
1283types are 16-, 32-, and 64- bit integers, and single (32-bit),
1284double (64-bit), and extended (80-bit) precision floating point.
1285Each supported type has an instruction mnemonic suffix and a constructor
1286associated with it. Instruction mnemonic suffixes specify the operand's
1287data type. Constructors build these data types into memory.
1288
1289@cindex @code{float} directive, i386
1290@cindex @code{single} directive, i386
1291@cindex @code{double} directive, i386
1292@cindex @code{tfloat} directive, i386
55b62671
AJ
1293@cindex @code{float} directive, x86-64
1294@cindex @code{single} directive, x86-64
1295@cindex @code{double} directive, x86-64
1296@cindex @code{tfloat} directive, x86-64
252b5132
RH
1297@itemize @bullet
1298@item
1299Floating point constructors are @samp{.float} or @samp{.single},
1300@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1301These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1302and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1303only supports this format via the @samp{fldt} (load 80-bit real to stack
1304top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1305
1306@cindex @code{word} directive, i386
1307@cindex @code{long} directive, i386
1308@cindex @code{int} directive, i386
1309@cindex @code{quad} directive, i386
55b62671
AJ
1310@cindex @code{word} directive, x86-64
1311@cindex @code{long} directive, x86-64
1312@cindex @code{int} directive, x86-64
1313@cindex @code{quad} directive, x86-64
252b5132
RH
1314@item
1315Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1316@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1317corresponding instruction mnemonic suffixes are @samp{s} (single),
1318@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1319the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1320quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1321stack) instructions.
1322@end itemize
1323
1324Register to register operations should not use instruction mnemonic suffixes.
1325@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1326wrote @samp{fst %st, %st(1)}, since all register to register operations
1327use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1328which converts @samp{%st} from 80-bit to 64-bit floating point format,
1329then stores the result in the 4 byte location @samp{mem})
1330
1331@node i386-SIMD
1332@section Intel's MMX and AMD's 3DNow! SIMD Operations
1333
1334@cindex MMX, i386
1335@cindex 3DNow!, i386
1336@cindex SIMD, i386
55b62671
AJ
1337@cindex MMX, x86-64
1338@cindex 3DNow!, x86-64
1339@cindex SIMD, x86-64
252b5132
RH
1340
1341@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1342instructions for integer data), available on Intel's Pentium MMX
1343processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1344Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1345instruction set (SIMD instructions for 32-bit floating point data)
1346available on AMD's K6-2 processor and possibly others in the future.
1347
1348Currently, @code{@value{AS}} does not support Intel's floating point
1349SIMD, Katmai (KNI).
1350
1351The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1352@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
135316-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1354floating point values. The MMX registers cannot be used at the same time
1355as the floating point stack.
1356
1357See Intel and AMD documentation, keeping in mind that the operand order in
1358instructions is reversed from the Intel syntax.
1359
f88c9eb0
SP
1360@node i386-LWP
1361@section AMD's Lightweight Profiling Instructions
1362
1363@cindex LWP, i386
1364@cindex LWP, x86-64
1365
1366@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1367instruction set, available on AMD's Family 15h (Orochi) processors.
1368
1369LWP enables applications to collect and manage performance data, and
1370react to performance events. The collection of performance data
1371requires no context switches. LWP runs in the context of a thread and
1372so several counters can be used independently across multiple threads.
1373LWP can be used in both 64-bit and legacy 32-bit modes.
1374
1375For detailed information on the LWP instruction set, see the
1376@cite{AMD Lightweight Profiling Specification} available at
1377@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1378
87973e9f
QN
1379@node i386-BMI
1380@section Bit Manipulation Instructions
1381
1382@cindex BMI, i386
1383@cindex BMI, x86-64
1384
1385@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1386
1387BMI instructions provide several instructions implementing individual
1388bit manipulation operations such as isolation, masking, setting, or
34bca508 1389resetting.
87973e9f
QN
1390
1391@c Need to add a specification citation here when available.
1392
2a2a0f38
QN
1393@node i386-TBM
1394@section AMD's Trailing Bit Manipulation Instructions
1395
1396@cindex TBM, i386
1397@cindex TBM, x86-64
1398
1399@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1400instruction set, available on AMD's BDVER2 processors (Trinity and
1401Viperfish).
1402
1403TBM instructions provide instructions implementing individual bit
1404manipulation operations such as isolating, masking, setting, resetting,
1405complementing, and operations on trailing zeros and ones.
1406
1407@c Need to add a specification citation here when available.
87973e9f 1408
252b5132
RH
1409@node i386-16bit
1410@section Writing 16-bit Code
1411
1412@cindex i386 16-bit code
1413@cindex 16-bit code, i386
1414@cindex real-mode code, i386
eecb386c 1415@cindex @code{code16gcc} directive, i386
252b5132
RH
1416@cindex @code{code16} directive, i386
1417@cindex @code{code32} directive, i386
55b62671
AJ
1418@cindex @code{code64} directive, i386
1419@cindex @code{code64} directive, x86-64
1420While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1421or 64-bit x86-64 code depending on the default configuration,
252b5132 1422it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1423mode code segments. To do this, put a @samp{.code16} or
1424@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1425be run in 16-bit mode. You can switch @code{@value{AS}} to writing
142632-bit code with the @samp{.code32} directive or 64-bit code with the
1427@samp{.code64} directive.
eecb386c
AM
1428
1429@samp{.code16gcc} provides experimental support for generating 16-bit
1430code from gcc, and differs from @samp{.code16} in that @samp{call},
1431@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1432@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1433default to 32-bit size. This is so that the stack pointer is
1434manipulated in the same way over function calls, allowing access to
1435function parameters at the same stack offsets as in 32-bit mode.
