Add -mevexrcig={rne|rd|ru|rz} option to x86 assembler.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
4b95cf5c 1@c Copyright (C) 1991-2014 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
9103f4f4
L
113@code{k6},
114@code{k6_2},
115@code{athlon},
9103f4f4
L
116@code{opteron},
117@code{k8},
1ceab344 118@code{amdfam10},
68339fdf 119@code{bdver1},
af2f724e 120@code{bdver2},
5e5c50d3 121@code{bdver3},
c7b0bd56 122@code{bdver4},
7b458c12
L
123@code{btver1},
124@code{btver2},
9103f4f4
L
125@code{generic32} and
126@code{generic64}.
127
34bca508 128In addition to the basic instruction set, the assembler can be told to
6305a203
L
129accept various extension mnemonics. For example,
130@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
131@var{vmx}. The following extensions are currently supported:
309d3373
JB
132@code{8087},
133@code{287},
134@code{387},
135@code{no87},
6305a203 136@code{mmx},
309d3373 137@code{nommx},
6305a203
L
138@code{sse},
139@code{sse2},
140@code{sse3},
141@code{ssse3},
142@code{sse4.1},
143@code{sse4.2},
144@code{sse4},
309d3373 145@code{nosse},
c0f3af97 146@code{avx},
6c30d220 147@code{avx2},
e2e1fcde
L
148@code{adx},
149@code{rdseed},
150@code{prfchw},
5c111e37 151@code{smap},
7e8b059b 152@code{mpx},
a0046408 153@code{sha},
43234a1e
L
154@code{avx512f},
155@code{avx512cd},
156@code{avx512er},
157@code{avx512pf},
309d3373 158@code{noavx},
6305a203 159@code{vmx},
8729a6f6 160@code{vmfunc},
6305a203 161@code{smx},
f03fe4c1 162@code{xsave},
c7b8aa3a 163@code{xsaveopt},
c0f3af97 164@code{aes},
594ab6a3 165@code{pclmul},
c7b8aa3a
L
166@code{fsgsbase},
167@code{rdrnd},
168@code{f16c},
6c30d220 169@code{bmi2},
c0f3af97 170@code{fma},
f1f8f695
L
171@code{movbe},
172@code{ept},
6c30d220 173@code{lzcnt},
42164a71
L
174@code{hle},
175@code{rtm},
6c30d220 176@code{invpcid},
bd5295b2 177@code{clflush},
f88c9eb0 178@code{lwp},
5dd85c99
SP
179@code{fma4},
180@code{xop},
60aa667e 181@code{cx16},
bd5295b2 182@code{syscall},
1b7f3fb0 183@code{rdtscp},
6305a203
L
184@code{3dnow},
185@code{3dnowa},
186@code{sse4a},
187@code{sse5},
188@code{svme},
189@code{abm} and
190@code{padlock}.
90a915bf 191@code{avx512dq},
1ba585e8 192@code{avx512bw},
b28d1bda 193@code{avx512vl},
309d3373
JB
194Note that rather than extending a basic instruction set, the extension
195mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
196
197When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
198@code{.arch} directive will take precedent.
199
200@cindex @samp{-mtune=} option, i386
201@cindex @samp{-mtune=} option, x86-64
202@item -mtune=@var{CPU}
203This option specifies a processor to optimize for. When used in
204conjunction with the @option{-march} option, only instructions
205of the processor specified by the @option{-march} option will be
206generated.
207
6305a203
L
208Valid @var{CPU} values are identical to the processor list of
209@option{-march=@var{CPU}}.
9103f4f4 210
c0f3af97
L
211@cindex @samp{-msse2avx} option, i386
212@cindex @samp{-msse2avx} option, x86-64
213@item -msse2avx
214This option specifies that the assembler should encode SSE instructions
215with VEX prefix.
216
daf50ae7
L
217@cindex @samp{-msse-check=} option, i386
218@cindex @samp{-msse-check=} option, x86-64
219@item -msse-check=@var{none}
1f9bb1ca
AS
220@itemx -msse-check=@var{warning}
221@itemx -msse-check=@var{error}
9aff4b7a 222These options control if the assembler should check SSE instructions.
daf50ae7
L
223@option{-msse-check=@var{none}} will make the assembler not to check SSE
224instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 225will make the assembler issue a warning for any SSE instruction.
daf50ae7 226@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 227for any SSE instruction.
daf50ae7 228
539f890d
L
229@cindex @samp{-mavxscalar=} option, i386
230@cindex @samp{-mavxscalar=} option, x86-64
231@item -mavxscalar=@var{128}
1f9bb1ca 232@itemx -mavxscalar=@var{256}
2aab8acd 233These options control how the assembler should encode scalar AVX
539f890d
L
234instructions. @option{-mavxscalar=@var{128}} will encode scalar
235AVX instructions with 128bit vector length, which is the default.
