gdb/testsuite: Reduce test name duplication in gdb.python tests
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
d55e5aa6 24#include "gdb_regex.h"
4de283e4
TT
25#include "frame.h"
26#include "symtab.h"
27#include "gdbtypes.h"
14f9c5c9 28#include "gdbcmd.h"
4de283e4
TT
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
32#include "varobj.h"
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
14f9c5c9 38#include "gdbcore.h"
4c4b4cd2 39#include "hashtab.h"
4de283e4
TT
40#include "gdb_obstack.h"
41#include "ada-lang.h"
42#include "completer.h"
43#include <sys/stat.h>
44#include "ui-out.h"
45#include "block.h"
04714b91 46#include "infcall.h"
4de283e4
TT
47#include "dictionary.h"
48#include "annotate.h"
49#include "valprint.h"
d55e5aa6 50#include "source.h"
4de283e4 51#include "observable.h"
268a13a5 52#include "gdbsupport/vec.h"
692465f1 53#include "stack.h"
268a13a5 54#include "gdbsupport/gdb_vecs.h"
79d43c61 55#include "typeprint.h"
4de283e4 56#include "namespace.h"
7f6aba03 57#include "cli/cli-style.h"
4de283e4
TT
58
59#include "psymtab.h"
40bc484c 60#include "value.h"
4de283e4
TT
61#include "mi/mi-common.h"
62#include "arch-utils.h"
63#include "cli/cli-utils.h"
268a13a5
TT
64#include "gdbsupport/function-view.h"
65#include "gdbsupport/byte-vector.h"
4de283e4 66#include <algorithm>
2ff0a947 67#include <map>
ccefe4c4 68
4c4b4cd2 69/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 70 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
71 Copied from valarith.c. */
72
73#ifndef TRUNCATION_TOWARDS_ZERO
74#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75#endif
76
d2e4a39e 77static struct type *desc_base_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct type *desc_bounds_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_bounds (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 86
556bdfd4 87static struct type *desc_data_target_type (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_data (struct value *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 92
d2e4a39e 93static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 94
d2e4a39e 95static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 100
d2e4a39e 101static struct type *desc_index_type (struct type *, int);
14f9c5c9 102
d2e4a39e 103static int desc_arity (struct type *);
14f9c5c9 104
d2e4a39e 105static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 106
d2e4a39e 107static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 108
40bc484c 109static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 110
4c4b4cd2 111static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
112 const struct block *,
113 const lookup_name_info &lookup_name,
114 domain_enum, struct objfile *);
14f9c5c9 115
22cee43f 116static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
117 const lookup_name_info &lookup_name,
118 domain_enum, int, int *);
22cee43f 119
d12307c1 120static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 121
76a01679 122static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 123 const struct block *);
14f9c5c9 124
4c4b4cd2
PH
125static int num_defns_collected (struct obstack *);
126
d12307c1 127static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 128
e9d9f57e 129static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
130 struct type *, int,
131 innermost_block_tracker *);
14f9c5c9 132
e9d9f57e 133static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 134 struct symbol *, const struct block *);
14f9c5c9 135
d2e4a39e 136static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 137
a121b7c1 138static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
139
140static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 141
d2e4a39e 142static int numeric_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int integer_type_p (struct type *);
14f9c5c9 145
d2e4a39e 146static int scalar_type_p (struct type *);
14f9c5c9 147
d2e4a39e 148static int discrete_type_p (struct type *);
14f9c5c9 149
a121b7c1 150static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 151 int, int);
4c4b4cd2 152
d2e4a39e 153static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 154
b4ba55a1
JB
155static struct type *ada_find_parallel_type_with_name (struct type *,
156 const char *);
157
d2e4a39e 158static int is_dynamic_field (struct type *, int);
14f9c5c9 159
10a2c479 160static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 161 const gdb_byte *,
4c4b4cd2
PH
162 CORE_ADDR, struct value *);
163
164static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 165
28c85d6c 166static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 167
d2e4a39e 168static struct type *to_static_fixed_type (struct type *);
f192137b 169static struct type *static_unwrap_type (struct type *type);
14f9c5c9 170
d2e4a39e 171static struct value *unwrap_value (struct value *);
14f9c5c9 172
ad82864c 173static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 174
ad82864c 175static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 176
ad82864c
JB
177static long decode_packed_array_bitsize (struct type *);
178
179static struct value *decode_constrained_packed_array (struct value *);
180
181static int ada_is_packed_array_type (struct type *);
182
183static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 184
d2e4a39e 185static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 186 struct value **);
14f9c5c9 187
4c4b4cd2
PH
188static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
14f9c5c9 190
d2e4a39e 191static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 192
d2e4a39e 193static int equiv_types (struct type *, struct type *);
14f9c5c9 194
d2e4a39e 195static int is_name_suffix (const char *);
14f9c5c9 196
73589123
PH
197static int advance_wild_match (const char **, const char *, int);
198
b5ec771e 199static bool wild_match (const char *name, const char *patn);
14f9c5c9 200
d2e4a39e 201static struct value *ada_coerce_ref (struct value *);
14f9c5c9 202
4c4b4cd2
PH
203static LONGEST pos_atr (struct value *);
204
3cb382c9 205static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 206
d2e4a39e 207static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static struct symbol *standard_lookup (const char *, const struct block *,
210 domain_enum);
14f9c5c9 211
108d56a4 212static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
213 struct type *);
214
215static struct value *ada_value_primitive_field (struct value *, int, int,
216 struct type *);
217
0d5cff50 218static int find_struct_field (const char *, struct type *, int,
52ce6436 219 struct type **, int *, int *, int *, int *);
4c4b4cd2 220
d12307c1 221static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 222 struct value **, int, const char *,
2a612529 223 struct type *, int);
4c4b4cd2 224
4c4b4cd2
PH
225static int ada_is_direct_array_type (struct type *);
226
72d5681a
PH
227static void ada_language_arch_info (struct gdbarch *,
228 struct language_arch_info *);
714e53ab 229
52ce6436
PH
230static struct value *ada_index_struct_field (int, struct value *, int,
231 struct type *);
232
233static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
234 struct expression *,
235 int *, enum noside);
52ce6436
PH
236
237static void aggregate_assign_from_choices (struct value *, struct value *,
238 struct expression *,
239 int *, LONGEST *, int *,
240 int, LONGEST, LONGEST);
241
242static void aggregate_assign_positional (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *, int,
245 LONGEST, LONGEST);
246
247
248static void aggregate_assign_others (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int, LONGEST, LONGEST);
251
252
253static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
254
255
256static struct value *ada_evaluate_subexp (struct type *, struct expression *,
257 int *, enum noside);
258
259static void ada_forward_operator_length (struct expression *, int, int *,
260 int *);
852dff6c
JB
261
262static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
263
264static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
265 (const lookup_name_info &lookup_name);
266
4c4b4cd2
PH
267\f
268
ee01b665
JB
269/* The result of a symbol lookup to be stored in our symbol cache. */
270
271struct cache_entry
272{
273 /* The name used to perform the lookup. */
274 const char *name;
275 /* The namespace used during the lookup. */
fe978cb0 276 domain_enum domain;
ee01b665
JB
277 /* The symbol returned by the lookup, or NULL if no matching symbol
278 was found. */
279 struct symbol *sym;
280 /* The block where the symbol was found, or NULL if no matching
281 symbol was found. */
282 const struct block *block;
283 /* A pointer to the next entry with the same hash. */
284 struct cache_entry *next;
285};
286
287/* The Ada symbol cache, used to store the result of Ada-mode symbol
288 lookups in the course of executing the user's commands.
289
290 The cache is implemented using a simple, fixed-sized hash.
291 The size is fixed on the grounds that there are not likely to be
292 all that many symbols looked up during any given session, regardless
293 of the size of the symbol table. If we decide to go to a resizable
294 table, let's just use the stuff from libiberty instead. */
295
296#define HASH_SIZE 1009
297
298struct ada_symbol_cache
299{
300 /* An obstack used to store the entries in our cache. */
301 struct obstack cache_space;
302
303 /* The root of the hash table used to implement our symbol cache. */
304 struct cache_entry *root[HASH_SIZE];
305};
306
307static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 308
4c4b4cd2 309/* Maximum-sized dynamic type. */
14f9c5c9
AS
310static unsigned int varsize_limit;
311
67cb5b2d 312static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
313#ifdef VMS
314 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
315#else
14f9c5c9 316 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 317#endif
14f9c5c9 318
4c4b4cd2 319/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 320static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 321 = "__gnat_ada_main_program_name";
14f9c5c9 322
4c4b4cd2
PH
323/* Limit on the number of warnings to raise per expression evaluation. */
324static int warning_limit = 2;
325
326/* Number of warning messages issued; reset to 0 by cleanups after
327 expression evaluation. */
328static int warnings_issued = 0;
329
330static const char *known_runtime_file_name_patterns[] = {
331 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
332};
333
334static const char *known_auxiliary_function_name_patterns[] = {
335 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
336};
337
c6044dd1
JB
338/* Maintenance-related settings for this module. */
339
340static struct cmd_list_element *maint_set_ada_cmdlist;
341static struct cmd_list_element *maint_show_ada_cmdlist;
342
343/* Implement the "maintenance set ada" (prefix) command. */
344
345static void
981a3fb3 346maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 347{
635c7e8a
TT
348 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
349 gdb_stdout);
c6044dd1
JB
350}
351
352/* Implement the "maintenance show ada" (prefix) command. */
353
354static void
981a3fb3 355maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
356{
357 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
358}
359
360/* The "maintenance ada set/show ignore-descriptive-type" value. */
361
491144b5 362static bool ada_ignore_descriptive_types_p = false;
c6044dd1 363
e802dbe0
JB
364 /* Inferior-specific data. */
365
366/* Per-inferior data for this module. */
367
368struct ada_inferior_data
369{
370 /* The ada__tags__type_specific_data type, which is used when decoding
371 tagged types. With older versions of GNAT, this type was directly
372 accessible through a component ("tsd") in the object tag. But this
373 is no longer the case, so we cache it for each inferior. */
f37b313d 374 struct type *tsd_type = nullptr;
3eecfa55
JB
375
376 /* The exception_support_info data. This data is used to determine
377 how to implement support for Ada exception catchpoints in a given
378 inferior. */
f37b313d 379 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
380};
381
382/* Our key to this module's inferior data. */
f37b313d 383static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
384
385/* Return our inferior data for the given inferior (INF).
386
387 This function always returns a valid pointer to an allocated
388 ada_inferior_data structure. If INF's inferior data has not
389 been previously set, this functions creates a new one with all
390 fields set to zero, sets INF's inferior to it, and then returns
391 a pointer to that newly allocated ada_inferior_data. */
392
393static struct ada_inferior_data *
394get_ada_inferior_data (struct inferior *inf)
395{
396 struct ada_inferior_data *data;
397
f37b313d 398 data = ada_inferior_data.get (inf);
e802dbe0 399 if (data == NULL)
f37b313d 400 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
401
402 return data;
403}
404
405/* Perform all necessary cleanups regarding our module's inferior data
406 that is required after the inferior INF just exited. */
407
408static void
409ada_inferior_exit (struct inferior *inf)
410{
f37b313d 411 ada_inferior_data.clear (inf);
e802dbe0
JB
412}
413
ee01b665
JB
414
415 /* program-space-specific data. */
416
417/* This module's per-program-space data. */
418struct ada_pspace_data
419{
f37b313d
TT
420 ~ada_pspace_data ()
421 {
422 if (sym_cache != NULL)
423 ada_free_symbol_cache (sym_cache);
424 }
425
ee01b665 426 /* The Ada symbol cache. */
f37b313d 427 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
428};
429
430/* Key to our per-program-space data. */
f37b313d 431static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
432
433/* Return this module's data for the given program space (PSPACE).
434 If not is found, add a zero'ed one now.
435
436 This function always returns a valid object. */
437
438static struct ada_pspace_data *
439get_ada_pspace_data (struct program_space *pspace)
440{
441 struct ada_pspace_data *data;
442
f37b313d 443 data = ada_pspace_data_handle.get (pspace);
ee01b665 444 if (data == NULL)
f37b313d 445 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
446
447 return data;
448}
449
4c4b4cd2
PH
450 /* Utilities */
451
720d1a40 452/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 453 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
454
455 Normally, we really expect a typedef type to only have 1 typedef layer.
456 In other words, we really expect the target type of a typedef type to be
457 a non-typedef type. This is particularly true for Ada units, because
458 the language does not have a typedef vs not-typedef distinction.
459 In that respect, the Ada compiler has been trying to eliminate as many
460 typedef definitions in the debugging information, since they generally
461 do not bring any extra information (we still use typedef under certain
462 circumstances related mostly to the GNAT encoding).
463
464 Unfortunately, we have seen situations where the debugging information
465 generated by the compiler leads to such multiple typedef layers. For
466 instance, consider the following example with stabs:
467
468 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
469 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
470
471 This is an error in the debugging information which causes type
472 pck__float_array___XUP to be defined twice, and the second time,
473 it is defined as a typedef of a typedef.
474
475 This is on the fringe of legality as far as debugging information is
476 concerned, and certainly unexpected. But it is easy to handle these
477 situations correctly, so we can afford to be lenient in this case. */
478
479static struct type *
480ada_typedef_target_type (struct type *type)
481{
482 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
483 type = TYPE_TARGET_TYPE (type);
484 return type;
485}
486
41d27058
JB
487/* Given DECODED_NAME a string holding a symbol name in its
488 decoded form (ie using the Ada dotted notation), returns
489 its unqualified name. */
490
491static const char *
492ada_unqualified_name (const char *decoded_name)
493{
2b0f535a
JB
494 const char *result;
495
496 /* If the decoded name starts with '<', it means that the encoded
497 name does not follow standard naming conventions, and thus that
498 it is not your typical Ada symbol name. Trying to unqualify it
499 is therefore pointless and possibly erroneous. */
500 if (decoded_name[0] == '<')
501 return decoded_name;
502
503 result = strrchr (decoded_name, '.');
41d27058
JB
504 if (result != NULL)
505 result++; /* Skip the dot... */
506 else
507 result = decoded_name;
508
509 return result;
510}
511
39e7af3e 512/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 513
39e7af3e 514static std::string
41d27058
JB
515add_angle_brackets (const char *str)
516{
39e7af3e 517 return string_printf ("<%s>", str);
41d27058 518}
96d887e8 519
67cb5b2d 520static const char *
4c4b4cd2
PH
521ada_get_gdb_completer_word_break_characters (void)
522{
523 return ada_completer_word_break_characters;
524}
525
e79af960
JB
526/* Print an array element index using the Ada syntax. */
527
528static void
529ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 530 const struct value_print_options *options)
e79af960 531{
79a45b7d 532 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
533 fprintf_filtered (stream, " => ");
534}
535
e2b7af72
JB
536/* la_watch_location_expression for Ada. */
537
538gdb::unique_xmalloc_ptr<char>
539ada_watch_location_expression (struct type *type, CORE_ADDR addr)
540{
541 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
542 std::string name = type_to_string (type);
543 return gdb::unique_xmalloc_ptr<char>
544 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
545}
546
f27cf670 547/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 548 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 549 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 550
f27cf670
AS
551void *
552grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 553{
d2e4a39e
AS
554 if (*size < min_size)
555 {
556 *size *= 2;
557 if (*size < min_size)
4c4b4cd2 558 *size = min_size;
f27cf670 559 vect = xrealloc (vect, *size * element_size);
d2e4a39e 560 }
f27cf670 561 return vect;
14f9c5c9
AS
562}
563
564/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 565 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
566
567static int
ebf56fd3 568field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
569{
570 int len = strlen (target);
5b4ee69b 571
d2e4a39e 572 return
4c4b4cd2
PH
573 (strncmp (field_name, target, len) == 0
574 && (field_name[len] == '\0'
61012eef 575 || (startswith (field_name + len, "___")
76a01679
JB
576 && strcmp (field_name + strlen (field_name) - 6,
577 "___XVN") != 0)));
14f9c5c9
AS
578}
579
580
872c8b51
JB
581/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
582 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
583 and return its index. This function also handles fields whose name
584 have ___ suffixes because the compiler sometimes alters their name
585 by adding such a suffix to represent fields with certain constraints.
586 If the field could not be found, return a negative number if
587 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
588
589int
590ada_get_field_index (const struct type *type, const char *field_name,
591 int maybe_missing)
592{
593 int fieldno;
872c8b51
JB
594 struct type *struct_type = check_typedef ((struct type *) type);
595
596 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
597 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
598 return fieldno;
599
600 if (!maybe_missing)
323e0a4a 601 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 602 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
603
604 return -1;
605}
606
607/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
608
609int
d2e4a39e 610ada_name_prefix_len (const char *name)
14f9c5c9
AS
611{
612 if (name == NULL)
613 return 0;
d2e4a39e 614 else
14f9c5c9 615 {
d2e4a39e 616 const char *p = strstr (name, "___");
5b4ee69b 617
14f9c5c9 618 if (p == NULL)
4c4b4cd2 619 return strlen (name);
14f9c5c9 620 else
4c4b4cd2 621 return p - name;
14f9c5c9
AS
622 }
623}
624
4c4b4cd2
PH
625/* Return non-zero if SUFFIX is a suffix of STR.
626 Return zero if STR is null. */
627
14f9c5c9 628static int
d2e4a39e 629is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
630{
631 int len1, len2;
5b4ee69b 632
14f9c5c9
AS
633 if (str == NULL)
634 return 0;
635 len1 = strlen (str);
636 len2 = strlen (suffix);
4c4b4cd2 637 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
638}
639
4c4b4cd2
PH
640/* The contents of value VAL, treated as a value of type TYPE. The
641 result is an lval in memory if VAL is. */
14f9c5c9 642
d2e4a39e 643static struct value *
4c4b4cd2 644coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 645{
61ee279c 646 type = ada_check_typedef (type);
df407dfe 647 if (value_type (val) == type)
4c4b4cd2 648 return val;
d2e4a39e 649 else
14f9c5c9 650 {
4c4b4cd2
PH
651 struct value *result;
652
653 /* Make sure that the object size is not unreasonable before
654 trying to allocate some memory for it. */
c1b5a1a6 655 ada_ensure_varsize_limit (type);
4c4b4cd2 656
41e8491f
JK
657 if (value_lazy (val)
658 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
659 result = allocate_value_lazy (type);
660 else
661 {
662 result = allocate_value (type);
9a0dc9e3 663 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 664 }
74bcbdf3 665 set_value_component_location (result, val);
9bbda503
AC
666 set_value_bitsize (result, value_bitsize (val));
667 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
668 if (VALUE_LVAL (result) == lval_memory)
669 set_value_address (result, value_address (val));
14f9c5c9
AS
670 return result;
671 }
672}
673
fc1a4b47
AC
674static const gdb_byte *
675cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
676{
677 if (valaddr == NULL)
678 return NULL;
679 else
680 return valaddr + offset;
681}
682
683static CORE_ADDR
ebf56fd3 684cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
685{
686 if (address == 0)
687 return 0;
d2e4a39e 688 else
14f9c5c9
AS
689 return address + offset;
690}
691
4c4b4cd2
PH
692/* Issue a warning (as for the definition of warning in utils.c, but
693 with exactly one argument rather than ...), unless the limit on the
694 number of warnings has passed during the evaluation of the current
695 expression. */
a2249542 696
77109804
AC
697/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
698 provided by "complaint". */
a0b31db1 699static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 700
14f9c5c9 701static void
a2249542 702lim_warning (const char *format, ...)
14f9c5c9 703{
a2249542 704 va_list args;
a2249542 705
5b4ee69b 706 va_start (args, format);
4c4b4cd2
PH
707 warnings_issued += 1;
708 if (warnings_issued <= warning_limit)
a2249542
MK
709 vwarning (format, args);
710
711 va_end (args);
4c4b4cd2
PH
712}
713
714e53ab
PH
714/* Issue an error if the size of an object of type T is unreasonable,
715 i.e. if it would be a bad idea to allocate a value of this type in
716 GDB. */
717
c1b5a1a6
JB
718void
719ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
720{
721 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 722 error (_("object size is larger than varsize-limit"));
714e53ab
PH
723}
724
0963b4bd 725/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 726static LONGEST
c3e5cd34 727max_of_size (int size)
4c4b4cd2 728{
76a01679 729 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 730
76a01679 731 return top_bit | (top_bit - 1);
4c4b4cd2
PH
732}
733
0963b4bd 734/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 735static LONGEST
c3e5cd34 736min_of_size (int size)
4c4b4cd2 737{
c3e5cd34 738 return -max_of_size (size) - 1;
4c4b4cd2
PH
739}
740
0963b4bd 741/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 742static ULONGEST
c3e5cd34 743umax_of_size (int size)
4c4b4cd2 744{
76a01679 745 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 746
76a01679 747 return top_bit | (top_bit - 1);
4c4b4cd2
PH
748}
749
0963b4bd 750/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
751static LONGEST
752max_of_type (struct type *t)
4c4b4cd2 753{
c3e5cd34
PH
754 if (TYPE_UNSIGNED (t))
755 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
756 else
757 return max_of_size (TYPE_LENGTH (t));
758}
759
0963b4bd 760/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
761static LONGEST
762min_of_type (struct type *t)
763{
764 if (TYPE_UNSIGNED (t))
765 return 0;
766 else
767 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
768}
769
770/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
771LONGEST
772ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 773{
c3345124 774 type = resolve_dynamic_type (type, NULL, 0);
76a01679 775 switch (TYPE_CODE (type))
4c4b4cd2
PH
776 {
777 case TYPE_CODE_RANGE:
690cc4eb 778 return TYPE_HIGH_BOUND (type);
4c4b4cd2 779 case TYPE_CODE_ENUM:
14e75d8e 780 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
781 case TYPE_CODE_BOOL:
782 return 1;
783 case TYPE_CODE_CHAR:
76a01679 784 case TYPE_CODE_INT:
690cc4eb 785 return max_of_type (type);
4c4b4cd2 786 default:
43bbcdc2 787 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
788 }
789}
790
14e75d8e 791/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
792LONGEST
793ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 794{
c3345124 795 type = resolve_dynamic_type (type, NULL, 0);
76a01679 796 switch (TYPE_CODE (type))
4c4b4cd2
PH
797 {
798 case TYPE_CODE_RANGE:
690cc4eb 799 return TYPE_LOW_BOUND (type);
4c4b4cd2 800 case TYPE_CODE_ENUM:
14e75d8e 801 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
802 case TYPE_CODE_BOOL:
803 return 0;
804 case TYPE_CODE_CHAR:
76a01679 805 case TYPE_CODE_INT:
690cc4eb 806 return min_of_type (type);
4c4b4cd2 807 default:
43bbcdc2 808 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
809 }
810}
811
812/* The identity on non-range types. For range types, the underlying
76a01679 813 non-range scalar type. */
4c4b4cd2
PH
814
815static struct type *
18af8284 816get_base_type (struct type *type)
4c4b4cd2
PH
817{
818 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
819 {
76a01679
JB
820 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
821 return type;
4c4b4cd2
PH
822 type = TYPE_TARGET_TYPE (type);
823 }
824 return type;
14f9c5c9 825}
41246937
JB
826
827/* Return a decoded version of the given VALUE. This means returning
828 a value whose type is obtained by applying all the GNAT-specific
829 encondings, making the resulting type a static but standard description
830 of the initial type. */
831
832struct value *
833ada_get_decoded_value (struct value *value)
834{
835 struct type *type = ada_check_typedef (value_type (value));
836
837 if (ada_is_array_descriptor_type (type)
838 || (ada_is_constrained_packed_array_type (type)
839 && TYPE_CODE (type) != TYPE_CODE_PTR))
840 {
841 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
842 value = ada_coerce_to_simple_array_ptr (value);
843 else
844 value = ada_coerce_to_simple_array (value);
845 }
846 else
847 value = ada_to_fixed_value (value);
848
849 return value;
850}
851
852/* Same as ada_get_decoded_value, but with the given TYPE.
853 Because there is no associated actual value for this type,
854 the resulting type might be a best-effort approximation in
855 the case of dynamic types. */
856
857struct type *
858ada_get_decoded_type (struct type *type)
859{
860 type = to_static_fixed_type (type);
861 if (ada_is_constrained_packed_array_type (type))
862 type = ada_coerce_to_simple_array_type (type);
863 return type;
864}
865
4c4b4cd2 866\f
76a01679 867
4c4b4cd2 868 /* Language Selection */
14f9c5c9
AS
869
870/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 871 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 872
14f9c5c9 873enum language
ccefe4c4 874ada_update_initial_language (enum language lang)
14f9c5c9 875{
cafb3438 876 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 877 return language_ada;
14f9c5c9
AS
878
879 return lang;
880}
96d887e8
PH
881
882/* If the main procedure is written in Ada, then return its name.
883 The result is good until the next call. Return NULL if the main
884 procedure doesn't appear to be in Ada. */
885
886char *
887ada_main_name (void)
888{
3b7344d5 889 struct bound_minimal_symbol msym;
e83e4e24 890 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 891
96d887e8
PH
892 /* For Ada, the name of the main procedure is stored in a specific
893 string constant, generated by the binder. Look for that symbol,
894 extract its address, and then read that string. If we didn't find
895 that string, then most probably the main procedure is not written
896 in Ada. */
897 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
898
3b7344d5 899 if (msym.minsym != NULL)
96d887e8 900 {
f9bc20b9
JB
901 CORE_ADDR main_program_name_addr;
902 int err_code;
903
77e371c0 904 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 905 if (main_program_name_addr == 0)
323e0a4a 906 error (_("Invalid address for Ada main program name."));
96d887e8 907
f9bc20b9
JB
908 target_read_string (main_program_name_addr, &main_program_name,
909 1024, &err_code);
910
911 if (err_code != 0)
912 return NULL;
e83e4e24 913 return main_program_name.get ();
96d887e8
PH
914 }
915
916 /* The main procedure doesn't seem to be in Ada. */
917 return NULL;
918}
14f9c5c9 919\f
4c4b4cd2 920 /* Symbols */
d2e4a39e 921
4c4b4cd2
PH
922/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
923 of NULLs. */
14f9c5c9 924
d2e4a39e
AS
925const struct ada_opname_map ada_opname_table[] = {
926 {"Oadd", "\"+\"", BINOP_ADD},
927 {"Osubtract", "\"-\"", BINOP_SUB},
928 {"Omultiply", "\"*\"", BINOP_MUL},
929 {"Odivide", "\"/\"", BINOP_DIV},
930 {"Omod", "\"mod\"", BINOP_MOD},
931 {"Orem", "\"rem\"", BINOP_REM},
932 {"Oexpon", "\"**\"", BINOP_EXP},
933 {"Olt", "\"<\"", BINOP_LESS},
934 {"Ole", "\"<=\"", BINOP_LEQ},
935 {"Ogt", "\">\"", BINOP_GTR},
936 {"Oge", "\">=\"", BINOP_GEQ},
937 {"Oeq", "\"=\"", BINOP_EQUAL},
938 {"One", "\"/=\"", BINOP_NOTEQUAL},
939 {"Oand", "\"and\"", BINOP_BITWISE_AND},
940 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
941 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
942 {"Oconcat", "\"&\"", BINOP_CONCAT},
943 {"Oabs", "\"abs\"", UNOP_ABS},
944 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
945 {"Oadd", "\"+\"", UNOP_PLUS},
946 {"Osubtract", "\"-\"", UNOP_NEG},
947 {NULL, NULL}
14f9c5c9
AS
948};
949
b5ec771e
PA
950/* The "encoded" form of DECODED, according to GNAT conventions. The
951 result is valid until the next call to ada_encode. If
952 THROW_ERRORS, throw an error if invalid operator name is found.
953 Otherwise, return NULL in that case. */
4c4b4cd2 954
b5ec771e
PA
955static char *
956ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 957{
4c4b4cd2
PH
958 static char *encoding_buffer = NULL;
959 static size_t encoding_buffer_size = 0;
d2e4a39e 960 const char *p;
14f9c5c9 961 int k;
d2e4a39e 962
4c4b4cd2 963 if (decoded == NULL)
14f9c5c9
AS
964 return NULL;
965
4c4b4cd2
PH
966 GROW_VECT (encoding_buffer, encoding_buffer_size,
967 2 * strlen (decoded) + 10);
14f9c5c9
AS
968
969 k = 0;
4c4b4cd2 970 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 971 {
cdc7bb92 972 if (*p == '.')
4c4b4cd2
PH
973 {
974 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
975 k += 2;
976 }
14f9c5c9 977 else if (*p == '"')
4c4b4cd2
PH
978 {
979 const struct ada_opname_map *mapping;
980
981 for (mapping = ada_opname_table;
1265e4aa 982 mapping->encoded != NULL
61012eef 983 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
984 ;
985 if (mapping->encoded == NULL)
b5ec771e
PA
986 {
987 if (throw_errors)
988 error (_("invalid Ada operator name: %s"), p);
989 else
990 return NULL;
991 }
4c4b4cd2
PH
992 strcpy (encoding_buffer + k, mapping->encoded);
993 k += strlen (mapping->encoded);
994 break;
995 }
d2e4a39e 996 else
4c4b4cd2
PH
997 {
998 encoding_buffer[k] = *p;
999 k += 1;
1000 }
14f9c5c9
AS
1001 }
1002
4c4b4cd2
PH
1003 encoding_buffer[k] = '\0';
1004 return encoding_buffer;
14f9c5c9
AS
1005}
1006
b5ec771e
PA
1007/* The "encoded" form of DECODED, according to GNAT conventions.
1008 The result is valid until the next call to ada_encode. */
1009
1010char *
1011ada_encode (const char *decoded)
1012{
1013 return ada_encode_1 (decoded, true);
1014}
1015
14f9c5c9 1016/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1017 quotes, unfolded, but with the quotes stripped away. Result good
1018 to next call. */
1019
d2e4a39e
AS
1020char *
1021ada_fold_name (const char *name)
14f9c5c9 1022{
d2e4a39e 1023 static char *fold_buffer = NULL;
14f9c5c9
AS
1024 static size_t fold_buffer_size = 0;
1025
1026 int len = strlen (name);
d2e4a39e 1027 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1028
1029 if (name[0] == '\'')
1030 {
d2e4a39e
AS
1031 strncpy (fold_buffer, name + 1, len - 2);
1032 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1033 }
1034 else
1035 {
1036 int i;
5b4ee69b 1037
14f9c5c9 1038 for (i = 0; i <= len; i += 1)
4c4b4cd2 1039 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1040 }
1041
1042 return fold_buffer;
1043}
1044
529cad9c
PH
1045/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1046
1047static int
1048is_lower_alphanum (const char c)
1049{
1050 return (isdigit (c) || (isalpha (c) && islower (c)));
1051}
1052
c90092fe
JB
1053/* ENCODED is the linkage name of a symbol and LEN contains its length.
1054 This function saves in LEN the length of that same symbol name but
1055 without either of these suffixes:
29480c32
JB
1056 . .{DIGIT}+
1057 . ${DIGIT}+
1058 . ___{DIGIT}+
1059 . __{DIGIT}+.
c90092fe 1060
29480c32
JB
1061 These are suffixes introduced by the compiler for entities such as
1062 nested subprogram for instance, in order to avoid name clashes.
1063 They do not serve any purpose for the debugger. */
1064
1065static void
1066ada_remove_trailing_digits (const char *encoded, int *len)
1067{
1068 if (*len > 1 && isdigit (encoded[*len - 1]))
1069 {
1070 int i = *len - 2;
5b4ee69b 1071
29480c32
JB
1072 while (i > 0 && isdigit (encoded[i]))
1073 i--;
1074 if (i >= 0 && encoded[i] == '.')
1075 *len = i;
1076 else if (i >= 0 && encoded[i] == '$')
1077 *len = i;
61012eef 1078 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1079 *len = i - 2;
61012eef 1080 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1081 *len = i - 1;
1082 }
1083}
1084
1085/* Remove the suffix introduced by the compiler for protected object
1086 subprograms. */
1087
1088static void
1089ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1090{
1091 /* Remove trailing N. */
1092
1093 /* Protected entry subprograms are broken into two
1094 separate subprograms: The first one is unprotected, and has
1095 a 'N' suffix; the second is the protected version, and has
0963b4bd 1096 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1097 the protection. Since the P subprograms are internally generated,
1098 we leave these names undecoded, giving the user a clue that this
1099 entity is internal. */
1100
1101 if (*len > 1
1102 && encoded[*len - 1] == 'N'
1103 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1104 *len = *len - 1;
1105}
1106
1107/* If ENCODED follows the GNAT entity encoding conventions, then return
1108 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 1109 replaced by ENCODED. */
14f9c5c9 1110
f945dedf 1111std::string
4c4b4cd2 1112ada_decode (const char *encoded)
14f9c5c9
AS
1113{
1114 int i, j;
1115 int len0;
d2e4a39e 1116 const char *p;
14f9c5c9 1117 int at_start_name;
f945dedf 1118 std::string decoded;
d2e4a39e 1119
0d81f350
JG
1120 /* With function descriptors on PPC64, the value of a symbol named
1121 ".FN", if it exists, is the entry point of the function "FN". */
1122 if (encoded[0] == '.')
1123 encoded += 1;
1124
29480c32
JB
1125 /* The name of the Ada main procedure starts with "_ada_".
1126 This prefix is not part of the decoded name, so skip this part
1127 if we see this prefix. */
61012eef 1128 if (startswith (encoded, "_ada_"))
4c4b4cd2 1129 encoded += 5;
14f9c5c9 1130
29480c32
JB
1131 /* If the name starts with '_', then it is not a properly encoded
1132 name, so do not attempt to decode it. Similarly, if the name
1133 starts with '<', the name should not be decoded. */
4c4b4cd2 1134 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1135 goto Suppress;
1136
4c4b4cd2 1137 len0 = strlen (encoded);
4c4b4cd2 1138
29480c32
JB
1139 ada_remove_trailing_digits (encoded, &len0);
1140 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1141
4c4b4cd2
PH
1142 /* Remove the ___X.* suffix if present. Do not forget to verify that
1143 the suffix is located before the current "end" of ENCODED. We want
1144 to avoid re-matching parts of ENCODED that have previously been
1145 marked as discarded (by decrementing LEN0). */
1146 p = strstr (encoded, "___");
1147 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1148 {
1149 if (p[3] == 'X')
4c4b4cd2 1150 len0 = p - encoded;
14f9c5c9 1151 else
4c4b4cd2 1152 goto Suppress;
14f9c5c9 1153 }
4c4b4cd2 1154
29480c32
JB
1155 /* Remove any trailing TKB suffix. It tells us that this symbol
1156 is for the body of a task, but that information does not actually
1157 appear in the decoded name. */
1158
61012eef 1159 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1160 len0 -= 3;
76a01679 1161
a10967fa
JB
1162 /* Remove any trailing TB suffix. The TB suffix is slightly different
1163 from the TKB suffix because it is used for non-anonymous task
1164 bodies. */
1165
61012eef 1166 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1167 len0 -= 2;
1168
29480c32
JB
1169 /* Remove trailing "B" suffixes. */
1170 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1171
61012eef 1172 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1173 len0 -= 1;
1174
4c4b4cd2 1175 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1176
f945dedf 1177 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1178
29480c32
JB
1179 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1180
4c4b4cd2 1181 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1182 {
4c4b4cd2
PH
1183 i = len0 - 2;
1184 while ((i >= 0 && isdigit (encoded[i]))
1185 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1186 i -= 1;
1187 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1188 len0 = i - 1;
1189 else if (encoded[i] == '$')
1190 len0 = i;
d2e4a39e 1191 }
14f9c5c9 1192
29480c32
JB
1193 /* The first few characters that are not alphabetic are not part
1194 of any encoding we use, so we can copy them over verbatim. */
1195
4c4b4cd2
PH
1196 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1197 decoded[j] = encoded[i];
14f9c5c9
AS
1198
1199 at_start_name = 1;
1200 while (i < len0)
1201 {
29480c32 1202 /* Is this a symbol function? */
4c4b4cd2
PH
1203 if (at_start_name && encoded[i] == 'O')
1204 {
1205 int k;
5b4ee69b 1206
4c4b4cd2
PH
1207 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1208 {
1209 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1210 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1211 op_len - 1) == 0)
1212 && !isalnum (encoded[i + op_len]))
4c4b4cd2 1213 {
f945dedf 1214 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
4c4b4cd2
PH
1215 at_start_name = 0;
1216 i += op_len;
1217 j += strlen (ada_opname_table[k].decoded);
1218 break;
1219 }
1220 }
1221 if (ada_opname_table[k].encoded != NULL)
1222 continue;
1223 }
14f9c5c9
AS
1224 at_start_name = 0;
1225
529cad9c
PH
1226 /* Replace "TK__" with "__", which will eventually be translated
1227 into "." (just below). */
1228
61012eef 1229 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1230 i += 2;
529cad9c 1231
29480c32
JB
1232 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1233 be translated into "." (just below). These are internal names
1234 generated for anonymous blocks inside which our symbol is nested. */
1235
1236 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1237 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1238 && isdigit (encoded [i+4]))
1239 {
1240 int k = i + 5;
1241
1242 while (k < len0 && isdigit (encoded[k]))
1243 k++; /* Skip any extra digit. */
1244
1245 /* Double-check that the "__B_{DIGITS}+" sequence we found
1246 is indeed followed by "__". */
1247 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1248 i = k;
1249 }
1250
529cad9c
PH
1251 /* Remove _E{DIGITS}+[sb] */
1252
1253 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1254 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1255 one implements the actual entry code, and has a suffix following
1256 the convention above; the second one implements the barrier and
1257 uses the same convention as above, except that the 'E' is replaced
1258 by a 'B'.
1259
1260 Just as above, we do not decode the name of barrier functions
1261 to give the user a clue that the code he is debugging has been
1262 internally generated. */
1263
1264 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1265 && isdigit (encoded[i+2]))
1266 {
1267 int k = i + 3;
1268
1269 while (k < len0 && isdigit (encoded[k]))
1270 k++;
1271
1272 if (k < len0
1273 && (encoded[k] == 'b' || encoded[k] == 's'))
1274 {
1275 k++;
1276 /* Just as an extra precaution, make sure that if this
1277 suffix is followed by anything else, it is a '_'.
1278 Otherwise, we matched this sequence by accident. */
1279 if (k == len0
1280 || (k < len0 && encoded[k] == '_'))
1281 i = k;
1282 }
1283 }
1284
1285 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1286 the GNAT front-end in protected object subprograms. */
1287
1288 if (i < len0 + 3
1289 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1290 {
1291 /* Backtrack a bit up until we reach either the begining of
1292 the encoded name, or "__". Make sure that we only find
1293 digits or lowercase characters. */
1294 const char *ptr = encoded + i - 1;
1295
1296 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1297 ptr--;
1298 if (ptr < encoded
1299 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1300 i++;
1301 }
1302
4c4b4cd2
PH
1303 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1304 {
29480c32
JB
1305 /* This is a X[bn]* sequence not separated from the previous
1306 part of the name with a non-alpha-numeric character (in other
1307 words, immediately following an alpha-numeric character), then
1308 verify that it is placed at the end of the encoded name. If
1309 not, then the encoding is not valid and we should abort the
1310 decoding. Otherwise, just skip it, it is used in body-nested
1311 package names. */
4c4b4cd2
PH
1312 do
1313 i += 1;
1314 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1315 if (i < len0)
1316 goto Suppress;
1317 }
cdc7bb92 1318 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1319 {
29480c32 1320 /* Replace '__' by '.'. */
4c4b4cd2
PH
1321 decoded[j] = '.';
1322 at_start_name = 1;
1323 i += 2;
1324 j += 1;
1325 }
14f9c5c9 1326 else
4c4b4cd2 1327 {
29480c32
JB
1328 /* It's a character part of the decoded name, so just copy it
1329 over. */
4c4b4cd2
PH
1330 decoded[j] = encoded[i];
1331 i += 1;
1332 j += 1;
1333 }
14f9c5c9 1334 }
f945dedf 1335 decoded.resize (j);
14f9c5c9 1336
29480c32
JB
1337 /* Decoded names should never contain any uppercase character.
1338 Double-check this, and abort the decoding if we find one. */
1339
f945dedf 1340 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1341 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1342 goto Suppress;
1343
f945dedf 1344 return decoded;
14f9c5c9
AS
1345
1346Suppress:
4c4b4cd2 1347 if (encoded[0] == '<')
f945dedf 1348 decoded = encoded;
14f9c5c9 1349 else
f945dedf 1350 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1351 return decoded;
1352
1353}
1354
1355/* Table for keeping permanent unique copies of decoded names. Once
1356 allocated, names in this table are never released. While this is a
1357 storage leak, it should not be significant unless there are massive
1358 changes in the set of decoded names in successive versions of a
1359 symbol table loaded during a single session. */
1360static struct htab *decoded_names_store;
1361
1362/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1363 in the language-specific part of GSYMBOL, if it has not been
1364 previously computed. Tries to save the decoded name in the same
1365 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1366 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1367 GSYMBOL).
4c4b4cd2
PH
1368 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1369 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1370 when a decoded name is cached in it. */
4c4b4cd2 1371
45e6c716 1372const char *
f85f34ed 1373ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1374{
f85f34ed
TT
1375 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1376 const char **resultp =
615b3f62 1377 &gsymbol->language_specific.demangled_name;
5b4ee69b 1378
f85f34ed 1379 if (!gsymbol->ada_mangled)
4c4b4cd2 1380 {
f945dedf 1381 std::string decoded = ada_decode (gsymbol->name);
f85f34ed 1382 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1383
f85f34ed 1384 gsymbol->ada_mangled = 1;
5b4ee69b 1385
f85f34ed 1386 if (obstack != NULL)
f945dedf 1387 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1388 else
76a01679 1389 {
f85f34ed
TT
1390 /* Sometimes, we can't find a corresponding objfile, in
1391 which case, we put the result on the heap. Since we only
1392 decode when needed, we hope this usually does not cause a
1393 significant memory leak (FIXME). */
1394
76a01679 1395 char **slot = (char **) htab_find_slot (decoded_names_store,
f945dedf 1396 decoded.c_str (), INSERT);
5b4ee69b 1397
76a01679 1398 if (*slot == NULL)
f945dedf 1399 *slot = xstrdup (decoded.c_str ());
76a01679
JB
1400 *resultp = *slot;
1401 }
4c4b4cd2 1402 }
14f9c5c9 1403
4c4b4cd2
PH
1404 return *resultp;
1405}
76a01679 1406
2c0b251b 1407static char *
76a01679 1408ada_la_decode (const char *encoded, int options)
4c4b4cd2 1409{
f945dedf 1410 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1411}
1412
8b302db8
TT
1413/* Implement la_sniff_from_mangled_name for Ada. */
1414
1415static int
1416ada_sniff_from_mangled_name (const char *mangled, char **out)
1417{
f945dedf 1418 std::string demangled = ada_decode (mangled);
8b302db8
TT
1419
1420 *out = NULL;
1421
f945dedf 1422 if (demangled != mangled && demangled[0] != '<')
8b302db8
TT
1423 {
1424 /* Set the gsymbol language to Ada, but still return 0.
1425 Two reasons for that:
1426
1427 1. For Ada, we prefer computing the symbol's decoded name
1428 on the fly rather than pre-compute it, in order to save
1429 memory (Ada projects are typically very large).
1430
1431 2. There are some areas in the definition of the GNAT
1432 encoding where, with a bit of bad luck, we might be able
1433 to decode a non-Ada symbol, generating an incorrect
1434 demangled name (Eg: names ending with "TB" for instance
1435 are identified as task bodies and so stripped from
1436 the decoded name returned).
1437
1438 Returning 1, here, but not setting *DEMANGLED, helps us get a
1439 little bit of the best of both worlds. Because we're last,
1440 we should not affect any of the other languages that were
1441 able to demangle the symbol before us; we get to correctly
1442 tag Ada symbols as such; and even if we incorrectly tagged a
1443 non-Ada symbol, which should be rare, any routing through the
1444 Ada language should be transparent (Ada tries to behave much
1445 like C/C++ with non-Ada symbols). */
1446 return 1;
1447 }
1448
1449 return 0;
1450}
1451
14f9c5c9 1452\f
d2e4a39e 1453
4c4b4cd2 1454 /* Arrays */
14f9c5c9 1455
28c85d6c
JB
1456/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1457 generated by the GNAT compiler to describe the index type used
1458 for each dimension of an array, check whether it follows the latest
1459 known encoding. If not, fix it up to conform to the latest encoding.
1460 Otherwise, do nothing. This function also does nothing if
1461 INDEX_DESC_TYPE is NULL.
1462
1463 The GNAT encoding used to describle the array index type evolved a bit.
1464 Initially, the information would be provided through the name of each
1465 field of the structure type only, while the type of these fields was
1466 described as unspecified and irrelevant. The debugger was then expected
1467 to perform a global type lookup using the name of that field in order
1468 to get access to the full index type description. Because these global
1469 lookups can be very expensive, the encoding was later enhanced to make
1470 the global lookup unnecessary by defining the field type as being
1471 the full index type description.
1472
1473 The purpose of this routine is to allow us to support older versions
1474 of the compiler by detecting the use of the older encoding, and by
1475 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1476 we essentially replace each field's meaningless type by the associated
1477 index subtype). */
1478
1479void
1480ada_fixup_array_indexes_type (struct type *index_desc_type)
1481{
1482 int i;
1483
1484 if (index_desc_type == NULL)
1485 return;
1486 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1487
1488 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1489 to check one field only, no need to check them all). If not, return
1490 now.
1491
1492 If our INDEX_DESC_TYPE was generated using the older encoding,
1493 the field type should be a meaningless integer type whose name
1494 is not equal to the field name. */
1495 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1496 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1497 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1498 return;
1499
1500 /* Fixup each field of INDEX_DESC_TYPE. */
1501 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1502 {
0d5cff50 1503 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1504 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1505
1506 if (raw_type)
1507 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1508 }
1509}
1510
4c4b4cd2 1511/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1512
a121b7c1 1513static const char *bound_name[] = {
d2e4a39e 1514 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1515 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1516};
1517
1518/* Maximum number of array dimensions we are prepared to handle. */
1519
4c4b4cd2 1520#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1521
14f9c5c9 1522
4c4b4cd2
PH
1523/* The desc_* routines return primitive portions of array descriptors
1524 (fat pointers). */
14f9c5c9
AS
1525
1526/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1527 level of indirection, if needed. */
1528
d2e4a39e
AS
1529static struct type *
1530desc_base_type (struct type *type)
14f9c5c9
AS
1531{
1532 if (type == NULL)
1533 return NULL;
61ee279c 1534 type = ada_check_typedef (type);
720d1a40
JB
1535 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1536 type = ada_typedef_target_type (type);
1537
1265e4aa
JB
1538 if (type != NULL
1539 && (TYPE_CODE (type) == TYPE_CODE_PTR
1540 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1541 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1542 else
1543 return type;
1544}
1545
4c4b4cd2
PH
1546/* True iff TYPE indicates a "thin" array pointer type. */
1547
14f9c5c9 1548static int
d2e4a39e 1549is_thin_pntr (struct type *type)
14f9c5c9 1550{
d2e4a39e 1551 return
14f9c5c9
AS
1552 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1553 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1554}
1555
4c4b4cd2
PH
1556/* The descriptor type for thin pointer type TYPE. */
1557
d2e4a39e
AS
1558static struct type *
1559thin_descriptor_type (struct type *type)
14f9c5c9 1560{
d2e4a39e 1561 struct type *base_type = desc_base_type (type);
5b4ee69b 1562
14f9c5c9
AS
1563 if (base_type == NULL)
1564 return NULL;
1565 if (is_suffix (ada_type_name (base_type), "___XVE"))
1566 return base_type;
d2e4a39e 1567 else
14f9c5c9 1568 {
d2e4a39e 1569 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1570
14f9c5c9 1571 if (alt_type == NULL)
4c4b4cd2 1572 return base_type;
14f9c5c9 1573 else
4c4b4cd2 1574 return alt_type;
14f9c5c9
AS
1575 }
1576}
1577
4c4b4cd2
PH
1578/* A pointer to the array data for thin-pointer value VAL. */
1579
d2e4a39e
AS
1580static struct value *
1581thin_data_pntr (struct value *val)
14f9c5c9 1582{
828292f2 1583 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1584 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1585
556bdfd4
UW
1586 data_type = lookup_pointer_type (data_type);
1587
14f9c5c9 1588 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1589 return value_cast (data_type, value_copy (val));
d2e4a39e 1590 else
42ae5230 1591 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1592}
1593
4c4b4cd2
PH
1594/* True iff TYPE indicates a "thick" array pointer type. */
1595
14f9c5c9 1596static int
d2e4a39e 1597is_thick_pntr (struct type *type)
14f9c5c9
AS
1598{
1599 type = desc_base_type (type);
1600 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1601 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1602}
1603
4c4b4cd2
PH
1604/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1605 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1606
d2e4a39e
AS
1607static struct type *
1608desc_bounds_type (struct type *type)
14f9c5c9 1609{
d2e4a39e 1610 struct type *r;
14f9c5c9
AS
1611
1612 type = desc_base_type (type);
1613
1614 if (type == NULL)
1615 return NULL;
1616 else if (is_thin_pntr (type))
1617 {
1618 type = thin_descriptor_type (type);
1619 if (type == NULL)
4c4b4cd2 1620 return NULL;
14f9c5c9
AS
1621 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1622 if (r != NULL)
61ee279c 1623 return ada_check_typedef (r);
14f9c5c9
AS
1624 }
1625 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1626 {
1627 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1628 if (r != NULL)
61ee279c 1629 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1630 }
1631 return NULL;
1632}
1633
1634/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1635 one, a pointer to its bounds data. Otherwise NULL. */
1636
d2e4a39e
AS
1637static struct value *
1638desc_bounds (struct value *arr)
14f9c5c9 1639{
df407dfe 1640 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1641
d2e4a39e 1642 if (is_thin_pntr (type))
14f9c5c9 1643 {
d2e4a39e 1644 struct type *bounds_type =
4c4b4cd2 1645 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1646 LONGEST addr;
1647
4cdfadb1 1648 if (bounds_type == NULL)
323e0a4a 1649 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1650
1651 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1652 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1653 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1654 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1655 addr = value_as_long (arr);
d2e4a39e 1656 else
42ae5230 1657 addr = value_address (arr);
14f9c5c9 1658
d2e4a39e 1659 return
4c4b4cd2
PH
1660 value_from_longest (lookup_pointer_type (bounds_type),
1661 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1662 }
1663
1664 else if (is_thick_pntr (type))
05e522ef
JB
1665 {
1666 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1667 _("Bad GNAT array descriptor"));
1668 struct type *p_bounds_type = value_type (p_bounds);
1669
1670 if (p_bounds_type
1671 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1672 {
1673 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1674
1675 if (TYPE_STUB (target_type))
1676 p_bounds = value_cast (lookup_pointer_type
1677 (ada_check_typedef (target_type)),
1678 p_bounds);
1679 }
1680 else
1681 error (_("Bad GNAT array descriptor"));
1682
1683 return p_bounds;
1684 }
14f9c5c9
AS
1685 else
1686 return NULL;
1687}
1688
4c4b4cd2
PH
1689/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1690 position of the field containing the address of the bounds data. */
1691
14f9c5c9 1692static int
d2e4a39e 1693fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1694{
1695 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1696}
1697
1698/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1699 size of the field containing the address of the bounds data. */
1700
14f9c5c9 1701static int
d2e4a39e 1702fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1703{
1704 type = desc_base_type (type);
1705
d2e4a39e 1706 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1707 return TYPE_FIELD_BITSIZE (type, 1);
1708 else
61ee279c 1709 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1710}
1711
4c4b4cd2 1712/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1713 pointer to one, the type of its array data (a array-with-no-bounds type);
1714 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1715 data. */
4c4b4cd2 1716
d2e4a39e 1717static struct type *
556bdfd4 1718desc_data_target_type (struct type *type)
14f9c5c9
AS
1719{
1720 type = desc_base_type (type);
1721
4c4b4cd2 1722 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1723 if (is_thin_pntr (type))
556bdfd4 1724 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1725 else if (is_thick_pntr (type))
556bdfd4
UW
1726 {
1727 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1728
1729 if (data_type
1730 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1731 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1732 }
1733
1734 return NULL;
14f9c5c9
AS
1735}
1736
1737/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1738 its array data. */
4c4b4cd2 1739
d2e4a39e
AS
1740static struct value *
1741desc_data (struct value *arr)
14f9c5c9 1742{
df407dfe 1743 struct type *type = value_type (arr);
5b4ee69b 1744
14f9c5c9
AS
1745 if (is_thin_pntr (type))
1746 return thin_data_pntr (arr);
1747 else if (is_thick_pntr (type))
d2e4a39e 1748 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1749 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1750 else
1751 return NULL;
1752}
1753
1754
1755/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1756 position of the field containing the address of the data. */
1757
14f9c5c9 1758static int
d2e4a39e 1759fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1760{
1761 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1762}
1763
1764/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1765 size of the field containing the address of the data. */
1766
14f9c5c9 1767static int
d2e4a39e 1768fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1769{
1770 type = desc_base_type (type);
1771
1772 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1773 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1774 else
14f9c5c9
AS
1775 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1776}
1777
4c4b4cd2 1778/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1779 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1780 bound, if WHICH is 1. The first bound is I=1. */
1781
d2e4a39e
AS
1782static struct value *
1783desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1784{
d2e4a39e 1785 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1786 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1787}
1788
1789/* If BOUNDS is an array-bounds structure type, return the bit position
1790 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1791 bound, if WHICH is 1. The first bound is I=1. */
1792
14f9c5c9 1793static int
d2e4a39e 1794desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1795{
d2e4a39e 1796 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1797}
1798
1799/* If BOUNDS is an array-bounds structure type, return the bit field size
1800 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1801 bound, if WHICH is 1. The first bound is I=1. */
1802
76a01679 1803static int
d2e4a39e 1804desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1805{
1806 type = desc_base_type (type);
1807
d2e4a39e
AS
1808 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1809 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1810 else
1811 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1812}
1813
1814/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1815 Ith bound (numbering from 1). Otherwise, NULL. */
1816
d2e4a39e
AS
1817static struct type *
1818desc_index_type (struct type *type, int i)
14f9c5c9
AS
1819{
1820 type = desc_base_type (type);
1821
1822 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1823 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1824 else
14f9c5c9
AS
1825 return NULL;
1826}
1827
4c4b4cd2
PH
1828/* The number of index positions in the array-bounds type TYPE.
