Commit | Line | Data |
---|---|---|
07b287a0 MS |
1 | /* Common target dependent code for GDB on AArch64 systems. |
2 | ||
b811d2c2 | 3 | Copyright (C) 2009-2020 Free Software Foundation, Inc. |
07b287a0 MS |
4 | Contributed by ARM Ltd. |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 3 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
20 | ||
21 | #include "defs.h" | |
22 | ||
23 | #include "frame.h" | |
07b287a0 MS |
24 | #include "gdbcmd.h" |
25 | #include "gdbcore.h" | |
4de283e4 | 26 | #include "dis-asm.h" |
d55e5aa6 TT |
27 | #include "regcache.h" |
28 | #include "reggroups.h" | |
4de283e4 TT |
29 | #include "value.h" |
30 | #include "arch-utils.h" | |
31 | #include "osabi.h" | |
32 | #include "frame-unwind.h" | |
33 | #include "frame-base.h" | |
d55e5aa6 | 34 | #include "trad-frame.h" |
4de283e4 TT |
35 | #include "objfiles.h" |
36 | #include "dwarf2.h" | |
37 | #include "dwarf2-frame.h" | |
38 | #include "gdbtypes.h" | |
39 | #include "prologue-value.h" | |
40 | #include "target-descriptions.h" | |
07b287a0 | 41 | #include "user-regs.h" |
4de283e4 | 42 | #include "ax-gdb.h" |
268a13a5 | 43 | #include "gdbsupport/selftest.h" |
4de283e4 TT |
44 | |
45 | #include "aarch64-tdep.h" | |
46 | #include "aarch64-ravenscar-thread.h" | |
47 | ||
4de283e4 TT |
48 | #include "record.h" |
49 | #include "record-full.h" | |
50 | #include "arch/aarch64-insn.h" | |
0d12e84c | 51 | #include "gdbarch.h" |
4de283e4 TT |
52 | |
53 | #include "opcode/aarch64.h" | |
54 | #include <algorithm> | |
f77ee802 YQ |
55 | |
56 | #define submask(x) ((1L << ((x) + 1)) - 1) | |
57 | #define bit(obj,st) (((obj) >> (st)) & 1) | |
58 | #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st))) | |
59 | ||
ea92689a AH |
60 | /* A Homogeneous Floating-Point or Short-Vector Aggregate may have at most |
61 | four members. */ | |
62 | #define HA_MAX_NUM_FLDS 4 | |
63 | ||
95228a0d | 64 | /* All possible aarch64 target descriptors. */ |
6dc0ebde | 65 | struct target_desc *tdesc_aarch64_list[AARCH64_MAX_SVE_VQ + 1][2/*pauth*/]; |
95228a0d | 66 | |
07b287a0 MS |
67 | /* The standard register names, and all the valid aliases for them. */ |
68 | static const struct | |
69 | { | |
70 | const char *const name; | |
71 | int regnum; | |
72 | } aarch64_register_aliases[] = | |
73 | { | |
74 | /* 64-bit register names. */ | |
75 | {"fp", AARCH64_FP_REGNUM}, | |
76 | {"lr", AARCH64_LR_REGNUM}, | |
77 | {"sp", AARCH64_SP_REGNUM}, | |
78 | ||
79 | /* 32-bit register names. */ | |
80 | {"w0", AARCH64_X0_REGNUM + 0}, | |
81 | {"w1", AARCH64_X0_REGNUM + 1}, | |
82 | {"w2", AARCH64_X0_REGNUM + 2}, | |
83 | {"w3", AARCH64_X0_REGNUM + 3}, | |
84 | {"w4", AARCH64_X0_REGNUM + 4}, | |
85 | {"w5", AARCH64_X0_REGNUM + 5}, | |
86 | {"w6", AARCH64_X0_REGNUM + 6}, | |
87 | {"w7", AARCH64_X0_REGNUM + 7}, | |
88 | {"w8", AARCH64_X0_REGNUM + 8}, | |
89 | {"w9", AARCH64_X0_REGNUM + 9}, | |
90 | {"w10", AARCH64_X0_REGNUM + 10}, | |
91 | {"w11", AARCH64_X0_REGNUM + 11}, | |
92 | {"w12", AARCH64_X0_REGNUM + 12}, | |
93 | {"w13", AARCH64_X0_REGNUM + 13}, | |
94 | {"w14", AARCH64_X0_REGNUM + 14}, | |
95 | {"w15", AARCH64_X0_REGNUM + 15}, | |
96 | {"w16", AARCH64_X0_REGNUM + 16}, | |
97 | {"w17", AARCH64_X0_REGNUM + 17}, | |
98 | {"w18", AARCH64_X0_REGNUM + 18}, | |
99 | {"w19", AARCH64_X0_REGNUM + 19}, | |
100 | {"w20", AARCH64_X0_REGNUM + 20}, | |
101 | {"w21", AARCH64_X0_REGNUM + 21}, | |
102 | {"w22", AARCH64_X0_REGNUM + 22}, | |
103 | {"w23", AARCH64_X0_REGNUM + 23}, | |
104 | {"w24", AARCH64_X0_REGNUM + 24}, | |
105 | {"w25", AARCH64_X0_REGNUM + 25}, | |
106 | {"w26", AARCH64_X0_REGNUM + 26}, | |
107 | {"w27", AARCH64_X0_REGNUM + 27}, | |
108 | {"w28", AARCH64_X0_REGNUM + 28}, | |
109 | {"w29", AARCH64_X0_REGNUM + 29}, | |
110 | {"w30", AARCH64_X0_REGNUM + 30}, | |
111 | ||
112 | /* specials */ | |
113 | {"ip0", AARCH64_X0_REGNUM + 16}, | |
114 | {"ip1", AARCH64_X0_REGNUM + 17} | |
115 | }; | |
116 | ||
117 | /* The required core 'R' registers. */ | |
118 | static const char *const aarch64_r_register_names[] = | |
119 | { | |
120 | /* These registers must appear in consecutive RAW register number | |
121 | order and they must begin with AARCH64_X0_REGNUM! */ | |
122 | "x0", "x1", "x2", "x3", | |
123 | "x4", "x5", "x6", "x7", | |
124 | "x8", "x9", "x10", "x11", | |
125 | "x12", "x13", "x14", "x15", | |
126 | "x16", "x17", "x18", "x19", | |
127 | "x20", "x21", "x22", "x23", | |
128 | "x24", "x25", "x26", "x27", | |
129 | "x28", "x29", "x30", "sp", | |
130 | "pc", "cpsr" | |
131 | }; | |
132 | ||
133 | /* The FP/SIMD 'V' registers. */ | |
134 | static const char *const aarch64_v_register_names[] = | |
135 | { | |
136 | /* These registers must appear in consecutive RAW register number | |
137 | order and they must begin with AARCH64_V0_REGNUM! */ | |
138 | "v0", "v1", "v2", "v3", | |
139 | "v4", "v5", "v6", "v7", | |
140 | "v8", "v9", "v10", "v11", | |
141 | "v12", "v13", "v14", "v15", | |
142 | "v16", "v17", "v18", "v19", | |
143 | "v20", "v21", "v22", "v23", | |
144 | "v24", "v25", "v26", "v27", | |
145 | "v28", "v29", "v30", "v31", | |
146 | "fpsr", | |
147 | "fpcr" | |
148 | }; | |
149 | ||
739e8682 AH |
150 | /* The SVE 'Z' and 'P' registers. */ |
151 | static const char *const aarch64_sve_register_names[] = | |
152 | { | |
153 | /* These registers must appear in consecutive RAW register number | |
154 | order and they must begin with AARCH64_SVE_Z0_REGNUM! */ | |
155 | "z0", "z1", "z2", "z3", | |
156 | "z4", "z5", "z6", "z7", | |
157 | "z8", "z9", "z10", "z11", | |
158 | "z12", "z13", "z14", "z15", | |
159 | "z16", "z17", "z18", "z19", | |
160 | "z20", "z21", "z22", "z23", | |
161 | "z24", "z25", "z26", "z27", | |
162 | "z28", "z29", "z30", "z31", | |
163 | "fpsr", "fpcr", | |
164 | "p0", "p1", "p2", "p3", | |
165 | "p4", "p5", "p6", "p7", | |
166 | "p8", "p9", "p10", "p11", | |
167 | "p12", "p13", "p14", "p15", | |
168 | "ffr", "vg" | |
169 | }; | |
170 | ||
76bed0fd AH |
171 | static const char *const aarch64_pauth_register_names[] = |
172 | { | |
173 | /* Authentication mask for data pointer. */ | |
174 | "pauth_dmask", | |
175 | /* Authentication mask for code pointer. */ | |
176 | "pauth_cmask" | |
177 | }; | |
178 | ||
07b287a0 MS |
179 | /* AArch64 prologue cache structure. */ |
180 | struct aarch64_prologue_cache | |
181 | { | |
db634143 PL |
182 | /* The program counter at the start of the function. It is used to |
183 | identify this frame as a prologue frame. */ | |
184 | CORE_ADDR func; | |
185 | ||
186 | /* The program counter at the time this frame was created; i.e. where | |
187 | this function was called from. It is used to identify this frame as a | |
188 | stub frame. */ | |
189 | CORE_ADDR prev_pc; | |
190 | ||
07b287a0 MS |
191 | /* The stack pointer at the time this frame was created; i.e. the |
192 | caller's stack pointer when this function was called. It is used | |
193 | to identify this frame. */ | |
194 | CORE_ADDR prev_sp; | |
195 | ||
7dfa3edc PL |
196 | /* Is the target available to read from? */ |
197 | int available_p; | |
198 | ||
07b287a0 MS |
199 | /* The frame base for this frame is just prev_sp - frame size. |
200 | FRAMESIZE is the distance from the frame pointer to the | |
201 | initial stack pointer. */ | |
202 | int framesize; | |
203 | ||
204 | /* The register used to hold the frame pointer for this frame. */ | |
205 | int framereg; | |
206 | ||
207 | /* Saved register offsets. */ | |
208 | struct trad_frame_saved_reg *saved_regs; | |
209 | }; | |
210 | ||
07b287a0 MS |
211 | static void |
212 | show_aarch64_debug (struct ui_file *file, int from_tty, | |
213 | struct cmd_list_element *c, const char *value) | |
214 | { | |
215 | fprintf_filtered (file, _("AArch64 debugging is %s.\n"), value); | |
216 | } | |
217 | ||
ffdbe864 YQ |
218 | namespace { |
219 | ||
4d9a9006 YQ |
220 | /* Abstract instruction reader. */ |
221 | ||
222 | class abstract_instruction_reader | |
223 | { | |
224 | public: | |
225 | /* Read in one instruction. */ | |
226 | virtual ULONGEST read (CORE_ADDR memaddr, int len, | |
227 | enum bfd_endian byte_order) = 0; | |
228 | }; | |
229 | ||
230 | /* Instruction reader from real target. */ | |
231 | ||
232 | class instruction_reader : public abstract_instruction_reader | |
233 | { | |
234 | public: | |
235 | ULONGEST read (CORE_ADDR memaddr, int len, enum bfd_endian byte_order) | |
632e107b | 236 | override |
4d9a9006 | 237 | { |
fc2f703e | 238 | return read_code_unsigned_integer (memaddr, len, byte_order); |
4d9a9006 YQ |
239 | } |
240 | }; | |
241 | ||
ffdbe864 YQ |
242 | } // namespace |
243 | ||
3d31bc39 AH |
244 | /* If address signing is enabled, mask off the signature bits from the link |
245 | register, which is passed by value in ADDR, using the register values in | |
246 | THIS_FRAME. */ | |
11e1b75f AH |
247 | |
248 | static CORE_ADDR | |
3d31bc39 AH |
249 | aarch64_frame_unmask_lr (struct gdbarch_tdep *tdep, |
250 | struct frame_info *this_frame, CORE_ADDR addr) | |
11e1b75f AH |
251 | { |
252 | if (tdep->has_pauth () | |
253 | && frame_unwind_register_unsigned (this_frame, | |
254 | tdep->pauth_ra_state_regnum)) | |
255 | { | |
256 | int cmask_num = AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base); | |
257 | CORE_ADDR cmask = frame_unwind_register_unsigned (this_frame, cmask_num); | |
258 | addr = addr & ~cmask; | |
3d31bc39 AH |
259 | |
260 | /* Record in the frame that the link register required unmasking. */ | |
261 | set_frame_previous_pc_masked (this_frame); | |
11e1b75f AH |
262 | } |
263 | ||
264 | return addr; | |
265 | } | |
266 | ||
aa7ca1bb AH |
267 | /* Implement the "get_pc_address_flags" gdbarch method. */ |
268 | ||
269 | static std::string | |
270 | aarch64_get_pc_address_flags (frame_info *frame, CORE_ADDR pc) | |
271 | { | |
272 | if (pc != 0 && get_frame_pc_masked (frame)) | |
273 | return "PAC"; | |
274 | ||
275 | return ""; | |
276 | } | |
277 | ||
07b287a0 MS |
278 | /* Analyze a prologue, looking for a recognizable stack frame |
279 | and frame pointer. Scan until we encounter a store that could | |
280 | clobber the stack frame unexpectedly, or an unknown instruction. */ | |
281 | ||
282 | static CORE_ADDR | |
283 | aarch64_analyze_prologue (struct gdbarch *gdbarch, | |
284 | CORE_ADDR start, CORE_ADDR limit, | |
4d9a9006 YQ |
285 | struct aarch64_prologue_cache *cache, |
286 | abstract_instruction_reader& reader) | |
07b287a0 MS |
287 | { |
288 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
289 | int i; | |
187f5d00 YQ |
290 | /* Track X registers and D registers in prologue. */ |
291 | pv_t regs[AARCH64_X_REGISTER_COUNT + AARCH64_D_REGISTER_COUNT]; | |
07b287a0 | 292 | |
187f5d00 | 293 | for (i = 0; i < AARCH64_X_REGISTER_COUNT + AARCH64_D_REGISTER_COUNT; i++) |
07b287a0 | 294 | regs[i] = pv_register (i, 0); |
f7b7ed97 | 295 | pv_area stack (AARCH64_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
07b287a0 MS |
296 | |
297 | for (; start < limit; start += 4) | |
298 | { | |
299 | uint32_t insn; | |
d9ebcbce | 300 | aarch64_inst inst; |
07b287a0 | 301 | |
4d9a9006 | 302 | insn = reader.read (start, 4, byte_order_for_code); |
07b287a0 | 303 | |
561a72d4 | 304 | if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0) |
d9ebcbce YQ |
305 | break; |
306 | ||
307 | if (inst.opcode->iclass == addsub_imm | |
308 | && (inst.opcode->op == OP_ADD | |
309 | || strcmp ("sub", inst.opcode->name) == 0)) | |
07b287a0 | 310 | { |
d9ebcbce YQ |
311 | unsigned rd = inst.operands[0].reg.regno; |
312 | unsigned rn = inst.operands[1].reg.regno; | |
313 | ||
314 | gdb_assert (aarch64_num_of_operands (inst.opcode) == 3); | |
315 | gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd_SP); | |
316 | gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn_SP); | |
317 | gdb_assert (inst.operands[2].type == AARCH64_OPND_AIMM); | |
318 | ||
319 | if (inst.opcode->op == OP_ADD) | |
320 | { | |
321 | regs[rd] = pv_add_constant (regs[rn], | |
322 | inst.operands[2].imm.value); | |
323 | } | |
324 | else | |
325 | { | |
326 | regs[rd] = pv_add_constant (regs[rn], | |
327 | -inst.operands[2].imm.value); | |
328 | } | |
329 | } | |
330 | else if (inst.opcode->iclass == pcreladdr | |
331 | && inst.operands[1].type == AARCH64_OPND_ADDR_ADRP) | |
332 | { | |
333 | gdb_assert (aarch64_num_of_operands (inst.opcode) == 2); | |
334 | gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd); | |
335 | ||
336 | regs[inst.operands[0].reg.regno] = pv_unknown (); | |
07b287a0 | 337 | } |
d9ebcbce | 338 | else if (inst.opcode->iclass == branch_imm) |
07b287a0 MS |
339 | { |
340 | /* Stop analysis on branch. */ | |
341 | break; | |
342 | } | |
d9ebcbce | 343 | else if (inst.opcode->iclass == condbranch) |
07b287a0 MS |
344 | { |
345 | /* Stop analysis on branch. */ | |
346 | break; | |
347 | } | |
d9ebcbce | 348 | else if (inst.opcode->iclass == branch_reg) |
07b287a0 MS |
349 | { |
350 | /* Stop analysis on branch. */ | |
351 | break; | |
352 | } | |
d9ebcbce | 353 | else if (inst.opcode->iclass == compbranch) |
07b287a0 MS |
354 | { |
355 | /* Stop analysis on branch. */ | |
356 | break; | |
357 | } | |
d9ebcbce YQ |
358 | else if (inst.opcode->op == OP_MOVZ) |
359 | { | |
360 | gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd); | |
361 | regs[inst.operands[0].reg.regno] = pv_unknown (); | |
362 | } | |
363 | else if (inst.opcode->iclass == log_shift | |
364 | && strcmp (inst.opcode->name, "orr") == 0) | |
07b287a0 | 365 | { |
d9ebcbce YQ |
366 | unsigned rd = inst.operands[0].reg.regno; |
367 | unsigned rn = inst.operands[1].reg.regno; | |
368 | unsigned rm = inst.operands[2].reg.regno; | |
369 | ||
370 | gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd); | |
371 | gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn); | |
372 | gdb_assert (inst.operands[2].type == AARCH64_OPND_Rm_SFT); | |
373 | ||
374 | if (inst.operands[2].shifter.amount == 0 | |
375 | && rn == AARCH64_SP_REGNUM) | |
07b287a0 MS |
376 | regs[rd] = regs[rm]; |
377 | else | |
378 | { | |
379 | if (aarch64_debug) | |
b277c936 PL |
380 | { |
381 | debug_printf ("aarch64: prologue analysis gave up " | |
0a0da556 | 382 | "addr=%s opcode=0x%x (orr x register)\n", |
b277c936 PL |
383 | core_addr_to_string_nz (start), insn); |
384 | } | |
07b287a0 MS |
385 | break; |
386 | } | |
387 | } | |
d9ebcbce | 388 | else if (inst.opcode->op == OP_STUR) |
07b287a0 | 389 | { |
d9ebcbce YQ |
390 | unsigned rt = inst.operands[0].reg.regno; |
391 | unsigned rn = inst.operands[1].addr.base_regno; | |
75faf5c4 | 392 | int size = aarch64_get_qualifier_esize (inst.operands[0].qualifier); |
d9ebcbce YQ |
393 | |
394 | gdb_assert (aarch64_num_of_operands (inst.opcode) == 2); | |
395 | gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt); | |
396 | gdb_assert (inst.operands[1].type == AARCH64_OPND_ADDR_SIMM9); | |
397 | gdb_assert (!inst.operands[1].addr.offset.is_reg); | |
398 | ||
75faf5c4 AH |
399 | stack.store |
400 | (pv_add_constant (regs[rn], inst.operands[1].addr.offset.imm), | |
401 | size, regs[rt]); | |
07b287a0 | 402 | } |
d9ebcbce | 403 | else if ((inst.opcode->iclass == ldstpair_off |
03bcd739 YQ |
404 | || (inst.opcode->iclass == ldstpair_indexed |
405 | && inst.operands[2].addr.preind)) | |
d9ebcbce | 406 | && strcmp ("stp", inst.opcode->name) == 0) |
07b287a0 | 407 | { |
03bcd739 | 408 | /* STP with addressing mode Pre-indexed and Base register. */ |
187f5d00 YQ |
409 | unsigned rt1; |
410 | unsigned rt2; | |
d9ebcbce YQ |
411 | unsigned rn = inst.operands[2].addr.base_regno; |
412 | int32_t imm = inst.operands[2].addr.offset.imm; | |
75faf5c4 | 413 | int size = aarch64_get_qualifier_esize (inst.operands[0].qualifier); |
d9ebcbce | 414 | |
187f5d00 YQ |
415 | gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt |
416 | || inst.operands[0].type == AARCH64_OPND_Ft); | |
417 | gdb_assert (inst.operands[1].type == AARCH64_OPND_Rt2 | |
418 | || inst.operands[1].type == AARCH64_OPND_Ft2); | |
d9ebcbce YQ |
419 | gdb_assert (inst.operands[2].type == AARCH64_OPND_ADDR_SIMM7); |
420 | gdb_assert (!inst.operands[2].addr.offset.is_reg); | |
421 | ||
07b287a0 MS |
422 | /* If recording this store would invalidate the store area |
423 | (perhaps because rn is not known) then we should abandon | |
424 | further prologue analysis. */ | |
f7b7ed97 | 425 | if (stack.store_would_trash (pv_add_constant (regs[rn], imm))) |
07b287a0 MS |
426 | break; |
427 | ||
f7b7ed97 | 428 | if (stack.store_would_trash (pv_add_constant (regs[rn], imm + 8))) |
07b287a0 MS |
429 | break; |
430 | ||
187f5d00 YQ |
431 | rt1 = inst.operands[0].reg.regno; |
432 | rt2 = inst.operands[1].reg.regno; | |
433 | if (inst.operands[0].type == AARCH64_OPND_Ft) | |
434 | { | |
187f5d00 YQ |
435 | rt1 += AARCH64_X_REGISTER_COUNT; |
436 | rt2 += AARCH64_X_REGISTER_COUNT; | |
437 | } | |
438 | ||
75faf5c4 AH |
439 | stack.store (pv_add_constant (regs[rn], imm), size, regs[rt1]); |
440 | stack.store (pv_add_constant (regs[rn], imm + size), size, regs[rt2]); | |
14ac654f | 441 | |
d9ebcbce | 442 | if (inst.operands[2].addr.writeback) |
93d96012 | 443 | regs[rn] = pv_add_constant (regs[rn], imm); |
07b287a0 | 444 | |
07b287a0 | 445 | } |
432ec081 YQ |
446 | else if ((inst.opcode->iclass == ldst_imm9 /* Signed immediate. */ |
447 | || (inst.opcode->iclass == ldst_pos /* Unsigned immediate. */ | |
448 | && (inst.opcode->op == OP_STR_POS | |
449 | || inst.opcode->op == OP_STRF_POS))) | |
450 | && inst.operands[1].addr.base_regno == AARCH64_SP_REGNUM | |
451 | && strcmp ("str", inst.opcode->name) == 0) | |
452 | { | |
453 | /* STR (immediate) */ | |
454 | unsigned int rt = inst.operands[0].reg.regno; | |
455 | int32_t imm = inst.operands[1].addr.offset.imm; | |
456 | unsigned int rn = inst.operands[1].addr.base_regno; | |
75faf5c4 | 457 | int size = aarch64_get_qualifier_esize (inst.operands[0].qualifier); |
432ec081 YQ |
458 | gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt |
459 | || inst.operands[0].type == AARCH64_OPND_Ft); | |
460 | ||
461 | if (inst.operands[0].type == AARCH64_OPND_Ft) | |
75faf5c4 | 462 | rt += AARCH64_X_REGISTER_COUNT; |
432ec081 | 463 | |
75faf5c4 | 464 | stack.store (pv_add_constant (regs[rn], imm), size, regs[rt]); |
432ec081 YQ |
465 | if (inst.operands[1].addr.writeback) |
466 | regs[rn] = pv_add_constant (regs[rn], imm); | |
467 | } | |
d9ebcbce | 468 | else if (inst.opcode->iclass == testbranch) |
07b287a0 MS |
469 | { |
470 | /* Stop analysis on branch. */ | |
471 | break; | |
472 | } | |
17e116a7 AH |
473 | else if (inst.opcode->iclass == ic_system) |
474 | { | |
475 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
476 | int ra_state_val = 0; | |
477 | ||
478 | if (insn == 0xd503233f /* paciasp. */ | |
479 | || insn == 0xd503237f /* pacibsp. */) | |
480 | { | |
481 | /* Return addresses are mangled. */ | |
482 | ra_state_val = 1; | |
483 | } | |
484 | else if (insn == 0xd50323bf /* autiasp. */ | |
485 | || insn == 0xd50323ff /* autibsp. */) | |
486 | { | |
487 | /* Return addresses are not mangled. */ | |
488 | ra_state_val = 0; | |
489 | } | |
490 | else | |
491 | { | |
492 | if (aarch64_debug) | |
493 | debug_printf ("aarch64: prologue analysis gave up addr=%s" | |
494 | " opcode=0x%x (iclass)\n", | |
495 | core_addr_to_string_nz (start), insn); | |
496 | break; | |
497 | } | |
498 | ||
499 | if (tdep->has_pauth () && cache != nullptr) | |
500 | trad_frame_set_value (cache->saved_regs, | |
501 | tdep->pauth_ra_state_regnum, | |
502 | ra_state_val); | |
503 | } | |
07b287a0 MS |
504 | else |
505 | { | |
506 | if (aarch64_debug) | |
b277c936 | 507 | { |
0a0da556 | 508 | debug_printf ("aarch64: prologue analysis gave up addr=%s" |
b277c936 PL |
509 | " opcode=0x%x\n", |
510 | core_addr_to_string_nz (start), insn); | |
511 | } | |
07b287a0 MS |
512 | break; |
513 | } | |
514 | } | |
515 | ||
516 | if (cache == NULL) | |
f7b7ed97 | 517 | return start; |
07b287a0 MS |
518 | |
519 | if (pv_is_register (regs[AARCH64_FP_REGNUM], AARCH64_SP_REGNUM)) | |
520 | { | |
521 | /* Frame pointer is fp. Frame size is constant. */ | |
522 | cache->framereg = AARCH64_FP_REGNUM; | |
523 | cache->framesize = -regs[AARCH64_FP_REGNUM].k; | |
524 | } | |
525 | else if (pv_is_register (regs[AARCH64_SP_REGNUM], AARCH64_SP_REGNUM)) | |
526 | { | |
527 | /* Try the stack pointer. */ | |
528 | cache->framesize = -regs[AARCH64_SP_REGNUM].k; | |
529 | cache->framereg = AARCH64_SP_REGNUM; | |
530 | } | |
531 | else | |
532 | { | |
533 | /* We're just out of luck. We don't know where the frame is. */ | |
534 | cache->framereg = -1; | |
535 | cache->framesize = 0; | |
536 | } | |
537 | ||
538 | for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++) | |
539 | { | |
540 | CORE_ADDR offset; | |
541 | ||
f7b7ed97 | 542 | if (stack.find_reg (gdbarch, i, &offset)) |
07b287a0 MS |
543 | cache->saved_regs[i].addr = offset; |
544 | } | |
545 | ||
187f5d00 YQ |
546 | for (i = 0; i < AARCH64_D_REGISTER_COUNT; i++) |
547 | { | |
548 | int regnum = gdbarch_num_regs (gdbarch); | |
549 | CORE_ADDR offset; | |
550 | ||
f7b7ed97 TT |
551 | if (stack.find_reg (gdbarch, i + AARCH64_X_REGISTER_COUNT, |
552 | &offset)) | |
187f5d00 YQ |
553 | cache->saved_regs[i + regnum + AARCH64_D0_REGNUM].addr = offset; |
554 | } | |
555 | ||
07b287a0 MS |
556 | return start; |
557 | } | |
558 | ||
4d9a9006 YQ |
559 | static CORE_ADDR |
560 | aarch64_analyze_prologue (struct gdbarch *gdbarch, | |
561 | CORE_ADDR start, CORE_ADDR limit, | |
562 | struct aarch64_prologue_cache *cache) | |
563 | { | |
564 | instruction_reader reader; | |
565 | ||
566 | return aarch64_analyze_prologue (gdbarch, start, limit, cache, | |
567 | reader); | |
568 | } | |
569 | ||
570 | #if GDB_SELF_TEST | |
571 | ||
