Disable gdbserver on host != target configurations
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
b3adc24a 1@c Copyright (C) 1991-2020 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
bc31405e 40* i386-ISA:: AMD64 ISA vs. Intel64 ISA
252b5132
RH
41* i386-Bugs:: AT&T Syntax bugs
42* i386-Notes:: Notes
43@end menu
44
45@node i386-Options
46@section Options
47
55b62671
AJ
48@cindex options for i386
49@cindex options for x86-64
50@cindex i386 options
34bca508 51@cindex x86-64 options
55b62671
AJ
52
53The i386 version of @code{@value{AS}} has a few machine
54dependent options:
55
731caf76
L
56@c man begin OPTIONS
57@table @gcctabopt
55b62671
AJ
58@cindex @samp{--32} option, i386
59@cindex @samp{--32} option, x86-64
570561f7
L
60@cindex @samp{--x32} option, i386
61@cindex @samp{--x32} option, x86-64
55b62671
AJ
62@cindex @samp{--64} option, i386
63@cindex @samp{--64} option, x86-64
570561f7 64@item --32 | --x32 | --64
35cc6a0b 65Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 66implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
67imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68respectively.
55b62671
AJ
69
70These options are only available with the ELF object file format, and
71require that the necessary BFD support has been included (on a 32-bit
72platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73usage and use x86-64 as target platform).
12b55ccc
L
74
75@item -n
76By default, x86 GAS replaces multiple nop instructions used for
77alignment within code sections with multi-byte nop instructions such
f9233288
JW
78as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
34bca508 95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
81486035 115@code{iamcu},
9103f4f4
L
116@code{k6},
117@code{k6_2},
118@code{athlon},
9103f4f4
L
119@code{opteron},
120@code{k8},
1ceab344 121@code{amdfam10},
68339fdf 122@code{bdver1},
af2f724e 123@code{bdver2},
5e5c50d3 124@code{bdver3},
c7b0bd56 125@code{bdver4},
029f3522 126@code{znver1},
a9660a6f 127@code{znver2},
7b458c12
L
128@code{btver1},
129@code{btver2},
9103f4f4
L
130@code{generic32} and
131@code{generic64}.
132
34bca508 133In addition to the basic instruction set, the assembler can be told to
6305a203
L
134accept various extension mnemonics. For example,
135@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136@var{vmx}. The following extensions are currently supported:
309d3373
JB
137@code{8087},
138@code{287},
139@code{387},
1848e567 140@code{687},
309d3373 141@code{no87},
1848e567
L
142@code{no287},
143@code{no387},
144@code{no687},
d871f3f4
L
145@code{cmov},
146@code{nocmov},
147@code{fxsr},
148@code{nofxsr},
6305a203 149@code{mmx},
309d3373 150@code{nommx},
6305a203
L
151@code{sse},
152@code{sse2},
153@code{sse3},
154@code{ssse3},
155@code{sse4.1},
156@code{sse4.2},
157@code{sse4},
309d3373 158@code{nosse},
1848e567
L
159@code{nosse2},
160@code{nosse3},
161@code{nossse3},
162@code{nosse4.1},
163@code{nosse4.2},
164@code{nosse4},
c0f3af97 165@code{avx},
6c30d220 166@code{avx2},
1848e567
L
167@code{noavx},
168@code{noavx2},
e2e1fcde
L
169@code{adx},
170@code{rdseed},
171@code{prfchw},
5c111e37 172@code{smap},
7e8b059b 173@code{mpx},
a0046408 174@code{sha},
8bc52696 175@code{rdpid},
6b40c462 176@code{ptwrite},
603555e5 177@code{cet},
48521003 178@code{gfni},
8dcf1fad 179@code{vaes},
ff1982d5 180@code{vpclmulqdq},
1dfc6506
L
181@code{prefetchwt1},
182@code{clflushopt},
183@code{se1},
c5e7287a 184@code{clwb},
c0a30a9f
L
185@code{movdiri},
186@code{movdir64b},
5d79adc4 187@code{enqcmd},
43234a1e
L
188@code{avx512f},
189@code{avx512cd},
190@code{avx512er},
191@code{avx512pf},
1dfc6506
L
192@code{avx512vl},
193@code{avx512bw},
194@code{avx512dq},
2cc1b5aa 195@code{avx512ifma},
14f195c9 196@code{avx512vbmi},
920d2ddc 197@code{avx512_4fmaps},
47acf0bd 198@code{avx512_4vnniw},
620214f7 199@code{avx512_vpopcntdq},
53467f57 200@code{avx512_vbmi2},
8cfcb765 201@code{avx512_vnni},
ee6872be 202@code{avx512_bitalg},
d6aab7a1 203@code{avx512_bf16},
144b71e2
L
204@code{noavx512f},
205@code{noavx512cd},
206@code{noavx512er},
207@code{noavx512pf},
208@code{noavx512vl},
209@code{noavx512bw},
210@code{noavx512dq},
211@code{noavx512ifma},
212@code{noavx512vbmi},
920d2ddc 213@code{noavx512_4fmaps},
47acf0bd 214@code{noavx512_4vnniw},
620214f7 215@code{noavx512_vpopcntdq},
53467f57 216@code{noavx512_vbmi2},
8cfcb765 217@code{noavx512_vnni},
ee6872be 218@code{noavx512_bitalg},
9186c494 219@code{noavx512_vp2intersect},
d6aab7a1 220@code{noavx512_bf16},
dd455cf5 221@code{noenqcmd},
6305a203 222@code{vmx},
8729a6f6 223@code{vmfunc},
6305a203 224@code{smx},
f03fe4c1 225@code{xsave},
c7b8aa3a 226@code{xsaveopt},
1dfc6506
L
227@code{xsavec},
228@code{xsaves},
c0f3af97 229@code{aes},
594ab6a3 230@code{pclmul},
c7b8aa3a
L
231@code{fsgsbase},
232@code{rdrnd},
233@code{f16c},
6c30d220 234@code{bmi2},
c0f3af97 235@code{fma},
f1f8f695
L
236@code{movbe},
237@code{ept},
6c30d220 238@code{lzcnt},
42164a71
L
239@code{hle},
240@code{rtm},
6c30d220 241@code{invpcid},
bd5295b2 242@code{clflush},
9916071f 243@code{mwaitx},
029f3522 244@code{clzero},
3233d7d0 245@code{wbnoinvd},
be3a8dca 246@code{pconfig},
de89d0a3 247@code{waitpkg},
c48935d7 248@code{cldemote},
142861df
JB
249@code{rdpru},
250@code{mcommit},
f88c9eb0 251@code{lwp},
5dd85c99
SP
252@code{fma4},
253@code{xop},
60aa667e 254@code{cx16},
bd5295b2 255@code{syscall},
1b7f3fb0 256@code{rdtscp},
6305a203
L
257@code{3dnow},
258@code{3dnowa},
259@code{sse4a},
260@code{sse5},
261@code{svme},
262@code{abm} and
263@code{padlock}.
