Add SVE register defines
[deliverable/binutils-gdb.git] / gdb / aarch64-tdep.c
CommitLineData
07b287a0
MS
1/* Common target dependent code for GDB on AArch64 systems.
2
e2882c85 3 Copyright (C) 2009-2018 Free Software Foundation, Inc.
07b287a0
MS
4 Contributed by ARM Ltd.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "defs.h"
22
23#include "frame.h"
24#include "inferior.h"
25#include "gdbcmd.h"
26#include "gdbcore.h"
07b287a0
MS
27#include "dis-asm.h"
28#include "regcache.h"
29#include "reggroups.h"
07b287a0
MS
30#include "value.h"
31#include "arch-utils.h"
32#include "osabi.h"
33#include "frame-unwind.h"
34#include "frame-base.h"
35#include "trad-frame.h"
36#include "objfiles.h"
37#include "dwarf2-frame.h"
38#include "gdbtypes.h"
39#include "prologue-value.h"
40#include "target-descriptions.h"
41#include "user-regs.h"
42#include "language.h"
43#include "infcall.h"
ea873d8e
PL
44#include "ax.h"
45#include "ax-gdb.h"
4d9a9006 46#include "selftest.h"
07b287a0
MS
47
48#include "aarch64-tdep.h"
49
50#include "elf-bfd.h"
51#include "elf/aarch64.h"
52
07b287a0
MS
53#include "vec.h"
54
99afc88b
OJ
55#include "record.h"
56#include "record-full.h"
787749ea
PL
57#include "arch/aarch64-insn.h"
58
f77ee802 59#include "opcode/aarch64.h"
325fac50 60#include <algorithm>
f77ee802
YQ
61
62#define submask(x) ((1L << ((x) + 1)) - 1)
63#define bit(obj,st) (((obj) >> (st)) & 1)
64#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
65
07b287a0
MS
66/* Pseudo register base numbers. */
67#define AARCH64_Q0_REGNUM 0
187f5d00 68#define AARCH64_D0_REGNUM (AARCH64_Q0_REGNUM + AARCH64_D_REGISTER_COUNT)
07b287a0
MS
69#define AARCH64_S0_REGNUM (AARCH64_D0_REGNUM + 32)
70#define AARCH64_H0_REGNUM (AARCH64_S0_REGNUM + 32)
71#define AARCH64_B0_REGNUM (AARCH64_H0_REGNUM + 32)
72
95228a0d
AH
73/* All possible aarch64 target descriptors. */
74struct target_desc *tdesc_aarch64_list[AARCH64_MAX_SVE_VQ + 1];
75
07b287a0
MS
76/* The standard register names, and all the valid aliases for them. */
77static const struct
78{
79 const char *const name;
80 int regnum;
81} aarch64_register_aliases[] =
82{
83 /* 64-bit register names. */
84 {"fp", AARCH64_FP_REGNUM},
85 {"lr", AARCH64_LR_REGNUM},
86 {"sp", AARCH64_SP_REGNUM},
87
88 /* 32-bit register names. */
89 {"w0", AARCH64_X0_REGNUM + 0},
90 {"w1", AARCH64_X0_REGNUM + 1},
91 {"w2", AARCH64_X0_REGNUM + 2},
92 {"w3", AARCH64_X0_REGNUM + 3},
93 {"w4", AARCH64_X0_REGNUM + 4},
94 {"w5", AARCH64_X0_REGNUM + 5},
95 {"w6", AARCH64_X0_REGNUM + 6},
96 {"w7", AARCH64_X0_REGNUM + 7},
97 {"w8", AARCH64_X0_REGNUM + 8},
98 {"w9", AARCH64_X0_REGNUM + 9},
99 {"w10", AARCH64_X0_REGNUM + 10},
100 {"w11", AARCH64_X0_REGNUM + 11},
101 {"w12", AARCH64_X0_REGNUM + 12},
102 {"w13", AARCH64_X0_REGNUM + 13},
103 {"w14", AARCH64_X0_REGNUM + 14},
104 {"w15", AARCH64_X0_REGNUM + 15},
105 {"w16", AARCH64_X0_REGNUM + 16},
106 {"w17", AARCH64_X0_REGNUM + 17},
107 {"w18", AARCH64_X0_REGNUM + 18},
108 {"w19", AARCH64_X0_REGNUM + 19},
109 {"w20", AARCH64_X0_REGNUM + 20},
110 {"w21", AARCH64_X0_REGNUM + 21},
111 {"w22", AARCH64_X0_REGNUM + 22},
112 {"w23", AARCH64_X0_REGNUM + 23},
113 {"w24", AARCH64_X0_REGNUM + 24},
114 {"w25", AARCH64_X0_REGNUM + 25},
115 {"w26", AARCH64_X0_REGNUM + 26},
116 {"w27", AARCH64_X0_REGNUM + 27},
117 {"w28", AARCH64_X0_REGNUM + 28},
118 {"w29", AARCH64_X0_REGNUM + 29},
119 {"w30", AARCH64_X0_REGNUM + 30},
120
121 /* specials */
122 {"ip0", AARCH64_X0_REGNUM + 16},
123 {"ip1", AARCH64_X0_REGNUM + 17}
124};
125
126/* The required core 'R' registers. */
127static const char *const aarch64_r_register_names[] =
128{
129 /* These registers must appear in consecutive RAW register number
130 order and they must begin with AARCH64_X0_REGNUM! */
131 "x0", "x1", "x2", "x3",
132 "x4", "x5", "x6", "x7",
133 "x8", "x9", "x10", "x11",
134 "x12", "x13", "x14", "x15",
135 "x16", "x17", "x18", "x19",
136 "x20", "x21", "x22", "x23",
137 "x24", "x25", "x26", "x27",
138 "x28", "x29", "x30", "sp",
139 "pc", "cpsr"
140};
141
142/* The FP/SIMD 'V' registers. */
143static const char *const aarch64_v_register_names[] =
144{
145 /* These registers must appear in consecutive RAW register number
146 order and they must begin with AARCH64_V0_REGNUM! */
147 "v0", "v1", "v2", "v3",
148 "v4", "v5", "v6", "v7",
149 "v8", "v9", "v10", "v11",
150 "v12", "v13", "v14", "v15",
151 "v16", "v17", "v18", "v19",
152 "v20", "v21", "v22", "v23",
153 "v24", "v25", "v26", "v27",
154 "v28", "v29", "v30", "v31",
155 "fpsr",
156 "fpcr"
157};
158
739e8682
AH
159/* The SVE 'Z' and 'P' registers. */
160static const char *const aarch64_sve_register_names[] =
161{
162 /* These registers must appear in consecutive RAW register number
163 order and they must begin with AARCH64_SVE_Z0_REGNUM! */
164 "z0", "z1", "z2", "z3",
165 "z4", "z5", "z6", "z7",
166 "z8", "z9", "z10", "z11",
167 "z12", "z13", "z14", "z15",
168 "z16", "z17", "z18", "z19",
169 "z20", "z21", "z22", "z23",
170 "z24", "z25", "z26", "z27",
171 "z28", "z29", "z30", "z31",
172 "fpsr", "fpcr",
173 "p0", "p1", "p2", "p3",
174 "p4", "p5", "p6", "p7",
175 "p8", "p9", "p10", "p11",
176 "p12", "p13", "p14", "p15",
177 "ffr", "vg"
178};
179
07b287a0
MS
180/* AArch64 prologue cache structure. */
181struct aarch64_prologue_cache
182{
db634143
PL
183 /* The program counter at the start of the function. It is used to
184 identify this frame as a prologue frame. */
185 CORE_ADDR func;
186
187 /* The program counter at the time this frame was created; i.e. where
188 this function was called from. It is used to identify this frame as a
189 stub frame. */
190 CORE_ADDR prev_pc;
191
07b287a0
MS
192 /* The stack pointer at the time this frame was created; i.e. the
193 caller's stack pointer when this function was called. It is used
194 to identify this frame. */
195 CORE_ADDR prev_sp;
196
7dfa3edc
PL
197 /* Is the target available to read from? */
198 int available_p;
199
07b287a0
MS
200 /* The frame base for this frame is just prev_sp - frame size.
201 FRAMESIZE is the distance from the frame pointer to the
202 initial stack pointer. */
203 int framesize;
204
205 /* The register used to hold the frame pointer for this frame. */
206 int framereg;
207
208 /* Saved register offsets. */
209 struct trad_frame_saved_reg *saved_regs;
210};
211
07b287a0
MS
212static void
213show_aarch64_debug (struct ui_file *file, int from_tty,
214 struct cmd_list_element *c, const char *value)
215{
216 fprintf_filtered (file, _("AArch64 debugging is %s.\n"), value);
217}
218
ffdbe864
YQ
219namespace {
220
4d9a9006
YQ
221/* Abstract instruction reader. */
222
223class abstract_instruction_reader
224{
225public:
226 /* Read in one instruction. */
227 virtual ULONGEST read (CORE_ADDR memaddr, int len,
228 enum bfd_endian byte_order) = 0;
229};
230
231/* Instruction reader from real target. */
232
233class instruction_reader : public abstract_instruction_reader
234{
235 public:
236 ULONGEST read (CORE_ADDR memaddr, int len, enum bfd_endian byte_order)
632e107b 237 override
4d9a9006 238 {
fc2f703e 239 return read_code_unsigned_integer (memaddr, len, byte_order);
4d9a9006
YQ
240 }
241};
242
ffdbe864
YQ
243} // namespace
244
07b287a0
MS
245/* Analyze a prologue, looking for a recognizable stack frame
246 and frame pointer. Scan until we encounter a store that could
247 clobber the stack frame unexpectedly, or an unknown instruction. */
248
249static CORE_ADDR
250aarch64_analyze_prologue (struct gdbarch *gdbarch,
251 CORE_ADDR start, CORE_ADDR limit,
4d9a9006
YQ
252 struct aarch64_prologue_cache *cache,
253 abstract_instruction_reader& reader)
07b287a0
MS
254{
255 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
256 int i;
187f5d00
YQ
257 /* Track X registers and D registers in prologue. */
258 pv_t regs[AARCH64_X_REGISTER_COUNT + AARCH64_D_REGISTER_COUNT];
07b287a0 259
187f5d00 260 for (i = 0; i < AARCH64_X_REGISTER_COUNT + AARCH64_D_REGISTER_COUNT; i++)
07b287a0 261 regs[i] = pv_register (i, 0);
f7b7ed97 262 pv_area stack (AARCH64_SP_REGNUM, gdbarch_addr_bit (gdbarch));
07b287a0
MS
263
264 for (; start < limit; start += 4)
265 {
266 uint32_t insn;
d9ebcbce 267 aarch64_inst inst;
07b287a0 268
4d9a9006 269 insn = reader.read (start, 4, byte_order_for_code);
07b287a0 270
561a72d4 271 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
d9ebcbce
YQ
272 break;
273
274 if (inst.opcode->iclass == addsub_imm
275 && (inst.opcode->op == OP_ADD
276 || strcmp ("sub", inst.opcode->name) == 0))
07b287a0 277 {
d9ebcbce
YQ
278 unsigned rd = inst.operands[0].reg.regno;
279 unsigned rn = inst.operands[1].reg.regno;
280
281 gdb_assert (aarch64_num_of_operands (inst.opcode) == 3);
282 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd_SP);
283 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn_SP);
284 gdb_assert (inst.operands[2].type == AARCH64_OPND_AIMM);
285
286 if (inst.opcode->op == OP_ADD)
287 {
288 regs[rd] = pv_add_constant (regs[rn],
289 inst.operands[2].imm.value);
290 }
291 else
292 {
293 regs[rd] = pv_add_constant (regs[rn],
294 -inst.operands[2].imm.value);
295 }
296 }
297 else if (inst.opcode->iclass == pcreladdr
298 && inst.operands[1].type == AARCH64_OPND_ADDR_ADRP)
299 {
300 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
301 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
302
303 regs[inst.operands[0].reg.regno] = pv_unknown ();
07b287a0 304 }
d9ebcbce 305 else if (inst.opcode->iclass == branch_imm)
07b287a0
MS
306 {
307 /* Stop analysis on branch. */
308 break;
309 }
d9ebcbce 310 else if (inst.opcode->iclass == condbranch)
07b287a0
MS
311 {
312 /* Stop analysis on branch. */
313 break;
314 }
d9ebcbce 315 else if (inst.opcode->iclass == branch_reg)
07b287a0
MS
316 {
317 /* Stop analysis on branch. */
318 break;
319 }
d9ebcbce 320 else if (inst.opcode->iclass == compbranch)
07b287a0
MS
321 {
322 /* Stop analysis on branch. */
323 break;
324 }
d9ebcbce
YQ
325 else if (inst.opcode->op == OP_MOVZ)
326 {
327 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
328 regs[inst.operands[0].reg.regno] = pv_unknown ();
329 }
330 else if (inst.opcode->iclass == log_shift
331 && strcmp (inst.opcode->name, "orr") == 0)
07b287a0 332 {
d9ebcbce
YQ
333 unsigned rd = inst.operands[0].reg.regno;
334 unsigned rn = inst.operands[1].reg.regno;
335 unsigned rm = inst.operands[2].reg.regno;
336
337 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
338 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn);
339 gdb_assert (inst.operands[2].type == AARCH64_OPND_Rm_SFT);
340
341 if (inst.operands[2].shifter.amount == 0
342 && rn == AARCH64_SP_REGNUM)
07b287a0
MS
343 regs[rd] = regs[rm];
344 else
345 {
346 if (aarch64_debug)
b277c936
PL
347 {
348 debug_printf ("aarch64: prologue analysis gave up "
0a0da556 349 "addr=%s opcode=0x%x (orr x register)\n",
b277c936
PL
350 core_addr_to_string_nz (start), insn);
351 }
07b287a0
MS
352 break;
353 }
354 }
d9ebcbce 355 else if (inst.opcode->op == OP_STUR)
07b287a0 356 {
d9ebcbce
YQ
357 unsigned rt = inst.operands[0].reg.regno;
358 unsigned rn = inst.operands[1].addr.base_regno;
359 int is64
360 = (aarch64_get_qualifier_esize (inst.operands[0].qualifier) == 8);
361
362 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
363 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt);
364 gdb_assert (inst.operands[1].type == AARCH64_OPND_ADDR_SIMM9);
365 gdb_assert (!inst.operands[1].addr.offset.is_reg);
366
f7b7ed97
TT
367 stack.store (pv_add_constant (regs[rn],
368 inst.operands[1].addr.offset.imm),
369 is64 ? 8 : 4, regs[rt]);
07b287a0 370 }
d9ebcbce 371 else if ((inst.opcode->iclass == ldstpair_off
03bcd739
YQ
372 || (inst.opcode->iclass == ldstpair_indexed
373 && inst.operands[2].addr.preind))
d9ebcbce 374 && strcmp ("stp", inst.opcode->name) == 0)
07b287a0 375 {
03bcd739 376 /* STP with addressing mode Pre-indexed and Base register. */
187f5d00
YQ
377 unsigned rt1;
378 unsigned rt2;
d9ebcbce
YQ
379 unsigned rn = inst.operands[2].addr.base_regno;
380 int32_t imm = inst.operands[2].addr.offset.imm;
381
187f5d00
YQ
382 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt
383 || inst.operands[0].type == AARCH64_OPND_Ft);
384 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rt2
385 || inst.operands[1].type == AARCH64_OPND_Ft2);
d9ebcbce
YQ
386 gdb_assert (inst.operands[2].type == AARCH64_OPND_ADDR_SIMM7);
387 gdb_assert (!inst.operands[2].addr.offset.is_reg);
388
07b287a0
MS
389 /* If recording this store would invalidate the store area
390 (perhaps because rn is not known) then we should abandon
391 further prologue analysis. */
f7b7ed97 392 if (stack.store_would_trash (pv_add_constant (regs[rn], imm)))
07b287a0
MS
393 break;
394
f7b7ed97 395 if (stack.store_would_trash (pv_add_constant (regs[rn], imm + 8)))
07b287a0
MS
396 break;
397
187f5d00
YQ
398 rt1 = inst.operands[0].reg.regno;
399 rt2 = inst.operands[1].reg.regno;
400 if (inst.operands[0].type == AARCH64_OPND_Ft)
401 {
402 /* Only bottom 64-bit of each V register (D register) need
403 to be preserved. */
404 gdb_assert (inst.operands[0].qualifier == AARCH64_OPND_QLF_S_D);
405 rt1 += AARCH64_X_REGISTER_COUNT;
406 rt2 += AARCH64_X_REGISTER_COUNT;
407 }
408
f7b7ed97
TT
409 stack.store (pv_add_constant (regs[rn], imm), 8,
410 regs[rt1]);
411 stack.store (pv_add_constant (regs[rn], imm + 8), 8,
412 regs[rt2]);
14ac654f 413
d9ebcbce 414 if (inst.operands[2].addr.writeback)
93d96012 415 regs[rn] = pv_add_constant (regs[rn], imm);
07b287a0 416
07b287a0 417 }
432ec081
YQ
418 else if ((inst.opcode->iclass == ldst_imm9 /* Signed immediate. */
419 || (inst.opcode->iclass == ldst_pos /* Unsigned immediate. */
420 && (inst.opcode->op == OP_STR_POS
421 || inst.opcode->op == OP_STRF_POS)))
422 && inst.operands[1].addr.base_regno == AARCH64_SP_REGNUM
423 && strcmp ("str", inst.opcode->name) == 0)
424 {
425 /* STR (immediate) */
426 unsigned int rt = inst.operands[0].reg.regno;
427 int32_t imm = inst.operands[1].addr.offset.imm;
428 unsigned int rn = inst.operands[1].addr.base_regno;
429 bool is64
430 = (aarch64_get_qualifier_esize (inst.operands[0].qualifier) == 8);
431 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt
432 || inst.operands[0].type == AARCH64_OPND_Ft);
433
434 if (inst.operands[0].type == AARCH64_OPND_Ft)
435 {
436 /* Only bottom 64-bit of each V register (D register) need
437 to be preserved. */
438 gdb_assert (inst.operands[0].qualifier == AARCH64_OPND_QLF_S_D);
439 rt += AARCH64_X_REGISTER_COUNT;
440 }
441
f7b7ed97
TT
442 stack.store (pv_add_constant (regs[rn], imm),
443 is64 ? 8 : 4, regs[rt]);
432ec081
YQ
444 if (inst.operands[1].addr.writeback)
445 regs[rn] = pv_add_constant (regs[rn], imm);
446 }
d9ebcbce 447 else if (inst.opcode->iclass == testbranch)
07b287a0
MS
448 {
449 /* Stop analysis on branch. */
450 break;
