Commit | Line | Data |
---|---|---|
252b5132 | 1 | /* itbl-ops.c |
d7ba4a77 | 2 | Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc. |
252b5132 RH |
3 | |
4 | This file is part of GAS, the GNU Assembler. | |
5 | ||
6 | GAS is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | GAS is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GAS; see the file COPYING. If not, write to the Free | |
18 | Software Foundation, 59 Temple Place - Suite 330, Boston, MA | |
19 | 02111-1307, USA. */ | |
20 | ||
21 | /*======================================================================*/ | |
22 | /* | |
23 | * Herein lies the support for dynamic specification of processor | |
24 | * instructions and registers. Mnemonics, values, and formats for each | |
25 | * instruction and register are specified in an ascii file consisting of | |
26 | * table entries. The grammar for the table is defined in the document | |
27 | * "Processor instruction table specification". | |
28 | * | |
29 | * Instructions use the gnu assembler syntax, with the addition of | |
30 | * allowing mnemonics for register. | |
31 | * Eg. "func $2,reg3,0x100,symbol ; comment" | |
32 | * func - opcode name | |
33 | * $n - register n | |
34 | * reg3 - mnemonic for processor's register defined in table | |
35 | * 0xddd..d - immediate value | |
36 | * symbol - address of label or external symbol | |
37 | * | |
38 | * First, itbl_parse reads in the table of register and instruction | |
39 | * names and formats, and builds a list of entries for each | |
40 | * processor/type combination. lex and yacc are used to parse | |
41 | * the entries in the table and call functions defined here to | |
42 | * add each entry to our list. | |
43 | * | |
44 | * Then, when assembling or disassembling, these functions are called to | |
45 | * 1) get information on a processor's registers and | |
46 | * 2) assemble/disassemble an instruction. | |
47 | * To assemble(disassemble) an instruction, the function | |
48 | * itbl_assemble(itbl_disassemble) is called to search the list of | |
49 | * instruction entries, and if a match is found, uses the format | |
50 | * described in the instruction entry structure to complete the action. | |
51 | * | |
52 | * Eg. Suppose we have a Mips coprocessor "cop3" with data register "d2" | |
53 | * and we want to define function "pig" which takes two operands. | |
54 | * | |
55 | * Given the table entries: | |
56 | * "p3 insn pig 0x1:24-21 dreg:20-16 immed:15-0" | |
57 | * "p3 dreg d2 0x2" | |
58 | * and that the instruction encoding for coprocessor pz has encoding: | |
59 | * #define MIPS_ENCODE_COP_NUM(z) ((0x21|(z<<1))<<25) | |
60 | * #define ITBL_ENCODE_PNUM(pnum) MIPS_ENCODE_COP_NUM(pnum) | |
61 | * | |
62 | * a structure to describe the instruction might look something like: | |
63 | * struct itbl_entry = { | |
64 | * e_processor processor = e_p3 | |
65 | * e_type type = e_insn | |
66 | * char *name = "pig" | |
67 | * uint value = 0x1 | |
68 | * uint flags = 0 | |
69 | * struct itbl_range range = 24-21 | |
70 | * struct itbl_field *field = { | |
71 | * e_type type = e_dreg | |
72 | * struct itbl_range range = 20-16 | |
73 | * struct itbl_field *next = { | |
74 | * e_type type = e_immed | |
75 | * struct itbl_range range = 15-0 | |
76 | * struct itbl_field *next = 0 | |
77 | * }; | |
78 | * }; | |
79 | * struct itbl_entry *next = 0 | |
80 | * }; | |
81 | * | |
82 | * And the assembler instructions: | |
83 | * "pig d2,0x100" | |
84 | * "pig $2,0x100" | |
85 | * | |
86 | * would both assemble to the hex value: | |
87 | * "0x4e220100" | |
88 | * | |
89 | */ | |
90 | ||
91 | #include <stdio.h> | |
92 | #include <stdlib.h> | |
93 | #include <string.h> | |
94 | #include "itbl-ops.h" | |
95 | #include "itbl-parse.h" | |
96 | ||
97 | /* #define DEBUG */ | |
98 | ||
99 | #ifdef DEBUG | |
100 | #include <assert.h> | |
101 | #define ASSERT(x) assert(x) | |
102 | #define DBG(x) printf x | |
103 | #else | |
104 | #define ASSERT(x) | |
105 | #define DBG(x) | |
106 | #endif | |
