I think this solves the MAKEINFO and BISON rooting problems.
[deliverable/binutils-gdb.git] / gas / expr.c
CommitLineData
fecd2382
RP
1/* expr.c -operands, expressions-
2 Copyright (C) 1987, 1990, 1991 Free Software Foundation, Inc.
3
4This file is part of GAS, the GNU Assembler.
5
6GAS is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 1, or (at your option)
9any later version.
10
11GAS is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GAS; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20/* static const char rcsid[] = "$Id$"; */
21
22/*
23 * This is really a branch office of as-read.c. I split it out to clearly
24 * distinguish the world of expressions from the world of statements.
25 * (It also gives smaller files to re-compile.)
26 * Here, "operand"s are of expressions, not instructions.
27 */
28
29#include <ctype.h>
30#include <string.h>
31
32#include "as.h"
33
34#include "obstack.h"
35
36#ifdef __STDC__
37static void clean_up_expression(expressionS *expressionP);
38#else /* __STDC__ */
39static void clean_up_expression(); /* Internal. */
40#endif /* __STDC__ */
41extern const char EXP_CHARS[]; /* JF hide MD floating pt stuff all the same place */
42extern const char FLT_CHARS[];
43
44#ifdef LOCAL_LABELS_DOLLAR
45extern int local_label_defined[];
46#endif
47
48/*
49 * Build any floating-point literal here.
50 * Also build any bignum literal here.
51 */
52
53/* LITTLENUM_TYPE generic_buffer [6]; */ /* JF this is a hack */
54/* Seems atof_machine can backscan through generic_bignum and hit whatever
55 happens to be loaded before it in memory. And its way too complicated
56 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
57 and never write into the early words, thus they'll always be zero.
58 I hate Dean's floating-point code. Bleh.
59 */
60LITTLENUM_TYPE generic_bignum [SIZE_OF_LARGE_NUMBER+6];
61FLONUM_TYPE generic_floating_point_number =
62{
63 & generic_bignum [6], /* low (JF: Was 0) */
64 & generic_bignum [SIZE_OF_LARGE_NUMBER+6 - 1], /* high JF: (added +6) */
65 0, /* leader */
66 0, /* exponent */
67 0 /* sign */
68};
69/* If nonzero, we've been asked to assemble nan, +inf or -inf */
70int generic_floating_point_magic;
71\f
72/*
73 * Summary of operand().
74 *
75 * in: Input_line_pointer points to 1st char of operand, which may
76 * be a space.
77 *
78 * out: A expressionS. X_seg determines how to understand the rest of the
79 * expressionS.
80 * The operand may have been empty: in this case X_seg == SEG_ABSENT.
81 * Input_line_pointer->(next non-blank) char after operand.
82 *
83 */
84\f
85static segT
86operand (expressionP)
87 register expressionS * expressionP;
88{
89 register char c;
90 register char *name; /* points to name of symbol */
91 register symbolS * symbolP; /* Points to symbol */
92
93 extern char hex_value[]; /* In hex_value.c */
94
95 SKIP_WHITESPACE(); /* Leading whitespace is part of operand. */
96 c = * input_line_pointer ++; /* Input_line_pointer->past char in c. */
97 if (isdigit(c))
98 {
99 register valueT number; /* offset or (absolute) value */
100 register short int digit; /* value of next digit in current radix */
101 /* invented for humans only, hope */
102 /* optimising compiler flushes it! */
103 register short int radix; /* 2, 8, 10 or 16 */
104 /* 0 means we saw start of a floating- */
105 /* point constant. */
106 register short int maxdig = 0;/* Highest permitted digit value. */
107 register int too_many_digits = 0; /* If we see >= this number of */
108 /* digits, assume it is a bignum. */
109 register char * digit_2; /*->2nd digit of number. */
110 int small; /* TRUE if fits in 32 bits. */
111
112 if (c == '0') { /* non-decimal radix */
113 if ((c = *input_line_pointer ++)=='x' || c=='X') {
114 c = *input_line_pointer ++; /* read past "0x" or "0X" */
115 maxdig = radix = 16;
116 too_many_digits = 9;
117 } else {
118 /* If it says '0f' and the line ends or it DOESN'T look like
119 a floating point #, its a local label ref. DTRT */
120 /* likewise for the b's. xoxorich. */
121 if ((c == 'f' || c == 'b' || c == 'B')
122 && (!*input_line_pointer ||
123 (!strchr("+-.0123456789",*input_line_pointer) &&
124 !strchr(EXP_CHARS,*input_line_pointer)))) {
125 maxdig = radix = 10;
126 too_many_digits = 11;
127 c = '0';
128 input_line_pointer -= 2;
129
130 } else if (c == 'b' || c == 'B') {
131 c = *input_line_pointer++;
132 maxdig = radix = 2;
133 too_many_digits = 33;
134
135 } else if (c && strchr(FLT_CHARS,c)) {
136 radix = 0; /* Start of floating-point constant. */
137 /* input_line_pointer->1st char of number. */
138 expressionP->X_add_number = -(isupper(c) ? tolower(c) : c);
139
140 } else { /* By elimination, assume octal radix. */
141 radix = maxdig = 8;
142 too_many_digits = 11;
143 }
144 } /* c == char after "0" or "0x" or "0X" or "0e" etc. */
145 } else {
146 maxdig = radix = 10;
147 too_many_digits = 11;
148 } /* if operand starts with a zero */
149
150 if (radix) { /* Fixed-point integer constant. */
151 /* May be bignum, or may fit in 32 bits. */
152/*
153 * Most numbers fit into 32 bits, and we want this case to be fast.
