Add option -mfence-as-lock-add=[no|yes].
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
6f2750fe 1@c Copyright (C) 1991-2016 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
81486035 113@code{iamcu},
9103f4f4
L
114@code{k6},
115@code{k6_2},
116@code{athlon},
9103f4f4
L
117@code{opteron},
118@code{k8},
1ceab344 119@code{amdfam10},
68339fdf 120@code{bdver1},
af2f724e 121@code{bdver2},
5e5c50d3 122@code{bdver3},
c7b0bd56 123@code{bdver4},
029f3522 124@code{znver1},
7b458c12
L
125@code{btver1},
126@code{btver2},
9103f4f4
L
127@code{generic32} and
128@code{generic64}.
129
34bca508 130In addition to the basic instruction set, the assembler can be told to
6305a203
L
131accept various extension mnemonics. For example,
132@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133@var{vmx}. The following extensions are currently supported:
309d3373
JB
134@code{8087},
135@code{287},
136@code{387},
137@code{no87},
6305a203 138@code{mmx},
309d3373 139@code{nommx},
6305a203
L
140@code{sse},
141@code{sse2},
142@code{sse3},
143@code{ssse3},
144@code{sse4.1},
145@code{sse4.2},
146@code{sse4},
309d3373 147@code{nosse},
c0f3af97 148@code{avx},
6c30d220 149@code{avx2},
e2e1fcde
L
150@code{adx},
151@code{rdseed},
152@code{prfchw},
5c111e37 153@code{smap},
7e8b059b 154@code{mpx},
a0046408 155@code{sha},
1dfc6506
L
156@code{prefetchwt1},
157@code{clflushopt},
158@code{se1},
c5e7287a 159@code{clwb},
9d8596f0 160@code{pcommit},
43234a1e
L
161@code{avx512f},
162@code{avx512cd},
163@code{avx512er},
164@code{avx512pf},
1dfc6506
L
165@code{avx512vl},
166@code{avx512bw},
167@code{avx512dq},
2cc1b5aa 168@code{avx512ifma},
14f195c9 169@code{avx512vbmi},
309d3373 170@code{noavx},
6305a203 171@code{vmx},
8729a6f6 172@code{vmfunc},
6305a203 173@code{smx},
f03fe4c1 174@code{xsave},
c7b8aa3a 175@code{xsaveopt},
1dfc6506
L
176@code{xsavec},
177@code{xsaves},
c0f3af97 178@code{aes},
594ab6a3 179@code{pclmul},
c7b8aa3a
L
180@code{fsgsbase},
181@code{rdrnd},
182@code{f16c},
6c30d220 183@code{bmi2},
c0f3af97 184@code{fma},
f1f8f695
L
185@code{movbe},
186@code{ept},
6c30d220 187@code{lzcnt},
42164a71
L
188@code{hle},
189@code{rtm},
6c30d220 190@code{invpcid},
bd5295b2 191@code{clflush},
9916071f 192@code{mwaitx},
029f3522 193@code{clzero},
f88c9eb0 194@code{lwp},
5dd85c99
SP
195@code{fma4},
196@code{xop},
60aa667e 197@code{cx16},
bd5295b2 198@code{syscall},
1b7f3fb0 199@code{rdtscp},
6305a203
L
200@code{3dnow},
201@code{3dnowa},
202@code{sse4a},
203@code{sse5},
204@code{svme},
205@code{abm} and
206@code{padlock}.
309d3373
JB
207Note that rather than extending a basic instruction set, the extension
208mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
209
210When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
211@code{.arch} directive will take precedent.
212
213@cindex @samp{-mtune=} option, i386
214@cindex @samp{-mtune=} option, x86-64
215@item -mtune=@var{CPU}
216This option specifies a processor to optimize for. When used in
217conjunction with the @option{-march} option, only instructions
218of the processor specified by the @option{-march} option will be
219generated.
220
6305a203
L
221Valid @var{CPU} values are identical to the processor list of
222@option{-march=@var{CPU}}.
9103f4f4 223
c0f3af97
L
224@cindex @samp{-msse2avx} option, i386
225@cindex @samp{-msse2avx} option, x86-64
226@item -msse2avx
227This option specifies that the assembler should encode SSE instructions
228with VEX prefix.