309d3373
JB
264Note that rather than extending a basic instruction set, the extension
265mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
266
267When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
268@code{.arch} directive will take precedent.
269
270@cindex @samp{-mtune=} option, i386
271@cindex @samp{-mtune=} option, x86-64
272@item -mtune=@var{CPU}
273This option specifies a processor to optimize for. When used in
274conjunction with the @option{-march} option, only instructions
275of the processor specified by the @option{-march} option will be
276generated.
277
6305a203
L
278Valid @var{CPU} values are identical to the processor list of
279@option{-march=@var{CPU}}.
9103f4f4 280
c0f3af97
L
281@cindex @samp{-msse2avx} option, i386
282@cindex @samp{-msse2avx} option, x86-64
283@item -msse2avx
284This option specifies that the assembler should encode SSE instructions
285with VEX prefix.
286
daf50ae7
L
287@cindex @samp{-msse-check=} option, i386
288@cindex @samp{-msse-check=} option, x86-64
289@item -msse-check=@var{none}
1f9bb1ca
AS
290@itemx -msse-check=@var{warning}
291@itemx -msse-check=@var{error}
9aff4b7a 292These options control if the assembler should check SSE instructions.
daf50ae7
L
293@option{-msse-check=@var{none}} will make the assembler not to check SSE
294instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 295will make the assembler issue a warning for any SSE instruction.
daf50ae7 296@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 297for any SSE instruction.
daf50ae7 298
539f890d
L
299@cindex @samp{-mavxscalar=} option, i386
300@cindex @samp{-mavxscalar=} option, x86-64
301@item -mavxscalar=@var{128}
1f9bb1ca 302@itemx -mavxscalar=@var{256}
2aab8acd 303These options control how the assembler should encode scalar AVX
539f890d
L
304instructions. @option{-mavxscalar=@var{128}} will encode scalar
305AVX instructions with 128bit vector length, which is the default.
306@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
307with 256bit vector length.
308
4970191f
JB
309WARNING: Don't use this for production code - due to CPU errata the
310resulting code may not work on certain models.
311
03751133
L
312@cindex @samp{-mvexwig=} option, i386
313@cindex @samp{-mvexwig=} option, x86-64
314@item -mvexwig=@var{0}
315@itemx -mvexwig=@var{1}
316These options control how the assembler should encode VEX.W-ignored (WIG)
317VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
318instructions with vex.w = 0, which is the default.
319@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
320vex.w = 1.
321
4970191f
JB
322WARNING: Don't use this for production code - due to CPU errata the
323resulting code may not work on certain models.
324
43234a1e
L
325@cindex @samp{-mevexlig=} option, i386
326@cindex @samp{-mevexlig=} option, x86-64
327@item -mevexlig=@var{128}
328@itemx -mevexlig=@var{256}
329@itemx -mevexlig=@var{512}
330These options control how the assembler should encode length-ignored
331(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
332EVEX instructions with 128bit vector length, which is the default.
333@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
334encode LIG EVEX instructions with 256bit and 512bit vector length,
335respectively.
336
337@cindex @samp{-mevexwig=} option, i386
338@cindex @samp{-mevexwig=} option, x86-64
339@item -mevexwig=@var{0}
340@itemx -mevexwig=@var{1}
341These options control how the assembler should encode w-ignored (WIG)
342EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
343EVEX instructions with evex.w = 0, which is the default.
344@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
345evex.w = 1.
346
1efbbeb4
L
347@cindex @samp{-mmnemonic=} option, i386
348@cindex @samp{-mmnemonic=} option, x86-64
349@item -mmnemonic=@var{att}
1f9bb1ca 350@itemx -mmnemonic=@var{intel}
34bca508 351This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
352The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
353take precedent.
354
355@cindex @samp{-msyntax=} option, i386
356@cindex @samp{-msyntax=} option, x86-64
357@item -msyntax=@var{att}
1f9bb1ca 358@itemx -msyntax=@var{intel}
34bca508 359This option specifies instruction syntax when processing instructions.
1efbbeb4
L
360The @code{.att_syntax} and @code{.intel_syntax} directives will
361take precedent.
362
363@cindex @samp{-mnaked-reg} option, i386
364@cindex @samp{-mnaked-reg} option, x86-64
365@item -mnaked-reg
33eaf5de 366This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 367The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 368
7e8b059b
L
369@cindex @samp{-madd-bnd-prefix} option, i386
370@cindex @samp{-madd-bnd-prefix} option, x86-64
371@item -madd-bnd-prefix
372This option forces the assembler to add BND prefix to all branches, even
373if such prefix was not explicitly specified in the source code.
374
8dcea932
L
375@cindex @samp{-mshared} option, i386
376@cindex @samp{-mshared} option, x86-64
377@item -mno-shared
378On ELF target, the assembler normally optimizes out non-PLT relocations
379against defined non-weak global branch targets with default visibility.
380The @samp{-mshared} option tells the assembler to generate code which
381may go into a shared library where all non-weak global branch targets
382with default visibility can be preempted. The resulting code is
383slightly bigger. This option only affects the handling of branch
384instructions.
385
167ad85b
TG
386@cindex @samp{-mbig-obj} option, x86-64
387@item -mbig-obj
388On x86-64 PE/COFF target this option forces the use of big object file
389format, which allows more than 32768 sections.