236@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
237with 256bit vector length.
238
43234a1e
L
239@cindex @samp{-mevexlig=} option, i386
240@cindex @samp{-mevexlig=} option, x86-64
241@item -mevexlig=@var{128}
242@itemx -mevexlig=@var{256}
243@itemx -mevexlig=@var{512}
244These options control how the assembler should encode length-ignored
245(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
246EVEX instructions with 128bit vector length, which is the default.
247@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
248encode LIG EVEX instructions with 256bit and 512bit vector length,
249respectively.
250
251@cindex @samp{-mevexwig=} option, i386
252@cindex @samp{-mevexwig=} option, x86-64
253@item -mevexwig=@var{0}
254@itemx -mevexwig=@var{1}
255These options control how the assembler should encode w-ignored (WIG)
256EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
257EVEX instructions with evex.w = 0, which is the default.
258@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
259evex.w = 1.
260
1efbbeb4
L
261@cindex @samp{-mmnemonic=} option, i386
262@cindex @samp{-mmnemonic=} option, x86-64
263@item -mmnemonic=@var{att}
1f9bb1ca 264@itemx -mmnemonic=@var{intel}
34bca508 265This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
266The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
267take precedent.
268
269@cindex @samp{-msyntax=} option, i386
270@cindex @samp{-msyntax=} option, x86-64
271@item -msyntax=@var{att}
1f9bb1ca 272@itemx -msyntax=@var{intel}
34bca508 273This option specifies instruction syntax when processing instructions.
1efbbeb4
L
274The @code{.att_syntax} and @code{.intel_syntax} directives will
275take precedent.
276
277@cindex @samp{-mnaked-reg} option, i386
278@cindex @samp{-mnaked-reg} option, x86-64
279@item -mnaked-reg
280This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 281The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 282
7e8b059b
L
283@cindex @samp{-madd-bnd-prefix} option, i386
284@cindex @samp{-madd-bnd-prefix} option, x86-64
285@item -madd-bnd-prefix
286This option forces the assembler to add BND prefix to all branches, even
287if such prefix was not explicitly specified in the source code.
288
167ad85b
TG
289@cindex @samp{-mbig-obj} option, x86-64
290@item -mbig-obj
291On x86-64 PE/COFF target this option forces the use of big object file
292format, which allows more than 32768 sections.
293
d022bddd
IT
294@cindex @samp{-momit-lock-prefix=} option, i386
295@cindex @samp{-momit-lock-prefix=} option, x86-64
296@item -momit-lock-prefix=@var{no}
297@itemx -momit-lock-prefix=@var{yes}
298These options control how the assembler should encode lock prefix.
299This option is intended as a workaround for processors, that fail on
300lock prefix. This option can only be safely used with single-core,
301single-thread computers
302@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
303@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
304which is the default.
305
d3d3c6db
IT
306@cindex @samp{-mevexrcig=} option, i386
307@cindex @samp{-mevexrcig=} option, x86-64
308@item -mevexrcig=@var{rne}
309@itemx -mevexrcig=@var{rd}
310@itemx -mevexrcig=@var{ru}
311@itemx -mevexrcig=@var{rz}
312These options control how the assembler should encode SAE-only
313EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
314of EVEX instruction with 00, which is the default.
315@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
316and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
317with 01, 10 and 11 RC bits, respectively.
318
55b62671 319@end table
731caf76 320@c man end
e413e4e9 321
a6c24e68
NC
322@node i386-Directives
323@section x86 specific Directives
324
325@cindex machine directives, x86
326@cindex x86 machine directives
327@table @code
328
329@cindex @code{lcomm} directive, COFF
330@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
331Reserve @var{length} (an absolute expression) bytes for a local common
332denoted by @var{symbol}. The section and value of @var{symbol} are
333those of the new local common. The addresses are allocated in the bss
704209c0
NC
334section, so that at run-time the bytes start off zeroed. Since
335@var{symbol} is not declared global, it is normally not visible to
336@code{@value{LD}}. The optional third parameter, @var{alignment},
337specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
338
339This directive is only available for COFF based x86 targets.
