x86: Don't disable SSE4a when disabling SSE4
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
b3adc24a 1@c Copyright (C) 1991-2020 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
bc31405e 40* i386-ISA:: AMD64 ISA vs. Intel64 ISA
252b5132
RH
41* i386-Bugs:: AT&T Syntax bugs
42* i386-Notes:: Notes
43@end menu
44
45@node i386-Options
46@section Options
47
55b62671
AJ
48@cindex options for i386
49@cindex options for x86-64
50@cindex i386 options
34bca508 51@cindex x86-64 options
55b62671
AJ
52
53The i386 version of @code{@value{AS}} has a few machine
54dependent options:
55
731caf76
L
56@c man begin OPTIONS
57@table @gcctabopt
55b62671
AJ
58@cindex @samp{--32} option, i386
59@cindex @samp{--32} option, x86-64
570561f7
L
60@cindex @samp{--x32} option, i386
61@cindex @samp{--x32} option, x86-64
55b62671
AJ
62@cindex @samp{--64} option, i386
63@cindex @samp{--64} option, x86-64
570561f7 64@item --32 | --x32 | --64
35cc6a0b 65Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 66implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
67imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68respectively.
55b62671
AJ
69
70These options are only available with the ELF object file format, and
71require that the necessary BFD support has been included (on a 32-bit
72platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73usage and use x86-64 as target platform).
12b55ccc
L
74
75@item -n
76By default, x86 GAS replaces multiple nop instructions used for
77alignment within code sections with multi-byte nop instructions such
f9233288
JW
78as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
34bca508 95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
81486035 115@code{iamcu},
9103f4f4
L
116@code{k6},
117@code{k6_2},
118@code{athlon},
9103f4f4
L
119@code{opteron},
120@code{k8},
1ceab344 121@code{amdfam10},
68339fdf 122@code{bdver1},
af2f724e 123@code{bdver2},
5e5c50d3 124@code{bdver3},
c7b0bd56 125@code{bdver4},
029f3522 126@code{znver1},
a9660a6f 127@code{znver2},
7b458c12
L
128@code{btver1},
129@code{btver2},
9103f4f4
L
130@code{generic32} and
131@code{generic64}.
132
34bca508 133In addition to the basic instruction set, the assembler can be told to
6305a203
L
134accept various extension mnemonics. For example,
135@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136@var{vmx}. The following extensions are currently supported:
309d3373
JB
137@code{8087},
138@code{287},
139@code{387},
1848e567 140@code{687},
309d3373 141@code{no87},
1848e567
L
142@code{no287},
143@code{no387},
144@code{no687},
d871f3f4
L
145@code{cmov},
146@code{nocmov},
147@code{fxsr},
148@code{nofxsr},
6305a203 149@code{mmx},
309d3373 150@code{nommx},
6305a203
L
151@code{sse},
152@code{sse2},
153@code{sse3},
af5c13b0 154@code{sse4a},
6305a203
L
155@code{ssse3},
156@code{sse4.1},
157@code{sse4.2},
158@code{sse4},
309d3373 159@code{nosse},
1848e567
L
160@code{nosse2},
161@code{nosse3},
af5c13b0 162@code{nosse4a},
1848e567
L
163@code{nossse3},
164@code{nosse4.1},
165@code{nosse4.2},
166@code{nosse4},
c0f3af97 167@code{avx},
6c30d220 168@code{avx2},
1848e567
L
169@code{noavx},
170@code{noavx2},
e2e1fcde
L
171@code{adx},
172@code{rdseed},
173@code{prfchw},
5c111e37 174@code{smap},
7e8b059b 175@code{mpx},
a0046408 176@code{sha},
8bc52696 177@code{rdpid},
6b40c462 178@code{ptwrite},
603555e5 179@code{cet},
48521003 180@code{gfni},
8dcf1fad 181@code{vaes},
ff1982d5 182@code{vpclmulqdq},
1dfc6506
L
183@code{prefetchwt1},
184@code{clflushopt},
185@code{se1},
c5e7287a 186@code{clwb},
c0a30a9f
L
187@code{movdiri},
188@code{movdir64b},
5d79adc4 189@code{enqcmd},
43234a1e
L
190@code{avx512f},
191@code{avx512cd},
192@code{avx512er},
193@code{avx512pf},
1dfc6506
L
194@code{avx512vl},
195@code{avx512bw},
196@code{avx512dq},
2cc1b5aa 197@code{avx512ifma},
14f195c9 198@code{avx512vbmi},
920d2ddc 199@code{avx512_4fmaps},
47acf0bd 200@code{avx512_4vnniw},
620214f7 201@code{avx512_vpopcntdq},
53467f57 202@code{avx512_vbmi2},
8cfcb765 203@code{avx512_vnni},
ee6872be 204@code{avx512_bitalg},
d6aab7a1 205@code{avx512_bf16},
144b71e2
L
206@code{noavx512f},
207@code{noavx512cd},
208@code{noavx512er},
209@code{noavx512pf},
210@code{noavx512vl},
211@code{noavx512bw},
212@code{noavx512dq},
213@code{noavx512ifma},
214@code{noavx512vbmi},
920d2ddc 215@code{noavx512_4fmaps},
47acf0bd 216@code{noavx512_4vnniw},
620214f7 217@code{noavx512_vpopcntdq},
53467f57 218@code{noavx512_vbmi2},
8cfcb765 219@code{noavx512_vnni},
ee6872be 220@code{noavx512_bitalg},
9186c494 221@code{noavx512_vp2intersect},
d6aab7a1 222@code{noavx512_bf16},
dd455cf5 223@code{noenqcmd},
6305a203 224@code{vmx},
8729a6f6 225@code{vmfunc},
6305a203 226@code{smx},
f03fe4c1 227@code{xsave},
c7b8aa3a 228@code{xsaveopt},
1dfc6506
L
229@code{xsavec},
230@code{xsaves},
c0f3af97 231@code{aes},
594ab6a3 232@code{pclmul},
c7b8aa3a
L
233@code{fsgsbase},
234@code{rdrnd},
235@code{f16c},
6c30d220 236@code{bmi2},
c0f3af97 237@code{fma},
f1f8f695
L
238@code{movbe},
239@code{ept},
6c30d220 240@code{lzcnt},
42164a71
L
241@code{hle},
242@code{rtm},
6c30d220 243@code{invpcid},
bd5295b2 244@code{clflush},
9916071f 245@code{mwaitx},
029f3522 246@code{clzero},
3233d7d0 247@code{wbnoinvd},
be3a8dca 248@code{pconfig},
de89d0a3 249@code{waitpkg},
c48935d7 250@code{cldemote},
142861df
JB
251@code{rdpru},
252@code{mcommit},
f88c9eb0 253@code{lwp},
5dd85c99
SP
254@code{fma4},
255@code{xop},
60aa667e 256@code{cx16},
bd5295b2 257@code{syscall},
1b7f3fb0 258@code{rdtscp},
6305a203
L
259@code{3dnow},
260@code{3dnowa},
261@code{sse4a},
262@code{sse5},
263@code{svme},
264@code{abm} and
265@code{padlock}.