390
d022bddd
IT
391@cindex @samp{-momit-lock-prefix=} option, i386
392@cindex @samp{-momit-lock-prefix=} option, x86-64
393@item -momit-lock-prefix=@var{no}
394@itemx -momit-lock-prefix=@var{yes}
395These options control how the assembler should encode lock prefix.
396This option is intended as a workaround for processors, that fail on
397lock prefix. This option can only be safely used with single-core,
398single-thread computers
399@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
400@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
401which is the default.
402
e4e00185
AS
403@cindex @samp{-mfence-as-lock-add=} option, i386
404@cindex @samp{-mfence-as-lock-add=} option, x86-64
405@item -mfence-as-lock-add=@var{no}
406@itemx -mfence-as-lock-add=@var{yes}
407These options control how the assembler should encode lfence, mfence and
408sfence.
409@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
410sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
411@samp{lock addl $0x0, (%esp)} in 32-bit mode.
412@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
413sfence as usual, which is the default.
414
0cb4071e
L
415@cindex @samp{-mrelax-relocations=} option, i386
416@cindex @samp{-mrelax-relocations=} option, x86-64
417@item -mrelax-relocations=@var{no}
418@itemx -mrelax-relocations=@var{yes}
419These options control whether the assembler should generate relax
420relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
421R_X86_64_REX_GOTPCRELX, in 64-bit mode.
422@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
423@option{-mrelax-relocations=@var{no}} will not generate relax
424relocations. The default can be controlled by a configure option
425@option{--enable-x86-relax-relocations}.
426
e379e5f3
L
427@cindex @samp{-malign-branch-boundary=} option, i386
428@cindex @samp{-malign-branch-boundary=} option, x86-64
429@item -malign-branch-boundary=@var{NUM}
430This option controls how the assembler should align branches with segment
431prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
432no less than 16. Branches will be aligned within @var{NUM} byte
433boundary. @option{-malign-branch-boundary=0}, which is the default,
434doesn't align branches.
435
436@cindex @samp{-malign-branch=} option, i386
437@cindex @samp{-malign-branch=} option, x86-64
438@item -malign-branch=@var{TYPE}[+@var{TYPE}...]
439This option specifies types of branches to align. @var{TYPE} is
440combination of @samp{jcc}, which aligns conditional jumps,
441@samp{fused}, which aligns fused conditional jumps, @samp{jmp},
442which aligns unconditional jumps, @samp{call} which aligns calls,
443@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
444jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
445
446@cindex @samp{-malign-branch-prefix-size=} option, i386
447@cindex @samp{-malign-branch-prefix-size=} option, x86-64
448@item -malign-branch-prefix-size=@var{NUM}
449This option specifies the maximum number of prefixes on an instruction
450to align branches. @var{NUM} should be between 0 and 5. The default
451@var{NUM} is 5.
452
76cf450b
L
453@cindex @samp{-mbranches-within-32B-boundaries} option, i386
454@cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
455@item -mbranches-within-32B-boundaries
456This option aligns conditional jumps, fused conditional jumps and
457unconditional jumps within 32 byte boundary with up to 5 segment prefixes
458on an instruction. It is equivalent to
459@option{-malign-branch-boundary=32}
460@option{-malign-branch=jcc+fused+jmp}
461@option{-malign-branch-prefix-size=5}.
462The default doesn't align branches.
463
b4a3a7b4
L
464@cindex @samp{-mx86-used-note=} option, i386
465@cindex @samp{-mx86-used-note=} option, x86-64
466@item -mx86-used-note=@var{no}
467@itemx -mx86-used-note=@var{yes}
468These options control whether the assembler should generate
469GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
470GNU property notes. The default can be controlled by the
471@option{--enable-x86-used-note} configure option.
472
d3d3c6db
IT
473@cindex @samp{-mevexrcig=} option, i386
474@cindex @samp{-mevexrcig=} option, x86-64
475@item -mevexrcig=@var{rne}
476@itemx -mevexrcig=@var{rd}
477@itemx -mevexrcig=@var{ru}
478@itemx -mevexrcig=@var{rz}
479These options control how the assembler should encode SAE-only
480EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
481of EVEX instruction with 00, which is the default.
482@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
483and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
484with 01, 10 and 11 RC bits, respectively.
485
5db04b09
L
486@cindex @samp{-mamd64} option, x86-64
487@cindex @samp{-mintel64} option, x86-64
488@item -mamd64
489@itemx -mintel64
490This option specifies that the assembler should accept only AMD64 or
4b5aaf5f
L
491Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
492only and AMD64 ISAs.
5db04b09 493
b6f8c7c4
L
494@cindex @samp{-O0} option, i386
495@cindex @samp{-O0} option, x86-64
496@cindex @samp{-O} option, i386
497@cindex @samp{-O} option, x86-64
498@cindex @samp{-O1} option, i386
499@cindex @samp{-O1} option, x86-64
500@cindex @samp{-O2} option, i386
501@cindex @samp{-O2} option, x86-64
502@cindex @samp{-Os} option, i386
503@cindex @samp{-Os} option, x86-64
504@item -O0 | -O | -O1 | -O2 | -Os
505Optimize instruction encoding with smaller instruction size. @samp{-O}
506and @samp{-O1} encode 64-bit register load instructions with 64-bit
507immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 508immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
509register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
510register clearing instructions with 128-bit VEX vector register
511clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 512register load/store instructions with VEX vector register load/store
a0a1771e
JB
513instructions, and encode 128-bit/256-bit EVEX packed integer logical
514instructions with 128-bit/256-bit VEX packed integer logical.
515
516@samp{-O2} includes @samp{-O1} optimization plus encodes
517256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
518EVEX vector register clearing instructions. In 64-bit mode VEX encoded
519instructions with commutative source operands will also have their
520source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
521instead of the 3-byte one. Certain forms of AND as well as OR with the
522same (register) operand specified twice will also be changed to TEST.
a0a1771e 523
b6f8c7c4
L
524@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
525and 64-bit register tests with immediate as 8-bit register test with
526immediate. @samp{-O0} turns off this optimization.