107 | ||
108 | #ifndef min | |
109 | #define min(a,b) (a<b?a:b) | |
110 | #endif | |
111 | ||
112 | int itbl_have_entries = 0; | |
113 | ||
114 | /*======================================================================*/ | |
115 | /* structures for keeping itbl format entries */ | |
116 | ||
ef99799a KH |
117 | struct itbl_range { |
118 | int sbit; /* mask starting bit position */ | |
119 | int ebit; /* mask ending bit position */ | |
120 | }; | |
121 | ||
122 | struct itbl_field { | |
123 | e_type type; /* dreg/creg/greg/immed/symb */ | |
124 | struct itbl_range range; /* field's bitfield range within instruction */ | |
125 | unsigned long flags; /* field flags */ | |
126 | struct itbl_field *next; /* next field in list */ | |
127 | }; | |
252b5132 | 128 | |
252b5132 RH |
129 | /* These structures define the instructions and registers for a processor. |
130 | * If the type is an instruction, the structure defines the format of an | |
131 | * instruction where the fields are the list of operands. | |
132 | * The flags field below uses the same values as those defined in the | |
c488923f | 133 | * gnu assembler and are machine specific. */ |
ef99799a KH |
134 | struct itbl_entry { |
135 | e_processor processor; /* processor number */ | |
136 | e_type type; /* dreg/creg/greg/insn */ | |
137 | char *name; /* mnemionic name for insn/register */ | |
138 | unsigned long value; /* opcode/instruction mask/register number */ | |
139 | unsigned long flags; /* effects of the instruction */ | |
140 | struct itbl_range range; /* bit range within instruction for value */ | |
141 | struct itbl_field *fields; /* list of operand definitions (if any) */ | |
142 | struct itbl_entry *next; /* next entry */ | |
143 | }; | |
252b5132 | 144 | |
252b5132 RH |
145 | /* local data and structures */ |
146 | ||
147 | static int itbl_num_opcodes = 0; | |
148 | /* Array of entries for each processor and entry type */ | |
ef99799a | 149 | static struct itbl_entry *entries[e_nprocs][e_ntypes] = { |
252b5132 RH |
150 | {0, 0, 0, 0, 0, 0}, |
151 | {0, 0, 0, 0, 0, 0}, | |
152 | {0, 0, 0, 0, 0, 0}, | |
153 | {0, 0, 0, 0, 0, 0} | |
154 | }; | |
155 | ||
156 | /* local prototypes */ | |
157 | static unsigned long build_opcode PARAMS ((struct itbl_entry *e)); | |
158 | static e_type get_type PARAMS ((int yytype)); | |
159 | static e_processor get_processor PARAMS ((int yyproc)); | |
c488923f | 160 | static struct itbl_entry **get_entries PARAMS ((e_processor processor, |
252b5132 | 161 | e_type type)); |
c488923f | 162 | static struct itbl_entry *find_entry_byname PARAMS ((e_processor processor, |
252b5132 | 163 | e_type type, char *name)); |
c488923f | 164 | static struct itbl_entry *find_entry_byval PARAMS ((e_processor processor, |
252b5132 | 165 | e_type type, unsigned long val, struct itbl_range *r)); |
c488923f | 166 | static struct itbl_entry *alloc_entry PARAMS ((e_processor processor, |
252b5132 | 167 | e_type type, char *name, unsigned long value)); |
c488923f | 168 | static unsigned long apply_range PARAMS ((unsigned long value, |
252b5132 | 169 | struct itbl_range r)); |
c488923f | 170 | static unsigned long extract_range PARAMS ((unsigned long value, |
252b5132 | 171 | struct itbl_range r)); |
c488923f | 172 | static struct itbl_field *alloc_field PARAMS ((e_type type, int sbit, |
252b5132 RH |
173 | int ebit, unsigned long flags)); |
174 | ||
252b5132 RH |
175 | /*======================================================================*/ |
176 | /* Interfaces to the parser */ | |
177 | ||
252b5132 RH |
178 | /* Open the table and use lex and yacc to parse the entries. |
179 | * Return 1 for failure; 0 for success. */ | |
180 | ||
c488923f | 181 | int |
252b5132 RH |
182 | itbl_parse (char *insntbl) |
183 | { | |
184 | extern FILE *yyin; | |
185 | extern int yyparse (void); | |
186 | yyin = fopen (insntbl, "r"); | |
187 | if (yyin == 0) | |
188 | { | |
189 | printf ("Can't open processor instruction specification file \"%s\"\n", | |
190 | insntbl); | |
191 | return 1; | |