451 }
452 else
453 {
454 if (aarch64_debug)
b277c936 455 {
0a0da556 456 debug_printf ("aarch64: prologue analysis gave up addr=%s"
b277c936
PL
457 " opcode=0x%x\n",
458 core_addr_to_string_nz (start), insn);
459 }
07b287a0
MS
460 break;
461 }
462 }
463
464 if (cache == NULL)
f7b7ed97 465 return start;
07b287a0
MS
466
467 if (pv_is_register (regs[AARCH64_FP_REGNUM], AARCH64_SP_REGNUM))
468 {
469 /* Frame pointer is fp. Frame size is constant. */
470 cache->framereg = AARCH64_FP_REGNUM;
471 cache->framesize = -regs[AARCH64_FP_REGNUM].k;
472 }
473 else if (pv_is_register (regs[AARCH64_SP_REGNUM], AARCH64_SP_REGNUM))
474 {
475 /* Try the stack pointer. */
476 cache->framesize = -regs[AARCH64_SP_REGNUM].k;
477 cache->framereg = AARCH64_SP_REGNUM;
478 }
479 else
480 {
481 /* We're just out of luck. We don't know where the frame is. */
482 cache->framereg = -1;
483 cache->framesize = 0;
484 }
485
486 for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
487 {
488 CORE_ADDR offset;
489
f7b7ed97 490 if (stack.find_reg (gdbarch, i, &offset))
07b287a0
MS
491 cache->saved_regs[i].addr = offset;
492 }
493
187f5d00
YQ
494 for (i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
495 {
496 int regnum = gdbarch_num_regs (gdbarch);
497 CORE_ADDR offset;
498
f7b7ed97
TT
499 if (stack.find_reg (gdbarch, i + AARCH64_X_REGISTER_COUNT,
500 &offset))
187f5d00
YQ
501 cache->saved_regs[i + regnum + AARCH64_D0_REGNUM].addr = offset;
502 }
503
07b287a0
MS
504 return start;
505}
506
4d9a9006
YQ
507static CORE_ADDR
508aarch64_analyze_prologue (struct gdbarch *gdbarch,
509 CORE_ADDR start, CORE_ADDR limit,
510 struct aarch64_prologue_cache *cache)
511{
512 instruction_reader reader;
513
514 return aarch64_analyze_prologue (gdbarch, start, limit, cache,
515 reader);
516}
517
518#if GDB_SELF_TEST
519
520namespace selftests {
521
522/* Instruction reader from manually cooked instruction sequences. */
523
524class instruction_reader_test : public abstract_instruction_reader
525{
526public:
527 template<size_t SIZE>
528 explicit instruction_reader_test (const uint32_t (&insns)[SIZE])
529 : m_insns (insns), m_insns_size (SIZE)
530 {}
531
532 ULONGEST read (CORE_ADDR memaddr, int len, enum bfd_endian byte_order)
632e107b 533 override
4d9a9006
YQ
534 {
535 SELF_CHECK (len == 4);
536 SELF_CHECK (memaddr % 4 == 0);
537 SELF_CHECK (memaddr / 4 < m_insns_size);
538
539 return m_insns[memaddr / 4];
540 }
541
542private:
543 const uint32_t *m_insns;
544 size_t m_insns_size;
545};
546
547static void
548aarch64_analyze_prologue_test (void)
549{
550 struct gdbarch_info info;
551
552 gdbarch_info_init (&info);
553 info.bfd_arch_info = bfd_scan_arch ("aarch64");
554
555 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
556 SELF_CHECK (gdbarch != NULL);
557
558 /* Test the simple prologue in which frame pointer is used. */
559 {
560 struct aarch64_prologue_cache cache;
561 cache.saved_regs = trad_frame_alloc_saved_regs (gdbarch);
562
563 static const uint32_t insns[] = {
564 0xa9af7bfd, /* stp x29, x30, [sp,#-272]! */
565 0x910003fd, /* mov x29, sp */
566 0x97ffffe6, /* bl 0x400580 */
567 };
568 instruction_reader_test reader (insns);
569
570 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
571 SELF_CHECK (end == 4 * 2);
572
573 SELF_CHECK (cache.framereg == AARCH64_FP_REGNUM);
574 SELF_CHECK (cache.framesize == 272);
575
576 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
577 {
578 if (i == AARCH64_FP_REGNUM)
579 SELF_CHECK (cache.saved_regs[i].addr == -272);
580 else if (i == AARCH64_LR_REGNUM)
581 SELF_CHECK (cache.saved_regs[i].addr == -264);
582 else
583 SELF_CHECK (cache.saved_regs[i].addr == -1);
584 }
585
586 for (int i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
587 {
588 int regnum = gdbarch_num_regs (gdbarch);
589
590 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
591 == -1);
592 }
593 }
432ec081
YQ
594
595 /* Test a prologue in which STR is used and frame pointer is not
596 used. */
597 {
598 struct aarch64_prologue_cache cache;
599 cache.saved_regs = trad_frame_alloc_saved_regs (gdbarch);
600
601 static const uint32_t insns[] = {
602 0xf81d0ff3, /* str x19, [sp, #-48]! */
603 0xb9002fe0, /* str w0, [sp, #44] */
604 0xf90013e1, /* str x1, [sp, #32]*/
605 0xfd000fe0, /* str d0, [sp, #24] */
606 0xaa0203f3, /* mov x19, x2 */
607 0xf94013e0, /* ldr x0, [sp, #32] */
608 };
609 instruction_reader_test reader (insns);
610
611 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
612
613 SELF_CHECK (end == 4 * 5);
614
615 SELF_CHECK (cache.framereg == AARCH64_SP_REGNUM);
616 SELF_CHECK (cache.framesize == 48);
617
618 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
619 {
620 if (i == 1)
621 SELF_CHECK (cache.saved_regs[i].addr == -16);
622 else if (i == 19)
623 SELF_CHECK (cache.saved_regs[i].addr == -48);
624 else
625 SELF_CHECK (cache.saved_regs[i].addr == -1);
626 }
627
628 for (int i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
629 {
630 int regnum = gdbarch_num_regs (gdbarch);
631
632 if (i == 0)
633 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
634 == -24);
635 else
636 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
637 == -1);
638 }
639 }
4d9a9006
YQ
640}
641} // namespace selftests
642#endif /* GDB_SELF_TEST */
643
07b287a0
MS
644/* Implement the "skip_prologue" gdbarch method. */
645
646static CORE_ADDR
647aarch64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
648{
07b287a0 649 CORE_ADDR func_addr, limit_pc;
07b287a0
MS
650
651 /* See if we can determine the end of the prologue via the symbol
652 table. If so, then return either PC, or the PC after the
653 prologue, whichever is greater. */
654 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
655 {
656 CORE_ADDR post_prologue_pc
657 = skip_prologue_using_sal (gdbarch, func_addr);
658
659 if (post_prologue_pc != 0)
325fac50 660 return std::max (pc, post_prologue_pc);
07b287a0
MS
661 }
662
663 /* Can't determine prologue from the symbol table, need to examine
664 instructions. */
665
666 /* Find an upper limit on the function prologue using the debug
667 information. If the debug information could not be used to
668 provide that bound, then use an arbitrary large number as the
669 upper bound. */
670 limit_pc = skip_prologue_using_sal (gdbarch, pc);
671 if (limit_pc == 0)
672 limit_pc = pc + 128; /* Magic. */
673
674 /* Try disassembling prologue. */
675 return aarch64_analyze_prologue (gdbarch, pc, limit_pc, NULL);
676}
677
678/* Scan the function prologue for THIS_FRAME and populate the prologue
679 cache CACHE. */
680
681static void
682aarch64_scan_prologue (struct frame_info *this_frame,
683 struct aarch64_prologue_cache *cache)
684{
685 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
686 CORE_ADDR prologue_start;
687 CORE_ADDR prologue_end;
688 CORE_ADDR prev_pc = get_frame_pc (this_frame);
689 struct gdbarch *gdbarch = get_frame_arch (this_frame);
690
db634143
PL
691 cache->prev_pc = prev_pc;
692
07b287a0
MS
693 /* Assume we do not find a frame. */
694 cache->framereg = -1;
695 cache->framesize = 0;
696
697 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
698 &prologue_end))
699 {
700 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
701
702 if (sal.line == 0)
703 {
704 /* No line info so use the current PC. */
705 prologue_end = prev_pc;
706 }
707 else if (sal.end < prologue_end)
708 {
709 /* The next line begins after the function end. */
710 prologue_end = sal.end;
711 }
712
325fac50 713 prologue_end = std::min (prologue_end, prev_pc);
07b287a0
MS
714 aarch64_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
715 }
716 else
717 {
718 CORE_ADDR frame_loc;
07b287a0
MS
719
720 frame_loc = get_frame_register_unsigned (this_frame, AARCH64_FP_REGNUM);
721 if (frame_loc == 0)
722 return;
723
724 cache->framereg = AARCH64_FP_REGNUM;
725 cache->framesize = 16;
726 cache->saved_regs[29].addr = 0;
727 cache->saved_regs[30].addr = 8;
728 }
729}
730
7dfa3edc
PL
731/* Fill in *CACHE with information about the prologue of *THIS_FRAME. This
732 function may throw an exception if the inferior's registers or memory is
733 not available. */
07b287a0 734
7dfa3edc
PL
735static void
736aarch64_make_prologue_cache_1 (struct frame_info *this_frame,
737 struct aarch64_prologue_cache *cache)
07b287a0 738{
07b287a0
MS
739 CORE_ADDR unwound_fp;
740 int reg;
741
07b287a0
MS
742 aarch64_scan_prologue (this_frame, cache);
743
744 if (cache->framereg == -1)
7dfa3edc 745 return;
07b287a0
MS
746
747 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
748 if (unwound_fp == 0)
7dfa3edc 749 return;
07b287a0
MS
750
751 cache->prev_sp = unwound_fp + cache->framesize;
752
753 /* Calculate actual addresses of saved registers using offsets
754 determined by aarch64_analyze_prologue. */
755 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
756 if (trad_frame_addr_p (cache->saved_regs, reg))
757 cache->saved_regs[reg].addr += cache->prev_sp;
758
db634143
PL
759 cache->func = get_frame_func (this_frame);
760
7dfa3edc
PL
761 cache->available_p = 1;
762}
763
764/* Allocate and fill in *THIS_CACHE with information about the prologue of
765 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
766 Return a pointer to the current aarch64_prologue_cache in
767 *THIS_CACHE. */
768
769static struct aarch64_prologue_cache *
770aarch64_make_prologue_cache (struct frame_info *this_frame, void **this_cache)
771{
772 struct aarch64_prologue_cache *cache;
773
774 if (*this_cache != NULL)
9a3c8263 775 return (struct aarch64_prologue_cache *) *this_cache;
7dfa3edc
PL
776
777 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
778 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
779 *this_cache = cache;
780
781 TRY
782 {
783 aarch64_make_prologue_cache_1 (this_frame, cache);
784 }
785 CATCH (ex, RETURN_MASK_ERROR)
786 {
787 if (ex.error != NOT_AVAILABLE_ERROR)
788 throw_exception (ex);
789 }
790 END_CATCH
791
07b287a0
MS
792 return cache;
793}
794
7dfa3edc
PL
795/* Implement the "stop_reason" frame_unwind method. */
796
797static enum unwind_stop_reason
798aarch64_prologue_frame_unwind_stop_reason (struct frame_info *this_frame,
799 void **this_cache)
800{
801 struct aarch64_prologue_cache *cache
802 = aarch64_make_prologue_cache (this_frame, this_cache);
803
804 if (!cache->available_p)
805 return UNWIND_UNAVAILABLE;
806
807 /* Halt the backtrace at "_start". */
808 if (cache->prev_pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
809 return UNWIND_OUTERMOST;
810
811 /* We've hit a wall, stop. */
812 if (cache->prev_sp == 0)
813 return UNWIND_OUTERMOST;
814
815 return UNWIND_NO_REASON;
816}
817
07b287a0
MS
818/* Our frame ID for a normal frame is the current function's starting
819 PC and the caller's SP when we were called. */
820
821static void
822aarch64_prologue_this_id (struct frame_info *this_frame,
823 void **this_cache, struct frame_id *this_id)
824{
7c8edfae
PL
825 struct aarch64_prologue_cache *cache
826 = aarch64_make_prologue_cache (this_frame, this_cache);
07b287a0 827
7dfa3edc
PL
828 if (!cache->available_p)
829 *this_id = frame_id_build_unavailable_stack (cache->func);
830 else
831 *this_id = frame_id_build (cache->prev_sp, cache->func);
07b287a0
MS
832}
833
834/* Implement the "prev_register" frame_unwind method. */
835
836static struct value *
837aarch64_prologue_prev_register (struct frame_info *this_frame,
838 void **this_cache, int prev_regnum)
839{
7c8edfae
PL
840 struct aarch64_prologue_cache *cache
841 = aarch64_make_prologue_cache (this_frame, this_cache);
07b287a0
MS
842
843 /* If we are asked to unwind the PC, then we need to return the LR
844 instead. The prologue may save PC, but it will point into this
845 frame's prologue, not the next frame's resume location. */
846 if (prev_regnum == AARCH64_PC_REGNUM)
847 {
848 CORE_ADDR lr;
849
850 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
851 return frame_unwind_got_constant (this_frame, prev_regnum, lr);
852 }
853
854 /* SP is generally not saved to the stack, but this frame is
855 identified by the next frame's stack pointer at the time of the
856 call. The value was already reconstructed into PREV_SP. */
857 /*
858 +----------+ ^
859 | saved lr | |
860 +->| saved fp |--+
861 | | |
862 | | | <- Previous SP
863 | +----------+
864 | | saved lr |
865 +--| saved fp |<- FP
866 | |
867 | |<- SP
868 +----------+ */
869 if (prev_regnum == AARCH64_SP_REGNUM)
870 return frame_unwind_got_constant (this_frame, prev_regnum,
871 cache->prev_sp);
872
873 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
874 prev_regnum);
875}
876
877/* AArch64 prologue unwinder. */
878struct frame_unwind aarch64_prologue_unwind =
879{
880 NORMAL_FRAME,
7dfa3edc 881 aarch64_prologue_frame_unwind_stop_reason,
07b287a0
MS
882 aarch64_prologue_this_id,
883 aarch64_prologue_prev_register,
884 NULL,
885 default_frame_sniffer
886};
887
8b61f75d
PL
888/* Allocate and fill in *THIS_CACHE with information about the prologue of
889 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
890 Return a pointer to the current aarch64_prologue_cache in
891 *THIS_CACHE. */
07b287a0
MS
892
893static struct aarch64_prologue_cache *
8b61f75d 894aarch64_make_stub_cache (struct frame_info *this_frame, void **this_cache)
07b287a0 895{
07b287a0 896 struct aarch64_prologue_cache *cache;
8b61f75d
PL
897
898 if (*this_cache != NULL)
9a3c8263 899 return (struct aarch64_prologue_cache *) *this_cache;
07b287a0
MS
900
901 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
902 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
8b61f75d 903 *this_cache = cache;
07b287a0 904
02a2a705
PL
905 TRY
906 {
907 cache->prev_sp = get_frame_register_unsigned (this_frame,
908 AARCH64_SP_REGNUM);
909 cache->prev_pc = get_frame_pc (this_frame);
910 cache->available_p = 1;
911 }
912 CATCH (ex, RETURN_MASK_ERROR)
913 {
914 if (ex.error != NOT_AVAILABLE_ERROR)
915 throw_exception (ex);
916 }
917 END_CATCH
07b287a0
MS
918
919 return cache;
920}
921
02a2a705
PL
922/* Implement the "stop_reason" frame_unwind method. */
923
924static enum unwind_stop_reason
925aarch64_stub_frame_unwind_stop_reason (struct frame_info *this_frame,
926 void **this_cache)
927{
928 struct aarch64_prologue_cache *cache
929 = aarch64_make_stub_cache (this_frame, this_cache);
930
931 if (!cache->available_p)
932 return UNWIND_UNAVAILABLE;
933
934 return UNWIND_NO_REASON;
935}
936
07b287a0
MS
937/* Our frame ID for a stub frame is the current SP and LR. */
938
939static void
940aarch64_stub_this_id (struct frame_info *this_frame,
941 void **this_cache, struct frame_id *this_id)
942{
8b61f75d
PL
943 struct aarch64_prologue_cache *cache
944 = aarch64_make_stub_cache (this_frame, this_cache);
07b287a0 945
02a2a705
PL
946 if (cache->available_p)