572 | namespace selftests { | |
573 | ||
574 | /* Instruction reader from manually cooked instruction sequences. */ | |
575 | ||
576 | class instruction_reader_test : public abstract_instruction_reader | |
577 | { | |
578 | public: | |
579 | template<size_t SIZE> | |
580 | explicit instruction_reader_test (const uint32_t (&insns)[SIZE]) | |
581 | : m_insns (insns), m_insns_size (SIZE) | |
582 | {} | |
583 | ||
584 | ULONGEST read (CORE_ADDR memaddr, int len, enum bfd_endian byte_order) | |
632e107b | 585 | override |
4d9a9006 YQ |
586 | { |
587 | SELF_CHECK (len == 4); | |
588 | SELF_CHECK (memaddr % 4 == 0); | |
589 | SELF_CHECK (memaddr / 4 < m_insns_size); | |
590 | ||
591 | return m_insns[memaddr / 4]; | |
592 | } | |
593 | ||
594 | private: | |
595 | const uint32_t *m_insns; | |
596 | size_t m_insns_size; | |
597 | }; | |
598 | ||
599 | static void | |
600 | aarch64_analyze_prologue_test (void) | |
601 | { | |
602 | struct gdbarch_info info; | |
603 | ||
604 | gdbarch_info_init (&info); | |
605 | info.bfd_arch_info = bfd_scan_arch ("aarch64"); | |
606 | ||
607 | struct gdbarch *gdbarch = gdbarch_find_by_info (info); | |
608 | SELF_CHECK (gdbarch != NULL); | |
609 | ||
17e116a7 AH |
610 | struct aarch64_prologue_cache cache; |
611 | cache.saved_regs = trad_frame_alloc_saved_regs (gdbarch); | |
612 | ||
613 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
614 | ||
4d9a9006 YQ |
615 | /* Test the simple prologue in which frame pointer is used. */ |
616 | { | |
4d9a9006 YQ |
617 | static const uint32_t insns[] = { |
618 | 0xa9af7bfd, /* stp x29, x30, [sp,#-272]! */ | |
619 | 0x910003fd, /* mov x29, sp */ | |
620 | 0x97ffffe6, /* bl 0x400580 */ | |
621 | }; | |
622 | instruction_reader_test reader (insns); | |
623 | ||
624 | CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader); | |
625 | SELF_CHECK (end == 4 * 2); | |
626 | ||
627 | SELF_CHECK (cache.framereg == AARCH64_FP_REGNUM); | |
628 | SELF_CHECK (cache.framesize == 272); | |
629 | ||
630 | for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++) | |
631 | { | |
632 | if (i == AARCH64_FP_REGNUM) | |
633 | SELF_CHECK (cache.saved_regs[i].addr == -272); | |
634 | else if (i == AARCH64_LR_REGNUM) | |
635 | SELF_CHECK (cache.saved_regs[i].addr == -264); | |
636 | else | |
637 | SELF_CHECK (cache.saved_regs[i].addr == -1); | |
638 | } | |
639 | ||
640 | for (int i = 0; i < AARCH64_D_REGISTER_COUNT; i++) | |
641 | { | |
642 | int regnum = gdbarch_num_regs (gdbarch); | |
643 | ||
644 | SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr | |
645 | == -1); | |
646 | } | |
647 | } | |
432ec081 YQ |
648 | |
649 | /* Test a prologue in which STR is used and frame pointer is not | |
650 | used. */ | |
651 | { | |
432ec081 YQ |
652 | static const uint32_t insns[] = { |
653 | 0xf81d0ff3, /* str x19, [sp, #-48]! */ | |
654 | 0xb9002fe0, /* str w0, [sp, #44] */ | |
655 | 0xf90013e1, /* str x1, [sp, #32]*/ | |
656 | 0xfd000fe0, /* str d0, [sp, #24] */ | |
657 | 0xaa0203f3, /* mov x19, x2 */ | |
658 | 0xf94013e0, /* ldr x0, [sp, #32] */ | |
659 | }; | |
660 | instruction_reader_test reader (insns); | |
661 | ||
68811f8f | 662 | trad_frame_reset_saved_regs (gdbarch, cache.saved_regs); |
432ec081 YQ |
663 | CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader); |
664 | ||
665 | SELF_CHECK (end == 4 * 5); | |
666 | ||
667 | SELF_CHECK (cache.framereg == AARCH64_SP_REGNUM); | |
668 | SELF_CHECK (cache.framesize == 48); | |
669 | ||
670 | for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++) | |
671 | { | |
672 | if (i == 1) | |
673 | SELF_CHECK (cache.saved_regs[i].addr == -16); | |
674 | else if (i == 19) | |
675 | SELF_CHECK (cache.saved_regs[i].addr == -48); | |
676 | else | |
677 | SELF_CHECK (cache.saved_regs[i].addr == -1); | |
678 | } | |
679 | ||
680 | for (int i = 0; i < AARCH64_D_REGISTER_COUNT; i++) | |
681 | { | |
682 | int regnum = gdbarch_num_regs (gdbarch); | |
683 | ||
684 | if (i == 0) | |
685 | SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr | |
686 | == -24); | |
687 | else | |
688 | SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr | |
689 | == -1); | |
690 | } | |
691 | } | |
17e116a7 AH |
692 | |
693 | /* Test a prologue in which there is a return address signing instruction. */ | |
694 | if (tdep->has_pauth ()) | |
695 | { | |
696 | static const uint32_t insns[] = { | |
697 | 0xd503233f, /* paciasp */ | |
698 | 0xa9bd7bfd, /* stp x29, x30, [sp, #-48]! */ | |
699 | 0x910003fd, /* mov x29, sp */ | |
700 | 0xf801c3f3, /* str x19, [sp, #28] */ | |
701 | 0xb9401fa0, /* ldr x19, [x29, #28] */ | |
702 | }; | |
703 | instruction_reader_test reader (insns); | |
704 | ||
68811f8f | 705 | trad_frame_reset_saved_regs (gdbarch, cache.saved_regs); |
17e116a7 AH |
706 | CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, |
707 | reader); | |
708 | ||
709 | SELF_CHECK (end == 4 * 4); | |
710 | SELF_CHECK (cache.framereg == AARCH64_FP_REGNUM); | |
711 | SELF_CHECK (cache.framesize == 48); | |
712 | ||
713 | for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++) | |
714 | { | |
715 | if (i == 19) | |
716 | SELF_CHECK (cache.saved_regs[i].addr == -20); | |
717 | else if (i == AARCH64_FP_REGNUM) | |
718 | SELF_CHECK (cache.saved_regs[i].addr == -48); | |
719 | else if (i == AARCH64_LR_REGNUM) | |
720 | SELF_CHECK (cache.saved_regs[i].addr == -40); | |
721 | else | |
722 | SELF_CHECK (cache.saved_regs[i].addr == -1); | |
723 | } | |
724 | ||
725 | if (tdep->has_pauth ()) | |
726 | { | |
727 | SELF_CHECK (trad_frame_value_p (cache.saved_regs, | |
728 | tdep->pauth_ra_state_regnum)); | |
729 | SELF_CHECK (cache.saved_regs[tdep->pauth_ra_state_regnum].addr == 1); | |
730 | } | |
731 | } | |
4d9a9006 YQ |
732 | } |
733 | } // namespace selftests | |
734 | #endif /* GDB_SELF_TEST */ | |
735 | ||
07b287a0 MS |
736 | /* Implement the "skip_prologue" gdbarch method. */ |
737 | ||
738 | static CORE_ADDR | |
739 | aarch64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | |
740 | { | |
07b287a0 | 741 | CORE_ADDR func_addr, limit_pc; |
07b287a0 MS |
742 | |
743 | /* See if we can determine the end of the prologue via the symbol | |
744 | table. If so, then return either PC, or the PC after the | |
745 | prologue, whichever is greater. */ | |
746 | if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) | |
747 | { | |
748 | CORE_ADDR post_prologue_pc | |
749 | = skip_prologue_using_sal (gdbarch, func_addr); | |
750 | ||
751 | if (post_prologue_pc != 0) | |
325fac50 | 752 | return std::max (pc, post_prologue_pc); |
07b287a0 MS |
753 | } |
754 | ||
755 | /* Can't determine prologue from the symbol table, need to examine | |
756 | instructions. */ | |
757 | ||
758 | /* Find an upper limit on the function prologue using the debug | |
759 | information. If the debug information could not be used to | |
760 | provide that bound, then use an arbitrary large number as the | |
761 | upper bound. */ | |
762 | limit_pc = skip_prologue_using_sal (gdbarch, pc); | |
763 | if (limit_pc == 0) | |
764 | limit_pc = pc + 128; /* Magic. */ | |
765 | ||
766 | /* Try disassembling prologue. */ | |
767 | return aarch64_analyze_prologue (gdbarch, pc, limit_pc, NULL); | |
768 | } | |
769 | ||
770 | /* Scan the function prologue for THIS_FRAME and populate the prologue | |
771 | cache CACHE. */ | |
772 | ||
773 | static void | |
774 | aarch64_scan_prologue (struct frame_info *this_frame, | |
775 | struct aarch64_prologue_cache *cache) | |
776 | { | |
777 | CORE_ADDR block_addr = get_frame_address_in_block (this_frame); | |
778 | CORE_ADDR prologue_start; | |
779 | CORE_ADDR prologue_end; | |
780 | CORE_ADDR prev_pc = get_frame_pc (this_frame); | |
781 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
782 | ||
db634143 PL |
783 | cache->prev_pc = prev_pc; |
784 | ||
07b287a0 MS |
785 | /* Assume we do not find a frame. */ |
786 | cache->framereg = -1; | |
787 | cache->framesize = 0; | |
788 | ||
789 | if (find_pc_partial_function (block_addr, NULL, &prologue_start, | |
790 | &prologue_end)) | |
791 | { | |
792 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
793 | ||
794 | if (sal.line == 0) | |
795 | { | |
796 | /* No line info so use the current PC. */ | |
797 | prologue_end = prev_pc; | |
798 | } | |
799 | else if (sal.end < prologue_end) | |
800 | { | |
801 | /* The next line begins after the function end. */ | |
802 | prologue_end = sal.end; | |
803 | } | |
804 | ||
325fac50 | 805 | prologue_end = std::min (prologue_end, prev_pc); |
07b287a0 MS |
806 | aarch64_analyze_prologue (gdbarch, prologue_start, prologue_end, cache); |
807 | } | |
808 | else | |
809 | { | |
810 | CORE_ADDR frame_loc; | |
07b287a0 MS |
811 | |
812 | frame_loc = get_frame_register_unsigned (this_frame, AARCH64_FP_REGNUM); | |
813 | if (frame_loc == 0) | |
814 | return; | |
815 | ||
816 | cache->framereg = AARCH64_FP_REGNUM; | |
817 | cache->framesize = 16; | |
818 | cache->saved_regs[29].addr = 0; | |
819 | cache->saved_regs[30].addr = 8; | |
820 | } | |
821 | } | |
822 | ||
7dfa3edc PL |
823 | /* Fill in *CACHE with information about the prologue of *THIS_FRAME. This |
824 | function may throw an exception if the inferior's registers or memory is | |
825 | not available. */ | |
07b287a0 | 826 | |
7dfa3edc PL |
827 | static void |
828 | aarch64_make_prologue_cache_1 (struct frame_info *this_frame, | |
829 | struct aarch64_prologue_cache *cache) | |
07b287a0 | 830 | { |
07b287a0 MS |
831 | CORE_ADDR unwound_fp; |
832 | int reg; | |
833 | ||
07b287a0 MS |
834 | aarch64_scan_prologue (this_frame, cache); |
835 | ||
836 | if (cache->framereg == -1) | |
7dfa3edc | 837 | return; |
07b287a0 MS |
838 | |
839 | unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg); | |
840 | if (unwound_fp == 0) | |
7dfa3edc | 841 | return; |
07b287a0 MS |
842 | |
843 | cache->prev_sp = unwound_fp + cache->framesize; | |
844 | ||
845 | /* Calculate actual addresses of saved registers using offsets | |
846 | determined by aarch64_analyze_prologue. */ | |
847 | for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++) | |
848 | if (trad_frame_addr_p (cache->saved_regs, reg)) | |
849 | cache->saved_regs[reg].addr += cache->prev_sp; | |
850 | ||
db634143 PL |
851 | cache->func = get_frame_func (this_frame); |
852 | ||
7dfa3edc PL |
853 | cache->available_p = 1; |
854 | } | |
855 | ||
856 | /* Allocate and fill in *THIS_CACHE with information about the prologue of | |
857 | *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated. | |
858 | Return a pointer to the current aarch64_prologue_cache in | |
859 | *THIS_CACHE. */ | |
860 | ||
861 | static struct aarch64_prologue_cache * | |
862 | aarch64_make_prologue_cache (struct frame_info *this_frame, void **this_cache) | |
863 | { | |
864 | struct aarch64_prologue_cache *cache; | |
865 | ||
866 | if (*this_cache != NULL) | |
9a3c8263 | 867 | return (struct aarch64_prologue_cache *) *this_cache; |
7dfa3edc PL |
868 | |
869 | cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache); | |
870 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); | |
871 | *this_cache = cache; | |
872 | ||
a70b8144 | 873 | try |
7dfa3edc PL |
874 | { |
875 | aarch64_make_prologue_cache_1 (this_frame, cache); | |
876 | } | |
230d2906 | 877 | catch (const gdb_exception_error &ex) |
7dfa3edc PL |
878 | { |
879 | if (ex.error != NOT_AVAILABLE_ERROR) | |
eedc3f4f | 880 | throw; |
7dfa3edc | 881 | } |
7dfa3edc | 882 | |
07b287a0 MS |
883 | return cache; |
884 | } | |
885 | ||
7dfa3edc PL |
886 | /* Implement the "stop_reason" frame_unwind method. */ |
887 | ||
888 | static enum unwind_stop_reason | |
889 | aarch64_prologue_frame_unwind_stop_reason (struct frame_info *this_frame, | |
890 | void **this_cache) | |
891 | { | |
892 | struct aarch64_prologue_cache *cache | |
893 | = aarch64_make_prologue_cache (this_frame, this_cache); | |
894 | ||
895 | if (!cache->available_p) | |
896 | return UNWIND_UNAVAILABLE; | |
897 | ||
898 | /* Halt the backtrace at "_start". */ | |
899 | if (cache->prev_pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc) | |
900 | return UNWIND_OUTERMOST; | |
901 | ||
902 | /* We've hit a wall, stop. */ | |
903 | if (cache->prev_sp == 0) | |
904 | return UNWIND_OUTERMOST; | |
905 | ||
906 | return UNWIND_NO_REASON; | |
907 | } | |
908 | ||
07b287a0 MS |
909 | /* Our frame ID for a normal frame is the current function's starting |
910 | PC and the caller's SP when we were called. */ | |
911 | ||
912 | static void | |
913 | aarch64_prologue_this_id (struct frame_info *this_frame, | |
914 | void **this_cache, struct frame_id *this_id) | |
915 | { | |
7c8edfae PL |
916 | struct aarch64_prologue_cache *cache |
917 | = aarch64_make_prologue_cache (this_frame, this_cache); | |
07b287a0 | 918 | |
7dfa3edc PL |
919 | if (!cache->available_p) |
920 | *this_id = frame_id_build_unavailable_stack (cache->func); | |
921 | else | |
922 | *this_id = frame_id_build (cache->prev_sp, cache->func); | |
07b287a0 MS |
923 | } |
924 | ||
925 | /* Implement the "prev_register" frame_unwind method. */ | |
926 | ||
927 | static struct value * | |
928 | aarch64_prologue_prev_register (struct frame_info *this_frame, | |
929 | void **this_cache, int prev_regnum) | |
930 | { | |
7c8edfae PL |
931 | struct aarch64_prologue_cache *cache |
932 | = aarch64_make_prologue_cache (this_frame, this_cache); | |
07b287a0 MS |
933 | |
934 | /* If we are asked to unwind the PC, then we need to return the LR | |
935 | instead. The prologue may save PC, but it will point into this | |
936 | frame's prologue, not the next frame's resume location. */ | |
937 | if (prev_regnum == AARCH64_PC_REGNUM) | |
938 | { | |
939 | CORE_ADDR lr; | |
17e116a7 AH |
940 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
941 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
07b287a0 MS |
942 | |
943 | lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM); | |
17e116a7 AH |
944 | |
945 | if (tdep->has_pauth () | |
946 | && trad_frame_value_p (cache->saved_regs, | |
947 | tdep->pauth_ra_state_regnum)) | |
3d31bc39 | 948 | lr = aarch64_frame_unmask_lr (tdep, this_frame, lr); |
17e116a7 | 949 | |
07b287a0 MS |
950 | return frame_unwind_got_constant (this_frame, prev_regnum, lr); |
951 | } | |
952 | ||
953 | /* SP is generally not saved to the stack, but this frame is | |
954 | identified by the next frame's stack pointer at the time of the | |
955 | call. The value was already reconstructed into PREV_SP. */ | |
956 | /* | |
957 | +----------+ ^ | |
958 | | saved lr | | | |
959 | +->| saved fp |--+ | |
960 | | | | | |
961 | | | | <- Previous SP | |
962 | | +----------+ | |
963 | | | saved lr | | |
964 | +--| saved fp |<- FP | |
965 | | | | |
966 | | |<- SP | |
967 | +----------+ */ | |
968 | if (prev_regnum == AARCH64_SP_REGNUM) | |
969 | return frame_unwind_got_constant (this_frame, prev_regnum, | |
970 | cache->prev_sp); | |
971 | ||
972 | return trad_frame_get_prev_register (this_frame, cache->saved_regs, | |
973 | prev_regnum); | |
974 | } | |
975 | ||
976 | /* AArch64 prologue unwinder. */ | |
977 | struct frame_unwind aarch64_prologue_unwind = | |
978 | { | |
979 | NORMAL_FRAME, | |
7dfa3edc | 980 | aarch64_prologue_frame_unwind_stop_reason, |
07b287a0 MS |
981 | aarch64_prologue_this_id, |
982 | aarch64_prologue_prev_register, | |
983 | NULL, | |
984 | default_frame_sniffer | |
985 | }; | |
986 | ||
8b61f75d PL |
987 | /* Allocate and fill in *THIS_CACHE with information about the prologue of |
988 | *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated. | |
989 | Return a pointer to the current aarch64_prologue_cache in | |
990 | *THIS_CACHE. */ | |
07b287a0 MS |
991 | |
992 | static struct aarch64_prologue_cache * | |
8b61f75d | 993 | aarch64_make_stub_cache (struct frame_info *this_frame, void **this_cache) |
07b287a0 | 994 | { |
07b287a0 | 995 | struct aarch64_prologue_cache *cache; |
8b61f75d PL |
996 | |
997 | if (*this_cache != NULL) | |
9a3c8263 | 998 | return (struct aarch64_prologue_cache *) *this_cache; |
07b287a0 MS |
999 | |
1000 | cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache); | |
1001 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); | |
8b61f75d | 1002 | *this_cache = cache; |
07b287a0 | 1003 | |
a70b8144 | 1004 | try |
02a2a705 PL |
1005 | { |
1006 | cache->prev_sp = get_frame_register_unsigned (this_frame, | |
1007 | AARCH64_SP_REGNUM); | |
1008 | cache->prev_pc = get_frame_pc (this_frame); | |
1009 | cache->available_p = 1; | |
1010 | } | |
230d2906 | 1011 | catch (const gdb_exception_error &ex) |
02a2a705 PL |
1012 | { |
1013 | if (ex.error != NOT_AVAILABLE_ERROR) | |
eedc3f4f | 1014 | throw; |
02a2a705 | 1015 | } |
07b287a0 MS |
1016 | |
1017 | return cache; | |
1018 | } | |
1019 | ||
02a2a705 PL |
1020 | /* Implement the "stop_reason" frame_unwind method. */ |
1021 | ||
1022 | static enum unwind_stop_reason | |
1023 | aarch64_stub_frame_unwind_stop_reason (struct frame_info *this_frame, | |
1024 | void **this_cache) | |
1025 | { | |
1026 | struct aarch64_prologue_cache *cache | |
1027 | = aarch64_make_stub_cache (this_frame, this_cache); | |
1028 | ||
1029 | if (!cache->available_p) | |
1030 | return UNWIND_UNAVAILABLE; | |
1031 | ||
1032 | return UNWIND_NO_REASON; | |
1033 | } | |
1034 | ||
07b287a0 MS |
1035 | /* Our frame ID for a stub frame is the current SP and LR. */ |
1036 | ||
1037 | static void | |
1038 | aarch64_stub_this_id (struct frame_info *this_frame, | |
1039 | void **this_cache, struct frame_id *this_id) | |
1040 | { | |
8b61f75d PL |
1041 | struct aarch64_prologue_cache *cache |
1042 | = aarch64_make_stub_cache (this_frame, this_cache); | |
07b287a0 | 1043 | |
02a2a705 PL |
1044 | if (cache->available_p) |
1045 | *this_id = frame_id_build (cache->prev_sp, cache->prev_pc); | |
1046 | else | |
1047 | *this_id = frame_id_build_unavailable_stack (cache->prev_pc); | |
07b287a0 MS |
1048 | } |
1049 | ||
1050 | /* Implement the "sniffer" frame_unwind method. */ | |
1051 | ||
1052 | static int | |
1053 | aarch64_stub_unwind_sniffer (const struct frame_unwind *self, | |
1054 | struct frame_info *this_frame, | |
1055 | void **this_prologue_cache) | |
1056 | { | |
1057 | CORE_ADDR addr_in_block; | |
1058 | gdb_byte dummy[4]; | |
1059 | ||
1060 | addr_in_block = get_frame_address_in_block (this_frame); | |
3e5d3a5a | 1061 | if (in_plt_section (addr_in_block) |
07b287a0 MS |
1062 | /* We also use the stub winder if the target memory is unreadable |
1063 | to avoid having the prologue unwinder trying to read it. */ | |
1064 | || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0) | |
1065 | return 1; | |
1066 | ||
1067 | return 0; | |
1068 | } | |
1069 | ||
1070 | /* AArch64 stub unwinder. */ | |
1071 | struct frame_unwind aarch64_stub_unwind = | |
1072 | { | |
1073 | NORMAL_FRAME, | |
02a2a705 | 1074 | aarch64_stub_frame_unwind_stop_reason, |
07b287a0 MS |
1075 | aarch64_stub_this_id, |
1076 | aarch64_prologue_prev_register, | |
1077 | NULL, | |
1078 | aarch64_stub_unwind_sniffer | |
1079 | }; | |
1080 | ||
1081 | /* Return the frame base address of *THIS_FRAME. */ | |
1082 | ||
1083 | static CORE_ADDR | |
1084 | aarch64_normal_frame_base (struct frame_info *this_frame, void **this_cache) | |
1085 | { | |
7c8edfae PL |
1086 | struct aarch64_prologue_cache *cache |
1087 | = aarch64_make_prologue_cache (this_frame, this_cache); | |
07b287a0 MS |
1088 | |
1089 | return cache->prev_sp - cache->framesize; | |
1090 | } | |
1091 | ||
1092 | /* AArch64 default frame base information. */ | |
1093 | struct frame_base aarch64_normal_base = | |
1094 | { | |
1095 | &aarch64_prologue_unwind, | |
1096 | aarch64_normal_frame_base, | |
1097 | aarch64_normal_frame_base, | |
1098 | aarch64_normal_frame_base | |
1099 | }; | |
1100 | ||
07b287a0 MS |
1101 | /* Return the value of the REGNUM register in the previous frame of |
1102 | *THIS_FRAME. */ | |
1103 | ||
1104 | static struct value * | |
1105 | aarch64_dwarf2_prev_register (struct frame_info *this_frame, | |
1106 | void **this_cache, int regnum) | |
1107 | { | |
11e1b75f | 1108 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame)); |
07b287a0 MS |
1109 | CORE_ADDR lr; |
1110 | ||
1111 | switch (regnum) | |
1112 | { | |
1113 | case AARCH64_PC_REGNUM: | |
1114 | lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM); | |
3d31bc39 | 1115 | lr = aarch64_frame_unmask_lr (tdep, this_frame, lr); |
07b287a0 MS |
1116 | return frame_unwind_got_constant (this_frame, regnum, lr); |
1117 | ||
1118 | default: | |
1119 | internal_error (__FILE__, __LINE__, | |
1120 | _("Unexpected register %d"), regnum); | |
1121 | } | |
1122 | } | |
1123 | ||
11e1b75f AH |
1124 | static const unsigned char op_lit0 = DW_OP_lit0; |
1125 | static const unsigned char op_lit1 = DW_OP_lit1; | |
1126 | ||
07b287a0 MS |
1127 | /* Implement the "init_reg" dwarf2_frame_ops method. */ |
1128 | ||
1129 | static void | |
1130 | aarch64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, | |
1131 | struct dwarf2_frame_state_reg *reg, | |
1132 | struct frame_info *this_frame) | |
1133 | { | |
11e1b75f AH |
1134 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1135 | ||
07b287a0 MS |
1136 | switch (regnum) |
1137 | { | |
1138 | case AARCH64_PC_REGNUM: | |
1139 | reg->how = DWARF2_FRAME_REG_FN; | |
1140 | reg->loc.fn = aarch64_dwarf2_prev_register; | |
11e1b75f AH |
1141 | return; |
1142 | ||
07b287a0 MS |
1143 | case AARCH64_SP_REGNUM: |
1144 | reg->how = DWARF2_FRAME_REG_CFA; | |
11e1b75f AH |
1145 | return; |
1146 | } | |
1147 | ||
1148 | /* Init pauth registers. */ | |
1149 | if (tdep->has_pauth ()) | |
1150 | { | |
1151 | if (regnum == tdep->pauth_ra_state_regnum) | |
1152 | { | |
1153 | /* Initialize RA_STATE to zero. */ | |
