daily update
[deliverable/binutils-gdb.git] / gas / itbl-ops.c
CommitLineData
252b5132 1/* itbl-ops.c
4ef2cf8b 2 Copyright 1997, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007,
87975d2a 3 2009, 2010 Free Software Foundation, Inc.
252b5132
RH
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
ec2655a6 9 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
19 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
20 02110-1301, USA. */
252b5132
RH
21
22/*======================================================================*/
23/*
24 * Herein lies the support for dynamic specification of processor
25 * instructions and registers. Mnemonics, values, and formats for each
26 * instruction and register are specified in an ascii file consisting of
27 * table entries. The grammar for the table is defined in the document
28 * "Processor instruction table specification".
29 *
30 * Instructions use the gnu assembler syntax, with the addition of
31 * allowing mnemonics for register.
32 * Eg. "func $2,reg3,0x100,symbol ; comment"
33 * func - opcode name
34 * $n - register n
35 * reg3 - mnemonic for processor's register defined in table
36 * 0xddd..d - immediate value
37 * symbol - address of label or external symbol
38 *
39 * First, itbl_parse reads in the table of register and instruction
40 * names and formats, and builds a list of entries for each
41 * processor/type combination. lex and yacc are used to parse
42 * the entries in the table and call functions defined here to
43 * add each entry to our list.
44 *
45 * Then, when assembling or disassembling, these functions are called to
46 * 1) get information on a processor's registers and
47 * 2) assemble/disassemble an instruction.
48 * To assemble(disassemble) an instruction, the function
49 * itbl_assemble(itbl_disassemble) is called to search the list of
50 * instruction entries, and if a match is found, uses the format
51 * described in the instruction entry structure to complete the action.
52 *
53 * Eg. Suppose we have a Mips coprocessor "cop3" with data register "d2"
54 * and we want to define function "pig" which takes two operands.
55 *
56 * Given the table entries:
57 * "p3 insn pig 0x1:24-21 dreg:20-16 immed:15-0"
58 * "p3 dreg d2 0x2"
59 * and that the instruction encoding for coprocessor pz has encoding:
60 * #define MIPS_ENCODE_COP_NUM(z) ((0x21|(z<<1))<<25)
61 * #define ITBL_ENCODE_PNUM(pnum) MIPS_ENCODE_COP_NUM(pnum)
62 *
63 * a structure to describe the instruction might look something like:
64 * struct itbl_entry = {
65 * e_processor processor = e_p3
66 * e_type type = e_insn
67 * char *name = "pig"
68 * uint value = 0x1
69 * uint flags = 0
70 * struct itbl_range range = 24-21
71 * struct itbl_field *field = {
72 * e_type type = e_dreg
73 * struct itbl_range range = 20-16
74 * struct itbl_field *next = {
75 * e_type type = e_immed
76 * struct itbl_range range = 15-0
77 * struct itbl_field *next = 0
78 * };
79 * };
80 * struct itbl_entry *next = 0
81 * };
82 *
83 * And the assembler instructions:
84 * "pig d2,0x100"
85 * "pig $2,0x100"
86 *
87 * would both assemble to the hex value:
88 * "0x4e220100"
89 *
90 */
91
ebd1c875 92#include "as.h"
252b5132 93#include "itbl-ops.h"
3d82a647 94#include <itbl-parse.h>
252b5132
RH
95
96/* #define DEBUG */
97
98#ifdef DEBUG
99#include <assert.h>
9c2799c2 100#define ASSERT(x) gas_assert (x)
252b5132
RH
101#define DBG(x) printf x
102#else
103#define ASSERT(x)
104#define DBG(x)
105#endif
106
107#ifndef min
108#define min(a,b) (a<b?a:b)
109#endif
110
111int itbl_have_entries = 0;
112
113/*======================================================================*/
114/* structures for keeping itbl format entries */
115
ef99799a
KH
116struct itbl_range {
117 int sbit; /* mask starting bit position */
118 int ebit; /* mask ending bit position */
119};
120
121struct itbl_field {
122 e_type type; /* dreg/creg/greg/immed/symb */
123 struct itbl_range range; /* field's bitfield range within instruction */
124 unsigned long flags; /* field flags */
125 struct itbl_field *next; /* next field in list */
126};
252b5132 127
252b5132
RH
128/* These structures define the instructions and registers for a processor.