947 *this_id = frame_id_build (cache->prev_sp, cache->prev_pc);
948 else
949 *this_id = frame_id_build_unavailable_stack (cache->prev_pc);
07b287a0
MS
950}
951
952/* Implement the "sniffer" frame_unwind method. */
953
954static int
955aarch64_stub_unwind_sniffer (const struct frame_unwind *self,
956 struct frame_info *this_frame,
957 void **this_prologue_cache)
958{
959 CORE_ADDR addr_in_block;
960 gdb_byte dummy[4];
961
962 addr_in_block = get_frame_address_in_block (this_frame);
3e5d3a5a 963 if (in_plt_section (addr_in_block)
07b287a0
MS
964 /* We also use the stub winder if the target memory is unreadable
965 to avoid having the prologue unwinder trying to read it. */
966 || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
967 return 1;
968
969 return 0;
970}
971
972/* AArch64 stub unwinder. */
973struct frame_unwind aarch64_stub_unwind =
974{
975 NORMAL_FRAME,
02a2a705 976 aarch64_stub_frame_unwind_stop_reason,
07b287a0
MS
977 aarch64_stub_this_id,
978 aarch64_prologue_prev_register,
979 NULL,
980 aarch64_stub_unwind_sniffer
981};
982
983/* Return the frame base address of *THIS_FRAME. */
984
985static CORE_ADDR
986aarch64_normal_frame_base (struct frame_info *this_frame, void **this_cache)
987{
7c8edfae
PL
988 struct aarch64_prologue_cache *cache
989 = aarch64_make_prologue_cache (this_frame, this_cache);
07b287a0
MS
990
991 return cache->prev_sp - cache->framesize;
992}
993
994/* AArch64 default frame base information. */
995struct frame_base aarch64_normal_base =
996{
997 &aarch64_prologue_unwind,
998 aarch64_normal_frame_base,
999 aarch64_normal_frame_base,
1000 aarch64_normal_frame_base
1001};
1002
1003/* Assuming THIS_FRAME is a dummy, return the frame ID of that
1004 dummy frame. The frame ID's base needs to match the TOS value
1005 saved by save_dummy_frame_tos () and returned from
1006 aarch64_push_dummy_call, and the PC needs to match the dummy
1007 frame's breakpoint. */
1008
1009static struct frame_id
1010aarch64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1011{
1012 return frame_id_build (get_frame_register_unsigned (this_frame,
1013 AARCH64_SP_REGNUM),
1014 get_frame_pc (this_frame));
1015}
1016
1017/* Implement the "unwind_pc" gdbarch method. */
1018
1019static CORE_ADDR
1020aarch64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1021{
1022 CORE_ADDR pc
1023 = frame_unwind_register_unsigned (this_frame, AARCH64_PC_REGNUM);
1024
1025 return pc;
1026}
1027
1028/* Implement the "unwind_sp" gdbarch method. */
1029
1030static CORE_ADDR
1031aarch64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1032{
1033 return frame_unwind_register_unsigned (this_frame, AARCH64_SP_REGNUM);
1034}
1035
1036/* Return the value of the REGNUM register in the previous frame of
1037 *THIS_FRAME. */
1038
1039static struct value *
1040aarch64_dwarf2_prev_register (struct frame_info *this_frame,
1041 void **this_cache, int regnum)
1042{
07b287a0
MS
1043 CORE_ADDR lr;
1044
1045 switch (regnum)
1046 {
1047 case AARCH64_PC_REGNUM:
1048 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
1049 return frame_unwind_got_constant (this_frame, regnum, lr);
1050
1051 default:
1052 internal_error (__FILE__, __LINE__,
1053 _("Unexpected register %d"), regnum);
1054 }
1055}
1056
1057/* Implement the "init_reg" dwarf2_frame_ops method. */
1058
1059static void
1060aarch64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1061 struct dwarf2_frame_state_reg *reg,
1062 struct frame_info *this_frame)
1063{
1064 switch (regnum)
1065 {
1066 case AARCH64_PC_REGNUM:
1067 reg->how = DWARF2_FRAME_REG_FN;
1068 reg->loc.fn = aarch64_dwarf2_prev_register;
1069 break;
1070 case AARCH64_SP_REGNUM:
1071 reg->how = DWARF2_FRAME_REG_CFA;
1072 break;
1073 }
1074}
1075
1076/* When arguments must be pushed onto the stack, they go on in reverse
1077 order. The code below implements a FILO (stack) to do this. */
1078
1079typedef struct
1080{
c3c87445
YQ
1081 /* Value to pass on stack. It can be NULL if this item is for stack
1082 padding. */
7c543f7b 1083 const gdb_byte *data;
07b287a0
MS
1084
1085 /* Size in bytes of value to pass on stack. */
1086 int len;
1087} stack_item_t;
1088
1089DEF_VEC_O (stack_item_t);
1090
1091/* Return the alignment (in bytes) of the given type. */
1092
1093static int
1094aarch64_type_align (struct type *t)
1095{
1096 int n;
1097 int align;
1098 int falign;
1099
1100 t = check_typedef (t);
1101 switch (TYPE_CODE (t))
1102 {
1103 default:
1104 /* Should never happen. */
1105 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1106 return 4;
1107
1108 case TYPE_CODE_PTR:
1109 case TYPE_CODE_ENUM:
1110 case TYPE_CODE_INT:
1111 case TYPE_CODE_FLT:
1112 case TYPE_CODE_SET:
1113 case TYPE_CODE_RANGE:
1114 case TYPE_CODE_BITSTRING:
1115 case TYPE_CODE_REF:
aa006118 1116 case TYPE_CODE_RVALUE_REF:
07b287a0
MS
1117 case TYPE_CODE_CHAR:
1118 case TYPE_CODE_BOOL:
1119 return TYPE_LENGTH (t);
1120
1121 case TYPE_CODE_ARRAY:
238f2452
YQ
1122 if (TYPE_VECTOR (t))
1123 {
1124 /* Use the natural alignment for vector types (the same for
1125 scalar type), but the maximum alignment is 128-bit. */
1126 if (TYPE_LENGTH (t) > 16)
1127 return 16;
1128 else
1129 return TYPE_LENGTH (t);
1130 }
1131 else
1132 return aarch64_type_align (TYPE_TARGET_TYPE (t));
07b287a0
MS
1133 case TYPE_CODE_COMPLEX:
1134 return aarch64_type_align (TYPE_TARGET_TYPE (t));
1135
1136 case TYPE_CODE_STRUCT:
1137 case TYPE_CODE_UNION:
1138 align = 1;
1139 for (n = 0; n < TYPE_NFIELDS (t); n++)
1140 {
1141 falign = aarch64_type_align (TYPE_FIELD_TYPE (t, n));
1142 if (falign > align)
1143 align = falign;
1144 }
1145 return align;
1146 }
1147}
1148
cd635f74
YQ
1149/* Return 1 if *TY is a homogeneous floating-point aggregate or
1150 homogeneous short-vector aggregate as defined in the AAPCS64 ABI
1151 document; otherwise return 0. */
07b287a0
MS
1152
1153static int
cd635f74 1154is_hfa_or_hva (struct type *ty)
07b287a0
MS
1155{
1156 switch (TYPE_CODE (ty))
1157 {
1158 case TYPE_CODE_ARRAY:
1159 {
1160 struct type *target_ty = TYPE_TARGET_TYPE (ty);
238f2452
YQ
1161
1162 if (TYPE_VECTOR (ty))
1163 return 0;
1164
cd635f74
YQ
1165 if (TYPE_LENGTH (ty) <= 4 /* HFA or HVA has at most 4 members. */
1166 && (TYPE_CODE (target_ty) == TYPE_CODE_FLT /* HFA */
1167 || (TYPE_CODE (target_ty) == TYPE_CODE_ARRAY /* HVA */
1168 && TYPE_VECTOR (target_ty))))
07b287a0
MS
1169 return 1;
1170 break;
1171 }
1172
1173 case TYPE_CODE_UNION:
1174 case TYPE_CODE_STRUCT:
1175 {
cd635f74 1176 /* HFA or HVA has at most four members. */
07b287a0
MS
1177 if (TYPE_NFIELDS (ty) > 0 && TYPE_NFIELDS (ty) <= 4)
1178 {
1179 struct type *member0_type;
1180
1181 member0_type = check_typedef (TYPE_FIELD_TYPE (ty, 0));
cd635f74
YQ
1182 if (TYPE_CODE (member0_type) == TYPE_CODE_FLT
1183 || (TYPE_CODE (member0_type) == TYPE_CODE_ARRAY
1184 && TYPE_VECTOR (member0_type)))
07b287a0
MS
1185 {
1186 int i;
1187
1188 for (i = 0; i < TYPE_NFIELDS (ty); i++)
1189 {
1190 struct type *member1_type;
1191
1192 member1_type = check_typedef (TYPE_FIELD_TYPE (ty, i));
1193 if (TYPE_CODE (member0_type) != TYPE_CODE (member1_type)
1194 || (TYPE_LENGTH (member0_type)
1195 != TYPE_LENGTH (member1_type)))
1196 return 0;
1197 }
1198 return 1;
1199 }
1200 }
1201 return 0;
1202 }
1203
1204 default:
1205 break;
1206 }
1207
1208 return 0;
1209}
1210
1211/* AArch64 function call information structure. */
1212struct aarch64_call_info
1213{
1214 /* the current argument number. */
1215 unsigned argnum;
1216
1217 /* The next general purpose register number, equivalent to NGRN as
1218 described in the AArch64 Procedure Call Standard. */
1219 unsigned ngrn;
1220
1221 /* The next SIMD and floating point register number, equivalent to
1222 NSRN as described in the AArch64 Procedure Call Standard. */
1223 unsigned nsrn;
1224
1225 /* The next stacked argument address, equivalent to NSAA as
1226 described in the AArch64 Procedure Call Standard. */
1227 unsigned nsaa;
1228
1229 /* Stack item vector. */
1230 VEC(stack_item_t) *si;
1231};
1232
1233/* Pass a value in a sequence of consecutive X registers. The caller
1234 is responsbile for ensuring sufficient registers are available. */
1235
1236static void
1237pass_in_x (struct gdbarch *gdbarch, struct regcache *regcache,
1238 struct aarch64_call_info *info, struct type *type,
8e80f9d1 1239 struct value *arg)
07b287a0
MS
1240{
1241 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1242 int len = TYPE_LENGTH (type);
1243 enum type_code typecode = TYPE_CODE (type);
1244 int regnum = AARCH64_X0_REGNUM + info->ngrn;
8e80f9d1 1245 const bfd_byte *buf = value_contents (arg);
07b287a0
MS
1246
1247 info->argnum++;
1248
1249 while (len > 0)
1250 {
1251 int partial_len = len < X_REGISTER_SIZE ? len : X_REGISTER_SIZE;
1252 CORE_ADDR regval = extract_unsigned_integer (buf, partial_len,
1253 byte_order);
1254
1255
1256 /* Adjust sub-word struct/union args when big-endian. */
1257 if (byte_order == BFD_ENDIAN_BIG
1258 && partial_len < X_REGISTER_SIZE
1259 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
1260 regval <<= ((X_REGISTER_SIZE - partial_len) * TARGET_CHAR_BIT);
1261
1262 if (aarch64_debug)
b277c936
PL
1263 {
1264 debug_printf ("arg %d in %s = 0x%s\n", info->argnum,
1265 gdbarch_register_name (gdbarch, regnum),
1266 phex (regval, X_REGISTER_SIZE));
1267 }
07b287a0
MS
1268 regcache_cooked_write_unsigned (regcache, regnum, regval);
1269 len -= partial_len;
1270 buf += partial_len;
1271 regnum++;
1272 }
1273}
1274
1275/* Attempt to marshall a value in a V register. Return 1 if
1276 successful, or 0 if insufficient registers are available. This
1277 function, unlike the equivalent pass_in_x() function does not
1278 handle arguments spread across multiple registers. */
1279
1280static int
1281pass_in_v (struct gdbarch *gdbarch,
1282 struct regcache *regcache,
1283 struct aarch64_call_info *info,
0735fddd 1284 int len, const bfd_byte *buf)
07b287a0
MS
1285{
1286 if (info->nsrn < 8)
1287 {
07b287a0 1288 int regnum = AARCH64_V0_REGNUM + info->nsrn;
0735fddd 1289 gdb_byte reg[V_REGISTER_SIZE];
07b287a0
MS
1290
1291 info->argnum++;
1292 info->nsrn++;
1293
0735fddd
YQ
1294 memset (reg, 0, sizeof (reg));
1295 /* PCS C.1, the argument is allocated to the least significant
1296 bits of V register. */
1297 memcpy (reg, buf, len);
b66f5587 1298 regcache->cooked_write (regnum, reg);
0735fddd 1299
07b287a0 1300 if (aarch64_debug)
b277c936
PL
1301 {
1302 debug_printf ("arg %d in %s\n", info->argnum,
1303 gdbarch_register_name (gdbarch, regnum));
1304 }
07b287a0
MS
1305 return 1;
1306 }
1307 info->nsrn = 8;
1308 return 0;
1309}
1310
1311/* Marshall an argument onto the stack. */
1312
1313static void
1314pass_on_stack (struct aarch64_call_info *info, struct type *type,
8e80f9d1 1315 struct value *arg)
07b287a0 1316{
8e80f9d1 1317 const bfd_byte *buf = value_contents (arg);
07b287a0
MS
1318 int len = TYPE_LENGTH (type);
1319 int align;
1320 stack_item_t item;
1321
1322 info->argnum++;
1323
1324 align = aarch64_type_align (type);
1325
1326 /* PCS C.17 Stack should be aligned to the larger of 8 bytes or the
1327 Natural alignment of the argument's type. */
1328 align = align_up (align, 8);
1329
1330 /* The AArch64 PCS requires at most doubleword alignment. */
1331 if (align > 16)
1332 align = 16;
1333
1334 if (aarch64_debug)
b277c936
PL
1335 {
1336 debug_printf ("arg %d len=%d @ sp + %d\n", info->argnum, len,
1337 info->nsaa);
1338 }
07b287a0
MS
1339
1340 item.len = len;
1341 item.data = buf;
1342 VEC_safe_push (stack_item_t, info->si, &item);
1343
1344 info->nsaa += len;
1345 if (info->nsaa & (align - 1))
1346 {
1347 /* Push stack alignment padding. */
1348 int pad = align - (info->nsaa & (align - 1));
1349
1350 item.len = pad;
c3c87445 1351 item.data = NULL;
07b287a0
MS
1352
1353 VEC_safe_push (stack_item_t, info->si, &item);
1354 info->nsaa += pad;
1355 }
1356}
1357
1358/* Marshall an argument into a sequence of one or more consecutive X
1359 registers or, if insufficient X registers are available then onto
1360 the stack. */
1361
1362static void
1363pass_in_x_or_stack (struct gdbarch *gdbarch, struct regcache *regcache,
1364 struct aarch64_call_info *info, struct type *type,
8e80f9d1 1365 struct value *arg)
07b287a0
MS
1366{
1367 int len = TYPE_LENGTH (type);
1368 int nregs = (len + X_REGISTER_SIZE - 1) / X_REGISTER_SIZE;
1369
1370 /* PCS C.13 - Pass in registers if we have enough spare */
1371 if (info->ngrn + nregs <= 8)
1372 {
8e80f9d1 1373 pass_in_x (gdbarch, regcache, info, type, arg);
07b287a0
MS
1374 info->ngrn += nregs;
1375 }
1376 else
1377 {
1378 info->ngrn = 8;
8e80f9d1 1379 pass_on_stack (info, type, arg);
07b287a0
MS
1380 }
1381}
1382
1383/* Pass a value in a V register, or on the stack if insufficient are
1384 available. */
1385
1386static void
1387pass_in_v_or_stack (struct gdbarch *gdbarch,
1388 struct regcache *regcache,
1389 struct aarch64_call_info *info,
1390 struct type *type,
8e80f9d1 1391 struct value *arg)
07b287a0 1392{
0735fddd
YQ
1393 if (!pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (type),
1394 value_contents (arg)))
8e80f9d1 1395 pass_on_stack (info, type, arg);
07b287a0
MS
1396}
1397
1398/* Implement the "push_dummy_call" gdbarch method. */
1399
1400static CORE_ADDR
1401aarch64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1402 struct regcache *regcache, CORE_ADDR bp_addr,
1403 int nargs,
1404 struct value **args, CORE_ADDR sp, int struct_return,
1405 CORE_ADDR struct_addr)
1406{
07b287a0 1407 int argnum;
07b287a0
MS
1408 struct aarch64_call_info info;
1409 struct type *func_type;
1410 struct type *return_type;
1411 int lang_struct_return;
1412
1413 memset (&info, 0, sizeof (info));
1414
1415 /* We need to know what the type of the called function is in order
1416 to determine the number of named/anonymous arguments for the
1417 actual argument placement, and the return type in order to handle
1418 return value correctly.
1419
1420 The generic code above us views the decision of return in memory
1421 or return in registers as a two stage processes. The language
1422 handler is consulted first and may decide to return in memory (eg
1423 class with copy constructor returned by value), this will cause
1424 the generic code to allocate space AND insert an initial leading
1425 argument.
1426
1427 If the language code does not decide to pass in memory then the
1428 target code is consulted.
1429
1430 If the language code decides to pass in memory we want to move
1431 the pointer inserted as the initial argument from the argument
1432 list and into X8, the conventional AArch64 struct return pointer
1433 register.
1434
1435 This is slightly awkward, ideally the flag "lang_struct_return"
1436 would be passed to the targets implementation of push_dummy_call.