309d3373
JB
266Note that rather than extending a basic instruction set, the extension
267mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
268
269When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
270@code{.arch} directive will take precedent.
271
272@cindex @samp{-mtune=} option, i386
273@cindex @samp{-mtune=} option, x86-64
274@item -mtune=@var{CPU}
275This option specifies a processor to optimize for. When used in
276conjunction with the @option{-march} option, only instructions
277of the processor specified by the @option{-march} option will be
278generated.
279
6305a203
L
280Valid @var{CPU} values are identical to the processor list of
281@option{-march=@var{CPU}}.
9103f4f4 282
c0f3af97
L
283@cindex @samp{-msse2avx} option, i386
284@cindex @samp{-msse2avx} option, x86-64
285@item -msse2avx
286This option specifies that the assembler should encode SSE instructions
287with VEX prefix.
288
daf50ae7
L
289@cindex @samp{-msse-check=} option, i386
290@cindex @samp{-msse-check=} option, x86-64
291@item -msse-check=@var{none}
1f9bb1ca
AS
292@itemx -msse-check=@var{warning}
293@itemx -msse-check=@var{error}
9aff4b7a 294These options control if the assembler should check SSE instructions.
daf50ae7
L
295@option{-msse-check=@var{none}} will make the assembler not to check SSE
296instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 297will make the assembler issue a warning for any SSE instruction.
daf50ae7 298@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 299for any SSE instruction.
daf50ae7 300
539f890d
L
301@cindex @samp{-mavxscalar=} option, i386
302@cindex @samp{-mavxscalar=} option, x86-64
303@item -mavxscalar=@var{128}
1f9bb1ca 304@itemx -mavxscalar=@var{256}
2aab8acd 305These options control how the assembler should encode scalar AVX
539f890d
L
306instructions. @option{-mavxscalar=@var{128}} will encode scalar
307AVX instructions with 128bit vector length, which is the default.
308@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
309with 256bit vector length.
310
4970191f
JB
311WARNING: Don't use this for production code - due to CPU errata the
312resulting code may not work on certain models.
313
03751133
L
314@cindex @samp{-mvexwig=} option, i386
315@cindex @samp{-mvexwig=} option, x86-64
316@item -mvexwig=@var{0}
317@itemx -mvexwig=@var{1}
318These options control how the assembler should encode VEX.W-ignored (WIG)
319VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
320instructions with vex.w = 0, which is the default.
321@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
322vex.w = 1.
323
4970191f
JB
324WARNING: Don't use this for production code - due to CPU errata the
325resulting code may not work on certain models.
326
43234a1e
L
327@cindex @samp{-mevexlig=} option, i386
328@cindex @samp{-mevexlig=} option, x86-64
329@item -mevexlig=@var{128}
330@itemx -mevexlig=@var{256}
331@itemx -mevexlig=@var{512}
332These options control how the assembler should encode length-ignored
333(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
334EVEX instructions with 128bit vector length, which is the default.
335@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
336encode LIG EVEX instructions with 256bit and 512bit vector length,
337respectively.
338
339@cindex @samp{-mevexwig=} option, i386
340@cindex @samp{-mevexwig=} option, x86-64
341@item -mevexwig=@var{0}
342@itemx -mevexwig=@var{1}
343These options control how the assembler should encode w-ignored (WIG)
344EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
345EVEX instructions with evex.w = 0, which is the default.
346@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
347evex.w = 1.
348
1efbbeb4
L
349@cindex @samp{-mmnemonic=} option, i386
350@cindex @samp{-mmnemonic=} option, x86-64
351@item -mmnemonic=@var{att}
1f9bb1ca 352@itemx -mmnemonic=@var{intel}
34bca508 353This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
354The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
355take precedent.
356
357@cindex @samp{-msyntax=} option, i386
358@cindex @samp{-msyntax=} option, x86-64
359@item -msyntax=@var{att}
1f9bb1ca 360@itemx -msyntax=@var{intel}
34bca508 361This option specifies instruction syntax when processing instructions.
1efbbeb4
L
362The @code{.att_syntax} and @code{.intel_syntax} directives will
363take precedent.
364
365@cindex @samp{-mnaked-reg} option, i386
366@cindex @samp{-mnaked-reg} option, x86-64
367@item -mnaked-reg
33eaf5de 368This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 369The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 370
7e8b059b
L
371@cindex @samp{-madd-bnd-prefix} option, i386
372@cindex @samp{-madd-bnd-prefix} option, x86-64
373@item -madd-bnd-prefix
374This option forces the assembler to add BND prefix to all branches, even
375if such prefix was not explicitly specified in the source code.
376
8dcea932
L
377@cindex @samp{-mshared} option, i386
378@cindex @samp{-mshared} option, x86-64
379@item -mno-shared
380On ELF target, the assembler normally optimizes out non-PLT relocations
381against defined non-weak global branch targets with default visibility.
382The @samp{-mshared} option tells the assembler to generate code which
383may go into a shared library where all non-weak global branch targets
384with default visibility can be preempted. The resulting code is
385slightly bigger. This option only affects the handling of branch
386instructions.
387
167ad85b
TG
388@cindex @samp{-mbig-obj} option, x86-64
389@item -mbig-obj
390On x86-64 PE/COFF target this option forces the use of big object file
391format, which allows more than 32768 sections.
392
d022bddd
IT
393@cindex @samp{-momit-lock-prefix=} option, i386
394@cindex @samp{-momit-lock-prefix=} option, x86-64
395@item -momit-lock-prefix=@var{no}
396@itemx -momit-lock-prefix=@var{yes}
397These options control how the assembler should encode lock prefix.