340
341@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
342@c .largecomm
343
344@end table
345
252b5132 346@node i386-Syntax
7c31ae13
NC
347@section i386 Syntactical Considerations
348@menu
349* i386-Variations:: AT&T Syntax versus Intel Syntax
350* i386-Chars:: Special Characters
351@end menu
352
353@node i386-Variations
354@subsection AT&T Syntax versus Intel Syntax
252b5132 355
e413e4e9
AM
356@cindex i386 intel_syntax pseudo op
357@cindex intel_syntax pseudo op, i386
358@cindex i386 att_syntax pseudo op
359@cindex att_syntax pseudo op, i386
252b5132
RH
360@cindex i386 syntax compatibility
361@cindex syntax compatibility, i386
55b62671
AJ
362@cindex x86-64 intel_syntax pseudo op
363@cindex intel_syntax pseudo op, x86-64
364@cindex x86-64 att_syntax pseudo op
365@cindex att_syntax pseudo op, x86-64
366@cindex x86-64 syntax compatibility
367@cindex syntax compatibility, x86-64
e413e4e9
AM
368
369@code{@value{AS}} now supports assembly using Intel assembler syntax.
370@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
371back to the usual AT&T mode for compatibility with the output of
372@code{@value{GCC}}. Either of these directives may have an optional
373argument, @code{prefix}, or @code{noprefix} specifying whether registers
374require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
375different from Intel syntax. We mention these differences because
376almost all 80386 documents use Intel syntax. Notable differences
377between the two syntaxes are:
378
379@cindex immediate operands, i386
380@cindex i386 immediate operands
381@cindex register operands, i386
382@cindex i386 register operands
383@cindex jump/call operands, i386
384@cindex i386 jump/call operands
385@cindex operand delimiters, i386
55b62671
AJ
386
387@cindex immediate operands, x86-64
388@cindex x86-64 immediate operands
389@cindex register operands, x86-64
390@cindex x86-64 register operands
391@cindex jump/call operands, x86-64
392@cindex x86-64 jump/call operands
393@cindex operand delimiters, x86-64
252b5132
RH
394@itemize @bullet
395@item
396AT&T immediate operands are preceded by @samp{$}; Intel immediate
397operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
398AT&T register operands are preceded by @samp{%}; Intel register operands
399are undelimited. AT&T absolute (as opposed to PC relative) jump/call
400operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
401
402@cindex i386 source, destination operands
403@cindex source, destination operands; i386
55b62671
AJ
404@cindex x86-64 source, destination operands
405@cindex source, destination operands; x86-64
252b5132
RH
406@item
407AT&T and Intel syntax use the opposite order for source and destination
408operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
409@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
410previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
411instructions with 2 immediate operands, such as the @samp{enter}
412instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
413
414@cindex mnemonic suffixes, i386
415@cindex sizes operands, i386
416@cindex i386 size suffixes
55b62671
AJ
417@cindex mnemonic suffixes, x86-64
418@cindex sizes operands, x86-64
419@cindex x86-64 size suffixes
252b5132
RH
420@item
421In AT&T syntax the size of memory operands is determined from the last
422character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
423@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
424(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
425this by prefixing memory operands (@emph{not} the instruction mnemonics) with
426@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
427Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
428syntax.
252b5132 429
4b06377f
L
430In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
431instruction with the 64-bit displacement or immediate operand.
432
252b5132
RH
433@cindex return instructions, i386
434@cindex i386 jump, call, return
55b62671
AJ
435@cindex return instructions, x86-64
436@cindex x86-64 jump, call, return
252b5132
RH
437@item
438Immediate form long jumps and calls are
439@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
440Intel syntax is
441@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
442instruction
443is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
444@samp{ret far @var{stack-adjust}}.
445
446@cindex sections, i386
447@cindex i386 sections
55b62671
AJ
448@cindex sections, x86-64
449@cindex x86-64 sections
252b5132
RH
450@item
451The AT&T assembler does not provide support for multiple section
452programs. Unix style systems expect all programs to be single sections.
453@end itemize
454
7c31ae13
NC
455@node i386-Chars
456@subsection Special Characters
457
458@cindex line comment character, i386
459@cindex i386 line comment character
460The presence of a @samp{#} appearing anywhere on a line indicates the
461start of a comment that extends to the end of that line.
462
463If a @samp{#} appears as the first character of a line then the whole
464line is treated as a comment, but in this case the line can also be a
465logical line number directive (@pxref{Comments}) or a preprocessor
466control command (@pxref{Preprocessing}).