229
daf50ae7
L
230@cindex @samp{-msse-check=} option, i386
231@cindex @samp{-msse-check=} option, x86-64
232@item -msse-check=@var{none}
1f9bb1ca
AS
233@itemx -msse-check=@var{warning}
234@itemx -msse-check=@var{error}
9aff4b7a 235These options control if the assembler should check SSE instructions.
daf50ae7
L
236@option{-msse-check=@var{none}} will make the assembler not to check SSE
237instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 238will make the assembler issue a warning for any SSE instruction.
daf50ae7 239@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 240for any SSE instruction.
daf50ae7 241
539f890d
L
242@cindex @samp{-mavxscalar=} option, i386
243@cindex @samp{-mavxscalar=} option, x86-64
244@item -mavxscalar=@var{128}
1f9bb1ca 245@itemx -mavxscalar=@var{256}
2aab8acd 246These options control how the assembler should encode scalar AVX
539f890d
L
247instructions. @option{-mavxscalar=@var{128}} will encode scalar
248AVX instructions with 128bit vector length, which is the default.
249@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
250with 256bit vector length.
251
43234a1e
L
252@cindex @samp{-mevexlig=} option, i386
253@cindex @samp{-mevexlig=} option, x86-64
254@item -mevexlig=@var{128}
255@itemx -mevexlig=@var{256}
256@itemx -mevexlig=@var{512}
257These options control how the assembler should encode length-ignored
258(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
259EVEX instructions with 128bit vector length, which is the default.
260@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
261encode LIG EVEX instructions with 256bit and 512bit vector length,
262respectively.
263
264@cindex @samp{-mevexwig=} option, i386
265@cindex @samp{-mevexwig=} option, x86-64
266@item -mevexwig=@var{0}
267@itemx -mevexwig=@var{1}
268These options control how the assembler should encode w-ignored (WIG)
269EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
270EVEX instructions with evex.w = 0, which is the default.
271@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
272evex.w = 1.
273
1efbbeb4
L
274@cindex @samp{-mmnemonic=} option, i386
275@cindex @samp{-mmnemonic=} option, x86-64
276@item -mmnemonic=@var{att}
1f9bb1ca 277@itemx -mmnemonic=@var{intel}
34bca508 278This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
279The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
280take precedent.
281
282@cindex @samp{-msyntax=} option, i386
283@cindex @samp{-msyntax=} option, x86-64
284@item -msyntax=@var{att}
1f9bb1ca 285@itemx -msyntax=@var{intel}
34bca508 286This option specifies instruction syntax when processing instructions.
1efbbeb4
L
287The @code{.att_syntax} and @code{.intel_syntax} directives will
288take precedent.
289
290@cindex @samp{-mnaked-reg} option, i386
291@cindex @samp{-mnaked-reg} option, x86-64
292@item -mnaked-reg
293This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 294The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 295
7e8b059b
L
296@cindex @samp{-madd-bnd-prefix} option, i386
297@cindex @samp{-madd-bnd-prefix} option, x86-64
298@item -madd-bnd-prefix
299This option forces the assembler to add BND prefix to all branches, even
300if such prefix was not explicitly specified in the source code.
301
8dcea932
L
302@cindex @samp{-mshared} option, i386
303@cindex @samp{-mshared} option, x86-64
304@item -mno-shared
305On ELF target, the assembler normally optimizes out non-PLT relocations
306against defined non-weak global branch targets with default visibility.
307The @samp{-mshared} option tells the assembler to generate code which
308may go into a shared library where all non-weak global branch targets
309with default visibility can be preempted. The resulting code is
310slightly bigger. This option only affects the handling of branch
311instructions.
312
167ad85b
TG
313@cindex @samp{-mbig-obj} option, x86-64
314@item -mbig-obj
315On x86-64 PE/COFF target this option forces the use of big object file
316format, which allows more than 32768 sections.
317
d022bddd
IT
318@cindex @samp{-momit-lock-prefix=} option, i386
319@cindex @samp{-momit-lock-prefix=} option, x86-64
320@item -momit-lock-prefix=@var{no}
321@itemx -momit-lock-prefix=@var{yes}
322These options control how the assembler should encode lock prefix.
323This option is intended as a workaround for processors, that fail on
324lock prefix. This option can only be safely used with single-core,
325single-thread computers
326@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
327@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
328which is the default.
329
e4e00185
AS
330@cindex @samp{-mfence-as-lock-add=} option, i386
331@cindex @samp{-mfence-as-lock-add=} option, x86-64
332@item -mfence-as-lock-add=@var{no}
333@itemx -mfence-as-lock-add=@var{yes}
334These options control how the assembler should encode lfence, mfence and
335sfence.
336@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
337sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
338@samp{lock addl $0x0, (%esp)} in 32-bit mode.
339@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
340sfence as usual, which is the default.