192 | } | |
193 | else | |
194 | { | |
195 | while (yyparse ()); | |
196 | } | |
197 | fclose (yyin); | |
198 | itbl_have_entries = 1; | |
199 | return 0; | |
200 | } | |
201 | ||
202 | /* Add a register entry */ | |
203 | ||
204 | struct itbl_entry * | |
205 | itbl_add_reg (int yyprocessor, int yytype, char *regname, | |
206 | int regnum) | |
207 | { | |
c488923f | 208 | #if 0 |
252b5132 RH |
209 | #include "as.h" |
210 | #include "symbols.h" | |
211 | /* Since register names don't have a prefix, we put them in the symbol table so | |
212 | they can't be used as symbols. This also simplifies argument parsing as | |
213 | we can let gas parse registers for us. The recorded register number is | |
214 | regnum. */ | |
215 | /* Use symbol_create here instead of symbol_new so we don't try to | |
216 | output registers into the object file's symbol table. */ | |
217 | symbol_table_insert (symbol_create (regname, reg_section, | |
218 | regnum, &zero_address_frag)); | |
219 | #endif | |
220 | return alloc_entry (get_processor (yyprocessor), get_type (yytype), regname, | |
221 | (unsigned long) regnum); | |
222 | } | |
223 | ||
224 | /* Add an instruction entry */ | |
225 | ||
226 | struct itbl_entry * | |
227 | itbl_add_insn (int yyprocessor, char *name, unsigned long value, | |
228 | int sbit, int ebit, unsigned long flags) | |
229 | { | |
230 | struct itbl_entry *e; | |
231 | e = alloc_entry (get_processor (yyprocessor), e_insn, name, value); | |
232 | if (e) | |
233 | { | |
234 | e->range.sbit = sbit; | |
235 | e->range.ebit = ebit; | |
236 | e->flags = flags; | |
237 | itbl_num_opcodes++; | |
238 | } | |
239 | return e; | |
240 | } | |
241 | ||
242 | /* Add an operand to an instruction entry */ | |
243 | ||
244 | struct itbl_field * | |
245 | itbl_add_operand (struct itbl_entry *e, int yytype, int sbit, | |
246 | int ebit, unsigned long flags) | |
247 | { | |
248 | struct itbl_field *f, **last_f; | |
249 | if (!e) | |
250 | return 0; | |
c488923f | 251 | /* Add to end of fields' list. */ |
252b5132 RH |
252 | f = alloc_field (get_type (yytype), sbit, ebit, flags); |
253 | if (f) | |
254 | { | |
255 | last_f = &e->fields; | |
256 | while (*last_f) | |
257 | last_f = &(*last_f)->next; | |
258 | *last_f = f; | |
259 | f->next = 0; | |
260 | } | |
261 | return f; | |
262 | } | |
263 | ||
252b5132 RH |
264 | /*======================================================================*/ |
265 | /* Interfaces for assembler and disassembler */ | |
266 | ||
267 | #ifndef STAND_ALONE | |
268 | #include "as.h" | |
269 | #include "symbols.h" | |
270 | static void append_insns_as_macros (void); | |
271 | ||
ef99799a KH |
272 | /* Initialize for gas. */ |
273 | ||
c488923f | 274 | void |
252b5132 RH |
275 | itbl_init (void) |
276 | { | |
277 | struct itbl_entry *e, **es; | |
278 | e_processor procn; | |
279 | e_type type; | |
280 | ||
281 | if (!itbl_have_entries) | |
ef99799a | 282 | return; |
252b5132 RH |
283 | |
284 | /* Since register names don't have a prefix, put them in the symbol table so | |
285 | they can't be used as symbols. This simplifies argument parsing as | |
c488923f | 286 | we can let gas parse registers for us. */ |
252b5132 RH |
287 | /* Use symbol_create instead of symbol_new so we don't try to |
288 | output registers into the object file's symbol table. */ | |
289 | ||
290 | for (type = e_regtype0; type < e_nregtypes; type++) | |
291 | for (procn = e_p0; procn < e_nprocs; procn++) | |
292 | { | |
293 | es = get_entries (procn, type); | |
294 | for (e = *es; e; e = e->next) | |
295 | { | |
296 | symbol_table_insert (symbol_create (e->name, reg_section, | |
ef99799a | 297 | e->value, &zero_address_frag)); |
252b5132 RH |
298 | } |
299 | } | |
300 | append_insns_as_macros (); | |
301 | } | |
302 | ||
c488923f KH |
303 | /* Append insns to opcodes table and increase number of opcodes |
304 | * Structure of opcodes table: | |
252b5132 RH |
305 | * struct itbl_opcode |
306 | * { | |
307 | * const char *name; | |
c488923f KH |