154 * So we pretend it will fit into 32 bits. If, after making up a 32
155 * bit number, we realise that we have scanned more digits than
156 * comfortably fit into 32 bits, we re-scan the digits coding
157 * them into a bignum. For decimal and octal numbers we are conservative: some
158 * numbers may be assumed bignums when in fact they do fit into 32 bits.
159 * Numbers of any radix can have excess leading zeros: we strive
160 * to recognise this and cast them back into 32 bits.
161 * We must check that the bignum really is more than 32
162 * bits, and change it back to a 32-bit number if it fits.
163 * The number we are looking for is expected to be positive, but
164 * if it fits into 32 bits as an unsigned number, we let it be a 32-bit
165 * number. The cavalier approach is for speed in ordinary cases.
166 */
167 digit_2 = input_line_pointer;
168 for (number=0; (digit=hex_value[c])<maxdig; c = * input_line_pointer ++)
169 {
170 number = number * radix + digit;
171 }
172 /* C contains character after number. */
173 /* Input_line_pointer->char after C. */
174 small = input_line_pointer - digit_2 < too_many_digits;
175 if (! small)
176 {
177 /*
178 * We saw a lot of digits. Manufacture a bignum the hard way.
179 */
180 LITTLENUM_TYPE * leader; /*->high order littlenum of the bignum. */
181 LITTLENUM_TYPE * pointer; /*->littlenum we are frobbing now. */
182 long carry;
183
184 leader = generic_bignum;
185 generic_bignum [0] = 0;
186 generic_bignum [1] = 0;
187 /* We could just use digit_2, but lets be mnemonic. */
188 input_line_pointer = -- digit_2; /*->1st digit. */
189 c = *input_line_pointer ++;
190 for (; (carry = hex_value [c]) < maxdig; c = * input_line_pointer ++)
191 {
192 for (pointer = generic_bignum;
193 pointer <= leader;
194 pointer ++)
195 {
196 long work;
197
198 work = carry + radix * * pointer;
199 * pointer = work & LITTLENUM_MASK;
200 carry = work >> LITTLENUM_NUMBER_OF_BITS;
201 }
202 if (carry)
203 {
204 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
205 { /* Room to grow a longer bignum. */
206 * ++ leader = carry;
207 }
208 }
209 }
210 /* Again, C is char after number, */
211 /* input_line_pointer->after C. */
212 know(sizeof (int) * 8 == 32);
213 know(LITTLENUM_NUMBER_OF_BITS == 16);
214 /* Hence the constant "2" in the next line. */
215 if (leader < generic_bignum + 2)
216 { /* Will fit into 32 bits. */
217 number =
218 ((generic_bignum [1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
219 | (generic_bignum [0] & LITTLENUM_MASK);
220 small = 1;
221 }
222 else
223 {
224 number = leader - generic_bignum + 1; /* Number of littlenums in the bignum. */
225 }
226 }
227 if (small)
228 {
229 /*
230 * Here with number, in correct radix. c is the next char.