527
55b62671 528@end table
731caf76 529@c man end
e413e4e9 530
a6c24e68
NC
531@node i386-Directives
532@section x86 specific Directives
533
534@cindex machine directives, x86
535@cindex x86 machine directives
536@table @code
537
538@cindex @code{lcomm} directive, COFF
539@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
540Reserve @var{length} (an absolute expression) bytes for a local common
541denoted by @var{symbol}. The section and value of @var{symbol} are
542those of the new local common. The addresses are allocated in the bss
704209c0
NC
543section, so that at run-time the bytes start off zeroed. Since
544@var{symbol} is not declared global, it is normally not visible to
545@code{@value{LD}}. The optional third parameter, @var{alignment},
546specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
547
548This directive is only available for COFF based x86 targets.
549
102e9361
NC
550@cindex @code{largecomm} directive, ELF
551@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
552This directive behaves in the same way as the @code{comm} directive
553except that the data is placed into the @var{.lbss} section instead of
554the @var{.bss} section @ref{Comm}.
555
556The directive is intended to be used for data which requires a large
557amount of space, and it is only available for ELF based x86_64
558targets.
559
f2f51cd5
NC
560@cindex @code{value} directive
561@item .value @var{expression} [, @var{expression}]
562This directive behaves in the same way as the @code{.short} directive,
563taking a series of comma separated expressions and storing them as
564two-byte wide values into the current section.
565
a6c24e68 566@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
567
568@end table
569
252b5132 570@node i386-Syntax
7c31ae13
NC
571@section i386 Syntactical Considerations
572@menu
573* i386-Variations:: AT&T Syntax versus Intel Syntax
574* i386-Chars:: Special Characters
575@end menu
576
577@node i386-Variations
578@subsection AT&T Syntax versus Intel Syntax
252b5132 579
e413e4e9
AM
580@cindex i386 intel_syntax pseudo op
581@cindex intel_syntax pseudo op, i386
582@cindex i386 att_syntax pseudo op
583@cindex att_syntax pseudo op, i386
252b5132
RH
584@cindex i386 syntax compatibility
585@cindex syntax compatibility, i386
55b62671
AJ
586@cindex x86-64 intel_syntax pseudo op
587@cindex intel_syntax pseudo op, x86-64
588@cindex x86-64 att_syntax pseudo op
589@cindex att_syntax pseudo op, x86-64
590@cindex x86-64 syntax compatibility
591@cindex syntax compatibility, x86-64
e413e4e9
AM
592
593@code{@value{AS}} now supports assembly using Intel assembler syntax.
594@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
595back to the usual AT&T mode for compatibility with the output of
596@code{@value{GCC}}. Either of these directives may have an optional
597argument, @code{prefix}, or @code{noprefix} specifying whether registers
598require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
599different from Intel syntax. We mention these differences because
600almost all 80386 documents use Intel syntax. Notable differences
601between the two syntaxes are:
602
603@cindex immediate operands, i386
604@cindex i386 immediate operands
605@cindex register operands, i386
606@cindex i386 register operands
607@cindex jump/call operands, i386
608@cindex i386 jump/call operands
609@cindex operand delimiters, i386
55b62671
AJ
610
611@cindex immediate operands, x86-64
612@cindex x86-64 immediate operands
613@cindex register operands, x86-64
614@cindex x86-64 register operands
615@cindex jump/call operands, x86-64
616@cindex x86-64 jump/call operands
617@cindex operand delimiters, x86-64
252b5132
RH
618@itemize @bullet
619@item
620AT&T immediate operands are preceded by @samp{$}; Intel immediate
621operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
622AT&T register operands are preceded by @samp{%}; Intel register operands
623are undelimited. AT&T absolute (as opposed to PC relative) jump/call
624operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
625
626@cindex i386 source, destination operands
627@cindex source, destination operands; i386
55b62671
AJ
628@cindex x86-64 source, destination operands
629@cindex source, destination operands; x86-64
252b5132
RH
630@item
631AT&T and Intel syntax use the opposite order for source and destination
632operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
633@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
634previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
635instructions with 2 immediate operands, such as the @samp{enter}
636instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
637
638@cindex mnemonic suffixes, i386
639@cindex sizes operands, i386
640@cindex i386 size suffixes
55b62671
AJ
641@cindex mnemonic suffixes, x86-64
642@cindex sizes operands, x86-64
643@cindex x86-64 size suffixes
252b5132
RH
644@item
645In AT&T syntax the size of memory operands is determined from the last
646character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 647@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
648(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
649of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
650(256-bit vector) and zmm (512-bit vector) memory references, only when there's
651no other way to disambiguate an instruction. Intel syntax accomplishes this by
652prefixing memory operands (@emph{not} the instruction mnemonics) with
653@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
654@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
655syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
656syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
657@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 658
4b06377f
L
659In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
660instruction with the 64-bit displacement or immediate operand.
661
252b5132
RH
662@cindex return instructions, i386
663@cindex i386 jump, call, return
55b62671
AJ
664@cindex return instructions, x86-64
665@cindex x86-64 jump, call, return
252b5132
RH
666@item
667Immediate form long jumps and calls are
668@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
669Intel syntax is
670@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
671instruction
672is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
673@samp{ret far @var{stack-adjust}}.
674
675@cindex sections, i386
676@cindex i386 sections
55b62671
AJ
677@cindex sections, x86-64
678@cindex x86-64 sections
252b5132
RH
679@item
680The AT&T assembler does not provide support for multiple section
681programs. Unix style systems expect all programs to be single sections.
682@end itemize
683
7c31ae13
NC
684@node i386-Chars
685@subsection Special Characters
686
687@cindex line comment character, i386
688@cindex i386 line comment character
689The presence of a @samp{#} appearing anywhere on a line indicates the
690start of a comment that extends to the end of that line.
691
692If a @samp{#} appears as the first character of a line then the whole
693line is treated as a comment, but in this case the line can also be a
694logical line number directive (@pxref{Comments}) or a preprocessor
695control command (@pxref{Preprocessing}).
696
a05a5b64 697If the @option{--divide} command-line option has not been specified
7c31ae13
NC
698then the @samp{/} character appearing anywhere on a line also
699introduces a line comment.
700
701@cindex line separator, i386
702@cindex statement separator, i386
703@cindex i386 line separator
704The @samp{;} character can be used to separate statements on the same
705line.