341
d3d3c6db
IT
342@cindex @samp{-mevexrcig=} option, i386
343@cindex @samp{-mevexrcig=} option, x86-64
344@item -mevexrcig=@var{rne}
345@itemx -mevexrcig=@var{rd}
346@itemx -mevexrcig=@var{ru}
347@itemx -mevexrcig=@var{rz}
348These options control how the assembler should encode SAE-only
349EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
350of EVEX instruction with 00, which is the default.
351@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
352and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
353with 01, 10 and 11 RC bits, respectively.
354
5db04b09
L
355@cindex @samp{-mamd64} option, x86-64
356@cindex @samp{-mintel64} option, x86-64
357@item -mamd64
358@itemx -mintel64
359This option specifies that the assembler should accept only AMD64 or
360Intel64 ISA in 64-bit mode. The default is to accept both.
361
55b62671 362@end table
731caf76 363@c man end
e413e4e9 364
a6c24e68
NC
365@node i386-Directives
366@section x86 specific Directives
367
368@cindex machine directives, x86
369@cindex x86 machine directives
370@table @code
371
372@cindex @code{lcomm} directive, COFF
373@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
374Reserve @var{length} (an absolute expression) bytes for a local common
375denoted by @var{symbol}. The section and value of @var{symbol} are
376those of the new local common. The addresses are allocated in the bss
704209c0
NC
377section, so that at run-time the bytes start off zeroed. Since
378@var{symbol} is not declared global, it is normally not visible to
379@code{@value{LD}}. The optional third parameter, @var{alignment},
380specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
381
382This directive is only available for COFF based x86 targets.
383
384@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
385@c .largecomm
386
387@end table
388
252b5132 389@node i386-Syntax
7c31ae13
NC
390@section i386 Syntactical Considerations
391@menu
392* i386-Variations:: AT&T Syntax versus Intel Syntax
393* i386-Chars:: Special Characters
394@end menu
395
396@node i386-Variations
397@subsection AT&T Syntax versus Intel Syntax
252b5132 398
e413e4e9
AM
399@cindex i386 intel_syntax pseudo op
400@cindex intel_syntax pseudo op, i386
401@cindex i386 att_syntax pseudo op
402@cindex att_syntax pseudo op, i386
252b5132
RH
403@cindex i386 syntax compatibility
404@cindex syntax compatibility, i386
55b62671
AJ
405@cindex x86-64 intel_syntax pseudo op
406@cindex intel_syntax pseudo op, x86-64
407@cindex x86-64 att_syntax pseudo op
408@cindex att_syntax pseudo op, x86-64
409@cindex x86-64 syntax compatibility
410@cindex syntax compatibility, x86-64
e413e4e9
AM
411
412@code{@value{AS}} now supports assembly using Intel assembler syntax.
413@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
414back to the usual AT&T mode for compatibility with the output of
415@code{@value{GCC}}. Either of these directives may have an optional
416argument, @code{prefix}, or @code{noprefix} specifying whether registers
417require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
418different from Intel syntax. We mention these differences because
419almost all 80386 documents use Intel syntax. Notable differences
420between the two syntaxes are:
421
422@cindex immediate operands, i386
423@cindex i386 immediate operands
424@cindex register operands, i386
425@cindex i386 register operands
426@cindex jump/call operands, i386
427@cindex i386 jump/call operands
428@cindex operand delimiters, i386
55b62671
AJ
429
430@cindex immediate operands, x86-64
431@cindex x86-64 immediate operands
432@cindex register operands, x86-64
433@cindex x86-64 register operands
434@cindex jump/call operands, x86-64
435@cindex x86-64 jump/call operands
436@cindex operand delimiters, x86-64
252b5132
RH
437@itemize @bullet
438@item
439AT&T immediate operands are preceded by @samp{$}; Intel immediate
440operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
441AT&T register operands are preceded by @samp{%}; Intel register operands
442are undelimited. AT&T absolute (as opposed to PC relative) jump/call
443operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
444
445@cindex i386 source, destination operands
446@cindex source, destination operands; i386
55b62671
AJ
447@cindex x86-64 source, destination operands
448@cindex source, destination operands; x86-64
252b5132
RH
449@item
450AT&T and Intel syntax use the opposite order for source and destination
451operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
452@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
453previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
454instructions with 2 immediate operands, such as the @samp{enter}
455instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
456
457@cindex mnemonic suffixes, i386
458@cindex sizes operands, i386
459@cindex i386 size suffixes
55b62671
AJ
460@cindex mnemonic suffixes, x86-64
461@cindex sizes operands, x86-64
462@cindex x86-64 size suffixes
252b5132
RH
463@item
464In AT&T syntax the size of memory operands is determined from the last
465character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
466@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
467(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
468this by prefixing memory operands (@emph{not} the instruction mnemonics) with
469@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
470Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
471syntax.