308 | * const char *args; - string describing the arguments. |
309 | * unsigned long match; - opcode, or ISA level if pinfo=INSN_MACRO | |
310 | * unsigned long mask; - opcode mask, or macro id if pinfo=INSN_MACRO | |
311 | * unsigned long pinfo; - insn flags, or INSN_MACRO | |
252b5132 RH |
312 | * }; |
313 | * examples: | |
314 | * {"li", "t,i", 0x34000000, 0xffe00000, WR_t }, | |
315 | * {"li", "t,I", 0, (int) M_LI, INSN_MACRO }, | |
316 | */ | |
317 | ||
318 | static char *form_args (struct itbl_entry *e); | |
c488923f | 319 | static void |
252b5132 RH |
320 | append_insns_as_macros (void) |
321 | { | |
322 | struct ITBL_OPCODE_STRUCT *new_opcodes, *o; | |
323 | struct itbl_entry *e, **es; | |
324 | int n, id, size, new_size, new_num_opcodes; | |
325 | ||
326 | if (!itbl_have_entries) | |
ef99799a | 327 | return; |
252b5132 RH |
328 | |
329 | if (!itbl_num_opcodes) /* no new instructions to add! */ | |
330 | { | |
331 | return; | |
332 | } | |
333 | DBG (("previous num_opcodes=%d\n", ITBL_NUM_OPCODES)); | |
334 | ||
335 | new_num_opcodes = ITBL_NUM_OPCODES + itbl_num_opcodes; | |
336 | ASSERT (new_num_opcodes >= itbl_num_opcodes); | |
337 | ||
338 | size = sizeof (struct ITBL_OPCODE_STRUCT) * ITBL_NUM_OPCODES; | |
339 | ASSERT (size >= 0); | |
340 | DBG (("I get=%d\n", size / sizeof (ITBL_OPCODES[0]))); | |
341 | ||
342 | new_size = sizeof (struct ITBL_OPCODE_STRUCT) * new_num_opcodes; | |
343 | ASSERT (new_size > size); | |
344 | ||
345 | /* FIXME since ITBL_OPCODES culd be a static table, | |
c488923f | 346 | we can't realloc or delete the old memory. */ |
252b5132 RH |
347 | new_opcodes = (struct ITBL_OPCODE_STRUCT *) malloc (new_size); |
348 | if (!new_opcodes) | |
349 | { | |
350 | printf (_("Unable to allocate memory for new instructions\n")); | |
351 | return; | |
352 | } | |
353 | if (size) /* copy prexisting opcodes table */ | |
354 | memcpy (new_opcodes, ITBL_OPCODES, size); | |
355 | ||
356 | /* FIXME! some NUMOPCODES are calculated expressions. | |
c488923f | 357 | These need to be changed before itbls can be supported. */ |
252b5132 RH |
358 | |
359 | id = ITBL_NUM_MACROS; /* begin the next macro id after the last */ | |
360 | o = &new_opcodes[ITBL_NUM_OPCODES]; /* append macro to opcodes list */ | |
361 | for (n = e_p0; n < e_nprocs; n++) | |
362 | { | |
363 | es = get_entries (n, e_insn); | |
364 | for (e = *es; e; e = e->next) | |
365 | { | |
366 | /* name, args, mask, match, pinfo | |
367 | * {"li", "t,i", 0x34000000, 0xffe00000, WR_t }, | |
368 | * {"li", "t,I", 0, (int) M_LI, INSN_MACRO }, | |
369 | * Construct args from itbl_fields. | |
370 | */ | |
371 | o->name = e->name; | |
372 | o->args = strdup (form_args (e)); | |
373 | o->mask = apply_range (e->value, e->range); | |
374 | /* FIXME how to catch durring assembly? */ | |
375 | /* mask to identify this insn */ | |
376 | o->match = apply_range (e->value, e->range); | |
377 | o->pinfo = 0; | |
378 | ||
379 | #ifdef USE_MACROS | |
380 | o->mask = id++; /* FIXME how to catch durring assembly? */ | |
381 | o->match = 0; /* for macros, the insn_isa number */ | |
382 | o->pinfo = INSN_MACRO; | |
383 | #endif | |
384 | ||
385 | /* Don't add instructions which caused an error */ | |
386 | if (o->args) | |
387 | o++; | |
388 | else | |
389 | new_num_opcodes--; | |
390 | } | |
391 | } | |
392 | ITBL_OPCODES = new_opcodes; | |
393 | ITBL_NUM_OPCODES = new_num_opcodes; | |
394 | ||
395 | /* FIXME | |
396 | At this point, we can free the entries, as they should have | |
397 | been added to the assembler's tables. | |
398 | Don't free name though, since name is being used by the new | |
399 | opcodes table. | |
400 | ||
c488923f | 401 | Eventually, we should also free the new opcodes table itself |
252b5132 RH |
402 | on exit. |
403 | */ | |
404 | } | |
405 | ||
406 | static char * | |
407 | form_args (struct itbl_entry *e) | |
408 | { | |
409 | static char s[31]; | |
410 | char c = 0, *p = s; | |
411 | struct itbl_field *f; | |
412 | ||
413 | ASSERT (e); | |