231 * Note that unlike Un*x, we allow "011f" "0x9f" to
232 * both mean the same as the (conventional) "9f". This is simply easier
233 * than checking for strict canonical form. Syntax sux!
234 */
235 if (number<10)
236 {
237 if (0
238#ifdef LOCAL_LABELS_FB
239 || c=='b'
240#endif
241#ifdef LOCAL_LABELS_DOLLAR
242 || (c=='$' && local_label_defined[number])
243#endif
244 )
245 {
246 /*
247 * Backward ref to local label.
248 * Because it is backward, expect it to be DEFINED.
249 */
250 /*
251 * Construct a local label.
252 */
253 name = local_label_name ((int)number, 0);
254 if (((symbolP = symbol_find(name)) != NULL) /* seen before */
255 && (S_IS_DEFINED(symbolP))) /* symbol is defined: OK */
256 { /* Expected path: symbol defined. */
257 /* Local labels are never absolute. Don't waste time checking absoluteness. */
258 know((S_GET_SEGMENT(symbolP) == SEG_DATA) || (S_GET_SEGMENT(symbolP) == SEG_TEXT));
259 expressionP->X_add_symbol = symbolP;
260 expressionP->X_add_number = 0;
261 expressionP->X_seg = S_GET_SEGMENT(symbolP);
262 }
263 else
264 { /* Either not seen or not defined. */
265 as_bad("Backw. ref to unknown label \"%d:\", 0 assumed.",
266 number);
267 expressionP->X_add_number = 0;
268 expressionP->X_seg = SEG_ABSOLUTE;
269 }
270 }
271 else
272 {
273 if (0
274#ifdef LOCAL_LABELS_FB
275 || c == 'f'
276#endif
277#ifdef LOCAL_LABELS_DOLLAR
278 || (c=='$' && !local_label_defined[number])
279#endif
280 )
281 {
282 /*
283 * Forward reference. Expect symbol to be undefined or
284 * unknown. Undefined: seen it before. Unknown: never seen
285 * it in this pass.
286 * Construct a local label name, then an undefined symbol.
287 * Don't create a XSEG frag for it: caller may do that.
288 * Just return it as never seen before.
289 */
290 name = local_label_name((int)number, 1);
291 symbolP = symbol_find_or_make(name);
292 /* We have no need to check symbol properties. */
293 know(S_GET_SEGMENT(symbolP) == SEG_UNKNOWN
294 || S_GET_SEGMENT(symbolP) == SEG_TEXT
295 || S_GET_SEGMENT(symbolP) == SEG_DATA);
296 expressionP->X_add_symbol = symbolP;
297 expressionP->X_seg = SEG_UNKNOWN;
298 expressionP->X_subtract_symbol = NULL;
299 expressionP->X_add_number = 0;
300 }
301 else
302 { /* Really a number, not a local label. */
303 expressionP->X_add_number = number;
304 expressionP->X_seg = SEG_ABSOLUTE;
305 input_line_pointer --; /* Restore following character. */
306 } /* if (c=='f') */
307 } /* if (c=='b') */
308 }
309 else
310 { /* Really a number. */
311 expressionP->X_add_number = number;
312 expressionP->X_seg = SEG_ABSOLUTE;
313 input_line_pointer --; /* Restore following character. */
314 } /* if (number<10) */
315 }
316 else
317 {
318 expressionP->X_add_number = number;
319 expressionP->X_seg = SEG_BIG;
320 input_line_pointer --; /*->char following number. */
321 } /* if (small) */
322 } /* (If integer constant) */
323 else
324 { /* input_line_pointer->*/
325 /* floating-point constant. */
326 int error_code;
327
328 error_code = atof_generic
329 (& input_line_pointer, ".", EXP_CHARS,
330 & generic_floating_point_number);
331
332 if (error_code)
333 {
334 if (error_code == ERROR_EXPONENT_OVERFLOW)
335 {
336 as_bad("Bad floating-point constant: exponent overflow, probably assembling junk");
337 }
338 else
339 {
340 as_bad("Bad floating-point constant: unknown error code=%d.", error_code);
341 }
342 }
343 expressionP->X_seg = SEG_BIG;
344 /* input_line_pointer->just after constant, */
345 /* which may point to whitespace. */
346 know(expressionP->X_add_number < 0); /* < 0 means "floating point". */
347 } /* if (not floating-point constant) */
348 }
349 else if(c=='.' && !is_part_of_name(*input_line_pointer)) {
350 extern struct obstack frags;
351
352 /*
353 JF: '.' is pseudo symbol with value of current location in current
354 segment. . .