1154 | reg->how = DWARF2_FRAME_REG_SAVED_VAL_EXP; | |
1155 | reg->loc.exp.start = &op_lit0; | |
1156 | reg->loc.exp.len = 1; | |
1157 | return; | |
1158 | } | |
1159 | else if (regnum == AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base) | |
1160 | || regnum == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base)) | |
1161 | { | |
1162 | reg->how = DWARF2_FRAME_REG_SAME_VALUE; | |
1163 | return; | |
1164 | } | |
07b287a0 MS |
1165 | } |
1166 | } | |
1167 | ||
11e1b75f AH |
1168 | /* Implement the execute_dwarf_cfa_vendor_op method. */ |
1169 | ||
1170 | static bool | |
1171 | aarch64_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op, | |
1172 | struct dwarf2_frame_state *fs) | |
1173 | { | |
1174 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1175 | struct dwarf2_frame_state_reg *ra_state; | |
1176 | ||
8fca4da0 | 1177 | if (op == DW_CFA_AARCH64_negate_ra_state) |
11e1b75f | 1178 | { |
8fca4da0 AH |
1179 | /* On systems without pauth, treat as a nop. */ |
1180 | if (!tdep->has_pauth ()) | |
1181 | return true; | |
1182 | ||
11e1b75f AH |
1183 | /* Allocate RA_STATE column if it's not allocated yet. */ |
1184 | fs->regs.alloc_regs (AARCH64_DWARF_PAUTH_RA_STATE + 1); | |
1185 | ||
1186 | /* Toggle the status of RA_STATE between 0 and 1. */ | |
1187 | ra_state = &(fs->regs.reg[AARCH64_DWARF_PAUTH_RA_STATE]); | |
1188 | ra_state->how = DWARF2_FRAME_REG_SAVED_VAL_EXP; | |
1189 | ||
1190 | if (ra_state->loc.exp.start == nullptr | |
1191 | || ra_state->loc.exp.start == &op_lit0) | |
1192 | ra_state->loc.exp.start = &op_lit1; | |
1193 | else | |
1194 | ra_state->loc.exp.start = &op_lit0; | |
1195 | ||
1196 | ra_state->loc.exp.len = 1; | |
1197 | ||
1198 | return true; | |
1199 | } | |
1200 | ||
1201 | return false; | |
1202 | } | |
1203 | ||
07b287a0 MS |
1204 | /* When arguments must be pushed onto the stack, they go on in reverse |
1205 | order. The code below implements a FILO (stack) to do this. */ | |
1206 | ||
89055eaa | 1207 | struct stack_item_t |
07b287a0 | 1208 | { |
c3c87445 YQ |
1209 | /* Value to pass on stack. It can be NULL if this item is for stack |
1210 | padding. */ | |
7c543f7b | 1211 | const gdb_byte *data; |
07b287a0 MS |
1212 | |
1213 | /* Size in bytes of value to pass on stack. */ | |
1214 | int len; | |
89055eaa | 1215 | }; |
07b287a0 | 1216 | |
b907456c AB |
1217 | /* Implement the gdbarch type alignment method, overrides the generic |
1218 | alignment algorithm for anything that is aarch64 specific. */ | |
07b287a0 | 1219 | |
b907456c AB |
1220 | static ULONGEST |
1221 | aarch64_type_align (gdbarch *gdbarch, struct type *t) | |
07b287a0 | 1222 | { |
07b287a0 | 1223 | t = check_typedef (t); |
b907456c | 1224 | if (TYPE_CODE (t) == TYPE_CODE_ARRAY && TYPE_VECTOR (t)) |
07b287a0 | 1225 | { |
b907456c AB |
1226 | /* Use the natural alignment for vector types (the same for |
1227 | scalar type), but the maximum alignment is 128-bit. */ | |
1228 | if (TYPE_LENGTH (t) > 16) | |
1229 | return 16; | |
238f2452 | 1230 | else |
b907456c | 1231 | return TYPE_LENGTH (t); |
07b287a0 | 1232 | } |
b907456c AB |
1233 | |
1234 | /* Allow the common code to calculate the alignment. */ | |
1235 | return 0; | |
07b287a0 MS |
1236 | } |
1237 | ||
ea92689a AH |
1238 | /* Worker function for aapcs_is_vfp_call_or_return_candidate. |
1239 | ||
1240 | Return the number of register required, or -1 on failure. | |
1241 | ||
1242 | When encountering a base element, if FUNDAMENTAL_TYPE is not set then set it | |
1243 | to the element, else fail if the type of this element does not match the | |
1244 | existing value. */ | |
1245 | ||
1246 | static int | |
1247 | aapcs_is_vfp_call_or_return_candidate_1 (struct type *type, | |
1248 | struct type **fundamental_type) | |
1249 | { | |
1250 | if (type == nullptr) | |
1251 | return -1; | |
1252 | ||
1253 | switch (TYPE_CODE (type)) | |
1254 | { | |
1255 | case TYPE_CODE_FLT: | |
1256 | if (TYPE_LENGTH (type) > 16) | |
1257 | return -1; | |
1258 | ||
1259 | if (*fundamental_type == nullptr) | |
1260 | *fundamental_type = type; | |
1261 | else if (TYPE_LENGTH (type) != TYPE_LENGTH (*fundamental_type) | |
1262 | || TYPE_CODE (type) != TYPE_CODE (*fundamental_type)) | |
1263 | return -1; | |
1264 | ||
1265 | return 1; | |
1266 | ||
1267 | case TYPE_CODE_COMPLEX: | |
1268 | { | |
1269 | struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type)); | |
1270 | if (TYPE_LENGTH (target_type) > 16) | |
1271 | return -1; | |
1272 | ||
1273 | if (*fundamental_type == nullptr) | |
1274 | *fundamental_type = target_type; | |
1275 | else if (TYPE_LENGTH (target_type) != TYPE_LENGTH (*fundamental_type) | |
1276 | || TYPE_CODE (target_type) != TYPE_CODE (*fundamental_type)) | |
1277 | return -1; | |
1278 | ||
1279 | return 2; | |
1280 | } | |
1281 | ||
1282 | case TYPE_CODE_ARRAY: | |
1283 | { | |
1284 | if (TYPE_VECTOR (type)) | |
1285 | { | |
1286 | if (TYPE_LENGTH (type) != 8 && TYPE_LENGTH (type) != 16) | |
1287 | return -1; | |
1288 | ||
1289 | if (*fundamental_type == nullptr) | |
1290 | *fundamental_type = type; | |
1291 | else if (TYPE_LENGTH (type) != TYPE_LENGTH (*fundamental_type) | |
1292 | || TYPE_CODE (type) != TYPE_CODE (*fundamental_type)) | |
1293 | return -1; | |
1294 | ||
1295 | return 1; | |
1296 | } | |
1297 | else | |
1298 | { | |
1299 | struct type *target_type = TYPE_TARGET_TYPE (type); | |
1300 | int count = aapcs_is_vfp_call_or_return_candidate_1 | |
1301 | (target_type, fundamental_type); | |
1302 | ||
1303 | if (count == -1) | |
1304 | return count; | |
1305 | ||
d4718d5c | 1306 | count *= (TYPE_LENGTH (type) / TYPE_LENGTH (target_type)); |
ea92689a AH |
1307 | return count; |
1308 | } | |
1309 | } | |
1310 | ||
1311 | case TYPE_CODE_STRUCT: | |
1312 | case TYPE_CODE_UNION: | |
1313 | { | |
1314 | int count = 0; | |
1315 | ||
1316 | for (int i = 0; i < TYPE_NFIELDS (type); i++) | |
1317 | { | |
353229bf AH |
1318 | /* Ignore any static fields. */ |
1319 | if (field_is_static (&TYPE_FIELD (type, i))) | |
1320 | continue; | |
1321 | ||
ea92689a AH |
1322 | struct type *member = check_typedef (TYPE_FIELD_TYPE (type, i)); |
1323 | ||
1324 | int sub_count = aapcs_is_vfp_call_or_return_candidate_1 | |
1325 | (member, fundamental_type); | |
1326 | if (sub_count == -1) | |
1327 | return -1; | |
1328 | count += sub_count; | |
1329 | } | |
73021deb AH |
1330 | |
1331 | /* Ensure there is no padding between the fields (allowing for empty | |
1332 | zero length structs) */ | |
1333 | int ftype_length = (*fundamental_type == nullptr) | |
1334 | ? 0 : TYPE_LENGTH (*fundamental_type); | |
1335 | if (count * ftype_length != TYPE_LENGTH (type)) | |
1336 | return -1; | |
1337 | ||
ea92689a AH |
1338 | return count; |
1339 | } | |
1340 | ||
1341 | default: | |
1342 | break; | |
1343 | } | |
1344 | ||
1345 | return -1; | |
1346 | } | |
1347 | ||
1348 | /* Return true if an argument, whose type is described by TYPE, can be passed or | |
1349 | returned in simd/fp registers, providing enough parameter passing registers | |
1350 | are available. This is as described in the AAPCS64. | |
1351 | ||
1352 | Upon successful return, *COUNT returns the number of needed registers, | |
1353 | *FUNDAMENTAL_TYPE contains the type of those registers. | |
1354 | ||
1355 | Candidate as per the AAPCS64 5.4.2.C is either a: | |
1356 | - float. | |
1357 | - short-vector. | |
1358 | - HFA (Homogeneous Floating-point Aggregate, 4.3.5.1). A Composite type where | |
1359 | all the members are floats and has at most 4 members. | |
1360 | - HVA (Homogeneous Short-vector Aggregate, 4.3.5.2). A Composite type where | |
1361 | all the members are short vectors and has at most 4 members. | |
1362 | - Complex (7.1.1) | |
1363 | ||
1364 | Note that HFAs and HVAs can include nested structures and arrays. */ | |
1365 | ||
0e745c60 | 1366 | static bool |
ea92689a AH |
1367 | aapcs_is_vfp_call_or_return_candidate (struct type *type, int *count, |
1368 | struct type **fundamental_type) | |
1369 | { | |
1370 | if (type == nullptr) | |
1371 | return false; | |
1372 | ||
1373 | *fundamental_type = nullptr; | |
1374 | ||
1375 | int ag_count = aapcs_is_vfp_call_or_return_candidate_1 (type, | |
1376 | fundamental_type); | |
1377 | ||
1378 | if (ag_count > 0 && ag_count <= HA_MAX_NUM_FLDS) | |
1379 | { | |
1380 | *count = ag_count; | |
1381 | return true; | |
1382 | } | |
1383 | else | |
1384 | return false; | |
1385 | } | |
1386 | ||
07b287a0 MS |
1387 | /* AArch64 function call information structure. */ |
1388 | struct aarch64_call_info | |
1389 | { | |
1390 | /* the current argument number. */ | |
89055eaa | 1391 | unsigned argnum = 0; |
07b287a0 MS |
1392 | |
1393 | /* The next general purpose register number, equivalent to NGRN as | |
1394 | described in the AArch64 Procedure Call Standard. */ | |
89055eaa | 1395 | unsigned ngrn = 0; |
07b287a0 MS |
1396 | |
1397 | /* The next SIMD and floating point register number, equivalent to | |
1398 | NSRN as described in the AArch64 Procedure Call Standard. */ | |
89055eaa | 1399 | unsigned nsrn = 0; |
07b287a0 MS |
1400 | |
1401 | /* The next stacked argument address, equivalent to NSAA as | |
1402 | described in the AArch64 Procedure Call Standard. */ | |
89055eaa | 1403 | unsigned nsaa = 0; |
07b287a0 MS |
1404 | |
1405 | /* Stack item vector. */ | |
89055eaa | 1406 | std::vector<stack_item_t> si; |
07b287a0 MS |
1407 | }; |
1408 | ||
1409 | /* Pass a value in a sequence of consecutive X registers. The caller | |
30baf67b | 1410 | is responsible for ensuring sufficient registers are available. */ |
07b287a0 MS |
1411 | |
1412 | static void | |
1413 | pass_in_x (struct gdbarch *gdbarch, struct regcache *regcache, | |
1414 | struct aarch64_call_info *info, struct type *type, | |
8e80f9d1 | 1415 | struct value *arg) |
07b287a0 MS |
1416 | { |
1417 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1418 | int len = TYPE_LENGTH (type); | |
1419 | enum type_code typecode = TYPE_CODE (type); | |
1420 | int regnum = AARCH64_X0_REGNUM + info->ngrn; | |
8e80f9d1 | 1421 | const bfd_byte *buf = value_contents (arg); |
07b287a0 MS |
1422 | |
1423 | info->argnum++; | |
1424 | ||
1425 | while (len > 0) | |
1426 | { | |
1427 | int partial_len = len < X_REGISTER_SIZE ? len : X_REGISTER_SIZE; | |
1428 | CORE_ADDR regval = extract_unsigned_integer (buf, partial_len, | |
1429 | byte_order); | |
1430 | ||
1431 | ||
1432 | /* Adjust sub-word struct/union args when big-endian. */ | |
1433 | if (byte_order == BFD_ENDIAN_BIG | |
1434 | && partial_len < X_REGISTER_SIZE | |
1435 | && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) | |
1436 | regval <<= ((X_REGISTER_SIZE - partial_len) * TARGET_CHAR_BIT); | |
1437 | ||
1438 | if (aarch64_debug) | |
b277c936 PL |
1439 | { |
1440 | debug_printf ("arg %d in %s = 0x%s\n", info->argnum, | |
1441 | gdbarch_register_name (gdbarch, regnum), | |
1442 | phex (regval, X_REGISTER_SIZE)); | |
1443 | } | |
07b287a0 MS |
1444 | regcache_cooked_write_unsigned (regcache, regnum, regval); |
1445 | len -= partial_len; | |
1446 | buf += partial_len; | |
1447 | regnum++; | |
1448 | } | |
1449 | } | |
1450 | ||
1451 | /* Attempt to marshall a value in a V register. Return 1 if | |
1452 | successful, or 0 if insufficient registers are available. This | |
1453 | function, unlike the equivalent pass_in_x() function does not | |
1454 | handle arguments spread across multiple registers. */ | |
1455 | ||
1456 | static int | |
1457 | pass_in_v (struct gdbarch *gdbarch, | |
1458 | struct regcache *regcache, | |
1459 | struct aarch64_call_info *info, | |
0735fddd | 1460 | int len, const bfd_byte *buf) |
07b287a0 MS |
1461 | { |
1462 | if (info->nsrn < 8) | |
1463 | { | |
07b287a0 | 1464 | int regnum = AARCH64_V0_REGNUM + info->nsrn; |
3ff2c72e AH |
1465 | /* Enough space for a full vector register. */ |
1466 | gdb_byte reg[register_size (gdbarch, regnum)]; | |
1467 | gdb_assert (len <= sizeof (reg)); | |
07b287a0 MS |
1468 | |
1469 | info->argnum++; | |
1470 | info->nsrn++; | |
1471 | ||
0735fddd YQ |
1472 | memset (reg, 0, sizeof (reg)); |
1473 | /* PCS C.1, the argument is allocated to the least significant | |
1474 | bits of V register. */ | |
1475 | memcpy (reg, buf, len); | |
b66f5587 | 1476 | regcache->cooked_write (regnum, reg); |
0735fddd | 1477 | |
07b287a0 | 1478 | if (aarch64_debug) |
b277c936 PL |
1479 | { |
1480 | debug_printf ("arg %d in %s\n", info->argnum, | |
1481 | gdbarch_register_name (gdbarch, regnum)); | |
1482 | } | |
07b287a0 MS |
1483 | return 1; |
1484 | } | |
1485 | info->nsrn = 8; | |
1486 | return 0; | |
1487 | } | |
1488 | ||
1489 | /* Marshall an argument onto the stack. */ | |
1490 | ||
1491 | static void | |
1492 | pass_on_stack (struct aarch64_call_info *info, struct type *type, | |
8e80f9d1 | 1493 | struct value *arg) |
07b287a0 | 1494 | { |
8e80f9d1 | 1495 | const bfd_byte *buf = value_contents (arg); |
07b287a0 MS |
1496 | int len = TYPE_LENGTH (type); |
1497 | int align; | |
1498 | stack_item_t item; | |
1499 | ||
1500 | info->argnum++; | |
1501 | ||
b907456c | 1502 | align = type_align (type); |
07b287a0 MS |
1503 | |
1504 | /* PCS C.17 Stack should be aligned to the larger of 8 bytes or the | |
1505 | Natural alignment of the argument's type. */ | |
1506 | align = align_up (align, 8); | |
1507 | ||
1508 | /* The AArch64 PCS requires at most doubleword alignment. */ | |
1509 | if (align > 16) | |
1510 | align = 16; | |
1511 | ||
1512 | if (aarch64_debug) | |
b277c936 PL |
1513 | { |
1514 | debug_printf ("arg %d len=%d @ sp + %d\n", info->argnum, len, | |
1515 | info->nsaa); | |
1516 | } | |
07b287a0 MS |
1517 | |
1518 | item.len = len; | |
1519 | item.data = buf; | |
89055eaa | 1520 | info->si.push_back (item); |
07b287a0 MS |
1521 | |
1522 | info->nsaa += len; | |
1523 | if (info->nsaa & (align - 1)) | |
1524 | { | |
1525 | /* Push stack alignment padding. */ | |
1526 | int pad = align - (info->nsaa & (align - 1)); | |
1527 | ||
1528 | item.len = pad; | |
c3c87445 | 1529 | item.data = NULL; |
07b287a0 | 1530 | |
89055eaa | 1531 | info->si.push_back (item); |
07b287a0 MS |
1532 | info->nsaa += pad; |
1533 | } | |
1534 | } | |
1535 | ||
1536 | /* Marshall an argument into a sequence of one or more consecutive X | |
1537 | registers or, if insufficient X registers are available then onto | |
1538 | the stack. */ | |
1539 | ||
1540 | static void | |
1541 | pass_in_x_or_stack (struct gdbarch *gdbarch, struct regcache *regcache, | |
1542 | struct aarch64_call_info *info, struct type *type, | |
8e80f9d1 | 1543 | struct value *arg) |
07b287a0 MS |
1544 | { |
1545 | int len = TYPE_LENGTH (type); | |
1546 | int nregs = (len + X_REGISTER_SIZE - 1) / X_REGISTER_SIZE; | |
1547 | ||
1548 | /* PCS C.13 - Pass in registers if we have enough spare */ | |
1549 | if (info->ngrn + nregs <= 8) | |
1550 | { | |
8e80f9d1 | 1551 | pass_in_x (gdbarch, regcache, info, type, arg); |
07b287a0 MS |
1552 | info->ngrn += nregs; |
1553 | } | |
1554 | else | |
1555 | { | |
1556 | info->ngrn = 8; | |
8e80f9d1 | 1557 | pass_on_stack (info, type, arg); |
07b287a0 MS |
1558 | } |
1559 | } | |
1560 | ||
0e745c60 AH |
1561 | /* Pass a value, which is of type arg_type, in a V register. Assumes value is a |
1562 | aapcs_is_vfp_call_or_return_candidate and there are enough spare V | |
1563 | registers. A return value of false is an error state as the value will have | |
1564 | been partially passed to the stack. */ | |
1565 | static bool | |
1566 | pass_in_v_vfp_candidate (struct gdbarch *gdbarch, struct regcache *regcache, | |
1567 | struct aarch64_call_info *info, struct type *arg_type, | |
1568 | struct value *arg) | |
07b287a0 | 1569 | { |
0e745c60 AH |
1570 | switch (TYPE_CODE (arg_type)) |
1571 | { | |
1572 | case TYPE_CODE_FLT: | |
1573 | return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (arg_type), | |
1574 | value_contents (arg)); | |
1575 | break; | |
1576 | ||
1577 | case TYPE_CODE_COMPLEX: | |
1578 | { | |
1579 | const bfd_byte *buf = value_contents (arg); | |
1580 | struct type *target_type = check_typedef (TYPE_TARGET_TYPE (arg_type)); | |
1581 | ||
1582 | if (!pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (target_type), | |
1583 | buf)) | |
1584 | return false; | |
1585 | ||
1586 | return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (target_type), | |
1587 | buf + TYPE_LENGTH (target_type)); | |
1588 | } | |
1589 | ||
1590 | case TYPE_CODE_ARRAY: | |
1591 | if (TYPE_VECTOR (arg_type)) | |
1592 | return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (arg_type), | |
1593 | value_contents (arg)); | |
1594 | /* fall through. */ | |
1595 | ||
1596 | case TYPE_CODE_STRUCT: | |
1597 | case TYPE_CODE_UNION: | |
1598 | for (int i = 0; i < TYPE_NFIELDS (arg_type); i++) | |
1599 | { | |
353229bf AH |
1600 | /* Don't include static fields. */ |
1601 | if (field_is_static (&TYPE_FIELD (arg_type, i))) | |
1602 | continue; | |
1603 | ||
0e745c60 AH |
1604 | struct value *field = value_primitive_field (arg, 0, i, arg_type); |
1605 | struct type *field_type = check_typedef (value_type (field)); | |
1606 | ||
1607 | if (!pass_in_v_vfp_candidate (gdbarch, regcache, info, field_type, | |
1608 | field)) | |
1609 | return false; | |
1610 | } | |
1611 | return true; | |
1612 | ||
1613 | default: | |
1614 | return false; | |
1615 | } | |
07b287a0 MS |
1616 | } |
1617 | ||
1618 | /* Implement the "push_dummy_call" gdbarch method. */ | |
1619 | ||
1620 | static CORE_ADDR | |
1621 | aarch64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
1622 | struct regcache *regcache, CORE_ADDR bp_addr, | |
1623 | int nargs, | |
cf84fa6b AH |
1624 | struct value **args, CORE_ADDR sp, |
1625 | function_call_return_method return_method, | |
07b287a0 MS |
1626 | CORE_ADDR struct_addr) |
1627 | { | |
07b287a0 | 1628 | int argnum; |
07b287a0 | 1629 | struct aarch64_call_info info; |
07b287a0 | 1630 | |
07b287a0 MS |
1631 | /* We need to know what the type of the called function is in order |
1632 | to determine the number of named/anonymous arguments for the | |
1633 | actual argument placement, and the return type in order to handle | |
1634 | return value correctly. | |
1635 | ||
1636 | The generic code above us views the decision of return in memory | |
1637 | or return in registers as a two stage processes. The language | |
1638 | handler is consulted first and may decide to return in memory (eg | |
1639 | class with copy constructor returned by value), this will cause | |
1640 | the generic code to allocate space AND insert an initial leading | |
1641 | argument. | |
1642 | ||
1643 | If the language code does not decide to pass in memory then the | |
1644 | target code is consulted. | |
1645 | ||
1646 | If the language code decides to pass in memory we want to move | |
1647 | the pointer inserted as the initial argument from the argument | |
1648 | list and into X8, the conventional AArch64 struct return pointer | |
38a72da0 | 1649 | register. */ |
07b287a0 MS |
1650 | |
1651 | /* Set the return address. For the AArch64, the return breakpoint | |
1652 | is always at BP_ADDR. */ | |
1653 | regcache_cooked_write_unsigned (regcache, AARCH64_LR_REGNUM, bp_addr); | |
1654 | ||
38a72da0 AH |
1655 | /* If we were given an initial argument for the return slot, lose it. */ |
1656 | if (return_method == return_method_hidden_param) | |
07b287a0 MS |
1657 | { |
1658 | args++; | |
1659 | nargs--; | |
1660 | } | |
1661 | ||
1662 | /* The struct_return pointer occupies X8. */ | |
38a72da0 | 1663 | if (return_method != return_method_normal) |
07b287a0 MS |
1664 | { |
1665 | if (aarch64_debug) | |
b277c936 PL |
1666 | { |
1667 | debug_printf ("struct return in %s = 0x%s\n", | |
1668 | gdbarch_register_name (gdbarch, | |
1669 | AARCH64_STRUCT_RETURN_REGNUM), | |
1670 | paddress (gdbarch, struct_addr)); | |
1671 | } | |
07b287a0 MS |
1672 | regcache_cooked_write_unsigned (regcache, AARCH64_STRUCT_RETURN_REGNUM, |
1673 | struct_addr); | |
1674 | } | |
1675 | ||
1676 | for (argnum = 0; argnum < nargs; argnum++) | |
1677 | { | |
1678 | struct value *arg = args[argnum]; | |
0e745c60 AH |
1679 | struct type *arg_type, *fundamental_type; |
1680 | int len, elements; | |
07b287a0 MS |
1681 | |
1682 | arg_type = check_typedef (value_type (arg)); | |
1683 | len = TYPE_LENGTH (arg_type); | |
1684 | ||
0e745c60 AH |
1685 | /* If arg can be passed in v registers as per the AAPCS64, then do so if |
1686 | if there are enough spare registers. */ | |
1687 | if (aapcs_is_vfp_call_or_return_candidate (arg_type, &elements, | |
1688 | &fundamental_type)) | |
1689 | { | |
1690 | if (info.nsrn + elements <= 8) | |
1691 | { | |
1692 | /* We know that we have sufficient registers available therefore | |
1693 | this will never need to fallback to the stack. */ | |
1694 | if (!pass_in_v_vfp_candidate (gdbarch, regcache, &info, arg_type, | |
1695 | arg)) | |
1696 | gdb_assert_not_reached ("Failed to push args"); | |
1697 | } | |
1698 | else | |
1699 | { | |
1700 | info.nsrn = 8; | |
1701 | pass_on_stack (&info, arg_type, arg); | |
1702 | } | |
1703 | continue; | |
1704 | } | |
1705 | ||
07b287a0 MS |
1706 | switch (TYPE_CODE (arg_type)) |
1707 | { | |
1708 | case TYPE_CODE_INT: | |
1709 | case TYPE_CODE_BOOL: | |
1710 | case TYPE_CODE_CHAR: | |
1711 | case TYPE_CODE_RANGE: | |
1712 | case TYPE_CODE_ENUM: | |
1713 | if (len < 4) | |
1714 | { | |
1715 | /* Promote to 32 bit integer. */ | |
1716 | if (TYPE_UNSIGNED (arg_type)) | |
1717 | arg_type = builtin_type (gdbarch)->builtin_uint32; | |
1718 | else | |
1719 | arg_type = builtin_type (gdbarch)->builtin_int32; | |
1720 | arg = value_cast (arg_type, arg); | |
1721 | } | |
8e80f9d1 | 1722 | pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg); |
07b287a0 MS |
1723 | break; |