1829 Return 0 if TYPE is NULL. */
1830
14f9c5c9 1831static int
d2e4a39e 1832desc_arity (struct type *type)
14f9c5c9
AS
1833{
1834 type = desc_base_type (type);
1835
1836 if (type != NULL)
1837 return TYPE_NFIELDS (type) / 2;
1838 return 0;
1839}
1840
4c4b4cd2
PH
1841/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1842 an array descriptor type (representing an unconstrained array
1843 type). */
1844
76a01679
JB
1845static int
1846ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1847{
1848 if (type == NULL)
1849 return 0;
61ee279c 1850 type = ada_check_typedef (type);
4c4b4cd2 1851 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1852 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1853}
1854
52ce6436 1855/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1856 * to one. */
52ce6436 1857
2c0b251b 1858static int
52ce6436
PH
1859ada_is_array_type (struct type *type)
1860{
1861 while (type != NULL
1862 && (TYPE_CODE (type) == TYPE_CODE_PTR
1863 || TYPE_CODE (type) == TYPE_CODE_REF))
1864 type = TYPE_TARGET_TYPE (type);
1865 return ada_is_direct_array_type (type);
1866}
1867
4c4b4cd2 1868/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1869
14f9c5c9 1870int
4c4b4cd2 1871ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1872{
1873 if (type == NULL)
1874 return 0;
61ee279c 1875 type = ada_check_typedef (type);
14f9c5c9 1876 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1877 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1878 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1879 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1880}
1881
4c4b4cd2
PH
1882/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1883
14f9c5c9 1884int
4c4b4cd2 1885ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1886{
556bdfd4 1887 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1888
1889 if (type == NULL)
1890 return 0;
61ee279c 1891 type = ada_check_typedef (type);
556bdfd4
UW
1892 return (data_type != NULL
1893 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1894 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1895}
1896
1897/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1898 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1899 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1900 is still needed. */
1901
14f9c5c9 1902int
ebf56fd3 1903ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1904{
d2e4a39e 1905 return
14f9c5c9
AS
1906 type != NULL
1907 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1908 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1909 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1910 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1911}
1912
1913
4c4b4cd2 1914/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1915 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1916 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1917 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1918 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1919 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1920 a descriptor. */
d2e4a39e
AS
1921struct type *
1922ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1923{
ad82864c
JB
1924 if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1926
df407dfe
AC
1927 if (!ada_is_array_descriptor_type (value_type (arr)))
1928 return value_type (arr);
d2e4a39e
AS
1929
1930 if (!bounds)
ad82864c
JB
1931 {
1932 struct type *array_type =
1933 ada_check_typedef (desc_data_target_type (value_type (arr)));
1934
1935 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1936 TYPE_FIELD_BITSIZE (array_type, 0) =
1937 decode_packed_array_bitsize (value_type (arr));
1938
1939 return array_type;
1940 }
14f9c5c9
AS
1941 else
1942 {
d2e4a39e 1943 struct type *elt_type;
14f9c5c9 1944 int arity;
d2e4a39e 1945 struct value *descriptor;
14f9c5c9 1946
df407dfe
AC
1947 elt_type = ada_array_element_type (value_type (arr), -1);
1948 arity = ada_array_arity (value_type (arr));
14f9c5c9 1949
d2e4a39e 1950 if (elt_type == NULL || arity == 0)
df407dfe 1951 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1952
1953 descriptor = desc_bounds (arr);
d2e4a39e 1954 if (value_as_long (descriptor) == 0)
4c4b4cd2 1955 return NULL;
d2e4a39e 1956 while (arity > 0)
4c4b4cd2 1957 {
e9bb382b
UW
1958 struct type *range_type = alloc_type_copy (value_type (arr));
1959 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1960 struct value *low = desc_one_bound (descriptor, arity, 0);
1961 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1962
5b4ee69b 1963 arity -= 1;
0c9c3474
SA
1964 create_static_range_type (range_type, value_type (low),
1965 longest_to_int (value_as_long (low)),
1966 longest_to_int (value_as_long (high)));
4c4b4cd2 1967 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1968
1969 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1970 {
1971 /* We need to store the element packed bitsize, as well as
1972 recompute the array size, because it was previously
1973 computed based on the unpacked element size. */
1974 LONGEST lo = value_as_long (low);
1975 LONGEST hi = value_as_long (high);
1976
1977 TYPE_FIELD_BITSIZE (elt_type, 0) =
1978 decode_packed_array_bitsize (value_type (arr));
1979 /* If the array has no element, then the size is already
1980 zero, and does not need to be recomputed. */
1981 if (lo < hi)
1982 {
1983 int array_bitsize =
1984 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1985
1986 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1987 }
1988 }
4c4b4cd2 1989 }
14f9c5c9
AS
1990
1991 return lookup_pointer_type (elt_type);
1992 }
1993}
1994
1995/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1996 Otherwise, returns either a standard GDB array with bounds set
1997 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1998 GDB array. Returns NULL if ARR is a null fat pointer. */
1999
d2e4a39e
AS
2000struct value *
2001ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2002{
df407dfe 2003 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2004 {
d2e4a39e 2005 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2006
14f9c5c9 2007 if (arrType == NULL)
4c4b4cd2 2008 return NULL;
14f9c5c9
AS
2009 return value_cast (arrType, value_copy (desc_data (arr)));
2010 }
ad82864c
JB
2011 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2012 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2013 else
2014 return arr;
2015}
2016
2017/* If ARR does not represent an array, returns ARR unchanged.
2018 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2019 be ARR itself if it already is in the proper form). */
2020
720d1a40 2021struct value *
d2e4a39e 2022ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2023{
df407dfe 2024 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2025 {
d2e4a39e 2026 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2027
14f9c5c9 2028 if (arrVal == NULL)
323e0a4a 2029 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2030 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2031 return value_ind (arrVal);
2032 }
ad82864c
JB
2033 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2034 return decode_constrained_packed_array (arr);
d2e4a39e 2035 else
14f9c5c9
AS
2036 return arr;
2037}
2038
2039/* If TYPE represents a GNAT array type, return it translated to an
2040 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2041 packing). For other types, is the identity. */
2042
d2e4a39e
AS
2043struct type *
2044ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2045{
ad82864c
JB
2046 if (ada_is_constrained_packed_array_type (type))
2047 return decode_constrained_packed_array_type (type);
17280b9f
UW
2048
2049 if (ada_is_array_descriptor_type (type))
556bdfd4 2050 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2051
2052 return type;
14f9c5c9
AS
2053}
2054
4c4b4cd2
PH
2055/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2056
ad82864c
JB
2057static int
2058ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2059{
2060 if (type == NULL)
2061 return 0;
4c4b4cd2 2062 type = desc_base_type (type);
61ee279c 2063 type = ada_check_typedef (type);
d2e4a39e 2064 return
14f9c5c9
AS
2065 ada_type_name (type) != NULL
2066 && strstr (ada_type_name (type), "___XP") != NULL;
2067}
2068
ad82864c
JB
2069/* Non-zero iff TYPE represents a standard GNAT constrained
2070 packed-array type. */
2071
2072int
2073ada_is_constrained_packed_array_type (struct type *type)
2074{
2075 return ada_is_packed_array_type (type)
2076 && !ada_is_array_descriptor_type (type);
2077}
2078
2079/* Non-zero iff TYPE represents an array descriptor for a
2080 unconstrained packed-array type. */
2081
2082static int
2083ada_is_unconstrained_packed_array_type (struct type *type)
2084{
2085 return ada_is_packed_array_type (type)
2086 && ada_is_array_descriptor_type (type);
2087}
2088
2089/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2090 return the size of its elements in bits. */
2091
2092static long
2093decode_packed_array_bitsize (struct type *type)
2094{
0d5cff50
DE
2095 const char *raw_name;
2096 const char *tail;
ad82864c
JB
2097 long bits;
2098
720d1a40
JB
2099 /* Access to arrays implemented as fat pointers are encoded as a typedef
2100 of the fat pointer type. We need the name of the fat pointer type
2101 to do the decoding, so strip the typedef layer. */
2102 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2103 type = ada_typedef_target_type (type);
2104
2105 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2106 if (!raw_name)
2107 raw_name = ada_type_name (desc_base_type (type));
2108
2109 if (!raw_name)
2110 return 0;
2111
2112 tail = strstr (raw_name, "___XP");
720d1a40 2113 gdb_assert (tail != NULL);
ad82864c
JB
2114
2115 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2116 {
2117 lim_warning
2118 (_("could not understand bit size information on packed array"));
2119 return 0;
2120 }
2121
2122 return bits;
2123}
2124
14f9c5c9
AS
2125/* Given that TYPE is a standard GDB array type with all bounds filled
2126 in, and that the element size of its ultimate scalar constituents
2127 (that is, either its elements, or, if it is an array of arrays, its
2128 elements' elements, etc.) is *ELT_BITS, return an identical type,
2129 but with the bit sizes of its elements (and those of any
2130 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2131 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2132 in bits.
2133
2134 Note that, for arrays whose index type has an XA encoding where
2135 a bound references a record discriminant, getting that discriminant,
2136 and therefore the actual value of that bound, is not possible
2137 because none of the given parameters gives us access to the record.
2138 This function assumes that it is OK in the context where it is being
2139 used to return an array whose bounds are still dynamic and where
2140 the length is arbitrary. */
4c4b4cd2 2141
d2e4a39e 2142static struct type *
ad82864c 2143constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2144{
d2e4a39e
AS
2145 struct type *new_elt_type;
2146 struct type *new_type;
99b1c762
JB
2147 struct type *index_type_desc;
2148 struct type *index_type;
14f9c5c9
AS
2149 LONGEST low_bound, high_bound;
2150
61ee279c 2151 type = ada_check_typedef (type);
14f9c5c9
AS
2152 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2153 return type;
2154
99b1c762
JB
2155 index_type_desc = ada_find_parallel_type (type, "___XA");
2156 if (index_type_desc)
2157 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2158 NULL);
2159 else
2160 index_type = TYPE_INDEX_TYPE (type);
2161
e9bb382b 2162 new_type = alloc_type_copy (type);
ad82864c
JB
2163 new_elt_type =
2164 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2165 elt_bits);
99b1c762 2166 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2167 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2168 TYPE_NAME (new_type) = ada_type_name (type);
2169
4a46959e
JB
2170 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2171 && is_dynamic_type (check_typedef (index_type)))
2172 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2173 low_bound = high_bound = 0;
2174 if (high_bound < low_bound)
2175 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2176 else
14f9c5c9
AS
2177 {
2178 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2179 TYPE_LENGTH (new_type) =
4c4b4cd2 2180 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2181 }
2182
876cecd0 2183 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2184 return new_type;
2185}
2186
ad82864c
JB
2187/* The array type encoded by TYPE, where
2188 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2189
d2e4a39e 2190static struct type *
ad82864c 2191decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2192{
0d5cff50 2193 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2194 char *name;
0d5cff50 2195 const char *tail;
d2e4a39e 2196 struct type *shadow_type;
14f9c5c9 2197 long bits;
14f9c5c9 2198
727e3d2e
JB
2199 if (!raw_name)
2200 raw_name = ada_type_name (desc_base_type (type));
2201
2202 if (!raw_name)
2203 return NULL;
2204
2205 name = (char *) alloca (strlen (raw_name) + 1);
2206 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2207 type = desc_base_type (type);
2208
14f9c5c9
AS
2209 memcpy (name, raw_name, tail - raw_name);
2210 name[tail - raw_name] = '\000';
2211
b4ba55a1
JB
2212 shadow_type = ada_find_parallel_type_with_name (type, name);
2213
2214 if (shadow_type == NULL)
14f9c5c9 2215 {
323e0a4a 2216 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2217 return NULL;
2218 }
f168693b 2219 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2220
2221 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2222 {
0963b4bd
MS
2223 lim_warning (_("could not understand bounds "
2224 "information on packed array"));
14f9c5c9
AS
2225 return NULL;
2226 }
d2e4a39e 2227
ad82864c
JB
2228 bits = decode_packed_array_bitsize (type);
2229 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2230}
2231
ad82864c
JB
2232/* Given that ARR is a struct value *indicating a GNAT constrained packed
2233 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2234 standard GDB array type except that the BITSIZEs of the array
2235 target types are set to the number of bits in each element, and the
4c4b4cd2 2236 type length is set appropriately. */
14f9c5c9 2237
d2e4a39e 2238static struct value *
ad82864c 2239decode_constrained_packed_array (struct value *arr)
14f9c5c9 2240{
4c4b4cd2 2241 struct type *type;
14f9c5c9 2242
11aa919a
PMR
2243 /* If our value is a pointer, then dereference it. Likewise if
2244 the value is a reference. Make sure that this operation does not
2245 cause the target type to be fixed, as this would indirectly cause
2246 this array to be decoded. The rest of the routine assumes that
2247 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2248 and "value_ind" routines to perform the dereferencing, as opposed
2249 to using "ada_coerce_ref" or "ada_value_ind". */
2250 arr = coerce_ref (arr);
828292f2 2251 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2252 arr = value_ind (arr);
4c4b4cd2 2253
ad82864c 2254 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2255 if (type == NULL)
2256 {
323e0a4a 2257 error (_("can't unpack array"));
14f9c5c9
AS
2258 return NULL;
2259 }
61ee279c 2260
50810684 2261 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2262 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2263 {
2264 /* This is a (right-justified) modular type representing a packed
2265 array with no wrapper. In order to interpret the value through
2266 the (left-justified) packed array type we just built, we must
2267 first left-justify it. */
2268 int bit_size, bit_pos;
2269 ULONGEST mod;
2270
df407dfe 2271 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2272 bit_size = 0;
2273 while (mod > 0)
2274 {
2275 bit_size += 1;
2276 mod >>= 1;
2277 }
df407dfe 2278 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2279 arr = ada_value_primitive_packed_val (arr, NULL,
2280 bit_pos / HOST_CHAR_BIT,
2281 bit_pos % HOST_CHAR_BIT,
2282 bit_size,
2283 type);
2284 }
2285
4c4b4cd2 2286 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2287}
2288
2289
2290/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2291 given in IND. ARR must be a simple array. */
14f9c5c9 2292
d2e4a39e
AS
2293static struct value *
2294value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2295{
2296 int i;
2297 int bits, elt_off, bit_off;
2298 long elt_total_bit_offset;
d2e4a39e
AS
2299 struct type *elt_type;
2300 struct value *v;
14f9c5c9
AS
2301
2302 bits = 0;
2303 elt_total_bit_offset = 0;
df407dfe 2304 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2305 for (i = 0; i < arity; i += 1)
14f9c5c9 2306 {
d2e4a39e 2307 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2308 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2309 error
0963b4bd
MS
2310 (_("attempt to do packed indexing of "
2311 "something other than a packed array"));
14f9c5c9 2312 else
4c4b4cd2
PH
2313 {
2314 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2315 LONGEST lowerbound, upperbound;
2316 LONGEST idx;
2317
2318 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2319 {
323e0a4a 2320 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2321 lowerbound = upperbound = 0;
2322 }
2323
3cb382c9 2324 idx = pos_atr (ind[i]);
4c4b4cd2 2325 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2326 lim_warning (_("packed array index %ld out of bounds"),
2327 (long) idx);
4c4b4cd2
PH
2328 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2329 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2330 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2331 }
14f9c5c9
AS
2332 }
2333 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2334 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2335
2336 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2337 bits, elt_type);
14f9c5c9
AS
2338 return v;
2339}
2340
4c4b4cd2 2341/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2342
2343static int
d2e4a39e 2344has_negatives (struct type *type)
14f9c5c9 2345{
d2e4a39e
AS
2346 switch (TYPE_CODE (type))
2347 {
2348 default:
2349 return 0;
2350 case TYPE_CODE_INT:
2351 return !TYPE_UNSIGNED (type);
2352 case TYPE_CODE_RANGE:
4e962e74 2353 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
d2e4a39e 2354 }
14f9c5c9 2355}
d2e4a39e 2356
f93fca70 2357/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2358 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2359 the unpacked buffer.
14f9c5c9 2360
5b639dea
JB
2361 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2362 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2363
f93fca70
JB
2364 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2365 zero otherwise.
14f9c5c9 2366
f93fca70 2367 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2368
f93fca70
JB
2369 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2370
2371static void
2372ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2373 gdb_byte *unpacked, int unpacked_len,
2374 int is_big_endian, int is_signed_type,
2375 int is_scalar)
2376{
a1c95e6b
JB
2377 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2378 int src_idx; /* Index into the source area */
2379 int src_bytes_left; /* Number of source bytes left to process. */
2380 int srcBitsLeft; /* Number of source bits left to move */
2381 int unusedLS; /* Number of bits in next significant
2382 byte of source that are unused */
2383
a1c95e6b
JB
2384 int unpacked_idx; /* Index into the unpacked buffer */
2385 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2386
4c4b4cd2 2387 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2388 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2389 unsigned char sign;
a1c95e6b 2390
4c4b4cd2
PH
2391 /* Transmit bytes from least to most significant; delta is the direction
2392 the indices move. */
f93fca70 2393 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2394
5b639dea
JB
2395 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2396 bits from SRC. .*/
2397 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2398 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2399 bit_size, unpacked_len);
2400
14f9c5c9 2401 srcBitsLeft = bit_size;
086ca51f 2402 src_bytes_left = src_len;
f93fca70 2403 unpacked_bytes_left = unpacked_len;
14f9c5c9 2404 sign = 0;
f93fca70
JB
2405
2406 if (is_big_endian)
14f9c5c9 2407 {
086ca51f 2408 src_idx = src_len - 1;
f93fca70
JB
2409 if (is_signed_type
2410 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2411 sign = ~0;
d2e4a39e
AS
2412
2413 unusedLS =
4c4b4cd2
PH
2414 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2415 % HOST_CHAR_BIT;
14f9c5c9 2416
f93fca70
JB
2417 if (is_scalar)
2418 {
2419 accumSize = 0;
2420 unpacked_idx = unpacked_len - 1;
2421 }
2422 else
2423 {
4c4b4cd2
PH
2424 /* Non-scalar values must be aligned at a byte boundary... */
2425 accumSize =
2426 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2427 /* ... And are placed at the beginning (most-significant) bytes
2428 of the target. */
086ca51f
JB
2429 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2430 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2431 }
14f9c5c9 2432 }
d2e4a39e 2433 else
14f9c5c9
AS
2434 {
2435 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2436
086ca51f 2437 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2438 unusedLS = bit_offset;
2439 accumSize = 0;
2440
f93fca70 2441 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2442 sign = ~0;
14f9c5c9 2443 }
d2e4a39e 2444
14f9c5c9 2445 accum = 0;
086ca51f 2446 while (src_bytes_left > 0)
14f9c5c9
AS
2447 {
2448 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2449 part of the value. */
d2e4a39e 2450 unsigned int unusedMSMask =
4c4b4cd2
PH
2451 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2452 1;
2453 /* Sign-extend bits for this byte. */
14f9c5c9 2454 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2455
d2e4a39e 2456 accum |=
086ca51f 2457 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2458 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2459 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2460 {
db297a65 2461 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2462 accumSize -= HOST_CHAR_BIT;
2463 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2464 unpacked_bytes_left -= 1;
2465 unpacked_idx += delta;
4c4b4cd2 2466 }
14f9c5c9
AS
2467 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2468 unusedLS = 0;
086ca51f
JB
2469 src_bytes_left -= 1;
2470 src_idx += delta;
14f9c5c9 2471 }
086ca51f 2472 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2473 {
2474 accum |= sign << accumSize;
db297a65 2475 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2476 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2477 if (accumSize < 0)
2478 accumSize = 0;
14f9c5c9 2479 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2480 unpacked_bytes_left -= 1;
2481 unpacked_idx += delta;
14f9c5c9 2482 }
f93fca70
JB
2483}
2484
2485/* Create a new value of type TYPE from the contents of OBJ starting
2486 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2487 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2488 assigning through the result will set the field fetched from.
2489 VALADDR is ignored unless OBJ is NULL, in which case,
2490 VALADDR+OFFSET must address the start of storage containing the
2491 packed value. The value returned in this case is never an lval.
2492 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2493
2494struct value *
2495ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2496 long offset, int bit_offset, int bit_size,
2497 struct type *type)
2498{
2499 struct value *v;
bfb1c796 2500 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2501 gdb_byte *unpacked;
220475ed 2502 const int is_scalar = is_scalar_type (type);
d0a9e810 2503 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2504 gdb::byte_vector staging;
f93fca70
JB
2505
2506 type = ada_check_typedef (type);
2507
d0a9e810 2508 if (obj == NULL)
bfb1c796 2509 src = valaddr + offset;
d0a9e810 2510 else
bfb1c796 2511 src = value_contents (obj) + offset;
d0a9e810
JB
2512
2513 if (is_dynamic_type (type))
2514 {
2515 /* The length of TYPE might by dynamic, so we need to resolve
2516 TYPE in order to know its actual size, which we then use
2517 to create the contents buffer of the value we return.
2518 The difficulty is that the data containing our object is
2519 packed, and therefore maybe not at a byte boundary. So, what
2520 we do, is unpack the data into a byte-aligned buffer, and then
2521 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2522 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2523 staging.resize (staging_len);
d0a9e810
JB
2524
2525 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2526 staging.data (), staging.size (),
d0a9e810
JB
2527 is_big_endian, has_negatives (type),
2528 is_scalar);
d5722aa2 2529 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2530 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2531 {
2532 /* This happens when the length of the object is dynamic,
2533 and is actually smaller than the space reserved for it.
2534 For instance, in an array of variant records, the bit_size
2535 we're given is the array stride, which is constant and
2536 normally equal to the maximum size of its element.
2537 But, in reality, each element only actually spans a portion
2538 of that stride. */
2539 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2540 }
d0a9e810
JB
2541 }
2542
f93fca70
JB
2543 if (obj == NULL)
2544 {
2545 v = allocate_value (type);
bfb1c796 2546 src = valaddr + offset;
f93fca70
JB
2547 }
2548 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2549 {
0cafa88c 2550 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2551 gdb_byte *buf;
0cafa88c 2552
f93fca70 2553 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2554 buf = (gdb_byte *) alloca (src_len);
2555 read_memory (value_address (v), buf, src_len);
2556 src = buf;
f93fca70
JB
2557 }
2558 else
2559 {
2560 v = allocate_value (type);
bfb1c796 2561 src = value_contents (obj) + offset;
f93fca70
JB
2562 }
2563
2564 if (obj != NULL)
2565 {
2566 long new_offset = offset;
2567
2568 set_value_component_location (v, obj);
2569 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2570 set_value_bitsize (v, bit_size);
2571 if (value_bitpos (v) >= HOST_CHAR_BIT)
2572 {
2573 ++new_offset;
2574 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2575 }
2576 set_value_offset (v, new_offset);
2577
2578 /* Also set the parent value. This is needed when trying to
2579 assign a new value (in inferior memory). */
2580 set_value_parent (v, obj);
2581 }
2582 else
2583 set_value_bitsize (v, bit_size);
bfb1c796 2584 unpacked = value_contents_writeable (v);
f93fca70
JB
2585
2586 if (bit_size == 0)
2587 {
2588 memset (unpacked, 0, TYPE_LENGTH (type));
2589 return v;
2590 }
2591
d5722aa2 2592 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2593 {
d0a9e810
JB
2594 /* Small short-cut: If we've unpacked the data into a buffer
2595 of the same size as TYPE's length, then we can reuse that,
2596 instead of doing the unpacking again. */
d5722aa2 2597 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2598 }
d0a9e810
JB
2599 else
2600 ada_unpack_from_contents (src, bit_offset, bit_size,
2601 unpacked, TYPE_LENGTH (type),
2602 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2603
14f9c5c9
AS
2604 return v;
2605}
d2e4a39e 2606
14f9c5c9
AS
2607/* Store the contents of FROMVAL into the location of TOVAL.
2608 Return a new value with the location of TOVAL and contents of
2609 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2610 floating-point or non-scalar types. */
14f9c5c9 2611
d2e4a39e
AS
2612static struct value *
2613ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2614{
df407dfe
AC
2615 struct type *type = value_type (toval);
2616 int bits = value_bitsize (toval);
14f9c5c9 2617
52ce6436
PH
2618 toval = ada_coerce_ref (toval);
2619 fromval = ada_coerce_ref (fromval);
2620
2621 if (ada_is_direct_array_type (value_type (toval)))
2622 toval = ada_coerce_to_simple_array (toval);
2623 if (ada_is_direct_array_type (value_type (fromval)))
2624 fromval = ada_coerce_to_simple_array (fromval);
2625
88e3b34b 2626 if (!deprecated_value_modifiable (toval))
323e0a4a 2627 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2628
d2e4a39e 2629 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2630 && bits > 0
d2e4a39e 2631 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2632 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2633 {
df407dfe
AC
2634 int len = (value_bitpos (toval)
2635 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2636 int from_size;
224c3ddb 2637 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2638 struct value *val;
42ae5230 2639 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2640
2641 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2642 fromval = value_cast (type, fromval);
14f9c5c9 2643
52ce6436 2644 read_memory (to_addr, buffer, len);
aced2898
PH
2645 from_size = value_bitsize (fromval);
2646 if (from_size == 0)
2647 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4
TT
2648
2649 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2650 ULONGEST from_offset = 0;
2651 if (is_big_endian && is_scalar_type (value_type (fromval)))
2652 from_offset = from_size - bits;
2653 copy_bitwise (buffer, value_bitpos (toval),
2654 value_contents (fromval), from_offset,
2655 bits, is_big_endian);
972daa01 2656 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2657
14f9c5c9 2658 val = value_copy (toval);
0fd88904 2659 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2660 TYPE_LENGTH (type));
04624583 2661 deprecated_set_value_type (val, type);
d2e4a39e 2662
14f9c5c9
AS
2663 return val;
2664 }
2665
2666 return value_assign (toval, fromval);
2667}
2668
2669
7c512744
JB
2670/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2671 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2672 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2673 COMPONENT, and not the inferior's memory. The current contents
2674 of COMPONENT are ignored.
2675
2676 Although not part of the initial design, this function also works
2677 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2678 had a null address, and COMPONENT had an address which is equal to
2679 its offset inside CONTAINER. */
2680
52ce6436
PH
2681static void
2682value_assign_to_component (struct value *container, struct value *component,
2683 struct value *val)
2684{
2685 LONGEST offset_in_container =
42ae5230 2686 (LONGEST) (value_address (component) - value_address (container));
7c512744 2687 int bit_offset_in_container =
52ce6436
PH
2688 value_bitpos (component) - value_bitpos (container);
2689 int bits;
7c512744 2690
52ce6436
PH
2691 val = value_cast (value_type (component), val);
2692
2693 if (value_bitsize (component) == 0)
2694 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2695 else
2696 bits = value_bitsize (component);
2697
50810684 2698 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2a62dfa9
JB
2699 {
2700 int src_offset;
2701
2702 if (is_scalar_type (check_typedef (value_type (component))))
2703 src_offset
2704 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2705 else
2706 src_offset = 0;
a99bc3d2
JB
2707 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2708 value_bitpos (container) + bit_offset_in_container,
2709 value_contents (val), src_offset, bits, 1);
2a62dfa9 2710 }
52ce6436 2711 else
a99bc3d2
JB
2712 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2713 value_bitpos (container) + bit_offset_in_container,
2714 value_contents (val), 0, bits, 0);
7c512744
JB
2715}
2716
736ade86
XR
2717/* Determine if TYPE is an access to an unconstrained array. */
2718
d91e9ea8 2719bool
736ade86
XR
2720ada_is_access_to_unconstrained_array (struct type *type)
2721{
2722 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2723 && is_thick_pntr (ada_typedef_target_type (type)));
2724}
2725
4c4b4cd2
PH
2726/* The value of the element of array ARR at the ARITY indices given in IND.
2727 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2728 thereto. */
2729
d2e4a39e
AS
2730struct value *
2731ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2732{
2733 int k;
d2e4a39e
AS
2734 struct value *elt;
2735 struct type *elt_type;
14f9c5c9
AS
2736
2737 elt = ada_coerce_to_simple_array (arr);
2738
df407dfe 2739 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2740 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2741 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2742 return value_subscript_packed (elt, arity, ind);
2743
2744 for (k = 0; k < arity; k += 1)
2745 {
b9c50e9a
XR
2746 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2747
14f9c5c9 2748 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2749 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2750
2497b498 2751 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2752
2753 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2754 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2755 {
2756 /* The element is a typedef to an unconstrained array,
2757 except that the value_subscript call stripped the
2758 typedef layer. The typedef layer is GNAT's way to
2759 specify that the element is, at the source level, an
2760 access to the unconstrained array, rather than the
2761 unconstrained array. So, we need to restore that
2762 typedef layer, which we can do by forcing the element's
2763 type back to its original type. Otherwise, the returned
2764 value is going to be printed as the array, rather
2765 than as an access. Another symptom of the same issue
2766 would be that an expression trying to dereference the
2767 element would also be improperly rejected. */
2768 deprecated_set_value_type (elt, saved_elt_type);
2769 }
2770
2771 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2772 }
b9c50e9a 2773
14f9c5c9
AS
2774 return elt;
2775}
2776
deede10c
JB
2777/* Assuming ARR is a pointer to a GDB array, the value of the element
2778 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2779 Does not read the entire array into memory.
2780
2781 Note: Unlike what one would expect, this function is used instead of
2782 ada_value_subscript for basically all non-packed array types. The reason
2783 for this is that a side effect of doing our own pointer arithmetics instead
2784 of relying on value_subscript is that there is no implicit typedef peeling.
2785 This is important for arrays of array accesses, where it allows us to
2786 preserve the fact that the array's element is an array access, where the
2787 access part os encoded in a typedef layer. */
14f9c5c9 2788
2c0b251b 2789static struct value *
deede10c 2790ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2791{
2792 int k;
919e6dbe 2793 struct value *array_ind = ada_value_ind (arr);
deede10c 2794 struct type *type
919e6dbe
PMR
2795 = check_typedef (value_enclosing_type (array_ind));
2796
2797 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2798 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2799 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2800
2801 for (k = 0; k < arity; k += 1)
2802 {
2803 LONGEST lwb, upb;
aa715135 2804 struct value *lwb_value;
14f9c5c9
AS
2805
2806 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2807 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2808 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2809 value_copy (arr));
14f9c5c9 2810 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2811 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2812 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2813 type = TYPE_TARGET_TYPE (type);
2814 }
2815
2816 return value_ind (arr);
2817}
2818
0b5d8877 2819/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2820 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2821 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2822 this array is LOW, as per Ada rules. */
0b5d8877 2823static struct value *
f5938064
JG
2824ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2825 int low, int high)
0b5d8877 2826{
b0dd7688 2827 struct type *type0 = ada_check_typedef (type);
aa715135 2828 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2829 struct type *index_type
aa715135 2830 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2831 struct type *slice_type = create_array_type_with_stride
2832 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2833 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2834 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2835 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2836 LONGEST base_low_pos, low_pos;
2837 CORE_ADDR base;
2838
2839 if (!discrete_position (base_index_type, low, &low_pos)
2840 || !discrete_position (base_index_type, base_low, &base_low_pos))
2841 {
2842 warning (_("unable to get positions in slice, use bounds instead"));
2843 low_pos = low;
2844 base_low_pos = base_low;
2845 }
5b4ee69b 2846
aa715135
JG
2847 base = value_as_address (array_ptr)
2848 + ((low_pos - base_low_pos)
2849 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2850 return value_at_lazy (slice_type, base);
0b5d8877
PH
2851}
2852
2853
2854static struct value *
2855ada_value_slice (struct value *array, int low, int high)
2856{
b0dd7688 2857 struct type *type = ada_check_typedef (value_type (array));
aa715135 2858 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2859 struct type *index_type
2860 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2861 struct type *slice_type = create_array_type_with_stride
2862 (NULL, TYPE_TARGET_TYPE (type), index_type,
2863 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2864 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2865 LONGEST low_pos, high_pos;
5b4ee69b 2866
aa715135
JG
2867 if (!discrete_position (base_index_type, low, &low_pos)
2868 || !discrete_position (base_index_type, high, &high_pos))
2869 {
2870 warning (_("unable to get positions in slice, use bounds instead"));
2871 low_pos = low;
2872 high_pos = high;
2873 }
2874
2875 return value_cast (slice_type,
2876 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2877}
2878
14f9c5c9
AS
2879/* If type is a record type in the form of a standard GNAT array
2880 descriptor, returns the number of dimensions for type. If arr is a
2881 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2882 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2883
2884int
d2e4a39e 2885ada_array_arity (struct type *type)
14f9c5c9
AS
2886{
2887 int arity;
2888
2889 if (type == NULL)
2890 return 0;
2891
2892 type = desc_base_type (type);
2893
2894 arity = 0;
d2e4a39e 2895 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2896 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2897 else
2898 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2899 {
4c4b4cd2 2900 arity += 1;
61ee279c 2901 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2902 }
d2e4a39e 2903
14f9c5c9
AS
2904 return arity;
2905}
2906
2907/* If TYPE is a record type in the form of a standard GNAT array
2908 descriptor or a simple array type, returns the element type for
2909 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2910 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2911
d2e4a39e
AS
2912struct type *
2913ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2914{
2915 type = desc_base_type (type);
2916
d2e4a39e 2917 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2918 {
2919 int k;
d2e4a39e 2920 struct type *p_array_type;
14f9c5c9 2921
556bdfd4 2922 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2923
2924 k = ada_array_arity (type);
2925 if (k == 0)
4c4b4cd2 2926 return NULL;
d2e4a39e 2927
4c4b4cd2 2928 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2929 if (nindices >= 0 && k > nindices)
4c4b4cd2 2930 k = nindices;
d2e4a39e 2931 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2932 {
61ee279c 2933 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2934 k -= 1;
2935 }
14f9c5c9
AS
2936 return p_array_type;
2937 }
2938 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2939 {
2940 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2941 {
2942 type = TYPE_TARGET_TYPE (type);
2943 nindices -= 1;
2944 }
14f9c5c9
AS
2945 return type;
2946 }
2947
2948 return NULL;
2949}
2950
4c4b4cd2 2951/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2952 Does not examine memory. Throws an error if N is invalid or TYPE
2953 is not an array type. NAME is the name of the Ada attribute being
2954 evaluated ('range, 'first, 'last, or 'length); it is used in building
2955 the error message. */
14f9c5c9 2956
1eea4ebd
UW
2957static struct type *
2958ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2959{
4c4b4cd2
PH
2960 struct type *result_type;
2961
14f9c5c9
AS
2962 type = desc_base_type (type);
2963
1eea4ebd
UW
2964 if (n < 0 || n > ada_array_arity (type))
2965 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2966
4c4b4cd2 2967 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2968 {
2969 int i;
2970
2971 for (i = 1; i < n; i += 1)
4c4b4cd2 2972 type = TYPE_TARGET_TYPE (type);
262452ec 2973 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2974 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2975 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2976 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2977 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2978 result_type = NULL;
14f9c5c9 2979 }
d2e4a39e 2980 else
1eea4ebd
UW
2981 {
2982 result_type = desc_index_type (desc_bounds_type (type), n);
2983 if (result_type == NULL)
2984 error (_("attempt to take bound of something that is not an array"));
2985 }
2986
2987 return result_type;
14f9c5c9
AS
2988}
2989
2990/* Given that arr is an array type, returns the lower bound of the
2991 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2992 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2993 array-descriptor type. It works for other arrays with bounds supplied
2994 by run-time quantities other than discriminants. */
14f9c5c9 2995
abb68b3e 2996static LONGEST
fb5e3d5c 2997ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2998{
8a48ac95 2999 struct type *type, *index_type_desc, *index_type;
1ce677a4 3000 int i;
262452ec
JK
3001
3002 gdb_assert (which == 0 || which == 1);
14f9c5c9 3003
ad82864c
JB
3004 if (ada_is_constrained_packed_array_type (arr_type))
3005 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3006
4c4b4cd2 3007 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3008 return (LONGEST) - which;
14f9c5c9
AS
3009
3010 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3011 type = TYPE_TARGET_TYPE (arr_type);
3012 else
3013 type = arr_type;
3014
bafffb51
JB
3015 if (TYPE_FIXED_INSTANCE (type))
3016 {
3017 /* The array has already been fixed, so we do not need to
3018 check the parallel ___XA type again. That encoding has
3019 already been applied, so ignore it now. */
3020 index_type_desc = NULL;
3021 }
3022 else
3023 {
3024 index_type_desc = ada_find_parallel_type (type, "___XA");
3025 ada_fixup_array_indexes_type (index_type_desc);
3026 }
3027
262452ec 3028 if (index_type_desc != NULL)
28c85d6c
JB
3029 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3030 NULL);
262452ec 3031 else
8a48ac95
JB
3032 {
3033 struct type *elt_type = check_typedef (type);
3034
3035 for (i = 1; i < n; i++)
3036 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3037
3038 index_type = TYPE_INDEX_TYPE (elt_type);
3039 }
262452ec 3040
43bbcdc2
PH
3041 return
3042 (LONGEST) (which == 0
3043 ? ada_discrete_type_low_bound (index_type)
3044 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3045}
3046
3047/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3048 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3049 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3050 supplied by run-time quantities other than discriminants. */
14f9c5c9 3051
1eea4ebd 3052static LONGEST
4dc81987 3053ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3054{
eb479039
JB
3055 struct type *arr_type;
3056
3057 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3058 arr = value_ind (arr);
3059 arr_type = value_enclosing_type (arr);
14f9c5c9 3060
ad82864c
JB
3061 if (ada_is_constrained_packed_array_type (arr_type))
3062 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3063 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3064 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3065 else
1eea4ebd 3066 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3067}
3068
3069/* Given that arr is an array value, returns the length of the
3070 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3071 supplied by run-time quantities other than discriminants.
3072 Does not work for arrays indexed by enumeration types with representation
3073 clauses at the moment. */
14f9c5c9 3074
1eea4ebd 3075static LONGEST
d2e4a39e 3076ada_array_length (struct value *arr, int n)
14f9c5c9 3077{
aa715135
JG
3078 struct type *arr_type, *index_type;
3079 int low, high;
eb479039
JB
3080
3081 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3082 arr = value_ind (arr);
3083 arr_type = value_enclosing_type (arr);
14f9c5c9 3084
ad82864c
JB
3085 if (ada_is_constrained_packed_array_type (arr_type))
3086 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3087
4c4b4cd2 3088 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3089 {
3090 low = ada_array_bound_from_type (arr_type, n, 0);
3091 high = ada_array_bound_from_type (arr_type, n, 1);
3092 }
14f9c5c9 3093 else
aa715135
JG
3094 {
3095 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3096 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3097 }
3098
f168693b 3099 arr_type = check_typedef (arr_type);
7150d33c 3100 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3101 if (index_type != NULL)
3102 {
3103 struct type *base_type;
3104 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3105 base_type = TYPE_TARGET_TYPE (index_type);
3106 else
3107 base_type = index_type;
3108
3109 low = pos_atr (value_from_longest (base_type, low));
3110 high = pos_atr (value_from_longest (base_type, high));
3111 }
3112 return high - low + 1;
4c4b4cd2
PH
3113}
3114
bff8c71f
TT
3115/* An array whose type is that of ARR_TYPE (an array type), with
3116 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3117 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3118
3119static struct value *
bff8c71f 3120empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3121{
b0dd7688 3122 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3123 struct type *index_type
3124 = create_static_range_type
bff8c71f
TT
3125 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3126 high < low ? low - 1 : high);
b0dd7688 3127 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3128
0b5d8877 3129 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3130}
14f9c5c9 3131\f
d2e4a39e 3132
4c4b4cd2 3133 /* Name resolution */
14f9c5c9 3134
4c4b4cd2
PH
3135/* The "decoded" name for the user-definable Ada operator corresponding
3136 to OP. */
14f9c5c9 3137
d2e4a39e 3138static const char *
4c4b4cd2 3139ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3140{
3141 int i;
3142
4c4b4cd2 3143 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3144 {
3145 if (ada_opname_table[i].op == op)
4c4b4cd2 3146 return ada_opname_table[i].decoded;
14f9c5c9 3147 }
323e0a4a 3148 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3149}
3150
3151
4c4b4cd2
PH
3152/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3153 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3154 undefined namespace) and converts operators that are
3155 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3156 non-null, it provides a preferred result type [at the moment, only
3157 type void has any effect---causing procedures to be preferred over
3158 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3159 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3160
4c4b4cd2 3161static void
699bd4cf
TT
3162resolve (expression_up *expp, int void_context_p, int parse_completion,
3163 innermost_block_tracker *tracker)
14f9c5c9 3164{
30b15541
UW
3165 struct type *context_type = NULL;
3166 int pc = 0;
3167
3168 if (void_context_p)
3169 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3170
699bd4cf 3171 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
14f9c5c9
AS
3172}
3173
4c4b4cd2
PH
3174/* Resolve the operator of the subexpression beginning at
3175 position *POS of *EXPP. "Resolving" consists of replacing
3176 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3177 with their resolutions, replacing built-in operators with
3178 function calls to user-defined operators, where appropriate, and,
3179 when DEPROCEDURE_P is non-zero, converting function-valued variables
3180 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3181 are as in ada_resolve, above. */
14f9c5c9 3182
d2e4a39e 3183static struct value *
e9d9f57e 3184resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
699bd4cf
TT
3185 struct type *context_type, int parse_completion,
3186 innermost_block_tracker *tracker)
14f9c5c9
AS
3187{
3188 int pc = *pos;
3189 int i;
4c4b4cd2 3190 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3191 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3192 struct value **argvec; /* Vector of operand types (alloca'ed). */
3193 int nargs; /* Number of operands. */
52ce6436 3194 int oplen;
14f9c5c9
AS
3195
3196 argvec = NULL;
3197 nargs = 0;
e9d9f57e 3198 exp = expp->get ();
14f9c5c9 3199
52ce6436
PH
3200 /* Pass one: resolve operands, saving their types and updating *pos,
3201 if needed. */
14f9c5c9
AS
3202 switch (op)
3203 {
4c4b4cd2
PH
3204 case OP_FUNCALL:
3205 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3206 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3207 *pos += 7;
4c4b4cd2
PH
3208 else
3209 {
3210 *pos += 3;
699bd4cf 3211 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3212 }
3213 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3214 break;
3215
14f9c5c9 3216 case UNOP_ADDR:
4c4b4cd2 3217 *pos += 1;
699bd4cf 3218 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3219 break;
3220
52ce6436
PH
3221 case UNOP_QUAL:
3222 *pos += 3;
2a612529 3223 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
699bd4cf 3224 parse_completion, tracker);
4c4b4cd2
PH
3225 break;
3226
52ce6436 3227 case OP_ATR_MODULUS:
4c4b4cd2
PH
3228 case OP_ATR_SIZE:
3229 case OP_ATR_TAG:
4c4b4cd2
PH
3230 case OP_ATR_FIRST:
3231 case OP_ATR_LAST:
3232 case OP_ATR_LENGTH:
3233 case OP_ATR_POS:
3234 case OP_ATR_VAL:
4c4b4cd2
PH
3235 case OP_ATR_MIN:
3236 case OP_ATR_MAX:
52ce6436
PH
3237 case TERNOP_IN_RANGE:
3238 case BINOP_IN_BOUNDS:
3239 case UNOP_IN_RANGE:
3240 case OP_AGGREGATE:
3241 case OP_OTHERS:
3242 case OP_CHOICES:
3243 case OP_POSITIONAL:
3244 case OP_DISCRETE_RANGE:
3245 case OP_NAME:
3246 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3247 *pos += oplen;
14f9c5c9
AS
3248 break;
3249
3250 case BINOP_ASSIGN:
3251 {
4c4b4cd2
PH
3252 struct value *arg1;
3253
3254 *pos += 1;
699bd4cf 3255 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3256 if (arg1 == NULL)
699bd4cf 3257 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
4c4b4cd2 3258 else
699bd4cf
TT
3259 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3260 tracker);
4c4b4cd2 3261 break;
14f9c5c9
AS
3262 }
3263
4c4b4cd2 3264 case UNOP_CAST:
4c4b4cd2
PH
3265 *pos += 3;
3266 nargs = 1;
3267 break;
14f9c5c9 3268
4c4b4cd2
PH
3269 case BINOP_ADD:
3270 case BINOP_SUB:
3271 case BINOP_MUL:
3272 case BINOP_DIV:
3273 case BINOP_REM:
3274 case BINOP_MOD:
3275 case BINOP_EXP:
3276 case BINOP_CONCAT:
3277 case BINOP_LOGICAL_AND:
3278 case BINOP_LOGICAL_OR:
3279 case BINOP_BITWISE_AND:
3280 case BINOP_BITWISE_IOR:
3281 case BINOP_BITWISE_XOR:
14f9c5c9 3282
4c4b4cd2
PH
3283 case BINOP_EQUAL:
3284 case BINOP_NOTEQUAL:
3285 case BINOP_LESS:
3286 case BINOP_GTR:
3287 case BINOP_LEQ:
3288 case BINOP_GEQ:
14f9c5c9 3289
4c4b4cd2
PH
3290 case BINOP_REPEAT:
3291 case BINOP_SUBSCRIPT:
3292 case BINOP_COMMA:
40c8aaa9
JB
3293 *pos += 1;
3294 nargs = 2;
3295 break;
14f9c5c9 3296
4c4b4cd2
PH
3297 case UNOP_NEG:
3298 case UNOP_PLUS:
3299 case UNOP_LOGICAL_NOT:
3300 case UNOP_ABS:
3301 case UNOP_IND:
3302 *pos += 1;
3303 nargs = 1;
3304 break;
14f9c5c9 3305
4c4b4cd2 3306 case OP_LONG:
edd079d9 3307 case OP_FLOAT:
4c4b4cd2 3308 case OP_VAR_VALUE:
74ea4be4 3309 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3310 *pos += 4;
3311 break;
14f9c5c9 3312
4c4b4cd2
PH
3313 case OP_TYPE:
3314 case OP_BOOL:
3315 case OP_LAST:
4c4b4cd2
PH
3316 case OP_INTERNALVAR:
3317 *pos += 3;
3318 break;
14f9c5c9 3319
4c4b4cd2
PH
3320 case UNOP_MEMVAL:
3321 *pos += 3;
3322 nargs = 1;
3323 break;
3324
67f3407f
DJ
3325 case OP_REGISTER:
3326 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3327 break;
3328
4c4b4cd2
PH
3329 case STRUCTOP_STRUCT:
3330 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3331 nargs = 1;
3332 break;
3333
4c4b4cd2 3334 case TERNOP_SLICE:
4c4b4cd2
PH
3335 *pos += 1;
3336 nargs = 3;
3337 break;
3338
52ce6436 3339 case OP_STRING:
14f9c5c9 3340 break;
4c4b4cd2
PH
3341
3342 default:
323e0a4a 3343 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3344 }
3345
8d749320 3346 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2 3347 for (i = 0; i < nargs; i += 1)
699bd4cf
TT
3348 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3349 tracker);
4c4b4cd2 3350 argvec[i] = NULL;
e9d9f57e 3351 exp = expp->get ();
4c4b4cd2
PH
3352
3353 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3354 switch (op)
3355 {
3356 default:
3357 break;
3358
14f9c5c9 3359 case OP_VAR_VALUE:
4c4b4cd2 3360 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3361 {
54d343a2 3362 std::vector<struct block_symbol> candidates;
76a01679
JB
3363 int n_candidates;
3364
3365 n_candidates =
3366 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3367 (exp->elts[pc + 2].symbol),
3368 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3369 &candidates);
76a01679
JB
3370
3371 if (n_candidates > 1)
3372 {
3373 /* Types tend to get re-introduced locally, so if there
3374 are any local symbols that are not types, first filter
3375 out all types. */
3376 int j;
3377 for (j = 0; j < n_candidates; j += 1)
d12307c1 3378 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3379 {
3380 case LOC_REGISTER:
3381 case LOC_ARG:
3382 case LOC_REF_ARG:
76a01679
JB
3383 case LOC_REGPARM_ADDR:
3384 case LOC_LOCAL:
76a01679 3385 case LOC_COMPUTED:
76a01679
JB
3386 goto FoundNonType;
3387 default:
3388 break;
3389 }
3390 FoundNonType:
3391 if (j < n_candidates)
3392 {
3393 j = 0;
3394 while (j < n_candidates)
3395 {
d12307c1 3396 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3397 {
3398 candidates[j] = candidates[n_candidates - 1];
3399 n_candidates -= 1;
3400 }
3401 else
3402 j += 1;
3403 }
3404 }
3405 }
3406
3407 if (n_candidates == 0)
323e0a4a 3408 error (_("No definition found for %s"),
76a01679
JB
3409 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3410 else if (n_candidates == 1)
3411 i = 0;
3412 else if (deprocedure_p
54d343a2 3413 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3414 {
06d5cf63 3415 i = ada_resolve_function
54d343a2 3416 (candidates.data (), n_candidates, NULL, 0,
06d5cf63 3417 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2a612529 3418 context_type, parse_completion);
76a01679 3419 if (i < 0)
323e0a4a 3420 error (_("Could not find a match for %s"),
76a01679
JB
3421 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3422 }
3423 else
3424 {
323e0a4a 3425 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3426 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3427 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3428 i = 0;
3429 }
3430
3431 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3432 exp->elts[pc + 2].symbol = candidates[i].symbol;
699bd4cf 3433 tracker->update (candidates[i]);
76a01679
JB
3434 }
3435
3436 if (deprocedure_p
3437 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3438 == TYPE_CODE_FUNC))
3439 {
424da6cf 3440 replace_operator_with_call (expp, pc, 0, 4,
76a01679
JB
3441 exp->elts[pc + 2].symbol,
3442 exp->elts[pc + 1].block);
e9d9f57e 3443 exp = expp->get ();
76a01679 3444 }
14f9c5c9
AS
3445 break;
3446
3447 case OP_FUNCALL:
3448 {
4c4b4cd2 3449 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3450 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3451 {
54d343a2 3452 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3453 int n_candidates;
3454
3455 n_candidates =
76a01679
JB
3456 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3457 (exp->elts[pc + 5].symbol),
3458 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3459 &candidates);
ec6a20c2 3460
4c4b4cd2
PH
3461 if (n_candidates == 1)
3462 i = 0;
3463 else
3464 {
06d5cf63 3465 i = ada_resolve_function
54d343a2 3466 (candidates.data (), n_candidates,
06d5cf63
JB
3467 argvec, nargs,
3468 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2a612529 3469 context_type, parse_completion);
4c4b4cd2 3470 if (i < 0)
323e0a4a 3471 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3472 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3473 }
3474
3475 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3476 exp->elts[pc + 5].symbol = candidates[i].symbol;
699bd4cf 3477 tracker->update (candidates[i]);
4c4b4cd2 3478 }
14f9c5c9
AS
3479 }
3480 break;
3481 case BINOP_ADD:
3482 case BINOP_SUB:
3483 case BINOP_MUL:
3484 case BINOP_DIV:
3485 case BINOP_REM:
3486 case BINOP_MOD:
3487 case BINOP_CONCAT:
3488 case BINOP_BITWISE_AND:
3489 case BINOP_BITWISE_IOR:
3490 case BINOP_BITWISE_XOR:
3491 case BINOP_EQUAL:
3492 case BINOP_NOTEQUAL:
3493 case BINOP_LESS:
3494 case BINOP_GTR:
3495 case BINOP_LEQ:
3496 case BINOP_GEQ:
3497 case BINOP_EXP:
3498 case UNOP_NEG:
3499 case UNOP_PLUS:
3500 case UNOP_LOGICAL_NOT:
3501 case UNOP_ABS:
3502 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3503 {
54d343a2 3504 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3505 int n_candidates;
3506
3507 n_candidates =
b5ec771e 3508 ada_lookup_symbol_list (ada_decoded_op_name (op),
582942f4 3509 NULL, VAR_DOMAIN,
4eeaa230 3510 &candidates);
ec6a20c2 3511
54d343a2 3512 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
2a612529
TT
3513 nargs, ada_decoded_op_name (op), NULL,
3514 parse_completion);
4c4b4cd2
PH
3515 if (i < 0)
3516 break;
3517
d12307c1
PMR
3518 replace_operator_with_call (expp, pc, nargs, 1,
3519 candidates[i].symbol,
3520 candidates[i].block);
e9d9f57e 3521 exp = expp->get ();
4c4b4cd2 3522 }
14f9c5c9 3523 break;
4c4b4cd2
PH
3524
3525 case OP_TYPE:
b3dbf008 3526 case OP_REGISTER:
4c4b4cd2 3527 return NULL;
14f9c5c9
AS
3528 }
3529
3530 *pos = pc;
ced9779b
JB
3531 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3532 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3533 exp->elts[pc + 1].objfile,
3534 exp->elts[pc + 2].msymbol);
3535 else
3536 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3537}
3538
3539/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3540 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3541 a non-pointer. */
14f9c5c9 3542/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3543 liberal. */
14f9c5c9
AS
3544
3545static int
4dc81987 3546ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3547{
61ee279c
PH
3548 ftype = ada_check_typedef (ftype);
3549 atype = ada_check_typedef (atype);
14f9c5c9
AS
3550
3551 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3552 ftype = TYPE_TARGET_TYPE (ftype);
3553 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3554 atype = TYPE_TARGET_TYPE (atype);
3555
d2e4a39e 3556 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3557 {
3558 default:
5b3d5b7d 3559 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3560 case TYPE_CODE_PTR:
3561 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3562 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3563 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3564 else
1265e4aa
JB
3565 return (may_deref
3566 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3567 case TYPE_CODE_INT:
3568 case TYPE_CODE_ENUM:
3569 case TYPE_CODE_RANGE:
3570 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3571 {
3572 case TYPE_CODE_INT:
3573 case TYPE_CODE_ENUM:
3574 case TYPE_CODE_RANGE:
3575 return 1;
3576 default:
3577 return 0;
3578 }
14f9c5c9
AS
3579
3580 case TYPE_CODE_ARRAY:
d2e4a39e 3581 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3582 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3583
3584 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3585 if (ada_is_array_descriptor_type (ftype))
3586 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3587 || ada_is_array_descriptor_type (atype));
14f9c5c9 3588 else
4c4b4cd2
PH
3589 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3590 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3591
3592 case TYPE_CODE_UNION:
3593 case TYPE_CODE_FLT:
3594 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3595 }
3596}
3597
3598/* Return non-zero if the formals of FUNC "sufficiently match" the
3599 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3600 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3601 argument function. */
14f9c5c9
AS
3602
3603static int
d2e4a39e 3604ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3605{
3606 int i;
d2e4a39e 3607 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3608
1265e4aa
JB
3609 if (SYMBOL_CLASS (func) == LOC_CONST
3610 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3611 return (n_actuals == 0);
3612 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3613 return 0;
3614
3615 if (TYPE_NFIELDS (func_type) != n_actuals)
3616 return 0;
3617
3618 for (i = 0; i < n_actuals; i += 1)
3619 {
4c4b4cd2 3620 if (actuals[i] == NULL)
76a01679
JB
3621 return 0;
3622 else
3623 {
5b4ee69b
MS
3624 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3625 i));
df407dfe 3626 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3627
76a01679
JB
3628 if (!ada_type_match (ftype, atype, 1))
3629 return 0;
3630 }
14f9c5c9
AS
3631 }
3632 return 1;
3633}
3634
3635/* False iff function type FUNC_TYPE definitely does not produce a value
3636 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3637 FUNC_TYPE is not a valid function type with a non-null return type
3638 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3639
3640static int
d2e4a39e 3641return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3642{
d2e4a39e 3643 struct type *return_type;
14f9c5c9
AS
3644
3645 if (func_type == NULL)
3646 return 1;
3647
4c4b4cd2 3648 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3649 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3650 else
18af8284 3651 return_type = get_base_type (func_type);
14f9c5c9
AS
3652 if (return_type == NULL)
3653 return 1;
3654
18af8284 3655 context_type = get_base_type (context_type);
14f9c5c9
AS
3656
3657 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3658 return context_type == NULL || return_type == context_type;
3659 else if (context_type == NULL)
3660 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3661 else
3662 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3663}
3664
3665
4c4b4cd2 3666/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3667 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3668 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3669 that returns that type, then eliminate matches that don't. If
3670 CONTEXT_TYPE is void and there is at least one match that does not
3671 return void, eliminate all matches that do.
3672
14f9c5c9
AS
3673 Asks the user if there is more than one match remaining. Returns -1
3674 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3675 solely for messages. May re-arrange and modify SYMS in
3676 the process; the index returned is for the modified vector. */
14f9c5c9 3677
4c4b4cd2 3678static int
d12307c1 3679ada_resolve_function (struct block_symbol syms[],
4c4b4cd2 3680 int nsyms, struct value **args, int nargs,
2a612529
TT
3681 const char *name, struct type *context_type,
3682 int parse_completion)
14f9c5c9 3683{
30b15541 3684 int fallback;
14f9c5c9 3685 int k;
4c4b4cd2 3686 int m; /* Number of hits */
14f9c5c9 3687
d2e4a39e 3688 m = 0;
30b15541
UW
3689 /* In the first pass of the loop, we only accept functions matching
3690 context_type. If none are found, we add a second pass of the loop
3691 where every function is accepted. */
3692 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3693 {
3694 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3695 {
d12307c1 3696 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3697
d12307c1 3698 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3699 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3700 {
3701 syms[m] = syms[k];
3702 m += 1;
3703 }
3704 }
14f9c5c9
AS
3705 }
3706
dc5c8746
PMR
3707 /* If we got multiple matches, ask the user which one to use. Don't do this
3708 interactive thing during completion, though, as the purpose of the
3709 completion is providing a list of all possible matches. Prompting the
3710 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3711 if (m == 0)
3712 return -1;
dc5c8746 3713 else if (m > 1 && !parse_completion)
14f9c5c9 3714 {
323e0a4a 3715 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3716 user_select_syms (syms, m, 1);
14f9c5c9
AS
3717 return 0;
3718 }
3719 return 0;
3720}
3721
4c4b4cd2
PH
3722/* Returns true (non-zero) iff decoded name N0 should appear before N1
3723 in a listing of choices during disambiguation (see sort_choices, below).