355 */
356 symbolP = symbol_new("L0\001",
357 now_seg,
358 (valueT)(obstack_next_free(&frags)-frag_now->fr_literal),
359 frag_now);
360
361 expressionP->X_add_number=0;
362 expressionP->X_add_symbol=symbolP;
363 expressionP->X_seg = now_seg;
364
365 } else if (is_name_beginner(c)) /* here if did not begin with a digit */
366 {
367 /*
368 * Identifier begins here.
369 * This is kludged for speed, so code is repeated.
370 */
371 name = -- input_line_pointer;
372 c = get_symbol_end();
373 symbolP = symbol_find_or_make(name);
374 /*
375 * If we have an absolute symbol or a reg, then we know its value now.
376 */
377 expressionP->X_seg = S_GET_SEGMENT(symbolP);
378 switch (expressionP->X_seg)
379 {
380 case SEG_ABSOLUTE:
381 case SEG_REGISTER:
382 expressionP->X_add_number = S_GET_VALUE(symbolP);
383 break;
384
385 default:
386 expressionP->X_add_number = 0;
387 expressionP->X_add_symbol = symbolP;
388 }
389 * input_line_pointer = c;
390 expressionP->X_subtract_symbol = NULL;
391 }
392 else if (c=='(')/* didn't begin with digit & not a name */
393 {
394 (void)expression(expressionP);
395 /* Expression() will pass trailing whitespace */
396 if (* input_line_pointer ++ != ')')
397 {
398 as_bad("Missing ')' assumed");
399 input_line_pointer --;
400 }
401 /* here with input_line_pointer->char after "(...)" */
402 }
403 else if (c == '~' || c == '-' || c == '+') {
404 /* unary operator: hope for SEG_ABSOLUTE */
405 switch (operand (expressionP)) {
406 case SEG_ABSOLUTE:
407 /* input_line_pointer->char after operand */
408 if (c=='-') {
409 expressionP->X_add_number = - expressionP->X_add_number;
410 /*
411 * Notice: '-' may overflow: no warning is given. This is compatible
412 * with other people's assemblers. Sigh.
413 */
414 } else if (c == '~') {
415 expressionP->X_add_number = ~ expressionP->X_add_number;
416 } else if (c != '+') {
417 know(0);
418 } /* switch on unary operator */
419 break;
420
421 case SEG_TEXT:
422 case SEG_DATA:
423 case SEG_BSS:
424 case SEG_PASS1:
425 case SEG_UNKNOWN:
426 if(c=='-') { /* JF I hope this hack works */
427 expressionP->X_subtract_symbol=expressionP->X_add_symbol;
428 expressionP->X_add_symbol=0;
429 expressionP->X_seg=SEG_DIFFERENCE;
430 break;
431 }
432 default: /* unary on non-absolute is unsuported */
433 as_bad("Unary operator %c ignored because bad operand follows", c);
434 break;
435 /* Expression undisturbed from operand(). */
436 }
437 }
438 else if (c=='\'')
439 {
440/*
441 * Warning: to conform to other people's assemblers NO ESCAPEMENT is permitted
442 * for a single quote. The next character, parity errors and all, is taken
443 * as the value of the operand. VERY KINKY.
444 */
445 expressionP->X_add_number = * input_line_pointer ++;
446 expressionP->X_seg = SEG_ABSOLUTE;
447 }
448 else
449 {
450 /* can't imagine any other kind of operand */
451 expressionP->X_seg = SEG_ABSENT;
452 input_line_pointer --;
453 md_operand (expressionP);
454 }
455/*
456 * It is more 'efficient' to clean up the expressions when they are created.
457 * Doing it here saves lines of code.
458 */
459 clean_up_expression (expressionP);
460 SKIP_WHITESPACE(); /*->1st char after operand. */
461 know(* input_line_pointer != ' ');
462 return (expressionP->X_seg);
463} /* operand() */
464\f
465/* Internal. Simplify a struct expression for use by expr() */
466
467/*
468 * In: address of a expressionS.
469 * The X_seg field of the expressionS may only take certain values.
470 * Now, we permit SEG_PASS1 to make code smaller & faster.