467
468If the @option{--divide} command line option has not been specified
469then the @samp{/} character appearing anywhere on a line also
470introduces a line comment.
471
472@cindex line separator, i386
473@cindex statement separator, i386
474@cindex i386 line separator
475The @samp{;} character can be used to separate statements on the same
476line.
477
252b5132
RH
478@node i386-Mnemonics
479@section Instruction Naming
480
481@cindex i386 instruction naming
482@cindex instruction naming, i386
55b62671
AJ
483@cindex x86-64 instruction naming
484@cindex instruction naming, x86-64
485
252b5132 486Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
487specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
488and @samp{q} specify byte, word, long and quadruple word operands. If
489no suffix is specified by an instruction then @code{@value{AS}} tries to
490fill in the missing suffix based on the destination register operand
491(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
492to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
493@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
494assembler which assumes that a missing mnemonic suffix implies long
495operand size. (This incompatibility does not affect compiler output
496since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
497
498Almost all instructions have the same names in AT&T and Intel format.
499There are a few exceptions. The sign extend and zero extend
500instructions need two sizes to specify them. They need a size to
501sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
502is accomplished by using two instruction mnemonic suffixes in AT&T
503syntax. Base names for sign extend and zero extend are
504@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
505and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
506are tacked on to this base name, the @emph{from} suffix before the
507@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
508``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
509thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
510@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
511@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
512quadruple word).
252b5132 513
b6169b20
L
514@cindex encoding options, i386
515@cindex encoding options, x86-64
516
517Different encoding options can be specified via optional mnemonic
518suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
519moving from one register to another. @samp{.d8} or @samp{.d32} suffix
520prefers 8bit or 32bit displacement in encoding.
b6169b20 521
252b5132
RH
522@cindex conversion instructions, i386
523@cindex i386 conversion instructions
55b62671
AJ
524@cindex conversion instructions, x86-64
525@cindex x86-64 conversion instructions
252b5132
RH
526The Intel-syntax conversion instructions
527
528@itemize @bullet
529@item
530@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
531
532@item
533@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
534
535@item
536@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
537
538@item
539@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
540
541@item
542@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
543(x86-64 only),
544
545@item
d5f0cf92 546@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 547@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
548@end itemize
549
550@noindent
55b62671
AJ
551are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
552@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
553instructions.
252b5132
RH
554
555@cindex jump instructions, i386
556@cindex call instructions, i386
55b62671
AJ
557@cindex jump instructions, x86-64
558@cindex call instructions, x86-64
252b5132
RH
559Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
560AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
561convention.
562
1efbbeb4
L
563@section AT&T Mnemonic versus Intel Mnemonic
564
565@cindex i386 mnemonic compatibility
566@cindex mnemonic compatibility, i386
567
568@code{@value{AS}} supports assembly using Intel mnemonic.
569@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
570@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
571syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
572Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
573@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
574@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
575assembler with different mnemonics from those in Intel IA32 specification.
576@code{@value{GCC}} generates those instructions with AT&T mnemonic.
577
252b5132
RH
578@node i386-Regs
579@section Register Naming
580
581@cindex i386 registers
582@cindex registers, i386
55b62671
AJ
583@cindex x86-64 registers
584@cindex registers, x86-64
252b5132
RH
585Register operands are always prefixed with @samp{%}. The 80386 registers
586consist of
587
588@itemize @bullet
589@item
590the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
591@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
592frame pointer), and @samp{%esp} (the stack pointer).
593
594@item
595the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
596@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
597
598@item
599the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
600@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
601are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
602@samp{%cx}, and @samp{%dx})
603
604@item
605the 6 section registers @samp{%cs} (code section), @samp{%ds}
606(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
607and @samp{%gs}.
608
609@item
610the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
611@samp{%cr3}.
612
613@item
614the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
615@samp{%db3}, @samp{%db6}, and @samp{%db7}.
616
617@item
618the 2 test registers @samp{%tr6} and @samp{%tr7}.
619
620@item
621the 8 floating point register stack @samp{%st} or equivalently
622@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
623@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
624These registers are overloaded by 8 MMX registers @samp{%mm0},
625@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
626@samp{%mm6} and @samp{%mm7}.
627
628@item
629the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
630@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
631@end itemize
632
633The AMD x86-64 architecture extends the register set by:
634
635@itemize @bullet
636@item
637enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
638accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
639@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
640pointer)
641
642@item
643the 8 extended registers @samp{%r8}--@samp{%r15}.