1724 | ||
07b287a0 MS |
1725 | case TYPE_CODE_STRUCT: |
1726 | case TYPE_CODE_ARRAY: | |
1727 | case TYPE_CODE_UNION: | |
0e745c60 | 1728 | if (len > 16) |
07b287a0 MS |
1729 | { |
1730 | /* PCS B.7 Aggregates larger than 16 bytes are passed by | |
1731 | invisible reference. */ | |
1732 | ||
1733 | /* Allocate aligned storage. */ | |
1734 | sp = align_down (sp - len, 16); | |
1735 | ||
1736 | /* Write the real data into the stack. */ | |
1737 | write_memory (sp, value_contents (arg), len); | |
1738 | ||
1739 | /* Construct the indirection. */ | |
1740 | arg_type = lookup_pointer_type (arg_type); | |
1741 | arg = value_from_pointer (arg_type, sp); | |
8e80f9d1 | 1742 | pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg); |
07b287a0 MS |
1743 | } |
1744 | else | |
1745 | /* PCS C.15 / C.18 multiple values pass. */ | |
8e80f9d1 | 1746 | pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg); |
07b287a0 MS |
1747 | break; |
1748 | ||
1749 | default: | |
8e80f9d1 | 1750 | pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg); |
07b287a0 MS |
1751 | break; |
1752 | } | |
1753 | } | |
1754 | ||
1755 | /* Make sure stack retains 16 byte alignment. */ | |
1756 | if (info.nsaa & 15) | |
1757 | sp -= 16 - (info.nsaa & 15); | |
1758 | ||
89055eaa | 1759 | while (!info.si.empty ()) |
07b287a0 | 1760 | { |
89055eaa | 1761 | const stack_item_t &si = info.si.back (); |
07b287a0 | 1762 | |
89055eaa TT |
1763 | sp -= si.len; |
1764 | if (si.data != NULL) | |
1765 | write_memory (sp, si.data, si.len); | |
1766 | info.si.pop_back (); | |
07b287a0 MS |
1767 | } |
1768 | ||
07b287a0 MS |
1769 | /* Finally, update the SP register. */ |
1770 | regcache_cooked_write_unsigned (regcache, AARCH64_SP_REGNUM, sp); | |
1771 | ||
1772 | return sp; | |
1773 | } | |
1774 | ||
1775 | /* Implement the "frame_align" gdbarch method. */ | |
1776 | ||
1777 | static CORE_ADDR | |
1778 | aarch64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
1779 | { | |
1780 | /* Align the stack to sixteen bytes. */ | |
1781 | return sp & ~(CORE_ADDR) 15; | |
1782 | } | |
1783 | ||
1784 | /* Return the type for an AdvSISD Q register. */ | |
1785 | ||
1786 | static struct type * | |
1787 | aarch64_vnq_type (struct gdbarch *gdbarch) | |
1788 | { | |
1789 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1790 | ||
1791 | if (tdep->vnq_type == NULL) | |
1792 | { | |
1793 | struct type *t; | |
1794 | struct type *elem; | |
1795 | ||
1796 | t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq", | |
1797 | TYPE_CODE_UNION); | |
1798 | ||
1799 | elem = builtin_type (gdbarch)->builtin_uint128; | |
1800 | append_composite_type_field (t, "u", elem); | |
1801 | ||
1802 | elem = builtin_type (gdbarch)->builtin_int128; | |
1803 | append_composite_type_field (t, "s", elem); | |
1804 | ||
1805 | tdep->vnq_type = t; | |
1806 | } | |
1807 | ||
1808 | return tdep->vnq_type; | |
1809 | } | |
1810 | ||
1811 | /* Return the type for an AdvSISD D register. */ | |
1812 | ||
1813 | static struct type * | |
1814 | aarch64_vnd_type (struct gdbarch *gdbarch) | |
1815 | { | |
1816 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1817 | ||
1818 | if (tdep->vnd_type == NULL) | |
1819 | { | |
1820 | struct type *t; | |
1821 | struct type *elem; | |
1822 | ||
1823 | t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd", | |
1824 | TYPE_CODE_UNION); | |
1825 | ||
1826 | elem = builtin_type (gdbarch)->builtin_double; | |
1827 | append_composite_type_field (t, "f", elem); | |
1828 | ||
1829 | elem = builtin_type (gdbarch)->builtin_uint64; | |
1830 | append_composite_type_field (t, "u", elem); | |
1831 | ||
1832 | elem = builtin_type (gdbarch)->builtin_int64; | |
1833 | append_composite_type_field (t, "s", elem); | |
1834 | ||
1835 | tdep->vnd_type = t; | |
1836 | } | |
1837 | ||
1838 | return tdep->vnd_type; | |
1839 | } | |
1840 | ||
1841 | /* Return the type for an AdvSISD S register. */ | |
1842 | ||
1843 | static struct type * | |
1844 | aarch64_vns_type (struct gdbarch *gdbarch) | |
1845 | { | |
1846 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1847 | ||
1848 | if (tdep->vns_type == NULL) | |
1849 | { | |
1850 | struct type *t; | |
1851 | struct type *elem; | |
1852 | ||
1853 | t = arch_composite_type (gdbarch, "__gdb_builtin_type_vns", | |
1854 | TYPE_CODE_UNION); | |
1855 | ||
1856 | elem = builtin_type (gdbarch)->builtin_float; | |
1857 | append_composite_type_field (t, "f", elem); | |
1858 | ||
1859 | elem = builtin_type (gdbarch)->builtin_uint32; | |
1860 | append_composite_type_field (t, "u", elem); | |
1861 | ||
1862 | elem = builtin_type (gdbarch)->builtin_int32; | |
1863 | append_composite_type_field (t, "s", elem); | |
1864 | ||
1865 | tdep->vns_type = t; | |
1866 | } | |
1867 | ||
1868 | return tdep->vns_type; | |
1869 | } | |
1870 | ||
1871 | /* Return the type for an AdvSISD H register. */ | |
1872 | ||
1873 | static struct type * | |
1874 | aarch64_vnh_type (struct gdbarch *gdbarch) | |
1875 | { | |
1876 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1877 | ||
1878 | if (tdep->vnh_type == NULL) | |
1879 | { | |
1880 | struct type *t; | |
1881 | struct type *elem; | |
1882 | ||
1883 | t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh", | |
1884 | TYPE_CODE_UNION); | |
1885 | ||
a6d0f249 AH |
1886 | elem = builtin_type (gdbarch)->builtin_half; |
1887 | append_composite_type_field (t, "f", elem); | |
1888 | ||
07b287a0 MS |
1889 | elem = builtin_type (gdbarch)->builtin_uint16; |
1890 | append_composite_type_field (t, "u", elem); | |
1891 | ||
1892 | elem = builtin_type (gdbarch)->builtin_int16; | |
1893 | append_composite_type_field (t, "s", elem); | |
1894 | ||
1895 | tdep->vnh_type = t; | |
1896 | } | |
1897 | ||
1898 | return tdep->vnh_type; | |
1899 | } | |
1900 | ||
1901 | /* Return the type for an AdvSISD B register. */ | |
1902 | ||
1903 | static struct type * | |
1904 | aarch64_vnb_type (struct gdbarch *gdbarch) | |
1905 | { | |
1906 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1907 | ||
1908 | if (tdep->vnb_type == NULL) | |
1909 | { | |
1910 | struct type *t; | |
1911 | struct type *elem; | |
1912 | ||
1913 | t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb", | |
1914 | TYPE_CODE_UNION); | |
1915 | ||
1916 | elem = builtin_type (gdbarch)->builtin_uint8; | |
1917 | append_composite_type_field (t, "u", elem); | |
1918 | ||
1919 | elem = builtin_type (gdbarch)->builtin_int8; | |
1920 | append_composite_type_field (t, "s", elem); | |
1921 | ||
1922 | tdep->vnb_type = t; | |
1923 | } | |
1924 | ||
1925 | return tdep->vnb_type; | |
1926 | } | |
1927 | ||
63bad7b6 AH |
1928 | /* Return the type for an AdvSISD V register. */ |
1929 | ||
1930 | static struct type * | |
1931 | aarch64_vnv_type (struct gdbarch *gdbarch) | |
1932 | { | |
1933 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1934 | ||
1935 | if (tdep->vnv_type == NULL) | |
1936 | { | |
bffa1015 AH |
1937 | /* The other AArch64 psuedo registers (Q,D,H,S,B) refer to a single value |
1938 | slice from the non-pseudo vector registers. However NEON V registers | |
1939 | are always vector registers, and need constructing as such. */ | |
1940 | const struct builtin_type *bt = builtin_type (gdbarch); | |
1941 | ||
63bad7b6 AH |
1942 | struct type *t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnv", |
1943 | TYPE_CODE_UNION); | |
1944 | ||
bffa1015 AH |
1945 | struct type *sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd", |
1946 | TYPE_CODE_UNION); | |
1947 | append_composite_type_field (sub, "f", | |
1948 | init_vector_type (bt->builtin_double, 2)); | |
1949 | append_composite_type_field (sub, "u", | |
1950 | init_vector_type (bt->builtin_uint64, 2)); | |
1951 | append_composite_type_field (sub, "s", | |
1952 | init_vector_type (bt->builtin_int64, 2)); | |
1953 | append_composite_type_field (t, "d", sub); | |
1954 | ||
1955 | sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vns", | |
1956 | TYPE_CODE_UNION); | |
1957 | append_composite_type_field (sub, "f", | |
1958 | init_vector_type (bt->builtin_float, 4)); | |
1959 | append_composite_type_field (sub, "u", | |
1960 | init_vector_type (bt->builtin_uint32, 4)); | |
1961 | append_composite_type_field (sub, "s", | |
1962 | init_vector_type (bt->builtin_int32, 4)); | |
1963 | append_composite_type_field (t, "s", sub); | |
1964 | ||
1965 | sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh", | |
1966 | TYPE_CODE_UNION); | |
a6d0f249 AH |
1967 | append_composite_type_field (sub, "f", |
1968 | init_vector_type (bt->builtin_half, 8)); | |
bffa1015 AH |
1969 | append_composite_type_field (sub, "u", |
1970 | init_vector_type (bt->builtin_uint16, 8)); | |
1971 | append_composite_type_field (sub, "s", | |
1972 | init_vector_type (bt->builtin_int16, 8)); | |
1973 | append_composite_type_field (t, "h", sub); | |
1974 | ||
1975 | sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb", | |
1976 | TYPE_CODE_UNION); | |
1977 | append_composite_type_field (sub, "u", | |
1978 | init_vector_type (bt->builtin_uint8, 16)); | |
1979 | append_composite_type_field (sub, "s", | |
1980 | init_vector_type (bt->builtin_int8, 16)); | |
1981 | append_composite_type_field (t, "b", sub); | |
1982 | ||
1983 | sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq", | |
1984 | TYPE_CODE_UNION); | |
1985 | append_composite_type_field (sub, "u", | |
1986 | init_vector_type (bt->builtin_uint128, 1)); | |
1987 | append_composite_type_field (sub, "s", | |
1988 | init_vector_type (bt->builtin_int128, 1)); | |
1989 | append_composite_type_field (t, "q", sub); | |
63bad7b6 AH |
1990 | |
1991 | tdep->vnv_type = t; | |
1992 | } | |
1993 | ||
1994 | return tdep->vnv_type; | |
1995 | } | |
1996 | ||
07b287a0 MS |
1997 | /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */ |
1998 | ||
1999 | static int | |
2000 | aarch64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) | |
2001 | { | |
34dcc7cf AH |
2002 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
2003 | ||
07b287a0 MS |
2004 | if (reg >= AARCH64_DWARF_X0 && reg <= AARCH64_DWARF_X0 + 30) |
2005 | return AARCH64_X0_REGNUM + reg - AARCH64_DWARF_X0; | |
2006 | ||
2007 | if (reg == AARCH64_DWARF_SP) | |
2008 | return AARCH64_SP_REGNUM; | |
2009 | ||
2010 | if (reg >= AARCH64_DWARF_V0 && reg <= AARCH64_DWARF_V0 + 31) | |
2011 | return AARCH64_V0_REGNUM + reg - AARCH64_DWARF_V0; | |
2012 | ||
65d4cada AH |
2013 | if (reg == AARCH64_DWARF_SVE_VG) |
2014 | return AARCH64_SVE_VG_REGNUM; | |
2015 | ||
2016 | if (reg == AARCH64_DWARF_SVE_FFR) | |
2017 | return AARCH64_SVE_FFR_REGNUM; | |
2018 | ||
2019 | if (reg >= AARCH64_DWARF_SVE_P0 && reg <= AARCH64_DWARF_SVE_P0 + 15) | |
2020 | return AARCH64_SVE_P0_REGNUM + reg - AARCH64_DWARF_SVE_P0; | |
2021 | ||
2022 | if (reg >= AARCH64_DWARF_SVE_Z0 && reg <= AARCH64_DWARF_SVE_Z0 + 15) | |
2023 | return AARCH64_SVE_Z0_REGNUM + reg - AARCH64_DWARF_SVE_Z0; | |
2024 | ||
34dcc7cf AH |
2025 | if (tdep->has_pauth ()) |
2026 | { | |
2027 | if (reg >= AARCH64_DWARF_PAUTH_DMASK && reg <= AARCH64_DWARF_PAUTH_CMASK) | |
2028 | return tdep->pauth_reg_base + reg - AARCH64_DWARF_PAUTH_DMASK; | |
2029 | ||
2030 | if (reg == AARCH64_DWARF_PAUTH_RA_STATE) | |
2031 | return tdep->pauth_ra_state_regnum; | |
2032 | } | |
2033 | ||
07b287a0 MS |
2034 | return -1; |
2035 | } | |
07b287a0 MS |
2036 | |
2037 | /* Implement the "print_insn" gdbarch method. */ | |
2038 | ||
2039 | static int | |
2040 | aarch64_gdb_print_insn (bfd_vma memaddr, disassemble_info *info) | |
2041 | { | |
2042 | info->symbols = NULL; | |
6394c606 | 2043 | return default_print_insn (memaddr, info); |
07b287a0 MS |
2044 | } |
2045 | ||
2046 | /* AArch64 BRK software debug mode instruction. | |
2047 | Note that AArch64 code is always little-endian. | |
2048 | 1101.0100.0010.0000.0000.0000.0000.0000 = 0xd4200000. */ | |
04180708 | 2049 | constexpr gdb_byte aarch64_default_breakpoint[] = {0x00, 0x00, 0x20, 0xd4}; |
07b287a0 | 2050 | |
04180708 | 2051 | typedef BP_MANIPULATION (aarch64_default_breakpoint) aarch64_breakpoint; |
07b287a0 MS |
2052 | |
2053 | /* Extract from an array REGS containing the (raw) register state a | |
2054 | function return value of type TYPE, and copy that, in virtual | |
2055 | format, into VALBUF. */ | |
2056 | ||
2057 | static void | |
2058 | aarch64_extract_return_value (struct type *type, struct regcache *regs, | |
2059 | gdb_byte *valbuf) | |
2060 | { | |
ac7936df | 2061 | struct gdbarch *gdbarch = regs->arch (); |
07b287a0 | 2062 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
4f4aedeb AH |
2063 | int elements; |
2064 | struct type *fundamental_type; | |
07b287a0 | 2065 | |
4f4aedeb AH |
2066 | if (aapcs_is_vfp_call_or_return_candidate (type, &elements, |
2067 | &fundamental_type)) | |
07b287a0 | 2068 | { |
4f4aedeb AH |
2069 | int len = TYPE_LENGTH (fundamental_type); |
2070 | ||
2071 | for (int i = 0; i < elements; i++) | |
2072 | { | |
2073 | int regno = AARCH64_V0_REGNUM + i; | |
3ff2c72e AH |
2074 | /* Enough space for a full vector register. */ |
2075 | gdb_byte buf[register_size (gdbarch, regno)]; | |
2076 | gdb_assert (len <= sizeof (buf)); | |
4f4aedeb AH |
2077 | |
2078 | if (aarch64_debug) | |
2079 | { | |
2080 | debug_printf ("read HFA or HVA return value element %d from %s\n", | |
2081 | i + 1, | |
2082 | gdbarch_register_name (gdbarch, regno)); | |
2083 | } | |
2084 | regs->cooked_read (regno, buf); | |
07b287a0 | 2085 | |
4f4aedeb AH |
2086 | memcpy (valbuf, buf, len); |
2087 | valbuf += len; | |
2088 | } | |
07b287a0 MS |
2089 | } |
2090 | else if (TYPE_CODE (type) == TYPE_CODE_INT | |
2091 | || TYPE_CODE (type) == TYPE_CODE_CHAR | |
2092 | || TYPE_CODE (type) == TYPE_CODE_BOOL | |
2093 | || TYPE_CODE (type) == TYPE_CODE_PTR | |
aa006118 | 2094 | || TYPE_IS_REFERENCE (type) |
07b287a0 MS |
2095 | || TYPE_CODE (type) == TYPE_CODE_ENUM) |
2096 | { | |
6471e7d2 | 2097 | /* If the type is a plain integer, then the access is |
07b287a0 MS |
2098 | straight-forward. Otherwise we have to play around a bit |
2099 | more. */ | |
2100 | int len = TYPE_LENGTH (type); | |
2101 | int regno = AARCH64_X0_REGNUM; | |
2102 | ULONGEST tmp; | |
2103 | ||
2104 | while (len > 0) | |
2105 | { | |
2106 | /* By using store_unsigned_integer we avoid having to do | |
2107 | anything special for small big-endian values. */ | |
2108 | regcache_cooked_read_unsigned (regs, regno++, &tmp); | |
2109 | store_unsigned_integer (valbuf, | |
2110 | (len > X_REGISTER_SIZE | |
2111 | ? X_REGISTER_SIZE : len), byte_order, tmp); | |
2112 | len -= X_REGISTER_SIZE; | |
2113 | valbuf += X_REGISTER_SIZE; | |
2114 | } | |
2115 | } | |
07b287a0 MS |
2116 | else |
2117 | { | |
2118 | /* For a structure or union the behaviour is as if the value had | |
2119 | been stored to word-aligned memory and then loaded into | |
2120 | registers with 64-bit load instruction(s). */ | |
2121 | int len = TYPE_LENGTH (type); | |
2122 | int regno = AARCH64_X0_REGNUM; | |
2123 | bfd_byte buf[X_REGISTER_SIZE]; | |
2124 | ||
2125 | while (len > 0) | |
2126 | { | |
dca08e1f | 2127 | regs->cooked_read (regno++, buf); |
07b287a0 MS |
2128 | memcpy (valbuf, buf, len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len); |
2129 | len -= X_REGISTER_SIZE; | |
2130 | valbuf += X_REGISTER_SIZE; | |
2131 | } | |
2132 | } | |
2133 | } | |
2134 | ||
2135 | ||
2136 | /* Will a function return an aggregate type in memory or in a | |
2137 | register? Return 0 if an aggregate type can be returned in a | |
2138 | register, 1 if it must be returned in memory. */ | |
2139 | ||
2140 | static int | |
2141 | aarch64_return_in_memory (struct gdbarch *gdbarch, struct type *type) | |
2142 | { | |
f168693b | 2143 | type = check_typedef (type); |
4f4aedeb AH |
2144 | int elements; |
2145 | struct type *fundamental_type; | |
07b287a0 | 2146 | |
4f4aedeb AH |
2147 | if (aapcs_is_vfp_call_or_return_candidate (type, &elements, |
2148 | &fundamental_type)) | |
07b287a0 | 2149 | { |
cd635f74 YQ |
2150 | /* v0-v7 are used to return values and one register is allocated |
2151 | for one member. However, HFA or HVA has at most four members. */ | |
07b287a0 MS |
2152 | return 0; |
2153 | } | |
2154 | ||
2155 | if (TYPE_LENGTH (type) > 16) | |
2156 | { | |
2157 | /* PCS B.6 Aggregates larger than 16 bytes are passed by | |
2158 | invisible reference. */ | |
2159 | ||
2160 | return 1; | |
2161 | } | |
2162 | ||
2163 | return 0; | |
2164 | } | |
2165 | ||
2166 | /* Write into appropriate registers a function return value of type | |
2167 | TYPE, given in virtual format. */ | |
2168 | ||
2169 | static void | |
2170 | aarch64_store_return_value (struct type *type, struct regcache *regs, | |
2171 | const gdb_byte *valbuf) | |
2172 | { | |
ac7936df | 2173 | struct gdbarch *gdbarch = regs->arch (); |
07b287a0 | 2174 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
4f4aedeb AH |
2175 | int elements; |
2176 | struct type *fundamental_type; | |
07b287a0 | 2177 | |
4f4aedeb AH |
2178 | if (aapcs_is_vfp_call_or_return_candidate (type, &elements, |
2179 | &fundamental_type)) | |
07b287a0 | 2180 | { |
4f4aedeb AH |
2181 | int len = TYPE_LENGTH (fundamental_type); |
2182 | ||
2183 | for (int i = 0; i < elements; i++) | |
2184 | { | |
2185 | int regno = AARCH64_V0_REGNUM + i; | |
3ff2c72e AH |
2186 | /* Enough space for a full vector register. */ |
2187 | gdb_byte tmpbuf[register_size (gdbarch, regno)]; | |
2188 | gdb_assert (len <= sizeof (tmpbuf)); | |
4f4aedeb AH |
2189 | |
2190 | if (aarch64_debug) | |
2191 | { | |
2192 | debug_printf ("write HFA or HVA return value element %d to %s\n", | |
2193 | i + 1, | |
2194 | gdbarch_register_name (gdbarch, regno)); | |
2195 | } | |
07b287a0 | 2196 | |
4f4aedeb AH |
2197 | memcpy (tmpbuf, valbuf, |
2198 | len > V_REGISTER_SIZE ? V_REGISTER_SIZE : len); | |
2199 | regs->cooked_write (regno, tmpbuf); | |
2200 | valbuf += len; | |
2201 | } | |
07b287a0 MS |
2202 | } |
2203 | else if (TYPE_CODE (type) == TYPE_CODE_INT | |
2204 | || TYPE_CODE (type) == TYPE_CODE_CHAR | |
2205 | || TYPE_CODE (type) == TYPE_CODE_BOOL | |
2206 | || TYPE_CODE (type) == TYPE_CODE_PTR | |
aa006118 | 2207 | || TYPE_IS_REFERENCE (type) |
07b287a0 MS |
2208 | || TYPE_CODE (type) == TYPE_CODE_ENUM) |
2209 | { | |
2210 | if (TYPE_LENGTH (type) <= X_REGISTER_SIZE) | |
2211 | { | |
2212 | /* Values of one word or less are zero/sign-extended and | |
2213 | returned in r0. */ | |
2214 | bfd_byte tmpbuf[X_REGISTER_SIZE]; | |
2215 | LONGEST val = unpack_long (type, valbuf); | |
2216 | ||
2217 | store_signed_integer (tmpbuf, X_REGISTER_SIZE, byte_order, val); | |
b66f5587 | 2218 | regs->cooked_write (AARCH64_X0_REGNUM, tmpbuf); |
07b287a0 MS |
2219 | } |
2220 | else | |
2221 | { | |
2222 | /* Integral values greater than one word are stored in | |
2223 | consecutive registers starting with r0. This will always | |
2224 | be a multiple of the regiser size. */ | |
2225 | int len = TYPE_LENGTH (type); | |
2226 | int regno = AARCH64_X0_REGNUM; | |
2227 | ||
2228 | while (len > 0) | |
2229 | { | |
b66f5587 | 2230 | regs->cooked_write (regno++, valbuf); |
07b287a0 MS |
2231 | len -= X_REGISTER_SIZE; |
2232 | valbuf += X_REGISTER_SIZE; | |
2233 | } | |
2234 | } | |
2235 | } | |
07b287a0 MS |
2236 | else |
2237 | { | |
2238 | /* For a structure or union the behaviour is as if the value had | |
2239 | been stored to word-aligned memory and then loaded into | |
2240 | registers with 64-bit load instruction(s). */ | |
2241 | int len = TYPE_LENGTH (type); | |
2242 | int regno = AARCH64_X0_REGNUM; | |
2243 | bfd_byte tmpbuf[X_REGISTER_SIZE]; | |
2244 | ||
2245 | while (len > 0) | |
2246 | { | |
2247 | memcpy (tmpbuf, valbuf, | |
2248 | len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len); | |
b66f5587 | 2249 | regs->cooked_write (regno++, tmpbuf); |
07b287a0 MS |
2250 | len -= X_REGISTER_SIZE; |
2251 | valbuf += X_REGISTER_SIZE; | |
2252 | } | |
2253 | } | |
2254 | } | |
2255 | ||
2256 | /* Implement the "return_value" gdbarch method. */ | |
2257 | ||
2258 | static enum return_value_convention | |
2259 | aarch64_return_value (struct gdbarch *gdbarch, struct value *func_value, | |
2260 | struct type *valtype, struct regcache *regcache, | |
2261 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
2262 | { | |
07b287a0 MS |
2263 | |
2264 | if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT | |
2265 | || TYPE_CODE (valtype) == TYPE_CODE_UNION | |
2266 | || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) | |
2267 | { | |
2268 | if (aarch64_return_in_memory (gdbarch, valtype)) | |
2269 | { | |
2270 | if (aarch64_debug) | |
b277c936 | 2271 | debug_printf ("return value in memory\n"); |
07b287a0 MS |
2272 | return RETURN_VALUE_STRUCT_CONVENTION; |
2273 | } | |
2274 | } | |
2275 | ||
2276 | if (writebuf) | |
2277 | aarch64_store_return_value (valtype, regcache, writebuf); | |
2278 | ||
2279 | if (readbuf) | |
2280 | aarch64_extract_return_value (valtype, regcache, readbuf); | |
2281 | ||
2282 | if (aarch64_debug) | |
b277c936 | 2283 | debug_printf ("return value in registers\n"); |
07b287a0 MS |
2284 | |
2285 | return RETURN_VALUE_REGISTER_CONVENTION; | |
2286 | } | |
2287 | ||
2288 | /* Implement the "get_longjmp_target" gdbarch method. */ | |
2289 | ||
2290 | static int | |
2291 | aarch64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) | |
2292 | { | |
2293 | CORE_ADDR jb_addr; | |
2294 | gdb_byte buf[X_REGISTER_SIZE]; | |
2295 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
2296 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2297 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
2298 | ||
2299 | jb_addr = get_frame_register_unsigned (frame, AARCH64_X0_REGNUM); | |
2300 | ||
2301 | if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf, | |
