Move gdb/signals.h to common-defs.h
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
0e9f083f 22#include <string.h>
14f9c5c9 23#include <ctype.h>
14f9c5c9 24#include "demangle.h"
4c4b4cd2
PH
25#include "gdb_regex.h"
26#include "frame.h"
14f9c5c9
AS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcmd.h"
30#include "expression.h"
31#include "parser-defs.h"
32#include "language.h"
a53b64ea 33#include "varobj.h"
14f9c5c9
AS
34#include "c-lang.h"
35#include "inferior.h"
36#include "symfile.h"
37#include "objfiles.h"
38#include "breakpoint.h"
39#include "gdbcore.h"
4c4b4cd2
PH
40#include "hashtab.h"
41#include "gdb_obstack.h"
14f9c5c9 42#include "ada-lang.h"
4c4b4cd2 43#include "completer.h"
53ce3c39 44#include <sys/stat.h>
14f9c5c9 45#include "ui-out.h"
fe898f56 46#include "block.h"
04714b91 47#include "infcall.h"
de4f826b 48#include "dictionary.h"
60250e8b 49#include "exceptions.h"
f7f9143b
JB
50#include "annotate.h"
51#include "valprint.h"
9bbc9174 52#include "source.h"
0259addd 53#include "observer.h"
2ba95b9b 54#include "vec.h"
692465f1 55#include "stack.h"
fa864999 56#include "gdb_vecs.h"
79d43c61 57#include "typeprint.h"
14f9c5c9 58
ccefe4c4 59#include "psymtab.h"
40bc484c 60#include "value.h"
956a9fb9 61#include "mi/mi-common.h"
9ac4176b 62#include "arch-utils.h"
0fcd72ba 63#include "cli/cli-utils.h"
ccefe4c4 64
4c4b4cd2 65/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 66 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
67 Copied from valarith.c. */
68
69#ifndef TRUNCATION_TOWARDS_ZERO
70#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71#endif
72
d2e4a39e 73static struct type *desc_base_type (struct type *);
14f9c5c9 74
d2e4a39e 75static struct type *desc_bounds_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct value *desc_bounds (struct value *);
14f9c5c9 78
d2e4a39e 79static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 82
556bdfd4 83static struct type *desc_data_target_type (struct type *);
14f9c5c9 84
d2e4a39e 85static struct value *desc_data (struct value *);
14f9c5c9 86
d2e4a39e 87static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 90
d2e4a39e 91static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 92
d2e4a39e 93static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static struct type *desc_index_type (struct type *, int);
14f9c5c9 98
d2e4a39e 99static int desc_arity (struct type *);
14f9c5c9 100
d2e4a39e 101static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 102
d2e4a39e 103static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 104
40658b94
PH
105static int full_match (const char *, const char *);
106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 110 const struct block *, const char *,
2570f2b7 111 domain_enum, struct objfile *, int);
14f9c5c9 112
4c4b4cd2 113static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 114
76a01679 115static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 116 const struct block *);
14f9c5c9 117
4c4b4cd2
PH
118static int num_defns_collected (struct obstack *);
119
120static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 121
4c4b4cd2 122static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 123 struct type *);
14f9c5c9 124
d2e4a39e 125static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 126 struct symbol *, const struct block *);
14f9c5c9 127
d2e4a39e 128static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 129
4c4b4cd2
PH
130static char *ada_op_name (enum exp_opcode);
131
132static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 133
d2e4a39e 134static int numeric_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int integer_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int scalar_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int discrete_type_p (struct type *);
14f9c5c9 141
aeb5907d
JB
142static enum ada_renaming_category parse_old_style_renaming (struct type *,
143 const char **,
144 int *,
145 const char **);
146
147static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 148 const struct block *);
aeb5907d 149
4c4b4cd2 150static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 151 int, int, int *);
4c4b4cd2 152
d2e4a39e 153static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 154
b4ba55a1
JB
155static struct type *ada_find_parallel_type_with_name (struct type *,
156 const char *);
157
d2e4a39e 158static int is_dynamic_field (struct type *, int);
14f9c5c9 159
10a2c479 160static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 161 const gdb_byte *,
4c4b4cd2
PH
162 CORE_ADDR, struct value *);
163
164static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 165
28c85d6c 166static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 167
d2e4a39e 168static struct type *to_static_fixed_type (struct type *);
f192137b 169static struct type *static_unwrap_type (struct type *type);
14f9c5c9 170
d2e4a39e 171static struct value *unwrap_value (struct value *);
14f9c5c9 172
ad82864c 173static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 174
ad82864c 175static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 176
ad82864c
JB
177static long decode_packed_array_bitsize (struct type *);
178
179static struct value *decode_constrained_packed_array (struct value *);
180
181static int ada_is_packed_array_type (struct type *);
182
183static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 184
d2e4a39e 185static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 186 struct value **);
14f9c5c9 187
50810684 188static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 189
4c4b4cd2
PH
190static struct value *coerce_unspec_val_to_type (struct value *,
191 struct type *);
14f9c5c9 192
d2e4a39e 193static struct value *get_var_value (char *, char *);
14f9c5c9 194
d2e4a39e 195static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 196
d2e4a39e 197static int equiv_types (struct type *, struct type *);
14f9c5c9 198
d2e4a39e 199static int is_name_suffix (const char *);
14f9c5c9 200
73589123
PH
201static int advance_wild_match (const char **, const char *, int);
202
203static int wild_match (const char *, const char *);
14f9c5c9 204
d2e4a39e 205static struct value *ada_coerce_ref (struct value *);
14f9c5c9 206
4c4b4cd2
PH
207static LONGEST pos_atr (struct value *);
208
3cb382c9 209static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 210
d2e4a39e 211static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 212
4c4b4cd2
PH
213static struct symbol *standard_lookup (const char *, const struct block *,
214 domain_enum);
14f9c5c9 215
4c4b4cd2
PH
216static struct value *ada_search_struct_field (char *, struct value *, int,
217 struct type *);
218
219static struct value *ada_value_primitive_field (struct value *, int, int,
220 struct type *);
221
0d5cff50 222static int find_struct_field (const char *, struct type *, int,
52ce6436 223 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
224
225static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
226 struct value *);
227
4c4b4cd2
PH
228static int ada_resolve_function (struct ada_symbol_info *, int,
229 struct value **, int, const char *,
230 struct type *);
231
4c4b4cd2
PH
232static int ada_is_direct_array_type (struct type *);
233
72d5681a
PH
234static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
714e53ab
PH
236
237static void check_size (const struct type *);
52ce6436
PH
238
239static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
243 struct expression *,
244 int *, enum noside);
52ce6436
PH
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
852dff6c
JB
270
271static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
272\f
273
ee01b665
JB
274/* The result of a symbol lookup to be stored in our symbol cache. */
275
276struct cache_entry
277{
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum namespace;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290};
291
292/* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301#define HASH_SIZE 1009
302
303struct ada_symbol_cache
304{
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310};
311
312static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 313
4c4b4cd2 314/* Maximum-sized dynamic type. */
14f9c5c9
AS
315static unsigned int varsize_limit;
316
4c4b4cd2
PH
317/* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319static char *ada_completer_word_break_characters =
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
345/* Space for allocating results of ada_lookup_symbol_list. */
346static struct obstack symbol_list_obstack;
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
356maint_set_ada_cmd (char *args, int from_tty)
357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
365maint_show_ada_cmd (char *args, int from_tty)
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
401 data = inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
419 data = inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
462 data = program_space_data (pspace, ada_pspace_data_handle);
463 if (data == NULL)
464 {
465 data = XCNEW (struct ada_pspace_data);
466 set_program_space_data (pspace, ada_pspace_data_handle, data);
467 }
468
469 return data;
470}
471
472/* The cleanup callback for this module's per-program-space data. */
473
474static void
475ada_pspace_data_cleanup (struct program_space *pspace, void *data)
476{
477 struct ada_pspace_data *pspace_data = data;
478
479 if (pspace_data->sym_cache != NULL)
480 ada_free_symbol_cache (pspace_data->sym_cache);
481 xfree (pspace_data);
482}
483
4c4b4cd2
PH
484 /* Utilities */
485
720d1a40 486/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 487 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
488
489 Normally, we really expect a typedef type to only have 1 typedef layer.
490 In other words, we really expect the target type of a typedef type to be
491 a non-typedef type. This is particularly true for Ada units, because
492 the language does not have a typedef vs not-typedef distinction.
493 In that respect, the Ada compiler has been trying to eliminate as many
494 typedef definitions in the debugging information, since they generally
495 do not bring any extra information (we still use typedef under certain
496 circumstances related mostly to the GNAT encoding).
497
498 Unfortunately, we have seen situations where the debugging information
499 generated by the compiler leads to such multiple typedef layers. For
500 instance, consider the following example with stabs:
501
502 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
503 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
504
505 This is an error in the debugging information which causes type
506 pck__float_array___XUP to be defined twice, and the second time,
507 it is defined as a typedef of a typedef.
508
509 This is on the fringe of legality as far as debugging information is
510 concerned, and certainly unexpected. But it is easy to handle these
511 situations correctly, so we can afford to be lenient in this case. */
512
513static struct type *
514ada_typedef_target_type (struct type *type)
515{
516 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
517 type = TYPE_TARGET_TYPE (type);
518 return type;
519}
520
41d27058
JB
521/* Given DECODED_NAME a string holding a symbol name in its
522 decoded form (ie using the Ada dotted notation), returns
523 its unqualified name. */
524
525static const char *
526ada_unqualified_name (const char *decoded_name)
527{
528 const char *result = strrchr (decoded_name, '.');
529
530 if (result != NULL)
531 result++; /* Skip the dot... */
532 else
533 result = decoded_name;
534
535 return result;
536}
537
538/* Return a string starting with '<', followed by STR, and '>'.
539 The result is good until the next call. */
540
541static char *
542add_angle_brackets (const char *str)
543{
544 static char *result = NULL;
545
546 xfree (result);
88c15c34 547 result = xstrprintf ("<%s>", str);
41d27058
JB
548 return result;
549}
96d887e8 550
4c4b4cd2
PH
551static char *
552ada_get_gdb_completer_word_break_characters (void)
553{
554 return ada_completer_word_break_characters;
555}
556
e79af960
JB
557/* Print an array element index using the Ada syntax. */
558
559static void
560ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 561 const struct value_print_options *options)
e79af960 562{
79a45b7d 563 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
564 fprintf_filtered (stream, " => ");
565}
566
f27cf670 567/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 568 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 569 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 570
f27cf670
AS
571void *
572grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 573{
d2e4a39e
AS
574 if (*size < min_size)
575 {
576 *size *= 2;
577 if (*size < min_size)
4c4b4cd2 578 *size = min_size;
f27cf670 579 vect = xrealloc (vect, *size * element_size);
d2e4a39e 580 }
f27cf670 581 return vect;
14f9c5c9
AS
582}
583
584/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 585 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
586
587static int
ebf56fd3 588field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
589{
590 int len = strlen (target);
5b4ee69b 591
d2e4a39e 592 return
4c4b4cd2
PH
593 (strncmp (field_name, target, len) == 0
594 && (field_name[len] == '\0'
595 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
596 && strcmp (field_name + strlen (field_name) - 6,
597 "___XVN") != 0)));
14f9c5c9
AS
598}
599
600
872c8b51
JB
601/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
602 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
603 and return its index. This function also handles fields whose name
604 have ___ suffixes because the compiler sometimes alters their name
605 by adding such a suffix to represent fields with certain constraints.
606 If the field could not be found, return a negative number if
607 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
608
609int
610ada_get_field_index (const struct type *type, const char *field_name,
611 int maybe_missing)
612{
613 int fieldno;
872c8b51
JB
614 struct type *struct_type = check_typedef ((struct type *) type);
615
616 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
617 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
618 return fieldno;
619
620 if (!maybe_missing)
323e0a4a 621 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 622 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
623
624 return -1;
625}
626
627/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
628
629int
d2e4a39e 630ada_name_prefix_len (const char *name)
14f9c5c9
AS
631{
632 if (name == NULL)
633 return 0;
d2e4a39e 634 else
14f9c5c9 635 {
d2e4a39e 636 const char *p = strstr (name, "___");
5b4ee69b 637
14f9c5c9 638 if (p == NULL)
4c4b4cd2 639 return strlen (name);
14f9c5c9 640 else
4c4b4cd2 641 return p - name;
14f9c5c9
AS
642 }
643}
644
4c4b4cd2
PH
645/* Return non-zero if SUFFIX is a suffix of STR.
646 Return zero if STR is null. */
647
14f9c5c9 648static int
d2e4a39e 649is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
650{
651 int len1, len2;
5b4ee69b 652
14f9c5c9
AS
653 if (str == NULL)
654 return 0;
655 len1 = strlen (str);
656 len2 = strlen (suffix);
4c4b4cd2 657 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
658}
659
4c4b4cd2
PH
660/* The contents of value VAL, treated as a value of type TYPE. The
661 result is an lval in memory if VAL is. */
14f9c5c9 662
d2e4a39e 663static struct value *
4c4b4cd2 664coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 665{
61ee279c 666 type = ada_check_typedef (type);
df407dfe 667 if (value_type (val) == type)
4c4b4cd2 668 return val;
d2e4a39e 669 else
14f9c5c9 670 {
4c4b4cd2
PH
671 struct value *result;
672
673 /* Make sure that the object size is not unreasonable before
674 trying to allocate some memory for it. */
714e53ab 675 check_size (type);
4c4b4cd2 676
41e8491f
JK
677 if (value_lazy (val)
678 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
679 result = allocate_value_lazy (type);
680 else
681 {
682 result = allocate_value (type);
683 memcpy (value_contents_raw (result), value_contents (val),
684 TYPE_LENGTH (type));
685 }
74bcbdf3 686 set_value_component_location (result, val);
9bbda503
AC
687 set_value_bitsize (result, value_bitsize (val));
688 set_value_bitpos (result, value_bitpos (val));
42ae5230 689 set_value_address (result, value_address (val));
eca07816 690 set_value_optimized_out (result, value_optimized_out_const (val));
14f9c5c9
AS
691 return result;
692 }
693}
694
fc1a4b47
AC
695static const gdb_byte *
696cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
697{
698 if (valaddr == NULL)
699 return NULL;
700 else
701 return valaddr + offset;
702}
703
704static CORE_ADDR
ebf56fd3 705cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
706{
707 if (address == 0)
708 return 0;
d2e4a39e 709 else
14f9c5c9
AS
710 return address + offset;
711}
712
4c4b4cd2
PH
713/* Issue a warning (as for the definition of warning in utils.c, but
714 with exactly one argument rather than ...), unless the limit on the
715 number of warnings has passed during the evaluation of the current
716 expression. */
a2249542 717
77109804
AC
718/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
719 provided by "complaint". */
a0b31db1 720static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 721
14f9c5c9 722static void
a2249542 723lim_warning (const char *format, ...)
14f9c5c9 724{
a2249542 725 va_list args;
a2249542 726
5b4ee69b 727 va_start (args, format);
4c4b4cd2
PH
728 warnings_issued += 1;
729 if (warnings_issued <= warning_limit)
a2249542
MK
730 vwarning (format, args);
731
732 va_end (args);
4c4b4cd2
PH
733}
734
714e53ab
PH
735/* Issue an error if the size of an object of type T is unreasonable,
736 i.e. if it would be a bad idea to allocate a value of this type in
737 GDB. */
738
739static void
740check_size (const struct type *type)
741{
742 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 743 error (_("object size is larger than varsize-limit"));
714e53ab
PH
744}
745
0963b4bd 746/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 747static LONGEST
c3e5cd34 748max_of_size (int size)
4c4b4cd2 749{
76a01679 750 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 751
76a01679 752 return top_bit | (top_bit - 1);
4c4b4cd2
PH
753}
754
0963b4bd 755/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 756static LONGEST
c3e5cd34 757min_of_size (int size)
4c4b4cd2 758{
c3e5cd34 759 return -max_of_size (size) - 1;
4c4b4cd2
PH
760}
761
0963b4bd 762/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 763static ULONGEST
c3e5cd34 764umax_of_size (int size)
4c4b4cd2 765{
76a01679 766 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 767
76a01679 768 return top_bit | (top_bit - 1);
4c4b4cd2
PH
769}
770
0963b4bd 771/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
772static LONGEST
773max_of_type (struct type *t)
4c4b4cd2 774{
c3e5cd34
PH
775 if (TYPE_UNSIGNED (t))
776 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
777 else
778 return max_of_size (TYPE_LENGTH (t));
779}
780
0963b4bd 781/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
782static LONGEST
783min_of_type (struct type *t)
784{
785 if (TYPE_UNSIGNED (t))
786 return 0;
787 else
788 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
789}
790
791/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
792LONGEST
793ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 794{
8739bc53 795 type = resolve_dynamic_type (type, 0);
76a01679 796 switch (TYPE_CODE (type))
4c4b4cd2
PH
797 {
798 case TYPE_CODE_RANGE:
690cc4eb 799 return TYPE_HIGH_BOUND (type);
4c4b4cd2 800 case TYPE_CODE_ENUM:
14e75d8e 801 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
802 case TYPE_CODE_BOOL:
803 return 1;
804 case TYPE_CODE_CHAR:
76a01679 805 case TYPE_CODE_INT:
690cc4eb 806 return max_of_type (type);
4c4b4cd2 807 default:
43bbcdc2 808 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
809 }
810}
811
14e75d8e 812/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
813LONGEST
814ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 815{
8739bc53 816 type = resolve_dynamic_type (type, 0);
76a01679 817 switch (TYPE_CODE (type))
4c4b4cd2
PH
818 {
819 case TYPE_CODE_RANGE:
690cc4eb 820 return TYPE_LOW_BOUND (type);
4c4b4cd2 821 case TYPE_CODE_ENUM:
14e75d8e 822 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
823 case TYPE_CODE_BOOL:
824 return 0;
825 case TYPE_CODE_CHAR:
76a01679 826 case TYPE_CODE_INT:
690cc4eb 827 return min_of_type (type);
4c4b4cd2 828 default:
43bbcdc2 829 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
830 }
831}
832
833/* The identity on non-range types. For range types, the underlying
76a01679 834 non-range scalar type. */
4c4b4cd2
PH
835
836static struct type *
18af8284 837get_base_type (struct type *type)
4c4b4cd2
PH
838{
839 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
840 {
76a01679
JB
841 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
842 return type;
4c4b4cd2
PH
843 type = TYPE_TARGET_TYPE (type);
844 }
845 return type;
14f9c5c9 846}
41246937
JB
847
848/* Return a decoded version of the given VALUE. This means returning
849 a value whose type is obtained by applying all the GNAT-specific
850 encondings, making the resulting type a static but standard description
851 of the initial type. */
852
853struct value *
854ada_get_decoded_value (struct value *value)
855{
856 struct type *type = ada_check_typedef (value_type (value));
857
858 if (ada_is_array_descriptor_type (type)
859 || (ada_is_constrained_packed_array_type (type)
860 && TYPE_CODE (type) != TYPE_CODE_PTR))
861 {
862 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
863 value = ada_coerce_to_simple_array_ptr (value);
864 else
865 value = ada_coerce_to_simple_array (value);
866 }
867 else
868 value = ada_to_fixed_value (value);
869
870 return value;
871}
872
873/* Same as ada_get_decoded_value, but with the given TYPE.
874 Because there is no associated actual value for this type,
875 the resulting type might be a best-effort approximation in
876 the case of dynamic types. */
877
878struct type *
879ada_get_decoded_type (struct type *type)
880{
881 type = to_static_fixed_type (type);
882 if (ada_is_constrained_packed_array_type (type))
883 type = ada_coerce_to_simple_array_type (type);
884 return type;
885}
886
4c4b4cd2 887\f
76a01679 888
4c4b4cd2 889 /* Language Selection */
14f9c5c9
AS
890
891/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 892 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 893
14f9c5c9 894enum language
ccefe4c4 895ada_update_initial_language (enum language lang)
14f9c5c9 896{
d2e4a39e 897 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 898 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 899 return language_ada;
14f9c5c9
AS
900
901 return lang;
902}
96d887e8
PH
903
904/* If the main procedure is written in Ada, then return its name.
905 The result is good until the next call. Return NULL if the main
906 procedure doesn't appear to be in Ada. */
907
908char *
909ada_main_name (void)
910{
3b7344d5 911 struct bound_minimal_symbol msym;
f9bc20b9 912 static char *main_program_name = NULL;
6c038f32 913
96d887e8
PH
914 /* For Ada, the name of the main procedure is stored in a specific
915 string constant, generated by the binder. Look for that symbol,
916 extract its address, and then read that string. If we didn't find
917 that string, then most probably the main procedure is not written
918 in Ada. */
919 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
920
3b7344d5 921 if (msym.minsym != NULL)
96d887e8 922 {
f9bc20b9
JB
923 CORE_ADDR main_program_name_addr;
924 int err_code;
925
77e371c0 926 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 927 if (main_program_name_addr == 0)
323e0a4a 928 error (_("Invalid address for Ada main program name."));
96d887e8 929
f9bc20b9
JB
930 xfree (main_program_name);
931 target_read_string (main_program_name_addr, &main_program_name,
932 1024, &err_code);
933
934 if (err_code != 0)
935 return NULL;
96d887e8
PH
936 return main_program_name;
937 }
938
939 /* The main procedure doesn't seem to be in Ada. */
940 return NULL;
941}
14f9c5c9 942\f
4c4b4cd2 943 /* Symbols */
d2e4a39e 944
4c4b4cd2
PH
945/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
946 of NULLs. */
14f9c5c9 947
d2e4a39e
AS
948const struct ada_opname_map ada_opname_table[] = {
949 {"Oadd", "\"+\"", BINOP_ADD},
950 {"Osubtract", "\"-\"", BINOP_SUB},
951 {"Omultiply", "\"*\"", BINOP_MUL},
952 {"Odivide", "\"/\"", BINOP_DIV},
953 {"Omod", "\"mod\"", BINOP_MOD},
954 {"Orem", "\"rem\"", BINOP_REM},
955 {"Oexpon", "\"**\"", BINOP_EXP},
956 {"Olt", "\"<\"", BINOP_LESS},
957 {"Ole", "\"<=\"", BINOP_LEQ},
958 {"Ogt", "\">\"", BINOP_GTR},
959 {"Oge", "\">=\"", BINOP_GEQ},
960 {"Oeq", "\"=\"", BINOP_EQUAL},
961 {"One", "\"/=\"", BINOP_NOTEQUAL},
962 {"Oand", "\"and\"", BINOP_BITWISE_AND},
963 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
964 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
965 {"Oconcat", "\"&\"", BINOP_CONCAT},
966 {"Oabs", "\"abs\"", UNOP_ABS},
967 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
968 {"Oadd", "\"+\"", UNOP_PLUS},
969 {"Osubtract", "\"-\"", UNOP_NEG},
970 {NULL, NULL}
14f9c5c9
AS
971};
972
4c4b4cd2
PH
973/* The "encoded" form of DECODED, according to GNAT conventions.
974 The result is valid until the next call to ada_encode. */
975
14f9c5c9 976char *
4c4b4cd2 977ada_encode (const char *decoded)
14f9c5c9 978{
4c4b4cd2
PH
979 static char *encoding_buffer = NULL;
980 static size_t encoding_buffer_size = 0;
d2e4a39e 981 const char *p;
14f9c5c9 982 int k;
d2e4a39e 983
4c4b4cd2 984 if (decoded == NULL)
14f9c5c9
AS
985 return NULL;
986
4c4b4cd2
PH
987 GROW_VECT (encoding_buffer, encoding_buffer_size,
988 2 * strlen (decoded) + 10);
14f9c5c9
AS
989
990 k = 0;
4c4b4cd2 991 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 992 {
cdc7bb92 993 if (*p == '.')
4c4b4cd2
PH
994 {
995 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
996 k += 2;
997 }
14f9c5c9 998 else if (*p == '"')
4c4b4cd2
PH
999 {
1000 const struct ada_opname_map *mapping;
1001
1002 for (mapping = ada_opname_table;
1265e4aa
JB
1003 mapping->encoded != NULL
1004 && strncmp (mapping->decoded, p,
1005 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
1006 ;
1007 if (mapping->encoded == NULL)
323e0a4a 1008 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1009 strcpy (encoding_buffer + k, mapping->encoded);
1010 k += strlen (mapping->encoded);
1011 break;
1012 }
d2e4a39e 1013 else
4c4b4cd2
PH
1014 {
1015 encoding_buffer[k] = *p;
1016 k += 1;
1017 }
14f9c5c9
AS
1018 }
1019
4c4b4cd2
PH
1020 encoding_buffer[k] = '\0';
1021 return encoding_buffer;
14f9c5c9
AS
1022}
1023
1024/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1025 quotes, unfolded, but with the quotes stripped away. Result good
1026 to next call. */
1027
d2e4a39e
AS
1028char *
1029ada_fold_name (const char *name)
14f9c5c9 1030{
d2e4a39e 1031 static char *fold_buffer = NULL;
14f9c5c9
AS
1032 static size_t fold_buffer_size = 0;
1033
1034 int len = strlen (name);
d2e4a39e 1035 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1036
1037 if (name[0] == '\'')
1038 {
d2e4a39e
AS
1039 strncpy (fold_buffer, name + 1, len - 2);
1040 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1041 }
1042 else
1043 {
1044 int i;
5b4ee69b 1045
14f9c5c9 1046 for (i = 0; i <= len; i += 1)
4c4b4cd2 1047 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1048 }
1049
1050 return fold_buffer;
1051}
1052
529cad9c
PH
1053/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1054
1055static int
1056is_lower_alphanum (const char c)
1057{
1058 return (isdigit (c) || (isalpha (c) && islower (c)));
1059}
1060
c90092fe
JB
1061/* ENCODED is the linkage name of a symbol and LEN contains its length.
1062 This function saves in LEN the length of that same symbol name but
1063 without either of these suffixes:
29480c32
JB
1064 . .{DIGIT}+
1065 . ${DIGIT}+
1066 . ___{DIGIT}+
1067 . __{DIGIT}+.
c90092fe 1068
29480c32
JB
1069 These are suffixes introduced by the compiler for entities such as
1070 nested subprogram for instance, in order to avoid name clashes.
1071 They do not serve any purpose for the debugger. */
1072
1073static void
1074ada_remove_trailing_digits (const char *encoded, int *len)
1075{
1076 if (*len > 1 && isdigit (encoded[*len - 1]))
1077 {
1078 int i = *len - 2;
5b4ee69b 1079
29480c32
JB
1080 while (i > 0 && isdigit (encoded[i]))
1081 i--;
1082 if (i >= 0 && encoded[i] == '.')
1083 *len = i;
1084 else if (i >= 0 && encoded[i] == '$')
1085 *len = i;
1086 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1087 *len = i - 2;
1088 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1089 *len = i - 1;
1090 }
1091}
1092
1093/* Remove the suffix introduced by the compiler for protected object
1094 subprograms. */
1095
1096static void
1097ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1098{
1099 /* Remove trailing N. */
1100
1101 /* Protected entry subprograms are broken into two
1102 separate subprograms: The first one is unprotected, and has
1103 a 'N' suffix; the second is the protected version, and has
0963b4bd 1104 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1105 the protection. Since the P subprograms are internally generated,
1106 we leave these names undecoded, giving the user a clue that this
1107 entity is internal. */
1108
1109 if (*len > 1
1110 && encoded[*len - 1] == 'N'
1111 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1112 *len = *len - 1;
1113}
1114
69fadcdf
JB
1115/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1116
1117static void
1118ada_remove_Xbn_suffix (const char *encoded, int *len)
1119{
1120 int i = *len - 1;
1121
1122 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1123 i--;
1124
1125 if (encoded[i] != 'X')
1126 return;
1127
1128 if (i == 0)
1129 return;
1130
1131 if (isalnum (encoded[i-1]))
1132 *len = i;
1133}
1134
29480c32
JB
1135/* If ENCODED follows the GNAT entity encoding conventions, then return
1136 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1137 replaced by ENCODED.
14f9c5c9 1138
4c4b4cd2 1139 The resulting string is valid until the next call of ada_decode.
29480c32 1140 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1141 is returned. */
1142
1143const char *
1144ada_decode (const char *encoded)
14f9c5c9
AS
1145{
1146 int i, j;
1147 int len0;
d2e4a39e 1148 const char *p;
4c4b4cd2 1149 char *decoded;
14f9c5c9 1150 int at_start_name;
4c4b4cd2
PH
1151 static char *decoding_buffer = NULL;
1152 static size_t decoding_buffer_size = 0;
d2e4a39e 1153
29480c32
JB
1154 /* The name of the Ada main procedure starts with "_ada_".
1155 This prefix is not part of the decoded name, so skip this part
1156 if we see this prefix. */
4c4b4cd2
PH
1157 if (strncmp (encoded, "_ada_", 5) == 0)
1158 encoded += 5;
14f9c5c9 1159
29480c32
JB
1160 /* If the name starts with '_', then it is not a properly encoded
1161 name, so do not attempt to decode it. Similarly, if the name
1162 starts with '<', the name should not be decoded. */
4c4b4cd2 1163 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1164 goto Suppress;
1165
4c4b4cd2 1166 len0 = strlen (encoded);
4c4b4cd2 1167
29480c32
JB
1168 ada_remove_trailing_digits (encoded, &len0);
1169 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1170
4c4b4cd2
PH
1171 /* Remove the ___X.* suffix if present. Do not forget to verify that
1172 the suffix is located before the current "end" of ENCODED. We want
1173 to avoid re-matching parts of ENCODED that have previously been
1174 marked as discarded (by decrementing LEN0). */
1175 p = strstr (encoded, "___");
1176 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1177 {
1178 if (p[3] == 'X')
4c4b4cd2 1179 len0 = p - encoded;
14f9c5c9 1180 else
4c4b4cd2 1181 goto Suppress;
14f9c5c9 1182 }
4c4b4cd2 1183
29480c32
JB
1184 /* Remove any trailing TKB suffix. It tells us that this symbol
1185 is for the body of a task, but that information does not actually
1186 appear in the decoded name. */
1187
4c4b4cd2 1188 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1189 len0 -= 3;
76a01679 1190
a10967fa
JB
1191 /* Remove any trailing TB suffix. The TB suffix is slightly different
1192 from the TKB suffix because it is used for non-anonymous task
1193 bodies. */
1194
1195 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1196 len0 -= 2;
1197
29480c32
JB
1198 /* Remove trailing "B" suffixes. */
1199 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1200
4c4b4cd2 1201 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1202 len0 -= 1;
1203
4c4b4cd2 1204 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1205
4c4b4cd2
PH
1206 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1207 decoded = decoding_buffer;
14f9c5c9 1208
29480c32
JB
1209 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1210
4c4b4cd2 1211 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1212 {
4c4b4cd2
PH
1213 i = len0 - 2;
1214 while ((i >= 0 && isdigit (encoded[i]))
1215 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1216 i -= 1;
1217 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1218 len0 = i - 1;
1219 else if (encoded[i] == '$')
1220 len0 = i;
d2e4a39e 1221 }
14f9c5c9 1222
29480c32
JB
1223 /* The first few characters that are not alphabetic are not part
1224 of any encoding we use, so we can copy them over verbatim. */
1225
4c4b4cd2
PH
1226 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1227 decoded[j] = encoded[i];
14f9c5c9
AS
1228
1229 at_start_name = 1;
1230 while (i < len0)
1231 {
29480c32 1232 /* Is this a symbol function? */
4c4b4cd2
PH
1233 if (at_start_name && encoded[i] == 'O')
1234 {
1235 int k;
5b4ee69b 1236
4c4b4cd2
PH
1237 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1238 {
1239 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1240 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1241 op_len - 1) == 0)
1242 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1243 {
1244 strcpy (decoded + j, ada_opname_table[k].decoded);
1245 at_start_name = 0;
1246 i += op_len;
1247 j += strlen (ada_opname_table[k].decoded);
1248 break;
1249 }
1250 }
1251 if (ada_opname_table[k].encoded != NULL)
1252 continue;
1253 }
14f9c5c9
AS
1254 at_start_name = 0;
1255
529cad9c
PH
1256 /* Replace "TK__" with "__", which will eventually be translated
1257 into "." (just below). */
1258
4c4b4cd2
PH
1259 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1260 i += 2;
529cad9c 1261
29480c32
JB
1262 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1263 be translated into "." (just below). These are internal names
1264 generated for anonymous blocks inside which our symbol is nested. */
1265
1266 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1267 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1268 && isdigit (encoded [i+4]))
1269 {
1270 int k = i + 5;
1271
1272 while (k < len0 && isdigit (encoded[k]))
1273 k++; /* Skip any extra digit. */
1274
1275 /* Double-check that the "__B_{DIGITS}+" sequence we found
1276 is indeed followed by "__". */
1277 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1278 i = k;
1279 }
1280
529cad9c
PH
1281 /* Remove _E{DIGITS}+[sb] */
1282
1283 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1284 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1285 one implements the actual entry code, and has a suffix following
1286 the convention above; the second one implements the barrier and
1287 uses the same convention as above, except that the 'E' is replaced
1288 by a 'B'.
1289
1290 Just as above, we do not decode the name of barrier functions
1291 to give the user a clue that the code he is debugging has been
1292 internally generated. */
1293
1294 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1295 && isdigit (encoded[i+2]))
1296 {
1297 int k = i + 3;
1298
1299 while (k < len0 && isdigit (encoded[k]))
1300 k++;
1301
1302 if (k < len0
1303 && (encoded[k] == 'b' || encoded[k] == 's'))
1304 {
1305 k++;
1306 /* Just as an extra precaution, make sure that if this
1307 suffix is followed by anything else, it is a '_'.
1308 Otherwise, we matched this sequence by accident. */
1309 if (k == len0
1310 || (k < len0 && encoded[k] == '_'))
1311 i = k;
1312 }
1313 }
1314
1315 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1316 the GNAT front-end in protected object subprograms. */
1317
1318 if (i < len0 + 3
1319 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1320 {
1321 /* Backtrack a bit up until we reach either the begining of
1322 the encoded name, or "__". Make sure that we only find
1323 digits or lowercase characters. */
1324 const char *ptr = encoded + i - 1;
1325
1326 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1327 ptr--;
1328 if (ptr < encoded
1329 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1330 i++;
1331 }
1332
4c4b4cd2
PH
1333 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1334 {
29480c32
JB
1335 /* This is a X[bn]* sequence not separated from the previous
1336 part of the name with a non-alpha-numeric character (in other
1337 words, immediately following an alpha-numeric character), then
1338 verify that it is placed at the end of the encoded name. If
1339 not, then the encoding is not valid and we should abort the
1340 decoding. Otherwise, just skip it, it is used in body-nested
1341 package names. */
4c4b4cd2
PH
1342 do
1343 i += 1;
1344 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1345 if (i < len0)
1346 goto Suppress;
1347 }
cdc7bb92 1348 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1349 {
29480c32 1350 /* Replace '__' by '.'. */
4c4b4cd2
PH
1351 decoded[j] = '.';
1352 at_start_name = 1;
1353 i += 2;
1354 j += 1;
1355 }
14f9c5c9 1356 else
4c4b4cd2 1357 {
29480c32
JB
1358 /* It's a character part of the decoded name, so just copy it
1359 over. */
4c4b4cd2
PH
1360 decoded[j] = encoded[i];
1361 i += 1;
1362 j += 1;
1363 }
14f9c5c9 1364 }
4c4b4cd2 1365 decoded[j] = '\000';
14f9c5c9 1366
29480c32
JB
1367 /* Decoded names should never contain any uppercase character.
1368 Double-check this, and abort the decoding if we find one. */
1369
4c4b4cd2
PH
1370 for (i = 0; decoded[i] != '\0'; i += 1)
1371 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1372 goto Suppress;
1373
4c4b4cd2
PH
1374 if (strcmp (decoded, encoded) == 0)
1375 return encoded;
1376 else
1377 return decoded;
14f9c5c9
AS
1378
1379Suppress:
4c4b4cd2
PH
1380 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1381 decoded = decoding_buffer;
1382 if (encoded[0] == '<')
1383 strcpy (decoded, encoded);
14f9c5c9 1384 else
88c15c34 1385 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1386 return decoded;
1387
1388}
1389
1390/* Table for keeping permanent unique copies of decoded names. Once
1391 allocated, names in this table are never released. While this is a
1392 storage leak, it should not be significant unless there are massive
1393 changes in the set of decoded names in successive versions of a
1394 symbol table loaded during a single session. */
1395static struct htab *decoded_names_store;
1396
1397/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1398 in the language-specific part of GSYMBOL, if it has not been
1399 previously computed. Tries to save the decoded name in the same
1400 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1401 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1402 GSYMBOL).
4c4b4cd2
PH
1403 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1404 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1405 when a decoded name is cached in it. */
4c4b4cd2 1406
45e6c716 1407const char *
f85f34ed 1408ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1409{
f85f34ed
TT
1410 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1411 const char **resultp =
1412 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1413
f85f34ed 1414 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1415 {
1416 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1417 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1418
f85f34ed 1419 gsymbol->ada_mangled = 1;
5b4ee69b 1420
f85f34ed
TT
1421 if (obstack != NULL)
1422 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1423 else
76a01679 1424 {
f85f34ed
TT
1425 /* Sometimes, we can't find a corresponding objfile, in
1426 which case, we put the result on the heap. Since we only
1427 decode when needed, we hope this usually does not cause a
1428 significant memory leak (FIXME). */
1429
76a01679
JB
1430 char **slot = (char **) htab_find_slot (decoded_names_store,
1431 decoded, INSERT);
5b4ee69b 1432
76a01679
JB
1433 if (*slot == NULL)
1434 *slot = xstrdup (decoded);
1435 *resultp = *slot;
1436 }
4c4b4cd2 1437 }
14f9c5c9 1438
4c4b4cd2
PH
1439 return *resultp;
1440}
76a01679 1441
2c0b251b 1442static char *
76a01679 1443ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1444{
1445 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1446}
1447
1448/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1449 suffixes that encode debugging information or leading _ada_ on
1450 SYM_NAME (see is_name_suffix commentary for the debugging
1451 information that is ignored). If WILD, then NAME need only match a
1452 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1453 either argument is NULL. */
14f9c5c9 1454
2c0b251b 1455static int
40658b94 1456match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1457{
1458 if (sym_name == NULL || name == NULL)
1459 return 0;
1460 else if (wild)
73589123 1461 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1462 else
1463 {
1464 int len_name = strlen (name);
5b4ee69b 1465
4c4b4cd2
PH
1466 return (strncmp (sym_name, name, len_name) == 0
1467 && is_name_suffix (sym_name + len_name))
1468 || (strncmp (sym_name, "_ada_", 5) == 0
1469 && strncmp (sym_name + 5, name, len_name) == 0
1470 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1471 }
14f9c5c9 1472}
14f9c5c9 1473\f
d2e4a39e 1474
4c4b4cd2 1475 /* Arrays */
14f9c5c9 1476
28c85d6c
JB
1477/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1478 generated by the GNAT compiler to describe the index type used
1479 for each dimension of an array, check whether it follows the latest
1480 known encoding. If not, fix it up to conform to the latest encoding.
1481 Otherwise, do nothing. This function also does nothing if
1482 INDEX_DESC_TYPE is NULL.
1483
1484 The GNAT encoding used to describle the array index type evolved a bit.
1485 Initially, the information would be provided through the name of each
1486 field of the structure type only, while the type of these fields was
1487 described as unspecified and irrelevant. The debugger was then expected
1488 to perform a global type lookup using the name of that field in order
1489 to get access to the full index type description. Because these global
1490 lookups can be very expensive, the encoding was later enhanced to make
1491 the global lookup unnecessary by defining the field type as being
1492 the full index type description.
1493
1494 The purpose of this routine is to allow us to support older versions
1495 of the compiler by detecting the use of the older encoding, and by
1496 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1497 we essentially replace each field's meaningless type by the associated
1498 index subtype). */
1499
1500void
1501ada_fixup_array_indexes_type (struct type *index_desc_type)
1502{
1503 int i;
1504
1505 if (index_desc_type == NULL)
1506 return;
1507 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1508
1509 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1510 to check one field only, no need to check them all). If not, return
1511 now.
1512
1513 If our INDEX_DESC_TYPE was generated using the older encoding,
1514 the field type should be a meaningless integer type whose name
1515 is not equal to the field name. */
1516 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1517 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1518 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1519 return;
1520
1521 /* Fixup each field of INDEX_DESC_TYPE. */
1522 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1523 {
0d5cff50 1524 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1525 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1526
1527 if (raw_type)
1528 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1529 }
1530}
1531
4c4b4cd2 1532/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1533
d2e4a39e
AS
1534static char *bound_name[] = {
1535 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1536 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1537};
1538
1539/* Maximum number of array dimensions we are prepared to handle. */
1540
4c4b4cd2 1541#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1542
14f9c5c9 1543
4c4b4cd2
PH
1544/* The desc_* routines return primitive portions of array descriptors
1545 (fat pointers). */
14f9c5c9
AS
1546
1547/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1548 level of indirection, if needed. */
1549
d2e4a39e
AS
1550static struct type *
1551desc_base_type (struct type *type)
14f9c5c9
AS
1552{
1553 if (type == NULL)
1554 return NULL;
61ee279c 1555 type = ada_check_typedef (type);
720d1a40
JB
1556 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1557 type = ada_typedef_target_type (type);
1558
1265e4aa
JB
1559 if (type != NULL
1560 && (TYPE_CODE (type) == TYPE_CODE_PTR
1561 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1562 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1563 else
1564 return type;
1565}
1566
4c4b4cd2
PH
1567/* True iff TYPE indicates a "thin" array pointer type. */
1568
14f9c5c9 1569static int
d2e4a39e 1570is_thin_pntr (struct type *type)
14f9c5c9 1571{
d2e4a39e 1572 return
14f9c5c9
AS
1573 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1574 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1575}
1576
4c4b4cd2
PH
1577/* The descriptor type for thin pointer type TYPE. */
1578
d2e4a39e
AS
1579static struct type *
1580thin_descriptor_type (struct type *type)
14f9c5c9 1581{
d2e4a39e 1582 struct type *base_type = desc_base_type (type);
5b4ee69b 1583
14f9c5c9
AS
1584 if (base_type == NULL)
1585 return NULL;
1586 if (is_suffix (ada_type_name (base_type), "___XVE"))
1587 return base_type;
d2e4a39e 1588 else
14f9c5c9 1589 {
d2e4a39e 1590 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1591
14f9c5c9 1592 if (alt_type == NULL)
4c4b4cd2 1593 return base_type;
14f9c5c9 1594 else
4c4b4cd2 1595 return alt_type;
14f9c5c9
AS
1596 }
1597}
1598
4c4b4cd2
PH
1599/* A pointer to the array data for thin-pointer value VAL. */
1600
d2e4a39e
AS
1601static struct value *
1602thin_data_pntr (struct value *val)
14f9c5c9 1603{
828292f2 1604 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1605 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1606
556bdfd4
UW
1607 data_type = lookup_pointer_type (data_type);
1608
14f9c5c9 1609 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1610 return value_cast (data_type, value_copy (val));
d2e4a39e 1611 else
42ae5230 1612 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1613}
1614
4c4b4cd2
PH
1615/* True iff TYPE indicates a "thick" array pointer type. */
1616
14f9c5c9 1617static int
d2e4a39e 1618is_thick_pntr (struct type *type)
14f9c5c9
AS
1619{
1620 type = desc_base_type (type);
1621 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1622 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1623}
1624
4c4b4cd2
PH
1625/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1626 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1627
d2e4a39e
AS
1628static struct type *
1629desc_bounds_type (struct type *type)
14f9c5c9 1630{
d2e4a39e 1631 struct type *r;
14f9c5c9
AS
1632
1633 type = desc_base_type (type);
1634
1635 if (type == NULL)
1636 return NULL;
1637 else if (is_thin_pntr (type))
1638 {
1639 type = thin_descriptor_type (type);
1640 if (type == NULL)
4c4b4cd2 1641 return NULL;
14f9c5c9
AS
1642 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1643 if (r != NULL)
61ee279c 1644 return ada_check_typedef (r);
14f9c5c9
AS
1645 }
1646 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1647 {
1648 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1649 if (r != NULL)
61ee279c 1650 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1651 }
1652 return NULL;
1653}
1654
1655/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1656 one, a pointer to its bounds data. Otherwise NULL. */
1657
d2e4a39e
AS
1658static struct value *
1659desc_bounds (struct value *arr)
14f9c5c9 1660{
df407dfe 1661 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1662
d2e4a39e 1663 if (is_thin_pntr (type))
14f9c5c9 1664 {
d2e4a39e 1665 struct type *bounds_type =
4c4b4cd2 1666 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1667 LONGEST addr;
1668
4cdfadb1 1669 if (bounds_type == NULL)
323e0a4a 1670 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1671
1672 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1673 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1674 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1675 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1676 addr = value_as_long (arr);
d2e4a39e 1677 else
42ae5230 1678 addr = value_address (arr);
14f9c5c9 1679
d2e4a39e 1680 return
4c4b4cd2
PH
1681 value_from_longest (lookup_pointer_type (bounds_type),
1682 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1683 }
1684
1685 else if (is_thick_pntr (type))
05e522ef
JB
1686 {
1687 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1688 _("Bad GNAT array descriptor"));
1689 struct type *p_bounds_type = value_type (p_bounds);
1690
1691 if (p_bounds_type
1692 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1693 {
1694 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1695
1696 if (TYPE_STUB (target_type))
1697 p_bounds = value_cast (lookup_pointer_type
1698 (ada_check_typedef (target_type)),
1699 p_bounds);
1700 }
1701 else
1702 error (_("Bad GNAT array descriptor"));
1703
1704 return p_bounds;
1705 }
14f9c5c9
AS
1706 else
1707 return NULL;
1708}
1709
4c4b4cd2
PH
1710/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1711 position of the field containing the address of the bounds data. */
1712
14f9c5c9 1713static int
d2e4a39e 1714fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1715{
1716 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1717}
1718
1719/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1720 size of the field containing the address of the bounds data. */
1721
14f9c5c9 1722static int
d2e4a39e 1723fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1724{
1725 type = desc_base_type (type);
1726
d2e4a39e 1727 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1728 return TYPE_FIELD_BITSIZE (type, 1);
1729 else
61ee279c 1730 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1731}
1732
4c4b4cd2 1733/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1734 pointer to one, the type of its array data (a array-with-no-bounds type);
1735 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1736 data. */
4c4b4cd2 1737
d2e4a39e 1738static struct type *
556bdfd4 1739desc_data_target_type (struct type *type)
14f9c5c9
AS
1740{
1741 type = desc_base_type (type);
1742
4c4b4cd2 1743 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1744 if (is_thin_pntr (type))
556bdfd4 1745 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1746 else if (is_thick_pntr (type))
556bdfd4
UW
1747 {
1748 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1749
1750 if (data_type
1751 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1752 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1753 }
1754
1755 return NULL;
14f9c5c9
AS
1756}
1757
1758/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1759 its array data. */
4c4b4cd2 1760
d2e4a39e
AS
1761static struct value *
1762desc_data (struct value *arr)
14f9c5c9 1763{
df407dfe 1764 struct type *type = value_type (arr);
5b4ee69b 1765
14f9c5c9
AS
1766 if (is_thin_pntr (type))
1767 return thin_data_pntr (arr);
1768 else if (is_thick_pntr (type))
d2e4a39e 1769 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1770 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1771 else
1772 return NULL;
1773}
1774
1775
1776/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1777 position of the field containing the address of the data. */
1778
14f9c5c9 1779static int
d2e4a39e 1780fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1781{
1782 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1783}
1784
1785/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1786 size of the field containing the address of the data. */
1787
14f9c5c9 1788static int
d2e4a39e 1789fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1790{
1791 type = desc_base_type (type);
1792
1793 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1794 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1795 else
14f9c5c9
AS
1796 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1797}
1798
4c4b4cd2 1799/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1800 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1801 bound, if WHICH is 1. The first bound is I=1. */
1802
d2e4a39e
AS
1803static struct value *
1804desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1805{
d2e4a39e 1806 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1807 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1808}
1809
1810/* If BOUNDS is an array-bounds structure type, return the bit position
1811 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1812 bound, if WHICH is 1. The first bound is I=1. */
1813
14f9c5c9 1814static int
d2e4a39e 1815desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1816{
d2e4a39e 1817 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1818}
1819
1820/* If BOUNDS is an array-bounds structure type, return the bit field size
1821 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1822 bound, if WHICH is 1. The first bound is I=1. */
1823
76a01679 1824static int
d2e4a39e 1825desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1826{
1827 type = desc_base_type (type);
1828
d2e4a39e
AS
1829 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1830 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1831 else
1832 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1833}
1834
1835/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1836 Ith bound (numbering from 1). Otherwise, NULL. */
1837
d2e4a39e
AS
1838static struct type *
1839desc_index_type (struct type *type, int i)
14f9c5c9
AS
1840{
1841 type = desc_base_type (type);
1842
1843 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1844 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1845 else
14f9c5c9
AS
1846 return NULL;
1847}
1848
4c4b4cd2
PH
1849/* The number of index positions in the array-bounds type TYPE.
