Fix PR18374 by making readelf and objdump ignore end-of-list markers in the .debug_lo...
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
b90efa5b 1@c Copyright (C) 1991-2015 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
81486035 113@code{iamcu},
9103f4f4
L
114@code{k6},
115@code{k6_2},
116@code{athlon},
9103f4f4
L
117@code{opteron},
118@code{k8},
1ceab344 119@code{amdfam10},
68339fdf 120@code{bdver1},
af2f724e 121@code{bdver2},
5e5c50d3 122@code{bdver3},
c7b0bd56 123@code{bdver4},
029f3522 124@code{znver1},
7b458c12
L
125@code{btver1},
126@code{btver2},
9103f4f4
L
127@code{generic32} and
128@code{generic64}.
129
34bca508 130In addition to the basic instruction set, the assembler can be told to
6305a203
L
131accept various extension mnemonics. For example,
132@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133@var{vmx}. The following extensions are currently supported:
309d3373
JB
134@code{8087},
135@code{287},
136@code{387},
137@code{no87},
6305a203 138@code{mmx},
309d3373 139@code{nommx},
6305a203
L
140@code{sse},
141@code{sse2},
142@code{sse3},
143@code{ssse3},
144@code{sse4.1},
145@code{sse4.2},
146@code{sse4},
309d3373 147@code{nosse},
c0f3af97 148@code{avx},
6c30d220 149@code{avx2},
e2e1fcde
L
150@code{adx},
151@code{rdseed},
152@code{prfchw},
5c111e37 153@code{smap},
7e8b059b 154@code{mpx},
a0046408 155@code{sha},
1dfc6506
L
156@code{prefetchwt1},
157@code{clflushopt},
158@code{se1},
c5e7287a 159@code{clwb},
9d8596f0 160@code{pcommit},
43234a1e
L
161@code{avx512f},
162@code{avx512cd},
163@code{avx512er},
164@code{avx512pf},
1dfc6506
L
165@code{avx512vl},
166@code{avx512bw},
167@code{avx512dq},
2cc1b5aa 168@code{avx512ifma},
14f195c9 169@code{avx512vbmi},
309d3373 170@code{noavx},
6305a203 171@code{vmx},
8729a6f6 172@code{vmfunc},
6305a203 173@code{smx},
f03fe4c1 174@code{xsave},
c7b8aa3a 175@code{xsaveopt},
1dfc6506
L
176@code{xsavec},
177@code{xsaves},
c0f3af97 178@code{aes},
594ab6a3 179@code{pclmul},
c7b8aa3a
L
180@code{fsgsbase},
181@code{rdrnd},
182@code{f16c},
6c30d220 183@code{bmi2},
c0f3af97 184@code{fma},
f1f8f695
L
185@code{movbe},
186@code{ept},
6c30d220 187@code{lzcnt},
42164a71
L
188@code{hle},
189@code{rtm},
6c30d220 190@code{invpcid},
bd5295b2 191@code{clflush},
029f3522 192@code{clzero},
f88c9eb0 193@code{lwp},
5dd85c99
SP
194@code{fma4},
195@code{xop},
60aa667e 196@code{cx16},
bd5295b2 197@code{syscall},
1b7f3fb0 198@code{rdtscp},
6305a203
L
199@code{3dnow},
200@code{3dnowa},
201@code{sse4a},
202@code{sse5},
203@code{svme},
204@code{abm} and
205@code{padlock}.
309d3373
JB
206Note that rather than extending a basic instruction set, the extension
207mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
208
209When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
210@code{.arch} directive will take precedent.
211
212@cindex @samp{-mtune=} option, i386
213@cindex @samp{-mtune=} option, x86-64
214@item -mtune=@var{CPU}
215This option specifies a processor to optimize for. When used in
216conjunction with the @option{-march} option, only instructions
217of the processor specified by the @option{-march} option will be
218generated.
219
6305a203
L
220Valid @var{CPU} values are identical to the processor list of
221@option{-march=@var{CPU}}.
9103f4f4 222
c0f3af97
L
223@cindex @samp{-msse2avx} option, i386
224@cindex @samp{-msse2avx} option, x86-64
225@item -msse2avx
226This option specifies that the assembler should encode SSE instructions
227with VEX prefix.