398This option is intended as a workaround for processors, that fail on
399lock prefix. This option can only be safely used with single-core,
400single-thread computers
401@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
402@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
403which is the default.
404
e4e00185
AS
405@cindex @samp{-mfence-as-lock-add=} option, i386
406@cindex @samp{-mfence-as-lock-add=} option, x86-64
407@item -mfence-as-lock-add=@var{no}
408@itemx -mfence-as-lock-add=@var{yes}
409These options control how the assembler should encode lfence, mfence and
410sfence.
411@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
412sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
413@samp{lock addl $0x0, (%esp)} in 32-bit mode.
414@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
415sfence as usual, which is the default.
416
0cb4071e
L
417@cindex @samp{-mrelax-relocations=} option, i386
418@cindex @samp{-mrelax-relocations=} option, x86-64
419@item -mrelax-relocations=@var{no}
420@itemx -mrelax-relocations=@var{yes}
421These options control whether the assembler should generate relax
422relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
423R_X86_64_REX_GOTPCRELX, in 64-bit mode.
424@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
425@option{-mrelax-relocations=@var{no}} will not generate relax
426relocations. The default can be controlled by a configure option
427@option{--enable-x86-relax-relocations}.
428
e379e5f3
L
429@cindex @samp{-malign-branch-boundary=} option, i386
430@cindex @samp{-malign-branch-boundary=} option, x86-64
431@item -malign-branch-boundary=@var{NUM}
432This option controls how the assembler should align branches with segment
433prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
434no less than 16. Branches will be aligned within @var{NUM} byte
435boundary. @option{-malign-branch-boundary=0}, which is the default,
436doesn't align branches.
437
438@cindex @samp{-malign-branch=} option, i386
439@cindex @samp{-malign-branch=} option, x86-64
440@item -malign-branch=@var{TYPE}[+@var{TYPE}...]
441This option specifies types of branches to align. @var{TYPE} is
442combination of @samp{jcc}, which aligns conditional jumps,
443@samp{fused}, which aligns fused conditional jumps, @samp{jmp},
444which aligns unconditional jumps, @samp{call} which aligns calls,
445@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
446jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
447
448@cindex @samp{-malign-branch-prefix-size=} option, i386
449@cindex @samp{-malign-branch-prefix-size=} option, x86-64
450@item -malign-branch-prefix-size=@var{NUM}
451This option specifies the maximum number of prefixes on an instruction
452to align branches. @var{NUM} should be between 0 and 5. The default
453@var{NUM} is 5.
454
76cf450b
L
455@cindex @samp{-mbranches-within-32B-boundaries} option, i386
456@cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
457@item -mbranches-within-32B-boundaries
458This option aligns conditional jumps, fused conditional jumps and
459unconditional jumps within 32 byte boundary with up to 5 segment prefixes
460on an instruction. It is equivalent to
461@option{-malign-branch-boundary=32}
462@option{-malign-branch=jcc+fused+jmp}
463@option{-malign-branch-prefix-size=5}.
464The default doesn't align branches.
465
b4a3a7b4
L
466@cindex @samp{-mx86-used-note=} option, i386
467@cindex @samp{-mx86-used-note=} option, x86-64
468@item -mx86-used-note=@var{no}
469@itemx -mx86-used-note=@var{yes}
470These options control whether the assembler should generate
471GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
472GNU property notes. The default can be controlled by the
473@option{--enable-x86-used-note} configure option.
474
d3d3c6db
IT
475@cindex @samp{-mevexrcig=} option, i386
476@cindex @samp{-mevexrcig=} option, x86-64
477@item -mevexrcig=@var{rne}
478@itemx -mevexrcig=@var{rd}
479@itemx -mevexrcig=@var{ru}
480@itemx -mevexrcig=@var{rz}
481These options control how the assembler should encode SAE-only
482EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
483of EVEX instruction with 00, which is the default.
484@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
485and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
486with 01, 10 and 11 RC bits, respectively.
487
5db04b09
L
488@cindex @samp{-mamd64} option, x86-64
489@cindex @samp{-mintel64} option, x86-64
490@item -mamd64
491@itemx -mintel64
492This option specifies that the assembler should accept only AMD64 or
4b5aaf5f
L
493Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
494only and AMD64 ISAs.
5db04b09 495
b6f8c7c4
L
496@cindex @samp{-O0} option, i386
497@cindex @samp{-O0} option, x86-64
498@cindex @samp{-O} option, i386
499@cindex @samp{-O} option, x86-64
500@cindex @samp{-O1} option, i386
501@cindex @samp{-O1} option, x86-64
502@cindex @samp{-O2} option, i386
503@cindex @samp{-O2} option, x86-64
504@cindex @samp{-Os} option, i386
505@cindex @samp{-Os} option, x86-64
506@item -O0 | -O | -O1 | -O2 | -Os
507Optimize instruction encoding with smaller instruction size. @samp{-O}
508and @samp{-O1} encode 64-bit register load instructions with 64-bit
509immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 510immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
511register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
512register clearing instructions with 128-bit VEX vector register
513clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 514register load/store instructions with VEX vector register load/store
a0a1771e
JB
515instructions, and encode 128-bit/256-bit EVEX packed integer logical
516instructions with 128-bit/256-bit VEX packed integer logical.
517
518@samp{-O2} includes @samp{-O1} optimization plus encodes
519256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
520EVEX vector register clearing instructions. In 64-bit mode VEX encoded
521instructions with commutative source operands will also have their
522source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
523instead of the 3-byte one. Certain forms of AND as well as OR with the
524same (register) operand specified twice will also be changed to TEST.
a0a1771e 525
b6f8c7c4
L
526@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
527and 64-bit register tests with immediate as 8-bit register test with
528immediate. @samp{-O0} turns off this optimization.