252b5132 472
4b06377f
L
473In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
474instruction with the 64-bit displacement or immediate operand.
475
252b5132
RH
476@cindex return instructions, i386
477@cindex i386 jump, call, return
55b62671
AJ
478@cindex return instructions, x86-64
479@cindex x86-64 jump, call, return
252b5132
RH
480@item
481Immediate form long jumps and calls are
482@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
483Intel syntax is
484@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
485instruction
486is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
487@samp{ret far @var{stack-adjust}}.
488
489@cindex sections, i386
490@cindex i386 sections
55b62671
AJ
491@cindex sections, x86-64
492@cindex x86-64 sections
252b5132
RH
493@item
494The AT&T assembler does not provide support for multiple section
495programs. Unix style systems expect all programs to be single sections.
496@end itemize
497
7c31ae13
NC
498@node i386-Chars
499@subsection Special Characters
500
501@cindex line comment character, i386
502@cindex i386 line comment character
503The presence of a @samp{#} appearing anywhere on a line indicates the
504start of a comment that extends to the end of that line.
505
506If a @samp{#} appears as the first character of a line then the whole
507line is treated as a comment, but in this case the line can also be a
508logical line number directive (@pxref{Comments}) or a preprocessor
509control command (@pxref{Preprocessing}).
510
511If the @option{--divide} command line option has not been specified
512then the @samp{/} character appearing anywhere on a line also
513introduces a line comment.
514
515@cindex line separator, i386
516@cindex statement separator, i386
517@cindex i386 line separator
518The @samp{;} character can be used to separate statements on the same
519line.
520
252b5132 521@node i386-Mnemonics
d3b47e2b
L
522@section i386-Mnemonics
523@subsection Instruction Naming
252b5132
RH
524
525@cindex i386 instruction naming
526@cindex instruction naming, i386
55b62671
AJ
527@cindex x86-64 instruction naming
528@cindex instruction naming, x86-64
529
252b5132 530Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
531specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
532and @samp{q} specify byte, word, long and quadruple word operands. If
533no suffix is specified by an instruction then @code{@value{AS}} tries to
534fill in the missing suffix based on the destination register operand
535(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
536to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
537@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
538assembler which assumes that a missing mnemonic suffix implies long
539operand size. (This incompatibility does not affect compiler output
540since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
541
542Almost all instructions have the same names in AT&T and Intel format.
543There are a few exceptions. The sign extend and zero extend
544instructions need two sizes to specify them. They need a size to
545sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
546is accomplished by using two instruction mnemonic suffixes in AT&T
547syntax. Base names for sign extend and zero extend are
548@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
549and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
550are tacked on to this base name, the @emph{from} suffix before the
551@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
552``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
553thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
554@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
555@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
556quadruple word).
252b5132 557
b6169b20
L
558@cindex encoding options, i386
559@cindex encoding options, x86-64
560
561Different encoding options can be specified via optional mnemonic
562suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
563moving from one register to another. @samp{.d8} or @samp{.d32} suffix
564prefers 8bit or 32bit displacement in encoding.
b6169b20 565
252b5132
RH
566@cindex conversion instructions, i386
567@cindex i386 conversion instructions
55b62671
AJ
568@cindex conversion instructions, x86-64
569@cindex x86-64 conversion instructions
252b5132
RH
570The Intel-syntax conversion instructions
571
572@itemize @bullet
573@item
574@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
575
576@item
577@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
578
579@item
580@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
581
582@item
583@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
584
585@item
586@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
587(x86-64 only),
588
589@item
d5f0cf92 590@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 591@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
592@end itemize
593
594@noindent
55b62671
AJ
595are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
596@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
597instructions.
252b5132
RH
598
599@cindex jump instructions, i386
600@cindex call instructions, i386
55b62671
AJ
601@cindex jump instructions, x86-64
602@cindex call instructions, x86-64
252b5132
RH
603Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
604AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
605convention.
606
d3b47e2b 607@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
608
609@cindex i386 mnemonic compatibility
610@cindex mnemonic compatibility, i386
611
612@code{@value{AS}} supports assembly using Intel mnemonic.
613@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
614@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
615syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
616Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
617@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
618@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
619assembler with different mnemonics from those in Intel IA32 specification.
620@code{@value{GCC}} generates those instructions with AT&T mnemonic.
621
252b5132
RH
622@node i386-Regs
623@section Register Naming
624
625@cindex i386 registers
626@cindex registers, i386
55b62671
AJ
627@cindex x86-64 registers
628@cindex registers, x86-64
252b5132
RH
629Register operands are always prefixed with @samp{%}. The 80386 registers
630consist of
631
632@itemize @bullet
633@item
634the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
635@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
636frame pointer), and @samp{%esp} (the stack pointer).