228
daf50ae7
L
229@cindex @samp{-msse-check=} option, i386
230@cindex @samp{-msse-check=} option, x86-64
231@item -msse-check=@var{none}
1f9bb1ca
AS
232@itemx -msse-check=@var{warning}
233@itemx -msse-check=@var{error}
9aff4b7a 234These options control if the assembler should check SSE instructions.
daf50ae7
L
235@option{-msse-check=@var{none}} will make the assembler not to check SSE
236instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 237will make the assembler issue a warning for any SSE instruction.
daf50ae7 238@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 239for any SSE instruction.
daf50ae7 240
539f890d
L
241@cindex @samp{-mavxscalar=} option, i386
242@cindex @samp{-mavxscalar=} option, x86-64
243@item -mavxscalar=@var{128}
1f9bb1ca 244@itemx -mavxscalar=@var{256}
2aab8acd 245These options control how the assembler should encode scalar AVX
539f890d
L
246instructions. @option{-mavxscalar=@var{128}} will encode scalar
247AVX instructions with 128bit vector length, which is the default.
248@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
249with 256bit vector length.
250
43234a1e
L
251@cindex @samp{-mevexlig=} option, i386
252@cindex @samp{-mevexlig=} option, x86-64
253@item -mevexlig=@var{128}
254@itemx -mevexlig=@var{256}
255@itemx -mevexlig=@var{512}
256These options control how the assembler should encode length-ignored
257(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
258EVEX instructions with 128bit vector length, which is the default.
259@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
260encode LIG EVEX instructions with 256bit and 512bit vector length,
261respectively.
262
263@cindex @samp{-mevexwig=} option, i386
264@cindex @samp{-mevexwig=} option, x86-64
265@item -mevexwig=@var{0}
266@itemx -mevexwig=@var{1}
267These options control how the assembler should encode w-ignored (WIG)
268EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
269EVEX instructions with evex.w = 0, which is the default.
270@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
271evex.w = 1.
272
1efbbeb4
L
273@cindex @samp{-mmnemonic=} option, i386
274@cindex @samp{-mmnemonic=} option, x86-64
275@item -mmnemonic=@var{att}
1f9bb1ca 276@itemx -mmnemonic=@var{intel}
34bca508 277This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
278The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
279take precedent.
280
281@cindex @samp{-msyntax=} option, i386
282@cindex @samp{-msyntax=} option, x86-64
283@item -msyntax=@var{att}
1f9bb1ca 284@itemx -msyntax=@var{intel}
34bca508 285This option specifies instruction syntax when processing instructions.
1efbbeb4
L
286The @code{.att_syntax} and @code{.intel_syntax} directives will
287take precedent.
288
289@cindex @samp{-mnaked-reg} option, i386
290@cindex @samp{-mnaked-reg} option, x86-64
291@item -mnaked-reg
292This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 293The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 294
7e8b059b
L
295@cindex @samp{-madd-bnd-prefix} option, i386
296@cindex @samp{-madd-bnd-prefix} option, x86-64
297@item -madd-bnd-prefix
298This option forces the assembler to add BND prefix to all branches, even
299if such prefix was not explicitly specified in the source code.
300
167ad85b
TG
301@cindex @samp{-mbig-obj} option, x86-64
302@item -mbig-obj
303On x86-64 PE/COFF target this option forces the use of big object file
304format, which allows more than 32768 sections.
305
d022bddd
IT
306@cindex @samp{-momit-lock-prefix=} option, i386
307@cindex @samp{-momit-lock-prefix=} option, x86-64
308@item -momit-lock-prefix=@var{no}
309@itemx -momit-lock-prefix=@var{yes}
310These options control how the assembler should encode lock prefix.
311This option is intended as a workaround for processors, that fail on
312lock prefix. This option can only be safely used with single-core,
313single-thread computers
314@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
315@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
316which is the default.
317
d3d3c6db
IT
318@cindex @samp{-mevexrcig=} option, i386
319@cindex @samp{-mevexrcig=} option, x86-64
320@item -mevexrcig=@var{rne}
321@itemx -mevexrcig=@var{rd}
322@itemx -mevexrcig=@var{ru}
323@itemx -mevexrcig=@var{rz}
324These options control how the assembler should encode SAE-only
325EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
326of EVEX instruction with 00, which is the default.
327@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
328and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
329with 01, 10 and 11 RC bits, respectively.