529
55b62671 530@end table
731caf76 531@c man end
e413e4e9 532
a6c24e68
NC
533@node i386-Directives
534@section x86 specific Directives
535
536@cindex machine directives, x86
537@cindex x86 machine directives
538@table @code
539
540@cindex @code{lcomm} directive, COFF
541@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
542Reserve @var{length} (an absolute expression) bytes for a local common
543denoted by @var{symbol}. The section and value of @var{symbol} are
544those of the new local common. The addresses are allocated in the bss
704209c0
NC
545section, so that at run-time the bytes start off zeroed. Since
546@var{symbol} is not declared global, it is normally not visible to
547@code{@value{LD}}. The optional third parameter, @var{alignment},
548specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
549
550This directive is only available for COFF based x86 targets.
551
102e9361
NC
552@cindex @code{largecomm} directive, ELF
553@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
554This directive behaves in the same way as the @code{comm} directive
555except that the data is placed into the @var{.lbss} section instead of
556the @var{.bss} section @ref{Comm}.
557
558The directive is intended to be used for data which requires a large
559amount of space, and it is only available for ELF based x86_64
560targets.
561
f2f51cd5
NC
562@cindex @code{value} directive
563@item .value @var{expression} [, @var{expression}]
564This directive behaves in the same way as the @code{.short} directive,
565taking a series of comma separated expressions and storing them as
566two-byte wide values into the current section.
567
a6c24e68 568@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
569
570@end table
571
252b5132 572@node i386-Syntax
7c31ae13
NC
573@section i386 Syntactical Considerations
574@menu
575* i386-Variations:: AT&T Syntax versus Intel Syntax
576* i386-Chars:: Special Characters
577@end menu
578
579@node i386-Variations
580@subsection AT&T Syntax versus Intel Syntax
252b5132 581
e413e4e9
AM
582@cindex i386 intel_syntax pseudo op
583@cindex intel_syntax pseudo op, i386
584@cindex i386 att_syntax pseudo op
585@cindex att_syntax pseudo op, i386
252b5132
RH
586@cindex i386 syntax compatibility
587@cindex syntax compatibility, i386
55b62671
AJ
588@cindex x86-64 intel_syntax pseudo op
589@cindex intel_syntax pseudo op, x86-64
590@cindex x86-64 att_syntax pseudo op
591@cindex att_syntax pseudo op, x86-64
592@cindex x86-64 syntax compatibility
593@cindex syntax compatibility, x86-64
e413e4e9
AM
594
595@code{@value{AS}} now supports assembly using Intel assembler syntax.
596@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
597back to the usual AT&T mode for compatibility with the output of
598@code{@value{GCC}}. Either of these directives may have an optional
599argument, @code{prefix}, or @code{noprefix} specifying whether registers
600require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
601different from Intel syntax. We mention these differences because
602almost all 80386 documents use Intel syntax. Notable differences
603between the two syntaxes are:
604
605@cindex immediate operands, i386
606@cindex i386 immediate operands
607@cindex register operands, i386
608@cindex i386 register operands
609@cindex jump/call operands, i386
610@cindex i386 jump/call operands
611@cindex operand delimiters, i386
55b62671
AJ
612
613@cindex immediate operands, x86-64
614@cindex x86-64 immediate operands
615@cindex register operands, x86-64
616@cindex x86-64 register operands
617@cindex jump/call operands, x86-64
618@cindex x86-64 jump/call operands
619@cindex operand delimiters, x86-64
252b5132
RH
620@itemize @bullet
621@item
622AT&T immediate operands are preceded by @samp{$}; Intel immediate
623operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
624AT&T register operands are preceded by @samp{%}; Intel register operands
625are undelimited. AT&T absolute (as opposed to PC relative) jump/call
626operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
627
628@cindex i386 source, destination operands
629@cindex source, destination operands; i386
55b62671
AJ
630@cindex x86-64 source, destination operands
631@cindex source, destination operands; x86-64
252b5132
RH
632@item
633AT&T and Intel syntax use the opposite order for source and destination
634operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
635@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
636previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
637instructions with 2 immediate operands, such as the @samp{enter}
638instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
639
640@cindex mnemonic suffixes, i386
641@cindex sizes operands, i386
642@cindex i386 size suffixes
55b62671
AJ
643@cindex mnemonic suffixes, x86-64
644@cindex sizes operands, x86-64
645@cindex x86-64 size suffixes
252b5132
RH
646@item
647In AT&T syntax the size of memory operands is determined from the last
648character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 649@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
650(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
651of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
652(256-bit vector) and zmm (512-bit vector) memory references, only when there's
653no other way to disambiguate an instruction. Intel syntax accomplishes this by
654prefixing memory operands (@emph{not} the instruction mnemonics) with
655@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
656@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
657syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
658syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
659@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 660
4b06377f
L
661In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
662instruction with the 64-bit displacement or immediate operand.
663
252b5132
RH
664@cindex return instructions, i386
665@cindex i386 jump, call, return
55b62671
AJ
666@cindex return instructions, x86-64
667@cindex x86-64 jump, call, return
252b5132
RH
668@item
669Immediate form long jumps and calls are
670@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
671Intel syntax is
672@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
673instruction
674is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
675@samp{ret far @var{stack-adjust}}.
676
677@cindex sections, i386
678@cindex i386 sections
55b62671
AJ
679@cindex sections, x86-64
680@cindex x86-64 sections
252b5132
RH
681@item
682The AT&T assembler does not provide support for multiple section
683programs. Unix style systems expect all programs to be single sections.
684@end itemize
685
7c31ae13
NC
686@node i386-Chars
687@subsection Special Characters
688
689@cindex line comment character, i386
690@cindex i386 line comment character
691The presence of a @samp{#} appearing anywhere on a line indicates the
692start of a comment that extends to the end of that line.
693
694If a @samp{#} appears as the first character of a line then the whole
695line is treated as a comment, but in this case the line can also be a
696logical line number directive (@pxref{Comments}) or a preprocessor
697control command (@pxref{Preprocessing}).
698
a05a5b64 699If the @option{--divide} command-line option has not been specified
7c31ae13
NC
700then the @samp{/} character appearing anywhere on a line also
701introduces a line comment.
702
703@cindex line separator, i386
704@cindex statement separator, i386
705@cindex i386 line separator
706The @samp{;} character can be used to separate statements on the same
707line.