471 * Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
472 * Out: expressionS may have been modified:
473 * 'foo-foo' symbol references cancelled to 0,
474 * which changes X_seg from SEG_DIFFERENCE to SEG_ABSOLUTE;
475 * Unused fields zeroed to help expr().
476 */
477
478static void
479clean_up_expression (expressionP)
480 register expressionS * expressionP;
481{
482 switch (expressionP->X_seg)
483 {
484 case SEG_ABSENT:
485 case SEG_PASS1:
486 expressionP->X_add_symbol = NULL;
487 expressionP->X_subtract_symbol = NULL;
488 expressionP->X_add_number = 0;
489 break;
490
491 case SEG_BIG:
492 case SEG_ABSOLUTE:
493 expressionP->X_subtract_symbol = NULL;
494 expressionP->X_add_symbol = NULL;
495 break;
496
497 case SEG_TEXT:
498 case SEG_DATA:
499 case SEG_BSS:
500 case SEG_UNKNOWN:
501 expressionP->X_subtract_symbol = NULL;
502 break;
503
504 case SEG_DIFFERENCE:
505 /*
506 * It does not hurt to 'cancel' NULL==NULL
507 * when comparing symbols for 'eq'ness.
508 * It is faster to re-cancel them to NULL
509 * than to check for this special case.
510 */
511 if (expressionP->X_subtract_symbol == expressionP->X_add_symbol
512 || (expressionP->X_subtract_symbol
513 && expressionP->X_add_symbol
514 && expressionP->X_subtract_symbol->sy_frag==expressionP->X_add_symbol->sy_frag
515 && S_GET_VALUE(expressionP->X_subtract_symbol) == S_GET_VALUE(expressionP->X_add_symbol))) {
516 expressionP->X_subtract_symbol = NULL;
517 expressionP->X_add_symbol = NULL;
518 expressionP->X_seg = SEG_ABSOLUTE;
519 }
520 break;
521
522 case SEG_REGISTER:
523 expressionP->X_add_symbol = NULL;
524 expressionP->X_subtract_symbol = NULL;
525 break;
526
527 default:
528 BAD_CASE (expressionP->X_seg);
529 break;
530 }
531} /* clean_up_expression() */
532\f
533/*
534 * expr_part ()
535 *
536 * Internal. Made a function because this code is used in 2 places.
537 * Generate error or correct X_?????_symbol of expressionS.
538 */
539
540/*
541 * symbol_1 += symbol_2 ... well ... sort of.
542 */
543
544static segT
545expr_part (symbol_1_PP, symbol_2_P)
546 symbolS ** symbol_1_PP;
547 symbolS * symbol_2_P;
548{
549 segT return_value;
550
551 know((* symbol_1_PP) == NULL
552 || (S_GET_SEGMENT(*symbol_1_PP) == SEG_TEXT)
553 || (S_GET_SEGMENT(*symbol_1_PP) == SEG_DATA)
554 || (S_GET_SEGMENT(*symbol_1_PP) == SEG_BSS)
555 || (!S_IS_DEFINED(* symbol_1_PP)));
556 know(symbol_2_P == NULL
557 || (S_GET_SEGMENT(symbol_2_P) == SEG_TEXT)
558 || (S_GET_SEGMENT(symbol_2_P) == SEG_DATA)
559 || (S_GET_SEGMENT(symbol_2_P) == SEG_BSS)
560 || (!S_IS_DEFINED(symbol_2_P)));
561 if (* symbol_1_PP)
562 {
563 if (!S_IS_DEFINED(* symbol_1_PP))
564 {
565 if (symbol_2_P)
566 {
567 return_value = SEG_PASS1;
568 * symbol_1_PP = NULL;
569 }
570 else
571 {
572 know(!S_IS_DEFINED(* symbol_1_PP));
573 return_value = SEG_UNKNOWN;
574 }
575 }
576 else
577 {
578 if (symbol_2_P)
579 {
580 if (!S_IS_DEFINED(symbol_2_P))
581 {
582 * symbol_1_PP = NULL;
583 return_value = SEG_PASS1;
584 }
585 else
586 {
587 /* {seg1} - {seg2} */
588 as_bad("Expression too complex, 2 symbols forgotten: \"%s\" \"%s\"",
589 S_GET_NAME(* symbol_1_PP), S_GET_NAME(symbol_2_P));
590 * symbol_1_PP = NULL;
591 return_value = SEG_ABSOLUTE;
592 }
593 }
594 else
595 {
596 return_value = S_GET_SEGMENT(* symbol_1_PP);
597 }
598 }
599 }
600 else
601 { /* (* symbol_1_PP) == NULL */
602 if (symbol_2_P)
603 {
604 * symbol_1_PP = symbol_2_P;
605 return_value = S_GET_SEGMENT(symbol_2_P);
606 }
607 else
608 {
609 * symbol_1_PP = NULL;
610 return_value = SEG_ABSOLUTE;
611 }
612 }
613 know(return_value == SEG_ABSOLUTE
614 || return_value == SEG_TEXT
615 || return_value == SEG_DATA
616 || return_value == SEG_BSS
617 || return_value == SEG_UNKNOWN
618 || return_value == SEG_PASS1);
619 know((* symbol_1_PP) == NULL
620 || (S_GET_SEGMENT(* symbol_1_PP) == return_value));
621 return (return_value);
622} /* expr_part() */
623\f
624/* Expression parser. */
625
626/*
627 * We allow an empty expression, and just assume (absolute,0) silently.