330
55b62671 331@end table
731caf76 332@c man end
e413e4e9 333
a6c24e68
NC
334@node i386-Directives
335@section x86 specific Directives
336
337@cindex machine directives, x86
338@cindex x86 machine directives
339@table @code
340
341@cindex @code{lcomm} directive, COFF
342@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
343Reserve @var{length} (an absolute expression) bytes for a local common
344denoted by @var{symbol}. The section and value of @var{symbol} are
345those of the new local common. The addresses are allocated in the bss
704209c0
NC
346section, so that at run-time the bytes start off zeroed. Since
347@var{symbol} is not declared global, it is normally not visible to
348@code{@value{LD}}. The optional third parameter, @var{alignment},
349specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
350
351This directive is only available for COFF based x86 targets.
352
353@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
354@c .largecomm
355
356@end table
357
252b5132 358@node i386-Syntax
7c31ae13
NC
359@section i386 Syntactical Considerations
360@menu
361* i386-Variations:: AT&T Syntax versus Intel Syntax
362* i386-Chars:: Special Characters
363@end menu
364
365@node i386-Variations
366@subsection AT&T Syntax versus Intel Syntax
252b5132 367
e413e4e9
AM
368@cindex i386 intel_syntax pseudo op
369@cindex intel_syntax pseudo op, i386
370@cindex i386 att_syntax pseudo op
371@cindex att_syntax pseudo op, i386
252b5132
RH
372@cindex i386 syntax compatibility
373@cindex syntax compatibility, i386
55b62671
AJ
374@cindex x86-64 intel_syntax pseudo op
375@cindex intel_syntax pseudo op, x86-64
376@cindex x86-64 att_syntax pseudo op
377@cindex att_syntax pseudo op, x86-64
378@cindex x86-64 syntax compatibility
379@cindex syntax compatibility, x86-64
e413e4e9
AM
380
381@code{@value{AS}} now supports assembly using Intel assembler syntax.
382@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
383back to the usual AT&T mode for compatibility with the output of
384@code{@value{GCC}}. Either of these directives may have an optional
385argument, @code{prefix}, or @code{noprefix} specifying whether registers
386require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
387different from Intel syntax. We mention these differences because
388almost all 80386 documents use Intel syntax. Notable differences
389between the two syntaxes are:
390
391@cindex immediate operands, i386
392@cindex i386 immediate operands
393@cindex register operands, i386
394@cindex i386 register operands
395@cindex jump/call operands, i386
396@cindex i386 jump/call operands
397@cindex operand delimiters, i386
55b62671
AJ
398
399@cindex immediate operands, x86-64
400@cindex x86-64 immediate operands
401@cindex register operands, x86-64
402@cindex x86-64 register operands
403@cindex jump/call operands, x86-64
404@cindex x86-64 jump/call operands
405@cindex operand delimiters, x86-64
252b5132
RH
406@itemize @bullet
407@item
408AT&T immediate operands are preceded by @samp{$}; Intel immediate
409operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
410AT&T register operands are preceded by @samp{%}; Intel register operands
411are undelimited. AT&T absolute (as opposed to PC relative) jump/call
412operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
413
414@cindex i386 source, destination operands
415@cindex source, destination operands; i386
55b62671
AJ
416@cindex x86-64 source, destination operands
417@cindex source, destination operands; x86-64
252b5132
RH
418@item
419AT&T and Intel syntax use the opposite order for source and destination
420operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
421@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
422previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
423instructions with 2 immediate operands, such as the @samp{enter}
424instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
425
426@cindex mnemonic suffixes, i386
427@cindex sizes operands, i386
428@cindex i386 size suffixes
55b62671
AJ
429@cindex mnemonic suffixes, x86-64
430@cindex sizes operands, x86-64
431@cindex x86-64 size suffixes
252b5132
RH
432@item
433In AT&T syntax the size of memory operands is determined from the last
434character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
435@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
436(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
437this by prefixing memory operands (@emph{not} the instruction mnemonics) with
438@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
439Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
440syntax.
252b5132 441
4b06377f
L
442In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
443instruction with the 64-bit displacement or immediate operand.
444
252b5132
RH
445@cindex return instructions, i386
446@cindex i386 jump, call, return
55b62671
AJ
447@cindex return instructions, x86-64
448@cindex x86-64 jump, call, return
252b5132
RH
449@item
450Immediate form long jumps and calls are
451@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
452Intel syntax is
453@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
454instruction
455is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
456@samp{ret far @var{stack-adjust}}.
457
458@cindex sections, i386
459@cindex i386 sections
55b62671
AJ
460@cindex sections, x86-64
461@cindex x86-64 sections
252b5132
RH
462@item
463The AT&T assembler does not provide support for multiple section
464programs. Unix style systems expect all programs to be single sections.