706
252b5132 707@node i386-Mnemonics
d3b47e2b
L
708@section i386-Mnemonics
709@subsection Instruction Naming
252b5132
RH
710
711@cindex i386 instruction naming
712@cindex instruction naming, i386
55b62671
AJ
713@cindex x86-64 instruction naming
714@cindex instruction naming, x86-64
715
252b5132 716Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
717specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
718and @samp{q} specify byte, word, long and quadruple word operands. If
719no suffix is specified by an instruction then @code{@value{AS}} tries to
720fill in the missing suffix based on the destination register operand
721(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
722to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
723@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
724assembler which assumes that a missing mnemonic suffix implies long
725operand size. (This incompatibility does not affect compiler output
726since compilers always explicitly specify the mnemonic suffix.)
252b5132 727
c006a730
JB
728When there is no sizing suffix and no (suitable) register operands to
729deduce the size of memory operands, with a few exceptions and where long
730operand size is possible in the first place, operand size will default
731to long in 32- and 64-bit modes. Similarly it will default to short in
73216-bit mode. Noteworthy exceptions are
733
734@itemize @bullet
735@item
736Instructions with an implicit on-stack operand as well as branches,
737which default to quad in 64-bit mode.
738
739@item
740Sign- and zero-extending moves, which default to byte size source
741operands.
742
743@item
744Floating point insns with integer operands, which default to short (for
745perhaps historical reasons).
746
747@item
748CRC32 with a 64-bit destination, which defaults to a quad source
749operand.
750
751@end itemize
752
252b5132
RH
753Almost all instructions have the same names in AT&T and Intel format.
754There are a few exceptions. The sign extend and zero extend
755instructions need two sizes to specify them. They need a size to
756sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
757is accomplished by using two instruction mnemonic suffixes in AT&T
758syntax. Base names for sign extend and zero extend are
759@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
760and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
761are tacked on to this base name, the @emph{from} suffix before the
762@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
763``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
764thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
765@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
766@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
767quadruple word).
252b5132 768
b6169b20
L
769@cindex encoding options, i386
770@cindex encoding options, x86-64
771
86fa6981
L
772Different encoding options can be specified via pseudo prefixes:
773
774@itemize @bullet
775@item
776@samp{@{disp8@}} -- prefer 8-bit displacement.
777
778@item
779@samp{@{disp32@}} -- prefer 32-bit displacement.
780
781@item
782@samp{@{load@}} -- prefer load-form instruction.
783
784@item
785@samp{@{store@}} -- prefer store-form instruction.
786
787@item
42e04b36 788@samp{@{vex@}} -- encode with VEX prefix.
86fa6981
L
789
790@item
42e04b36 791@samp{@{vex3@}} -- encode with 3-byte VEX prefix.
86fa6981
L
792
793@item
794@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
795
796@item
797@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
798instructions (x86-64 only). Note that this differs from the @samp{rex}
799prefix which generates REX prefix unconditionally.
b6f8c7c4
L
800
801@item
802@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 803@end itemize
b6169b20 804
252b5132
RH
805@cindex conversion instructions, i386
806@cindex i386 conversion instructions
55b62671
AJ
807@cindex conversion instructions, x86-64
808@cindex x86-64 conversion instructions
252b5132
RH
809The Intel-syntax conversion instructions
810
811@itemize @bullet
812@item
813@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
814
815@item
816@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
817
818@item
819@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
820
821@item
822@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
823
824@item
825@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
826(x86-64 only),
827
828@item
d5f0cf92 829@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 830@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
831@end itemize
832
833@noindent
55b62671
AJ
834are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
835@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
836instructions.
252b5132
RH
837
838@cindex jump instructions, i386
839@cindex call instructions, i386
55b62671
AJ
840@cindex jump instructions, x86-64
841@cindex call instructions, x86-64
252b5132
RH
842Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
843AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
844convention.
845
d3b47e2b 846@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
847
848@cindex i386 mnemonic compatibility
849@cindex mnemonic compatibility, i386
850
851@code{@value{AS}} supports assembly using Intel mnemonic.
852@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
853@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
854syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
855Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
856@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
857@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
858assembler with different mnemonics from those in Intel IA32 specification.
859@code{@value{GCC}} generates those instructions with AT&T mnemonic.
860
bc31405e
L
861@itemize @bullet
862@item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
863register. @samp{movsxd} should be used to encode 16-bit or 32-bit
864destination register with both AT&T and Intel mnemonics.
865@end itemize
866
252b5132
RH
867@node i386-Regs
868@section Register Naming
869
870@cindex i386 registers
871@cindex registers, i386
55b62671
AJ
872@cindex x86-64 registers
873@cindex registers, x86-64
252b5132
RH
874Register operands are always prefixed with @samp{%}. The 80386 registers
875consist of
876
877@itemize @bullet
878@item
879the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
880@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
881frame pointer), and @samp{%esp} (the stack pointer).
882
883@item
884the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
885@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
886
887@item
888the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
889@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
890are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
891@samp{%cx}, and @samp{%dx})
892
893@item
894the 6 section registers @samp{%cs} (code section), @samp{%ds}
895(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
896and @samp{%gs}.
897
898@item
4bde3cdd
UD
899the 5 processor control registers @samp{%cr0}, @samp{%cr2},
900@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
901
902@item
903the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
904@samp{%db3}, @samp{%db6}, and @samp{%db7}.
905
906@item
907the 2 test registers @samp{%tr6} and @samp{%tr7}.
908
909@item
910the 8 floating point register stack @samp{%st} or equivalently
911@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
912@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
913These registers are overloaded by 8 MMX registers @samp{%mm0},
914@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
915@samp{%mm6} and @samp{%mm7}.
916
917@item
4bde3cdd 918the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
919@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
920@end itemize
921
922The AMD x86-64 architecture extends the register set by:
923
924@itemize @bullet
925@item
926enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
927accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
928@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
929pointer)
930
931@item
932the 8 extended registers @samp{%r8}--@samp{%r15}.
933
934@item
4bde3cdd 935the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
936
937@item
4bde3cdd 938the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
939
940@item
4bde3cdd 941the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
942
943@item
944the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
945
946@item
947the 8 debug registers: @samp{%db8}--@samp{%db15}.