628 * Unary operators and parenthetical expressions are treated as operands.
629 * As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
630 *
631 * We used to do a aho/ullman shift-reduce parser, but the logic got so
632 * warped that I flushed it and wrote a recursive-descent parser instead.
633 * Now things are stable, would anybody like to write a fast parser?
634 * Most expressions are either register (which does not even reach here)
635 * or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
636 * So I guess it doesn't really matter how inefficient more complex expressions
637 * are parsed.
638 *
639 * After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
640 * Also, we have consumed any leading or trailing spaces (operand does that)
641 * and done all intervening operators.
642 */
643
644typedef enum
645{
646O_illegal, /* (0) what we get for illegal op */
647
648O_multiply, /* (1) * */
649O_divide, /* (2) / */
650O_modulus, /* (3) % */
651O_left_shift, /* (4) < */
652O_right_shift, /* (5) > */
653O_bit_inclusive_or, /* (6) | */
654O_bit_or_not, /* (7) ! */
655O_bit_exclusive_or, /* (8) ^ */
656O_bit_and, /* (9) & */
657O_add, /* (10) + */
658O_subtract /* (11) - */
659}
660operatorT;
661
662#define __ O_illegal
663
664static const operatorT op_encoding [256] = { /* maps ASCII->operators */
665
666__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
667__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
668
669__, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
670__, __, O_multiply, O_add, __, O_subtract, __, O_divide,
671__, __, __, __, __, __, __, __,
672__, __, __, __, O_left_shift, __, O_right_shift, __,
673__, __, __, __, __, __, __, __,
674__, __, __, __, __, __, __, __,
675__, __, __, __, __, __, __, __,
676__, __, __, __, __, __, O_bit_exclusive_or, __,
677__, __, __, __, __, __, __, __,
678__, __, __, __, __, __, __, __,
679__, __, __, __, __, __, __, __,
680__, __, __, __, O_bit_inclusive_or, __, __, __,
681
682__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
683__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
684__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
685__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
686__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
687__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
688__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
689__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
690};
691
692
693/*
694 * Rank Examples
695 * 0 operand, (expression)
696 * 1 + -
697 * 2 & ^ ! |
698 * 3 * / % << >>
699 */
700static const operator_rankT
701op_rank [] = { 0, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1 };
702\f
703/* Return resultP->X_seg. */
704segT expr(rank, resultP)
705register operator_rankT rank; /* Larger # is higher rank. */
706register expressionS *resultP; /* Deliver result here. */
707{
708 expressionS right;
709 register operatorT op_left;
710 register char c_left; /* 1st operator character. */
711 register operatorT op_right;
712 register char c_right;
713
714 know(rank >= 0);
715 (void)operand (resultP);
716 know(* input_line_pointer != ' '); /* Operand() gobbles spaces. */
717 c_left = * input_line_pointer; /* Potential operator character. */
718 op_left = op_encoding [c_left];
719 while (op_left != O_illegal && op_rank [(int) op_left] > rank)
720 {
721 input_line_pointer ++; /*->after 1st character of operator. */