465@end itemize
466
7c31ae13
NC
467@node i386-Chars
468@subsection Special Characters
469
470@cindex line comment character, i386
471@cindex i386 line comment character
472The presence of a @samp{#} appearing anywhere on a line indicates the
473start of a comment that extends to the end of that line.
474
475If a @samp{#} appears as the first character of a line then the whole
476line is treated as a comment, but in this case the line can also be a
477logical line number directive (@pxref{Comments}) or a preprocessor
478control command (@pxref{Preprocessing}).
479
480If the @option{--divide} command line option has not been specified
481then the @samp{/} character appearing anywhere on a line also
482introduces a line comment.
483
484@cindex line separator, i386
485@cindex statement separator, i386
486@cindex i386 line separator
487The @samp{;} character can be used to separate statements on the same
488line.
489
252b5132 490@node i386-Mnemonics
d3b47e2b
L
491@section i386-Mnemonics
492@subsection Instruction Naming
252b5132
RH
493
494@cindex i386 instruction naming
495@cindex instruction naming, i386
55b62671
AJ
496@cindex x86-64 instruction naming
497@cindex instruction naming, x86-64
498
252b5132 499Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
500specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
501and @samp{q} specify byte, word, long and quadruple word operands. If
502no suffix is specified by an instruction then @code{@value{AS}} tries to
503fill in the missing suffix based on the destination register operand
504(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
505to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
506@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
507assembler which assumes that a missing mnemonic suffix implies long
508operand size. (This incompatibility does not affect compiler output
509since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
510
511Almost all instructions have the same names in AT&T and Intel format.
512There are a few exceptions. The sign extend and zero extend
513instructions need two sizes to specify them. They need a size to
514sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
515is accomplished by using two instruction mnemonic suffixes in AT&T
516syntax. Base names for sign extend and zero extend are
517@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
518and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
519are tacked on to this base name, the @emph{from} suffix before the
520@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
521``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
522thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
523@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
524@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
525quadruple word).
252b5132 526
b6169b20
L
527@cindex encoding options, i386
528@cindex encoding options, x86-64
529
530Different encoding options can be specified via optional mnemonic
531suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
532moving from one register to another. @samp{.d8} or @samp{.d32} suffix
533prefers 8bit or 32bit displacement in encoding.
b6169b20 534
252b5132
RH
535@cindex conversion instructions, i386
536@cindex i386 conversion instructions
55b62671
AJ
537@cindex conversion instructions, x86-64
538@cindex x86-64 conversion instructions
252b5132
RH
539The Intel-syntax conversion instructions
540
541@itemize @bullet
542@item
543@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
544
545@item
546@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
547
548@item
549@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
550
551@item
552@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
553
554@item
555@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
556(x86-64 only),
557
558@item
d5f0cf92 559@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 560@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
561@end itemize
562
563@noindent
55b62671
AJ
564are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
565@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
566instructions.
252b5132
RH
567
568@cindex jump instructions, i386
569@cindex call instructions, i386
55b62671
AJ
570@cindex jump instructions, x86-64
571@cindex call instructions, x86-64
252b5132
RH
572Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
573AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
574convention.
575
d3b47e2b 576@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
577
578@cindex i386 mnemonic compatibility
579@cindex mnemonic compatibility, i386
580
581@code{@value{AS}} supports assembly using Intel mnemonic.
582@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
583@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
584syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
585Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
586@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
587@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
588assembler with different mnemonics from those in Intel IA32 specification.
589@code{@value{GCC}} generates those instructions with AT&T mnemonic.
590
252b5132
RH
591@node i386-Regs
592@section Register Naming
593
594@cindex i386 registers
595@cindex registers, i386
55b62671
AJ
596@cindex x86-64 registers
597@cindex registers, x86-64
252b5132
RH
598Register operands are always prefixed with @samp{%}. The 80386 registers
599consist of
600
601@itemize @bullet
602@item
603the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
604@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
605frame pointer), and @samp{%esp} (the stack pointer).
606
607@item
608the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
609@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
610
611@item
612the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
613@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
614are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
615@samp{%cx}, and @samp{%dx})
616
617@item
618the 6 section registers @samp{%cs} (code section), @samp{%ds}
619(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
620and @samp{%gs}.
621
622@item
623the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
624@samp{%cr3}.
625
626@item
627the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
628@samp{%db3}, @samp{%db6}, and @samp{%db7}.
629
630@item
631the 2 test registers @samp{%tr6} and @samp{%tr7}.