1850 Return 0 if TYPE is NULL. */
1851
14f9c5c9 1852static int
d2e4a39e 1853desc_arity (struct type *type)
14f9c5c9
AS
1854{
1855 type = desc_base_type (type);
1856
1857 if (type != NULL)
1858 return TYPE_NFIELDS (type) / 2;
1859 return 0;
1860}
1861
4c4b4cd2
PH
1862/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1863 an array descriptor type (representing an unconstrained array
1864 type). */
1865
76a01679
JB
1866static int
1867ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1868{
1869 if (type == NULL)
1870 return 0;
61ee279c 1871 type = ada_check_typedef (type);
4c4b4cd2 1872 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1873 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1874}
1875
52ce6436 1876/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1877 * to one. */
52ce6436 1878
2c0b251b 1879static int
52ce6436
PH
1880ada_is_array_type (struct type *type)
1881{
1882 while (type != NULL
1883 && (TYPE_CODE (type) == TYPE_CODE_PTR
1884 || TYPE_CODE (type) == TYPE_CODE_REF))
1885 type = TYPE_TARGET_TYPE (type);
1886 return ada_is_direct_array_type (type);
1887}
1888
4c4b4cd2 1889/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1890
14f9c5c9 1891int
4c4b4cd2 1892ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1893{
1894 if (type == NULL)
1895 return 0;
61ee279c 1896 type = ada_check_typedef (type);
14f9c5c9 1897 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1898 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1899 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1900 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1901}
1902
4c4b4cd2
PH
1903/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1904
14f9c5c9 1905int
4c4b4cd2 1906ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1907{
556bdfd4 1908 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1909
1910 if (type == NULL)
1911 return 0;
61ee279c 1912 type = ada_check_typedef (type);
556bdfd4
UW
1913 return (data_type != NULL
1914 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1915 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1916}
1917
1918/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1919 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1920 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1921 is still needed. */
1922
14f9c5c9 1923int
ebf56fd3 1924ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1925{
d2e4a39e 1926 return
14f9c5c9
AS
1927 type != NULL
1928 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1929 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1930 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1931 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1932}
1933
1934
4c4b4cd2 1935/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1936 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1937 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1938 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1939 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1940 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1941 a descriptor. */
d2e4a39e
AS
1942struct type *
1943ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1944{
ad82864c
JB
1945 if (ada_is_constrained_packed_array_type (value_type (arr)))
1946 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1947
df407dfe
AC
1948 if (!ada_is_array_descriptor_type (value_type (arr)))
1949 return value_type (arr);
d2e4a39e
AS
1950
1951 if (!bounds)
ad82864c
JB
1952 {
1953 struct type *array_type =
1954 ada_check_typedef (desc_data_target_type (value_type (arr)));
1955
1956 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1957 TYPE_FIELD_BITSIZE (array_type, 0) =
1958 decode_packed_array_bitsize (value_type (arr));
1959
1960 return array_type;
1961 }
14f9c5c9
AS
1962 else
1963 {
d2e4a39e 1964 struct type *elt_type;
14f9c5c9 1965 int arity;
d2e4a39e 1966 struct value *descriptor;
14f9c5c9 1967
df407dfe
AC
1968 elt_type = ada_array_element_type (value_type (arr), -1);
1969 arity = ada_array_arity (value_type (arr));
14f9c5c9 1970
d2e4a39e 1971 if (elt_type == NULL || arity == 0)
df407dfe 1972 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1973
1974 descriptor = desc_bounds (arr);
d2e4a39e 1975 if (value_as_long (descriptor) == 0)
4c4b4cd2 1976 return NULL;
d2e4a39e 1977 while (arity > 0)
4c4b4cd2 1978 {
e9bb382b
UW
1979 struct type *range_type = alloc_type_copy (value_type (arr));
1980 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1981 struct value *low = desc_one_bound (descriptor, arity, 0);
1982 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1983
5b4ee69b 1984 arity -= 1;
0c9c3474
SA
1985 create_static_range_type (range_type, value_type (low),
1986 longest_to_int (value_as_long (low)),
1987 longest_to_int (value_as_long (high)));
4c4b4cd2 1988 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1989
1990 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1991 {
1992 /* We need to store the element packed bitsize, as well as
1993 recompute the array size, because it was previously
1994 computed based on the unpacked element size. */
1995 LONGEST lo = value_as_long (low);
1996 LONGEST hi = value_as_long (high);
1997
1998 TYPE_FIELD_BITSIZE (elt_type, 0) =
1999 decode_packed_array_bitsize (value_type (arr));
2000 /* If the array has no element, then the size is already
2001 zero, and does not need to be recomputed. */
2002 if (lo < hi)
2003 {
2004 int array_bitsize =
2005 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2006
2007 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2008 }
2009 }
4c4b4cd2 2010 }
14f9c5c9
AS
2011
2012 return lookup_pointer_type (elt_type);
2013 }
2014}
2015
2016/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2017 Otherwise, returns either a standard GDB array with bounds set
2018 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2019 GDB array. Returns NULL if ARR is a null fat pointer. */
2020
d2e4a39e
AS
2021struct value *
2022ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2023{
df407dfe 2024 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2025 {
d2e4a39e 2026 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2027
14f9c5c9 2028 if (arrType == NULL)
4c4b4cd2 2029 return NULL;
14f9c5c9
AS
2030 return value_cast (arrType, value_copy (desc_data (arr)));
2031 }
ad82864c
JB
2032 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2033 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2034 else
2035 return arr;
2036}
2037
2038/* If ARR does not represent an array, returns ARR unchanged.
2039 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2040 be ARR itself if it already is in the proper form). */
2041
720d1a40 2042struct value *
d2e4a39e 2043ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2044{
df407dfe 2045 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2046 {
d2e4a39e 2047 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2048
14f9c5c9 2049 if (arrVal == NULL)
323e0a4a 2050 error (_("Bounds unavailable for null array pointer."));
529cad9c 2051 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2052 return value_ind (arrVal);
2053 }
ad82864c
JB
2054 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2055 return decode_constrained_packed_array (arr);
d2e4a39e 2056 else
14f9c5c9
AS
2057 return arr;
2058}
2059
2060/* If TYPE represents a GNAT array type, return it translated to an
2061 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2062 packing). For other types, is the identity. */
2063
d2e4a39e
AS
2064struct type *
2065ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2066{
ad82864c
JB
2067 if (ada_is_constrained_packed_array_type (type))
2068 return decode_constrained_packed_array_type (type);
17280b9f
UW
2069
2070 if (ada_is_array_descriptor_type (type))
556bdfd4 2071 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2072
2073 return type;
14f9c5c9
AS
2074}
2075
4c4b4cd2
PH
2076/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2077
ad82864c
JB
2078static int
2079ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2080{
2081 if (type == NULL)
2082 return 0;
4c4b4cd2 2083 type = desc_base_type (type);
61ee279c 2084 type = ada_check_typedef (type);
d2e4a39e 2085 return
14f9c5c9
AS
2086 ada_type_name (type) != NULL
2087 && strstr (ada_type_name (type), "___XP") != NULL;
2088}
2089
ad82864c
JB
2090/* Non-zero iff TYPE represents a standard GNAT constrained
2091 packed-array type. */
2092
2093int
2094ada_is_constrained_packed_array_type (struct type *type)
2095{
2096 return ada_is_packed_array_type (type)
2097 && !ada_is_array_descriptor_type (type);
2098}
2099
2100/* Non-zero iff TYPE represents an array descriptor for a
2101 unconstrained packed-array type. */
2102
2103static int
2104ada_is_unconstrained_packed_array_type (struct type *type)
2105{
2106 return ada_is_packed_array_type (type)
2107 && ada_is_array_descriptor_type (type);
2108}
2109
2110/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2111 return the size of its elements in bits. */
2112
2113static long
2114decode_packed_array_bitsize (struct type *type)
2115{
0d5cff50
DE
2116 const char *raw_name;
2117 const char *tail;
ad82864c
JB
2118 long bits;
2119
720d1a40
JB
2120 /* Access to arrays implemented as fat pointers are encoded as a typedef
2121 of the fat pointer type. We need the name of the fat pointer type
2122 to do the decoding, so strip the typedef layer. */
2123 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2124 type = ada_typedef_target_type (type);
2125
2126 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2127 if (!raw_name)
2128 raw_name = ada_type_name (desc_base_type (type));
2129
2130 if (!raw_name)
2131 return 0;
2132
2133 tail = strstr (raw_name, "___XP");
720d1a40 2134 gdb_assert (tail != NULL);
ad82864c
JB
2135
2136 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2137 {
2138 lim_warning
2139 (_("could not understand bit size information on packed array"));
2140 return 0;
2141 }
2142
2143 return bits;
2144}
2145
14f9c5c9
AS
2146/* Given that TYPE is a standard GDB array type with all bounds filled
2147 in, and that the element size of its ultimate scalar constituents
2148 (that is, either its elements, or, if it is an array of arrays, its
2149 elements' elements, etc.) is *ELT_BITS, return an identical type,
2150 but with the bit sizes of its elements (and those of any
2151 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2152 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2153 in bits. */
2154
d2e4a39e 2155static struct type *
ad82864c 2156constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2157{
d2e4a39e
AS
2158 struct type *new_elt_type;
2159 struct type *new_type;
99b1c762
JB
2160 struct type *index_type_desc;
2161 struct type *index_type;
14f9c5c9
AS
2162 LONGEST low_bound, high_bound;
2163
61ee279c 2164 type = ada_check_typedef (type);
14f9c5c9
AS
2165 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2166 return type;
2167
99b1c762
JB
2168 index_type_desc = ada_find_parallel_type (type, "___XA");
2169 if (index_type_desc)
2170 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2171 NULL);
2172 else
2173 index_type = TYPE_INDEX_TYPE (type);
2174
e9bb382b 2175 new_type = alloc_type_copy (type);
ad82864c
JB
2176 new_elt_type =
2177 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2178 elt_bits);
99b1c762 2179 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2180 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2181 TYPE_NAME (new_type) = ada_type_name (type);
2182
99b1c762 2183 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2184 low_bound = high_bound = 0;
2185 if (high_bound < low_bound)
2186 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2187 else
14f9c5c9
AS
2188 {
2189 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2190 TYPE_LENGTH (new_type) =
4c4b4cd2 2191 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2192 }
2193
876cecd0 2194 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2195 return new_type;
2196}
2197
ad82864c
JB
2198/* The array type encoded by TYPE, where
2199 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2200
d2e4a39e 2201static struct type *
ad82864c 2202decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2203{
0d5cff50 2204 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2205 char *name;
0d5cff50 2206 const char *tail;
d2e4a39e 2207 struct type *shadow_type;
14f9c5c9 2208 long bits;
14f9c5c9 2209
727e3d2e
JB
2210 if (!raw_name)
2211 raw_name = ada_type_name (desc_base_type (type));
2212
2213 if (!raw_name)
2214 return NULL;
2215
2216 name = (char *) alloca (strlen (raw_name) + 1);
2217 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2218 type = desc_base_type (type);
2219
14f9c5c9
AS
2220 memcpy (name, raw_name, tail - raw_name);
2221 name[tail - raw_name] = '\000';
2222
b4ba55a1
JB
2223 shadow_type = ada_find_parallel_type_with_name (type, name);
2224
2225 if (shadow_type == NULL)
14f9c5c9 2226 {
323e0a4a 2227 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2228 return NULL;
2229 }
cb249c71 2230 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2231
2232 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2233 {
0963b4bd
MS
2234 lim_warning (_("could not understand bounds "
2235 "information on packed array"));
14f9c5c9
AS
2236 return NULL;
2237 }
d2e4a39e 2238
ad82864c
JB
2239 bits = decode_packed_array_bitsize (type);
2240 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2241}
2242
ad82864c
JB
2243/* Given that ARR is a struct value *indicating a GNAT constrained packed
2244 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2245 standard GDB array type except that the BITSIZEs of the array
2246 target types are set to the number of bits in each element, and the
4c4b4cd2 2247 type length is set appropriately. */
14f9c5c9 2248
d2e4a39e 2249static struct value *
ad82864c 2250decode_constrained_packed_array (struct value *arr)
14f9c5c9 2251{
4c4b4cd2 2252 struct type *type;
14f9c5c9 2253
11aa919a
PMR
2254 /* If our value is a pointer, then dereference it. Likewise if
2255 the value is a reference. Make sure that this operation does not
2256 cause the target type to be fixed, as this would indirectly cause
2257 this array to be decoded. The rest of the routine assumes that
2258 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2259 and "value_ind" routines to perform the dereferencing, as opposed
2260 to using "ada_coerce_ref" or "ada_value_ind". */
2261 arr = coerce_ref (arr);
828292f2 2262 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2263 arr = value_ind (arr);
4c4b4cd2 2264
ad82864c 2265 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2266 if (type == NULL)
2267 {
323e0a4a 2268 error (_("can't unpack array"));
14f9c5c9
AS
2269 return NULL;
2270 }
61ee279c 2271
50810684 2272 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2273 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2274 {
2275 /* This is a (right-justified) modular type representing a packed
2276 array with no wrapper. In order to interpret the value through
2277 the (left-justified) packed array type we just built, we must
2278 first left-justify it. */
2279 int bit_size, bit_pos;
2280 ULONGEST mod;
2281
df407dfe 2282 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2283 bit_size = 0;
2284 while (mod > 0)
2285 {
2286 bit_size += 1;
2287 mod >>= 1;
2288 }
df407dfe 2289 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2290 arr = ada_value_primitive_packed_val (arr, NULL,
2291 bit_pos / HOST_CHAR_BIT,
2292 bit_pos % HOST_CHAR_BIT,
2293 bit_size,
2294 type);
2295 }
2296
4c4b4cd2 2297 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2298}
2299
2300
2301/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2302 given in IND. ARR must be a simple array. */
14f9c5c9 2303
d2e4a39e
AS
2304static struct value *
2305value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2306{
2307 int i;
2308 int bits, elt_off, bit_off;
2309 long elt_total_bit_offset;
d2e4a39e
AS
2310 struct type *elt_type;
2311 struct value *v;
14f9c5c9
AS
2312
2313 bits = 0;
2314 elt_total_bit_offset = 0;
df407dfe 2315 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2316 for (i = 0; i < arity; i += 1)
14f9c5c9 2317 {
d2e4a39e 2318 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2319 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2320 error
0963b4bd
MS
2321 (_("attempt to do packed indexing of "
2322 "something other than a packed array"));
14f9c5c9 2323 else
4c4b4cd2
PH
2324 {
2325 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2326 LONGEST lowerbound, upperbound;
2327 LONGEST idx;
2328
2329 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2330 {
323e0a4a 2331 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2332 lowerbound = upperbound = 0;
2333 }
2334
3cb382c9 2335 idx = pos_atr (ind[i]);
4c4b4cd2 2336 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2337 lim_warning (_("packed array index %ld out of bounds"),
2338 (long) idx);
4c4b4cd2
PH
2339 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2340 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2341 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2342 }
14f9c5c9
AS
2343 }
2344 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2345 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2346
2347 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2348 bits, elt_type);
14f9c5c9
AS
2349 return v;
2350}
2351
4c4b4cd2 2352/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2353
2354static int
d2e4a39e 2355has_negatives (struct type *type)
14f9c5c9 2356{
d2e4a39e
AS
2357 switch (TYPE_CODE (type))
2358 {
2359 default:
2360 return 0;
2361 case TYPE_CODE_INT:
2362 return !TYPE_UNSIGNED (type);
2363 case TYPE_CODE_RANGE:
2364 return TYPE_LOW_BOUND (type) < 0;
2365 }
14f9c5c9 2366}
d2e4a39e 2367
14f9c5c9
AS
2368
2369/* Create a new value of type TYPE from the contents of OBJ starting
2370 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2371 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2372 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2373 VALADDR is ignored unless OBJ is NULL, in which case,
2374 VALADDR+OFFSET must address the start of storage containing the
2375 packed value. The value returned in this case is never an lval.
2376 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2377
d2e4a39e 2378struct value *
fc1a4b47 2379ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2380 long offset, int bit_offset, int bit_size,
4c4b4cd2 2381 struct type *type)
14f9c5c9 2382{
d2e4a39e 2383 struct value *v;
4c4b4cd2
PH
2384 int src, /* Index into the source area */
2385 targ, /* Index into the target area */
2386 srcBitsLeft, /* Number of source bits left to move */
2387 nsrc, ntarg, /* Number of source and target bytes */
2388 unusedLS, /* Number of bits in next significant
2389 byte of source that are unused */
2390 accumSize; /* Number of meaningful bits in accum */
2391 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2392 unsigned char *unpacked;
4c4b4cd2 2393 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2394 unsigned char sign;
2395 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2396 /* Transmit bytes from least to most significant; delta is the direction
2397 the indices move. */
50810684 2398 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2399
61ee279c 2400 type = ada_check_typedef (type);
14f9c5c9
AS
2401
2402 if (obj == NULL)
2403 {
2404 v = allocate_value (type);
d2e4a39e 2405 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2406 }
9214ee5f 2407 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2408 {
53ba8333 2409 v = value_at (type, value_address (obj));
9f1f738a 2410 type = value_type (v);
d2e4a39e 2411 bytes = (unsigned char *) alloca (len);
53ba8333 2412 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2413 }
d2e4a39e 2414 else
14f9c5c9
AS
2415 {
2416 v = allocate_value (type);
0fd88904 2417 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2418 }
d2e4a39e
AS
2419
2420 if (obj != NULL)
14f9c5c9 2421 {
53ba8333 2422 long new_offset = offset;
5b4ee69b 2423
74bcbdf3 2424 set_value_component_location (v, obj);
9bbda503
AC
2425 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2426 set_value_bitsize (v, bit_size);
df407dfe 2427 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2428 {
53ba8333 2429 ++new_offset;
9bbda503 2430 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2431 }
53ba8333
JB
2432 set_value_offset (v, new_offset);
2433
2434 /* Also set the parent value. This is needed when trying to
2435 assign a new value (in inferior memory). */
2436 set_value_parent (v, obj);
14f9c5c9
AS
2437 }
2438 else
9bbda503 2439 set_value_bitsize (v, bit_size);
0fd88904 2440 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2441
2442 srcBitsLeft = bit_size;
2443 nsrc = len;
2444 ntarg = TYPE_LENGTH (type);
2445 sign = 0;
2446 if (bit_size == 0)
2447 {
2448 memset (unpacked, 0, TYPE_LENGTH (type));
2449 return v;
2450 }
50810684 2451 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2452 {
d2e4a39e 2453 src = len - 1;
1265e4aa
JB
2454 if (has_negatives (type)
2455 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2456 sign = ~0;
d2e4a39e
AS
2457
2458 unusedLS =
4c4b4cd2
PH
2459 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2460 % HOST_CHAR_BIT;
14f9c5c9
AS
2461
2462 switch (TYPE_CODE (type))
4c4b4cd2
PH
2463 {
2464 case TYPE_CODE_ARRAY:
2465 case TYPE_CODE_UNION:
2466 case TYPE_CODE_STRUCT:
2467 /* Non-scalar values must be aligned at a byte boundary... */
2468 accumSize =
2469 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2470 /* ... And are placed at the beginning (most-significant) bytes
2471 of the target. */
529cad9c 2472 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2473 ntarg = targ + 1;
4c4b4cd2
PH
2474 break;
2475 default:
2476 accumSize = 0;
2477 targ = TYPE_LENGTH (type) - 1;
2478 break;
2479 }
14f9c5c9 2480 }
d2e4a39e 2481 else
14f9c5c9
AS
2482 {
2483 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2484
2485 src = targ = 0;
2486 unusedLS = bit_offset;
2487 accumSize = 0;
2488
d2e4a39e 2489 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2490 sign = ~0;
14f9c5c9 2491 }
d2e4a39e 2492
14f9c5c9
AS
2493 accum = 0;
2494 while (nsrc > 0)
2495 {
2496 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2497 part of the value. */
d2e4a39e 2498 unsigned int unusedMSMask =
4c4b4cd2
PH
2499 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2500 1;
2501 /* Sign-extend bits for this byte. */
14f9c5c9 2502 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2503
d2e4a39e 2504 accum |=
4c4b4cd2 2505 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2506 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2507 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2508 {
2509 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2510 accumSize -= HOST_CHAR_BIT;
2511 accum >>= HOST_CHAR_BIT;
2512 ntarg -= 1;
2513 targ += delta;
2514 }
14f9c5c9
AS
2515 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2516 unusedLS = 0;
2517 nsrc -= 1;
2518 src += delta;
2519 }
2520 while (ntarg > 0)
2521 {
2522 accum |= sign << accumSize;
2523 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2524 accumSize -= HOST_CHAR_BIT;
2525 accum >>= HOST_CHAR_BIT;
2526 ntarg -= 1;
2527 targ += delta;
2528 }
2529
2530 return v;
2531}
d2e4a39e 2532
14f9c5c9
AS
2533/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2534 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2535 not overlap. */
14f9c5c9 2536static void
fc1a4b47 2537move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2538 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2539{
2540 unsigned int accum, mask;
2541 int accum_bits, chunk_size;
2542
2543 target += targ_offset / HOST_CHAR_BIT;
2544 targ_offset %= HOST_CHAR_BIT;
2545 source += src_offset / HOST_CHAR_BIT;
2546 src_offset %= HOST_CHAR_BIT;
50810684 2547 if (bits_big_endian_p)
14f9c5c9
AS
2548 {
2549 accum = (unsigned char) *source;
2550 source += 1;
2551 accum_bits = HOST_CHAR_BIT - src_offset;
2552
d2e4a39e 2553 while (n > 0)
4c4b4cd2
PH
2554 {
2555 int unused_right;
5b4ee69b 2556
4c4b4cd2
PH
2557 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2558 accum_bits += HOST_CHAR_BIT;
2559 source += 1;
2560 chunk_size = HOST_CHAR_BIT - targ_offset;
2561 if (chunk_size > n)
2562 chunk_size = n;
2563 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2564 mask = ((1 << chunk_size) - 1) << unused_right;
2565 *target =
2566 (*target & ~mask)
2567 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2568 n -= chunk_size;
2569 accum_bits -= chunk_size;
2570 target += 1;
2571 targ_offset = 0;
2572 }
14f9c5c9
AS
2573 }
2574 else
2575 {
2576 accum = (unsigned char) *source >> src_offset;
2577 source += 1;
2578 accum_bits = HOST_CHAR_BIT - src_offset;
2579
d2e4a39e 2580 while (n > 0)
4c4b4cd2
PH
2581 {
2582 accum = accum + ((unsigned char) *source << accum_bits);
2583 accum_bits += HOST_CHAR_BIT;
2584 source += 1;
2585 chunk_size = HOST_CHAR_BIT - targ_offset;
2586 if (chunk_size > n)
2587 chunk_size = n;
2588 mask = ((1 << chunk_size) - 1) << targ_offset;
2589 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2590 n -= chunk_size;
2591 accum_bits -= chunk_size;
2592 accum >>= chunk_size;
2593 target += 1;
2594 targ_offset = 0;
2595 }
14f9c5c9
AS
2596 }
2597}
2598
14f9c5c9
AS
2599/* Store the contents of FROMVAL into the location of TOVAL.
2600 Return a new value with the location of TOVAL and contents of
2601 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2602 floating-point or non-scalar types. */
14f9c5c9 2603
d2e4a39e
AS
2604static struct value *
2605ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2606{
df407dfe
AC
2607 struct type *type = value_type (toval);
2608 int bits = value_bitsize (toval);
14f9c5c9 2609
52ce6436
PH
2610 toval = ada_coerce_ref (toval);
2611 fromval = ada_coerce_ref (fromval);
2612
2613 if (ada_is_direct_array_type (value_type (toval)))
2614 toval = ada_coerce_to_simple_array (toval);
2615 if (ada_is_direct_array_type (value_type (fromval)))
2616 fromval = ada_coerce_to_simple_array (fromval);
2617
88e3b34b 2618 if (!deprecated_value_modifiable (toval))
323e0a4a 2619 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2620
d2e4a39e 2621 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2622 && bits > 0
d2e4a39e 2623 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2624 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2625 {
df407dfe
AC
2626 int len = (value_bitpos (toval)
2627 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2628 int from_size;
948f8e3d 2629 gdb_byte *buffer = alloca (len);
d2e4a39e 2630 struct value *val;
42ae5230 2631 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2632
2633 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2634 fromval = value_cast (type, fromval);
14f9c5c9 2635
52ce6436 2636 read_memory (to_addr, buffer, len);
aced2898
PH
2637 from_size = value_bitsize (fromval);
2638 if (from_size == 0)
2639 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2640 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2641 move_bits (buffer, value_bitpos (toval),
50810684 2642 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2643 else
50810684
UW
2644 move_bits (buffer, value_bitpos (toval),
2645 value_contents (fromval), 0, bits, 0);
972daa01 2646 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2647
14f9c5c9 2648 val = value_copy (toval);
0fd88904 2649 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2650 TYPE_LENGTH (type));
04624583 2651 deprecated_set_value_type (val, type);
d2e4a39e 2652
14f9c5c9
AS
2653 return val;
2654 }
2655
2656 return value_assign (toval, fromval);
2657}
2658
2659
52ce6436
PH
2660/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2661 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2662 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2663 * COMPONENT, and not the inferior's memory. The current contents
2664 * of COMPONENT are ignored. */
2665static void
2666value_assign_to_component (struct value *container, struct value *component,
2667 struct value *val)
2668{
2669 LONGEST offset_in_container =
42ae5230 2670 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2671 int bit_offset_in_container =
2672 value_bitpos (component) - value_bitpos (container);
2673 int bits;
2674
2675 val = value_cast (value_type (component), val);
2676
2677 if (value_bitsize (component) == 0)
2678 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2679 else
2680 bits = value_bitsize (component);
2681
50810684 2682 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2683 move_bits (value_contents_writeable (container) + offset_in_container,
2684 value_bitpos (container) + bit_offset_in_container,
2685 value_contents (val),
2686 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2687 bits, 1);
52ce6436
PH
2688 else
2689 move_bits (value_contents_writeable (container) + offset_in_container,
2690 value_bitpos (container) + bit_offset_in_container,
50810684 2691 value_contents (val), 0, bits, 0);
52ce6436
PH
2692}
2693
4c4b4cd2
PH
2694/* The value of the element of array ARR at the ARITY indices given in IND.
2695 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2696 thereto. */
2697
d2e4a39e
AS
2698struct value *
2699ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2700{
2701 int k;
d2e4a39e
AS
2702 struct value *elt;
2703 struct type *elt_type;
14f9c5c9
AS
2704
2705 elt = ada_coerce_to_simple_array (arr);
2706
df407dfe 2707 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2708 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2709 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2710 return value_subscript_packed (elt, arity, ind);
2711
2712 for (k = 0; k < arity; k += 1)
2713 {
2714 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2715 error (_("too many subscripts (%d expected)"), k);
2497b498 2716 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2717 }
2718 return elt;
2719}
2720
2721/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2722 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2723 IND. Does not read the entire array into memory. */
14f9c5c9 2724
2c0b251b 2725static struct value *
d2e4a39e 2726ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2727 struct value **ind)
14f9c5c9
AS
2728{
2729 int k;
2730
2731 for (k = 0; k < arity; k += 1)
2732 {
2733 LONGEST lwb, upb;
14f9c5c9
AS
2734
2735 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2736 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2737 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2738 value_copy (arr));
14f9c5c9 2739 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2740 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2741 type = TYPE_TARGET_TYPE (type);
2742 }
2743
2744 return value_ind (arr);
2745}
2746
0b5d8877 2747/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2748 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2749 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2750 per Ada rules. */
0b5d8877 2751static struct value *
f5938064
JG
2752ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2753 int low, int high)
0b5d8877 2754{
b0dd7688 2755 struct type *type0 = ada_check_typedef (type);
6c038f32 2756 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2757 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2758 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
0c9c3474
SA
2759 struct type *index_type
2760 = create_static_range_type (NULL,
2761 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2762 low, high);
6c038f32 2763 struct type *slice_type =
b0dd7688 2764 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2765
f5938064 2766 return value_at_lazy (slice_type, base);
0b5d8877
PH
2767}
2768
2769
2770static struct value *
2771ada_value_slice (struct value *array, int low, int high)
2772{
b0dd7688 2773 struct type *type = ada_check_typedef (value_type (array));
0c9c3474
SA
2774 struct type *index_type
2775 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2776 struct type *slice_type =
0b5d8877 2777 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2778
6c038f32 2779 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2780}
2781
14f9c5c9
AS
2782/* If type is a record type in the form of a standard GNAT array
2783 descriptor, returns the number of dimensions for type. If arr is a
2784 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2785 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2786
2787int
d2e4a39e 2788ada_array_arity (struct type *type)
14f9c5c9
AS
2789{
2790 int arity;
2791
2792 if (type == NULL)
2793 return 0;
2794
2795 type = desc_base_type (type);
2796
2797 arity = 0;
d2e4a39e 2798 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2799 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2800 else
2801 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2802 {
4c4b4cd2 2803 arity += 1;
61ee279c 2804 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2805 }
d2e4a39e 2806
14f9c5c9
AS
2807 return arity;
2808}
2809
2810/* If TYPE is a record type in the form of a standard GNAT array
2811 descriptor or a simple array type, returns the element type for
2812 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2813 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2814
d2e4a39e
AS
2815struct type *
2816ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2817{
2818 type = desc_base_type (type);
2819
d2e4a39e 2820 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2821 {
2822 int k;
d2e4a39e 2823 struct type *p_array_type;
14f9c5c9 2824
556bdfd4 2825 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2826
2827 k = ada_array_arity (type);
2828 if (k == 0)
4c4b4cd2 2829 return NULL;
d2e4a39e 2830
4c4b4cd2 2831 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2832 if (nindices >= 0 && k > nindices)
4c4b4cd2 2833 k = nindices;
d2e4a39e 2834 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2835 {
61ee279c 2836 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2837 k -= 1;
2838 }
14f9c5c9
AS
2839 return p_array_type;
2840 }
2841 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2842 {
2843 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2844 {
2845 type = TYPE_TARGET_TYPE (type);
2846 nindices -= 1;
2847 }
14f9c5c9
AS
2848 return type;
2849 }
2850
2851 return NULL;
2852}
2853
4c4b4cd2 2854/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2855 Does not examine memory. Throws an error if N is invalid or TYPE
2856 is not an array type. NAME is the name of the Ada attribute being
2857 evaluated ('range, 'first, 'last, or 'length); it is used in building
2858 the error message. */
14f9c5c9 2859
1eea4ebd
UW
2860static struct type *
2861ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2862{
4c4b4cd2
PH
2863 struct type *result_type;
2864
14f9c5c9
AS
2865 type = desc_base_type (type);
2866
1eea4ebd
UW
2867 if (n < 0 || n > ada_array_arity (type))
2868 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2869
4c4b4cd2 2870 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2871 {
2872 int i;
2873
2874 for (i = 1; i < n; i += 1)
4c4b4cd2 2875 type = TYPE_TARGET_TYPE (type);
262452ec 2876 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2877 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2878 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2879 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2880 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2881 result_type = NULL;
14f9c5c9 2882 }
d2e4a39e 2883 else
1eea4ebd
UW
2884 {
2885 result_type = desc_index_type (desc_bounds_type (type), n);
2886 if (result_type == NULL)
2887 error (_("attempt to take bound of something that is not an array"));
2888 }
2889
2890 return result_type;
14f9c5c9
AS
2891}
2892
2893/* Given that arr is an array type, returns the lower bound of the
2894 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2895 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2896 array-descriptor type. It works for other arrays with bounds supplied
2897 by run-time quantities other than discriminants. */
14f9c5c9 2898
abb68b3e 2899static LONGEST
fb5e3d5c 2900ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2901{
8a48ac95 2902 struct type *type, *index_type_desc, *index_type;
1ce677a4 2903 int i;
262452ec
JK
2904
2905 gdb_assert (which == 0 || which == 1);
14f9c5c9 2906
ad82864c
JB
2907 if (ada_is_constrained_packed_array_type (arr_type))
2908 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2909
4c4b4cd2 2910 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2911 return (LONGEST) - which;
14f9c5c9
AS
2912
2913 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2914 type = TYPE_TARGET_TYPE (arr_type);
2915 else
2916 type = arr_type;
2917
2918 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2919 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2920 if (index_type_desc != NULL)
28c85d6c
JB
2921 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2922 NULL);
262452ec 2923 else
8a48ac95
JB
2924 {
2925 struct type *elt_type = check_typedef (type);
2926
2927 for (i = 1; i < n; i++)
2928 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2929
2930 index_type = TYPE_INDEX_TYPE (elt_type);
2931 }
262452ec 2932
43bbcdc2
PH
2933 return
2934 (LONGEST) (which == 0
2935 ? ada_discrete_type_low_bound (index_type)
2936 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2937}
2938
2939/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2940 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2941 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2942 supplied by run-time quantities other than discriminants. */
14f9c5c9 2943
1eea4ebd 2944static LONGEST
4dc81987 2945ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2946{
df407dfe 2947 struct type *arr_type = value_type (arr);
14f9c5c9 2948
ad82864c
JB
2949 if (ada_is_constrained_packed_array_type (arr_type))
2950 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2951 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2952 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2953 else
1eea4ebd 2954 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2955}
2956
2957/* Given that arr is an array value, returns the length of the
2958 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2959 supplied by run-time quantities other than discriminants.
2960 Does not work for arrays indexed by enumeration types with representation
2961 clauses at the moment. */
14f9c5c9 2962
1eea4ebd 2963static LONGEST
d2e4a39e 2964ada_array_length (struct value *arr, int n)
14f9c5c9 2965{
df407dfe 2966 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2967
ad82864c
JB
2968 if (ada_is_constrained_packed_array_type (arr_type))
2969 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2970
4c4b4cd2 2971 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2972 return (ada_array_bound_from_type (arr_type, n, 1)
2973 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2974 else
1eea4ebd
UW
2975 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2976 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2977}
2978
2979/* An empty array whose type is that of ARR_TYPE (an array type),
2980 with bounds LOW to LOW-1. */
2981
2982static struct value *
2983empty_array (struct type *arr_type, int low)
2984{
b0dd7688 2985 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
2986 struct type *index_type
2987 = create_static_range_type
2988 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 2989 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2990
0b5d8877 2991 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2992}
14f9c5c9 2993\f
d2e4a39e 2994
4c4b4cd2 2995 /* Name resolution */
14f9c5c9 2996
4c4b4cd2
PH
2997/* The "decoded" name for the user-definable Ada operator corresponding
2998 to OP. */
14f9c5c9 2999
d2e4a39e 3000static const char *
4c4b4cd2 3001ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3002{
3003 int i;
3004
4c4b4cd2 3005 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3006 {
3007 if (ada_opname_table[i].op == op)
4c4b4cd2 3008 return ada_opname_table[i].decoded;
14f9c5c9 3009 }
323e0a4a 3010 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3011}
3012
3013
4c4b4cd2
PH
3014/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3015 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3016 undefined namespace) and converts operators that are
3017 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3018 non-null, it provides a preferred result type [at the moment, only
3019 type void has any effect---causing procedures to be preferred over
3020 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3021 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3022
4c4b4cd2
PH
3023static void
3024resolve (struct expression **expp, int void_context_p)
14f9c5c9 3025{
30b15541
UW
3026 struct type *context_type = NULL;
3027 int pc = 0;
3028
3029 if (void_context_p)
3030 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3031
3032 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3033}
3034
4c4b4cd2
PH
3035/* Resolve the operator of the subexpression beginning at
3036 position *POS of *EXPP. "Resolving" consists of replacing
3037 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3038 with their resolutions, replacing built-in operators with
3039 function calls to user-defined operators, where appropriate, and,
3040 when DEPROCEDURE_P is non-zero, converting function-valued variables
3041 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3042 are as in ada_resolve, above. */
14f9c5c9 3043
d2e4a39e 3044static struct value *
4c4b4cd2 3045resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3046 struct type *context_type)
14f9c5c9
AS
3047{
3048 int pc = *pos;
3049 int i;
4c4b4cd2 3050 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3051 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3052 struct value **argvec; /* Vector of operand types (alloca'ed). */
3053 int nargs; /* Number of operands. */
52ce6436 3054 int oplen;
14f9c5c9
AS
3055
3056 argvec = NULL;
3057 nargs = 0;
3058 exp = *expp;
3059
52ce6436
PH
3060 /* Pass one: resolve operands, saving their types and updating *pos,
3061 if needed. */
14f9c5c9
AS
3062 switch (op)
3063 {
4c4b4cd2
PH
3064 case OP_FUNCALL:
3065 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3066 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3067 *pos += 7;
4c4b4cd2
PH
3068 else
3069 {
3070 *pos += 3;
3071 resolve_subexp (expp, pos, 0, NULL);
3072 }
3073 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3074 break;
3075
14f9c5c9 3076 case UNOP_ADDR:
4c4b4cd2
PH
3077 *pos += 1;
3078 resolve_subexp (expp, pos, 0, NULL);
3079 break;
3080
52ce6436
PH
3081 case UNOP_QUAL:
3082 *pos += 3;
17466c1a 3083 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3084 break;
3085
52ce6436 3086 case OP_ATR_MODULUS:
4c4b4cd2
PH
3087 case OP_ATR_SIZE:
3088 case OP_ATR_TAG:
4c4b4cd2
PH
3089 case OP_ATR_FIRST:
3090 case OP_ATR_LAST:
3091 case OP_ATR_LENGTH:
3092 case OP_ATR_POS:
3093 case OP_ATR_VAL:
4c4b4cd2
PH
3094 case OP_ATR_MIN:
3095 case OP_ATR_MAX:
52ce6436
PH
3096 case TERNOP_IN_RANGE:
3097 case BINOP_IN_BOUNDS:
3098 case UNOP_IN_RANGE:
3099 case OP_AGGREGATE:
3100 case OP_OTHERS:
3101 case OP_CHOICES:
3102 case OP_POSITIONAL:
3103 case OP_DISCRETE_RANGE:
3104 case OP_NAME:
3105 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3106 *pos += oplen;
14f9c5c9
AS
3107 break;
3108
3109 case BINOP_ASSIGN:
3110 {
4c4b4cd2
PH
3111 struct value *arg1;
3112
3113 *pos += 1;
3114 arg1 = resolve_subexp (expp, pos, 0, NULL);
3115 if (arg1 == NULL)
3116 resolve_subexp (expp, pos, 1, NULL);
3117 else
df407dfe 3118 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3119 break;
14f9c5c9
AS
3120 }
3121
4c4b4cd2 3122 case UNOP_CAST:
4c4b4cd2
PH
3123 *pos += 3;
3124 nargs = 1;
3125 break;
14f9c5c9 3126
4c4b4cd2
PH
3127 case BINOP_ADD:
3128 case BINOP_SUB:
3129 case BINOP_MUL:
3130 case BINOP_DIV:
3131 case BINOP_REM:
3132 case BINOP_MOD:
3133 case BINOP_EXP:
3134 case BINOP_CONCAT:
3135 case BINOP_LOGICAL_AND:
3136 case BINOP_LOGICAL_OR:
3137 case BINOP_BITWISE_AND:
3138 case BINOP_BITWISE_IOR:
3139 case BINOP_BITWISE_XOR:
14f9c5c9 3140
4c4b4cd2
PH
3141 case BINOP_EQUAL:
3142 case BINOP_NOTEQUAL:
3143 case BINOP_LESS:
3144 case BINOP_GTR:
3145 case BINOP_LEQ:
3146 case BINOP_GEQ:
14f9c5c9 3147
4c4b4cd2
PH
3148 case BINOP_REPEAT:
3149 case BINOP_SUBSCRIPT:
3150 case BINOP_COMMA:
40c8aaa9
JB
3151 *pos += 1;
3152 nargs = 2;
3153 break;
14f9c5c9 3154
4c4b4cd2
PH
3155 case UNOP_NEG:
3156 case UNOP_PLUS:
3157 case UNOP_LOGICAL_NOT:
3158 case UNOP_ABS:
3159 case UNOP_IND:
3160 *pos += 1;
3161 nargs = 1;
3162 break;
14f9c5c9 3163
4c4b4cd2
PH
3164 case OP_LONG:
3165 case OP_DOUBLE:
3166 case OP_VAR_VALUE:
3167 *pos += 4;
3168 break;
14f9c5c9 3169
4c4b4cd2
PH
3170 case OP_TYPE:
3171 case OP_BOOL:
3172 case OP_LAST:
4c4b4cd2
PH
3173 case OP_INTERNALVAR:
3174 *pos += 3;
3175 break;
14f9c5c9 3176
4c4b4cd2
PH
3177 case UNOP_MEMVAL:
3178 *pos += 3;
3179 nargs = 1;
3180 break;
3181
67f3407f
DJ
3182 case OP_REGISTER:
3183 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3184 break;
3185
4c4b4cd2
PH
3186 case STRUCTOP_STRUCT:
3187 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3188 nargs = 1;
3189 break;
3190
4c4b4cd2 3191 case TERNOP_SLICE:
4c4b4cd2
PH
3192 *pos += 1;
3193 nargs = 3;
3194 break;
3195
52ce6436 3196 case OP_STRING:
14f9c5c9 3197 break;
4c4b4cd2
PH
3198
3199 default:
323e0a4a 3200 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3201 }
3202
76a01679 3203 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3204 for (i = 0; i < nargs; i += 1)
3205 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3206 argvec[i] = NULL;
3207 exp = *expp;
3208
3209 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3210 switch (op)
3211 {
3212 default:
3213 break;
3214
14f9c5c9 3215 case OP_VAR_VALUE:
4c4b4cd2 3216 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3217 {
3218 struct ada_symbol_info *candidates;
3219 int n_candidates;
3220
3221 n_candidates =
3222 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3223 (exp->elts[pc + 2].symbol),
3224 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3225 &candidates);
76a01679
JB
3226
3227 if (n_candidates > 1)
3228 {
3229 /* Types tend to get re-introduced locally, so if there
3230 are any local symbols that are not types, first filter
3231 out all types. */
3232 int j;
3233 for (j = 0; j < n_candidates; j += 1)
3234 switch (SYMBOL_CLASS (candidates[j].sym))
3235 {
3236 case LOC_REGISTER:
3237 case LOC_ARG:
3238 case LOC_REF_ARG:
76a01679
JB
3239 case LOC_REGPARM_ADDR:
3240 case LOC_LOCAL:
76a01679 3241 case LOC_COMPUTED:
76a01679
JB
3242 goto FoundNonType;
3243 default:
3244 break;
3245 }
3246 FoundNonType:
3247 if (j < n_candidates)
3248 {
3249 j = 0;
3250 while (j < n_candidates)
3251 {
3252 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3253 {
3254 candidates[j] = candidates[n_candidates - 1];
3255 n_candidates -= 1;
3256 }
3257 else
3258 j += 1;
3259 }
3260 }
3261 }
3262
3263 if (n_candidates == 0)
323e0a4a 3264 error (_("No definition found for %s"),
76a01679
JB
3265 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3266 else if (n_candidates == 1)
3267 i = 0;
3268 else if (deprocedure_p
3269 && !is_nonfunction (candidates, n_candidates))
3270 {
06d5cf63
JB
3271 i = ada_resolve_function
3272 (candidates, n_candidates, NULL, 0,
3273 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3274 context_type);
76a01679 3275 if (i < 0)
323e0a4a 3276 error (_("Could not find a match for %s"),
76a01679
JB
3277 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3278 }
3279 else
3280 {
323e0a4a 3281 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3282 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3283 user_select_syms (candidates, n_candidates, 1);
3284 i = 0;
3285 }
3286
3287 exp->elts[pc + 1].block = candidates[i].block;
3288 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3289 if (innermost_block == NULL
3290 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3291 innermost_block = candidates[i].block;
3292 }
3293
3294 if (deprocedure_p
3295 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3296 == TYPE_CODE_FUNC))
3297 {
3298 replace_operator_with_call (expp, pc, 0, 0,
3299 exp->elts[pc + 2].symbol,
3300 exp->elts[pc + 1].block);
3301 exp = *expp;
3302 }
14f9c5c9
AS
3303 break;
3304
3305 case OP_FUNCALL:
3306 {
4c4b4cd2 3307 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3308 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3309 {
3310 struct ada_symbol_info *candidates;
3311 int n_candidates;
3312
3313 n_candidates =
76a01679
JB
3314 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3315 (exp->elts[pc + 5].symbol),
3316 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3317 &candidates);
4c4b4cd2
PH
3318 if (n_candidates == 1)
3319 i = 0;
3320 else
3321 {
06d5cf63
JB
3322 i = ada_resolve_function
3323 (candidates, n_candidates,
3324 argvec, nargs,
3325 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3326 context_type);
4c4b4cd2 3327 if (i < 0)
323e0a4a 3328 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3329 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3330 }
3331
3332 exp->elts[pc + 4].block = candidates[i].block;
3333 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3334 if (innermost_block == NULL
3335 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3336 innermost_block = candidates[i].block;
3337 }
14f9c5c9
AS
3338 }
3339 break;
3340 case BINOP_ADD:
3341 case BINOP_SUB:
3342 case BINOP_MUL:
3343 case BINOP_DIV:
3344 case BINOP_REM:
3345 case BINOP_MOD:
3346 case BINOP_CONCAT:
3347 case BINOP_BITWISE_AND:
3348 case BINOP_BITWISE_IOR:
3349 case BINOP_BITWISE_XOR:
3350 case BINOP_EQUAL:
3351 case BINOP_NOTEQUAL:
3352 case BINOP_LESS:
3353 case BINOP_GTR:
3354 case BINOP_LEQ:
3355 case BINOP_GEQ:
3356 case BINOP_EXP:
3357 case UNOP_NEG:
3358 case UNOP_PLUS:
3359 case UNOP_LOGICAL_NOT:
3360 case UNOP_ABS:
3361 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3362 {
3363 struct ada_symbol_info *candidates;
3364 int n_candidates;
3365
3366 n_candidates =
3367 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3368 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3369 &candidates);
4c4b4cd2 3370 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3371 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3372 if (i < 0)
3373 break;
3374
76a01679
JB
3375 replace_operator_with_call (expp, pc, nargs, 1,
3376 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3377 exp = *expp;
3378 }
14f9c5c9 3379 break;
4c4b4cd2
PH
3380
3381 case OP_TYPE:
b3dbf008 3382 case OP_REGISTER:
4c4b4cd2 3383 return NULL;
14f9c5c9
AS
3384 }
3385
3386 *pos = pc;
3387 return evaluate_subexp_type (exp, pos);
3388}
3389
3390/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3391 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3392 a non-pointer. */
14f9c5c9 3393/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3394 liberal. */
14f9c5c9
AS
3395
3396static int
4dc81987 3397ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3398{
61ee279c
PH
3399 ftype = ada_check_typedef (ftype);
3400 atype = ada_check_typedef (atype);
14f9c5c9
AS
3401
3402 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3403 ftype = TYPE_TARGET_TYPE (ftype);
3404 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3405 atype = TYPE_TARGET_TYPE (atype);
3406
d2e4a39e 3407 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3408 {
3409 default:
5b3d5b7d 3410 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3411 case TYPE_CODE_PTR:
3412 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3413 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3414 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3415 else
1265e4aa
JB
3416 return (may_deref
3417 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3418 case TYPE_CODE_INT:
3419 case TYPE_CODE_ENUM:
3420 case TYPE_CODE_RANGE:
3421 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3422 {
3423 case TYPE_CODE_INT:
3424 case TYPE_CODE_ENUM:
3425 case TYPE_CODE_RANGE:
3426 return 1;
3427 default:
3428 return 0;
3429 }
14f9c5c9
AS
3430
3431 case TYPE_CODE_ARRAY:
d2e4a39e 3432 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3433 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3434
3435 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3436 if (ada_is_array_descriptor_type (ftype))
3437 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3438 || ada_is_array_descriptor_type (atype));
14f9c5c9 3439 else
4c4b4cd2
PH
3440 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3441 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3442
3443 case TYPE_CODE_UNION:
3444 case TYPE_CODE_FLT:
3445 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3446 }
3447}
3448
3449/* Return non-zero if the formals of FUNC "sufficiently match" the
3450 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3451 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3452 argument function. */
14f9c5c9
AS
3453
3454static int
d2e4a39e 3455ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3456{
3457 int i;
d2e4a39e 3458 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3459
1265e4aa
JB
3460 if (SYMBOL_CLASS (func) == LOC_CONST
3461 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3462 return (n_actuals == 0);
3463 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3464 return 0;
3465
3466 if (TYPE_NFIELDS (func_type) != n_actuals)
3467 return 0;
3468
3469 for (i = 0; i < n_actuals; i += 1)
3470 {
4c4b4cd2 3471 if (actuals[i] == NULL)
76a01679
JB
3472 return 0;
3473 else
3474 {
5b4ee69b
MS
3475 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3476 i));
df407dfe 3477 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3478
76a01679
JB
3479 if (!ada_type_match (ftype, atype, 1))
3480 return 0;
3481 }
14f9c5c9
AS
3482 }
3483 return 1;
3484}
3485
3486/* False iff function type FUNC_TYPE definitely does not produce a value
3487 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3488 FUNC_TYPE is not a valid function type with a non-null return type
3489 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3490
3491static int
d2e4a39e 3492return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3493{
d2e4a39e 3494 struct type *return_type;
14f9c5c9
AS
3495
3496 if (func_type == NULL)
3497 return 1;
3498
4c4b4cd2 3499 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3500 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3501 else
18af8284 3502 return_type = get_base_type (func_type);
14f9c5c9
AS
3503 if (return_type == NULL)
3504 return 1;
3505
18af8284 3506 context_type = get_base_type (context_type);
14f9c5c9
AS
3507
3508 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3509 return context_type == NULL || return_type == context_type;
3510 else if (context_type == NULL)
3511 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3512 else
3513 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3514}
3515
3516
4c4b4cd2 3517/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3518 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3519 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3520 that returns that type, then eliminate matches that don't. If
3521 CONTEXT_TYPE is void and there is at least one match that does not
3522 return void, eliminate all matches that do.