1437 Rather that change the target interface we call the language code
1438 directly ourselves. */
1439
1440 func_type = check_typedef (value_type (function));
1441
1442 /* Dereference function pointer types. */
1443 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1444 func_type = TYPE_TARGET_TYPE (func_type);
1445
1446 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1447 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
1448
1449 /* If language_pass_by_reference () returned true we will have been
1450 given an additional initial argument, a hidden pointer to the
1451 return slot in memory. */
1452 return_type = TYPE_TARGET_TYPE (func_type);
1453 lang_struct_return = language_pass_by_reference (return_type);
1454
1455 /* Set the return address. For the AArch64, the return breakpoint
1456 is always at BP_ADDR. */
1457 regcache_cooked_write_unsigned (regcache, AARCH64_LR_REGNUM, bp_addr);
1458
1459 /* If we were given an initial argument for the return slot because
1460 lang_struct_return was true, lose it. */
1461 if (lang_struct_return)
1462 {
1463 args++;
1464 nargs--;
1465 }
1466
1467 /* The struct_return pointer occupies X8. */
1468 if (struct_return || lang_struct_return)
1469 {
1470 if (aarch64_debug)
b277c936
PL
1471 {
1472 debug_printf ("struct return in %s = 0x%s\n",
1473 gdbarch_register_name (gdbarch,
1474 AARCH64_STRUCT_RETURN_REGNUM),
1475 paddress (gdbarch, struct_addr));
1476 }
07b287a0
MS
1477 regcache_cooked_write_unsigned (regcache, AARCH64_STRUCT_RETURN_REGNUM,
1478 struct_addr);
1479 }
1480
1481 for (argnum = 0; argnum < nargs; argnum++)
1482 {
1483 struct value *arg = args[argnum];
1484 struct type *arg_type;
1485 int len;
1486
1487 arg_type = check_typedef (value_type (arg));
1488 len = TYPE_LENGTH (arg_type);
1489
1490 switch (TYPE_CODE (arg_type))
1491 {
1492 case TYPE_CODE_INT:
1493 case TYPE_CODE_BOOL:
1494 case TYPE_CODE_CHAR:
1495 case TYPE_CODE_RANGE:
1496 case TYPE_CODE_ENUM:
1497 if (len < 4)
1498 {
1499 /* Promote to 32 bit integer. */
1500 if (TYPE_UNSIGNED (arg_type))
1501 arg_type = builtin_type (gdbarch)->builtin_uint32;
1502 else
1503 arg_type = builtin_type (gdbarch)->builtin_int32;
1504 arg = value_cast (arg_type, arg);
1505 }
8e80f9d1 1506 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
07b287a0
MS
1507 break;
1508
1509 case TYPE_CODE_COMPLEX:
1510 if (info.nsrn <= 6)
1511 {
1512 const bfd_byte *buf = value_contents (arg);
1513 struct type *target_type =
1514 check_typedef (TYPE_TARGET_TYPE (arg_type));
1515
07b287a0 1516 pass_in_v (gdbarch, regcache, &info,
0735fddd
YQ
1517 TYPE_LENGTH (target_type), buf);
1518 pass_in_v (gdbarch, regcache, &info,
1519 TYPE_LENGTH (target_type),
07b287a0
MS
1520 buf + TYPE_LENGTH (target_type));
1521 }
1522 else
1523 {
1524 info.nsrn = 8;
8e80f9d1 1525 pass_on_stack (&info, arg_type, arg);
07b287a0
MS
1526 }
1527 break;
1528 case TYPE_CODE_FLT:
8e80f9d1 1529 pass_in_v_or_stack (gdbarch, regcache, &info, arg_type, arg);
07b287a0
MS
1530 break;
1531
1532 case TYPE_CODE_STRUCT:
1533 case TYPE_CODE_ARRAY:
1534 case TYPE_CODE_UNION:
cd635f74 1535 if (is_hfa_or_hva (arg_type))
07b287a0
MS
1536 {
1537 int elements = TYPE_NFIELDS (arg_type);
1538
1539 /* Homogeneous Aggregates */
1540 if (info.nsrn + elements < 8)
1541 {
1542 int i;
1543
1544 for (i = 0; i < elements; i++)
1545 {
1546 /* We know that we have sufficient registers
1547 available therefore this will never fallback
1548 to the stack. */
1549 struct value *field =
1550 value_primitive_field (arg, 0, i, arg_type);
1551 struct type *field_type =
1552 check_typedef (value_type (field));
1553
8e80f9d1
YQ
1554 pass_in_v_or_stack (gdbarch, regcache, &info,
1555 field_type, field);
07b287a0
MS
1556 }
1557 }
1558 else
1559 {
1560 info.nsrn = 8;
8e80f9d1 1561 pass_on_stack (&info, arg_type, arg);
07b287a0
MS
1562 }
1563 }
238f2452
YQ
1564 else if (TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1565 && TYPE_VECTOR (arg_type) && (len == 16 || len == 8))
1566 {
1567 /* Short vector types are passed in V registers. */
1568 pass_in_v_or_stack (gdbarch, regcache, &info, arg_type, arg);
1569 }
07b287a0
MS
1570 else if (len > 16)
1571 {
1572 /* PCS B.7 Aggregates larger than 16 bytes are passed by
1573 invisible reference. */
1574
1575 /* Allocate aligned storage. */
1576 sp = align_down (sp - len, 16);
1577
1578 /* Write the real data into the stack. */
1579 write_memory (sp, value_contents (arg), len);
1580
1581 /* Construct the indirection. */
1582 arg_type = lookup_pointer_type (arg_type);
1583 arg = value_from_pointer (arg_type, sp);
8e80f9d1 1584 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
07b287a0
MS
1585 }
1586 else
1587 /* PCS C.15 / C.18 multiple values pass. */
8e80f9d1 1588 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
07b287a0
MS
1589 break;
1590
1591 default:
8e80f9d1 1592 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
07b287a0
MS
1593 break;
1594 }
1595 }
1596
1597 /* Make sure stack retains 16 byte alignment. */
1598 if (info.nsaa & 15)
1599 sp -= 16 - (info.nsaa & 15);
1600
1601 while (!VEC_empty (stack_item_t, info.si))
1602 {
1603 stack_item_t *si = VEC_last (stack_item_t, info.si);
1604
1605 sp -= si->len;
c3c87445
YQ
1606 if (si->data != NULL)
1607 write_memory (sp, si->data, si->len);
07b287a0
MS
1608 VEC_pop (stack_item_t, info.si);
1609 }
1610
1611 VEC_free (stack_item_t, info.si);
1612
1613 /* Finally, update the SP register. */
1614 regcache_cooked_write_unsigned (regcache, AARCH64_SP_REGNUM, sp);
1615
1616 return sp;
1617}
1618
1619/* Implement the "frame_align" gdbarch method. */
1620
1621static CORE_ADDR
1622aarch64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1623{
1624 /* Align the stack to sixteen bytes. */
1625 return sp & ~(CORE_ADDR) 15;
1626}
1627
1628/* Return the type for an AdvSISD Q register. */
1629
1630static struct type *
1631aarch64_vnq_type (struct gdbarch *gdbarch)
1632{
1633 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1634
1635 if (tdep->vnq_type == NULL)
1636 {
1637 struct type *t;
1638 struct type *elem;
1639
1640 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq",
1641 TYPE_CODE_UNION);
1642
1643 elem = builtin_type (gdbarch)->builtin_uint128;
1644 append_composite_type_field (t, "u", elem);
1645
1646 elem = builtin_type (gdbarch)->builtin_int128;
1647 append_composite_type_field (t, "s", elem);
1648
1649 tdep->vnq_type = t;
1650 }
1651
1652 return tdep->vnq_type;
1653}
1654
1655/* Return the type for an AdvSISD D register. */
1656
1657static struct type *
1658aarch64_vnd_type (struct gdbarch *gdbarch)
1659{
1660 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1661
1662 if (tdep->vnd_type == NULL)
1663 {
1664 struct type *t;
1665 struct type *elem;
1666
1667 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd",
1668 TYPE_CODE_UNION);
1669
1670 elem = builtin_type (gdbarch)->builtin_double;
1671 append_composite_type_field (t, "f", elem);
1672
1673 elem = builtin_type (gdbarch)->builtin_uint64;
1674 append_composite_type_field (t, "u", elem);
1675
1676 elem = builtin_type (gdbarch)->builtin_int64;
1677 append_composite_type_field (t, "s", elem);
1678
1679 tdep->vnd_type = t;
1680 }
1681
1682 return tdep->vnd_type;
1683}
1684
1685/* Return the type for an AdvSISD S register. */
1686
1687static struct type *
1688aarch64_vns_type (struct gdbarch *gdbarch)
1689{
1690 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1691
1692 if (tdep->vns_type == NULL)
1693 {
1694 struct type *t;
1695 struct type *elem;
1696
1697 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vns",
1698 TYPE_CODE_UNION);
1699
1700 elem = builtin_type (gdbarch)->builtin_float;
1701 append_composite_type_field (t, "f", elem);
1702
1703 elem = builtin_type (gdbarch)->builtin_uint32;
1704 append_composite_type_field (t, "u", elem);
1705
1706 elem = builtin_type (gdbarch)->builtin_int32;
1707 append_composite_type_field (t, "s", elem);
1708
1709 tdep->vns_type = t;
1710 }
1711
1712 return tdep->vns_type;
1713}
1714
1715/* Return the type for an AdvSISD H register. */
1716
1717static struct type *
1718aarch64_vnh_type (struct gdbarch *gdbarch)
1719{
1720 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1721
1722 if (tdep->vnh_type == NULL)
1723 {
1724 struct type *t;
1725 struct type *elem;
1726
1727 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh",
1728 TYPE_CODE_UNION);
1729
1730 elem = builtin_type (gdbarch)->builtin_uint16;
1731 append_composite_type_field (t, "u", elem);
1732
1733 elem = builtin_type (gdbarch)->builtin_int16;
1734 append_composite_type_field (t, "s", elem);
1735
1736 tdep->vnh_type = t;
1737 }
1738
1739 return tdep->vnh_type;
1740}
1741
1742/* Return the type for an AdvSISD B register. */
1743
1744static struct type *
1745aarch64_vnb_type (struct gdbarch *gdbarch)
1746{
1747 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1748
1749 if (tdep->vnb_type == NULL)
1750 {
1751 struct type *t;
1752 struct type *elem;
1753
1754 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb",
1755 TYPE_CODE_UNION);
1756
1757 elem = builtin_type (gdbarch)->builtin_uint8;
1758 append_composite_type_field (t, "u", elem);
1759
1760 elem = builtin_type (gdbarch)->builtin_int8;
1761 append_composite_type_field (t, "s", elem);
1762
1763 tdep->vnb_type = t;
1764 }
1765
1766 return tdep->vnb_type;
1767}
1768
1769/* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
1770
1771static int
1772aarch64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1773{
1774 if (reg >= AARCH64_DWARF_X0 && reg <= AARCH64_DWARF_X0 + 30)
1775 return AARCH64_X0_REGNUM + reg - AARCH64_DWARF_X0;
1776
1777 if (reg == AARCH64_DWARF_SP)
1778 return AARCH64_SP_REGNUM;
1779
1780 if (reg >= AARCH64_DWARF_V0 && reg <= AARCH64_DWARF_V0 + 31)
1781 return AARCH64_V0_REGNUM + reg - AARCH64_DWARF_V0;
1782
1783 return -1;
1784}
1785\f
1786
1787/* Implement the "print_insn" gdbarch method. */
1788
1789static int
1790aarch64_gdb_print_insn (bfd_vma memaddr, disassemble_info *info)
1791{
1792 info->symbols = NULL;
6394c606 1793 return default_print_insn (memaddr, info);
07b287a0
MS
1794}
1795
1796/* AArch64 BRK software debug mode instruction.
1797 Note that AArch64 code is always little-endian.
1798 1101.0100.0010.0000.0000.0000.0000.0000 = 0xd4200000. */
04180708 1799constexpr gdb_byte aarch64_default_breakpoint[] = {0x00, 0x00, 0x20, 0xd4};
07b287a0 1800
04180708 1801typedef BP_MANIPULATION (aarch64_default_breakpoint) aarch64_breakpoint;
07b287a0
MS
1802
1803/* Extract from an array REGS containing the (raw) register state a
1804 function return value of type TYPE, and copy that, in virtual
1805 format, into VALBUF. */
1806
1807static void
1808aarch64_extract_return_value (struct type *type, struct regcache *regs,
1809 gdb_byte *valbuf)
1810{
ac7936df 1811 struct gdbarch *gdbarch = regs->arch ();
07b287a0
MS
1812 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1813
1814 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1815 {
1816 bfd_byte buf[V_REGISTER_SIZE];
1817 int len = TYPE_LENGTH (type);
1818
dca08e1f 1819 regs->cooked_read (AARCH64_V0_REGNUM, buf);
07b287a0
MS
1820 memcpy (valbuf, buf, len);
1821 }
1822 else if (TYPE_CODE (type) == TYPE_CODE_INT
1823 || TYPE_CODE (type) == TYPE_CODE_CHAR
1824 || TYPE_CODE (type) == TYPE_CODE_BOOL
1825 || TYPE_CODE (type) == TYPE_CODE_PTR
aa006118 1826 || TYPE_IS_REFERENCE (type)
07b287a0
MS
1827 || TYPE_CODE (type) == TYPE_CODE_ENUM)
1828 {
1829 /* If the the type is a plain integer, then the access is
1830 straight-forward. Otherwise we have to play around a bit
1831 more. */
1832 int len = TYPE_LENGTH (type);
1833 int regno = AARCH64_X0_REGNUM;
1834 ULONGEST tmp;
1835
1836 while (len > 0)
1837 {
1838 /* By using store_unsigned_integer we avoid having to do
1839 anything special for small big-endian values. */
1840 regcache_cooked_read_unsigned (regs, regno++, &tmp);
1841 store_unsigned_integer (valbuf,
1842 (len > X_REGISTER_SIZE
1843 ? X_REGISTER_SIZE : len), byte_order, tmp);
1844 len -= X_REGISTER_SIZE;
1845 valbuf += X_REGISTER_SIZE;
1846 }
1847 }
1848 else if (TYPE_CODE (type) == TYPE_CODE_COMPLEX)
1849 {
1850 int regno = AARCH64_V0_REGNUM;
1851 bfd_byte buf[V_REGISTER_SIZE];
1852 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1853 int len = TYPE_LENGTH (target_type);
1854
dca08e1f 1855 regs->cooked_read (regno, buf);
07b287a0
MS
1856 memcpy (valbuf, buf, len);
1857 valbuf += len;
dca08e1f 1858 regs->cooked_read (regno + 1, buf);
07b287a0
MS
1859 memcpy (valbuf, buf, len);
1860 valbuf += len;
1861 }
cd635f74 1862 else if (is_hfa_or_hva (type))
07b287a0
MS
1863 {
1864 int elements = TYPE_NFIELDS (type);
1865 struct type *member_type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1866 int len = TYPE_LENGTH (member_type);
1867 int i;
1868
1869 for (i = 0; i < elements; i++)
1870 {
1871 int regno = AARCH64_V0_REGNUM + i;
db3516bb 1872 bfd_byte buf[V_REGISTER_SIZE];
07b287a0
MS
1873
1874 if (aarch64_debug)
b277c936 1875 {
cd635f74 1876 debug_printf ("read HFA or HVA return value element %d from %s\n",
b277c936
PL
1877 i + 1,
1878 gdbarch_register_name (gdbarch, regno));
1879 }
dca08e1f 1880 regs->cooked_read (regno, buf);
07b287a0
MS
1881
1882 memcpy (valbuf, buf, len);
1883 valbuf += len;
1884 }
1885 }
238f2452
YQ
1886 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
1887 && (TYPE_LENGTH (type) == 16 || TYPE_LENGTH (type) == 8))
1888 {
1889 /* Short vector is returned in V register. */
1890 gdb_byte buf[V_REGISTER_SIZE];
1891
dca08e1f 1892 regs->cooked_read (AARCH64_V0_REGNUM, buf);
238f2452
YQ
1893 memcpy (valbuf, buf, TYPE_LENGTH (type));
1894 }
07b287a0
MS
1895 else
1896 {
1897 /* For a structure or union the behaviour is as if the value had
1898 been stored to word-aligned memory and then loaded into
1899 registers with 64-bit load instruction(s). */
1900 int len = TYPE_LENGTH (type);
1901 int regno = AARCH64_X0_REGNUM;
1902 bfd_byte buf[X_REGISTER_SIZE];
1903
1904 while (len > 0)
1905 {
dca08e1f 1906 regs->cooked_read (regno++, buf);
07b287a0
MS
1907 memcpy (valbuf, buf, len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
1908 len -= X_REGISTER_SIZE;
1909 valbuf += X_REGISTER_SIZE;
1910 }
1911 }
1912}
1913
1914
1915/* Will a function return an aggregate type in memory or in a
1916 register? Return 0 if an aggregate type can be returned in a
1917 register, 1 if it must be returned in memory. */
1918
1919static int
1920aarch64_return_in_memory (struct gdbarch *gdbarch, struct type *type)
1921{
f168693b 1922 type = check_typedef (type);
07b287a0 1923
cd635f74 1924 if (is_hfa_or_hva (type))
07b287a0 1925 {
cd635f74
YQ
1926 /* v0-v7 are used to return values and one register is allocated
1927 for one member. However, HFA or HVA has at most four members. */
07b287a0
MS
1928 return 0;
1929 }
1930
1931 if (TYPE_LENGTH (type) > 16)
1932 {
1933 /* PCS B.6 Aggregates larger than 16 bytes are passed by
1934 invisible reference. */
1935
1936 return 1;
1937 }
1938
1939 return 0;
1940}
1941
1942/* Write into appropriate registers a function return value of type
1943 TYPE, given in virtual format. */
1944
1945static void
1946aarch64_store_return_value (struct type *type, struct regcache *regs,
1947 const gdb_byte *valbuf)
1948{
ac7936df 1949 struct gdbarch *gdbarch = regs->arch ();
07b287a0
MS
1950 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1951
1952 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1953 {
1954 bfd_byte buf[V_REGISTER_SIZE];
1955 int len = TYPE_LENGTH (type);
1956
1957 memcpy (buf, valbuf, len > V_REGISTER_SIZE ? V_REGISTER_SIZE : len);
b66f5587 1958 regs->cooked_write (AARCH64_V0_REGNUM, buf);
07b287a0
MS
1959 }
1960 else if (TYPE_CODE (type) == TYPE_CODE_INT
1961 || TYPE_CODE (type) == TYPE_CODE_CHAR
1962 || TYPE_CODE (type) == TYPE_CODE_BOOL
1963 || TYPE_CODE (type) == TYPE_CODE_PTR
aa006118 1964 || TYPE_IS_REFERENCE (type)
07b287a0
MS
1965 || TYPE_CODE (type) == TYPE_CODE_ENUM)
1966 {
1967 if (TYPE_LENGTH (type) <= X_REGISTER_SIZE)
1968 {
1969 /* Values of one word or less are zero/sign-extended and
1970 returned in r0. */
1971 bfd_byte tmpbuf[X_REGISTER_SIZE];
1972 LONGEST val = unpack_long (type, valbuf);
1973
1974 store_signed_integer (tmpbuf, X_REGISTER_SIZE, byte_order, val);
b66f5587 1975 regs->cooked_write (AARCH64_X0_REGNUM, tmpbuf);
07b287a0
MS
1976 }
1977 else
1978 {
1979 /* Integral values greater than one word are stored in
1980 consecutive registers starting with r0. This will always
1981 be a multiple of the regiser size. */
1982 int len = TYPE_LENGTH (type);
1983 int regno = AARCH64_X0_REGNUM;
1984
1985 while (len > 0)
1986 {
b66f5587 1987 regs->cooked_write (regno++, valbuf);
07b287a0
MS
1988 len -= X_REGISTER_SIZE;
1989 valbuf += X_REGISTER_SIZE;
1990 }
1991 }
1992 }
cd635f74 1993 else if (is_hfa_or_hva (type))
07b287a0
MS
1994 {
1995 int elements = TYPE_NFIELDS (type);
1996 struct type *member_type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1997 int len = TYPE_LENGTH (member_type);
1998 int i;
1999
2000 for (i = 0; i < elements; i++)
2001 {
2002 int regno = AARCH64_V0_REGNUM + i;
d1be909e 2003 bfd_byte tmpbuf[V_REGISTER_SIZE];
07b287a0
MS
2004
2005 if (aarch64_debug)
b277c936 2006 {
cd635f74 2007 debug_printf ("write HFA or HVA return value element %d to %s\n",
b277c936
PL
2008 i + 1,
2009 gdbarch_register_name (gdbarch, regno));
2010 }
07b287a0
MS
2011
2012 memcpy (tmpbuf, valbuf, len);
b66f5587 2013 regs->cooked_write (regno, tmpbuf);
07b287a0
MS
2014 valbuf += len;
2015 }
2016 }
238f2452
YQ
2017 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
2018 && (TYPE_LENGTH (type) == 8 || TYPE_LENGTH (type) == 16))
2019 {
2020 /* Short vector. */
2021 gdb_byte buf[V_REGISTER_SIZE];
2022
2023 memcpy (buf, valbuf, TYPE_LENGTH (type));
b66f5587 2024 regs->cooked_write (AARCH64_V0_REGNUM, buf);
238f2452 2025 }
07b287a0
MS
2026 else
2027 {
2028 /* For a structure or union the behaviour is as if the value had
2029 been stored to word-aligned memory and then loaded into
2030 registers with 64-bit load instruction(s). */
2031 int len = TYPE_LENGTH (type);
2032 int regno = AARCH64_X0_REGNUM;
2033 bfd_byte tmpbuf[X_REGISTER_SIZE];
2034
2035 while (len > 0)
2036 {
2037 memcpy (tmpbuf, valbuf,