2302 | X_REGISTER_SIZE)) | |
2303 | return 0; | |
2304 | ||
2305 | *pc = extract_unsigned_integer (buf, X_REGISTER_SIZE, byte_order); | |
2306 | return 1; | |
2307 | } | |
ea873d8e PL |
2308 | |
2309 | /* Implement the "gen_return_address" gdbarch method. */ | |
2310 | ||
2311 | static void | |
2312 | aarch64_gen_return_address (struct gdbarch *gdbarch, | |
2313 | struct agent_expr *ax, struct axs_value *value, | |
2314 | CORE_ADDR scope) | |
2315 | { | |
2316 | value->type = register_type (gdbarch, AARCH64_LR_REGNUM); | |
2317 | value->kind = axs_lvalue_register; | |
2318 | value->u.reg = AARCH64_LR_REGNUM; | |
2319 | } | |
07b287a0 MS |
2320 | \f |
2321 | ||
2322 | /* Return the pseudo register name corresponding to register regnum. */ | |
2323 | ||
2324 | static const char * | |
2325 | aarch64_pseudo_register_name (struct gdbarch *gdbarch, int regnum) | |
2326 | { | |
63bad7b6 AH |
2327 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
2328 | ||
07b287a0 MS |
2329 | static const char *const q_name[] = |
2330 | { | |
2331 | "q0", "q1", "q2", "q3", | |
2332 | "q4", "q5", "q6", "q7", | |
2333 | "q8", "q9", "q10", "q11", | |
2334 | "q12", "q13", "q14", "q15", | |
2335 | "q16", "q17", "q18", "q19", | |
2336 | "q20", "q21", "q22", "q23", | |
2337 | "q24", "q25", "q26", "q27", | |
2338 | "q28", "q29", "q30", "q31", | |
2339 | }; | |
2340 | ||
2341 | static const char *const d_name[] = | |
2342 | { | |
2343 | "d0", "d1", "d2", "d3", | |
2344 | "d4", "d5", "d6", "d7", | |
2345 | "d8", "d9", "d10", "d11", | |
2346 | "d12", "d13", "d14", "d15", | |
2347 | "d16", "d17", "d18", "d19", | |
2348 | "d20", "d21", "d22", "d23", | |
2349 | "d24", "d25", "d26", "d27", | |
2350 | "d28", "d29", "d30", "d31", | |
2351 | }; | |
2352 | ||
2353 | static const char *const s_name[] = | |
2354 | { | |
2355 | "s0", "s1", "s2", "s3", | |
2356 | "s4", "s5", "s6", "s7", | |
2357 | "s8", "s9", "s10", "s11", | |
2358 | "s12", "s13", "s14", "s15", | |
2359 | "s16", "s17", "s18", "s19", | |
2360 | "s20", "s21", "s22", "s23", | |
2361 | "s24", "s25", "s26", "s27", | |
2362 | "s28", "s29", "s30", "s31", | |
2363 | }; | |
2364 | ||
2365 | static const char *const h_name[] = | |
2366 | { | |
2367 | "h0", "h1", "h2", "h3", | |
2368 | "h4", "h5", "h6", "h7", | |
2369 | "h8", "h9", "h10", "h11", | |
2370 | "h12", "h13", "h14", "h15", | |
2371 | "h16", "h17", "h18", "h19", | |
2372 | "h20", "h21", "h22", "h23", | |
2373 | "h24", "h25", "h26", "h27", | |
2374 | "h28", "h29", "h30", "h31", | |
2375 | }; | |
2376 | ||
2377 | static const char *const b_name[] = | |
2378 | { | |
2379 | "b0", "b1", "b2", "b3", | |
2380 | "b4", "b5", "b6", "b7", | |
2381 | "b8", "b9", "b10", "b11", | |
2382 | "b12", "b13", "b14", "b15", | |
2383 | "b16", "b17", "b18", "b19", | |
2384 | "b20", "b21", "b22", "b23", | |
2385 | "b24", "b25", "b26", "b27", | |
2386 | "b28", "b29", "b30", "b31", | |
2387 | }; | |
2388 | ||
34dcc7cf | 2389 | int p_regnum = regnum - gdbarch_num_regs (gdbarch); |
07b287a0 | 2390 | |
34dcc7cf AH |
2391 | if (p_regnum >= AARCH64_Q0_REGNUM && p_regnum < AARCH64_Q0_REGNUM + 32) |
2392 | return q_name[p_regnum - AARCH64_Q0_REGNUM]; | |
07b287a0 | 2393 | |
34dcc7cf AH |
2394 | if (p_regnum >= AARCH64_D0_REGNUM && p_regnum < AARCH64_D0_REGNUM + 32) |
2395 | return d_name[p_regnum - AARCH64_D0_REGNUM]; | |
07b287a0 | 2396 | |
34dcc7cf AH |
2397 | if (p_regnum >= AARCH64_S0_REGNUM && p_regnum < AARCH64_S0_REGNUM + 32) |
2398 | return s_name[p_regnum - AARCH64_S0_REGNUM]; | |
07b287a0 | 2399 | |
34dcc7cf AH |
2400 | if (p_regnum >= AARCH64_H0_REGNUM && p_regnum < AARCH64_H0_REGNUM + 32) |
2401 | return h_name[p_regnum - AARCH64_H0_REGNUM]; | |
07b287a0 | 2402 | |
34dcc7cf AH |
2403 | if (p_regnum >= AARCH64_B0_REGNUM && p_regnum < AARCH64_B0_REGNUM + 32) |
2404 | return b_name[p_regnum - AARCH64_B0_REGNUM]; | |
07b287a0 | 2405 | |
63bad7b6 AH |
2406 | if (tdep->has_sve ()) |
2407 | { | |
2408 | static const char *const sve_v_name[] = | |
2409 | { | |
2410 | "v0", "v1", "v2", "v3", | |
2411 | "v4", "v5", "v6", "v7", | |
2412 | "v8", "v9", "v10", "v11", | |
2413 | "v12", "v13", "v14", "v15", | |
2414 | "v16", "v17", "v18", "v19", | |
2415 | "v20", "v21", "v22", "v23", | |
2416 | "v24", "v25", "v26", "v27", | |
2417 | "v28", "v29", "v30", "v31", | |
2418 | }; | |
2419 | ||
34dcc7cf AH |
2420 | if (p_regnum >= AARCH64_SVE_V0_REGNUM |
2421 | && p_regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM) | |
2422 | return sve_v_name[p_regnum - AARCH64_SVE_V0_REGNUM]; | |
63bad7b6 AH |
2423 | } |
2424 | ||
34dcc7cf AH |
2425 | /* RA_STATE is used for unwinding only. Do not assign it a name - this |
2426 | prevents it from being read by methods such as | |
2427 | mi_cmd_trace_frame_collected. */ | |
2428 | if (tdep->has_pauth () && regnum == tdep->pauth_ra_state_regnum) | |
2429 | return ""; | |
2430 | ||
07b287a0 MS |
2431 | internal_error (__FILE__, __LINE__, |
2432 | _("aarch64_pseudo_register_name: bad register number %d"), | |
34dcc7cf | 2433 | p_regnum); |
07b287a0 MS |
2434 | } |
2435 | ||
2436 | /* Implement the "pseudo_register_type" tdesc_arch_data method. */ | |
2437 | ||
2438 | static struct type * | |
2439 | aarch64_pseudo_register_type (struct gdbarch *gdbarch, int regnum) | |
2440 | { | |
63bad7b6 AH |
2441 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
2442 | ||
34dcc7cf | 2443 | int p_regnum = regnum - gdbarch_num_regs (gdbarch); |
07b287a0 | 2444 | |
34dcc7cf | 2445 | if (p_regnum >= AARCH64_Q0_REGNUM && p_regnum < AARCH64_Q0_REGNUM + 32) |
07b287a0 MS |
2446 | return aarch64_vnq_type (gdbarch); |
2447 | ||
34dcc7cf | 2448 | if (p_regnum >= AARCH64_D0_REGNUM && p_regnum < AARCH64_D0_REGNUM + 32) |
07b287a0 MS |
2449 | return aarch64_vnd_type (gdbarch); |
2450 | ||
34dcc7cf | 2451 | if (p_regnum >= AARCH64_S0_REGNUM && p_regnum < AARCH64_S0_REGNUM + 32) |
07b287a0 MS |
2452 | return aarch64_vns_type (gdbarch); |
2453 | ||
34dcc7cf | 2454 | if (p_regnum >= AARCH64_H0_REGNUM && p_regnum < AARCH64_H0_REGNUM + 32) |
07b287a0 MS |
2455 | return aarch64_vnh_type (gdbarch); |
2456 | ||
34dcc7cf | 2457 | if (p_regnum >= AARCH64_B0_REGNUM && p_regnum < AARCH64_B0_REGNUM + 32) |
07b287a0 MS |
2458 | return aarch64_vnb_type (gdbarch); |
2459 | ||
34dcc7cf AH |
2460 | if (tdep->has_sve () && p_regnum >= AARCH64_SVE_V0_REGNUM |
2461 | && p_regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM) | |
63bad7b6 AH |
2462 | return aarch64_vnv_type (gdbarch); |
2463 | ||
34dcc7cf AH |
2464 | if (tdep->has_pauth () && regnum == tdep->pauth_ra_state_regnum) |
2465 | return builtin_type (gdbarch)->builtin_uint64; | |
2466 | ||
07b287a0 MS |
2467 | internal_error (__FILE__, __LINE__, |
2468 | _("aarch64_pseudo_register_type: bad register number %d"), | |
34dcc7cf | 2469 | p_regnum); |
07b287a0 MS |
2470 | } |
2471 | ||
2472 | /* Implement the "pseudo_register_reggroup_p" tdesc_arch_data method. */ | |
2473 | ||
2474 | static int | |
2475 | aarch64_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
2476 | struct reggroup *group) | |
2477 | { | |
63bad7b6 AH |
2478 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
2479 | ||
34dcc7cf | 2480 | int p_regnum = regnum - gdbarch_num_regs (gdbarch); |
07b287a0 | 2481 | |
34dcc7cf | 2482 | if (p_regnum >= AARCH64_Q0_REGNUM && p_regnum < AARCH64_Q0_REGNUM + 32) |
07b287a0 | 2483 | return group == all_reggroup || group == vector_reggroup; |
34dcc7cf | 2484 | else if (p_regnum >= AARCH64_D0_REGNUM && p_regnum < AARCH64_D0_REGNUM + 32) |
07b287a0 MS |
2485 | return (group == all_reggroup || group == vector_reggroup |
2486 | || group == float_reggroup); | |
34dcc7cf | 2487 | else if (p_regnum >= AARCH64_S0_REGNUM && p_regnum < AARCH64_S0_REGNUM + 32) |
07b287a0 MS |
2488 | return (group == all_reggroup || group == vector_reggroup |
2489 | || group == float_reggroup); | |
34dcc7cf | 2490 | else if (p_regnum >= AARCH64_H0_REGNUM && p_regnum < AARCH64_H0_REGNUM + 32) |
07b287a0 | 2491 | return group == all_reggroup || group == vector_reggroup; |
34dcc7cf | 2492 | else if (p_regnum >= AARCH64_B0_REGNUM && p_regnum < AARCH64_B0_REGNUM + 32) |
07b287a0 | 2493 | return group == all_reggroup || group == vector_reggroup; |
34dcc7cf AH |
2494 | else if (tdep->has_sve () && p_regnum >= AARCH64_SVE_V0_REGNUM |
2495 | && p_regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM) | |
63bad7b6 | 2496 | return group == all_reggroup || group == vector_reggroup; |
34dcc7cf AH |
2497 | /* RA_STATE is used for unwinding only. Do not assign it to any groups. */ |
2498 | if (tdep->has_pauth () && regnum == tdep->pauth_ra_state_regnum) | |
2499 | return 0; | |
07b287a0 MS |
2500 | |
2501 | return group == all_reggroup; | |
2502 | } | |
2503 | ||
3c5cd5c3 AH |
2504 | /* Helper for aarch64_pseudo_read_value. */ |
2505 | ||
2506 | static struct value * | |
63bad7b6 AH |
2507 | aarch64_pseudo_read_value_1 (struct gdbarch *gdbarch, |
2508 | readable_regcache *regcache, int regnum_offset, | |
3c5cd5c3 AH |
2509 | int regsize, struct value *result_value) |
2510 | { | |
3c5cd5c3 AH |
2511 | unsigned v_regnum = AARCH64_V0_REGNUM + regnum_offset; |
2512 | ||
63bad7b6 AH |
2513 | /* Enough space for a full vector register. */ |
2514 | gdb_byte reg_buf[register_size (gdbarch, AARCH64_V0_REGNUM)]; | |
2515 | gdb_static_assert (AARCH64_V0_REGNUM == AARCH64_SVE_Z0_REGNUM); | |
2516 | ||
3c5cd5c3 AH |
2517 | if (regcache->raw_read (v_regnum, reg_buf) != REG_VALID) |
2518 | mark_value_bytes_unavailable (result_value, 0, | |
2519 | TYPE_LENGTH (value_type (result_value))); | |
2520 | else | |
2521 | memcpy (value_contents_raw (result_value), reg_buf, regsize); | |
63bad7b6 | 2522 | |
3c5cd5c3 AH |
2523 | return result_value; |
2524 | } | |
2525 | ||
07b287a0 MS |
2526 | /* Implement the "pseudo_register_read_value" gdbarch method. */ |
2527 | ||
2528 | static struct value * | |
3c5cd5c3 | 2529 | aarch64_pseudo_read_value (struct gdbarch *gdbarch, readable_regcache *regcache, |
07b287a0 MS |
2530 | int regnum) |
2531 | { | |
63bad7b6 | 2532 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
3c5cd5c3 | 2533 | struct value *result_value = allocate_value (register_type (gdbarch, regnum)); |
07b287a0 | 2534 | |
07b287a0 MS |
2535 | VALUE_LVAL (result_value) = lval_register; |
2536 | VALUE_REGNUM (result_value) = regnum; | |
07b287a0 MS |
2537 | |
2538 | regnum -= gdbarch_num_regs (gdbarch); | |
2539 | ||
2540 | if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32) | |
63bad7b6 AH |
2541 | return aarch64_pseudo_read_value_1 (gdbarch, regcache, |
2542 | regnum - AARCH64_Q0_REGNUM, | |
3c5cd5c3 | 2543 | Q_REGISTER_SIZE, result_value); |
07b287a0 MS |
2544 | |
2545 | if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32) | |
63bad7b6 AH |
2546 | return aarch64_pseudo_read_value_1 (gdbarch, regcache, |
2547 | regnum - AARCH64_D0_REGNUM, | |
3c5cd5c3 | 2548 | D_REGISTER_SIZE, result_value); |
07b287a0 MS |
2549 | |
2550 | if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32) | |
63bad7b6 AH |
2551 | return aarch64_pseudo_read_value_1 (gdbarch, regcache, |
2552 | regnum - AARCH64_S0_REGNUM, | |
3c5cd5c3 | 2553 | S_REGISTER_SIZE, result_value); |
07b287a0 MS |
2554 | |
2555 | if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32) | |
63bad7b6 AH |
2556 | return aarch64_pseudo_read_value_1 (gdbarch, regcache, |
2557 | regnum - AARCH64_H0_REGNUM, | |
3c5cd5c3 | 2558 | H_REGISTER_SIZE, result_value); |
07b287a0 MS |
2559 | |
2560 | if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32) | |
63bad7b6 AH |
2561 | return aarch64_pseudo_read_value_1 (gdbarch, regcache, |
2562 | regnum - AARCH64_B0_REGNUM, | |
3c5cd5c3 | 2563 | B_REGISTER_SIZE, result_value); |
07b287a0 | 2564 | |
63bad7b6 AH |
2565 | if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM |
2566 | && regnum < AARCH64_SVE_V0_REGNUM + 32) | |
2567 | return aarch64_pseudo_read_value_1 (gdbarch, regcache, | |
2568 | regnum - AARCH64_SVE_V0_REGNUM, | |
2569 | V_REGISTER_SIZE, result_value); | |
2570 | ||
07b287a0 MS |
2571 | gdb_assert_not_reached ("regnum out of bound"); |
2572 | } | |
2573 | ||
3c5cd5c3 | 2574 | /* Helper for aarch64_pseudo_write. */ |
07b287a0 MS |
2575 | |
2576 | static void | |
63bad7b6 AH |
2577 | aarch64_pseudo_write_1 (struct gdbarch *gdbarch, struct regcache *regcache, |
2578 | int regnum_offset, int regsize, const gdb_byte *buf) | |
07b287a0 | 2579 | { |
3c5cd5c3 | 2580 | unsigned v_regnum = AARCH64_V0_REGNUM + regnum_offset; |
07b287a0 | 2581 | |
63bad7b6 AH |
2582 | /* Enough space for a full vector register. */ |
2583 | gdb_byte reg_buf[register_size (gdbarch, AARCH64_V0_REGNUM)]; | |
2584 | gdb_static_assert (AARCH64_V0_REGNUM == AARCH64_SVE_Z0_REGNUM); | |
2585 | ||
07b287a0 MS |
2586 | /* Ensure the register buffer is zero, we want gdb writes of the |
2587 | various 'scalar' pseudo registers to behavior like architectural | |
2588 | writes, register width bytes are written the remainder are set to | |
2589 | zero. */ | |
63bad7b6 | 2590 | memset (reg_buf, 0, register_size (gdbarch, AARCH64_V0_REGNUM)); |
07b287a0 | 2591 | |
3c5cd5c3 AH |
2592 | memcpy (reg_buf, buf, regsize); |
2593 | regcache->raw_write (v_regnum, reg_buf); | |
2594 | } | |
2595 | ||
2596 | /* Implement the "pseudo_register_write" gdbarch method. */ | |
2597 | ||
2598 | static void | |
2599 | aarch64_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
2600 | int regnum, const gdb_byte *buf) | |
2601 | { | |
63bad7b6 | 2602 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
07b287a0 MS |
2603 | regnum -= gdbarch_num_regs (gdbarch); |
2604 | ||
2605 | if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32) | |
63bad7b6 AH |
2606 | return aarch64_pseudo_write_1 (gdbarch, regcache, |
2607 | regnum - AARCH64_Q0_REGNUM, Q_REGISTER_SIZE, | |
2608 | buf); | |
07b287a0 MS |
2609 | |
2610 | if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32) | |
63bad7b6 AH |
2611 | return aarch64_pseudo_write_1 (gdbarch, regcache, |
2612 | regnum - AARCH64_D0_REGNUM, D_REGISTER_SIZE, | |
2613 | buf); | |
07b287a0 MS |
2614 | |
2615 | if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32) | |
63bad7b6 AH |
2616 | return aarch64_pseudo_write_1 (gdbarch, regcache, |
2617 | regnum - AARCH64_S0_REGNUM, S_REGISTER_SIZE, | |
2618 | buf); | |
07b287a0 MS |
2619 | |
2620 | if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32) | |
63bad7b6 AH |
2621 | return aarch64_pseudo_write_1 (gdbarch, regcache, |
2622 | regnum - AARCH64_H0_REGNUM, H_REGISTER_SIZE, | |
2623 | buf); | |
07b287a0 MS |
2624 | |
2625 | if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32) | |
63bad7b6 AH |
2626 | return aarch64_pseudo_write_1 (gdbarch, regcache, |
2627 | regnum - AARCH64_B0_REGNUM, B_REGISTER_SIZE, | |
2628 | buf); | |
2629 | ||
2630 | if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM | |
2631 | && regnum < AARCH64_SVE_V0_REGNUM + 32) | |
2632 | return aarch64_pseudo_write_1 (gdbarch, regcache, | |
2633 | regnum - AARCH64_SVE_V0_REGNUM, | |
2634 | V_REGISTER_SIZE, buf); | |
07b287a0 MS |
2635 | |
2636 | gdb_assert_not_reached ("regnum out of bound"); | |
2637 | } | |
2638 | ||
07b287a0 MS |
2639 | /* Callback function for user_reg_add. */ |
2640 | ||
2641 | static struct value * | |
2642 | value_of_aarch64_user_reg (struct frame_info *frame, const void *baton) | |
2643 | { | |
9a3c8263 | 2644 | const int *reg_p = (const int *) baton; |
07b287a0 MS |
2645 | |
2646 | return value_of_register (*reg_p, frame); | |
2647 | } | |
2648 | \f | |
2649 | ||
9404b58f KM |
2650 | /* Implement the "software_single_step" gdbarch method, needed to |
2651 | single step through atomic sequences on AArch64. */ | |
2652 | ||
a0ff9e1a | 2653 | static std::vector<CORE_ADDR> |
f5ea389a | 2654 | aarch64_software_single_step (struct regcache *regcache) |
9404b58f | 2655 | { |
ac7936df | 2656 | struct gdbarch *gdbarch = regcache->arch (); |
9404b58f KM |
2657 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
2658 | const int insn_size = 4; | |
2659 | const int atomic_sequence_length = 16; /* Instruction sequence length. */ | |
0187a92f | 2660 | CORE_ADDR pc = regcache_read_pc (regcache); |
70ab8ccd | 2661 | CORE_ADDR breaks[2] = { CORE_ADDR_MAX, CORE_ADDR_MAX }; |
9404b58f KM |
2662 | CORE_ADDR loc = pc; |
2663 | CORE_ADDR closing_insn = 0; | |
2664 | uint32_t insn = read_memory_unsigned_integer (loc, insn_size, | |
2665 | byte_order_for_code); | |
2666 | int index; | |
2667 | int insn_count; | |
2668 | int bc_insn_count = 0; /* Conditional branch instruction count. */ | |
2669 | int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */ | |
f77ee802 YQ |
2670 | aarch64_inst inst; |
2671 | ||
561a72d4 | 2672 | if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0) |
a0ff9e1a | 2673 | return {}; |
9404b58f KM |
2674 | |
2675 | /* Look for a Load Exclusive instruction which begins the sequence. */ | |
f77ee802 | 2676 | if (inst.opcode->iclass != ldstexcl || bit (insn, 22) == 0) |
a0ff9e1a | 2677 | return {}; |
9404b58f KM |
2678 | |
2679 | for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count) | |
2680 | { | |
9404b58f KM |
2681 | loc += insn_size; |
2682 | insn = read_memory_unsigned_integer (loc, insn_size, | |
2683 | byte_order_for_code); | |
2684 | ||
561a72d4 | 2685 | if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0) |
a0ff9e1a | 2686 | return {}; |
9404b58f | 2687 | /* Check if the instruction is a conditional branch. */ |
f77ee802 | 2688 | if (inst.opcode->iclass == condbranch) |
9404b58f | 2689 | { |
f77ee802 YQ |
2690 | gdb_assert (inst.operands[0].type == AARCH64_OPND_ADDR_PCREL19); |
2691 | ||
9404b58f | 2692 | if (bc_insn_count >= 1) |
a0ff9e1a | 2693 | return {}; |
9404b58f KM |
2694 | |
2695 | /* It is, so we'll try to set a breakpoint at the destination. */ | |
f77ee802 | 2696 | breaks[1] = loc + inst.operands[0].imm.value; |
9404b58f KM |
2697 | |
2698 | bc_insn_count++; | |
2699 | last_breakpoint++; | |
2700 | } | |
2701 | ||
2702 | /* Look for the Store Exclusive which closes the atomic sequence. */ | |
f77ee802 | 2703 | if (inst.opcode->iclass == ldstexcl && bit (insn, 22) == 0) |
9404b58f KM |
2704 | { |
2705 | closing_insn = loc; | |
2706 | break; | |
2707 | } | |
2708 | } | |
2709 | ||
2710 | /* We didn't find a closing Store Exclusive instruction, fall back. */ | |
2711 | if (!closing_insn) | |
a0ff9e1a | 2712 | return {}; |
9404b58f KM |
2713 | |
2714 | /* Insert breakpoint after the end of the atomic sequence. */ | |
2715 | breaks[0] = loc + insn_size; | |
2716 | ||
2717 | /* Check for duplicated breakpoints, and also check that the second | |
2718 | breakpoint is not within the atomic sequence. */ | |
2719 | if (last_breakpoint | |
2720 | && (breaks[1] == breaks[0] | |
2721 | || (breaks[1] >= pc && breaks[1] <= closing_insn))) | |
2722 | last_breakpoint = 0; | |
2723 | ||
a0ff9e1a SM |
2724 | std::vector<CORE_ADDR> next_pcs; |
2725 | ||
9404b58f KM |
2726 | /* Insert the breakpoint at the end of the sequence, and one at the |
2727 | destination of the conditional branch, if it exists. */ | |
2728 | for (index = 0; index <= last_breakpoint; index++) | |
a0ff9e1a | 2729 | next_pcs.push_back (breaks[index]); |
9404b58f | 2730 | |
93f9a11f | 2731 | return next_pcs; |
9404b58f KM |
2732 | } |
2733 | ||
cfba9872 | 2734 | struct aarch64_displaced_step_closure : public displaced_step_closure |
b6542f81 YQ |
2735 | { |
2736 | /* It is true when condition instruction, such as B.CON, TBZ, etc, | |
2737 | is being displaced stepping. */ | |
f0c702d4 | 2738 | bool cond = false; |
b6542f81 | 2739 | |
0c271889 LM |
2740 | /* PC adjustment offset after displaced stepping. If 0, then we don't |
2741 | write the PC back, assuming the PC is already the right address. */ | |
cfba9872 | 2742 | int32_t pc_adjust = 0; |
b6542f81 YQ |
2743 | }; |
2744 | ||
2745 | /* Data when visiting instructions for displaced stepping. */ | |
2746 | ||
2747 | struct aarch64_displaced_step_data | |
2748 | { | |
2749 | struct aarch64_insn_data base; | |
2750 | ||
2751 | /* The address where the instruction will be executed at. */ | |
2752 | CORE_ADDR new_addr; | |
2753 | /* Buffer of instructions to be copied to NEW_ADDR to execute. */ | |
e935475c | 2754 | uint32_t insn_buf[AARCH64_DISPLACED_MODIFIED_INSNS]; |
b6542f81 YQ |
2755 | /* Number of instructions in INSN_BUF. */ |
2756 | unsigned insn_count; | |
2757 | /* Registers when doing displaced stepping. */ | |
2758 | struct regcache *regs; | |
2759 | ||
cfba9872 | 2760 | aarch64_displaced_step_closure *dsc; |
b6542f81 YQ |
2761 | }; |
2762 | ||
2763 | /* Implementation of aarch64_insn_visitor method "b". */ | |
2764 | ||
2765 | static void | |
2766 | aarch64_displaced_step_b (const int is_bl, const int32_t offset, | |
2767 | struct aarch64_insn_data *data) | |
2768 | { | |
2769 | struct aarch64_displaced_step_data *dsd | |
2770 | = (struct aarch64_displaced_step_data *) data; | |
2ac09a5b | 2771 | int64_t new_offset = data->insn_addr - dsd->new_addr + offset; |
b6542f81 YQ |
2772 | |
2773 | if (can_encode_int32 (new_offset, 28)) | |
2774 | { | |
2775 | /* Emit B rather than BL, because executing BL on a new address | |
2776 | will get the wrong address into LR. In order to avoid this, | |
2777 | we emit B, and update LR if the instruction is BL. */ | |
2778 | emit_b (dsd->insn_buf, 0, new_offset); | |
2779 | dsd->insn_count++; | |
2780 | } | |
2781 | else | |
2782 | { | |
2783 | /* Write NOP. */ | |
2784 | emit_nop (dsd->insn_buf); | |
2785 | dsd->insn_count++; | |
2786 | dsd->dsc->pc_adjust = offset; | |
2787 | } | |
2788 | ||
2789 | if (is_bl) | |
2790 | { | |
2791 | /* Update LR. */ | |
2792 | regcache_cooked_write_unsigned (dsd->regs, AARCH64_LR_REGNUM, | |