129 * If the type is an instruction, the structure defines the format of an
130 * instruction where the fields are the list of operands.
131 * The flags field below uses the same values as those defined in the
c488923f 132 * gnu assembler and are machine specific. */
ef99799a
KH
133struct itbl_entry {
134 e_processor processor; /* processor number */
135 e_type type; /* dreg/creg/greg/insn */
136 char *name; /* mnemionic name for insn/register */
137 unsigned long value; /* opcode/instruction mask/register number */
138 unsigned long flags; /* effects of the instruction */
139 struct itbl_range range; /* bit range within instruction for value */
140 struct itbl_field *fields; /* list of operand definitions (if any) */
141 struct itbl_entry *next; /* next entry */
142};
252b5132 143
252b5132
RH
144/* local data and structures */
145
146static int itbl_num_opcodes = 0;
147/* Array of entries for each processor and entry type */
e5551801 148static struct itbl_entry *entries[e_nprocs][e_ntypes];
252b5132
RH
149
150/* local prototypes */
b1f1fa96
KH
151static unsigned long build_opcode (struct itbl_entry *e);
152static e_type get_type (int yytype);
153static e_processor get_processor (int yyproc);
154static struct itbl_entry **get_entries (e_processor processor,
155 e_type type);
156static struct itbl_entry *find_entry_byname (e_processor processor,
157 e_type type, char *name);
158static struct itbl_entry *find_entry_byval (e_processor processor,
159 e_type type, unsigned long val, struct itbl_range *r);
160static struct itbl_entry *alloc_entry (e_processor processor,
161 e_type type, char *name, unsigned long value);
162static unsigned long apply_range (unsigned long value, struct itbl_range r);
163static unsigned long extract_range (unsigned long value, struct itbl_range r);
164static struct itbl_field *alloc_field (e_type type, int sbit,
165 int ebit, unsigned long flags);
252b5132 166
252b5132
RH
167/*======================================================================*/
168/* Interfaces to the parser */
169
252b5132
RH
170/* Open the table and use lex and yacc to parse the entries.
171 * Return 1 for failure; 0 for success. */
172
c488923f 173int
252b5132
RH
174itbl_parse (char *insntbl)
175{
176 extern FILE *yyin;
177 extern int yyparse (void);
f740e790
NC
178
179 yyin = fopen (insntbl, FOPEN_RT);
252b5132
RH
180 if (yyin == 0)
181 {
182 printf ("Can't open processor instruction specification file \"%s\"\n",
183 insntbl);
184 return 1;
185 }
f740e790
NC
186
187 while (yyparse ())
188 ;
189
252b5132
RH
190 fclose (yyin);
191 itbl_have_entries = 1;
192 return 0;
193}
194
195/* Add a register entry */
196
197struct itbl_entry *
198itbl_add_reg (int yyprocessor, int yytype, char *regname,
199 int regnum)
200{
252b5132
RH
201 return alloc_entry (get_processor (yyprocessor), get_type (yytype), regname,
202 (unsigned long) regnum);
203}
204
205/* Add an instruction entry */
206
207struct itbl_entry *
208itbl_add_insn (int yyprocessor, char *name, unsigned long value,
209 int sbit, int ebit, unsigned long flags)
210{
211 struct itbl_entry *e;
212 e = alloc_entry (get_processor (yyprocessor), e_insn, name, value);
213 if (e)
214 {
215 e->range.sbit = sbit;
216 e->range.ebit = ebit;
217 e->flags = flags;
218 itbl_num_opcodes++;
219 }
220 return e;
221}
222
223/* Add an operand to an instruction entry */
224
225struct itbl_field *
226itbl_add_operand (struct itbl_entry *e, int yytype, int sbit,
227 int ebit, unsigned long flags)
228{
229 struct itbl_field *f, **last_f;
230 if (!e)
231 return 0;
c488923f 232 /* Add to end of fields' list. */
252b5132
RH
233 f = alloc_field (get_type (yytype), sbit, ebit, flags);
234 if (f)
235 {
236 last_f = &e->fields;
237 while (*last_f)
238 last_f = &(*last_f)->next;
239 *last_f = f;
240 f->next = 0;
241 }
242 return f;