2038 len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
b66f5587 2039 regs->cooked_write (regno++, tmpbuf);
07b287a0
MS
2040 len -= X_REGISTER_SIZE;
2041 valbuf += X_REGISTER_SIZE;
2042 }
2043 }
2044}
2045
2046/* Implement the "return_value" gdbarch method. */
2047
2048static enum return_value_convention
2049aarch64_return_value (struct gdbarch *gdbarch, struct value *func_value,
2050 struct type *valtype, struct regcache *regcache,
2051 gdb_byte *readbuf, const gdb_byte *writebuf)
2052{
07b287a0
MS
2053
2054 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2055 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2056 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2057 {
2058 if (aarch64_return_in_memory (gdbarch, valtype))
2059 {
2060 if (aarch64_debug)
b277c936 2061 debug_printf ("return value in memory\n");
07b287a0
MS
2062 return RETURN_VALUE_STRUCT_CONVENTION;
2063 }
2064 }
2065
2066 if (writebuf)
2067 aarch64_store_return_value (valtype, regcache, writebuf);
2068
2069 if (readbuf)
2070 aarch64_extract_return_value (valtype, regcache, readbuf);
2071
2072 if (aarch64_debug)
b277c936 2073 debug_printf ("return value in registers\n");
07b287a0
MS
2074
2075 return RETURN_VALUE_REGISTER_CONVENTION;
2076}
2077
2078/* Implement the "get_longjmp_target" gdbarch method. */
2079
2080static int
2081aarch64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2082{
2083 CORE_ADDR jb_addr;
2084 gdb_byte buf[X_REGISTER_SIZE];
2085 struct gdbarch *gdbarch = get_frame_arch (frame);
2086 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2087 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2088
2089 jb_addr = get_frame_register_unsigned (frame, AARCH64_X0_REGNUM);
2090
2091 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2092 X_REGISTER_SIZE))
2093 return 0;
2094
2095 *pc = extract_unsigned_integer (buf, X_REGISTER_SIZE, byte_order);
2096 return 1;
2097}
ea873d8e
PL
2098
2099/* Implement the "gen_return_address" gdbarch method. */
2100
2101static void
2102aarch64_gen_return_address (struct gdbarch *gdbarch,
2103 struct agent_expr *ax, struct axs_value *value,
2104 CORE_ADDR scope)
2105{
2106 value->type = register_type (gdbarch, AARCH64_LR_REGNUM);
2107 value->kind = axs_lvalue_register;
2108 value->u.reg = AARCH64_LR_REGNUM;
2109}
07b287a0
MS
2110\f
2111
2112/* Return the pseudo register name corresponding to register regnum. */
2113
2114static const char *
2115aarch64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
2116{
2117 static const char *const q_name[] =
2118 {
2119 "q0", "q1", "q2", "q3",
2120 "q4", "q5", "q6", "q7",
2121 "q8", "q9", "q10", "q11",
2122 "q12", "q13", "q14", "q15",
2123 "q16", "q17", "q18", "q19",
2124 "q20", "q21", "q22", "q23",
2125 "q24", "q25", "q26", "q27",
2126 "q28", "q29", "q30", "q31",
2127 };
2128
2129 static const char *const d_name[] =
2130 {
2131 "d0", "d1", "d2", "d3",
2132 "d4", "d5", "d6", "d7",
2133 "d8", "d9", "d10", "d11",
2134 "d12", "d13", "d14", "d15",
2135 "d16", "d17", "d18", "d19",
2136 "d20", "d21", "d22", "d23",
2137 "d24", "d25", "d26", "d27",
2138 "d28", "d29", "d30", "d31",
2139 };
2140
2141 static const char *const s_name[] =
2142 {
2143 "s0", "s1", "s2", "s3",
2144 "s4", "s5", "s6", "s7",
2145 "s8", "s9", "s10", "s11",
2146 "s12", "s13", "s14", "s15",
2147 "s16", "s17", "s18", "s19",
2148 "s20", "s21", "s22", "s23",
2149 "s24", "s25", "s26", "s27",
2150 "s28", "s29", "s30", "s31",
2151 };
2152
2153 static const char *const h_name[] =
2154 {
2155 "h0", "h1", "h2", "h3",
2156 "h4", "h5", "h6", "h7",
2157 "h8", "h9", "h10", "h11",
2158 "h12", "h13", "h14", "h15",
2159 "h16", "h17", "h18", "h19",
2160 "h20", "h21", "h22", "h23",
2161 "h24", "h25", "h26", "h27",
2162 "h28", "h29", "h30", "h31",
2163 };
2164
2165 static const char *const b_name[] =
2166 {
2167 "b0", "b1", "b2", "b3",
2168 "b4", "b5", "b6", "b7",
2169 "b8", "b9", "b10", "b11",
2170 "b12", "b13", "b14", "b15",
2171 "b16", "b17", "b18", "b19",
2172 "b20", "b21", "b22", "b23",
2173 "b24", "b25", "b26", "b27",
2174 "b28", "b29", "b30", "b31",
2175 };
2176
2177 regnum -= gdbarch_num_regs (gdbarch);
2178
2179 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2180 return q_name[regnum - AARCH64_Q0_REGNUM];
2181
2182 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2183 return d_name[regnum - AARCH64_D0_REGNUM];
2184
2185 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2186 return s_name[regnum - AARCH64_S0_REGNUM];
2187
2188 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2189 return h_name[regnum - AARCH64_H0_REGNUM];
2190
2191 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2192 return b_name[regnum - AARCH64_B0_REGNUM];
2193
2194 internal_error (__FILE__, __LINE__,
2195 _("aarch64_pseudo_register_name: bad register number %d"),
2196 regnum);
2197}
2198
2199/* Implement the "pseudo_register_type" tdesc_arch_data method. */
2200
2201static struct type *
2202aarch64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2203{
2204 regnum -= gdbarch_num_regs (gdbarch);
2205
2206 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2207 return aarch64_vnq_type (gdbarch);
2208
2209 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2210 return aarch64_vnd_type (gdbarch);
2211
2212 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2213 return aarch64_vns_type (gdbarch);
2214
2215 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2216 return aarch64_vnh_type (gdbarch);
2217
2218 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2219 return aarch64_vnb_type (gdbarch);
2220
2221 internal_error (__FILE__, __LINE__,
2222 _("aarch64_pseudo_register_type: bad register number %d"),
2223 regnum);
2224}
2225
2226/* Implement the "pseudo_register_reggroup_p" tdesc_arch_data method. */
2227
2228static int
2229aarch64_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2230 struct reggroup *group)
2231{
2232 regnum -= gdbarch_num_regs (gdbarch);
2233
2234 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2235 return group == all_reggroup || group == vector_reggroup;
2236 else if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2237 return (group == all_reggroup || group == vector_reggroup
2238 || group == float_reggroup);
2239 else if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2240 return (group == all_reggroup || group == vector_reggroup
2241 || group == float_reggroup);
2242 else if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2243 return group == all_reggroup || group == vector_reggroup;
2244 else if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2245 return group == all_reggroup || group == vector_reggroup;
2246
2247 return group == all_reggroup;
2248}
2249
2250/* Implement the "pseudo_register_read_value" gdbarch method. */
2251
2252static struct value *
2253aarch64_pseudo_read_value (struct gdbarch *gdbarch,
849d0ba8 2254 readable_regcache *regcache,
07b287a0
MS
2255 int regnum)
2256{
d1be909e 2257 gdb_byte reg_buf[V_REGISTER_SIZE];
07b287a0
MS
2258 struct value *result_value;
2259 gdb_byte *buf;
2260
2261 result_value = allocate_value (register_type (gdbarch, regnum));
2262 VALUE_LVAL (result_value) = lval_register;
2263 VALUE_REGNUM (result_value) = regnum;
2264 buf = value_contents_raw (result_value);
2265
2266 regnum -= gdbarch_num_regs (gdbarch);
2267
2268 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2269 {
2270 enum register_status status;
2271 unsigned v_regnum;
2272
2273 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_Q0_REGNUM;
03f50fc8 2274 status = regcache->raw_read (v_regnum, reg_buf);
07b287a0
MS
2275 if (status != REG_VALID)
2276 mark_value_bytes_unavailable (result_value, 0,
2277 TYPE_LENGTH (value_type (result_value)));
2278 else
2279 memcpy (buf, reg_buf, Q_REGISTER_SIZE);
2280 return result_value;
2281 }
2282
2283 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2284 {
2285 enum register_status status;
2286 unsigned v_regnum;
2287
2288 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_D0_REGNUM;
03f50fc8 2289 status = regcache->raw_read (v_regnum, reg_buf);
07b287a0
MS
2290 if (status != REG_VALID)
2291 mark_value_bytes_unavailable (result_value, 0,
2292 TYPE_LENGTH (value_type (result_value)));
2293 else
2294 memcpy (buf, reg_buf, D_REGISTER_SIZE);
2295 return result_value;
2296 }
2297
2298 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2299 {
2300 enum register_status status;
2301 unsigned v_regnum;
2302
2303 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_S0_REGNUM;
03f50fc8 2304 status = regcache->raw_read (v_regnum, reg_buf);
4bcddace
PL
2305 if (status != REG_VALID)
2306 mark_value_bytes_unavailable (result_value, 0,
2307 TYPE_LENGTH (value_type (result_value)));
2308 else
2309 memcpy (buf, reg_buf, S_REGISTER_SIZE);
07b287a0
MS
2310 return result_value;
2311 }
2312
2313 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2314 {
2315 enum register_status status;
2316 unsigned v_regnum;
2317
2318 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_H0_REGNUM;
03f50fc8 2319 status = regcache->raw_read (v_regnum, reg_buf);
07b287a0
MS
2320 if (status != REG_VALID)
2321 mark_value_bytes_unavailable (result_value, 0,
2322 TYPE_LENGTH (value_type (result_value)));
2323 else
2324 memcpy (buf, reg_buf, H_REGISTER_SIZE);
2325 return result_value;
2326 }
2327
2328 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2329 {
2330 enum register_status status;
2331 unsigned v_regnum;
2332
2333 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_B0_REGNUM;
03f50fc8 2334 status = regcache->raw_read (v_regnum, reg_buf);
07b287a0
MS
2335 if (status != REG_VALID)
2336 mark_value_bytes_unavailable (result_value, 0,
2337 TYPE_LENGTH (value_type (result_value)));
2338 else
2339 memcpy (buf, reg_buf, B_REGISTER_SIZE);
2340 return result_value;
2341 }
2342
2343 gdb_assert_not_reached ("regnum out of bound");
2344}
2345
2346/* Implement the "pseudo_register_write" gdbarch method. */
2347
2348static void
2349aarch64_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
2350 int regnum, const gdb_byte *buf)
2351{
d1be909e 2352 gdb_byte reg_buf[V_REGISTER_SIZE];
07b287a0
MS
2353
2354 /* Ensure the register buffer is zero, we want gdb writes of the
2355 various 'scalar' pseudo registers to behavior like architectural
2356 writes, register width bytes are written the remainder are set to
2357 zero. */
2358 memset (reg_buf, 0, sizeof (reg_buf));
2359
2360 regnum -= gdbarch_num_regs (gdbarch);
2361
2362 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2363 {
2364 /* pseudo Q registers */
2365 unsigned v_regnum;
2366
2367 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_Q0_REGNUM;
2368 memcpy (reg_buf, buf, Q_REGISTER_SIZE);
10eaee5f 2369 regcache->raw_write (v_regnum, reg_buf);
07b287a0
MS
2370 return;
2371 }
2372
2373 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2374 {
2375 /* pseudo D registers */
2376 unsigned v_regnum;
2377
2378 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_D0_REGNUM;
2379 memcpy (reg_buf, buf, D_REGISTER_SIZE);
10eaee5f 2380 regcache->raw_write (v_regnum, reg_buf);
07b287a0
MS
2381 return;
2382 }
2383
2384 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2385 {
2386 unsigned v_regnum;
2387
2388 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_S0_REGNUM;
2389 memcpy (reg_buf, buf, S_REGISTER_SIZE);
10eaee5f 2390 regcache->raw_write (v_regnum, reg_buf);
07b287a0
MS
2391 return;
2392 }
2393
2394 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2395 {
2396 /* pseudo H registers */
2397 unsigned v_regnum;
2398
2399 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_H0_REGNUM;
2400 memcpy (reg_buf, buf, H_REGISTER_SIZE);
10eaee5f 2401 regcache->raw_write (v_regnum, reg_buf);
07b287a0
MS
2402 return;
2403 }
2404
2405 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2406 {
2407 /* pseudo B registers */
2408 unsigned v_regnum;
2409
2410 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_B0_REGNUM;
2411 memcpy (reg_buf, buf, B_REGISTER_SIZE);
10eaee5f 2412 regcache->raw_write (v_regnum, reg_buf);
07b287a0
MS
2413 return;
2414 }
2415
2416 gdb_assert_not_reached ("regnum out of bound");
2417}
2418
07b287a0
MS
2419/* Callback function for user_reg_add. */
2420
2421static struct value *
2422value_of_aarch64_user_reg (struct frame_info *frame, const void *baton)
2423{
9a3c8263 2424 const int *reg_p = (const int *) baton;
07b287a0
MS
2425
2426 return value_of_register (*reg_p, frame);
2427}
2428\f
2429
9404b58f
KM
2430/* Implement the "software_single_step" gdbarch method, needed to
2431 single step through atomic sequences on AArch64. */
2432
a0ff9e1a 2433static std::vector<CORE_ADDR>
f5ea389a 2434aarch64_software_single_step (struct regcache *regcache)
9404b58f 2435{
ac7936df 2436 struct gdbarch *gdbarch = regcache->arch ();
9404b58f
KM
2437 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2438 const int insn_size = 4;
2439 const int atomic_sequence_length = 16; /* Instruction sequence length. */
0187a92f 2440 CORE_ADDR pc = regcache_read_pc (regcache);
9404b58f
KM
2441 CORE_ADDR breaks[2] = { -1, -1 };
2442 CORE_ADDR loc = pc;
2443 CORE_ADDR closing_insn = 0;
2444 uint32_t insn = read_memory_unsigned_integer (loc, insn_size,
2445 byte_order_for_code);
2446 int index;
2447 int insn_count;
2448 int bc_insn_count = 0; /* Conditional branch instruction count. */
2449 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
f77ee802
YQ
2450 aarch64_inst inst;
2451
561a72d4 2452 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
a0ff9e1a 2453 return {};
9404b58f
KM
2454
2455 /* Look for a Load Exclusive instruction which begins the sequence. */
f77ee802 2456 if (inst.opcode->iclass != ldstexcl || bit (insn, 22) == 0)
a0ff9e1a 2457 return {};
9404b58f
KM
2458
2459 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2460 {
9404b58f
KM
2461 loc += insn_size;
2462 insn = read_memory_unsigned_integer (loc, insn_size,
2463 byte_order_for_code);
2464
561a72d4 2465 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
a0ff9e1a 2466 return {};
9404b58f 2467 /* Check if the instruction is a conditional branch. */
f77ee802 2468 if (inst.opcode->iclass == condbranch)
9404b58f 2469 {
f77ee802
YQ
2470 gdb_assert (inst.operands[0].type == AARCH64_OPND_ADDR_PCREL19);
2471
9404b58f 2472 if (bc_insn_count >= 1)
a0ff9e1a 2473 return {};
9404b58f
KM
2474
2475 /* It is, so we'll try to set a breakpoint at the destination. */
f77ee802 2476 breaks[1] = loc + inst.operands[0].imm.value;
9404b58f
KM
2477
2478 bc_insn_count++;
2479 last_breakpoint++;
2480 }
2481
2482 /* Look for the Store Exclusive which closes the atomic sequence. */
f77ee802 2483 if (inst.opcode->iclass == ldstexcl && bit (insn, 22) == 0)
9404b58f
KM
2484 {
2485 closing_insn = loc;
2486 break;
2487 }
2488 }
2489
2490 /* We didn't find a closing Store Exclusive instruction, fall back. */
2491 if (!closing_insn)
a0ff9e1a 2492 return {};
9404b58f
KM
2493
2494 /* Insert breakpoint after the end of the atomic sequence. */
2495 breaks[0] = loc + insn_size;
2496
2497 /* Check for duplicated breakpoints, and also check that the second
2498 breakpoint is not within the atomic sequence. */
2499 if (last_breakpoint
2500 && (breaks[1] == breaks[0]
2501 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
2502 last_breakpoint = 0;
2503
a0ff9e1a
SM
2504 std::vector<CORE_ADDR> next_pcs;
2505
9404b58f
KM
2506 /* Insert the breakpoint at the end of the sequence, and one at the
2507 destination of the conditional branch, if it exists. */
2508 for (index = 0; index <= last_breakpoint; index++)
a0ff9e1a 2509 next_pcs.push_back (breaks[index]);
9404b58f 2510
93f9a11f 2511 return next_pcs;
9404b58f
KM
2512}
2513
cfba9872 2514struct aarch64_displaced_step_closure : public displaced_step_closure
b6542f81
YQ
2515{
2516 /* It is true when condition instruction, such as B.CON, TBZ, etc,
2517 is being displaced stepping. */
cfba9872 2518 int cond = 0;
b6542f81
YQ
2519
2520 /* PC adjustment offset after displaced stepping. */
cfba9872 2521 int32_t pc_adjust = 0;
b6542f81
YQ
2522};
2523
2524/* Data when visiting instructions for displaced stepping. */
2525
2526struct aarch64_displaced_step_data
2527{
2528 struct aarch64_insn_data base;
2529
2530 /* The address where the instruction will be executed at. */
2531 CORE_ADDR new_addr;
2532 /* Buffer of instructions to be copied to NEW_ADDR to execute. */
2533 uint32_t insn_buf[DISPLACED_MODIFIED_INSNS];
2534 /* Number of instructions in INSN_BUF. */
2535 unsigned insn_count;
2536 /* Registers when doing displaced stepping. */
2537 struct regcache *regs;
2538
cfba9872 2539 aarch64_displaced_step_closure *dsc;
b6542f81
YQ
2540};
2541
2542/* Implementation of aarch64_insn_visitor method "b". */
2543
2544static void
2545aarch64_displaced_step_b (const int is_bl, const int32_t offset,
2546 struct aarch64_insn_data *data)
2547{
2548 struct aarch64_displaced_step_data *dsd
2549 = (struct aarch64_displaced_step_data *) data;
2ac09a5b 2550 int64_t new_offset = data->insn_addr - dsd->new_addr + offset;
b6542f81
YQ
2551
2552 if (can_encode_int32 (new_offset, 28))
2553 {
2554 /* Emit B rather than BL, because executing BL on a new address
2555 will get the wrong address into LR. In order to avoid this,
2556 we emit B, and update LR if the instruction is BL. */
2557 emit_b (dsd->insn_buf, 0, new_offset);
2558 dsd->insn_count++;
2559 }
2560 else
2561 {
2562 /* Write NOP. */
2563 emit_nop (dsd->insn_buf);
2564 dsd->insn_count++;
2565 dsd->dsc->pc_adjust = offset;
2566 }
2567
2568 if (is_bl)
2569 {
2570 /* Update LR. */
2571 regcache_cooked_write_unsigned (dsd->regs, AARCH64_LR_REGNUM,
2572 data->insn_addr + 4);
2573 }
2574}
2575
2576/* Implementation of aarch64_insn_visitor method "b_cond". */
2577
2578static void
2579aarch64_displaced_step_b_cond (const unsigned cond, const int32_t offset,
2580 struct aarch64_insn_data *data)
2581{
2582 struct aarch64_displaced_step_data *dsd
2583 = (struct aarch64_displaced_step_data *) data;
b6542f81
YQ
2584
2585 /* GDB has to fix up PC after displaced step this instruction
2586 differently according to the condition is true or false. Instead
2587 of checking COND against conditional flags, we can use
2588 the following instructions, and GDB can tell how to fix up PC
2589 according to the PC value.