2793 | data->insn_addr + 4); | |
2794 | } | |
2795 | } | |
2796 | ||
2797 | /* Implementation of aarch64_insn_visitor method "b_cond". */ | |
2798 | ||
2799 | static void | |
2800 | aarch64_displaced_step_b_cond (const unsigned cond, const int32_t offset, | |
2801 | struct aarch64_insn_data *data) | |
2802 | { | |
2803 | struct aarch64_displaced_step_data *dsd | |
2804 | = (struct aarch64_displaced_step_data *) data; | |
b6542f81 YQ |
2805 | |
2806 | /* GDB has to fix up PC after displaced step this instruction | |
2807 | differently according to the condition is true or false. Instead | |
2808 | of checking COND against conditional flags, we can use | |
2809 | the following instructions, and GDB can tell how to fix up PC | |
2810 | according to the PC value. | |
2811 | ||
2812 | B.COND TAKEN ; If cond is true, then jump to TAKEN. | |
2813 | INSN1 ; | |
2814 | TAKEN: | |
2815 | INSN2 | |
2816 | */ | |
2817 | ||
2818 | emit_bcond (dsd->insn_buf, cond, 8); | |
f0c702d4 | 2819 | dsd->dsc->cond = true; |
b6542f81 YQ |
2820 | dsd->dsc->pc_adjust = offset; |
2821 | dsd->insn_count = 1; | |
2822 | } | |
2823 | ||
2824 | /* Dynamically allocate a new register. If we know the register | |
2825 | statically, we should make it a global as above instead of using this | |
2826 | helper function. */ | |
2827 | ||
2828 | static struct aarch64_register | |
2829 | aarch64_register (unsigned num, int is64) | |
2830 | { | |
2831 | return (struct aarch64_register) { num, is64 }; | |
2832 | } | |
2833 | ||
2834 | /* Implementation of aarch64_insn_visitor method "cb". */ | |
2835 | ||
2836 | static void | |
2837 | aarch64_displaced_step_cb (const int32_t offset, const int is_cbnz, | |
2838 | const unsigned rn, int is64, | |
2839 | struct aarch64_insn_data *data) | |
2840 | { | |
2841 | struct aarch64_displaced_step_data *dsd | |
2842 | = (struct aarch64_displaced_step_data *) data; | |
b6542f81 YQ |
2843 | |
2844 | /* The offset is out of range for a compare and branch | |
2845 | instruction. We can use the following instructions instead: | |
2846 | ||
2847 | CBZ xn, TAKEN ; xn == 0, then jump to TAKEN. | |
2848 | INSN1 ; | |
2849 | TAKEN: | |
2850 | INSN2 | |
2851 | */ | |
2852 | emit_cb (dsd->insn_buf, is_cbnz, aarch64_register (rn, is64), 8); | |
2853 | dsd->insn_count = 1; | |
f0c702d4 | 2854 | dsd->dsc->cond = true; |
b6542f81 YQ |
2855 | dsd->dsc->pc_adjust = offset; |
2856 | } | |
2857 | ||
2858 | /* Implementation of aarch64_insn_visitor method "tb". */ | |
2859 | ||
2860 | static void | |
2861 | aarch64_displaced_step_tb (const int32_t offset, int is_tbnz, | |
2862 | const unsigned rt, unsigned bit, | |
2863 | struct aarch64_insn_data *data) | |
2864 | { | |
2865 | struct aarch64_displaced_step_data *dsd | |
2866 | = (struct aarch64_displaced_step_data *) data; | |
b6542f81 YQ |
2867 | |
2868 | /* The offset is out of range for a test bit and branch | |
2869 | instruction We can use the following instructions instead: | |
2870 | ||
2871 | TBZ xn, #bit, TAKEN ; xn[bit] == 0, then jump to TAKEN. | |
2872 | INSN1 ; | |
2873 | TAKEN: | |
2874 | INSN2 | |
2875 | ||
2876 | */ | |
2877 | emit_tb (dsd->insn_buf, is_tbnz, bit, aarch64_register (rt, 1), 8); | |
2878 | dsd->insn_count = 1; | |
f0c702d4 | 2879 | dsd->dsc->cond = true; |
b6542f81 YQ |
2880 | dsd->dsc->pc_adjust = offset; |
2881 | } | |
2882 | ||
2883 | /* Implementation of aarch64_insn_visitor method "adr". */ | |
2884 | ||
2885 | static void | |
2886 | aarch64_displaced_step_adr (const int32_t offset, const unsigned rd, | |
2887 | const int is_adrp, struct aarch64_insn_data *data) | |
2888 | { | |
2889 | struct aarch64_displaced_step_data *dsd | |
2890 | = (struct aarch64_displaced_step_data *) data; | |
2891 | /* We know exactly the address the ADR{P,} instruction will compute. | |
2892 | We can just write it to the destination register. */ | |
2893 | CORE_ADDR address = data->insn_addr + offset; | |
2894 | ||
2895 | if (is_adrp) | |
2896 | { | |
2897 | /* Clear the lower 12 bits of the offset to get the 4K page. */ | |
2898 | regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd, | |
2899 | address & ~0xfff); | |
2900 | } | |
2901 | else | |
2902 | regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd, | |
2903 | address); | |
2904 | ||
2905 | dsd->dsc->pc_adjust = 4; | |
2906 | emit_nop (dsd->insn_buf); | |
2907 | dsd->insn_count = 1; | |
2908 | } | |
2909 | ||
2910 | /* Implementation of aarch64_insn_visitor method "ldr_literal". */ | |
2911 | ||
2912 | static void | |
2913 | aarch64_displaced_step_ldr_literal (const int32_t offset, const int is_sw, | |
2914 | const unsigned rt, const int is64, | |
2915 | struct aarch64_insn_data *data) | |
2916 | { | |
2917 | struct aarch64_displaced_step_data *dsd | |
2918 | = (struct aarch64_displaced_step_data *) data; | |
2919 | CORE_ADDR address = data->insn_addr + offset; | |
2920 | struct aarch64_memory_operand zero = { MEMORY_OPERAND_OFFSET, 0 }; | |
2921 | ||
2922 | regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rt, | |
2923 | address); | |
2924 | ||
2925 | if (is_sw) | |
2926 | dsd->insn_count = emit_ldrsw (dsd->insn_buf, aarch64_register (rt, 1), | |
2927 | aarch64_register (rt, 1), zero); | |
2928 | else | |
2929 | dsd->insn_count = emit_ldr (dsd->insn_buf, aarch64_register (rt, is64), | |
2930 | aarch64_register (rt, 1), zero); | |
2931 | ||
2932 | dsd->dsc->pc_adjust = 4; | |
2933 | } | |
2934 | ||
2935 | /* Implementation of aarch64_insn_visitor method "others". */ | |
2936 | ||
2937 | static void | |
2938 | aarch64_displaced_step_others (const uint32_t insn, | |
2939 | struct aarch64_insn_data *data) | |
2940 | { | |
2941 | struct aarch64_displaced_step_data *dsd | |
2942 | = (struct aarch64_displaced_step_data *) data; | |
2943 | ||
e1c587c3 | 2944 | aarch64_emit_insn (dsd->insn_buf, insn); |
b6542f81 YQ |
2945 | dsd->insn_count = 1; |
2946 | ||
2947 | if ((insn & 0xfffffc1f) == 0xd65f0000) | |
2948 | { | |
2949 | /* RET */ | |
2950 | dsd->dsc->pc_adjust = 0; | |
2951 | } | |
2952 | else | |
2953 | dsd->dsc->pc_adjust = 4; | |
2954 | } | |
2955 | ||
2956 | static const struct aarch64_insn_visitor visitor = | |
2957 | { | |
2958 | aarch64_displaced_step_b, | |
2959 | aarch64_displaced_step_b_cond, | |
2960 | aarch64_displaced_step_cb, | |
2961 | aarch64_displaced_step_tb, | |
2962 | aarch64_displaced_step_adr, | |
2963 | aarch64_displaced_step_ldr_literal, | |
2964 | aarch64_displaced_step_others, | |
2965 | }; | |
2966 | ||
2967 | /* Implement the "displaced_step_copy_insn" gdbarch method. */ | |
2968 | ||
2969 | struct displaced_step_closure * | |
2970 | aarch64_displaced_step_copy_insn (struct gdbarch *gdbarch, | |
2971 | CORE_ADDR from, CORE_ADDR to, | |
2972 | struct regcache *regs) | |
2973 | { | |
b6542f81 YQ |
2974 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
2975 | uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order_for_code); | |
2976 | struct aarch64_displaced_step_data dsd; | |
c86a40c6 YQ |
2977 | aarch64_inst inst; |
2978 | ||
561a72d4 | 2979 | if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0) |
c86a40c6 | 2980 | return NULL; |
b6542f81 YQ |
2981 | |
2982 | /* Look for a Load Exclusive instruction which begins the sequence. */ | |
c86a40c6 | 2983 | if (inst.opcode->iclass == ldstexcl && bit (insn, 22)) |
b6542f81 YQ |
2984 | { |
2985 | /* We can't displaced step atomic sequences. */ | |
2986 | return NULL; | |
2987 | } | |
2988 | ||
cfba9872 SM |
2989 | std::unique_ptr<aarch64_displaced_step_closure> dsc |
2990 | (new aarch64_displaced_step_closure); | |
b6542f81 YQ |
2991 | dsd.base.insn_addr = from; |
2992 | dsd.new_addr = to; | |
2993 | dsd.regs = regs; | |
cfba9872 | 2994 | dsd.dsc = dsc.get (); |
034f1a81 | 2995 | dsd.insn_count = 0; |
b6542f81 YQ |
2996 | aarch64_relocate_instruction (insn, &visitor, |
2997 | (struct aarch64_insn_data *) &dsd); | |
e935475c | 2998 | gdb_assert (dsd.insn_count <= AARCH64_DISPLACED_MODIFIED_INSNS); |
b6542f81 YQ |
2999 | |
3000 | if (dsd.insn_count != 0) | |
3001 | { | |
3002 | int i; | |
3003 | ||
3004 | /* Instruction can be relocated to scratch pad. Copy | |
3005 | relocated instruction(s) there. */ | |
3006 | for (i = 0; i < dsd.insn_count; i++) | |
3007 | { | |
3008 | if (debug_displaced) | |
3009 | { | |
3010 | debug_printf ("displaced: writing insn "); | |
3011 | debug_printf ("%.8x", dsd.insn_buf[i]); | |
3012 | debug_printf (" at %s\n", paddress (gdbarch, to + i * 4)); | |
3013 | } | |
3014 | write_memory_unsigned_integer (to + i * 4, 4, byte_order_for_code, | |
3015 | (ULONGEST) dsd.insn_buf[i]); | |
3016 | } | |
3017 | } | |
3018 | else | |
3019 | { | |
b6542f81 YQ |
3020 | dsc = NULL; |
3021 | } | |
3022 | ||
cfba9872 | 3023 | return dsc.release (); |
b6542f81 YQ |
3024 | } |
3025 | ||
3026 | /* Implement the "displaced_step_fixup" gdbarch method. */ | |
3027 | ||
3028 | void | |
3029 | aarch64_displaced_step_fixup (struct gdbarch *gdbarch, | |
cfba9872 | 3030 | struct displaced_step_closure *dsc_, |
b6542f81 YQ |
3031 | CORE_ADDR from, CORE_ADDR to, |
3032 | struct regcache *regs) | |
3033 | { | |
cfba9872 SM |
3034 | aarch64_displaced_step_closure *dsc = (aarch64_displaced_step_closure *) dsc_; |
3035 | ||
0c271889 LM |
3036 | ULONGEST pc; |
3037 | ||
3038 | regcache_cooked_read_unsigned (regs, AARCH64_PC_REGNUM, &pc); | |
3039 | ||
1ab139e5 LM |
3040 | if (debug_displaced) |
3041 | debug_printf ("Displaced: PC after stepping: %s (was %s).\n", | |
3042 | paddress (gdbarch, pc), paddress (gdbarch, to)); | |
3043 | ||
b6542f81 YQ |
3044 | if (dsc->cond) |
3045 | { | |
1ab139e5 LM |
3046 | if (debug_displaced) |
3047 | debug_printf ("Displaced: [Conditional] pc_adjust before: %d\n", | |
3048 | dsc->pc_adjust); | |
3049 | ||
b6542f81 YQ |
3050 | if (pc - to == 8) |
3051 | { | |
3052 | /* Condition is true. */ | |
3053 | } | |
3054 | else if (pc - to == 4) | |
3055 | { | |
3056 | /* Condition is false. */ | |
3057 | dsc->pc_adjust = 4; | |
3058 | } | |
3059 | else | |
3060 | gdb_assert_not_reached ("Unexpected PC value after displaced stepping"); | |
1ab139e5 LM |
3061 | |
3062 | if (debug_displaced) | |
3063 | debug_printf ("Displaced: [Conditional] pc_adjust after: %d\n", | |
3064 | dsc->pc_adjust); | |
b6542f81 YQ |
3065 | } |
3066 | ||
1ab139e5 LM |
3067 | if (debug_displaced) |
3068 | debug_printf ("Displaced: %s PC by %d\n", | |
3069 | dsc->pc_adjust? "adjusting" : "not adjusting", | |
3070 | dsc->pc_adjust); | |
3071 | ||
3072 | ||
b6542f81 YQ |
3073 | if (dsc->pc_adjust != 0) |
3074 | { | |
0c271889 LM |
3075 | /* Make sure the previous instruction was executed (that is, the PC |
3076 | has changed). If the PC didn't change, then discard the adjustment | |
3077 | offset. Otherwise we may skip an instruction before its execution | |
3078 | took place. */ | |
3079 | if ((pc - to) == 0) | |
1ab139e5 LM |
3080 | { |
3081 | if (debug_displaced) | |
3082 | debug_printf ("Displaced: PC did not move. Discarding PC " | |
3083 | "adjustment.\n"); | |
3084 | dsc->pc_adjust = 0; | |
3085 | } | |
0c271889 | 3086 | |
b6542f81 YQ |
3087 | if (debug_displaced) |
3088 | { | |
1ab139e5 | 3089 | debug_printf ("Displaced: fixup: set PC to %s:%d\n", |
b6542f81 YQ |
3090 | paddress (gdbarch, from), dsc->pc_adjust); |
3091 | } | |
3092 | regcache_cooked_write_unsigned (regs, AARCH64_PC_REGNUM, | |
3093 | from + dsc->pc_adjust); | |
3094 | } | |
3095 | } | |
3096 | ||
3097 | /* Implement the "displaced_step_hw_singlestep" gdbarch method. */ | |
3098 | ||
3099 | int | |
3100 | aarch64_displaced_step_hw_singlestep (struct gdbarch *gdbarch, | |
3101 | struct displaced_step_closure *closure) | |
3102 | { | |
3103 | return 1; | |
3104 | } | |
3105 | ||
95228a0d AH |
3106 | /* Get the correct target description for the given VQ value. |
3107 | If VQ is zero then it is assumed SVE is not supported. | |
3108 | (It is not possible to set VQ to zero on an SVE system). */ | |
da434ccb AH |
3109 | |
3110 | const target_desc * | |
6dc0ebde | 3111 | aarch64_read_description (uint64_t vq, bool pauth_p) |
da434ccb | 3112 | { |
95228a0d | 3113 | if (vq > AARCH64_MAX_SVE_VQ) |
39bfb937 | 3114 | error (_("VQ is %" PRIu64 ", maximum supported value is %d"), vq, |
95228a0d AH |
3115 | AARCH64_MAX_SVE_VQ); |
3116 | ||
6dc0ebde | 3117 | struct target_desc *tdesc = tdesc_aarch64_list[vq][pauth_p]; |
da434ccb | 3118 | |
95228a0d AH |
3119 | if (tdesc == NULL) |
3120 | { | |
6dc0ebde AH |
3121 | tdesc = aarch64_create_target_description (vq, pauth_p); |
3122 | tdesc_aarch64_list[vq][pauth_p] = tdesc; | |
95228a0d | 3123 | } |
da434ccb | 3124 | |
95228a0d | 3125 | return tdesc; |
da434ccb AH |
3126 | } |
3127 | ||
ba2d2bb2 AH |
3128 | /* Return the VQ used when creating the target description TDESC. */ |
3129 | ||
1332a140 | 3130 | static uint64_t |
ba2d2bb2 AH |
3131 | aarch64_get_tdesc_vq (const struct target_desc *tdesc) |
3132 | { | |
3133 | const struct tdesc_feature *feature_sve; | |
3134 | ||
3135 | if (!tdesc_has_registers (tdesc)) | |
3136 | return 0; | |
3137 | ||
3138 | feature_sve = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.sve"); | |
3139 | ||
3140 | if (feature_sve == nullptr) | |
3141 | return 0; | |
3142 | ||
12863263 AH |
3143 | uint64_t vl = tdesc_register_bitsize (feature_sve, |
3144 | aarch64_sve_register_names[0]) / 8; | |
ba2d2bb2 AH |
3145 | return sve_vq_from_vl (vl); |
3146 | } | |
3147 | ||
0ef8a082 AH |
3148 | /* Add all the expected register sets into GDBARCH. */ |
3149 | ||
3150 | static void | |
3151 | aarch64_add_reggroups (struct gdbarch *gdbarch) | |
3152 | { | |
3153 | reggroup_add (gdbarch, general_reggroup); | |
3154 | reggroup_add (gdbarch, float_reggroup); | |
3155 | reggroup_add (gdbarch, system_reggroup); | |
3156 | reggroup_add (gdbarch, vector_reggroup); | |
3157 | reggroup_add (gdbarch, all_reggroup); | |
3158 | reggroup_add (gdbarch, save_reggroup); | |
3159 | reggroup_add (gdbarch, restore_reggroup); | |
3160 | } | |
ba2d2bb2 | 3161 | |
76bed0fd AH |
3162 | /* Implement the "cannot_store_register" gdbarch method. */ |
3163 | ||
3164 | static int | |
3165 | aarch64_cannot_store_register (struct gdbarch *gdbarch, int regnum) | |
3166 | { | |
3167 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3168 | ||
3169 | if (!tdep->has_pauth ()) | |
3170 | return 0; | |
3171 | ||
3172 | /* Pointer authentication registers are read-only. */ | |
3173 | return (regnum == AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base) | |
3174 | || regnum == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base)); | |
3175 | } | |
3176 | ||
07b287a0 MS |
3177 | /* Initialize the current architecture based on INFO. If possible, |
3178 | re-use an architecture from ARCHES, which is a list of | |
3179 | architectures already created during this debugging session. | |
3180 | ||
3181 | Called e.g. at program startup, when reading a core file, and when | |
3182 | reading a binary file. */ | |
3183 | ||
3184 | static struct gdbarch * | |
3185 | aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
3186 | { | |
ccb8d7e8 | 3187 | const struct tdesc_feature *feature_core, *feature_fpu, *feature_sve; |
76bed0fd | 3188 | const struct tdesc_feature *feature_pauth; |
ccb8d7e8 AH |
3189 | bool valid_p = true; |
3190 | int i, num_regs = 0, num_pseudo_regs = 0; | |
3191 | int first_pauth_regnum = -1, pauth_ra_state_offset = -1; | |
3192 | ||
4da037ef AH |
3193 | /* Use the vector length passed via the target info. Here -1 is used for no |
3194 | SVE, and 0 is unset. If unset then use the vector length from the existing | |
3195 | tdesc. */ | |
3196 | uint64_t vq = 0; | |
3197 | if (info.id == (int *) -1) | |
3198 | vq = 0; | |
3199 | else if (info.id != 0) | |
3200 | vq = (uint64_t) info.id; | |
3201 | else | |
3202 | vq = aarch64_get_tdesc_vq (info.target_desc); | |
3203 | ||
3204 | if (vq > AARCH64_MAX_SVE_VQ) | |
596179f7 SDJ |
3205 | internal_error (__FILE__, __LINE__, _("VQ out of bounds: %s (max %d)"), |
3206 | pulongest (vq), AARCH64_MAX_SVE_VQ); | |
4da037ef | 3207 | |
ccb8d7e8 AH |
3208 | /* If there is already a candidate, use it. */ |
3209 | for (gdbarch_list *best_arch = gdbarch_list_lookup_by_info (arches, &info); | |
3210 | best_arch != nullptr; | |
3211 | best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) | |
3212 | { | |
3213 | struct gdbarch_tdep *tdep = gdbarch_tdep (best_arch->gdbarch); | |
4da037ef | 3214 | if (tdep && tdep->vq == vq) |
ccb8d7e8 AH |
3215 | return best_arch->gdbarch; |
3216 | } | |
07b287a0 | 3217 | |
4da037ef AH |
3218 | /* Ensure we always have a target descriptor, and that it is for the given VQ |
3219 | value. */ | |
ccb8d7e8 | 3220 | const struct target_desc *tdesc = info.target_desc; |
4da037ef AH |
3221 | if (!tdesc_has_registers (tdesc) || vq != aarch64_get_tdesc_vq (tdesc)) |
3222 | tdesc = aarch64_read_description (vq, false); | |
07b287a0 MS |
3223 | gdb_assert (tdesc); |
3224 | ||
ccb8d7e8 | 3225 | feature_core = tdesc_find_feature (tdesc,"org.gnu.gdb.aarch64.core"); |
ba2d2bb2 AH |
3226 | feature_fpu = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.fpu"); |
3227 | feature_sve = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.sve"); | |
76bed0fd | 3228 | feature_pauth = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.pauth"); |
07b287a0 | 3229 | |
ccb8d7e8 AH |
3230 | if (feature_core == nullptr) |
3231 | return nullptr; | |
07b287a0 | 3232 | |
ccb8d7e8 | 3233 | struct tdesc_arch_data *tdesc_data = tdesc_data_alloc (); |
07b287a0 | 3234 | |
ba2d2bb2 | 3235 | /* Validate the description provides the mandatory core R registers |
07b287a0 MS |
3236 | and allocate their numbers. */ |
3237 | for (i = 0; i < ARRAY_SIZE (aarch64_r_register_names); i++) | |
ba2d2bb2 AH |
3238 | valid_p &= tdesc_numbered_register (feature_core, tdesc_data, |
3239 | AARCH64_X0_REGNUM + i, | |
3240 | aarch64_r_register_names[i]); | |
07b287a0 MS |
3241 | |
3242 | num_regs = AARCH64_X0_REGNUM + i; | |
3243 | ||
ba2d2bb2 | 3244 | /* Add the V registers. */ |
ccb8d7e8 | 3245 | if (feature_fpu != nullptr) |
07b287a0 | 3246 | { |
ccb8d7e8 | 3247 | if (feature_sve != nullptr) |
ba2d2bb2 AH |
3248 | error (_("Program contains both fpu and SVE features.")); |
3249 | ||
3250 | /* Validate the description provides the mandatory V registers | |
3251 | and allocate their numbers. */ | |
07b287a0 | 3252 | for (i = 0; i < ARRAY_SIZE (aarch64_v_register_names); i++) |
ba2d2bb2 AH |
3253 | valid_p &= tdesc_numbered_register (feature_fpu, tdesc_data, |
3254 | AARCH64_V0_REGNUM + i, | |
3255 | aarch64_v_register_names[i]); | |
07b287a0 MS |
3256 | |
3257 | num_regs = AARCH64_V0_REGNUM + i; | |
ba2d2bb2 | 3258 | } |
07b287a0 | 3259 | |
ba2d2bb2 | 3260 | /* Add the SVE registers. */ |
ccb8d7e8 | 3261 | if (feature_sve != nullptr) |
ba2d2bb2 AH |
3262 | { |
3263 | /* Validate the description provides the mandatory SVE registers | |
3264 | and allocate their numbers. */ | |
3265 | for (i = 0; i < ARRAY_SIZE (aarch64_sve_register_names); i++) | |
3266 | valid_p &= tdesc_numbered_register (feature_sve, tdesc_data, | |
3267 | AARCH64_SVE_Z0_REGNUM + i, | |
3268 | aarch64_sve_register_names[i]); | |
3269 | ||
3270 | num_regs = AARCH64_SVE_Z0_REGNUM + i; | |
3271 | num_pseudo_regs += 32; /* add the Vn register pseudos. */ | |
3272 | } | |
3273 | ||
ccb8d7e8 | 3274 | if (feature_fpu != nullptr || feature_sve != nullptr) |
ba2d2bb2 | 3275 | { |
07b287a0 MS |
3276 | num_pseudo_regs += 32; /* add the Qn scalar register pseudos */ |
3277 | num_pseudo_regs += 32; /* add the Dn scalar register pseudos */ | |
3278 | num_pseudo_regs += 32; /* add the Sn scalar register pseudos */ | |
3279 | num_pseudo_regs += 32; /* add the Hn scalar register pseudos */ | |
3280 | num_pseudo_regs += 32; /* add the Bn scalar register pseudos */ | |
3281 | } | |
3282 | ||
76bed0fd AH |
3283 | /* Add the pauth registers. */ |
3284 | if (feature_pauth != NULL) | |
3285 | { | |
3286 | first_pauth_regnum = num_regs; | |
34dcc7cf | 3287 | pauth_ra_state_offset = num_pseudo_regs; |
76bed0fd AH |
3288 | /* Validate the descriptor provides the mandatory PAUTH registers and |
3289 | allocate their numbers. */ | |
3290 | for (i = 0; i < ARRAY_SIZE (aarch64_pauth_register_names); i++) | |
3291 | valid_p &= tdesc_numbered_register (feature_pauth, tdesc_data, | |
3292 | first_pauth_regnum + i, | |
3293 | aarch64_pauth_register_names[i]); | |
3294 | ||
3295 | num_regs += i; | |
34dcc7cf | 3296 | num_pseudo_regs += 1; /* Count RA_STATE pseudo register. */ |
76bed0fd AH |
3297 | } |
3298 | ||
07b287a0 MS |
3299 | if (!valid_p) |
3300 | { | |
3301 | tdesc_data_cleanup (tdesc_data); | |
ccb8d7e8 | 3302 | return nullptr; |
07b287a0 MS |
3303 | } |
3304 | ||
3305 | /* AArch64 code is always little-endian. */ | |
3306 | info.byte_order_for_code = BFD_ENDIAN_LITTLE; | |
3307 | ||
ccb8d7e8 AH |
3308 | struct gdbarch_tdep *tdep = XCNEW (struct gdbarch_tdep); |
3309 | struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep); | |
07b287a0 MS |
3310 | |
3311 | /* This should be low enough for everything. */ | |
3312 | tdep->lowest_pc = 0x20; | |
3313 | tdep->jb_pc = -1; /* Longjump support not enabled by default. */ | |
3314 | tdep->jb_elt_size = 8; | |
4da037ef | 3315 | tdep->vq = vq; |
76bed0fd | 3316 | tdep->pauth_reg_base = first_pauth_regnum; |
34dcc7cf AH |
3317 | tdep->pauth_ra_state_regnum = (feature_pauth == NULL) ? -1 |
3318 | : pauth_ra_state_offset + num_regs; | |
3319 | ||
07b287a0 MS |
3320 | set_gdbarch_push_dummy_call (gdbarch, aarch64_push_dummy_call); |
3321 | set_gdbarch_frame_align (gdbarch, aarch64_frame_align); | |
3322 | ||
07b287a0 MS |
3323 | /* Advance PC across function entry code. */ |
3324 | set_gdbarch_skip_prologue (gdbarch, aarch64_skip_prologue); | |