3724 The idea is that overloadings of a subprogram name from the
3725 same package should sort in their source order. We settle for ordering
3726 such symbols by their trailing number (__N or $N). */
3727
14f9c5c9 3728static int
0d5cff50 3729encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3730{
3731 if (N1 == NULL)
3732 return 0;
3733 else if (N0 == NULL)
3734 return 1;
3735 else
3736 {
3737 int k0, k1;
5b4ee69b 3738
d2e4a39e 3739 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3740 ;
d2e4a39e 3741 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3742 ;
d2e4a39e 3743 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3744 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3745 {
3746 int n0, n1;
5b4ee69b 3747
4c4b4cd2
PH
3748 n0 = k0;
3749 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3750 n0 -= 1;
3751 n1 = k1;
3752 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3753 n1 -= 1;
3754 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3755 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3756 }
14f9c5c9
AS
3757 return (strcmp (N0, N1) < 0);
3758 }
3759}
d2e4a39e 3760
4c4b4cd2
PH
3761/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3762 encoded names. */
3763
d2e4a39e 3764static void
d12307c1 3765sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3766{
4c4b4cd2 3767 int i;
5b4ee69b 3768
d2e4a39e 3769 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3770 {
d12307c1 3771 struct block_symbol sym = syms[i];
14f9c5c9
AS
3772 int j;
3773
d2e4a39e 3774 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3775 {
d12307c1
PMR
3776 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3777 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3778 break;
3779 syms[j + 1] = syms[j];
3780 }
d2e4a39e 3781 syms[j + 1] = sym;
14f9c5c9
AS
3782 }
3783}
3784
d72413e6
PMR
3785/* Whether GDB should display formals and return types for functions in the
3786 overloads selection menu. */
491144b5 3787static bool print_signatures = true;
d72413e6
PMR
3788
3789/* Print the signature for SYM on STREAM according to the FLAGS options. For
3790 all but functions, the signature is just the name of the symbol. For
3791 functions, this is the name of the function, the list of types for formals
3792 and the return type (if any). */
3793
3794static void
3795ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3796 const struct type_print_options *flags)
3797{
3798 struct type *type = SYMBOL_TYPE (sym);
3799
3800 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3801 if (!print_signatures
3802 || type == NULL
3803 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3804 return;
3805
3806 if (TYPE_NFIELDS (type) > 0)
3807 {
3808 int i;
3809
3810 fprintf_filtered (stream, " (");
3811 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3812 {
3813 if (i > 0)
3814 fprintf_filtered (stream, "; ");
3815 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3816 flags);
3817 }
3818 fprintf_filtered (stream, ")");
3819 }
3820 if (TYPE_TARGET_TYPE (type) != NULL
3821 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3822 {
3823 fprintf_filtered (stream, " return ");
3824 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3825 }
3826}
3827
4c4b4cd2
PH
3828/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3829 by asking the user (if necessary), returning the number selected,
3830 and setting the first elements of SYMS items. Error if no symbols
3831 selected. */
14f9c5c9
AS
3832
3833/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3834 to be re-integrated one of these days. */
14f9c5c9
AS
3835
3836int
d12307c1 3837user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3838{
3839 int i;
8d749320 3840 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3841 int n_chosen;
3842 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3843 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3844
3845 if (max_results < 1)
323e0a4a 3846 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3847 if (nsyms <= 1)
3848 return nsyms;
3849
717d2f5a
JB
3850 if (select_mode == multiple_symbols_cancel)
3851 error (_("\
3852canceled because the command is ambiguous\n\
3853See set/show multiple-symbol."));
a0087920 3854
717d2f5a
JB
3855 /* If select_mode is "all", then return all possible symbols.
3856 Only do that if more than one symbol can be selected, of course.
3857 Otherwise, display the menu as usual. */
3858 if (select_mode == multiple_symbols_all && max_results > 1)
3859 return nsyms;
3860
a0087920 3861 printf_filtered (_("[0] cancel\n"));
14f9c5c9 3862 if (max_results > 1)
a0087920 3863 printf_filtered (_("[1] all\n"));
14f9c5c9 3864
4c4b4cd2 3865 sort_choices (syms, nsyms);
14f9c5c9
AS
3866
3867 for (i = 0; i < nsyms; i += 1)
3868 {
d12307c1 3869 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3870 continue;
3871
d12307c1 3872 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3873 {
76a01679 3874 struct symtab_and_line sal =
d12307c1 3875 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3876
a0087920 3877 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3878 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3879 &type_print_raw_options);
323e0a4a 3880 if (sal.symtab == NULL)
7f6aba03
TT
3881 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3882 metadata_style.style ().ptr (), nullptr, sal.line);
323e0a4a 3883 else
9d636d67
TT
3884 printf_filtered
3885 (_(" at %ps:%d\n"),
3886 styled_string (file_name_style.style (),
3887 symtab_to_filename_for_display (sal.symtab)),
3888 sal.line);
4c4b4cd2
PH
3889 continue;
3890 }
d2e4a39e 3891 else
4c4b4cd2
PH
3892 {
3893 int is_enumeral =
d12307c1
PMR
3894 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3895 && SYMBOL_TYPE (syms[i].symbol) != NULL
3896 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3897 struct symtab *symtab = NULL;
3898
d12307c1
PMR
3899 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3900 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3901
d12307c1 3902 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6 3903 {
a0087920 3904 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3905 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3906 &type_print_raw_options);
a0087920
TT
3907 printf_filtered (_(" at %s:%d\n"),
3908 symtab_to_filename_for_display (symtab),
3909 SYMBOL_LINE (syms[i].symbol));
d72413e6 3910 }
76a01679 3911 else if (is_enumeral
d12307c1 3912 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3913 {
a0087920 3914 printf_filtered (("[%d] "), i + first_choice);
d12307c1 3915 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3916 gdb_stdout, -1, 0, &type_print_raw_options);
a0087920
TT
3917 printf_filtered (_("'(%s) (enumeral)\n"),
3918 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3919 }
d72413e6
PMR
3920 else
3921 {
a0087920 3922 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3923 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3924 &type_print_raw_options);
3925
3926 if (symtab != NULL)
a0087920
TT
3927 printf_filtered (is_enumeral
3928 ? _(" in %s (enumeral)\n")
3929 : _(" at %s:?\n"),
3930 symtab_to_filename_for_display (symtab));
d72413e6 3931 else
a0087920
TT
3932 printf_filtered (is_enumeral
3933 ? _(" (enumeral)\n")
3934 : _(" at ?\n"));
d72413e6 3935 }
4c4b4cd2 3936 }
14f9c5c9 3937 }
d2e4a39e 3938
14f9c5c9 3939 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3940 "overload-choice");
14f9c5c9
AS
3941
3942 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3943 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3944
3945 return n_chosen;
3946}
3947
3948/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3949 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3950 order in CHOICES[0 .. N-1], and return N.
3951
3952 The user types choices as a sequence of numbers on one line
3953 separated by blanks, encoding them as follows:
3954
4c4b4cd2 3955 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3956 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3957 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3958
4c4b4cd2 3959 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3960
3961 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3962 prompts (for use with the -f switch). */
14f9c5c9
AS
3963
3964int
d2e4a39e 3965get_selections (int *choices, int n_choices, int max_results,
a121b7c1 3966 int is_all_choice, const char *annotation_suffix)
14f9c5c9 3967{
d2e4a39e 3968 char *args;
a121b7c1 3969 const char *prompt;
14f9c5c9
AS
3970 int n_chosen;
3971 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3972
14f9c5c9
AS
3973 prompt = getenv ("PS2");
3974 if (prompt == NULL)
0bcd0149 3975 prompt = "> ";
14f9c5c9 3976
89fbedf3 3977 args = command_line_input (prompt, annotation_suffix);
d2e4a39e 3978
14f9c5c9 3979 if (args == NULL)
323e0a4a 3980 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3981
3982 n_chosen = 0;
76a01679 3983
4c4b4cd2
PH
3984 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3985 order, as given in args. Choices are validated. */
14f9c5c9
AS
3986 while (1)
3987 {
d2e4a39e 3988 char *args2;
14f9c5c9
AS
3989 int choice, j;
3990
0fcd72ba 3991 args = skip_spaces (args);
14f9c5c9 3992 if (*args == '\0' && n_chosen == 0)
323e0a4a 3993 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3994 else if (*args == '\0')
4c4b4cd2 3995 break;
14f9c5c9
AS
3996
3997 choice = strtol (args, &args2, 10);
d2e4a39e 3998 if (args == args2 || choice < 0
4c4b4cd2 3999 || choice > n_choices + first_choice - 1)
323e0a4a 4000 error (_("Argument must be choice number"));
14f9c5c9
AS
4001 args = args2;
4002
d2e4a39e 4003 if (choice == 0)
323e0a4a 4004 error (_("cancelled"));
14f9c5c9
AS
4005
4006 if (choice < first_choice)
4c4b4cd2
PH
4007 {
4008 n_chosen = n_choices;
4009 for (j = 0; j < n_choices; j += 1)
4010 choices[j] = j;
4011 break;
4012 }
14f9c5c9
AS
4013 choice -= first_choice;
4014
d2e4a39e 4015 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4016 {
4017 }
14f9c5c9
AS
4018
4019 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4020 {
4021 int k;
5b4ee69b 4022
4c4b4cd2
PH
4023 for (k = n_chosen - 1; k > j; k -= 1)
4024 choices[k + 1] = choices[k];
4025 choices[j + 1] = choice;
4026 n_chosen += 1;
4027 }
14f9c5c9
AS
4028 }
4029
4030 if (n_chosen > max_results)
323e0a4a 4031 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4032
14f9c5c9
AS
4033 return n_chosen;
4034}
4035
4c4b4cd2
PH
4036/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4037 on the function identified by SYM and BLOCK, and taking NARGS
4038 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4039
4040static void
e9d9f57e 4041replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4042 int oplen, struct symbol *sym,
270140bd 4043 const struct block *block)
14f9c5c9
AS
4044{
4045 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4046 symbol, -oplen for operator being replaced). */
d2e4a39e 4047 struct expression *newexp = (struct expression *)
8c1a34e7 4048 xzalloc (sizeof (struct expression)
4c4b4cd2 4049 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4050 struct expression *exp = expp->get ();
14f9c5c9
AS
4051
4052 newexp->nelts = exp->nelts + 7 - oplen;
4053 newexp->language_defn = exp->language_defn;
3489610d 4054 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4055 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4056 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4057 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4058
4059 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4060 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4061
4062 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4063 newexp->elts[pc + 4].block = block;
4064 newexp->elts[pc + 5].symbol = sym;
4065
e9d9f57e 4066 expp->reset (newexp);
d2e4a39e 4067}
14f9c5c9
AS
4068
4069/* Type-class predicates */
4070
4c4b4cd2
PH
4071/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4072 or FLOAT). */
14f9c5c9
AS
4073
4074static int
d2e4a39e 4075numeric_type_p (struct type *type)
14f9c5c9
AS
4076{
4077 if (type == NULL)
4078 return 0;
d2e4a39e
AS
4079 else
4080 {
4081 switch (TYPE_CODE (type))
4c4b4cd2
PH
4082 {
4083 case TYPE_CODE_INT:
4084 case TYPE_CODE_FLT:
4085 return 1;
4086 case TYPE_CODE_RANGE:
4087 return (type == TYPE_TARGET_TYPE (type)
4088 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4089 default:
4090 return 0;
4091 }
d2e4a39e 4092 }
14f9c5c9
AS
4093}
4094
4c4b4cd2 4095/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4096
4097static int
d2e4a39e 4098integer_type_p (struct type *type)
14f9c5c9
AS
4099{
4100 if (type == NULL)
4101 return 0;
d2e4a39e
AS
4102 else
4103 {
4104 switch (TYPE_CODE (type))
4c4b4cd2
PH
4105 {
4106 case TYPE_CODE_INT:
4107 return 1;
4108 case TYPE_CODE_RANGE:
4109 return (type == TYPE_TARGET_TYPE (type)
4110 || integer_type_p (TYPE_TARGET_TYPE (type)));
4111 default:
4112 return 0;
4113 }
d2e4a39e 4114 }
14f9c5c9
AS
4115}
4116
4c4b4cd2 4117/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4118
4119static int
d2e4a39e 4120scalar_type_p (struct type *type)
14f9c5c9
AS
4121{
4122 if (type == NULL)
4123 return 0;
d2e4a39e
AS
4124 else
4125 {
4126 switch (TYPE_CODE (type))
4c4b4cd2
PH
4127 {
4128 case TYPE_CODE_INT:
4129 case TYPE_CODE_RANGE:
4130 case TYPE_CODE_ENUM:
4131 case TYPE_CODE_FLT:
4132 return 1;
4133 default:
4134 return 0;
4135 }
d2e4a39e 4136 }
14f9c5c9
AS
4137}
4138
4c4b4cd2 4139/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4140
4141static int
d2e4a39e 4142discrete_type_p (struct type *type)
14f9c5c9
AS
4143{
4144 if (type == NULL)
4145 return 0;
d2e4a39e
AS
4146 else
4147 {
4148 switch (TYPE_CODE (type))
4c4b4cd2
PH
4149 {
4150 case TYPE_CODE_INT:
4151 case TYPE_CODE_RANGE:
4152 case TYPE_CODE_ENUM:
872f0337 4153 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4154 return 1;
4155 default:
4156 return 0;
4157 }
d2e4a39e 4158 }
14f9c5c9
AS
4159}
4160
4c4b4cd2
PH
4161/* Returns non-zero if OP with operands in the vector ARGS could be
4162 a user-defined function. Errs on the side of pre-defined operators
4163 (i.e., result 0). */
14f9c5c9
AS
4164
4165static int
d2e4a39e 4166possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4167{
76a01679 4168 struct type *type0 =
df407dfe 4169 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4170 struct type *type1 =
df407dfe 4171 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4172
4c4b4cd2
PH
4173 if (type0 == NULL)
4174 return 0;
4175
14f9c5c9
AS
4176 switch (op)
4177 {
4178 default:
4179 return 0;
4180
4181 case BINOP_ADD:
4182 case BINOP_SUB:
4183 case BINOP_MUL:
4184 case BINOP_DIV:
d2e4a39e 4185 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4186
4187 case BINOP_REM:
4188 case BINOP_MOD:
4189 case BINOP_BITWISE_AND:
4190 case BINOP_BITWISE_IOR:
4191 case BINOP_BITWISE_XOR:
d2e4a39e 4192 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4193
4194 case BINOP_EQUAL:
4195 case BINOP_NOTEQUAL:
4196 case BINOP_LESS:
4197 case BINOP_GTR:
4198 case BINOP_LEQ:
4199 case BINOP_GEQ:
d2e4a39e 4200 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4201
4202 case BINOP_CONCAT:
ee90b9ab 4203 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4204
4205 case BINOP_EXP:
d2e4a39e 4206 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4207
4208 case UNOP_NEG:
4209 case UNOP_PLUS:
4210 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4211 case UNOP_ABS:
4212 return (!numeric_type_p (type0));
14f9c5c9
AS
4213
4214 }
4215}
4216\f
4c4b4cd2 4217 /* Renaming */
14f9c5c9 4218
aeb5907d
JB
4219/* NOTES:
4220
4221 1. In the following, we assume that a renaming type's name may
4222 have an ___XD suffix. It would be nice if this went away at some
4223 point.
4224 2. We handle both the (old) purely type-based representation of
4225 renamings and the (new) variable-based encoding. At some point,
4226 it is devoutly to be hoped that the former goes away
4227 (FIXME: hilfinger-2007-07-09).
4228 3. Subprogram renamings are not implemented, although the XRS
4229 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4230
4231/* If SYM encodes a renaming,
4232
4233 <renaming> renames <renamed entity>,
4234
4235 sets *LEN to the length of the renamed entity's name,
4236 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4237 the string describing the subcomponent selected from the renamed
0963b4bd 4238 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4239 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4240 are undefined). Otherwise, returns a value indicating the category
4241 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4242 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4243 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4244 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4245 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4246 may be NULL, in which case they are not assigned.
4247
4248 [Currently, however, GCC does not generate subprogram renamings.] */
4249
4250enum ada_renaming_category
4251ada_parse_renaming (struct symbol *sym,
4252 const char **renamed_entity, int *len,
4253 const char **renaming_expr)
4254{
4255 enum ada_renaming_category kind;
4256 const char *info;
4257 const char *suffix;
4258
4259 if (sym == NULL)
4260 return ADA_NOT_RENAMING;
4261 switch (SYMBOL_CLASS (sym))
14f9c5c9 4262 {
aeb5907d
JB
4263 default:
4264 return ADA_NOT_RENAMING;
aeb5907d
JB
4265 case LOC_LOCAL:
4266 case LOC_STATIC:
4267 case LOC_COMPUTED:
4268 case LOC_OPTIMIZED_OUT:
4269 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4270 if (info == NULL)
4271 return ADA_NOT_RENAMING;
4272 switch (info[5])
4273 {
4274 case '_':
4275 kind = ADA_OBJECT_RENAMING;
4276 info += 6;
4277 break;
4278 case 'E':
4279 kind = ADA_EXCEPTION_RENAMING;
4280 info += 7;
4281 break;
4282 case 'P':
4283 kind = ADA_PACKAGE_RENAMING;
4284 info += 7;
4285 break;
4286 case 'S':
4287 kind = ADA_SUBPROGRAM_RENAMING;
4288 info += 7;
4289 break;
4290 default:
4291 return ADA_NOT_RENAMING;
4292 }
14f9c5c9 4293 }
4c4b4cd2 4294
aeb5907d
JB
4295 if (renamed_entity != NULL)
4296 *renamed_entity = info;
4297 suffix = strstr (info, "___XE");
4298 if (suffix == NULL || suffix == info)
4299 return ADA_NOT_RENAMING;
4300 if (len != NULL)
4301 *len = strlen (info) - strlen (suffix);
4302 suffix += 5;
4303 if (renaming_expr != NULL)
4304 *renaming_expr = suffix;
4305 return kind;
4306}
4307
a5ee536b
JB
4308/* Compute the value of the given RENAMING_SYM, which is expected to
4309 be a symbol encoding a renaming expression. BLOCK is the block
4310 used to evaluate the renaming. */
52ce6436 4311
a5ee536b
JB
4312static struct value *
4313ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4314 const struct block *block)
a5ee536b 4315{
bbc13ae3 4316 const char *sym_name;
a5ee536b 4317
bbc13ae3 4318 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4319 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4320 return evaluate_expression (expr.get ());
a5ee536b 4321}
14f9c5c9 4322\f
d2e4a39e 4323
4c4b4cd2 4324 /* Evaluation: Function Calls */
14f9c5c9 4325
4c4b4cd2 4326/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4327 lvalues, and otherwise has the side-effect of allocating memory
4328 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4329
d2e4a39e 4330static struct value *
40bc484c 4331ensure_lval (struct value *val)
14f9c5c9 4332{
40bc484c
JB
4333 if (VALUE_LVAL (val) == not_lval
4334 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4335 {
df407dfe 4336 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4337 const CORE_ADDR addr =
4338 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4339
a84a8a0d 4340 VALUE_LVAL (val) = lval_memory;
1a088441 4341 set_value_address (val, addr);
40bc484c 4342 write_memory (addr, value_contents (val), len);
c3e5cd34 4343 }
14f9c5c9
AS
4344
4345 return val;
4346}
4347
4348/* Return the value ACTUAL, converted to be an appropriate value for a
4349 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4350 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4351 values not residing in memory, updating it as needed. */
14f9c5c9 4352
a93c0eb6 4353struct value *
40bc484c 4354ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4355{
df407dfe 4356 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4357 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4358 struct type *formal_target =
4359 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4360 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4361 struct type *actual_target =
4362 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4363 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4364
4c4b4cd2 4365 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4366 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4367 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4368 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4369 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4370 {
a84a8a0d 4371 struct value *result;
5b4ee69b 4372
14f9c5c9 4373 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4374 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4375 result = desc_data (actual);
cb923fcc 4376 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4377 {
4378 if (VALUE_LVAL (actual) != lval_memory)
4379 {
4380 struct value *val;
5b4ee69b 4381
df407dfe 4382 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4383 val = allocate_value (actual_type);
990a07ab 4384 memcpy ((char *) value_contents_raw (val),
0fd88904 4385 (char *) value_contents (actual),
4c4b4cd2 4386 TYPE_LENGTH (actual_type));
40bc484c 4387 actual = ensure_lval (val);
4c4b4cd2 4388 }
a84a8a0d 4389 result = value_addr (actual);
4c4b4cd2 4390 }
a84a8a0d
JB
4391 else
4392 return actual;
b1af9e97 4393 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4394 }
4395 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4396 return ada_value_ind (actual);
8344af1e
JB
4397 else if (ada_is_aligner_type (formal_type))
4398 {
4399 /* We need to turn this parameter into an aligner type
4400 as well. */
4401 struct value *aligner = allocate_value (formal_type);
4402 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4403
4404 value_assign_to_component (aligner, component, actual);
4405 return aligner;
4406 }
14f9c5c9
AS
4407
4408 return actual;
4409}
4410
438c98a1
JB
4411/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4412 type TYPE. This is usually an inefficient no-op except on some targets
4413 (such as AVR) where the representation of a pointer and an address
4414 differs. */
4415
4416static CORE_ADDR
4417value_pointer (struct value *value, struct type *type)
4418{
4419 struct gdbarch *gdbarch = get_type_arch (type);
4420 unsigned len = TYPE_LENGTH (type);
224c3ddb 4421 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4422 CORE_ADDR addr;
4423
4424 addr = value_address (value);
4425 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4426 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4427 return addr;
4428}
4429
14f9c5c9 4430
4c4b4cd2
PH
4431/* Push a descriptor of type TYPE for array value ARR on the stack at
4432 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4433 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4434 to-descriptor type rather than a descriptor type), a struct value *
4435 representing a pointer to this descriptor. */
14f9c5c9 4436
d2e4a39e 4437static struct value *
40bc484c 4438make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4439{
d2e4a39e
AS
4440 struct type *bounds_type = desc_bounds_type (type);
4441 struct type *desc_type = desc_base_type (type);
4442 struct value *descriptor = allocate_value (desc_type);
4443 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4444 int i;
d2e4a39e 4445
0963b4bd
MS
4446 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4447 i > 0; i -= 1)
14f9c5c9 4448 {
19f220c3
JK
4449 modify_field (value_type (bounds), value_contents_writeable (bounds),
4450 ada_array_bound (arr, i, 0),
4451 desc_bound_bitpos (bounds_type, i, 0),
4452 desc_bound_bitsize (bounds_type, i, 0));
4453 modify_field (value_type (bounds), value_contents_writeable (bounds),
4454 ada_array_bound (arr, i, 1),
4455 desc_bound_bitpos (bounds_type, i, 1),
4456 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4457 }
d2e4a39e 4458
40bc484c 4459 bounds = ensure_lval (bounds);
d2e4a39e 4460
19f220c3
JK
4461 modify_field (value_type (descriptor),
4462 value_contents_writeable (descriptor),
4463 value_pointer (ensure_lval (arr),
4464 TYPE_FIELD_TYPE (desc_type, 0)),
4465 fat_pntr_data_bitpos (desc_type),
4466 fat_pntr_data_bitsize (desc_type));
4467
4468 modify_field (value_type (descriptor),
4469 value_contents_writeable (descriptor),
4470 value_pointer (bounds,
4471 TYPE_FIELD_TYPE (desc_type, 1)),
4472 fat_pntr_bounds_bitpos (desc_type),
4473 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4474
40bc484c 4475 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4476
4477 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4478 return value_addr (descriptor);
4479 else
4480 return descriptor;
4481}
14f9c5c9 4482\f
3d9434b5
JB
4483 /* Symbol Cache Module */
4484
3d9434b5 4485/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4486 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4487 on the type of entity being printed, the cache can make it as much
4488 as an order of magnitude faster than without it.
4489
4490 The descriptive type DWARF extension has significantly reduced
4491 the need for this cache, at least when DWARF is being used. However,
4492 even in this case, some expensive name-based symbol searches are still
4493 sometimes necessary - to find an XVZ variable, mostly. */
4494
ee01b665 4495/* Initialize the contents of SYM_CACHE. */
3d9434b5 4496
ee01b665
JB
4497static void
4498ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4499{
4500 obstack_init (&sym_cache->cache_space);
4501 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4502}
3d9434b5 4503
ee01b665
JB
4504/* Free the memory used by SYM_CACHE. */
4505
4506static void
4507ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4508{
ee01b665
JB
4509 obstack_free (&sym_cache->cache_space, NULL);
4510 xfree (sym_cache);
4511}
3d9434b5 4512
ee01b665
JB
4513/* Return the symbol cache associated to the given program space PSPACE.
4514 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4515
ee01b665
JB
4516static struct ada_symbol_cache *
4517ada_get_symbol_cache (struct program_space *pspace)
4518{
4519 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4520
66c168ae 4521 if (pspace_data->sym_cache == NULL)
ee01b665 4522 {
66c168ae
JB
4523 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4524 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4525 }
4526
66c168ae 4527 return pspace_data->sym_cache;
ee01b665 4528}
3d9434b5
JB
4529
4530/* Clear all entries from the symbol cache. */
4531
4532static void
4533ada_clear_symbol_cache (void)
4534{
ee01b665
JB
4535 struct ada_symbol_cache *sym_cache
4536 = ada_get_symbol_cache (current_program_space);
4537
4538 obstack_free (&sym_cache->cache_space, NULL);
4539 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4540}
4541
fe978cb0 4542/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4543 Return it if found, or NULL otherwise. */
4544
4545static struct cache_entry **
fe978cb0 4546find_entry (const char *name, domain_enum domain)
3d9434b5 4547{
ee01b665
JB
4548 struct ada_symbol_cache *sym_cache
4549 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4550 int h = msymbol_hash (name) % HASH_SIZE;
4551 struct cache_entry **e;
4552
ee01b665 4553 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4554 {
fe978cb0 4555 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4556 return e;
4557 }
4558 return NULL;
4559}
4560
fe978cb0 4561/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4562 Return 1 if found, 0 otherwise.
4563
4564 If an entry was found and SYM is not NULL, set *SYM to the entry's
4565 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4566
96d887e8 4567static int
fe978cb0 4568lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4569 struct symbol **sym, const struct block **block)
96d887e8 4570{
fe978cb0 4571 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4572
4573 if (e == NULL)
4574 return 0;
4575 if (sym != NULL)
4576 *sym = (*e)->sym;
4577 if (block != NULL)
4578 *block = (*e)->block;
4579 return 1;
96d887e8
PH
4580}
4581
3d9434b5 4582/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4583 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4584
96d887e8 4585static void
fe978cb0 4586cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4587 const struct block *block)
96d887e8 4588{
ee01b665
JB
4589 struct ada_symbol_cache *sym_cache
4590 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4591 int h;
4592 char *copy;
4593 struct cache_entry *e;
4594
1994afbf
DE
4595 /* Symbols for builtin types don't have a block.
4596 For now don't cache such symbols. */
4597 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4598 return;
4599
3d9434b5
JB
4600 /* If the symbol is a local symbol, then do not cache it, as a search
4601 for that symbol depends on the context. To determine whether
4602 the symbol is local or not, we check the block where we found it
4603 against the global and static blocks of its associated symtab. */
4604 if (sym
08be3fe3 4605 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4606 GLOBAL_BLOCK) != block
08be3fe3 4607 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4608 STATIC_BLOCK) != block)
3d9434b5
JB
4609 return;
4610
4611 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4612 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4613 e->next = sym_cache->root[h];
4614 sym_cache->root[h] = e;
224c3ddb
SM
4615 e->name = copy
4616 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4617 strcpy (copy, name);
4618 e->sym = sym;
fe978cb0 4619 e->domain = domain;
3d9434b5 4620 e->block = block;
96d887e8 4621}
4c4b4cd2
PH
4622\f
4623 /* Symbol Lookup */
4624
b5ec771e
PA
4625/* Return the symbol name match type that should be used used when
4626 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4627
4628 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4629 for Ada lookups. */
c0431670 4630
b5ec771e
PA
4631static symbol_name_match_type
4632name_match_type_from_name (const char *lookup_name)
c0431670 4633{
b5ec771e
PA
4634 return (strstr (lookup_name, "__") == NULL
4635 ? symbol_name_match_type::WILD
4636 : symbol_name_match_type::FULL);
c0431670
JB
4637}
4638
4c4b4cd2
PH
4639/* Return the result of a standard (literal, C-like) lookup of NAME in
4640 given DOMAIN, visible from lexical block BLOCK. */
4641
4642static struct symbol *
4643standard_lookup (const char *name, const struct block *block,
4644 domain_enum domain)
4645{
acbd605d 4646 /* Initialize it just to avoid a GCC false warning. */
6640a367 4647 struct block_symbol sym = {};
4c4b4cd2 4648
d12307c1
PMR
4649 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4650 return sym.symbol;
a2cd4f14 4651 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4652 cache_symbol (name, domain, sym.symbol, sym.block);
4653 return sym.symbol;
4c4b4cd2
PH
4654}
4655
4656
4657/* Non-zero iff there is at least one non-function/non-enumeral symbol
4658 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4659 since they contend in overloading in the same way. */
4660static int
d12307c1 4661is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4662{
4663 int i;
4664
4665 for (i = 0; i < n; i += 1)
d12307c1
PMR
4666 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4667 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4668 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4669 return 1;
4670
4671 return 0;
4672}
4673
4674/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4675 struct types. Otherwise, they may not. */
14f9c5c9
AS
4676
4677static int
d2e4a39e 4678equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4679{
d2e4a39e 4680 if (type0 == type1)
14f9c5c9 4681 return 1;
d2e4a39e 4682 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4683 || TYPE_CODE (type0) != TYPE_CODE (type1))
4684 return 0;
d2e4a39e 4685 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4686 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4687 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4688 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4689 return 1;
d2e4a39e 4690
14f9c5c9
AS
4691 return 0;
4692}
4693
4694/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4695 no more defined than that of SYM1. */
14f9c5c9
AS
4696
4697static int
d2e4a39e 4698lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4699{
4700 if (sym0 == sym1)
4701 return 1;
176620f1 4702 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4703 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4704 return 0;
4705
d2e4a39e 4706 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4707 {
4708 case LOC_UNDEF:
4709 return 1;
4710 case LOC_TYPEDEF:
4711 {
4c4b4cd2
PH
4712 struct type *type0 = SYMBOL_TYPE (sym0);
4713 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4714 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4715 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4716 int len0 = strlen (name0);
5b4ee69b 4717
4c4b4cd2
PH
4718 return
4719 TYPE_CODE (type0) == TYPE_CODE (type1)
4720 && (equiv_types (type0, type1)
4721 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4722 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4723 }
4724 case LOC_CONST:
4725 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4726 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4727
4728 case LOC_STATIC:
4729 {
4730 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4731 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4732 return (strcmp (name0, name1) == 0
4733 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4734 }
4735
d2e4a39e
AS
4736 default:
4737 return 0;
14f9c5c9
AS
4738 }
4739}
4740
d12307c1 4741/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4742 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4743
4744static void
76a01679
JB
4745add_defn_to_vec (struct obstack *obstackp,
4746 struct symbol *sym,
f0c5f9b2 4747 const struct block *block)
14f9c5c9
AS
4748{
4749 int i;
d12307c1 4750 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4751
529cad9c
PH
4752 /* Do not try to complete stub types, as the debugger is probably
4753 already scanning all symbols matching a certain name at the
4754 time when this function is called. Trying to replace the stub
4755 type by its associated full type will cause us to restart a scan
4756 which may lead to an infinite recursion. Instead, the client
4757 collecting the matching symbols will end up collecting several
4758 matches, with at least one of them complete. It can then filter
4759 out the stub ones if needed. */
4760
4c4b4cd2
PH
4761 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4762 {
d12307c1 4763 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4764 return;
d12307c1 4765 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4766 {
d12307c1 4767 prevDefns[i].symbol = sym;
4c4b4cd2 4768 prevDefns[i].block = block;
4c4b4cd2 4769 return;
76a01679 4770 }
4c4b4cd2
PH
4771 }
4772
4773 {
d12307c1 4774 struct block_symbol info;
4c4b4cd2 4775
d12307c1 4776 info.symbol = sym;
4c4b4cd2 4777 info.block = block;
d12307c1 4778 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4779 }
4780}
4781
d12307c1
PMR
4782/* Number of block_symbol structures currently collected in current vector in
4783 OBSTACKP. */
4c4b4cd2 4784
76a01679
JB
4785static int
4786num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4787{
d12307c1 4788 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4789}
4790
d12307c1
PMR
4791/* Vector of block_symbol structures currently collected in current vector in
4792 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4793
d12307c1 4794static struct block_symbol *
4c4b4cd2
PH
4795defns_collected (struct obstack *obstackp, int finish)
4796{
4797 if (finish)
224c3ddb 4798 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4799 else
d12307c1 4800 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4801}
4802
7c7b6655
TT
4803/* Return a bound minimal symbol matching NAME according to Ada
4804 decoding rules. Returns an invalid symbol if there is no such
4805 minimal symbol. Names prefixed with "standard__" are handled
4806 specially: "standard__" is first stripped off, and only static and
4807 global symbols are searched. */
4c4b4cd2 4808
7c7b6655 4809struct bound_minimal_symbol
96d887e8 4810ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4811{
7c7b6655 4812 struct bound_minimal_symbol result;
4c4b4cd2 4813
7c7b6655
TT
4814 memset (&result, 0, sizeof (result));
4815
b5ec771e
PA
4816 symbol_name_match_type match_type = name_match_type_from_name (name);
4817 lookup_name_info lookup_name (name, match_type);
4818
4819 symbol_name_matcher_ftype *match_name
4820 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4821
2030c079 4822 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4823 {
7932255d 4824 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
4825 {
4826 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4827 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4828 {
4829 result.minsym = msymbol;
4830 result.objfile = objfile;
4831 break;
4832 }
4833 }
4834 }
4c4b4cd2 4835
7c7b6655 4836 return result;
96d887e8 4837}
4c4b4cd2 4838
96d887e8
PH
4839/* For all subprograms that statically enclose the subprogram of the
4840 selected frame, add symbols matching identifier NAME in DOMAIN
4841 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4842 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4843 with a wildcard prefix. */
4c4b4cd2 4844
96d887e8
PH
4845static void
4846add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4847 const lookup_name_info &lookup_name,
4848 domain_enum domain)
96d887e8 4849{
96d887e8 4850}
14f9c5c9 4851
96d887e8
PH
4852/* True if TYPE is definitely an artificial type supplied to a symbol
4853 for which no debugging information was given in the symbol file. */
14f9c5c9 4854
96d887e8
PH
4855static int
4856is_nondebugging_type (struct type *type)
4857{
0d5cff50 4858 const char *name = ada_type_name (type);
5b4ee69b 4859
96d887e8
PH
4860 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4861}
4c4b4cd2 4862
8f17729f
JB
4863/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4864 that are deemed "identical" for practical purposes.
4865
4866 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4867 types and that their number of enumerals is identical (in other
4868 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4869
4870static int
4871ada_identical_enum_types_p (struct type *type1, struct type *type2)
4872{
4873 int i;
4874
4875 /* The heuristic we use here is fairly conservative. We consider
4876 that 2 enumerate types are identical if they have the same
4877 number of enumerals and that all enumerals have the same
4878 underlying value and name. */
4879
4880 /* All enums in the type should have an identical underlying value. */
4881 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4882 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4883 return 0;
4884
4885 /* All enumerals should also have the same name (modulo any numerical
4886 suffix). */
4887 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4888 {
0d5cff50
DE
4889 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4890 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4891 int len_1 = strlen (name_1);
4892 int len_2 = strlen (name_2);
4893
4894 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4895 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4896 if (len_1 != len_2
4897 || strncmp (TYPE_FIELD_NAME (type1, i),
4898 TYPE_FIELD_NAME (type2, i),
4899 len_1) != 0)
4900 return 0;
4901 }
4902
4903 return 1;
4904}
4905
4906/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4907 that are deemed "identical" for practical purposes. Sometimes,
4908 enumerals are not strictly identical, but their types are so similar
4909 that they can be considered identical.
4910
4911 For instance, consider the following code:
4912
4913 type Color is (Black, Red, Green, Blue, White);
4914 type RGB_Color is new Color range Red .. Blue;
4915
4916 Type RGB_Color is a subrange of an implicit type which is a copy
4917 of type Color. If we call that implicit type RGB_ColorB ("B" is
4918 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4919 As a result, when an expression references any of the enumeral
4920 by name (Eg. "print green"), the expression is technically
4921 ambiguous and the user should be asked to disambiguate. But
4922 doing so would only hinder the user, since it wouldn't matter
4923 what choice he makes, the outcome would always be the same.
4924 So, for practical purposes, we consider them as the same. */
4925
4926static int
54d343a2 4927symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
4928{
4929 int i;
4930
4931 /* Before performing a thorough comparison check of each type,
4932 we perform a series of inexpensive checks. We expect that these
4933 checks will quickly fail in the vast majority of cases, and thus
4934 help prevent the unnecessary use of a more expensive comparison.
4935 Said comparison also expects us to make some of these checks
4936 (see ada_identical_enum_types_p). */
4937
4938 /* Quick check: All symbols should have an enum type. */
54d343a2 4939 for (i = 0; i < syms.size (); i++)
d12307c1 4940 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
4941 return 0;
4942
4943 /* Quick check: They should all have the same value. */
54d343a2 4944 for (i = 1; i < syms.size (); i++)
d12307c1 4945 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4946 return 0;
4947
4948 /* Quick check: They should all have the same number of enumerals. */
54d343a2 4949 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4950 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4951 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4952 return 0;
4953
4954 /* All the sanity checks passed, so we might have a set of
4955 identical enumeration types. Perform a more complete
4956 comparison of the type of each symbol. */
54d343a2 4957 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4958 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4959 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4960 return 0;
4961
4962 return 1;
4963}
4964
54d343a2 4965/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
4966 duplicate other symbols in the list (The only case I know of where
4967 this happens is when object files containing stabs-in-ecoff are
4968 linked with files containing ordinary ecoff debugging symbols (or no
4969 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4970 Returns the number of items in the modified list. */
4c4b4cd2 4971
96d887e8 4972static int
54d343a2 4973remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
4974{
4975 int i, j;
4c4b4cd2 4976
8f17729f
JB
4977 /* We should never be called with less than 2 symbols, as there
4978 cannot be any extra symbol in that case. But it's easy to
4979 handle, since we have nothing to do in that case. */
54d343a2
TT
4980 if (syms->size () < 2)
4981 return syms->size ();
8f17729f 4982
96d887e8 4983 i = 0;
54d343a2 4984 while (i < syms->size ())
96d887e8 4985 {
a35ddb44 4986 int remove_p = 0;
339c13b6
JB
4987
4988 /* If two symbols have the same name and one of them is a stub type,
4989 the get rid of the stub. */
4990
54d343a2
TT
4991 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
4992 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 4993 {
54d343a2 4994 for (j = 0; j < syms->size (); j++)
339c13b6
JB
4995 {
4996 if (j != i
54d343a2
TT
4997 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
4998 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
4999 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5000 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5001 remove_p = 1;
339c13b6
JB
5002 }
5003 }
5004
5005 /* Two symbols with the same name, same class and same address
5006 should be identical. */
5007
54d343a2
TT
5008 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5009 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5010 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5011 {
54d343a2 5012 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5013 {
5014 if (i != j
54d343a2
TT
5015 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5016 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5017 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5018 && SYMBOL_CLASS ((*syms)[i].symbol)
5019 == SYMBOL_CLASS ((*syms)[j].symbol)
5020 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5021 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5022 remove_p = 1;
4c4b4cd2 5023 }
4c4b4cd2 5024 }
339c13b6 5025
a35ddb44 5026 if (remove_p)
54d343a2 5027 syms->erase (syms->begin () + i);
339c13b6 5028
96d887e8 5029 i += 1;
14f9c5c9 5030 }
8f17729f
JB
5031
5032 /* If all the remaining symbols are identical enumerals, then
5033 just keep the first one and discard the rest.
5034
5035 Unlike what we did previously, we do not discard any entry
5036 unless they are ALL identical. This is because the symbol
5037 comparison is not a strict comparison, but rather a practical
5038 comparison. If all symbols are considered identical, then
5039 we can just go ahead and use the first one and discard the rest.
5040 But if we cannot reduce the list to a single element, we have
5041 to ask the user to disambiguate anyways. And if we have to
5042 present a multiple-choice menu, it's less confusing if the list
5043 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5044 if (symbols_are_identical_enums (*syms))
5045 syms->resize (1);
8f17729f 5046
54d343a2 5047 return syms->size ();
14f9c5c9
AS
5048}
5049
96d887e8
PH
5050/* Given a type that corresponds to a renaming entity, use the type name
5051 to extract the scope (package name or function name, fully qualified,
5052 and following the GNAT encoding convention) where this renaming has been
49d83361 5053 defined. */
4c4b4cd2 5054
49d83361 5055static std::string
96d887e8 5056xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5057{
96d887e8 5058 /* The renaming types adhere to the following convention:
0963b4bd 5059 <scope>__<rename>___<XR extension>.
96d887e8
PH
5060 So, to extract the scope, we search for the "___XR" extension,
5061 and then backtrack until we find the first "__". */
76a01679 5062
a737d952 5063 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5064 const char *suffix = strstr (name, "___XR");
5065 const char *last;
14f9c5c9 5066
96d887e8
PH
5067 /* Now, backtrack a bit until we find the first "__". Start looking
5068 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5069
96d887e8
PH
5070 for (last = suffix - 3; last > name; last--)
5071 if (last[0] == '_' && last[1] == '_')
5072 break;
76a01679 5073
96d887e8 5074 /* Make a copy of scope and return it. */
49d83361 5075 return std::string (name, last);
4c4b4cd2
PH
5076}
5077
96d887e8 5078/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5079
96d887e8
PH
5080static int
5081is_package_name (const char *name)
4c4b4cd2 5082{
96d887e8
PH
5083 /* Here, We take advantage of the fact that no symbols are generated
5084 for packages, while symbols are generated for each function.
5085 So the condition for NAME represent a package becomes equivalent
5086 to NAME not existing in our list of symbols. There is only one
5087 small complication with library-level functions (see below). */
4c4b4cd2 5088
96d887e8
PH
5089 /* If it is a function that has not been defined at library level,
5090 then we should be able to look it up in the symbols. */
5091 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5092 return 0;
14f9c5c9 5093
96d887e8
PH
5094 /* Library-level function names start with "_ada_". See if function
5095 "_ada_" followed by NAME can be found. */
14f9c5c9 5096
96d887e8 5097 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5098 functions names cannot contain "__" in them. */
96d887e8
PH
5099 if (strstr (name, "__") != NULL)
5100 return 0;
4c4b4cd2 5101
528e1572 5102 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5103
528e1572 5104 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5105}
14f9c5c9 5106
96d887e8 5107/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5108 not visible from FUNCTION_NAME. */
14f9c5c9 5109
96d887e8 5110static int
0d5cff50 5111old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5112{
aeb5907d
JB
5113 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5114 return 0;
5115
49d83361 5116 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5117
96d887e8 5118 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5119 if (is_package_name (scope.c_str ()))
5120 return 0;
14f9c5c9 5121
96d887e8
PH
5122 /* Check that the rename is in the current function scope by checking
5123 that its name starts with SCOPE. */
76a01679 5124
96d887e8
PH
5125 /* If the function name starts with "_ada_", it means that it is
5126 a library-level function. Strip this prefix before doing the
5127 comparison, as the encoding for the renaming does not contain
5128 this prefix. */
61012eef 5129 if (startswith (function_name, "_ada_"))
96d887e8 5130 function_name += 5;
f26caa11 5131
49d83361 5132 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5133}
5134
aeb5907d
JB
5135/* Remove entries from SYMS that corresponds to a renaming entity that
5136 is not visible from the function associated with CURRENT_BLOCK or
5137 that is superfluous due to the presence of more specific renaming
5138 information. Places surviving symbols in the initial entries of
5139 SYMS and returns the number of surviving symbols.
96d887e8
PH
5140
5141 Rationale:
aeb5907d
JB
5142 First, in cases where an object renaming is implemented as a
5143 reference variable, GNAT may produce both the actual reference
5144 variable and the renaming encoding. In this case, we discard the
5145 latter.
5146
5147 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5148 entity. Unfortunately, STABS currently does not support the definition
5149 of types that are local to a given lexical block, so all renamings types
5150 are emitted at library level. As a consequence, if an application
5151 contains two renaming entities using the same name, and a user tries to
5152 print the value of one of these entities, the result of the ada symbol
5153 lookup will also contain the wrong renaming type.
f26caa11 5154
96d887e8
PH
5155 This function partially covers for this limitation by attempting to
5156 remove from the SYMS list renaming symbols that should be visible
5157 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5158 method with the current information available. The implementation
5159 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5160
5161 - When the user tries to print a rename in a function while there
5162 is another rename entity defined in a package: Normally, the
5163 rename in the function has precedence over the rename in the
5164 package, so the latter should be removed from the list. This is
5165 currently not the case.
5166
5167 - This function will incorrectly remove valid renames if
5168 the CURRENT_BLOCK corresponds to a function which symbol name
5169 has been changed by an "Export" pragma. As a consequence,
5170 the user will be unable to print such rename entities. */
4c4b4cd2 5171
14f9c5c9 5172static int
54d343a2
TT
5173remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5174 const struct block *current_block)
4c4b4cd2
PH
5175{
5176 struct symbol *current_function;
0d5cff50 5177 const char *current_function_name;
4c4b4cd2 5178 int i;
aeb5907d
JB
5179 int is_new_style_renaming;
5180
5181 /* If there is both a renaming foo___XR... encoded as a variable and
5182 a simple variable foo in the same block, discard the latter.
0963b4bd 5183 First, zero out such symbols, then compress. */
aeb5907d 5184 is_new_style_renaming = 0;
54d343a2 5185 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5186 {
54d343a2
TT
5187 struct symbol *sym = (*syms)[i].symbol;
5188 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5189 const char *name;
5190 const char *suffix;
5191
5192 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5193 continue;
5194 name = SYMBOL_LINKAGE_NAME (sym);
5195 suffix = strstr (name, "___XR");
5196
5197 if (suffix != NULL)
5198 {
5199 int name_len = suffix - name;
5200 int j;
5b4ee69b 5201
aeb5907d 5202 is_new_style_renaming = 1;
54d343a2
TT
5203 for (j = 0; j < syms->size (); j += 1)
5204 if (i != j && (*syms)[j].symbol != NULL
5205 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5206 name_len) == 0
54d343a2
TT
5207 && block == (*syms)[j].block)
5208 (*syms)[j].symbol = NULL;
aeb5907d
JB
5209 }
5210 }
5211 if (is_new_style_renaming)
5212 {
5213 int j, k;
5214
54d343a2
TT
5215 for (j = k = 0; j < syms->size (); j += 1)
5216 if ((*syms)[j].symbol != NULL)
aeb5907d 5217 {
54d343a2 5218 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5219 k += 1;
5220 }
5221 return k;
5222 }
4c4b4cd2
PH
5223
5224 /* Extract the function name associated to CURRENT_BLOCK.
5225 Abort if unable to do so. */
76a01679 5226
4c4b4cd2 5227 if (current_block == NULL)
54d343a2 5228 return syms->size ();
76a01679 5229
7f0df278 5230 current_function = block_linkage_function (current_block);
4c4b4cd2 5231 if (current_function == NULL)
54d343a2 5232 return syms->size ();
4c4b4cd2
PH
5233
5234 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5235 if (current_function_name == NULL)
54d343a2 5236 return syms->size ();
4c4b4cd2
PH
5237
5238 /* Check each of the symbols, and remove it from the list if it is
5239 a type corresponding to a renaming that is out of the scope of
5240 the current block. */
5241
5242 i = 0;
54d343a2 5243 while (i < syms->size ())
4c4b4cd2 5244 {
54d343a2 5245 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5246 == ADA_OBJECT_RENAMING
54d343a2
TT
5247 && old_renaming_is_invisible ((*syms)[i].symbol,
5248 current_function_name))
5249 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5250 else
5251 i += 1;
5252 }
5253
54d343a2 5254 return syms->size ();
4c4b4cd2
PH
5255}
5256
339c13b6
JB
5257/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5258 whose name and domain match NAME and DOMAIN respectively.
5259 If no match was found, then extend the search to "enclosing"
5260 routines (in other words, if we're inside a nested function,
5261 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5262 If WILD_MATCH_P is nonzero, perform the naming matching in
5263 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5264
5265 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5266
5267static void
b5ec771e
PA
5268ada_add_local_symbols (struct obstack *obstackp,
5269 const lookup_name_info &lookup_name,
5270 const struct block *block, domain_enum domain)
339c13b6
JB
5271{
5272 int block_depth = 0;
5273
5274 while (block != NULL)
5275 {
5276 block_depth += 1;
b5ec771e 5277 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5278
5279 /* If we found a non-function match, assume that's the one. */
5280 if (is_nonfunction (defns_collected (obstackp, 0),
5281 num_defns_collected (obstackp)))
5282 return;
5283
5284 block = BLOCK_SUPERBLOCK (block);
5285 }
5286
5287 /* If no luck so far, try to find NAME as a local symbol in some lexically
5288 enclosing subprogram. */
5289 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5290 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5291}
5292
ccefe4c4 5293/* An object of this type is used as the user_data argument when
40658b94 5294 calling the map_matching_symbols method. */
ccefe4c4 5295
40658b94 5296struct match_data
ccefe4c4 5297{
40658b94 5298 struct objfile *objfile;
ccefe4c4 5299 struct obstack *obstackp;
40658b94
PH
5300 struct symbol *arg_sym;
5301 int found_sym;
ccefe4c4
TT
5302};
5303
199b4314
TT
5304/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5305 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5306 containing the obstack that collects the symbol list, the file that SYM
5307 must come from, a flag indicating whether a non-argument symbol has
5308 been found in the current block, and the last argument symbol
5309 passed in SYM within the current block (if any). When SYM is null,
5310 marking the end of a block, the argument symbol is added if no
5311 other has been found. */
ccefe4c4 5312
199b4314
TT
5313static bool
5314aux_add_nonlocal_symbols (struct block_symbol *bsym,
5315 struct match_data *data)
ccefe4c4 5316{
199b4314
TT
5317 const struct block *block = bsym->block;
5318 struct symbol *sym = bsym->symbol;
5319
40658b94
PH
5320 if (sym == NULL)
5321 {
5322 if (!data->found_sym && data->arg_sym != NULL)
5323 add_defn_to_vec (data->obstackp,
5324 fixup_symbol_section (data->arg_sym, data->objfile),
5325 block);
5326 data->found_sym = 0;
5327 data->arg_sym = NULL;
5328 }
5329 else
5330 {
5331 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5332 return true;
40658b94
PH
5333 else if (SYMBOL_IS_ARGUMENT (sym))
5334 data->arg_sym = sym;
5335 else
5336 {
5337 data->found_sym = 1;
5338 add_defn_to_vec (data->obstackp,
5339 fixup_symbol_section (sym, data->objfile),
5340 block);
5341 }
5342 }
199b4314 5343 return true;
40658b94
PH
5344}
5345
b5ec771e
PA
5346/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5347 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5348 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5349
5350static int
5351ada_add_block_renamings (struct obstack *obstackp,
5352 const struct block *block,
b5ec771e
PA
5353 const lookup_name_info &lookup_name,
5354 domain_enum domain)
22cee43f
PMR
5355{
5356 struct using_direct *renaming;
5357 int defns_mark = num_defns_collected (obstackp);
5358
b5ec771e
PA
5359 symbol_name_matcher_ftype *name_match
5360 = ada_get_symbol_name_matcher (lookup_name);
5361
22cee43f
PMR
5362 for (renaming = block_using (block);
5363 renaming != NULL;
5364 renaming = renaming->next)
5365 {
5366 const char *r_name;
22cee43f
PMR
5367
5368 /* Avoid infinite recursions: skip this renaming if we are actually
5369 already traversing it.
5370
5371 Currently, symbol lookup in Ada don't use the namespace machinery from
5372 C++/Fortran support: skip namespace imports that use them. */
5373 if (renaming->searched
5374 || (renaming->import_src != NULL
5375 && renaming->import_src[0] != '\0')
5376 || (renaming->import_dest != NULL
5377 && renaming->import_dest[0] != '\0'))
5378 continue;
5379 renaming->searched = 1;
5380
5381 /* TODO: here, we perform another name-based symbol lookup, which can
5382 pull its own multiple overloads. In theory, we should be able to do
5383 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5384 not a simple name. But in order to do this, we would need to enhance
5385 the DWARF reader to associate a symbol to this renaming, instead of a
5386 name. So, for now, we do something simpler: re-use the C++/Fortran
5387 namespace machinery. */
5388 r_name = (renaming->alias != NULL
5389 ? renaming->alias
5390 : renaming->declaration);
b5ec771e
PA
5391 if (name_match (r_name, lookup_name, NULL))
5392 {
5393 lookup_name_info decl_lookup_name (renaming->declaration,
5394 lookup_name.match_type ());
5395 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5396 1, NULL);
5397 }
22cee43f
PMR
5398 renaming->searched = 0;
5399 }
5400 return num_defns_collected (obstackp) != defns_mark;
5401}
5402
db230ce3
JB
5403/* Implements compare_names, but only applying the comparision using
5404 the given CASING. */
5b4ee69b 5405
40658b94 5406static int
db230ce3
JB
5407compare_names_with_case (const char *string1, const char *string2,
5408 enum case_sensitivity casing)
40658b94
PH
5409{
5410 while (*string1 != '\0' && *string2 != '\0')
5411 {
db230ce3
JB
5412 char c1, c2;
5413
40658b94
PH
5414 if (isspace (*string1) || isspace (*string2))
5415 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5416
5417 if (casing == case_sensitive_off)
5418 {
5419 c1 = tolower (*string1);
5420 c2 = tolower (*string2);
5421 }
5422 else
5423 {
5424 c1 = *string1;
5425 c2 = *string2;
5426 }
5427 if (c1 != c2)
40658b94 5428 break;
db230ce3 5429
40658b94
PH
5430 string1 += 1;
5431 string2 += 1;
5432 }
db230ce3 5433
40658b94
PH
5434 switch (*string1)
5435 {
5436 case '(':
5437 return strcmp_iw_ordered (string1, string2);
5438 case '_':
5439 if (*string2 == '\0')
5440 {
052874e8 5441 if (is_name_suffix (string1))
40658b94
PH
5442 return 0;
5443 else
1a1d5513 5444 return 1;
40658b94 5445 }
dbb8534f 5446 /* FALLTHROUGH */
40658b94
PH
5447 default:
5448 if (*string2 == '(')
5449 return strcmp_iw_ordered (string1, string2);
5450 else
db230ce3
JB
5451 {
5452 if (casing == case_sensitive_off)
5453 return tolower (*string1) - tolower (*string2);
5454 else
5455 return *string1 - *string2;
5456 }
40658b94 5457 }
ccefe4c4
TT
5458}
5459
db230ce3
JB
5460/* Compare STRING1 to STRING2, with results as for strcmp.
5461 Compatible with strcmp_iw_ordered in that...
5462
5463 strcmp_iw_ordered (STRING1, STRING2) <= 0
5464
5465 ... implies...
5466
5467 compare_names (STRING1, STRING2) <= 0
5468
5469 (they may differ as to what symbols compare equal). */
5470
5471static int
5472compare_names (const char *string1, const char *string2)
5473{
5474 int result;
5475
5476 /* Similar to what strcmp_iw_ordered does, we need to perform
5477 a case-insensitive comparison first, and only resort to
5478 a second, case-sensitive, comparison if the first one was
5479 not sufficient to differentiate the two strings. */
5480
5481 result = compare_names_with_case (string1, string2, case_sensitive_off);
5482 if (result == 0)
5483 result = compare_names_with_case (string1, string2, case_sensitive_on);
5484
5485 return result;
5486}
5487
b5ec771e
PA
5488/* Convenience function to get at the Ada encoded lookup name for
5489 LOOKUP_NAME, as a C string. */
5490
5491static const char *
5492ada_lookup_name (const lookup_name_info &lookup_name)
5493{
5494 return lookup_name.ada ().lookup_name ().c_str ();
5495}
5496
339c13b6 5497/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5498 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5499 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5500 symbols otherwise. */
339c13b6
JB
5501
5502static void
b5ec771e
PA
5503add_nonlocal_symbols (struct obstack *obstackp,
5504 const lookup_name_info &lookup_name,
5505 domain_enum domain, int global)
339c13b6 5506{
40658b94 5507 struct match_data data;
339c13b6 5508
6475f2fe 5509 memset (&data, 0, sizeof data);
ccefe4c4 5510 data.obstackp = obstackp;
339c13b6 5511
b5ec771e
PA
5512 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5513
199b4314
TT
5514 auto callback = [&] (struct block_symbol *bsym)
5515 {
5516 return aux_add_nonlocal_symbols (bsym, &data);
5517 };
5518
2030c079 5519 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5520 {
5521 data.objfile = objfile;
5522
b054970d
TT
5523 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5524 domain, global, callback,
5525 (is_wild_match
5526 ? NULL : compare_names));
22cee43f 5527
b669c953 5528 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5529 {
5530 const struct block *global_block
5531 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5532
b5ec771e
PA
5533 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5534 domain))
22cee43f
PMR
5535 data.found_sym = 1;
5536 }
40658b94
PH
5537 }
5538
5539 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5540 {
b5ec771e 5541 const char *name = ada_lookup_name (lookup_name);
b054970d
TT
5542 lookup_name_info name1 (std::string ("<_ada_") + name + '>',
5543 symbol_name_match_type::FULL);
b5ec771e 5544
2030c079 5545 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5546 {
40658b94 5547 data.objfile = objfile;
b054970d 5548 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5549 domain, global, callback,
b5ec771e 5550 compare_names);
40658b94
PH
5551 }
5552 }
339c13b6
JB
5553}
5554
b5ec771e
PA
5555/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5556 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5557 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5558
22cee43f
PMR
5559 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5560 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5561 is the one match returned (no other matches in that or
d9680e73 5562 enclosing blocks is returned). If there are any matches in or
22cee43f 5563 surrounding BLOCK, then these alone are returned.