722 /* Operators "<<" and ">>" have 2 characters. */
723 if (* input_line_pointer == c_left && (c_left == '<' || c_left == '>'))
724 {
725 input_line_pointer ++;
726 } /*->after operator. */
727 if (SEG_ABSENT == expr (op_rank[(int) op_left], &right))
728 {
729 as_warn("Missing operand value assumed absolute 0.");
730 resultP->X_add_number = 0;
731 resultP->X_subtract_symbol = NULL;
732 resultP->X_add_symbol = NULL;
733 resultP->X_seg = SEG_ABSOLUTE;
734 }
735 know(* input_line_pointer != ' ');
736 c_right = * input_line_pointer;
737 op_right = op_encoding [c_right];
738 if (* input_line_pointer == c_right && (c_right == '<' || c_right == '>'))
739 {
740 input_line_pointer ++;
741 } /*->after operator. */
742 know((int) op_right == 0
743 || op_rank [(int) op_right] <= op_rank[(int) op_left]);
744 /* input_line_pointer->after right-hand quantity. */
745 /* left-hand quantity in resultP */
746 /* right-hand quantity in right. */
747 /* operator in op_left. */
748 if (resultP->X_seg == SEG_PASS1 || right . X_seg == SEG_PASS1)
749 {
750 resultP->X_seg = SEG_PASS1;
751 }
752 else
753 {
754 if (resultP->X_seg == SEG_BIG)
755 {
756 as_warn("Left operand of %c is a %s. Integer 0 assumed.",
757 c_left, resultP->X_add_number > 0 ? "bignum" : "float");
758 resultP->X_seg = SEG_ABSOLUTE;
759 resultP->X_add_symbol = 0;
760 resultP->X_subtract_symbol = 0;
761 resultP->X_add_number = 0;
762 }
763 if (right . X_seg == SEG_BIG)
764 {
765 as_warn("Right operand of %c is a %s. Integer 0 assumed.",
766 c_left, right . X_add_number > 0 ? "bignum" : "float");
767 right . X_seg = SEG_ABSOLUTE;
768 right . X_add_symbol = 0;
769 right . X_subtract_symbol = 0;
770 right . X_add_number = 0;
771 }
772 if (op_left == O_subtract)
773 {
774 /*
775 * Convert - into + by exchanging symbols and negating number.
776 * I know -infinity can't be negated in 2's complement:
777 * but then it can't be subtracted either. This trick
778 * does not cause any further inaccuracy.
779 */
780
781 register symbolS * symbolP;
782
783 right . X_add_number = - right . X_add_number;
784 symbolP = right . X_add_symbol;
785 right . X_add_symbol = right . X_subtract_symbol;
786 right . X_subtract_symbol = symbolP;
787 if (symbolP)
788 {
789 right . X_seg = SEG_DIFFERENCE;
790 }
791 op_left = O_add;
792 }
793\f
794 if (op_left == O_add)
795 {
796 segT seg1;
797 segT seg2;
798
799 know(resultP->X_seg == SEG_DATA
800 || resultP->X_seg == SEG_TEXT
801 || resultP->X_seg == SEG_BSS
802 || resultP->X_seg == SEG_UNKNOWN
803 || resultP->X_seg == SEG_DIFFERENCE
804 || resultP->X_seg == SEG_ABSOLUTE
805 || resultP->X_seg == SEG_PASS1);
806 know(right . X_seg == SEG_DATA
807 || right . X_seg == SEG_TEXT
808 || right . X_seg == SEG_BSS
809 || right . X_seg == SEG_UNKNOWN
810 || right . X_seg == SEG_DIFFERENCE
811 || right . X_seg == SEG_ABSOLUTE
812 || right . X_seg == SEG_PASS1);
813
814 clean_up_expression (& right);
815 clean_up_expression (resultP);
816
817 seg1 = expr_part (& resultP->X_add_symbol, right . X_add_symbol);
818 seg2 = expr_part (& resultP->X_subtract_symbol, right . X_subtract_symbol);
819 if (seg1 == SEG_PASS1 || seg2 == SEG_PASS1) {
820 need_pass_2 = 1;
821 resultP->X_seg = SEG_PASS1;
822 } else if (seg2 == SEG_ABSOLUTE)
823 resultP->X_seg = seg1;
824 else if (seg1 != SEG_UNKNOWN
825 && seg1 != SEG_ABSOLUTE
826 && seg2 != SEG_UNKNOWN
827 && seg1 != seg2) {
828 know(seg2 != SEG_ABSOLUTE);
829 know(resultP->X_subtract_symbol);
830