3523
14f9c5c9
AS
3524 Asks the user if there is more than one match remaining. Returns -1
3525 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3526 solely for messages. May re-arrange and modify SYMS in
3527 the process; the index returned is for the modified vector. */
14f9c5c9 3528
4c4b4cd2
PH
3529static int
3530ada_resolve_function (struct ada_symbol_info syms[],
3531 int nsyms, struct value **args, int nargs,
3532 const char *name, struct type *context_type)
14f9c5c9 3533{
30b15541 3534 int fallback;
14f9c5c9 3535 int k;
4c4b4cd2 3536 int m; /* Number of hits */
14f9c5c9 3537
d2e4a39e 3538 m = 0;
30b15541
UW
3539 /* In the first pass of the loop, we only accept functions matching
3540 context_type. If none are found, we add a second pass of the loop
3541 where every function is accepted. */
3542 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3543 {
3544 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3545 {
61ee279c 3546 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3547
3548 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3549 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3550 {
3551 syms[m] = syms[k];
3552 m += 1;
3553 }
3554 }
14f9c5c9
AS
3555 }
3556
3557 if (m == 0)
3558 return -1;
3559 else if (m > 1)
3560 {
323e0a4a 3561 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3562 user_select_syms (syms, m, 1);
14f9c5c9
AS
3563 return 0;
3564 }
3565 return 0;
3566}
3567
4c4b4cd2
PH
3568/* Returns true (non-zero) iff decoded name N0 should appear before N1
3569 in a listing of choices during disambiguation (see sort_choices, below).
3570 The idea is that overloadings of a subprogram name from the
3571 same package should sort in their source order. We settle for ordering
3572 such symbols by their trailing number (__N or $N). */
3573
14f9c5c9 3574static int
0d5cff50 3575encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3576{
3577 if (N1 == NULL)
3578 return 0;
3579 else if (N0 == NULL)
3580 return 1;
3581 else
3582 {
3583 int k0, k1;
5b4ee69b 3584
d2e4a39e 3585 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3586 ;
d2e4a39e 3587 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3588 ;
d2e4a39e 3589 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3590 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3591 {
3592 int n0, n1;
5b4ee69b 3593
4c4b4cd2
PH
3594 n0 = k0;
3595 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3596 n0 -= 1;
3597 n1 = k1;
3598 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3599 n1 -= 1;
3600 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3601 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3602 }
14f9c5c9
AS
3603 return (strcmp (N0, N1) < 0);
3604 }
3605}
d2e4a39e 3606
4c4b4cd2
PH
3607/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3608 encoded names. */
3609
d2e4a39e 3610static void
4c4b4cd2 3611sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3612{
4c4b4cd2 3613 int i;
5b4ee69b 3614
d2e4a39e 3615 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3616 {
4c4b4cd2 3617 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3618 int j;
3619
d2e4a39e 3620 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3621 {
3622 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3623 SYMBOL_LINKAGE_NAME (sym.sym)))
3624 break;
3625 syms[j + 1] = syms[j];
3626 }
d2e4a39e 3627 syms[j + 1] = sym;
14f9c5c9
AS
3628 }
3629}
3630
4c4b4cd2
PH
3631/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3632 by asking the user (if necessary), returning the number selected,
3633 and setting the first elements of SYMS items. Error if no symbols
3634 selected. */
14f9c5c9
AS
3635
3636/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3637 to be re-integrated one of these days. */
14f9c5c9
AS
3638
3639int
4c4b4cd2 3640user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3641{
3642 int i;
d2e4a39e 3643 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3644 int n_chosen;
3645 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3646 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3647
3648 if (max_results < 1)
323e0a4a 3649 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3650 if (nsyms <= 1)
3651 return nsyms;
3652
717d2f5a
JB
3653 if (select_mode == multiple_symbols_cancel)
3654 error (_("\
3655canceled because the command is ambiguous\n\
3656See set/show multiple-symbol."));
3657
3658 /* If select_mode is "all", then return all possible symbols.
3659 Only do that if more than one symbol can be selected, of course.
3660 Otherwise, display the menu as usual. */
3661 if (select_mode == multiple_symbols_all && max_results > 1)
3662 return nsyms;
3663
323e0a4a 3664 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3665 if (max_results > 1)
323e0a4a 3666 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3667
4c4b4cd2 3668 sort_choices (syms, nsyms);
14f9c5c9
AS
3669
3670 for (i = 0; i < nsyms; i += 1)
3671 {
4c4b4cd2
PH
3672 if (syms[i].sym == NULL)
3673 continue;
3674
3675 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3676 {
76a01679
JB
3677 struct symtab_and_line sal =
3678 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3679
323e0a4a
AC
3680 if (sal.symtab == NULL)
3681 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3682 i + first_choice,
3683 SYMBOL_PRINT_NAME (syms[i].sym),
3684 sal.line);
3685 else
3686 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3687 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3688 symtab_to_filename_for_display (sal.symtab),
3689 sal.line);
4c4b4cd2
PH
3690 continue;
3691 }
d2e4a39e 3692 else
4c4b4cd2
PH
3693 {
3694 int is_enumeral =
3695 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3696 && SYMBOL_TYPE (syms[i].sym) != NULL
3697 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3698 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3699
3700 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3701 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3702 i + first_choice,
3703 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3704 symtab_to_filename_for_display (symtab),
3705 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3706 else if (is_enumeral
3707 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3708 {
a3f17187 3709 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3710 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3711 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3712 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3713 SYMBOL_PRINT_NAME (syms[i].sym));
3714 }
3715 else if (symtab != NULL)
3716 printf_unfiltered (is_enumeral
323e0a4a
AC
3717 ? _("[%d] %s in %s (enumeral)\n")
3718 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3719 i + first_choice,
3720 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3721 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3722 else
3723 printf_unfiltered (is_enumeral
323e0a4a
AC
3724 ? _("[%d] %s (enumeral)\n")
3725 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3726 i + first_choice,
3727 SYMBOL_PRINT_NAME (syms[i].sym));
3728 }
14f9c5c9 3729 }
d2e4a39e 3730
14f9c5c9 3731 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3732 "overload-choice");
14f9c5c9
AS
3733
3734 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3735 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3736
3737 return n_chosen;
3738}
3739
3740/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3741 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3742 order in CHOICES[0 .. N-1], and return N.
3743
3744 The user types choices as a sequence of numbers on one line
3745 separated by blanks, encoding them as follows:
3746
4c4b4cd2 3747 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3748 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3749 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3750
4c4b4cd2 3751 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3752
3753 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3754 prompts (for use with the -f switch). */
14f9c5c9
AS
3755
3756int
d2e4a39e 3757get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3758 int is_all_choice, char *annotation_suffix)
14f9c5c9 3759{
d2e4a39e 3760 char *args;
0bcd0149 3761 char *prompt;
14f9c5c9
AS
3762 int n_chosen;
3763 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3764
14f9c5c9
AS
3765 prompt = getenv ("PS2");
3766 if (prompt == NULL)
0bcd0149 3767 prompt = "> ";
14f9c5c9 3768
0bcd0149 3769 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3770
14f9c5c9 3771 if (args == NULL)
323e0a4a 3772 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3773
3774 n_chosen = 0;
76a01679 3775
4c4b4cd2
PH
3776 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3777 order, as given in args. Choices are validated. */
14f9c5c9
AS
3778 while (1)
3779 {
d2e4a39e 3780 char *args2;
14f9c5c9
AS
3781 int choice, j;
3782
0fcd72ba 3783 args = skip_spaces (args);
14f9c5c9 3784 if (*args == '\0' && n_chosen == 0)
323e0a4a 3785 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3786 else if (*args == '\0')
4c4b4cd2 3787 break;
14f9c5c9
AS
3788
3789 choice = strtol (args, &args2, 10);
d2e4a39e 3790 if (args == args2 || choice < 0
4c4b4cd2 3791 || choice > n_choices + first_choice - 1)
323e0a4a 3792 error (_("Argument must be choice number"));
14f9c5c9
AS
3793 args = args2;
3794
d2e4a39e 3795 if (choice == 0)
323e0a4a 3796 error (_("cancelled"));
14f9c5c9
AS
3797
3798 if (choice < first_choice)
4c4b4cd2
PH
3799 {
3800 n_chosen = n_choices;
3801 for (j = 0; j < n_choices; j += 1)
3802 choices[j] = j;
3803 break;
3804 }
14f9c5c9
AS
3805 choice -= first_choice;
3806
d2e4a39e 3807 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3808 {
3809 }
14f9c5c9
AS
3810
3811 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3812 {
3813 int k;
5b4ee69b 3814
4c4b4cd2
PH
3815 for (k = n_chosen - 1; k > j; k -= 1)
3816 choices[k + 1] = choices[k];
3817 choices[j + 1] = choice;
3818 n_chosen += 1;
3819 }
14f9c5c9
AS
3820 }
3821
3822 if (n_chosen > max_results)
323e0a4a 3823 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3824
14f9c5c9
AS
3825 return n_chosen;
3826}
3827
4c4b4cd2
PH
3828/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3829 on the function identified by SYM and BLOCK, and taking NARGS
3830 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3831
3832static void
d2e4a39e 3833replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3834 int oplen, struct symbol *sym,
270140bd 3835 const struct block *block)
14f9c5c9
AS
3836{
3837 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3838 symbol, -oplen for operator being replaced). */
d2e4a39e 3839 struct expression *newexp = (struct expression *)
8c1a34e7 3840 xzalloc (sizeof (struct expression)
4c4b4cd2 3841 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3842 struct expression *exp = *expp;
14f9c5c9
AS
3843
3844 newexp->nelts = exp->nelts + 7 - oplen;
3845 newexp->language_defn = exp->language_defn;
3489610d 3846 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3847 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3848 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3849 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3850
3851 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3852 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3853
3854 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3855 newexp->elts[pc + 4].block = block;
3856 newexp->elts[pc + 5].symbol = sym;
3857
3858 *expp = newexp;
aacb1f0a 3859 xfree (exp);
d2e4a39e 3860}
14f9c5c9
AS
3861
3862/* Type-class predicates */
3863
4c4b4cd2
PH
3864/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3865 or FLOAT). */
14f9c5c9
AS
3866
3867static int
d2e4a39e 3868numeric_type_p (struct type *type)
14f9c5c9
AS
3869{
3870 if (type == NULL)
3871 return 0;
d2e4a39e
AS
3872 else
3873 {
3874 switch (TYPE_CODE (type))
4c4b4cd2
PH
3875 {
3876 case TYPE_CODE_INT:
3877 case TYPE_CODE_FLT:
3878 return 1;
3879 case TYPE_CODE_RANGE:
3880 return (type == TYPE_TARGET_TYPE (type)
3881 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3882 default:
3883 return 0;
3884 }
d2e4a39e 3885 }
14f9c5c9
AS
3886}
3887
4c4b4cd2 3888/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3889
3890static int
d2e4a39e 3891integer_type_p (struct type *type)
14f9c5c9
AS
3892{
3893 if (type == NULL)
3894 return 0;
d2e4a39e
AS
3895 else
3896 {
3897 switch (TYPE_CODE (type))
4c4b4cd2
PH
3898 {
3899 case TYPE_CODE_INT:
3900 return 1;
3901 case TYPE_CODE_RANGE:
3902 return (type == TYPE_TARGET_TYPE (type)
3903 || integer_type_p (TYPE_TARGET_TYPE (type)));
3904 default:
3905 return 0;
3906 }
d2e4a39e 3907 }
14f9c5c9
AS
3908}
3909
4c4b4cd2 3910/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3911
3912static int
d2e4a39e 3913scalar_type_p (struct type *type)
14f9c5c9
AS
3914{
3915 if (type == NULL)
3916 return 0;
d2e4a39e
AS
3917 else
3918 {
3919 switch (TYPE_CODE (type))
4c4b4cd2
PH
3920 {
3921 case TYPE_CODE_INT:
3922 case TYPE_CODE_RANGE:
3923 case TYPE_CODE_ENUM:
3924 case TYPE_CODE_FLT:
3925 return 1;
3926 default:
3927 return 0;
3928 }
d2e4a39e 3929 }
14f9c5c9
AS
3930}
3931
4c4b4cd2 3932/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3933
3934static int
d2e4a39e 3935discrete_type_p (struct type *type)
14f9c5c9
AS
3936{
3937 if (type == NULL)
3938 return 0;
d2e4a39e
AS
3939 else
3940 {
3941 switch (TYPE_CODE (type))
4c4b4cd2
PH
3942 {
3943 case TYPE_CODE_INT:
3944 case TYPE_CODE_RANGE:
3945 case TYPE_CODE_ENUM:
872f0337 3946 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3947 return 1;
3948 default:
3949 return 0;
3950 }
d2e4a39e 3951 }
14f9c5c9
AS
3952}
3953
4c4b4cd2
PH
3954/* Returns non-zero if OP with operands in the vector ARGS could be
3955 a user-defined function. Errs on the side of pre-defined operators
3956 (i.e., result 0). */
14f9c5c9
AS
3957
3958static int
d2e4a39e 3959possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3960{
76a01679 3961 struct type *type0 =
df407dfe 3962 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3963 struct type *type1 =
df407dfe 3964 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3965
4c4b4cd2
PH
3966 if (type0 == NULL)
3967 return 0;
3968
14f9c5c9
AS
3969 switch (op)
3970 {
3971 default:
3972 return 0;
3973
3974 case BINOP_ADD:
3975 case BINOP_SUB:
3976 case BINOP_MUL:
3977 case BINOP_DIV:
d2e4a39e 3978 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3979
3980 case BINOP_REM:
3981 case BINOP_MOD:
3982 case BINOP_BITWISE_AND:
3983 case BINOP_BITWISE_IOR:
3984 case BINOP_BITWISE_XOR:
d2e4a39e 3985 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3986
3987 case BINOP_EQUAL:
3988 case BINOP_NOTEQUAL:
3989 case BINOP_LESS:
3990 case BINOP_GTR:
3991 case BINOP_LEQ:
3992 case BINOP_GEQ:
d2e4a39e 3993 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3994
3995 case BINOP_CONCAT:
ee90b9ab 3996 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3997
3998 case BINOP_EXP:
d2e4a39e 3999 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4000
4001 case UNOP_NEG:
4002 case UNOP_PLUS:
4003 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4004 case UNOP_ABS:
4005 return (!numeric_type_p (type0));
14f9c5c9
AS
4006
4007 }
4008}
4009\f
4c4b4cd2 4010 /* Renaming */
14f9c5c9 4011
aeb5907d
JB
4012/* NOTES:
4013
4014 1. In the following, we assume that a renaming type's name may
4015 have an ___XD suffix. It would be nice if this went away at some
4016 point.
4017 2. We handle both the (old) purely type-based representation of
4018 renamings and the (new) variable-based encoding. At some point,
4019 it is devoutly to be hoped that the former goes away
4020 (FIXME: hilfinger-2007-07-09).
4021 3. Subprogram renamings are not implemented, although the XRS
4022 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4023
4024/* If SYM encodes a renaming,
4025
4026 <renaming> renames <renamed entity>,
4027
4028 sets *LEN to the length of the renamed entity's name,
4029 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4030 the string describing the subcomponent selected from the renamed
0963b4bd 4031 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4032 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4033 are undefined). Otherwise, returns a value indicating the category
4034 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4035 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4036 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4037 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4038 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4039 may be NULL, in which case they are not assigned.
4040
4041 [Currently, however, GCC does not generate subprogram renamings.] */
4042
4043enum ada_renaming_category
4044ada_parse_renaming (struct symbol *sym,
4045 const char **renamed_entity, int *len,
4046 const char **renaming_expr)
4047{
4048 enum ada_renaming_category kind;
4049 const char *info;
4050 const char *suffix;
4051
4052 if (sym == NULL)
4053 return ADA_NOT_RENAMING;
4054 switch (SYMBOL_CLASS (sym))
14f9c5c9 4055 {
aeb5907d
JB
4056 default:
4057 return ADA_NOT_RENAMING;
4058 case LOC_TYPEDEF:
4059 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4060 renamed_entity, len, renaming_expr);
4061 case LOC_LOCAL:
4062 case LOC_STATIC:
4063 case LOC_COMPUTED:
4064 case LOC_OPTIMIZED_OUT:
4065 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4066 if (info == NULL)
4067 return ADA_NOT_RENAMING;
4068 switch (info[5])
4069 {
4070 case '_':
4071 kind = ADA_OBJECT_RENAMING;
4072 info += 6;
4073 break;
4074 case 'E':
4075 kind = ADA_EXCEPTION_RENAMING;
4076 info += 7;
4077 break;
4078 case 'P':
4079 kind = ADA_PACKAGE_RENAMING;
4080 info += 7;
4081 break;
4082 case 'S':
4083 kind = ADA_SUBPROGRAM_RENAMING;
4084 info += 7;
4085 break;
4086 default:
4087 return ADA_NOT_RENAMING;
4088 }
14f9c5c9 4089 }
4c4b4cd2 4090
aeb5907d
JB
4091 if (renamed_entity != NULL)
4092 *renamed_entity = info;
4093 suffix = strstr (info, "___XE");
4094 if (suffix == NULL || suffix == info)
4095 return ADA_NOT_RENAMING;
4096 if (len != NULL)
4097 *len = strlen (info) - strlen (suffix);
4098 suffix += 5;
4099 if (renaming_expr != NULL)
4100 *renaming_expr = suffix;
4101 return kind;
4102}
4103
4104/* Assuming TYPE encodes a renaming according to the old encoding in
4105 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4106 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4107 ADA_NOT_RENAMING otherwise. */
4108static enum ada_renaming_category
4109parse_old_style_renaming (struct type *type,
4110 const char **renamed_entity, int *len,
4111 const char **renaming_expr)
4112{
4113 enum ada_renaming_category kind;
4114 const char *name;
4115 const char *info;
4116 const char *suffix;
14f9c5c9 4117
aeb5907d
JB
4118 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4119 || TYPE_NFIELDS (type) != 1)
4120 return ADA_NOT_RENAMING;
14f9c5c9 4121
aeb5907d
JB
4122 name = type_name_no_tag (type);
4123 if (name == NULL)
4124 return ADA_NOT_RENAMING;
4125
4126 name = strstr (name, "___XR");
4127 if (name == NULL)
4128 return ADA_NOT_RENAMING;
4129 switch (name[5])
4130 {
4131 case '\0':
4132 case '_':
4133 kind = ADA_OBJECT_RENAMING;
4134 break;
4135 case 'E':
4136 kind = ADA_EXCEPTION_RENAMING;
4137 break;
4138 case 'P':
4139 kind = ADA_PACKAGE_RENAMING;
4140 break;
4141 case 'S':
4142 kind = ADA_SUBPROGRAM_RENAMING;
4143 break;
4144 default:
4145 return ADA_NOT_RENAMING;
4146 }
14f9c5c9 4147
aeb5907d
JB
4148 info = TYPE_FIELD_NAME (type, 0);
4149 if (info == NULL)
4150 return ADA_NOT_RENAMING;
4151 if (renamed_entity != NULL)
4152 *renamed_entity = info;
4153 suffix = strstr (info, "___XE");
4154 if (renaming_expr != NULL)
4155 *renaming_expr = suffix + 5;
4156 if (suffix == NULL || suffix == info)
4157 return ADA_NOT_RENAMING;
4158 if (len != NULL)
4159 *len = suffix - info;
4160 return kind;
a5ee536b
JB
4161}
4162
4163/* Compute the value of the given RENAMING_SYM, which is expected to
4164 be a symbol encoding a renaming expression. BLOCK is the block
4165 used to evaluate the renaming. */
52ce6436 4166
a5ee536b
JB
4167static struct value *
4168ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4169 const struct block *block)
a5ee536b 4170{
bbc13ae3 4171 const char *sym_name;
a5ee536b
JB
4172 struct expression *expr;
4173 struct value *value;
4174 struct cleanup *old_chain = NULL;
4175
bbc13ae3 4176 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4177 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4178 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4179 value = evaluate_expression (expr);
4180
4181 do_cleanups (old_chain);
4182 return value;
4183}
14f9c5c9 4184\f
d2e4a39e 4185
4c4b4cd2 4186 /* Evaluation: Function Calls */
14f9c5c9 4187
4c4b4cd2 4188/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4189 lvalues, and otherwise has the side-effect of allocating memory
4190 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4191
d2e4a39e 4192static struct value *
40bc484c 4193ensure_lval (struct value *val)
14f9c5c9 4194{
40bc484c
JB
4195 if (VALUE_LVAL (val) == not_lval
4196 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4197 {
df407dfe 4198 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4199 const CORE_ADDR addr =
4200 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4201
40bc484c 4202 set_value_address (val, addr);
a84a8a0d 4203 VALUE_LVAL (val) = lval_memory;
40bc484c 4204 write_memory (addr, value_contents (val), len);
c3e5cd34 4205 }
14f9c5c9
AS
4206
4207 return val;
4208}
4209
4210/* Return the value ACTUAL, converted to be an appropriate value for a
4211 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4212 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4213 values not residing in memory, updating it as needed. */
14f9c5c9 4214
a93c0eb6 4215struct value *
40bc484c 4216ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4217{
df407dfe 4218 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4219 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4220 struct type *formal_target =
4221 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4222 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4223 struct type *actual_target =
4224 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4225 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4226
4c4b4cd2 4227 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4228 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4229 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4230 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4231 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4232 {
a84a8a0d 4233 struct value *result;
5b4ee69b 4234
14f9c5c9 4235 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4236 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4237 result = desc_data (actual);
14f9c5c9 4238 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4239 {
4240 if (VALUE_LVAL (actual) != lval_memory)
4241 {
4242 struct value *val;
5b4ee69b 4243
df407dfe 4244 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4245 val = allocate_value (actual_type);
990a07ab 4246 memcpy ((char *) value_contents_raw (val),
0fd88904 4247 (char *) value_contents (actual),
4c4b4cd2 4248 TYPE_LENGTH (actual_type));
40bc484c 4249 actual = ensure_lval (val);
4c4b4cd2 4250 }
a84a8a0d 4251 result = value_addr (actual);
4c4b4cd2 4252 }
a84a8a0d
JB
4253 else
4254 return actual;
b1af9e97 4255 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4256 }
4257 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4258 return ada_value_ind (actual);
4259
4260 return actual;
4261}
4262
438c98a1
JB
4263/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4264 type TYPE. This is usually an inefficient no-op except on some targets
4265 (such as AVR) where the representation of a pointer and an address
4266 differs. */
4267
4268static CORE_ADDR
4269value_pointer (struct value *value, struct type *type)
4270{
4271 struct gdbarch *gdbarch = get_type_arch (type);
4272 unsigned len = TYPE_LENGTH (type);
4273 gdb_byte *buf = alloca (len);
4274 CORE_ADDR addr;
4275
4276 addr = value_address (value);
4277 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4278 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4279 return addr;
4280}
4281
14f9c5c9 4282
4c4b4cd2
PH
4283/* Push a descriptor of type TYPE for array value ARR on the stack at
4284 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4285 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4286 to-descriptor type rather than a descriptor type), a struct value *
4287 representing a pointer to this descriptor. */
14f9c5c9 4288
d2e4a39e 4289static struct value *
40bc484c 4290make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4291{
d2e4a39e
AS
4292 struct type *bounds_type = desc_bounds_type (type);
4293 struct type *desc_type = desc_base_type (type);
4294 struct value *descriptor = allocate_value (desc_type);
4295 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4296 int i;
d2e4a39e 4297
0963b4bd
MS
4298 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4299 i > 0; i -= 1)
14f9c5c9 4300 {
19f220c3
JK
4301 modify_field (value_type (bounds), value_contents_writeable (bounds),
4302 ada_array_bound (arr, i, 0),
4303 desc_bound_bitpos (bounds_type, i, 0),
4304 desc_bound_bitsize (bounds_type, i, 0));
4305 modify_field (value_type (bounds), value_contents_writeable (bounds),
4306 ada_array_bound (arr, i, 1),
4307 desc_bound_bitpos (bounds_type, i, 1),
4308 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4309 }
d2e4a39e 4310
40bc484c 4311 bounds = ensure_lval (bounds);
d2e4a39e 4312
19f220c3
JK
4313 modify_field (value_type (descriptor),
4314 value_contents_writeable (descriptor),
4315 value_pointer (ensure_lval (arr),
4316 TYPE_FIELD_TYPE (desc_type, 0)),
4317 fat_pntr_data_bitpos (desc_type),
4318 fat_pntr_data_bitsize (desc_type));
4319
4320 modify_field (value_type (descriptor),
4321 value_contents_writeable (descriptor),
4322 value_pointer (bounds,
4323 TYPE_FIELD_TYPE (desc_type, 1)),
4324 fat_pntr_bounds_bitpos (desc_type),
4325 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4326
40bc484c 4327 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4328
4329 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4330 return value_addr (descriptor);
4331 else
4332 return descriptor;
4333}
14f9c5c9 4334\f
3d9434b5
JB
4335 /* Symbol Cache Module */
4336
3d9434b5 4337/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4338 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4339 on the type of entity being printed, the cache can make it as much
4340 as an order of magnitude faster than without it.
4341
4342 The descriptive type DWARF extension has significantly reduced
4343 the need for this cache, at least when DWARF is being used. However,
4344 even in this case, some expensive name-based symbol searches are still
4345 sometimes necessary - to find an XVZ variable, mostly. */
4346
ee01b665 4347/* Initialize the contents of SYM_CACHE. */
3d9434b5 4348
ee01b665
JB
4349static void
4350ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4351{
4352 obstack_init (&sym_cache->cache_space);
4353 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4354}
3d9434b5 4355
ee01b665
JB
4356/* Free the memory used by SYM_CACHE. */
4357
4358static void
4359ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4360{
ee01b665
JB
4361 obstack_free (&sym_cache->cache_space, NULL);
4362 xfree (sym_cache);
4363}
3d9434b5 4364
ee01b665
JB
4365/* Return the symbol cache associated to the given program space PSPACE.
4366 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4367
ee01b665
JB
4368static struct ada_symbol_cache *
4369ada_get_symbol_cache (struct program_space *pspace)
4370{
4371 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4372 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4373
4374 if (sym_cache == NULL)
4375 {
4376 sym_cache = XCNEW (struct ada_symbol_cache);
4377 ada_init_symbol_cache (sym_cache);
4378 }
4379
4380 return sym_cache;
4381}
3d9434b5
JB
4382
4383/* Clear all entries from the symbol cache. */
4384
4385static void
4386ada_clear_symbol_cache (void)
4387{
ee01b665
JB
4388 struct ada_symbol_cache *sym_cache
4389 = ada_get_symbol_cache (current_program_space);
4390
4391 obstack_free (&sym_cache->cache_space, NULL);
4392 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4393}
4394
4395/* Search our cache for an entry matching NAME and NAMESPACE.
4396 Return it if found, or NULL otherwise. */
4397
4398static struct cache_entry **
4399find_entry (const char *name, domain_enum namespace)
4400{
ee01b665
JB
4401 struct ada_symbol_cache *sym_cache
4402 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4403 int h = msymbol_hash (name) % HASH_SIZE;
4404 struct cache_entry **e;
4405
ee01b665 4406 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5
JB
4407 {
4408 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4409 return e;
4410 }
4411 return NULL;
4412}
4413
4414/* Search the symbol cache for an entry matching NAME and NAMESPACE.
4415 Return 1 if found, 0 otherwise.
4416
4417 If an entry was found and SYM is not NULL, set *SYM to the entry's
4418 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4419
96d887e8
PH
4420static int
4421lookup_cached_symbol (const char *name, domain_enum namespace,
f0c5f9b2 4422 struct symbol **sym, const struct block **block)
96d887e8 4423{
3d9434b5
JB
4424 struct cache_entry **e = find_entry (name, namespace);
4425
4426 if (e == NULL)
4427 return 0;
4428 if (sym != NULL)
4429 *sym = (*e)->sym;
4430 if (block != NULL)
4431 *block = (*e)->block;
4432 return 1;
96d887e8
PH
4433}
4434
3d9434b5
JB
4435/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4436 in domain NAMESPACE, save this result in our symbol cache. */
4437
96d887e8
PH
4438static void
4439cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4440 const struct block *block)
96d887e8 4441{
ee01b665
JB
4442 struct ada_symbol_cache *sym_cache
4443 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4444 int h;
4445 char *copy;
4446 struct cache_entry *e;
4447
4448 /* If the symbol is a local symbol, then do not cache it, as a search
4449 for that symbol depends on the context. To determine whether
4450 the symbol is local or not, we check the block where we found it
4451 against the global and static blocks of its associated symtab. */
4452 if (sym
4453 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4454 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4455 return;
4456
4457 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4458 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4459 sizeof (*e));
4460 e->next = sym_cache->root[h];
4461 sym_cache->root[h] = e;
4462 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4463 strcpy (copy, name);
4464 e->sym = sym;
4465 e->namespace = namespace;
4466 e->block = block;
96d887e8 4467}
4c4b4cd2
PH
4468\f
4469 /* Symbol Lookup */
4470
c0431670
JB
4471/* Return nonzero if wild matching should be used when searching for
4472 all symbols matching LOOKUP_NAME.
4473
4474 LOOKUP_NAME is expected to be a symbol name after transformation
4475 for Ada lookups (see ada_name_for_lookup). */
4476
4477static int
4478should_use_wild_match (const char *lookup_name)
4479{
4480 return (strstr (lookup_name, "__") == NULL);
4481}
4482
4c4b4cd2
PH
4483/* Return the result of a standard (literal, C-like) lookup of NAME in
4484 given DOMAIN, visible from lexical block BLOCK. */
4485
4486static struct symbol *
4487standard_lookup (const char *name, const struct block *block,
4488 domain_enum domain)
4489{
acbd605d
MGD
4490 /* Initialize it just to avoid a GCC false warning. */
4491 struct symbol *sym = NULL;
4c4b4cd2 4492
2570f2b7 4493 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4494 return sym;
2570f2b7
UW
4495 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4496 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4497 return sym;
4498}
4499
4500
4501/* Non-zero iff there is at least one non-function/non-enumeral symbol
4502 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4503 since they contend in overloading in the same way. */
4504static int
4505is_nonfunction (struct ada_symbol_info syms[], int n)
4506{
4507 int i;
4508
4509 for (i = 0; i < n; i += 1)
4510 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4511 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4512 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4513 return 1;
4514
4515 return 0;
4516}
4517
4518/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4519 struct types. Otherwise, they may not. */
14f9c5c9
AS
4520
4521static int
d2e4a39e 4522equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4523{
d2e4a39e 4524 if (type0 == type1)
14f9c5c9 4525 return 1;
d2e4a39e 4526 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4527 || TYPE_CODE (type0) != TYPE_CODE (type1))
4528 return 0;
d2e4a39e 4529 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4530 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4531 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4532 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4533 return 1;
d2e4a39e 4534
14f9c5c9
AS
4535 return 0;
4536}
4537
4538/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4539 no more defined than that of SYM1. */
14f9c5c9
AS
4540
4541static int
d2e4a39e 4542lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4543{
4544 if (sym0 == sym1)
4545 return 1;
176620f1 4546 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4547 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4548 return 0;
4549
d2e4a39e 4550 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4551 {
4552 case LOC_UNDEF:
4553 return 1;
4554 case LOC_TYPEDEF:
4555 {
4c4b4cd2
PH
4556 struct type *type0 = SYMBOL_TYPE (sym0);
4557 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4558 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4559 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4560 int len0 = strlen (name0);
5b4ee69b 4561
4c4b4cd2
PH
4562 return
4563 TYPE_CODE (type0) == TYPE_CODE (type1)
4564 && (equiv_types (type0, type1)
4565 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4566 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4567 }
4568 case LOC_CONST:
4569 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4570 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4571 default:
4572 return 0;
14f9c5c9
AS
4573 }
4574}
4575
4c4b4cd2
PH
4576/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4577 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4578
4579static void
76a01679
JB
4580add_defn_to_vec (struct obstack *obstackp,
4581 struct symbol *sym,
f0c5f9b2 4582 const struct block *block)
14f9c5c9
AS
4583{
4584 int i;
4c4b4cd2 4585 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4586
529cad9c
PH
4587 /* Do not try to complete stub types, as the debugger is probably
4588 already scanning all symbols matching a certain name at the
4589 time when this function is called. Trying to replace the stub
4590 type by its associated full type will cause us to restart a scan
4591 which may lead to an infinite recursion. Instead, the client
4592 collecting the matching symbols will end up collecting several
4593 matches, with at least one of them complete. It can then filter
4594 out the stub ones if needed. */
4595
4c4b4cd2
PH
4596 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4597 {
4598 if (lesseq_defined_than (sym, prevDefns[i].sym))
4599 return;
4600 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4601 {
4602 prevDefns[i].sym = sym;
4603 prevDefns[i].block = block;
4c4b4cd2 4604 return;
76a01679 4605 }
4c4b4cd2
PH
4606 }
4607
4608 {
4609 struct ada_symbol_info info;
4610
4611 info.sym = sym;
4612 info.block = block;
4c4b4cd2
PH
4613 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4614 }
4615}
4616
4617/* Number of ada_symbol_info structures currently collected in
4618 current vector in *OBSTACKP. */
4619
76a01679
JB
4620static int
4621num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4622{
4623 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4624}
4625
4626/* Vector of ada_symbol_info structures currently collected in current
4627 vector in *OBSTACKP. If FINISH, close off the vector and return
4628 its final address. */
4629
76a01679 4630static struct ada_symbol_info *
4c4b4cd2
PH
4631defns_collected (struct obstack *obstackp, int finish)
4632{
4633 if (finish)
4634 return obstack_finish (obstackp);
4635 else
4636 return (struct ada_symbol_info *) obstack_base (obstackp);
4637}
4638
7c7b6655
TT
4639/* Return a bound minimal symbol matching NAME according to Ada
4640 decoding rules. Returns an invalid symbol if there is no such
4641 minimal symbol. Names prefixed with "standard__" are handled
4642 specially: "standard__" is first stripped off, and only static and
4643 global symbols are searched. */
4c4b4cd2 4644
7c7b6655 4645struct bound_minimal_symbol
96d887e8 4646ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4647{
7c7b6655 4648 struct bound_minimal_symbol result;
4c4b4cd2 4649 struct objfile *objfile;
96d887e8 4650 struct minimal_symbol *msymbol;
dc4024cd 4651 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4652
7c7b6655
TT
4653 memset (&result, 0, sizeof (result));
4654
c0431670
JB
4655 /* Special case: If the user specifies a symbol name inside package
4656 Standard, do a non-wild matching of the symbol name without
4657 the "standard__" prefix. This was primarily introduced in order
4658 to allow the user to specifically access the standard exceptions
4659 using, for instance, Standard.Constraint_Error when Constraint_Error
4660 is ambiguous (due to the user defining its own Constraint_Error
4661 entity inside its program). */
96d887e8 4662 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4663 name += sizeof ("standard__") - 1;
4c4b4cd2 4664
96d887e8
PH
4665 ALL_MSYMBOLS (objfile, msymbol)
4666 {
efd66ac6 4667 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4668 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4669 {
4670 result.minsym = msymbol;
4671 result.objfile = objfile;
4672 break;
4673 }
96d887e8 4674 }
4c4b4cd2 4675
7c7b6655 4676 return result;
96d887e8 4677}
4c4b4cd2 4678
96d887e8
PH
4679/* For all subprograms that statically enclose the subprogram of the
4680 selected frame, add symbols matching identifier NAME in DOMAIN
4681 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4682 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4683 with a wildcard prefix. */
4c4b4cd2 4684
96d887e8
PH
4685static void
4686add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4687 const char *name, domain_enum namespace,
48b78332 4688 int wild_match_p)
96d887e8 4689{
96d887e8 4690}
14f9c5c9 4691
96d887e8
PH
4692/* True if TYPE is definitely an artificial type supplied to a symbol
4693 for which no debugging information was given in the symbol file. */
14f9c5c9 4694
96d887e8
PH
4695static int
4696is_nondebugging_type (struct type *type)
4697{
0d5cff50 4698 const char *name = ada_type_name (type);
5b4ee69b 4699
96d887e8
PH
4700 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4701}
4c4b4cd2 4702
8f17729f
JB
4703/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4704 that are deemed "identical" for practical purposes.
4705
4706 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4707 types and that their number of enumerals is identical (in other
4708 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4709
4710static int
4711ada_identical_enum_types_p (struct type *type1, struct type *type2)
4712{
4713 int i;
4714
4715 /* The heuristic we use here is fairly conservative. We consider
4716 that 2 enumerate types are identical if they have the same
4717 number of enumerals and that all enumerals have the same
4718 underlying value and name. */
4719
4720 /* All enums in the type should have an identical underlying value. */
4721 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4722 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4723 return 0;
4724
4725 /* All enumerals should also have the same name (modulo any numerical
4726 suffix). */
4727 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4728 {
0d5cff50
DE
4729 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4730 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4731 int len_1 = strlen (name_1);
4732 int len_2 = strlen (name_2);
4733
4734 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4735 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4736 if (len_1 != len_2
4737 || strncmp (TYPE_FIELD_NAME (type1, i),
4738 TYPE_FIELD_NAME (type2, i),
4739 len_1) != 0)
4740 return 0;
4741 }
4742
4743 return 1;
4744}
4745
4746/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4747 that are deemed "identical" for practical purposes. Sometimes,
4748 enumerals are not strictly identical, but their types are so similar
4749 that they can be considered identical.
4750
4751 For instance, consider the following code:
4752
4753 type Color is (Black, Red, Green, Blue, White);
4754 type RGB_Color is new Color range Red .. Blue;
4755
4756 Type RGB_Color is a subrange of an implicit type which is a copy
4757 of type Color. If we call that implicit type RGB_ColorB ("B" is
4758 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4759 As a result, when an expression references any of the enumeral
4760 by name (Eg. "print green"), the expression is technically
4761 ambiguous and the user should be asked to disambiguate. But
4762 doing so would only hinder the user, since it wouldn't matter
4763 what choice he makes, the outcome would always be the same.
4764 So, for practical purposes, we consider them as the same. */
4765
4766static int
4767symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4768{
4769 int i;
4770
4771 /* Before performing a thorough comparison check of each type,
4772 we perform a series of inexpensive checks. We expect that these
4773 checks will quickly fail in the vast majority of cases, and thus
4774 help prevent the unnecessary use of a more expensive comparison.
4775 Said comparison also expects us to make some of these checks
4776 (see ada_identical_enum_types_p). */
4777
4778 /* Quick check: All symbols should have an enum type. */
4779 for (i = 0; i < nsyms; i++)
4780 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4781 return 0;
4782
4783 /* Quick check: They should all have the same value. */
4784 for (i = 1; i < nsyms; i++)
4785 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4786 return 0;
4787
4788 /* Quick check: They should all have the same number of enumerals. */
4789 for (i = 1; i < nsyms; i++)
4790 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4791 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4792 return 0;
4793
4794 /* All the sanity checks passed, so we might have a set of
4795 identical enumeration types. Perform a more complete
4796 comparison of the type of each symbol. */
4797 for (i = 1; i < nsyms; i++)
4798 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4799 SYMBOL_TYPE (syms[0].sym)))
4800 return 0;
4801
4802 return 1;
4803}
4804
96d887e8
PH
4805/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4806 duplicate other symbols in the list (The only case I know of where
4807 this happens is when object files containing stabs-in-ecoff are
4808 linked with files containing ordinary ecoff debugging symbols (or no
4809 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4810 Returns the number of items in the modified list. */
4c4b4cd2 4811
96d887e8
PH
4812static int
4813remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4814{
4815 int i, j;
4c4b4cd2 4816
8f17729f
JB
4817 /* We should never be called with less than 2 symbols, as there
4818 cannot be any extra symbol in that case. But it's easy to
4819 handle, since we have nothing to do in that case. */
4820 if (nsyms < 2)
4821 return nsyms;
4822
96d887e8
PH
4823 i = 0;
4824 while (i < nsyms)
4825 {
a35ddb44 4826 int remove_p = 0;
339c13b6
JB
4827
4828 /* If two symbols have the same name and one of them is a stub type,
4829 the get rid of the stub. */
4830
4831 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4832 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4833 {
4834 for (j = 0; j < nsyms; j++)
4835 {
4836 if (j != i
4837 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4838 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4839 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4840 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4841 remove_p = 1;
339c13b6
JB
4842 }
4843 }
4844
4845 /* Two symbols with the same name, same class and same address
4846 should be identical. */
4847
4848 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4849 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4850 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4851 {
4852 for (j = 0; j < nsyms; j += 1)
4853 {
4854 if (i != j
4855 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4856 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4857 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4858 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4859 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4860 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4861 remove_p = 1;
4c4b4cd2 4862 }
4c4b4cd2 4863 }
339c13b6 4864
a35ddb44 4865 if (remove_p)
339c13b6
JB
4866 {
4867 for (j = i + 1; j < nsyms; j += 1)
4868 syms[j - 1] = syms[j];
4869 nsyms -= 1;
4870 }
4871
96d887e8 4872 i += 1;
14f9c5c9 4873 }
8f17729f
JB
4874
4875 /* If all the remaining symbols are identical enumerals, then
4876 just keep the first one and discard the rest.
4877
4878 Unlike what we did previously, we do not discard any entry
4879 unless they are ALL identical. This is because the symbol
4880 comparison is not a strict comparison, but rather a practical
4881 comparison. If all symbols are considered identical, then
4882 we can just go ahead and use the first one and discard the rest.