243}
244
252b5132
RH
245/*======================================================================*/
246/* Interfaces for assembler and disassembler */
247
248#ifndef STAND_ALONE
252b5132
RH
249static void append_insns_as_macros (void);
250
ef99799a
KH
251/* Initialize for gas. */
252
c488923f 253void
252b5132
RH
254itbl_init (void)
255{
256 struct itbl_entry *e, **es;
257 e_processor procn;
258 e_type type;
259
260 if (!itbl_have_entries)
ef99799a 261 return;
252b5132
RH
262
263 /* Since register names don't have a prefix, put them in the symbol table so
264 they can't be used as symbols. This simplifies argument parsing as
c488923f 265 we can let gas parse registers for us. */
252b5132
RH
266 /* Use symbol_create instead of symbol_new so we don't try to
267 output registers into the object file's symbol table. */
268
269 for (type = e_regtype0; type < e_nregtypes; type++)
270 for (procn = e_p0; procn < e_nprocs; procn++)
271 {
272 es = get_entries (procn, type);
273 for (e = *es; e; e = e->next)
274 {
275 symbol_table_insert (symbol_create (e->name, reg_section,
ef99799a 276 e->value, &zero_address_frag));
252b5132
RH
277 }
278 }
279 append_insns_as_macros ();
280}
281
c488923f
KH
282/* Append insns to opcodes table and increase number of opcodes
283 * Structure of opcodes table:
252b5132
RH
284 * struct itbl_opcode
285 * {
286 * const char *name;
c488923f
KH
287 * const char *args; - string describing the arguments.
288 * unsigned long match; - opcode, or ISA level if pinfo=INSN_MACRO
289 * unsigned long mask; - opcode mask, or macro id if pinfo=INSN_MACRO
290 * unsigned long pinfo; - insn flags, or INSN_MACRO
252b5132
RH
291 * };
292 * examples:
293 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t },
294 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO },
295 */
296
297static char *form_args (struct itbl_entry *e);
c488923f 298static void
252b5132
RH
299append_insns_as_macros (void)
300{
301 struct ITBL_OPCODE_STRUCT *new_opcodes, *o;
302 struct itbl_entry *e, **es;
87975d2a
AM
303 int n, size, new_size, new_num_opcodes;
304#ifdef USE_MACROS
305 int id;
306#endif
252b5132
RH
307
308 if (!itbl_have_entries)
ef99799a 309 return;
252b5132
RH
310
311 if (!itbl_num_opcodes) /* no new instructions to add! */
312 {
313 return;
314 }
315 DBG (("previous num_opcodes=%d\n", ITBL_NUM_OPCODES));
316
317 new_num_opcodes = ITBL_NUM_OPCODES + itbl_num_opcodes;
318 ASSERT (new_num_opcodes >= itbl_num_opcodes);
319
320 size = sizeof (struct ITBL_OPCODE_STRUCT) * ITBL_NUM_OPCODES;
321 ASSERT (size >= 0);
322 DBG (("I get=%d\n", size / sizeof (ITBL_OPCODES[0])));
323
324 new_size = sizeof (struct ITBL_OPCODE_STRUCT) * new_num_opcodes;
325 ASSERT (new_size > size);
326
327 /* FIXME since ITBL_OPCODES culd be a static table,
c488923f 328 we can't realloc or delete the old memory. */
252b5132
RH
329 new_opcodes = (struct ITBL_OPCODE_STRUCT *) malloc (new_size);
330 if (!new_opcodes)
331 {
332 printf (_("Unable to allocate memory for new instructions\n"));
333 return;
334 }
47eebc20 335 if (size) /* copy preexisting opcodes table */
252b5132
RH
336 memcpy (new_opcodes, ITBL_OPCODES, size);
337
338 /* FIXME! some NUMOPCODES are calculated expressions.
c488923f 339 These need to be changed before itbls can be supported. */
252b5132 340
87975d2a 341#ifdef USE_MACROS
252b5132 342 id = ITBL_NUM_MACROS; /* begin the next macro id after the last */
87975d2a 343#endif
252b5132
RH
344 o = &new_opcodes[ITBL_NUM_OPCODES]; /* append macro to opcodes list */
345 for (n = e_p0; n < e_nprocs; n++)
346 {
347 es = get_entries (n, e_insn);
348 for (e = *es; e; e = e->next)
349 {
350 /* name, args, mask, match, pinfo
351 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t },
352 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO },
353 * Construct args from itbl_fields.