632
633@item
634the 8 floating point register stack @samp{%st} or equivalently
635@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
636@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
637These registers are overloaded by 8 MMX registers @samp{%mm0},
638@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
639@samp{%mm6} and @samp{%mm7}.
640
641@item
642the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
643@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
644@end itemize
645
646The AMD x86-64 architecture extends the register set by:
647
648@itemize @bullet
649@item
650enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
651accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
652@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
653pointer)
654
655@item
656the 8 extended registers @samp{%r8}--@samp{%r15}.
657
658@item
659the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
660
661@item
662the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
663
664@item
665the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
666
667@item
668the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
669
670@item
671the 8 debug registers: @samp{%db8}--@samp{%db15}.
672
673@item
674the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
675@end itemize
676
677@node i386-Prefixes
678@section Instruction Prefixes
679
680@cindex i386 instruction prefixes
681@cindex instruction prefixes, i386
682@cindex prefixes, i386
683Instruction prefixes are used to modify the following instruction. They
684are used to repeat string instructions, to provide section overrides, to
685perform bus lock operations, and to change operand and address sizes.
686(Most instructions that normally operate on 32-bit operands will use
68716-bit operands if the instruction has an ``operand size'' prefix.)
688Instruction prefixes are best written on the same line as the instruction
689they act upon. For example, the @samp{scas} (scan string) instruction is
690repeated with:
691
692@smallexample
693 repne scas %es:(%edi),%al
694@end smallexample
695
696You may also place prefixes on the lines immediately preceding the
697instruction, but this circumvents checks that @code{@value{AS}} does
698with prefixes, and will not work with all prefixes.
699
700Here is a list of instruction prefixes:
701
702@cindex section override prefixes, i386
703@itemize @bullet
704@item
705Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
706@samp{fs}, @samp{gs}. These are automatically added by specifying
707using the @var{section}:@var{memory-operand} form for memory references.
708
709@cindex size prefixes, i386
710@item
711Operand/Address size prefixes @samp{data16} and @samp{addr16}
712change 32-bit operands/addresses into 16-bit operands/addresses,
713while @samp{data32} and @samp{addr32} change 16-bit ones (in a
714@code{.code16} section) into 32-bit operands/addresses. These prefixes
715@emph{must} appear on the same line of code as the instruction they
716modify. For example, in a 16-bit @code{.code16} section, you might
717write:
718
719@smallexample
720 addr32 jmpl *(%ebx)
721@end smallexample
722
723@cindex bus lock prefixes, i386
724@cindex inhibiting interrupts, i386
725@item
726The bus lock prefix @samp{lock} inhibits interrupts during execution of
727the instruction it precedes. (This is only valid with certain
728instructions; see a 80386 manual for details).
729
730@cindex coprocessor wait, i386
731@item
732The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
733complete the current instruction. This should never be needed for the
73480386/80387 combination.
735
736@cindex repeat prefixes, i386
737@item
738The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
739to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
740times if the current address size is 16-bits).
55b62671
AJ
741@cindex REX prefixes, i386
742@item
743The @samp{rex} family of prefixes is used by x86-64 to encode
744extensions to i386 instruction set. The @samp{rex} prefix has four
745bits --- an operand size overwrite (@code{64}) used to change operand size
746from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
747register set.
748
749You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
750instruction emits @samp{rex} prefix with all the bits set. By omitting
751the @code{64}, @code{x}, @code{y} or @code{z} you may write other
752prefixes as well. Normally, there is no need to write the prefixes
753explicitly, since gas will automatically generate them based on the
754instruction operands.
252b5132
RH
755@end itemize
756
757@node i386-Memory
758@section Memory References
759
760@cindex i386 memory references
761@cindex memory references, i386
55b62671
AJ
762@cindex x86-64 memory references
763@cindex memory references, x86-64
252b5132
RH
764An Intel syntax indirect memory reference of the form
765
766@smallexample
767@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
768@end smallexample
769
770@noindent
771is translated into the AT&T syntax
772
773@smallexample
774@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
775@end smallexample
776
777@noindent
778where @var{base} and @var{index} are the optional 32-bit base and
779index registers, @var{disp} is the optional displacement, and
780@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
781to calculate the address of the operand. If no @var{scale} is
782specified, @var{scale} is taken to be 1. @var{section} specifies the
783optional section register for the memory operand, and may override the
784default section register (see a 80386 manual for section register
785defaults). Note that section overrides in AT&T syntax @emph{must}
786be preceded by a @samp{%}. If you specify a section override which
787coincides with the default section register, @code{@value{AS}} does @emph{not}
788output any section register override prefixes to assemble the given
789instruction. Thus, section overrides can be specified to emphasize which
790section register is used for a given memory operand.