644
645@item
646the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
647
648@item
649the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
650
651@item
652the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
653
654@item
655the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
656
657@item
658the 8 debug registers: @samp{%db8}--@samp{%db15}.
659
660@item
661the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
662@end itemize
663
664@node i386-Prefixes
665@section Instruction Prefixes
666
667@cindex i386 instruction prefixes
668@cindex instruction prefixes, i386
669@cindex prefixes, i386
670Instruction prefixes are used to modify the following instruction. They
671are used to repeat string instructions, to provide section overrides, to
672perform bus lock operations, and to change operand and address sizes.
673(Most instructions that normally operate on 32-bit operands will use
67416-bit operands if the instruction has an ``operand size'' prefix.)
675Instruction prefixes are best written on the same line as the instruction
676they act upon. For example, the @samp{scas} (scan string) instruction is
677repeated with:
678
679@smallexample
680 repne scas %es:(%edi),%al
681@end smallexample
682
683You may also place prefixes on the lines immediately preceding the
684instruction, but this circumvents checks that @code{@value{AS}} does
685with prefixes, and will not work with all prefixes.
686
687Here is a list of instruction prefixes:
688
689@cindex section override prefixes, i386
690@itemize @bullet
691@item
692Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
693@samp{fs}, @samp{gs}. These are automatically added by specifying
694using the @var{section}:@var{memory-operand} form for memory references.
695
696@cindex size prefixes, i386
697@item
698Operand/Address size prefixes @samp{data16} and @samp{addr16}
699change 32-bit operands/addresses into 16-bit operands/addresses,
700while @samp{data32} and @samp{addr32} change 16-bit ones (in a
701@code{.code16} section) into 32-bit operands/addresses. These prefixes
702@emph{must} appear on the same line of code as the instruction they
703modify. For example, in a 16-bit @code{.code16} section, you might
704write:
705
706@smallexample
707 addr32 jmpl *(%ebx)
708@end smallexample
709
710@cindex bus lock prefixes, i386
711@cindex inhibiting interrupts, i386
712@item
713The bus lock prefix @samp{lock} inhibits interrupts during execution of
714the instruction it precedes. (This is only valid with certain
715instructions; see a 80386 manual for details).
716
717@cindex coprocessor wait, i386
718@item
719The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
720complete the current instruction. This should never be needed for the
72180386/80387 combination.
722
723@cindex repeat prefixes, i386
724@item
725The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
726to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
727times if the current address size is 16-bits).
55b62671
AJ
728@cindex REX prefixes, i386
729@item
730The @samp{rex} family of prefixes is used by x86-64 to encode
731extensions to i386 instruction set. The @samp{rex} prefix has four
732bits --- an operand size overwrite (@code{64}) used to change operand size
733from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
734register set.
735
736You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
737instruction emits @samp{rex} prefix with all the bits set. By omitting
738the @code{64}, @code{x}, @code{y} or @code{z} you may write other
739prefixes as well. Normally, there is no need to write the prefixes
740explicitly, since gas will automatically generate them based on the
741instruction operands.
252b5132
RH
742@end itemize
743
744@node i386-Memory
745@section Memory References
746
747@cindex i386 memory references
748@cindex memory references, i386
55b62671
AJ
749@cindex x86-64 memory references
750@cindex memory references, x86-64
252b5132
RH
751An Intel syntax indirect memory reference of the form
752
753@smallexample
754@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
755@end smallexample
756
757@noindent
758is translated into the AT&T syntax
759
760@smallexample
761@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
762@end smallexample
763
764@noindent
765where @var{base} and @var{index} are the optional 32-bit base and
766index registers, @var{disp} is the optional displacement, and
767@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
768to calculate the address of the operand. If no @var{scale} is
769specified, @var{scale} is taken to be 1. @var{section} specifies the
770optional section register for the memory operand, and may override the
771default section register (see a 80386 manual for section register
772defaults). Note that section overrides in AT&T syntax @emph{must}
773be preceded by a @samp{%}. If you specify a section override which
774coincides with the default section register, @code{@value{AS}} does @emph{not}
775output any section register override prefixes to assemble the given
776instruction. Thus, section overrides can be specified to emphasize which
777section register is used for a given memory operand.
778
779Here are some examples of Intel and AT&T style memory references:
780
781@table @asis
782@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
783@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
784missing, and the default section is used (@samp{%ss} for addressing with
785@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
786
787@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
788@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
789@samp{foo}. All other fields are missing. The section register here
790defaults to @samp{%ds}.