637
638@item
639the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
640@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
641
642@item
643the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
644@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
645are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
646@samp{%cx}, and @samp{%dx})
647
648@item
649the 6 section registers @samp{%cs} (code section), @samp{%ds}
650(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
651and @samp{%gs}.
652
653@item
654the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
655@samp{%cr3}.
656
657@item
658the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
659@samp{%db3}, @samp{%db6}, and @samp{%db7}.
660
661@item
662the 2 test registers @samp{%tr6} and @samp{%tr7}.
663
664@item
665the 8 floating point register stack @samp{%st} or equivalently
666@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
667@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
668These registers are overloaded by 8 MMX registers @samp{%mm0},
669@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
670@samp{%mm6} and @samp{%mm7}.
671
672@item
673the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
674@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
675@end itemize
676
677The AMD x86-64 architecture extends the register set by:
678
679@itemize @bullet
680@item
681enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
682accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
683@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
684pointer)
685
686@item
687the 8 extended registers @samp{%r8}--@samp{%r15}.
688
689@item
690the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
691
692@item
693the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
694
695@item
696the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
697
698@item
699the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
700
701@item
702the 8 debug registers: @samp{%db8}--@samp{%db15}.
703
704@item
705the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
706@end itemize
707
708@node i386-Prefixes
709@section Instruction Prefixes
710
711@cindex i386 instruction prefixes
712@cindex instruction prefixes, i386
713@cindex prefixes, i386
714Instruction prefixes are used to modify the following instruction. They
715are used to repeat string instructions, to provide section overrides, to
716perform bus lock operations, and to change operand and address sizes.
717(Most instructions that normally operate on 32-bit operands will use
71816-bit operands if the instruction has an ``operand size'' prefix.)
719Instruction prefixes are best written on the same line as the instruction
720they act upon. For example, the @samp{scas} (scan string) instruction is
721repeated with:
722
723@smallexample
724 repne scas %es:(%edi),%al
725@end smallexample
726
727You may also place prefixes on the lines immediately preceding the
728instruction, but this circumvents checks that @code{@value{AS}} does
729with prefixes, and will not work with all prefixes.
730
731Here is a list of instruction prefixes:
732
733@cindex section override prefixes, i386
734@itemize @bullet
735@item
736Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
737@samp{fs}, @samp{gs}. These are automatically added by specifying
738using the @var{section}:@var{memory-operand} form for memory references.
739
740@cindex size prefixes, i386
741@item
742Operand/Address size prefixes @samp{data16} and @samp{addr16}
743change 32-bit operands/addresses into 16-bit operands/addresses,
744while @samp{data32} and @samp{addr32} change 16-bit ones (in a
745@code{.code16} section) into 32-bit operands/addresses. These prefixes
746@emph{must} appear on the same line of code as the instruction they
747modify. For example, in a 16-bit @code{.code16} section, you might
748write:
749
750@smallexample
751 addr32 jmpl *(%ebx)
752@end smallexample
753
754@cindex bus lock prefixes, i386
755@cindex inhibiting interrupts, i386
756@item
757The bus lock prefix @samp{lock} inhibits interrupts during execution of
758the instruction it precedes. (This is only valid with certain
759instructions; see a 80386 manual for details).
760
761@cindex coprocessor wait, i386
762@item
763The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
764complete the current instruction. This should never be needed for the
76580386/80387 combination.
766
767@cindex repeat prefixes, i386
768@item
769The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
770to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
771times if the current address size is 16-bits).
55b62671
AJ
772@cindex REX prefixes, i386
773@item
774The @samp{rex} family of prefixes is used by x86-64 to encode
775extensions to i386 instruction set. The @samp{rex} prefix has four
776bits --- an operand size overwrite (@code{64}) used to change operand size
777from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
778register set.
779
780You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
781instruction emits @samp{rex} prefix with all the bits set. By omitting
782the @code{64}, @code{x}, @code{y} or @code{z} you may write other
783prefixes as well. Normally, there is no need to write the prefixes
784explicitly, since gas will automatically generate them based on the
785instruction operands.