414 | for (f = e->fields; f; f = f->next) | |
415 | { | |
416 | switch (f->type) | |
417 | { | |
418 | case e_dreg: | |
419 | c = 'd'; | |
420 | break; | |
421 | case e_creg: | |
422 | c = 't'; | |
423 | break; | |
424 | case e_greg: | |
425 | c = 's'; | |
426 | break; | |
427 | case e_immed: | |
428 | c = 'i'; | |
429 | break; | |
430 | case e_addr: | |
431 | c = 'a'; | |
432 | break; | |
433 | default: | |
434 | c = 0; /* ignore; unknown field type */ | |
435 | } | |
436 | if (c) | |
437 | { | |
438 | if (p != s) | |
439 | *p++ = ','; | |
440 | *p++ = c; | |
441 | } | |
442 | } | |
443 | *p = 0; | |
444 | return s; | |
445 | } | |
446 | #endif /* !STAND_ALONE */ | |
447 | ||
252b5132 RH |
448 | /* Get processor's register name from val */ |
449 | ||
d7ba4a77 ILT |
450 | int |
451 | itbl_get_reg_val (char *name, unsigned long *pval) | |
252b5132 RH |
452 | { |
453 | e_type t; | |
454 | e_processor p; | |
d7ba4a77 | 455 | |
252b5132 | 456 | for (p = e_p0; p < e_nprocs; p++) |
d7ba4a77 ILT |
457 | { |
458 | for (t = e_regtype0; t < e_nregtypes; t++) | |
459 | { | |
460 | if (itbl_get_val (p, t, name, pval)) | |
461 | return 1; | |
462 | } | |
463 | } | |
252b5132 RH |
464 | return 0; |
465 | } | |
466 | ||
467 | char * | |
468 | itbl_get_name (e_processor processor, e_type type, unsigned long val) | |
469 | { | |
470 | struct itbl_entry *r; | |
471 | /* type depends on instruction passed */ | |
472 | r = find_entry_byval (processor, type, val, 0); | |
473 | if (r) | |
474 | return r->name; | |
475 | else | |
476 | return 0; /* error; invalid operand */ | |
477 | } | |
478 | ||
479 | /* Get processor's register value from name */ | |
480 | ||
d7ba4a77 ILT |
481 | int |
482 | itbl_get_val (e_processor processor, e_type type, char *name, | |
483 | unsigned long *pval) | |
252b5132 RH |
484 | { |
485 | struct itbl_entry *r; | |
486 | /* type depends on instruction passed */ | |
487 | r = find_entry_byname (processor, type, name); | |
d7ba4a77 ILT |
488 | if (r == NULL) |
489 | return 0; | |
490 | *pval = r->value; | |
491 | return 1; | |
252b5132 RH |
492 | } |
493 | ||
252b5132 RH |
494 | /* Assemble instruction "name" with operands "s". |
495 | * name - name of instruction | |
496 | * s - operands | |
497 | * returns - long word for assembled instruction */ | |
498 | ||
c488923f | 499 | unsigned long |
252b5132 RH |
500 | itbl_assemble (char *name, char *s) |
501 | { | |
502 | unsigned long opcode; | |
503 | struct itbl_entry *e; | |
504 | struct itbl_field *f; | |
505 | char *n; | |
506 | int processor; | |
507 | ||
508 | if (!name || !*name) | |
509 | return 0; /* error! must have a opcode name/expr */ | |
510 | ||
511 | /* find entry in list of instructions for all processors */ | |
512 | for (processor = 0; processor < e_nprocs; processor++) | |
513 | { | |
514 | e = find_entry_byname (processor, e_insn, name); | |
515 | if (e) | |
516 | break; | |
517 | } | |
518 | if (!e) | |
ef5c4bfc | 519 | return 0; /* opcode not in table; invalid instruction */ |
252b5132 RH |
520 | opcode = build_opcode (e); |
521 | ||
522 | /* parse opcode's args (if any) */ | |
c488923f | 523 | for (f = e->fields; f; f = f->next) /* for each arg, ... */ |
252b5132 RH |
524 | { |
525 | struct itbl_entry *r; | |
526 | unsigned long value; | |
527 | if (!s || !*s) | |
528 | return 0; /* error - not enough operands */ | |
529 | n = itbl_get_field (&s); | |
530 | /* n should be in form $n or 0xhhh (are symbol names valid?? */ | |
531 | switch (f->type) | |
532 | { | |
533 | case e_dreg: | |
534 | case e_creg: | |
535 | case e_greg: | |
536 | /* Accept either a string name | |
537 | * or '$' followed by the register number */ | |
538 | if (*n == '$') | |
539 | { | |
540 | n++; | |
541 | value = strtol (n, 0, 10); | |
542 | /* FIXME! could have "0l"... then what?? */ | |
543 | if (value == 0 && *n != '0') | |
544 | return 0; /* error; invalid operand */ | |
545 | } | |
546 | else | |
547 | { | |
548 | r = find_entry_byname (e->processor, f->type, n); | |
549 | if (r) | |