4eeaa230 5564
b5ec771e
PA
5565 Names prefixed with "standard__" are handled specially:
5566 "standard__" is first stripped off (by the lookup_name
5567 constructor), and only static and global symbols are searched.
14f9c5c9 5568
22cee43f
PMR
5569 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5570 to lookup global symbols. */
5571
5572static void
5573ada_add_all_symbols (struct obstack *obstackp,
5574 const struct block *block,
b5ec771e 5575 const lookup_name_info &lookup_name,
22cee43f
PMR
5576 domain_enum domain,
5577 int full_search,
5578 int *made_global_lookup_p)
14f9c5c9
AS
5579{
5580 struct symbol *sym;
14f9c5c9 5581
22cee43f
PMR
5582 if (made_global_lookup_p)
5583 *made_global_lookup_p = 0;
339c13b6
JB
5584
5585 /* Special case: If the user specifies a symbol name inside package
5586 Standard, do a non-wild matching of the symbol name without
5587 the "standard__" prefix. This was primarily introduced in order
5588 to allow the user to specifically access the standard exceptions
5589 using, for instance, Standard.Constraint_Error when Constraint_Error
5590 is ambiguous (due to the user defining its own Constraint_Error
5591 entity inside its program). */
b5ec771e
PA
5592 if (lookup_name.ada ().standard_p ())
5593 block = NULL;
4c4b4cd2 5594
339c13b6 5595 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5596
4eeaa230
DE
5597 if (block != NULL)
5598 {
5599 if (full_search)
b5ec771e 5600 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5601 else
5602 {
5603 /* In the !full_search case we're are being called by
5604 ada_iterate_over_symbols, and we don't want to search
5605 superblocks. */
b5ec771e 5606 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5607 }
22cee43f
PMR
5608 if (num_defns_collected (obstackp) > 0 || !full_search)
5609 return;
4eeaa230 5610 }
d2e4a39e 5611
339c13b6
JB
5612 /* No non-global symbols found. Check our cache to see if we have
5613 already performed this search before. If we have, then return
5614 the same result. */
5615
b5ec771e
PA
5616 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5617 domain, &sym, &block))
4c4b4cd2
PH
5618 {
5619 if (sym != NULL)
b5ec771e 5620 add_defn_to_vec (obstackp, sym, block);
22cee43f 5621 return;
4c4b4cd2 5622 }
14f9c5c9 5623
22cee43f
PMR
5624 if (made_global_lookup_p)
5625 *made_global_lookup_p = 1;
b1eedac9 5626
339c13b6
JB
5627 /* Search symbols from all global blocks. */
5628
b5ec771e 5629 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5630
4c4b4cd2 5631 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5632 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5633
22cee43f 5634 if (num_defns_collected (obstackp) == 0)
b5ec771e 5635 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5636}
5637
b5ec771e
PA
5638/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5639 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5640 matches.
54d343a2
TT
5641 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5642 found and the blocks and symbol tables (if any) in which they were
5643 found.
22cee43f
PMR
5644
5645 When full_search is non-zero, any non-function/non-enumeral
5646 symbol match within the nest of blocks whose innermost member is BLOCK,
5647 is the one match returned (no other matches in that or
5648 enclosing blocks is returned). If there are any matches in or
5649 surrounding BLOCK, then these alone are returned.
5650
5651 Names prefixed with "standard__" are handled specially: "standard__"
5652 is first stripped off, and only static and global symbols are searched. */
5653
5654static int
b5ec771e
PA
5655ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5656 const struct block *block,
22cee43f 5657 domain_enum domain,
54d343a2 5658 std::vector<struct block_symbol> *results,
22cee43f
PMR
5659 int full_search)
5660{
22cee43f
PMR
5661 int syms_from_global_search;
5662 int ndefns;
ec6a20c2 5663 auto_obstack obstack;
22cee43f 5664
ec6a20c2 5665 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5666 domain, full_search, &syms_from_global_search);
14f9c5c9 5667
ec6a20c2
JB
5668 ndefns = num_defns_collected (&obstack);
5669
54d343a2
TT
5670 struct block_symbol *base = defns_collected (&obstack, 1);
5671 for (int i = 0; i < ndefns; ++i)
5672 results->push_back (base[i]);
4c4b4cd2 5673
54d343a2 5674 ndefns = remove_extra_symbols (results);
4c4b4cd2 5675
b1eedac9 5676 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5677 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5678
b1eedac9 5679 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5680 cache_symbol (ada_lookup_name (lookup_name), domain,
5681 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5682
54d343a2 5683 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5684
14f9c5c9
AS
5685 return ndefns;
5686}
5687
b5ec771e 5688/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5689 in global scopes, returning the number of matches, and filling *RESULTS
5690 with (SYM,BLOCK) tuples.
ec6a20c2 5691
4eeaa230
DE
5692 See ada_lookup_symbol_list_worker for further details. */
5693
5694int
b5ec771e 5695ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5696 domain_enum domain,
5697 std::vector<struct block_symbol> *results)
4eeaa230 5698{
b5ec771e
PA
5699 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5700 lookup_name_info lookup_name (name, name_match_type);
5701
5702 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5703}
5704
5705/* Implementation of the la_iterate_over_symbols method. */
5706
6969f124 5707static bool
14bc53a8 5708ada_iterate_over_symbols
b5ec771e
PA
5709 (const struct block *block, const lookup_name_info &name,
5710 domain_enum domain,
14bc53a8 5711 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5712{
5713 int ndefs, i;
54d343a2 5714 std::vector<struct block_symbol> results;
4eeaa230
DE
5715
5716 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5717
4eeaa230
DE
5718 for (i = 0; i < ndefs; ++i)
5719 {
7e41c8db 5720 if (!callback (&results[i]))
6969f124 5721 return false;
4eeaa230 5722 }
6969f124
TT
5723
5724 return true;
4eeaa230
DE
5725}
5726
4e5c77fe
JB
5727/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5728 to 1, but choosing the first symbol found if there are multiple
5729 choices.
5730
5e2336be
JB
5731 The result is stored in *INFO, which must be non-NULL.
5732 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5733
5734void
5735ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5736 domain_enum domain,
d12307c1 5737 struct block_symbol *info)
14f9c5c9 5738{
b5ec771e
PA
5739 /* Since we already have an encoded name, wrap it in '<>' to force a
5740 verbatim match. Otherwise, if the name happens to not look like
5741 an encoded name (because it doesn't include a "__"),
5742 ada_lookup_name_info would re-encode/fold it again, and that
5743 would e.g., incorrectly lowercase object renaming names like
5744 "R28b" -> "r28b". */
5745 std::string verbatim = std::string ("<") + name + '>';
5746
5e2336be 5747 gdb_assert (info != NULL);
65392b3e 5748 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5749}
aeb5907d
JB
5750
5751/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5752 scope and in global scopes, or NULL if none. NAME is folded and
5753 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5754 choosing the first symbol if there are multiple choices. */
4e5c77fe 5755
d12307c1 5756struct block_symbol
aeb5907d 5757ada_lookup_symbol (const char *name, const struct block *block0,
65392b3e 5758 domain_enum domain)
aeb5907d 5759{
54d343a2 5760 std::vector<struct block_symbol> candidates;
f98fc17b 5761 int n_candidates;
f98fc17b
PA
5762
5763 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5764
5765 if (n_candidates == 0)
54d343a2 5766 return {};
f98fc17b
PA
5767
5768 block_symbol info = candidates[0];
5769 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5770 return info;
4c4b4cd2 5771}
14f9c5c9 5772
d12307c1 5773static struct block_symbol
f606139a
DE
5774ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5775 const char *name,
76a01679 5776 const struct block *block,
21b556f4 5777 const domain_enum domain)
4c4b4cd2 5778{
d12307c1 5779 struct block_symbol sym;
04dccad0 5780
65392b3e 5781 sym = ada_lookup_symbol (name, block_static_block (block), domain);
d12307c1 5782 if (sym.symbol != NULL)
04dccad0
JB
5783 return sym;
5784
5785 /* If we haven't found a match at this point, try the primitive
5786 types. In other languages, this search is performed before
5787 searching for global symbols in order to short-circuit that
5788 global-symbol search if it happens that the name corresponds
5789 to a primitive type. But we cannot do the same in Ada, because
5790 it is perfectly legitimate for a program to declare a type which
5791 has the same name as a standard type. If looking up a type in
5792 that situation, we have traditionally ignored the primitive type
5793 in favor of user-defined types. This is why, unlike most other
5794 languages, we search the primitive types this late and only after
5795 having searched the global symbols without success. */
5796
5797 if (domain == VAR_DOMAIN)
5798 {
5799 struct gdbarch *gdbarch;
5800
5801 if (block == NULL)
5802 gdbarch = target_gdbarch ();
5803 else
5804 gdbarch = block_gdbarch (block);
d12307c1
PMR
5805 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5806 if (sym.symbol != NULL)
04dccad0
JB
5807 return sym;
5808 }
5809
6640a367 5810 return {};
14f9c5c9
AS
5811}
5812
5813
4c4b4cd2
PH
5814/* True iff STR is a possible encoded suffix of a normal Ada name
5815 that is to be ignored for matching purposes. Suffixes of parallel
5816 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5817 are given by any of the regular expressions:
4c4b4cd2 5818
babe1480
JB
5819 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5820 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5821 TKB [subprogram suffix for task bodies]
babe1480 5822 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5823 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5824
5825 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5826 match is performed. This sequence is used to differentiate homonyms,
5827 is an optional part of a valid name suffix. */
4c4b4cd2 5828
14f9c5c9 5829static int
d2e4a39e 5830is_name_suffix (const char *str)
14f9c5c9
AS
5831{
5832 int k;
4c4b4cd2
PH
5833 const char *matching;
5834 const int len = strlen (str);
5835
babe1480
JB
5836 /* Skip optional leading __[0-9]+. */
5837
4c4b4cd2
PH
5838 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5839 {
babe1480
JB
5840 str += 3;
5841 while (isdigit (str[0]))
5842 str += 1;
4c4b4cd2 5843 }
babe1480
JB
5844
5845 /* [.$][0-9]+ */
4c4b4cd2 5846
babe1480 5847 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5848 {
babe1480 5849 matching = str + 1;
4c4b4cd2
PH
5850 while (isdigit (matching[0]))
5851 matching += 1;
5852 if (matching[0] == '\0')
5853 return 1;
5854 }
5855
5856 /* ___[0-9]+ */
babe1480 5857
4c4b4cd2
PH
5858 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5859 {
5860 matching = str + 3;
5861 while (isdigit (matching[0]))
5862 matching += 1;
5863 if (matching[0] == '\0')
5864 return 1;
5865 }
5866
9ac7f98e
JB
5867 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5868
5869 if (strcmp (str, "TKB") == 0)
5870 return 1;
5871
529cad9c
PH
5872#if 0
5873 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5874 with a N at the end. Unfortunately, the compiler uses the same
5875 convention for other internal types it creates. So treating
529cad9c 5876 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5877 some regressions. For instance, consider the case of an enumerated
5878 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5879 name ends with N.
5880 Having a single character like this as a suffix carrying some
0963b4bd 5881 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5882 to be something like "_N" instead. In the meantime, do not do
5883 the following check. */
5884 /* Protected Object Subprograms */
5885 if (len == 1 && str [0] == 'N')
5886 return 1;
5887#endif
5888
5889 /* _E[0-9]+[bs]$ */
5890 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5891 {
5892 matching = str + 3;
5893 while (isdigit (matching[0]))
5894 matching += 1;
5895 if ((matching[0] == 'b' || matching[0] == 's')
5896 && matching [1] == '\0')
5897 return 1;
5898 }
5899
4c4b4cd2
PH
5900 /* ??? We should not modify STR directly, as we are doing below. This
5901 is fine in this case, but may become problematic later if we find
5902 that this alternative did not work, and want to try matching
5903 another one from the begining of STR. Since we modified it, we
5904 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5905 if (str[0] == 'X')
5906 {
5907 str += 1;
d2e4a39e 5908 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5909 {
5910 if (str[0] != 'n' && str[0] != 'b')
5911 return 0;
5912 str += 1;
5913 }
14f9c5c9 5914 }
babe1480 5915
14f9c5c9
AS
5916 if (str[0] == '\000')
5917 return 1;
babe1480 5918
d2e4a39e 5919 if (str[0] == '_')
14f9c5c9
AS
5920 {
5921 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5922 return 0;
d2e4a39e 5923 if (str[2] == '_')
4c4b4cd2 5924 {
61ee279c
PH
5925 if (strcmp (str + 3, "JM") == 0)
5926 return 1;
5927 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5928 the LJM suffix in favor of the JM one. But we will
5929 still accept LJM as a valid suffix for a reasonable
5930 amount of time, just to allow ourselves to debug programs
5931 compiled using an older version of GNAT. */
4c4b4cd2
PH
5932 if (strcmp (str + 3, "LJM") == 0)
5933 return 1;
5934 if (str[3] != 'X')
5935 return 0;
1265e4aa
JB
5936 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5937 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5938 return 1;
5939 if (str[4] == 'R' && str[5] != 'T')
5940 return 1;
5941 return 0;
5942 }
5943 if (!isdigit (str[2]))
5944 return 0;
5945 for (k = 3; str[k] != '\0'; k += 1)
5946 if (!isdigit (str[k]) && str[k] != '_')
5947 return 0;
14f9c5c9
AS
5948 return 1;
5949 }
4c4b4cd2 5950 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5951 {
4c4b4cd2
PH
5952 for (k = 2; str[k] != '\0'; k += 1)
5953 if (!isdigit (str[k]) && str[k] != '_')
5954 return 0;
14f9c5c9
AS
5955 return 1;
5956 }
5957 return 0;
5958}
d2e4a39e 5959
aeb5907d
JB
5960/* Return non-zero if the string starting at NAME and ending before
5961 NAME_END contains no capital letters. */
529cad9c
PH
5962
5963static int
5964is_valid_name_for_wild_match (const char *name0)
5965{
f945dedf 5966 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5967 int i;
5968
5823c3ef
JB
5969 /* If the decoded name starts with an angle bracket, it means that
5970 NAME0 does not follow the GNAT encoding format. It should then
5971 not be allowed as a possible wild match. */
5972 if (decoded_name[0] == '<')
5973 return 0;
5974
529cad9c
PH
5975 for (i=0; decoded_name[i] != '\0'; i++)
5976 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5977 return 0;
5978
5979 return 1;
5980}
5981
73589123
PH
5982/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5983 that could start a simple name. Assumes that *NAMEP points into
5984 the string beginning at NAME0. */
4c4b4cd2 5985
14f9c5c9 5986static int
73589123 5987advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5988{
73589123 5989 const char *name = *namep;
5b4ee69b 5990
5823c3ef 5991 while (1)
14f9c5c9 5992 {
aa27d0b3 5993 int t0, t1;
73589123
PH
5994
5995 t0 = *name;
5996 if (t0 == '_')
5997 {
5998 t1 = name[1];
5999 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6000 {
6001 name += 1;
61012eef 6002 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6003 break;
6004 else
6005 name += 1;
6006 }
aa27d0b3
JB
6007 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6008 || name[2] == target0))
73589123
PH
6009 {
6010 name += 2;
6011 break;
6012 }
6013 else
6014 return 0;
6015 }
6016 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6017 name += 1;
6018 else
5823c3ef 6019 return 0;
73589123
PH
6020 }
6021
6022 *namep = name;
6023 return 1;
6024}
6025
b5ec771e
PA
6026/* Return true iff NAME encodes a name of the form prefix.PATN.
6027 Ignores any informational suffixes of NAME (i.e., for which
6028 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6029 simple name. */
73589123 6030
b5ec771e 6031static bool
73589123
PH
6032wild_match (const char *name, const char *patn)
6033{
22e048c9 6034 const char *p;
73589123
PH
6035 const char *name0 = name;
6036
6037 while (1)
6038 {
6039 const char *match = name;
6040
6041 if (*name == *patn)
6042 {
6043 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6044 if (*p != *name)
6045 break;
6046 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6047 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6048
6049 if (name[-1] == '_')
6050 name -= 1;
6051 }
6052 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6053 return false;
96d887e8 6054 }
96d887e8
PH
6055}
6056
b5ec771e
PA
6057/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6058 any trailing suffixes that encode debugging information or leading
6059 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6060 information that is ignored). */
40658b94 6061
b5ec771e 6062static bool
c4d840bd
PH
6063full_match (const char *sym_name, const char *search_name)
6064{
b5ec771e
PA
6065 size_t search_name_len = strlen (search_name);
6066
6067 if (strncmp (sym_name, search_name, search_name_len) == 0
6068 && is_name_suffix (sym_name + search_name_len))
6069 return true;
6070
6071 if (startswith (sym_name, "_ada_")
6072 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6073 && is_name_suffix (sym_name + search_name_len + 5))
6074 return true;
c4d840bd 6075
b5ec771e
PA
6076 return false;
6077}
c4d840bd 6078
b5ec771e
PA
6079/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6080 *defn_symbols, updating the list of symbols in OBSTACKP (if
6081 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6082
6083static void
6084ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6085 const struct block *block,
6086 const lookup_name_info &lookup_name,
6087 domain_enum domain, struct objfile *objfile)
96d887e8 6088{
8157b174 6089 struct block_iterator iter;
96d887e8
PH
6090 /* A matching argument symbol, if any. */
6091 struct symbol *arg_sym;
6092 /* Set true when we find a matching non-argument symbol. */
6093 int found_sym;
6094 struct symbol *sym;
6095
6096 arg_sym = NULL;
6097 found_sym = 0;
b5ec771e
PA
6098 for (sym = block_iter_match_first (block, lookup_name, &iter);
6099 sym != NULL;
6100 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6101 {
b5ec771e
PA
6102 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6103 SYMBOL_DOMAIN (sym), domain))
6104 {
6105 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6106 {
6107 if (SYMBOL_IS_ARGUMENT (sym))
6108 arg_sym = sym;
6109 else
6110 {
6111 found_sym = 1;
6112 add_defn_to_vec (obstackp,
6113 fixup_symbol_section (sym, objfile),
6114 block);
6115 }
6116 }
6117 }
96d887e8
PH
6118 }
6119
22cee43f
PMR
6120 /* Handle renamings. */
6121
b5ec771e 6122 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6123 found_sym = 1;
6124
96d887e8
PH
6125 if (!found_sym && arg_sym != NULL)
6126 {
76a01679
JB
6127 add_defn_to_vec (obstackp,
6128 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6129 block);
96d887e8
PH
6130 }
6131
b5ec771e 6132 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6133 {
6134 arg_sym = NULL;
6135 found_sym = 0;
b5ec771e
PA
6136 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6137 const char *name = ada_lookup_name.c_str ();
6138 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6139
6140 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6141 {
4186eb54
KS
6142 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6143 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6144 {
6145 int cmp;
6146
6147 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6148 if (cmp == 0)
6149 {
61012eef 6150 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6151 if (cmp == 0)
6152 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6153 name_len);
6154 }
6155
6156 if (cmp == 0
6157 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6158 {
2a2d4dc3
AS
6159 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6160 {
6161 if (SYMBOL_IS_ARGUMENT (sym))
6162 arg_sym = sym;
6163 else
6164 {
6165 found_sym = 1;
6166 add_defn_to_vec (obstackp,
6167 fixup_symbol_section (sym, objfile),
6168 block);
6169 }
6170 }
76a01679
JB
6171 }
6172 }
76a01679 6173 }
96d887e8
PH
6174
6175 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6176 They aren't parameters, right? */
6177 if (!found_sym && arg_sym != NULL)
6178 {
6179 add_defn_to_vec (obstackp,
76a01679 6180 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6181 block);
96d887e8
PH
6182 }
6183 }
6184}
6185\f
41d27058
JB
6186
6187 /* Symbol Completion */
6188
b5ec771e 6189/* See symtab.h. */
41d27058 6190
b5ec771e
PA
6191bool
6192ada_lookup_name_info::matches
6193 (const char *sym_name,
6194 symbol_name_match_type match_type,
a207cff2 6195 completion_match_result *comp_match_res) const
41d27058 6196{
b5ec771e
PA
6197 bool match = false;
6198 const char *text = m_encoded_name.c_str ();
6199 size_t text_len = m_encoded_name.size ();
41d27058
JB
6200
6201 /* First, test against the fully qualified name of the symbol. */
6202
6203 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6204 match = true;
41d27058 6205
f945dedf 6206 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6207 if (match && !m_encoded_p)
41d27058
JB
6208 {
6209 /* One needed check before declaring a positive match is to verify
6210 that iff we are doing a verbatim match, the decoded version
6211 of the symbol name starts with '<'. Otherwise, this symbol name
6212 is not a suitable completion. */
41d27058 6213
f945dedf 6214 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6215 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6216 }
6217
b5ec771e 6218 if (match && !m_verbatim_p)
41d27058
JB
6219 {
6220 /* When doing non-verbatim match, another check that needs to
6221 be done is to verify that the potentially matching symbol name
6222 does not include capital letters, because the ada-mode would
6223 not be able to understand these symbol names without the
6224 angle bracket notation. */
6225 const char *tmp;
6226
6227 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6228 if (*tmp != '\0')
b5ec771e 6229 match = false;
41d27058
JB
6230 }
6231
6232 /* Second: Try wild matching... */
6233
b5ec771e 6234 if (!match && m_wild_match_p)
41d27058
JB
6235 {
6236 /* Since we are doing wild matching, this means that TEXT
6237 may represent an unqualified symbol name. We therefore must
6238 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6239 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6240
6241 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6242 match = true;
41d27058
JB
6243 }
6244
b5ec771e 6245 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6246
6247 if (!match)
b5ec771e 6248 return false;
41d27058 6249
a207cff2 6250 if (comp_match_res != NULL)
b5ec771e 6251 {
a207cff2 6252 std::string &match_str = comp_match_res->match.storage ();
41d27058 6253
b5ec771e 6254 if (!m_encoded_p)
a207cff2 6255 match_str = ada_decode (sym_name);
b5ec771e
PA
6256 else
6257 {
6258 if (m_verbatim_p)
6259 match_str = add_angle_brackets (sym_name);
6260 else
6261 match_str = sym_name;
41d27058 6262
b5ec771e 6263 }
a207cff2
PA
6264
6265 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6266 }
6267
b5ec771e 6268 return true;
41d27058
JB
6269}
6270
b5ec771e 6271/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6272 WORD is the entire command on which completion is made. */
41d27058 6273
eb3ff9a5
PA
6274static void
6275ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6276 complete_symbol_mode mode,
b5ec771e
PA
6277 symbol_name_match_type name_match_type,
6278 const char *text, const char *word,
eb3ff9a5 6279 enum type_code code)
41d27058 6280{
41d27058 6281 struct symbol *sym;
3977b71f 6282 const struct block *b, *surrounding_static_block = 0;
8157b174 6283 struct block_iterator iter;
41d27058 6284
2f68a895
TT
6285 gdb_assert (code == TYPE_CODE_UNDEF);
6286
1b026119 6287 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6288
6289 /* First, look at the partial symtab symbols. */
14bc53a8 6290 expand_symtabs_matching (NULL,
b5ec771e
PA
6291 lookup_name,
6292 NULL,
14bc53a8
PA
6293 NULL,
6294 ALL_DOMAIN);
41d27058
JB
6295
6296 /* At this point scan through the misc symbol vectors and add each
6297 symbol you find to the list. Eventually we want to ignore
6298 anything that isn't a text symbol (everything else will be
6299 handled by the psymtab code above). */
6300
2030c079 6301 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6302 {
7932255d 6303 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6304 {
6305 QUIT;
6306
6307 if (completion_skip_symbol (mode, msymbol))
6308 continue;
6309
6310 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6311
6312 /* Ada minimal symbols won't have their language set to Ada. If
6313 we let completion_list_add_name compare using the
6314 default/C-like matcher, then when completing e.g., symbols in a
6315 package named "pck", we'd match internal Ada symbols like
6316 "pckS", which are invalid in an Ada expression, unless you wrap
6317 them in '<' '>' to request a verbatim match.
6318
6319 Unfortunately, some Ada encoded names successfully demangle as
6320 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6321 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6322 with the wrong language set. Paper over that issue here. */
6323 if (symbol_language == language_auto
6324 || symbol_language == language_cplus)
6325 symbol_language = language_ada;
6326
6327 completion_list_add_name (tracker,
6328 symbol_language,
6329 MSYMBOL_LINKAGE_NAME (msymbol),
6330 lookup_name, text, word);
6331 }
6332 }
41d27058
JB
6333
6334 /* Search upwards from currently selected frame (so that we can
6335 complete on local vars. */
6336
6337 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6338 {
6339 if (!BLOCK_SUPERBLOCK (b))
6340 surrounding_static_block = b; /* For elmin of dups */
6341
6342 ALL_BLOCK_SYMBOLS (b, iter, sym)
6343 {
f9d67a22
PA
6344 if (completion_skip_symbol (mode, sym))
6345 continue;
6346
b5ec771e
PA
6347 completion_list_add_name (tracker,
6348 SYMBOL_LANGUAGE (sym),
6349 SYMBOL_LINKAGE_NAME (sym),
1b026119 6350 lookup_name, text, word);
41d27058
JB
6351 }
6352 }
6353
6354 /* Go through the symtabs and check the externs and statics for
43f3e411 6355 symbols which match. */
41d27058 6356
2030c079 6357 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6358 {
b669c953 6359 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6360 {
6361 QUIT;
6362 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6363 ALL_BLOCK_SYMBOLS (b, iter, sym)
6364 {
6365 if (completion_skip_symbol (mode, sym))
6366 continue;
f9d67a22 6367
d8aeb77f
TT
6368 completion_list_add_name (tracker,
6369 SYMBOL_LANGUAGE (sym),
6370 SYMBOL_LINKAGE_NAME (sym),
6371 lookup_name, text, word);
6372 }
6373 }
41d27058 6374 }
41d27058 6375
2030c079 6376 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6377 {
b669c953 6378 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6379 {
6380 QUIT;
6381 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6382 /* Don't do this block twice. */
6383 if (b == surrounding_static_block)
6384 continue;
6385 ALL_BLOCK_SYMBOLS (b, iter, sym)
6386 {
6387 if (completion_skip_symbol (mode, sym))
6388 continue;
f9d67a22 6389
d8aeb77f
TT
6390 completion_list_add_name (tracker,
6391 SYMBOL_LANGUAGE (sym),
6392 SYMBOL_LINKAGE_NAME (sym),
6393 lookup_name, text, word);
6394 }
6395 }
41d27058 6396 }
41d27058
JB
6397}
6398
963a6417 6399 /* Field Access */
96d887e8 6400
73fb9985
JB
6401/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6402 for tagged types. */
6403
6404static int
6405ada_is_dispatch_table_ptr_type (struct type *type)
6406{
0d5cff50 6407 const char *name;
73fb9985
JB
6408
6409 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6410 return 0;
6411
6412 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6413 if (name == NULL)
6414 return 0;
6415
6416 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6417}
6418
ac4a2da4
JG
6419/* Return non-zero if TYPE is an interface tag. */
6420
6421static int
6422ada_is_interface_tag (struct type *type)
6423{
6424 const char *name = TYPE_NAME (type);
6425
6426 if (name == NULL)
6427 return 0;
6428
6429 return (strcmp (name, "ada__tags__interface_tag") == 0);
6430}
6431
963a6417
PH
6432/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6433 to be invisible to users. */
96d887e8 6434
963a6417
PH
6435int
6436ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6437{
963a6417
PH
6438 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6439 return 1;
ffde82bf 6440
73fb9985
JB
6441 /* Check the name of that field. */
6442 {
6443 const char *name = TYPE_FIELD_NAME (type, field_num);
6444
6445 /* Anonymous field names should not be printed.
6446 brobecker/2007-02-20: I don't think this can actually happen
6447 but we don't want to print the value of annonymous fields anyway. */
6448 if (name == NULL)
6449 return 1;
6450
ffde82bf
JB
6451 /* Normally, fields whose name start with an underscore ("_")
6452 are fields that have been internally generated by the compiler,
6453 and thus should not be printed. The "_parent" field is special,
6454 however: This is a field internally generated by the compiler
6455 for tagged types, and it contains the components inherited from
6456 the parent type. This field should not be printed as is, but
6457 should not be ignored either. */
61012eef 6458 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6459 return 1;
6460 }
6461
ac4a2da4
JG
6462 /* If this is the dispatch table of a tagged type or an interface tag,
6463 then ignore. */
73fb9985 6464 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6465 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6466 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6467 return 1;
6468
6469 /* Not a special field, so it should not be ignored. */
6470 return 0;
963a6417 6471}
96d887e8 6472
963a6417 6473/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6474 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6475
963a6417
PH
6476int
6477ada_is_tagged_type (struct type *type, int refok)
6478{
988f6b3d 6479 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6480}
96d887e8 6481
963a6417 6482/* True iff TYPE represents the type of X'Tag */
96d887e8 6483
963a6417
PH
6484int
6485ada_is_tag_type (struct type *type)
6486{
460efde1
JB
6487 type = ada_check_typedef (type);
6488
963a6417
PH
6489 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6490 return 0;
6491 else
96d887e8 6492 {
963a6417 6493 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6494
963a6417
PH
6495 return (name != NULL
6496 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6497 }
96d887e8
PH
6498}
6499
963a6417 6500/* The type of the tag on VAL. */
76a01679 6501
963a6417
PH
6502struct type *
6503ada_tag_type (struct value *val)
96d887e8 6504{
988f6b3d 6505 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6506}
96d887e8 6507
b50d69b5
JG
6508/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6509 retired at Ada 05). */
6510
6511static int
6512is_ada95_tag (struct value *tag)
6513{
6514 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6515}
6516
963a6417 6517/* The value of the tag on VAL. */
96d887e8 6518
963a6417
PH
6519struct value *
6520ada_value_tag (struct value *val)
6521{
03ee6b2e 6522 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6523}
6524
963a6417
PH
6525/* The value of the tag on the object of type TYPE whose contents are
6526 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6527 ADDRESS. */
96d887e8 6528
963a6417 6529static struct value *
10a2c479 6530value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6531 const gdb_byte *valaddr,
963a6417 6532 CORE_ADDR address)
96d887e8 6533{
b5385fc0 6534 int tag_byte_offset;
963a6417 6535 struct type *tag_type;
5b4ee69b 6536
963a6417 6537 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6538 NULL, NULL, NULL))
96d887e8 6539 {
fc1a4b47 6540 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6541 ? NULL
6542 : valaddr + tag_byte_offset);
963a6417 6543 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6544
963a6417 6545 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6546 }
963a6417
PH
6547 return NULL;
6548}
96d887e8 6549
963a6417
PH
6550static struct type *
6551type_from_tag (struct value *tag)
6552{
6553 const char *type_name = ada_tag_name (tag);
5b4ee69b 6554
963a6417
PH
6555 if (type_name != NULL)
6556 return ada_find_any_type (ada_encode (type_name));
6557 return NULL;
6558}
96d887e8 6559
b50d69b5
JG
6560/* Given a value OBJ of a tagged type, return a value of this
6561 type at the base address of the object. The base address, as
6562 defined in Ada.Tags, it is the address of the primary tag of
6563 the object, and therefore where the field values of its full
6564 view can be fetched. */
6565
6566struct value *
6567ada_tag_value_at_base_address (struct value *obj)
6568{
b50d69b5
JG
6569 struct value *val;
6570 LONGEST offset_to_top = 0;
6571 struct type *ptr_type, *obj_type;
6572 struct value *tag;
6573 CORE_ADDR base_address;
6574
6575 obj_type = value_type (obj);
6576
6577 /* It is the responsability of the caller to deref pointers. */
6578
6579 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6580 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6581 return obj;
6582
6583 tag = ada_value_tag (obj);
6584 if (!tag)
6585 return obj;
6586
6587 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6588
6589 if (is_ada95_tag (tag))
6590 return obj;
6591
08f49010
XR
6592 ptr_type = language_lookup_primitive_type
6593 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6594 ptr_type = lookup_pointer_type (ptr_type);
6595 val = value_cast (ptr_type, tag);
6596 if (!val)
6597 return obj;
6598
6599 /* It is perfectly possible that an exception be raised while
6600 trying to determine the base address, just like for the tag;
6601 see ada_tag_name for more details. We do not print the error
6602 message for the same reason. */
6603
a70b8144 6604 try
b50d69b5
JG
6605 {
6606 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6607 }
6608
230d2906 6609 catch (const gdb_exception_error &e)
492d29ea
PA
6610 {
6611 return obj;
6612 }
b50d69b5
JG
6613
6614 /* If offset is null, nothing to do. */
6615
6616 if (offset_to_top == 0)
6617 return obj;
6618
6619 /* -1 is a special case in Ada.Tags; however, what should be done
6620 is not quite clear from the documentation. So do nothing for
6621 now. */
6622
6623 if (offset_to_top == -1)
6624 return obj;
6625
08f49010
XR
6626 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6627 from the base address. This was however incompatible with
6628 C++ dispatch table: C++ uses a *negative* value to *add*
6629 to the base address. Ada's convention has therefore been
6630 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6631 use the same convention. Here, we support both cases by
6632 checking the sign of OFFSET_TO_TOP. */
6633
6634 if (offset_to_top > 0)
6635 offset_to_top = -offset_to_top;
6636
6637 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6638 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6639
6640 /* Make sure that we have a proper tag at the new address.
6641 Otherwise, offset_to_top is bogus (which can happen when
6642 the object is not initialized yet). */
6643
6644 if (!tag)
6645 return obj;
6646
6647 obj_type = type_from_tag (tag);
6648
6649 if (!obj_type)
6650 return obj;
6651
6652 return value_from_contents_and_address (obj_type, NULL, base_address);
6653}
6654
1b611343
JB
6655/* Return the "ada__tags__type_specific_data" type. */
6656
6657static struct type *
6658ada_get_tsd_type (struct inferior *inf)
963a6417 6659{
1b611343 6660 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6661
1b611343
JB
6662 if (data->tsd_type == 0)
6663 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6664 return data->tsd_type;
6665}
529cad9c 6666
1b611343
JB
6667/* Return the TSD (type-specific data) associated to the given TAG.
6668 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6669
1b611343 6670 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6671
1b611343
JB
6672static struct value *
6673ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6674{
4c4b4cd2 6675 struct value *val;
1b611343 6676 struct type *type;
5b4ee69b 6677
1b611343
JB
6678 /* First option: The TSD is simply stored as a field of our TAG.
6679 Only older versions of GNAT would use this format, but we have
6680 to test it first, because there are no visible markers for
6681 the current approach except the absence of that field. */
529cad9c 6682
1b611343
JB
6683 val = ada_value_struct_elt (tag, "tsd", 1);
6684 if (val)
6685 return val;
e802dbe0 6686
1b611343
JB
6687 /* Try the second representation for the dispatch table (in which
6688 there is no explicit 'tsd' field in the referent of the tag pointer,
6689 and instead the tsd pointer is stored just before the dispatch
6690 table. */
e802dbe0 6691
1b611343
JB
6692 type = ada_get_tsd_type (current_inferior());
6693 if (type == NULL)
6694 return NULL;
6695 type = lookup_pointer_type (lookup_pointer_type (type));
6696 val = value_cast (type, tag);
6697 if (val == NULL)
6698 return NULL;
6699 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6700}
6701
1b611343
JB
6702/* Given the TSD of a tag (type-specific data), return a string
6703 containing the name of the associated type.
6704
6705 The returned value is good until the next call. May return NULL
6706 if we are unable to determine the tag name. */
6707
6708static char *
6709ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6710{
529cad9c
PH
6711 static char name[1024];
6712 char *p;
1b611343 6713 struct value *val;
529cad9c 6714
1b611343 6715 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6716 if (val == NULL)
1b611343 6717 return NULL;
4c4b4cd2
PH
6718 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6719 for (p = name; *p != '\0'; p += 1)
6720 if (isalpha (*p))
6721 *p = tolower (*p);
1b611343 6722 return name;
4c4b4cd2
PH
6723}
6724
6725/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6726 a C string.
6727
6728 Return NULL if the TAG is not an Ada tag, or if we were unable to
6729 determine the name of that tag. The result is good until the next
6730 call. */
4c4b4cd2
PH
6731
6732const char *
6733ada_tag_name (struct value *tag)
6734{
1b611343 6735 char *name = NULL;
5b4ee69b 6736
df407dfe 6737 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6738 return NULL;
1b611343
JB
6739
6740 /* It is perfectly possible that an exception be raised while trying
6741 to determine the TAG's name, even under normal circumstances:
6742 The associated variable may be uninitialized or corrupted, for
6743 instance. We do not let any exception propagate past this point.
6744 instead we return NULL.
6745
6746 We also do not print the error message either (which often is very
6747 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6748 the caller print a more meaningful message if necessary. */
a70b8144 6749 try
1b611343
JB
6750 {
6751 struct value *tsd = ada_get_tsd_from_tag (tag);
6752
6753 if (tsd != NULL)
6754 name = ada_tag_name_from_tsd (tsd);
6755 }
230d2906 6756 catch (const gdb_exception_error &e)
492d29ea
PA
6757 {
6758 }
1b611343
JB
6759
6760 return name;
4c4b4cd2
PH
6761}
6762
6763/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6764
d2e4a39e 6765struct type *
ebf56fd3 6766ada_parent_type (struct type *type)
14f9c5c9
AS
6767{
6768 int i;
6769
61ee279c 6770 type = ada_check_typedef (type);
14f9c5c9
AS
6771
6772 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6773 return NULL;
6774
6775 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6776 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6777 {
6778 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6779
6780 /* If the _parent field is a pointer, then dereference it. */
6781 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6782 parent_type = TYPE_TARGET_TYPE (parent_type);
6783 /* If there is a parallel XVS type, get the actual base type. */
6784 parent_type = ada_get_base_type (parent_type);
6785
6786 return ada_check_typedef (parent_type);
6787 }
14f9c5c9
AS
6788
6789 return NULL;
6790}
6791
4c4b4cd2
PH
6792/* True iff field number FIELD_NUM of structure type TYPE contains the
6793 parent-type (inherited) fields of a derived type. Assumes TYPE is
6794 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6795
6796int
ebf56fd3 6797ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6798{
61ee279c 6799 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6800
4c4b4cd2 6801 return (name != NULL
61012eef
GB
6802 && (startswith (name, "PARENT")
6803 || startswith (name, "_parent")));
14f9c5c9
AS
6804}
6805
4c4b4cd2 6806/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6807 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6808 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6809 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6810 structures. */
14f9c5c9
AS
6811
6812int
ebf56fd3 6813ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6814{
d2e4a39e 6815 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6816
dddc0e16
JB
6817 if (name != NULL && strcmp (name, "RETVAL") == 0)
6818 {
6819 /* This happens in functions with "out" or "in out" parameters
6820 which are passed by copy. For such functions, GNAT describes
6821 the function's return type as being a struct where the return
6822 value is in a field called RETVAL, and where the other "out"
6823 or "in out" parameters are fields of that struct. This is not
6824 a wrapper. */
6825 return 0;
6826 }
6827
d2e4a39e 6828 return (name != NULL
61012eef 6829 && (startswith (name, "PARENT")
4c4b4cd2 6830 || strcmp (name, "REP") == 0
61012eef 6831 || startswith (name, "_parent")
4c4b4cd2 6832 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6833}
6834
4c4b4cd2
PH
6835/* True iff field number FIELD_NUM of structure or union type TYPE
6836 is a variant wrapper. Assumes TYPE is a structure type with at least
6837 FIELD_NUM+1 fields. */
14f9c5c9
AS
6838
6839int
ebf56fd3 6840ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6841{
8ecb59f8
TT
6842 /* Only Ada types are eligible. */
6843 if (!ADA_TYPE_P (type))
6844 return 0;
6845
d2e4a39e 6846 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6847
14f9c5c9 6848 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6849 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6850 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6851 == TYPE_CODE_UNION)));
14f9c5c9
AS
6852}
6853
6854/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6855 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6856 returns the type of the controlling discriminant for the variant.
6857 May return NULL if the type could not be found. */
14f9c5c9 6858
d2e4a39e 6859struct type *
ebf56fd3 6860ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6861{
a121b7c1 6862 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6863
988f6b3d 6864 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6865}
6866
4c4b4cd2 6867/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6868 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6869 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6870
6871int
ebf56fd3 6872ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6873{
d2e4a39e 6874 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6875
14f9c5c9
AS
6876 return (name != NULL && name[0] == 'O');
6877}
6878
6879/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6880 returns the name of the discriminant controlling the variant.
6881 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6882
a121b7c1 6883const char *
ebf56fd3 6884ada_variant_discrim_name (struct type *type0)
14f9c5c9 6885{
d2e4a39e 6886 static char *result = NULL;
14f9c5c9 6887 static size_t result_len = 0;
d2e4a39e
AS
6888 struct type *type;
6889 const char *name;
6890 const char *discrim_end;
6891 const char *discrim_start;
14f9c5c9
AS
6892
6893 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6894 type = TYPE_TARGET_TYPE (type0);
6895 else
6896 type = type0;
6897
6898 name = ada_type_name (type);
6899
6900 if (name == NULL || name[0] == '\000')
6901 return "";
6902
6903 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6904 discrim_end -= 1)
6905 {
61012eef 6906 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 6907 break;
14f9c5c9
AS
6908 }
6909 if (discrim_end == name)
6910 return "";
6911
d2e4a39e 6912 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6913 discrim_start -= 1)
6914 {
d2e4a39e 6915 if (discrim_start == name + 1)
4c4b4cd2 6916 return "";
76a01679 6917 if ((discrim_start > name + 3
61012eef 6918 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
6919 || discrim_start[-1] == '.')
6920 break;
14f9c5c9
AS
6921 }
6922
6923 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6924 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6925 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6926 return result;
6927}
6928
4c4b4cd2
PH
6929/* Scan STR for a subtype-encoded number, beginning at position K.
6930 Put the position of the character just past the number scanned in
6931 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6932 Return 1 if there was a valid number at the given position, and 0
6933 otherwise. A "subtype-encoded" number consists of the absolute value
6934 in decimal, followed by the letter 'm' to indicate a negative number.
6935 Assumes 0m does not occur. */
14f9c5c9
AS
6936
6937int
d2e4a39e 6938ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6939{
6940 ULONGEST RU;
6941
d2e4a39e 6942 if (!isdigit (str[k]))
14f9c5c9
AS
6943 return 0;
6944
4c4b4cd2 6945 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6946 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6947 LONGEST. */
14f9c5c9
AS
6948 RU = 0;
6949 while (isdigit (str[k]))
6950 {
d2e4a39e 6951 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6952 k += 1;
6953 }
6954
d2e4a39e 6955 if (str[k] == 'm')
14f9c5c9
AS
6956 {
6957 if (R != NULL)
4c4b4cd2 6958 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6959 k += 1;
6960 }
6961 else if (R != NULL)
6962 *R = (LONGEST) RU;
6963
4c4b4cd2 6964 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6965 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6966 number representable as a LONGEST (although either would probably work
6967 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6968 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6969
6970 if (new_k != NULL)
6971 *new_k = k;
6972 return 1;
6973}
6974
4c4b4cd2
PH
6975/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6976 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6977 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6978
d2e4a39e 6979int
ebf56fd3 6980ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6981{
d2e4a39e 6982 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6983 int p;
6984
6985 p = 0;
6986 while (1)
6987 {
d2e4a39e 6988 switch (name[p])
4c4b4cd2
PH
6989 {
6990 case '\0':
6991 return 0;
6992 case 'S':
6993 {
6994 LONGEST W;
5b4ee69b 6995
4c4b4cd2
PH
6996 if (!ada_scan_number (name, p + 1, &W, &p))
6997 return 0;
6998 if (val == W)
6999 return 1;
7000 break;
7001 }
7002 case 'R':
7003 {
7004 LONGEST L, U;
5b4ee69b 7005
4c4b4cd2
PH
7006 if (!ada_scan_number (name, p + 1, &L, &p)
7007 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7008 return 0;
7009 if (val >= L && val <= U)
7010 return 1;
7011 break;
7012 }
7013 case 'O':
7014 return 1;
7015 default:
7016 return 0;
7017 }
7018 }
7019}
7020
0963b4bd 7021/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7022
7023/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7024 ARG_TYPE, extract and return the value of one of its (non-static)
7025 fields. FIELDNO says which field. Differs from value_primitive_field
7026 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7027
4c4b4cd2 7028static struct value *
d2e4a39e 7029ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7030 struct type *arg_type)
14f9c5c9 7031{
14f9c5c9
AS
7032 struct type *type;
7033
61ee279c 7034 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7035 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7036
4504bbde
TT
7037 /* Handle packed fields. It might be that the field is not packed
7038 relative to its containing structure, but the structure itself is
7039 packed; in this case we must take the bit-field path. */
7040 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
7041 {
7042 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7043 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7044
0fd88904 7045 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7046 offset + bit_pos / 8,
7047 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7048 }
7049 else
7050 return value_primitive_field (arg1, offset, fieldno, arg_type);
7051}
7052
52ce6436
PH
7053/* Find field with name NAME in object of type TYPE. If found,
7054 set the following for each argument that is non-null:
7055 - *FIELD_TYPE_P to the field's type;
7056 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7057 an object of that type;
7058 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7059 - *BIT_SIZE_P to its size in bits if the field is packed, and
7060 0 otherwise;
7061 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7062 fields up to but not including the desired field, or by the total
7063 number of fields if not found. A NULL value of NAME never
7064 matches; the function just counts visible fields in this case.
7065
828d5846
XR
7066 Notice that we need to handle when a tagged record hierarchy
7067 has some components with the same name, like in this scenario:
7068
7069 type Top_T is tagged record
7070 N : Integer := 1;
7071 U : Integer := 974;
7072 A : Integer := 48;
7073 end record;
7074
7075 type Middle_T is new Top.Top_T with record
7076 N : Character := 'a';
7077 C : Integer := 3;
7078 end record;
7079
7080 type Bottom_T is new Middle.Middle_T with record
7081 N : Float := 4.0;
7082 C : Character := '5';
7083 X : Integer := 6;
7084 A : Character := 'J';
7085 end record;
7086
7087 Let's say we now have a variable declared and initialized as follow:
7088
7089 TC : Top_A := new Bottom_T;
7090
7091 And then we use this variable to call this function
7092
7093 procedure Assign (Obj: in out Top_T; TV : Integer);
7094
7095 as follow:
7096
7097 Assign (Top_T (B), 12);
7098
7099 Now, we're in the debugger, and we're inside that procedure
7100 then and we want to print the value of obj.c:
7101
7102 Usually, the tagged record or one of the parent type owns the
7103 component to print and there's no issue but in this particular
7104 case, what does it mean to ask for Obj.C? Since the actual
7105 type for object is type Bottom_T, it could mean two things: type
7106 component C from the Middle_T view, but also component C from
7107 Bottom_T. So in that "undefined" case, when the component is
7108 not found in the non-resolved type (which includes all the
7109 components of the parent type), then resolve it and see if we
7110 get better luck once expanded.
7111
7112 In the case of homonyms in the derived tagged type, we don't
7113 guaranty anything, and pick the one that's easiest for us
7114 to program.
7115
0963b4bd 7116 Returns 1 if found, 0 otherwise. */
52ce6436 7117
4c4b4cd2 7118static int
0d5cff50 7119find_struct_field (const char *name, struct type *type, int offset,
76a01679 7120 struct type **field_type_p,
52ce6436
PH
7121 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7122 int *index_p)
4c4b4cd2
PH
7123{
7124 int i;
828d5846 7125 int parent_offset = -1;
4c4b4cd2 7126
61ee279c 7127 type = ada_check_typedef (type);
76a01679 7128
52ce6436
PH
7129 if (field_type_p != NULL)
7130 *field_type_p = NULL;
7131 if (byte_offset_p != NULL)
d5d6fca5 7132 *byte_offset_p = 0;
52ce6436
PH
7133 if (bit_offset_p != NULL)
7134 *bit_offset_p = 0;
7135 if (bit_size_p != NULL)
7136 *bit_size_p = 0;
7137
7138 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7139 {
7140 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7141 int fld_offset = offset + bit_pos / 8;
0d5cff50 7142 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7143
4c4b4cd2
PH
7144 if (t_field_name == NULL)
7145 continue;
7146
828d5846
XR
7147 else if (ada_is_parent_field (type, i))
7148 {
7149 /* This is a field pointing us to the parent type of a tagged
7150 type. As hinted in this function's documentation, we give
7151 preference to fields in the current record first, so what
7152 we do here is just record the index of this field before
7153 we skip it. If it turns out we couldn't find our field
7154 in the current record, then we'll get back to it and search
7155 inside it whether the field might exist in the parent. */
7156
7157 parent_offset = i;
7158 continue;
7159 }
7160
52ce6436 7161 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7162 {
7163 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7164
52ce6436
PH
7165 if (field_type_p != NULL)
7166 *field_type_p = TYPE_FIELD_TYPE (type, i);
7167 if (byte_offset_p != NULL)
7168 *byte_offset_p = fld_offset;
7169 if (bit_offset_p != NULL)
7170 *bit_offset_p = bit_pos % 8;
7171 if (bit_size_p != NULL)
7172 *bit_size_p = bit_size;
76a01679
JB
7173 return 1;
7174 }
4c4b4cd2
PH
7175 else if (ada_is_wrapper_field (type, i))
7176 {
52ce6436
PH
7177 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7178 field_type_p, byte_offset_p, bit_offset_p,
7179 bit_size_p, index_p))
76a01679
JB
7180 return 1;
7181 }
4c4b4cd2
PH
7182 else if (ada_is_variant_part (type, i))
7183 {
52ce6436
PH
7184 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7185 fixed type?? */
4c4b4cd2 7186 int j;
52ce6436
PH
7187 struct type *field_type
7188 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7189
52ce6436 7190 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7191 {
76a01679
JB
7192 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7193 fld_offset
7194 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7195 field_type_p, byte_offset_p,
52ce6436 7196 bit_offset_p, bit_size_p, index_p))
76a01679 7197 return 1;
4c4b4cd2
PH
7198 }
7199 }
52ce6436
PH
7200 else if (index_p != NULL)
7201 *index_p += 1;
4c4b4cd2 7202 }
828d5846
XR
7203
7204 /* Field not found so far. If this is a tagged type which
7205 has a parent, try finding that field in the parent now. */
7206
7207 if (parent_offset != -1)
7208 {
7209 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7210 int fld_offset = offset + bit_pos / 8;
7211
7212 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7213 fld_offset, field_type_p, byte_offset_p,
7214 bit_offset_p, bit_size_p, index_p))
7215 return 1;
7216 }
7217
4c4b4cd2
PH
7218 return 0;
7219}
7220
0963b4bd 7221/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7222
52ce6436
PH
7223static int
7224num_visible_fields (struct type *type)
7225{
7226 int n;
5b4ee69b 7227
52ce6436
PH
7228 n = 0;
7229 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7230 return n;
7231}
14f9c5c9 7232
4c4b4cd2 7233/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7234 and search in it assuming it has (class) type TYPE.
7235 If found, return value, else return NULL.
7236
828d5846
XR
7237 Searches recursively through wrapper fields (e.g., '_parent').
7238
7239 In the case of homonyms in the tagged types, please refer to the
7240 long explanation in find_struct_field's function documentation. */
14f9c5c9 7241
4c4b4cd2 7242static struct value *
108d56a4 7243ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7244 struct type *type)
14f9c5c9
AS
7245{
7246 int i;
828d5846 7247 int parent_offset = -1;
14f9c5c9 7248
5b4ee69b 7249 type = ada_check_typedef (type);
52ce6436 7250 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7251 {
0d5cff50 7252 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7253
7254 if (t_field_name == NULL)
4c4b4cd2 7255 continue;
14f9c5c9 7256
828d5846
XR
7257 else if (ada_is_parent_field (type, i))
7258 {
7259 /* This is a field pointing us to the parent type of a tagged
7260 type. As hinted in this function's documentation, we give
7261 preference to fields in the current record first, so what
7262 we do here is just record the index of this field before
7263 we skip it. If it turns out we couldn't find our field
7264 in the current record, then we'll get back to it and search
7265 inside it whether the field might exist in the parent. */
7266
7267 parent_offset = i;
7268 continue;
7269 }
7270
14f9c5c9 7271 else if (field_name_match (t_field_name, name))
4c4b4cd2 7272 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7273
7274 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7275 {
0963b4bd 7276 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7277 ada_search_struct_field (name, arg,
7278 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7279 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7280
4c4b4cd2
PH
7281 if (v != NULL)
7282 return v;
7283 }
14f9c5c9
AS
7284
7285 else if (ada_is_variant_part (type, i))
4c4b4cd2 7286 {
0963b4bd 7287 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7288 int j;
5b4ee69b
MS
7289 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7290 i));
4c4b4cd2
PH
7291 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7292
52ce6436 7293 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7294 {
0963b4bd
MS
7295 struct value *v = ada_search_struct_field /* Force line
7296 break. */
06d5cf63
JB
7297 (name, arg,
7298 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7299 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7300
4c4b4cd2
PH
7301 if (v != NULL)
7302 return v;
7303 }
7304 }
14f9c5c9 7305 }
828d5846
XR
7306
7307 /* Field not found so far. If this is a tagged type which
7308 has a parent, try finding that field in the parent now. */
7309
7310 if (parent_offset != -1)
7311 {
7312 struct value *v = ada_search_struct_field (
7313 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7314 TYPE_FIELD_TYPE (type, parent_offset));
7315
7316 if (v != NULL)
7317 return v;
7318 }
7319
14f9c5c9
AS
7320 return NULL;
7321}
d2e4a39e 7322
52ce6436
PH
7323static struct value *ada_index_struct_field_1 (int *, struct value *,
7324 int, struct type *);
7325
7326
7327/* Return field #INDEX in ARG, where the index is that returned by
7328 * find_struct_field through its INDEX_P argument. Adjust the address
7329 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7330 * If found, return value, else return NULL. */
52ce6436
PH
7331
7332static struct value *
7333ada_index_struct_field (int index, struct value *arg, int offset,
7334 struct type *type)
7335{
7336 return ada_index_struct_field_1 (&index, arg, offset, type);
7337}
7338
7339
7340/* Auxiliary function for ada_index_struct_field. Like
7341 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7342 * *INDEX_P. */
52ce6436
PH
7343
7344static struct value *
7345ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7346 struct type *type)
7347{
7348 int i;
7349 type = ada_check_typedef (type);
7350
7351 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7352 {
7353 if (TYPE_FIELD_NAME (type, i) == NULL)
7354 continue;
7355 else if (ada_is_wrapper_field (type, i))
7356 {
0963b4bd 7357 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7358 ada_index_struct_field_1 (index_p, arg,
7359 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7360 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7361
52ce6436
PH
7362 if (v != NULL)
7363 return v;
7364 }
7365
7366 else if (ada_is_variant_part (type, i))
7367 {
7368 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7369 find_struct_field. */
52ce6436
PH
7370 error (_("Cannot assign this kind of variant record"));
7371 }
7372 else if (*index_p == 0)
7373 return ada_value_primitive_field (arg, offset, i, type);
7374 else
7375 *index_p -= 1;
7376 }
7377 return NULL;
7378}
7379
4c4b4cd2
PH
7380/* Given ARG, a value of type (pointer or reference to a)*
7381 structure/union, extract the component named NAME from the ultimate
7382 target structure/union and return it as a value with its
f5938064 7383 appropriate type.