4883 But if we cannot reduce the list to a single element, we have
4884 to ask the user to disambiguate anyways. And if we have to
4885 present a multiple-choice menu, it's less confusing if the list
4886 isn't missing some choices that were identical and yet distinct. */
4887 if (symbols_are_identical_enums (syms, nsyms))
4888 nsyms = 1;
4889
96d887e8 4890 return nsyms;
14f9c5c9
AS
4891}
4892
96d887e8
PH
4893/* Given a type that corresponds to a renaming entity, use the type name
4894 to extract the scope (package name or function name, fully qualified,
4895 and following the GNAT encoding convention) where this renaming has been
4896 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4897
96d887e8
PH
4898static char *
4899xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4900{
96d887e8 4901 /* The renaming types adhere to the following convention:
0963b4bd 4902 <scope>__<rename>___<XR extension>.
96d887e8
PH
4903 So, to extract the scope, we search for the "___XR" extension,
4904 and then backtrack until we find the first "__". */
76a01679 4905
96d887e8
PH
4906 const char *name = type_name_no_tag (renaming_type);
4907 char *suffix = strstr (name, "___XR");
4908 char *last;
4909 int scope_len;
4910 char *scope;
14f9c5c9 4911
96d887e8
PH
4912 /* Now, backtrack a bit until we find the first "__". Start looking
4913 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4914
96d887e8
PH
4915 for (last = suffix - 3; last > name; last--)
4916 if (last[0] == '_' && last[1] == '_')
4917 break;
76a01679 4918
96d887e8 4919 /* Make a copy of scope and return it. */
14f9c5c9 4920
96d887e8
PH
4921 scope_len = last - name;
4922 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4923
96d887e8
PH
4924 strncpy (scope, name, scope_len);
4925 scope[scope_len] = '\0';
4c4b4cd2 4926
96d887e8 4927 return scope;
4c4b4cd2
PH
4928}
4929
96d887e8 4930/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4931
96d887e8
PH
4932static int
4933is_package_name (const char *name)
4c4b4cd2 4934{
96d887e8
PH
4935 /* Here, We take advantage of the fact that no symbols are generated
4936 for packages, while symbols are generated for each function.
4937 So the condition for NAME represent a package becomes equivalent
4938 to NAME not existing in our list of symbols. There is only one
4939 small complication with library-level functions (see below). */
4c4b4cd2 4940
96d887e8 4941 char *fun_name;
76a01679 4942
96d887e8
PH
4943 /* If it is a function that has not been defined at library level,
4944 then we should be able to look it up in the symbols. */
4945 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4946 return 0;
14f9c5c9 4947
96d887e8
PH
4948 /* Library-level function names start with "_ada_". See if function
4949 "_ada_" followed by NAME can be found. */
14f9c5c9 4950
96d887e8 4951 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4952 functions names cannot contain "__" in them. */
96d887e8
PH
4953 if (strstr (name, "__") != NULL)
4954 return 0;
4c4b4cd2 4955
b435e160 4956 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4957
96d887e8
PH
4958 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4959}
14f9c5c9 4960
96d887e8 4961/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4962 not visible from FUNCTION_NAME. */
14f9c5c9 4963
96d887e8 4964static int
0d5cff50 4965old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4966{
aeb5907d 4967 char *scope;
1509e573 4968 struct cleanup *old_chain;
aeb5907d
JB
4969
4970 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4971 return 0;
4972
4973 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 4974 old_chain = make_cleanup (xfree, scope);
14f9c5c9 4975
96d887e8
PH
4976 /* If the rename has been defined in a package, then it is visible. */
4977 if (is_package_name (scope))
1509e573
JB
4978 {
4979 do_cleanups (old_chain);
4980 return 0;
4981 }
14f9c5c9 4982
96d887e8
PH
4983 /* Check that the rename is in the current function scope by checking
4984 that its name starts with SCOPE. */
76a01679 4985
96d887e8
PH
4986 /* If the function name starts with "_ada_", it means that it is
4987 a library-level function. Strip this prefix before doing the
4988 comparison, as the encoding for the renaming does not contain
4989 this prefix. */
4990 if (strncmp (function_name, "_ada_", 5) == 0)
4991 function_name += 5;
f26caa11 4992
1509e573
JB
4993 {
4994 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4995
4996 do_cleanups (old_chain);
4997 return is_invisible;
4998 }
f26caa11
PH
4999}
5000
aeb5907d
JB
5001/* Remove entries from SYMS that corresponds to a renaming entity that
5002 is not visible from the function associated with CURRENT_BLOCK or
5003 that is superfluous due to the presence of more specific renaming
5004 information. Places surviving symbols in the initial entries of
5005 SYMS and returns the number of surviving symbols.
96d887e8
PH
5006
5007 Rationale:
aeb5907d
JB
5008 First, in cases where an object renaming is implemented as a
5009 reference variable, GNAT may produce both the actual reference
5010 variable and the renaming encoding. In this case, we discard the
5011 latter.
5012
5013 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5014 entity. Unfortunately, STABS currently does not support the definition
5015 of types that are local to a given lexical block, so all renamings types
5016 are emitted at library level. As a consequence, if an application
5017 contains two renaming entities using the same name, and a user tries to
5018 print the value of one of these entities, the result of the ada symbol
5019 lookup will also contain the wrong renaming type.
f26caa11 5020
96d887e8
PH
5021 This function partially covers for this limitation by attempting to
5022 remove from the SYMS list renaming symbols that should be visible
5023 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5024 method with the current information available. The implementation
5025 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5026
5027 - When the user tries to print a rename in a function while there
5028 is another rename entity defined in a package: Normally, the
5029 rename in the function has precedence over the rename in the
5030 package, so the latter should be removed from the list. This is
5031 currently not the case.
5032
5033 - This function will incorrectly remove valid renames if
5034 the CURRENT_BLOCK corresponds to a function which symbol name
5035 has been changed by an "Export" pragma. As a consequence,
5036 the user will be unable to print such rename entities. */
4c4b4cd2 5037
14f9c5c9 5038static int
aeb5907d
JB
5039remove_irrelevant_renamings (struct ada_symbol_info *syms,
5040 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5041{
5042 struct symbol *current_function;
0d5cff50 5043 const char *current_function_name;
4c4b4cd2 5044 int i;
aeb5907d
JB
5045 int is_new_style_renaming;
5046
5047 /* If there is both a renaming foo___XR... encoded as a variable and
5048 a simple variable foo in the same block, discard the latter.
0963b4bd 5049 First, zero out such symbols, then compress. */
aeb5907d
JB
5050 is_new_style_renaming = 0;
5051 for (i = 0; i < nsyms; i += 1)
5052 {
5053 struct symbol *sym = syms[i].sym;
270140bd 5054 const struct block *block = syms[i].block;
aeb5907d
JB
5055 const char *name;
5056 const char *suffix;
5057
5058 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5059 continue;
5060 name = SYMBOL_LINKAGE_NAME (sym);
5061 suffix = strstr (name, "___XR");
5062
5063 if (suffix != NULL)
5064 {
5065 int name_len = suffix - name;
5066 int j;
5b4ee69b 5067
aeb5907d
JB
5068 is_new_style_renaming = 1;
5069 for (j = 0; j < nsyms; j += 1)
5070 if (i != j && syms[j].sym != NULL
5071 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5072 name_len) == 0
5073 && block == syms[j].block)
5074 syms[j].sym = NULL;
5075 }
5076 }
5077 if (is_new_style_renaming)
5078 {
5079 int j, k;
5080
5081 for (j = k = 0; j < nsyms; j += 1)
5082 if (syms[j].sym != NULL)
5083 {
5084 syms[k] = syms[j];
5085 k += 1;
5086 }
5087 return k;
5088 }
4c4b4cd2
PH
5089
5090 /* Extract the function name associated to CURRENT_BLOCK.
5091 Abort if unable to do so. */
76a01679 5092
4c4b4cd2
PH
5093 if (current_block == NULL)
5094 return nsyms;
76a01679 5095
7f0df278 5096 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5097 if (current_function == NULL)
5098 return nsyms;
5099
5100 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5101 if (current_function_name == NULL)
5102 return nsyms;
5103
5104 /* Check each of the symbols, and remove it from the list if it is
5105 a type corresponding to a renaming that is out of the scope of
5106 the current block. */
5107
5108 i = 0;
5109 while (i < nsyms)
5110 {
aeb5907d
JB
5111 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5112 == ADA_OBJECT_RENAMING
5113 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
5114 {
5115 int j;
5b4ee69b 5116
aeb5907d 5117 for (j = i + 1; j < nsyms; j += 1)
76a01679 5118 syms[j - 1] = syms[j];
4c4b4cd2
PH
5119 nsyms -= 1;
5120 }
5121 else
5122 i += 1;
5123 }
5124
5125 return nsyms;
5126}
5127
339c13b6
JB
5128/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5129 whose name and domain match NAME and DOMAIN respectively.
5130 If no match was found, then extend the search to "enclosing"
5131 routines (in other words, if we're inside a nested function,
5132 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5133 If WILD_MATCH_P is nonzero, perform the naming matching in
5134 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5135
5136 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5137
5138static void
5139ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5140 const struct block *block, domain_enum domain,
d0a8ab18 5141 int wild_match_p)
339c13b6
JB
5142{
5143 int block_depth = 0;
5144
5145 while (block != NULL)
5146 {
5147 block_depth += 1;
d0a8ab18
JB
5148 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5149 wild_match_p);
339c13b6
JB
5150
5151 /* If we found a non-function match, assume that's the one. */
5152 if (is_nonfunction (defns_collected (obstackp, 0),
5153 num_defns_collected (obstackp)))
5154 return;
5155
5156 block = BLOCK_SUPERBLOCK (block);
5157 }
5158
5159 /* If no luck so far, try to find NAME as a local symbol in some lexically
5160 enclosing subprogram. */
5161 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5162 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5163}
5164
ccefe4c4 5165/* An object of this type is used as the user_data argument when
40658b94 5166 calling the map_matching_symbols method. */
ccefe4c4 5167
40658b94 5168struct match_data
ccefe4c4 5169{
40658b94 5170 struct objfile *objfile;
ccefe4c4 5171 struct obstack *obstackp;
40658b94
PH
5172 struct symbol *arg_sym;
5173 int found_sym;
ccefe4c4
TT
5174};
5175
40658b94
PH
5176/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5177 to a list of symbols. DATA0 is a pointer to a struct match_data *
5178 containing the obstack that collects the symbol list, the file that SYM
5179 must come from, a flag indicating whether a non-argument symbol has
5180 been found in the current block, and the last argument symbol
5181 passed in SYM within the current block (if any). When SYM is null,
5182 marking the end of a block, the argument symbol is added if no
5183 other has been found. */
ccefe4c4 5184
40658b94
PH
5185static int
5186aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5187{
40658b94
PH
5188 struct match_data *data = (struct match_data *) data0;
5189
5190 if (sym == NULL)
5191 {
5192 if (!data->found_sym && data->arg_sym != NULL)
5193 add_defn_to_vec (data->obstackp,
5194 fixup_symbol_section (data->arg_sym, data->objfile),
5195 block);
5196 data->found_sym = 0;
5197 data->arg_sym = NULL;
5198 }
5199 else
5200 {
5201 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5202 return 0;
5203 else if (SYMBOL_IS_ARGUMENT (sym))
5204 data->arg_sym = sym;
5205 else
5206 {
5207 data->found_sym = 1;
5208 add_defn_to_vec (data->obstackp,
5209 fixup_symbol_section (sym, data->objfile),
5210 block);
5211 }
5212 }
5213 return 0;
5214}
5215
db230ce3
JB
5216/* Implements compare_names, but only applying the comparision using
5217 the given CASING. */
5b4ee69b 5218
40658b94 5219static int
db230ce3
JB
5220compare_names_with_case (const char *string1, const char *string2,
5221 enum case_sensitivity casing)
40658b94
PH
5222{
5223 while (*string1 != '\0' && *string2 != '\0')
5224 {
db230ce3
JB
5225 char c1, c2;
5226
40658b94
PH
5227 if (isspace (*string1) || isspace (*string2))
5228 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5229
5230 if (casing == case_sensitive_off)
5231 {
5232 c1 = tolower (*string1);
5233 c2 = tolower (*string2);
5234 }
5235 else
5236 {
5237 c1 = *string1;
5238 c2 = *string2;
5239 }
5240 if (c1 != c2)
40658b94 5241 break;
db230ce3 5242
40658b94
PH
5243 string1 += 1;
5244 string2 += 1;
5245 }
db230ce3 5246
40658b94
PH
5247 switch (*string1)
5248 {
5249 case '(':
5250 return strcmp_iw_ordered (string1, string2);
5251 case '_':
5252 if (*string2 == '\0')
5253 {
052874e8 5254 if (is_name_suffix (string1))
40658b94
PH
5255 return 0;
5256 else
1a1d5513 5257 return 1;
40658b94 5258 }
dbb8534f 5259 /* FALLTHROUGH */
40658b94
PH
5260 default:
5261 if (*string2 == '(')
5262 return strcmp_iw_ordered (string1, string2);
5263 else
db230ce3
JB
5264 {
5265 if (casing == case_sensitive_off)
5266 return tolower (*string1) - tolower (*string2);
5267 else
5268 return *string1 - *string2;
5269 }
40658b94 5270 }
ccefe4c4
TT
5271}
5272
db230ce3
JB
5273/* Compare STRING1 to STRING2, with results as for strcmp.
5274 Compatible with strcmp_iw_ordered in that...
5275
5276 strcmp_iw_ordered (STRING1, STRING2) <= 0
5277
5278 ... implies...
5279
5280 compare_names (STRING1, STRING2) <= 0
5281
5282 (they may differ as to what symbols compare equal). */
5283
5284static int
5285compare_names (const char *string1, const char *string2)
5286{
5287 int result;
5288
5289 /* Similar to what strcmp_iw_ordered does, we need to perform
5290 a case-insensitive comparison first, and only resort to
5291 a second, case-sensitive, comparison if the first one was
5292 not sufficient to differentiate the two strings. */
5293
5294 result = compare_names_with_case (string1, string2, case_sensitive_off);
5295 if (result == 0)
5296 result = compare_names_with_case (string1, string2, case_sensitive_on);
5297
5298 return result;
5299}
5300
339c13b6
JB
5301/* Add to OBSTACKP all non-local symbols whose name and domain match
5302 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5303 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5304
5305static void
40658b94
PH
5306add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5307 domain_enum domain, int global,
5308 int is_wild_match)
339c13b6
JB
5309{
5310 struct objfile *objfile;
40658b94 5311 struct match_data data;
339c13b6 5312
6475f2fe 5313 memset (&data, 0, sizeof data);
ccefe4c4 5314 data.obstackp = obstackp;
339c13b6 5315
ccefe4c4 5316 ALL_OBJFILES (objfile)
40658b94
PH
5317 {
5318 data.objfile = objfile;
5319
5320 if (is_wild_match)
4186eb54
KS
5321 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5322 aux_add_nonlocal_symbols, &data,
5323 wild_match, NULL);
40658b94 5324 else
4186eb54
KS
5325 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5326 aux_add_nonlocal_symbols, &data,
5327 full_match, compare_names);
40658b94
PH
5328 }
5329
5330 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5331 {
5332 ALL_OBJFILES (objfile)
5333 {
5334 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5335 strcpy (name1, "_ada_");
5336 strcpy (name1 + sizeof ("_ada_") - 1, name);
5337 data.objfile = objfile;
ade7ed9e
DE
5338 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5339 global,
0963b4bd
MS
5340 aux_add_nonlocal_symbols,
5341 &data,
40658b94
PH
5342 full_match, compare_names);
5343 }
5344 }
339c13b6
JB
5345}
5346
4eeaa230
DE
5347/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5348 non-zero, enclosing scope and in global scopes, returning the number of
5349 matches.
9f88c959 5350 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5351 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5352 any) in which they were found. This vector is transient---good only to
5353 the next call of ada_lookup_symbol_list.
5354
5355 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5356 symbol match within the nest of blocks whose innermost member is BLOCK0,
5357 is the one match returned (no other matches in that or
d9680e73 5358 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5359 surrounding BLOCK0, then these alone are returned.
5360
9f88c959 5361 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5362 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5363
4eeaa230
DE
5364static int
5365ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5366 domain_enum namespace,
5367 struct ada_symbol_info **results,
5368 int full_search)
14f9c5c9
AS
5369{
5370 struct symbol *sym;
f0c5f9b2 5371 const struct block *block;
4c4b4cd2 5372 const char *name;
82ccd55e 5373 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5374 int cacheIfUnique;
4c4b4cd2 5375 int ndefns;
14f9c5c9 5376
4c4b4cd2
PH
5377 obstack_free (&symbol_list_obstack, NULL);
5378 obstack_init (&symbol_list_obstack);
14f9c5c9 5379
14f9c5c9
AS
5380 cacheIfUnique = 0;
5381
5382 /* Search specified block and its superiors. */
5383
4c4b4cd2 5384 name = name0;
f0c5f9b2 5385 block = block0;
339c13b6
JB
5386
5387 /* Special case: If the user specifies a symbol name inside package
5388 Standard, do a non-wild matching of the symbol name without
5389 the "standard__" prefix. This was primarily introduced in order
5390 to allow the user to specifically access the standard exceptions
5391 using, for instance, Standard.Constraint_Error when Constraint_Error
5392 is ambiguous (due to the user defining its own Constraint_Error
5393 entity inside its program). */
4c4b4cd2
PH
5394 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5395 {
4c4b4cd2
PH
5396 block = NULL;
5397 name = name0 + sizeof ("standard__") - 1;
5398 }
5399
339c13b6 5400 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5401
4eeaa230
DE
5402 if (block != NULL)
5403 {
5404 if (full_search)
5405 {
5406 ada_add_local_symbols (&symbol_list_obstack, name, block,
5407 namespace, wild_match_p);
5408 }
5409 else
5410 {
5411 /* In the !full_search case we're are being called by
5412 ada_iterate_over_symbols, and we don't want to search
5413 superblocks. */
5414 ada_add_block_symbols (&symbol_list_obstack, block, name,
5415 namespace, NULL, wild_match_p);
5416 }
5417 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5418 goto done;
5419 }
d2e4a39e 5420
339c13b6
JB
5421 /* No non-global symbols found. Check our cache to see if we have
5422 already performed this search before. If we have, then return
5423 the same result. */
5424
14f9c5c9 5425 cacheIfUnique = 1;
2570f2b7 5426 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5427 {
5428 if (sym != NULL)
2570f2b7 5429 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5430 goto done;
5431 }
14f9c5c9 5432
339c13b6
JB
5433 /* Search symbols from all global blocks. */
5434
40658b94 5435 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5436 wild_match_p);
d2e4a39e 5437
4c4b4cd2 5438 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5439 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5440
4c4b4cd2 5441 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5442 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5443 wild_match_p);
14f9c5c9 5444
4c4b4cd2
PH
5445done:
5446 ndefns = num_defns_collected (&symbol_list_obstack);
5447 *results = defns_collected (&symbol_list_obstack, 1);
5448
5449 ndefns = remove_extra_symbols (*results, ndefns);
5450
2ad01556 5451 if (ndefns == 0 && full_search)
2570f2b7 5452 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5453
2ad01556 5454 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5455 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5456
aeb5907d 5457 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5458
14f9c5c9
AS
5459 return ndefns;
5460}
5461
4eeaa230
DE
5462/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5463 in global scopes, returning the number of matches, and setting *RESULTS
5464 to a vector of (SYM,BLOCK) tuples.
5465 See ada_lookup_symbol_list_worker for further details. */
5466
5467int
5468ada_lookup_symbol_list (const char *name0, const struct block *block0,
5469 domain_enum domain, struct ada_symbol_info **results)
5470{
5471 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5472}
5473
5474/* Implementation of the la_iterate_over_symbols method. */
5475
5476static void
5477ada_iterate_over_symbols (const struct block *block,
5478 const char *name, domain_enum domain,
5479 symbol_found_callback_ftype *callback,
5480 void *data)
5481{
5482 int ndefs, i;
5483 struct ada_symbol_info *results;
5484
5485 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5486 for (i = 0; i < ndefs; ++i)
5487 {
5488 if (! (*callback) (results[i].sym, data))
5489 break;
5490 }
5491}
5492
f8eba3c6
TT
5493/* If NAME is the name of an entity, return a string that should
5494 be used to look that entity up in Ada units. This string should
5495 be deallocated after use using xfree.
5496
5497 NAME can have any form that the "break" or "print" commands might
5498 recognize. In other words, it does not have to be the "natural"
5499 name, or the "encoded" name. */
5500
5501char *
5502ada_name_for_lookup (const char *name)
5503{
5504 char *canon;
5505 int nlen = strlen (name);
5506
5507 if (name[0] == '<' && name[nlen - 1] == '>')
5508 {
5509 canon = xmalloc (nlen - 1);
5510 memcpy (canon, name + 1, nlen - 2);
5511 canon[nlen - 2] = '\0';
5512 }
5513 else
5514 canon = xstrdup (ada_encode (ada_fold_name (name)));
5515 return canon;
5516}
5517
4e5c77fe
JB
5518/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5519 to 1, but choosing the first symbol found if there are multiple
5520 choices.
5521
5e2336be
JB
5522 The result is stored in *INFO, which must be non-NULL.
5523 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5524
5525void
5526ada_lookup_encoded_symbol (const char *name, const struct block *block,
5527 domain_enum namespace,
5e2336be 5528 struct ada_symbol_info *info)
14f9c5c9 5529{
4c4b4cd2 5530 struct ada_symbol_info *candidates;
14f9c5c9
AS
5531 int n_candidates;
5532
5e2336be
JB
5533 gdb_assert (info != NULL);
5534 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5535
4eeaa230 5536 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5537 if (n_candidates == 0)
4e5c77fe 5538 return;
4c4b4cd2 5539
5e2336be
JB
5540 *info = candidates[0];
5541 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5542}
aeb5907d
JB
5543
5544/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5545 scope and in global scopes, or NULL if none. NAME is folded and
5546 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5547 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5548 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5549
aeb5907d
JB
5550struct symbol *
5551ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5552 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5553{
5e2336be 5554 struct ada_symbol_info info;
4e5c77fe 5555
aeb5907d
JB
5556 if (is_a_field_of_this != NULL)
5557 *is_a_field_of_this = 0;
5558
4e5c77fe 5559 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5560 block0, namespace, &info);
5561 return info.sym;
4c4b4cd2 5562}
14f9c5c9 5563
4c4b4cd2
PH
5564static struct symbol *
5565ada_lookup_symbol_nonlocal (const char *name,
76a01679 5566 const struct block *block,
21b556f4 5567 const domain_enum domain)
4c4b4cd2 5568{
94af9270 5569 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5570}
5571
5572
4c4b4cd2
PH
5573/* True iff STR is a possible encoded suffix of a normal Ada name
5574 that is to be ignored for matching purposes. Suffixes of parallel
5575 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5576 are given by any of the regular expressions:
4c4b4cd2 5577
babe1480
JB
5578 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5579 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5580 TKB [subprogram suffix for task bodies]
babe1480 5581 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5582 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5583
5584 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5585 match is performed. This sequence is used to differentiate homonyms,
5586 is an optional part of a valid name suffix. */
4c4b4cd2 5587
14f9c5c9 5588static int
d2e4a39e 5589is_name_suffix (const char *str)
14f9c5c9
AS
5590{
5591 int k;
4c4b4cd2
PH
5592 const char *matching;
5593 const int len = strlen (str);
5594
babe1480
JB
5595 /* Skip optional leading __[0-9]+. */
5596
4c4b4cd2
PH
5597 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5598 {
babe1480
JB
5599 str += 3;
5600 while (isdigit (str[0]))
5601 str += 1;
4c4b4cd2 5602 }
babe1480
JB
5603
5604 /* [.$][0-9]+ */
4c4b4cd2 5605
babe1480 5606 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5607 {
babe1480 5608 matching = str + 1;
4c4b4cd2
PH
5609 while (isdigit (matching[0]))
5610 matching += 1;
5611 if (matching[0] == '\0')
5612 return 1;
5613 }
5614
5615 /* ___[0-9]+ */
babe1480 5616
4c4b4cd2
PH
5617 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5618 {
5619 matching = str + 3;
5620 while (isdigit (matching[0]))
5621 matching += 1;
5622 if (matching[0] == '\0')
5623 return 1;
5624 }
5625
9ac7f98e
JB
5626 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5627
5628 if (strcmp (str, "TKB") == 0)
5629 return 1;
5630
529cad9c
PH
5631#if 0
5632 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5633 with a N at the end. Unfortunately, the compiler uses the same
5634 convention for other internal types it creates. So treating
529cad9c 5635 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5636 some regressions. For instance, consider the case of an enumerated
5637 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5638 name ends with N.
5639 Having a single character like this as a suffix carrying some
0963b4bd 5640 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5641 to be something like "_N" instead. In the meantime, do not do
5642 the following check. */
5643 /* Protected Object Subprograms */
5644 if (len == 1 && str [0] == 'N')
5645 return 1;
5646#endif
5647
5648 /* _E[0-9]+[bs]$ */
5649 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5650 {
5651 matching = str + 3;
5652 while (isdigit (matching[0]))
5653 matching += 1;
5654 if ((matching[0] == 'b' || matching[0] == 's')
5655 && matching [1] == '\0')
5656 return 1;
5657 }
5658
4c4b4cd2
PH
5659 /* ??? We should not modify STR directly, as we are doing below. This
5660 is fine in this case, but may become problematic later if we find
5661 that this alternative did not work, and want to try matching
5662 another one from the begining of STR. Since we modified it, we
5663 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5664 if (str[0] == 'X')
5665 {
5666 str += 1;
d2e4a39e 5667 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5668 {
5669 if (str[0] != 'n' && str[0] != 'b')
5670 return 0;
5671 str += 1;
5672 }
14f9c5c9 5673 }
babe1480 5674
14f9c5c9
AS
5675 if (str[0] == '\000')
5676 return 1;
babe1480 5677
d2e4a39e 5678 if (str[0] == '_')
14f9c5c9
AS
5679 {
5680 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5681 return 0;
d2e4a39e 5682 if (str[2] == '_')
4c4b4cd2 5683 {
61ee279c
PH
5684 if (strcmp (str + 3, "JM") == 0)
5685 return 1;
5686 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5687 the LJM suffix in favor of the JM one. But we will
5688 still accept LJM as a valid suffix for a reasonable
5689 amount of time, just to allow ourselves to debug programs
5690 compiled using an older version of GNAT. */
4c4b4cd2
PH
5691 if (strcmp (str + 3, "LJM") == 0)
5692 return 1;
5693 if (str[3] != 'X')
5694 return 0;
1265e4aa
JB
5695 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5696 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5697 return 1;
5698 if (str[4] == 'R' && str[5] != 'T')
5699 return 1;
5700 return 0;
5701 }
5702 if (!isdigit (str[2]))
5703 return 0;
5704 for (k = 3; str[k] != '\0'; k += 1)
5705 if (!isdigit (str[k]) && str[k] != '_')
5706 return 0;
14f9c5c9
AS
5707 return 1;
5708 }
4c4b4cd2 5709 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5710 {
4c4b4cd2
PH
5711 for (k = 2; str[k] != '\0'; k += 1)
5712 if (!isdigit (str[k]) && str[k] != '_')
5713 return 0;
14f9c5c9
AS
5714 return 1;
5715 }
5716 return 0;
5717}
d2e4a39e 5718
aeb5907d
JB
5719/* Return non-zero if the string starting at NAME and ending before
5720 NAME_END contains no capital letters. */
529cad9c
PH
5721
5722static int
5723is_valid_name_for_wild_match (const char *name0)
5724{
5725 const char *decoded_name = ada_decode (name0);
5726 int i;
5727
5823c3ef
JB
5728 /* If the decoded name starts with an angle bracket, it means that
5729 NAME0 does not follow the GNAT encoding format. It should then
5730 not be allowed as a possible wild match. */
5731 if (decoded_name[0] == '<')
5732 return 0;
5733
529cad9c
PH
5734 for (i=0; decoded_name[i] != '\0'; i++)
5735 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5736 return 0;
5737
5738 return 1;
5739}
5740
73589123
PH
5741/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5742 that could start a simple name. Assumes that *NAMEP points into
5743 the string beginning at NAME0. */
4c4b4cd2 5744
14f9c5c9 5745static int
73589123 5746advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5747{
73589123 5748 const char *name = *namep;
5b4ee69b 5749
5823c3ef 5750 while (1)
14f9c5c9 5751 {
aa27d0b3 5752 int t0, t1;
73589123
PH
5753
5754 t0 = *name;
5755 if (t0 == '_')
5756 {
5757 t1 = name[1];
5758 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5759 {
5760 name += 1;
5761 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5762 break;
5763 else
5764 name += 1;
5765 }
aa27d0b3
JB
5766 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5767 || name[2] == target0))
73589123
PH
5768 {
5769 name += 2;
5770 break;
5771 }
5772 else
5773 return 0;
5774 }
5775 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5776 name += 1;
5777 else
5823c3ef 5778 return 0;
73589123
PH
5779 }
5780
5781 *namep = name;
5782 return 1;
5783}
5784
5785/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5786 informational suffixes of NAME (i.e., for which is_name_suffix is
5787 true). Assumes that PATN is a lower-cased Ada simple name. */
5788
5789static int
5790wild_match (const char *name, const char *patn)
5791{
22e048c9 5792 const char *p;
73589123
PH
5793 const char *name0 = name;
5794
5795 while (1)
5796 {
5797 const char *match = name;
5798
5799 if (*name == *patn)
5800 {
5801 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5802 if (*p != *name)
5803 break;
5804 if (*p == '\0' && is_name_suffix (name))
5805 return match != name0 && !is_valid_name_for_wild_match (name0);
5806
5807 if (name[-1] == '_')
5808 name -= 1;
5809 }
5810 if (!advance_wild_match (&name, name0, *patn))
5811 return 1;
96d887e8 5812 }
96d887e8
PH
5813}
5814
40658b94
PH
5815/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5816 informational suffix. */
5817
c4d840bd
PH
5818static int
5819full_match (const char *sym_name, const char *search_name)
5820{
40658b94 5821 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5822}
5823
5824
96d887e8
PH
5825/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5826 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5827 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5828 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5829
5830static void
5831ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 5832 const struct block *block, const char *name,
96d887e8 5833 domain_enum domain, struct objfile *objfile,
2570f2b7 5834 int wild)
96d887e8 5835{
8157b174 5836 struct block_iterator iter;
96d887e8
PH
5837 int name_len = strlen (name);
5838 /* A matching argument symbol, if any. */
5839 struct symbol *arg_sym;
5840 /* Set true when we find a matching non-argument symbol. */
5841 int found_sym;
5842 struct symbol *sym;
5843
5844 arg_sym = NULL;
5845 found_sym = 0;
5846 if (wild)
5847 {
8157b174
TT
5848 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5849 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5850 {
4186eb54
KS
5851 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5852 SYMBOL_DOMAIN (sym), domain)
73589123 5853 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5854 {
2a2d4dc3
AS
5855 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5856 continue;
5857 else if (SYMBOL_IS_ARGUMENT (sym))
5858 arg_sym = sym;
5859 else
5860 {
76a01679
JB
5861 found_sym = 1;
5862 add_defn_to_vec (obstackp,
5863 fixup_symbol_section (sym, objfile),
2570f2b7 5864 block);
76a01679
JB
5865 }
5866 }
5867 }
96d887e8
PH
5868 }
5869 else
5870 {
8157b174
TT
5871 for (sym = block_iter_match_first (block, name, full_match, &iter);
5872 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5873 {
4186eb54
KS
5874 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5875 SYMBOL_DOMAIN (sym), domain))
76a01679 5876 {
c4d840bd
PH
5877 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5878 {
5879 if (SYMBOL_IS_ARGUMENT (sym))
5880 arg_sym = sym;
5881 else
2a2d4dc3 5882 {
c4d840bd
PH
5883 found_sym = 1;
5884 add_defn_to_vec (obstackp,
5885 fixup_symbol_section (sym, objfile),
5886 block);
2a2d4dc3 5887 }
c4d840bd 5888 }
76a01679
JB
5889 }
5890 }
96d887e8
PH
5891 }
5892
5893 if (!found_sym && arg_sym != NULL)
5894 {
76a01679
JB
5895 add_defn_to_vec (obstackp,
5896 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5897 block);
96d887e8
PH
5898 }
5899
5900 if (!wild)
5901 {
5902 arg_sym = NULL;
5903 found_sym = 0;
5904
5905 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5906 {
4186eb54
KS
5907 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5908 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5909 {
5910 int cmp;
5911
5912 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5913 if (cmp == 0)
5914 {
5915 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5916 if (cmp == 0)
5917 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5918 name_len);
5919 }
5920
5921 if (cmp == 0
5922 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5923 {
2a2d4dc3
AS
5924 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5925 {
5926 if (SYMBOL_IS_ARGUMENT (sym))
5927 arg_sym = sym;
5928 else
5929 {
5930 found_sym = 1;
5931 add_defn_to_vec (obstackp,
5932 fixup_symbol_section (sym, objfile),
5933 block);
5934 }
5935 }
76a01679
JB
5936 }
5937 }
76a01679 5938 }
96d887e8
PH
5939
5940 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5941 They aren't parameters, right? */
5942 if (!found_sym && arg_sym != NULL)
5943 {
5944 add_defn_to_vec (obstackp,
76a01679 5945 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5946 block);
96d887e8
PH
5947 }
5948 }
5949}
5950\f
41d27058
JB
5951
5952 /* Symbol Completion */
5953
5954/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5955 name in a form that's appropriate for the completion. The result
5956 does not need to be deallocated, but is only good until the next call.
5957
5958 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5959 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5960 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5961 in its encoded form. */
5962
5963static const char *
5964symbol_completion_match (const char *sym_name,
5965 const char *text, int text_len,
6ea35997 5966 int wild_match_p, int encoded_p)
41d27058 5967{
41d27058
JB
5968 const int verbatim_match = (text[0] == '<');
5969 int match = 0;
5970
5971 if (verbatim_match)
5972 {
5973 /* Strip the leading angle bracket. */
5974 text = text + 1;
5975 text_len--;
5976 }
5977
5978 /* First, test against the fully qualified name of the symbol. */
5979
5980 if (strncmp (sym_name, text, text_len) == 0)
5981 match = 1;
5982
6ea35997 5983 if (match && !encoded_p)
41d27058
JB
5984 {
5985 /* One needed check before declaring a positive match is to verify
5986 that iff we are doing a verbatim match, the decoded version
5987 of the symbol name starts with '<'. Otherwise, this symbol name
5988 is not a suitable completion. */
5989 const char *sym_name_copy = sym_name;
5990 int has_angle_bracket;
5991
5992 sym_name = ada_decode (sym_name);
5993 has_angle_bracket = (sym_name[0] == '<');
5994 match = (has_angle_bracket == verbatim_match);
5995 sym_name = sym_name_copy;
5996 }
5997
5998 if (match && !verbatim_match)
5999 {
6000 /* When doing non-verbatim match, another check that needs to
6001 be done is to verify that the potentially matching symbol name
6002 does not include capital letters, because the ada-mode would
6003 not be able to understand these symbol names without the
6004 angle bracket notation. */
6005 const char *tmp;
6006
6007 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6008 if (*tmp != '\0')
6009 match = 0;
6010 }
6011
6012 /* Second: Try wild matching... */
6013
e701b3c0 6014 if (!match && wild_match_p)
41d27058
JB
6015 {
6016 /* Since we are doing wild matching, this means that TEXT
6017 may represent an unqualified symbol name. We therefore must
6018 also compare TEXT against the unqualified name of the symbol. */
6019 sym_name = ada_unqualified_name (ada_decode (sym_name));
6020
6021 if (strncmp (sym_name, text, text_len) == 0)
6022 match = 1;
6023 }
6024
6025 /* Finally: If we found a mach, prepare the result to return. */
6026
6027 if (!match)
6028 return NULL;
6029
6030 if (verbatim_match)
6031 sym_name = add_angle_brackets (sym_name);
6032
6ea35997 6033 if (!encoded_p)
41d27058
JB
6034 sym_name = ada_decode (sym_name);
6035
6036 return sym_name;
6037}
6038
6039/* A companion function to ada_make_symbol_completion_list().
6040 Check if SYM_NAME represents a symbol which name would be suitable
6041 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6042 it is appended at the end of the given string vector SV.
6043
6044 ORIG_TEXT is the string original string from the user command
6045 that needs to be completed. WORD is the entire command on which
6046 completion should be performed. These two parameters are used to
6047 determine which part of the symbol name should be added to the
6048 completion vector.
c0af1706 6049 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6050 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6051 encoded formed (in which case the completion should also be
6052 encoded). */
6053
6054static void
d6565258 6055symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6056 const char *sym_name,
6057 const char *text, int text_len,
6058 const char *orig_text, const char *word,
cb8e9b97 6059 int wild_match_p, int encoded_p)
41d27058
JB
6060{
6061 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6062 wild_match_p, encoded_p);
41d27058
JB
6063 char *completion;
6064
6065 if (match == NULL)
6066 return;
6067
6068 /* We found a match, so add the appropriate completion to the given
6069 string vector. */
6070
6071 if (word == orig_text)
6072 {
6073 completion = xmalloc (strlen (match) + 5);
6074 strcpy (completion, match);
6075 }
6076 else if (word > orig_text)
6077 {
6078 /* Return some portion of sym_name. */
6079 completion = xmalloc (strlen (match) + 5);
6080 strcpy (completion, match + (word - orig_text));
6081 }
6082 else
6083 {
6084 /* Return some of ORIG_TEXT plus sym_name. */
6085 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6086 strncpy (completion, word, orig_text - word);
6087 completion[orig_text - word] = '\0';
6088 strcat (completion, match);
6089 }
6090
d6565258 6091 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6092}
6093
ccefe4c4 6094/* An object of this type is passed as the user_data argument to the
bb4142cf 6095 expand_symtabs_matching method. */
ccefe4c4
TT
6096struct add_partial_datum
6097{
6098 VEC(char_ptr) **completions;
6f937416 6099 const char *text;
ccefe4c4 6100 int text_len;
6f937416
PA
6101 const char *text0;
6102 const char *word;
ccefe4c4
TT
6103 int wild_match;
6104 int encoded;
6105};
6106
bb4142cf
DE
6107/* A callback for expand_symtabs_matching. */
6108
7b08b9eb 6109static int
bb4142cf 6110ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
6111{
6112 struct add_partial_datum *data = user_data;
7b08b9eb
JK
6113
6114 return symbol_completion_match (name, data->text, data->text_len,
6115 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6116}
6117
49c4e619
TT
6118/* Return a list of possible symbol names completing TEXT0. WORD is
6119 the entire command on which completion is made. */
41d27058 6120
49c4e619 6121static VEC (char_ptr) *
6f937416
PA
6122ada_make_symbol_completion_list (const char *text0, const char *word,
6123 enum type_code code)
41d27058
JB
6124{
6125 char *text;
6126 int text_len;
b1ed564a
JB
6127 int wild_match_p;
6128 int encoded_p;
2ba95b9b 6129 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
6130 struct symbol *sym;
6131 struct symtab *s;
41d27058
JB
6132 struct minimal_symbol *msymbol;
6133 struct objfile *objfile;
3977b71f 6134 const struct block *b, *surrounding_static_block = 0;
41d27058 6135 int i;
8157b174 6136 struct block_iterator iter;
b8fea896 6137 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6138
2f68a895
TT
6139 gdb_assert (code == TYPE_CODE_UNDEF);
6140
41d27058
JB
6141 if (text0[0] == '<')
6142 {
6143 text = xstrdup (text0);
6144 make_cleanup (xfree, text);
6145 text_len = strlen (text);
b1ed564a
JB
6146 wild_match_p = 0;
6147 encoded_p = 1;
41d27058
JB
6148 }
6149 else
6150 {
6151 text = xstrdup (ada_encode (text0));
6152 make_cleanup (xfree, text);
6153 text_len = strlen (text);
6154 for (i = 0; i < text_len; i++)
6155 text[i] = tolower (text[i]);
6156
b1ed564a 6157 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6158 /* If the name contains a ".", then the user is entering a fully
6159 qualified entity name, and the match must not be done in wild
6160 mode. Similarly, if the user wants to complete what looks like
6161 an encoded name, the match must not be done in wild mode. */
b1ed564a 6162 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6163 }
6164
6165 /* First, look at the partial symtab symbols. */
41d27058 6166 {
ccefe4c4
TT
6167 struct add_partial_datum data;
6168
6169 data.completions = &completions;
6170 data.text = text;
6171 data.text_len = text_len;
6172 data.text0 = text0;
6173 data.word = word;
b1ed564a
JB
6174 data.wild_match = wild_match_p;
6175 data.encoded = encoded_p;
bb4142cf
DE
6176 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6177 &data);
41d27058
JB
6178 }
6179
6180 /* At this point scan through the misc symbol vectors and add each
6181 symbol you find to the list. Eventually we want to ignore
6182 anything that isn't a text symbol (everything else will be
6183 handled by the psymtab code above). */
6184
6185 ALL_MSYMBOLS (objfile, msymbol)
6186 {
6187 QUIT;
efd66ac6 6188 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6189 text, text_len, text0, word, wild_match_p,
6190 encoded_p);
41d27058
JB
6191 }
6192
6193 /* Search upwards from currently selected frame (so that we can
6194 complete on local vars. */
6195
6196 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6197 {
6198 if (!BLOCK_SUPERBLOCK (b))
6199 surrounding_static_block = b; /* For elmin of dups */
6200
6201 ALL_BLOCK_SYMBOLS (b, iter, sym)
6202 {
d6565258 6203 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6204 text, text_len, text0, word,
b1ed564a 6205 wild_match_p, encoded_p);
41d27058
JB
6206 }
6207 }
6208
6209 /* Go through the symtabs and check the externs and statics for
6210 symbols which match. */
6211
6212 ALL_SYMTABS (objfile, s)
6213 {
6214 QUIT;
6215 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6216 ALL_BLOCK_SYMBOLS (b, iter, sym)
6217 {
d6565258 6218 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6219 text, text_len, text0, word,
b1ed564a 6220 wild_match_p, encoded_p);
41d27058
JB
6221 }
6222 }
6223
6224 ALL_SYMTABS (objfile, s)
6225 {
6226 QUIT;
6227 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6228 /* Don't do this block twice. */
6229 if (b == surrounding_static_block)
6230 continue;
6231 ALL_BLOCK_SYMBOLS (b, iter, sym)
6232 {
d6565258 6233 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6234 text, text_len, text0, word,
b1ed564a 6235 wild_match_p, encoded_p);
41d27058
JB
6236 }
6237 }
6238
b8fea896 6239 do_cleanups (old_chain);
49c4e619 6240 return completions;
41d27058
JB
6241}
6242
963a6417 6243 /* Field Access */
96d887e8 6244
73fb9985
JB
6245/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6246 for tagged types. */
6247
6248static int
6249ada_is_dispatch_table_ptr_type (struct type *type)
6250{
0d5cff50 6251 const char *name;
73fb9985
JB
6252
6253 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6254 return 0;
6255
6256 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6257 if (name == NULL)
6258 return 0;
6259
6260 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6261}
6262
ac4a2da4
JG
6263/* Return non-zero if TYPE is an interface tag. */
6264
6265static int
6266ada_is_interface_tag (struct type *type)
6267{
6268 const char *name = TYPE_NAME (type);
6269
6270 if (name == NULL)
6271 return 0;
6272
6273 return (strcmp (name, "ada__tags__interface_tag") == 0);
6274}
6275
963a6417
PH
6276/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6277 to be invisible to users. */
96d887e8 6278
963a6417
PH
6279int
6280ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6281{
963a6417
PH
6282 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6283 return 1;
ffde82bf 6284
73fb9985
JB
6285 /* Check the name of that field. */
6286 {
6287 const char *name = TYPE_FIELD_NAME (type, field_num);
6288
6289 /* Anonymous field names should not be printed.
6290 brobecker/2007-02-20: I don't think this can actually happen
6291 but we don't want to print the value of annonymous fields anyway. */
6292 if (name == NULL)
6293 return 1;
6294
ffde82bf
JB
6295 /* Normally, fields whose name start with an underscore ("_")
6296 are fields that have been internally generated by the compiler,
6297 and thus should not be printed. The "_parent" field is special,
6298 however: This is a field internally generated by the compiler
6299 for tagged types, and it contains the components inherited from
6300 the parent type. This field should not be printed as is, but
6301 should not be ignored either. */
73fb9985
JB
6302 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6303 return 1;
6304 }
6305
ac4a2da4
JG
6306 /* If this is the dispatch table of a tagged type or an interface tag,
6307 then ignore. */
73fb9985 6308 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6309 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6310 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6311 return 1;
6312
6313 /* Not a special field, so it should not be ignored. */
6314 return 0;
963a6417 6315}
96d887e8 6316
963a6417 6317/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6318 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6319
963a6417
PH
6320int
6321ada_is_tagged_type (struct type *type, int refok)
6322{
6323 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6324}
96d887e8 6325
963a6417 6326/* True iff TYPE represents the type of X'Tag */
96d887e8 6327
963a6417
PH
6328int
6329ada_is_tag_type (struct type *type)
6330{
6331 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6332 return 0;
6333 else
96d887e8 6334 {
963a6417 6335 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6336
963a6417
PH
6337 return (name != NULL
6338 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6339 }
96d887e8
PH
6340}
6341
963a6417 6342/* The type of the tag on VAL. */
76a01679 6343
963a6417
PH
6344struct type *
6345ada_tag_type (struct value *val)
96d887e8 6346{
df407dfe 6347 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6348}
96d887e8 6349
b50d69b5
JG
6350/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6351 retired at Ada 05). */
6352
6353static int
6354is_ada95_tag (struct value *tag)
6355{
6356 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6357}
6358
963a6417 6359/* The value of the tag on VAL. */
96d887e8 6360
963a6417
PH
6361struct value *
6362ada_value_tag (struct value *val)
6363{
03ee6b2e 6364 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6365}
6366
963a6417
PH
6367/* The value of the tag on the object of type TYPE whose contents are
6368 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6369 ADDRESS. */
96d887e8 6370
963a6417 6371static struct value *
10a2c479 6372value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6373 const gdb_byte *valaddr,
963a6417 6374 CORE_ADDR address)
96d887e8 6375{
b5385fc0 6376 int tag_byte_offset;
963a6417 6377 struct type *tag_type;
5b4ee69b 6378
963a6417 6379 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6380 NULL, NULL, NULL))
96d887e8 6381 {
fc1a4b47 6382 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6383 ? NULL
6384 : valaddr + tag_byte_offset);
963a6417 6385 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6386
963a6417 6387 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6388 }
963a6417
PH
6389 return NULL;
6390}
96d887e8 6391
963a6417
PH
6392static struct type *
6393type_from_tag (struct value *tag)
6394{
6395 const char *type_name = ada_tag_name (tag);
5b4ee69b 6396
963a6417
PH
6397 if (type_name != NULL)
6398 return ada_find_any_type (ada_encode (type_name));
6399 return NULL;
6400}
96d887e8 6401
b50d69b5
JG
6402/* Given a value OBJ of a tagged type, return a value of this
6403 type at the base address of the object. The base address, as
6404 defined in Ada.Tags, it is the address of the primary tag of
6405 the object, and therefore where the field values of its full
6406 view can be fetched. */
6407
6408struct value *
6409ada_tag_value_at_base_address (struct value *obj)
6410{
6411 volatile struct gdb_exception e;
6412 struct value *val;
6413 LONGEST offset_to_top = 0;
6414 struct type *ptr_type, *obj_type;
6415 struct value *tag;
6416 CORE_ADDR base_address;
6417
6418 obj_type = value_type (obj);
6419
6420 /* It is the responsability of the caller to deref pointers. */
6421
6422 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6423 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6424 return obj;
6425
6426 tag = ada_value_tag (obj);
6427 if (!tag)
6428 return obj;
6429
6430 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6431
6432 if (is_ada95_tag (tag))
6433 return obj;
6434
6435 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6436 ptr_type = lookup_pointer_type (ptr_type);
6437 val = value_cast (ptr_type, tag);
6438 if (!val)
6439 return obj;
6440
6441 /* It is perfectly possible that an exception be raised while
6442 trying to determine the base address, just like for the tag;
6443 see ada_tag_name for more details. We do not print the error
6444 message for the same reason. */
6445
6446 TRY_CATCH (e, RETURN_MASK_ERROR)
6447 {
6448 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6449 }
6450
6451 if (e.reason < 0)
6452 return obj;
6453
6454 /* If offset is null, nothing to do. */
6455
6456 if (offset_to_top == 0)
6457 return obj;
6458
6459 /* -1 is a special case in Ada.Tags; however, what should be done
6460 is not quite clear from the documentation. So do nothing for
6461 now. */
6462
6463 if (offset_to_top == -1)
6464 return obj;
6465
6466 base_address = value_address (obj) - offset_to_top;
6467 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6468
6469 /* Make sure that we have a proper tag at the new address.