2590
2591 B.COND TAKEN ; If cond is true, then jump to TAKEN.
2592 INSN1 ;
2593 TAKEN:
2594 INSN2
2595 */
2596
2597 emit_bcond (dsd->insn_buf, cond, 8);
2598 dsd->dsc->cond = 1;
2599 dsd->dsc->pc_adjust = offset;
2600 dsd->insn_count = 1;
2601}
2602
2603/* Dynamically allocate a new register. If we know the register
2604 statically, we should make it a global as above instead of using this
2605 helper function. */
2606
2607static struct aarch64_register
2608aarch64_register (unsigned num, int is64)
2609{
2610 return (struct aarch64_register) { num, is64 };
2611}
2612
2613/* Implementation of aarch64_insn_visitor method "cb". */
2614
2615static void
2616aarch64_displaced_step_cb (const int32_t offset, const int is_cbnz,
2617 const unsigned rn, int is64,
2618 struct aarch64_insn_data *data)
2619{
2620 struct aarch64_displaced_step_data *dsd
2621 = (struct aarch64_displaced_step_data *) data;
b6542f81
YQ
2622
2623 /* The offset is out of range for a compare and branch
2624 instruction. We can use the following instructions instead:
2625
2626 CBZ xn, TAKEN ; xn == 0, then jump to TAKEN.
2627 INSN1 ;
2628 TAKEN:
2629 INSN2
2630 */
2631 emit_cb (dsd->insn_buf, is_cbnz, aarch64_register (rn, is64), 8);
2632 dsd->insn_count = 1;
2633 dsd->dsc->cond = 1;
2634 dsd->dsc->pc_adjust = offset;
2635}
2636
2637/* Implementation of aarch64_insn_visitor method "tb". */
2638
2639static void
2640aarch64_displaced_step_tb (const int32_t offset, int is_tbnz,
2641 const unsigned rt, unsigned bit,
2642 struct aarch64_insn_data *data)
2643{
2644 struct aarch64_displaced_step_data *dsd
2645 = (struct aarch64_displaced_step_data *) data;
b6542f81
YQ
2646
2647 /* The offset is out of range for a test bit and branch
2648 instruction We can use the following instructions instead:
2649
2650 TBZ xn, #bit, TAKEN ; xn[bit] == 0, then jump to TAKEN.
2651 INSN1 ;
2652 TAKEN:
2653 INSN2
2654
2655 */
2656 emit_tb (dsd->insn_buf, is_tbnz, bit, aarch64_register (rt, 1), 8);
2657 dsd->insn_count = 1;
2658 dsd->dsc->cond = 1;
2659 dsd->dsc->pc_adjust = offset;
2660}
2661
2662/* Implementation of aarch64_insn_visitor method "adr". */
2663
2664static void
2665aarch64_displaced_step_adr (const int32_t offset, const unsigned rd,
2666 const int is_adrp, struct aarch64_insn_data *data)
2667{
2668 struct aarch64_displaced_step_data *dsd
2669 = (struct aarch64_displaced_step_data *) data;
2670 /* We know exactly the address the ADR{P,} instruction will compute.
2671 We can just write it to the destination register. */
2672 CORE_ADDR address = data->insn_addr + offset;
2673
2674 if (is_adrp)
2675 {
2676 /* Clear the lower 12 bits of the offset to get the 4K page. */
2677 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
2678 address & ~0xfff);
2679 }
2680 else
2681 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
2682 address);
2683
2684 dsd->dsc->pc_adjust = 4;
2685 emit_nop (dsd->insn_buf);
2686 dsd->insn_count = 1;
2687}
2688
2689/* Implementation of aarch64_insn_visitor method "ldr_literal". */
2690
2691static void
2692aarch64_displaced_step_ldr_literal (const int32_t offset, const int is_sw,
2693 const unsigned rt, const int is64,
2694 struct aarch64_insn_data *data)
2695{
2696 struct aarch64_displaced_step_data *dsd
2697 = (struct aarch64_displaced_step_data *) data;
2698 CORE_ADDR address = data->insn_addr + offset;
2699 struct aarch64_memory_operand zero = { MEMORY_OPERAND_OFFSET, 0 };
2700
2701 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rt,
2702 address);
2703
2704 if (is_sw)
2705 dsd->insn_count = emit_ldrsw (dsd->insn_buf, aarch64_register (rt, 1),
2706 aarch64_register (rt, 1), zero);
2707 else
2708 dsd->insn_count = emit_ldr (dsd->insn_buf, aarch64_register (rt, is64),
2709 aarch64_register (rt, 1), zero);
2710
2711 dsd->dsc->pc_adjust = 4;
2712}
2713
2714/* Implementation of aarch64_insn_visitor method "others". */
2715
2716static void
2717aarch64_displaced_step_others (const uint32_t insn,
2718 struct aarch64_insn_data *data)
2719{
2720 struct aarch64_displaced_step_data *dsd
2721 = (struct aarch64_displaced_step_data *) data;
2722
e1c587c3 2723 aarch64_emit_insn (dsd->insn_buf, insn);
b6542f81
YQ
2724 dsd->insn_count = 1;
2725
2726 if ((insn & 0xfffffc1f) == 0xd65f0000)
2727 {
2728 /* RET */
2729 dsd->dsc->pc_adjust = 0;
2730 }
2731 else
2732 dsd->dsc->pc_adjust = 4;
2733}
2734
2735static const struct aarch64_insn_visitor visitor =
2736{
2737 aarch64_displaced_step_b,
2738 aarch64_displaced_step_b_cond,
2739 aarch64_displaced_step_cb,
2740 aarch64_displaced_step_tb,
2741 aarch64_displaced_step_adr,
2742 aarch64_displaced_step_ldr_literal,
2743 aarch64_displaced_step_others,
2744};
2745
2746/* Implement the "displaced_step_copy_insn" gdbarch method. */
2747
2748struct displaced_step_closure *
2749aarch64_displaced_step_copy_insn (struct gdbarch *gdbarch,
2750 CORE_ADDR from, CORE_ADDR to,
2751 struct regcache *regs)
2752{
b6542f81
YQ
2753 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2754 uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
2755 struct aarch64_displaced_step_data dsd;
c86a40c6
YQ
2756 aarch64_inst inst;
2757
561a72d4 2758 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
c86a40c6 2759 return NULL;
b6542f81
YQ
2760
2761 /* Look for a Load Exclusive instruction which begins the sequence. */
c86a40c6 2762 if (inst.opcode->iclass == ldstexcl && bit (insn, 22))
b6542f81
YQ
2763 {
2764 /* We can't displaced step atomic sequences. */
2765 return NULL;
2766 }
2767
cfba9872
SM
2768 std::unique_ptr<aarch64_displaced_step_closure> dsc
2769 (new aarch64_displaced_step_closure);
b6542f81
YQ
2770 dsd.base.insn_addr = from;
2771 dsd.new_addr = to;
2772 dsd.regs = regs;
cfba9872 2773 dsd.dsc = dsc.get ();
034f1a81 2774 dsd.insn_count = 0;
b6542f81
YQ
2775 aarch64_relocate_instruction (insn, &visitor,
2776 (struct aarch64_insn_data *) &dsd);
2777 gdb_assert (dsd.insn_count <= DISPLACED_MODIFIED_INSNS);
2778
2779 if (dsd.insn_count != 0)
2780 {
2781 int i;
2782
2783 /* Instruction can be relocated to scratch pad. Copy
2784 relocated instruction(s) there. */
2785 for (i = 0; i < dsd.insn_count; i++)
2786 {
2787 if (debug_displaced)
2788 {
2789 debug_printf ("displaced: writing insn ");
2790 debug_printf ("%.8x", dsd.insn_buf[i]);
2791 debug_printf (" at %s\n", paddress (gdbarch, to + i * 4));
2792 }
2793 write_memory_unsigned_integer (to + i * 4, 4, byte_order_for_code,
2794 (ULONGEST) dsd.insn_buf[i]);
2795 }
2796 }
2797 else
2798 {
b6542f81
YQ
2799 dsc = NULL;
2800 }
2801
cfba9872 2802 return dsc.release ();
b6542f81
YQ
2803}
2804
2805/* Implement the "displaced_step_fixup" gdbarch method. */
2806
2807void
2808aarch64_displaced_step_fixup (struct gdbarch *gdbarch,
cfba9872 2809 struct displaced_step_closure *dsc_,
b6542f81
YQ
2810 CORE_ADDR from, CORE_ADDR to,
2811 struct regcache *regs)
2812{
cfba9872
SM
2813 aarch64_displaced_step_closure *dsc = (aarch64_displaced_step_closure *) dsc_;
2814
b6542f81
YQ
2815 if (dsc->cond)
2816 {
2817 ULONGEST pc;
2818
2819 regcache_cooked_read_unsigned (regs, AARCH64_PC_REGNUM, &pc);
2820 if (pc - to == 8)
2821 {
2822 /* Condition is true. */
2823 }
2824 else if (pc - to == 4)
2825 {
2826 /* Condition is false. */
2827 dsc->pc_adjust = 4;
2828 }
2829 else
2830 gdb_assert_not_reached ("Unexpected PC value after displaced stepping");
2831 }
2832
2833 if (dsc->pc_adjust != 0)
2834 {
2835 if (debug_displaced)
2836 {
2837 debug_printf ("displaced: fixup: set PC to %s:%d\n",
2838 paddress (gdbarch, from), dsc->pc_adjust);
2839 }
2840 regcache_cooked_write_unsigned (regs, AARCH64_PC_REGNUM,
2841 from + dsc->pc_adjust);
2842 }
2843}
2844
2845/* Implement the "displaced_step_hw_singlestep" gdbarch method. */
2846
2847int
2848aarch64_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
2849 struct displaced_step_closure *closure)
2850{
2851 return 1;
2852}
2853
95228a0d
AH
2854/* Get the correct target description for the given VQ value.
2855 If VQ is zero then it is assumed SVE is not supported.
2856 (It is not possible to set VQ to zero on an SVE system). */
da434ccb
AH
2857
2858const target_desc *
95228a0d 2859aarch64_read_description (long vq)
da434ccb 2860{
95228a0d
AH
2861 if (vq > AARCH64_MAX_SVE_VQ)
2862 error (_("VQ is %ld, maximum supported value is %d"), vq,
2863 AARCH64_MAX_SVE_VQ);
2864
2865 struct target_desc *tdesc = tdesc_aarch64_list[vq];
da434ccb 2866
95228a0d
AH
2867 if (tdesc == NULL)
2868 {
2869 tdesc = aarch64_create_target_description (vq);
2870 tdesc_aarch64_list[vq] = tdesc;
2871 }
da434ccb 2872
95228a0d 2873 return tdesc;
da434ccb
AH
2874}
2875
07b287a0
MS
2876/* Initialize the current architecture based on INFO. If possible,
2877 re-use an architecture from ARCHES, which is a list of
2878 architectures already created during this debugging session.
2879
2880 Called e.g. at program startup, when reading a core file, and when
2881 reading a binary file. */
2882
2883static struct gdbarch *
2884aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2885{
2886 struct gdbarch_tdep *tdep;
2887 struct gdbarch *gdbarch;
2888 struct gdbarch_list *best_arch;
2889 struct tdesc_arch_data *tdesc_data = NULL;
2890 const struct target_desc *tdesc = info.target_desc;
2891 int i;
07b287a0
MS
2892 int valid_p = 1;
2893 const struct tdesc_feature *feature;
2894 int num_regs = 0;
2895 int num_pseudo_regs = 0;
2896
2897 /* Ensure we always have a target descriptor. */
2898 if (!tdesc_has_registers (tdesc))
95228a0d
AH
2899 {
2900 /* SVE is not yet supported. */
2901 tdesc = aarch64_read_description (0);
2902 }
07b287a0
MS
2903
2904 gdb_assert (tdesc);
2905
2906 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.core");
2907
2908 if (feature == NULL)
2909 return NULL;
2910
2911 tdesc_data = tdesc_data_alloc ();
2912
2913 /* Validate the descriptor provides the mandatory core R registers
2914 and allocate their numbers. */
2915 for (i = 0; i < ARRAY_SIZE (aarch64_r_register_names); i++)
2916 valid_p &=
2917 tdesc_numbered_register (feature, tdesc_data, AARCH64_X0_REGNUM + i,
2918 aarch64_r_register_names[i]);
2919
2920 num_regs = AARCH64_X0_REGNUM + i;
2921
2922 /* Look for the V registers. */
2923 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.fpu");
2924 if (feature)
2925 {
2926 /* Validate the descriptor provides the mandatory V registers
2927 and allocate their numbers. */
2928 for (i = 0; i < ARRAY_SIZE (aarch64_v_register_names); i++)
2929 valid_p &=
2930 tdesc_numbered_register (feature, tdesc_data, AARCH64_V0_REGNUM + i,
2931 aarch64_v_register_names[i]);
2932
2933 num_regs = AARCH64_V0_REGNUM + i;
2934
2935 num_pseudo_regs += 32; /* add the Qn scalar register pseudos */
2936 num_pseudo_regs += 32; /* add the Dn scalar register pseudos */
2937 num_pseudo_regs += 32; /* add the Sn scalar register pseudos */
2938 num_pseudo_regs += 32; /* add the Hn scalar register pseudos */
2939 num_pseudo_regs += 32; /* add the Bn scalar register pseudos */
2940 }
2941
2942 if (!valid_p)
2943 {
2944 tdesc_data_cleanup (tdesc_data);
2945 return NULL;
2946 }
2947
2948 /* AArch64 code is always little-endian. */
2949 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
2950
2951 /* If there is already a candidate, use it. */
2952 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2953 best_arch != NULL;
2954 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2955 {
2956 /* Found a match. */
2957 break;
2958 }
2959
2960 if (best_arch != NULL)
2961 {
2962 if (tdesc_data != NULL)
2963 tdesc_data_cleanup (tdesc_data);
2964 return best_arch->gdbarch;
2965 }
2966
8d749320 2967 tdep = XCNEW (struct gdbarch_tdep);
07b287a0
MS
2968 gdbarch = gdbarch_alloc (&info, tdep);
2969
2970 /* This should be low enough for everything. */
2971 tdep->lowest_pc = 0x20;
2972 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2973 tdep->jb_elt_size = 8;
2974
2975 set_gdbarch_push_dummy_call (gdbarch, aarch64_push_dummy_call);
2976 set_gdbarch_frame_align (gdbarch, aarch64_frame_align);
2977
07b287a0
MS
2978 /* Frame handling. */
2979 set_gdbarch_dummy_id (gdbarch, aarch64_dummy_id);
2980 set_gdbarch_unwind_pc (gdbarch, aarch64_unwind_pc);
2981 set_gdbarch_unwind_sp (gdbarch, aarch64_unwind_sp);
2982
2983 /* Advance PC across function entry code. */
2984 set_gdbarch_skip_prologue (gdbarch, aarch64_skip_prologue);
2985
2986 /* The stack grows downward. */
2987 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2988
2989 /* Breakpoint manipulation. */
04180708
YQ
2990 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
2991 aarch64_breakpoint::kind_from_pc);
2992 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
2993 aarch64_breakpoint::bp_from_kind);
07b287a0 2994 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
9404b58f 2995 set_gdbarch_software_single_step (gdbarch, aarch64_software_single_step);
07b287a0
MS
2996
2997 /* Information about registers, etc. */
2998 set_gdbarch_sp_regnum (gdbarch, AARCH64_SP_REGNUM);
2999 set_gdbarch_pc_regnum (gdbarch, AARCH64_PC_REGNUM);
3000 set_gdbarch_num_regs (gdbarch, num_regs);
3001
3002 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudo_regs);
3003 set_gdbarch_pseudo_register_read_value (gdbarch, aarch64_pseudo_read_value);
3004 set_gdbarch_pseudo_register_write (gdbarch, aarch64_pseudo_write);
3005 set_tdesc_pseudo_register_name (gdbarch, aarch64_pseudo_register_name);
3006 set_tdesc_pseudo_register_type (gdbarch, aarch64_pseudo_register_type);
3007 set_tdesc_pseudo_register_reggroup_p (gdbarch,
3008 aarch64_pseudo_register_reggroup_p);
3009
3010 /* ABI */
3011 set_gdbarch_short_bit (gdbarch, 16);
3012 set_gdbarch_int_bit (gdbarch, 32);
3013 set_gdbarch_float_bit (gdbarch, 32);
3014 set_gdbarch_double_bit (gdbarch, 64);
3015 set_gdbarch_long_double_bit (gdbarch, 128);
3016 set_gdbarch_long_bit (gdbarch, 64);
3017 set_gdbarch_long_long_bit (gdbarch, 64);
3018 set_gdbarch_ptr_bit (gdbarch, 64);
3019 set_gdbarch_char_signed (gdbarch, 0);
53375380 3020 set_gdbarch_wchar_signed (gdbarch, 0);
07b287a0
MS
3021 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3022 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3023 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3024
3025 /* Internal <-> external register number maps. */
3026 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, aarch64_dwarf_reg_to_regnum);
3027
3028 /* Returning results. */
3029 set_gdbarch_return_value (gdbarch, aarch64_return_value);
3030
3031 /* Disassembly. */
3032 set_gdbarch_print_insn (gdbarch, aarch64_gdb_print_insn);
3033
3034 /* Virtual tables. */
3035 set_gdbarch_vbit_in_delta (gdbarch, 1);
3036
3037 /* Hook in the ABI-specific overrides, if they have been registered. */
3038 info.target_desc = tdesc;
0dba2a6c 3039 info.tdesc_data = tdesc_data;
07b287a0
MS
3040 gdbarch_init_osabi (info, gdbarch);
3041
3042 dwarf2_frame_set_init_reg (gdbarch, aarch64_dwarf2_frame_init_reg);
3043
3044 /* Add some default predicates. */
3045 frame_unwind_append_unwinder (gdbarch, &aarch64_stub_unwind);
3046 dwarf2_append_unwinders (gdbarch);
3047 frame_unwind_append_unwinder (gdbarch, &aarch64_prologue_unwind);
3048
3049 frame_base_set_default (gdbarch, &aarch64_normal_base);
3050
3051 /* Now we have tuned the configuration, set a few final things,
3052 based on what the OS ABI has told us. */
3053
3054 if (tdep->jb_pc >= 0)
3055 set_gdbarch_get_longjmp_target (gdbarch, aarch64_get_longjmp_target);
3056
ea873d8e
PL
3057 set_gdbarch_gen_return_address (gdbarch, aarch64_gen_return_address);
3058
07b287a0
MS
3059 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
3060
3061 /* Add standard register aliases. */
3062 for (i = 0; i < ARRAY_SIZE (aarch64_register_aliases); i++)
3063 user_reg_add (gdbarch, aarch64_register_aliases[i].name,
3064 value_of_aarch64_user_reg,
3065 &aarch64_register_aliases[i].regnum);
3066
3067 return gdbarch;
3068}
3069
3070static void
3071aarch64_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3072{
3073 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3074
3075 if (tdep == NULL)
3076 return;
3077
3078 fprintf_unfiltered (file, _("aarch64_dump_tdep: Lowest pc = 0x%s"),