14f9c5c9 7384
4c4b4cd2
PH
7385 The routine searches for NAME among all members of the structure itself
7386 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7387 (e.g., '_parent').
7388
03ee6b2e
PH
7389 If NO_ERR, then simply return NULL in case of error, rather than
7390 calling error. */
14f9c5c9 7391
d2e4a39e 7392struct value *
a121b7c1 7393ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7394{
4c4b4cd2 7395 struct type *t, *t1;
d2e4a39e 7396 struct value *v;
1f5d1570 7397 int check_tag;
14f9c5c9 7398
4c4b4cd2 7399 v = NULL;
df407dfe 7400 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7401 if (TYPE_CODE (t) == TYPE_CODE_REF)
7402 {
7403 t1 = TYPE_TARGET_TYPE (t);
7404 if (t1 == NULL)
03ee6b2e 7405 goto BadValue;
61ee279c 7406 t1 = ada_check_typedef (t1);
4c4b4cd2 7407 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7408 {
994b9211 7409 arg = coerce_ref (arg);
76a01679
JB
7410 t = t1;
7411 }
4c4b4cd2 7412 }
14f9c5c9 7413
4c4b4cd2
PH
7414 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7415 {
7416 t1 = TYPE_TARGET_TYPE (t);
7417 if (t1 == NULL)
03ee6b2e 7418 goto BadValue;
61ee279c 7419 t1 = ada_check_typedef (t1);
4c4b4cd2 7420 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7421 {
7422 arg = value_ind (arg);
7423 t = t1;
7424 }
4c4b4cd2 7425 else
76a01679 7426 break;
4c4b4cd2 7427 }
14f9c5c9 7428
4c4b4cd2 7429 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7430 goto BadValue;
14f9c5c9 7431
4c4b4cd2
PH
7432 if (t1 == t)
7433 v = ada_search_struct_field (name, arg, 0, t);
7434 else
7435 {
7436 int bit_offset, bit_size, byte_offset;
7437 struct type *field_type;
7438 CORE_ADDR address;
7439
76a01679 7440 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7441 address = value_address (ada_value_ind (arg));
4c4b4cd2 7442 else
b50d69b5 7443 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7444
828d5846
XR
7445 /* Check to see if this is a tagged type. We also need to handle
7446 the case where the type is a reference to a tagged type, but
7447 we have to be careful to exclude pointers to tagged types.
7448 The latter should be shown as usual (as a pointer), whereas
7449 a reference should mostly be transparent to the user. */
7450
7451 if (ada_is_tagged_type (t1, 0)
7452 || (TYPE_CODE (t1) == TYPE_CODE_REF
7453 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7454 {
7455 /* We first try to find the searched field in the current type.
7456 If not found then let's look in the fixed type. */
7457
7458 if (!find_struct_field (name, t1, 0,
7459 &field_type, &byte_offset, &bit_offset,
7460 &bit_size, NULL))
1f5d1570
JG
7461 check_tag = 1;
7462 else
7463 check_tag = 0;
828d5846
XR
7464 }
7465 else
1f5d1570
JG
7466 check_tag = 0;
7467
7468 /* Convert to fixed type in all cases, so that we have proper
7469 offsets to each field in unconstrained record types. */
7470 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7471 address, NULL, check_tag);
828d5846 7472
76a01679
JB
7473 if (find_struct_field (name, t1, 0,
7474 &field_type, &byte_offset, &bit_offset,
52ce6436 7475 &bit_size, NULL))
76a01679
JB
7476 {
7477 if (bit_size != 0)
7478 {
714e53ab
PH
7479 if (TYPE_CODE (t) == TYPE_CODE_REF)
7480 arg = ada_coerce_ref (arg);
7481 else
7482 arg = ada_value_ind (arg);
76a01679
JB
7483 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7484 bit_offset, bit_size,
7485 field_type);
7486 }
7487 else
f5938064 7488 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7489 }
7490 }
7491
03ee6b2e
PH
7492 if (v != NULL || no_err)
7493 return v;
7494 else
323e0a4a 7495 error (_("There is no member named %s."), name);
14f9c5c9 7496
03ee6b2e
PH
7497 BadValue:
7498 if (no_err)
7499 return NULL;
7500 else
0963b4bd
MS
7501 error (_("Attempt to extract a component of "
7502 "a value that is not a record."));
14f9c5c9
AS
7503}
7504
3b4de39c 7505/* Return a string representation of type TYPE. */
99bbb428 7506
3b4de39c 7507static std::string
99bbb428
PA
7508type_as_string (struct type *type)
7509{
d7e74731 7510 string_file tmp_stream;
99bbb428 7511
d7e74731 7512 type_print (type, "", &tmp_stream, -1);
99bbb428 7513
d7e74731 7514 return std::move (tmp_stream.string ());
99bbb428
PA
7515}
7516
14f9c5c9 7517/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7518 If DISPP is non-null, add its byte displacement from the beginning of a
7519 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7520 work for packed fields).
7521
7522 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7523 followed by "___".
14f9c5c9 7524
0963b4bd 7525 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7526 be a (pointer or reference)+ to a struct or union, and the
7527 ultimate target type will be searched.
14f9c5c9
AS
7528
7529 Looks recursively into variant clauses and parent types.
7530
828d5846
XR
7531 In the case of homonyms in the tagged types, please refer to the
7532 long explanation in find_struct_field's function documentation.
7533
4c4b4cd2
PH
7534 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7535 TYPE is not a type of the right kind. */
14f9c5c9 7536
4c4b4cd2 7537static struct type *
a121b7c1 7538ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7539 int noerr)
14f9c5c9
AS
7540{
7541 int i;
828d5846 7542 int parent_offset = -1;
14f9c5c9
AS
7543
7544 if (name == NULL)
7545 goto BadName;
7546
76a01679 7547 if (refok && type != NULL)
4c4b4cd2
PH
7548 while (1)
7549 {
61ee279c 7550 type = ada_check_typedef (type);
76a01679
JB
7551 if (TYPE_CODE (type) != TYPE_CODE_PTR
7552 && TYPE_CODE (type) != TYPE_CODE_REF)
7553 break;
7554 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7555 }
14f9c5c9 7556
76a01679 7557 if (type == NULL
1265e4aa
JB
7558 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7559 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7560 {
4c4b4cd2 7561 if (noerr)
76a01679 7562 return NULL;
99bbb428 7563
3b4de39c
PA
7564 error (_("Type %s is not a structure or union type"),
7565 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7566 }
7567
7568 type = to_static_fixed_type (type);
7569
7570 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7571 {
0d5cff50 7572 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7573 struct type *t;
d2e4a39e 7574
14f9c5c9 7575 if (t_field_name == NULL)
4c4b4cd2 7576 continue;
14f9c5c9 7577
828d5846
XR
7578 else if (ada_is_parent_field (type, i))
7579 {
7580 /* This is a field pointing us to the parent type of a tagged
7581 type. As hinted in this function's documentation, we give
7582 preference to fields in the current record first, so what
7583 we do here is just record the index of this field before
7584 we skip it. If it turns out we couldn't find our field
7585 in the current record, then we'll get back to it and search
7586 inside it whether the field might exist in the parent. */
7587
7588 parent_offset = i;
7589 continue;
7590 }
7591
14f9c5c9 7592 else if (field_name_match (t_field_name, name))
988f6b3d 7593 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7594
7595 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7596 {
4c4b4cd2 7597 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7598 0, 1);
4c4b4cd2 7599 if (t != NULL)
988f6b3d 7600 return t;
4c4b4cd2 7601 }
14f9c5c9
AS
7602
7603 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7604 {
7605 int j;
5b4ee69b
MS
7606 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7607 i));
4c4b4cd2
PH
7608
7609 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7610 {
b1f33ddd
JB
7611 /* FIXME pnh 2008/01/26: We check for a field that is
7612 NOT wrapped in a struct, since the compiler sometimes
7613 generates these for unchecked variant types. Revisit
0963b4bd 7614 if the compiler changes this practice. */
0d5cff50 7615 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7616
b1f33ddd
JB
7617 if (v_field_name != NULL
7618 && field_name_match (v_field_name, name))
460efde1 7619 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7620 else
0963b4bd
MS
7621 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7622 j),
988f6b3d 7623 name, 0, 1);
b1f33ddd 7624
4c4b4cd2 7625 if (t != NULL)
988f6b3d 7626 return t;
4c4b4cd2
PH
7627 }
7628 }
14f9c5c9
AS
7629
7630 }
7631
828d5846
XR
7632 /* Field not found so far. If this is a tagged type which
7633 has a parent, try finding that field in the parent now. */
7634
7635 if (parent_offset != -1)
7636 {
7637 struct type *t;
7638
7639 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7640 name, 0, 1);
7641 if (t != NULL)
7642 return t;
7643 }
7644
14f9c5c9 7645BadName:
d2e4a39e 7646 if (!noerr)
14f9c5c9 7647 {
2b2798cc 7648 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7649
7650 error (_("Type %s has no component named %s"),
3b4de39c 7651 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7652 }
7653
7654 return NULL;
7655}
7656
b1f33ddd
JB
7657/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7658 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7659 represents an unchecked union (that is, the variant part of a
0963b4bd 7660 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7661
7662static int
7663is_unchecked_variant (struct type *var_type, struct type *outer_type)
7664{
a121b7c1 7665 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7666
988f6b3d 7667 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7668}
7669
7670
14f9c5c9
AS
7671/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7672 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7673 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7674 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7675
d2e4a39e 7676int
ebf56fd3 7677ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7678 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7679{
7680 int others_clause;
7681 int i;
a121b7c1 7682 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7683 struct value *outer;
7684 struct value *discrim;
14f9c5c9
AS
7685 LONGEST discrim_val;
7686
012370f6
TT
7687 /* Using plain value_from_contents_and_address here causes problems
7688 because we will end up trying to resolve a type that is currently
7689 being constructed. */
7690 outer = value_from_contents_and_address_unresolved (outer_type,
7691 outer_valaddr, 0);
0c281816
JB
7692 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7693 if (discrim == NULL)
14f9c5c9 7694 return -1;
0c281816 7695 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7696
7697 others_clause = -1;
7698 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7699 {
7700 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7701 others_clause = i;
14f9c5c9 7702 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7703 return i;
14f9c5c9
AS
7704 }
7705
7706 return others_clause;
7707}
d2e4a39e 7708\f
14f9c5c9
AS
7709
7710
4c4b4cd2 7711 /* Dynamic-Sized Records */
14f9c5c9
AS
7712
7713/* Strategy: The type ostensibly attached to a value with dynamic size
7714 (i.e., a size that is not statically recorded in the debugging
7715 data) does not accurately reflect the size or layout of the value.
7716 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7717 conventional types that are constructed on the fly. */
14f9c5c9
AS
7718
7719/* There is a subtle and tricky problem here. In general, we cannot
7720 determine the size of dynamic records without its data. However,
7721 the 'struct value' data structure, which GDB uses to represent
7722 quantities in the inferior process (the target), requires the size
7723 of the type at the time of its allocation in order to reserve space
7724 for GDB's internal copy of the data. That's why the
7725 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7726 rather than struct value*s.
14f9c5c9
AS
7727
7728 However, GDB's internal history variables ($1, $2, etc.) are
7729 struct value*s containing internal copies of the data that are not, in
7730 general, the same as the data at their corresponding addresses in
7731 the target. Fortunately, the types we give to these values are all
7732 conventional, fixed-size types (as per the strategy described
7733 above), so that we don't usually have to perform the
7734 'to_fixed_xxx_type' conversions to look at their values.
7735 Unfortunately, there is one exception: if one of the internal
7736 history variables is an array whose elements are unconstrained
7737 records, then we will need to create distinct fixed types for each
7738 element selected. */
7739
7740/* The upshot of all of this is that many routines take a (type, host
7741 address, target address) triple as arguments to represent a value.
7742 The host address, if non-null, is supposed to contain an internal
7743 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7744 target at the target address. */
14f9c5c9
AS
7745
7746/* Assuming that VAL0 represents a pointer value, the result of
7747 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7748 dynamic-sized types. */
14f9c5c9 7749
d2e4a39e
AS
7750struct value *
7751ada_value_ind (struct value *val0)
14f9c5c9 7752{
c48db5ca 7753 struct value *val = value_ind (val0);
5b4ee69b 7754
b50d69b5
JG
7755 if (ada_is_tagged_type (value_type (val), 0))
7756 val = ada_tag_value_at_base_address (val);
7757
4c4b4cd2 7758 return ada_to_fixed_value (val);
14f9c5c9
AS
7759}
7760
7761/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7762 qualifiers on VAL0. */
7763
d2e4a39e
AS
7764static struct value *
7765ada_coerce_ref (struct value *val0)
7766{
df407dfe 7767 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7768 {
7769 struct value *val = val0;
5b4ee69b 7770
994b9211 7771 val = coerce_ref (val);
b50d69b5
JG
7772
7773 if (ada_is_tagged_type (value_type (val), 0))
7774 val = ada_tag_value_at_base_address (val);
7775
4c4b4cd2 7776 return ada_to_fixed_value (val);
d2e4a39e
AS
7777 }
7778 else
14f9c5c9
AS
7779 return val0;
7780}
7781
7782/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7783 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7784
7785static unsigned int
ebf56fd3 7786align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7787{
7788 return (off + alignment - 1) & ~(alignment - 1);
7789}
7790
4c4b4cd2 7791/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7792
7793static unsigned int
ebf56fd3 7794field_alignment (struct type *type, int f)
14f9c5c9 7795{
d2e4a39e 7796 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7797 int len;
14f9c5c9
AS
7798 int align_offset;
7799
64a1bf19
JB
7800 /* The field name should never be null, unless the debugging information
7801 is somehow malformed. In this case, we assume the field does not
7802 require any alignment. */
7803 if (name == NULL)
7804 return 1;
7805
7806 len = strlen (name);
7807
4c4b4cd2
PH
7808 if (!isdigit (name[len - 1]))
7809 return 1;
14f9c5c9 7810
d2e4a39e 7811 if (isdigit (name[len - 2]))
14f9c5c9
AS
7812 align_offset = len - 2;
7813 else
7814 align_offset = len - 1;
7815
61012eef 7816 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7817 return TARGET_CHAR_BIT;
7818
4c4b4cd2
PH
7819 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7820}
7821
852dff6c 7822/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7823
852dff6c
JB
7824static struct symbol *
7825ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7826{
7827 struct symbol *sym;
7828
7829 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7830 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7831 return sym;
7832
4186eb54
KS
7833 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7834 return sym;
14f9c5c9
AS
7835}
7836
dddfab26
UW
7837/* Find a type named NAME. Ignores ambiguity. This routine will look
7838 solely for types defined by debug info, it will not search the GDB
7839 primitive types. */
4c4b4cd2 7840
852dff6c 7841static struct type *
ebf56fd3 7842ada_find_any_type (const char *name)
14f9c5c9 7843{
852dff6c 7844 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7845
14f9c5c9 7846 if (sym != NULL)
dddfab26 7847 return SYMBOL_TYPE (sym);
14f9c5c9 7848
dddfab26 7849 return NULL;
14f9c5c9
AS
7850}
7851
739593e0
JB
7852/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7853 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7854 symbol, in which case it is returned. Otherwise, this looks for
7855 symbols whose name is that of NAME_SYM suffixed with "___XR".
7856 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7857
c0e70c62
TT
7858static bool
7859ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7860{
739593e0 7861 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
c0e70c62 7862 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7863}
7864
14f9c5c9 7865/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7866 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7867 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7868 otherwise return 0. */
7869
14f9c5c9 7870int
d2e4a39e 7871ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7872{
7873 if (type1 == NULL)
7874 return 1;
7875 else if (type0 == NULL)
7876 return 0;
7877 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7878 return 1;
7879 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7880 return 0;
4c4b4cd2
PH
7881 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7882 return 1;
ad82864c 7883 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7884 return 1;
4c4b4cd2
PH
7885 else if (ada_is_array_descriptor_type (type0)
7886 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7887 return 1;
aeb5907d
JB
7888 else
7889 {
a737d952
TT
7890 const char *type0_name = TYPE_NAME (type0);
7891 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
7892
7893 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7894 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7895 return 1;
7896 }
14f9c5c9
AS
7897 return 0;
7898}
7899
e86ca25f
TT
7900/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7901 null. */
4c4b4cd2 7902
0d5cff50 7903const char *
d2e4a39e 7904ada_type_name (struct type *type)
14f9c5c9 7905{
d2e4a39e 7906 if (type == NULL)
14f9c5c9 7907 return NULL;
e86ca25f 7908 return TYPE_NAME (type);
14f9c5c9
AS
7909}
7910
b4ba55a1
JB
7911/* Search the list of "descriptive" types associated to TYPE for a type
7912 whose name is NAME. */
7913
7914static struct type *
7915find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7916{
931e5bc3 7917 struct type *result, *tmp;
b4ba55a1 7918
c6044dd1
JB
7919 if (ada_ignore_descriptive_types_p)
7920 return NULL;
7921
b4ba55a1
JB
7922 /* If there no descriptive-type info, then there is no parallel type
7923 to be found. */
7924 if (!HAVE_GNAT_AUX_INFO (type))
7925 return NULL;
7926
7927 result = TYPE_DESCRIPTIVE_TYPE (type);
7928 while (result != NULL)
7929 {
0d5cff50 7930 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7931
7932 if (result_name == NULL)
7933 {
7934 warning (_("unexpected null name on descriptive type"));
7935 return NULL;
7936 }
7937
7938 /* If the names match, stop. */
7939 if (strcmp (result_name, name) == 0)
7940 break;
7941
7942 /* Otherwise, look at the next item on the list, if any. */
7943 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7944 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7945 else
7946 tmp = NULL;
7947
7948 /* If not found either, try after having resolved the typedef. */
7949 if (tmp != NULL)
7950 result = tmp;
b4ba55a1 7951 else
931e5bc3 7952 {
f168693b 7953 result = check_typedef (result);
931e5bc3
JG
7954 if (HAVE_GNAT_AUX_INFO (result))
7955 result = TYPE_DESCRIPTIVE_TYPE (result);
7956 else
7957 result = NULL;
7958 }
b4ba55a1
JB
7959 }
7960
7961 /* If we didn't find a match, see whether this is a packed array. With
7962 older compilers, the descriptive type information is either absent or
7963 irrelevant when it comes to packed arrays so the above lookup fails.
7964 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7965 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7966 return ada_find_any_type (name);
7967
7968 return result;
7969}
7970
7971/* Find a parallel type to TYPE with the specified NAME, using the
7972 descriptive type taken from the debugging information, if available,
7973 and otherwise using the (slower) name-based method. */
7974
7975static struct type *
7976ada_find_parallel_type_with_name (struct type *type, const char *name)
7977{
7978 struct type *result = NULL;
7979
7980 if (HAVE_GNAT_AUX_INFO (type))
7981 result = find_parallel_type_by_descriptive_type (type, name);
7982 else
7983 result = ada_find_any_type (name);
7984
7985 return result;
7986}
7987
7988/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7989 SUFFIX to the name of TYPE. */
14f9c5c9 7990
d2e4a39e 7991struct type *
ebf56fd3 7992ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7993{
0d5cff50 7994 char *name;
fe978cb0 7995 const char *type_name = ada_type_name (type);
14f9c5c9 7996 int len;
d2e4a39e 7997
fe978cb0 7998 if (type_name == NULL)
14f9c5c9
AS
7999 return NULL;
8000
fe978cb0 8001 len = strlen (type_name);
14f9c5c9 8002
b4ba55a1 8003 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8004
fe978cb0 8005 strcpy (name, type_name);
14f9c5c9
AS
8006 strcpy (name + len, suffix);
8007
b4ba55a1 8008 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8009}
8010
14f9c5c9 8011/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8012 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8013
d2e4a39e
AS
8014static struct type *
8015dynamic_template_type (struct type *type)
14f9c5c9 8016{
61ee279c 8017 type = ada_check_typedef (type);
14f9c5c9
AS
8018
8019 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8020 || ada_type_name (type) == NULL)
14f9c5c9 8021 return NULL;
d2e4a39e 8022 else
14f9c5c9
AS
8023 {
8024 int len = strlen (ada_type_name (type));
5b4ee69b 8025
4c4b4cd2
PH
8026 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8027 return type;
14f9c5c9 8028 else
4c4b4cd2 8029 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8030 }
8031}
8032
8033/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8034 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8035
d2e4a39e
AS
8036static int
8037is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8038{
8039 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8040
d2e4a39e 8041 return name != NULL
14f9c5c9
AS
8042 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8043 && strstr (name, "___XVL") != NULL;
8044}
8045
4c4b4cd2
PH
8046/* The index of the variant field of TYPE, or -1 if TYPE does not
8047 represent a variant record type. */
14f9c5c9 8048
d2e4a39e 8049static int
4c4b4cd2 8050variant_field_index (struct type *type)
14f9c5c9
AS
8051{
8052 int f;
8053
4c4b4cd2
PH
8054 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8055 return -1;
8056
8057 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8058 {
8059 if (ada_is_variant_part (type, f))
8060 return f;
8061 }
8062 return -1;
14f9c5c9
AS
8063}
8064
4c4b4cd2
PH
8065/* A record type with no fields. */
8066
d2e4a39e 8067static struct type *
fe978cb0 8068empty_record (struct type *templ)
14f9c5c9 8069{
fe978cb0 8070 struct type *type = alloc_type_copy (templ);
5b4ee69b 8071
14f9c5c9
AS
8072 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8073 TYPE_NFIELDS (type) = 0;
8074 TYPE_FIELDS (type) = NULL;
8ecb59f8 8075 INIT_NONE_SPECIFIC (type);
14f9c5c9 8076 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8077 TYPE_LENGTH (type) = 0;
8078 return type;
8079}
8080
8081/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8082 the value of type TYPE at VALADDR or ADDRESS (see comments at
8083 the beginning of this section) VAL according to GNAT conventions.
8084 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8085 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8086 an outer-level type (i.e., as opposed to a branch of a variant.) A
8087 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8088 of the variant.
14f9c5c9 8089
4c4b4cd2
PH
8090 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8091 length are not statically known are discarded. As a consequence,
8092 VALADDR, ADDRESS and DVAL0 are ignored.
8093
8094 NOTE: Limitations: For now, we assume that dynamic fields and
8095 variants occupy whole numbers of bytes. However, they need not be
8096 byte-aligned. */
8097
8098struct type *
10a2c479 8099ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8100 const gdb_byte *valaddr,
4c4b4cd2
PH
8101 CORE_ADDR address, struct value *dval0,
8102 int keep_dynamic_fields)
14f9c5c9 8103{
d2e4a39e
AS
8104 struct value *mark = value_mark ();
8105 struct value *dval;
8106 struct type *rtype;
14f9c5c9 8107 int nfields, bit_len;
4c4b4cd2 8108 int variant_field;
14f9c5c9 8109 long off;
d94e4f4f 8110 int fld_bit_len;
14f9c5c9
AS
8111 int f;
8112
4c4b4cd2
PH
8113 /* Compute the number of fields in this record type that are going
8114 to be processed: unless keep_dynamic_fields, this includes only
8115 fields whose position and length are static will be processed. */
8116 if (keep_dynamic_fields)
8117 nfields = TYPE_NFIELDS (type);
8118 else
8119 {
8120 nfields = 0;
76a01679 8121 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8122 && !ada_is_variant_part (type, nfields)
8123 && !is_dynamic_field (type, nfields))
8124 nfields++;
8125 }
8126
e9bb382b 8127 rtype = alloc_type_copy (type);
14f9c5c9 8128 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8129 INIT_NONE_SPECIFIC (rtype);
14f9c5c9 8130 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8131 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8132 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8133 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8134 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8135 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8136
d2e4a39e
AS
8137 off = 0;
8138 bit_len = 0;
4c4b4cd2
PH
8139 variant_field = -1;
8140
14f9c5c9
AS
8141 for (f = 0; f < nfields; f += 1)
8142 {
6c038f32
PH
8143 off = align_value (off, field_alignment (type, f))
8144 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8145 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8146 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8147
d2e4a39e 8148 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8149 {
8150 variant_field = f;
d94e4f4f 8151 fld_bit_len = 0;
4c4b4cd2 8152 }
14f9c5c9 8153 else if (is_dynamic_field (type, f))
4c4b4cd2 8154 {
284614f0
JB
8155 const gdb_byte *field_valaddr = valaddr;
8156 CORE_ADDR field_address = address;
8157 struct type *field_type =
8158 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8159
4c4b4cd2 8160 if (dval0 == NULL)
b5304971
JG
8161 {
8162 /* rtype's length is computed based on the run-time
8163 value of discriminants. If the discriminants are not
8164 initialized, the type size may be completely bogus and
0963b4bd 8165 GDB may fail to allocate a value for it. So check the
b5304971 8166 size first before creating the value. */
c1b5a1a6 8167 ada_ensure_varsize_limit (rtype);
012370f6
TT
8168 /* Using plain value_from_contents_and_address here
8169 causes problems because we will end up trying to
8170 resolve a type that is currently being
8171 constructed. */
8172 dval = value_from_contents_and_address_unresolved (rtype,
8173 valaddr,
8174 address);
9f1f738a 8175 rtype = value_type (dval);
b5304971 8176 }
4c4b4cd2
PH
8177 else
8178 dval = dval0;
8179
284614f0
JB
8180 /* If the type referenced by this field is an aligner type, we need
8181 to unwrap that aligner type, because its size might not be set.
8182 Keeping the aligner type would cause us to compute the wrong
8183 size for this field, impacting the offset of the all the fields
8184 that follow this one. */
8185 if (ada_is_aligner_type (field_type))
8186 {
8187 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8188
8189 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8190 field_address = cond_offset_target (field_address, field_offset);
8191 field_type = ada_aligned_type (field_type);
8192 }
8193
8194 field_valaddr = cond_offset_host (field_valaddr,
8195 off / TARGET_CHAR_BIT);
8196 field_address = cond_offset_target (field_address,
8197 off / TARGET_CHAR_BIT);
8198
8199 /* Get the fixed type of the field. Note that, in this case,
8200 we do not want to get the real type out of the tag: if
8201 the current field is the parent part of a tagged record,
8202 we will get the tag of the object. Clearly wrong: the real
8203 type of the parent is not the real type of the child. We
8204 would end up in an infinite loop. */
8205 field_type = ada_get_base_type (field_type);
8206 field_type = ada_to_fixed_type (field_type, field_valaddr,
8207 field_address, dval, 0);
27f2a97b
JB
8208 /* If the field size is already larger than the maximum
8209 object size, then the record itself will necessarily
8210 be larger than the maximum object size. We need to make
8211 this check now, because the size might be so ridiculously
8212 large (due to an uninitialized variable in the inferior)
8213 that it would cause an overflow when adding it to the
8214 record size. */
c1b5a1a6 8215 ada_ensure_varsize_limit (field_type);
284614f0
JB
8216
8217 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8218 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8219 /* The multiplication can potentially overflow. But because
8220 the field length has been size-checked just above, and
8221 assuming that the maximum size is a reasonable value,
8222 an overflow should not happen in practice. So rather than
8223 adding overflow recovery code to this already complex code,
8224 we just assume that it's not going to happen. */
d94e4f4f 8225 fld_bit_len =
4c4b4cd2
PH
8226 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8227 }
14f9c5c9 8228 else
4c4b4cd2 8229 {
5ded5331
JB
8230 /* Note: If this field's type is a typedef, it is important
8231 to preserve the typedef layer.
8232
8233 Otherwise, we might be transforming a typedef to a fat
8234 pointer (encoding a pointer to an unconstrained array),
8235 into a basic fat pointer (encoding an unconstrained
8236 array). As both types are implemented using the same
8237 structure, the typedef is the only clue which allows us
8238 to distinguish between the two options. Stripping it
8239 would prevent us from printing this field appropriately. */
8240 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8241 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8242 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8243 fld_bit_len =
4c4b4cd2
PH
8244 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8245 else
5ded5331
JB
8246 {
8247 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8248
8249 /* We need to be careful of typedefs when computing
8250 the length of our field. If this is a typedef,
8251 get the length of the target type, not the length
8252 of the typedef. */
8253 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8254 field_type = ada_typedef_target_type (field_type);
8255
8256 fld_bit_len =
8257 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8258 }
4c4b4cd2 8259 }
14f9c5c9 8260 if (off + fld_bit_len > bit_len)
4c4b4cd2 8261 bit_len = off + fld_bit_len;
d94e4f4f 8262 off += fld_bit_len;
4c4b4cd2
PH
8263 TYPE_LENGTH (rtype) =
8264 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8265 }
4c4b4cd2
PH
8266
8267 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8268 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8269 the record. This can happen in the presence of representation
8270 clauses. */
8271 if (variant_field >= 0)
8272 {
8273 struct type *branch_type;
8274
8275 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8276
8277 if (dval0 == NULL)
9f1f738a 8278 {
012370f6
TT
8279 /* Using plain value_from_contents_and_address here causes
8280 problems because we will end up trying to resolve a type
8281 that is currently being constructed. */
8282 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8283 address);
9f1f738a
SA
8284 rtype = value_type (dval);
8285 }
4c4b4cd2
PH
8286 else
8287 dval = dval0;
8288
8289 branch_type =
8290 to_fixed_variant_branch_type
8291 (TYPE_FIELD_TYPE (type, variant_field),
8292 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8293 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8294 if (branch_type == NULL)
8295 {
8296 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8297 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8298 TYPE_NFIELDS (rtype) -= 1;
8299 }
8300 else
8301 {
8302 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8303 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8304 fld_bit_len =
8305 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8306 TARGET_CHAR_BIT;
8307 if (off + fld_bit_len > bit_len)
8308 bit_len = off + fld_bit_len;
8309 TYPE_LENGTH (rtype) =
8310 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8311 }
8312 }
8313
714e53ab
PH
8314 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8315 should contain the alignment of that record, which should be a strictly
8316 positive value. If null or negative, then something is wrong, most
8317 probably in the debug info. In that case, we don't round up the size
0963b4bd 8318 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8319 the current RTYPE length might be good enough for our purposes. */
8320 if (TYPE_LENGTH (type) <= 0)
8321 {
323e0a4a 8322 if (TYPE_NAME (rtype))
cc1defb1
KS
8323 warning (_("Invalid type size for `%s' detected: %s."),
8324 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
323e0a4a 8325 else
cc1defb1
KS
8326 warning (_("Invalid type size for <unnamed> detected: %s."),
8327 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8328 }
8329 else
8330 {
8331 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8332 TYPE_LENGTH (type));
8333 }
14f9c5c9
AS
8334
8335 value_free_to_mark (mark);
d2e4a39e 8336 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8337 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8338 return rtype;
8339}
8340
4c4b4cd2
PH
8341/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8342 of 1. */
14f9c5c9 8343
d2e4a39e 8344static struct type *
fc1a4b47 8345template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8346 CORE_ADDR address, struct value *dval0)
8347{
8348 return ada_template_to_fixed_record_type_1 (type, valaddr,
8349 address, dval0, 1);
8350}
8351
8352/* An ordinary record type in which ___XVL-convention fields and
8353 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8354 static approximations, containing all possible fields. Uses
8355 no runtime values. Useless for use in values, but that's OK,
8356 since the results are used only for type determinations. Works on both
8357 structs and unions. Representation note: to save space, we memorize
8358 the result of this function in the TYPE_TARGET_TYPE of the
8359 template type. */
8360
8361static struct type *
8362template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8363{
8364 struct type *type;
8365 int nfields;
8366 int f;
8367
9e195661
PMR
8368 /* No need no do anything if the input type is already fixed. */
8369 if (TYPE_FIXED_INSTANCE (type0))
8370 return type0;
8371
8372 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8373 if (TYPE_TARGET_TYPE (type0) != NULL)
8374 return TYPE_TARGET_TYPE (type0);
8375
9e195661 8376 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8377 type = type0;
9e195661
PMR
8378 nfields = TYPE_NFIELDS (type0);
8379
8380 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8381 recompute all over next time. */
8382 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8383
8384 for (f = 0; f < nfields; f += 1)
8385 {
460efde1 8386 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8387 struct type *new_type;
14f9c5c9 8388
4c4b4cd2 8389 if (is_dynamic_field (type0, f))
460efde1
JB
8390 {
8391 field_type = ada_check_typedef (field_type);
8392 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8393 }
14f9c5c9 8394 else
f192137b 8395 new_type = static_unwrap_type (field_type);
9e195661
PMR
8396
8397 if (new_type != field_type)
8398 {
8399 /* Clone TYPE0 only the first time we get a new field type. */
8400 if (type == type0)
8401 {
8402 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8403 TYPE_CODE (type) = TYPE_CODE (type0);
8ecb59f8 8404 INIT_NONE_SPECIFIC (type);
9e195661
PMR
8405 TYPE_NFIELDS (type) = nfields;
8406 TYPE_FIELDS (type) = (struct field *)
8407 TYPE_ALLOC (type, nfields * sizeof (struct field));
8408 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8409 sizeof (struct field) * nfields);
8410 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8411 TYPE_FIXED_INSTANCE (type) = 1;
8412 TYPE_LENGTH (type) = 0;
8413 }
8414 TYPE_FIELD_TYPE (type, f) = new_type;
8415 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8416 }
14f9c5c9 8417 }
9e195661 8418
14f9c5c9
AS
8419 return type;
8420}
8421
4c4b4cd2 8422/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8423 whose address in memory is ADDRESS, returns a revision of TYPE,
8424 which should be a non-dynamic-sized record, in which the variant
8425 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8426 for discriminant values in DVAL0, which can be NULL if the record
8427 contains the necessary discriminant values. */
8428
d2e4a39e 8429static struct type *
fc1a4b47 8430to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8431 CORE_ADDR address, struct value *dval0)
14f9c5c9 8432{
d2e4a39e 8433 struct value *mark = value_mark ();
4c4b4cd2 8434 struct value *dval;
d2e4a39e 8435 struct type *rtype;
14f9c5c9
AS
8436 struct type *branch_type;
8437 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8438 int variant_field = variant_field_index (type);
14f9c5c9 8439
4c4b4cd2 8440 if (variant_field == -1)
14f9c5c9
AS
8441 return type;
8442
4c4b4cd2 8443 if (dval0 == NULL)
9f1f738a
SA
8444 {
8445 dval = value_from_contents_and_address (type, valaddr, address);
8446 type = value_type (dval);
8447 }
4c4b4cd2
PH
8448 else
8449 dval = dval0;
8450
e9bb382b 8451 rtype = alloc_type_copy (type);
14f9c5c9 8452 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8453 INIT_NONE_SPECIFIC (rtype);
4c4b4cd2 8454 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8455 TYPE_FIELDS (rtype) =
8456 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8457 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8458 sizeof (struct field) * nfields);
14f9c5c9 8459 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8460 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8461 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8462
4c4b4cd2
PH
8463 branch_type = to_fixed_variant_branch_type
8464 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8465 cond_offset_host (valaddr,
4c4b4cd2
PH
8466 TYPE_FIELD_BITPOS (type, variant_field)
8467 / TARGET_CHAR_BIT),
d2e4a39e 8468 cond_offset_target (address,
4c4b4cd2
PH
8469 TYPE_FIELD_BITPOS (type, variant_field)
8470 / TARGET_CHAR_BIT), dval);
d2e4a39e 8471 if (branch_type == NULL)
14f9c5c9 8472 {
4c4b4cd2 8473 int f;
5b4ee69b 8474
4c4b4cd2
PH
8475 for (f = variant_field + 1; f < nfields; f += 1)
8476 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8477 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8478 }
8479 else
8480 {
4c4b4cd2
PH
8481 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8482 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8483 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8484 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8485 }
4c4b4cd2 8486 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8487
4c4b4cd2 8488 value_free_to_mark (mark);
14f9c5c9
AS
8489 return rtype;
8490}
8491
8492/* An ordinary record type (with fixed-length fields) that describes
8493 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8494 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8495 should be in DVAL, a record value; it may be NULL if the object
8496 at ADDR itself contains any necessary discriminant values.
8497 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8498 values from the record are needed. Except in the case that DVAL,
8499 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8500 unchecked) is replaced by a particular branch of the variant.
8501
8502 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8503 is questionable and may be removed. It can arise during the
8504 processing of an unconstrained-array-of-record type where all the
8505 variant branches have exactly the same size. This is because in
8506 such cases, the compiler does not bother to use the XVS convention
8507 when encoding the record. I am currently dubious of this
8508 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8509
d2e4a39e 8510static struct type *
fc1a4b47 8511to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8512 CORE_ADDR address, struct value *dval)
14f9c5c9 8513{
d2e4a39e 8514 struct type *templ_type;
14f9c5c9 8515
876cecd0 8516 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8517 return type0;
8518
d2e4a39e 8519 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8520
8521 if (templ_type != NULL)
8522 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8523 else if (variant_field_index (type0) >= 0)
8524 {
8525 if (dval == NULL && valaddr == NULL && address == 0)
8526 return type0;
8527 return to_record_with_fixed_variant_part (type0, valaddr, address,
8528 dval);
8529 }
14f9c5c9
AS
8530 else
8531 {
876cecd0 8532 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8533 return type0;
8534 }
8535
8536}
8537
8538/* An ordinary record type (with fixed-length fields) that describes
8539 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8540 union type. Any necessary discriminants' values should be in DVAL,
8541 a record value. That is, this routine selects the appropriate
8542 branch of the union at ADDR according to the discriminant value
b1f33ddd 8543 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8544 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8545
d2e4a39e 8546static struct type *
fc1a4b47 8547to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8548 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8549{
8550 int which;
d2e4a39e
AS
8551 struct type *templ_type;
8552 struct type *var_type;
14f9c5c9
AS
8553
8554 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8555 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8556 else
14f9c5c9
AS
8557 var_type = var_type0;
8558
8559 templ_type = ada_find_parallel_type (var_type, "___XVU");
8560
8561 if (templ_type != NULL)
8562 var_type = templ_type;
8563
b1f33ddd
JB
8564 if (is_unchecked_variant (var_type, value_type (dval)))
8565 return var_type0;
d2e4a39e
AS
8566 which =
8567 ada_which_variant_applies (var_type,
0fd88904 8568 value_type (dval), value_contents (dval));
14f9c5c9
AS
8569
8570 if (which < 0)
e9bb382b 8571 return empty_record (var_type);
14f9c5c9 8572 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8573 return to_fixed_record_type
d2e4a39e
AS
8574 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8575 valaddr, address, dval);
4c4b4cd2 8576 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8577 return
8578 to_fixed_record_type
8579 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8580 else
8581 return TYPE_FIELD_TYPE (var_type, which);
8582}
8583
8908fca5
JB
8584/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8585 ENCODING_TYPE, a type following the GNAT conventions for discrete
8586 type encodings, only carries redundant information. */
8587
8588static int
8589ada_is_redundant_range_encoding (struct type *range_type,
8590 struct type *encoding_type)
8591{
108d56a4 8592 const char *bounds_str;
8908fca5
JB
8593 int n;
8594 LONGEST lo, hi;
8595
8596 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8597
005e2509
JB
8598 if (TYPE_CODE (get_base_type (range_type))
8599 != TYPE_CODE (get_base_type (encoding_type)))
8600 {
8601 /* The compiler probably used a simple base type to describe
8602 the range type instead of the range's actual base type,
8603 expecting us to get the real base type from the encoding
8604 anyway. In this situation, the encoding cannot be ignored
8605 as redundant. */
8606 return 0;
8607 }
8608
8908fca5
JB
8609 if (is_dynamic_type (range_type))
8610 return 0;
8611
8612 if (TYPE_NAME (encoding_type) == NULL)
8613 return 0;
8614
8615 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8616 if (bounds_str == NULL)
8617 return 0;
8618
8619 n = 8; /* Skip "___XDLU_". */
8620 if (!ada_scan_number (bounds_str, n, &lo, &n))
8621 return 0;
8622 if (TYPE_LOW_BOUND (range_type) != lo)
8623 return 0;
8624
8625 n += 2; /* Skip the "__" separator between the two bounds. */
8626 if (!ada_scan_number (bounds_str, n, &hi, &n))
8627 return 0;
8628 if (TYPE_HIGH_BOUND (range_type) != hi)
8629 return 0;
8630
8631 return 1;
8632}
8633
8634/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8635 a type following the GNAT encoding for describing array type
8636 indices, only carries redundant information. */
8637
8638static int
8639ada_is_redundant_index_type_desc (struct type *array_type,
8640 struct type *desc_type)
8641{
8642 struct type *this_layer = check_typedef (array_type);
8643 int i;
8644
8645 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8646 {
8647 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8648 TYPE_FIELD_TYPE (desc_type, i)))
8649 return 0;
8650 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8651 }
8652
8653 return 1;
8654}
8655
14f9c5c9
AS
8656/* Assuming that TYPE0 is an array type describing the type of a value
8657 at ADDR, and that DVAL describes a record containing any
8658 discriminants used in TYPE0, returns a type for the value that
8659 contains no dynamic components (that is, no components whose sizes
8660 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8661 true, gives an error message if the resulting type's size is over
4c4b4cd2 8662 varsize_limit. */
14f9c5c9 8663
d2e4a39e
AS
8664static struct type *
8665to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8666 int ignore_too_big)
14f9c5c9 8667{
d2e4a39e
AS
8668 struct type *index_type_desc;
8669 struct type *result;
ad82864c 8670 int constrained_packed_array_p;
931e5bc3 8671 static const char *xa_suffix = "___XA";
14f9c5c9 8672
b0dd7688 8673 type0 = ada_check_typedef (type0);
284614f0 8674 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8675 return type0;
14f9c5c9 8676
ad82864c
JB
8677 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8678 if (constrained_packed_array_p)
8679 type0 = decode_constrained_packed_array_type (type0);
284614f0 8680
931e5bc3
JG
8681 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8682
8683 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8684 encoding suffixed with 'P' may still be generated. If so,
8685 it should be used to find the XA type. */
8686
8687 if (index_type_desc == NULL)
8688 {
1da0522e 8689 const char *type_name = ada_type_name (type0);
931e5bc3 8690
1da0522e 8691 if (type_name != NULL)
931e5bc3 8692 {
1da0522e 8693 const int len = strlen (type_name);
931e5bc3
JG
8694 char *name = (char *) alloca (len + strlen (xa_suffix));
8695
1da0522e 8696 if (type_name[len - 1] == 'P')
931e5bc3 8697 {
1da0522e 8698 strcpy (name, type_name);
931e5bc3
JG
8699 strcpy (name + len - 1, xa_suffix);
8700 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8701 }
8702 }
8703 }
8704
28c85d6c 8705 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8706 if (index_type_desc != NULL
8707 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8708 {
8709 /* Ignore this ___XA parallel type, as it does not bring any
8710 useful information. This allows us to avoid creating fixed
8711 versions of the array's index types, which would be identical
8712 to the original ones. This, in turn, can also help avoid
8713 the creation of fixed versions of the array itself. */
8714 index_type_desc = NULL;
8715 }
8716
14f9c5c9
AS
8717 if (index_type_desc == NULL)
8718 {
61ee279c 8719 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8720
14f9c5c9 8721 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8722 depend on the contents of the array in properly constructed
8723 debugging data. */
529cad9c
PH
8724 /* Create a fixed version of the array element type.
8725 We're not providing the address of an element here,
e1d5a0d2 8726 and thus the actual object value cannot be inspected to do
529cad9c
PH
8727 the conversion. This should not be a problem, since arrays of
8728 unconstrained objects are not allowed. In particular, all
8729 the elements of an array of a tagged type should all be of
8730 the same type specified in the debugging info. No need to
8731 consult the object tag. */
1ed6ede0 8732 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8733
284614f0
JB
8734 /* Make sure we always create a new array type when dealing with
8735 packed array types, since we're going to fix-up the array
8736 type length and element bitsize a little further down. */
ad82864c 8737 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8738 result = type0;
14f9c5c9 8739 else
e9bb382b 8740 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8741 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8742 }
8743 else
8744 {
8745 int i;
8746 struct type *elt_type0;
8747
8748 elt_type0 = type0;
8749 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8750 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8751
8752 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8753 depend on the contents of the array in properly constructed
8754 debugging data. */
529cad9c
PH
8755 /* Create a fixed version of the array element type.
8756 We're not providing the address of an element here,
e1d5a0d2 8757 and thus the actual object value cannot be inspected to do
529cad9c
PH
8758 the conversion. This should not be a problem, since arrays of
8759 unconstrained objects are not allowed. In particular, all
8760 the elements of an array of a tagged type should all be of
8761 the same type specified in the debugging info. No need to
8762 consult the object tag. */
1ed6ede0
JB
8763 result =
8764 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8765
8766 elt_type0 = type0;
14f9c5c9 8767 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8768 {
8769 struct type *range_type =
28c85d6c 8770 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8771
e9bb382b 8772 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8773 result, range_type);
1ce677a4 8774 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8775 }
d2e4a39e 8776 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8777 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8778 }
8779
2e6fda7d
JB
8780 /* We want to preserve the type name. This can be useful when
8781 trying to get the type name of a value that has already been
8782 printed (for instance, if the user did "print VAR; whatis $". */
8783 TYPE_NAME (result) = TYPE_NAME (type0);
8784
ad82864c 8785 if (constrained_packed_array_p)
284614f0
JB
8786 {
8787 /* So far, the resulting type has been created as if the original
8788 type was a regular (non-packed) array type. As a result, the
8789 bitsize of the array elements needs to be set again, and the array
8790 length needs to be recomputed based on that bitsize. */
8791 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8792 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8793
8794 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8795 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8796 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8797 TYPE_LENGTH (result)++;
8798 }
8799
876cecd0 8800 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8801 return result;
d2e4a39e 8802}
14f9c5c9
AS
8803
8804
8805/* A standard type (containing no dynamically sized components)
8806 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8807 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8808 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8809 ADDRESS or in VALADDR contains these discriminants.
8810
1ed6ede0
JB
8811 If CHECK_TAG is not null, in the case of tagged types, this function
8812 attempts to locate the object's tag and use it to compute the actual
8813 type. However, when ADDRESS is null, we cannot use it to determine the
8814 location of the tag, and therefore compute the tagged type's actual type.
8815 So we return the tagged type without consulting the tag. */
529cad9c 8816
f192137b
JB
8817static struct type *
8818ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8819 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8820{
61ee279c 8821 type = ada_check_typedef (type);
8ecb59f8
TT
8822
8823 /* Only un-fixed types need to be handled here. */
8824 if (!HAVE_GNAT_AUX_INFO (type))
8825 return type;
8826
d2e4a39e
AS
8827 switch (TYPE_CODE (type))
8828 {
8829 default:
14f9c5c9 8830 return type;
d2e4a39e 8831 case TYPE_CODE_STRUCT:
4c4b4cd2 8832 {
76a01679 8833 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8834 struct type *fixed_record_type =
8835 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8836
529cad9c
PH
8837 /* If STATIC_TYPE is a tagged type and we know the object's address,
8838 then we can determine its tag, and compute the object's actual
0963b4bd 8839 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8840 type (the parent part of the record may have dynamic fields
8841 and the way the location of _tag is expressed may depend on
8842 them). */
529cad9c 8843
1ed6ede0 8844 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8845 {
b50d69b5
JG
8846 struct value *tag =
8847 value_tag_from_contents_and_address
8848 (fixed_record_type,
8849 valaddr,
8850 address);
8851 struct type *real_type = type_from_tag (tag);
8852 struct value *obj =
8853 value_from_contents_and_address (fixed_record_type,
8854 valaddr,
8855 address);
9f1f738a 8856 fixed_record_type = value_type (obj);
76a01679 8857 if (real_type != NULL)
b50d69b5
JG
8858 return to_fixed_record_type
8859 (real_type, NULL,
8860 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8861 }
4af88198
JB
8862
8863 /* Check to see if there is a parallel ___XVZ variable.
8864 If there is, then it provides the actual size of our type. */
8865 else if (ada_type_name (fixed_record_type) != NULL)
8866 {
0d5cff50 8867 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8868 char *xvz_name
8869 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8870 bool xvz_found = false;
4af88198
JB
8871 LONGEST size;
8872
88c15c34 8873 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8874 try
eccab96d
JB
8875 {
8876 xvz_found = get_int_var_value (xvz_name, size);
8877 }
230d2906 8878 catch (const gdb_exception_error &except)
eccab96d
JB
8879 {
8880 /* We found the variable, but somehow failed to read
8881 its value. Rethrow the same error, but with a little
8882 bit more information, to help the user understand
8883 what went wrong (Eg: the variable might have been
8884 optimized out). */
8885 throw_error (except.error,
8886 _("unable to read value of %s (%s)"),
3d6e9d23 8887 xvz_name, except.what ());
eccab96d 8888 }
eccab96d
JB
8889
8890 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8891 {
8892 fixed_record_type = copy_type (fixed_record_type);
8893 TYPE_LENGTH (fixed_record_type) = size;
8894
8895 /* The FIXED_RECORD_TYPE may have be a stub. We have
8896 observed this when the debugging info is STABS, and
8897 apparently it is something that is hard to fix.
8898
8899 In practice, we don't need the actual type definition
8900 at all, because the presence of the XVZ variable allows us
8901 to assume that there must be a XVS type as well, which we
8902 should be able to use later, when we need the actual type
8903 definition.
8904
8905 In the meantime, pretend that the "fixed" type we are
8906 returning is NOT a stub, because this can cause trouble
8907 when using this type to create new types targeting it.
8908 Indeed, the associated creation routines often check
8909 whether the target type is a stub and will try to replace
0963b4bd 8910 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8911 might cause the new type to have the wrong size too.
8912 Consider the case of an array, for instance, where the size
8913 of the array is computed from the number of elements in
8914 our array multiplied by the size of its element. */
8915 TYPE_STUB (fixed_record_type) = 0;
8916 }
8917 }
1ed6ede0 8918 return fixed_record_type;
4c4b4cd2 8919 }
d2e4a39e 8920 case TYPE_CODE_ARRAY:
4c4b4cd2 8921 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8922 case TYPE_CODE_UNION:
8923 if (dval == NULL)
4c4b4cd2 8924 return type;
d2e4a39e 8925 else
4c4b4cd2 8926 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8927 }
14f9c5c9
AS
8928}
8929
f192137b
JB
8930/* The same as ada_to_fixed_type_1, except that it preserves the type
8931 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8932
8933 The typedef layer needs be preserved in order to differentiate between
8934 arrays and array pointers when both types are implemented using the same
8935 fat pointer. In the array pointer case, the pointer is encoded as
8936 a typedef of the pointer type. For instance, considering:
8937
8938 type String_Access is access String;
8939 S1 : String_Access := null;
8940
8941 To the debugger, S1 is defined as a typedef of type String. But
8942 to the user, it is a pointer. So if the user tries to print S1,
8943 we should not dereference the array, but print the array address
8944 instead.
8945
8946 If we didn't preserve the typedef layer, we would lose the fact that
8947 the type is to be presented as a pointer (needs de-reference before
8948 being printed). And we would also use the source-level type name. */
f192137b
JB
8949
8950struct type *
8951ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8952 CORE_ADDR address, struct value *dval, int check_tag)
8953
8954{
8955 struct type *fixed_type =
8956 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8957
96dbd2c1
JB
8958 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8959 then preserve the typedef layer.
8960
8961 Implementation note: We can only check the main-type portion of
8962 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8963 from TYPE now returns a type that has the same instance flags
8964 as TYPE. For instance, if TYPE is a "typedef const", and its
8965 target type is a "struct", then the typedef elimination will return
8966 a "const" version of the target type. See check_typedef for more
8967 details about how the typedef layer elimination is done.
8968
8969 brobecker/2010-11-19: It seems to me that the only case where it is
8970 useful to preserve the typedef layer is when dealing with fat pointers.
8971 Perhaps, we could add a check for that and preserve the typedef layer
8972 only in that situation. But this seems unecessary so far, probably
8973 because we call check_typedef/ada_check_typedef pretty much everywhere.
8974 */
f192137b 8975 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8976 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8977 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8978 return type;
8979
8980 return fixed_type;
8981}
8982
14f9c5c9 8983/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8984 TYPE0, but based on no runtime data. */
14f9c5c9 8985
d2e4a39e
AS
8986static struct type *
8987to_static_fixed_type (struct type *type0)
14f9c5c9 8988{
d2e4a39e 8989 struct type *type;
14f9c5c9
AS
8990
8991 if (type0 == NULL)
8992 return NULL;
8993
876cecd0 8994 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8995 return type0;
8996
61ee279c 8997 type0 = ada_check_typedef (type0);
d2e4a39e 8998
14f9c5c9
AS
8999 switch (TYPE_CODE (type0))
9000 {
9001 default:
9002 return type0;
9003 case TYPE_CODE_STRUCT:
9004 type = dynamic_template_type (type0);
d2e4a39e 9005 if (type != NULL)
4c4b4cd2
PH
9006 return template_to_static_fixed_type (type);
9007 else
9008 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9009 case TYPE_CODE_UNION:
9010 type = ada_find_parallel_type (type0, "___XVU");
9011 if (type != NULL)
4c4b4cd2
PH
9012 return template_to_static_fixed_type (type);
9013 else
9014 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9015 }
9016}
9017
4c4b4cd2
PH
9018/* A static approximation of TYPE with all type wrappers removed. */
9019
d2e4a39e
AS
9020static struct type *
9021static_unwrap_type (struct type *type)
14f9c5c9
AS
9022{
9023 if (ada_is_aligner_type (type))
9024 {
61ee279c 9025 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9026 if (ada_type_name (type1) == NULL)
4c4b4cd2 9027 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9028
9029 return static_unwrap_type (type1);
9030 }
d2e4a39e 9031 else
14f9c5c9 9032 {
d2e4a39e 9033 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9034
d2e4a39e 9035 if (raw_real_type == type)
4c4b4cd2 9036 return type;
14f9c5c9 9037 else
4c4b4cd2 9038 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9039 }
9040}
9041
9042/* In some cases, incomplete and private types require
4c4b4cd2 9043 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9044 type Foo;
9045 type FooP is access Foo;
9046 V: FooP;
9047 type Foo is array ...;
4c4b4cd2 9048 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9049 cross-references to such types, we instead substitute for FooP a
9050 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9051 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9052
9053/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9054 exists, otherwise TYPE. */
9055
d2e4a39e 9056struct type *
61ee279c 9057ada_check_typedef (struct type *type)
14f9c5c9 9058{
727e3d2e
JB
9059 if (type == NULL)
9060 return NULL;
9061
736ade86
XR
9062 /* If our type is an access to an unconstrained array, which is encoded
9063 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9064 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9065 what allows us to distinguish between fat pointers that represent
9066 array types, and fat pointers that represent array access types
9067 (in both cases, the compiler implements them as fat pointers). */
736ade86 9068 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9069 return type;
9070
f168693b 9071 type = check_typedef (type);
14f9c5c9 9072 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9073 || !TYPE_STUB (type)
e86ca25f 9074 || TYPE_NAME (type) == NULL)
14f9c5c9 9075 return type;
d2e4a39e 9076 else
14f9c5c9 9077 {
e86ca25f 9078 const char *name = TYPE_NAME (type);
d2e4a39e 9079 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9080
05e522ef
JB
9081 if (type1 == NULL)
9082 return type;
9083
9084 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9085 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9086 types, only for the typedef-to-array types). If that's the case,
9087 strip the typedef layer. */
9088 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9089 type1 = ada_check_typedef (type1);
9090
9091 return type1;
14f9c5c9
AS
9092 }
9093}
9094
9095/* A value representing the data at VALADDR/ADDRESS as described by
9096 type TYPE0, but with a standard (static-sized) type that correctly
9097 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9098 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9099 creation of struct values]. */
14f9c5c9 9100
4c4b4cd2
PH
9101static struct value *
9102ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9103 struct value *val0)
14f9c5c9 9104{
1ed6ede0 9105 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9106
14f9c5c9
AS
9107 if (type == type0 && val0 != NULL)
9108 return val0;
cc0e770c
JB
9109
9110 if (VALUE_LVAL (val0) != lval_memory)
9111 {
9112 /* Our value does not live in memory; it could be a convenience
9113 variable, for instance. Create a not_lval value using val0's
9114 contents. */
9115 return value_from_contents (type, value_contents (val0));
9116 }
9117
9118 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9119}
9120
9121/* A value representing VAL, but with a standard (static-sized) type
9122 that correctly describes it. Does not necessarily create a new
9123 value. */
9124
0c3acc09 9125struct value *
4c4b4cd2
PH
9126ada_to_fixed_value (struct value *val)
9127{
c48db5ca 9128 val = unwrap_value (val);
d8ce9127 9129 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9130 return val;
14f9c5c9 9131}
d2e4a39e 9132\f
14f9c5c9 9133
14f9c5c9
AS
9134/* Attributes */
9135
4c4b4cd2
PH
9136/* Table mapping attribute numbers to names.