791
792@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
793This uses the value pointed to by @samp{foo} as a memory operand.
794Note that @var{base} and @var{index} are both missing, but there is only
795@emph{one} @samp{,}. This is a syntactic exception.
796
797@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
798This selects the contents of the variable @samp{foo} with section
799register @var{section} being @samp{%gs}.
800@end table
801
802Absolute (as opposed to PC relative) call and jump operands must be
803prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
804always chooses PC relative addressing for jump/call labels.
805
806Any instruction that has a memory operand, but no register operand,
55b62671
AJ
807@emph{must} specify its size (byte, word, long, or quadruple) with an
808instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
809respectively).
810
811The x86-64 architecture adds an RIP (instruction pointer relative)
812addressing. This addressing mode is specified by using @samp{rip} as a
813base register. Only constant offsets are valid. For example:
814
815@table @asis
816@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
817Points to the address 1234 bytes past the end of the current
818instruction.
819
820@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
821Points to the @code{symbol} in RIP relative way, this is shorter than
822the default absolute addressing.
823@end table
824
825Other addressing modes remain unchanged in x86-64 architecture, except
826registers used are 64-bit instead of 32-bit.
252b5132 827
fddf5b5b 828@node i386-Jumps
252b5132
RH
829@section Handling of Jump Instructions
830
831@cindex jump optimization, i386
832@cindex i386 jump optimization
55b62671
AJ
833@cindex jump optimization, x86-64
834@cindex x86-64 jump optimization
252b5132
RH
835Jump instructions are always optimized to use the smallest possible
836displacements. This is accomplished by using byte (8-bit) displacement
837jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 838is insufficient a long displacement is used. We do not support
252b5132
RH
839word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
840instruction with the @samp{data16} instruction prefix), since the 80386
841insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 842is added. (See also @pxref{i386-Arch})
252b5132
RH
843
844Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
845@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
846displacements, so that if you use these instructions (@code{@value{GCC}} does
847not use them) you may get an error message (and incorrect code). The AT&T
84880386 assembler tries to get around this problem by expanding @samp{jcxz foo}
849to
850
851@smallexample
852 jcxz cx_zero
853 jmp cx_nonzero
854cx_zero: jmp foo
855cx_nonzero:
856@end smallexample
857
858@node i386-Float
859@section Floating Point
860
861@cindex i386 floating point
862@cindex floating point, i386
55b62671
AJ
863@cindex x86-64 floating point
864@cindex floating point, x86-64
252b5132
RH
865All 80387 floating point types except packed BCD are supported.
866(BCD support may be added without much difficulty). These data
867types are 16-, 32-, and 64- bit integers, and single (32-bit),
868double (64-bit), and extended (80-bit) precision floating point.
869Each supported type has an instruction mnemonic suffix and a constructor
870associated with it. Instruction mnemonic suffixes specify the operand's
871data type. Constructors build these data types into memory.
872
873@cindex @code{float} directive, i386
874@cindex @code{single} directive, i386
875@cindex @code{double} directive, i386
876@cindex @code{tfloat} directive, i386
55b62671
AJ
877@cindex @code{float} directive, x86-64
878@cindex @code{single} directive, x86-64
879@cindex @code{double} directive, x86-64
880@cindex @code{tfloat} directive, x86-64
252b5132
RH
881@itemize @bullet
882@item
883Floating point constructors are @samp{.float} or @samp{.single},
884@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
885These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
886and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
887only supports this format via the @samp{fldt} (load 80-bit real to stack
888top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
889
890@cindex @code{word} directive, i386
891@cindex @code{long} directive, i386
892@cindex @code{int} directive, i386
893@cindex @code{quad} directive, i386
55b62671
AJ
894@cindex @code{word} directive, x86-64
895@cindex @code{long} directive, x86-64
896@cindex @code{int} directive, x86-64
897@cindex @code{quad} directive, x86-64
252b5132
RH
898@item
899Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
900@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
901corresponding instruction mnemonic suffixes are @samp{s} (single),
902@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
903the 64-bit @samp{q} format is only present in the @samp{fildq} (load
904quad integer to stack top) and @samp{fistpq} (store quad integer and pop
905stack) instructions.
906@end itemize
907
908Register to register operations should not use instruction mnemonic suffixes.