3325 | ||
3326 | /* The stack grows downward. */ | |
3327 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
3328 | ||
3329 | /* Breakpoint manipulation. */ | |
04180708 YQ |
3330 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, |
3331 | aarch64_breakpoint::kind_from_pc); | |
3332 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, | |
3333 | aarch64_breakpoint::bp_from_kind); | |
07b287a0 | 3334 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); |
9404b58f | 3335 | set_gdbarch_software_single_step (gdbarch, aarch64_software_single_step); |
07b287a0 MS |
3336 | |
3337 | /* Information about registers, etc. */ | |
3338 | set_gdbarch_sp_regnum (gdbarch, AARCH64_SP_REGNUM); | |
3339 | set_gdbarch_pc_regnum (gdbarch, AARCH64_PC_REGNUM); | |
3340 | set_gdbarch_num_regs (gdbarch, num_regs); | |
3341 | ||
3342 | set_gdbarch_num_pseudo_regs (gdbarch, num_pseudo_regs); | |
3343 | set_gdbarch_pseudo_register_read_value (gdbarch, aarch64_pseudo_read_value); | |
3344 | set_gdbarch_pseudo_register_write (gdbarch, aarch64_pseudo_write); | |
3345 | set_tdesc_pseudo_register_name (gdbarch, aarch64_pseudo_register_name); | |
3346 | set_tdesc_pseudo_register_type (gdbarch, aarch64_pseudo_register_type); | |
3347 | set_tdesc_pseudo_register_reggroup_p (gdbarch, | |
3348 | aarch64_pseudo_register_reggroup_p); | |
76bed0fd | 3349 | set_gdbarch_cannot_store_register (gdbarch, aarch64_cannot_store_register); |
07b287a0 MS |
3350 | |
3351 | /* ABI */ | |
3352 | set_gdbarch_short_bit (gdbarch, 16); | |
3353 | set_gdbarch_int_bit (gdbarch, 32); | |
3354 | set_gdbarch_float_bit (gdbarch, 32); | |
3355 | set_gdbarch_double_bit (gdbarch, 64); | |
3356 | set_gdbarch_long_double_bit (gdbarch, 128); | |
3357 | set_gdbarch_long_bit (gdbarch, 64); | |
3358 | set_gdbarch_long_long_bit (gdbarch, 64); | |
3359 | set_gdbarch_ptr_bit (gdbarch, 64); | |
3360 | set_gdbarch_char_signed (gdbarch, 0); | |
53375380 | 3361 | set_gdbarch_wchar_signed (gdbarch, 0); |
07b287a0 MS |
3362 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
3363 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | |
3364 | set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad); | |
b907456c | 3365 | set_gdbarch_type_align (gdbarch, aarch64_type_align); |
07b287a0 MS |
3366 | |
3367 | /* Internal <-> external register number maps. */ | |
3368 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, aarch64_dwarf_reg_to_regnum); | |
3369 | ||
3370 | /* Returning results. */ | |
3371 | set_gdbarch_return_value (gdbarch, aarch64_return_value); | |
3372 | ||
3373 | /* Disassembly. */ | |
3374 | set_gdbarch_print_insn (gdbarch, aarch64_gdb_print_insn); | |
3375 | ||
3376 | /* Virtual tables. */ | |
3377 | set_gdbarch_vbit_in_delta (gdbarch, 1); | |
3378 | ||
0ef8a082 AH |
3379 | /* Register architecture. */ |
3380 | aarch64_add_reggroups (gdbarch); | |
3381 | ||
07b287a0 MS |
3382 | /* Hook in the ABI-specific overrides, if they have been registered. */ |
3383 | info.target_desc = tdesc; | |
0dba2a6c | 3384 | info.tdesc_data = tdesc_data; |
07b287a0 MS |
3385 | gdbarch_init_osabi (info, gdbarch); |
3386 | ||
3387 | dwarf2_frame_set_init_reg (gdbarch, aarch64_dwarf2_frame_init_reg); | |
11e1b75f AH |
3388 | /* Register DWARF CFA vendor handler. */ |
3389 | set_gdbarch_execute_dwarf_cfa_vendor_op (gdbarch, | |
3390 | aarch64_execute_dwarf_cfa_vendor_op); | |
07b287a0 MS |
3391 | |
3392 | /* Add some default predicates. */ | |
3393 | frame_unwind_append_unwinder (gdbarch, &aarch64_stub_unwind); | |
3394 | dwarf2_append_unwinders (gdbarch); | |
3395 | frame_unwind_append_unwinder (gdbarch, &aarch64_prologue_unwind); | |
3396 | ||
3397 | frame_base_set_default (gdbarch, &aarch64_normal_base); | |
3398 | ||
3399 | /* Now we have tuned the configuration, set a few final things, | |
3400 | based on what the OS ABI has told us. */ | |
3401 | ||
3402 | if (tdep->jb_pc >= 0) | |
3403 | set_gdbarch_get_longjmp_target (gdbarch, aarch64_get_longjmp_target); | |
3404 | ||
ea873d8e PL |
3405 | set_gdbarch_gen_return_address (gdbarch, aarch64_gen_return_address); |
3406 | ||
aa7ca1bb AH |
3407 | set_gdbarch_get_pc_address_flags (gdbarch, aarch64_get_pc_address_flags); |
3408 | ||
07b287a0 MS |
3409 | tdesc_use_registers (gdbarch, tdesc, tdesc_data); |
3410 | ||
3411 | /* Add standard register aliases. */ | |
3412 | for (i = 0; i < ARRAY_SIZE (aarch64_register_aliases); i++) | |
3413 | user_reg_add (gdbarch, aarch64_register_aliases[i].name, | |
3414 | value_of_aarch64_user_reg, | |
3415 | &aarch64_register_aliases[i].regnum); | |
3416 | ||
e8bf1ce4 JB |
3417 | register_aarch64_ravenscar_ops (gdbarch); |
3418 | ||
07b287a0 MS |
3419 | return gdbarch; |
3420 | } | |
3421 | ||
3422 | static void | |
3423 | aarch64_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) | |
3424 | { | |
3425 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3426 | ||
3427 | if (tdep == NULL) | |
3428 | return; | |
3429 | ||
3430 | fprintf_unfiltered (file, _("aarch64_dump_tdep: Lowest pc = 0x%s"), | |
3431 | paddress (gdbarch, tdep->lowest_pc)); | |
3432 | } | |
3433 | ||
0d4c07af | 3434 | #if GDB_SELF_TEST |
1e2b521d YQ |
3435 | namespace selftests |
3436 | { | |
3437 | static void aarch64_process_record_test (void); | |
3438 | } | |
0d4c07af | 3439 | #endif |
1e2b521d | 3440 | |
6c265988 | 3441 | void _initialize_aarch64_tdep (); |
07b287a0 | 3442 | void |
6c265988 | 3443 | _initialize_aarch64_tdep () |
07b287a0 MS |
3444 | { |
3445 | gdbarch_register (bfd_arch_aarch64, aarch64_gdbarch_init, | |
3446 | aarch64_dump_tdep); | |
3447 | ||
07b287a0 MS |
3448 | /* Debug this file's internals. */ |
3449 | add_setshow_boolean_cmd ("aarch64", class_maintenance, &aarch64_debug, _("\ | |
3450 | Set AArch64 debugging."), _("\ | |
3451 | Show AArch64 debugging."), _("\ | |
3452 | When on, AArch64 specific debugging is enabled."), | |
3453 | NULL, | |
3454 | show_aarch64_debug, | |
3455 | &setdebuglist, &showdebuglist); | |
4d9a9006 YQ |
3456 | |
3457 | #if GDB_SELF_TEST | |
1526853e SM |
3458 | selftests::register_test ("aarch64-analyze-prologue", |
3459 | selftests::aarch64_analyze_prologue_test); | |
3460 | selftests::register_test ("aarch64-process-record", | |
3461 | selftests::aarch64_process_record_test); | |
4d9a9006 | 3462 | #endif |
07b287a0 | 3463 | } |
99afc88b OJ |
3464 | |
3465 | /* AArch64 process record-replay related structures, defines etc. */ | |
3466 | ||
99afc88b OJ |
3467 | #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \ |
3468 | do \ | |
3469 | { \ | |
3470 | unsigned int reg_len = LENGTH; \ | |
3471 | if (reg_len) \ | |
3472 | { \ | |
3473 | REGS = XNEWVEC (uint32_t, reg_len); \ | |
3474 | memcpy(®S[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \ | |
3475 | } \ | |
3476 | } \ | |
3477 | while (0) | |
3478 | ||
3479 | #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \ | |
3480 | do \ | |
3481 | { \ | |
3482 | unsigned int mem_len = LENGTH; \ | |
3483 | if (mem_len) \ | |
3484 | { \ | |
3485 | MEMS = XNEWVEC (struct aarch64_mem_r, mem_len); \ | |
3486 | memcpy(&MEMS->len, &RECORD_BUF[0], \ | |
3487 | sizeof(struct aarch64_mem_r) * LENGTH); \ | |
3488 | } \ | |
3489 | } \ | |
3490 | while (0) | |
3491 | ||
3492 | /* AArch64 record/replay structures and enumerations. */ | |
3493 | ||
3494 | struct aarch64_mem_r | |
3495 | { | |
3496 | uint64_t len; /* Record length. */ | |
3497 | uint64_t addr; /* Memory address. */ | |
3498 | }; | |
3499 | ||
3500 | enum aarch64_record_result | |
3501 | { | |
3502 | AARCH64_RECORD_SUCCESS, | |
99afc88b OJ |
3503 | AARCH64_RECORD_UNSUPPORTED, |
3504 | AARCH64_RECORD_UNKNOWN | |
3505 | }; | |
3506 | ||
3507 | typedef struct insn_decode_record_t | |
3508 | { | |
3509 | struct gdbarch *gdbarch; | |
3510 | struct regcache *regcache; | |
3511 | CORE_ADDR this_addr; /* Address of insn to be recorded. */ | |
3512 | uint32_t aarch64_insn; /* Insn to be recorded. */ | |
3513 | uint32_t mem_rec_count; /* Count of memory records. */ | |
3514 | uint32_t reg_rec_count; /* Count of register records. */ | |
3515 | uint32_t *aarch64_regs; /* Registers to be recorded. */ | |
3516 | struct aarch64_mem_r *aarch64_mems; /* Memory locations to be recorded. */ | |
3517 | } insn_decode_record; | |
3518 | ||
3519 | /* Record handler for data processing - register instructions. */ | |
3520 | ||
3521 | static unsigned int | |
3522 | aarch64_record_data_proc_reg (insn_decode_record *aarch64_insn_r) | |
3523 | { | |
3524 | uint8_t reg_rd, insn_bits24_27, insn_bits21_23; | |
3525 | uint32_t record_buf[4]; | |
3526 | ||
3527 | reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4); | |
3528 | insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27); | |
3529 | insn_bits21_23 = bits (aarch64_insn_r->aarch64_insn, 21, 23); | |
3530 | ||
3531 | if (!bit (aarch64_insn_r->aarch64_insn, 28)) | |
3532 | { | |
3533 | uint8_t setflags; | |
3534 | ||
3535 | /* Logical (shifted register). */ | |
3536 | if (insn_bits24_27 == 0x0a) | |
3537 | setflags = (bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03); | |
3538 | /* Add/subtract. */ | |
3539 | else if (insn_bits24_27 == 0x0b) | |
3540 | setflags = bit (aarch64_insn_r->aarch64_insn, 29); | |
3541 | else | |
3542 | return AARCH64_RECORD_UNKNOWN; | |
3543 | ||
3544 | record_buf[0] = reg_rd; | |
3545 | aarch64_insn_r->reg_rec_count = 1; | |
3546 | if (setflags) | |
3547 | record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM; | |
3548 | } | |
3549 | else | |
3550 | { | |
3551 | if (insn_bits24_27 == 0x0b) | |
3552 | { | |
3553 | /* Data-processing (3 source). */ | |
3554 | record_buf[0] = reg_rd; | |
3555 | aarch64_insn_r->reg_rec_count = 1; | |
3556 | } | |
3557 | else if (insn_bits24_27 == 0x0a) | |
3558 | { | |
3559 | if (insn_bits21_23 == 0x00) | |
3560 | { | |
3561 | /* Add/subtract (with carry). */ | |
3562 | record_buf[0] = reg_rd; | |
3563 | aarch64_insn_r->reg_rec_count = 1; | |
3564 | if (bit (aarch64_insn_r->aarch64_insn, 29)) | |
3565 | { | |
3566 | record_buf[1] = AARCH64_CPSR_REGNUM; | |
3567 | aarch64_insn_r->reg_rec_count = 2; | |
3568 | } | |
3569 | } | |
3570 | else if (insn_bits21_23 == 0x02) | |
3571 | { | |
3572 | /* Conditional compare (register) and conditional compare | |
3573 | (immediate) instructions. */ | |
3574 | record_buf[0] = AARCH64_CPSR_REGNUM; | |
3575 | aarch64_insn_r->reg_rec_count = 1; | |
3576 | } | |
3577 | else if (insn_bits21_23 == 0x04 || insn_bits21_23 == 0x06) | |
3578 | { | |
85102364 | 3579 | /* Conditional select. */ |
99afc88b OJ |
3580 | /* Data-processing (2 source). */ |
3581 | /* Data-processing (1 source). */ | |
3582 | record_buf[0] = reg_rd; | |
3583 | aarch64_insn_r->reg_rec_count = 1; | |
3584 | } | |
3585 | else | |
3586 | return AARCH64_RECORD_UNKNOWN; | |
3587 | } | |
3588 | } | |
3589 | ||
3590 | REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count, | |
3591 | record_buf); | |
3592 | return AARCH64_RECORD_SUCCESS; | |
3593 | } | |
3594 | ||
3595 | /* Record handler for data processing - immediate instructions. */ | |
3596 | ||
3597 | static unsigned int | |
3598 | aarch64_record_data_proc_imm (insn_decode_record *aarch64_insn_r) | |
3599 | { | |
78cc6c2d | 3600 | uint8_t reg_rd, insn_bit23, insn_bits24_27, setflags; |
99afc88b OJ |
3601 | uint32_t record_buf[4]; |
3602 | ||
3603 | reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4); | |
99afc88b OJ |
3604 | insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23); |
3605 | insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27); | |
3606 | ||
3607 | if (insn_bits24_27 == 0x00 /* PC rel addressing. */ | |
3608 | || insn_bits24_27 == 0x03 /* Bitfield and Extract. */ | |
3609 | || (insn_bits24_27 == 0x02 && insn_bit23)) /* Move wide (immediate). */ | |
3610 | { | |
3611 | record_buf[0] = reg_rd; | |
3612 | aarch64_insn_r->reg_rec_count = 1; | |
3613 | } | |
3614 | else if (insn_bits24_27 == 0x01) | |
3615 | { | |
3616 | /* Add/Subtract (immediate). */ | |
3617 | setflags = bit (aarch64_insn_r->aarch64_insn, 29); | |
3618 | record_buf[0] = reg_rd; | |
3619 | aarch64_insn_r->reg_rec_count = 1; | |
3620 | if (setflags) | |
3621 | record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM; | |
3622 | } | |
3623 | else if (insn_bits24_27 == 0x02 && !insn_bit23) | |
3624 | { | |
3625 | /* Logical (immediate). */ | |
3626 | setflags = bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03; | |
3627 | record_buf[0] = reg_rd; | |
3628 | aarch64_insn_r->reg_rec_count = 1; | |
3629 | if (setflags) | |
3630 | record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM; | |
3631 | } | |
3632 | else | |
3633 | return AARCH64_RECORD_UNKNOWN; | |
3634 | ||
3635 | REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count, | |
3636 | record_buf); | |
3637 | return AARCH64_RECORD_SUCCESS; | |
3638 | } | |
3639 | ||
3640 | /* Record handler for branch, exception generation and system instructions. */ | |
3641 | ||
3642 | static unsigned int | |
3643 | aarch64_record_branch_except_sys (insn_decode_record *aarch64_insn_r) | |
3644 | { | |
3645 | struct gdbarch_tdep *tdep = gdbarch_tdep (aarch64_insn_r->gdbarch); | |
3646 | uint8_t insn_bits24_27, insn_bits28_31, insn_bits22_23; | |
3647 | uint32_t record_buf[4]; | |
3648 | ||
3649 | insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27); | |
3650 | insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31); | |
3651 | insn_bits22_23 = bits (aarch64_insn_r->aarch64_insn, 22, 23); | |
3652 | ||
3653 | if (insn_bits28_31 == 0x0d) | |
3654 | { | |
3655 | /* Exception generation instructions. */ | |
3656 | if (insn_bits24_27 == 0x04) | |
3657 | { | |
5d98d3cd YQ |
3658 | if (!bits (aarch64_insn_r->aarch64_insn, 2, 4) |
3659 | && !bits (aarch64_insn_r->aarch64_insn, 21, 23) | |
3660 | && bits (aarch64_insn_r->aarch64_insn, 0, 1) == 0x01) | |
99afc88b OJ |
3661 | { |
3662 | ULONGEST svc_number; | |
3663 | ||
3664 | regcache_raw_read_unsigned (aarch64_insn_r->regcache, 8, | |
3665 | &svc_number); | |
3666 | return tdep->aarch64_syscall_record (aarch64_insn_r->regcache, | |
3667 | svc_number); | |
3668 | } | |
3669 | else | |
3670 | return AARCH64_RECORD_UNSUPPORTED; | |
3671 | } | |
3672 | /* System instructions. */ | |
3673 | else if (insn_bits24_27 == 0x05 && insn_bits22_23 == 0x00) | |
3674 | { | |
3675 | uint32_t reg_rt, reg_crn; | |
3676 | ||
3677 | reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4); | |
3678 | reg_crn = bits (aarch64_insn_r->aarch64_insn, 12, 15); | |
3679 | ||
3680 | /* Record rt in case of sysl and mrs instructions. */ | |
3681 | if (bit (aarch64_insn_r->aarch64_insn, 21)) | |
3682 | { | |
3683 | record_buf[0] = reg_rt; | |
3684 | aarch64_insn_r->reg_rec_count = 1; | |
3685 | } | |
3686 | /* Record cpsr for hint and msr(immediate) instructions. */ | |
3687 | else if (reg_crn == 0x02 || reg_crn == 0x04) | |
3688 | { | |
3689 | record_buf[0] = AARCH64_CPSR_REGNUM; | |
3690 | aarch64_insn_r->reg_rec_count = 1; | |
3691 | } | |
3692 | } | |
3693 | /* Unconditional branch (register). */ | |
3694 | else if((insn_bits24_27 & 0x0e) == 0x06) | |
3695 | { | |
3696 | record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM; | |
3697 | if (bits (aarch64_insn_r->aarch64_insn, 21, 22) == 0x01) | |
3698 | record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM; | |
3699 | } | |
3700 | else | |
3701 | return AARCH64_RECORD_UNKNOWN; | |
3702 | } | |
3703 | /* Unconditional branch (immediate). */ | |
3704 | else if ((insn_bits28_31 & 0x07) == 0x01 && (insn_bits24_27 & 0x0c) == 0x04) | |
3705 | { | |
3706 | record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM; | |
3707 | if (bit (aarch64_insn_r->aarch64_insn, 31)) | |
3708 | record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM; | |
3709 | } | |
3710 | else | |
3711 | /* Compare & branch (immediate), Test & branch (immediate) and | |
3712 | Conditional branch (immediate). */ | |
3713 | record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM; | |
3714 | ||
3715 | REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count, | |
3716 | record_buf); | |
3717 | return AARCH64_RECORD_SUCCESS; | |
3718 | } | |
3719 | ||
3720 | /* Record handler for advanced SIMD load and store instructions. */ | |
3721 | ||
3722 | static unsigned int | |
3723 | aarch64_record_asimd_load_store (insn_decode_record *aarch64_insn_r) | |
3724 | { | |
3725 | CORE_ADDR address; | |
3726 | uint64_t addr_offset = 0; | |
3727 | uint32_t record_buf[24]; | |
3728 | uint64_t record_buf_mem[24]; | |
3729 | uint32_t reg_rn, reg_rt; | |
3730 | uint32_t reg_index = 0, mem_index = 0; | |
3731 | uint8_t opcode_bits, size_bits; | |
3732 | ||
3733 | reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4); | |
3734 | reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9); | |
3735 | size_bits = bits (aarch64_insn_r->aarch64_insn, 10, 11); | |
3736 | opcode_bits = bits (aarch64_insn_r->aarch64_insn, 12, 15); | |
3737 | regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn, &address); | |
3738 | ||
3739 | if (record_debug) | |
b277c936 | 3740 | debug_printf ("Process record: Advanced SIMD load/store\n"); |
99afc88b OJ |
3741 | |
3742 | /* Load/store single structure. */ | |
3743 | if (bit (aarch64_insn_r->aarch64_insn, 24)) | |
3744 | { | |
3745 | uint8_t sindex, scale, selem, esize, replicate = 0; | |
3746 | scale = opcode_bits >> 2; | |
3747 | selem = ((opcode_bits & 0x02) | | |
3748 | bit (aarch64_insn_r->aarch64_insn, 21)) + 1; | |
3749 | switch (scale) | |
3750 | { | |
3751 | case 1: | |
3752 | if (size_bits & 0x01) | |
3753 | return AARCH64_RECORD_UNKNOWN; | |
3754 | break; | |
3755 | case 2: | |
3756 | if ((size_bits >> 1) & 0x01) | |
3757 | return AARCH64_RECORD_UNKNOWN; | |
3758 | if (size_bits & 0x01) | |
3759 | { | |
3760 | if (!((opcode_bits >> 1) & 0x01)) | |
3761 | scale = 3; | |
3762 | else | |
3763 | return AARCH64_RECORD_UNKNOWN; | |
3764 | } | |
3765 | break; | |
3766 | case 3: | |
3767 | if (bit (aarch64_insn_r->aarch64_insn, 22) && !(opcode_bits & 0x01)) | |
3768 | { | |
3769 | scale = size_bits; | |
3770 | replicate = 1; | |
3771 | break; | |
3772 | } | |
3773 | else | |
3774 | return AARCH64_RECORD_UNKNOWN; | |
3775 | default: | |
3776 | break; | |
3777 | } | |
3778 | esize = 8 << scale; | |
3779 | if (replicate) | |
3780 | for (sindex = 0; sindex < selem; sindex++) | |
3781 | { | |
3782 | record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM; | |
3783 | reg_rt = (reg_rt + 1) % 32; | |
3784 | } | |
3785 | else | |
3786 | { | |
3787 | for (sindex = 0; sindex < selem; sindex++) | |
a2e3e93f SM |
3788 | { |
3789 | if (bit (aarch64_insn_r->aarch64_insn, 22)) | |
3790 | record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM; | |
3791 | else | |
3792 | { | |
3793 | record_buf_mem[mem_index++] = esize / 8; | |
3794 | record_buf_mem[mem_index++] = address + addr_offset; | |
3795 | } | |
3796 | addr_offset = addr_offset + (esize / 8); | |
3797 | reg_rt = (reg_rt + 1) % 32; | |
3798 | } | |
99afc88b OJ |
3799 | } |
3800 | } | |
3801 | /* Load/store multiple structure. */ | |
3802 | else | |
3803 | { | |
3804 | uint8_t selem, esize, rpt, elements; | |
3805 | uint8_t eindex, rindex; | |
3806 | ||
3807 | esize = 8 << size_bits; | |
3808 | if (bit (aarch64_insn_r->aarch64_insn, 30)) | |
3809 | elements = 128 / esize; | |
3810 | else | |
3811 | elements = 64 / esize; | |
3812 | ||
3813 | switch (opcode_bits) | |
3814 | { | |
3815 | /*LD/ST4 (4 Registers). */ | |
3816 | case 0: | |
3817 | rpt = 1; | |
3818 | selem = 4; | |
3819 | break; | |
3820 | /*LD/ST1 (4 Registers). */ | |
3821 | case 2: | |
3822 | rpt = 4; | |
3823 | selem = 1; | |
3824 | break; | |
3825 | /*LD/ST3 (3 Registers). */ | |
3826 | case 4: | |
3827 | rpt = 1; | |
3828 | selem = 3; | |
3829 | break; | |
3830 | /*LD/ST1 (3 Registers). */ | |
3831 | case 6: | |
3832 | rpt = 3; | |
3833 | selem = 1; | |
3834 | break; | |
3835 | /*LD/ST1 (1 Register). */ | |
3836 | case 7: | |
3837 | rpt = 1; | |
3838 | selem = 1; | |
3839 | break; | |
3840 | /*LD/ST2 (2 Registers). */ | |
3841 | case 8: | |
3842 | rpt = 1; | |
3843 | selem = 2; | |
3844 | break; | |
3845 | /*LD/ST1 (2 Registers). */ | |
3846 | case 10: | |
3847 | rpt = 2; | |
3848 | selem = 1; | |
3849 | break; | |
3850 | default: | |
3851 | return AARCH64_RECORD_UNSUPPORTED; | |
3852 | break; | |
3853 | } | |
3854 | for (rindex = 0; rindex < rpt; rindex++) | |
3855 | for (eindex = 0; eindex < elements; eindex++) | |
3856 | { | |
3857 | uint8_t reg_tt, sindex; | |
3858 | reg_tt = (reg_rt + rindex) % 32; | |
3859 | for (sindex = 0; sindex < selem; sindex++) | |
3860 | { | |
3861 | if (bit (aarch64_insn_r->aarch64_insn, 22)) | |
3862 | record_buf[reg_index++] = reg_tt + AARCH64_V0_REGNUM; | |
3863 | else | |
3864 | { | |
3865 | record_buf_mem[mem_index++] = esize / 8; | |
3866 | record_buf_mem[mem_index++] = address + addr_offset; | |
3867 | } | |
3868 | addr_offset = addr_offset + (esize / 8); | |
3869 | reg_tt = (reg_tt + 1) % 32; | |
3870 | } | |
3871 | } | |
3872 | } | |
3873 | ||
3874 | if (bit (aarch64_insn_r->aarch64_insn, 23)) | |
3875 | record_buf[reg_index++] = reg_rn; | |
3876 | ||
3877 | aarch64_insn_r->reg_rec_count = reg_index; | |
3878 | aarch64_insn_r->mem_rec_count = mem_index / 2; | |
3879 | MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count, | |
3880 | record_buf_mem); | |
3881 | REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count, | |
3882 | record_buf); | |
3883 | return AARCH64_RECORD_SUCCESS; | |
3884 | } | |
3885 | ||
3886 | /* Record handler for load and store instructions. */ | |
3887 | ||
3888 | static unsigned int | |
3889 | aarch64_record_load_store (insn_decode_record *aarch64_insn_r) | |
3890 | { | |