9137 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9138
d2e4a39e 9139static const char *attribute_names[] = {
14f9c5c9
AS
9140 "<?>",
9141
d2e4a39e 9142 "first",
14f9c5c9
AS
9143 "last",
9144 "length",
9145 "image",
14f9c5c9
AS
9146 "max",
9147 "min",
4c4b4cd2
PH
9148 "modulus",
9149 "pos",
9150 "size",
9151 "tag",
14f9c5c9 9152 "val",
14f9c5c9
AS
9153 0
9154};
9155
d2e4a39e 9156const char *
4c4b4cd2 9157ada_attribute_name (enum exp_opcode n)
14f9c5c9 9158{
4c4b4cd2
PH
9159 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9160 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9161 else
9162 return attribute_names[0];
9163}
9164
4c4b4cd2 9165/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9166
4c4b4cd2
PH
9167static LONGEST
9168pos_atr (struct value *arg)
14f9c5c9 9169{
24209737
PH
9170 struct value *val = coerce_ref (arg);
9171 struct type *type = value_type (val);
aa715135 9172 LONGEST result;
14f9c5c9 9173
d2e4a39e 9174 if (!discrete_type_p (type))
323e0a4a 9175 error (_("'POS only defined on discrete types"));
14f9c5c9 9176
aa715135
JG
9177 if (!discrete_position (type, value_as_long (val), &result))
9178 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9179
aa715135 9180 return result;
4c4b4cd2
PH
9181}
9182
9183static struct value *
3cb382c9 9184value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9185{
3cb382c9 9186 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9187}
9188
4c4b4cd2 9189/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9190
d2e4a39e
AS
9191static struct value *
9192value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9193{
d2e4a39e 9194 if (!discrete_type_p (type))
323e0a4a 9195 error (_("'VAL only defined on discrete types"));
df407dfe 9196 if (!integer_type_p (value_type (arg)))
323e0a4a 9197 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9198
9199 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9200 {
9201 long pos = value_as_long (arg);
5b4ee69b 9202
14f9c5c9 9203 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9204 error (_("argument to 'VAL out of range"));
14e75d8e 9205 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9206 }
9207 else
9208 return value_from_longest (type, value_as_long (arg));
9209}
14f9c5c9 9210\f
d2e4a39e 9211
4c4b4cd2 9212 /* Evaluation */
14f9c5c9 9213
4c4b4cd2
PH
9214/* True if TYPE appears to be an Ada character type.
9215 [At the moment, this is true only for Character and Wide_Character;
9216 It is a heuristic test that could stand improvement]. */
14f9c5c9 9217
fc913e53 9218bool
d2e4a39e 9219ada_is_character_type (struct type *type)
14f9c5c9 9220{
7b9f71f2
JB
9221 const char *name;
9222
9223 /* If the type code says it's a character, then assume it really is,
9224 and don't check any further. */
9225 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
fc913e53 9226 return true;
7b9f71f2
JB
9227
9228 /* Otherwise, assume it's a character type iff it is a discrete type
9229 with a known character type name. */
9230 name = ada_type_name (type);
9231 return (name != NULL
9232 && (TYPE_CODE (type) == TYPE_CODE_INT
9233 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9234 && (strcmp (name, "character") == 0
9235 || strcmp (name, "wide_character") == 0
5a517ebd 9236 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9237 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9238}
9239
4c4b4cd2 9240/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9241
fc913e53 9242bool
ebf56fd3 9243ada_is_string_type (struct type *type)
14f9c5c9 9244{
61ee279c 9245 type = ada_check_typedef (type);
d2e4a39e 9246 if (type != NULL
14f9c5c9 9247 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9248 && (ada_is_simple_array_type (type)
9249 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9250 && ada_array_arity (type) == 1)
9251 {
9252 struct type *elttype = ada_array_element_type (type, 1);
9253
9254 return ada_is_character_type (elttype);
9255 }
d2e4a39e 9256 else
fc913e53 9257 return false;
14f9c5c9
AS
9258}
9259
5bf03f13
JB
9260/* The compiler sometimes provides a parallel XVS type for a given
9261 PAD type. Normally, it is safe to follow the PAD type directly,
9262 but older versions of the compiler have a bug that causes the offset
9263 of its "F" field to be wrong. Following that field in that case
9264 would lead to incorrect results, but this can be worked around
9265 by ignoring the PAD type and using the associated XVS type instead.
9266
9267 Set to True if the debugger should trust the contents of PAD types.
9268 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9269static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9270
9271/* True if TYPE is a struct type introduced by the compiler to force the
9272 alignment of a value. Such types have a single field with a
4c4b4cd2 9273 distinctive name. */
14f9c5c9
AS
9274
9275int
ebf56fd3 9276ada_is_aligner_type (struct type *type)
14f9c5c9 9277{
61ee279c 9278 type = ada_check_typedef (type);
714e53ab 9279
5bf03f13 9280 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9281 return 0;
9282
14f9c5c9 9283 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9284 && TYPE_NFIELDS (type) == 1
9285 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9286}
9287
9288/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9289 the parallel type. */
14f9c5c9 9290
d2e4a39e
AS
9291struct type *
9292ada_get_base_type (struct type *raw_type)
14f9c5c9 9293{
d2e4a39e
AS
9294 struct type *real_type_namer;
9295 struct type *raw_real_type;
14f9c5c9
AS
9296
9297 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9298 return raw_type;
9299
284614f0
JB
9300 if (ada_is_aligner_type (raw_type))
9301 /* The encoding specifies that we should always use the aligner type.
9302 So, even if this aligner type has an associated XVS type, we should
9303 simply ignore it.
9304
9305 According to the compiler gurus, an XVS type parallel to an aligner
9306 type may exist because of a stabs limitation. In stabs, aligner
9307 types are empty because the field has a variable-sized type, and
9308 thus cannot actually be used as an aligner type. As a result,
9309 we need the associated parallel XVS type to decode the type.
9310 Since the policy in the compiler is to not change the internal
9311 representation based on the debugging info format, we sometimes
9312 end up having a redundant XVS type parallel to the aligner type. */
9313 return raw_type;
9314
14f9c5c9 9315 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9316 if (real_type_namer == NULL
14f9c5c9
AS
9317 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9318 || TYPE_NFIELDS (real_type_namer) != 1)
9319 return raw_type;
9320
f80d3ff2
JB
9321 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9322 {
9323 /* This is an older encoding form where the base type needs to be
9324 looked up by name. We prefer the newer enconding because it is
9325 more efficient. */
9326 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9327 if (raw_real_type == NULL)
9328 return raw_type;
9329 else
9330 return raw_real_type;
9331 }
9332
9333 /* The field in our XVS type is a reference to the base type. */
9334 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9335}
14f9c5c9 9336
4c4b4cd2 9337/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9338
d2e4a39e
AS
9339struct type *
9340ada_aligned_type (struct type *type)
14f9c5c9
AS
9341{
9342 if (ada_is_aligner_type (type))
9343 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9344 else
9345 return ada_get_base_type (type);
9346}
9347
9348
9349/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9350 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9351
fc1a4b47
AC
9352const gdb_byte *
9353ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9354{
d2e4a39e 9355 if (ada_is_aligner_type (type))
14f9c5c9 9356 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9357 valaddr +
9358 TYPE_FIELD_BITPOS (type,
9359 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9360 else
9361 return valaddr;
9362}
9363
4c4b4cd2
PH
9364
9365
14f9c5c9 9366/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9367 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9368const char *
9369ada_enum_name (const char *name)
14f9c5c9 9370{
4c4b4cd2
PH
9371 static char *result;
9372 static size_t result_len = 0;
e6a959d6 9373 const char *tmp;
14f9c5c9 9374
4c4b4cd2
PH
9375 /* First, unqualify the enumeration name:
9376 1. Search for the last '.' character. If we find one, then skip
177b42fe 9377 all the preceding characters, the unqualified name starts
76a01679 9378 right after that dot.
4c4b4cd2 9379 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9380 translates dots into "__". Search forward for double underscores,
9381 but stop searching when we hit an overloading suffix, which is
9382 of the form "__" followed by digits. */
4c4b4cd2 9383
c3e5cd34
PH
9384 tmp = strrchr (name, '.');
9385 if (tmp != NULL)
4c4b4cd2
PH
9386 name = tmp + 1;
9387 else
14f9c5c9 9388 {
4c4b4cd2
PH
9389 while ((tmp = strstr (name, "__")) != NULL)
9390 {
9391 if (isdigit (tmp[2]))
9392 break;
9393 else
9394 name = tmp + 2;
9395 }
14f9c5c9
AS
9396 }
9397
9398 if (name[0] == 'Q')
9399 {
14f9c5c9 9400 int v;
5b4ee69b 9401
14f9c5c9 9402 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9403 {
9404 if (sscanf (name + 2, "%x", &v) != 1)
9405 return name;
9406 }
272560b5
TT
9407 else if (((name[1] >= '0' && name[1] <= '9')
9408 || (name[1] >= 'a' && name[1] <= 'z'))
9409 && name[2] == '\0')
9410 {
9411 GROW_VECT (result, result_len, 4);
9412 xsnprintf (result, result_len, "'%c'", name[1]);
9413 return result;
9414 }
14f9c5c9 9415 else
4c4b4cd2 9416 return name;
14f9c5c9 9417
4c4b4cd2 9418 GROW_VECT (result, result_len, 16);
14f9c5c9 9419 if (isascii (v) && isprint (v))
88c15c34 9420 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9421 else if (name[1] == 'U')
88c15c34 9422 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9423 else
88c15c34 9424 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9425
9426 return result;
9427 }
d2e4a39e 9428 else
4c4b4cd2 9429 {
c3e5cd34
PH
9430 tmp = strstr (name, "__");
9431 if (tmp == NULL)
9432 tmp = strstr (name, "$");
9433 if (tmp != NULL)
4c4b4cd2
PH
9434 {
9435 GROW_VECT (result, result_len, tmp - name + 1);
9436 strncpy (result, name, tmp - name);
9437 result[tmp - name] = '\0';
9438 return result;
9439 }
9440
9441 return name;
9442 }
14f9c5c9
AS
9443}
9444
14f9c5c9
AS
9445/* Evaluate the subexpression of EXP starting at *POS as for
9446 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9447 expression. */
14f9c5c9 9448
d2e4a39e
AS
9449static struct value *
9450evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9451{
4b27a620 9452 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9453}
9454
9455/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9456 value it wraps. */
14f9c5c9 9457
d2e4a39e
AS
9458static struct value *
9459unwrap_value (struct value *val)
14f9c5c9 9460{
df407dfe 9461 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9462
14f9c5c9
AS
9463 if (ada_is_aligner_type (type))
9464 {
de4d072f 9465 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9466 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9467
14f9c5c9 9468 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9469 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9470
9471 return unwrap_value (v);
9472 }
d2e4a39e 9473 else
14f9c5c9 9474 {
d2e4a39e 9475 struct type *raw_real_type =
61ee279c 9476 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9477
5bf03f13
JB
9478 /* If there is no parallel XVS or XVE type, then the value is
9479 already unwrapped. Return it without further modification. */
9480 if ((type == raw_real_type)
9481 && ada_find_parallel_type (type, "___XVE") == NULL)
9482 return val;
14f9c5c9 9483
d2e4a39e 9484 return
4c4b4cd2
PH
9485 coerce_unspec_val_to_type
9486 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9487 value_address (val),
1ed6ede0 9488 NULL, 1));
14f9c5c9
AS
9489 }
9490}
d2e4a39e
AS
9491
9492static struct value *
50eff16b 9493cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9494{
50eff16b
UW
9495 struct value *scale = ada_scaling_factor (value_type (arg));
9496 arg = value_cast (value_type (scale), arg);
14f9c5c9 9497
50eff16b
UW
9498 arg = value_binop (arg, scale, BINOP_MUL);
9499 return value_cast (type, arg);
14f9c5c9
AS
9500}
9501
d2e4a39e 9502static struct value *
50eff16b 9503cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9504{
50eff16b
UW
9505 if (type == value_type (arg))
9506 return arg;
5b4ee69b 9507
50eff16b
UW
9508 struct value *scale = ada_scaling_factor (type);
9509 if (ada_is_fixed_point_type (value_type (arg)))
9510 arg = cast_from_fixed (value_type (scale), arg);
9511 else
9512 arg = value_cast (value_type (scale), arg);
9513
9514 arg = value_binop (arg, scale, BINOP_DIV);
9515 return value_cast (type, arg);
14f9c5c9
AS
9516}
9517
d99dcf51
JB
9518/* Given two array types T1 and T2, return nonzero iff both arrays
9519 contain the same number of elements. */
9520
9521static int
9522ada_same_array_size_p (struct type *t1, struct type *t2)
9523{
9524 LONGEST lo1, hi1, lo2, hi2;
9525
9526 /* Get the array bounds in order to verify that the size of
9527 the two arrays match. */
9528 if (!get_array_bounds (t1, &lo1, &hi1)
9529 || !get_array_bounds (t2, &lo2, &hi2))
9530 error (_("unable to determine array bounds"));
9531
9532 /* To make things easier for size comparison, normalize a bit
9533 the case of empty arrays by making sure that the difference
9534 between upper bound and lower bound is always -1. */
9535 if (lo1 > hi1)
9536 hi1 = lo1 - 1;
9537 if (lo2 > hi2)
9538 hi2 = lo2 - 1;
9539
9540 return (hi1 - lo1 == hi2 - lo2);
9541}
9542
9543/* Assuming that VAL is an array of integrals, and TYPE represents
9544 an array with the same number of elements, but with wider integral
9545 elements, return an array "casted" to TYPE. In practice, this
9546 means that the returned array is built by casting each element
9547 of the original array into TYPE's (wider) element type. */
9548
9549static struct value *
9550ada_promote_array_of_integrals (struct type *type, struct value *val)
9551{
9552 struct type *elt_type = TYPE_TARGET_TYPE (type);
9553 LONGEST lo, hi;
9554 struct value *res;
9555 LONGEST i;
9556
9557 /* Verify that both val and type are arrays of scalars, and
9558 that the size of val's elements is smaller than the size
9559 of type's element. */
9560 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9561 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9562 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9563 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9564 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9565 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9566
9567 if (!get_array_bounds (type, &lo, &hi))
9568 error (_("unable to determine array bounds"));
9569
9570 res = allocate_value (type);
9571
9572 /* Promote each array element. */
9573 for (i = 0; i < hi - lo + 1; i++)
9574 {
9575 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9576
9577 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9578 value_contents_all (elt), TYPE_LENGTH (elt_type));
9579 }
9580
9581 return res;
9582}
9583
4c4b4cd2
PH
9584/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9585 return the converted value. */
9586
d2e4a39e
AS
9587static struct value *
9588coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9589{
df407dfe 9590 struct type *type2 = value_type (val);
5b4ee69b 9591
14f9c5c9
AS
9592 if (type == type2)
9593 return val;
9594
61ee279c
PH
9595 type2 = ada_check_typedef (type2);
9596 type = ada_check_typedef (type);
14f9c5c9 9597
d2e4a39e
AS
9598 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9599 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9600 {
9601 val = ada_value_ind (val);
df407dfe 9602 type2 = value_type (val);
14f9c5c9
AS
9603 }
9604
d2e4a39e 9605 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9606 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9607 {
d99dcf51
JB
9608 if (!ada_same_array_size_p (type, type2))
9609 error (_("cannot assign arrays of different length"));
9610
9611 if (is_integral_type (TYPE_TARGET_TYPE (type))
9612 && is_integral_type (TYPE_TARGET_TYPE (type2))
9613 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9614 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9615 {
9616 /* Allow implicit promotion of the array elements to
9617 a wider type. */
9618 return ada_promote_array_of_integrals (type, val);
9619 }
9620
9621 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9622 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9623 error (_("Incompatible types in assignment"));
04624583 9624 deprecated_set_value_type (val, type);
14f9c5c9 9625 }
d2e4a39e 9626 return val;
14f9c5c9
AS
9627}
9628
4c4b4cd2
PH
9629static struct value *
9630ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9631{
9632 struct value *val;
9633 struct type *type1, *type2;
9634 LONGEST v, v1, v2;
9635
994b9211
AC
9636 arg1 = coerce_ref (arg1);
9637 arg2 = coerce_ref (arg2);
18af8284
JB
9638 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9639 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9640
76a01679
JB
9641 if (TYPE_CODE (type1) != TYPE_CODE_INT
9642 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9643 return value_binop (arg1, arg2, op);
9644
76a01679 9645 switch (op)
4c4b4cd2
PH
9646 {
9647 case BINOP_MOD:
9648 case BINOP_DIV:
9649 case BINOP_REM:
9650 break;
9651 default:
9652 return value_binop (arg1, arg2, op);
9653 }
9654
9655 v2 = value_as_long (arg2);
9656 if (v2 == 0)
323e0a4a 9657 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9658
9659 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9660 return value_binop (arg1, arg2, op);
9661
9662 v1 = value_as_long (arg1);
9663 switch (op)
9664 {
9665 case BINOP_DIV:
9666 v = v1 / v2;
76a01679
JB
9667 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9668 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9669 break;
9670 case BINOP_REM:
9671 v = v1 % v2;
76a01679
JB
9672 if (v * v1 < 0)
9673 v -= v2;
4c4b4cd2
PH
9674 break;
9675 default:
9676 /* Should not reach this point. */
9677 v = 0;
9678 }
9679
9680 val = allocate_value (type1);
990a07ab 9681 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9682 TYPE_LENGTH (value_type (val)),
9683 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9684 return val;
9685}
9686
9687static int
9688ada_value_equal (struct value *arg1, struct value *arg2)
9689{
df407dfe
AC
9690 if (ada_is_direct_array_type (value_type (arg1))
9691 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9692 {
79e8fcaa
JB
9693 struct type *arg1_type, *arg2_type;
9694
f58b38bf
JB
9695 /* Automatically dereference any array reference before
9696 we attempt to perform the comparison. */
9697 arg1 = ada_coerce_ref (arg1);
9698 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9699
4c4b4cd2
PH
9700 arg1 = ada_coerce_to_simple_array (arg1);
9701 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9702
9703 arg1_type = ada_check_typedef (value_type (arg1));
9704 arg2_type = ada_check_typedef (value_type (arg2));
9705
9706 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9707 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9708 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9709 /* FIXME: The following works only for types whose
76a01679
JB
9710 representations use all bits (no padding or undefined bits)
9711 and do not have user-defined equality. */
79e8fcaa
JB
9712 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9713 && memcmp (value_contents (arg1), value_contents (arg2),
9714 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9715 }
9716 return value_equal (arg1, arg2);
9717}
9718
52ce6436
PH
9719/* Total number of component associations in the aggregate starting at
9720 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9721 OP_AGGREGATE. */
52ce6436
PH
9722
9723static int
9724num_component_specs (struct expression *exp, int pc)
9725{
9726 int n, m, i;
5b4ee69b 9727
52ce6436
PH
9728 m = exp->elts[pc + 1].longconst;
9729 pc += 3;
9730 n = 0;
9731 for (i = 0; i < m; i += 1)
9732 {
9733 switch (exp->elts[pc].opcode)
9734 {
9735 default:
9736 n += 1;
9737 break;
9738 case OP_CHOICES:
9739 n += exp->elts[pc + 1].longconst;
9740 break;
9741 }
9742 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9743 }
9744 return n;
9745}
9746
9747/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9748 component of LHS (a simple array or a record), updating *POS past
9749 the expression, assuming that LHS is contained in CONTAINER. Does
9750 not modify the inferior's memory, nor does it modify LHS (unless
9751 LHS == CONTAINER). */
9752
9753static void
9754assign_component (struct value *container, struct value *lhs, LONGEST index,
9755 struct expression *exp, int *pos)
9756{
9757 struct value *mark = value_mark ();
9758 struct value *elt;
0e2da9f0 9759 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9760
0e2da9f0 9761 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9762 {
22601c15
UW
9763 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9764 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9765
52ce6436
PH
9766 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9767 }
9768 else
9769 {
9770 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9771 elt = ada_to_fixed_value (elt);
52ce6436
PH
9772 }
9773
9774 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9775 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9776 else
9777 value_assign_to_component (container, elt,
9778 ada_evaluate_subexp (NULL, exp, pos,
9779 EVAL_NORMAL));
9780
9781 value_free_to_mark (mark);
9782}
9783
9784/* Assuming that LHS represents an lvalue having a record or array
9785 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9786 of that aggregate's value to LHS, advancing *POS past the
9787 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9788 lvalue containing LHS (possibly LHS itself). Does not modify
9789 the inferior's memory, nor does it modify the contents of
0963b4bd 9790 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9791
9792static struct value *
9793assign_aggregate (struct value *container,
9794 struct value *lhs, struct expression *exp,
9795 int *pos, enum noside noside)
9796{
9797 struct type *lhs_type;
9798 int n = exp->elts[*pos+1].longconst;
9799 LONGEST low_index, high_index;
9800 int num_specs;
9801 LONGEST *indices;
9802 int max_indices, num_indices;
52ce6436 9803 int i;
52ce6436
PH
9804
9805 *pos += 3;
9806 if (noside != EVAL_NORMAL)
9807 {
52ce6436
PH
9808 for (i = 0; i < n; i += 1)
9809 ada_evaluate_subexp (NULL, exp, pos, noside);
9810 return container;
9811 }
9812
9813 container = ada_coerce_ref (container);
9814 if (ada_is_direct_array_type (value_type (container)))
9815 container = ada_coerce_to_simple_array (container);
9816 lhs = ada_coerce_ref (lhs);
9817 if (!deprecated_value_modifiable (lhs))
9818 error (_("Left operand of assignment is not a modifiable lvalue."));
9819
0e2da9f0 9820 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9821 if (ada_is_direct_array_type (lhs_type))
9822 {
9823 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9824 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9825 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9826 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9827 }
9828 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9829 {
9830 low_index = 0;
9831 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9832 }
9833 else
9834 error (_("Left-hand side must be array or record."));
9835
9836 num_specs = num_component_specs (exp, *pos - 3);
9837 max_indices = 4 * num_specs + 4;
8d749320 9838 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9839 indices[0] = indices[1] = low_index - 1;
9840 indices[2] = indices[3] = high_index + 1;
9841 num_indices = 4;
9842
9843 for (i = 0; i < n; i += 1)
9844 {
9845 switch (exp->elts[*pos].opcode)
9846 {
1fbf5ada
JB
9847 case OP_CHOICES:
9848 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9849 &num_indices, max_indices,
9850 low_index, high_index);
9851 break;
9852 case OP_POSITIONAL:
9853 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9854 &num_indices, max_indices,
9855 low_index, high_index);
1fbf5ada
JB
9856 break;
9857 case OP_OTHERS:
9858 if (i != n-1)
9859 error (_("Misplaced 'others' clause"));
9860 aggregate_assign_others (container, lhs, exp, pos, indices,
9861 num_indices, low_index, high_index);
9862 break;
9863 default:
9864 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9865 }
9866 }
9867
9868 return container;
9869}
9870
9871/* Assign into the component of LHS indexed by the OP_POSITIONAL
9872 construct at *POS, updating *POS past the construct, given that
9873 the positions are relative to lower bound LOW, where HIGH is the
9874 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9875 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9876 assign_aggregate. */
52ce6436
PH
9877static void
9878aggregate_assign_positional (struct value *container,
9879 struct value *lhs, struct expression *exp,
9880 int *pos, LONGEST *indices, int *num_indices,
9881 int max_indices, LONGEST low, LONGEST high)
9882{
9883 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9884
9885 if (ind - 1 == high)
e1d5a0d2 9886 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9887 if (ind <= high)
9888 {
9889 add_component_interval (ind, ind, indices, num_indices, max_indices);
9890 *pos += 3;
9891 assign_component (container, lhs, ind, exp, pos);
9892 }
9893 else
9894 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9895}
9896
9897/* Assign into the components of LHS indexed by the OP_CHOICES
9898 construct at *POS, updating *POS past the construct, given that
9899 the allowable indices are LOW..HIGH. Record the indices assigned
9900 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9901 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9902static void
9903aggregate_assign_from_choices (struct value *container,
9904 struct value *lhs, struct expression *exp,
9905 int *pos, LONGEST *indices, int *num_indices,
9906 int max_indices, LONGEST low, LONGEST high)
9907{
9908 int j;
9909 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9910 int choice_pos, expr_pc;
9911 int is_array = ada_is_direct_array_type (value_type (lhs));
9912
9913 choice_pos = *pos += 3;
9914
9915 for (j = 0; j < n_choices; j += 1)
9916 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9917 expr_pc = *pos;
9918 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9919
9920 for (j = 0; j < n_choices; j += 1)
9921 {
9922 LONGEST lower, upper;
9923 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9924
52ce6436
PH
9925 if (op == OP_DISCRETE_RANGE)
9926 {
9927 choice_pos += 1;
9928 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9929 EVAL_NORMAL));
9930 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9931 EVAL_NORMAL));
9932 }
9933 else if (is_array)
9934 {
9935 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9936 EVAL_NORMAL));
9937 upper = lower;
9938 }
9939 else
9940 {
9941 int ind;
0d5cff50 9942 const char *name;
5b4ee69b 9943
52ce6436
PH
9944 switch (op)
9945 {
9946 case OP_NAME:
9947 name = &exp->elts[choice_pos + 2].string;
9948 break;
9949 case OP_VAR_VALUE:
9950 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9951 break;
9952 default:
9953 error (_("Invalid record component association."));
9954 }
9955 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9956 ind = 0;
9957 if (! find_struct_field (name, value_type (lhs), 0,
9958 NULL, NULL, NULL, NULL, &ind))
9959 error (_("Unknown component name: %s."), name);
9960 lower = upper = ind;
9961 }
9962
9963 if (lower <= upper && (lower < low || upper > high))
9964 error (_("Index in component association out of bounds."));
9965
9966 add_component_interval (lower, upper, indices, num_indices,
9967 max_indices);
9968 while (lower <= upper)
9969 {
9970 int pos1;
5b4ee69b 9971
52ce6436
PH
9972 pos1 = expr_pc;
9973 assign_component (container, lhs, lower, exp, &pos1);
9974 lower += 1;
9975 }
9976 }
9977}
9978
9979/* Assign the value of the expression in the OP_OTHERS construct in
9980 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9981 have not been previously assigned. The index intervals already assigned
9982 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9983 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9984static void
9985aggregate_assign_others (struct value *container,
9986 struct value *lhs, struct expression *exp,
9987 int *pos, LONGEST *indices, int num_indices,
9988 LONGEST low, LONGEST high)
9989{
9990 int i;
5ce64950 9991 int expr_pc = *pos + 1;
52ce6436
PH
9992
9993 for (i = 0; i < num_indices - 2; i += 2)
9994 {
9995 LONGEST ind;
5b4ee69b 9996
52ce6436
PH
9997 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9998 {
5ce64950 9999 int localpos;
5b4ee69b 10000
5ce64950
MS
10001 localpos = expr_pc;
10002 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10003 }
10004 }
10005 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10006}
10007
10008/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10009 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10010 modifying *SIZE as needed. It is an error if *SIZE exceeds
10011 MAX_SIZE. The resulting intervals do not overlap. */
10012static void
10013add_component_interval (LONGEST low, LONGEST high,
10014 LONGEST* indices, int *size, int max_size)
10015{
10016 int i, j;
5b4ee69b 10017
52ce6436
PH
10018 for (i = 0; i < *size; i += 2) {
10019 if (high >= indices[i] && low <= indices[i + 1])
10020 {
10021 int kh;
5b4ee69b 10022
52ce6436
PH
10023 for (kh = i + 2; kh < *size; kh += 2)
10024 if (high < indices[kh])
10025 break;
10026 if (low < indices[i])
10027 indices[i] = low;
10028 indices[i + 1] = indices[kh - 1];
10029 if (high > indices[i + 1])
10030 indices[i + 1] = high;
10031 memcpy (indices + i + 2, indices + kh, *size - kh);
10032 *size -= kh - i - 2;
10033 return;
10034 }
10035 else if (high < indices[i])
10036 break;
10037 }
10038
10039 if (*size == max_size)
10040 error (_("Internal error: miscounted aggregate components."));
10041 *size += 2;
10042 for (j = *size-1; j >= i+2; j -= 1)
10043 indices[j] = indices[j - 2];
10044 indices[i] = low;
10045 indices[i + 1] = high;
10046}
10047
6e48bd2c
JB
10048/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10049 is different. */
10050
10051static struct value *
b7e22850 10052ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10053{
10054 if (type == ada_check_typedef (value_type (arg2)))
10055 return arg2;
10056
10057 if (ada_is_fixed_point_type (type))
95f39a5b 10058 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10059
10060 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10061 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10062
10063 return value_cast (type, arg2);
10064}
10065
284614f0
JB
10066/* Evaluating Ada expressions, and printing their result.
10067 ------------------------------------------------------
10068
21649b50
JB
10069 1. Introduction:
10070 ----------------
10071
284614f0
JB
10072 We usually evaluate an Ada expression in order to print its value.
10073 We also evaluate an expression in order to print its type, which
10074 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10075 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10076 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10077 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10078 similar.
10079
10080 Evaluating expressions is a little more complicated for Ada entities
10081 than it is for entities in languages such as C. The main reason for
10082 this is that Ada provides types whose definition might be dynamic.
10083 One example of such types is variant records. Or another example
10084 would be an array whose bounds can only be known at run time.
10085
10086 The following description is a general guide as to what should be
10087 done (and what should NOT be done) in order to evaluate an expression
10088 involving such types, and when. This does not cover how the semantic
10089 information is encoded by GNAT as this is covered separatly. For the
10090 document used as the reference for the GNAT encoding, see exp_dbug.ads
10091 in the GNAT sources.
10092
10093 Ideally, we should embed each part of this description next to its
10094 associated code. Unfortunately, the amount of code is so vast right
10095 now that it's hard to see whether the code handling a particular
10096 situation might be duplicated or not. One day, when the code is
10097 cleaned up, this guide might become redundant with the comments
10098 inserted in the code, and we might want to remove it.
10099
21649b50
JB
10100 2. ``Fixing'' an Entity, the Simple Case:
10101 -----------------------------------------
10102
284614f0
JB
10103 When evaluating Ada expressions, the tricky issue is that they may
10104 reference entities whose type contents and size are not statically
10105 known. Consider for instance a variant record:
10106
10107 type Rec (Empty : Boolean := True) is record
10108 case Empty is
10109 when True => null;
10110 when False => Value : Integer;
10111 end case;
10112 end record;
10113 Yes : Rec := (Empty => False, Value => 1);
10114 No : Rec := (empty => True);
10115
10116 The size and contents of that record depends on the value of the
10117 descriminant (Rec.Empty). At this point, neither the debugging
10118 information nor the associated type structure in GDB are able to
10119 express such dynamic types. So what the debugger does is to create
10120 "fixed" versions of the type that applies to the specific object.
10121 We also informally refer to this opperation as "fixing" an object,
10122 which means creating its associated fixed type.
10123
10124 Example: when printing the value of variable "Yes" above, its fixed
10125 type would look like this:
10126
10127 type Rec is record
10128 Empty : Boolean;
10129 Value : Integer;
10130 end record;
10131
10132 On the other hand, if we printed the value of "No", its fixed type
10133 would become:
10134
10135 type Rec is record
10136 Empty : Boolean;
10137 end record;
10138
10139 Things become a little more complicated when trying to fix an entity
10140 with a dynamic type that directly contains another dynamic type,
10141 such as an array of variant records, for instance. There are
10142 two possible cases: Arrays, and records.
10143
21649b50
JB
10144 3. ``Fixing'' Arrays:
10145 ---------------------
10146
10147 The type structure in GDB describes an array in terms of its bounds,
10148 and the type of its elements. By design, all elements in the array
10149 have the same type and we cannot represent an array of variant elements
10150 using the current type structure in GDB. When fixing an array,
10151 we cannot fix the array element, as we would potentially need one
10152 fixed type per element of the array. As a result, the best we can do
10153 when fixing an array is to produce an array whose bounds and size
10154 are correct (allowing us to read it from memory), but without having
10155 touched its element type. Fixing each element will be done later,
10156 when (if) necessary.
10157
10158 Arrays are a little simpler to handle than records, because the same
10159 amount of memory is allocated for each element of the array, even if
1b536f04 10160 the amount of space actually used by each element differs from element
21649b50 10161 to element. Consider for instance the following array of type Rec:
284614f0
JB
10162
10163 type Rec_Array is array (1 .. 2) of Rec;
10164
1b536f04
JB
10165 The actual amount of memory occupied by each element might be different
10166 from element to element, depending on the value of their discriminant.
21649b50 10167 But the amount of space reserved for each element in the array remains
1b536f04 10168 fixed regardless. So we simply need to compute that size using
21649b50
JB
10169 the debugging information available, from which we can then determine
10170 the array size (we multiply the number of elements of the array by
10171 the size of each element).
10172
10173 The simplest case is when we have an array of a constrained element
10174 type. For instance, consider the following type declarations:
10175
10176 type Bounded_String (Max_Size : Integer) is
10177 Length : Integer;
10178 Buffer : String (1 .. Max_Size);
10179 end record;
10180 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10181
10182 In this case, the compiler describes the array as an array of
10183 variable-size elements (identified by its XVS suffix) for which
10184 the size can be read in the parallel XVZ variable.
10185
10186 In the case of an array of an unconstrained element type, the compiler
10187 wraps the array element inside a private PAD type. This type should not
10188 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10189 that we also use the adjective "aligner" in our code to designate
10190 these wrapper types.
10191
1b536f04 10192 In some cases, the size allocated for each element is statically
21649b50
JB
10193 known. In that case, the PAD type already has the correct size,
10194 and the array element should remain unfixed.
10195
10196 But there are cases when this size is not statically known.
10197 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10198
10199 type Dynamic is array (1 .. Five) of Integer;
10200 type Wrapper (Has_Length : Boolean := False) is record
10201 Data : Dynamic;
10202 case Has_Length is
10203 when True => Length : Integer;
10204 when False => null;
10205 end case;
10206 end record;
10207 type Wrapper_Array is array (1 .. 2) of Wrapper;
10208
10209 Hello : Wrapper_Array := (others => (Has_Length => True,
10210 Data => (others => 17),
10211 Length => 1));
10212
10213
10214 The debugging info would describe variable Hello as being an
10215 array of a PAD type. The size of that PAD type is not statically
10216 known, but can be determined using a parallel XVZ variable.
10217 In that case, a copy of the PAD type with the correct size should
10218 be used for the fixed array.
10219
21649b50
JB
10220 3. ``Fixing'' record type objects:
10221 ----------------------------------
10222
10223 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10224 record types. In this case, in order to compute the associated
10225 fixed type, we need to determine the size and offset of each of
10226 its components. This, in turn, requires us to compute the fixed
10227 type of each of these components.
10228
10229 Consider for instance the example:
10230
10231 type Bounded_String (Max_Size : Natural) is record
10232 Str : String (1 .. Max_Size);
10233 Length : Natural;
10234 end record;
10235 My_String : Bounded_String (Max_Size => 10);
10236
10237 In that case, the position of field "Length" depends on the size
10238 of field Str, which itself depends on the value of the Max_Size
21649b50 10239 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10240 we need to fix the type of field Str. Therefore, fixing a variant
10241 record requires us to fix each of its components.
10242
10243 However, if a component does not have a dynamic size, the component
10244 should not be fixed. In particular, fields that use a PAD type
10245 should not fixed. Here is an example where this might happen
10246 (assuming type Rec above):
10247
10248 type Container (Big : Boolean) is record
10249 First : Rec;
10250 After : Integer;
10251 case Big is
10252 when True => Another : Integer;
10253 when False => null;
10254 end case;
10255 end record;
10256 My_Container : Container := (Big => False,
10257 First => (Empty => True),
10258 After => 42);
10259
10260 In that example, the compiler creates a PAD type for component First,
10261 whose size is constant, and then positions the component After just
10262 right after it. The offset of component After is therefore constant
10263 in this case.
10264
10265 The debugger computes the position of each field based on an algorithm
10266 that uses, among other things, the actual position and size of the field
21649b50
JB
10267 preceding it. Let's now imagine that the user is trying to print
10268 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10269 end up computing the offset of field After based on the size of the
10270 fixed version of field First. And since in our example First has
10271 only one actual field, the size of the fixed type is actually smaller
10272 than the amount of space allocated to that field, and thus we would
10273 compute the wrong offset of field After.
10274
21649b50
JB
10275 To make things more complicated, we need to watch out for dynamic
10276 components of variant records (identified by the ___XVL suffix in
10277 the component name). Even if the target type is a PAD type, the size
10278 of that type might not be statically known. So the PAD type needs
10279 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10280 we might end up with the wrong size for our component. This can be
10281 observed with the following type declarations:
284614f0
JB
10282
10283 type Octal is new Integer range 0 .. 7;
10284 type Octal_Array is array (Positive range <>) of Octal;
10285 pragma Pack (Octal_Array);
10286
10287 type Octal_Buffer (Size : Positive) is record
10288 Buffer : Octal_Array (1 .. Size);
10289 Length : Integer;
10290 end record;
10291
10292 In that case, Buffer is a PAD type whose size is unset and needs
10293 to be computed by fixing the unwrapped type.
10294
21649b50
JB
10295 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10296 ----------------------------------------------------------
10297
10298 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10299 thus far, be actually fixed?
10300
10301 The answer is: Only when referencing that element. For instance
10302 when selecting one component of a record, this specific component
10303 should be fixed at that point in time. Or when printing the value
10304 of a record, each component should be fixed before its value gets
10305 printed. Similarly for arrays, the element of the array should be
10306 fixed when printing each element of the array, or when extracting
10307 one element out of that array. On the other hand, fixing should
10308 not be performed on the elements when taking a slice of an array!
10309
31432a67 10310 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10311 size of each field is that we end up also miscomputing the size
10312 of the containing type. This can have adverse results when computing
10313 the value of an entity. GDB fetches the value of an entity based
10314 on the size of its type, and thus a wrong size causes GDB to fetch
10315 the wrong amount of memory. In the case where the computed size is
10316 too small, GDB fetches too little data to print the value of our
31432a67 10317 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10318 past the buffer containing the data =:-o. */
10319
ced9779b
JB
10320/* Evaluate a subexpression of EXP, at index *POS, and return a value
10321 for that subexpression cast to TO_TYPE. Advance *POS over the
10322 subexpression. */
10323
10324static value *
10325ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10326 enum noside noside, struct type *to_type)
10327{
10328 int pc = *pos;
10329
10330 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10331 || exp->elts[pc].opcode == OP_VAR_VALUE)
10332 {
10333 (*pos) += 4;
10334
10335 value *val;
10336 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10337 {
10338 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10339 return value_zero (to_type, not_lval);
10340
10341 val = evaluate_var_msym_value (noside,
10342 exp->elts[pc + 1].objfile,
10343 exp->elts[pc + 2].msymbol);
10344 }
10345 else
10346 val = evaluate_var_value (noside,
10347 exp->elts[pc + 1].block,
10348 exp->elts[pc + 2].symbol);
10349
10350 if (noside == EVAL_SKIP)
10351 return eval_skip_value (exp);
10352
10353 val = ada_value_cast (to_type, val);
10354
10355 /* Follow the Ada language semantics that do not allow taking
10356 an address of the result of a cast (view conversion in Ada). */
10357 if (VALUE_LVAL (val) == lval_memory)
10358 {
10359 if (value_lazy (val))
10360 value_fetch_lazy (val);
10361 VALUE_LVAL (val) = not_lval;
10362 }
10363 return val;
10364 }
10365
10366 value *val = evaluate_subexp (to_type, exp, pos, noside);
10367 if (noside == EVAL_SKIP)
10368 return eval_skip_value (exp);
10369 return ada_value_cast (to_type, val);
10370}
10371
284614f0
JB
10372/* Implement the evaluate_exp routine in the exp_descriptor structure
10373 for the Ada language. */
10374
52ce6436 10375static struct value *
ebf56fd3 10376ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10377 int *pos, enum noside noside)
14f9c5c9
AS
10378{
10379 enum exp_opcode op;
b5385fc0 10380 int tem;
14f9c5c9 10381 int pc;
5ec18f2b 10382 int preeval_pos;
14f9c5c9
AS
10383 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10384 struct type *type;
52ce6436 10385 int nargs, oplen;
d2e4a39e 10386 struct value **argvec;
14f9c5c9 10387
d2e4a39e
AS
10388 pc = *pos;
10389 *pos += 1;
14f9c5c9
AS
10390 op = exp->elts[pc].opcode;
10391
d2e4a39e 10392 switch (op)
14f9c5c9
AS
10393 {
10394 default:
10395 *pos -= 1;
6e48bd2c 10396 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10397
10398 if (noside == EVAL_NORMAL)
10399 arg1 = unwrap_value (arg1);
6e48bd2c 10400
edd079d9 10401 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10402 then we need to perform the conversion manually, because
10403 evaluate_subexp_standard doesn't do it. This conversion is
10404 necessary in Ada because the different kinds of float/fixed
10405 types in Ada have different representations.
10406
10407 Similarly, we need to perform the conversion from OP_LONG
10408 ourselves. */
edd079d9 10409 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10410 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10411
10412 return arg1;
4c4b4cd2
PH
10413
10414 case OP_STRING:
10415 {
76a01679 10416 struct value *result;
5b4ee69b 10417
76a01679
JB
10418 *pos -= 1;
10419 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10420 /* The result type will have code OP_STRING, bashed there from
10421 OP_ARRAY. Bash it back. */
df407dfe
AC
10422 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10423 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10424 return result;
4c4b4cd2 10425 }
14f9c5c9
AS
10426
10427 case UNOP_CAST:
10428 (*pos) += 2;
10429 type = exp->elts[pc + 1].type;
ced9779b 10430 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10431
4c4b4cd2
PH
10432 case UNOP_QUAL:
10433 (*pos) += 2;
10434 type = exp->elts[pc + 1].type;
10435 return ada_evaluate_subexp (type, exp, pos, noside);
10436
14f9c5c9
AS
10437 case BINOP_ASSIGN:
10438 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10439 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10440 {
10441 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10442 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10443 return arg1;
10444 return ada_value_assign (arg1, arg1);
10445 }
003f3813
JB
10446 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10447 except if the lhs of our assignment is a convenience variable.
10448 In the case of assigning to a convenience variable, the lhs
10449 should be exactly the result of the evaluation of the rhs. */
10450 type = value_type (arg1);
10451 if (VALUE_LVAL (arg1) == lval_internalvar)
10452 type = NULL;
10453 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10454 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10455 return arg1;
f411722c
TT
10456 if (VALUE_LVAL (arg1) == lval_internalvar)
10457 {
10458 /* Nothing. */
10459 }
10460 else if (ada_is_fixed_point_type (value_type (arg1)))
df407dfe
AC
10461 arg2 = cast_to_fixed (value_type (arg1), arg2);
10462 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10463 error
323e0a4a 10464 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10465 else
df407dfe 10466 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10467 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10468
10469 case BINOP_ADD:
10470 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10471 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10472 if (noside == EVAL_SKIP)
4c4b4cd2 10473 goto nosideret;
2ac8a782
JB
10474 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10475 return (value_from_longest
10476 (value_type (arg1),
10477 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10478 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10479 return (value_from_longest
10480 (value_type (arg2),
10481 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10482 if ((ada_is_fixed_point_type (value_type (arg1))
10483 || ada_is_fixed_point_type (value_type (arg2)))
10484 && value_type (arg1) != value_type (arg2))
323e0a4a 10485 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10486 /* Do the addition, and cast the result to the type of the first
10487 argument. We cannot cast the result to a reference type, so if
10488 ARG1 is a reference type, find its underlying type. */
10489 type = value_type (arg1);
10490 while (TYPE_CODE (type) == TYPE_CODE_REF)
10491 type = TYPE_TARGET_TYPE (type);
f44316fa 10492 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10493 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10494
10495 case BINOP_SUB:
10496 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10497 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10498 if (noside == EVAL_SKIP)
4c4b4cd2 10499 goto nosideret;
2ac8a782
JB
10500 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10501 return (value_from_longest
10502 (value_type (arg1),
10503 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10504 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10505 return (value_from_longest
10506 (value_type (arg2),
10507 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10508 if ((ada_is_fixed_point_type (value_type (arg1))
10509 || ada_is_fixed_point_type (value_type (arg2)))
10510 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10511 error (_("Operands of fixed-point subtraction "
10512 "must have the same type"));
b7789565
JB
10513 /* Do the substraction, and cast the result to the type of the first
10514 argument. We cannot cast the result to a reference type, so if
10515 ARG1 is a reference type, find its underlying type. */
10516 type = value_type (arg1);
10517 while (TYPE_CODE (type) == TYPE_CODE_REF)
10518 type = TYPE_TARGET_TYPE (type);
f44316fa 10519 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10520 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10521
10522 case BINOP_MUL:
10523 case BINOP_DIV:
e1578042
JB
10524 case BINOP_REM:
10525 case BINOP_MOD:
14f9c5c9
AS
10526 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10527 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10528 if (noside == EVAL_SKIP)
4c4b4cd2 10529 goto nosideret;
e1578042 10530 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10531 {
10532 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10533 return value_zero (value_type (arg1), not_lval);
10534 }
14f9c5c9 10535 else
4c4b4cd2 10536 {
a53b7a21 10537 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10538 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10539 arg1 = cast_from_fixed (type, arg1);
df407dfe 10540 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10541 arg2 = cast_from_fixed (type, arg2);
f44316fa 10542 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10543 return ada_value_binop (arg1, arg2, op);
10544 }
10545
4c4b4cd2
PH
10546 case BINOP_EQUAL:
10547 case BINOP_NOTEQUAL:
14f9c5c9 10548 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10549 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10550 if (noside == EVAL_SKIP)
76a01679 10551 goto nosideret;
4c4b4cd2 10552 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10553 tem = 0;
4c4b4cd2 10554 else
f44316fa
UW
10555 {
10556 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10557 tem = ada_value_equal (arg1, arg2);
10558 }
4c4b4cd2 10559 if (op == BINOP_NOTEQUAL)
76a01679 10560 tem = !tem;
fbb06eb1
UW
10561 type = language_bool_type (exp->language_defn, exp->gdbarch);
10562 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10563
10564 case UNOP_NEG:
10565 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10566 if (noside == EVAL_SKIP)
10567 goto nosideret;
df407dfe
AC
10568 else if (ada_is_fixed_point_type (value_type (arg1)))
10569 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10570 else
f44316fa
UW
10571 {
10572 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10573 return value_neg (arg1);
10574 }
4c4b4cd2 10575
2330c6c6
JB
10576 case BINOP_LOGICAL_AND:
10577 case BINOP_LOGICAL_OR:
10578 case UNOP_LOGICAL_NOT:
000d5124
JB
10579 {
10580 struct value *val;
10581
10582 *pos -= 1;
10583 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10584 type = language_bool_type (exp->language_defn, exp->gdbarch);
10585 return value_cast (type, val);
000d5124 10586 }
2330c6c6
JB
10587
10588 case BINOP_BITWISE_AND:
10589 case BINOP_BITWISE_IOR:
10590 case BINOP_BITWISE_XOR:
000d5124
JB
10591 {
10592 struct value *val;
10593
10594 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10595 *pos = pc;
10596 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10597
10598 return value_cast (value_type (arg1), val);
10599 }
2330c6c6 10600
14f9c5c9
AS
10601 case OP_VAR_VALUE:
10602 *pos -= 1;
6799def4 10603
14f9c5c9 10604 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10605 {
10606 *pos += 4;
10607 goto nosideret;
10608 }
da5c522f
JB
10609
10610 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10611 /* Only encountered when an unresolved symbol occurs in a
10612 context other than a function call, in which case, it is
52ce6436 10613 invalid. */
323e0a4a 10614 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10615 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10616
10617 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10618 {
0c1f74cf 10619 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10620 /* Check to see if this is a tagged type. We also need to handle
10621 the case where the type is a reference to a tagged type, but
10622 we have to be careful to exclude pointers to tagged types.
10623 The latter should be shown as usual (as a pointer), whereas
10624 a reference should mostly be transparent to the user. */
10625 if (ada_is_tagged_type (type, 0)
023db19c 10626 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10627 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10628 {
10629 /* Tagged types are a little special in the fact that the real
10630 type is dynamic and can only be determined by inspecting the
10631 object's tag. This means that we need to get the object's
10632 value first (EVAL_NORMAL) and then extract the actual object
10633 type from its tag.
10634
10635 Note that we cannot skip the final step where we extract
10636 the object type from its tag, because the EVAL_NORMAL phase
10637 results in dynamic components being resolved into fixed ones.
10638 This can cause problems when trying to print the type
10639 description of tagged types whose parent has a dynamic size:
10640 We use the type name of the "_parent" component in order
10641 to print the name of the ancestor type in the type description.
10642 If that component had a dynamic size, the resolution into
10643 a fixed type would result in the loss of that type name,
10644 thus preventing us from printing the name of the ancestor
10645 type in the type description. */
10646 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10647
10648 if (TYPE_CODE (type) != TYPE_CODE_REF)
10649 {
10650 struct type *actual_type;
10651
10652 actual_type = type_from_tag (ada_value_tag (arg1));
10653 if (actual_type == NULL)
10654 /* If, for some reason, we were unable to determine
10655 the actual type from the tag, then use the static
10656 approximation that we just computed as a fallback.
10657 This can happen if the debugging information is
10658 incomplete, for instance. */
10659 actual_type = type;
10660 return value_zero (actual_type, not_lval);
10661 }
10662 else
10663 {
10664 /* In the case of a ref, ada_coerce_ref takes care
10665 of determining the actual type. But the evaluation
10666 should return a ref as it should be valid to ask
10667 for its address; so rebuild a ref after coerce. */
10668 arg1 = ada_coerce_ref (arg1);
a65cfae5 10669 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10670 }
10671 }
0c1f74cf 10672
84754697
JB
10673 /* Records and unions for which GNAT encodings have been
10674 generated need to be statically fixed as well.
10675 Otherwise, non-static fixing produces a type where
10676 all dynamic properties are removed, which prevents "ptype"
10677 from being able to completely describe the type.