909@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
910wrote @samp{fst %st, %st(1)}, since all register to register operations
911use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
912which converts @samp{%st} from 80-bit to 64-bit floating point format,
913then stores the result in the 4 byte location @samp{mem})
914
915@node i386-SIMD
916@section Intel's MMX and AMD's 3DNow! SIMD Operations
917
918@cindex MMX, i386
919@cindex 3DNow!, i386
920@cindex SIMD, i386
55b62671
AJ
921@cindex MMX, x86-64
922@cindex 3DNow!, x86-64
923@cindex SIMD, x86-64
252b5132
RH
924
925@code{@value{AS}} supports Intel's MMX instruction set (SIMD
926instructions for integer data), available on Intel's Pentium MMX
927processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 928Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
929instruction set (SIMD instructions for 32-bit floating point data)
930available on AMD's K6-2 processor and possibly others in the future.
931
932Currently, @code{@value{AS}} does not support Intel's floating point
933SIMD, Katmai (KNI).
934
935The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
936@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
93716-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
938floating point values. The MMX registers cannot be used at the same time
939as the floating point stack.
940
941See Intel and AMD documentation, keeping in mind that the operand order in
942instructions is reversed from the Intel syntax.
943
f88c9eb0
SP
944@node i386-LWP
945@section AMD's Lightweight Profiling Instructions
946
947@cindex LWP, i386
948@cindex LWP, x86-64
949
950@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
951instruction set, available on AMD's Family 15h (Orochi) processors.
952
953LWP enables applications to collect and manage performance data, and
954react to performance events. The collection of performance data
955requires no context switches. LWP runs in the context of a thread and
956so several counters can be used independently across multiple threads.
957LWP can be used in both 64-bit and legacy 32-bit modes.
958
959For detailed information on the LWP instruction set, see the
960@cite{AMD Lightweight Profiling Specification} available at
961@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
962
87973e9f
QN
963@node i386-BMI
964@section Bit Manipulation Instructions
965
966@cindex BMI, i386
967@cindex BMI, x86-64
968
969@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
970
971BMI instructions provide several instructions implementing individual
972bit manipulation operations such as isolation, masking, setting, or
34bca508 973resetting.
87973e9f
QN
974
975@c Need to add a specification citation here when available.
976
2a2a0f38
QN
977@node i386-TBM
978@section AMD's Trailing Bit Manipulation Instructions
979
980@cindex TBM, i386
981@cindex TBM, x86-64
982
983@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
984instruction set, available on AMD's BDVER2 processors (Trinity and
985Viperfish).
986
987TBM instructions provide instructions implementing individual bit
988manipulation operations such as isolating, masking, setting, resetting,
989complementing, and operations on trailing zeros and ones.
990
991@c Need to add a specification citation here when available.
87973e9f 992
252b5132
RH
993@node i386-16bit
994@section Writing 16-bit Code
995
996@cindex i386 16-bit code
997@cindex 16-bit code, i386
998@cindex real-mode code, i386
eecb386c 999@cindex @code{code16gcc} directive, i386
252b5132
RH
1000@cindex @code{code16} directive, i386
1001@cindex @code{code32} directive, i386
55b62671
AJ
1002@cindex @code{code64} directive, i386
1003@cindex @code{code64} directive, x86-64
1004While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1005or 64-bit x86-64 code depending on the default configuration,
252b5132 1006it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1007mode code segments. To do this, put a @samp{.code16} or
1008@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1009be run in 16-bit mode. You can switch @code{@value{AS}} to writing
101032-bit code with the @samp{.code32} directive or 64-bit code with the
1011@samp{.code64} directive.
eecb386c
AM
1012
1013@samp{.code16gcc} provides experimental support for generating 16-bit
1014code from gcc, and differs from @samp{.code16} in that @samp{call},
1015@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1016@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1017default to 32-bit size. This is so that the stack pointer is
1018manipulated in the same way over function calls, allowing access to
1019function parameters at the same stack offsets as in 32-bit mode.
1020@samp{.code16gcc} also automatically adds address size prefixes where
1021necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1022
1023The code which @code{@value{AS}} generates in 16-bit mode will not
1024necessarily run on a 16-bit pre-80386 processor. To write code that
1025runs on such a processor, you must refrain from using @emph{any} 32-bit
1026constructs which require @code{@value{AS}} to output address or operand
1027size prefixes.
1028
1029Note that writing 16-bit code instructions by explicitly specifying a
1030prefix or an instruction mnemonic suffix within a 32-bit code section
1031generates different machine instructions than those generated for a
103216-bit code segment. In a 32-bit code section, the following code
1033generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1034value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1035
1036@smallexample
1037 pushw $4
1038@end smallexample
1039
1040The same code in a 16-bit code section would generate the machine
b45619c0 1041opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1042is correct since the processor default operand size is assumed to be 16
1043bits in a 16-bit code section.