252b5132
RH
786@end itemize
787
788@node i386-Memory
789@section Memory References
790
791@cindex i386 memory references
792@cindex memory references, i386
55b62671
AJ
793@cindex x86-64 memory references
794@cindex memory references, x86-64
252b5132
RH
795An Intel syntax indirect memory reference of the form
796
797@smallexample
798@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
799@end smallexample
800
801@noindent
802is translated into the AT&T syntax
803
804@smallexample
805@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
806@end smallexample
807
808@noindent
809where @var{base} and @var{index} are the optional 32-bit base and
810index registers, @var{disp} is the optional displacement, and
811@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
812to calculate the address of the operand. If no @var{scale} is
813specified, @var{scale} is taken to be 1. @var{section} specifies the
814optional section register for the memory operand, and may override the
815default section register (see a 80386 manual for section register
816defaults). Note that section overrides in AT&T syntax @emph{must}
817be preceded by a @samp{%}. If you specify a section override which
818coincides with the default section register, @code{@value{AS}} does @emph{not}
819output any section register override prefixes to assemble the given
820instruction. Thus, section overrides can be specified to emphasize which
821section register is used for a given memory operand.
822
823Here are some examples of Intel and AT&T style memory references:
824
825@table @asis
826@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
827@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
828missing, and the default section is used (@samp{%ss} for addressing with
829@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
830
831@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
832@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
833@samp{foo}. All other fields are missing. The section register here
834defaults to @samp{%ds}.
835
836@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
837This uses the value pointed to by @samp{foo} as a memory operand.
838Note that @var{base} and @var{index} are both missing, but there is only
839@emph{one} @samp{,}. This is a syntactic exception.
840
841@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
842This selects the contents of the variable @samp{foo} with section
843register @var{section} being @samp{%gs}.
844@end table
845
846Absolute (as opposed to PC relative) call and jump operands must be
847prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
848always chooses PC relative addressing for jump/call labels.
849
850Any instruction that has a memory operand, but no register operand,
55b62671
AJ
851@emph{must} specify its size (byte, word, long, or quadruple) with an
852instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
853respectively).
854
855The x86-64 architecture adds an RIP (instruction pointer relative)
856addressing. This addressing mode is specified by using @samp{rip} as a
857base register. Only constant offsets are valid. For example:
858
859@table @asis
860@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
861Points to the address 1234 bytes past the end of the current
862instruction.
863
864@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
865Points to the @code{symbol} in RIP relative way, this is shorter than
866the default absolute addressing.
867@end table
868
869Other addressing modes remain unchanged in x86-64 architecture, except
870registers used are 64-bit instead of 32-bit.
252b5132 871
fddf5b5b 872@node i386-Jumps
252b5132
RH
873@section Handling of Jump Instructions
874
875@cindex jump optimization, i386
876@cindex i386 jump optimization
55b62671
AJ
877@cindex jump optimization, x86-64
878@cindex x86-64 jump optimization
252b5132
RH
879Jump instructions are always optimized to use the smallest possible
880displacements. This is accomplished by using byte (8-bit) displacement
881jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 882is insufficient a long displacement is used. We do not support
252b5132
RH
883word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
884instruction with the @samp{data16} instruction prefix), since the 80386
885insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 886is added. (See also @pxref{i386-Arch})
252b5132
RH
887
888Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
889@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
890displacements, so that if you use these instructions (@code{@value{GCC}} does
891not use them) you may get an error message (and incorrect code). The AT&T
89280386 assembler tries to get around this problem by expanding @samp{jcxz foo}
893to
894
895@smallexample
896 jcxz cx_zero
897 jmp cx_nonzero
898cx_zero: jmp foo
899cx_nonzero:
900@end smallexample
901
902@node i386-Float
903@section Floating Point
904
905@cindex i386 floating point
906@cindex floating point, i386
55b62671
AJ
907@cindex x86-64 floating point
908@cindex floating point, x86-64
252b5132
RH
909All 80387 floating point types except packed BCD are supported.
910(BCD support may be added without much difficulty). These data
911types are 16-, 32-, and 64- bit integers, and single (32-bit),
912double (64-bit), and extended (80-bit) precision floating point.
913Each supported type has an instruction mnemonic suffix and a constructor
914associated with it. Instruction mnemonic suffixes specify the operand's
915data type. Constructors build these data types into memory.
916
917@cindex @code{float} directive, i386
918@cindex @code{single} directive, i386
919@cindex @code{double} directive, i386
920@cindex @code{tfloat} directive, i386
55b62671
AJ
921@cindex @code{float} directive, x86-64
922@cindex @code{single} directive, x86-64
923@cindex @code{double} directive, x86-64
924@cindex @code{tfloat} directive, x86-64
252b5132
RH
925@itemize @bullet
926@item
927Floating point constructors are @samp{.float} or @samp{.single},
928@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
929These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
930and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
931only supports this format via the @samp{fldt} (load 80-bit real to stack
932top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
933
934@cindex @code{word} directive, i386
935@cindex @code{long} directive, i386
936@cindex @code{int} directive, i386
937@cindex @code{quad} directive, i386
55b62671
AJ
938@cindex @code{word} directive, x86-64
939@cindex @code{long} directive, x86-64
940@cindex @code{int} directive, x86-64
941@cindex @code{quad} directive, x86-64
252b5132
RH
942@item
943Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
944@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
945corresponding instruction mnemonic suffixes are @samp{s} (single),
946@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
947the 64-bit @samp{q} format is only present in the @samp{fildq} (load
948quad integer to stack top) and @samp{fistpq} (store quad integer and pop
949stack) instructions.