10678 For instance, a case statement in a variant record would be
10679 replaced by the relevant components based on the actual
10680 value of the discriminants. */
10681 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10682 && dynamic_template_type (type) != NULL)
10683 || (TYPE_CODE (type) == TYPE_CODE_UNION
10684 && ada_find_parallel_type (type, "___XVU") != NULL))
10685 {
10686 *pos += 4;
10687 return value_zero (to_static_fixed_type (type), not_lval);
10688 }
4c4b4cd2 10689 }
da5c522f
JB
10690
10691 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10692 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10693
10694 case OP_FUNCALL:
10695 (*pos) += 2;
10696
10697 /* Allocate arg vector, including space for the function to be
10698 called in argvec[0] and a terminating NULL. */
10699 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10700 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10701
10702 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10703 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10704 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10705 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10706 else
10707 {
10708 for (tem = 0; tem <= nargs; tem += 1)
10709 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10710 argvec[tem] = 0;
10711
10712 if (noside == EVAL_SKIP)
10713 goto nosideret;
10714 }
10715
ad82864c
JB
10716 if (ada_is_constrained_packed_array_type
10717 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10718 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10719 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10720 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10721 /* This is a packed array that has already been fixed, and
10722 therefore already coerced to a simple array. Nothing further
10723 to do. */
10724 ;
e6c2c623
PMR
10725 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10726 {
10727 /* Make sure we dereference references so that all the code below
10728 feels like it's really handling the referenced value. Wrapping
10729 types (for alignment) may be there, so make sure we strip them as
10730 well. */
10731 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10732 }
10733 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10734 && VALUE_LVAL (argvec[0]) == lval_memory)
10735 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10736
df407dfe 10737 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10738
10739 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10740 them. So, if this is an array typedef (encoding use for array
10741 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10742 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10743 type = ada_typedef_target_type (type);
10744
4c4b4cd2
PH
10745 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10746 {
61ee279c 10747 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10748 {
10749 case TYPE_CODE_FUNC:
61ee279c 10750 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10751 break;
10752 case TYPE_CODE_ARRAY:
10753 break;
10754 case TYPE_CODE_STRUCT:
10755 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10756 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10757 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10758 break;
10759 default:
323e0a4a 10760 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10761 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10762 break;
10763 }
10764 }
10765
10766 switch (TYPE_CODE (type))
10767 {
10768 case TYPE_CODE_FUNC:
10769 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10770 {
7022349d
PA
10771 if (TYPE_TARGET_TYPE (type) == NULL)
10772 error_call_unknown_return_type (NULL);
10773 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10774 }
e71585ff
PA
10775 return call_function_by_hand (argvec[0], NULL,
10776 gdb::make_array_view (argvec + 1,
10777 nargs));
c8ea1972
PH
10778 case TYPE_CODE_INTERNAL_FUNCTION:
10779 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10780 /* We don't know anything about what the internal
10781 function might return, but we have to return
10782 something. */
10783 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10784 not_lval);
10785 else
10786 return call_internal_function (exp->gdbarch, exp->language_defn,
10787 argvec[0], nargs, argvec + 1);
10788
4c4b4cd2
PH
10789 case TYPE_CODE_STRUCT:
10790 {
10791 int arity;
10792
4c4b4cd2
PH
10793 arity = ada_array_arity (type);
10794 type = ada_array_element_type (type, nargs);
10795 if (type == NULL)
323e0a4a 10796 error (_("cannot subscript or call a record"));
4c4b4cd2 10797 if (arity != nargs)
323e0a4a 10798 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10799 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10800 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10801 return
10802 unwrap_value (ada_value_subscript
10803 (argvec[0], nargs, argvec + 1));
10804 }
10805 case TYPE_CODE_ARRAY:
10806 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10807 {
10808 type = ada_array_element_type (type, nargs);
10809 if (type == NULL)
323e0a4a 10810 error (_("element type of array unknown"));
4c4b4cd2 10811 else
0a07e705 10812 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10813 }
10814 return
10815 unwrap_value (ada_value_subscript
10816 (ada_coerce_to_simple_array (argvec[0]),
10817 nargs, argvec + 1));
10818 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10819 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10820 {
deede10c 10821 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10822 type = ada_array_element_type (type, nargs);
10823 if (type == NULL)
323e0a4a 10824 error (_("element type of array unknown"));
4c4b4cd2 10825 else
0a07e705 10826 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10827 }
10828 return
deede10c
JB
10829 unwrap_value (ada_value_ptr_subscript (argvec[0],
10830 nargs, argvec + 1));
4c4b4cd2
PH
10831
10832 default:
e1d5a0d2
PH
10833 error (_("Attempt to index or call something other than an "
10834 "array or function"));
4c4b4cd2
PH
10835 }
10836
10837 case TERNOP_SLICE:
10838 {
10839 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10840 struct value *low_bound_val =
10841 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10842 struct value *high_bound_val =
10843 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10844 LONGEST low_bound;
10845 LONGEST high_bound;
5b4ee69b 10846
994b9211
AC
10847 low_bound_val = coerce_ref (low_bound_val);
10848 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10849 low_bound = value_as_long (low_bound_val);
10850 high_bound = value_as_long (high_bound_val);
963a6417 10851
4c4b4cd2
PH
10852 if (noside == EVAL_SKIP)
10853 goto nosideret;
10854
4c4b4cd2
PH
10855 /* If this is a reference to an aligner type, then remove all
10856 the aligners. */
df407dfe
AC
10857 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10858 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10859 TYPE_TARGET_TYPE (value_type (array)) =
10860 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10861
ad82864c 10862 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10863 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10864
10865 /* If this is a reference to an array or an array lvalue,
10866 convert to a pointer. */
df407dfe
AC
10867 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10868 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10869 && VALUE_LVAL (array) == lval_memory))
10870 array = value_addr (array);
10871
1265e4aa 10872 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10873 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10874 (value_type (array))))
bff8c71f
TT
10875 return empty_array (ada_type_of_array (array, 0), low_bound,
10876 high_bound);
4c4b4cd2
PH
10877
10878 array = ada_coerce_to_simple_array_ptr (array);
10879
714e53ab
PH
10880 /* If we have more than one level of pointer indirection,
10881 dereference the value until we get only one level. */
df407dfe
AC
10882 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10883 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10884 == TYPE_CODE_PTR))
10885 array = value_ind (array);
10886
10887 /* Make sure we really do have an array type before going further,
10888 to avoid a SEGV when trying to get the index type or the target
10889 type later down the road if the debug info generated by
10890 the compiler is incorrect or incomplete. */
df407dfe 10891 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10892 error (_("cannot take slice of non-array"));
714e53ab 10893
828292f2
JB
10894 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10895 == TYPE_CODE_PTR)
4c4b4cd2 10896 {
828292f2
JB
10897 struct type *type0 = ada_check_typedef (value_type (array));
10898
0b5d8877 10899 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 10900 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
10901 else
10902 {
10903 struct type *arr_type0 =
828292f2 10904 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10905
f5938064
JG
10906 return ada_value_slice_from_ptr (array, arr_type0,
10907 longest_to_int (low_bound),
10908 longest_to_int (high_bound));
4c4b4cd2
PH
10909 }
10910 }
10911 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10912 return array;
10913 else if (high_bound < low_bound)
bff8c71f 10914 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 10915 else
529cad9c
PH
10916 return ada_value_slice (array, longest_to_int (low_bound),
10917 longest_to_int (high_bound));
4c4b4cd2 10918 }
14f9c5c9 10919
4c4b4cd2
PH
10920 case UNOP_IN_RANGE:
10921 (*pos) += 2;
10922 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10923 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10924
14f9c5c9 10925 if (noside == EVAL_SKIP)
4c4b4cd2 10926 goto nosideret;
14f9c5c9 10927
4c4b4cd2
PH
10928 switch (TYPE_CODE (type))
10929 {
10930 default:
e1d5a0d2
PH
10931 lim_warning (_("Membership test incompletely implemented; "
10932 "always returns true"));
fbb06eb1
UW
10933 type = language_bool_type (exp->language_defn, exp->gdbarch);
10934 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10935
10936 case TYPE_CODE_RANGE:
030b4912
UW
10937 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10938 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10939 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10940 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10941 type = language_bool_type (exp->language_defn, exp->gdbarch);
10942 return
10943 value_from_longest (type,
4c4b4cd2
PH
10944 (value_less (arg1, arg3)
10945 || value_equal (arg1, arg3))
10946 && (value_less (arg2, arg1)
10947 || value_equal (arg2, arg1)));
10948 }
10949
10950 case BINOP_IN_BOUNDS:
14f9c5c9 10951 (*pos) += 2;
4c4b4cd2
PH
10952 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10953 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10954
4c4b4cd2
PH
10955 if (noside == EVAL_SKIP)
10956 goto nosideret;
14f9c5c9 10957
4c4b4cd2 10958 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10959 {
10960 type = language_bool_type (exp->language_defn, exp->gdbarch);
10961 return value_zero (type, not_lval);
10962 }
14f9c5c9 10963
4c4b4cd2 10964 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10965
1eea4ebd
UW
10966 type = ada_index_type (value_type (arg2), tem, "range");
10967 if (!type)
10968 type = value_type (arg1);
14f9c5c9 10969
1eea4ebd
UW
10970 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10971 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10972
f44316fa
UW
10973 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10974 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10975 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10976 return
fbb06eb1 10977 value_from_longest (type,
4c4b4cd2
PH
10978 (value_less (arg1, arg3)
10979 || value_equal (arg1, arg3))
10980 && (value_less (arg2, arg1)
10981 || value_equal (arg2, arg1)));
10982
10983 case TERNOP_IN_RANGE:
10984 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10985 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10986 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10987
10988 if (noside == EVAL_SKIP)
10989 goto nosideret;
10990
f44316fa
UW
10991 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10992 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10993 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10994 return
fbb06eb1 10995 value_from_longest (type,
4c4b4cd2
PH
10996 (value_less (arg1, arg3)
10997 || value_equal (arg1, arg3))
10998 && (value_less (arg2, arg1)
10999 || value_equal (arg2, arg1)));
11000
11001 case OP_ATR_FIRST:
11002 case OP_ATR_LAST:
11003 case OP_ATR_LENGTH:
11004 {
76a01679 11005 struct type *type_arg;
5b4ee69b 11006
76a01679
JB
11007 if (exp->elts[*pos].opcode == OP_TYPE)
11008 {
11009 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11010 arg1 = NULL;
5bc23cb3 11011 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11012 }
11013 else
11014 {
11015 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11016 type_arg = NULL;
11017 }
11018
11019 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11020 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11021 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11022 *pos += 4;
11023
11024 if (noside == EVAL_SKIP)
11025 goto nosideret;
680e1bee
TT
11026 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11027 {
11028 if (type_arg == NULL)
11029 type_arg = value_type (arg1);
76a01679 11030
680e1bee
TT
11031 if (ada_is_constrained_packed_array_type (type_arg))
11032 type_arg = decode_constrained_packed_array_type (type_arg);
11033
11034 if (!discrete_type_p (type_arg))
11035 {
11036 switch (op)
11037 {
11038 default: /* Should never happen. */
11039 error (_("unexpected attribute encountered"));
11040 case OP_ATR_FIRST:
11041 case OP_ATR_LAST:
11042 type_arg = ada_index_type (type_arg, tem,
11043 ada_attribute_name (op));
11044 break;
11045 case OP_ATR_LENGTH:
11046 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11047 break;
11048 }
11049 }
11050
11051 return value_zero (type_arg, not_lval);
11052 }
11053 else if (type_arg == NULL)
76a01679
JB
11054 {
11055 arg1 = ada_coerce_ref (arg1);
11056
ad82864c 11057 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11058 arg1 = ada_coerce_to_simple_array (arg1);
11059
aa4fb036 11060 if (op == OP_ATR_LENGTH)
1eea4ebd 11061 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11062 else
11063 {
11064 type = ada_index_type (value_type (arg1), tem,
11065 ada_attribute_name (op));
11066 if (type == NULL)
11067 type = builtin_type (exp->gdbarch)->builtin_int;
11068 }
76a01679 11069
76a01679
JB
11070 switch (op)
11071 {
11072 default: /* Should never happen. */
323e0a4a 11073 error (_("unexpected attribute encountered"));
76a01679 11074 case OP_ATR_FIRST:
1eea4ebd
UW
11075 return value_from_longest
11076 (type, ada_array_bound (arg1, tem, 0));
76a01679 11077 case OP_ATR_LAST:
1eea4ebd
UW
11078 return value_from_longest
11079 (type, ada_array_bound (arg1, tem, 1));
76a01679 11080 case OP_ATR_LENGTH:
1eea4ebd
UW
11081 return value_from_longest
11082 (type, ada_array_length (arg1, tem));
76a01679
JB
11083 }
11084 }
11085 else if (discrete_type_p (type_arg))
11086 {
11087 struct type *range_type;
0d5cff50 11088 const char *name = ada_type_name (type_arg);
5b4ee69b 11089
76a01679
JB
11090 range_type = NULL;
11091 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11092 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11093 if (range_type == NULL)
11094 range_type = type_arg;
11095 switch (op)
11096 {
11097 default:
323e0a4a 11098 error (_("unexpected attribute encountered"));
76a01679 11099 case OP_ATR_FIRST:
690cc4eb 11100 return value_from_longest
43bbcdc2 11101 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11102 case OP_ATR_LAST:
690cc4eb 11103 return value_from_longest
43bbcdc2 11104 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11105 case OP_ATR_LENGTH:
323e0a4a 11106 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11107 }
11108 }
11109 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11110 error (_("unimplemented type attribute"));
76a01679
JB
11111 else
11112 {
11113 LONGEST low, high;
11114
ad82864c
JB
11115 if (ada_is_constrained_packed_array_type (type_arg))
11116 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11117
aa4fb036 11118 if (op == OP_ATR_LENGTH)
1eea4ebd 11119 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11120 else
11121 {
11122 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11123 if (type == NULL)
11124 type = builtin_type (exp->gdbarch)->builtin_int;
11125 }
1eea4ebd 11126
76a01679
JB
11127 switch (op)
11128 {
11129 default:
323e0a4a 11130 error (_("unexpected attribute encountered"));
76a01679 11131 case OP_ATR_FIRST:
1eea4ebd 11132 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11133 return value_from_longest (type, low);
11134 case OP_ATR_LAST:
1eea4ebd 11135 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11136 return value_from_longest (type, high);
11137 case OP_ATR_LENGTH:
1eea4ebd
UW
11138 low = ada_array_bound_from_type (type_arg, tem, 0);
11139 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11140 return value_from_longest (type, high - low + 1);
11141 }
11142 }
14f9c5c9
AS
11143 }
11144
4c4b4cd2
PH
11145 case OP_ATR_TAG:
11146 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11147 if (noside == EVAL_SKIP)
76a01679 11148 goto nosideret;
4c4b4cd2
PH
11149
11150 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11151 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11152
11153 return ada_value_tag (arg1);
11154
11155 case OP_ATR_MIN:
11156 case OP_ATR_MAX:
11157 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11158 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11159 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11160 if (noside == EVAL_SKIP)
76a01679 11161 goto nosideret;
d2e4a39e 11162 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11163 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11164 else
f44316fa
UW
11165 {
11166 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11167 return value_binop (arg1, arg2,
11168 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11169 }
14f9c5c9 11170
4c4b4cd2
PH
11171 case OP_ATR_MODULUS:
11172 {
31dedfee 11173 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11174
5b4ee69b 11175 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11176 if (noside == EVAL_SKIP)
11177 goto nosideret;
4c4b4cd2 11178
76a01679 11179 if (!ada_is_modular_type (type_arg))
323e0a4a 11180 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11181
76a01679
JB
11182 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11183 ada_modulus (type_arg));
4c4b4cd2
PH
11184 }
11185
11186
11187 case OP_ATR_POS:
11188 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11189 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11190 if (noside == EVAL_SKIP)
76a01679 11191 goto nosideret;
3cb382c9
UW
11192 type = builtin_type (exp->gdbarch)->builtin_int;
11193 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11194 return value_zero (type, not_lval);
14f9c5c9 11195 else
3cb382c9 11196 return value_pos_atr (type, arg1);
14f9c5c9 11197
4c4b4cd2
PH
11198 case OP_ATR_SIZE:
11199 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11200 type = value_type (arg1);
11201
11202 /* If the argument is a reference, then dereference its type, since
11203 the user is really asking for the size of the actual object,
11204 not the size of the pointer. */
11205 if (TYPE_CODE (type) == TYPE_CODE_REF)
11206 type = TYPE_TARGET_TYPE (type);
11207
4c4b4cd2 11208 if (noside == EVAL_SKIP)
76a01679 11209 goto nosideret;
4c4b4cd2 11210 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11211 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11212 else
22601c15 11213 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11214 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11215
11216 case OP_ATR_VAL:
11217 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11218 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11219 type = exp->elts[pc + 2].type;
14f9c5c9 11220 if (noside == EVAL_SKIP)
76a01679 11221 goto nosideret;
4c4b4cd2 11222 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11223 return value_zero (type, not_lval);
4c4b4cd2 11224 else
76a01679 11225 return value_val_atr (type, arg1);
4c4b4cd2
PH
11226
11227 case BINOP_EXP:
11228 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11229 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11230 if (noside == EVAL_SKIP)
11231 goto nosideret;
11232 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11233 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11234 else
f44316fa
UW
11235 {
11236 /* For integer exponentiation operations,
11237 only promote the first argument. */
11238 if (is_integral_type (value_type (arg2)))
11239 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11240 else
11241 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11242
11243 return value_binop (arg1, arg2, op);
11244 }
4c4b4cd2
PH
11245
11246 case UNOP_PLUS:
11247 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11248 if (noside == EVAL_SKIP)
11249 goto nosideret;
11250 else
11251 return arg1;
11252
11253 case UNOP_ABS:
11254 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11255 if (noside == EVAL_SKIP)
11256 goto nosideret;
f44316fa 11257 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11258 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11259 return value_neg (arg1);
14f9c5c9 11260 else
4c4b4cd2 11261 return arg1;
14f9c5c9
AS
11262
11263 case UNOP_IND:
5ec18f2b 11264 preeval_pos = *pos;
6b0d7253 11265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11266 if (noside == EVAL_SKIP)
4c4b4cd2 11267 goto nosideret;
df407dfe 11268 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11269 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11270 {
11271 if (ada_is_array_descriptor_type (type))
11272 /* GDB allows dereferencing GNAT array descriptors. */
11273 {
11274 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11275
4c4b4cd2 11276 if (arrType == NULL)
323e0a4a 11277 error (_("Attempt to dereference null array pointer."));
00a4c844 11278 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11279 }
11280 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11281 || TYPE_CODE (type) == TYPE_CODE_REF
11282 /* In C you can dereference an array to get the 1st elt. */
11283 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11284 {
5ec18f2b
JG
11285 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11286 only be determined by inspecting the object's tag.
11287 This means that we need to evaluate completely the
11288 expression in order to get its type. */
11289
023db19c
JB
11290 if ((TYPE_CODE (type) == TYPE_CODE_REF
11291 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11292 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11293 {
11294 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11295 EVAL_NORMAL);
11296 type = value_type (ada_value_ind (arg1));
11297 }
11298 else
11299 {
11300 type = to_static_fixed_type
11301 (ada_aligned_type
11302 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11303 }
c1b5a1a6 11304 ada_ensure_varsize_limit (type);
714e53ab
PH
11305 return value_zero (type, lval_memory);
11306 }
4c4b4cd2 11307 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11308 {
11309 /* GDB allows dereferencing an int. */
11310 if (expect_type == NULL)
11311 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11312 lval_memory);
11313 else
11314 {
11315 expect_type =
11316 to_static_fixed_type (ada_aligned_type (expect_type));
11317 return value_zero (expect_type, lval_memory);
11318 }
11319 }
4c4b4cd2 11320 else
323e0a4a 11321 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11322 }
0963b4bd 11323 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11324 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11325
96967637
JB
11326 if (TYPE_CODE (type) == TYPE_CODE_INT)
11327 /* GDB allows dereferencing an int. If we were given
11328 the expect_type, then use that as the target type.
11329 Otherwise, assume that the target type is an int. */
11330 {
11331 if (expect_type != NULL)
11332 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11333 arg1));
11334 else
11335 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11336 (CORE_ADDR) value_as_address (arg1));
11337 }
6b0d7253 11338
4c4b4cd2
PH
11339 if (ada_is_array_descriptor_type (type))
11340 /* GDB allows dereferencing GNAT array descriptors. */
11341 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11342 else
4c4b4cd2 11343 return ada_value_ind (arg1);
14f9c5c9
AS
11344
11345 case STRUCTOP_STRUCT:
11346 tem = longest_to_int (exp->elts[pc + 1].longconst);
11347 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11348 preeval_pos = *pos;
14f9c5c9
AS
11349 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11350 if (noside == EVAL_SKIP)
4c4b4cd2 11351 goto nosideret;
14f9c5c9 11352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11353 {
df407dfe 11354 struct type *type1 = value_type (arg1);
5b4ee69b 11355
76a01679
JB
11356 if (ada_is_tagged_type (type1, 1))
11357 {
11358 type = ada_lookup_struct_elt_type (type1,
11359 &exp->elts[pc + 2].string,
988f6b3d 11360 1, 1);
5ec18f2b
JG
11361
11362 /* If the field is not found, check if it exists in the
11363 extension of this object's type. This means that we
11364 need to evaluate completely the expression. */
11365
76a01679 11366 if (type == NULL)
5ec18f2b
JG
11367 {
11368 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11369 EVAL_NORMAL);
11370 arg1 = ada_value_struct_elt (arg1,
11371 &exp->elts[pc + 2].string,
11372 0);
11373 arg1 = unwrap_value (arg1);
11374 type = value_type (ada_to_fixed_value (arg1));
11375 }
76a01679
JB
11376 }
11377 else
11378 type =
11379 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11380 0);
76a01679
JB
11381
11382 return value_zero (ada_aligned_type (type), lval_memory);
11383 }
14f9c5c9 11384 else
a579cd9a
MW
11385 {
11386 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11387 arg1 = unwrap_value (arg1);
11388 return ada_to_fixed_value (arg1);
11389 }
284614f0 11390
14f9c5c9 11391 case OP_TYPE:
4c4b4cd2
PH
11392 /* The value is not supposed to be used. This is here to make it
11393 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11394 (*pos) += 2;
11395 if (noside == EVAL_SKIP)
4c4b4cd2 11396 goto nosideret;
14f9c5c9 11397 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11398 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11399 else
323e0a4a 11400 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11401
11402 case OP_AGGREGATE:
11403 case OP_CHOICES:
11404 case OP_OTHERS:
11405 case OP_DISCRETE_RANGE:
11406 case OP_POSITIONAL:
11407 case OP_NAME:
11408 if (noside == EVAL_NORMAL)
11409 switch (op)
11410 {
11411 case OP_NAME:
11412 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11413 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11414 case OP_AGGREGATE:
11415 error (_("Aggregates only allowed on the right of an assignment"));
11416 default:
0963b4bd
MS
11417 internal_error (__FILE__, __LINE__,
11418 _("aggregate apparently mangled"));
52ce6436
PH
11419 }
11420
11421 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11422 *pos += oplen - 1;
11423 for (tem = 0; tem < nargs; tem += 1)
11424 ada_evaluate_subexp (NULL, exp, pos, noside);
11425 goto nosideret;
14f9c5c9
AS
11426 }
11427
11428nosideret:
ced9779b 11429 return eval_skip_value (exp);
14f9c5c9 11430}
14f9c5c9 11431\f
d2e4a39e 11432
4c4b4cd2 11433 /* Fixed point */
14f9c5c9
AS
11434
11435/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11436 type name that encodes the 'small and 'delta information.
4c4b4cd2 11437 Otherwise, return NULL. */
14f9c5c9 11438
d2e4a39e 11439static const char *
ebf56fd3 11440fixed_type_info (struct type *type)
14f9c5c9 11441{
d2e4a39e 11442 const char *name = ada_type_name (type);
14f9c5c9
AS
11443 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11444
d2e4a39e
AS
11445 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11446 {
14f9c5c9 11447 const char *tail = strstr (name, "___XF_");
5b4ee69b 11448
14f9c5c9 11449 if (tail == NULL)
4c4b4cd2 11450 return NULL;
d2e4a39e 11451 else
4c4b4cd2 11452 return tail + 5;
14f9c5c9
AS
11453 }
11454 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11455 return fixed_type_info (TYPE_TARGET_TYPE (type));
11456 else
11457 return NULL;
11458}
11459
4c4b4cd2 11460/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11461
11462int
ebf56fd3 11463ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11464{
11465 return fixed_type_info (type) != NULL;
11466}
11467
4c4b4cd2
PH
11468/* Return non-zero iff TYPE represents a System.Address type. */
11469
11470int
11471ada_is_system_address_type (struct type *type)
11472{
11473 return (TYPE_NAME (type)
11474 && strcmp (TYPE_NAME (type), "system__address") == 0);
11475}
11476
14f9c5c9 11477/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11478 type, return the target floating-point type to be used to represent
11479 of this type during internal computation. */
11480
11481static struct type *
11482ada_scaling_type (struct type *type)
11483{
11484 return builtin_type (get_type_arch (type))->builtin_long_double;
11485}
11486
11487/* Assuming that TYPE is the representation of an Ada fixed-point
11488 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11489 delta cannot be determined. */
14f9c5c9 11490
50eff16b 11491struct value *
ebf56fd3 11492ada_delta (struct type *type)
14f9c5c9
AS
11493{
11494 const char *encoding = fixed_type_info (type);
50eff16b
UW
11495 struct type *scale_type = ada_scaling_type (type);
11496
11497 long long num, den;
11498
11499 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11500 return nullptr;
d2e4a39e 11501 else
50eff16b
UW
11502 return value_binop (value_from_longest (scale_type, num),
11503 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11504}
11505
11506/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11507 factor ('SMALL value) associated with the type. */
14f9c5c9 11508
50eff16b
UW
11509struct value *
11510ada_scaling_factor (struct type *type)
14f9c5c9
AS
11511{
11512 const char *encoding = fixed_type_info (type);
50eff16b
UW
11513 struct type *scale_type = ada_scaling_type (type);
11514
11515 long long num0, den0, num1, den1;
14f9c5c9 11516 int n;
d2e4a39e 11517
50eff16b 11518 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11519 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11520
11521 if (n < 2)
50eff16b 11522 return value_from_longest (scale_type, 1);
14f9c5c9 11523 else if (n == 4)
50eff16b
UW
11524 return value_binop (value_from_longest (scale_type, num1),
11525 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11526 else
50eff16b
UW
11527 return value_binop (value_from_longest (scale_type, num0),
11528 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11529}
11530
14f9c5c9 11531\f
d2e4a39e 11532
4c4b4cd2 11533 /* Range types */
14f9c5c9
AS
11534
11535/* Scan STR beginning at position K for a discriminant name, and
11536 return the value of that discriminant field of DVAL in *PX. If
11537 PNEW_K is not null, put the position of the character beyond the
11538 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11539 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11540
11541static int
108d56a4 11542scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11543 int *pnew_k)
14f9c5c9
AS
11544{
11545 static char *bound_buffer = NULL;
11546 static size_t bound_buffer_len = 0;
5da1a4d3 11547 const char *pstart, *pend, *bound;
d2e4a39e 11548 struct value *bound_val;
14f9c5c9
AS
11549
11550 if (dval == NULL || str == NULL || str[k] == '\0')
11551 return 0;
11552
5da1a4d3
SM
11553 pstart = str + k;
11554 pend = strstr (pstart, "__");
14f9c5c9
AS
11555 if (pend == NULL)
11556 {
5da1a4d3 11557 bound = pstart;
14f9c5c9
AS
11558 k += strlen (bound);
11559 }
d2e4a39e 11560 else
14f9c5c9 11561 {
5da1a4d3
SM
11562 int len = pend - pstart;
11563
11564 /* Strip __ and beyond. */
11565 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11566 strncpy (bound_buffer, pstart, len);
11567 bound_buffer[len] = '\0';
11568
14f9c5c9 11569 bound = bound_buffer;
d2e4a39e 11570 k = pend - str;
14f9c5c9 11571 }
d2e4a39e 11572
df407dfe 11573 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11574 if (bound_val == NULL)
11575 return 0;
11576
11577 *px = value_as_long (bound_val);
11578 if (pnew_k != NULL)
11579 *pnew_k = k;
11580 return 1;
11581}
11582
11583/* Value of variable named NAME in the current environment. If
11584 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11585 otherwise causes an error with message ERR_MSG. */
11586
d2e4a39e 11587static struct value *
edb0c9cb 11588get_var_value (const char *name, const char *err_msg)
14f9c5c9 11589{
b5ec771e 11590 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11591
54d343a2 11592 std::vector<struct block_symbol> syms;
b5ec771e
PA
11593 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11594 get_selected_block (0),
11595 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11596
11597 if (nsyms != 1)
11598 {
11599 if (err_msg == NULL)
4c4b4cd2 11600 return 0;
14f9c5c9 11601 else
8a3fe4f8 11602 error (("%s"), err_msg);
14f9c5c9
AS
11603 }
11604
54d343a2 11605 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11606}
d2e4a39e 11607
edb0c9cb
PA
11608/* Value of integer variable named NAME in the current environment.
11609 If no such variable is found, returns false. Otherwise, sets VALUE
11610 to the variable's value and returns true. */
4c4b4cd2 11611
edb0c9cb
PA
11612bool
11613get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11614{
4c4b4cd2 11615 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11616
14f9c5c9 11617 if (var_val == 0)
edb0c9cb
PA
11618 return false;
11619
11620 value = value_as_long (var_val);
11621 return true;
14f9c5c9 11622}
d2e4a39e 11623
14f9c5c9
AS
11624
11625/* Return a range type whose base type is that of the range type named
11626 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11627 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11628 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11629 corresponding range type from debug information; fall back to using it
11630 if symbol lookup fails. If a new type must be created, allocate it
11631 like ORIG_TYPE was. The bounds information, in general, is encoded
11632 in NAME, the base type given in the named range type. */
14f9c5c9 11633
d2e4a39e 11634static struct type *
28c85d6c 11635to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11636{
0d5cff50 11637 const char *name;
14f9c5c9 11638 struct type *base_type;
108d56a4 11639 const char *subtype_info;
14f9c5c9 11640
28c85d6c
JB
11641 gdb_assert (raw_type != NULL);
11642 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11643
1ce677a4 11644 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11645 base_type = TYPE_TARGET_TYPE (raw_type);
11646 else
11647 base_type = raw_type;
11648
28c85d6c 11649 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11650 subtype_info = strstr (name, "___XD");
11651 if (subtype_info == NULL)
690cc4eb 11652 {
43bbcdc2
PH
11653 LONGEST L = ada_discrete_type_low_bound (raw_type);
11654 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11655
690cc4eb
PH
11656 if (L < INT_MIN || U > INT_MAX)
11657 return raw_type;
11658 else
0c9c3474
SA
11659 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11660 L, U);
690cc4eb 11661 }
14f9c5c9
AS
11662 else
11663 {
11664 static char *name_buf = NULL;
11665 static size_t name_len = 0;
11666 int prefix_len = subtype_info - name;
11667 LONGEST L, U;
11668 struct type *type;
108d56a4 11669 const char *bounds_str;
14f9c5c9
AS
11670 int n;
11671
11672 GROW_VECT (name_buf, name_len, prefix_len + 5);
11673 strncpy (name_buf, name, prefix_len);
11674 name_buf[prefix_len] = '\0';
11675
11676 subtype_info += 5;
11677 bounds_str = strchr (subtype_info, '_');
11678 n = 1;
11679
d2e4a39e 11680 if (*subtype_info == 'L')
4c4b4cd2
PH
11681 {
11682 if (!ada_scan_number (bounds_str, n, &L, &n)
11683 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11684 return raw_type;
11685 if (bounds_str[n] == '_')
11686 n += 2;
0963b4bd 11687 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11688 n += 1;
11689 subtype_info += 1;
11690 }
d2e4a39e 11691 else
4c4b4cd2 11692 {
4c4b4cd2 11693 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11694 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11695 {
323e0a4a 11696 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11697 L = 1;
11698 }
11699 }
14f9c5c9 11700
d2e4a39e 11701 if (*subtype_info == 'U')
4c4b4cd2
PH
11702 {
11703 if (!ada_scan_number (bounds_str, n, &U, &n)
11704 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11705 return raw_type;
11706 }
d2e4a39e 11707 else
4c4b4cd2 11708 {
4c4b4cd2 11709 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11710 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11711 {
323e0a4a 11712 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11713 U = L;
11714 }
11715 }
14f9c5c9 11716
0c9c3474
SA
11717 type = create_static_range_type (alloc_type_copy (raw_type),
11718 base_type, L, U);
f5a91472
JB
11719 /* create_static_range_type alters the resulting type's length
11720 to match the size of the base_type, which is not what we want.
11721 Set it back to the original range type's length. */
11722 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11723 TYPE_NAME (type) = name;
14f9c5c9
AS
11724 return type;
11725 }
11726}
11727
4c4b4cd2
PH
11728/* True iff NAME is the name of a range type. */
11729
14f9c5c9 11730int
d2e4a39e 11731ada_is_range_type_name (const char *name)
14f9c5c9
AS
11732{
11733 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11734}
14f9c5c9 11735\f
d2e4a39e 11736
4c4b4cd2
PH
11737 /* Modular types */
11738
11739/* True iff TYPE is an Ada modular type. */
14f9c5c9 11740
14f9c5c9 11741int
d2e4a39e 11742ada_is_modular_type (struct type *type)
14f9c5c9 11743{
18af8284 11744 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11745
11746 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11747 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11748 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11749}
11750
4c4b4cd2
PH
11751/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11752
61ee279c 11753ULONGEST
0056e4d5 11754ada_modulus (struct type *type)
14f9c5c9 11755{
43bbcdc2 11756 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11757}
d2e4a39e 11758\f
f7f9143b
JB
11759
11760/* Ada exception catchpoint support:
11761 ---------------------------------
11762
11763 We support 3 kinds of exception catchpoints:
11764 . catchpoints on Ada exceptions
11765 . catchpoints on unhandled Ada exceptions
11766 . catchpoints on failed assertions
11767
11768 Exceptions raised during failed assertions, or unhandled exceptions
11769 could perfectly be caught with the general catchpoint on Ada exceptions.
11770 However, we can easily differentiate these two special cases, and having
11771 the option to distinguish these two cases from the rest can be useful
11772 to zero-in on certain situations.
11773
11774 Exception catchpoints are a specialized form of breakpoint,
11775 since they rely on inserting breakpoints inside known routines
11776 of the GNAT runtime. The implementation therefore uses a standard
11777 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11778 of breakpoint_ops.
11779
0259addd
JB
11780 Support in the runtime for exception catchpoints have been changed
11781 a few times already, and these changes affect the implementation
11782 of these catchpoints. In order to be able to support several
11783 variants of the runtime, we use a sniffer that will determine
28010a5d 11784 the runtime variant used by the program being debugged. */
f7f9143b 11785
82eacd52
JB
11786/* Ada's standard exceptions.
11787
11788 The Ada 83 standard also defined Numeric_Error. But there so many
11789 situations where it was unclear from the Ada 83 Reference Manual
11790 (RM) whether Constraint_Error or Numeric_Error should be raised,
11791 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11792 Interpretation saying that anytime the RM says that Numeric_Error
11793 should be raised, the implementation may raise Constraint_Error.
11794 Ada 95 went one step further and pretty much removed Numeric_Error
11795 from the list of standard exceptions (it made it a renaming of
11796 Constraint_Error, to help preserve compatibility when compiling
11797 an Ada83 compiler). As such, we do not include Numeric_Error from
11798 this list of standard exceptions. */
3d0b0fa3 11799
a121b7c1 11800static const char *standard_exc[] = {
3d0b0fa3
JB
11801 "constraint_error",
11802 "program_error",
11803 "storage_error",
11804 "tasking_error"
11805};
11806
0259addd
JB
11807typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11808
11809/* A structure that describes how to support exception catchpoints
11810 for a given executable. */
11811
11812struct exception_support_info
11813{
11814 /* The name of the symbol to break on in order to insert
11815 a catchpoint on exceptions. */
11816 const char *catch_exception_sym;
11817
11818 /* The name of the symbol to break on in order to insert
11819 a catchpoint on unhandled exceptions. */
11820 const char *catch_exception_unhandled_sym;
11821
11822 /* The name of the symbol to break on in order to insert
11823 a catchpoint on failed assertions. */
11824 const char *catch_assert_sym;
11825
9f757bf7
XR
11826 /* The name of the symbol to break on in order to insert
11827 a catchpoint on exception handling. */
11828 const char *catch_handlers_sym;
11829
0259addd
JB
11830 /* Assuming that the inferior just triggered an unhandled exception
11831 catchpoint, this function is responsible for returning the address
11832 in inferior memory where the name of that exception is stored.
11833 Return zero if the address could not be computed. */
11834 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11835};
11836
11837static CORE_ADDR ada_unhandled_exception_name_addr (void);
11838static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11839
11840/* The following exception support info structure describes how to
11841 implement exception catchpoints with the latest version of the
ca683e3a 11842 Ada runtime (as of 2019-08-??). */
0259addd
JB
11843
11844static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11845{
11846 "__gnat_debug_raise_exception", /* catch_exception_sym */
11847 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11848 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11849 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11850 ada_unhandled_exception_name_addr
11851};
11852
11853/* The following exception support info structure describes how to
11854 implement exception catchpoints with an earlier version of the
11855 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11856
11857static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11858{
11859 "__gnat_debug_raise_exception", /* catch_exception_sym */
11860 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11861 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11862 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11863 ada_unhandled_exception_name_addr
11864};
11865
11866/* The following exception support info structure describes how to
11867 implement exception catchpoints with a slightly older version
11868 of the Ada runtime. */
11869
11870static const struct exception_support_info exception_support_info_fallback =
11871{
11872 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11873 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11874 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11875 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11876 ada_unhandled_exception_name_addr_from_raise
11877};
11878
f17011e0
JB
11879/* Return nonzero if we can detect the exception support routines
11880 described in EINFO.
11881
11882 This function errors out if an abnormal situation is detected
11883 (for instance, if we find the exception support routines, but
11884 that support is found to be incomplete). */
11885
11886static int
11887ada_has_this_exception_support (const struct exception_support_info *einfo)
11888{
11889 struct symbol *sym;
11890
11891 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11892 that should be compiled with debugging information. As a result, we
11893 expect to find that symbol in the symtabs. */
11894
11895 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11896 if (sym == NULL)
a6af7abe
JB
11897 {
11898 /* Perhaps we did not find our symbol because the Ada runtime was
11899 compiled without debugging info, or simply stripped of it.
11900 It happens on some GNU/Linux distributions for instance, where
11901 users have to install a separate debug package in order to get
11902 the runtime's debugging info. In that situation, let the user
11903 know why we cannot insert an Ada exception catchpoint.
11904
11905 Note: Just for the purpose of inserting our Ada exception
11906 catchpoint, we could rely purely on the associated minimal symbol.
11907 But we would be operating in degraded mode anyway, since we are
11908 still lacking the debugging info needed later on to extract
11909 the name of the exception being raised (this name is printed in
11910 the catchpoint message, and is also used when trying to catch
11911 a specific exception). We do not handle this case for now. */
3b7344d5 11912 struct bound_minimal_symbol msym
1c8e84b0
JB
11913 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11914
3b7344d5 11915 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11916 error (_("Your Ada runtime appears to be missing some debugging "
11917 "information.\nCannot insert Ada exception catchpoint "
11918 "in this configuration."));
11919
11920 return 0;
11921 }
f17011e0
JB
11922
11923 /* Make sure that the symbol we found corresponds to a function. */
11924
11925 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11926 {
11927 error (_("Symbol \"%s\" is not a function (class = %d)"),
11928 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11929 return 0;
11930 }
11931
11932 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11933 if (sym == NULL)
11934 {
11935 struct bound_minimal_symbol msym
11936 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11937
11938 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11939 error (_("Your Ada runtime appears to be missing some debugging "
11940 "information.\nCannot insert Ada exception catchpoint "
11941 "in this configuration."));
11942
11943 return 0;
11944 }
11945
11946 /* Make sure that the symbol we found corresponds to a function. */
11947
11948 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11949 {
11950 error (_("Symbol \"%s\" is not a function (class = %d)"),
11951 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11952 return 0;
11953 }
f17011e0
JB
11954
11955 return 1;
11956}
11957
0259addd
JB
11958/* Inspect the Ada runtime and determine which exception info structure
11959 should be used to provide support for exception catchpoints.
11960
3eecfa55
JB
11961 This function will always set the per-inferior exception_info,
11962 or raise an error. */
0259addd
JB
11963
11964static void
11965ada_exception_support_info_sniffer (void)
11966{
3eecfa55 11967 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11968
11969 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11970 if (data->exception_info != NULL)
0259addd
JB
11971 return;
11972
11973 /* Check the latest (default) exception support info. */
f17011e0 11974 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11975 {
3eecfa55 11976 data->exception_info = &default_exception_support_info;
0259addd
JB
11977 return;
11978 }
11979
ca683e3a
AO
11980 /* Try the v0 exception suport info. */
11981 if (ada_has_this_exception_support (&exception_support_info_v0))
11982 {
11983 data->exception_info = &exception_support_info_v0;
11984 return;
11985 }
11986
0259addd 11987 /* Try our fallback exception suport info. */
f17011e0 11988 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11989 {
3eecfa55 11990 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11991 return;
11992 }
11993
11994 /* Sometimes, it is normal for us to not be able to find the routine
11995 we are looking for. This happens when the program is linked with
11996 the shared version of the GNAT runtime, and the program has not been
11997 started yet. Inform the user of these two possible causes if
11998 applicable. */
11999
ccefe4c4 12000 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12001 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12002
12003 /* If the symbol does not exist, then check that the program is
12004 already started, to make sure that shared libraries have been
12005 loaded. If it is not started, this may mean that the symbol is
12006 in a shared library. */
12007
e99b03dc 12008 if (inferior_ptid.pid () == 0)
0259addd
JB
12009 error (_("Unable to insert catchpoint. Try to start the program first."));
12010
12011 /* At this point, we know that we are debugging an Ada program and
12012 that the inferior has been started, but we still are not able to
0963b4bd 12013 find the run-time symbols. That can mean that we are in
0259addd
JB
12014 configurable run time mode, or that a-except as been optimized
12015 out by the linker... In any case, at this point it is not worth
12016 supporting this feature. */
12017
7dda8cff 12018 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12019}
12020
f7f9143b
JB
12021/* True iff FRAME is very likely to be that of a function that is
12022 part of the runtime system. This is all very heuristic, but is
12023 intended to be used as advice as to what frames are uninteresting
12024 to most users. */
12025
12026static int
12027is_known_support_routine (struct frame_info *frame)
12028{
692465f1 12029 enum language func_lang;
f7f9143b 12030 int i;
f35a17b5 12031 const char *fullname;
f7f9143b 12032
4ed6b5be
JB
12033 /* If this code does not have any debugging information (no symtab),
12034 This cannot be any user code. */
f7f9143b 12035
51abb421 12036 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12037 if (sal.symtab == NULL)
12038 return 1;
12039
4ed6b5be
JB
12040 /* If there is a symtab, but the associated source file cannot be
12041 located, then assume this is not user code: Selecting a frame
12042 for which we cannot display the code would not be very helpful
12043 for the user. This should also take care of case such as VxWorks
12044 where the kernel has some debugging info provided for a few units. */
f7f9143b 12045
f35a17b5
JK
12046 fullname = symtab_to_fullname (sal.symtab);
12047 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12048 return 1;
12049
4ed6b5be
JB
12050 /* Check the unit filename againt the Ada runtime file naming.
12051 We also check the name of the objfile against the name of some
12052 known system libraries that sometimes come with debugging info
12053 too. */
12054
f7f9143b
JB
12055 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12056 {
12057 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12058 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12059 return 1;
eb822aa6
DE
12060 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12061 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12062 return 1;
f7f9143b
JB
12063 }
12064
4ed6b5be 12065 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12066
c6dc63a1
TT
12067 gdb::unique_xmalloc_ptr<char> func_name
12068 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12069 if (func_name == NULL)
12070 return 1;
12071
12072 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12073 {
12074 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12075 if (re_exec (func_name.get ()))
12076 return 1;
f7f9143b
JB
12077 }
12078
12079 return 0;
12080}
12081
12082/* Find the first frame that contains debugging information and that is not
12083 part of the Ada run-time, starting from FI and moving upward. */
12084
0ef643c8 12085void
f7f9143b
JB
12086ada_find_printable_frame (struct frame_info *fi)
12087{
12088 for (; fi != NULL; fi = get_prev_frame (fi))
12089 {
12090 if (!is_known_support_routine (fi))
12091 {
12092 select_frame (fi);
12093 break;
12094 }
12095 }
12096
12097}
12098
12099/* Assuming that the inferior just triggered an unhandled exception
12100 catchpoint, return the address in inferior memory where the name
12101 of the exception is stored.
12102
12103 Return zero if the address could not be computed. */
12104
12105static CORE_ADDR
12106ada_unhandled_exception_name_addr (void)
0259addd
JB
12107{
12108 return parse_and_eval_address ("e.full_name");
12109}
12110
12111/* Same as ada_unhandled_exception_name_addr, except that this function
12112 should be used when the inferior uses an older version of the runtime,
12113 where the exception name needs to be extracted from a specific frame
12114 several frames up in the callstack. */
12115
12116static CORE_ADDR
12117ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12118{
12119 int frame_level;
12120 struct frame_info *fi;
3eecfa55 12121 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12122
12123 /* To determine the name of this exception, we need to select
12124 the frame corresponding to RAISE_SYM_NAME. This frame is
12125 at least 3 levels up, so we simply skip the first 3 frames
12126 without checking the name of their associated function. */
12127 fi = get_current_frame ();
12128 for (frame_level = 0; frame_level < 3; frame_level += 1)
12129 if (fi != NULL)
12130 fi = get_prev_frame (fi);
12131
12132 while (fi != NULL)
12133 {
692465f1
JB
12134 enum language func_lang;
12135
c6dc63a1
TT
12136 gdb::unique_xmalloc_ptr<char> func_name
12137 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12138 if (func_name != NULL)
12139 {
c6dc63a1 12140 if (strcmp (func_name.get (),
55b87a52
KS
12141 data->exception_info->catch_exception_sym) == 0)
12142 break; /* We found the frame we were looking for... */
55b87a52 12143 }
fb44b1a7 12144 fi = get_prev_frame (fi);
f7f9143b
JB
12145 }
12146
12147 if (fi == NULL)
12148 return 0;
12149
12150 select_frame (fi);
12151 return parse_and_eval_address ("id.full_name");
12152}
12153
12154/* Assuming the inferior just triggered an Ada exception catchpoint
12155 (of any type), return the address in inferior memory where the name
12156 of the exception is stored, if applicable.
12157
45db7c09
PA
12158 Assumes the selected frame is the current frame.
12159
f7f9143b
JB
12160 Return zero if the address could not be computed, or if not relevant. */
12161
12162static CORE_ADDR
761269c8 12163ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12164 struct breakpoint *b)
12165{
3eecfa55
JB
12166 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12167
f7f9143b
JB
12168 switch (ex)
12169 {
761269c8 12170 case ada_catch_exception:
f7f9143b
JB
12171 return (parse_and_eval_address ("e.full_name"));
12172 break;
12173
761269c8 12174 case ada_catch_exception_unhandled:
3eecfa55 12175 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12176 break;
9f757bf7
XR
12177
12178 case ada_catch_handlers:
12179 return 0; /* The runtimes does not provide access to the exception
12180 name. */
12181 break;
12182
761269c8 12183 case ada_catch_assert:
f7f9143b
JB
12184 return 0; /* Exception name is not relevant in this case. */
12185 break;
12186
12187 default:
12188 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12189 break;
12190 }
12191
12192 return 0; /* Should never be reached. */
12193}
12194
e547c119
JB
12195/* Assuming the inferior is stopped at an exception catchpoint,
12196 return the message which was associated to the exception, if
12197 available. Return NULL if the message could not be retrieved.
12198
e547c119
JB
12199 Note: The exception message can be associated to an exception
12200 either through the use of the Raise_Exception function, or
12201 more simply (Ada 2005 and later), via:
12202
12203 raise Exception_Name with "exception message";
12204
12205 */
12206
6f46ac85 12207static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12208ada_exception_message_1 (void)
12209{
12210 struct value *e_msg_val;
e547c119 12211 int e_msg_len;
e547c119
JB
12212
12213 /* For runtimes that support this feature, the exception message
12214 is passed as an unbounded string argument called "message". */
12215 e_msg_val = parse_and_eval ("message");
12216 if (e_msg_val == NULL)
12217 return NULL; /* Exception message not supported. */
12218
12219 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12220 gdb_assert (e_msg_val != NULL);
12221 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12222
12223 /* If the message string is empty, then treat it as if there was
12224 no exception message. */
12225 if (e_msg_len <= 0)
12226 return NULL;
12227
6f46ac85
TT
12228 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12229 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12230 e_msg.get ()[e_msg_len] = '\0';
e547c119 12231
e547c119
JB
12232 return e_msg;
12233}
12234
12235/* Same as ada_exception_message_1, except that all exceptions are
12236 contained here (returning NULL instead). */
12237
6f46ac85 12238static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12239ada_exception_message (void)
12240{
6f46ac85 12241 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12242
a70b8144 12243 try
e547c119
JB
12244 {
12245 e_msg = ada_exception_message_1 ();
12246 }
230d2906 12247 catch (const gdb_exception_error &e)
e547c119 12248 {
6f46ac85 12249 e_msg.reset (nullptr);
e547c119 12250 }
e547c119
JB
12251
12252 return e_msg;
12253}
12254
f7f9143b
JB
12255/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12256 any error that ada_exception_name_addr_1 might cause to be thrown.
12257 When an error is intercepted, a warning with the error message is printed,
12258 and zero is returned. */
12259
12260static CORE_ADDR
761269c8 12261ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12262 struct breakpoint *b)
12263{
f7f9143b
JB
12264 CORE_ADDR result = 0;
12265
a70b8144 12266 try
f7f9143b
JB
12267 {
12268 result = ada_exception_name_addr_1 (ex, b);
12269 }
12270
230d2906 12271 catch (const gdb_exception_error &e)
f7f9143b 12272 {
3d6e9d23 12273 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12274 return 0;
12275 }
12276
12277 return result;
12278}
12279
cb7de75e 12280static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12281 (const char *excep_string,
12282 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12283
12284/* Ada catchpoints.
12285
12286 In the case of catchpoints on Ada exceptions, the catchpoint will
12287 stop the target on every exception the program throws. When a user
12288 specifies the name of a specific exception, we translate this
12289 request into a condition expression (in text form), and then parse
12290 it into an expression stored in each of the catchpoint's locations.
12291 We then use this condition to check whether the exception that was
12292 raised is the one the user is interested in. If not, then the
12293 target is resumed again. We store the name of the requested
12294 exception, in order to be able to re-set the condition expression
12295 when symbols change. */
12296
12297/* An instance of this type is used to represent an Ada catchpoint
5625a286 12298 breakpoint location. */
28010a5d 12299
5625a286 12300class ada_catchpoint_location : public bp_location
28010a5d 12301{
5625a286 12302public:
5f486660 12303 ada_catchpoint_location (breakpoint *owner)
f06f1252 12304 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12305 {}
28010a5d
PA
12306
12307 /* The condition that checks whether the exception that was raised
12308 is the specific exception the user specified on catchpoint
12309 creation. */
4d01a485 12310 expression_up excep_cond_expr;
28010a5d
PA
12311};
12312
c1fc2657 12313/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12314
c1fc2657 12315struct ada_catchpoint : public breakpoint
28010a5d 12316{
37f6a7f4
TT
12317 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12318 : m_kind (kind)
12319 {
12320 }
12321
28010a5d 12322 /* The name of the specific exception the user specified. */
bc18fbb5 12323 std::string excep_string;
37f6a7f4
TT
12324
12325 /* What kind of catchpoint this is. */
12326 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
12327};
12328
12329/* Parse the exception condition string in the context of each of the
12330 catchpoint's locations, and store them for later evaluation. */
12331
12332static void
9f757bf7
XR
12333create_excep_cond_exprs (struct ada_catchpoint *c,
12334 enum ada_exception_catchpoint_kind ex)
28010a5d 12335{
fccf9de1
TT
12336 struct bp_location *bl;
12337
28010a5d 12338 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12339 if (c->excep_string.empty ())
28010a5d
PA
12340 return;
12341
12342 /* Same if there are no locations... */
c1fc2657 12343 if (c->loc == NULL)
28010a5d
PA
12344 return;
12345
fccf9de1
TT
12346 /* Compute the condition expression in text form, from the specific
12347 expection we want to catch. */
12348 std::string cond_string
12349 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 12350
fccf9de1
TT
12351 /* Iterate over all the catchpoint's locations, and parse an
12352 expression for each. */
12353 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12354 {
12355 struct ada_catchpoint_location *ada_loc
fccf9de1 12356 = (struct ada_catchpoint_location *) bl;
4d01a485 12357 expression_up exp;
28010a5d 12358
fccf9de1 12359 if (!bl->shlib_disabled)
28010a5d 12360 {
bbc13ae3 12361 const char *s;
28010a5d 12362
cb7de75e 12363 s = cond_string.c_str ();
a70b8144 12364 try
28010a5d 12365 {
fccf9de1
TT
12366 exp = parse_exp_1 (&s, bl->address,
12367 block_for_pc (bl->address),
036e657b 12368 0);
28010a5d 12369 }
230d2906 12370 catch (const gdb_exception_error &e)
849f2b52
JB
12371 {
12372 warning (_("failed to reevaluate internal exception condition "
12373 "for catchpoint %d: %s"),
3d6e9d23 12374 c->number, e.what ());
849f2b52 12375 }
28010a5d
PA
12376 }
12377
b22e99fd 12378 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12379 }
28010a5d
PA
12380}
12381
28010a5d
PA
12382/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12383 structure for all exception catchpoint kinds. */
12384
12385static struct bp_location *
37f6a7f4 12386allocate_location_exception (struct breakpoint *self)
28010a5d 12387{
5f486660 12388 return new ada_catchpoint_location (self);
28010a5d
PA
12389}
12390
12391/* Implement the RE_SET method in the breakpoint_ops structure for all
12392 exception catchpoint kinds. */
12393
12394static void
37f6a7f4 12395re_set_exception (struct breakpoint *b)
28010a5d
PA
12396{
12397 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12398
12399 /* Call the base class's method. This updates the catchpoint's
12400 locations. */
2060206e 12401 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12402
12403 /* Reparse the exception conditional expressions. One for each
12404 location. */
37f6a7f4 12405 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
12406}
12407
12408/* Returns true if we should stop for this breakpoint hit. If the
12409 user specified a specific exception, we only want to cause a stop
12410 if the program thrown that exception. */
12411
12412static int
12413should_stop_exception (const struct bp_location *bl)
12414{
12415 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12416 const struct ada_catchpoint_location *ada_loc
12417 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12418 int stop;
12419
37f6a7f4
TT
12420 struct internalvar *var = lookup_internalvar ("_ada_exception");
12421 if (c->m_kind == ada_catch_assert)
12422 clear_internalvar (var);
12423 else
12424 {
12425 try
12426 {
12427 const char *expr;
12428
12429 if (c->m_kind == ada_catch_handlers)
12430 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12431 ".all.occurrence.id");
12432 else
12433 expr = "e";
12434
12435 struct value *exc = parse_and_eval (expr);
12436 set_internalvar (var, exc);
12437 }
12438 catch (const gdb_exception_error &ex)
12439 {
12440 clear_internalvar (var);
12441 }
12442 }
12443
28010a5d 12444 /* With no specific exception, should always stop. */
bc18fbb5 12445 if (c->excep_string.empty ())
28010a5d
PA
12446 return 1;
12447
12448 if (ada_loc->excep_cond_expr == NULL)
12449 {
12450 /* We will have a NULL expression if back when we were creating
12451 the expressions, this location's had failed to parse. */
12452 return 1;
12453 }
12454
12455 stop = 1;
a70b8144 12456 try
28010a5d
PA
12457 {
12458 struct value *mark;
12459
12460 mark = value_mark ();
4d01a485 12461 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12462 value_free_to_mark (mark);
12463 }
230d2906 12464 catch (const gdb_exception &ex)
492d29ea
PA
12465 {
12466 exception_fprintf (gdb_stderr, ex,
12467 _("Error in testing exception condition:\n"));
12468 }
492d29ea 12469
28010a5d
PA
12470 return stop;
12471}
12472
12473/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12474 for all exception catchpoint kinds. */
12475
12476static void
37f6a7f4 12477check_status_exception (bpstat bs)
28010a5d
PA
12478{
12479 bs->stop = should_stop_exception (bs->bp_location_at);
12480}
12481
f7f9143b
JB
12482/* Implement the PRINT_IT method in the breakpoint_ops structure
12483 for all exception catchpoint kinds. */
12484
12485static enum print_stop_action
37f6a7f4 12486print_it_exception (bpstat bs)
f7f9143b 12487{
79a45e25 12488 struct ui_out *uiout = current_uiout;
348d480f
PA
12489 struct breakpoint *b = bs->breakpoint_at;
12490
956a9fb9 12491 annotate_catchpoint (b->number);
f7f9143b 12492
112e8700 12493 if (uiout->is_mi_like_p ())
f7f9143b 12494 {
112e8700 12495 uiout->field_string ("reason",
956a9fb9 12496 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12497 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12498 }
12499
112e8700
SM
12500 uiout->text (b->disposition == disp_del
12501 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12502 uiout->field_signed ("bkptno", b->number);
112e8700 12503 uiout->text (", ");
f7f9143b 12504
45db7c09
PA
12505 /* ada_exception_name_addr relies on the selected frame being the
12506 current frame. Need to do this here because this function may be
12507 called more than once when printing a stop, and below, we'll
12508 select the first frame past the Ada run-time (see
12509 ada_find_printable_frame). */
12510 select_frame (get_current_frame ());
12511
37f6a7f4
TT
12512 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12513 switch (c->m_kind)
f7f9143b 12514 {
761269c8
JB
12515 case ada_catch_exception:
12516 case ada_catch_exception_unhandled:
9f757bf7 12517 case ada_catch_handlers:
956a9fb9 12518 {
37f6a7f4 12519 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
12520 char exception_name[256];
12521
12522 if (addr != 0)
12523 {
c714b426
PA
12524 read_memory (addr, (gdb_byte *) exception_name,
12525 sizeof (exception_name) - 1);
956a9fb9
JB
12526 exception_name [sizeof (exception_name) - 1] = '\0';
12527 }
12528 else
12529 {
12530 /* For some reason, we were unable to read the exception
12531 name. This could happen if the Runtime was compiled
12532 without debugging info, for instance. In that case,
12533 just replace the exception name by the generic string
12534 "exception" - it will read as "an exception" in the
12535 notification we are about to print. */
967cff16 12536 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12537 }
12538 /* In the case of unhandled exception breakpoints, we print
12539 the exception name as "unhandled EXCEPTION_NAME", to make
12540 it clearer to the user which kind of catchpoint just got
12541 hit. We used ui_out_text to make sure that this extra
12542 info does not pollute the exception name in the MI case. */
37f6a7f4 12543 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
12544 uiout->text ("unhandled ");
12545 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12546 }
12547 break;
761269c8 12548 case ada_catch_assert:
956a9fb9
JB
12549 /* In this case, the name of the exception is not really
12550 important. Just print "failed assertion" to make it clearer
12551 that his program just hit an assertion-failure catchpoint.