6470 Otherwise, offset_to_top is bogus (which can happen when
6471 the object is not initialized yet). */
6472
6473 if (!tag)
6474 return obj;
6475
6476 obj_type = type_from_tag (tag);
6477
6478 if (!obj_type)
6479 return obj;
6480
6481 return value_from_contents_and_address (obj_type, NULL, base_address);
6482}
6483
1b611343
JB
6484/* Return the "ada__tags__type_specific_data" type. */
6485
6486static struct type *
6487ada_get_tsd_type (struct inferior *inf)
963a6417 6488{
1b611343 6489 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6490
1b611343
JB
6491 if (data->tsd_type == 0)
6492 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6493 return data->tsd_type;
6494}
529cad9c 6495
1b611343
JB
6496/* Return the TSD (type-specific data) associated to the given TAG.
6497 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6498
1b611343 6499 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6500
1b611343
JB
6501static struct value *
6502ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6503{
4c4b4cd2 6504 struct value *val;
1b611343 6505 struct type *type;
5b4ee69b 6506
1b611343
JB
6507 /* First option: The TSD is simply stored as a field of our TAG.
6508 Only older versions of GNAT would use this format, but we have
6509 to test it first, because there are no visible markers for
6510 the current approach except the absence of that field. */
529cad9c 6511
1b611343
JB
6512 val = ada_value_struct_elt (tag, "tsd", 1);
6513 if (val)
6514 return val;
e802dbe0 6515
1b611343
JB
6516 /* Try the second representation for the dispatch table (in which
6517 there is no explicit 'tsd' field in the referent of the tag pointer,
6518 and instead the tsd pointer is stored just before the dispatch
6519 table. */
e802dbe0 6520
1b611343
JB
6521 type = ada_get_tsd_type (current_inferior());
6522 if (type == NULL)
6523 return NULL;
6524 type = lookup_pointer_type (lookup_pointer_type (type));
6525 val = value_cast (type, tag);
6526 if (val == NULL)
6527 return NULL;
6528 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6529}
6530
1b611343
JB
6531/* Given the TSD of a tag (type-specific data), return a string
6532 containing the name of the associated type.
6533
6534 The returned value is good until the next call. May return NULL
6535 if we are unable to determine the tag name. */
6536
6537static char *
6538ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6539{
529cad9c
PH
6540 static char name[1024];
6541 char *p;
1b611343 6542 struct value *val;
529cad9c 6543
1b611343 6544 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6545 if (val == NULL)
1b611343 6546 return NULL;
4c4b4cd2
PH
6547 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6548 for (p = name; *p != '\0'; p += 1)
6549 if (isalpha (*p))
6550 *p = tolower (*p);
1b611343 6551 return name;
4c4b4cd2
PH
6552}
6553
6554/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6555 a C string.
6556
6557 Return NULL if the TAG is not an Ada tag, or if we were unable to
6558 determine the name of that tag. The result is good until the next
6559 call. */
4c4b4cd2
PH
6560
6561const char *
6562ada_tag_name (struct value *tag)
6563{
1b611343
JB
6564 volatile struct gdb_exception e;
6565 char *name = NULL;
5b4ee69b 6566
df407dfe 6567 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6568 return NULL;
1b611343
JB
6569
6570 /* It is perfectly possible that an exception be raised while trying
6571 to determine the TAG's name, even under normal circumstances:
6572 The associated variable may be uninitialized or corrupted, for
6573 instance. We do not let any exception propagate past this point.
6574 instead we return NULL.
6575
6576 We also do not print the error message either (which often is very
6577 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6578 the caller print a more meaningful message if necessary. */
6579 TRY_CATCH (e, RETURN_MASK_ERROR)
6580 {
6581 struct value *tsd = ada_get_tsd_from_tag (tag);
6582
6583 if (tsd != NULL)
6584 name = ada_tag_name_from_tsd (tsd);
6585 }
6586
6587 return name;
4c4b4cd2
PH
6588}
6589
6590/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6591
d2e4a39e 6592struct type *
ebf56fd3 6593ada_parent_type (struct type *type)
14f9c5c9
AS
6594{
6595 int i;
6596
61ee279c 6597 type = ada_check_typedef (type);
14f9c5c9
AS
6598
6599 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6600 return NULL;
6601
6602 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6603 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6604 {
6605 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6606
6607 /* If the _parent field is a pointer, then dereference it. */
6608 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6609 parent_type = TYPE_TARGET_TYPE (parent_type);
6610 /* If there is a parallel XVS type, get the actual base type. */
6611 parent_type = ada_get_base_type (parent_type);
6612
6613 return ada_check_typedef (parent_type);
6614 }
14f9c5c9
AS
6615
6616 return NULL;
6617}
6618
4c4b4cd2
PH
6619/* True iff field number FIELD_NUM of structure type TYPE contains the
6620 parent-type (inherited) fields of a derived type. Assumes TYPE is
6621 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6622
6623int
ebf56fd3 6624ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6625{
61ee279c 6626 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6627
4c4b4cd2
PH
6628 return (name != NULL
6629 && (strncmp (name, "PARENT", 6) == 0
6630 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6631}
6632
4c4b4cd2 6633/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6634 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6635 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6636 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6637 structures. */
14f9c5c9
AS
6638
6639int
ebf56fd3 6640ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6641{
d2e4a39e 6642 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6643
d2e4a39e 6644 return (name != NULL
4c4b4cd2
PH
6645 && (strncmp (name, "PARENT", 6) == 0
6646 || strcmp (name, "REP") == 0
6647 || strncmp (name, "_parent", 7) == 0
6648 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6649}
6650
4c4b4cd2
PH
6651/* True iff field number FIELD_NUM of structure or union type TYPE
6652 is a variant wrapper. Assumes TYPE is a structure type with at least
6653 FIELD_NUM+1 fields. */
14f9c5c9
AS
6654
6655int
ebf56fd3 6656ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6657{
d2e4a39e 6658 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6659
14f9c5c9 6660 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6661 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6662 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6663 == TYPE_CODE_UNION)));
14f9c5c9
AS
6664}
6665
6666/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6667 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6668 returns the type of the controlling discriminant for the variant.
6669 May return NULL if the type could not be found. */
14f9c5c9 6670
d2e4a39e 6671struct type *
ebf56fd3 6672ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6673{
d2e4a39e 6674 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6675
7c964f07 6676 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6677}
6678
4c4b4cd2 6679/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6680 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6681 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6682
6683int
ebf56fd3 6684ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6685{
d2e4a39e 6686 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6687
14f9c5c9
AS
6688 return (name != NULL && name[0] == 'O');
6689}
6690
6691/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6692 returns the name of the discriminant controlling the variant.
6693 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6694
d2e4a39e 6695char *
ebf56fd3 6696ada_variant_discrim_name (struct type *type0)
14f9c5c9 6697{
d2e4a39e 6698 static char *result = NULL;
14f9c5c9 6699 static size_t result_len = 0;
d2e4a39e
AS
6700 struct type *type;
6701 const char *name;
6702 const char *discrim_end;
6703 const char *discrim_start;
14f9c5c9
AS
6704
6705 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6706 type = TYPE_TARGET_TYPE (type0);
6707 else
6708 type = type0;
6709
6710 name = ada_type_name (type);
6711
6712 if (name == NULL || name[0] == '\000')
6713 return "";
6714
6715 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6716 discrim_end -= 1)
6717 {
4c4b4cd2
PH
6718 if (strncmp (discrim_end, "___XVN", 6) == 0)
6719 break;
14f9c5c9
AS
6720 }
6721 if (discrim_end == name)
6722 return "";
6723
d2e4a39e 6724 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6725 discrim_start -= 1)
6726 {
d2e4a39e 6727 if (discrim_start == name + 1)
4c4b4cd2 6728 return "";
76a01679 6729 if ((discrim_start > name + 3
4c4b4cd2
PH
6730 && strncmp (discrim_start - 3, "___", 3) == 0)
6731 || discrim_start[-1] == '.')
6732 break;
14f9c5c9
AS
6733 }
6734
6735 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6736 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6737 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6738 return result;
6739}
6740
4c4b4cd2
PH
6741/* Scan STR for a subtype-encoded number, beginning at position K.
6742 Put the position of the character just past the number scanned in
6743 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6744 Return 1 if there was a valid number at the given position, and 0
6745 otherwise. A "subtype-encoded" number consists of the absolute value
6746 in decimal, followed by the letter 'm' to indicate a negative number.
6747 Assumes 0m does not occur. */
14f9c5c9
AS
6748
6749int
d2e4a39e 6750ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6751{
6752 ULONGEST RU;
6753
d2e4a39e 6754 if (!isdigit (str[k]))
14f9c5c9
AS
6755 return 0;
6756
4c4b4cd2 6757 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6758 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6759 LONGEST. */
14f9c5c9
AS
6760 RU = 0;
6761 while (isdigit (str[k]))
6762 {
d2e4a39e 6763 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6764 k += 1;
6765 }
6766
d2e4a39e 6767 if (str[k] == 'm')
14f9c5c9
AS
6768 {
6769 if (R != NULL)
4c4b4cd2 6770 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6771 k += 1;
6772 }
6773 else if (R != NULL)
6774 *R = (LONGEST) RU;
6775
4c4b4cd2 6776 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6777 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6778 number representable as a LONGEST (although either would probably work
6779 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6780 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6781
6782 if (new_k != NULL)
6783 *new_k = k;
6784 return 1;
6785}
6786
4c4b4cd2
PH
6787/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6788 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6789 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6790
d2e4a39e 6791int
ebf56fd3 6792ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6793{
d2e4a39e 6794 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6795 int p;
6796
6797 p = 0;
6798 while (1)
6799 {
d2e4a39e 6800 switch (name[p])
4c4b4cd2
PH
6801 {
6802 case '\0':
6803 return 0;
6804 case 'S':
6805 {
6806 LONGEST W;
5b4ee69b 6807
4c4b4cd2
PH
6808 if (!ada_scan_number (name, p + 1, &W, &p))
6809 return 0;
6810 if (val == W)
6811 return 1;
6812 break;
6813 }
6814 case 'R':
6815 {
6816 LONGEST L, U;
5b4ee69b 6817
4c4b4cd2
PH
6818 if (!ada_scan_number (name, p + 1, &L, &p)
6819 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6820 return 0;
6821 if (val >= L && val <= U)
6822 return 1;
6823 break;
6824 }
6825 case 'O':
6826 return 1;
6827 default:
6828 return 0;
6829 }
6830 }
6831}
6832
0963b4bd 6833/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6834
6835/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6836 ARG_TYPE, extract and return the value of one of its (non-static)
6837 fields. FIELDNO says which field. Differs from value_primitive_field
6838 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6839
4c4b4cd2 6840static struct value *
d2e4a39e 6841ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6842 struct type *arg_type)
14f9c5c9 6843{
14f9c5c9
AS
6844 struct type *type;
6845
61ee279c 6846 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6847 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6848
4c4b4cd2 6849 /* Handle packed fields. */
14f9c5c9
AS
6850
6851 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6852 {
6853 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6854 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6855
0fd88904 6856 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6857 offset + bit_pos / 8,
6858 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6859 }
6860 else
6861 return value_primitive_field (arg1, offset, fieldno, arg_type);
6862}
6863
52ce6436
PH
6864/* Find field with name NAME in object of type TYPE. If found,
6865 set the following for each argument that is non-null:
6866 - *FIELD_TYPE_P to the field's type;
6867 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6868 an object of that type;
6869 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6870 - *BIT_SIZE_P to its size in bits if the field is packed, and
6871 0 otherwise;
6872 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6873 fields up to but not including the desired field, or by the total
6874 number of fields if not found. A NULL value of NAME never
6875 matches; the function just counts visible fields in this case.
6876
0963b4bd 6877 Returns 1 if found, 0 otherwise. */
52ce6436 6878
4c4b4cd2 6879static int
0d5cff50 6880find_struct_field (const char *name, struct type *type, int offset,
76a01679 6881 struct type **field_type_p,
52ce6436
PH
6882 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6883 int *index_p)
4c4b4cd2
PH
6884{
6885 int i;
6886
61ee279c 6887 type = ada_check_typedef (type);
76a01679 6888
52ce6436
PH
6889 if (field_type_p != NULL)
6890 *field_type_p = NULL;
6891 if (byte_offset_p != NULL)
d5d6fca5 6892 *byte_offset_p = 0;
52ce6436
PH
6893 if (bit_offset_p != NULL)
6894 *bit_offset_p = 0;
6895 if (bit_size_p != NULL)
6896 *bit_size_p = 0;
6897
6898 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6899 {
6900 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6901 int fld_offset = offset + bit_pos / 8;
0d5cff50 6902 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6903
4c4b4cd2
PH
6904 if (t_field_name == NULL)
6905 continue;
6906
52ce6436 6907 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6908 {
6909 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6910
52ce6436
PH
6911 if (field_type_p != NULL)
6912 *field_type_p = TYPE_FIELD_TYPE (type, i);
6913 if (byte_offset_p != NULL)
6914 *byte_offset_p = fld_offset;
6915 if (bit_offset_p != NULL)
6916 *bit_offset_p = bit_pos % 8;
6917 if (bit_size_p != NULL)
6918 *bit_size_p = bit_size;
76a01679
JB
6919 return 1;
6920 }
4c4b4cd2
PH
6921 else if (ada_is_wrapper_field (type, i))
6922 {
52ce6436
PH
6923 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6924 field_type_p, byte_offset_p, bit_offset_p,
6925 bit_size_p, index_p))
76a01679
JB
6926 return 1;
6927 }
4c4b4cd2
PH
6928 else if (ada_is_variant_part (type, i))
6929 {
52ce6436
PH
6930 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6931 fixed type?? */
4c4b4cd2 6932 int j;
52ce6436
PH
6933 struct type *field_type
6934 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6935
52ce6436 6936 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6937 {
76a01679
JB
6938 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6939 fld_offset
6940 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6941 field_type_p, byte_offset_p,
52ce6436 6942 bit_offset_p, bit_size_p, index_p))
76a01679 6943 return 1;
4c4b4cd2
PH
6944 }
6945 }
52ce6436
PH
6946 else if (index_p != NULL)
6947 *index_p += 1;
4c4b4cd2
PH
6948 }
6949 return 0;
6950}
6951
0963b4bd 6952/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6953
52ce6436
PH
6954static int
6955num_visible_fields (struct type *type)
6956{
6957 int n;
5b4ee69b 6958
52ce6436
PH
6959 n = 0;
6960 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6961 return n;
6962}
14f9c5c9 6963
4c4b4cd2 6964/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6965 and search in it assuming it has (class) type TYPE.
6966 If found, return value, else return NULL.
6967
4c4b4cd2 6968 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6969
4c4b4cd2 6970static struct value *
d2e4a39e 6971ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6972 struct type *type)
14f9c5c9
AS
6973{
6974 int i;
14f9c5c9 6975
5b4ee69b 6976 type = ada_check_typedef (type);
52ce6436 6977 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6978 {
0d5cff50 6979 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6980
6981 if (t_field_name == NULL)
4c4b4cd2 6982 continue;
14f9c5c9
AS
6983
6984 else if (field_name_match (t_field_name, name))
4c4b4cd2 6985 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6986
6987 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6988 {
0963b4bd 6989 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6990 ada_search_struct_field (name, arg,
6991 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6992 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6993
4c4b4cd2
PH
6994 if (v != NULL)
6995 return v;
6996 }
14f9c5c9
AS
6997
6998 else if (ada_is_variant_part (type, i))
4c4b4cd2 6999 {
0963b4bd 7000 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7001 int j;
5b4ee69b
MS
7002 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7003 i));
4c4b4cd2
PH
7004 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7005
52ce6436 7006 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7007 {
0963b4bd
MS
7008 struct value *v = ada_search_struct_field /* Force line
7009 break. */
06d5cf63
JB
7010 (name, arg,
7011 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7012 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7013
4c4b4cd2
PH
7014 if (v != NULL)
7015 return v;
7016 }
7017 }
14f9c5c9
AS
7018 }
7019 return NULL;
7020}
d2e4a39e 7021
52ce6436
PH
7022static struct value *ada_index_struct_field_1 (int *, struct value *,
7023 int, struct type *);
7024
7025
7026/* Return field #INDEX in ARG, where the index is that returned by
7027 * find_struct_field through its INDEX_P argument. Adjust the address
7028 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7029 * If found, return value, else return NULL. */
52ce6436
PH
7030
7031static struct value *
7032ada_index_struct_field (int index, struct value *arg, int offset,
7033 struct type *type)
7034{
7035 return ada_index_struct_field_1 (&index, arg, offset, type);
7036}
7037
7038
7039/* Auxiliary function for ada_index_struct_field. Like
7040 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7041 * *INDEX_P. */
52ce6436
PH
7042
7043static struct value *
7044ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7045 struct type *type)
7046{
7047 int i;
7048 type = ada_check_typedef (type);
7049
7050 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7051 {
7052 if (TYPE_FIELD_NAME (type, i) == NULL)
7053 continue;
7054 else if (ada_is_wrapper_field (type, i))
7055 {
0963b4bd 7056 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7057 ada_index_struct_field_1 (index_p, arg,
7058 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7059 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7060
52ce6436
PH
7061 if (v != NULL)
7062 return v;
7063 }
7064
7065 else if (ada_is_variant_part (type, i))
7066 {
7067 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7068 find_struct_field. */
52ce6436
PH
7069 error (_("Cannot assign this kind of variant record"));
7070 }
7071 else if (*index_p == 0)
7072 return ada_value_primitive_field (arg, offset, i, type);
7073 else
7074 *index_p -= 1;
7075 }
7076 return NULL;
7077}
7078
4c4b4cd2
PH
7079/* Given ARG, a value of type (pointer or reference to a)*
7080 structure/union, extract the component named NAME from the ultimate
7081 target structure/union and return it as a value with its
f5938064 7082 appropriate type.
14f9c5c9 7083
4c4b4cd2
PH
7084 The routine searches for NAME among all members of the structure itself
7085 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7086 (e.g., '_parent').
7087
03ee6b2e
PH
7088 If NO_ERR, then simply return NULL in case of error, rather than
7089 calling error. */
14f9c5c9 7090
d2e4a39e 7091struct value *
03ee6b2e 7092ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7093{
4c4b4cd2 7094 struct type *t, *t1;
d2e4a39e 7095 struct value *v;
14f9c5c9 7096
4c4b4cd2 7097 v = NULL;
df407dfe 7098 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7099 if (TYPE_CODE (t) == TYPE_CODE_REF)
7100 {
7101 t1 = TYPE_TARGET_TYPE (t);
7102 if (t1 == NULL)
03ee6b2e 7103 goto BadValue;
61ee279c 7104 t1 = ada_check_typedef (t1);
4c4b4cd2 7105 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7106 {
994b9211 7107 arg = coerce_ref (arg);
76a01679
JB
7108 t = t1;
7109 }
4c4b4cd2 7110 }
14f9c5c9 7111
4c4b4cd2
PH
7112 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7113 {
7114 t1 = TYPE_TARGET_TYPE (t);
7115 if (t1 == NULL)
03ee6b2e 7116 goto BadValue;
61ee279c 7117 t1 = ada_check_typedef (t1);
4c4b4cd2 7118 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7119 {
7120 arg = value_ind (arg);
7121 t = t1;
7122 }
4c4b4cd2 7123 else
76a01679 7124 break;
4c4b4cd2 7125 }
14f9c5c9 7126
4c4b4cd2 7127 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7128 goto BadValue;
14f9c5c9 7129
4c4b4cd2
PH
7130 if (t1 == t)
7131 v = ada_search_struct_field (name, arg, 0, t);
7132 else
7133 {
7134 int bit_offset, bit_size, byte_offset;
7135 struct type *field_type;
7136 CORE_ADDR address;
7137
76a01679 7138 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7139 address = value_address (ada_value_ind (arg));
4c4b4cd2 7140 else
b50d69b5 7141 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7142
1ed6ede0 7143 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7144 if (find_struct_field (name, t1, 0,
7145 &field_type, &byte_offset, &bit_offset,
52ce6436 7146 &bit_size, NULL))
76a01679
JB
7147 {
7148 if (bit_size != 0)
7149 {
714e53ab
PH
7150 if (TYPE_CODE (t) == TYPE_CODE_REF)
7151 arg = ada_coerce_ref (arg);
7152 else
7153 arg = ada_value_ind (arg);
76a01679
JB
7154 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7155 bit_offset, bit_size,
7156 field_type);
7157 }
7158 else
f5938064 7159 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7160 }
7161 }
7162
03ee6b2e
PH
7163 if (v != NULL || no_err)
7164 return v;
7165 else
323e0a4a 7166 error (_("There is no member named %s."), name);
14f9c5c9 7167
03ee6b2e
PH
7168 BadValue:
7169 if (no_err)
7170 return NULL;
7171 else
0963b4bd
MS
7172 error (_("Attempt to extract a component of "
7173 "a value that is not a record."));
14f9c5c9
AS
7174}
7175
7176/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7177 If DISPP is non-null, add its byte displacement from the beginning of a
7178 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7179 work for packed fields).
7180
7181 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7182 followed by "___".
14f9c5c9 7183
0963b4bd 7184 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7185 be a (pointer or reference)+ to a struct or union, and the
7186 ultimate target type will be searched.
14f9c5c9
AS
7187
7188 Looks recursively into variant clauses and parent types.
7189
4c4b4cd2
PH
7190 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7191 TYPE is not a type of the right kind. */
14f9c5c9 7192
4c4b4cd2 7193static struct type *
76a01679
JB
7194ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7195 int noerr, int *dispp)
14f9c5c9
AS
7196{
7197 int i;
7198
7199 if (name == NULL)
7200 goto BadName;
7201
76a01679 7202 if (refok && type != NULL)
4c4b4cd2
PH
7203 while (1)
7204 {
61ee279c 7205 type = ada_check_typedef (type);
76a01679
JB
7206 if (TYPE_CODE (type) != TYPE_CODE_PTR
7207 && TYPE_CODE (type) != TYPE_CODE_REF)
7208 break;
7209 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7210 }
14f9c5c9 7211
76a01679 7212 if (type == NULL
1265e4aa
JB
7213 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7214 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7215 {
4c4b4cd2 7216 if (noerr)
76a01679 7217 return NULL;
4c4b4cd2 7218 else
76a01679
JB
7219 {
7220 target_terminal_ours ();
7221 gdb_flush (gdb_stdout);
323e0a4a
AC
7222 if (type == NULL)
7223 error (_("Type (null) is not a structure or union type"));
7224 else
7225 {
7226 /* XXX: type_sprint */
7227 fprintf_unfiltered (gdb_stderr, _("Type "));
7228 type_print (type, "", gdb_stderr, -1);
7229 error (_(" is not a structure or union type"));
7230 }
76a01679 7231 }
14f9c5c9
AS
7232 }
7233
7234 type = to_static_fixed_type (type);
7235
7236 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7237 {
0d5cff50 7238 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7239 struct type *t;
7240 int disp;
d2e4a39e 7241
14f9c5c9 7242 if (t_field_name == NULL)
4c4b4cd2 7243 continue;
14f9c5c9
AS
7244
7245 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7246 {
7247 if (dispp != NULL)
7248 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 7249 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7250 }
14f9c5c9
AS
7251
7252 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7253 {
7254 disp = 0;
7255 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7256 0, 1, &disp);
7257 if (t != NULL)
7258 {
7259 if (dispp != NULL)
7260 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7261 return t;
7262 }
7263 }
14f9c5c9
AS
7264
7265 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7266 {
7267 int j;
5b4ee69b
MS
7268 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7269 i));
4c4b4cd2
PH
7270
7271 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7272 {
b1f33ddd
JB
7273 /* FIXME pnh 2008/01/26: We check for a field that is
7274 NOT wrapped in a struct, since the compiler sometimes
7275 generates these for unchecked variant types. Revisit
0963b4bd 7276 if the compiler changes this practice. */
0d5cff50 7277 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7278 disp = 0;
b1f33ddd
JB
7279 if (v_field_name != NULL
7280 && field_name_match (v_field_name, name))
7281 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7282 else
0963b4bd
MS
7283 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7284 j),
b1f33ddd
JB
7285 name, 0, 1, &disp);
7286
4c4b4cd2
PH
7287 if (t != NULL)
7288 {
7289 if (dispp != NULL)
7290 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7291 return t;
7292 }
7293 }
7294 }
14f9c5c9
AS
7295
7296 }
7297
7298BadName:
d2e4a39e 7299 if (!noerr)
14f9c5c9
AS
7300 {
7301 target_terminal_ours ();
7302 gdb_flush (gdb_stdout);
323e0a4a
AC
7303 if (name == NULL)
7304 {
7305 /* XXX: type_sprint */
7306 fprintf_unfiltered (gdb_stderr, _("Type "));
7307 type_print (type, "", gdb_stderr, -1);
7308 error (_(" has no component named <null>"));
7309 }
7310 else
7311 {
7312 /* XXX: type_sprint */
7313 fprintf_unfiltered (gdb_stderr, _("Type "));
7314 type_print (type, "", gdb_stderr, -1);
7315 error (_(" has no component named %s"), name);
7316 }
14f9c5c9
AS
7317 }
7318
7319 return NULL;
7320}
7321
b1f33ddd
JB
7322/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7323 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7324 represents an unchecked union (that is, the variant part of a
0963b4bd 7325 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7326
7327static int
7328is_unchecked_variant (struct type *var_type, struct type *outer_type)
7329{
7330 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7331
b1f33ddd
JB
7332 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7333 == NULL);
7334}
7335
7336
14f9c5c9
AS
7337/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7338 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7339 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7340 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7341
d2e4a39e 7342int
ebf56fd3 7343ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7344 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7345{
7346 int others_clause;
7347 int i;
d2e4a39e 7348 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7349 struct value *outer;
7350 struct value *discrim;
14f9c5c9
AS
7351 LONGEST discrim_val;
7352
012370f6
TT
7353 /* Using plain value_from_contents_and_address here causes problems
7354 because we will end up trying to resolve a type that is currently
7355 being constructed. */
7356 outer = value_from_contents_and_address_unresolved (outer_type,
7357 outer_valaddr, 0);
0c281816
JB
7358 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7359 if (discrim == NULL)
14f9c5c9 7360 return -1;
0c281816 7361 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7362
7363 others_clause = -1;
7364 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7365 {
7366 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7367 others_clause = i;
14f9c5c9 7368 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7369 return i;
14f9c5c9
AS
7370 }
7371
7372 return others_clause;
7373}
d2e4a39e 7374\f
14f9c5c9
AS
7375
7376
4c4b4cd2 7377 /* Dynamic-Sized Records */
14f9c5c9
AS
7378
7379/* Strategy: The type ostensibly attached to a value with dynamic size
7380 (i.e., a size that is not statically recorded in the debugging
7381 data) does not accurately reflect the size or layout of the value.
7382 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7383 conventional types that are constructed on the fly. */
14f9c5c9
AS
7384
7385/* There is a subtle and tricky problem here. In general, we cannot
7386 determine the size of dynamic records without its data. However,
7387 the 'struct value' data structure, which GDB uses to represent
7388 quantities in the inferior process (the target), requires the size
7389 of the type at the time of its allocation in order to reserve space
7390 for GDB's internal copy of the data. That's why the
7391 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7392 rather than struct value*s.
14f9c5c9
AS
7393
7394 However, GDB's internal history variables ($1, $2, etc.) are
7395 struct value*s containing internal copies of the data that are not, in
7396 general, the same as the data at their corresponding addresses in
7397 the target. Fortunately, the types we give to these values are all
7398 conventional, fixed-size types (as per the strategy described
7399 above), so that we don't usually have to perform the
7400 'to_fixed_xxx_type' conversions to look at their values.
7401 Unfortunately, there is one exception: if one of the internal
7402 history variables is an array whose elements are unconstrained
7403 records, then we will need to create distinct fixed types for each
7404 element selected. */
7405
7406/* The upshot of all of this is that many routines take a (type, host
7407 address, target address) triple as arguments to represent a value.
7408 The host address, if non-null, is supposed to contain an internal
7409 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7410 target at the target address. */
14f9c5c9
AS
7411
7412/* Assuming that VAL0 represents a pointer value, the result of
7413 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7414 dynamic-sized types. */
14f9c5c9 7415
d2e4a39e
AS
7416struct value *
7417ada_value_ind (struct value *val0)
14f9c5c9 7418{
c48db5ca 7419 struct value *val = value_ind (val0);
5b4ee69b 7420
b50d69b5
JG
7421 if (ada_is_tagged_type (value_type (val), 0))
7422 val = ada_tag_value_at_base_address (val);
7423
4c4b4cd2 7424 return ada_to_fixed_value (val);
14f9c5c9
AS
7425}
7426
7427/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7428 qualifiers on VAL0. */
7429
d2e4a39e
AS
7430static struct value *
7431ada_coerce_ref (struct value *val0)
7432{
df407dfe 7433 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7434 {
7435 struct value *val = val0;
5b4ee69b 7436
994b9211 7437 val = coerce_ref (val);
b50d69b5
JG
7438
7439 if (ada_is_tagged_type (value_type (val), 0))
7440 val = ada_tag_value_at_base_address (val);
7441
4c4b4cd2 7442 return ada_to_fixed_value (val);
d2e4a39e
AS
7443 }
7444 else
14f9c5c9
AS
7445 return val0;
7446}
7447
7448/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7449 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7450
7451static unsigned int
ebf56fd3 7452align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7453{
7454 return (off + alignment - 1) & ~(alignment - 1);
7455}
7456
4c4b4cd2 7457/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7458
7459static unsigned int
ebf56fd3 7460field_alignment (struct type *type, int f)
14f9c5c9 7461{
d2e4a39e 7462 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7463 int len;
14f9c5c9
AS
7464 int align_offset;
7465
64a1bf19
JB
7466 /* The field name should never be null, unless the debugging information
7467 is somehow malformed. In this case, we assume the field does not
7468 require any alignment. */
7469 if (name == NULL)
7470 return 1;
7471
7472 len = strlen (name);
7473
4c4b4cd2
PH
7474 if (!isdigit (name[len - 1]))
7475 return 1;
14f9c5c9 7476
d2e4a39e 7477 if (isdigit (name[len - 2]))
14f9c5c9
AS
7478 align_offset = len - 2;
7479 else
7480 align_offset = len - 1;
7481
4c4b4cd2 7482 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7483 return TARGET_CHAR_BIT;
7484
4c4b4cd2
PH
7485 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7486}
7487
852dff6c 7488/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7489
852dff6c
JB
7490static struct symbol *
7491ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7492{
7493 struct symbol *sym;
7494
7495 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7496 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7497 return sym;
7498
4186eb54
KS
7499 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7500 return sym;
14f9c5c9
AS
7501}
7502
dddfab26
UW
7503/* Find a type named NAME. Ignores ambiguity. This routine will look
7504 solely for types defined by debug info, it will not search the GDB
7505 primitive types. */
4c4b4cd2 7506
852dff6c 7507static struct type *
ebf56fd3 7508ada_find_any_type (const char *name)
14f9c5c9 7509{
852dff6c 7510 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7511
14f9c5c9 7512 if (sym != NULL)
dddfab26 7513 return SYMBOL_TYPE (sym);
14f9c5c9 7514
dddfab26 7515 return NULL;
14f9c5c9
AS
7516}
7517
739593e0
JB
7518/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7519 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7520 symbol, in which case it is returned. Otherwise, this looks for
7521 symbols whose name is that of NAME_SYM suffixed with "___XR".
7522 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7523
7524struct symbol *
270140bd 7525ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7526{
739593e0 7527 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7528 struct symbol *sym;
7529
739593e0
JB
7530 if (strstr (name, "___XR") != NULL)
7531 return name_sym;
7532
aeb5907d
JB
7533 sym = find_old_style_renaming_symbol (name, block);
7534
7535 if (sym != NULL)
7536 return sym;
7537
0963b4bd 7538 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7539 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7540 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7541 return sym;
7542 else
7543 return NULL;
7544}
7545
7546static struct symbol *
270140bd 7547find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7548{
7f0df278 7549 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7550 char *rename;
7551
7552 if (function_sym != NULL)
7553 {
7554 /* If the symbol is defined inside a function, NAME is not fully
7555 qualified. This means we need to prepend the function name
7556 as well as adding the ``___XR'' suffix to build the name of
7557 the associated renaming symbol. */
0d5cff50 7558 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7559 /* Function names sometimes contain suffixes used
7560 for instance to qualify nested subprograms. When building
7561 the XR type name, we need to make sure that this suffix is
7562 not included. So do not include any suffix in the function
7563 name length below. */
69fadcdf 7564 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7565 const int rename_len = function_name_len + 2 /* "__" */
7566 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7567
529cad9c 7568 /* Strip the suffix if necessary. */
69fadcdf
JB
7569 ada_remove_trailing_digits (function_name, &function_name_len);
7570 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7571 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7572
4c4b4cd2
PH
7573 /* Library-level functions are a special case, as GNAT adds
7574 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7575 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7576 have this prefix, so we need to skip this prefix if present. */
7577 if (function_name_len > 5 /* "_ada_" */
7578 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7579 {
7580 function_name += 5;
7581 function_name_len -= 5;
7582 }
4c4b4cd2
PH
7583
7584 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7585 strncpy (rename, function_name, function_name_len);
7586 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7587 "__%s___XR", name);
4c4b4cd2
PH
7588 }
7589 else
7590 {
7591 const int rename_len = strlen (name) + 6;
5b4ee69b 7592
4c4b4cd2 7593 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7594 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7595 }
7596
852dff6c 7597 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7598}
7599
14f9c5c9 7600/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7601 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7602 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7603 otherwise return 0. */
7604
14f9c5c9 7605int
d2e4a39e 7606ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7607{
7608 if (type1 == NULL)
7609 return 1;
7610 else if (type0 == NULL)
7611 return 0;
7612 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7613 return 1;
7614 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7615 return 0;
4c4b4cd2
PH
7616 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7617 return 1;
ad82864c 7618 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7619 return 1;
4c4b4cd2
PH
7620 else if (ada_is_array_descriptor_type (type0)
7621 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7622 return 1;
aeb5907d
JB
7623 else
7624 {
7625 const char *type0_name = type_name_no_tag (type0);
7626 const char *type1_name = type_name_no_tag (type1);
7627
7628 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7629 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7630 return 1;
7631 }
14f9c5c9
AS
7632 return 0;
7633}
7634
7635/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7636 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7637
0d5cff50 7638const char *
d2e4a39e 7639ada_type_name (struct type *type)
14f9c5c9 7640{
d2e4a39e 7641 if (type == NULL)
14f9c5c9
AS
7642 return NULL;
7643 else if (TYPE_NAME (type) != NULL)
7644 return TYPE_NAME (type);
7645 else
7646 return TYPE_TAG_NAME (type);
7647}
7648
b4ba55a1
JB
7649/* Search the list of "descriptive" types associated to TYPE for a type
7650 whose name is NAME. */
7651
7652static struct type *
7653find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7654{
7655 struct type *result;
7656
c6044dd1
JB
7657 if (ada_ignore_descriptive_types_p)
7658 return NULL;
7659
b4ba55a1
JB
7660 /* If there no descriptive-type info, then there is no parallel type
7661 to be found. */
7662 if (!HAVE_GNAT_AUX_INFO (type))
7663 return NULL;
7664
7665 result = TYPE_DESCRIPTIVE_TYPE (type);
7666 while (result != NULL)
7667 {
0d5cff50 7668 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7669
7670 if (result_name == NULL)
7671 {
7672 warning (_("unexpected null name on descriptive type"));
7673 return NULL;
7674 }
7675
7676 /* If the names match, stop. */
7677 if (strcmp (result_name, name) == 0)
7678 break;
7679
7680 /* Otherwise, look at the next item on the list, if any. */
7681 if (HAVE_GNAT_AUX_INFO (result))
7682 result = TYPE_DESCRIPTIVE_TYPE (result);
7683 else
7684 result = NULL;
7685 }
7686
7687 /* If we didn't find a match, see whether this is a packed array. With
7688 older compilers, the descriptive type information is either absent or
7689 irrelevant when it comes to packed arrays so the above lookup fails.
7690 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7691 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7692 return ada_find_any_type (name);
7693
7694 return result;
7695}
7696
7697/* Find a parallel type to TYPE with the specified NAME, using the
7698 descriptive type taken from the debugging information, if available,
7699 and otherwise using the (slower) name-based method. */
7700
7701static struct type *
7702ada_find_parallel_type_with_name (struct type *type, const char *name)
7703{
7704 struct type *result = NULL;
7705
7706 if (HAVE_GNAT_AUX_INFO (type))
7707 result = find_parallel_type_by_descriptive_type (type, name);
7708 else
7709 result = ada_find_any_type (name);
7710
7711 return result;
7712}
7713
7714/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7715 SUFFIX to the name of TYPE. */
14f9c5c9 7716
d2e4a39e 7717struct type *
ebf56fd3 7718ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7719{
0d5cff50
DE
7720 char *name;
7721 const char *typename = ada_type_name (type);
14f9c5c9 7722 int len;
d2e4a39e 7723
14f9c5c9
AS
7724 if (typename == NULL)
7725 return NULL;
7726
7727 len = strlen (typename);
7728
b4ba55a1 7729 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7730
7731 strcpy (name, typename);
7732 strcpy (name + len, suffix);
7733
b4ba55a1 7734 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7735}
7736
14f9c5c9 7737/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7738 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7739
d2e4a39e
AS
7740static struct type *
7741dynamic_template_type (struct type *type)
14f9c5c9 7742{
61ee279c 7743 type = ada_check_typedef (type);
14f9c5c9
AS
7744
7745 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7746 || ada_type_name (type) == NULL)
14f9c5c9 7747 return NULL;
d2e4a39e 7748 else
14f9c5c9
AS
7749 {
7750 int len = strlen (ada_type_name (type));
5b4ee69b 7751
4c4b4cd2
PH
7752 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7753 return type;
14f9c5c9 7754 else
4c4b4cd2 7755 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7756 }
7757}
7758
7759/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7760 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7761
d2e4a39e
AS
7762static int
7763is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7764{
7765 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7766
d2e4a39e 7767 return name != NULL
14f9c5c9
AS
7768 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7769 && strstr (name, "___XVL") != NULL;
7770}
7771
4c4b4cd2
PH
7772/* The index of the variant field of TYPE, or -1 if TYPE does not
7773 represent a variant record type. */
14f9c5c9 7774
d2e4a39e 7775static int
4c4b4cd2 7776variant_field_index (struct type *type)
14f9c5c9
AS
7777{
7778 int f;
7779
4c4b4cd2
PH
7780 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7781 return -1;
7782
7783 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7784 {
7785 if (ada_is_variant_part (type, f))
7786 return f;
7787 }
7788 return -1;
14f9c5c9
AS
7789}
7790
4c4b4cd2
PH
7791/* A record type with no fields. */
7792
d2e4a39e 7793static struct type *
e9bb382b 7794empty_record (struct type *template)
14f9c5c9 7795{
e9bb382b 7796 struct type *type = alloc_type_copy (template);
5b4ee69b 7797
14f9c5c9
AS
7798 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7799 TYPE_NFIELDS (type) = 0;
7800 TYPE_FIELDS (type) = NULL;
b1f33ddd 7801 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7802 TYPE_NAME (type) = "<empty>";
7803 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7804 TYPE_LENGTH (type) = 0;
7805 return type;
7806}
7807
7808/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7809 the value of type TYPE at VALADDR or ADDRESS (see comments at
7810 the beginning of this section) VAL according to GNAT conventions.
7811 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7812 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7813 an outer-level type (i.e., as opposed to a branch of a variant.) A
7814 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7815 of the variant.
14f9c5c9 7816
4c4b4cd2
PH
7817 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7818 length are not statically known are discarded. As a consequence,
7819 VALADDR, ADDRESS and DVAL0 are ignored.
7820
7821 NOTE: Limitations: For now, we assume that dynamic fields and
7822 variants occupy whole numbers of bytes. However, they need not be
7823 byte-aligned. */
7824
7825struct type *
10a2c479 7826ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7827 const gdb_byte *valaddr,
4c4b4cd2
PH
7828 CORE_ADDR address, struct value *dval0,
7829 int keep_dynamic_fields)
14f9c5c9 7830{
d2e4a39e
AS
7831 struct value *mark = value_mark ();
7832 struct value *dval;
7833 struct type *rtype;
14f9c5c9 7834 int nfields, bit_len;
4c4b4cd2 7835 int variant_field;
14f9c5c9 7836 long off;
d94e4f4f 7837 int fld_bit_len;
14f9c5c9
AS
7838 int f;
7839
4c4b4cd2
PH
7840 /* Compute the number of fields in this record type that are going
7841 to be processed: unless keep_dynamic_fields, this includes only
7842 fields whose position and length are static will be processed. */
7843 if (keep_dynamic_fields)
7844 nfields = TYPE_NFIELDS (type);
7845 else
7846 {
7847 nfields = 0;
76a01679 7848 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7849 && !ada_is_variant_part (type, nfields)
7850 && !is_dynamic_field (type, nfields))
7851 nfields++;
7852 }
7853
e9bb382b 7854 rtype = alloc_type_copy (type);
14f9c5c9
AS
7855 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7856 INIT_CPLUS_SPECIFIC (rtype);
7857 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7858 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7859 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7860 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7861 TYPE_NAME (rtype) = ada_type_name (type);
7862 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7863 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7864
d2e4a39e
AS
7865 off = 0;
7866 bit_len = 0;
4c4b4cd2
PH
7867 variant_field = -1;
7868
14f9c5c9
AS
7869 for (f = 0; f < nfields; f += 1)
7870 {
6c038f32
PH
7871 off = align_value (off, field_alignment (type, f))
7872 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7873 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7874 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7875
d2e4a39e 7876 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7877 {
7878 variant_field = f;
d94e4f4f 7879 fld_bit_len = 0;
4c4b4cd2 7880 }
14f9c5c9 7881 else if (is_dynamic_field (type, f))
4c4b4cd2 7882 {
284614f0
JB
7883 const gdb_byte *field_valaddr = valaddr;
7884 CORE_ADDR field_address = address;
7885 struct type *field_type =
7886 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7887
4c4b4cd2 7888 if (dval0 == NULL)
b5304971
JG
7889 {
7890 /* rtype's length is computed based on the run-time
7891 value of discriminants. If the discriminants are not
7892 initialized, the type size may be completely bogus and
0963b4bd 7893 GDB may fail to allocate a value for it. So check the
b5304971
JG
7894 size first before creating the value. */
7895 check_size (rtype);
012370f6
TT
7896 /* Using plain value_from_contents_and_address here
7897 causes problems because we will end up trying to
7898 resolve a type that is currently being
7899 constructed. */
7900 dval = value_from_contents_and_address_unresolved (rtype,
7901 valaddr,
7902 address);
9f1f738a 7903 rtype = value_type (dval);
b5304971 7904 }
4c4b4cd2
PH
7905 else
7906 dval = dval0;
7907
284614f0
JB
7908 /* If the type referenced by this field is an aligner type, we need
7909 to unwrap that aligner type, because its size might not be set.
7910 Keeping the aligner type would cause us to compute the wrong
7911 size for this field, impacting the offset of the all the fields
7912 that follow this one. */
7913 if (ada_is_aligner_type (field_type))
7914 {
7915 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7916
7917 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7918 field_address = cond_offset_target (field_address, field_offset);
7919 field_type = ada_aligned_type (field_type);
7920 }
7921
7922 field_valaddr = cond_offset_host (field_valaddr,
7923 off / TARGET_CHAR_BIT);
7924 field_address = cond_offset_target (field_address,
7925 off / TARGET_CHAR_BIT);
7926
7927 /* Get the fixed type of the field. Note that, in this case,
7928 we do not want to get the real type out of the tag: if
7929 the current field is the parent part of a tagged record,
7930 we will get the tag of the object. Clearly wrong: the real
7931 type of the parent is not the real type of the child. We
7932 would end up in an infinite loop. */
7933 field_type = ada_get_base_type (field_type);
7934 field_type = ada_to_fixed_type (field_type, field_valaddr,
7935 field_address, dval, 0);
27f2a97b
JB
7936 /* If the field size is already larger than the maximum
7937 object size, then the record itself will necessarily
7938 be larger than the maximum object size. We need to make
7939 this check now, because the size might be so ridiculously
7940 large (due to an uninitialized variable in the inferior)
7941 that it would cause an overflow when adding it to the
7942 record size. */
7943 check_size (field_type);
284614f0
JB
7944
7945 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7946 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7947 /* The multiplication can potentially overflow. But because
7948 the field length has been size-checked just above, and
7949 assuming that the maximum size is a reasonable value,
7950 an overflow should not happen in practice. So rather than
7951 adding overflow recovery code to this already complex code,
7952 we just assume that it's not going to happen. */
d94e4f4f 7953 fld_bit_len =
4c4b4cd2
PH
7954 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7955 }
14f9c5c9 7956 else
4c4b4cd2 7957 {
5ded5331
JB
7958 /* Note: If this field's type is a typedef, it is important
7959 to preserve the typedef layer.