831 know(seg1 == SEG_TEXT || seg1 == SEG_DATA || seg1== SEG_BSS);
832 know(seg2 == SEG_TEXT || seg2 == SEG_DATA || seg2== SEG_BSS);
833 know(resultP->X_add_symbol);
834 know(resultP->X_subtract_symbol);
835 as_bad("Expression too complex: forgetting %s - %s",
836 S_GET_NAME(resultP->X_add_symbol),
837 S_GET_NAME(resultP->X_subtract_symbol));
838 resultP->X_seg = SEG_ABSOLUTE;
839 /* Clean_up_expression() will do the rest. */
840 } else
841 resultP->X_seg = SEG_DIFFERENCE;
842
843 resultP->X_add_number += right . X_add_number;
844 clean_up_expression (resultP);
845 }
846 else
847 { /* Not +. */
848 if (resultP->X_seg == SEG_UNKNOWN || right . X_seg == SEG_UNKNOWN)
849 {
850 resultP->X_seg = SEG_PASS1;
851 need_pass_2 = 1;
852 }
853 else
854 {
855 resultP->X_subtract_symbol = NULL;
856 resultP->X_add_symbol = NULL;
857 /* Will be SEG_ABSOLUTE. */
858 if (resultP->X_seg != SEG_ABSOLUTE || right . X_seg != SEG_ABSOLUTE)
859 {
860 as_bad("Relocation error. Absolute 0 assumed.");
861 resultP->X_seg = SEG_ABSOLUTE;
862 resultP->X_add_number = 0;
863 }
864 else
865 {
866 switch (op_left)
867 {
868 case O_bit_inclusive_or:
869 resultP->X_add_number |= right . X_add_number;
870 break;
871
872 case O_modulus:
873 if (right . X_add_number)
874 {
875 resultP->X_add_number %= right . X_add_number;
876 }
877 else
878 {
879 as_warn("Division by 0. 0 assumed.");
880 resultP->X_add_number = 0;
881 }
882 break;
883
884 case O_bit_and:
885 resultP->X_add_number &= right . X_add_number;
886 break;
887
888 case O_multiply:
889 resultP->X_add_number *= right . X_add_number;
890 break;
891
892 case O_divide:
893 if (right . X_add_number)
894 {
895 resultP->X_add_number /= right . X_add_number;
896 }
897 else
898 {
899 as_warn("Division by 0. 0 assumed.");
900 resultP->X_add_number = 0;
901 }
902 break;
903
904 case O_left_shift:
905 resultP->X_add_number <<= right . X_add_number;
906 break;
907
908 case O_right_shift:
909 resultP->X_add_number >>= right . X_add_number;
910 break;
911
912 case O_bit_exclusive_or:
913 resultP->X_add_number ^= right . X_add_number;
914 break;
915
916 case O_bit_or_not:
917 resultP->X_add_number |= ~ right . X_add_number;
918 break;
919
920 default:
921 BAD_CASE(op_left);
922 break;
923 } /* switch(operator) */
924 }
925 } /* If we have to force need_pass_2. */
926 } /* If operator was +. */
927 } /* If we didn't set need_pass_2. */
928 op_left = op_right;
929 } /* While next operator is >= this rank. */
930 return (resultP->X_seg);
931}
932\f
933/*
934 * get_symbol_end()
935 *
936 * This lives here because it belongs equally in expr.c & read.c.
937 * Expr.c is just a branch office read.c anyway, and putting it
938 * here lessens the crowd at read.c.
939 *
940 * Assume input_line_pointer is at start of symbol name.
941 * Advance input_line_pointer past symbol name.
942 * Turn that character into a '\0', returning its former value.
943 * This allows a string compare (RMS wants symbol names to be strings)
944 * of the symbol name.
945 * There will always be a char following symbol name, because all good
946 * lines end in end-of-line.
947 */
948char
949get_symbol_end()
950{
951 register char c;
952
953 while (is_part_of_name(c = * input_line_pointer ++))
954 ;
955 * -- input_line_pointer = 0;
956 return (c);
957}
958
959/*
960 * Local Variables:
961 * comment-column: 0
962 * fill-column: 131
963 * End:
964 */
965
966/* end: expr.c */
This page took 0.085526 seconds and 4 git commands to generate.