12552 We used ui_out_text because this info does not belong in
12553 the MI output. */
112e8700 12554 uiout->text ("failed assertion");
956a9fb9 12555 break;
f7f9143b 12556 }
e547c119 12557
6f46ac85 12558 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12559 if (exception_message != NULL)
12560 {
e547c119 12561 uiout->text (" (");
6f46ac85 12562 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12563 uiout->text (")");
e547c119
JB
12564 }
12565
112e8700 12566 uiout->text (" at ");
956a9fb9 12567 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12568
12569 return PRINT_SRC_AND_LOC;
12570}
12571
12572/* Implement the PRINT_ONE method in the breakpoint_ops structure
12573 for all exception catchpoint kinds. */
12574
12575static void
37f6a7f4 12576print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12577{
79a45e25 12578 struct ui_out *uiout = current_uiout;
28010a5d 12579 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12580 struct value_print_options opts;
12581
12582 get_user_print_options (&opts);
f06f1252 12583
79a45b7d 12584 if (opts.addressprint)
f06f1252 12585 uiout->field_skip ("addr");
f7f9143b
JB
12586
12587 annotate_field (5);
37f6a7f4 12588 switch (c->m_kind)
f7f9143b 12589 {
761269c8 12590 case ada_catch_exception:
bc18fbb5 12591 if (!c->excep_string.empty ())
f7f9143b 12592 {
bc18fbb5
TT
12593 std::string msg = string_printf (_("`%s' Ada exception"),
12594 c->excep_string.c_str ());
28010a5d 12595
112e8700 12596 uiout->field_string ("what", msg);
f7f9143b
JB
12597 }
12598 else
112e8700 12599 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12600
12601 break;
12602
761269c8 12603 case ada_catch_exception_unhandled:
112e8700 12604 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12605 break;
12606
9f757bf7 12607 case ada_catch_handlers:
bc18fbb5 12608 if (!c->excep_string.empty ())
9f757bf7
XR
12609 {
12610 uiout->field_fmt ("what",
12611 _("`%s' Ada exception handlers"),
bc18fbb5 12612 c->excep_string.c_str ());
9f757bf7
XR
12613 }
12614 else
12615 uiout->field_string ("what", "all Ada exceptions handlers");
12616 break;
12617
761269c8 12618 case ada_catch_assert:
112e8700 12619 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12620 break;
12621
12622 default:
12623 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12624 break;
12625 }
12626}
12627
12628/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12629 for all exception catchpoint kinds. */
12630
12631static void
37f6a7f4 12632print_mention_exception (struct breakpoint *b)
f7f9143b 12633{
28010a5d 12634 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12635 struct ui_out *uiout = current_uiout;
28010a5d 12636
112e8700 12637 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12638 : _("Catchpoint "));
381befee 12639 uiout->field_signed ("bkptno", b->number);
112e8700 12640 uiout->text (": ");
00eb2c4a 12641
37f6a7f4 12642 switch (c->m_kind)
f7f9143b 12643 {
761269c8 12644 case ada_catch_exception:
bc18fbb5 12645 if (!c->excep_string.empty ())
00eb2c4a 12646 {
862d101a 12647 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12648 c->excep_string.c_str ());
862d101a 12649 uiout->text (info.c_str ());
00eb2c4a 12650 }
f7f9143b 12651 else
112e8700 12652 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12653 break;
12654
761269c8 12655 case ada_catch_exception_unhandled:
112e8700 12656 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12657 break;
9f757bf7
XR
12658
12659 case ada_catch_handlers:
bc18fbb5 12660 if (!c->excep_string.empty ())
9f757bf7
XR
12661 {
12662 std::string info
12663 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12664 c->excep_string.c_str ());
9f757bf7
XR
12665 uiout->text (info.c_str ());
12666 }
12667 else
12668 uiout->text (_("all Ada exceptions handlers"));
12669 break;
12670
761269c8 12671 case ada_catch_assert:
112e8700 12672 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12673 break;
12674
12675 default:
12676 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12677 break;
12678 }
12679}
12680
6149aea9
PA
12681/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12682 for all exception catchpoint kinds. */
12683
12684static void
37f6a7f4 12685print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 12686{
28010a5d
PA
12687 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12688
37f6a7f4 12689 switch (c->m_kind)
6149aea9 12690 {
761269c8 12691 case ada_catch_exception:
6149aea9 12692 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12693 if (!c->excep_string.empty ())
12694 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12695 break;
12696
761269c8 12697 case ada_catch_exception_unhandled:
78076abc 12698 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12699 break;
12700
9f757bf7
XR
12701 case ada_catch_handlers:
12702 fprintf_filtered (fp, "catch handlers");
12703 break;
12704
761269c8 12705 case ada_catch_assert:
6149aea9
PA
12706 fprintf_filtered (fp, "catch assert");
12707 break;
12708
12709 default:
12710 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12711 }
d9b3f62e 12712 print_recreate_thread (b, fp);
6149aea9
PA
12713}
12714
37f6a7f4 12715/* Virtual tables for various breakpoint types. */
2060206e 12716static struct breakpoint_ops catch_exception_breakpoint_ops;
2060206e 12717static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
2060206e 12718static struct breakpoint_ops catch_assert_breakpoint_ops;
9f757bf7
XR
12719static struct breakpoint_ops catch_handlers_breakpoint_ops;
12720
f06f1252
TT
12721/* See ada-lang.h. */
12722
12723bool
12724is_ada_exception_catchpoint (breakpoint *bp)
12725{
12726 return (bp->ops == &catch_exception_breakpoint_ops
12727 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12728 || bp->ops == &catch_assert_breakpoint_ops
12729 || bp->ops == &catch_handlers_breakpoint_ops);
12730}
12731
f7f9143b
JB
12732/* Split the arguments specified in a "catch exception" command.
12733 Set EX to the appropriate catchpoint type.
28010a5d 12734 Set EXCEP_STRING to the name of the specific exception if
5845583d 12735 specified by the user.
9f757bf7
XR
12736 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12737 "catch handlers" command. False otherwise.
5845583d
JB
12738 If a condition is found at the end of the arguments, the condition
12739 expression is stored in COND_STRING (memory must be deallocated
12740 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12741
12742static void
a121b7c1 12743catch_ada_exception_command_split (const char *args,
9f757bf7 12744 bool is_catch_handlers_cmd,
761269c8 12745 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12746 std::string *excep_string,
12747 std::string *cond_string)
f7f9143b 12748{
bc18fbb5 12749 std::string exception_name;
f7f9143b 12750
bc18fbb5
TT
12751 exception_name = extract_arg (&args);
12752 if (exception_name == "if")
5845583d
JB
12753 {
12754 /* This is not an exception name; this is the start of a condition
12755 expression for a catchpoint on all exceptions. So, "un-get"
12756 this token, and set exception_name to NULL. */
bc18fbb5 12757 exception_name.clear ();
5845583d
JB
12758 args -= 2;
12759 }
f7f9143b 12760
5845583d 12761 /* Check to see if we have a condition. */
f7f9143b 12762
f1735a53 12763 args = skip_spaces (args);
61012eef 12764 if (startswith (args, "if")
5845583d
JB
12765 && (isspace (args[2]) || args[2] == '\0'))
12766 {
12767 args += 2;
f1735a53 12768 args = skip_spaces (args);
5845583d
JB
12769
12770 if (args[0] == '\0')
12771 error (_("Condition missing after `if' keyword"));
bc18fbb5 12772 *cond_string = args;
5845583d
JB
12773
12774 args += strlen (args);
12775 }
12776
12777 /* Check that we do not have any more arguments. Anything else
12778 is unexpected. */
f7f9143b
JB
12779
12780 if (args[0] != '\0')
12781 error (_("Junk at end of expression"));
12782
9f757bf7
XR
12783 if (is_catch_handlers_cmd)
12784 {
12785 /* Catch handling of exceptions. */
12786 *ex = ada_catch_handlers;
12787 *excep_string = exception_name;
12788 }
bc18fbb5 12789 else if (exception_name.empty ())
f7f9143b
JB
12790 {
12791 /* Catch all exceptions. */
761269c8 12792 *ex = ada_catch_exception;
bc18fbb5 12793 excep_string->clear ();
f7f9143b 12794 }
bc18fbb5 12795 else if (exception_name == "unhandled")
f7f9143b
JB
12796 {
12797 /* Catch unhandled exceptions. */
761269c8 12798 *ex = ada_catch_exception_unhandled;
bc18fbb5 12799 excep_string->clear ();
f7f9143b
JB
12800 }
12801 else
12802 {
12803 /* Catch a specific exception. */
761269c8 12804 *ex = ada_catch_exception;
28010a5d 12805 *excep_string = exception_name;
f7f9143b
JB
12806 }
12807}
12808
12809/* Return the name of the symbol on which we should break in order to
12810 implement a catchpoint of the EX kind. */
12811
12812static const char *
761269c8 12813ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12814{
3eecfa55
JB
12815 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12816
12817 gdb_assert (data->exception_info != NULL);
0259addd 12818
f7f9143b
JB
12819 switch (ex)
12820 {
761269c8 12821 case ada_catch_exception:
3eecfa55 12822 return (data->exception_info->catch_exception_sym);
f7f9143b 12823 break;
761269c8 12824 case ada_catch_exception_unhandled:
3eecfa55 12825 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12826 break;
761269c8 12827 case ada_catch_assert:
3eecfa55 12828 return (data->exception_info->catch_assert_sym);
f7f9143b 12829 break;
9f757bf7
XR
12830 case ada_catch_handlers:
12831 return (data->exception_info->catch_handlers_sym);
12832 break;
f7f9143b
JB
12833 default:
12834 internal_error (__FILE__, __LINE__,
12835 _("unexpected catchpoint kind (%d)"), ex);
12836 }
12837}
12838
12839/* Return the breakpoint ops "virtual table" used for catchpoints
12840 of the EX kind. */
12841
c0a91b2b 12842static const struct breakpoint_ops *
761269c8 12843ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12844{
12845 switch (ex)
12846 {
761269c8 12847 case ada_catch_exception:
f7f9143b
JB
12848 return (&catch_exception_breakpoint_ops);
12849 break;
761269c8 12850 case ada_catch_exception_unhandled:
f7f9143b
JB
12851 return (&catch_exception_unhandled_breakpoint_ops);
12852 break;
761269c8 12853 case ada_catch_assert:
f7f9143b
JB
12854 return (&catch_assert_breakpoint_ops);
12855 break;
9f757bf7
XR
12856 case ada_catch_handlers:
12857 return (&catch_handlers_breakpoint_ops);
12858 break;
f7f9143b
JB
12859 default:
12860 internal_error (__FILE__, __LINE__,
12861 _("unexpected catchpoint kind (%d)"), ex);
12862 }
12863}
12864
12865/* Return the condition that will be used to match the current exception
12866 being raised with the exception that the user wants to catch. This
12867 assumes that this condition is used when the inferior just triggered
12868 an exception catchpoint.
cb7de75e 12869 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12870
cb7de75e 12871static std::string
9f757bf7
XR
12872ada_exception_catchpoint_cond_string (const char *excep_string,
12873 enum ada_exception_catchpoint_kind ex)
f7f9143b 12874{
3d0b0fa3 12875 int i;
fccf9de1 12876 bool is_standard_exc = false;
cb7de75e 12877 std::string result;
9f757bf7
XR
12878
12879 if (ex == ada_catch_handlers)
12880 {
12881 /* For exception handlers catchpoints, the condition string does
12882 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12883 result = ("long_integer (GNAT_GCC_exception_Access"
12884 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12885 }
12886 else
fccf9de1 12887 result = "long_integer (e)";
3d0b0fa3 12888
0963b4bd 12889 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12890 runtime units that have been compiled without debugging info; if
28010a5d 12891 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12892 exception (e.g. "constraint_error") then, during the evaluation
12893 of the condition expression, the symbol lookup on this name would
0963b4bd 12894 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12895 may then be set only on user-defined exceptions which have the
12896 same not-fully-qualified name (e.g. my_package.constraint_error).
12897
12898 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12899 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12900 exception constraint_error" is rewritten into "catch exception
12901 standard.constraint_error".
12902
12903 If an exception named contraint_error is defined in another package of
12904 the inferior program, then the only way to specify this exception as a
12905 breakpoint condition is to use its fully-qualified named:
fccf9de1 12906 e.g. my_package.constraint_error. */
3d0b0fa3
JB
12907
12908 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12909 {
28010a5d 12910 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 12911 {
fccf9de1 12912 is_standard_exc = true;
9f757bf7 12913 break;
3d0b0fa3
JB
12914 }
12915 }
9f757bf7 12916
fccf9de1
TT
12917 result += " = ";
12918
12919 if (is_standard_exc)
12920 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12921 else
12922 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12923
9f757bf7 12924 return result;
f7f9143b
JB
12925}
12926
12927/* Return the symtab_and_line that should be used to insert an exception
12928 catchpoint of the TYPE kind.
12929
28010a5d
PA
12930 ADDR_STRING returns the name of the function where the real
12931 breakpoint that implements the catchpoints is set, depending on the
12932 type of catchpoint we need to create. */
f7f9143b
JB
12933
12934static struct symtab_and_line
bc18fbb5 12935ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12936 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12937{
12938 const char *sym_name;
12939 struct symbol *sym;
f7f9143b 12940
0259addd
JB
12941 /* First, find out which exception support info to use. */
12942 ada_exception_support_info_sniffer ();
12943
12944 /* Then lookup the function on which we will break in order to catch
f7f9143b 12945 the Ada exceptions requested by the user. */
f7f9143b
JB
12946 sym_name = ada_exception_sym_name (ex);
12947 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12948
57aff202
JB
12949 if (sym == NULL)
12950 error (_("Catchpoint symbol not found: %s"), sym_name);
12951
12952 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12953 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12954
12955 /* Set ADDR_STRING. */
cc12f4a8 12956 *addr_string = sym_name;
f7f9143b 12957
f7f9143b 12958 /* Set OPS. */
4b9eee8c 12959 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12960
f17011e0 12961 return find_function_start_sal (sym, 1);
f7f9143b
JB
12962}
12963
b4a5b78b 12964/* Create an Ada exception catchpoint.
f7f9143b 12965
b4a5b78b 12966 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12967
bc18fbb5 12968 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12969 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12970 of the exception to which this catchpoint applies.
2df4d1d5 12971
bc18fbb5 12972 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12973
b4a5b78b
JB
12974 TEMPFLAG, if nonzero, means that the underlying breakpoint
12975 should be temporary.
28010a5d 12976
b4a5b78b 12977 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12978
349774ef 12979void
28010a5d 12980create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12981 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12982 const std::string &excep_string,
56ecd069 12983 const std::string &cond_string,
28010a5d 12984 int tempflag,
349774ef 12985 int disabled,
28010a5d
PA
12986 int from_tty)
12987{
cc12f4a8 12988 std::string addr_string;
b4a5b78b 12989 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12990 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12991
37f6a7f4 12992 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12993 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12994 ops, tempflag, disabled, from_tty);
28010a5d 12995 c->excep_string = excep_string;
9f757bf7 12996 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
12997 if (!cond_string.empty ())
12998 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 12999 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13000}
13001
9ac4176b
PA
13002/* Implement the "catch exception" command. */
13003
13004static void
eb4c3f4a 13005catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13006 struct cmd_list_element *command)
13007{
a121b7c1 13008 const char *arg = arg_entry;
9ac4176b
PA
13009 struct gdbarch *gdbarch = get_current_arch ();
13010 int tempflag;
761269c8 13011 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13012 std::string excep_string;
56ecd069 13013 std::string cond_string;
9ac4176b
PA
13014
13015 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13016
13017 if (!arg)
13018 arg = "";
9f757bf7 13019 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13020 &cond_string);
9f757bf7
XR
13021 create_ada_exception_catchpoint (gdbarch, ex_kind,
13022 excep_string, cond_string,
13023 tempflag, 1 /* enabled */,
13024 from_tty);
13025}
13026
13027/* Implement the "catch handlers" command. */
13028
13029static void
13030catch_ada_handlers_command (const char *arg_entry, int from_tty,
13031 struct cmd_list_element *command)
13032{
13033 const char *arg = arg_entry;
13034 struct gdbarch *gdbarch = get_current_arch ();
13035 int tempflag;
13036 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13037 std::string excep_string;
56ecd069 13038 std::string cond_string;
9f757bf7
XR
13039
13040 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13041
13042 if (!arg)
13043 arg = "";
13044 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13045 &cond_string);
b4a5b78b
JB
13046 create_ada_exception_catchpoint (gdbarch, ex_kind,
13047 excep_string, cond_string,
349774ef
JB
13048 tempflag, 1 /* enabled */,
13049 from_tty);
9ac4176b
PA
13050}
13051
71bed2db
TT
13052/* Completion function for the Ada "catch" commands. */
13053
13054static void
13055catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13056 const char *text, const char *word)
13057{
13058 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13059
13060 for (const ada_exc_info &info : exceptions)
13061 {
13062 if (startswith (info.name, word))
b02f78f9 13063 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
13064 }
13065}
13066
b4a5b78b 13067/* Split the arguments specified in a "catch assert" command.
5845583d 13068
b4a5b78b
JB
13069 ARGS contains the command's arguments (or the empty string if
13070 no arguments were passed).
5845583d
JB
13071
13072 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13073 (the memory needs to be deallocated after use). */
5845583d 13074
b4a5b78b 13075static void
56ecd069 13076catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13077{
f1735a53 13078 args = skip_spaces (args);
f7f9143b 13079
5845583d 13080 /* Check whether a condition was provided. */
61012eef 13081 if (startswith (args, "if")
5845583d 13082 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13083 {
5845583d 13084 args += 2;
f1735a53 13085 args = skip_spaces (args);
5845583d
JB
13086 if (args[0] == '\0')
13087 error (_("condition missing after `if' keyword"));
56ecd069 13088 cond_string.assign (args);
f7f9143b
JB
13089 }
13090
5845583d
JB
13091 /* Otherwise, there should be no other argument at the end of
13092 the command. */
13093 else if (args[0] != '\0')
13094 error (_("Junk at end of arguments."));
f7f9143b
JB
13095}
13096
9ac4176b
PA
13097/* Implement the "catch assert" command. */
13098
13099static void
eb4c3f4a 13100catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13101 struct cmd_list_element *command)
13102{
a121b7c1 13103 const char *arg = arg_entry;
9ac4176b
PA
13104 struct gdbarch *gdbarch = get_current_arch ();
13105 int tempflag;
56ecd069 13106 std::string cond_string;
9ac4176b
PA
13107
13108 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13109
13110 if (!arg)
13111 arg = "";
56ecd069 13112 catch_ada_assert_command_split (arg, cond_string);
761269c8 13113 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13114 "", cond_string,
349774ef
JB
13115 tempflag, 1 /* enabled */,
13116 from_tty);
9ac4176b 13117}
778865d3
JB
13118
13119/* Return non-zero if the symbol SYM is an Ada exception object. */
13120
13121static int
13122ada_is_exception_sym (struct symbol *sym)
13123{
a737d952 13124 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13125
13126 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13127 && SYMBOL_CLASS (sym) != LOC_BLOCK
13128 && SYMBOL_CLASS (sym) != LOC_CONST
13129 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13130 && type_name != NULL && strcmp (type_name, "exception") == 0);
13131}
13132
13133/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13134 Ada exception object. This matches all exceptions except the ones
13135 defined by the Ada language. */
13136
13137static int
13138ada_is_non_standard_exception_sym (struct symbol *sym)
13139{
13140 int i;
13141
13142 if (!ada_is_exception_sym (sym))
13143 return 0;
13144
13145 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13146 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13147 return 0; /* A standard exception. */
13148
13149 /* Numeric_Error is also a standard exception, so exclude it.
13150 See the STANDARD_EXC description for more details as to why
13151 this exception is not listed in that array. */
13152 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13153 return 0;
13154
13155 return 1;
13156}
13157
ab816a27 13158/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13159 objects.
13160
13161 The comparison is determined first by exception name, and then
13162 by exception address. */
13163
ab816a27 13164bool
cc536b21 13165ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13166{
778865d3
JB
13167 int result;
13168
ab816a27
TT
13169 result = strcmp (name, other.name);
13170 if (result < 0)
13171 return true;
13172 if (result == 0 && addr < other.addr)
13173 return true;
13174 return false;
13175}
778865d3 13176
ab816a27 13177bool
cc536b21 13178ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13179{
13180 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13181}
13182
13183/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13184 routine, but keeping the first SKIP elements untouched.
13185
13186 All duplicates are also removed. */
13187
13188static void
ab816a27 13189sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13190 int skip)
13191{
ab816a27
TT
13192 std::sort (exceptions->begin () + skip, exceptions->end ());
13193 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13194 exceptions->end ());
778865d3
JB
13195}
13196
778865d3
JB
13197/* Add all exceptions defined by the Ada standard whose name match
13198 a regular expression.
13199
13200 If PREG is not NULL, then this regexp_t object is used to
13201 perform the symbol name matching. Otherwise, no name-based
13202 filtering is performed.
13203
13204 EXCEPTIONS is a vector of exceptions to which matching exceptions
13205 gets pushed. */
13206
13207static void
2d7cc5c7 13208ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13209 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13210{
13211 int i;
13212
13213 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13214 {
13215 if (preg == NULL
2d7cc5c7 13216 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13217 {
13218 struct bound_minimal_symbol msymbol
13219 = ada_lookup_simple_minsym (standard_exc[i]);
13220
13221 if (msymbol.minsym != NULL)
13222 {
13223 struct ada_exc_info info
77e371c0 13224 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13225
ab816a27 13226 exceptions->push_back (info);
778865d3
JB
13227 }
13228 }
13229 }
13230}
13231
13232/* Add all Ada exceptions defined locally and accessible from the given
13233 FRAME.
13234
13235 If PREG is not NULL, then this regexp_t object is used to
13236 perform the symbol name matching. Otherwise, no name-based
13237 filtering is performed.
13238
13239 EXCEPTIONS is a vector of exceptions to which matching exceptions
13240 gets pushed. */
13241
13242static void
2d7cc5c7
PA
13243ada_add_exceptions_from_frame (compiled_regex *preg,
13244 struct frame_info *frame,
ab816a27 13245 std::vector<ada_exc_info> *exceptions)
778865d3 13246{
3977b71f 13247 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13248
13249 while (block != 0)
13250 {
13251 struct block_iterator iter;
13252 struct symbol *sym;
13253
13254 ALL_BLOCK_SYMBOLS (block, iter, sym)
13255 {
13256 switch (SYMBOL_CLASS (sym))
13257 {
13258 case LOC_TYPEDEF:
13259 case LOC_BLOCK:
13260 case LOC_CONST:
13261 break;
13262 default:
13263 if (ada_is_exception_sym (sym))
13264 {
13265 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13266 SYMBOL_VALUE_ADDRESS (sym)};
13267
ab816a27 13268 exceptions->push_back (info);
778865d3
JB
13269 }
13270 }
13271 }
13272 if (BLOCK_FUNCTION (block) != NULL)
13273 break;
13274 block = BLOCK_SUPERBLOCK (block);
13275 }
13276}
13277
14bc53a8
PA
13278/* Return true if NAME matches PREG or if PREG is NULL. */
13279
13280static bool
2d7cc5c7 13281name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13282{
13283 return (preg == NULL
f945dedf 13284 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13285}
13286
778865d3
JB
13287/* Add all exceptions defined globally whose name name match
13288 a regular expression, excluding standard exceptions.
13289
13290 The reason we exclude standard exceptions is that they need
13291 to be handled separately: Standard exceptions are defined inside
13292 a runtime unit which is normally not compiled with debugging info,
13293 and thus usually do not show up in our symbol search. However,
13294 if the unit was in fact built with debugging info, we need to
13295 exclude them because they would duplicate the entry we found
13296 during the special loop that specifically searches for those
13297 standard exceptions.
13298
13299 If PREG is not NULL, then this regexp_t object is used to
13300 perform the symbol name matching. Otherwise, no name-based
13301 filtering is performed.
13302
13303 EXCEPTIONS is a vector of exceptions to which matching exceptions
13304 gets pushed. */
13305
13306static void
2d7cc5c7 13307ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13308 std::vector<ada_exc_info> *exceptions)
778865d3 13309{
14bc53a8
PA
13310 /* In Ada, the symbol "search name" is a linkage name, whereas the
13311 regular expression used to do the matching refers to the natural
13312 name. So match against the decoded name. */
13313 expand_symtabs_matching (NULL,
b5ec771e 13314 lookup_name_info::match_any (),
14bc53a8
PA
13315 [&] (const char *search_name)
13316 {
f945dedf
CB
13317 std::string decoded = ada_decode (search_name);
13318 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13319 },
13320 NULL,
13321 VARIABLES_DOMAIN);
778865d3 13322
2030c079 13323 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13324 {
b669c953 13325 for (compunit_symtab *s : objfile->compunits ())
778865d3 13326 {
d8aeb77f
TT
13327 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13328 int i;
778865d3 13329
d8aeb77f
TT
13330 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13331 {
582942f4 13332 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13333 struct block_iterator iter;
13334 struct symbol *sym;
778865d3 13335
d8aeb77f
TT
13336 ALL_BLOCK_SYMBOLS (b, iter, sym)
13337 if (ada_is_non_standard_exception_sym (sym)
13338 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13339 {
13340 struct ada_exc_info info
13341 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13342
13343 exceptions->push_back (info);
13344 }
13345 }
778865d3
JB
13346 }
13347 }
13348}
13349
13350/* Implements ada_exceptions_list with the regular expression passed
13351 as a regex_t, rather than a string.
13352
13353 If not NULL, PREG is used to filter out exceptions whose names
13354 do not match. Otherwise, all exceptions are listed. */
13355
ab816a27 13356static std::vector<ada_exc_info>
2d7cc5c7 13357ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13358{
ab816a27 13359 std::vector<ada_exc_info> result;
778865d3
JB
13360 int prev_len;
13361
13362 /* First, list the known standard exceptions. These exceptions
13363 need to be handled separately, as they are usually defined in
13364 runtime units that have been compiled without debugging info. */
13365
13366 ada_add_standard_exceptions (preg, &result);
13367
13368 /* Next, find all exceptions whose scope is local and accessible
13369 from the currently selected frame. */
13370
13371 if (has_stack_frames ())
13372 {
ab816a27 13373 prev_len = result.size ();
778865d3
JB
13374 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13375 &result);
ab816a27 13376 if (result.size () > prev_len)
778865d3
JB
13377 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13378 }
13379
13380 /* Add all exceptions whose scope is global. */
13381
ab816a27 13382 prev_len = result.size ();
778865d3 13383 ada_add_global_exceptions (preg, &result);
ab816a27 13384 if (result.size () > prev_len)
778865d3
JB
13385 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13386
778865d3
JB
13387 return result;
13388}
13389
13390/* Return a vector of ada_exc_info.
13391
13392 If REGEXP is NULL, all exceptions are included in the result.
13393 Otherwise, it should contain a valid regular expression,
13394 and only the exceptions whose names match that regular expression
13395 are included in the result.
13396
13397 The exceptions are sorted in the following order:
13398 - Standard exceptions (defined by the Ada language), in
13399 alphabetical order;
13400 - Exceptions only visible from the current frame, in
13401 alphabetical order;
13402 - Exceptions whose scope is global, in alphabetical order. */
13403
ab816a27 13404std::vector<ada_exc_info>
778865d3
JB
13405ada_exceptions_list (const char *regexp)
13406{
2d7cc5c7
PA
13407 if (regexp == NULL)
13408 return ada_exceptions_list_1 (NULL);
778865d3 13409
2d7cc5c7
PA
13410 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13411 return ada_exceptions_list_1 (&reg);
778865d3
JB
13412}
13413
13414/* Implement the "info exceptions" command. */
13415
13416static void
1d12d88f 13417info_exceptions_command (const char *regexp, int from_tty)
778865d3 13418{
778865d3 13419 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13420
ab816a27 13421 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13422
13423 if (regexp != NULL)
13424 printf_filtered
13425 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13426 else
13427 printf_filtered (_("All defined Ada exceptions:\n"));
13428
ab816a27
TT
13429 for (const ada_exc_info &info : exceptions)
13430 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13431}
13432
4c4b4cd2
PH
13433 /* Operators */
13434/* Information about operators given special treatment in functions
13435 below. */
13436/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13437
13438#define ADA_OPERATORS \
13439 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13440 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13441 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13442 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13443 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13444 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13445 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13446 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13447 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13448 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13449 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13450 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13451 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13452 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13453 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13454 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13455 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13456 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13457 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13458
13459static void
554794dc
SDJ
13460ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13461 int *argsp)
4c4b4cd2
PH
13462{
13463 switch (exp->elts[pc - 1].opcode)
13464 {
76a01679 13465 default:
4c4b4cd2
PH
13466 operator_length_standard (exp, pc, oplenp, argsp);
13467 break;
13468
13469#define OP_DEFN(op, len, args, binop) \
13470 case op: *oplenp = len; *argsp = args; break;
13471 ADA_OPERATORS;
13472#undef OP_DEFN
52ce6436
PH
13473
13474 case OP_AGGREGATE:
13475 *oplenp = 3;
13476 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13477 break;
13478
13479 case OP_CHOICES:
13480 *oplenp = 3;
13481 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13482 break;
4c4b4cd2
PH
13483 }
13484}
13485
c0201579
JK
13486/* Implementation of the exp_descriptor method operator_check. */
13487
13488static int
13489ada_operator_check (struct expression *exp, int pos,
13490 int (*objfile_func) (struct objfile *objfile, void *data),
13491 void *data)
13492{
13493 const union exp_element *const elts = exp->elts;
13494 struct type *type = NULL;
13495
13496 switch (elts[pos].opcode)
13497 {
13498 case UNOP_IN_RANGE:
13499 case UNOP_QUAL:
13500 type = elts[pos + 1].type;
13501 break;
13502
13503 default:
13504 return operator_check_standard (exp, pos, objfile_func, data);
13505 }
13506
13507 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13508
13509 if (type && TYPE_OBJFILE (type)
13510 && (*objfile_func) (TYPE_OBJFILE (type), data))
13511 return 1;
13512
13513 return 0;
13514}
13515
a121b7c1 13516static const char *
4c4b4cd2
PH
13517ada_op_name (enum exp_opcode opcode)
13518{
13519 switch (opcode)
13520 {
76a01679 13521 default:
4c4b4cd2 13522 return op_name_standard (opcode);
52ce6436 13523
4c4b4cd2
PH
13524#define OP_DEFN(op, len, args, binop) case op: return #op;
13525 ADA_OPERATORS;
13526#undef OP_DEFN
52ce6436
PH
13527
13528 case OP_AGGREGATE:
13529 return "OP_AGGREGATE";
13530 case OP_CHOICES:
13531 return "OP_CHOICES";
13532 case OP_NAME:
13533 return "OP_NAME";
4c4b4cd2
PH
13534 }
13535}
13536
13537/* As for operator_length, but assumes PC is pointing at the first
13538 element of the operator, and gives meaningful results only for the
52ce6436 13539 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13540
13541static void
76a01679
JB
13542ada_forward_operator_length (struct expression *exp, int pc,
13543 int *oplenp, int *argsp)
4c4b4cd2 13544{
76a01679 13545 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13546 {
13547 default:
13548 *oplenp = *argsp = 0;
13549 break;
52ce6436 13550
4c4b4cd2
PH
13551#define OP_DEFN(op, len, args, binop) \
13552 case op: *oplenp = len; *argsp = args; break;
13553 ADA_OPERATORS;
13554#undef OP_DEFN
52ce6436
PH
13555
13556 case OP_AGGREGATE:
13557 *oplenp = 3;
13558 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13559 break;
13560
13561 case OP_CHOICES:
13562 *oplenp = 3;
13563 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13564 break;
13565
13566 case OP_STRING:
13567 case OP_NAME:
13568 {
13569 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13570
52ce6436
PH
13571 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13572 *argsp = 0;
13573 break;
13574 }
4c4b4cd2
PH
13575 }
13576}
13577
13578static int
13579ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13580{
13581 enum exp_opcode op = exp->elts[elt].opcode;
13582 int oplen, nargs;
13583 int pc = elt;
13584 int i;
76a01679 13585
4c4b4cd2
PH
13586 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13587
76a01679 13588 switch (op)
4c4b4cd2 13589 {
76a01679 13590 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13591 case OP_ATR_FIRST:
13592 case OP_ATR_LAST:
13593 case OP_ATR_LENGTH:
13594 case OP_ATR_IMAGE:
13595 case OP_ATR_MAX:
13596 case OP_ATR_MIN:
13597 case OP_ATR_MODULUS:
13598 case OP_ATR_POS:
13599 case OP_ATR_SIZE:
13600 case OP_ATR_TAG:
13601 case OP_ATR_VAL:
13602 break;
13603
13604 case UNOP_IN_RANGE:
13605 case UNOP_QUAL:
323e0a4a
AC
13606 /* XXX: gdb_sprint_host_address, type_sprint */
13607 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13608 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13609 fprintf_filtered (stream, " (");
13610 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13611 fprintf_filtered (stream, ")");
13612 break;
13613 case BINOP_IN_BOUNDS:
52ce6436
PH
13614 fprintf_filtered (stream, " (%d)",
13615 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13616 break;
13617 case TERNOP_IN_RANGE:
13618 break;
13619
52ce6436
PH
13620 case OP_AGGREGATE:
13621 case OP_OTHERS:
13622 case OP_DISCRETE_RANGE:
13623 case OP_POSITIONAL:
13624 case OP_CHOICES:
13625 break;
13626
13627 case OP_NAME:
13628 case OP_STRING:
13629 {
13630 char *name = &exp->elts[elt + 2].string;
13631 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13632
52ce6436
PH
13633 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13634 break;
13635 }
13636
4c4b4cd2
PH
13637 default:
13638 return dump_subexp_body_standard (exp, stream, elt);
13639 }
13640
13641 elt += oplen;
13642 for (i = 0; i < nargs; i += 1)
13643 elt = dump_subexp (exp, stream, elt);
13644
13645 return elt;
13646}
13647
13648/* The Ada extension of print_subexp (q.v.). */
13649
76a01679
JB
13650static void
13651ada_print_subexp (struct expression *exp, int *pos,
13652 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13653{
52ce6436 13654 int oplen, nargs, i;
4c4b4cd2
PH
13655 int pc = *pos;
13656 enum exp_opcode op = exp->elts[pc].opcode;
13657
13658 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13659
52ce6436 13660 *pos += oplen;
4c4b4cd2
PH
13661 switch (op)
13662 {
13663 default:
52ce6436 13664 *pos -= oplen;
4c4b4cd2
PH
13665 print_subexp_standard (exp, pos, stream, prec);
13666 return;
13667
13668 case OP_VAR_VALUE:
4c4b4cd2
PH
13669 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13670 return;
13671
13672 case BINOP_IN_BOUNDS:
323e0a4a 13673 /* XXX: sprint_subexp */
4c4b4cd2 13674 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13675 fputs_filtered (" in ", stream);
4c4b4cd2 13676 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13677 fputs_filtered ("'range", stream);
4c4b4cd2 13678 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13679 fprintf_filtered (stream, "(%ld)",
13680 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13681 return;
13682
13683 case TERNOP_IN_RANGE:
4c4b4cd2 13684 if (prec >= PREC_EQUAL)
76a01679 13685 fputs_filtered ("(", stream);
323e0a4a 13686 /* XXX: sprint_subexp */
4c4b4cd2 13687 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13688 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13689 print_subexp (exp, pos, stream, PREC_EQUAL);
13690 fputs_filtered (" .. ", stream);
13691 print_subexp (exp, pos, stream, PREC_EQUAL);
13692 if (prec >= PREC_EQUAL)
76a01679
JB
13693 fputs_filtered (")", stream);
13694 return;
4c4b4cd2
PH
13695
13696 case OP_ATR_FIRST:
13697 case OP_ATR_LAST:
13698 case OP_ATR_LENGTH:
13699 case OP_ATR_IMAGE:
13700 case OP_ATR_MAX:
13701 case OP_ATR_MIN:
13702 case OP_ATR_MODULUS:
13703 case OP_ATR_POS:
13704 case OP_ATR_SIZE:
13705 case OP_ATR_TAG:
13706 case OP_ATR_VAL:
4c4b4cd2 13707 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13708 {
13709 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13710 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13711 &type_print_raw_options);
76a01679
JB
13712 *pos += 3;
13713 }
4c4b4cd2 13714 else
76a01679 13715 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13716 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13717 if (nargs > 1)
76a01679
JB
13718 {
13719 int tem;
5b4ee69b 13720
76a01679
JB
13721 for (tem = 1; tem < nargs; tem += 1)
13722 {
13723 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13724 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13725 }
13726 fputs_filtered (")", stream);
13727 }
4c4b4cd2 13728 return;
14f9c5c9 13729
4c4b4cd2 13730 case UNOP_QUAL:
4c4b4cd2
PH
13731 type_print (exp->elts[pc + 1].type, "", stream, 0);
13732 fputs_filtered ("'(", stream);
13733 print_subexp (exp, pos, stream, PREC_PREFIX);
13734 fputs_filtered (")", stream);
13735 return;
14f9c5c9 13736
4c4b4cd2 13737 case UNOP_IN_RANGE:
323e0a4a 13738 /* XXX: sprint_subexp */
4c4b4cd2 13739 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13740 fputs_filtered (" in ", stream);
79d43c61
TT
13741 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13742 &type_print_raw_options);
4c4b4cd2 13743 return;
52ce6436
PH
13744
13745 case OP_DISCRETE_RANGE:
13746 print_subexp (exp, pos, stream, PREC_SUFFIX);
13747 fputs_filtered ("..", stream);
13748 print_subexp (exp, pos, stream, PREC_SUFFIX);
13749 return;
13750
13751 case OP_OTHERS:
13752 fputs_filtered ("others => ", stream);
13753 print_subexp (exp, pos, stream, PREC_SUFFIX);
13754 return;
13755
13756 case OP_CHOICES:
13757 for (i = 0; i < nargs-1; i += 1)
13758 {
13759 if (i > 0)
13760 fputs_filtered ("|", stream);
13761 print_subexp (exp, pos, stream, PREC_SUFFIX);
13762 }
13763 fputs_filtered (" => ", stream);
13764 print_subexp (exp, pos, stream, PREC_SUFFIX);
13765 return;
13766
13767 case OP_POSITIONAL:
13768 print_subexp (exp, pos, stream, PREC_SUFFIX);
13769 return;
13770
13771 case OP_AGGREGATE:
13772 fputs_filtered ("(", stream);
13773 for (i = 0; i < nargs; i += 1)
13774 {
13775 if (i > 0)
13776 fputs_filtered (", ", stream);
13777 print_subexp (exp, pos, stream, PREC_SUFFIX);
13778 }
13779 fputs_filtered (")", stream);
13780 return;
4c4b4cd2
PH
13781 }
13782}
14f9c5c9
AS
13783
13784/* Table mapping opcodes into strings for printing operators
13785 and precedences of the operators. */
13786
d2e4a39e
AS
13787static const struct op_print ada_op_print_tab[] = {
13788 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13789 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13790 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13791 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13792 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13793 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13794 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13795 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13796 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13797 {">=", BINOP_GEQ, PREC_ORDER, 0},
13798 {">", BINOP_GTR, PREC_ORDER, 0},
13799 {"<", BINOP_LESS, PREC_ORDER, 0},
13800 {">>", BINOP_RSH, PREC_SHIFT, 0},
13801 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13802 {"+", BINOP_ADD, PREC_ADD, 0},
13803 {"-", BINOP_SUB, PREC_ADD, 0},
13804 {"&", BINOP_CONCAT, PREC_ADD, 0},
13805 {"*", BINOP_MUL, PREC_MUL, 0},
13806 {"/", BINOP_DIV, PREC_MUL, 0},
13807 {"rem", BINOP_REM, PREC_MUL, 0},
13808 {"mod", BINOP_MOD, PREC_MUL, 0},
13809 {"**", BINOP_EXP, PREC_REPEAT, 0},
13810 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13811 {"-", UNOP_NEG, PREC_PREFIX, 0},
13812 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13813 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13814 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13815 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13816 {".all", UNOP_IND, PREC_SUFFIX, 1},
13817 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13818 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13819 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13820};
13821\f
72d5681a
PH
13822enum ada_primitive_types {
13823 ada_primitive_type_int,
13824 ada_primitive_type_long,
13825 ada_primitive_type_short,
13826 ada_primitive_type_char,
13827 ada_primitive_type_float,
13828 ada_primitive_type_double,
13829 ada_primitive_type_void,
13830 ada_primitive_type_long_long,
13831 ada_primitive_type_long_double,
13832 ada_primitive_type_natural,
13833 ada_primitive_type_positive,
13834 ada_primitive_type_system_address,
08f49010 13835 ada_primitive_type_storage_offset,
72d5681a
PH
13836 nr_ada_primitive_types
13837};
6c038f32
PH
13838
13839static void
d4a9a881 13840ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13841 struct language_arch_info *lai)
13842{
d4a9a881 13843 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13844
72d5681a 13845 lai->primitive_type_vector
d4a9a881 13846 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13847 struct type *);
e9bb382b
UW
13848
13849 lai->primitive_type_vector [ada_primitive_type_int]
13850 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13851 0, "integer");
13852 lai->primitive_type_vector [ada_primitive_type_long]
13853 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13854 0, "long_integer");
13855 lai->primitive_type_vector [ada_primitive_type_short]
13856 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13857 0, "short_integer");
13858 lai->string_char_type
13859 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13860 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13861 lai->primitive_type_vector [ada_primitive_type_float]
13862 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 13863 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
13864 lai->primitive_type_vector [ada_primitive_type_double]
13865 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 13866 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
13867 lai->primitive_type_vector [ada_primitive_type_long_long]
13868 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13869 0, "long_long_integer");
13870 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 13871 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 13872 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
13873 lai->primitive_type_vector [ada_primitive_type_natural]
13874 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13875 0, "natural");
13876 lai->primitive_type_vector [ada_primitive_type_positive]
13877 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13878 0, "positive");
13879 lai->primitive_type_vector [ada_primitive_type_void]
13880 = builtin->builtin_void;
13881
13882 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
13883 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13884 "void"));
72d5681a
PH
13885 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13886 = "system__address";
fbb06eb1 13887
08f49010
XR
13888 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13889 type. This is a signed integral type whose size is the same as
13890 the size of addresses. */
13891 {
13892 unsigned int addr_length = TYPE_LENGTH
13893 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13894
13895 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13896 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13897 "storage_offset");
13898 }
13899
47e729a8 13900 lai->bool_type_symbol = NULL;
fbb06eb1 13901 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13902}
6c038f32
PH
13903\f
13904 /* Language vector */
13905
13906/* Not really used, but needed in the ada_language_defn. */
13907
13908static void
6c7a06a3 13909emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13910{
6c7a06a3 13911 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13912}
13913
13914static int
410a0ff2 13915parse (struct parser_state *ps)
6c038f32
PH
13916{
13917 warnings_issued = 0;
410a0ff2 13918 return ada_parse (ps);
6c038f32
PH
13919}
13920
13921static const struct exp_descriptor ada_exp_descriptor = {
13922 ada_print_subexp,
13923 ada_operator_length,
c0201579 13924 ada_operator_check,
6c038f32
PH
13925 ada_op_name,
13926 ada_dump_subexp_body,
13927 ada_evaluate_subexp
13928};
13929
b5ec771e
PA
13930/* symbol_name_matcher_ftype adapter for wild_match. */
13931
13932static bool
13933do_wild_match (const char *symbol_search_name,
13934 const lookup_name_info &lookup_name,
a207cff2 13935 completion_match_result *comp_match_res)
b5ec771e
PA
13936{
13937 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13938}
13939
13940/* symbol_name_matcher_ftype adapter for full_match. */
13941
13942static bool
13943do_full_match (const char *symbol_search_name,
13944 const lookup_name_info &lookup_name,
a207cff2 13945 completion_match_result *comp_match_res)
b5ec771e
PA
13946{
13947 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13948}
13949
a2cd4f14
JB
13950/* symbol_name_matcher_ftype for exact (verbatim) matches. */
13951
13952static bool
13953do_exact_match (const char *symbol_search_name,
13954 const lookup_name_info &lookup_name,
13955 completion_match_result *comp_match_res)
13956{
13957 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13958}
13959
b5ec771e
PA
13960/* Build the Ada lookup name for LOOKUP_NAME. */
13961
13962ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13963{
13964 const std::string &user_name = lookup_name.name ();
13965
13966 if (user_name[0] == '<')
13967 {
13968 if (user_name.back () == '>')
13969 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13970 else
13971 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13972 m_encoded_p = true;
13973 m_verbatim_p = true;
13974 m_wild_match_p = false;
13975 m_standard_p = false;
13976 }
13977 else
13978 {
13979 m_verbatim_p = false;
13980
13981 m_encoded_p = user_name.find ("__") != std::string::npos;
13982
13983 if (!m_encoded_p)
13984 {
13985 const char *folded = ada_fold_name (user_name.c_str ());
13986 const char *encoded = ada_encode_1 (folded, false);
13987 if (encoded != NULL)
13988 m_encoded_name = encoded;
13989 else
13990 m_encoded_name = user_name;
13991 }
13992 else
13993 m_encoded_name = user_name;
13994
13995 /* Handle the 'package Standard' special case. See description
13996 of m_standard_p. */
13997 if (startswith (m_encoded_name.c_str (), "standard__"))
13998 {
13999 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14000 m_standard_p = true;
14001 }
14002 else
14003 m_standard_p = false;
74ccd7f5 14004
b5ec771e
PA
14005 /* If the name contains a ".", then the user is entering a fully
14006 qualified entity name, and the match must not be done in wild
14007 mode. Similarly, if the user wants to complete what looks
14008 like an encoded name, the match must not be done in wild
14009 mode. Also, in the standard__ special case always do
14010 non-wild matching. */
14011 m_wild_match_p
14012 = (lookup_name.match_type () != symbol_name_match_type::FULL
14013 && !m_encoded_p
14014 && !m_standard_p
14015 && user_name.find ('.') == std::string::npos);
14016 }
14017}
14018
14019/* symbol_name_matcher_ftype method for Ada. This only handles
14020 completion mode. */
14021
14022static bool
14023ada_symbol_name_matches (const char *symbol_search_name,
14024 const lookup_name_info &lookup_name,
a207cff2 14025 completion_match_result *comp_match_res)
74ccd7f5 14026{
b5ec771e
PA
14027 return lookup_name.ada ().matches (symbol_search_name,
14028 lookup_name.match_type (),
a207cff2 14029 comp_match_res);
b5ec771e
PA
14030}
14031
de63c46b
PA
14032/* A name matcher that matches the symbol name exactly, with
14033 strcmp. */
14034
14035static bool
14036literal_symbol_name_matcher (const char *symbol_search_name,
14037 const lookup_name_info &lookup_name,
14038 completion_match_result *comp_match_res)
14039{
14040 const std::string &name = lookup_name.name ();
14041
14042 int cmp = (lookup_name.completion_mode ()
14043 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14044 : strcmp (symbol_search_name, name.c_str ()));
14045 if (cmp == 0)
14046 {
14047 if (comp_match_res != NULL)
14048 comp_match_res->set_match (symbol_search_name);
14049 return true;
14050 }
14051 else
14052 return false;
14053}
14054
b5ec771e
PA
14055/* Implement the "la_get_symbol_name_matcher" language_defn method for
14056 Ada. */
14057
14058static symbol_name_matcher_ftype *
14059ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14060{
de63c46b
PA
14061 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14062 return literal_symbol_name_matcher;
14063
b5ec771e
PA
14064 if (lookup_name.completion_mode ())
14065 return ada_symbol_name_matches;
74ccd7f5 14066 else
b5ec771e
PA
14067 {
14068 if (lookup_name.ada ().wild_match_p ())
14069 return do_wild_match;
a2cd4f14
JB
14070 else if (lookup_name.ada ().verbatim_p ())
14071 return do_exact_match;
b5ec771e
PA
14072 else
14073 return do_full_match;
14074 }
74ccd7f5
JB
14075}
14076
a5ee536b
JB
14077/* Implement the "la_read_var_value" language_defn method for Ada. */
14078
14079static struct value *
63e43d3a
PMR
14080ada_read_var_value (struct symbol *var, const struct block *var_block,
14081 struct frame_info *frame)
a5ee536b 14082{
a5ee536b
JB
14083 /* The only case where default_read_var_value is not sufficient
14084 is when VAR is a renaming... */
c0e70c62
TT
14085 if (frame != nullptr)
14086 {
14087 const struct block *frame_block = get_frame_block (frame, NULL);
14088 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14089 return ada_read_renaming_var_value (var, frame_block);
14090 }
a5ee536b
JB
14091
14092 /* This is a typical case where we expect the default_read_var_value
14093 function to work. */
63e43d3a 14094 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14095}
14096
56618e20
TT
14097static const char *ada_extensions[] =
14098{
14099 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14100};
14101
47e77640 14102extern const struct language_defn ada_language_defn = {
6c038f32 14103 "ada", /* Language name */
6abde28f 14104 "Ada",
6c038f32 14105 language_ada,
6c038f32 14106 range_check_off,
6c038f32
PH
14107 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14108 that's not quite what this means. */
6c038f32 14109 array_row_major,
9a044a89 14110 macro_expansion_no,
56618e20 14111 ada_extensions,
6c038f32
PH
14112 &ada_exp_descriptor,
14113 parse,
6c038f32
PH
14114 resolve,
14115 ada_printchar, /* Print a character constant */
14116 ada_printstr, /* Function to print string constant */
14117 emit_char, /* Function to print single char (not used) */
6c038f32 14118 ada_print_type, /* Print a type using appropriate syntax */
be942545 14119 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14120 ada_val_print, /* Print a value using appropriate syntax */
14121 ada_value_print, /* Print a top-level value */
a5ee536b 14122 ada_read_var_value, /* la_read_var_value */
6c038f32 14123 NULL, /* Language specific skip_trampoline */
2b2d9e11 14124 NULL, /* name_of_this */
59cc4834 14125 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14126 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14127 basic_lookup_transparent_type, /* lookup_transparent_type */
14128 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14129 ada_sniff_from_mangled_name,
0963b4bd
MS
14130 NULL, /* Language specific
14131 class_name_from_physname */
6c038f32
PH
14132 ada_op_print_tab, /* expression operators for printing */
14133 0, /* c-style arrays */
14134 1, /* String lower bound */
6c038f32 14135 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14136 ada_collect_symbol_completion_matches,
72d5681a 14137 ada_language_arch_info,
e79af960 14138 ada_print_array_index,
41f1b697 14139 default_pass_by_reference,
ae6a3a4c 14140 c_get_string,
e2b7af72 14141 ada_watch_location_expression,
b5ec771e 14142 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14143 ada_iterate_over_symbols,
5ffa0793 14144 default_search_name_hash,
a53b64ea 14145 &ada_varobj_ops,
bb2ec1b3 14146 NULL,
721b08c6 14147 NULL,
4be290b2 14148 ada_is_string_type,
721b08c6 14149 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
14150};
14151
5bf03f13
JB
14152/* Command-list for the "set/show ada" prefix command. */
14153static struct cmd_list_element *set_ada_list;
14154static struct cmd_list_element *show_ada_list;
14155
14156/* Implement the "set ada" prefix command. */
14157
14158static void
981a3fb3 14159set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14160{
14161 printf_unfiltered (_(\
14162"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14163 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14164}
14165
14166/* Implement the "show ada" prefix command. */
14167
14168static void
981a3fb3 14169show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14170{
14171 cmd_show_list (show_ada_list, from_tty, "");
14172}
14173
2060206e
PA
14174static void
14175initialize_ada_catchpoint_ops (void)
14176{
14177 struct breakpoint_ops *ops;
14178
14179 initialize_breakpoint_ops ();
14180
14181 ops = &catch_exception_breakpoint_ops;
14182 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14183 ops->allocate_location = allocate_location_exception;
14184 ops->re_set = re_set_exception;
14185 ops->check_status = check_status_exception;
14186 ops->print_it = print_it_exception;
14187 ops->print_one = print_one_exception;
14188 ops->print_mention = print_mention_exception;
14189 ops->print_recreate = print_recreate_exception;
2060206e
PA
14190
14191 ops = &catch_exception_unhandled_breakpoint_ops;
14192 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14193 ops->allocate_location = allocate_location_exception;
14194 ops->re_set = re_set_exception;
14195 ops->check_status = check_status_exception;
14196 ops->print_it = print_it_exception;
14197 ops->print_one = print_one_exception;
14198 ops->print_mention = print_mention_exception;
14199 ops->print_recreate = print_recreate_exception;
2060206e
PA
14200
14201 ops = &catch_assert_breakpoint_ops;
14202 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14203 ops->allocate_location = allocate_location_exception;
14204 ops->re_set = re_set_exception;
14205 ops->check_status = check_status_exception;
14206 ops->print_it = print_it_exception;
14207 ops->print_one = print_one_exception;
14208 ops->print_mention = print_mention_exception;
14209 ops->print_recreate = print_recreate_exception;
9f757bf7
XR
14210
14211 ops = &catch_handlers_breakpoint_ops;
14212 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14213 ops->allocate_location = allocate_location_exception;
14214 ops->re_set = re_set_exception;
14215 ops->check_status = check_status_exception;
14216 ops->print_it = print_it_exception;
14217 ops->print_one = print_one_exception;
14218 ops->print_mention = print_mention_exception;
14219 ops->print_recreate = print_recreate_exception;
2060206e
PA
14220}
14221
3d9434b5
JB
14222/* This module's 'new_objfile' observer. */
14223
14224static void
14225ada_new_objfile_observer (struct objfile *objfile)
14226{
14227 ada_clear_symbol_cache ();
14228}
14229
14230/* This module's 'free_objfile' observer. */
14231
14232static void
14233ada_free_objfile_observer (struct objfile *objfile)
14234{
14235 ada_clear_symbol_cache ();
14236}
14237
d2e4a39e 14238void
6c038f32 14239_initialize_ada_language (void)
14f9c5c9 14240{
2060206e
PA
14241 initialize_ada_catchpoint_ops ();
14242
5bf03f13 14243 add_prefix_cmd ("ada", no_class, set_ada_command,
590042fc 14244 _("Prefix command for changing Ada-specific settings."),
5bf03f13
JB
14245 &set_ada_list, "set ada ", 0, &setlist);
14246
14247 add_prefix_cmd ("ada", no_class, show_ada_command,
14248 _("Generic command for showing Ada-specific settings."),
14249 &show_ada_list, "show ada ", 0, &showlist);
14250
14251 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14252 &trust_pad_over_xvs, _("\
590042fc
PW
14253Enable or disable an optimization trusting PAD types over XVS types."), _("\
14254Show whether an optimization trusting PAD types over XVS types is activated."),
5bf03f13
JB
14255 _("\
14256This is related to the encoding used by the GNAT compiler. The debugger\n\
14257should normally trust the contents of PAD types, but certain older versions\n\
14258of GNAT have a bug that sometimes causes the information in the PAD type\n\
14259to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14260work around this bug. It is always safe to turn this option \"off\", but\n\
14261this incurs a slight performance penalty, so it is recommended to NOT change\n\
14262this option to \"off\" unless necessary."),
14263 NULL, NULL, &set_ada_list, &show_ada_list);
14264
d72413e6
PMR
14265 add_setshow_boolean_cmd ("print-signatures", class_vars,
14266 &print_signatures, _("\
14267Enable or disable the output of formal and return types for functions in the \
590042fc 14268overloads selection menu."), _("\
d72413e6 14269Show whether the output of formal and return types for functions in the \
590042fc 14270overloads selection menu is activated."),
d72413e6
PMR
14271 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14272
9ac4176b
PA
14273 add_catch_command ("exception", _("\
14274Catch Ada exceptions, when raised.\n\
9bf7038b 14275Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14276Without any argument, stop when any Ada exception is raised.\n\
14277If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14278being raised does not have a handler (and will therefore lead to the task's\n\
14279termination).\n\
14280Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14281raised is the same as ARG.\n\
14282CONDITION is a boolean expression that is evaluated to see whether the\n\
14283exception should cause a stop."),
9ac4176b 14284 catch_ada_exception_command,
71bed2db 14285 catch_ada_completer,
9ac4176b
PA
14286 CATCH_PERMANENT,
14287 CATCH_TEMPORARY);
9f757bf7
XR
14288
14289 add_catch_command ("handlers", _("\
14290Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14291Usage: catch handlers [ARG] [if CONDITION]\n\
14292Without any argument, stop when any Ada exception is handled.\n\
14293With an argument, catch only exceptions with the given name.\n\
14294CONDITION is a boolean expression that is evaluated to see whether the\n\
14295exception should cause a stop."),
9f757bf7 14296 catch_ada_handlers_command,
71bed2db 14297 catch_ada_completer,
9f757bf7
XR
14298 CATCH_PERMANENT,
14299 CATCH_TEMPORARY);
9ac4176b
PA
14300 add_catch_command ("assert", _("\
14301Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14302Usage: catch assert [if CONDITION]\n\
14303CONDITION is a boolean expression that is evaluated to see whether the\n\
14304exception should cause a stop."),
9ac4176b
PA
14305 catch_assert_command,
14306 NULL,
14307 CATCH_PERMANENT,
14308 CATCH_TEMPORARY);
14309
6c038f32 14310 varsize_limit = 65536;
3fcded8f
JB
14311 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14312 &varsize_limit, _("\
14313Set the maximum number of bytes allowed in a variable-size object."), _("\
14314Show the maximum number of bytes allowed in a variable-size object."), _("\
14315Attempts to access an object whose size is not a compile-time constant\n\
14316and exceeds this limit will cause an error."),
14317 NULL, NULL, &setlist, &showlist);
6c038f32 14318
778865d3
JB
14319 add_info ("exceptions", info_exceptions_command,
14320 _("\
14321List all Ada exception names.\n\
9bf7038b 14322Usage: info exceptions [REGEXP]\n\
778865d3
JB
14323If a regular expression is passed as an argument, only those matching\n\
14324the regular expression are listed."));
14325
c6044dd1
JB
14326 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14327 _("Set Ada maintenance-related variables."),
14328 &maint_set_ada_cmdlist, "maintenance set ada ",
14329 0/*allow-unknown*/, &maintenance_set_cmdlist);
14330
14331 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
590042fc 14332 _("Show Ada maintenance-related variables."),
c6044dd1
JB
14333 &maint_show_ada_cmdlist, "maintenance show ada ",
14334 0/*allow-unknown*/, &maintenance_show_cmdlist);
14335
14336 add_setshow_boolean_cmd
14337 ("ignore-descriptive-types", class_maintenance,
14338 &ada_ignore_descriptive_types_p,
14339 _("Set whether descriptive types generated by GNAT should be ignored."),
14340 _("Show whether descriptive types generated by GNAT should be ignored."),
14341 _("\
14342When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14343DWARF attribute."),
14344 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14345
459a2e4c
TT
14346 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14347 NULL, xcalloc, xfree);
6b69afc4 14348
3d9434b5 14349 /* The ada-lang observers. */
76727919
TT
14350 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14351 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14352 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14353}
This page took 2.59572 seconds and 4 git commands to generate.