7960
7961 Otherwise, we might be transforming a typedef to a fat
7962 pointer (encoding a pointer to an unconstrained array),
7963 into a basic fat pointer (encoding an unconstrained
7964 array). As both types are implemented using the same
7965 structure, the typedef is the only clue which allows us
7966 to distinguish between the two options. Stripping it
7967 would prevent us from printing this field appropriately. */
7968 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7969 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7970 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7971 fld_bit_len =
4c4b4cd2
PH
7972 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7973 else
5ded5331
JB
7974 {
7975 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7976
7977 /* We need to be careful of typedefs when computing
7978 the length of our field. If this is a typedef,
7979 get the length of the target type, not the length
7980 of the typedef. */
7981 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7982 field_type = ada_typedef_target_type (field_type);
7983
7984 fld_bit_len =
7985 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7986 }
4c4b4cd2 7987 }
14f9c5c9 7988 if (off + fld_bit_len > bit_len)
4c4b4cd2 7989 bit_len = off + fld_bit_len;
d94e4f4f 7990 off += fld_bit_len;
4c4b4cd2
PH
7991 TYPE_LENGTH (rtype) =
7992 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7993 }
4c4b4cd2
PH
7994
7995 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7996 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7997 the record. This can happen in the presence of representation
7998 clauses. */
7999 if (variant_field >= 0)
8000 {
8001 struct type *branch_type;
8002
8003 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8004
8005 if (dval0 == NULL)
9f1f738a 8006 {
012370f6
TT
8007 /* Using plain value_from_contents_and_address here causes
8008 problems because we will end up trying to resolve a type
8009 that is currently being constructed. */
8010 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8011 address);
9f1f738a
SA
8012 rtype = value_type (dval);
8013 }
4c4b4cd2
PH
8014 else
8015 dval = dval0;
8016
8017 branch_type =
8018 to_fixed_variant_branch_type
8019 (TYPE_FIELD_TYPE (type, variant_field),
8020 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8021 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8022 if (branch_type == NULL)
8023 {
8024 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8025 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8026 TYPE_NFIELDS (rtype) -= 1;
8027 }
8028 else
8029 {
8030 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8031 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8032 fld_bit_len =
8033 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8034 TARGET_CHAR_BIT;
8035 if (off + fld_bit_len > bit_len)
8036 bit_len = off + fld_bit_len;
8037 TYPE_LENGTH (rtype) =
8038 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8039 }
8040 }
8041
714e53ab
PH
8042 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8043 should contain the alignment of that record, which should be a strictly
8044 positive value. If null or negative, then something is wrong, most
8045 probably in the debug info. In that case, we don't round up the size
0963b4bd 8046 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8047 the current RTYPE length might be good enough for our purposes. */
8048 if (TYPE_LENGTH (type) <= 0)
8049 {
323e0a4a
AC
8050 if (TYPE_NAME (rtype))
8051 warning (_("Invalid type size for `%s' detected: %d."),
8052 TYPE_NAME (rtype), TYPE_LENGTH (type));
8053 else
8054 warning (_("Invalid type size for <unnamed> detected: %d."),
8055 TYPE_LENGTH (type));
714e53ab
PH
8056 }
8057 else
8058 {
8059 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8060 TYPE_LENGTH (type));
8061 }
14f9c5c9
AS
8062
8063 value_free_to_mark (mark);
d2e4a39e 8064 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8065 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8066 return rtype;
8067}
8068
4c4b4cd2
PH
8069/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8070 of 1. */
14f9c5c9 8071
d2e4a39e 8072static struct type *
fc1a4b47 8073template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8074 CORE_ADDR address, struct value *dval0)
8075{
8076 return ada_template_to_fixed_record_type_1 (type, valaddr,
8077 address, dval0, 1);
8078}
8079
8080/* An ordinary record type in which ___XVL-convention fields and
8081 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8082 static approximations, containing all possible fields. Uses
8083 no runtime values. Useless for use in values, but that's OK,
8084 since the results are used only for type determinations. Works on both
8085 structs and unions. Representation note: to save space, we memorize
8086 the result of this function in the TYPE_TARGET_TYPE of the
8087 template type. */
8088
8089static struct type *
8090template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8091{
8092 struct type *type;
8093 int nfields;
8094 int f;
8095
4c4b4cd2
PH
8096 if (TYPE_TARGET_TYPE (type0) != NULL)
8097 return TYPE_TARGET_TYPE (type0);
8098
8099 nfields = TYPE_NFIELDS (type0);
8100 type = type0;
14f9c5c9
AS
8101
8102 for (f = 0; f < nfields; f += 1)
8103 {
61ee279c 8104 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 8105 struct type *new_type;
14f9c5c9 8106
4c4b4cd2
PH
8107 if (is_dynamic_field (type0, f))
8108 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 8109 else
f192137b 8110 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
8111 if (type == type0 && new_type != field_type)
8112 {
e9bb382b 8113 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
8114 TYPE_CODE (type) = TYPE_CODE (type0);
8115 INIT_CPLUS_SPECIFIC (type);
8116 TYPE_NFIELDS (type) = nfields;
8117 TYPE_FIELDS (type) = (struct field *)
8118 TYPE_ALLOC (type, nfields * sizeof (struct field));
8119 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8120 sizeof (struct field) * nfields);
8121 TYPE_NAME (type) = ada_type_name (type0);
8122 TYPE_TAG_NAME (type) = NULL;
876cecd0 8123 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
8124 TYPE_LENGTH (type) = 0;
8125 }
8126 TYPE_FIELD_TYPE (type, f) = new_type;
8127 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 8128 }
14f9c5c9
AS
8129 return type;
8130}
8131
4c4b4cd2 8132/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8133 whose address in memory is ADDRESS, returns a revision of TYPE,
8134 which should be a non-dynamic-sized record, in which the variant
8135 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8136 for discriminant values in DVAL0, which can be NULL if the record
8137 contains the necessary discriminant values. */
8138
d2e4a39e 8139static struct type *
fc1a4b47 8140to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8141 CORE_ADDR address, struct value *dval0)
14f9c5c9 8142{
d2e4a39e 8143 struct value *mark = value_mark ();
4c4b4cd2 8144 struct value *dval;
d2e4a39e 8145 struct type *rtype;
14f9c5c9
AS
8146 struct type *branch_type;
8147 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8148 int variant_field = variant_field_index (type);
14f9c5c9 8149
4c4b4cd2 8150 if (variant_field == -1)
14f9c5c9
AS
8151 return type;
8152
4c4b4cd2 8153 if (dval0 == NULL)
9f1f738a
SA
8154 {
8155 dval = value_from_contents_and_address (type, valaddr, address);
8156 type = value_type (dval);
8157 }
4c4b4cd2
PH
8158 else
8159 dval = dval0;
8160
e9bb382b 8161 rtype = alloc_type_copy (type);
14f9c5c9 8162 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8163 INIT_CPLUS_SPECIFIC (rtype);
8164 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8165 TYPE_FIELDS (rtype) =
8166 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8167 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8168 sizeof (struct field) * nfields);
14f9c5c9
AS
8169 TYPE_NAME (rtype) = ada_type_name (type);
8170 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8171 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8172 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8173
4c4b4cd2
PH
8174 branch_type = to_fixed_variant_branch_type
8175 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8176 cond_offset_host (valaddr,
4c4b4cd2
PH
8177 TYPE_FIELD_BITPOS (type, variant_field)
8178 / TARGET_CHAR_BIT),
d2e4a39e 8179 cond_offset_target (address,
4c4b4cd2
PH
8180 TYPE_FIELD_BITPOS (type, variant_field)
8181 / TARGET_CHAR_BIT), dval);
d2e4a39e 8182 if (branch_type == NULL)
14f9c5c9 8183 {
4c4b4cd2 8184 int f;
5b4ee69b 8185
4c4b4cd2
PH
8186 for (f = variant_field + 1; f < nfields; f += 1)
8187 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8188 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8189 }
8190 else
8191 {
4c4b4cd2
PH
8192 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8193 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8194 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8195 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8196 }
4c4b4cd2 8197 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8198
4c4b4cd2 8199 value_free_to_mark (mark);
14f9c5c9
AS
8200 return rtype;
8201}
8202
8203/* An ordinary record type (with fixed-length fields) that describes
8204 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8205 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8206 should be in DVAL, a record value; it may be NULL if the object
8207 at ADDR itself contains any necessary discriminant values.
8208 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8209 values from the record are needed. Except in the case that DVAL,
8210 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8211 unchecked) is replaced by a particular branch of the variant.
8212
8213 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8214 is questionable and may be removed. It can arise during the
8215 processing of an unconstrained-array-of-record type where all the
8216 variant branches have exactly the same size. This is because in
8217 such cases, the compiler does not bother to use the XVS convention
8218 when encoding the record. I am currently dubious of this
8219 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8220
d2e4a39e 8221static struct type *
fc1a4b47 8222to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8223 CORE_ADDR address, struct value *dval)
14f9c5c9 8224{
d2e4a39e 8225 struct type *templ_type;
14f9c5c9 8226
876cecd0 8227 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8228 return type0;
8229
d2e4a39e 8230 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8231
8232 if (templ_type != NULL)
8233 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8234 else if (variant_field_index (type0) >= 0)
8235 {
8236 if (dval == NULL && valaddr == NULL && address == 0)
8237 return type0;
8238 return to_record_with_fixed_variant_part (type0, valaddr, address,
8239 dval);
8240 }
14f9c5c9
AS
8241 else
8242 {
876cecd0 8243 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8244 return type0;
8245 }
8246
8247}
8248
8249/* An ordinary record type (with fixed-length fields) that describes
8250 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8251 union type. Any necessary discriminants' values should be in DVAL,
8252 a record value. That is, this routine selects the appropriate
8253 branch of the union at ADDR according to the discriminant value
b1f33ddd 8254 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8255 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8256
d2e4a39e 8257static struct type *
fc1a4b47 8258to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8259 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8260{
8261 int which;
d2e4a39e
AS
8262 struct type *templ_type;
8263 struct type *var_type;
14f9c5c9
AS
8264
8265 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8266 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8267 else
14f9c5c9
AS
8268 var_type = var_type0;
8269
8270 templ_type = ada_find_parallel_type (var_type, "___XVU");
8271
8272 if (templ_type != NULL)
8273 var_type = templ_type;
8274
b1f33ddd
JB
8275 if (is_unchecked_variant (var_type, value_type (dval)))
8276 return var_type0;
d2e4a39e
AS
8277 which =
8278 ada_which_variant_applies (var_type,
0fd88904 8279 value_type (dval), value_contents (dval));
14f9c5c9
AS
8280
8281 if (which < 0)
e9bb382b 8282 return empty_record (var_type);
14f9c5c9 8283 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8284 return to_fixed_record_type
d2e4a39e
AS
8285 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8286 valaddr, address, dval);
4c4b4cd2 8287 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8288 return
8289 to_fixed_record_type
8290 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8291 else
8292 return TYPE_FIELD_TYPE (var_type, which);
8293}
8294
8295/* Assuming that TYPE0 is an array type describing the type of a value
8296 at ADDR, and that DVAL describes a record containing any
8297 discriminants used in TYPE0, returns a type for the value that
8298 contains no dynamic components (that is, no components whose sizes
8299 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8300 true, gives an error message if the resulting type's size is over
4c4b4cd2 8301 varsize_limit. */
14f9c5c9 8302
d2e4a39e
AS
8303static struct type *
8304to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8305 int ignore_too_big)
14f9c5c9 8306{
d2e4a39e
AS
8307 struct type *index_type_desc;
8308 struct type *result;
ad82864c 8309 int constrained_packed_array_p;
14f9c5c9 8310
b0dd7688 8311 type0 = ada_check_typedef (type0);
284614f0 8312 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8313 return type0;
14f9c5c9 8314
ad82864c
JB
8315 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8316 if (constrained_packed_array_p)
8317 type0 = decode_constrained_packed_array_type (type0);
284614f0 8318
14f9c5c9 8319 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8320 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
8321 if (index_type_desc == NULL)
8322 {
61ee279c 8323 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8324
14f9c5c9 8325 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8326 depend on the contents of the array in properly constructed
8327 debugging data. */
529cad9c
PH
8328 /* Create a fixed version of the array element type.
8329 We're not providing the address of an element here,
e1d5a0d2 8330 and thus the actual object value cannot be inspected to do
529cad9c
PH
8331 the conversion. This should not be a problem, since arrays of
8332 unconstrained objects are not allowed. In particular, all
8333 the elements of an array of a tagged type should all be of
8334 the same type specified in the debugging info. No need to
8335 consult the object tag. */
1ed6ede0 8336 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8337
284614f0
JB
8338 /* Make sure we always create a new array type when dealing with
8339 packed array types, since we're going to fix-up the array
8340 type length and element bitsize a little further down. */
ad82864c 8341 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8342 result = type0;
14f9c5c9 8343 else
e9bb382b 8344 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8345 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8346 }
8347 else
8348 {
8349 int i;
8350 struct type *elt_type0;
8351
8352 elt_type0 = type0;
8353 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8354 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8355
8356 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8357 depend on the contents of the array in properly constructed
8358 debugging data. */
529cad9c
PH
8359 /* Create a fixed version of the array element type.
8360 We're not providing the address of an element here,
e1d5a0d2 8361 and thus the actual object value cannot be inspected to do
529cad9c
PH
8362 the conversion. This should not be a problem, since arrays of
8363 unconstrained objects are not allowed. In particular, all
8364 the elements of an array of a tagged type should all be of
8365 the same type specified in the debugging info. No need to
8366 consult the object tag. */
1ed6ede0
JB
8367 result =
8368 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8369
8370 elt_type0 = type0;
14f9c5c9 8371 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8372 {
8373 struct type *range_type =
28c85d6c 8374 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8375
e9bb382b 8376 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8377 result, range_type);
1ce677a4 8378 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8379 }
d2e4a39e 8380 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8381 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8382 }
8383
2e6fda7d
JB
8384 /* We want to preserve the type name. This can be useful when
8385 trying to get the type name of a value that has already been
8386 printed (for instance, if the user did "print VAR; whatis $". */
8387 TYPE_NAME (result) = TYPE_NAME (type0);
8388
ad82864c 8389 if (constrained_packed_array_p)
284614f0
JB
8390 {
8391 /* So far, the resulting type has been created as if the original
8392 type was a regular (non-packed) array type. As a result, the
8393 bitsize of the array elements needs to be set again, and the array
8394 length needs to be recomputed based on that bitsize. */
8395 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8396 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8397
8398 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8399 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8400 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8401 TYPE_LENGTH (result)++;
8402 }
8403
876cecd0 8404 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8405 return result;
d2e4a39e 8406}
14f9c5c9
AS
8407
8408
8409/* A standard type (containing no dynamically sized components)
8410 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8411 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8412 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8413 ADDRESS or in VALADDR contains these discriminants.
8414
1ed6ede0
JB
8415 If CHECK_TAG is not null, in the case of tagged types, this function
8416 attempts to locate the object's tag and use it to compute the actual
8417 type. However, when ADDRESS is null, we cannot use it to determine the
8418 location of the tag, and therefore compute the tagged type's actual type.
8419 So we return the tagged type without consulting the tag. */
529cad9c 8420
f192137b
JB
8421static struct type *
8422ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8423 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8424{
61ee279c 8425 type = ada_check_typedef (type);
d2e4a39e
AS
8426 switch (TYPE_CODE (type))
8427 {
8428 default:
14f9c5c9 8429 return type;
d2e4a39e 8430 case TYPE_CODE_STRUCT:
4c4b4cd2 8431 {
76a01679 8432 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8433 struct type *fixed_record_type =
8434 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8435
529cad9c
PH
8436 /* If STATIC_TYPE is a tagged type and we know the object's address,
8437 then we can determine its tag, and compute the object's actual
0963b4bd 8438 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8439 type (the parent part of the record may have dynamic fields
8440 and the way the location of _tag is expressed may depend on
8441 them). */
529cad9c 8442
1ed6ede0 8443 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8444 {
b50d69b5
JG
8445 struct value *tag =
8446 value_tag_from_contents_and_address
8447 (fixed_record_type,
8448 valaddr,
8449 address);
8450 struct type *real_type = type_from_tag (tag);
8451 struct value *obj =
8452 value_from_contents_and_address (fixed_record_type,
8453 valaddr,
8454 address);
9f1f738a 8455 fixed_record_type = value_type (obj);
76a01679 8456 if (real_type != NULL)
b50d69b5
JG
8457 return to_fixed_record_type
8458 (real_type, NULL,
8459 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8460 }
4af88198
JB
8461
8462 /* Check to see if there is a parallel ___XVZ variable.
8463 If there is, then it provides the actual size of our type. */
8464 else if (ada_type_name (fixed_record_type) != NULL)
8465 {
0d5cff50 8466 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8467 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8468 int xvz_found = 0;
8469 LONGEST size;
8470
88c15c34 8471 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8472 size = get_int_var_value (xvz_name, &xvz_found);
8473 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8474 {
8475 fixed_record_type = copy_type (fixed_record_type);
8476 TYPE_LENGTH (fixed_record_type) = size;
8477
8478 /* The FIXED_RECORD_TYPE may have be a stub. We have
8479 observed this when the debugging info is STABS, and
8480 apparently it is something that is hard to fix.
8481
8482 In practice, we don't need the actual type definition
8483 at all, because the presence of the XVZ variable allows us
8484 to assume that there must be a XVS type as well, which we
8485 should be able to use later, when we need the actual type
8486 definition.
8487
8488 In the meantime, pretend that the "fixed" type we are
8489 returning is NOT a stub, because this can cause trouble
8490 when using this type to create new types targeting it.
8491 Indeed, the associated creation routines often check
8492 whether the target type is a stub and will try to replace
0963b4bd 8493 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8494 might cause the new type to have the wrong size too.
8495 Consider the case of an array, for instance, where the size
8496 of the array is computed from the number of elements in
8497 our array multiplied by the size of its element. */
8498 TYPE_STUB (fixed_record_type) = 0;
8499 }
8500 }
1ed6ede0 8501 return fixed_record_type;
4c4b4cd2 8502 }
d2e4a39e 8503 case TYPE_CODE_ARRAY:
4c4b4cd2 8504 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8505 case TYPE_CODE_UNION:
8506 if (dval == NULL)
4c4b4cd2 8507 return type;
d2e4a39e 8508 else
4c4b4cd2 8509 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8510 }
14f9c5c9
AS
8511}
8512
f192137b
JB
8513/* The same as ada_to_fixed_type_1, except that it preserves the type
8514 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8515
8516 The typedef layer needs be preserved in order to differentiate between
8517 arrays and array pointers when both types are implemented using the same
8518 fat pointer. In the array pointer case, the pointer is encoded as
8519 a typedef of the pointer type. For instance, considering:
8520
8521 type String_Access is access String;
8522 S1 : String_Access := null;
8523
8524 To the debugger, S1 is defined as a typedef of type String. But
8525 to the user, it is a pointer. So if the user tries to print S1,
8526 we should not dereference the array, but print the array address
8527 instead.
8528
8529 If we didn't preserve the typedef layer, we would lose the fact that
8530 the type is to be presented as a pointer (needs de-reference before
8531 being printed). And we would also use the source-level type name. */
f192137b
JB
8532
8533struct type *
8534ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8535 CORE_ADDR address, struct value *dval, int check_tag)
8536
8537{
8538 struct type *fixed_type =
8539 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8540
96dbd2c1
JB
8541 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8542 then preserve the typedef layer.
8543
8544 Implementation note: We can only check the main-type portion of
8545 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8546 from TYPE now returns a type that has the same instance flags
8547 as TYPE. For instance, if TYPE is a "typedef const", and its
8548 target type is a "struct", then the typedef elimination will return
8549 a "const" version of the target type. See check_typedef for more
8550 details about how the typedef layer elimination is done.
8551
8552 brobecker/2010-11-19: It seems to me that the only case where it is
8553 useful to preserve the typedef layer is when dealing with fat pointers.
8554 Perhaps, we could add a check for that and preserve the typedef layer
8555 only in that situation. But this seems unecessary so far, probably
8556 because we call check_typedef/ada_check_typedef pretty much everywhere.
8557 */
f192137b 8558 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8559 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8560 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8561 return type;
8562
8563 return fixed_type;
8564}
8565
14f9c5c9 8566/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8567 TYPE0, but based on no runtime data. */
14f9c5c9 8568
d2e4a39e
AS
8569static struct type *
8570to_static_fixed_type (struct type *type0)
14f9c5c9 8571{
d2e4a39e 8572 struct type *type;
14f9c5c9
AS
8573
8574 if (type0 == NULL)
8575 return NULL;
8576
876cecd0 8577 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8578 return type0;
8579
61ee279c 8580 type0 = ada_check_typedef (type0);
d2e4a39e 8581
14f9c5c9
AS
8582 switch (TYPE_CODE (type0))
8583 {
8584 default:
8585 return type0;
8586 case TYPE_CODE_STRUCT:
8587 type = dynamic_template_type (type0);
d2e4a39e 8588 if (type != NULL)
4c4b4cd2
PH
8589 return template_to_static_fixed_type (type);
8590 else
8591 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8592 case TYPE_CODE_UNION:
8593 type = ada_find_parallel_type (type0, "___XVU");
8594 if (type != NULL)
4c4b4cd2
PH
8595 return template_to_static_fixed_type (type);
8596 else
8597 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8598 }
8599}
8600
4c4b4cd2
PH
8601/* A static approximation of TYPE with all type wrappers removed. */
8602
d2e4a39e
AS
8603static struct type *
8604static_unwrap_type (struct type *type)
14f9c5c9
AS
8605{
8606 if (ada_is_aligner_type (type))
8607 {
61ee279c 8608 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8609 if (ada_type_name (type1) == NULL)
4c4b4cd2 8610 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8611
8612 return static_unwrap_type (type1);
8613 }
d2e4a39e 8614 else
14f9c5c9 8615 {
d2e4a39e 8616 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8617
d2e4a39e 8618 if (raw_real_type == type)
4c4b4cd2 8619 return type;
14f9c5c9 8620 else
4c4b4cd2 8621 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8622 }
8623}
8624
8625/* In some cases, incomplete and private types require
4c4b4cd2 8626 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8627 type Foo;
8628 type FooP is access Foo;
8629 V: FooP;
8630 type Foo is array ...;
4c4b4cd2 8631 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8632 cross-references to such types, we instead substitute for FooP a
8633 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8634 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8635
8636/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8637 exists, otherwise TYPE. */
8638
d2e4a39e 8639struct type *
61ee279c 8640ada_check_typedef (struct type *type)
14f9c5c9 8641{
727e3d2e
JB
8642 if (type == NULL)
8643 return NULL;
8644
720d1a40
JB
8645 /* If our type is a typedef type of a fat pointer, then we're done.
8646 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8647 what allows us to distinguish between fat pointers that represent
8648 array types, and fat pointers that represent array access types
8649 (in both cases, the compiler implements them as fat pointers). */
8650 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8651 && is_thick_pntr (ada_typedef_target_type (type)))
8652 return type;
8653
14f9c5c9
AS
8654 CHECK_TYPEDEF (type);
8655 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8656 || !TYPE_STUB (type)
14f9c5c9
AS
8657 || TYPE_TAG_NAME (type) == NULL)
8658 return type;
d2e4a39e 8659 else
14f9c5c9 8660 {
0d5cff50 8661 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8662 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8663
05e522ef
JB
8664 if (type1 == NULL)
8665 return type;
8666
8667 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8668 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8669 types, only for the typedef-to-array types). If that's the case,
8670 strip the typedef layer. */
8671 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8672 type1 = ada_check_typedef (type1);
8673
8674 return type1;
14f9c5c9
AS
8675 }
8676}
8677
8678/* A value representing the data at VALADDR/ADDRESS as described by
8679 type TYPE0, but with a standard (static-sized) type that correctly
8680 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8681 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8682 creation of struct values]. */
14f9c5c9 8683
4c4b4cd2
PH
8684static struct value *
8685ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8686 struct value *val0)
14f9c5c9 8687{
1ed6ede0 8688 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8689
14f9c5c9
AS
8690 if (type == type0 && val0 != NULL)
8691 return val0;
d2e4a39e 8692 else
4c4b4cd2
PH
8693 return value_from_contents_and_address (type, 0, address);
8694}
8695
8696/* A value representing VAL, but with a standard (static-sized) type
8697 that correctly describes it. Does not necessarily create a new
8698 value. */
8699
0c3acc09 8700struct value *
4c4b4cd2
PH
8701ada_to_fixed_value (struct value *val)
8702{
c48db5ca
JB
8703 val = unwrap_value (val);
8704 val = ada_to_fixed_value_create (value_type (val),
8705 value_address (val),
8706 val);
8707 return val;
14f9c5c9 8708}
d2e4a39e 8709\f
14f9c5c9 8710
14f9c5c9
AS
8711/* Attributes */
8712
4c4b4cd2
PH
8713/* Table mapping attribute numbers to names.
8714 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8715
d2e4a39e 8716static const char *attribute_names[] = {
14f9c5c9
AS
8717 "<?>",
8718
d2e4a39e 8719 "first",
14f9c5c9
AS
8720 "last",
8721 "length",
8722 "image",
14f9c5c9
AS
8723 "max",
8724 "min",
4c4b4cd2
PH
8725 "modulus",
8726 "pos",
8727 "size",
8728 "tag",
14f9c5c9 8729 "val",
14f9c5c9
AS
8730 0
8731};
8732
d2e4a39e 8733const char *
4c4b4cd2 8734ada_attribute_name (enum exp_opcode n)
14f9c5c9 8735{
4c4b4cd2
PH
8736 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8737 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8738 else
8739 return attribute_names[0];
8740}
8741
4c4b4cd2 8742/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8743
4c4b4cd2
PH
8744static LONGEST
8745pos_atr (struct value *arg)
14f9c5c9 8746{
24209737
PH
8747 struct value *val = coerce_ref (arg);
8748 struct type *type = value_type (val);
14f9c5c9 8749
d2e4a39e 8750 if (!discrete_type_p (type))
323e0a4a 8751 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8752
8753 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8754 {
8755 int i;
24209737 8756 LONGEST v = value_as_long (val);
14f9c5c9 8757
d2e4a39e 8758 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8759 {
14e75d8e 8760 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8761 return i;
8762 }
323e0a4a 8763 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8764 }
8765 else
24209737 8766 return value_as_long (val);
4c4b4cd2
PH
8767}
8768
8769static struct value *
3cb382c9 8770value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8771{
3cb382c9 8772 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8773}
8774
4c4b4cd2 8775/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8776
d2e4a39e
AS
8777static struct value *
8778value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8779{
d2e4a39e 8780 if (!discrete_type_p (type))
323e0a4a 8781 error (_("'VAL only defined on discrete types"));
df407dfe 8782 if (!integer_type_p (value_type (arg)))
323e0a4a 8783 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8784
8785 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8786 {
8787 long pos = value_as_long (arg);
5b4ee69b 8788
14f9c5c9 8789 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8790 error (_("argument to 'VAL out of range"));
14e75d8e 8791 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8792 }
8793 else
8794 return value_from_longest (type, value_as_long (arg));
8795}
14f9c5c9 8796\f
d2e4a39e 8797
4c4b4cd2 8798 /* Evaluation */
14f9c5c9 8799
4c4b4cd2
PH
8800/* True if TYPE appears to be an Ada character type.
8801 [At the moment, this is true only for Character and Wide_Character;
8802 It is a heuristic test that could stand improvement]. */
14f9c5c9 8803
d2e4a39e
AS
8804int
8805ada_is_character_type (struct type *type)
14f9c5c9 8806{
7b9f71f2
JB
8807 const char *name;
8808
8809 /* If the type code says it's a character, then assume it really is,
8810 and don't check any further. */
8811 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8812 return 1;
8813
8814 /* Otherwise, assume it's a character type iff it is a discrete type
8815 with a known character type name. */
8816 name = ada_type_name (type);
8817 return (name != NULL
8818 && (TYPE_CODE (type) == TYPE_CODE_INT
8819 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8820 && (strcmp (name, "character") == 0
8821 || strcmp (name, "wide_character") == 0
5a517ebd 8822 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8823 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8824}
8825
4c4b4cd2 8826/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8827
8828int
ebf56fd3 8829ada_is_string_type (struct type *type)
14f9c5c9 8830{
61ee279c 8831 type = ada_check_typedef (type);
d2e4a39e 8832 if (type != NULL
14f9c5c9 8833 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8834 && (ada_is_simple_array_type (type)
8835 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8836 && ada_array_arity (type) == 1)
8837 {
8838 struct type *elttype = ada_array_element_type (type, 1);
8839
8840 return ada_is_character_type (elttype);
8841 }
d2e4a39e 8842 else
14f9c5c9
AS
8843 return 0;
8844}
8845
5bf03f13
JB
8846/* The compiler sometimes provides a parallel XVS type for a given
8847 PAD type. Normally, it is safe to follow the PAD type directly,
8848 but older versions of the compiler have a bug that causes the offset
8849 of its "F" field to be wrong. Following that field in that case
8850 would lead to incorrect results, but this can be worked around
8851 by ignoring the PAD type and using the associated XVS type instead.
8852
8853 Set to True if the debugger should trust the contents of PAD types.
8854 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8855static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8856
8857/* True if TYPE is a struct type introduced by the compiler to force the
8858 alignment of a value. Such types have a single field with a
4c4b4cd2 8859 distinctive name. */
14f9c5c9
AS
8860
8861int
ebf56fd3 8862ada_is_aligner_type (struct type *type)
14f9c5c9 8863{
61ee279c 8864 type = ada_check_typedef (type);
714e53ab 8865
5bf03f13 8866 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8867 return 0;
8868
14f9c5c9 8869 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8870 && TYPE_NFIELDS (type) == 1
8871 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8872}
8873
8874/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8875 the parallel type. */
14f9c5c9 8876
d2e4a39e
AS
8877struct type *
8878ada_get_base_type (struct type *raw_type)
14f9c5c9 8879{
d2e4a39e
AS
8880 struct type *real_type_namer;
8881 struct type *raw_real_type;
14f9c5c9
AS
8882
8883 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8884 return raw_type;
8885
284614f0
JB
8886 if (ada_is_aligner_type (raw_type))
8887 /* The encoding specifies that we should always use the aligner type.
8888 So, even if this aligner type has an associated XVS type, we should
8889 simply ignore it.
8890
8891 According to the compiler gurus, an XVS type parallel to an aligner
8892 type may exist because of a stabs limitation. In stabs, aligner
8893 types are empty because the field has a variable-sized type, and
8894 thus cannot actually be used as an aligner type. As a result,
8895 we need the associated parallel XVS type to decode the type.
8896 Since the policy in the compiler is to not change the internal
8897 representation based on the debugging info format, we sometimes
8898 end up having a redundant XVS type parallel to the aligner type. */
8899 return raw_type;
8900
14f9c5c9 8901 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8902 if (real_type_namer == NULL
14f9c5c9
AS
8903 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8904 || TYPE_NFIELDS (real_type_namer) != 1)
8905 return raw_type;
8906
f80d3ff2
JB
8907 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8908 {
8909 /* This is an older encoding form where the base type needs to be
8910 looked up by name. We prefer the newer enconding because it is
8911 more efficient. */
8912 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8913 if (raw_real_type == NULL)
8914 return raw_type;
8915 else
8916 return raw_real_type;
8917 }
8918
8919 /* The field in our XVS type is a reference to the base type. */
8920 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8921}
14f9c5c9 8922
4c4b4cd2 8923/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8924
d2e4a39e
AS
8925struct type *
8926ada_aligned_type (struct type *type)
14f9c5c9
AS
8927{
8928 if (ada_is_aligner_type (type))
8929 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8930 else
8931 return ada_get_base_type (type);
8932}
8933
8934
8935/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8936 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8937
fc1a4b47
AC
8938const gdb_byte *
8939ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8940{
d2e4a39e 8941 if (ada_is_aligner_type (type))
14f9c5c9 8942 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8943 valaddr +
8944 TYPE_FIELD_BITPOS (type,
8945 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8946 else
8947 return valaddr;
8948}
8949
4c4b4cd2
PH
8950
8951
14f9c5c9 8952/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8953 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8954const char *
8955ada_enum_name (const char *name)
14f9c5c9 8956{
4c4b4cd2
PH
8957 static char *result;
8958 static size_t result_len = 0;
d2e4a39e 8959 char *tmp;
14f9c5c9 8960
4c4b4cd2
PH
8961 /* First, unqualify the enumeration name:
8962 1. Search for the last '.' character. If we find one, then skip
177b42fe 8963 all the preceding characters, the unqualified name starts
76a01679 8964 right after that dot.
4c4b4cd2 8965 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8966 translates dots into "__". Search forward for double underscores,
8967 but stop searching when we hit an overloading suffix, which is
8968 of the form "__" followed by digits. */
4c4b4cd2 8969
c3e5cd34
PH
8970 tmp = strrchr (name, '.');
8971 if (tmp != NULL)
4c4b4cd2
PH
8972 name = tmp + 1;
8973 else
14f9c5c9 8974 {
4c4b4cd2
PH
8975 while ((tmp = strstr (name, "__")) != NULL)
8976 {
8977 if (isdigit (tmp[2]))
8978 break;
8979 else
8980 name = tmp + 2;
8981 }
14f9c5c9
AS
8982 }
8983
8984 if (name[0] == 'Q')
8985 {
14f9c5c9 8986 int v;
5b4ee69b 8987
14f9c5c9 8988 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8989 {
8990 if (sscanf (name + 2, "%x", &v) != 1)
8991 return name;
8992 }
14f9c5c9 8993 else
4c4b4cd2 8994 return name;
14f9c5c9 8995
4c4b4cd2 8996 GROW_VECT (result, result_len, 16);
14f9c5c9 8997 if (isascii (v) && isprint (v))
88c15c34 8998 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8999 else if (name[1] == 'U')
88c15c34 9000 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9001 else
88c15c34 9002 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9003
9004 return result;
9005 }
d2e4a39e 9006 else
4c4b4cd2 9007 {
c3e5cd34
PH
9008 tmp = strstr (name, "__");
9009 if (tmp == NULL)
9010 tmp = strstr (name, "$");
9011 if (tmp != NULL)
4c4b4cd2
PH
9012 {
9013 GROW_VECT (result, result_len, tmp - name + 1);
9014 strncpy (result, name, tmp - name);
9015 result[tmp - name] = '\0';
9016 return result;
9017 }
9018
9019 return name;
9020 }
14f9c5c9
AS
9021}
9022
14f9c5c9
AS
9023/* Evaluate the subexpression of EXP starting at *POS as for
9024 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9025 expression. */
14f9c5c9 9026
d2e4a39e
AS
9027static struct value *
9028evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9029{
4b27a620 9030 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9031}
9032
9033/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9034 value it wraps. */
14f9c5c9 9035
d2e4a39e
AS
9036static struct value *
9037unwrap_value (struct value *val)
14f9c5c9 9038{
df407dfe 9039 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9040
14f9c5c9
AS
9041 if (ada_is_aligner_type (type))
9042 {
de4d072f 9043 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9044 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9045
14f9c5c9 9046 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9047 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9048
9049 return unwrap_value (v);
9050 }
d2e4a39e 9051 else
14f9c5c9 9052 {
d2e4a39e 9053 struct type *raw_real_type =
61ee279c 9054 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9055
5bf03f13
JB
9056 /* If there is no parallel XVS or XVE type, then the value is
9057 already unwrapped. Return it without further modification. */
9058 if ((type == raw_real_type)
9059 && ada_find_parallel_type (type, "___XVE") == NULL)
9060 return val;
14f9c5c9 9061
d2e4a39e 9062 return
4c4b4cd2
PH
9063 coerce_unspec_val_to_type
9064 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9065 value_address (val),
1ed6ede0 9066 NULL, 1));
14f9c5c9
AS
9067 }
9068}
d2e4a39e
AS
9069
9070static struct value *
9071cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9072{
9073 LONGEST val;
9074
df407dfe 9075 if (type == value_type (arg))
14f9c5c9 9076 return arg;
df407dfe 9077 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9078 val = ada_float_to_fixed (type,
df407dfe 9079 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9080 value_as_long (arg)));
d2e4a39e 9081 else
14f9c5c9 9082 {
a53b7a21 9083 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9084
14f9c5c9
AS
9085 val = ada_float_to_fixed (type, argd);
9086 }
9087
9088 return value_from_longest (type, val);
9089}
9090
d2e4a39e 9091static struct value *
a53b7a21 9092cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9093{
df407dfe 9094 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9095 value_as_long (arg));
5b4ee69b 9096
a53b7a21 9097 return value_from_double (type, val);
14f9c5c9
AS
9098}
9099
d99dcf51
JB
9100/* Given two array types T1 and T2, return nonzero iff both arrays
9101 contain the same number of elements. */
9102
9103static int
9104ada_same_array_size_p (struct type *t1, struct type *t2)
9105{
9106 LONGEST lo1, hi1, lo2, hi2;
9107
9108 /* Get the array bounds in order to verify that the size of
9109 the two arrays match. */
9110 if (!get_array_bounds (t1, &lo1, &hi1)
9111 || !get_array_bounds (t2, &lo2, &hi2))
9112 error (_("unable to determine array bounds"));
9113
9114 /* To make things easier for size comparison, normalize a bit
9115 the case of empty arrays by making sure that the difference
9116 between upper bound and lower bound is always -1. */
9117 if (lo1 > hi1)
9118 hi1 = lo1 - 1;
9119 if (lo2 > hi2)
9120 hi2 = lo2 - 1;
9121
9122 return (hi1 - lo1 == hi2 - lo2);
9123}
9124
9125/* Assuming that VAL is an array of integrals, and TYPE represents
9126 an array with the same number of elements, but with wider integral
9127 elements, return an array "casted" to TYPE. In practice, this
9128 means that the returned array is built by casting each element
9129 of the original array into TYPE's (wider) element type. */
9130
9131static struct value *
9132ada_promote_array_of_integrals (struct type *type, struct value *val)
9133{
9134 struct type *elt_type = TYPE_TARGET_TYPE (type);
9135 LONGEST lo, hi;
9136 struct value *res;
9137 LONGEST i;
9138
9139 /* Verify that both val and type are arrays of scalars, and
9140 that the size of val's elements is smaller than the size
9141 of type's element. */
9142 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9143 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9144 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9145 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9146 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9147 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9148
9149 if (!get_array_bounds (type, &lo, &hi))
9150 error (_("unable to determine array bounds"));
9151
9152 res = allocate_value (type);
9153
9154 /* Promote each array element. */
9155 for (i = 0; i < hi - lo + 1; i++)
9156 {
9157 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9158
9159 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9160 value_contents_all (elt), TYPE_LENGTH (elt_type));
9161 }
9162
9163 return res;
9164}
9165
4c4b4cd2
PH
9166/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9167 return the converted value. */
9168
d2e4a39e
AS
9169static struct value *
9170coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9171{
df407dfe 9172 struct type *type2 = value_type (val);
5b4ee69b 9173
14f9c5c9
AS
9174 if (type == type2)
9175 return val;
9176
61ee279c
PH
9177 type2 = ada_check_typedef (type2);
9178 type = ada_check_typedef (type);
14f9c5c9 9179
d2e4a39e
AS
9180 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9181 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9182 {
9183 val = ada_value_ind (val);
df407dfe 9184 type2 = value_type (val);
14f9c5c9
AS
9185 }
9186
d2e4a39e 9187 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9188 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9189 {
d99dcf51
JB
9190 if (!ada_same_array_size_p (type, type2))
9191 error (_("cannot assign arrays of different length"));
9192
9193 if (is_integral_type (TYPE_TARGET_TYPE (type))
9194 && is_integral_type (TYPE_TARGET_TYPE (type2))
9195 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9196 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9197 {
9198 /* Allow implicit promotion of the array elements to
9199 a wider type. */
9200 return ada_promote_array_of_integrals (type, val);
9201 }
9202
9203 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9204 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9205 error (_("Incompatible types in assignment"));
04624583 9206 deprecated_set_value_type (val, type);
14f9c5c9 9207 }
d2e4a39e 9208 return val;
14f9c5c9
AS
9209}
9210
4c4b4cd2
PH
9211static struct value *
9212ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9213{
9214 struct value *val;
9215 struct type *type1, *type2;
9216 LONGEST v, v1, v2;
9217
994b9211
AC
9218 arg1 = coerce_ref (arg1);
9219 arg2 = coerce_ref (arg2);
18af8284
JB
9220 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9221 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9222
76a01679
JB
9223 if (TYPE_CODE (type1) != TYPE_CODE_INT
9224 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9225 return value_binop (arg1, arg2, op);
9226
76a01679 9227 switch (op)
4c4b4cd2
PH
9228 {
9229 case BINOP_MOD:
9230 case BINOP_DIV:
9231 case BINOP_REM:
9232 break;
9233 default:
9234 return value_binop (arg1, arg2, op);
9235 }
9236
9237 v2 = value_as_long (arg2);
9238 if (v2 == 0)
323e0a4a 9239 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9240
9241 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9242 return value_binop (arg1, arg2, op);
9243
9244 v1 = value_as_long (arg1);
9245 switch (op)
9246 {
9247 case BINOP_DIV:
9248 v = v1 / v2;
76a01679
JB
9249 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9250 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9251 break;
9252 case BINOP_REM:
9253 v = v1 % v2;
76a01679
JB
9254 if (v * v1 < 0)
9255 v -= v2;
4c4b4cd2
PH
9256 break;
9257 default:
9258 /* Should not reach this point. */
9259 v = 0;
9260 }
9261
9262 val = allocate_value (type1);
990a07ab 9263 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9264 TYPE_LENGTH (value_type (val)),
9265 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9266 return val;
9267}
9268
9269static int
9270ada_value_equal (struct value *arg1, struct value *arg2)
9271{
df407dfe
AC
9272 if (ada_is_direct_array_type (value_type (arg1))
9273 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9274 {
f58b38bf
JB
9275 /* Automatically dereference any array reference before
9276 we attempt to perform the comparison. */
9277 arg1 = ada_coerce_ref (arg1);
9278 arg2 = ada_coerce_ref (arg2);
9279
4c4b4cd2
PH
9280 arg1 = ada_coerce_to_simple_array (arg1);
9281 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9282 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9283 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9284 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9285 /* FIXME: The following works only for types whose
76a01679
JB
9286 representations use all bits (no padding or undefined bits)
9287 and do not have user-defined equality. */
9288 return
df407dfe 9289 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9290 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9291 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9292 }
9293 return value_equal (arg1, arg2);
9294}
9295
52ce6436
PH
9296/* Total number of component associations in the aggregate starting at
9297 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9298 OP_AGGREGATE. */
52ce6436
PH
9299
9300static int
9301num_component_specs (struct expression *exp, int pc)
9302{
9303 int n, m, i;
5b4ee69b 9304
52ce6436
PH
9305 m = exp->elts[pc + 1].longconst;
9306 pc += 3;
9307 n = 0;
9308 for (i = 0; i < m; i += 1)
9309 {
9310 switch (exp->elts[pc].opcode)
9311 {
9312 default:
9313 n += 1;
9314 break;
9315 case OP_CHOICES:
9316 n += exp->elts[pc + 1].longconst;
9317 break;
9318 }
9319 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9320 }
9321 return n;
9322}
9323
9324/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9325 component of LHS (a simple array or a record), updating *POS past
9326 the expression, assuming that LHS is contained in CONTAINER. Does
9327 not modify the inferior's memory, nor does it modify LHS (unless
9328 LHS == CONTAINER). */
9329
9330static void
9331assign_component (struct value *container, struct value *lhs, LONGEST index,
9332 struct expression *exp, int *pos)
9333{
9334 struct value *mark = value_mark ();
9335 struct value *elt;
5b4ee69b 9336
52ce6436
PH
9337 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9338 {
22601c15
UW
9339 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9340 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9341
52ce6436
PH
9342 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9343 }
9344 else
9345 {
9346 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9347 elt = ada_to_fixed_value (elt);
52ce6436
PH
9348 }
9349
9350 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9351 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9352 else
9353 value_assign_to_component (container, elt,
9354 ada_evaluate_subexp (NULL, exp, pos,
9355 EVAL_NORMAL));
9356
9357 value_free_to_mark (mark);
9358}
9359
9360/* Assuming that LHS represents an lvalue having a record or array
9361 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9362 of that aggregate's value to LHS, advancing *POS past the
9363 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9364 lvalue containing LHS (possibly LHS itself). Does not modify
9365 the inferior's memory, nor does it modify the contents of
0963b4bd 9366 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9367
9368static struct value *
9369assign_aggregate (struct value *container,
9370 struct value *lhs, struct expression *exp,
9371 int *pos, enum noside noside)
9372{
9373 struct type *lhs_type;
9374 int n = exp->elts[*pos+1].longconst;
9375 LONGEST low_index, high_index;
9376 int num_specs;
9377 LONGEST *indices;
9378 int max_indices, num_indices;
52ce6436 9379 int i;
52ce6436
PH
9380
9381 *pos += 3;
9382 if (noside != EVAL_NORMAL)
9383 {
52ce6436
PH
9384 for (i = 0; i < n; i += 1)
9385 ada_evaluate_subexp (NULL, exp, pos, noside);
9386 return container;
9387 }
9388
9389 container = ada_coerce_ref (container);
9390 if (ada_is_direct_array_type (value_type (container)))
9391 container = ada_coerce_to_simple_array (container);
9392 lhs = ada_coerce_ref (lhs);
9393 if (!deprecated_value_modifiable (lhs))
9394 error (_("Left operand of assignment is not a modifiable lvalue."));
9395
9396 lhs_type = value_type (lhs);
9397 if (ada_is_direct_array_type (lhs_type))
9398 {
9399 lhs = ada_coerce_to_simple_array (lhs);
9400 lhs_type = value_type (lhs);
9401 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9402 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9403 }
9404 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9405 {
9406 low_index = 0;
9407 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9408 }
9409 else
9410 error (_("Left-hand side must be array or record."));
9411
9412 num_specs = num_component_specs (exp, *pos - 3);
9413 max_indices = 4 * num_specs + 4;
9414 indices = alloca (max_indices * sizeof (indices[0]));
9415 indices[0] = indices[1] = low_index - 1;
9416 indices[2] = indices[3] = high_index + 1;
9417 num_indices = 4;
9418
9419 for (i = 0; i < n; i += 1)
9420 {
9421 switch (exp->elts[*pos].opcode)
9422 {
1fbf5ada
JB
9423 case OP_CHOICES:
9424 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9425 &num_indices, max_indices,
9426 low_index, high_index);
9427 break;
9428 case OP_POSITIONAL:
9429 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9430 &num_indices, max_indices,
9431 low_index, high_index);
1fbf5ada
JB
9432 break;
9433 case OP_OTHERS:
9434 if (i != n-1)
9435 error (_("Misplaced 'others' clause"));
9436 aggregate_assign_others (container, lhs, exp, pos, indices,
9437 num_indices, low_index, high_index);
9438 break;
9439 default:
9440 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9441 }
9442 }
9443
9444 return container;
9445}
9446
9447/* Assign into the component of LHS indexed by the OP_POSITIONAL
9448 construct at *POS, updating *POS past the construct, given that
9449 the positions are relative to lower bound LOW, where HIGH is the
9450 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9451 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9452 assign_aggregate. */
52ce6436
PH
9453static void
9454aggregate_assign_positional (struct value *container,
9455 struct value *lhs, struct expression *exp,
9456 int *pos, LONGEST *indices, int *num_indices,
9457 int max_indices, LONGEST low, LONGEST high)
9458{
9459 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9460
9461 if (ind - 1 == high)
e1d5a0d2 9462 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9463 if (ind <= high)
9464 {
9465 add_component_interval (ind, ind, indices, num_indices, max_indices);
9466 *pos += 3;
9467 assign_component (container, lhs, ind, exp, pos);
9468 }
9469 else
9470 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9471}
9472
9473/* Assign into the components of LHS indexed by the OP_CHOICES
9474 construct at *POS, updating *POS past the construct, given that
9475 the allowable indices are LOW..HIGH. Record the indices assigned
9476 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9477 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9478static void
9479aggregate_assign_from_choices (struct value *container,
9480 struct value *lhs, struct expression *exp,
9481 int *pos, LONGEST *indices, int *num_indices,
9482 int max_indices, LONGEST low, LONGEST high)
9483{
9484 int j;
9485 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9486 int choice_pos, expr_pc;
9487 int is_array = ada_is_direct_array_type (value_type (lhs));
9488
9489 choice_pos = *pos += 3;
9490
9491 for (j = 0; j < n_choices; j += 1)
9492 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9493 expr_pc = *pos;
9494 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9495
9496 for (j = 0; j < n_choices; j += 1)
9497 {
9498 LONGEST lower, upper;
9499 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9500
52ce6436
PH
9501 if (op == OP_DISCRETE_RANGE)
9502 {
9503 choice_pos += 1;
9504 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9505 EVAL_NORMAL));
9506 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9507 EVAL_NORMAL));
9508 }
9509 else if (is_array)
9510 {
9511 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9512 EVAL_NORMAL));
9513 upper = lower;
9514 }
9515 else
9516 {
9517 int ind;
0d5cff50 9518 const char *name;
5b4ee69b 9519
52ce6436
PH
9520 switch (op)
9521 {
9522 case OP_NAME:
9523 name = &exp->elts[choice_pos + 2].string;
9524 break;
9525 case OP_VAR_VALUE:
9526 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9527 break;
9528 default:
9529 error (_("Invalid record component association."));
9530 }
9531 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9532 ind = 0;
9533 if (! find_struct_field (name, value_type (lhs), 0,
9534 NULL, NULL, NULL, NULL, &ind))
9535 error (_("Unknown component name: %s."), name);
9536 lower = upper = ind;
9537 }
9538
9539 if (lower <= upper && (lower < low || upper > high))
9540 error (_("Index in component association out of bounds."));
9541
9542 add_component_interval (lower, upper, indices, num_indices,
9543 max_indices);
9544 while (lower <= upper)
9545 {
9546 int pos1;
5b4ee69b 9547
52ce6436
PH
9548 pos1 = expr_pc;
9549 assign_component (container, lhs, lower, exp, &pos1);
9550 lower += 1;
9551 }
9552 }
9553}
9554
9555/* Assign the value of the expression in the OP_OTHERS construct in
9556 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9557 have not been previously assigned. The index intervals already assigned
9558 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9559 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9560static void
9561aggregate_assign_others (struct value *container,
9562 struct value *lhs, struct expression *exp,
9563 int *pos, LONGEST *indices, int num_indices,
9564 LONGEST low, LONGEST high)
9565{
9566 int i;
5ce64950 9567 int expr_pc = *pos + 1;
52ce6436
PH
9568
9569 for (i = 0; i < num_indices - 2; i += 2)
9570 {
9571 LONGEST ind;
5b4ee69b 9572
52ce6436
PH
9573 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9574 {
5ce64950 9575 int localpos;
5b4ee69b 9576
5ce64950
MS
9577 localpos = expr_pc;
9578 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9579 }
9580 }
9581 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9582}
9583
9584/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9585 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9586 modifying *SIZE as needed. It is an error if *SIZE exceeds
9587 MAX_SIZE. The resulting intervals do not overlap. */
9588static void
9589add_component_interval (LONGEST low, LONGEST high,
9590 LONGEST* indices, int *size, int max_size)
9591{
9592 int i, j;
5b4ee69b 9593
52ce6436
PH
9594 for (i = 0; i < *size; i += 2) {
9595 if (high >= indices[i] && low <= indices[i + 1])
9596 {
9597 int kh;
5b4ee69b 9598
52ce6436
PH
9599 for (kh = i + 2; kh < *size; kh += 2)
9600 if (high < indices[kh])
9601 break;
9602 if (low < indices[i])
9603 indices[i] = low;
9604 indices[i + 1] = indices[kh - 1];
9605 if (high > indices[i + 1])
9606 indices[i + 1] = high;
9607 memcpy (indices + i + 2, indices + kh, *size - kh);
9608 *size -= kh - i - 2;
9609 return;
9610 }
9611 else if (high < indices[i])
9612 break;
9613 }
9614
9615 if (*size == max_size)
9616 error (_("Internal error: miscounted aggregate components."));
9617 *size += 2;
9618 for (j = *size-1; j >= i+2; j -= 1)
9619 indices[j] = indices[j - 2];
9620 indices[i] = low;
9621 indices[i + 1] = high;
9622}
9623
6e48bd2c
JB
9624/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9625 is different. */
9626
9627static struct value *
9628ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9629{
9630 if (type == ada_check_typedef (value_type (arg2)))
9631 return arg2;
9632
9633 if (ada_is_fixed_point_type (type))
9634 return (cast_to_fixed (type, arg2));
9635
9636 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9637 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9638
9639 return value_cast (type, arg2);
9640}
9641
284614f0
JB
9642/* Evaluating Ada expressions, and printing their result.