3891 | uint8_t insn_bits24_27, insn_bits28_29, insn_bits10_11; | |
3892 | uint8_t insn_bit23, insn_bit21; | |
3893 | uint8_t opc, size_bits, ld_flag, vector_flag; | |
3894 | uint32_t reg_rn, reg_rt, reg_rt2; | |
3895 | uint64_t datasize, offset; | |
3896 | uint32_t record_buf[8]; | |
3897 | uint64_t record_buf_mem[8]; | |
3898 | CORE_ADDR address; | |
3899 | ||
3900 | insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11); | |
3901 | insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27); | |
3902 | insn_bits28_29 = bits (aarch64_insn_r->aarch64_insn, 28, 29); | |
3903 | insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21); | |
3904 | insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23); | |
3905 | ld_flag = bit (aarch64_insn_r->aarch64_insn, 22); | |
3906 | vector_flag = bit (aarch64_insn_r->aarch64_insn, 26); | |
3907 | reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4); | |
3908 | reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9); | |
3909 | reg_rt2 = bits (aarch64_insn_r->aarch64_insn, 10, 14); | |
3910 | size_bits = bits (aarch64_insn_r->aarch64_insn, 30, 31); | |
3911 | ||
3912 | /* Load/store exclusive. */ | |
3913 | if (insn_bits24_27 == 0x08 && insn_bits28_29 == 0x00) | |
3914 | { | |
3915 | if (record_debug) | |
b277c936 | 3916 | debug_printf ("Process record: load/store exclusive\n"); |
99afc88b OJ |
3917 | |
3918 | if (ld_flag) | |
3919 | { | |
3920 | record_buf[0] = reg_rt; | |
3921 | aarch64_insn_r->reg_rec_count = 1; | |
3922 | if (insn_bit21) | |
3923 | { | |
3924 | record_buf[1] = reg_rt2; | |
3925 | aarch64_insn_r->reg_rec_count = 2; | |
3926 | } | |
3927 | } | |
3928 | else | |
3929 | { | |
3930 | if (insn_bit21) | |
3931 | datasize = (8 << size_bits) * 2; | |
3932 | else | |
3933 | datasize = (8 << size_bits); | |
3934 | regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn, | |
3935 | &address); | |
3936 | record_buf_mem[0] = datasize / 8; | |
3937 | record_buf_mem[1] = address; | |
3938 | aarch64_insn_r->mem_rec_count = 1; | |
3939 | if (!insn_bit23) | |
3940 | { | |
3941 | /* Save register rs. */ | |
3942 | record_buf[0] = bits (aarch64_insn_r->aarch64_insn, 16, 20); | |
3943 | aarch64_insn_r->reg_rec_count = 1; | |
3944 | } | |
3945 | } | |
3946 | } | |
3947 | /* Load register (literal) instructions decoding. */ | |
3948 | else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x01) | |
3949 | { | |
3950 | if (record_debug) | |
b277c936 | 3951 | debug_printf ("Process record: load register (literal)\n"); |
99afc88b OJ |
3952 | if (vector_flag) |
3953 | record_buf[0] = reg_rt + AARCH64_V0_REGNUM; | |
3954 | else | |
3955 | record_buf[0] = reg_rt; | |
3956 | aarch64_insn_r->reg_rec_count = 1; | |
3957 | } | |
3958 | /* All types of load/store pair instructions decoding. */ | |
3959 | else if ((insn_bits24_27 & 0x0a) == 0x08 && insn_bits28_29 == 0x02) | |
3960 | { | |
3961 | if (record_debug) | |
b277c936 | 3962 | debug_printf ("Process record: load/store pair\n"); |
99afc88b OJ |
3963 | |
3964 | if (ld_flag) | |
3965 | { | |
3966 | if (vector_flag) | |
3967 | { | |
3968 | record_buf[0] = reg_rt + AARCH64_V0_REGNUM; | |
3969 | record_buf[1] = reg_rt2 + AARCH64_V0_REGNUM; | |
3970 | } | |
3971 | else | |
3972 | { | |
3973 | record_buf[0] = reg_rt; | |
3974 | record_buf[1] = reg_rt2; | |
3975 | } | |
3976 | aarch64_insn_r->reg_rec_count = 2; | |
3977 | } | |
3978 | else | |
3979 | { | |
3980 | uint16_t imm7_off; | |
3981 | imm7_off = bits (aarch64_insn_r->aarch64_insn, 15, 21); | |
3982 | if (!vector_flag) | |
3983 | size_bits = size_bits >> 1; | |
3984 | datasize = 8 << (2 + size_bits); | |
3985 | offset = (imm7_off & 0x40) ? (~imm7_off & 0x007f) + 1 : imm7_off; | |
3986 | offset = offset << (2 + size_bits); | |
3987 | regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn, | |
3988 | &address); | |
3989 | if (!((insn_bits24_27 & 0x0b) == 0x08 && insn_bit23)) | |
3990 | { | |
3991 | if (imm7_off & 0x40) | |
3992 | address = address - offset; | |
3993 | else | |
3994 | address = address + offset; | |
3995 | } | |
3996 | ||
3997 | record_buf_mem[0] = datasize / 8; | |
3998 | record_buf_mem[1] = address; | |
3999 | record_buf_mem[2] = datasize / 8; | |
4000 | record_buf_mem[3] = address + (datasize / 8); | |
4001 | aarch64_insn_r->mem_rec_count = 2; | |
4002 | } | |
4003 | if (bit (aarch64_insn_r->aarch64_insn, 23)) | |
4004 | record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn; | |
4005 | } | |
4006 | /* Load/store register (unsigned immediate) instructions. */ | |
4007 | else if ((insn_bits24_27 & 0x0b) == 0x09 && insn_bits28_29 == 0x03) | |
4008 | { | |
4009 | opc = bits (aarch64_insn_r->aarch64_insn, 22, 23); | |
4010 | if (!(opc >> 1)) | |
33877125 YQ |
4011 | { |
4012 | if (opc & 0x01) | |
4013 | ld_flag = 0x01; | |
4014 | else | |
4015 | ld_flag = 0x0; | |
4016 | } | |
99afc88b | 4017 | else |
33877125 | 4018 | { |
1e2b521d YQ |
4019 | if (size_bits == 0x3 && vector_flag == 0x0 && opc == 0x2) |
4020 | { | |
4021 | /* PRFM (immediate) */ | |
4022 | return AARCH64_RECORD_SUCCESS; | |
4023 | } | |
4024 | else if (size_bits == 0x2 && vector_flag == 0x0 && opc == 0x2) | |
4025 | { | |
4026 | /* LDRSW (immediate) */ | |
4027 | ld_flag = 0x1; | |
4028 | } | |
33877125 | 4029 | else |
1e2b521d YQ |
4030 | { |
4031 | if (opc & 0x01) | |
4032 | ld_flag = 0x01; | |
4033 | else | |
4034 | ld_flag = 0x0; | |
4035 | } | |
33877125 | 4036 | } |
99afc88b OJ |
4037 | |
4038 | if (record_debug) | |
4039 | { | |
b277c936 PL |
4040 | debug_printf ("Process record: load/store (unsigned immediate):" |
4041 | " size %x V %d opc %x\n", size_bits, vector_flag, | |
4042 | opc); | |
99afc88b OJ |
4043 | } |
4044 | ||
4045 | if (!ld_flag) | |
4046 | { | |
4047 | offset = bits (aarch64_insn_r->aarch64_insn, 10, 21); | |
4048 | datasize = 8 << size_bits; | |
4049 | regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn, | |
4050 | &address); | |
4051 | offset = offset << size_bits; | |
4052 | address = address + offset; | |
4053 | ||
4054 | record_buf_mem[0] = datasize >> 3; | |
4055 | record_buf_mem[1] = address; | |
4056 | aarch64_insn_r->mem_rec_count = 1; | |
4057 | } | |
4058 | else | |
4059 | { | |
4060 | if (vector_flag) | |
4061 | record_buf[0] = reg_rt + AARCH64_V0_REGNUM; | |
4062 | else | |
4063 | record_buf[0] = reg_rt; | |
4064 | aarch64_insn_r->reg_rec_count = 1; | |
4065 | } | |
4066 | } | |
4067 | /* Load/store register (register offset) instructions. */ | |
5d98d3cd YQ |
4068 | else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03 |
4069 | && insn_bits10_11 == 0x02 && insn_bit21) | |
99afc88b OJ |
4070 | { |
4071 | if (record_debug) | |
b277c936 | 4072 | debug_printf ("Process record: load/store (register offset)\n"); |
99afc88b OJ |
4073 | opc = bits (aarch64_insn_r->aarch64_insn, 22, 23); |
4074 | if (!(opc >> 1)) | |
4075 | if (opc & 0x01) | |
4076 | ld_flag = 0x01; | |
4077 | else | |
4078 | ld_flag = 0x0; | |
4079 | else | |
4080 | if (size_bits != 0x03) | |
4081 | ld_flag = 0x01; | |
4082 | else | |
4083 | return AARCH64_RECORD_UNKNOWN; | |
4084 | ||
4085 | if (!ld_flag) | |
4086 | { | |
d9436c7c PA |
4087 | ULONGEST reg_rm_val; |
4088 | ||
99afc88b OJ |
4089 | regcache_raw_read_unsigned (aarch64_insn_r->regcache, |
4090 | bits (aarch64_insn_r->aarch64_insn, 16, 20), ®_rm_val); | |
4091 | if (bit (aarch64_insn_r->aarch64_insn, 12)) | |
4092 | offset = reg_rm_val << size_bits; | |
4093 | else | |
4094 | offset = reg_rm_val; | |
4095 | datasize = 8 << size_bits; | |
4096 | regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn, | |
4097 | &address); | |
4098 | address = address + offset; | |
4099 | record_buf_mem[0] = datasize >> 3; | |
4100 | record_buf_mem[1] = address; | |
4101 | aarch64_insn_r->mem_rec_count = 1; | |
4102 | } | |
4103 | else | |
4104 | { | |
4105 | if (vector_flag) | |
4106 | record_buf[0] = reg_rt + AARCH64_V0_REGNUM; | |
4107 | else | |
4108 | record_buf[0] = reg_rt; | |
4109 | aarch64_insn_r->reg_rec_count = 1; | |
4110 | } | |
4111 | } | |
4112 | /* Load/store register (immediate and unprivileged) instructions. */ | |
5d98d3cd YQ |
4113 | else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03 |
4114 | && !insn_bit21) | |
99afc88b OJ |
4115 | { |
4116 | if (record_debug) | |
4117 | { | |
b277c936 PL |
4118 | debug_printf ("Process record: load/store " |
4119 | "(immediate and unprivileged)\n"); | |
99afc88b OJ |
4120 | } |
4121 | opc = bits (aarch64_insn_r->aarch64_insn, 22, 23); | |
4122 | if (!(opc >> 1)) | |
4123 | if (opc & 0x01) | |
4124 | ld_flag = 0x01; | |
4125 | else | |
4126 | ld_flag = 0x0; | |
4127 | else | |
4128 | if (size_bits != 0x03) | |
4129 | ld_flag = 0x01; | |
4130 | else | |
4131 | return AARCH64_RECORD_UNKNOWN; | |
4132 | ||
4133 | if (!ld_flag) | |
4134 | { | |
4135 | uint16_t imm9_off; | |
4136 | imm9_off = bits (aarch64_insn_r->aarch64_insn, 12, 20); | |
4137 | offset = (imm9_off & 0x0100) ? (((~imm9_off) & 0x01ff) + 1) : imm9_off; | |
4138 | datasize = 8 << size_bits; | |
4139 | regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn, | |
4140 | &address); | |
4141 | if (insn_bits10_11 != 0x01) | |
4142 | { | |
4143 | if (imm9_off & 0x0100) | |
4144 | address = address - offset; | |
4145 | else | |
4146 | address = address + offset; | |
4147 | } | |
4148 | record_buf_mem[0] = datasize >> 3; | |
4149 | record_buf_mem[1] = address; | |
4150 | aarch64_insn_r->mem_rec_count = 1; | |
4151 | } | |
4152 | else | |
4153 | { | |
4154 | if (vector_flag) | |
4155 | record_buf[0] = reg_rt + AARCH64_V0_REGNUM; | |
4156 | else | |
4157 | record_buf[0] = reg_rt; | |
4158 | aarch64_insn_r->reg_rec_count = 1; | |
4159 | } | |
4160 | if (insn_bits10_11 == 0x01 || insn_bits10_11 == 0x03) | |
4161 | record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn; | |
4162 | } | |
4163 | /* Advanced SIMD load/store instructions. */ | |
4164 | else | |
4165 | return aarch64_record_asimd_load_store (aarch64_insn_r); | |
4166 | ||
4167 | MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count, | |
4168 | record_buf_mem); | |
4169 | REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count, | |
4170 | record_buf); | |
4171 | return AARCH64_RECORD_SUCCESS; | |
4172 | } | |
4173 | ||
4174 | /* Record handler for data processing SIMD and floating point instructions. */ | |
4175 | ||
4176 | static unsigned int | |
4177 | aarch64_record_data_proc_simd_fp (insn_decode_record *aarch64_insn_r) | |
4178 | { | |
4179 | uint8_t insn_bit21, opcode, rmode, reg_rd; | |
4180 | uint8_t insn_bits24_27, insn_bits28_31, insn_bits10_11, insn_bits12_15; | |
4181 | uint8_t insn_bits11_14; | |
4182 | uint32_t record_buf[2]; | |
4183 | ||
4184 | insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27); | |
4185 | insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31); | |
4186 | insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11); | |
4187 | insn_bits12_15 = bits (aarch64_insn_r->aarch64_insn, 12, 15); | |
4188 | insn_bits11_14 = bits (aarch64_insn_r->aarch64_insn, 11, 14); | |
4189 | opcode = bits (aarch64_insn_r->aarch64_insn, 16, 18); | |
4190 | rmode = bits (aarch64_insn_r->aarch64_insn, 19, 20); | |
4191 | reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4); | |
4192 | insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21); | |
4193 | ||
4194 | if (record_debug) | |
b277c936 | 4195 | debug_printf ("Process record: data processing SIMD/FP: "); |
99afc88b OJ |
4196 | |
4197 | if ((insn_bits28_31 & 0x05) == 0x01 && insn_bits24_27 == 0x0e) | |
4198 | { | |
4199 | /* Floating point - fixed point conversion instructions. */ | |
4200 | if (!insn_bit21) | |
4201 | { | |
4202 | if (record_debug) | |
b277c936 | 4203 | debug_printf ("FP - fixed point conversion"); |
99afc88b OJ |
4204 | |
4205 | if ((opcode >> 1) == 0x0 && rmode == 0x03) | |
4206 | record_buf[0] = reg_rd; | |
4207 | else | |
4208 | record_buf[0] = reg_rd + AARCH64_V0_REGNUM; | |
4209 | } | |
4210 | /* Floating point - conditional compare instructions. */ | |
4211 | else if (insn_bits10_11 == 0x01) | |
4212 | { | |
4213 | if (record_debug) | |
b277c936 | 4214 | debug_printf ("FP - conditional compare"); |
99afc88b OJ |
4215 | |
4216 | record_buf[0] = AARCH64_CPSR_REGNUM; | |
4217 | } | |
4218 | /* Floating point - data processing (2-source) and | |
4219 | conditional select instructions. */ | |
4220 | else if (insn_bits10_11 == 0x02 || insn_bits10_11 == 0x03) | |
4221 | { | |
4222 | if (record_debug) | |
b277c936 | 4223 | debug_printf ("FP - DP (2-source)"); |
99afc88b OJ |
4224 | |
4225 | record_buf[0] = reg_rd + AARCH64_V0_REGNUM; | |
4226 | } | |
4227 | else if (insn_bits10_11 == 0x00) | |
4228 | { | |
4229 | /* Floating point - immediate instructions. */ | |
4230 | if ((insn_bits12_15 & 0x01) == 0x01 | |
4231 | || (insn_bits12_15 & 0x07) == 0x04) | |
4232 | { | |
4233 | if (record_debug) | |
b277c936 | 4234 | debug_printf ("FP - immediate"); |
99afc88b OJ |
4235 | record_buf[0] = reg_rd + AARCH64_V0_REGNUM; |
4236 | } | |
4237 | /* Floating point - compare instructions. */ | |
4238 | else if ((insn_bits12_15 & 0x03) == 0x02) | |
4239 | { | |
4240 | if (record_debug) | |
b277c936 | 4241 | debug_printf ("FP - immediate"); |
99afc88b OJ |
4242 | record_buf[0] = AARCH64_CPSR_REGNUM; |
4243 | } | |
4244 | /* Floating point - integer conversions instructions. */ | |
f62fce35 | 4245 | else if (insn_bits12_15 == 0x00) |
99afc88b OJ |
4246 | { |
4247 | /* Convert float to integer instruction. */ | |
4248 | if (!(opcode >> 1) || ((opcode >> 1) == 0x02 && !rmode)) | |
4249 | { | |
4250 | if (record_debug) | |
b277c936 | 4251 | debug_printf ("float to int conversion"); |
99afc88b OJ |
4252 | |
4253 | record_buf[0] = reg_rd + AARCH64_X0_REGNUM; | |
4254 | } | |
4255 | /* Convert integer to float instruction. */ | |
4256 | else if ((opcode >> 1) == 0x01 && !rmode) | |
4257 | { | |
4258 | if (record_debug) | |
b277c936 | 4259 | debug_printf ("int to float conversion"); |
99afc88b OJ |
4260 | |
4261 | record_buf[0] = reg_rd + AARCH64_V0_REGNUM; | |
4262 | } | |
4263 | /* Move float to integer instruction. */ | |
4264 | else if ((opcode >> 1) == 0x03) | |
4265 | { | |
4266 | if (record_debug) | |
b277c936 | 4267 | debug_printf ("move float to int"); |
99afc88b OJ |
4268 | |
4269 | if (!(opcode & 0x01)) | |
4270 | record_buf[0] = reg_rd + AARCH64_X0_REGNUM; | |
4271 | else | |
4272 | record_buf[0] = reg_rd + AARCH64_V0_REGNUM; | |
4273 | } | |
f62fce35 YQ |
4274 | else |
4275 | return AARCH64_RECORD_UNKNOWN; | |
99afc88b | 4276 | } |
f62fce35 YQ |
4277 | else |
4278 | return AARCH64_RECORD_UNKNOWN; | |
99afc88b | 4279 | } |
f62fce35 YQ |
4280 | else |
4281 | return AARCH64_RECORD_UNKNOWN; | |
99afc88b OJ |
4282 | } |
4283 | else if ((insn_bits28_31 & 0x09) == 0x00 && insn_bits24_27 == 0x0e) | |
4284 | { | |
4285 | if (record_debug) | |
b277c936 | 4286 | debug_printf ("SIMD copy"); |
99afc88b OJ |
4287 | |
4288 | /* Advanced SIMD copy instructions. */ | |
4289 | if (!bits (aarch64_insn_r->aarch64_insn, 21, 23) | |
4290 | && !bit (aarch64_insn_r->aarch64_insn, 15) | |
4291 | && bit (aarch64_insn_r->aarch64_insn, 10)) | |
4292 | { | |
4293 | if (insn_bits11_14 == 0x05 || insn_bits11_14 == 0x07) | |
4294 | record_buf[0] = reg_rd + AARCH64_X0_REGNUM; | |
4295 | else | |
4296 | record_buf[0] = reg_rd + AARCH64_V0_REGNUM; | |
4297 | } | |
4298 | else | |
4299 | record_buf[0] = reg_rd + AARCH64_V0_REGNUM; | |
4300 | } | |
4301 | /* All remaining floating point or advanced SIMD instructions. */ | |
4302 | else | |
4303 | { | |
4304 | if (record_debug) | |
b277c936 | 4305 | debug_printf ("all remain"); |
99afc88b OJ |
4306 | |
4307 | record_buf[0] = reg_rd + AARCH64_V0_REGNUM; | |
4308 | } | |
4309 | ||
4310 | if (record_debug) | |
b277c936 | 4311 | debug_printf ("\n"); |
99afc88b OJ |
4312 | |
4313 | aarch64_insn_r->reg_rec_count++; | |
4314 | gdb_assert (aarch64_insn_r->reg_rec_count == 1); | |
4315 | REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count, | |
4316 | record_buf); | |
4317 | return AARCH64_RECORD_SUCCESS; | |
4318 | } | |
4319 | ||
4320 | /* Decodes insns type and invokes its record handler. */ | |
4321 | ||
4322 | static unsigned int | |
4323 | aarch64_record_decode_insn_handler (insn_decode_record *aarch64_insn_r) | |
4324 | { | |
4325 | uint32_t ins_bit25, ins_bit26, ins_bit27, ins_bit28; | |
4326 | ||
4327 | ins_bit25 = bit (aarch64_insn_r->aarch64_insn, 25); | |
4328 | ins_bit26 = bit (aarch64_insn_r->aarch64_insn, 26); | |
4329 | ins_bit27 = bit (aarch64_insn_r->aarch64_insn, 27); | |
4330 | ins_bit28 = bit (aarch64_insn_r->aarch64_insn, 28); | |
4331 | ||
4332 | /* Data processing - immediate instructions. */ | |
4333 | if (!ins_bit26 && !ins_bit27 && ins_bit28) | |
4334 | return aarch64_record_data_proc_imm (aarch64_insn_r); | |
4335 | ||
4336 | /* Branch, exception generation and system instructions. */ | |
4337 | if (ins_bit26 && !ins_bit27 && ins_bit28) | |
4338 | return aarch64_record_branch_except_sys (aarch64_insn_r); | |
4339 | ||
4340 | /* Load and store instructions. */ | |
4341 | if (!ins_bit25 && ins_bit27) | |
4342 | return aarch64_record_load_store (aarch64_insn_r); | |
4343 | ||
4344 | /* Data processing - register instructions. */ | |
4345 | if (ins_bit25 && !ins_bit26 && ins_bit27) | |
4346 | return aarch64_record_data_proc_reg (aarch64_insn_r); | |
4347 | ||
4348 | /* Data processing - SIMD and floating point instructions. */ | |
4349 | if (ins_bit25 && ins_bit26 && ins_bit27) | |
4350 | return aarch64_record_data_proc_simd_fp (aarch64_insn_r); | |
4351 | ||
4352 | return AARCH64_RECORD_UNSUPPORTED; | |
4353 | } | |
4354 | ||
4355 | /* Cleans up local record registers and memory allocations. */ | |
4356 | ||
4357 | static void | |
4358 | deallocate_reg_mem (insn_decode_record *record) | |
4359 | { | |
4360 | xfree (record->aarch64_regs); | |
4361 | xfree (record->aarch64_mems); | |
4362 | } | |
4363 | ||
1e2b521d YQ |
4364 | #if GDB_SELF_TEST |
4365 | namespace selftests { | |
4366 | ||
4367 | static void | |
4368 | aarch64_process_record_test (void) | |
4369 | { | |
4370 | struct gdbarch_info info; | |
4371 | uint32_t ret; | |
4372 | ||
4373 | gdbarch_info_init (&info); | |
4374 | info.bfd_arch_info = bfd_scan_arch ("aarch64"); | |
4375 | ||
4376 | struct gdbarch *gdbarch = gdbarch_find_by_info (info); | |
4377 | SELF_CHECK (gdbarch != NULL); | |
4378 | ||
4379 | insn_decode_record aarch64_record; | |
4380 | ||
4381 | memset (&aarch64_record, 0, sizeof (insn_decode_record)); | |
4382 | aarch64_record.regcache = NULL; | |
4383 | aarch64_record.this_addr = 0; | |
4384 | aarch64_record.gdbarch = gdbarch; | |
4385 | ||
4386 | /* 20 00 80 f9 prfm pldl1keep, [x1] */ | |
4387 | aarch64_record.aarch64_insn = 0xf9800020; | |
4388 | ret = aarch64_record_decode_insn_handler (&aarch64_record); | |
4389 | SELF_CHECK (ret == AARCH64_RECORD_SUCCESS); | |
4390 | SELF_CHECK (aarch64_record.reg_rec_count == 0); | |
4391 | SELF_CHECK (aarch64_record.mem_rec_count == 0); | |
4392 | ||
4393 | deallocate_reg_mem (&aarch64_record); | |
4394 | } | |
4395 | ||
4396 | } // namespace selftests | |
4397 | #endif /* GDB_SELF_TEST */ | |
4398 | ||
99afc88b OJ |
4399 | /* Parse the current instruction and record the values of the registers and |
4400 | memory that will be changed in current instruction to record_arch_list | |
4401 | return -1 if something is wrong. */ | |
4402 | ||
4403 | int | |
4404 | aarch64_process_record (struct gdbarch *gdbarch, struct regcache *regcache, | |
4405 | CORE_ADDR insn_addr) | |
4406 | { | |
4407 | uint32_t rec_no = 0; | |
4408 | uint8_t insn_size = 4; | |
4409 | uint32_t ret = 0; | |
99afc88b OJ |
4410 | gdb_byte buf[insn_size]; |
4411 | insn_decode_record aarch64_record; | |
4412 | ||
4413 | memset (&buf[0], 0, insn_size); | |
4414 | memset (&aarch64_record, 0, sizeof (insn_decode_record)); | |
4415 | target_read_memory (insn_addr, &buf[0], insn_size); | |
4416 | aarch64_record.aarch64_insn | |
4417 | = (uint32_t) extract_unsigned_integer (&buf[0], | |
4418 | insn_size, | |
4419 | gdbarch_byte_order (gdbarch)); | |
4420 | aarch64_record.regcache = regcache; | |
4421 | aarch64_record.this_addr = insn_addr; | |
4422 | aarch64_record.gdbarch = gdbarch; | |
4423 | ||
4424 | ret = aarch64_record_decode_insn_handler (&aarch64_record); | |
4425 | if (ret == AARCH64_RECORD_UNSUPPORTED) | |
4426 | { | |
4427 | printf_unfiltered (_("Process record does not support instruction " | |
4428 | "0x%0x at address %s.\n"), | |
4429 | aarch64_record.aarch64_insn, | |
4430 | paddress (gdbarch, insn_addr)); | |
4431 | ret = -1; | |
4432 | } | |
4433 | ||
4434 | if (0 == ret) | |
4435 | { | |
4436 | /* Record registers. */ | |
4437 | record_full_arch_list_add_reg (aarch64_record.regcache, | |
4438 | AARCH64_PC_REGNUM); | |
4439 | /* Always record register CPSR. */ | |
4440 | record_full_arch_list_add_reg (aarch64_record.regcache, | |
4441 | AARCH64_CPSR_REGNUM); | |
4442 | if (aarch64_record.aarch64_regs) | |
4443 | for (rec_no = 0; rec_no < aarch64_record.reg_rec_count; rec_no++) | |
4444 | if (record_full_arch_list_add_reg (aarch64_record.regcache, | |
4445 | aarch64_record.aarch64_regs[rec_no])) | |
4446 | ret = -1; | |
4447 | ||
4448 | /* Record memories. */ | |
4449 | if (aarch64_record.aarch64_mems) | |
4450 | for (rec_no = 0; rec_no < aarch64_record.mem_rec_count; rec_no++) | |
4451 | if (record_full_arch_list_add_mem | |
4452 | ((CORE_ADDR)aarch64_record.aarch64_mems[rec_no].addr, | |
4453 | aarch64_record.aarch64_mems[rec_no].len)) | |
4454 | ret = -1; | |
4455 | ||
4456 | if (record_full_arch_list_add_end ()) | |
4457 | ret = -1; | |
4458 | } | |
4459 | ||
4460 | deallocate_reg_mem (&aarch64_record); | |
4461 | return ret; | |
4462 | } |