550 | value = r->value; | |
551 | else | |
552 | return 0; /* error; invalid operand */ | |
553 | } | |
554 | break; | |
555 | case e_addr: | |
556 | /* use assembler's symbol table to find symbol */ | |
557 | /* FIXME!! Do we need this? | |
558 | if so, what about relocs?? | |
559 | my_getExpression (&imm_expr, s); | |
560 | return 0; /-* error; invalid operand *-/ | |
561 | break; | |
562 | */ | |
563 | /* If not a symbol, fall thru to IMMED */ | |
564 | case e_immed: | |
c488923f | 565 | if (*n == '0' && *(n + 1) == 'x') /* hex begins 0x... */ |
252b5132 RH |
566 | { |
567 | n += 2; | |
568 | value = strtol (n, 0, 16); | |
569 | /* FIXME! could have "0xl"... then what?? */ | |
570 | } | |
571 | else | |
572 | { | |
573 | value = strtol (n, 0, 10); | |
574 | /* FIXME! could have "0l"... then what?? */ | |
575 | if (value == 0 && *n != '0') | |
576 | return 0; /* error; invalid operand */ | |
577 | } | |
578 | break; | |
579 | default: | |
580 | return 0; /* error; invalid field spec */ | |
581 | } | |
582 | opcode |= apply_range (value, f->range); | |
583 | } | |
584 | if (s && *s) | |
585 | return 0; /* error - too many operands */ | |
586 | return opcode; /* done! */ | |
587 | } | |
588 | ||
589 | /* Disassemble instruction "insn". | |
590 | * insn - instruction | |
591 | * s - buffer to hold disassembled instruction | |
592 | * returns - 1 if succeeded; 0 if failed | |
593 | */ | |
594 | ||
c488923f | 595 | int |
252b5132 RH |
596 | itbl_disassemble (char *s, unsigned long insn) |
597 | { | |
598 | e_processor processor; | |
599 | struct itbl_entry *e; | |
600 | struct itbl_field *f; | |
601 | ||
602 | if (!ITBL_IS_INSN (insn)) | |
ef99799a | 603 | return 0; /* error */ |
252b5132 RH |
604 | processor = get_processor (ITBL_DECODE_PNUM (insn)); |
605 | ||
606 | /* find entry in list */ | |
607 | e = find_entry_byval (processor, e_insn, insn, 0); | |
608 | if (!e) | |
ef5c4bfc | 609 | return 0; /* opcode not in table; invalid instruction */ |
252b5132 RH |
610 | strcpy (s, e->name); |
611 | ||
ef99799a | 612 | /* Parse insn's args (if any). */ |
c488923f | 613 | for (f = e->fields; f; f = f->next) /* for each arg, ... */ |
252b5132 RH |
614 | { |
615 | struct itbl_entry *r; | |
616 | unsigned long value; | |
617 | ||
ef99799a | 618 | if (f == e->fields) /* First operand is preceeded by tab. */ |
252b5132 | 619 | strcat (s, "\t"); |
ef99799a | 620 | else /* ','s separate following operands. */ |
252b5132 RH |
621 | strcat (s, ","); |
622 | value = extract_range (insn, f->range); | |
623 | /* n should be in form $n or 0xhhh (are symbol names valid?? */ | |
624 | switch (f->type) | |
625 | { | |
626 | case e_dreg: | |
627 | case e_creg: | |
628 | case e_greg: | |
629 | /* Accept either a string name | |
ef99799a | 630 | or '$' followed by the register number. */ |
252b5132 RH |
631 | r = find_entry_byval (e->processor, f->type, value, &f->range); |
632 | if (r) | |
633 | strcat (s, r->name); | |
634 | else | |
41e60a82 | 635 | sprintf (s, "%s$%lu", s, value); |
252b5132 RH |
636 | break; |
637 | case e_addr: | |
ef99799a KH |
638 | /* Use assembler's symbol table to find symbol. */ |
639 | /* FIXME!! Do we need this? If so, what about relocs?? */ | |
640 | /* If not a symbol, fall through to IMMED. */ | |
252b5132 | 641 | case e_immed: |
41e60a82 | 642 | sprintf (s, "%s0x%lx", s, value); |
252b5132 RH |
643 | break; |
644 | default: | |
645 | return 0; /* error; invalid field spec */ | |
646 | } | |
647 | } | |
ef99799a | 648 | return 1; /* Done! */ |
252b5132 RH |
649 | } |
650 | ||
651 | /*======================================================================*/ | |
652 | /* | |
653 | * Local functions for manipulating private structures containing | |
654 | * the names and format for the new instructions and registers | |
655 | * for each processor. | |
656 | */ | |
657 | ||
658 | /* Calculate instruction's opcode and function values from entry */ | |
659 | ||
c488923f | 660 | static unsigned long |
252b5132 RH |
661 | build_opcode (struct itbl_entry *e) |