9643 ------------------------------------------------------
9644
21649b50
JB
9645 1. Introduction:
9646 ----------------
9647
284614f0
JB
9648 We usually evaluate an Ada expression in order to print its value.
9649 We also evaluate an expression in order to print its type, which
9650 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9651 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9652 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9653 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9654 similar.
9655
9656 Evaluating expressions is a little more complicated for Ada entities
9657 than it is for entities in languages such as C. The main reason for
9658 this is that Ada provides types whose definition might be dynamic.
9659 One example of such types is variant records. Or another example
9660 would be an array whose bounds can only be known at run time.
9661
9662 The following description is a general guide as to what should be
9663 done (and what should NOT be done) in order to evaluate an expression
9664 involving such types, and when. This does not cover how the semantic
9665 information is encoded by GNAT as this is covered separatly. For the
9666 document used as the reference for the GNAT encoding, see exp_dbug.ads
9667 in the GNAT sources.
9668
9669 Ideally, we should embed each part of this description next to its
9670 associated code. Unfortunately, the amount of code is so vast right
9671 now that it's hard to see whether the code handling a particular
9672 situation might be duplicated or not. One day, when the code is
9673 cleaned up, this guide might become redundant with the comments
9674 inserted in the code, and we might want to remove it.
9675
21649b50
JB
9676 2. ``Fixing'' an Entity, the Simple Case:
9677 -----------------------------------------
9678
284614f0
JB
9679 When evaluating Ada expressions, the tricky issue is that they may
9680 reference entities whose type contents and size are not statically
9681 known. Consider for instance a variant record:
9682
9683 type Rec (Empty : Boolean := True) is record
9684 case Empty is
9685 when True => null;
9686 when False => Value : Integer;
9687 end case;
9688 end record;
9689 Yes : Rec := (Empty => False, Value => 1);
9690 No : Rec := (empty => True);
9691
9692 The size and contents of that record depends on the value of the
9693 descriminant (Rec.Empty). At this point, neither the debugging
9694 information nor the associated type structure in GDB are able to
9695 express such dynamic types. So what the debugger does is to create
9696 "fixed" versions of the type that applies to the specific object.
9697 We also informally refer to this opperation as "fixing" an object,
9698 which means creating its associated fixed type.
9699
9700 Example: when printing the value of variable "Yes" above, its fixed
9701 type would look like this:
9702
9703 type Rec is record
9704 Empty : Boolean;
9705 Value : Integer;
9706 end record;
9707
9708 On the other hand, if we printed the value of "No", its fixed type
9709 would become:
9710
9711 type Rec is record
9712 Empty : Boolean;
9713 end record;
9714
9715 Things become a little more complicated when trying to fix an entity
9716 with a dynamic type that directly contains another dynamic type,
9717 such as an array of variant records, for instance. There are
9718 two possible cases: Arrays, and records.
9719
21649b50
JB
9720 3. ``Fixing'' Arrays:
9721 ---------------------
9722
9723 The type structure in GDB describes an array in terms of its bounds,
9724 and the type of its elements. By design, all elements in the array
9725 have the same type and we cannot represent an array of variant elements
9726 using the current type structure in GDB. When fixing an array,
9727 we cannot fix the array element, as we would potentially need one
9728 fixed type per element of the array. As a result, the best we can do
9729 when fixing an array is to produce an array whose bounds and size
9730 are correct (allowing us to read it from memory), but without having
9731 touched its element type. Fixing each element will be done later,
9732 when (if) necessary.
9733
9734 Arrays are a little simpler to handle than records, because the same
9735 amount of memory is allocated for each element of the array, even if
1b536f04 9736 the amount of space actually used by each element differs from element
21649b50 9737 to element. Consider for instance the following array of type Rec:
284614f0
JB
9738
9739 type Rec_Array is array (1 .. 2) of Rec;
9740
1b536f04
JB
9741 The actual amount of memory occupied by each element might be different
9742 from element to element, depending on the value of their discriminant.
21649b50 9743 But the amount of space reserved for each element in the array remains
1b536f04 9744 fixed regardless. So we simply need to compute that size using
21649b50
JB
9745 the debugging information available, from which we can then determine
9746 the array size (we multiply the number of elements of the array by
9747 the size of each element).
9748
9749 The simplest case is when we have an array of a constrained element
9750 type. For instance, consider the following type declarations:
9751
9752 type Bounded_String (Max_Size : Integer) is
9753 Length : Integer;
9754 Buffer : String (1 .. Max_Size);
9755 end record;
9756 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9757
9758 In this case, the compiler describes the array as an array of
9759 variable-size elements (identified by its XVS suffix) for which
9760 the size can be read in the parallel XVZ variable.
9761
9762 In the case of an array of an unconstrained element type, the compiler
9763 wraps the array element inside a private PAD type. This type should not
9764 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9765 that we also use the adjective "aligner" in our code to designate
9766 these wrapper types.
9767
1b536f04 9768 In some cases, the size allocated for each element is statically
21649b50
JB
9769 known. In that case, the PAD type already has the correct size,
9770 and the array element should remain unfixed.
9771
9772 But there are cases when this size is not statically known.
9773 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9774
9775 type Dynamic is array (1 .. Five) of Integer;
9776 type Wrapper (Has_Length : Boolean := False) is record
9777 Data : Dynamic;
9778 case Has_Length is
9779 when True => Length : Integer;
9780 when False => null;
9781 end case;
9782 end record;
9783 type Wrapper_Array is array (1 .. 2) of Wrapper;
9784
9785 Hello : Wrapper_Array := (others => (Has_Length => True,
9786 Data => (others => 17),
9787 Length => 1));
9788
9789
9790 The debugging info would describe variable Hello as being an
9791 array of a PAD type. The size of that PAD type is not statically
9792 known, but can be determined using a parallel XVZ variable.
9793 In that case, a copy of the PAD type with the correct size should
9794 be used for the fixed array.
9795
21649b50
JB
9796 3. ``Fixing'' record type objects:
9797 ----------------------------------
9798
9799 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9800 record types. In this case, in order to compute the associated
9801 fixed type, we need to determine the size and offset of each of
9802 its components. This, in turn, requires us to compute the fixed
9803 type of each of these components.
9804
9805 Consider for instance the example:
9806
9807 type Bounded_String (Max_Size : Natural) is record
9808 Str : String (1 .. Max_Size);
9809 Length : Natural;
9810 end record;
9811 My_String : Bounded_String (Max_Size => 10);
9812
9813 In that case, the position of field "Length" depends on the size
9814 of field Str, which itself depends on the value of the Max_Size
21649b50 9815 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9816 we need to fix the type of field Str. Therefore, fixing a variant
9817 record requires us to fix each of its components.
9818
9819 However, if a component does not have a dynamic size, the component
9820 should not be fixed. In particular, fields that use a PAD type
9821 should not fixed. Here is an example where this might happen
9822 (assuming type Rec above):
9823
9824 type Container (Big : Boolean) is record
9825 First : Rec;
9826 After : Integer;
9827 case Big is
9828 when True => Another : Integer;
9829 when False => null;
9830 end case;
9831 end record;
9832 My_Container : Container := (Big => False,
9833 First => (Empty => True),
9834 After => 42);
9835
9836 In that example, the compiler creates a PAD type for component First,
9837 whose size is constant, and then positions the component After just
9838 right after it. The offset of component After is therefore constant
9839 in this case.
9840
9841 The debugger computes the position of each field based on an algorithm
9842 that uses, among other things, the actual position and size of the field
21649b50
JB
9843 preceding it. Let's now imagine that the user is trying to print
9844 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9845 end up computing the offset of field After based on the size of the
9846 fixed version of field First. And since in our example First has
9847 only one actual field, the size of the fixed type is actually smaller
9848 than the amount of space allocated to that field, and thus we would
9849 compute the wrong offset of field After.
9850
21649b50
JB
9851 To make things more complicated, we need to watch out for dynamic
9852 components of variant records (identified by the ___XVL suffix in
9853 the component name). Even if the target type is a PAD type, the size
9854 of that type might not be statically known. So the PAD type needs
9855 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9856 we might end up with the wrong size for our component. This can be
9857 observed with the following type declarations:
284614f0
JB
9858
9859 type Octal is new Integer range 0 .. 7;
9860 type Octal_Array is array (Positive range <>) of Octal;
9861 pragma Pack (Octal_Array);
9862
9863 type Octal_Buffer (Size : Positive) is record
9864 Buffer : Octal_Array (1 .. Size);
9865 Length : Integer;
9866 end record;
9867
9868 In that case, Buffer is a PAD type whose size is unset and needs
9869 to be computed by fixing the unwrapped type.
9870
21649b50
JB
9871 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9872 ----------------------------------------------------------
9873
9874 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9875 thus far, be actually fixed?
9876
9877 The answer is: Only when referencing that element. For instance
9878 when selecting one component of a record, this specific component
9879 should be fixed at that point in time. Or when printing the value
9880 of a record, each component should be fixed before its value gets
9881 printed. Similarly for arrays, the element of the array should be
9882 fixed when printing each element of the array, or when extracting
9883 one element out of that array. On the other hand, fixing should
9884 not be performed on the elements when taking a slice of an array!
9885
9886 Note that one of the side-effects of miscomputing the offset and
9887 size of each field is that we end up also miscomputing the size
9888 of the containing type. This can have adverse results when computing
9889 the value of an entity. GDB fetches the value of an entity based
9890 on the size of its type, and thus a wrong size causes GDB to fetch
9891 the wrong amount of memory. In the case where the computed size is
9892 too small, GDB fetches too little data to print the value of our
9893 entiry. Results in this case as unpredicatble, as we usually read
9894 past the buffer containing the data =:-o. */
9895
9896/* Implement the evaluate_exp routine in the exp_descriptor structure
9897 for the Ada language. */
9898
52ce6436 9899static struct value *
ebf56fd3 9900ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9901 int *pos, enum noside noside)
14f9c5c9
AS
9902{
9903 enum exp_opcode op;
b5385fc0 9904 int tem;
14f9c5c9 9905 int pc;
5ec18f2b 9906 int preeval_pos;
14f9c5c9
AS
9907 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9908 struct type *type;
52ce6436 9909 int nargs, oplen;
d2e4a39e 9910 struct value **argvec;
14f9c5c9 9911
d2e4a39e
AS
9912 pc = *pos;
9913 *pos += 1;
14f9c5c9
AS
9914 op = exp->elts[pc].opcode;
9915
d2e4a39e 9916 switch (op)
14f9c5c9
AS
9917 {
9918 default:
9919 *pos -= 1;
6e48bd2c 9920 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9921
9922 if (noside == EVAL_NORMAL)
9923 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9924
9925 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9926 then we need to perform the conversion manually, because
9927 evaluate_subexp_standard doesn't do it. This conversion is
9928 necessary in Ada because the different kinds of float/fixed
9929 types in Ada have different representations.
9930
9931 Similarly, we need to perform the conversion from OP_LONG
9932 ourselves. */
9933 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9934 arg1 = ada_value_cast (expect_type, arg1, noside);
9935
9936 return arg1;
4c4b4cd2
PH
9937
9938 case OP_STRING:
9939 {
76a01679 9940 struct value *result;
5b4ee69b 9941
76a01679
JB
9942 *pos -= 1;
9943 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9944 /* The result type will have code OP_STRING, bashed there from
9945 OP_ARRAY. Bash it back. */
df407dfe
AC
9946 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9947 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9948 return result;
4c4b4cd2 9949 }
14f9c5c9
AS
9950
9951 case UNOP_CAST:
9952 (*pos) += 2;
9953 type = exp->elts[pc + 1].type;
9954 arg1 = evaluate_subexp (type, exp, pos, noside);
9955 if (noside == EVAL_SKIP)
4c4b4cd2 9956 goto nosideret;
6e48bd2c 9957 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9958 return arg1;
9959
4c4b4cd2
PH
9960 case UNOP_QUAL:
9961 (*pos) += 2;
9962 type = exp->elts[pc + 1].type;
9963 return ada_evaluate_subexp (type, exp, pos, noside);
9964
14f9c5c9
AS
9965 case BINOP_ASSIGN:
9966 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9967 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9968 {
9969 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9970 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9971 return arg1;
9972 return ada_value_assign (arg1, arg1);
9973 }
003f3813
JB
9974 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9975 except if the lhs of our assignment is a convenience variable.
9976 In the case of assigning to a convenience variable, the lhs
9977 should be exactly the result of the evaluation of the rhs. */
9978 type = value_type (arg1);
9979 if (VALUE_LVAL (arg1) == lval_internalvar)
9980 type = NULL;
9981 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9982 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9983 return arg1;
df407dfe
AC
9984 if (ada_is_fixed_point_type (value_type (arg1)))
9985 arg2 = cast_to_fixed (value_type (arg1), arg2);
9986 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9987 error
323e0a4a 9988 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9989 else
df407dfe 9990 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9991 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9992
9993 case BINOP_ADD:
9994 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9995 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9996 if (noside == EVAL_SKIP)
4c4b4cd2 9997 goto nosideret;
2ac8a782
JB
9998 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9999 return (value_from_longest
10000 (value_type (arg1),
10001 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10002 if ((ada_is_fixed_point_type (value_type (arg1))
10003 || ada_is_fixed_point_type (value_type (arg2)))
10004 && value_type (arg1) != value_type (arg2))
323e0a4a 10005 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10006 /* Do the addition, and cast the result to the type of the first
10007 argument. We cannot cast the result to a reference type, so if
10008 ARG1 is a reference type, find its underlying type. */
10009 type = value_type (arg1);
10010 while (TYPE_CODE (type) == TYPE_CODE_REF)
10011 type = TYPE_TARGET_TYPE (type);
f44316fa 10012 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10013 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10014
10015 case BINOP_SUB:
10016 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10017 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10018 if (noside == EVAL_SKIP)
4c4b4cd2 10019 goto nosideret;
2ac8a782
JB
10020 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10021 return (value_from_longest
10022 (value_type (arg1),
10023 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10024 if ((ada_is_fixed_point_type (value_type (arg1))
10025 || ada_is_fixed_point_type (value_type (arg2)))
10026 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10027 error (_("Operands of fixed-point subtraction "
10028 "must have the same type"));
b7789565
JB
10029 /* Do the substraction, and cast the result to the type of the first
10030 argument. We cannot cast the result to a reference type, so if
10031 ARG1 is a reference type, find its underlying type. */
10032 type = value_type (arg1);
10033 while (TYPE_CODE (type) == TYPE_CODE_REF)
10034 type = TYPE_TARGET_TYPE (type);
f44316fa 10035 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10036 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10037
10038 case BINOP_MUL:
10039 case BINOP_DIV:
e1578042
JB
10040 case BINOP_REM:
10041 case BINOP_MOD:
14f9c5c9
AS
10042 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10043 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10044 if (noside == EVAL_SKIP)
4c4b4cd2 10045 goto nosideret;
e1578042 10046 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10047 {
10048 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10049 return value_zero (value_type (arg1), not_lval);
10050 }
14f9c5c9 10051 else
4c4b4cd2 10052 {
a53b7a21 10053 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10054 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10055 arg1 = cast_from_fixed (type, arg1);
df407dfe 10056 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10057 arg2 = cast_from_fixed (type, arg2);
f44316fa 10058 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10059 return ada_value_binop (arg1, arg2, op);
10060 }
10061
4c4b4cd2
PH
10062 case BINOP_EQUAL:
10063 case BINOP_NOTEQUAL:
14f9c5c9 10064 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10065 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10066 if (noside == EVAL_SKIP)
76a01679 10067 goto nosideret;
4c4b4cd2 10068 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10069 tem = 0;
4c4b4cd2 10070 else
f44316fa
UW
10071 {
10072 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10073 tem = ada_value_equal (arg1, arg2);
10074 }
4c4b4cd2 10075 if (op == BINOP_NOTEQUAL)
76a01679 10076 tem = !tem;
fbb06eb1
UW
10077 type = language_bool_type (exp->language_defn, exp->gdbarch);
10078 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10079
10080 case UNOP_NEG:
10081 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10082 if (noside == EVAL_SKIP)
10083 goto nosideret;
df407dfe
AC
10084 else if (ada_is_fixed_point_type (value_type (arg1)))
10085 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10086 else
f44316fa
UW
10087 {
10088 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10089 return value_neg (arg1);
10090 }
4c4b4cd2 10091
2330c6c6
JB
10092 case BINOP_LOGICAL_AND:
10093 case BINOP_LOGICAL_OR:
10094 case UNOP_LOGICAL_NOT:
000d5124
JB
10095 {
10096 struct value *val;
10097
10098 *pos -= 1;
10099 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10100 type = language_bool_type (exp->language_defn, exp->gdbarch);
10101 return value_cast (type, val);
000d5124 10102 }
2330c6c6
JB
10103
10104 case BINOP_BITWISE_AND:
10105 case BINOP_BITWISE_IOR:
10106 case BINOP_BITWISE_XOR:
000d5124
JB
10107 {
10108 struct value *val;
10109
10110 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10111 *pos = pc;
10112 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10113
10114 return value_cast (value_type (arg1), val);
10115 }
2330c6c6 10116
14f9c5c9
AS
10117 case OP_VAR_VALUE:
10118 *pos -= 1;
6799def4 10119
14f9c5c9 10120 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10121 {
10122 *pos += 4;
10123 goto nosideret;
10124 }
10125 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10126 /* Only encountered when an unresolved symbol occurs in a
10127 context other than a function call, in which case, it is
52ce6436 10128 invalid. */
323e0a4a 10129 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10130 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 10131 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10132 {
0c1f74cf 10133 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10134 /* Check to see if this is a tagged type. We also need to handle
10135 the case where the type is a reference to a tagged type, but
10136 we have to be careful to exclude pointers to tagged types.
10137 The latter should be shown as usual (as a pointer), whereas
10138 a reference should mostly be transparent to the user. */
10139 if (ada_is_tagged_type (type, 0)
023db19c 10140 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10141 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
10142 {
10143 /* Tagged types are a little special in the fact that the real
10144 type is dynamic and can only be determined by inspecting the
10145 object's tag. This means that we need to get the object's
10146 value first (EVAL_NORMAL) and then extract the actual object
10147 type from its tag.
10148
10149 Note that we cannot skip the final step where we extract
10150 the object type from its tag, because the EVAL_NORMAL phase
10151 results in dynamic components being resolved into fixed ones.
10152 This can cause problems when trying to print the type
10153 description of tagged types whose parent has a dynamic size:
10154 We use the type name of the "_parent" component in order
10155 to print the name of the ancestor type in the type description.
10156 If that component had a dynamic size, the resolution into
10157 a fixed type would result in the loss of that type name,
10158 thus preventing us from printing the name of the ancestor
10159 type in the type description. */
10160 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b50d69b5
JG
10161
10162 if (TYPE_CODE (type) != TYPE_CODE_REF)
10163 {
10164 struct type *actual_type;
10165
10166 actual_type = type_from_tag (ada_value_tag (arg1));
10167 if (actual_type == NULL)
10168 /* If, for some reason, we were unable to determine
10169 the actual type from the tag, then use the static
10170 approximation that we just computed as a fallback.
10171 This can happen if the debugging information is
10172 incomplete, for instance. */
10173 actual_type = type;
10174 return value_zero (actual_type, not_lval);
10175 }
10176 else
10177 {
10178 /* In the case of a ref, ada_coerce_ref takes care
10179 of determining the actual type. But the evaluation
10180 should return a ref as it should be valid to ask
10181 for its address; so rebuild a ref after coerce. */
10182 arg1 = ada_coerce_ref (arg1);
10183 return value_ref (arg1);
10184 }
0c1f74cf
JB
10185 }
10186
4c4b4cd2 10187 *pos += 4;
52865325 10188 return value_zero (to_static_fixed_type (type), not_lval);
4c4b4cd2 10189 }
d2e4a39e 10190 else
4c4b4cd2 10191 {
284614f0 10192 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
10193 return ada_to_fixed_value (arg1);
10194 }
10195
10196 case OP_FUNCALL:
10197 (*pos) += 2;
10198
10199 /* Allocate arg vector, including space for the function to be
10200 called in argvec[0] and a terminating NULL. */
10201 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10202 argvec =
10203 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10204
10205 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10206 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10207 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10208 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10209 else
10210 {
10211 for (tem = 0; tem <= nargs; tem += 1)
10212 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10213 argvec[tem] = 0;
10214
10215 if (noside == EVAL_SKIP)
10216 goto nosideret;
10217 }
10218
ad82864c
JB
10219 if (ada_is_constrained_packed_array_type
10220 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10221 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10222 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10223 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10224 /* This is a packed array that has already been fixed, and
10225 therefore already coerced to a simple array. Nothing further
10226 to do. */
10227 ;
df407dfe
AC
10228 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10229 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10230 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10231 argvec[0] = value_addr (argvec[0]);
10232
df407dfe 10233 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10234
10235 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10236 them. So, if this is an array typedef (encoding use for array
10237 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10238 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10239 type = ada_typedef_target_type (type);
10240
4c4b4cd2
PH
10241 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10242 {
61ee279c 10243 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10244 {
10245 case TYPE_CODE_FUNC:
61ee279c 10246 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10247 break;
10248 case TYPE_CODE_ARRAY:
10249 break;
10250 case TYPE_CODE_STRUCT:
10251 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10252 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10253 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10254 break;
10255 default:
323e0a4a 10256 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10257 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10258 break;
10259 }
10260 }
10261
10262 switch (TYPE_CODE (type))
10263 {
10264 case TYPE_CODE_FUNC:
10265 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10266 {
10267 struct type *rtype = TYPE_TARGET_TYPE (type);
10268
10269 if (TYPE_GNU_IFUNC (type))
10270 return allocate_value (TYPE_TARGET_TYPE (rtype));
10271 return allocate_value (rtype);
10272 }
4c4b4cd2 10273 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10274 case TYPE_CODE_INTERNAL_FUNCTION:
10275 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10276 /* We don't know anything about what the internal
10277 function might return, but we have to return
10278 something. */
10279 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10280 not_lval);
10281 else
10282 return call_internal_function (exp->gdbarch, exp->language_defn,
10283 argvec[0], nargs, argvec + 1);
10284
4c4b4cd2
PH
10285 case TYPE_CODE_STRUCT:
10286 {
10287 int arity;
10288
4c4b4cd2
PH
10289 arity = ada_array_arity (type);
10290 type = ada_array_element_type (type, nargs);
10291 if (type == NULL)
323e0a4a 10292 error (_("cannot subscript or call a record"));
4c4b4cd2 10293 if (arity != nargs)
323e0a4a 10294 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10295 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10296 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10297 return
10298 unwrap_value (ada_value_subscript
10299 (argvec[0], nargs, argvec + 1));
10300 }
10301 case TYPE_CODE_ARRAY:
10302 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10303 {
10304 type = ada_array_element_type (type, nargs);
10305 if (type == NULL)
323e0a4a 10306 error (_("element type of array unknown"));
4c4b4cd2 10307 else
0a07e705 10308 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10309 }
10310 return
10311 unwrap_value (ada_value_subscript
10312 (ada_coerce_to_simple_array (argvec[0]),
10313 nargs, argvec + 1));
10314 case TYPE_CODE_PTR: /* Pointer to array */
10315 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10316 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10317 {
10318 type = ada_array_element_type (type, nargs);
10319 if (type == NULL)
323e0a4a 10320 error (_("element type of array unknown"));
4c4b4cd2 10321 else
0a07e705 10322 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10323 }
10324 return
10325 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10326 nargs, argvec + 1));
10327
10328 default:
e1d5a0d2
PH
10329 error (_("Attempt to index or call something other than an "
10330 "array or function"));
4c4b4cd2
PH
10331 }
10332
10333 case TERNOP_SLICE:
10334 {
10335 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10336 struct value *low_bound_val =
10337 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10338 struct value *high_bound_val =
10339 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10340 LONGEST low_bound;
10341 LONGEST high_bound;
5b4ee69b 10342
994b9211
AC
10343 low_bound_val = coerce_ref (low_bound_val);
10344 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10345 low_bound = pos_atr (low_bound_val);
10346 high_bound = pos_atr (high_bound_val);
963a6417 10347
4c4b4cd2
PH
10348 if (noside == EVAL_SKIP)
10349 goto nosideret;
10350
4c4b4cd2
PH
10351 /* If this is a reference to an aligner type, then remove all
10352 the aligners. */
df407dfe
AC
10353 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10354 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10355 TYPE_TARGET_TYPE (value_type (array)) =
10356 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10357
ad82864c 10358 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10359 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10360
10361 /* If this is a reference to an array or an array lvalue,
10362 convert to a pointer. */
df407dfe
AC
10363 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10364 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10365 && VALUE_LVAL (array) == lval_memory))
10366 array = value_addr (array);
10367
1265e4aa 10368 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10369 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10370 (value_type (array))))
0b5d8877 10371 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10372
10373 array = ada_coerce_to_simple_array_ptr (array);
10374
714e53ab
PH
10375 /* If we have more than one level of pointer indirection,
10376 dereference the value until we get only one level. */
df407dfe
AC
10377 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10378 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10379 == TYPE_CODE_PTR))
10380 array = value_ind (array);
10381
10382 /* Make sure we really do have an array type before going further,
10383 to avoid a SEGV when trying to get the index type or the target
10384 type later down the road if the debug info generated by
10385 the compiler is incorrect or incomplete. */
df407dfe 10386 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10387 error (_("cannot take slice of non-array"));
714e53ab 10388
828292f2
JB
10389 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10390 == TYPE_CODE_PTR)
4c4b4cd2 10391 {
828292f2
JB
10392 struct type *type0 = ada_check_typedef (value_type (array));
10393
0b5d8877 10394 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10395 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10396 else
10397 {
10398 struct type *arr_type0 =
828292f2 10399 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10400
f5938064
JG
10401 return ada_value_slice_from_ptr (array, arr_type0,
10402 longest_to_int (low_bound),
10403 longest_to_int (high_bound));
4c4b4cd2
PH
10404 }
10405 }
10406 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10407 return array;
10408 else if (high_bound < low_bound)
df407dfe 10409 return empty_array (value_type (array), low_bound);
4c4b4cd2 10410 else
529cad9c
PH
10411 return ada_value_slice (array, longest_to_int (low_bound),
10412 longest_to_int (high_bound));
4c4b4cd2 10413 }
14f9c5c9 10414
4c4b4cd2
PH
10415 case UNOP_IN_RANGE:
10416 (*pos) += 2;
10417 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10418 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10419
14f9c5c9 10420 if (noside == EVAL_SKIP)
4c4b4cd2 10421 goto nosideret;
14f9c5c9 10422
4c4b4cd2
PH
10423 switch (TYPE_CODE (type))
10424 {
10425 default:
e1d5a0d2
PH
10426 lim_warning (_("Membership test incompletely implemented; "
10427 "always returns true"));
fbb06eb1
UW
10428 type = language_bool_type (exp->language_defn, exp->gdbarch);
10429 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10430
10431 case TYPE_CODE_RANGE:
030b4912
UW
10432 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10433 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10434 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10435 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10436 type = language_bool_type (exp->language_defn, exp->gdbarch);
10437 return
10438 value_from_longest (type,
4c4b4cd2
PH
10439 (value_less (arg1, arg3)
10440 || value_equal (arg1, arg3))
10441 && (value_less (arg2, arg1)
10442 || value_equal (arg2, arg1)));
10443 }
10444
10445 case BINOP_IN_BOUNDS:
14f9c5c9 10446 (*pos) += 2;
4c4b4cd2
PH
10447 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10448 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10449
4c4b4cd2
PH
10450 if (noside == EVAL_SKIP)
10451 goto nosideret;
14f9c5c9 10452
4c4b4cd2 10453 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10454 {
10455 type = language_bool_type (exp->language_defn, exp->gdbarch);
10456 return value_zero (type, not_lval);
10457 }
14f9c5c9 10458
4c4b4cd2 10459 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10460
1eea4ebd
UW
10461 type = ada_index_type (value_type (arg2), tem, "range");
10462 if (!type)
10463 type = value_type (arg1);
14f9c5c9 10464
1eea4ebd
UW
10465 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10466 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10467
f44316fa
UW
10468 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10469 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10470 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10471 return
fbb06eb1 10472 value_from_longest (type,
4c4b4cd2
PH
10473 (value_less (arg1, arg3)
10474 || value_equal (arg1, arg3))
10475 && (value_less (arg2, arg1)
10476 || value_equal (arg2, arg1)));
10477
10478 case TERNOP_IN_RANGE:
10479 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10480 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10481 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10482
10483 if (noside == EVAL_SKIP)
10484 goto nosideret;
10485
f44316fa
UW
10486 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10487 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10488 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10489 return
fbb06eb1 10490 value_from_longest (type,
4c4b4cd2
PH
10491 (value_less (arg1, arg3)
10492 || value_equal (arg1, arg3))
10493 && (value_less (arg2, arg1)
10494 || value_equal (arg2, arg1)));
10495
10496 case OP_ATR_FIRST:
10497 case OP_ATR_LAST:
10498 case OP_ATR_LENGTH:
10499 {
76a01679 10500 struct type *type_arg;
5b4ee69b 10501
76a01679
JB
10502 if (exp->elts[*pos].opcode == OP_TYPE)
10503 {
10504 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10505 arg1 = NULL;
5bc23cb3 10506 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10507 }
10508 else
10509 {
10510 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10511 type_arg = NULL;
10512 }
10513
10514 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10515 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10516 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10517 *pos += 4;
10518
10519 if (noside == EVAL_SKIP)
10520 goto nosideret;
10521
10522 if (type_arg == NULL)
10523 {
10524 arg1 = ada_coerce_ref (arg1);
10525
ad82864c 10526 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10527 arg1 = ada_coerce_to_simple_array (arg1);
10528
aa4fb036 10529 if (op == OP_ATR_LENGTH)
1eea4ebd 10530 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10531 else
10532 {
10533 type = ada_index_type (value_type (arg1), tem,
10534 ada_attribute_name (op));
10535 if (type == NULL)
10536 type = builtin_type (exp->gdbarch)->builtin_int;
10537 }
76a01679
JB
10538
10539 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10540 return allocate_value (type);
76a01679
JB
10541
10542 switch (op)
10543 {
10544 default: /* Should never happen. */
323e0a4a 10545 error (_("unexpected attribute encountered"));
76a01679 10546 case OP_ATR_FIRST:
1eea4ebd
UW
10547 return value_from_longest
10548 (type, ada_array_bound (arg1, tem, 0));
76a01679 10549 case OP_ATR_LAST:
1eea4ebd
UW
10550 return value_from_longest
10551 (type, ada_array_bound (arg1, tem, 1));
76a01679 10552 case OP_ATR_LENGTH:
1eea4ebd
UW
10553 return value_from_longest
10554 (type, ada_array_length (arg1, tem));
76a01679
JB
10555 }
10556 }
10557 else if (discrete_type_p (type_arg))
10558 {
10559 struct type *range_type;
0d5cff50 10560 const char *name = ada_type_name (type_arg);
5b4ee69b 10561
76a01679
JB
10562 range_type = NULL;
10563 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10564 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10565 if (range_type == NULL)
10566 range_type = type_arg;
10567 switch (op)
10568 {
10569 default:
323e0a4a 10570 error (_("unexpected attribute encountered"));
76a01679 10571 case OP_ATR_FIRST:
690cc4eb 10572 return value_from_longest
43bbcdc2 10573 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10574 case OP_ATR_LAST:
690cc4eb 10575 return value_from_longest
43bbcdc2 10576 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10577 case OP_ATR_LENGTH:
323e0a4a 10578 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10579 }
10580 }
10581 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10582 error (_("unimplemented type attribute"));
76a01679
JB
10583 else
10584 {
10585 LONGEST low, high;
10586
ad82864c
JB
10587 if (ada_is_constrained_packed_array_type (type_arg))
10588 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10589
aa4fb036 10590 if (op == OP_ATR_LENGTH)
1eea4ebd 10591 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10592 else
10593 {
10594 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10595 if (type == NULL)
10596 type = builtin_type (exp->gdbarch)->builtin_int;
10597 }
1eea4ebd 10598
76a01679
JB
10599 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10600 return allocate_value (type);
10601
10602 switch (op)
10603 {
10604 default:
323e0a4a 10605 error (_("unexpected attribute encountered"));
76a01679 10606 case OP_ATR_FIRST:
1eea4ebd 10607 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10608 return value_from_longest (type, low);
10609 case OP_ATR_LAST:
1eea4ebd 10610 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10611 return value_from_longest (type, high);
10612 case OP_ATR_LENGTH:
1eea4ebd
UW
10613 low = ada_array_bound_from_type (type_arg, tem, 0);
10614 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10615 return value_from_longest (type, high - low + 1);
10616 }
10617 }
14f9c5c9
AS
10618 }
10619
4c4b4cd2
PH
10620 case OP_ATR_TAG:
10621 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10622 if (noside == EVAL_SKIP)
76a01679 10623 goto nosideret;
4c4b4cd2
PH
10624
10625 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10626 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10627
10628 return ada_value_tag (arg1);
10629
10630 case OP_ATR_MIN:
10631 case OP_ATR_MAX:
10632 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10633 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10634 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10635 if (noside == EVAL_SKIP)
76a01679 10636 goto nosideret;
d2e4a39e 10637 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10638 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10639 else
f44316fa
UW
10640 {
10641 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10642 return value_binop (arg1, arg2,
10643 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10644 }
14f9c5c9 10645
4c4b4cd2
PH
10646 case OP_ATR_MODULUS:
10647 {
31dedfee 10648 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10649
5b4ee69b 10650 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10651 if (noside == EVAL_SKIP)
10652 goto nosideret;
4c4b4cd2 10653
76a01679 10654 if (!ada_is_modular_type (type_arg))
323e0a4a 10655 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10656
76a01679
JB
10657 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10658 ada_modulus (type_arg));
4c4b4cd2
PH
10659 }
10660
10661
10662 case OP_ATR_POS:
10663 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10664 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10665 if (noside == EVAL_SKIP)
76a01679 10666 goto nosideret;
3cb382c9
UW
10667 type = builtin_type (exp->gdbarch)->builtin_int;
10668 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10669 return value_zero (type, not_lval);
14f9c5c9 10670 else
3cb382c9 10671 return value_pos_atr (type, arg1);
14f9c5c9 10672
4c4b4cd2
PH
10673 case OP_ATR_SIZE:
10674 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10675 type = value_type (arg1);
10676
10677 /* If the argument is a reference, then dereference its type, since
10678 the user is really asking for the size of the actual object,
10679 not the size of the pointer. */
10680 if (TYPE_CODE (type) == TYPE_CODE_REF)
10681 type = TYPE_TARGET_TYPE (type);
10682
4c4b4cd2 10683 if (noside == EVAL_SKIP)
76a01679 10684 goto nosideret;
4c4b4cd2 10685 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10686 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10687 else
22601c15 10688 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10689 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10690
10691 case OP_ATR_VAL:
10692 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10693 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10694 type = exp->elts[pc + 2].type;
14f9c5c9 10695 if (noside == EVAL_SKIP)
76a01679 10696 goto nosideret;
4c4b4cd2 10697 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10698 return value_zero (type, not_lval);
4c4b4cd2 10699 else
76a01679 10700 return value_val_atr (type, arg1);
4c4b4cd2
PH
10701
10702 case BINOP_EXP:
10703 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10704 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10705 if (noside == EVAL_SKIP)
10706 goto nosideret;
10707 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10708 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10709 else
f44316fa
UW
10710 {
10711 /* For integer exponentiation operations,
10712 only promote the first argument. */
10713 if (is_integral_type (value_type (arg2)))
10714 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10715 else
10716 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10717
10718 return value_binop (arg1, arg2, op);
10719 }
4c4b4cd2
PH
10720
10721 case UNOP_PLUS:
10722 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10723 if (noside == EVAL_SKIP)
10724 goto nosideret;
10725 else
10726 return arg1;
10727
10728 case UNOP_ABS:
10729 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10730 if (noside == EVAL_SKIP)
10731 goto nosideret;
f44316fa 10732 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10733 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10734 return value_neg (arg1);
14f9c5c9 10735 else
4c4b4cd2 10736 return arg1;
14f9c5c9
AS
10737
10738 case UNOP_IND:
5ec18f2b 10739 preeval_pos = *pos;
6b0d7253 10740 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10741 if (noside == EVAL_SKIP)
4c4b4cd2 10742 goto nosideret;
df407dfe 10743 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10744 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10745 {
10746 if (ada_is_array_descriptor_type (type))
10747 /* GDB allows dereferencing GNAT array descriptors. */
10748 {
10749 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10750
4c4b4cd2 10751 if (arrType == NULL)
323e0a4a 10752 error (_("Attempt to dereference null array pointer."));
00a4c844 10753 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10754 }
10755 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10756 || TYPE_CODE (type) == TYPE_CODE_REF
10757 /* In C you can dereference an array to get the 1st elt. */
10758 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 10759 {
5ec18f2b
JG
10760 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10761 only be determined by inspecting the object's tag.
10762 This means that we need to evaluate completely the
10763 expression in order to get its type. */
10764
023db19c
JB
10765 if ((TYPE_CODE (type) == TYPE_CODE_REF
10766 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
10767 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10768 {
10769 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10770 EVAL_NORMAL);
10771 type = value_type (ada_value_ind (arg1));
10772 }
10773 else
10774 {
10775 type = to_static_fixed_type
10776 (ada_aligned_type
10777 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10778 }
10779 check_size (type);
714e53ab
PH
10780 return value_zero (type, lval_memory);
10781 }
4c4b4cd2 10782 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10783 {
10784 /* GDB allows dereferencing an int. */
10785 if (expect_type == NULL)
10786 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10787 lval_memory);
10788 else
10789 {
10790 expect_type =
10791 to_static_fixed_type (ada_aligned_type (expect_type));
10792 return value_zero (expect_type, lval_memory);
10793 }
10794 }
4c4b4cd2 10795 else
323e0a4a 10796 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10797 }
0963b4bd 10798 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10799 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10800
96967637
JB
10801 if (TYPE_CODE (type) == TYPE_CODE_INT)
10802 /* GDB allows dereferencing an int. If we were given
10803 the expect_type, then use that as the target type.
10804 Otherwise, assume that the target type is an int. */
10805 {
10806 if (expect_type != NULL)
10807 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10808 arg1));
10809 else
10810 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10811 (CORE_ADDR) value_as_address (arg1));
10812 }
6b0d7253 10813
4c4b4cd2
PH
10814 if (ada_is_array_descriptor_type (type))
10815 /* GDB allows dereferencing GNAT array descriptors. */
10816 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10817 else
4c4b4cd2 10818 return ada_value_ind (arg1);
14f9c5c9
AS
10819
10820 case STRUCTOP_STRUCT:
10821 tem = longest_to_int (exp->elts[pc + 1].longconst);
10822 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 10823 preeval_pos = *pos;
14f9c5c9
AS
10824 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10825 if (noside == EVAL_SKIP)
4c4b4cd2 10826 goto nosideret;
14f9c5c9 10827 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10828 {
df407dfe 10829 struct type *type1 = value_type (arg1);
5b4ee69b 10830
76a01679
JB
10831 if (ada_is_tagged_type (type1, 1))
10832 {
10833 type = ada_lookup_struct_elt_type (type1,
10834 &exp->elts[pc + 2].string,
10835 1, 1, NULL);
5ec18f2b
JG
10836
10837 /* If the field is not found, check if it exists in the
10838 extension of this object's type. This means that we
10839 need to evaluate completely the expression. */
10840
76a01679 10841 if (type == NULL)
5ec18f2b
JG
10842 {
10843 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10844 EVAL_NORMAL);
10845 arg1 = ada_value_struct_elt (arg1,
10846 &exp->elts[pc + 2].string,
10847 0);
10848 arg1 = unwrap_value (arg1);
10849 type = value_type (ada_to_fixed_value (arg1));
10850 }
76a01679
JB
10851 }
10852 else
10853 type =
10854 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10855 0, NULL);
10856
10857 return value_zero (ada_aligned_type (type), lval_memory);
10858 }
14f9c5c9 10859 else
284614f0
JB
10860 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10861 arg1 = unwrap_value (arg1);
10862 return ada_to_fixed_value (arg1);
10863
14f9c5c9 10864 case OP_TYPE:
4c4b4cd2
PH
10865 /* The value is not supposed to be used. This is here to make it
10866 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10867 (*pos) += 2;
10868 if (noside == EVAL_SKIP)
4c4b4cd2 10869 goto nosideret;
14f9c5c9 10870 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10871 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10872 else
323e0a4a 10873 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10874
10875 case OP_AGGREGATE:
10876 case OP_CHOICES:
10877 case OP_OTHERS:
10878 case OP_DISCRETE_RANGE:
10879 case OP_POSITIONAL:
10880 case OP_NAME:
10881 if (noside == EVAL_NORMAL)
10882 switch (op)
10883 {
10884 case OP_NAME:
10885 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10886 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10887 case OP_AGGREGATE:
10888 error (_("Aggregates only allowed on the right of an assignment"));
10889 default:
0963b4bd
MS
10890 internal_error (__FILE__, __LINE__,
10891 _("aggregate apparently mangled"));
52ce6436
PH
10892 }
10893
10894 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10895 *pos += oplen - 1;
10896 for (tem = 0; tem < nargs; tem += 1)
10897 ada_evaluate_subexp (NULL, exp, pos, noside);
10898 goto nosideret;
14f9c5c9
AS
10899 }
10900
10901nosideret:
22601c15 10902 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10903}
14f9c5c9 10904\f
d2e4a39e 10905
4c4b4cd2 10906 /* Fixed point */
14f9c5c9
AS
10907
10908/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10909 type name that encodes the 'small and 'delta information.