950@end itemize
951
952Register to register operations should not use instruction mnemonic suffixes.
953@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
954wrote @samp{fst %st, %st(1)}, since all register to register operations
955use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
956which converts @samp{%st} from 80-bit to 64-bit floating point format,
957then stores the result in the 4 byte location @samp{mem})
958
959@node i386-SIMD
960@section Intel's MMX and AMD's 3DNow! SIMD Operations
961
962@cindex MMX, i386
963@cindex 3DNow!, i386
964@cindex SIMD, i386
55b62671
AJ
965@cindex MMX, x86-64
966@cindex 3DNow!, x86-64
967@cindex SIMD, x86-64
252b5132
RH
968
969@code{@value{AS}} supports Intel's MMX instruction set (SIMD
970instructions for integer data), available on Intel's Pentium MMX
971processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 972Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
973instruction set (SIMD instructions for 32-bit floating point data)
974available on AMD's K6-2 processor and possibly others in the future.
975
976Currently, @code{@value{AS}} does not support Intel's floating point
977SIMD, Katmai (KNI).
978
979The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
980@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
98116-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
982floating point values. The MMX registers cannot be used at the same time
983as the floating point stack.
984
985See Intel and AMD documentation, keeping in mind that the operand order in
986instructions is reversed from the Intel syntax.
987
f88c9eb0
SP
988@node i386-LWP
989@section AMD's Lightweight Profiling Instructions
990
991@cindex LWP, i386
992@cindex LWP, x86-64
993
994@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
995instruction set, available on AMD's Family 15h (Orochi) processors.
996
997LWP enables applications to collect and manage performance data, and
998react to performance events. The collection of performance data
999requires no context switches. LWP runs in the context of a thread and
1000so several counters can be used independently across multiple threads.
1001LWP can be used in both 64-bit and legacy 32-bit modes.
1002
1003For detailed information on the LWP instruction set, see the
1004@cite{AMD Lightweight Profiling Specification} available at
1005@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1006
87973e9f
QN
1007@node i386-BMI
1008@section Bit Manipulation Instructions
1009
1010@cindex BMI, i386
1011@cindex BMI, x86-64
1012
1013@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1014
1015BMI instructions provide several instructions implementing individual
1016bit manipulation operations such as isolation, masking, setting, or
34bca508 1017resetting.
87973e9f
QN
1018
1019@c Need to add a specification citation here when available.
1020
2a2a0f38
QN
1021@node i386-TBM
1022@section AMD's Trailing Bit Manipulation Instructions
1023
1024@cindex TBM, i386
1025@cindex TBM, x86-64
1026
1027@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1028instruction set, available on AMD's BDVER2 processors (Trinity and
1029Viperfish).
1030
1031TBM instructions provide instructions implementing individual bit
1032manipulation operations such as isolating, masking, setting, resetting,
1033complementing, and operations on trailing zeros and ones.
1034
1035@c Need to add a specification citation here when available.
87973e9f 1036
252b5132
RH
1037@node i386-16bit
1038@section Writing 16-bit Code
1039
1040@cindex i386 16-bit code
1041@cindex 16-bit code, i386
1042@cindex real-mode code, i386
eecb386c 1043@cindex @code{code16gcc} directive, i386
252b5132
RH
1044@cindex @code{code16} directive, i386
1045@cindex @code{code32} directive, i386
55b62671
AJ
1046@cindex @code{code64} directive, i386
1047@cindex @code{code64} directive, x86-64
1048While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1049or 64-bit x86-64 code depending on the default configuration,
252b5132 1050it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1051mode code segments. To do this, put a @samp{.code16} or
1052@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1053be run in 16-bit mode. You can switch @code{@value{AS}} to writing
105432-bit code with the @samp{.code32} directive or 64-bit code with the
1055@samp{.code64} directive.
eecb386c
AM
1056
1057@samp{.code16gcc} provides experimental support for generating 16-bit
1058code from gcc, and differs from @samp{.code16} in that @samp{call},
1059@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1060@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1061default to 32-bit size. This is so that the stack pointer is
1062manipulated in the same way over function calls, allowing access to
1063function parameters at the same stack offsets as in 32-bit mode.