708
252b5132 709@node i386-Mnemonics
d3b47e2b
L
710@section i386-Mnemonics
711@subsection Instruction Naming
252b5132
RH
712
713@cindex i386 instruction naming
714@cindex instruction naming, i386
55b62671
AJ
715@cindex x86-64 instruction naming
716@cindex instruction naming, x86-64
717
252b5132 718Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
719specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
720and @samp{q} specify byte, word, long and quadruple word operands. If
721no suffix is specified by an instruction then @code{@value{AS}} tries to
722fill in the missing suffix based on the destination register operand
723(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
724to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
725@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
726assembler which assumes that a missing mnemonic suffix implies long
727operand size. (This incompatibility does not affect compiler output
728since compilers always explicitly specify the mnemonic suffix.)
252b5132 729
c006a730
JB
730When there is no sizing suffix and no (suitable) register operands to
731deduce the size of memory operands, with a few exceptions and where long
732operand size is possible in the first place, operand size will default
733to long in 32- and 64-bit modes. Similarly it will default to short in
73416-bit mode. Noteworthy exceptions are
735
736@itemize @bullet
737@item
738Instructions with an implicit on-stack operand as well as branches,
739which default to quad in 64-bit mode.
740
741@item
742Sign- and zero-extending moves, which default to byte size source
743operands.
744
745@item
746Floating point insns with integer operands, which default to short (for
747perhaps historical reasons).
748
749@item
750CRC32 with a 64-bit destination, which defaults to a quad source
751operand.
752
753@end itemize
754
b6169b20
L
755@cindex encoding options, i386
756@cindex encoding options, x86-64
757
86fa6981
L
758Different encoding options can be specified via pseudo prefixes:
759
760@itemize @bullet
761@item
762@samp{@{disp8@}} -- prefer 8-bit displacement.
763
764@item
765@samp{@{disp32@}} -- prefer 32-bit displacement.
766
767@item
768@samp{@{load@}} -- prefer load-form instruction.
769
770@item
771@samp{@{store@}} -- prefer store-form instruction.
772
773@item
42e04b36 774@samp{@{vex@}} -- encode with VEX prefix.
86fa6981
L
775
776@item
42e04b36 777@samp{@{vex3@}} -- encode with 3-byte VEX prefix.
86fa6981
L
778
779@item
780@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
781
782@item
783@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
784instructions (x86-64 only). Note that this differs from the @samp{rex}
785prefix which generates REX prefix unconditionally.
b6f8c7c4
L
786
787@item
788@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 789@end itemize
b6169b20 790
252b5132
RH
791@cindex conversion instructions, i386
792@cindex i386 conversion instructions
55b62671
AJ
793@cindex conversion instructions, x86-64
794@cindex x86-64 conversion instructions
252b5132
RH
795The Intel-syntax conversion instructions
796
797@itemize @bullet
798@item
799@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
800
801@item
802@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
803
804@item
805@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
806
807@item
808@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
809
810@item
811@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
812(x86-64 only),
813
814@item
d5f0cf92 815@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 816@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
817@end itemize
818
819@noindent
55b62671
AJ
820are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
821@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
822instructions.
252b5132 823
0e6724de
L
824@cindex extension instructions, i386
825@cindex i386 extension instructions
826@cindex extension instructions, x86-64
827@cindex x86-64 extension instructions
828The Intel-syntax extension instructions
829
830@itemize @bullet
831@item
832@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
833
834@item
835@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
836
837@item
838@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
839(x86-64 only).
840
841@item
842@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
843
844@item
845@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
846(x86-64 only).
847
848@item
849@samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
850(x86-64 only).
851
852@item
853@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
854
855@item
856@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
857
858@item
859@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
860(x86-64 only).
861
862@item
863@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
864
865@item
866@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
867(x86-64 only).
868@end itemize
869
870@noindent
871are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
872@samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
873@samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
874@samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
875@samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
876
252b5132
RH
877@cindex jump instructions, i386
878@cindex call instructions, i386
55b62671
AJ
879@cindex jump instructions, x86-64
880@cindex call instructions, x86-64
252b5132
RH
881Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
882AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
883convention.
884
d3b47e2b 885@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
886
887@cindex i386 mnemonic compatibility
888@cindex mnemonic compatibility, i386
889
890@code{@value{AS}} supports assembly using Intel mnemonic.
891@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
892@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
893syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
894Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
895@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
896@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
897assembler with different mnemonics from those in Intel IA32 specification.
898@code{@value{GCC}} generates those instructions with AT&T mnemonic.
899
bc31405e
L
900@itemize @bullet
901@item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
902register. @samp{movsxd} should be used to encode 16-bit or 32-bit
903destination register with both AT&T and Intel mnemonics.
904@end itemize
905
252b5132
RH
906@node i386-Regs
907@section Register Naming
908
909@cindex i386 registers
910@cindex registers, i386
55b62671
AJ
911@cindex x86-64 registers
912@cindex registers, x86-64
252b5132
RH
913Register operands are always prefixed with @samp{%}. The 80386 registers
914consist of
915
916@itemize @bullet
917@item
918the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
919@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
920frame pointer), and @samp{%esp} (the stack pointer).
921
922@item
923the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
924@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
925
926@item
927the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
928@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
929are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
930@samp{%cx}, and @samp{%dx})
931
932@item
933the 6 section registers @samp{%cs} (code section), @samp{%ds}
934(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
935and @samp{%gs}.
936
937@item
4bde3cdd
UD
938the 5 processor control registers @samp{%cr0}, @samp{%cr2},
939@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
940
941@item
942the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
943@samp{%db3}, @samp{%db6}, and @samp{%db7}.
944
945@item
946the 2 test registers @samp{%tr6} and @samp{%tr7}.
947
948@item
949the 8 floating point register stack @samp{%st} or equivalently
950@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
951@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
952These registers are overloaded by 8 MMX registers @samp{%mm0},
953@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
954@samp{%mm6} and @samp{%mm7}.
955
956@item
4bde3cdd 957the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
958@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
959@end itemize
960
961The AMD x86-64 architecture extends the register set by:
962
963@itemize @bullet
964@item
965enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
966accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
967@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
968pointer)
969
970@item
971the 8 extended registers @samp{%r8}--@samp{%r15}.
972
973@item
4bde3cdd 974the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
975
976@item
4bde3cdd 977the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
978
979@item
4bde3cdd 980the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
981
982@item
983the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
984
985@item
986the 8 debug registers: @samp{%db8}--@samp{%db15}.