948
949@item
4bde3cdd
UD
950the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
951@end itemize
952
953With the AVX extensions more registers were made available:
954
955@itemize @bullet
956
957@item
958the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
959available in 32-bit mode). The bottom 128 bits are overlaid with the
960@samp{xmm0}--@samp{xmm15} registers.
961
962@end itemize
963
964The AVX2 extensions made in 64-bit mode more registers available:
965
966@itemize @bullet
967
968@item
969the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
970registers @samp{%ymm16}--@samp{%ymm31}.
971
972@end itemize
973
974The AVX512 extensions added the following registers:
975
976@itemize @bullet
977
978@item
979the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
980available in 32-bit mode). The bottom 128 bits are overlaid with the
981@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
982overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
983
984@item
985the 8 mask registers @samp{%k0}--@samp{%k7}.
986
252b5132
RH
987@end itemize
988
989@node i386-Prefixes
990@section Instruction Prefixes
991
992@cindex i386 instruction prefixes
993@cindex instruction prefixes, i386
994@cindex prefixes, i386
995Instruction prefixes are used to modify the following instruction. They
996are used to repeat string instructions, to provide section overrides, to
997perform bus lock operations, and to change operand and address sizes.
998(Most instructions that normally operate on 32-bit operands will use
99916-bit operands if the instruction has an ``operand size'' prefix.)
1000Instruction prefixes are best written on the same line as the instruction
1001they act upon. For example, the @samp{scas} (scan string) instruction is
1002repeated with:
1003
1004@smallexample
1005 repne scas %es:(%edi),%al
1006@end smallexample
1007
1008You may also place prefixes on the lines immediately preceding the
1009instruction, but this circumvents checks that @code{@value{AS}} does
1010with prefixes, and will not work with all prefixes.
1011
1012Here is a list of instruction prefixes:
1013
1014@cindex section override prefixes, i386
1015@itemize @bullet
1016@item
1017Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1018@samp{fs}, @samp{gs}. These are automatically added by specifying
1019using the @var{section}:@var{memory-operand} form for memory references.
1020
1021@cindex size prefixes, i386
1022@item
1023Operand/Address size prefixes @samp{data16} and @samp{addr16}
1024change 32-bit operands/addresses into 16-bit operands/addresses,
1025while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1026@code{.code16} section) into 32-bit operands/addresses. These prefixes
1027@emph{must} appear on the same line of code as the instruction they
1028modify. For example, in a 16-bit @code{.code16} section, you might
1029write:
1030
1031@smallexample
1032 addr32 jmpl *(%ebx)
1033@end smallexample
1034
1035@cindex bus lock prefixes, i386
1036@cindex inhibiting interrupts, i386
1037@item
1038The bus lock prefix @samp{lock} inhibits interrupts during execution of
1039the instruction it precedes. (This is only valid with certain
1040instructions; see a 80386 manual for details).
1041
1042@cindex coprocessor wait, i386
1043@item
1044The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1045complete the current instruction. This should never be needed for the
104680386/80387 combination.
1047
1048@cindex repeat prefixes, i386
1049@item
1050The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1051to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1052times if the current address size is 16-bits).
55b62671
AJ
1053@cindex REX prefixes, i386
1054@item
1055The @samp{rex} family of prefixes is used by x86-64 to encode
1056extensions to i386 instruction set. The @samp{rex} prefix has four
1057bits --- an operand size overwrite (@code{64}) used to change operand size
1058from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1059register set.
1060
1061You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1062instruction emits @samp{rex} prefix with all the bits set. By omitting
1063the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1064prefixes as well. Normally, there is no need to write the prefixes
1065explicitly, since gas will automatically generate them based on the
1066instruction operands.
252b5132
RH
1067@end itemize
1068
1069@node i386-Memory
1070@section Memory References
1071
1072@cindex i386 memory references
1073@cindex memory references, i386
55b62671
AJ
1074@cindex x86-64 memory references
1075@cindex memory references, x86-64
252b5132
RH
1076An Intel syntax indirect memory reference of the form
1077
1078@smallexample
1079@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1080@end smallexample
1081
1082@noindent
1083is translated into the AT&T syntax
1084
1085@smallexample
1086@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1087@end smallexample
1088
1089@noindent
1090where @var{base} and @var{index} are the optional 32-bit base and
1091index registers, @var{disp} is the optional displacement, and
1092@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1093to calculate the address of the operand. If no @var{scale} is
1094specified, @var{scale} is taken to be 1. @var{section} specifies the
1095optional section register for the memory operand, and may override the
1096default section register (see a 80386 manual for section register
1097defaults). Note that section overrides in AT&T syntax @emph{must}
1098be preceded by a @samp{%}. If you specify a section override which
1099coincides with the default section register, @code{@value{AS}} does @emph{not}
1100output any section register override prefixes to assemble the given
1101instruction. Thus, section overrides can be specified to emphasize which
1102section register is used for a given memory operand.
1103
1104Here are some examples of Intel and AT&T style memory references:
1105
1106@table @asis
1107@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1108@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1109missing, and the default section is used (@samp{%ss} for addressing with
1110@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1111
1112@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1113@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1114@samp{foo}. All other fields are missing. The section register here
1115defaults to @samp{%ds}.
1116
1117@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1118This uses the value pointed to by @samp{foo} as a memory operand.
1119Note that @var{base} and @var{index} are both missing, but there is only
1120@emph{one} @samp{,}. This is a syntactic exception.
1121
1122@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1123This selects the contents of the variable @samp{foo} with section
1124register @var{section} being @samp{%gs}.
1125@end table
1126
1127Absolute (as opposed to PC relative) call and jump operands must be
1128prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1129always chooses PC relative addressing for jump/call labels.
1130
1131Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1132@emph{must} specify its size (byte, word, long, or quadruple) with an
1133instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1134respectively).
1135
1136The x86-64 architecture adds an RIP (instruction pointer relative)
1137addressing. This addressing mode is specified by using @samp{rip} as a
1138base register. Only constant offsets are valid. For example:
1139
1140@table @asis
1141@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1142Points to the address 1234 bytes past the end of the current
1143instruction.