354 */
355 o->name = e->name;
356 o->args = strdup (form_args (e));
357 o->mask = apply_range (e->value, e->range);
47eebc20 358 /* FIXME how to catch during assembly? */
252b5132
RH
359 /* mask to identify this insn */
360 o->match = apply_range (e->value, e->range);
361 o->pinfo = 0;
362
363#ifdef USE_MACROS
47eebc20 364 o->mask = id++; /* FIXME how to catch during assembly? */
252b5132
RH
365 o->match = 0; /* for macros, the insn_isa number */
366 o->pinfo = INSN_MACRO;
367#endif
368
369 /* Don't add instructions which caused an error */
370 if (o->args)
371 o++;
372 else
373 new_num_opcodes--;
374 }
375 }
376 ITBL_OPCODES = new_opcodes;
377 ITBL_NUM_OPCODES = new_num_opcodes;
378
379 /* FIXME
380 At this point, we can free the entries, as they should have
381 been added to the assembler's tables.
382 Don't free name though, since name is being used by the new
383 opcodes table.
384
c488923f 385 Eventually, we should also free the new opcodes table itself
252b5132
RH
386 on exit.
387 */
388}
389
390static char *
391form_args (struct itbl_entry *e)
392{
393 static char s[31];
394 char c = 0, *p = s;
395 struct itbl_field *f;
396
397 ASSERT (e);
398 for (f = e->fields; f; f = f->next)
399 {
400 switch (f->type)
401 {
402 case e_dreg:
403 c = 'd';
404 break;
405 case e_creg:
406 c = 't';
407 break;
408 case e_greg:
409 c = 's';
410 break;
411 case e_immed:
412 c = 'i';
413 break;
414 case e_addr:
415 c = 'a';
416 break;
417 default:
418 c = 0; /* ignore; unknown field type */
419 }
420 if (c)
421 {
422 if (p != s)
423 *p++ = ',';
424 *p++ = c;
425 }
426 }
427 *p = 0;
428 return s;
429}
430#endif /* !STAND_ALONE */
431
252b5132
RH
432/* Get processor's register name from val */
433
d7ba4a77
ILT
434int
435itbl_get_reg_val (char *name, unsigned long *pval)
252b5132
RH
436{
437 e_type t;
438 e_processor p;
d7ba4a77 439
252b5132 440 for (p = e_p0; p < e_nprocs; p++)
d7ba4a77
ILT
441 {
442 for (t = e_regtype0; t < e_nregtypes; t++)
443 {
444 if (itbl_get_val (p, t, name, pval))
445 return 1;
446 }
447 }
252b5132
RH
448 return 0;
449}
450
451char *
452itbl_get_name (e_processor processor, e_type type, unsigned long val)
453{
454 struct itbl_entry *r;
455 /* type depends on instruction passed */
456 r = find_entry_byval (processor, type, val, 0);
457 if (r)
458 return r->name;
459 else
460 return 0; /* error; invalid operand */
461}
462
463/* Get processor's register value from name */
464
d7ba4a77
ILT
465int
466itbl_get_val (e_processor processor, e_type type, char *name,
467 unsigned long *pval)
252b5132
RH
468{
469 struct itbl_entry *r;
470 /* type depends on instruction passed */
471 r = find_entry_byname (processor, type, name);
d7ba4a77
ILT
472 if (r == NULL)
473 return 0;
474 *pval = r->value;
475 return 1;
252b5132
RH
476}
477
252b5132
RH
478/* Assemble instruction "name" with operands "s".