987
988@item
4bde3cdd
UD
989the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
990@end itemize
991
992With the AVX extensions more registers were made available:
993
994@itemize @bullet
995
996@item
997the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
998available in 32-bit mode). The bottom 128 bits are overlaid with the
999@samp{xmm0}--@samp{xmm15} registers.
1000
1001@end itemize
1002
1003The AVX2 extensions made in 64-bit mode more registers available:
1004
1005@itemize @bullet
1006
1007@item
1008the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
1009registers @samp{%ymm16}--@samp{%ymm31}.
1010
1011@end itemize
1012
1013The AVX512 extensions added the following registers:
1014
1015@itemize @bullet
1016
1017@item
1018the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1019available in 32-bit mode). The bottom 128 bits are overlaid with the
1020@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1021overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1022
1023@item
1024the 8 mask registers @samp{%k0}--@samp{%k7}.
1025
252b5132
RH
1026@end itemize
1027
1028@node i386-Prefixes
1029@section Instruction Prefixes
1030
1031@cindex i386 instruction prefixes
1032@cindex instruction prefixes, i386
1033@cindex prefixes, i386
1034Instruction prefixes are used to modify the following instruction. They
1035are used to repeat string instructions, to provide section overrides, to
1036perform bus lock operations, and to change operand and address sizes.
1037(Most instructions that normally operate on 32-bit operands will use
103816-bit operands if the instruction has an ``operand size'' prefix.)
1039Instruction prefixes are best written on the same line as the instruction
1040they act upon. For example, the @samp{scas} (scan string) instruction is
1041repeated with:
1042
1043@smallexample
1044 repne scas %es:(%edi),%al
1045@end smallexample
1046
1047You may also place prefixes on the lines immediately preceding the
1048instruction, but this circumvents checks that @code{@value{AS}} does
1049with prefixes, and will not work with all prefixes.
1050
1051Here is a list of instruction prefixes:
1052
1053@cindex section override prefixes, i386
1054@itemize @bullet
1055@item
1056Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1057@samp{fs}, @samp{gs}. These are automatically added by specifying
1058using the @var{section}:@var{memory-operand} form for memory references.
1059
1060@cindex size prefixes, i386
1061@item
1062Operand/Address size prefixes @samp{data16} and @samp{addr16}
1063change 32-bit operands/addresses into 16-bit operands/addresses,
1064while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1065@code{.code16} section) into 32-bit operands/addresses. These prefixes
1066@emph{must} appear on the same line of code as the instruction they
1067modify. For example, in a 16-bit @code{.code16} section, you might
1068write:
1069
1070@smallexample
1071 addr32 jmpl *(%ebx)
1072@end smallexample
1073
1074@cindex bus lock prefixes, i386
1075@cindex inhibiting interrupts, i386
1076@item
1077The bus lock prefix @samp{lock} inhibits interrupts during execution of
1078the instruction it precedes. (This is only valid with certain
1079instructions; see a 80386 manual for details).
1080
1081@cindex coprocessor wait, i386
1082@item
1083The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1084complete the current instruction. This should never be needed for the
108580386/80387 combination.
1086
1087@cindex repeat prefixes, i386
1088@item
1089The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1090to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1091times if the current address size is 16-bits).
55b62671
AJ
1092@cindex REX prefixes, i386
1093@item
1094The @samp{rex} family of prefixes is used by x86-64 to encode
1095extensions to i386 instruction set. The @samp{rex} prefix has four
1096bits --- an operand size overwrite (@code{64}) used to change operand size
1097from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1098register set.
1099
1100You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1101instruction emits @samp{rex} prefix with all the bits set. By omitting
1102the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1103prefixes as well. Normally, there is no need to write the prefixes
1104explicitly, since gas will automatically generate them based on the
1105instruction operands.
252b5132
RH
1106@end itemize
1107
1108@node i386-Memory
1109@section Memory References
1110
1111@cindex i386 memory references
1112@cindex memory references, i386
55b62671
AJ
1113@cindex x86-64 memory references
1114@cindex memory references, x86-64
252b5132
RH
1115An Intel syntax indirect memory reference of the form
1116
1117@smallexample
1118@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1119@end smallexample
1120
1121@noindent
1122is translated into the AT&T syntax
1123
1124@smallexample
1125@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1126@end smallexample
1127
1128@noindent
1129where @var{base} and @var{index} are the optional 32-bit base and
1130index registers, @var{disp} is the optional displacement, and
1131@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1132to calculate the address of the operand. If no @var{scale} is
1133specified, @var{scale} is taken to be 1. @var{section} specifies the
1134optional section register for the memory operand, and may override the
1135default section register (see a 80386 manual for section register
1136defaults). Note that section overrides in AT&T syntax @emph{must}
1137be preceded by a @samp{%}. If you specify a section override which
1138coincides with the default section register, @code{@value{AS}} does @emph{not}
1139output any section register override prefixes to assemble the given
1140instruction. Thus, section overrides can be specified to emphasize which
1141section register is used for a given memory operand.
1142
1143Here are some examples of Intel and AT&T style memory references:
1144
1145@table @asis
1146@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1147@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1148missing, and the default section is used (@samp{%ss} for addressing with
1149@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1150
1151@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1152@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1153@samp{foo}. All other fields are missing. The section register here
1154defaults to @samp{%ds}.
1155
1156@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1157This uses the value pointed to by @samp{foo} as a memory operand.
1158Note that @var{base} and @var{index} are both missing, but there is only
1159@emph{one} @samp{,}. This is a syntactic exception.
1160
1161@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1162This selects the contents of the variable @samp{foo} with section
1163register @var{section} being @samp{%gs}.
1164@end table
1165
1166Absolute (as opposed to PC relative) call and jump operands must be
1167prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1168always chooses PC relative addressing for jump/call labels.
1169
1170Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1171@emph{must} specify its size (byte, word, long, or quadruple) with an
1172instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1173respectively).
1174
1175The x86-64 architecture adds an RIP (instruction pointer relative)
1176addressing. This addressing mode is specified by using @samp{rip} as a
1177base register. Only constant offsets are valid. For example:
1178
1179@table @asis
1180@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1181Points to the address 1234 bytes past the end of the current
1182instruction.
1183
1184@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1185Points to the @code{symbol} in RIP relative way, this is shorter than
1186the default absolute addressing.