1144
1145@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1146Points to the @code{symbol} in RIP relative way, this is shorter than
1147the default absolute addressing.
1148@end table
1149
1150Other addressing modes remain unchanged in x86-64 architecture, except
1151registers used are 64-bit instead of 32-bit.
252b5132 1152
fddf5b5b 1153@node i386-Jumps
252b5132
RH
1154@section Handling of Jump Instructions
1155
1156@cindex jump optimization, i386
1157@cindex i386 jump optimization
55b62671
AJ
1158@cindex jump optimization, x86-64
1159@cindex x86-64 jump optimization
252b5132
RH
1160Jump instructions are always optimized to use the smallest possible
1161displacements. This is accomplished by using byte (8-bit) displacement
1162jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1163is insufficient a long displacement is used. We do not support
252b5132
RH
1164word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1165instruction with the @samp{data16} instruction prefix), since the 80386
1166insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1167is added. (See also @pxref{i386-Arch})
252b5132
RH
1168
1169Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1170@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1171displacements, so that if you use these instructions (@code{@value{GCC}} does
1172not use them) you may get an error message (and incorrect code). The AT&T
117380386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1174to
1175
1176@smallexample
1177 jcxz cx_zero
1178 jmp cx_nonzero
1179cx_zero: jmp foo
1180cx_nonzero:
1181@end smallexample
1182
1183@node i386-Float
1184@section Floating Point
1185
1186@cindex i386 floating point
1187@cindex floating point, i386
55b62671
AJ
1188@cindex x86-64 floating point
1189@cindex floating point, x86-64
252b5132
RH
1190All 80387 floating point types except packed BCD are supported.
1191(BCD support may be added without much difficulty). These data
1192types are 16-, 32-, and 64- bit integers, and single (32-bit),
1193double (64-bit), and extended (80-bit) precision floating point.
1194Each supported type has an instruction mnemonic suffix and a constructor
1195associated with it. Instruction mnemonic suffixes specify the operand's
1196data type. Constructors build these data types into memory.
1197
1198@cindex @code{float} directive, i386
1199@cindex @code{single} directive, i386
1200@cindex @code{double} directive, i386
1201@cindex @code{tfloat} directive, i386
55b62671
AJ
1202@cindex @code{float} directive, x86-64
1203@cindex @code{single} directive, x86-64
1204@cindex @code{double} directive, x86-64
1205@cindex @code{tfloat} directive, x86-64
252b5132
RH
1206@itemize @bullet
1207@item
1208Floating point constructors are @samp{.float} or @samp{.single},
1209@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1210These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1211and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1212only supports this format via the @samp{fldt} (load 80-bit real to stack
1213top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1214
1215@cindex @code{word} directive, i386
1216@cindex @code{long} directive, i386
1217@cindex @code{int} directive, i386
1218@cindex @code{quad} directive, i386
55b62671
AJ
1219@cindex @code{word} directive, x86-64
1220@cindex @code{long} directive, x86-64
1221@cindex @code{int} directive, x86-64
1222@cindex @code{quad} directive, x86-64
252b5132
RH
1223@item
1224Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1225@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1226corresponding instruction mnemonic suffixes are @samp{s} (single),
1227@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1228the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1229quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1230stack) instructions.
1231@end itemize
1232
1233Register to register operations should not use instruction mnemonic suffixes.
1234@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1235wrote @samp{fst %st, %st(1)}, since all register to register operations
1236use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1237which converts @samp{%st} from 80-bit to 64-bit floating point format,
1238then stores the result in the 4 byte location @samp{mem})
1239
1240@node i386-SIMD
1241@section Intel's MMX and AMD's 3DNow! SIMD Operations
1242
1243@cindex MMX, i386
1244@cindex 3DNow!, i386
1245@cindex SIMD, i386
55b62671
AJ
1246@cindex MMX, x86-64
1247@cindex 3DNow!, x86-64
1248@cindex SIMD, x86-64
252b5132
RH
1249
1250@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1251instructions for integer data), available on Intel's Pentium MMX
1252processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1253Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1254instruction set (SIMD instructions for 32-bit floating point data)
1255available on AMD's K6-2 processor and possibly others in the future.
1256
1257Currently, @code{@value{AS}} does not support Intel's floating point
1258SIMD, Katmai (KNI).
1259
1260The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1261@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
126216-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1263floating point values. The MMX registers cannot be used at the same time
1264as the floating point stack.
1265
1266See Intel and AMD documentation, keeping in mind that the operand order in
1267instructions is reversed from the Intel syntax.
1268
f88c9eb0
SP
1269@node i386-LWP
1270@section AMD's Lightweight Profiling Instructions
1271
1272@cindex LWP, i386
1273@cindex LWP, x86-64
1274
1275@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1276instruction set, available on AMD's Family 15h (Orochi) processors.
1277
1278LWP enables applications to collect and manage performance data, and
1279react to performance events. The collection of performance data
1280requires no context switches. LWP runs in the context of a thread and
1281so several counters can be used independently across multiple threads.
1282LWP can be used in both 64-bit and legacy 32-bit modes.
1283
1284For detailed information on the LWP instruction set, see the
1285@cite{AMD Lightweight Profiling Specification} available at
1286@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1287
87973e9f
QN
1288@node i386-BMI
1289@section Bit Manipulation Instructions
1290
1291@cindex BMI, i386
1292@cindex BMI, x86-64
1293
1294@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1295
1296BMI instructions provide several instructions implementing individual
1297bit manipulation operations such as isolation, masking, setting, or
34bca508 1298resetting.
87973e9f
QN
1299
1300@c Need to add a specification citation here when available.
1301
2a2a0f38
QN
1302@node i386-TBM
1303@section AMD's Trailing Bit Manipulation Instructions
1304
1305@cindex TBM, i386
1306@cindex TBM, x86-64
1307
1308@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1309instruction set, available on AMD's BDVER2 processors (Trinity and
1310Viperfish).
1311
1312TBM instructions provide instructions implementing individual bit
1313manipulation operations such as isolating, masking, setting, resetting,
1314complementing, and operations on trailing zeros and ones.
1315
1316@c Need to add a specification citation here when available.