3079 paddress (gdbarch, tdep->lowest_pc));
3080}
3081
0d4c07af 3082#if GDB_SELF_TEST
1e2b521d
YQ
3083namespace selftests
3084{
3085static void aarch64_process_record_test (void);
3086}
0d4c07af 3087#endif
1e2b521d 3088
07b287a0
MS
3089void
3090_initialize_aarch64_tdep (void)
3091{
3092 gdbarch_register (bfd_arch_aarch64, aarch64_gdbarch_init,
3093 aarch64_dump_tdep);
3094
07b287a0
MS
3095 /* Debug this file's internals. */
3096 add_setshow_boolean_cmd ("aarch64", class_maintenance, &aarch64_debug, _("\
3097Set AArch64 debugging."), _("\
3098Show AArch64 debugging."), _("\
3099When on, AArch64 specific debugging is enabled."),
3100 NULL,
3101 show_aarch64_debug,
3102 &setdebuglist, &showdebuglist);
4d9a9006
YQ
3103
3104#if GDB_SELF_TEST
1526853e
SM
3105 selftests::register_test ("aarch64-analyze-prologue",
3106 selftests::aarch64_analyze_prologue_test);
3107 selftests::register_test ("aarch64-process-record",
3108 selftests::aarch64_process_record_test);
6654d750 3109 selftests::record_xml_tdesc ("aarch64.xml",
95228a0d 3110 aarch64_create_target_description (0));
4d9a9006 3111#endif
07b287a0 3112}
99afc88b
OJ
3113
3114/* AArch64 process record-replay related structures, defines etc. */
3115
99afc88b
OJ
3116#define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
3117 do \
3118 { \
3119 unsigned int reg_len = LENGTH; \
3120 if (reg_len) \
3121 { \
3122 REGS = XNEWVEC (uint32_t, reg_len); \
3123 memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
3124 } \
3125 } \
3126 while (0)
3127
3128#define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
3129 do \
3130 { \
3131 unsigned int mem_len = LENGTH; \
3132 if (mem_len) \
3133 { \
3134 MEMS = XNEWVEC (struct aarch64_mem_r, mem_len); \
3135 memcpy(&MEMS->len, &RECORD_BUF[0], \
3136 sizeof(struct aarch64_mem_r) * LENGTH); \
3137 } \
3138 } \
3139 while (0)
3140
3141/* AArch64 record/replay structures and enumerations. */
3142
3143struct aarch64_mem_r
3144{
3145 uint64_t len; /* Record length. */
3146 uint64_t addr; /* Memory address. */
3147};
3148
3149enum aarch64_record_result
3150{
3151 AARCH64_RECORD_SUCCESS,
99afc88b
OJ
3152 AARCH64_RECORD_UNSUPPORTED,
3153 AARCH64_RECORD_UNKNOWN
3154};
3155
3156typedef struct insn_decode_record_t
3157{
3158 struct gdbarch *gdbarch;
3159 struct regcache *regcache;
3160 CORE_ADDR this_addr; /* Address of insn to be recorded. */
3161 uint32_t aarch64_insn; /* Insn to be recorded. */
3162 uint32_t mem_rec_count; /* Count of memory records. */
3163 uint32_t reg_rec_count; /* Count of register records. */
3164 uint32_t *aarch64_regs; /* Registers to be recorded. */
3165 struct aarch64_mem_r *aarch64_mems; /* Memory locations to be recorded. */
3166} insn_decode_record;
3167
3168/* Record handler for data processing - register instructions. */
3169
3170static unsigned int
3171aarch64_record_data_proc_reg (insn_decode_record *aarch64_insn_r)
3172{
3173 uint8_t reg_rd, insn_bits24_27, insn_bits21_23;
3174 uint32_t record_buf[4];
3175
3176 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3177 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3178 insn_bits21_23 = bits (aarch64_insn_r->aarch64_insn, 21, 23);
3179
3180 if (!bit (aarch64_insn_r->aarch64_insn, 28))
3181 {
3182 uint8_t setflags;
3183
3184 /* Logical (shifted register). */
3185 if (insn_bits24_27 == 0x0a)
3186 setflags = (bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03);
3187 /* Add/subtract. */
3188 else if (insn_bits24_27 == 0x0b)
3189 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
3190 else
3191 return AARCH64_RECORD_UNKNOWN;
3192
3193 record_buf[0] = reg_rd;
3194 aarch64_insn_r->reg_rec_count = 1;
3195 if (setflags)
3196 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3197 }
3198 else
3199 {
3200 if (insn_bits24_27 == 0x0b)
3201 {
3202 /* Data-processing (3 source). */
3203 record_buf[0] = reg_rd;
3204 aarch64_insn_r->reg_rec_count = 1;
3205 }
3206 else if (insn_bits24_27 == 0x0a)
3207 {
3208 if (insn_bits21_23 == 0x00)
3209 {
3210 /* Add/subtract (with carry). */
3211 record_buf[0] = reg_rd;
3212 aarch64_insn_r->reg_rec_count = 1;
3213 if (bit (aarch64_insn_r->aarch64_insn, 29))
3214 {
3215 record_buf[1] = AARCH64_CPSR_REGNUM;
3216 aarch64_insn_r->reg_rec_count = 2;
3217 }
3218 }
3219 else if (insn_bits21_23 == 0x02)
3220 {
3221 /* Conditional compare (register) and conditional compare
3222 (immediate) instructions. */
3223 record_buf[0] = AARCH64_CPSR_REGNUM;
3224 aarch64_insn_r->reg_rec_count = 1;
3225 }
3226 else if (insn_bits21_23 == 0x04 || insn_bits21_23 == 0x06)
3227 {
3228 /* CConditional select. */
3229 /* Data-processing (2 source). */
3230 /* Data-processing (1 source). */
3231 record_buf[0] = reg_rd;
3232 aarch64_insn_r->reg_rec_count = 1;
3233 }
3234 else
3235 return AARCH64_RECORD_UNKNOWN;
3236 }
3237 }
3238
3239 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3240 record_buf);
3241 return AARCH64_RECORD_SUCCESS;
3242}
3243
3244/* Record handler for data processing - immediate instructions. */
3245
3246static unsigned int
3247aarch64_record_data_proc_imm (insn_decode_record *aarch64_insn_r)
3248{
78cc6c2d 3249 uint8_t reg_rd, insn_bit23, insn_bits24_27, setflags;
99afc88b
OJ
3250 uint32_t record_buf[4];
3251
3252 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
99afc88b
OJ
3253 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
3254 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3255
3256 if (insn_bits24_27 == 0x00 /* PC rel addressing. */
3257 || insn_bits24_27 == 0x03 /* Bitfield and Extract. */
3258 || (insn_bits24_27 == 0x02 && insn_bit23)) /* Move wide (immediate). */
3259 {
3260 record_buf[0] = reg_rd;
3261 aarch64_insn_r->reg_rec_count = 1;
3262 }
3263 else if (insn_bits24_27 == 0x01)
3264 {
3265 /* Add/Subtract (immediate). */
3266 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
3267 record_buf[0] = reg_rd;
3268 aarch64_insn_r->reg_rec_count = 1;
3269 if (setflags)
3270 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3271 }
3272 else if (insn_bits24_27 == 0x02 && !insn_bit23)
3273 {
3274 /* Logical (immediate). */
3275 setflags = bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03;
3276 record_buf[0] = reg_rd;
3277 aarch64_insn_r->reg_rec_count = 1;
3278 if (setflags)
3279 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3280 }
3281 else
3282 return AARCH64_RECORD_UNKNOWN;
3283
3284 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3285 record_buf);
3286 return AARCH64_RECORD_SUCCESS;
3287}
3288
3289/* Record handler for branch, exception generation and system instructions. */
3290
3291static unsigned int
3292aarch64_record_branch_except_sys (insn_decode_record *aarch64_insn_r)
3293{
3294 struct gdbarch_tdep *tdep = gdbarch_tdep (aarch64_insn_r->gdbarch);
3295 uint8_t insn_bits24_27, insn_bits28_31, insn_bits22_23;
3296 uint32_t record_buf[4];
3297
3298 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3299 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
3300 insn_bits22_23 = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3301
3302 if (insn_bits28_31 == 0x0d)
3303 {
3304 /* Exception generation instructions. */
3305 if (insn_bits24_27 == 0x04)
3306 {
5d98d3cd
YQ
3307 if (!bits (aarch64_insn_r->aarch64_insn, 2, 4)
3308 && !bits (aarch64_insn_r->aarch64_insn, 21, 23)
3309 && bits (aarch64_insn_r->aarch64_insn, 0, 1) == 0x01)
99afc88b
OJ
3310 {
3311 ULONGEST svc_number;
3312
3313 regcache_raw_read_unsigned (aarch64_insn_r->regcache, 8,
3314 &svc_number);
3315 return tdep->aarch64_syscall_record (aarch64_insn_r->regcache,
3316 svc_number);
3317 }
3318 else
3319 return AARCH64_RECORD_UNSUPPORTED;
3320 }
3321 /* System instructions. */
3322 else if (insn_bits24_27 == 0x05 && insn_bits22_23 == 0x00)
3323 {
3324 uint32_t reg_rt, reg_crn;
3325
3326 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3327 reg_crn = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3328
3329 /* Record rt in case of sysl and mrs instructions. */
3330 if (bit (aarch64_insn_r->aarch64_insn, 21))
3331 {
3332 record_buf[0] = reg_rt;
3333 aarch64_insn_r->reg_rec_count = 1;
3334 }
3335 /* Record cpsr for hint and msr(immediate) instructions. */
3336 else if (reg_crn == 0x02 || reg_crn == 0x04)
3337 {
3338 record_buf[0] = AARCH64_CPSR_REGNUM;
3339 aarch64_insn_r->reg_rec_count = 1;
3340 }
3341 }
3342 /* Unconditional branch (register). */
3343 else if((insn_bits24_27 & 0x0e) == 0x06)
3344 {
3345 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3346 if (bits (aarch64_insn_r->aarch64_insn, 21, 22) == 0x01)
3347 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3348 }
3349 else
3350 return AARCH64_RECORD_UNKNOWN;
3351 }
3352 /* Unconditional branch (immediate). */
3353 else if ((insn_bits28_31 & 0x07) == 0x01 && (insn_bits24_27 & 0x0c) == 0x04)
3354 {
3355 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3356 if (bit (aarch64_insn_r->aarch64_insn, 31))
3357 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3358 }
3359 else
3360 /* Compare & branch (immediate), Test & branch (immediate) and
3361 Conditional branch (immediate). */
3362 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3363
3364 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3365 record_buf);
3366 return AARCH64_RECORD_SUCCESS;
3367}
3368
3369/* Record handler for advanced SIMD load and store instructions. */
3370
3371static unsigned int
3372aarch64_record_asimd_load_store (insn_decode_record *aarch64_insn_r)
3373{
3374 CORE_ADDR address;
3375 uint64_t addr_offset = 0;
3376 uint32_t record_buf[24];
3377 uint64_t record_buf_mem[24];
3378 uint32_t reg_rn, reg_rt;
3379 uint32_t reg_index = 0, mem_index = 0;
3380 uint8_t opcode_bits, size_bits;
3381
3382 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3383 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
3384 size_bits = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3385 opcode_bits = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3386 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn, &address);
3387
3388 if (record_debug)
b277c936 3389 debug_printf ("Process record: Advanced SIMD load/store\n");
99afc88b
OJ
3390
3391 /* Load/store single structure. */
3392 if (bit (aarch64_insn_r->aarch64_insn, 24))
3393 {
3394 uint8_t sindex, scale, selem, esize, replicate = 0;
3395 scale = opcode_bits >> 2;
3396 selem = ((opcode_bits & 0x02) |
3397 bit (aarch64_insn_r->aarch64_insn, 21)) + 1;
3398 switch (scale)
3399 {
3400 case 1:
3401 if (size_bits & 0x01)
3402 return AARCH64_RECORD_UNKNOWN;
3403 break;
3404 case 2:
3405 if ((size_bits >> 1) & 0x01)
3406 return AARCH64_RECORD_UNKNOWN;
3407 if (size_bits & 0x01)
3408 {
3409 if (!((opcode_bits >> 1) & 0x01))
3410 scale = 3;
3411 else
3412 return AARCH64_RECORD_UNKNOWN;
3413 }
3414 break;
3415 case 3:
3416 if (bit (aarch64_insn_r->aarch64_insn, 22) && !(opcode_bits & 0x01))
3417 {
3418 scale = size_bits;
3419 replicate = 1;
3420 break;
3421 }
3422 else
3423 return AARCH64_RECORD_UNKNOWN;
3424 default:
3425 break;
3426 }
3427 esize = 8 << scale;
3428 if (replicate)
3429 for (sindex = 0; sindex < selem; sindex++)
3430 {
3431 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3432 reg_rt = (reg_rt + 1) % 32;
3433 }
3434 else
3435 {
3436 for (sindex = 0; sindex < selem; sindex++)
a2e3e93f
SM
3437 {
3438 if (bit (aarch64_insn_r->aarch64_insn, 22))
3439 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3440 else
3441 {
3442 record_buf_mem[mem_index++] = esize / 8;
3443 record_buf_mem[mem_index++] = address + addr_offset;
3444 }
3445 addr_offset = addr_offset + (esize / 8);
3446 reg_rt = (reg_rt + 1) % 32;
3447 }
99afc88b
OJ
3448 }
3449 }
3450 /* Load/store multiple structure. */
3451 else
3452 {
3453 uint8_t selem, esize, rpt, elements;
3454 uint8_t eindex, rindex;
3455
3456 esize = 8 << size_bits;
3457 if (bit (aarch64_insn_r->aarch64_insn, 30))
3458 elements = 128 / esize;
3459 else
3460 elements = 64 / esize;
3461
3462 switch (opcode_bits)
3463 {
3464 /*LD/ST4 (4 Registers). */
3465 case 0:
3466 rpt = 1;
3467 selem = 4;
3468 break;
3469 /*LD/ST1 (4 Registers). */
3470 case 2:
3471 rpt = 4;
3472 selem = 1;
3473 break;
3474 /*LD/ST3 (3 Registers). */
3475 case 4:
3476 rpt = 1;
3477 selem = 3;
3478 break;
3479 /*LD/ST1 (3 Registers). */
3480 case 6:
3481 rpt = 3;
3482 selem = 1;
3483 break;
3484 /*LD/ST1 (1 Register). */
3485 case 7:
3486 rpt = 1;
3487 selem = 1;
3488 break;
3489 /*LD/ST2 (2 Registers). */
3490 case 8:
3491 rpt = 1;
3492 selem = 2;
3493 break;
3494 /*LD/ST1 (2 Registers). */
3495 case 10:
3496 rpt = 2;
3497 selem = 1;
3498 break;
3499 default:
3500 return AARCH64_RECORD_UNSUPPORTED;
3501 break;
3502 }
3503 for (rindex = 0; rindex < rpt; rindex++)
3504 for (eindex = 0; eindex < elements; eindex++)
3505 {
3506 uint8_t reg_tt, sindex;
3507 reg_tt = (reg_rt + rindex) % 32;
3508 for (sindex = 0; sindex < selem; sindex++)
3509 {
3510 if (bit (aarch64_insn_r->aarch64_insn, 22))
3511 record_buf[reg_index++] = reg_tt + AARCH64_V0_REGNUM;
3512 else
3513 {
3514 record_buf_mem[mem_index++] = esize / 8;
3515 record_buf_mem[mem_index++] = address + addr_offset;
3516 }
3517 addr_offset = addr_offset + (esize / 8);
3518 reg_tt = (reg_tt + 1) % 32;
3519 }
3520 }
3521 }
3522
3523 if (bit (aarch64_insn_r->aarch64_insn, 23))
3524 record_buf[reg_index++] = reg_rn;
3525
3526 aarch64_insn_r->reg_rec_count = reg_index;
3527 aarch64_insn_r->mem_rec_count = mem_index / 2;
3528 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
3529 record_buf_mem);
3530 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3531 record_buf);
3532 return AARCH64_RECORD_SUCCESS;
3533}
3534
3535/* Record handler for load and store instructions. */
3536
3537static unsigned int
3538aarch64_record_load_store (insn_decode_record *aarch64_insn_r)
3539{
3540 uint8_t insn_bits24_27, insn_bits28_29, insn_bits10_11;
3541 uint8_t insn_bit23, insn_bit21;
3542 uint8_t opc, size_bits, ld_flag, vector_flag;
3543 uint32_t reg_rn, reg_rt, reg_rt2;
3544 uint64_t datasize, offset;
3545 uint32_t record_buf[8];
3546 uint64_t record_buf_mem[8];
3547 CORE_ADDR address;
3548
3549 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3550 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3551 insn_bits28_29 = bits (aarch64_insn_r->aarch64_insn, 28, 29);
3552 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
3553 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
3554 ld_flag = bit (aarch64_insn_r->aarch64_insn, 22);
3555 vector_flag = bit (aarch64_insn_r->aarch64_insn, 26);
3556 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3557 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
3558 reg_rt2 = bits (aarch64_insn_r->aarch64_insn, 10, 14);
3559 size_bits = bits (aarch64_insn_r->aarch64_insn, 30, 31);
3560
3561 /* Load/store exclusive. */
3562 if (insn_bits24_27 == 0x08 && insn_bits28_29 == 0x00)
3563 {
3564 if (record_debug)
b277c936 3565 debug_printf ("Process record: load/store exclusive\n");
99afc88b
OJ
3566
3567 if (ld_flag)
3568 {
3569 record_buf[0] = reg_rt;
3570 aarch64_insn_r->reg_rec_count = 1;
3571 if (insn_bit21)
3572 {
3573 record_buf[1] = reg_rt2;
3574 aarch64_insn_r->reg_rec_count = 2;
3575 }
3576 }
3577 else
3578 {
3579 if (insn_bit21)
3580 datasize = (8 << size_bits) * 2;
3581 else
3582 datasize = (8 << size_bits);
3583 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3584 &address);
3585 record_buf_mem[0] = datasize / 8;
3586 record_buf_mem[1] = address;
3587 aarch64_insn_r->mem_rec_count = 1;
3588 if (!insn_bit23)
3589 {
3590 /* Save register rs. */
3591 record_buf[0] = bits (aarch64_insn_r->aarch64_insn, 16, 20);
3592 aarch64_insn_r->reg_rec_count = 1;
3593 }
3594 }
3595 }
3596 /* Load register (literal) instructions decoding. */
3597 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x01)
3598 {
3599 if (record_debug)
b277c936 3600 debug_printf ("Process record: load register (literal)\n");
99afc88b
OJ
3601 if (vector_flag)
3602 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3603 else
3604 record_buf[0] = reg_rt;
3605 aarch64_insn_r->reg_rec_count = 1;
3606 }