1187@end table
1188
1189Other addressing modes remain unchanged in x86-64 architecture, except
1190registers used are 64-bit instead of 32-bit.
252b5132 1191
fddf5b5b 1192@node i386-Jumps
252b5132
RH
1193@section Handling of Jump Instructions
1194
1195@cindex jump optimization, i386
1196@cindex i386 jump optimization
55b62671
AJ
1197@cindex jump optimization, x86-64
1198@cindex x86-64 jump optimization
252b5132
RH
1199Jump instructions are always optimized to use the smallest possible
1200displacements. This is accomplished by using byte (8-bit) displacement
1201jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1202is insufficient a long displacement is used. We do not support
252b5132
RH
1203word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1204instruction with the @samp{data16} instruction prefix), since the 80386
1205insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1206is added. (See also @pxref{i386-Arch})
252b5132
RH
1207
1208Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1209@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1210displacements, so that if you use these instructions (@code{@value{GCC}} does
1211not use them) you may get an error message (and incorrect code). The AT&T
121280386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1213to
1214
1215@smallexample
1216 jcxz cx_zero
1217 jmp cx_nonzero
1218cx_zero: jmp foo
1219cx_nonzero:
1220@end smallexample
1221
1222@node i386-Float
1223@section Floating Point
1224
1225@cindex i386 floating point
1226@cindex floating point, i386
55b62671
AJ
1227@cindex x86-64 floating point
1228@cindex floating point, x86-64
252b5132
RH
1229All 80387 floating point types except packed BCD are supported.
1230(BCD support may be added without much difficulty). These data
1231types are 16-, 32-, and 64- bit integers, and single (32-bit),
1232double (64-bit), and extended (80-bit) precision floating point.
1233Each supported type has an instruction mnemonic suffix and a constructor
1234associated with it. Instruction mnemonic suffixes specify the operand's
1235data type. Constructors build these data types into memory.
1236
1237@cindex @code{float} directive, i386
1238@cindex @code{single} directive, i386
1239@cindex @code{double} directive, i386
1240@cindex @code{tfloat} directive, i386
55b62671
AJ
1241@cindex @code{float} directive, x86-64
1242@cindex @code{single} directive, x86-64
1243@cindex @code{double} directive, x86-64
1244@cindex @code{tfloat} directive, x86-64
252b5132
RH
1245@itemize @bullet
1246@item
1247Floating point constructors are @samp{.float} or @samp{.single},
1248@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1249These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1250and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1251only supports this format via the @samp{fldt} (load 80-bit real to stack
1252top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1253
1254@cindex @code{word} directive, i386
1255@cindex @code{long} directive, i386
1256@cindex @code{int} directive, i386
1257@cindex @code{quad} directive, i386
55b62671
AJ
1258@cindex @code{word} directive, x86-64
1259@cindex @code{long} directive, x86-64
1260@cindex @code{int} directive, x86-64
1261@cindex @code{quad} directive, x86-64
252b5132
RH
1262@item
1263Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1264@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1265corresponding instruction mnemonic suffixes are @samp{s} (single),
1266@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1267the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1268quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1269stack) instructions.
1270@end itemize
1271
1272Register to register operations should not use instruction mnemonic suffixes.
1273@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1274wrote @samp{fst %st, %st(1)}, since all register to register operations
1275use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1276which converts @samp{%st} from 80-bit to 64-bit floating point format,
1277then stores the result in the 4 byte location @samp{mem})
1278
1279@node i386-SIMD
1280@section Intel's MMX and AMD's 3DNow! SIMD Operations
1281
1282@cindex MMX, i386
1283@cindex 3DNow!, i386
1284@cindex SIMD, i386
55b62671
AJ
1285@cindex MMX, x86-64
1286@cindex 3DNow!, x86-64
1287@cindex SIMD, x86-64
252b5132
RH
1288
1289@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1290instructions for integer data), available on Intel's Pentium MMX
1291processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1292Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1293instruction set (SIMD instructions for 32-bit floating point data)
1294available on AMD's K6-2 processor and possibly others in the future.
1295
1296Currently, @code{@value{AS}} does not support Intel's floating point
1297SIMD, Katmai (KNI).
1298
1299The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1300@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
130116-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1302floating point values. The MMX registers cannot be used at the same time
1303as the floating point stack.
1304
1305See Intel and AMD documentation, keeping in mind that the operand order in
1306instructions is reversed from the Intel syntax.
1307
f88c9eb0
SP
1308@node i386-LWP
1309@section AMD's Lightweight Profiling Instructions
1310
1311@cindex LWP, i386
1312@cindex LWP, x86-64
1313
1314@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1315instruction set, available on AMD's Family 15h (Orochi) processors.
1316
1317LWP enables applications to collect and manage performance data, and
1318react to performance events. The collection of performance data
1319requires no context switches. LWP runs in the context of a thread and
1320so several counters can be used independently across multiple threads.
1321LWP can be used in both 64-bit and legacy 32-bit modes.
1322
1323For detailed information on the LWP instruction set, see the
1324@cite{AMD Lightweight Profiling Specification} available at
1325@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1326
87973e9f
QN
1327@node i386-BMI
1328@section Bit Manipulation Instructions
1329
1330@cindex BMI, i386
1331@cindex BMI, x86-64
1332
1333@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1334
1335BMI instructions provide several instructions implementing individual
1336bit manipulation operations such as isolation, masking, setting, or
34bca508 1337resetting.
87973e9f
QN
1338
1339@c Need to add a specification citation here when available.
1340
2a2a0f38
QN
1341@node i386-TBM
1342@section AMD's Trailing Bit Manipulation Instructions
1343
1344@cindex TBM, i386
1345@cindex TBM, x86-64
1346
1347@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1348instruction set, available on AMD's BDVER2 processors (Trinity and
1349Viperfish).
1350
1351TBM instructions provide instructions implementing individual bit
1352manipulation operations such as isolating, masking, setting, resetting,
1353complementing, and operations on trailing zeros and ones.
1354
1355@c Need to add a specification citation here when available.