479 * name - name of instruction
480 * s - operands
481 * returns - long word for assembled instruction */
482
c488923f 483unsigned long
252b5132
RH
484itbl_assemble (char *name, char *s)
485{
486 unsigned long opcode;
3438adb3 487 struct itbl_entry *e = NULL;
252b5132
RH
488 struct itbl_field *f;
489 char *n;
490 int processor;
491
492 if (!name || !*name)
3b37fd66 493 return 0; /* error! must have an opcode name/expr */
252b5132
RH
494
495 /* find entry in list of instructions for all processors */
496 for (processor = 0; processor < e_nprocs; processor++)
497 {
498 e = find_entry_byname (processor, e_insn, name);
499 if (e)
500 break;
501 }
502 if (!e)
ef5c4bfc 503 return 0; /* opcode not in table; invalid instruction */
252b5132
RH
504 opcode = build_opcode (e);
505
506 /* parse opcode's args (if any) */
c488923f 507 for (f = e->fields; f; f = f->next) /* for each arg, ... */
252b5132
RH
508 {
509 struct itbl_entry *r;
510 unsigned long value;
511 if (!s || !*s)
512 return 0; /* error - not enough operands */
513 n = itbl_get_field (&s);
514 /* n should be in form $n or 0xhhh (are symbol names valid?? */
515 switch (f->type)
516 {
517 case e_dreg:
518 case e_creg:
519 case e_greg:
520 /* Accept either a string name
521 * or '$' followed by the register number */
522 if (*n == '$')
523 {
524 n++;
525 value = strtol (n, 0, 10);
526 /* FIXME! could have "0l"... then what?? */
527 if (value == 0 && *n != '0')
528 return 0; /* error; invalid operand */
529 }
530 else
531 {
532 r = find_entry_byname (e->processor, f->type, n);
533 if (r)
534 value = r->value;
535 else
536 return 0; /* error; invalid operand */
537 }
538 break;
539 case e_addr:
540 /* use assembler's symbol table to find symbol */
541 /* FIXME!! Do we need this?
542 if so, what about relocs??
543 my_getExpression (&imm_expr, s);
544 return 0; /-* error; invalid operand *-/
545 break;
546 */
547 /* If not a symbol, fall thru to IMMED */
548 case e_immed:
c488923f 549 if (*n == '0' && *(n + 1) == 'x') /* hex begins 0x... */
252b5132
RH
550 {
551 n += 2;
552 value = strtol (n, 0, 16);
553 /* FIXME! could have "0xl"... then what?? */
554 }
555 else
556 {
557 value = strtol (n, 0, 10);
558 /* FIXME! could have "0l"... then what?? */
559 if (value == 0 && *n != '0')
560 return 0; /* error; invalid operand */
561 }
562 break;
563 default:
564 return 0; /* error; invalid field spec */
565 }
566 opcode |= apply_range (value, f->range);
567 }
568 if (s && *s)
569 return 0; /* error - too many operands */
570 return opcode; /* done! */
571}
572
573/* Disassemble instruction "insn".
574 * insn - instruction
575 * s - buffer to hold disassembled instruction
576 * returns - 1 if succeeded; 0 if failed
577 */
578
c488923f 579int
252b5132
RH
580itbl_disassemble (char *s, unsigned long insn)
581{
582 e_processor processor;
583 struct itbl_entry *e;
584 struct itbl_field *f;
585
586 if (!ITBL_IS_INSN (insn))
ef99799a 587 return 0; /* error */
252b5132
RH
588 processor = get_processor (ITBL_DECODE_PNUM (insn));
589
590 /* find entry in list */
591 e = find_entry_byval (processor, e_insn, insn, 0);
592 if (!e)
ef5c4bfc 593 return 0; /* opcode not in table; invalid instruction */
252b5132
RH
594 strcpy (s, e->name);
595
ef99799a 596 /* Parse insn's args (if any). */
c488923f 597 for (f = e->fields; f; f = f->next) /* for each arg, ... */
252b5132
RH
598 {
599 struct itbl_entry *r;
600 unsigned long value;
4ef2cf8b 601 char s_value[20];
252b5132 602
47eebc20 603 if (f == e->fields) /* First operand is preceded by tab. */
252b5132 604 strcat (s, "\t");
ef99799a 605 else /* ','s separate following operands. */
252b5132
RH
606 strcat (s, ",");
607 value = extract_range (insn, f->range);
608 /* n should be in form $n or 0xhhh (are symbol names valid?? */
609 switch (f->type)
610 {
611 case e_dreg:
612 case e_creg:
613 case e_greg:
614 /* Accept either a string name
ef99799a 615 or '$' followed by the register number. */
252b5132
RH
616 r = find_entry_byval (e->processor, f->type, value, &f->range);
617 if (r)
618 strcat (s, r->name);
619 else
4ef2cf8b
NC
620 {
621 sprintf (s_value, "$%lu", value);
622 strcat (s, s_value);
623 }
252b5132
RH
624 break;
625 case e_addr:
ef99799a
KH
626 /* Use assembler's symbol table to find symbol. */
627 /* FIXME!! Do we need this? If so, what about relocs?? */
628 /* If not a symbol, fall through to IMMED. */
252b5132 629 case e_immed:
4ef2cf8b
NC
630 sprintf (s_value, "0x%lx", value);
631 strcat (s, s_value);
252b5132
RH
632 break;
633 default:
634 return 0; /* error; invalid field spec */
635 }
636 }
ef99799a 637 return 1; /* Done! */
252b5132
RH
638}
639
640/*======================================================================*/
641/*
642 * Local functions for manipulating private structures containing
643 * the names and format for the new instructions and registers
644 * for each processor.