1044
1045@node i386-Bugs
1046@section AT&T Syntax bugs
1047
1048The UnixWare assembler, and probably other AT&T derived ix86 Unix
1049assemblers, generate floating point instructions with reversed source
1050and destination registers in certain cases. Unfortunately, gcc and
1051possibly many other programs use this reversed syntax, so we're stuck
1052with it.
1053
1054For example
1055
1056@smallexample
1057 fsub %st,%st(3)
1058@end smallexample
1059@noindent
1060results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1061than the expected @samp{%st(3) - %st}. This happens with all the
1062non-commutative arithmetic floating point operations with two register
1063operands where the source register is @samp{%st} and the destination
1064register is @samp{%st(i)}.
1065
e413e4e9
AM
1066@node i386-Arch
1067@section Specifying CPU Architecture
1068
1069@cindex arch directive, i386
1070@cindex i386 arch directive
55b62671
AJ
1071@cindex arch directive, x86-64
1072@cindex x86-64 arch directive
e413e4e9
AM
1073
1074@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1075(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1076directive enables a warning when gas detects an instruction that is not
1077supported on the CPU specified. The choices for @var{cpu_type} are:
1078
1079@multitable @columnfractions .20 .20 .20 .20
1080@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1081@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1082@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1083@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7a9068fe 1084@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1543849b 1085@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1086@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
c7b0bd56 1087@item @samp{bdver4} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1088@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1089@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1090@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1091@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1092@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1093@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1094@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1095@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1096@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
7e8b059b 1097@item @samp{.smap} @tab @samp{.mpx}
a0046408 1098@item @samp{.smap} @tab @samp{.sha}
963f3586 1099@item @samp{.smap} @tab @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves}
dcf893b5 1100@item @samp{.smap} @tab @samp{.prefetchwt1}
90a915bf 1101@item @samp{.smap} @tab @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq}
1ceab344 1102@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1103@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1104@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1ceab344 1105@item @samp{.padlock}
43234a1e
L
1106@item @samp{.smap} @tab @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er}
1107@item @samp{.avx512pf} @tab @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a}
1108@item @samp{.sse5} @tab @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1109@item @samp{.abm} @tab @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1110@item @samp{.cx16} @tab @samp{.padlock}
e413e4e9
AM
1111@end multitable
1112
fddf5b5b
AM
1113Apart from the warning, there are only two other effects on
1114@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1115@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1116will automatically use a two byte opcode sequence. The larger three
1117byte opcode sequence is used on the 486 (and when no architecture is
1118specified) because it executes faster on the 486. Note that you can
1119explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1120Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1121@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1122conditional jumps will be promoted when necessary to a two instruction
1123sequence consisting of a conditional jump of the opposite sense around
1124an unconditional jump to the target.
1125
5c6af06e
JB
1126Following the CPU architecture (but not a sub-architecture, which are those
1127starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1128control automatic promotion of conditional jumps. @samp{jumps} is the
1129default, and enables jump promotion; All external jumps will be of the long
1130variety, and file-local jumps will be promoted as necessary.
1131(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1132byte offset jumps, and warns about file-local conditional jumps that
1133@code{@value{AS}} promotes.
fddf5b5b
AM
1134Unconditional jumps are treated as for @samp{jumps}.
1135
1136For example
1137
1138@smallexample
1139 .arch i8086,nojumps
1140@end smallexample
e413e4e9 1141
252b5132
RH
1142@node i386-Notes
1143@section Notes
1144
1145@cindex i386 @code{mul}, @code{imul} instructions
1146@cindex @code{mul} instruction, i386
1147@cindex @code{imul} instruction, i386
55b62671
AJ
1148@cindex @code{mul} instruction, x86-64
1149@cindex @code{imul} instruction, x86-64
252b5132 1150There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1151instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1152multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1153for @samp{imul}) can be output only in the one operand form. Thus,
1154@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1155the expanding multiply would clobber the @samp{%edx} register, and this
1156would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
115764-bit product in @samp{%edx:%eax}.
1158
1159We have added a two operand form of @samp{imul} when the first operand
1160is an immediate mode expression and the second operand is a register.
1161This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1162example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1163$69, %eax, %eax}.
1164
This page took 0.757058 seconds and 4 git commands to generate.