791
792Here are some examples of Intel and AT&T style memory references:
793
794@table @asis
795@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
796@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
797missing, and the default section is used (@samp{%ss} for addressing with
798@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
799
800@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
801@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
802@samp{foo}. All other fields are missing. The section register here
803defaults to @samp{%ds}.
804
805@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
806This uses the value pointed to by @samp{foo} as a memory operand.
807Note that @var{base} and @var{index} are both missing, but there is only
808@emph{one} @samp{,}. This is a syntactic exception.
809
810@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
811This selects the contents of the variable @samp{foo} with section
812register @var{section} being @samp{%gs}.
813@end table
814
815Absolute (as opposed to PC relative) call and jump operands must be
816prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
817always chooses PC relative addressing for jump/call labels.
818
819Any instruction that has a memory operand, but no register operand,
55b62671
AJ
820@emph{must} specify its size (byte, word, long, or quadruple) with an
821instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
822respectively).
823
824The x86-64 architecture adds an RIP (instruction pointer relative)
825addressing. This addressing mode is specified by using @samp{rip} as a
826base register. Only constant offsets are valid. For example:
827
828@table @asis
829@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
830Points to the address 1234 bytes past the end of the current
831instruction.
832
833@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
834Points to the @code{symbol} in RIP relative way, this is shorter than
835the default absolute addressing.
836@end table
837
838Other addressing modes remain unchanged in x86-64 architecture, except
839registers used are 64-bit instead of 32-bit.
252b5132 840
fddf5b5b 841@node i386-Jumps
252b5132
RH
842@section Handling of Jump Instructions
843
844@cindex jump optimization, i386
845@cindex i386 jump optimization
55b62671
AJ
846@cindex jump optimization, x86-64
847@cindex x86-64 jump optimization
252b5132
RH
848Jump instructions are always optimized to use the smallest possible
849displacements. This is accomplished by using byte (8-bit) displacement
850jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 851is insufficient a long displacement is used. We do not support
252b5132
RH
852word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
853instruction with the @samp{data16} instruction prefix), since the 80386
854insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 855is added. (See also @pxref{i386-Arch})
252b5132
RH
856
857Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
858@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
859displacements, so that if you use these instructions (@code{@value{GCC}} does
860not use them) you may get an error message (and incorrect code). The AT&T
86180386 assembler tries to get around this problem by expanding @samp{jcxz foo}
862to
863
864@smallexample
865 jcxz cx_zero
866 jmp cx_nonzero
867cx_zero: jmp foo
868cx_nonzero:
869@end smallexample
870
871@node i386-Float
872@section Floating Point
873
874@cindex i386 floating point
875@cindex floating point, i386
55b62671
AJ
876@cindex x86-64 floating point
877@cindex floating point, x86-64
252b5132
RH
878All 80387 floating point types except packed BCD are supported.
879(BCD support may be added without much difficulty). These data
880types are 16-, 32-, and 64- bit integers, and single (32-bit),
881double (64-bit), and extended (80-bit) precision floating point.
882Each supported type has an instruction mnemonic suffix and a constructor
883associated with it. Instruction mnemonic suffixes specify the operand's
884data type. Constructors build these data types into memory.
885
886@cindex @code{float} directive, i386
887@cindex @code{single} directive, i386
888@cindex @code{double} directive, i386
889@cindex @code{tfloat} directive, i386
55b62671
AJ
890@cindex @code{float} directive, x86-64
891@cindex @code{single} directive, x86-64
892@cindex @code{double} directive, x86-64
893@cindex @code{tfloat} directive, x86-64
252b5132
RH
894@itemize @bullet
895@item
896Floating point constructors are @samp{.float} or @samp{.single},
897@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
898These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
899and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
900only supports this format via the @samp{fldt} (load 80-bit real to stack
901top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
902
903@cindex @code{word} directive, i386
904@cindex @code{long} directive, i386
905@cindex @code{int} directive, i386
906@cindex @code{quad} directive, i386
55b62671
AJ
907@cindex @code{word} directive, x86-64
908@cindex @code{long} directive, x86-64
909@cindex @code{int} directive, x86-64
910@cindex @code{quad} directive, x86-64
252b5132
RH
911@item
912Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
913@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
914corresponding instruction mnemonic suffixes are @samp{s} (single),
915@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
916the 64-bit @samp{q} format is only present in the @samp{fildq} (load
917quad integer to stack top) and @samp{fistpq} (store quad integer and pop
918stack) instructions.