645 */
646
647/* Calculate instruction's opcode and function values from entry */
648
c488923f 649static unsigned long
252b5132
RH
650build_opcode (struct itbl_entry *e)
651{
652 unsigned long opcode;
653
654 opcode = apply_range (e->value, e->range);
655 opcode |= ITBL_ENCODE_PNUM (e->processor);
656 return opcode;
657}
658
659/* Calculate absolute value given the relative value and bit position range
660 * within the instruction.
661 * The range is inclusive where 0 is least significant bit.
662 * A range of { 24, 20 } will have a mask of
663 * bit 3 2 1
664 * pos: 1098 7654 3210 9876 5432 1098 7654 3210
665 * bin: 0000 0001 1111 0000 0000 0000 0000 0000
666 * hex: 0 1 f 0 0 0 0 0
667 * mask: 0x01f00000.
668 */
669
c488923f 670static unsigned long
252b5132
RH
671apply_range (unsigned long rval, struct itbl_range r)
672{
673 unsigned long mask;
674 unsigned long aval;
675 int len = MAX_BITPOS - r.sbit;
676
677 ASSERT (r.sbit >= r.ebit);
678 ASSERT (MAX_BITPOS >= r.sbit);
679 ASSERT (r.ebit >= 0);
680
681 /* create mask by truncating 1s by shifting */
682 mask = 0xffffffff << len;
683 mask = mask >> len;
684 mask = mask >> r.ebit;
685 mask = mask << r.ebit;
686
687 aval = (rval << r.ebit) & mask;
688 return aval;
689}
690
691/* Calculate relative value given the absolute value and bit position range
692 * within the instruction. */
693
c488923f 694static unsigned long
252b5132
RH
695extract_range (unsigned long aval, struct itbl_range r)
696{
697 unsigned long mask;
698 unsigned long rval;
699 int len = MAX_BITPOS - r.sbit;
700
701 /* create mask by truncating 1s by shifting */
702 mask = 0xffffffff << len;
703 mask = mask >> len;
704 mask = mask >> r.ebit;
705 mask = mask << r.ebit;
706
707 rval = (aval & mask) >> r.ebit;
708 return rval;
709}
710
711/* Extract processor's assembly instruction field name from s;
712 * forms are "n args" "n,args" or "n" */
713/* Return next argument from string pointer "s" and advance s.
d7ba4a77 714 * delimiters are " ,()" */
252b5132
RH
715
716char *
717itbl_get_field (char **S)
718{
719 static char n[128];
41e60a82 720 char *s;
252b5132
RH
721 int len;
722
723 s = *S;
724 if (!s || !*s)
725 return 0;
d7ba4a77
ILT
726 /* FIXME: This is a weird set of delimiters. */
727 len = strcspn (s, " \t,()");
252b5132
RH
728 ASSERT (128 > len + 1);
729 strncpy (n, s, len);
730 n[len] = 0;
731 if (s[len] == '\0')
732 s = 0; /* no more args */
733 else
734 s += len + 1; /* advance to next arg */
735
736 *S = s;
737 return n;
738}
739
740/* Search entries for a given processor and type
741 * to find one matching the name "n".
742 * Return a pointer to the entry */
743
744static struct itbl_entry *
745find_entry_byname (e_processor processor,
746 e_type type, char *n)
747{
748 struct itbl_entry *e, **es;
749
750 es = get_entries (processor, type);
c488923f 751 for (e = *es; e; e = e->next) /* for each entry, ... */
252b5132
RH
752 {
753 if (!strcmp (e->name, n))
754 return e;
755 }
756 return 0;
757}
758
759/* Search entries for a given processor and type
760 * to find one matching the value "val" for the range "r".