87973e9f 1356
252b5132
RH
1357@node i386-16bit
1358@section Writing 16-bit Code
1359
1360@cindex i386 16-bit code
1361@cindex 16-bit code, i386
1362@cindex real-mode code, i386
eecb386c 1363@cindex @code{code16gcc} directive, i386
252b5132
RH
1364@cindex @code{code16} directive, i386
1365@cindex @code{code32} directive, i386
55b62671
AJ
1366@cindex @code{code64} directive, i386
1367@cindex @code{code64} directive, x86-64
1368While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1369or 64-bit x86-64 code depending on the default configuration,
252b5132 1370it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1371mode code segments. To do this, put a @samp{.code16} or
1372@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1373be run in 16-bit mode. You can switch @code{@value{AS}} to writing
137432-bit code with the @samp{.code32} directive or 64-bit code with the
1375@samp{.code64} directive.
eecb386c
AM
1376
1377@samp{.code16gcc} provides experimental support for generating 16-bit
1378code from gcc, and differs from @samp{.code16} in that @samp{call},
1379@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1380@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1381default to 32-bit size. This is so that the stack pointer is
1382manipulated in the same way over function calls, allowing access to
1383function parameters at the same stack offsets as in 32-bit mode.
1384@samp{.code16gcc} also automatically adds address size prefixes where
1385necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1386
1387The code which @code{@value{AS}} generates in 16-bit mode will not
1388necessarily run on a 16-bit pre-80386 processor. To write code that
1389runs on such a processor, you must refrain from using @emph{any} 32-bit
1390constructs which require @code{@value{AS}} to output address or operand
1391size prefixes.
1392
1393Note that writing 16-bit code instructions by explicitly specifying a
1394prefix or an instruction mnemonic suffix within a 32-bit code section
1395generates different machine instructions than those generated for a
139616-bit code segment. In a 32-bit code section, the following code
1397generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1398value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1399
1400@smallexample
1401 pushw $4
1402@end smallexample
1403
1404The same code in a 16-bit code section would generate the machine
b45619c0 1405opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1406is correct since the processor default operand size is assumed to be 16
1407bits in a 16-bit code section.
1408
e413e4e9
AM
1409@node i386-Arch
1410@section Specifying CPU Architecture
1411
1412@cindex arch directive, i386
1413@cindex i386 arch directive
55b62671
AJ
1414@cindex arch directive, x86-64
1415@cindex x86-64 arch directive
e413e4e9
AM
1416
1417@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1418(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1419directive enables a warning when gas detects an instruction that is not
1420supported on the CPU specified. The choices for @var{cpu_type} are:
1421
1422@multitable @columnfractions .20 .20 .20 .20
1423@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1424@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1425@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1426@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1427@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1428@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1429@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1430@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1431@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1432@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
af5c13b0 1433@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @samp{.sse4a}
d76f7bc1 1434@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1435@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1436@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1437@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1438@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1439@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1440@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1441@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1442@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1443@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1444@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1445@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1446@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1447@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
d777820b 1448@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1449@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1450@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
5d79adc4 1451@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1ceab344 1452@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1453@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1454@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
142861df
JB
1455@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1456@item @samp{.mcommit}
e413e4e9
AM
1457@end multitable
1458
fddf5b5b
AM
1459Apart from the warning, there are only two other effects on
1460@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1461@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1462will automatically use a two byte opcode sequence. The larger three
1463byte opcode sequence is used on the 486 (and when no architecture is
1464specified) because it executes faster on the 486. Note that you can
1465explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1466Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1467@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1468conditional jumps will be promoted when necessary to a two instruction
1469sequence consisting of a conditional jump of the opposite sense around
1470an unconditional jump to the target.
1471
5c6af06e
JB
1472Following the CPU architecture (but not a sub-architecture, which are those
1473starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1474control automatic promotion of conditional jumps. @samp{jumps} is the
1475default, and enables jump promotion; All external jumps will be of the long
1476variety, and file-local jumps will be promoted as necessary.
1477(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1478byte offset jumps, and warns about file-local conditional jumps that
1479@code{@value{AS}} promotes.
fddf5b5b
AM
1480Unconditional jumps are treated as for @samp{jumps}.
1481
1482For example
1483
1484@smallexample
1485 .arch i8086,nojumps
1486@end smallexample
e413e4e9 1487
bc31405e
L
1488@node i386-ISA
1489@section AMD64 ISA vs. Intel64 ISA
1490
1491There are some discrepancies between AMD64 and Intel64 ISAs.
1492
1493@itemize @bullet
1494@item For @samp{movsxd} with 16-bit destination register, AMD64
1495supports 32-bit source operand and Intel64 supports 16-bit source
1496operand.
5990e377
JB
1497
1498@item For far branches (with explicit memory operand), both ISAs support
149932- and 16-bit operand size. Intel64 additionally supports 64-bit
1500operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1501and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1502syntax.
1503
1504@item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1505and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1506while Intel64 additionally supports 64-bit operand sise (80-bit memory
1507operands).
1508
bc31405e
L
1509@end itemize
1510
5c9352f3
AM
1511@node i386-Bugs
1512@section AT&T Syntax bugs
1513
1514The UnixWare assembler, and probably other AT&T derived ix86 Unix
1515assemblers, generate floating point instructions with reversed source
1516and destination registers in certain cases. Unfortunately, gcc and
1517possibly many other programs use this reversed syntax, so we're stuck
1518with it.
1519
1520For example
1521
1522@smallexample
1523 fsub %st,%st(3)
1524@end smallexample
1525@noindent
1526results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1527than the expected @samp{%st(3) - %st}. This happens with all the
1528non-commutative arithmetic floating point operations with two register
1529operands where the source register is @samp{%st} and the destination
1530register is @samp{%st(i)}.
1531
252b5132
RH
1532@node i386-Notes
1533@section Notes
1534
1535@cindex i386 @code{mul}, @code{imul} instructions
1536@cindex @code{mul} instruction, i386
1537@cindex @code{imul} instruction, i386
55b62671
AJ
1538@cindex @code{mul} instruction, x86-64
1539@cindex @code{imul} instruction, x86-64
252b5132 1540There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1541instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1542multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1543for @samp{imul}) can be output only in the one operand form. Thus,
1544@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1545the expanding multiply would clobber the @samp{%edx} register, and this
1546would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
154764-bit product in @samp{%edx:%eax}.
1548
1549We have added a two operand form of @samp{imul} when the first operand
1550is an immediate mode expression and the second operand is a register.
1551This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1552example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1553$69, %eax, %eax}.
1554
This page took 0.930458 seconds and 4 git commands to generate.