1436@samp{.code16gcc} also automatically adds address size prefixes where
1437necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1438
1439The code which @code{@value{AS}} generates in 16-bit mode will not
1440necessarily run on a 16-bit pre-80386 processor. To write code that
1441runs on such a processor, you must refrain from using @emph{any} 32-bit
1442constructs which require @code{@value{AS}} to output address or operand
1443size prefixes.
1444
1445Note that writing 16-bit code instructions by explicitly specifying a
1446prefix or an instruction mnemonic suffix within a 32-bit code section
1447generates different machine instructions than those generated for a
144816-bit code segment. In a 32-bit code section, the following code
1449generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1450value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1451
1452@smallexample
1453 pushw $4
1454@end smallexample
1455
1456The same code in a 16-bit code section would generate the machine
b45619c0 1457opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1458is correct since the processor default operand size is assumed to be 16
1459bits in a 16-bit code section.
1460
e413e4e9
AM
1461@node i386-Arch
1462@section Specifying CPU Architecture
1463
1464@cindex arch directive, i386
1465@cindex i386 arch directive
55b62671
AJ
1466@cindex arch directive, x86-64
1467@cindex x86-64 arch directive
e413e4e9
AM
1468
1469@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1470(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1471directive enables a warning when gas detects an instruction that is not
1472supported on the CPU specified. The choices for @var{cpu_type} are:
1473
1474@multitable @columnfractions .20 .20 .20 .20
1475@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1476@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1477@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1478@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1479@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1480@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1481@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1482@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1483@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1484@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
272a84b1 1485@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
d76f7bc1 1486@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1487@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1488@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1489@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1490@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
272a84b1
L
1491@item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1492@item @samp{.hle}
e2e1fcde 1493@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1494@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1495@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1496@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1497@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1498@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1499@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1500@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
d777820b 1501@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1502@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1503@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
bb651e8b 1504@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
1ceab344 1505@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
272a84b1 1506@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
60aa667e 1507@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
142861df 1508@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
a847e322 1509@item @samp{.mcommit} @tab @samp{.sev_es}
e413e4e9
AM
1510@end multitable
1511
fddf5b5b
AM
1512Apart from the warning, there are only two other effects on
1513@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1514@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1515will automatically use a two byte opcode sequence. The larger three
1516byte opcode sequence is used on the 486 (and when no architecture is
1517specified) because it executes faster on the 486. Note that you can
1518explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1519Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1520@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1521conditional jumps will be promoted when necessary to a two instruction
1522sequence consisting of a conditional jump of the opposite sense around
1523an unconditional jump to the target.
1524
5c6af06e
JB
1525Following the CPU architecture (but not a sub-architecture, which are those
1526starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1527control automatic promotion of conditional jumps. @samp{jumps} is the
1528default, and enables jump promotion; All external jumps will be of the long
1529variety, and file-local jumps will be promoted as necessary.
1530(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1531byte offset jumps, and warns about file-local conditional jumps that
1532@code{@value{AS}} promotes.
fddf5b5b
AM
1533Unconditional jumps are treated as for @samp{jumps}.
1534
1535For example
1536
1537@smallexample
1538 .arch i8086,nojumps
1539@end smallexample
e413e4e9 1540
bc31405e
L
1541@node i386-ISA
1542@section AMD64 ISA vs. Intel64 ISA
1543
1544There are some discrepancies between AMD64 and Intel64 ISAs.
1545
1546@itemize @bullet
1547@item For @samp{movsxd} with 16-bit destination register, AMD64
1548supports 32-bit source operand and Intel64 supports 16-bit source
1549operand.
5990e377
JB
1550
1551@item For far branches (with explicit memory operand), both ISAs support
155232- and 16-bit operand size. Intel64 additionally supports 64-bit
1553operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1554and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1555syntax.
1556
1557@item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1558and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1559while Intel64 additionally supports 64-bit operand sise (80-bit memory
1560operands).
1561
bc31405e
L
1562@end itemize
1563
5c9352f3
AM
1564@node i386-Bugs
1565@section AT&T Syntax bugs
1566
1567The UnixWare assembler, and probably other AT&T derived ix86 Unix
1568assemblers, generate floating point instructions with reversed source
1569and destination registers in certain cases. Unfortunately, gcc and
1570possibly many other programs use this reversed syntax, so we're stuck
1571with it.
1572
1573For example
1574
1575@smallexample
1576 fsub %st,%st(3)
1577@end smallexample
1578@noindent
1579results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1580than the expected @samp{%st(3) - %st}. This happens with all the
1581non-commutative arithmetic floating point operations with two register
1582operands where the source register is @samp{%st} and the destination
1583register is @samp{%st(i)}.
1584
252b5132
RH
1585@node i386-Notes
1586@section Notes
1587
1588@cindex i386 @code{mul}, @code{imul} instructions
1589@cindex @code{mul} instruction, i386
1590@cindex @code{imul} instruction, i386
55b62671
AJ
1591@cindex @code{mul} instruction, x86-64
1592@cindex @code{imul} instruction, x86-64
252b5132 1593There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1594instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1595multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1596for @samp{imul}) can be output only in the one operand form. Thus,
1597@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1598the expanding multiply would clobber the @samp{%edx} register, and this
1599would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
160064-bit product in @samp{%edx:%eax}.
1601
1602We have added a two operand form of @samp{imul} when the first operand
1603is an immediate mode expression and the second operand is a register.
1604This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1605example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1606$69, %eax, %eax}.
1607
This page took 0.981781 seconds and 4 git commands to generate.