919@end itemize
920
921Register to register operations should not use instruction mnemonic suffixes.
922@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
923wrote @samp{fst %st, %st(1)}, since all register to register operations
924use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
925which converts @samp{%st} from 80-bit to 64-bit floating point format,
926then stores the result in the 4 byte location @samp{mem})
927
928@node i386-SIMD
929@section Intel's MMX and AMD's 3DNow! SIMD Operations
930
931@cindex MMX, i386
932@cindex 3DNow!, i386
933@cindex SIMD, i386
55b62671
AJ
934@cindex MMX, x86-64
935@cindex 3DNow!, x86-64
936@cindex SIMD, x86-64
252b5132
RH
937
938@code{@value{AS}} supports Intel's MMX instruction set (SIMD
939instructions for integer data), available on Intel's Pentium MMX
940processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 941Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
942instruction set (SIMD instructions for 32-bit floating point data)
943available on AMD's K6-2 processor and possibly others in the future.
944
945Currently, @code{@value{AS}} does not support Intel's floating point
946SIMD, Katmai (KNI).
947
948The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
949@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
95016-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
951floating point values. The MMX registers cannot be used at the same time
952as the floating point stack.
953
954See Intel and AMD documentation, keeping in mind that the operand order in
955instructions is reversed from the Intel syntax.
956
f88c9eb0
SP
957@node i386-LWP
958@section AMD's Lightweight Profiling Instructions
959
960@cindex LWP, i386
961@cindex LWP, x86-64
962
963@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
964instruction set, available on AMD's Family 15h (Orochi) processors.
965
966LWP enables applications to collect and manage performance data, and
967react to performance events. The collection of performance data
968requires no context switches. LWP runs in the context of a thread and
969so several counters can be used independently across multiple threads.
970LWP can be used in both 64-bit and legacy 32-bit modes.
971
972For detailed information on the LWP instruction set, see the
973@cite{AMD Lightweight Profiling Specification} available at
974@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
975
87973e9f
QN
976@node i386-BMI
977@section Bit Manipulation Instructions
978
979@cindex BMI, i386
980@cindex BMI, x86-64
981
982@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
983
984BMI instructions provide several instructions implementing individual
985bit manipulation operations such as isolation, masking, setting, or
34bca508 986resetting.
87973e9f
QN
987
988@c Need to add a specification citation here when available.
989
2a2a0f38
QN
990@node i386-TBM
991@section AMD's Trailing Bit Manipulation Instructions
992
993@cindex TBM, i386
994@cindex TBM, x86-64
995
996@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
997instruction set, available on AMD's BDVER2 processors (Trinity and
998Viperfish).
999
1000TBM instructions provide instructions implementing individual bit
1001manipulation operations such as isolating, masking, setting, resetting,
1002complementing, and operations on trailing zeros and ones.
1003
1004@c Need to add a specification citation here when available.
87973e9f 1005
252b5132
RH
1006@node i386-16bit
1007@section Writing 16-bit Code
1008
1009@cindex i386 16-bit code
1010@cindex 16-bit code, i386
1011@cindex real-mode code, i386
eecb386c 1012@cindex @code{code16gcc} directive, i386
252b5132
RH
1013@cindex @code{code16} directive, i386
1014@cindex @code{code32} directive, i386
55b62671
AJ
1015@cindex @code{code64} directive, i386
1016@cindex @code{code64} directive, x86-64
1017While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1018or 64-bit x86-64 code depending on the default configuration,
252b5132 1019it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1020mode code segments. To do this, put a @samp{.code16} or
1021@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1022be run in 16-bit mode. You can switch @code{@value{AS}} to writing
102332-bit code with the @samp{.code32} directive or 64-bit code with the
1024@samp{.code64} directive.
eecb386c
AM
1025
1026@samp{.code16gcc} provides experimental support for generating 16-bit
1027code from gcc, and differs from @samp{.code16} in that @samp{call},
1028@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1029@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1030default to 32-bit size. This is so that the stack pointer is
1031manipulated in the same way over function calls, allowing access to
1032function parameters at the same stack offsets as in 32-bit mode.