3607 /* All types of load/store pair instructions decoding. */
3608 else if ((insn_bits24_27 & 0x0a) == 0x08 && insn_bits28_29 == 0x02)
3609 {
3610 if (record_debug)
b277c936 3611 debug_printf ("Process record: load/store pair\n");
99afc88b
OJ
3612
3613 if (ld_flag)
3614 {
3615 if (vector_flag)
3616 {
3617 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3618 record_buf[1] = reg_rt2 + AARCH64_V0_REGNUM;
3619 }
3620 else
3621 {
3622 record_buf[0] = reg_rt;
3623 record_buf[1] = reg_rt2;
3624 }
3625 aarch64_insn_r->reg_rec_count = 2;
3626 }
3627 else
3628 {
3629 uint16_t imm7_off;
3630 imm7_off = bits (aarch64_insn_r->aarch64_insn, 15, 21);
3631 if (!vector_flag)
3632 size_bits = size_bits >> 1;
3633 datasize = 8 << (2 + size_bits);
3634 offset = (imm7_off & 0x40) ? (~imm7_off & 0x007f) + 1 : imm7_off;
3635 offset = offset << (2 + size_bits);
3636 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3637 &address);
3638 if (!((insn_bits24_27 & 0x0b) == 0x08 && insn_bit23))
3639 {
3640 if (imm7_off & 0x40)
3641 address = address - offset;
3642 else
3643 address = address + offset;
3644 }
3645
3646 record_buf_mem[0] = datasize / 8;
3647 record_buf_mem[1] = address;
3648 record_buf_mem[2] = datasize / 8;
3649 record_buf_mem[3] = address + (datasize / 8);
3650 aarch64_insn_r->mem_rec_count = 2;
3651 }
3652 if (bit (aarch64_insn_r->aarch64_insn, 23))
3653 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
3654 }
3655 /* Load/store register (unsigned immediate) instructions. */
3656 else if ((insn_bits24_27 & 0x0b) == 0x09 && insn_bits28_29 == 0x03)
3657 {
3658 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3659 if (!(opc >> 1))
33877125
YQ
3660 {
3661 if (opc & 0x01)
3662 ld_flag = 0x01;
3663 else
3664 ld_flag = 0x0;
3665 }
99afc88b 3666 else
33877125 3667 {
1e2b521d
YQ
3668 if (size_bits == 0x3 && vector_flag == 0x0 && opc == 0x2)
3669 {
3670 /* PRFM (immediate) */
3671 return AARCH64_RECORD_SUCCESS;
3672 }
3673 else if (size_bits == 0x2 && vector_flag == 0x0 && opc == 0x2)
3674 {
3675 /* LDRSW (immediate) */
3676 ld_flag = 0x1;
3677 }
33877125 3678 else
1e2b521d
YQ
3679 {
3680 if (opc & 0x01)
3681 ld_flag = 0x01;
3682 else
3683 ld_flag = 0x0;
3684 }
33877125 3685 }
99afc88b
OJ
3686
3687 if (record_debug)
3688 {
b277c936
PL
3689 debug_printf ("Process record: load/store (unsigned immediate):"
3690 " size %x V %d opc %x\n", size_bits, vector_flag,
3691 opc);
99afc88b
OJ
3692 }
3693
3694 if (!ld_flag)
3695 {
3696 offset = bits (aarch64_insn_r->aarch64_insn, 10, 21);
3697 datasize = 8 << size_bits;
3698 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3699 &address);
3700 offset = offset << size_bits;
3701 address = address + offset;
3702
3703 record_buf_mem[0] = datasize >> 3;
3704 record_buf_mem[1] = address;
3705 aarch64_insn_r->mem_rec_count = 1;
3706 }
3707 else
3708 {
3709 if (vector_flag)
3710 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3711 else
3712 record_buf[0] = reg_rt;
3713 aarch64_insn_r->reg_rec_count = 1;
3714 }
3715 }
3716 /* Load/store register (register offset) instructions. */
5d98d3cd
YQ
3717 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
3718 && insn_bits10_11 == 0x02 && insn_bit21)
99afc88b
OJ
3719 {
3720 if (record_debug)
b277c936 3721 debug_printf ("Process record: load/store (register offset)\n");
99afc88b
OJ
3722 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3723 if (!(opc >> 1))
3724 if (opc & 0x01)
3725 ld_flag = 0x01;
3726 else
3727 ld_flag = 0x0;
3728 else
3729 if (size_bits != 0x03)
3730 ld_flag = 0x01;
3731 else
3732 return AARCH64_RECORD_UNKNOWN;
3733
3734 if (!ld_flag)
3735 {
d9436c7c
PA
3736 ULONGEST reg_rm_val;
3737
99afc88b
OJ
3738 regcache_raw_read_unsigned (aarch64_insn_r->regcache,
3739 bits (aarch64_insn_r->aarch64_insn, 16, 20), &reg_rm_val);
3740 if (bit (aarch64_insn_r->aarch64_insn, 12))
3741 offset = reg_rm_val << size_bits;
3742 else
3743 offset = reg_rm_val;
3744 datasize = 8 << size_bits;
3745 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3746 &address);
3747 address = address + offset;
3748 record_buf_mem[0] = datasize >> 3;
3749 record_buf_mem[1] = address;
3750 aarch64_insn_r->mem_rec_count = 1;
3751 }
3752 else
3753 {
3754 if (vector_flag)
3755 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3756 else
3757 record_buf[0] = reg_rt;
3758 aarch64_insn_r->reg_rec_count = 1;
3759 }
3760 }
3761 /* Load/store register (immediate and unprivileged) instructions. */
5d98d3cd
YQ
3762 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
3763 && !insn_bit21)
99afc88b
OJ
3764 {
3765 if (record_debug)
3766 {
b277c936
PL
3767 debug_printf ("Process record: load/store "
3768 "(immediate and unprivileged)\n");
99afc88b
OJ
3769 }
3770 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3771 if (!(opc >> 1))
3772 if (opc & 0x01)
3773 ld_flag = 0x01;
3774 else
3775 ld_flag = 0x0;
3776 else
3777 if (size_bits != 0x03)
3778 ld_flag = 0x01;
3779 else
3780 return AARCH64_RECORD_UNKNOWN;
3781
3782 if (!ld_flag)
3783 {
3784 uint16_t imm9_off;
3785 imm9_off = bits (aarch64_insn_r->aarch64_insn, 12, 20);
3786 offset = (imm9_off & 0x0100) ? (((~imm9_off) & 0x01ff) + 1) : imm9_off;
3787 datasize = 8 << size_bits;
3788 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3789 &address);
3790 if (insn_bits10_11 != 0x01)
3791 {
3792 if (imm9_off & 0x0100)
3793 address = address - offset;
3794 else
3795 address = address + offset;
3796 }
3797 record_buf_mem[0] = datasize >> 3;
3798 record_buf_mem[1] = address;
3799 aarch64_insn_r->mem_rec_count = 1;
3800 }
3801 else
3802 {
3803 if (vector_flag)
3804 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3805 else
3806 record_buf[0] = reg_rt;
3807 aarch64_insn_r->reg_rec_count = 1;
3808 }
3809 if (insn_bits10_11 == 0x01 || insn_bits10_11 == 0x03)
3810 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
3811 }
3812 /* Advanced SIMD load/store instructions. */
3813 else
3814 return aarch64_record_asimd_load_store (aarch64_insn_r);
3815
3816 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
3817 record_buf_mem);
3818 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3819 record_buf);
3820 return AARCH64_RECORD_SUCCESS;
3821}
3822
3823/* Record handler for data processing SIMD and floating point instructions. */
3824
3825static unsigned int
3826aarch64_record_data_proc_simd_fp (insn_decode_record *aarch64_insn_r)
3827{
3828 uint8_t insn_bit21, opcode, rmode, reg_rd;
3829 uint8_t insn_bits24_27, insn_bits28_31, insn_bits10_11, insn_bits12_15;
3830 uint8_t insn_bits11_14;
3831 uint32_t record_buf[2];
3832
3833 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3834 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
3835 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3836 insn_bits12_15 = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3837 insn_bits11_14 = bits (aarch64_insn_r->aarch64_insn, 11, 14);
3838 opcode = bits (aarch64_insn_r->aarch64_insn, 16, 18);
3839 rmode = bits (aarch64_insn_r->aarch64_insn, 19, 20);
3840 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3841 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
3842
3843 if (record_debug)
b277c936 3844 debug_printf ("Process record: data processing SIMD/FP: ");
99afc88b
OJ
3845
3846 if ((insn_bits28_31 & 0x05) == 0x01 && insn_bits24_27 == 0x0e)
3847 {
3848 /* Floating point - fixed point conversion instructions. */
3849 if (!insn_bit21)
3850 {
3851 if (record_debug)
b277c936 3852 debug_printf ("FP - fixed point conversion");
99afc88b
OJ
3853
3854 if ((opcode >> 1) == 0x0 && rmode == 0x03)
3855 record_buf[0] = reg_rd;
3856 else
3857 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3858 }
3859 /* Floating point - conditional compare instructions. */
3860 else if (insn_bits10_11 == 0x01)
3861 {
3862 if (record_debug)
b277c936 3863 debug_printf ("FP - conditional compare");
99afc88b
OJ
3864
3865 record_buf[0] = AARCH64_CPSR_REGNUM;
3866 }
3867 /* Floating point - data processing (2-source) and
3868 conditional select instructions. */
3869 else if (insn_bits10_11 == 0x02 || insn_bits10_11 == 0x03)
3870 {
3871 if (record_debug)
b277c936 3872 debug_printf ("FP - DP (2-source)");
99afc88b
OJ
3873
3874 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3875 }
3876 else if (insn_bits10_11 == 0x00)
3877 {
3878 /* Floating point - immediate instructions. */
3879 if ((insn_bits12_15 & 0x01) == 0x01
3880 || (insn_bits12_15 & 0x07) == 0x04)
3881 {
3882 if (record_debug)
b277c936 3883 debug_printf ("FP - immediate");
99afc88b
OJ
3884 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3885 }
3886 /* Floating point - compare instructions. */
3887 else if ((insn_bits12_15 & 0x03) == 0x02)
3888 {
3889 if (record_debug)
b277c936 3890 debug_printf ("FP - immediate");
99afc88b
OJ
3891 record_buf[0] = AARCH64_CPSR_REGNUM;
3892 }
3893 /* Floating point - integer conversions instructions. */
f62fce35 3894 else if (insn_bits12_15 == 0x00)
99afc88b
OJ
3895 {
3896 /* Convert float to integer instruction. */
3897 if (!(opcode >> 1) || ((opcode >> 1) == 0x02 && !rmode))
3898 {
3899 if (record_debug)
b277c936 3900 debug_printf ("float to int conversion");
99afc88b
OJ
3901
3902 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
3903 }
3904 /* Convert integer to float instruction. */
3905 else if ((opcode >> 1) == 0x01 && !rmode)
3906 {
3907 if (record_debug)
b277c936 3908 debug_printf ("int to float conversion");
99afc88b
OJ
3909
3910 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3911 }
3912 /* Move float to integer instruction. */
3913 else if ((opcode >> 1) == 0x03)
3914 {
3915 if (record_debug)
b277c936 3916 debug_printf ("move float to int");
99afc88b
OJ
3917
3918 if (!(opcode & 0x01))
3919 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
3920 else
3921 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3922 }
f62fce35
YQ
3923 else
3924 return AARCH64_RECORD_UNKNOWN;
99afc88b 3925 }
f62fce35
YQ
3926 else
3927 return AARCH64_RECORD_UNKNOWN;
99afc88b 3928 }
f62fce35
YQ
3929 else
3930 return AARCH64_RECORD_UNKNOWN;
99afc88b
OJ
3931 }
3932 else if ((insn_bits28_31 & 0x09) == 0x00 && insn_bits24_27 == 0x0e)
3933 {
3934 if (record_debug)
b277c936 3935 debug_printf ("SIMD copy");
99afc88b
OJ
3936
3937 /* Advanced SIMD copy instructions. */
3938 if (!bits (aarch64_insn_r->aarch64_insn, 21, 23)
3939 && !bit (aarch64_insn_r->aarch64_insn, 15)
3940 && bit (aarch64_insn_r->aarch64_insn, 10))
3941 {
3942 if (insn_bits11_14 == 0x05 || insn_bits11_14 == 0x07)
3943 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
3944 else
3945 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3946 }
3947 else
3948 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3949 }
3950 /* All remaining floating point or advanced SIMD instructions. */
3951 else
3952 {
3953 if (record_debug)
b277c936 3954 debug_printf ("all remain");
99afc88b
OJ
3955
3956 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3957 }
3958
3959 if (record_debug)
b277c936 3960 debug_printf ("\n");
99afc88b
OJ
3961
3962 aarch64_insn_r->reg_rec_count++;
3963 gdb_assert (aarch64_insn_r->reg_rec_count == 1);
3964 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3965 record_buf);
3966 return AARCH64_RECORD_SUCCESS;
3967}
3968
3969/* Decodes insns type and invokes its record handler. */
3970
3971static unsigned int
3972aarch64_record_decode_insn_handler (insn_decode_record *aarch64_insn_r)
3973{
3974 uint32_t ins_bit25, ins_bit26, ins_bit27, ins_bit28;
3975
3976 ins_bit25 = bit (aarch64_insn_r->aarch64_insn, 25);
3977 ins_bit26 = bit (aarch64_insn_r->aarch64_insn, 26);
3978 ins_bit27 = bit (aarch64_insn_r->aarch64_insn, 27);
3979 ins_bit28 = bit (aarch64_insn_r->aarch64_insn, 28);
3980
3981 /* Data processing - immediate instructions. */
3982 if (!ins_bit26 && !ins_bit27 && ins_bit28)
3983 return aarch64_record_data_proc_imm (aarch64_insn_r);
3984
3985 /* Branch, exception generation and system instructions. */
3986 if (ins_bit26 && !ins_bit27 && ins_bit28)
3987 return aarch64_record_branch_except_sys (aarch64_insn_r);
3988
3989 /* Load and store instructions. */
3990 if (!ins_bit25 && ins_bit27)
3991 return aarch64_record_load_store (aarch64_insn_r);
3992
3993 /* Data processing - register instructions. */
3994 if (ins_bit25 && !ins_bit26 && ins_bit27)
3995 return aarch64_record_data_proc_reg (aarch64_insn_r);
3996
3997 /* Data processing - SIMD and floating point instructions. */
3998 if (ins_bit25 && ins_bit26 && ins_bit27)
3999 return aarch64_record_data_proc_simd_fp (aarch64_insn_r);
4000
4001 return AARCH64_RECORD_UNSUPPORTED;
4002}
4003
4004/* Cleans up local record registers and memory allocations. */
4005
4006static void
4007deallocate_reg_mem (insn_decode_record *record)
4008{
4009 xfree (record->aarch64_regs);
4010 xfree (record->aarch64_mems);
4011}
4012
1e2b521d
YQ
4013#if GDB_SELF_TEST
4014namespace selftests {
4015
4016static void
4017aarch64_process_record_test (void)
4018{
4019 struct gdbarch_info info;
4020 uint32_t ret;
4021
4022 gdbarch_info_init (&info);
4023 info.bfd_arch_info = bfd_scan_arch ("aarch64");
4024
4025 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
4026 SELF_CHECK (gdbarch != NULL);
4027
4028 insn_decode_record aarch64_record;
4029
4030 memset (&aarch64_record, 0, sizeof (insn_decode_record));
4031 aarch64_record.regcache = NULL;
4032 aarch64_record.this_addr = 0;
4033 aarch64_record.gdbarch = gdbarch;
4034
4035 /* 20 00 80 f9 prfm pldl1keep, [x1] */
4036 aarch64_record.aarch64_insn = 0xf9800020;
4037 ret = aarch64_record_decode_insn_handler (&aarch64_record);
4038 SELF_CHECK (ret == AARCH64_RECORD_SUCCESS);
4039 SELF_CHECK (aarch64_record.reg_rec_count == 0);
4040 SELF_CHECK (aarch64_record.mem_rec_count == 0);
4041
4042 deallocate_reg_mem (&aarch64_record);
4043}
4044
4045} // namespace selftests
4046#endif /* GDB_SELF_TEST */
4047
99afc88b
OJ
4048/* Parse the current instruction and record the values of the registers and
4049 memory that will be changed in current instruction to record_arch_list
4050 return -1 if something is wrong. */
4051
4052int
4053aarch64_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4054 CORE_ADDR insn_addr)
4055{
4056 uint32_t rec_no = 0;
4057 uint8_t insn_size = 4;
4058 uint32_t ret = 0;
99afc88b
OJ
4059 gdb_byte buf[insn_size];
4060 insn_decode_record aarch64_record;
4061
4062 memset (&buf[0], 0, insn_size);
4063 memset (&aarch64_record, 0, sizeof (insn_decode_record));
4064 target_read_memory (insn_addr, &buf[0], insn_size);
4065 aarch64_record.aarch64_insn
4066 = (uint32_t) extract_unsigned_integer (&buf[0],
4067 insn_size,
4068 gdbarch_byte_order (gdbarch));
4069 aarch64_record.regcache = regcache;
4070 aarch64_record.this_addr = insn_addr;
4071 aarch64_record.gdbarch = gdbarch;
4072
4073 ret = aarch64_record_decode_insn_handler (&aarch64_record);
4074 if (ret == AARCH64_RECORD_UNSUPPORTED)
4075 {
4076 printf_unfiltered (_("Process record does not support instruction "
4077 "0x%0x at address %s.\n"),
4078 aarch64_record.aarch64_insn,
4079 paddress (gdbarch, insn_addr));
4080 ret = -1;
4081 }
4082
4083 if (0 == ret)
4084 {
4085 /* Record registers. */
4086 record_full_arch_list_add_reg (aarch64_record.regcache,
4087 AARCH64_PC_REGNUM);
4088 /* Always record register CPSR. */
4089 record_full_arch_list_add_reg (aarch64_record.regcache,
4090 AARCH64_CPSR_REGNUM);
4091 if (aarch64_record.aarch64_regs)
4092 for (rec_no = 0; rec_no < aarch64_record.reg_rec_count; rec_no++)
4093 if (record_full_arch_list_add_reg (aarch64_record.regcache,
4094 aarch64_record.aarch64_regs[rec_no]))
4095 ret = -1;
4096
4097 /* Record memories. */
4098 if (aarch64_record.aarch64_mems)
4099 for (rec_no = 0; rec_no < aarch64_record.mem_rec_count; rec_no++)
4100 if (record_full_arch_list_add_mem
4101 ((CORE_ADDR)aarch64_record.aarch64_mems[rec_no].addr,
4102 aarch64_record.aarch64_mems[rec_no].len))
4103 ret = -1;
4104
4105 if (record_full_arch_list_add_end ())
4106 ret = -1;
4107 }
4108
4109 deallocate_reg_mem (&aarch64_record);
4110 return ret;
4111}
This page took 0.513426 seconds and 4 git commands to generate.