662 | { | |
663 | unsigned long opcode; | |
664 | ||
665 | opcode = apply_range (e->value, e->range); | |
666 | opcode |= ITBL_ENCODE_PNUM (e->processor); | |
667 | return opcode; | |
668 | } | |
669 | ||
670 | /* Calculate absolute value given the relative value and bit position range | |
671 | * within the instruction. | |
672 | * The range is inclusive where 0 is least significant bit. | |
673 | * A range of { 24, 20 } will have a mask of | |
674 | * bit 3 2 1 | |
675 | * pos: 1098 7654 3210 9876 5432 1098 7654 3210 | |
676 | * bin: 0000 0001 1111 0000 0000 0000 0000 0000 | |
677 | * hex: 0 1 f 0 0 0 0 0 | |
678 | * mask: 0x01f00000. | |
679 | */ | |
680 | ||
c488923f | 681 | static unsigned long |
252b5132 RH |
682 | apply_range (unsigned long rval, struct itbl_range r) |
683 | { | |
684 | unsigned long mask; | |
685 | unsigned long aval; | |
686 | int len = MAX_BITPOS - r.sbit; | |
687 | ||
688 | ASSERT (r.sbit >= r.ebit); | |
689 | ASSERT (MAX_BITPOS >= r.sbit); | |
690 | ASSERT (r.ebit >= 0); | |
691 | ||
692 | /* create mask by truncating 1s by shifting */ | |
693 | mask = 0xffffffff << len; | |
694 | mask = mask >> len; | |
695 | mask = mask >> r.ebit; | |
696 | mask = mask << r.ebit; | |
697 | ||
698 | aval = (rval << r.ebit) & mask; | |
699 | return aval; | |
700 | } | |
701 | ||
702 | /* Calculate relative value given the absolute value and bit position range | |
703 | * within the instruction. */ | |
704 | ||
c488923f | 705 | static unsigned long |
252b5132 RH |
706 | extract_range (unsigned long aval, struct itbl_range r) |
707 | { | |
708 | unsigned long mask; | |
709 | unsigned long rval; | |
710 | int len = MAX_BITPOS - r.sbit; | |
711 | ||
712 | /* create mask by truncating 1s by shifting */ | |
713 | mask = 0xffffffff << len; | |
714 | mask = mask >> len; | |
715 | mask = mask >> r.ebit; | |
716 | mask = mask << r.ebit; | |
717 | ||
718 | rval = (aval & mask) >> r.ebit; | |
719 | return rval; | |
720 | } | |
721 | ||
722 | /* Extract processor's assembly instruction field name from s; | |
723 | * forms are "n args" "n,args" or "n" */ | |
724 | /* Return next argument from string pointer "s" and advance s. | |
d7ba4a77 | 725 | * delimiters are " ,()" */ |
252b5132 RH |
726 | |
727 | char * | |
728 | itbl_get_field (char **S) | |
729 | { | |
730 | static char n[128]; | |
41e60a82 | 731 | char *s; |
252b5132 RH |
732 | int len; |
733 | ||
734 | s = *S; | |
735 | if (!s || !*s) | |
736 | return 0; | |
d7ba4a77 ILT |
737 | /* FIXME: This is a weird set of delimiters. */ |
738 | len = strcspn (s, " \t,()"); | |
252b5132 RH |
739 | ASSERT (128 > len + 1); |
740 | strncpy (n, s, len); | |
741 | n[len] = 0; | |
742 | if (s[len] == '\0') | |
743 | s = 0; /* no more args */ | |
744 | else | |
745 | s += len + 1; /* advance to next arg */ | |
746 | ||
747 | *S = s; | |
748 | return n; | |
749 | } | |
750 | ||
751 | /* Search entries for a given processor and type | |
752 | * to find one matching the name "n". | |
753 | * Return a pointer to the entry */ | |
754 | ||
755 | static struct itbl_entry * | |
756 | find_entry_byname (e_processor processor, | |
757 | e_type type, char *n) | |
758 | { | |
759 | struct itbl_entry *e, **es; | |
760 | ||
761 | es = get_entries (processor, type); | |
c488923f | 762 | for (e = *es; e; e = e->next) /* for each entry, ... */ |
252b5132 RH |
763 | { |
764 | if (!strcmp (e->name, n)) | |
765 | return e; | |
766 | } | |
767 | return 0; | |
768 | } | |
769 | ||
770 | /* Search entries for a given processor and type | |
771 | * to find one matching the value "val" for the range "r". | |
772 | * Return a pointer to the entry. | |
773 | * This function is used for disassembling fields of an instruction. | |
774 | */ | |
775 | ||
776 | static struct itbl_entry * | |
777 | find_entry_byval (e_processor processor, e_type type, | |
778 | unsigned long val, struct itbl_range *r) | |
779 | { | |
780 | struct itbl_entry *e, **es; | |
781 | unsigned long eval; | |
782 | ||
783 | es = get_entries (processor, type); | |