761 * Return a pointer to the entry.
762 * This function is used for disassembling fields of an instruction.
763 */
764
765static struct itbl_entry *
766find_entry_byval (e_processor processor, e_type type,
767 unsigned long val, struct itbl_range *r)
768{
769 struct itbl_entry *e, **es;
770 unsigned long eval;
771
772 es = get_entries (processor, type);
c488923f 773 for (e = *es; e; e = e->next) /* for each entry, ... */
252b5132
RH
774 {
775 if (processor != e->processor)
776 continue;
777 /* For insns, we might not know the range of the opcode,
778 * so a range of 0 will allow this routine to match against
779 * the range of the entry to be compared with.
780 * This could cause ambiguities.
781 * For operands, we get an extracted value and a range.
782 */
c488923f 783 /* if range is 0, mask val against the range of the compared entry. */
252b5132
RH
784 if (r == 0) /* if no range passed, must be whole 32-bits
785 * so create 32-bit value from entry's range */
786 {
787 eval = apply_range (e->value, e->range);
788 val &= apply_range (0xffffffff, e->range);
789 }
41e60a82
ILT
790 else if ((r->sbit == e->range.sbit && r->ebit == e->range.ebit)
791 || (e->range.sbit == 0 && e->range.ebit == 0))
252b5132
RH
792 {
793 eval = apply_range (e->value, *r);
794 val = apply_range (val, *r);
795 }
796 else
797 continue;
798 if (val == eval)
799 return e;
800 }
801 return 0;
802}
803
c488923f 804/* Return a pointer to the list of entries for a given processor and type. */
252b5132
RH
805
806static struct itbl_entry **
807get_entries (e_processor processor, e_type type)
808{
809 return &entries[processor][type];
810}
811
c488923f 812/* Return an integral value for the processor passed from yyparse. */
252b5132 813
c488923f 814static e_processor
252b5132
RH
815get_processor (int yyproc)
816{
817 /* translate from yacc's processor to enum */
818 if (yyproc >= e_p0 && yyproc < e_nprocs)
819 return (e_processor) yyproc;
820 return e_invproc; /* error; invalid processor */
821}
822
c488923f 823/* Return an integral value for the entry type passed from yyparse. */
252b5132 824
c488923f 825static e_type
252b5132
RH
826get_type (int yytype)
827{
828 switch (yytype)
829 {
830 /* translate from yacc's type to enum */
831 case INSN:
832 return e_insn;
833 case DREG:
834 return e_dreg;
835 case CREG:
836 return e_creg;
837 case GREG:
838 return e_greg;
839 case ADDR:
840 return e_addr;
841 case IMMED:
842 return e_immed;
843 default:
844 return e_invtype; /* error; invalid type */
845 }
846}
847
252b5132
RH
848/* Allocate and initialize an entry */
849
850static struct itbl_entry *
851alloc_entry (e_processor processor, e_type type,
852 char *name, unsigned long value)
853{
854 struct itbl_entry *e, **es;
855 if (!name)
856 return 0;
857 e = (struct itbl_entry *) malloc (sizeof (struct itbl_entry));
858 if (e)
859 {
860 memset (e, 0, sizeof (struct itbl_entry));
861 e->name = (char *) malloc (sizeof (strlen (name)) + 1);
862 if (e->name)
863 strcpy (e->name, name);
864 e->processor = processor;
865 e->type = type;
866 e->value = value;
867 es = get_entries (e->processor, e->type);
868 e->next = *es;
869 *es = e;
870 }
871 return e;
872}
873
874/* Allocate and initialize an entry's field */
875
876static struct itbl_field *
877alloc_field (e_type type, int sbit, int ebit,
878 unsigned long flags)
879{
880 struct itbl_field *f;
881 f = (struct itbl_field *) malloc (sizeof (struct itbl_field));
882 if (f)
883 {
884 memset (f, 0, sizeof (struct itbl_field));
885 f->type = type;
886 f->range.sbit = sbit;
887 f->range.ebit = ebit;
888 f->flags = flags;
889 }
890 return f;
891}
This page took 0.548818 seconds and 4 git commands to generate.