1033@samp{.code16gcc} also automatically adds address size prefixes where
1034necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1035
1036The code which @code{@value{AS}} generates in 16-bit mode will not
1037necessarily run on a 16-bit pre-80386 processor. To write code that
1038runs on such a processor, you must refrain from using @emph{any} 32-bit
1039constructs which require @code{@value{AS}} to output address or operand
1040size prefixes.
1041
1042Note that writing 16-bit code instructions by explicitly specifying a
1043prefix or an instruction mnemonic suffix within a 32-bit code section
1044generates different machine instructions than those generated for a
104516-bit code segment. In a 32-bit code section, the following code
1046generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1047value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1048
1049@smallexample
1050 pushw $4
1051@end smallexample
1052
1053The same code in a 16-bit code section would generate the machine
b45619c0 1054opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1055is correct since the processor default operand size is assumed to be 16
1056bits in a 16-bit code section.
1057
e413e4e9
AM
1058@node i386-Arch
1059@section Specifying CPU Architecture
1060
1061@cindex arch directive, i386
1062@cindex i386 arch directive
55b62671
AJ
1063@cindex arch directive, x86-64
1064@cindex x86-64 arch directive
e413e4e9
AM
1065
1066@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1067(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1068directive enables a warning when gas detects an instruction that is not
1069supported on the CPU specified. The choices for @var{cpu_type} are:
1070
1071@multitable @columnfractions .20 .20 .20 .20
1072@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1073@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1074@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1075@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1076@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1077@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1078@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1079@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1080@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1081@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1082@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1083@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1084@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1085@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1086@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1087@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1088@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1089@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1090@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1091@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1092@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
14f195c9 1093@item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1ceab344 1094@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1095@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1096@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
029f3522 1097@item @samp{.padlock} @tab @samp{.clzero}
e413e4e9
AM
1098@end multitable
1099
fddf5b5b
AM
1100Apart from the warning, there are only two other effects on
1101@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1102@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1103will automatically use a two byte opcode sequence. The larger three
1104byte opcode sequence is used on the 486 (and when no architecture is
1105specified) because it executes faster on the 486. Note that you can
1106explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1107Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1108@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1109conditional jumps will be promoted when necessary to a two instruction
1110sequence consisting of a conditional jump of the opposite sense around
1111an unconditional jump to the target.
1112
5c6af06e
JB
1113Following the CPU architecture (but not a sub-architecture, which are those
1114starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1115control automatic promotion of conditional jumps. @samp{jumps} is the
1116default, and enables jump promotion; All external jumps will be of the long
1117variety, and file-local jumps will be promoted as necessary.
1118(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1119byte offset jumps, and warns about file-local conditional jumps that
1120@code{@value{AS}} promotes.
fddf5b5b
AM
1121Unconditional jumps are treated as for @samp{jumps}.
1122
1123For example
1124
1125@smallexample
1126 .arch i8086,nojumps
1127@end smallexample
e413e4e9 1128
5c9352f3
AM
1129@node i386-Bugs
1130@section AT&T Syntax bugs
1131
1132The UnixWare assembler, and probably other AT&T derived ix86 Unix
1133assemblers, generate floating point instructions with reversed source
1134and destination registers in certain cases. Unfortunately, gcc and
1135possibly many other programs use this reversed syntax, so we're stuck
1136with it.
1137
1138For example
1139
1140@smallexample
1141 fsub %st,%st(3)
1142@end smallexample
1143@noindent
1144results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1145than the expected @samp{%st(3) - %st}. This happens with all the
1146non-commutative arithmetic floating point operations with two register
1147operands where the source register is @samp{%st} and the destination
1148register is @samp{%st(i)}.
1149
252b5132
RH
1150@node i386-Notes
1151@section Notes
1152
1153@cindex i386 @code{mul}, @code{imul} instructions
1154@cindex @code{mul} instruction, i386
1155@cindex @code{imul} instruction, i386
55b62671
AJ
1156@cindex @code{mul} instruction, x86-64
1157@cindex @code{imul} instruction, x86-64
252b5132 1158There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1159instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1160multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1161for @samp{imul}) can be output only in the one operand form. Thus,
1162@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1163the expanding multiply would clobber the @samp{%edx} register, and this
1164would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
116564-bit product in @samp{%edx:%eax}.
1166
1167We have added a two operand form of @samp{imul} when the first operand
1168is an immediate mode expression and the second operand is a register.
1169This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1170example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1171$69, %eax, %eax}.
1172
This page took 0.940768 seconds and 4 git commands to generate.