c488923f | 784 | for (e = *es; e; e = e->next) /* for each entry, ... */ |
252b5132 RH |
785 | { |
786 | if (processor != e->processor) | |
787 | continue; | |
788 | /* For insns, we might not know the range of the opcode, | |
789 | * so a range of 0 will allow this routine to match against | |
790 | * the range of the entry to be compared with. | |
791 | * This could cause ambiguities. | |
792 | * For operands, we get an extracted value and a range. | |
793 | */ | |
c488923f | 794 | /* if range is 0, mask val against the range of the compared entry. */ |
252b5132 RH |
795 | if (r == 0) /* if no range passed, must be whole 32-bits |
796 | * so create 32-bit value from entry's range */ | |
797 | { | |
798 | eval = apply_range (e->value, e->range); | |
799 | val &= apply_range (0xffffffff, e->range); | |
800 | } | |
41e60a82 ILT |
801 | else if ((r->sbit == e->range.sbit && r->ebit == e->range.ebit) |
802 | || (e->range.sbit == 0 && e->range.ebit == 0)) | |
252b5132 RH |
803 | { |
804 | eval = apply_range (e->value, *r); | |
805 | val = apply_range (val, *r); | |
806 | } | |
807 | else | |
808 | continue; | |
809 | if (val == eval) | |
810 | return e; | |
811 | } | |
812 | return 0; | |
813 | } | |
814 | ||
c488923f | 815 | /* Return a pointer to the list of entries for a given processor and type. */ |
252b5132 RH |
816 | |
817 | static struct itbl_entry ** | |
818 | get_entries (e_processor processor, e_type type) | |
819 | { | |
820 | return &entries[processor][type]; | |
821 | } | |
822 | ||
c488923f | 823 | /* Return an integral value for the processor passed from yyparse. */ |
252b5132 | 824 | |
c488923f | 825 | static e_processor |
252b5132 RH |
826 | get_processor (int yyproc) |
827 | { | |
828 | /* translate from yacc's processor to enum */ | |
829 | if (yyproc >= e_p0 && yyproc < e_nprocs) | |
830 | return (e_processor) yyproc; | |
831 | return e_invproc; /* error; invalid processor */ | |
832 | } | |
833 | ||
c488923f | 834 | /* Return an integral value for the entry type passed from yyparse. */ |
252b5132 | 835 | |
c488923f | 836 | static e_type |
252b5132 RH |
837 | get_type (int yytype) |
838 | { | |
839 | switch (yytype) | |
840 | { | |
841 | /* translate from yacc's type to enum */ | |
842 | case INSN: | |
843 | return e_insn; | |
844 | case DREG: | |
845 | return e_dreg; | |
846 | case CREG: | |
847 | return e_creg; | |
848 | case GREG: | |
849 | return e_greg; | |
850 | case ADDR: | |
851 | return e_addr; | |
852 | case IMMED: | |
853 | return e_immed; | |
854 | default: | |
855 | return e_invtype; /* error; invalid type */ | |
856 | } | |
857 | } | |
858 | ||
252b5132 RH |
859 | /* Allocate and initialize an entry */ |
860 | ||
861 | static struct itbl_entry * | |
862 | alloc_entry (e_processor processor, e_type type, | |
863 | char *name, unsigned long value) | |
864 | { | |
865 | struct itbl_entry *e, **es; | |
866 | if (!name) | |
867 | return 0; | |
868 | e = (struct itbl_entry *) malloc (sizeof (struct itbl_entry)); | |
869 | if (e) | |
870 | { | |
871 | memset (e, 0, sizeof (struct itbl_entry)); | |
872 | e->name = (char *) malloc (sizeof (strlen (name)) + 1); | |
873 | if (e->name) | |
874 | strcpy (e->name, name); | |
875 | e->processor = processor; | |
876 | e->type = type; | |
877 | e->value = value; | |
878 | es = get_entries (e->processor, e->type); | |
879 | e->next = *es; | |
880 | *es = e; | |
881 | } | |
882 | return e; | |
883 | } | |
884 | ||
885 | /* Allocate and initialize an entry's field */ | |
886 | ||
887 | static struct itbl_field * | |
888 | alloc_field (e_type type, int sbit, int ebit, | |
889 | unsigned long flags) | |
890 | { | |
891 | struct itbl_field *f; | |
892 | f = (struct itbl_field *) malloc (sizeof (struct itbl_field)); | |
893 | if (f) | |
894 | { | |
895 | memset (f, 0, sizeof (struct itbl_field)); | |
896 | f->type = type; | |
897 | f->range.sbit = sbit; | |
898 | f->range.ebit = ebit; | |
899 | f->flags = flags; | |
900 | } | |
901 | return f; | |
902 | } |