87973e9f 1317
252b5132
RH
1318@node i386-16bit
1319@section Writing 16-bit Code
1320
1321@cindex i386 16-bit code
1322@cindex 16-bit code, i386
1323@cindex real-mode code, i386
eecb386c 1324@cindex @code{code16gcc} directive, i386
252b5132
RH
1325@cindex @code{code16} directive, i386
1326@cindex @code{code32} directive, i386
55b62671
AJ
1327@cindex @code{code64} directive, i386
1328@cindex @code{code64} directive, x86-64
1329While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1330or 64-bit x86-64 code depending on the default configuration,
252b5132 1331it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1332mode code segments. To do this, put a @samp{.code16} or
1333@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1334be run in 16-bit mode. You can switch @code{@value{AS}} to writing
133532-bit code with the @samp{.code32} directive or 64-bit code with the
1336@samp{.code64} directive.
eecb386c
AM
1337
1338@samp{.code16gcc} provides experimental support for generating 16-bit
1339code from gcc, and differs from @samp{.code16} in that @samp{call},
1340@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1341@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1342default to 32-bit size. This is so that the stack pointer is
1343manipulated in the same way over function calls, allowing access to
1344function parameters at the same stack offsets as in 32-bit mode.
1345@samp{.code16gcc} also automatically adds address size prefixes where
1346necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1347
1348The code which @code{@value{AS}} generates in 16-bit mode will not
1349necessarily run on a 16-bit pre-80386 processor. To write code that
1350runs on such a processor, you must refrain from using @emph{any} 32-bit
1351constructs which require @code{@value{AS}} to output address or operand
1352size prefixes.
1353
1354Note that writing 16-bit code instructions by explicitly specifying a
1355prefix or an instruction mnemonic suffix within a 32-bit code section
1356generates different machine instructions than those generated for a
135716-bit code segment. In a 32-bit code section, the following code
1358generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1359value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1360
1361@smallexample
1362 pushw $4
1363@end smallexample
1364
1365The same code in a 16-bit code section would generate the machine
b45619c0 1366opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1367is correct since the processor default operand size is assumed to be 16
1368bits in a 16-bit code section.
1369
e413e4e9
AM
1370@node i386-Arch
1371@section Specifying CPU Architecture
1372
1373@cindex arch directive, i386
1374@cindex i386 arch directive
55b62671
AJ
1375@cindex arch directive, x86-64
1376@cindex x86-64 arch directive
e413e4e9
AM
1377
1378@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1379(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1380directive enables a warning when gas detects an instruction that is not
1381supported on the CPU specified. The choices for @var{cpu_type} are:
1382
1383@multitable @columnfractions .20 .20 .20 .20
1384@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1385@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1386@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1387@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1388@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1389@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1390@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1391@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1392@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1393@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1394@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1395@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1396@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1397@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1398@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1399@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1400@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1401@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1402@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1403@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1404@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1405@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1406@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1407@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1408@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
d777820b 1409@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1410@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1411@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
5d79adc4 1412@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1ceab344 1413@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1414@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1415@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
142861df
JB
1416@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1417@item @samp{.mcommit}
e413e4e9
AM
1418@end multitable
1419
fddf5b5b
AM
1420Apart from the warning, there are only two other effects on
1421@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1422@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1423will automatically use a two byte opcode sequence. The larger three
1424byte opcode sequence is used on the 486 (and when no architecture is
1425specified) because it executes faster on the 486. Note that you can
1426explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1427Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1428@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1429conditional jumps will be promoted when necessary to a two instruction
1430sequence consisting of a conditional jump of the opposite sense around
1431an unconditional jump to the target.
1432
5c6af06e
JB
1433Following the CPU architecture (but not a sub-architecture, which are those
1434starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1435control automatic promotion of conditional jumps. @samp{jumps} is the
1436default, and enables jump promotion; All external jumps will be of the long
1437variety, and file-local jumps will be promoted as necessary.
1438(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1439byte offset jumps, and warns about file-local conditional jumps that
1440@code{@value{AS}} promotes.
fddf5b5b
AM
1441Unconditional jumps are treated as for @samp{jumps}.
1442
1443For example
1444
1445@smallexample
1446 .arch i8086,nojumps
1447@end smallexample
e413e4e9 1448
bc31405e
L
1449@node i386-ISA
1450@section AMD64 ISA vs. Intel64 ISA
1451
1452There are some discrepancies between AMD64 and Intel64 ISAs.
1453
1454@itemize @bullet
1455@item For @samp{movsxd} with 16-bit destination register, AMD64
1456supports 32-bit source operand and Intel64 supports 16-bit source
1457operand.
1458@end itemize
1459
5c9352f3
AM
1460@node i386-Bugs
1461@section AT&T Syntax bugs
1462
1463The UnixWare assembler, and probably other AT&T derived ix86 Unix
1464assemblers, generate floating point instructions with reversed source
1465and destination registers in certain cases. Unfortunately, gcc and
1466possibly many other programs use this reversed syntax, so we're stuck
1467with it.
1468
1469For example
1470
1471@smallexample
1472 fsub %st,%st(3)
1473@end smallexample
1474@noindent
1475results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1476than the expected @samp{%st(3) - %st}. This happens with all the
1477non-commutative arithmetic floating point operations with two register
1478operands where the source register is @samp{%st} and the destination
1479register is @samp{%st(i)}.
1480
252b5132
RH
1481@node i386-Notes
1482@section Notes
1483
1484@cindex i386 @code{mul}, @code{imul} instructions
1485@cindex @code{mul} instruction, i386
1486@cindex @code{imul} instruction, i386
55b62671
AJ
1487@cindex @code{mul} instruction, x86-64
1488@cindex @code{imul} instruction, x86-64
252b5132 1489There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1490instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1491multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1492for @samp{imul}) can be output only in the one operand form. Thus,
1493@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1494the expanding multiply would clobber the @samp{%edx} register, and this
1495would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
149664-bit product in @samp{%edx:%eax}.
1497
1498We have added a two operand form of @samp{imul} when the first operand
1499is an immediate mode expression and the second operand is a register.
1500This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1501example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1502$69, %eax, %eax}.
1503
This page took 0.988306 seconds and 4 git commands to generate.