1064@samp{.code16gcc} also automatically adds address size prefixes where
1065necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1066
1067The code which @code{@value{AS}} generates in 16-bit mode will not
1068necessarily run on a 16-bit pre-80386 processor. To write code that
1069runs on such a processor, you must refrain from using @emph{any} 32-bit
1070constructs which require @code{@value{AS}} to output address or operand
1071size prefixes.
1072
1073Note that writing 16-bit code instructions by explicitly specifying a
1074prefix or an instruction mnemonic suffix within a 32-bit code section
1075generates different machine instructions than those generated for a
107616-bit code segment. In a 32-bit code section, the following code
1077generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1078value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1079
1080@smallexample
1081 pushw $4
1082@end smallexample
1083
1084The same code in a 16-bit code section would generate the machine
b45619c0 1085opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1086is correct since the processor default operand size is assumed to be 16
1087bits in a 16-bit code section.
1088
e413e4e9
AM
1089@node i386-Arch
1090@section Specifying CPU Architecture
1091
1092@cindex arch directive, i386
1093@cindex i386 arch directive
55b62671
AJ
1094@cindex arch directive, x86-64
1095@cindex x86-64 arch directive
e413e4e9
AM
1096
1097@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1098(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1099directive enables a warning when gas detects an instruction that is not
1100supported on the CPU specified. The choices for @var{cpu_type} are:
1101
1102@multitable @columnfractions .20 .20 .20 .20
1103@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1104@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1105@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1106@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1107@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1108@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1109@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1110@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1111@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1112@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1113@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1114@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1115@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1116@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1117@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1118@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1119@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1120@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1121@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1122@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1123@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
14f195c9 1124@item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1ceab344 1125@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1126@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1127@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
9916071f 1128@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1129@end multitable
1130
fddf5b5b
AM
1131Apart from the warning, there are only two other effects on
1132@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1133@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1134will automatically use a two byte opcode sequence. The larger three
1135byte opcode sequence is used on the 486 (and when no architecture is
1136specified) because it executes faster on the 486. Note that you can
1137explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1138Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1139@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1140conditional jumps will be promoted when necessary to a two instruction
1141sequence consisting of a conditional jump of the opposite sense around
1142an unconditional jump to the target.
1143
5c6af06e
JB
1144Following the CPU architecture (but not a sub-architecture, which are those
1145starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1146control automatic promotion of conditional jumps. @samp{jumps} is the
1147default, and enables jump promotion; All external jumps will be of the long
1148variety, and file-local jumps will be promoted as necessary.
1149(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1150byte offset jumps, and warns about file-local conditional jumps that
1151@code{@value{AS}} promotes.
fddf5b5b
AM
1152Unconditional jumps are treated as for @samp{jumps}.
1153
1154For example
1155
1156@smallexample
1157 .arch i8086,nojumps
1158@end smallexample
e413e4e9 1159
5c9352f3
AM
1160@node i386-Bugs
1161@section AT&T Syntax bugs
1162
1163The UnixWare assembler, and probably other AT&T derived ix86 Unix
1164assemblers, generate floating point instructions with reversed source
1165and destination registers in certain cases. Unfortunately, gcc and
1166possibly many other programs use this reversed syntax, so we're stuck
1167with it.
1168
1169For example
1170
1171@smallexample
1172 fsub %st,%st(3)
1173@end smallexample
1174@noindent
1175results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1176than the expected @samp{%st(3) - %st}. This happens with all the
1177non-commutative arithmetic floating point operations with two register
1178operands where the source register is @samp{%st} and the destination
1179register is @samp{%st(i)}.
1180
252b5132
RH
1181@node i386-Notes
1182@section Notes
1183
1184@cindex i386 @code{mul}, @code{imul} instructions
1185@cindex @code{mul} instruction, i386
1186@cindex @code{imul} instruction, i386
55b62671
AJ
1187@cindex @code{mul} instruction, x86-64
1188@cindex @code{imul} instruction, x86-64
252b5132 1189There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1190instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1191multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1192for @samp{imul}) can be output only in the one operand form. Thus,
1193@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1194the expanding multiply would clobber the @samp{%edx} register, and this
1195would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
119664-bit product in @samp{%edx:%eax}.
1197
1198We have added a two operand form of @samp{imul} when the first operand
1199is an immediate mode expression and the second operand is a register.
1200This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1201example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1202$69, %eax, %eax}.
1203
This page took 0.705928 seconds and 4 git commands to generate.