4c4b4cd2 10910 Otherwise, return NULL. */
14f9c5c9 10911
d2e4a39e 10912static const char *
ebf56fd3 10913fixed_type_info (struct type *type)
14f9c5c9 10914{
d2e4a39e 10915 const char *name = ada_type_name (type);
14f9c5c9
AS
10916 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10917
d2e4a39e
AS
10918 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10919 {
14f9c5c9 10920 const char *tail = strstr (name, "___XF_");
5b4ee69b 10921
14f9c5c9 10922 if (tail == NULL)
4c4b4cd2 10923 return NULL;
d2e4a39e 10924 else
4c4b4cd2 10925 return tail + 5;
14f9c5c9
AS
10926 }
10927 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10928 return fixed_type_info (TYPE_TARGET_TYPE (type));
10929 else
10930 return NULL;
10931}
10932
4c4b4cd2 10933/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10934
10935int
ebf56fd3 10936ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10937{
10938 return fixed_type_info (type) != NULL;
10939}
10940
4c4b4cd2
PH
10941/* Return non-zero iff TYPE represents a System.Address type. */
10942
10943int
10944ada_is_system_address_type (struct type *type)
10945{
10946 return (TYPE_NAME (type)
10947 && strcmp (TYPE_NAME (type), "system__address") == 0);
10948}
10949
14f9c5c9
AS
10950/* Assuming that TYPE is the representation of an Ada fixed-point
10951 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10952 delta cannot be determined. */
14f9c5c9
AS
10953
10954DOUBLEST
ebf56fd3 10955ada_delta (struct type *type)
14f9c5c9
AS
10956{
10957 const char *encoding = fixed_type_info (type);
facc390f 10958 DOUBLEST num, den;
14f9c5c9 10959
facc390f
JB
10960 /* Strictly speaking, num and den are encoded as integer. However,
10961 they may not fit into a long, and they will have to be converted
10962 to DOUBLEST anyway. So scan them as DOUBLEST. */
10963 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10964 &num, &den) < 2)
14f9c5c9 10965 return -1.0;
d2e4a39e 10966 else
facc390f 10967 return num / den;
14f9c5c9
AS
10968}
10969
10970/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10971 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10972
10973static DOUBLEST
ebf56fd3 10974scaling_factor (struct type *type)
14f9c5c9
AS
10975{
10976 const char *encoding = fixed_type_info (type);
facc390f 10977 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10978 int n;
d2e4a39e 10979
facc390f
JB
10980 /* Strictly speaking, num's and den's are encoded as integer. However,
10981 they may not fit into a long, and they will have to be converted
10982 to DOUBLEST anyway. So scan them as DOUBLEST. */
10983 n = sscanf (encoding,
10984 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10985 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10986 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10987
10988 if (n < 2)
10989 return 1.0;
10990 else if (n == 4)
facc390f 10991 return num1 / den1;
d2e4a39e 10992 else
facc390f 10993 return num0 / den0;
14f9c5c9
AS
10994}
10995
10996
10997/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10998 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10999
11000DOUBLEST
ebf56fd3 11001ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11002{
d2e4a39e 11003 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11004}
11005
4c4b4cd2
PH
11006/* The representation of a fixed-point value of type TYPE
11007 corresponding to the value X. */
14f9c5c9
AS
11008
11009LONGEST
ebf56fd3 11010ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11011{
11012 return (LONGEST) (x / scaling_factor (type) + 0.5);
11013}
11014
14f9c5c9 11015\f
d2e4a39e 11016
4c4b4cd2 11017 /* Range types */
14f9c5c9
AS
11018
11019/* Scan STR beginning at position K for a discriminant name, and
11020 return the value of that discriminant field of DVAL in *PX. If
11021 PNEW_K is not null, put the position of the character beyond the
11022 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11023 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11024
11025static int
07d8f827 11026scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 11027 int *pnew_k)
14f9c5c9
AS
11028{
11029 static char *bound_buffer = NULL;
11030 static size_t bound_buffer_len = 0;
11031 char *bound;
11032 char *pend;
d2e4a39e 11033 struct value *bound_val;
14f9c5c9
AS
11034
11035 if (dval == NULL || str == NULL || str[k] == '\0')
11036 return 0;
11037
d2e4a39e 11038 pend = strstr (str + k, "__");
14f9c5c9
AS
11039 if (pend == NULL)
11040 {
d2e4a39e 11041 bound = str + k;
14f9c5c9
AS
11042 k += strlen (bound);
11043 }
d2e4a39e 11044 else
14f9c5c9 11045 {
d2e4a39e 11046 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 11047 bound = bound_buffer;
d2e4a39e
AS
11048 strncpy (bound_buffer, str + k, pend - (str + k));
11049 bound[pend - (str + k)] = '\0';
11050 k = pend - str;
14f9c5c9 11051 }
d2e4a39e 11052
df407dfe 11053 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11054 if (bound_val == NULL)
11055 return 0;
11056
11057 *px = value_as_long (bound_val);
11058 if (pnew_k != NULL)
11059 *pnew_k = k;
11060 return 1;
11061}
11062
11063/* Value of variable named NAME in the current environment. If
11064 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11065 otherwise causes an error with message ERR_MSG. */
11066
d2e4a39e
AS
11067static struct value *
11068get_var_value (char *name, char *err_msg)
14f9c5c9 11069{
4c4b4cd2 11070 struct ada_symbol_info *syms;
14f9c5c9
AS
11071 int nsyms;
11072
4c4b4cd2 11073 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11074 &syms);
14f9c5c9
AS
11075
11076 if (nsyms != 1)
11077 {
11078 if (err_msg == NULL)
4c4b4cd2 11079 return 0;
14f9c5c9 11080 else
8a3fe4f8 11081 error (("%s"), err_msg);
14f9c5c9
AS
11082 }
11083
4c4b4cd2 11084 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 11085}
d2e4a39e 11086
14f9c5c9 11087/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11088 no such variable found, returns 0, and sets *FLAG to 0. If
11089 successful, sets *FLAG to 1. */
11090
14f9c5c9 11091LONGEST
4c4b4cd2 11092get_int_var_value (char *name, int *flag)
14f9c5c9 11093{
4c4b4cd2 11094 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11095
14f9c5c9
AS
11096 if (var_val == 0)
11097 {
11098 if (flag != NULL)
4c4b4cd2 11099 *flag = 0;
14f9c5c9
AS
11100 return 0;
11101 }
11102 else
11103 {
11104 if (flag != NULL)
4c4b4cd2 11105 *flag = 1;
14f9c5c9
AS
11106 return value_as_long (var_val);
11107 }
11108}
d2e4a39e 11109
14f9c5c9
AS
11110
11111/* Return a range type whose base type is that of the range type named
11112 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11113 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11114 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11115 corresponding range type from debug information; fall back to using it
11116 if symbol lookup fails. If a new type must be created, allocate it
11117 like ORIG_TYPE was. The bounds information, in general, is encoded
11118 in NAME, the base type given in the named range type. */
14f9c5c9 11119
d2e4a39e 11120static struct type *
28c85d6c 11121to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11122{
0d5cff50 11123 const char *name;
14f9c5c9 11124 struct type *base_type;
d2e4a39e 11125 char *subtype_info;
14f9c5c9 11126
28c85d6c
JB
11127 gdb_assert (raw_type != NULL);
11128 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11129
1ce677a4 11130 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11131 base_type = TYPE_TARGET_TYPE (raw_type);
11132 else
11133 base_type = raw_type;
11134
28c85d6c 11135 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11136 subtype_info = strstr (name, "___XD");
11137 if (subtype_info == NULL)
690cc4eb 11138 {
43bbcdc2
PH
11139 LONGEST L = ada_discrete_type_low_bound (raw_type);
11140 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11141
690cc4eb
PH
11142 if (L < INT_MIN || U > INT_MAX)
11143 return raw_type;
11144 else
0c9c3474
SA
11145 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11146 L, U);
690cc4eb 11147 }
14f9c5c9
AS
11148 else
11149 {
11150 static char *name_buf = NULL;
11151 static size_t name_len = 0;
11152 int prefix_len = subtype_info - name;
11153 LONGEST L, U;
11154 struct type *type;
11155 char *bounds_str;
11156 int n;
11157
11158 GROW_VECT (name_buf, name_len, prefix_len + 5);
11159 strncpy (name_buf, name, prefix_len);
11160 name_buf[prefix_len] = '\0';
11161
11162 subtype_info += 5;
11163 bounds_str = strchr (subtype_info, '_');
11164 n = 1;
11165
d2e4a39e 11166 if (*subtype_info == 'L')
4c4b4cd2
PH
11167 {
11168 if (!ada_scan_number (bounds_str, n, &L, &n)
11169 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11170 return raw_type;
11171 if (bounds_str[n] == '_')
11172 n += 2;
0963b4bd 11173 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11174 n += 1;
11175 subtype_info += 1;
11176 }
d2e4a39e 11177 else
4c4b4cd2
PH
11178 {
11179 int ok;
5b4ee69b 11180
4c4b4cd2
PH
11181 strcpy (name_buf + prefix_len, "___L");
11182 L = get_int_var_value (name_buf, &ok);
11183 if (!ok)
11184 {
323e0a4a 11185 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11186 L = 1;
11187 }
11188 }
14f9c5c9 11189
d2e4a39e 11190 if (*subtype_info == 'U')
4c4b4cd2
PH
11191 {
11192 if (!ada_scan_number (bounds_str, n, &U, &n)
11193 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11194 return raw_type;
11195 }
d2e4a39e 11196 else
4c4b4cd2
PH
11197 {
11198 int ok;
5b4ee69b 11199
4c4b4cd2
PH
11200 strcpy (name_buf + prefix_len, "___U");
11201 U = get_int_var_value (name_buf, &ok);
11202 if (!ok)
11203 {
323e0a4a 11204 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11205 U = L;
11206 }
11207 }
14f9c5c9 11208
0c9c3474
SA
11209 type = create_static_range_type (alloc_type_copy (raw_type),
11210 base_type, L, U);
d2e4a39e 11211 TYPE_NAME (type) = name;
14f9c5c9
AS
11212 return type;
11213 }
11214}
11215
4c4b4cd2
PH
11216/* True iff NAME is the name of a range type. */
11217
14f9c5c9 11218int
d2e4a39e 11219ada_is_range_type_name (const char *name)
14f9c5c9
AS
11220{
11221 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11222}
14f9c5c9 11223\f
d2e4a39e 11224
4c4b4cd2
PH
11225 /* Modular types */
11226
11227/* True iff TYPE is an Ada modular type. */
14f9c5c9 11228
14f9c5c9 11229int
d2e4a39e 11230ada_is_modular_type (struct type *type)
14f9c5c9 11231{
18af8284 11232 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11233
11234 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11235 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11236 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11237}
11238
4c4b4cd2
PH
11239/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11240
61ee279c 11241ULONGEST
0056e4d5 11242ada_modulus (struct type *type)
14f9c5c9 11243{
43bbcdc2 11244 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11245}
d2e4a39e 11246\f
f7f9143b
JB
11247
11248/* Ada exception catchpoint support:
11249 ---------------------------------
11250
11251 We support 3 kinds of exception catchpoints:
11252 . catchpoints on Ada exceptions
11253 . catchpoints on unhandled Ada exceptions
11254 . catchpoints on failed assertions
11255
11256 Exceptions raised during failed assertions, or unhandled exceptions
11257 could perfectly be caught with the general catchpoint on Ada exceptions.
11258 However, we can easily differentiate these two special cases, and having
11259 the option to distinguish these two cases from the rest can be useful
11260 to zero-in on certain situations.
11261
11262 Exception catchpoints are a specialized form of breakpoint,
11263 since they rely on inserting breakpoints inside known routines
11264 of the GNAT runtime. The implementation therefore uses a standard
11265 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11266 of breakpoint_ops.
11267
0259addd
JB
11268 Support in the runtime for exception catchpoints have been changed
11269 a few times already, and these changes affect the implementation
11270 of these catchpoints. In order to be able to support several
11271 variants of the runtime, we use a sniffer that will determine
28010a5d 11272 the runtime variant used by the program being debugged. */
f7f9143b 11273
82eacd52
JB
11274/* Ada's standard exceptions.
11275
11276 The Ada 83 standard also defined Numeric_Error. But there so many
11277 situations where it was unclear from the Ada 83 Reference Manual
11278 (RM) whether Constraint_Error or Numeric_Error should be raised,
11279 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11280 Interpretation saying that anytime the RM says that Numeric_Error
11281 should be raised, the implementation may raise Constraint_Error.
11282 Ada 95 went one step further and pretty much removed Numeric_Error
11283 from the list of standard exceptions (it made it a renaming of
11284 Constraint_Error, to help preserve compatibility when compiling
11285 an Ada83 compiler). As such, we do not include Numeric_Error from
11286 this list of standard exceptions. */
3d0b0fa3
JB
11287
11288static char *standard_exc[] = {
11289 "constraint_error",
11290 "program_error",
11291 "storage_error",
11292 "tasking_error"
11293};
11294
0259addd
JB
11295typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11296
11297/* A structure that describes how to support exception catchpoints
11298 for a given executable. */
11299
11300struct exception_support_info
11301{
11302 /* The name of the symbol to break on in order to insert
11303 a catchpoint on exceptions. */
11304 const char *catch_exception_sym;
11305
11306 /* The name of the symbol to break on in order to insert
11307 a catchpoint on unhandled exceptions. */
11308 const char *catch_exception_unhandled_sym;
11309
11310 /* The name of the symbol to break on in order to insert
11311 a catchpoint on failed assertions. */
11312 const char *catch_assert_sym;
11313
11314 /* Assuming that the inferior just triggered an unhandled exception
11315 catchpoint, this function is responsible for returning the address
11316 in inferior memory where the name of that exception is stored.
11317 Return zero if the address could not be computed. */
11318 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11319};
11320
11321static CORE_ADDR ada_unhandled_exception_name_addr (void);
11322static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11323
11324/* The following exception support info structure describes how to
11325 implement exception catchpoints with the latest version of the
11326 Ada runtime (as of 2007-03-06). */
11327
11328static const struct exception_support_info default_exception_support_info =
11329{
11330 "__gnat_debug_raise_exception", /* catch_exception_sym */
11331 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11332 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11333 ada_unhandled_exception_name_addr
11334};
11335
11336/* The following exception support info structure describes how to
11337 implement exception catchpoints with a slightly older version
11338 of the Ada runtime. */
11339
11340static const struct exception_support_info exception_support_info_fallback =
11341{
11342 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11343 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11344 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11345 ada_unhandled_exception_name_addr_from_raise
11346};
11347
f17011e0
JB
11348/* Return nonzero if we can detect the exception support routines
11349 described in EINFO.
11350
11351 This function errors out if an abnormal situation is detected
11352 (for instance, if we find the exception support routines, but
11353 that support is found to be incomplete). */
11354
11355static int
11356ada_has_this_exception_support (const struct exception_support_info *einfo)
11357{
11358 struct symbol *sym;
11359
11360 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11361 that should be compiled with debugging information. As a result, we
11362 expect to find that symbol in the symtabs. */
11363
11364 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11365 if (sym == NULL)
a6af7abe
JB
11366 {
11367 /* Perhaps we did not find our symbol because the Ada runtime was
11368 compiled without debugging info, or simply stripped of it.
11369 It happens on some GNU/Linux distributions for instance, where
11370 users have to install a separate debug package in order to get
11371 the runtime's debugging info. In that situation, let the user
11372 know why we cannot insert an Ada exception catchpoint.
11373
11374 Note: Just for the purpose of inserting our Ada exception
11375 catchpoint, we could rely purely on the associated minimal symbol.
11376 But we would be operating in degraded mode anyway, since we are
11377 still lacking the debugging info needed later on to extract
11378 the name of the exception being raised (this name is printed in
11379 the catchpoint message, and is also used when trying to catch
11380 a specific exception). We do not handle this case for now. */
3b7344d5 11381 struct bound_minimal_symbol msym
1c8e84b0
JB
11382 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11383
3b7344d5 11384 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11385 error (_("Your Ada runtime appears to be missing some debugging "
11386 "information.\nCannot insert Ada exception catchpoint "
11387 "in this configuration."));
11388
11389 return 0;
11390 }
f17011e0
JB
11391
11392 /* Make sure that the symbol we found corresponds to a function. */
11393
11394 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11395 error (_("Symbol \"%s\" is not a function (class = %d)"),
11396 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11397
11398 return 1;
11399}
11400
0259addd
JB
11401/* Inspect the Ada runtime and determine which exception info structure
11402 should be used to provide support for exception catchpoints.
11403
3eecfa55
JB
11404 This function will always set the per-inferior exception_info,
11405 or raise an error. */
0259addd
JB
11406
11407static void
11408ada_exception_support_info_sniffer (void)
11409{
3eecfa55 11410 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11411
11412 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11413 if (data->exception_info != NULL)
0259addd
JB
11414 return;
11415
11416 /* Check the latest (default) exception support info. */
f17011e0 11417 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11418 {
3eecfa55 11419 data->exception_info = &default_exception_support_info;
0259addd
JB
11420 return;
11421 }
11422
11423 /* Try our fallback exception suport info. */
f17011e0 11424 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11425 {
3eecfa55 11426 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11427 return;
11428 }
11429
11430 /* Sometimes, it is normal for us to not be able to find the routine
11431 we are looking for. This happens when the program is linked with
11432 the shared version of the GNAT runtime, and the program has not been
11433 started yet. Inform the user of these two possible causes if
11434 applicable. */
11435
ccefe4c4 11436 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11437 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11438
11439 /* If the symbol does not exist, then check that the program is
11440 already started, to make sure that shared libraries have been
11441 loaded. If it is not started, this may mean that the symbol is
11442 in a shared library. */
11443
11444 if (ptid_get_pid (inferior_ptid) == 0)
11445 error (_("Unable to insert catchpoint. Try to start the program first."));
11446
11447 /* At this point, we know that we are debugging an Ada program and
11448 that the inferior has been started, but we still are not able to
0963b4bd 11449 find the run-time symbols. That can mean that we are in
0259addd
JB
11450 configurable run time mode, or that a-except as been optimized
11451 out by the linker... In any case, at this point it is not worth
11452 supporting this feature. */
11453
7dda8cff 11454 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11455}
11456
f7f9143b
JB
11457/* True iff FRAME is very likely to be that of a function that is
11458 part of the runtime system. This is all very heuristic, but is
11459 intended to be used as advice as to what frames are uninteresting
11460 to most users. */
11461
11462static int
11463is_known_support_routine (struct frame_info *frame)
11464{
4ed6b5be 11465 struct symtab_and_line sal;
55b87a52 11466 char *func_name;
692465f1 11467 enum language func_lang;
f7f9143b 11468 int i;
f35a17b5 11469 const char *fullname;
f7f9143b 11470
4ed6b5be
JB
11471 /* If this code does not have any debugging information (no symtab),
11472 This cannot be any user code. */
f7f9143b 11473
4ed6b5be 11474 find_frame_sal (frame, &sal);
f7f9143b
JB
11475 if (sal.symtab == NULL)
11476 return 1;
11477
4ed6b5be
JB
11478 /* If there is a symtab, but the associated source file cannot be
11479 located, then assume this is not user code: Selecting a frame
11480 for which we cannot display the code would not be very helpful
11481 for the user. This should also take care of case such as VxWorks
11482 where the kernel has some debugging info provided for a few units. */
f7f9143b 11483
f35a17b5
JK
11484 fullname = symtab_to_fullname (sal.symtab);
11485 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11486 return 1;
11487
4ed6b5be
JB
11488 /* Check the unit filename againt the Ada runtime file naming.
11489 We also check the name of the objfile against the name of some
11490 known system libraries that sometimes come with debugging info
11491 too. */
11492
f7f9143b
JB
11493 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11494 {
11495 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11496 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11497 return 1;
4ed6b5be 11498 if (sal.symtab->objfile != NULL
4262abfb 11499 && re_exec (objfile_name (sal.symtab->objfile)))
4ed6b5be 11500 return 1;
f7f9143b
JB
11501 }
11502
4ed6b5be 11503 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11504
e9e07ba6 11505 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11506 if (func_name == NULL)
11507 return 1;
11508
11509 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11510 {
11511 re_comp (known_auxiliary_function_name_patterns[i]);
11512 if (re_exec (func_name))
55b87a52
KS
11513 {
11514 xfree (func_name);
11515 return 1;
11516 }
f7f9143b
JB
11517 }
11518
55b87a52 11519 xfree (func_name);
f7f9143b
JB
11520 return 0;
11521}
11522
11523/* Find the first frame that contains debugging information and that is not
11524 part of the Ada run-time, starting from FI and moving upward. */
11525
0ef643c8 11526void
f7f9143b
JB
11527ada_find_printable_frame (struct frame_info *fi)
11528{
11529 for (; fi != NULL; fi = get_prev_frame (fi))
11530 {
11531 if (!is_known_support_routine (fi))
11532 {
11533 select_frame (fi);
11534 break;
11535 }
11536 }
11537
11538}
11539
11540/* Assuming that the inferior just triggered an unhandled exception
11541 catchpoint, return the address in inferior memory where the name
11542 of the exception is stored.
11543
11544 Return zero if the address could not be computed. */
11545
11546static CORE_ADDR
11547ada_unhandled_exception_name_addr (void)
0259addd
JB
11548{
11549 return parse_and_eval_address ("e.full_name");
11550}
11551
11552/* Same as ada_unhandled_exception_name_addr, except that this function
11553 should be used when the inferior uses an older version of the runtime,
11554 where the exception name needs to be extracted from a specific frame
11555 several frames up in the callstack. */
11556
11557static CORE_ADDR
11558ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11559{
11560 int frame_level;
11561 struct frame_info *fi;
3eecfa55 11562 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11563 struct cleanup *old_chain;
f7f9143b
JB
11564
11565 /* To determine the name of this exception, we need to select
11566 the frame corresponding to RAISE_SYM_NAME. This frame is
11567 at least 3 levels up, so we simply skip the first 3 frames
11568 without checking the name of their associated function. */
11569 fi = get_current_frame ();
11570 for (frame_level = 0; frame_level < 3; frame_level += 1)
11571 if (fi != NULL)
11572 fi = get_prev_frame (fi);
11573
55b87a52 11574 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11575 while (fi != NULL)
11576 {
55b87a52 11577 char *func_name;
692465f1
JB
11578 enum language func_lang;
11579
e9e07ba6 11580 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11581 if (func_name != NULL)
11582 {
11583 make_cleanup (xfree, func_name);
11584
11585 if (strcmp (func_name,
11586 data->exception_info->catch_exception_sym) == 0)
11587 break; /* We found the frame we were looking for... */
11588 fi = get_prev_frame (fi);
11589 }
f7f9143b 11590 }
55b87a52 11591 do_cleanups (old_chain);
f7f9143b
JB
11592
11593 if (fi == NULL)
11594 return 0;
11595
11596 select_frame (fi);
11597 return parse_and_eval_address ("id.full_name");
11598}
11599
11600/* Assuming the inferior just triggered an Ada exception catchpoint
11601 (of any type), return the address in inferior memory where the name
11602 of the exception is stored, if applicable.
11603
11604 Return zero if the address could not be computed, or if not relevant. */
11605
11606static CORE_ADDR
761269c8 11607ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11608 struct breakpoint *b)
11609{
3eecfa55
JB
11610 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11611
f7f9143b
JB
11612 switch (ex)
11613 {
761269c8 11614 case ada_catch_exception:
f7f9143b
JB
11615 return (parse_and_eval_address ("e.full_name"));
11616 break;
11617
761269c8 11618 case ada_catch_exception_unhandled:
3eecfa55 11619 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11620 break;
11621
761269c8 11622 case ada_catch_assert:
f7f9143b
JB
11623 return 0; /* Exception name is not relevant in this case. */
11624 break;
11625
11626 default:
11627 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11628 break;
11629 }
11630
11631 return 0; /* Should never be reached. */
11632}
11633
11634/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11635 any error that ada_exception_name_addr_1 might cause to be thrown.
11636 When an error is intercepted, a warning with the error message is printed,
11637 and zero is returned. */
11638
11639static CORE_ADDR
761269c8 11640ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11641 struct breakpoint *b)
11642{
bfd189b1 11643 volatile struct gdb_exception e;
f7f9143b
JB
11644 CORE_ADDR result = 0;
11645
11646 TRY_CATCH (e, RETURN_MASK_ERROR)
11647 {
11648 result = ada_exception_name_addr_1 (ex, b);
11649 }
11650
11651 if (e.reason < 0)
11652 {
11653 warning (_("failed to get exception name: %s"), e.message);
11654 return 0;
11655 }
11656
11657 return result;
11658}
11659
28010a5d
PA
11660static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11661
11662/* Ada catchpoints.
11663
11664 In the case of catchpoints on Ada exceptions, the catchpoint will
11665 stop the target on every exception the program throws. When a user
11666 specifies the name of a specific exception, we translate this
11667 request into a condition expression (in text form), and then parse
11668 it into an expression stored in each of the catchpoint's locations.
11669 We then use this condition to check whether the exception that was
11670 raised is the one the user is interested in. If not, then the
11671 target is resumed again. We store the name of the requested
11672 exception, in order to be able to re-set the condition expression
11673 when symbols change. */
11674
11675/* An instance of this type is used to represent an Ada catchpoint
11676 breakpoint location. It includes a "struct bp_location" as a kind
11677 of base class; users downcast to "struct bp_location *" when
11678 needed. */
11679
11680struct ada_catchpoint_location
11681{
11682 /* The base class. */
11683 struct bp_location base;
11684
11685 /* The condition that checks whether the exception that was raised
11686 is the specific exception the user specified on catchpoint
11687 creation. */
11688 struct expression *excep_cond_expr;
11689};
11690
11691/* Implement the DTOR method in the bp_location_ops structure for all
11692 Ada exception catchpoint kinds. */
11693
11694static void
11695ada_catchpoint_location_dtor (struct bp_location *bl)
11696{
11697 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11698
11699 xfree (al->excep_cond_expr);
11700}
11701
11702/* The vtable to be used in Ada catchpoint locations. */
11703
11704static const struct bp_location_ops ada_catchpoint_location_ops =
11705{
11706 ada_catchpoint_location_dtor
11707};
11708
11709/* An instance of this type is used to represent an Ada catchpoint.
11710 It includes a "struct breakpoint" as a kind of base class; users
11711 downcast to "struct breakpoint *" when needed. */
11712
11713struct ada_catchpoint
11714{
11715 /* The base class. */
11716 struct breakpoint base;
11717
11718 /* The name of the specific exception the user specified. */
11719 char *excep_string;
11720};
11721
11722/* Parse the exception condition string in the context of each of the
11723 catchpoint's locations, and store them for later evaluation. */
11724
11725static void
11726create_excep_cond_exprs (struct ada_catchpoint *c)
11727{
11728 struct cleanup *old_chain;
11729 struct bp_location *bl;
11730 char *cond_string;
11731
11732 /* Nothing to do if there's no specific exception to catch. */
11733 if (c->excep_string == NULL)
11734 return;
11735
11736 /* Same if there are no locations... */
11737 if (c->base.loc == NULL)
11738 return;
11739
11740 /* Compute the condition expression in text form, from the specific
11741 expection we want to catch. */
11742 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11743 old_chain = make_cleanup (xfree, cond_string);
11744
11745 /* Iterate over all the catchpoint's locations, and parse an
11746 expression for each. */
11747 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11748 {
11749 struct ada_catchpoint_location *ada_loc
11750 = (struct ada_catchpoint_location *) bl;
11751 struct expression *exp = NULL;
11752
11753 if (!bl->shlib_disabled)
11754 {
11755 volatile struct gdb_exception e;
bbc13ae3 11756 const char *s;
28010a5d
PA
11757
11758 s = cond_string;
11759 TRY_CATCH (e, RETURN_MASK_ERROR)
11760 {
1bb9788d
TT
11761 exp = parse_exp_1 (&s, bl->address,
11762 block_for_pc (bl->address), 0);
28010a5d
PA
11763 }
11764 if (e.reason < 0)
849f2b52
JB
11765 {
11766 warning (_("failed to reevaluate internal exception condition "
11767 "for catchpoint %d: %s"),
11768 c->base.number, e.message);
11769 /* There is a bug in GCC on sparc-solaris when building with
11770 optimization which causes EXP to change unexpectedly
11771 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11772 The problem should be fixed starting with GCC 4.9.
11773 In the meantime, work around it by forcing EXP back
11774 to NULL. */
11775 exp = NULL;
11776 }
28010a5d
PA
11777 }
11778
11779 ada_loc->excep_cond_expr = exp;
11780 }
11781
11782 do_cleanups (old_chain);
11783}
11784
11785/* Implement the DTOR method in the breakpoint_ops structure for all
11786 exception catchpoint kinds. */
11787
11788static void
761269c8 11789dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11790{
11791 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11792
11793 xfree (c->excep_string);
348d480f 11794
2060206e 11795 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11796}
11797
11798/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11799 structure for all exception catchpoint kinds. */
11800
11801static struct bp_location *
761269c8 11802allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
11803 struct breakpoint *self)
11804{
11805 struct ada_catchpoint_location *loc;
11806
11807 loc = XNEW (struct ada_catchpoint_location);
11808 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11809 loc->excep_cond_expr = NULL;
11810 return &loc->base;
11811}
11812
11813/* Implement the RE_SET method in the breakpoint_ops structure for all
11814 exception catchpoint kinds. */
11815
11816static void
761269c8 11817re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11818{
11819 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11820
11821 /* Call the base class's method. This updates the catchpoint's
11822 locations. */
2060206e 11823 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11824
11825 /* Reparse the exception conditional expressions. One for each
11826 location. */
11827 create_excep_cond_exprs (c);
11828}
11829
11830/* Returns true if we should stop for this breakpoint hit. If the
11831 user specified a specific exception, we only want to cause a stop
11832 if the program thrown that exception. */
11833
11834static int
11835should_stop_exception (const struct bp_location *bl)
11836{
11837 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11838 const struct ada_catchpoint_location *ada_loc
11839 = (const struct ada_catchpoint_location *) bl;
11840 volatile struct gdb_exception ex;
11841 int stop;
11842
11843 /* With no specific exception, should always stop. */
11844 if (c->excep_string == NULL)
11845 return 1;
11846
11847 if (ada_loc->excep_cond_expr == NULL)
11848 {
11849 /* We will have a NULL expression if back when we were creating
11850 the expressions, this location's had failed to parse. */
11851 return 1;
11852 }
11853
11854 stop = 1;
11855 TRY_CATCH (ex, RETURN_MASK_ALL)
11856 {
11857 struct value *mark;
11858
11859 mark = value_mark ();
11860 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11861 value_free_to_mark (mark);
11862 }
11863 if (ex.reason < 0)
11864 exception_fprintf (gdb_stderr, ex,
11865 _("Error in testing exception condition:\n"));
11866 return stop;
11867}
11868
11869/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11870 for all exception catchpoint kinds. */
11871
11872static void
761269c8 11873check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
11874{
11875 bs->stop = should_stop_exception (bs->bp_location_at);
11876}
11877
f7f9143b
JB
11878/* Implement the PRINT_IT method in the breakpoint_ops structure
11879 for all exception catchpoint kinds. */
11880
11881static enum print_stop_action
761269c8 11882print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11883{
79a45e25 11884 struct ui_out *uiout = current_uiout;
348d480f
PA
11885 struct breakpoint *b = bs->breakpoint_at;
11886
956a9fb9 11887 annotate_catchpoint (b->number);
f7f9143b 11888
956a9fb9 11889 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11890 {
956a9fb9
JB
11891 ui_out_field_string (uiout, "reason",
11892 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11893 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11894 }
11895
00eb2c4a
JB
11896 ui_out_text (uiout,
11897 b->disposition == disp_del ? "\nTemporary catchpoint "
11898 : "\nCatchpoint ");
956a9fb9
JB
11899 ui_out_field_int (uiout, "bkptno", b->number);
11900 ui_out_text (uiout, ", ");
f7f9143b 11901
f7f9143b
JB
11902 switch (ex)
11903 {
761269c8
JB
11904 case ada_catch_exception:
11905 case ada_catch_exception_unhandled:
956a9fb9
JB
11906 {
11907 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11908 char exception_name[256];
11909
11910 if (addr != 0)
11911 {
c714b426
PA
11912 read_memory (addr, (gdb_byte *) exception_name,
11913 sizeof (exception_name) - 1);
956a9fb9
JB
11914 exception_name [sizeof (exception_name) - 1] = '\0';
11915 }
11916 else
11917 {
11918 /* For some reason, we were unable to read the exception
11919 name. This could happen if the Runtime was compiled
11920 without debugging info, for instance. In that case,
11921 just replace the exception name by the generic string
11922 "exception" - it will read as "an exception" in the
11923 notification we are about to print. */
967cff16 11924 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11925 }
11926 /* In the case of unhandled exception breakpoints, we print
11927 the exception name as "unhandled EXCEPTION_NAME", to make
11928 it clearer to the user which kind of catchpoint just got
11929 hit. We used ui_out_text to make sure that this extra
11930 info does not pollute the exception name in the MI case. */
761269c8 11931 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
11932 ui_out_text (uiout, "unhandled ");
11933 ui_out_field_string (uiout, "exception-name", exception_name);
11934 }
11935 break;
761269c8 11936 case ada_catch_assert:
956a9fb9
JB
11937 /* In this case, the name of the exception is not really
11938 important. Just print "failed assertion" to make it clearer
11939 that his program just hit an assertion-failure catchpoint.
11940 We used ui_out_text because this info does not belong in
11941 the MI output. */
11942 ui_out_text (uiout, "failed assertion");
11943 break;
f7f9143b 11944 }
956a9fb9
JB
11945 ui_out_text (uiout, " at ");
11946 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11947
11948 return PRINT_SRC_AND_LOC;
11949}
11950
11951/* Implement the PRINT_ONE method in the breakpoint_ops structure
11952 for all exception catchpoint kinds. */
11953
11954static void
761269c8 11955print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 11956 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11957{
79a45e25 11958 struct ui_out *uiout = current_uiout;
28010a5d 11959 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11960 struct value_print_options opts;
11961
11962 get_user_print_options (&opts);
11963 if (opts.addressprint)
f7f9143b
JB
11964 {
11965 annotate_field (4);
5af949e3 11966 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11967 }
11968
11969 annotate_field (5);
a6d9a66e 11970 *last_loc = b->loc;
f7f9143b
JB
11971 switch (ex)
11972 {
761269c8 11973 case ada_catch_exception:
28010a5d 11974 if (c->excep_string != NULL)
f7f9143b 11975 {
28010a5d
PA
11976 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11977
f7f9143b
JB
11978 ui_out_field_string (uiout, "what", msg);
11979 xfree (msg);
11980 }
11981 else
11982 ui_out_field_string (uiout, "what", "all Ada exceptions");
11983
11984 break;
11985
761269c8 11986 case ada_catch_exception_unhandled:
f7f9143b
JB
11987 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11988 break;
11989
761269c8 11990 case ada_catch_assert:
f7f9143b
JB
11991 ui_out_field_string (uiout, "what", "failed Ada assertions");
11992 break;
11993
11994 default:
11995 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11996 break;
11997 }
11998}
11999
12000/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12001 for all exception catchpoint kinds. */
12002
12003static void
761269c8 12004print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12005 struct breakpoint *b)
12006{
28010a5d 12007 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12008 struct ui_out *uiout = current_uiout;
28010a5d 12009
00eb2c4a
JB
12010 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12011 : _("Catchpoint "));
12012 ui_out_field_int (uiout, "bkptno", b->number);
12013 ui_out_text (uiout, ": ");
12014
f7f9143b
JB
12015 switch (ex)
12016 {
761269c8 12017 case ada_catch_exception:
28010a5d 12018 if (c->excep_string != NULL)
00eb2c4a
JB
12019 {
12020 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12021 struct cleanup *old_chain = make_cleanup (xfree, info);
12022
12023 ui_out_text (uiout, info);
12024 do_cleanups (old_chain);
12025 }
f7f9143b 12026 else
00eb2c4a 12027 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12028 break;
12029
761269c8 12030 case ada_catch_exception_unhandled:
00eb2c4a 12031 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12032 break;
12033
761269c8 12034 case ada_catch_assert:
00eb2c4a 12035 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12036 break;
12037
12038 default:
12039 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12040 break;
12041 }
12042}
12043
6149aea9
PA
12044/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12045 for all exception catchpoint kinds. */
12046
12047static void
761269c8 12048print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12049 struct breakpoint *b, struct ui_file *fp)
12050{
28010a5d
PA
12051 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12052
6149aea9
PA
12053 switch (ex)
12054 {
761269c8 12055 case ada_catch_exception:
6149aea9 12056 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12057 if (c->excep_string != NULL)
12058 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12059 break;
12060
761269c8 12061 case ada_catch_exception_unhandled:
78076abc 12062 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12063 break;
12064
761269c8 12065 case ada_catch_assert:
6149aea9
PA
12066 fprintf_filtered (fp, "catch assert");
12067 break;
12068
12069 default:
12070 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12071 }
d9b3f62e 12072 print_recreate_thread (b, fp);
6149aea9
PA
12073}
12074
f7f9143b
JB
12075/* Virtual table for "catch exception" breakpoints. */
12076
28010a5d
PA
12077static void
12078dtor_catch_exception (struct breakpoint *b)
12079{
761269c8 12080 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12081}
12082
12083static struct bp_location *
12084allocate_location_catch_exception (struct breakpoint *self)
12085{
761269c8 12086 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12087}
12088
12089static void
12090re_set_catch_exception (struct breakpoint *b)
12091{
761269c8 12092 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12093}
12094
12095static void
12096check_status_catch_exception (bpstat bs)
12097{
761269c8 12098 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12099}
12100
f7f9143b 12101static enum print_stop_action
348d480f 12102print_it_catch_exception (bpstat bs)
f7f9143b 12103{
761269c8 12104 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12105}
12106
12107static void
a6d9a66e 12108print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12109{
761269c8 12110 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12111}
12112
12113static void
12114print_mention_catch_exception (struct breakpoint *b)
12115{
761269c8 12116 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12117}
12118
6149aea9
PA
12119static void
12120print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12121{
761269c8 12122 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12123}
12124
2060206e 12125static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12126
12127/* Virtual table for "catch exception unhandled" breakpoints. */
12128
28010a5d
PA
12129static void
12130dtor_catch_exception_unhandled (struct breakpoint *b)
12131{
761269c8 12132 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12133}
12134
12135static struct bp_location *
12136allocate_location_catch_exception_unhandled (struct breakpoint *self)
12137{
761269c8 12138 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12139}
12140
12141static void
12142re_set_catch_exception_unhandled (struct breakpoint *b)
12143{
761269c8 12144 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12145}
12146
12147static void
12148check_status_catch_exception_unhandled (bpstat bs)
12149{
761269c8 12150 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12151}
12152
f7f9143b 12153static enum print_stop_action
348d480f 12154print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12155{
761269c8 12156 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12157}
12158
12159static void
a6d9a66e
UW
12160print_one_catch_exception_unhandled (struct breakpoint *b,
12161 struct bp_location **last_loc)
f7f9143b 12162{
761269c8 12163 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12164}
12165
12166static void
12167print_mention_catch_exception_unhandled (struct breakpoint *b)
12168{
761269c8 12169 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12170}
12171
6149aea9
PA
12172static void
12173print_recreate_catch_exception_unhandled (struct breakpoint *b,
12174 struct ui_file *fp)
12175{
761269c8 12176 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12177}
12178
2060206e 12179static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12180
12181/* Virtual table for "catch assert" breakpoints. */
12182
28010a5d
PA
12183static void
12184dtor_catch_assert (struct breakpoint *b)
12185{
761269c8 12186 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12187}
12188
12189static struct bp_location *
12190allocate_location_catch_assert (struct breakpoint *self)
12191{
761269c8 12192 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12193}
12194
12195static void
12196re_set_catch_assert (struct breakpoint *b)
12197{
761269c8 12198 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12199}
12200
12201static void
12202check_status_catch_assert (bpstat bs)
12203{
761269c8 12204 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12205}
12206
f7f9143b 12207static enum print_stop_action
348d480f 12208print_it_catch_assert (bpstat bs)
f7f9143b 12209{
761269c8 12210 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12211}
12212
12213static void
a6d9a66e 12214print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12215{
761269c8 12216 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12217}
12218
12219static void
12220print_mention_catch_assert (struct breakpoint *b)
12221{
761269c8 12222 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12223}
12224
6149aea9
PA
12225static void
12226print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12227{
761269c8 12228 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12229}
12230
2060206e 12231static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12232
f7f9143b
JB
12233/* Return a newly allocated copy of the first space-separated token
12234 in ARGSP, and then adjust ARGSP to point immediately after that
12235 token.
12236
12237 Return NULL if ARGPS does not contain any more tokens. */
12238
12239static char *
12240ada_get_next_arg (char **argsp)
12241{
12242 char *args = *argsp;
12243 char *end;
12244 char *result;
12245
0fcd72ba 12246 args = skip_spaces (args);
f7f9143b
JB
12247 if (args[0] == '\0')
12248 return NULL; /* No more arguments. */
12249
12250 /* Find the end of the current argument. */
12251
0fcd72ba 12252 end = skip_to_space (args);
f7f9143b
JB
12253
12254 /* Adjust ARGSP to point to the start of the next argument. */
12255
12256 *argsp = end;
12257
12258 /* Make a copy of the current argument and return it. */
12259
12260 result = xmalloc (end - args + 1);
12261 strncpy (result, args, end - args);
12262 result[end - args] = '\0';
12263
12264 return result;
12265}
12266
12267/* Split the arguments specified in a "catch exception" command.
12268 Set EX to the appropriate catchpoint type.
28010a5d 12269 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12270 specified by the user.
12271 If a condition is found at the end of the arguments, the condition
12272 expression is stored in COND_STRING (memory must be deallocated
12273 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12274
12275static void
12276catch_ada_exception_command_split (char *args,
761269c8 12277 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12278 char **excep_string,
12279 char **cond_string)
f7f9143b
JB
12280{
12281 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12282 char *exception_name;
5845583d 12283 char *cond = NULL;
f7f9143b
JB
12284
12285 exception_name = ada_get_next_arg (&args);
5845583d
JB
12286 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12287 {
12288 /* This is not an exception name; this is the start of a condition
12289 expression for a catchpoint on all exceptions. So, "un-get"
12290 this token, and set exception_name to NULL. */
12291 xfree (exception_name);
12292 exception_name = NULL;
12293 args -= 2;
12294 }
f7f9143b
JB
12295 make_cleanup (xfree, exception_name);
12296
5845583d 12297 /* Check to see if we have a condition. */
f7f9143b 12298
0fcd72ba 12299 args = skip_spaces (args);
5845583d
JB
12300 if (strncmp (args, "if", 2) == 0
12301 && (isspace (args[2]) || args[2] == '\0'))
12302 {
12303 args += 2;
12304 args = skip_spaces (args);
12305
12306 if (args[0] == '\0')
12307 error (_("Condition missing after `if' keyword"));
12308 cond = xstrdup (args);
12309 make_cleanup (xfree, cond);
12310
12311 args += strlen (args);
12312 }
12313
12314 /* Check that we do not have any more arguments. Anything else
12315 is unexpected. */
f7f9143b
JB
12316
12317 if (args[0] != '\0')
12318 error (_("Junk at end of expression"));
12319
12320 discard_cleanups (old_chain);
12321
12322 if (exception_name == NULL)
12323 {
12324 /* Catch all exceptions. */
761269c8 12325 *ex = ada_catch_exception;
28010a5d 12326 *excep_string = NULL;
f7f9143b
JB
12327 }
12328 else if (strcmp (exception_name, "unhandled") == 0)
12329 {
12330 /* Catch unhandled exceptions. */
761269c8 12331 *ex = ada_catch_exception_unhandled;
28010a5d 12332 *excep_string = NULL;
f7f9143b
JB
12333 }
12334 else
12335 {
12336 /* Catch a specific exception. */
761269c8 12337 *ex = ada_catch_exception;
28010a5d 12338 *excep_string = exception_name;
f7f9143b 12339 }
5845583d 12340 *cond_string = cond;
f7f9143b
JB
12341}
12342
12343/* Return the name of the symbol on which we should break in order to
12344 implement a catchpoint of the EX kind. */
12345
12346static const char *
761269c8 12347ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12348{
3eecfa55
JB
12349 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12350
12351 gdb_assert (data->exception_info != NULL);
0259addd 12352
f7f9143b
JB
12353 switch (ex)
12354 {
761269c8 12355 case ada_catch_exception:
3eecfa55 12356 return (data->exception_info->catch_exception_sym);
f7f9143b 12357 break;
761269c8 12358 case ada_catch_exception_unhandled:
3eecfa55 12359 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12360 break;
761269c8 12361 case ada_catch_assert:
3eecfa55 12362 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12363 break;
12364 default:
12365 internal_error (__FILE__, __LINE__,
12366 _("unexpected catchpoint kind (%d)"), ex);
12367 }
12368}
12369
12370/* Return the breakpoint ops "virtual table" used for catchpoints
12371 of the EX kind. */
12372
c0a91b2b 12373static const struct breakpoint_ops *
761269c8 12374ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12375{
12376 switch (ex)
12377 {
761269c8 12378 case ada_catch_exception:
f7f9143b
JB
12379 return (&catch_exception_breakpoint_ops);
12380 break;
761269c8 12381 case ada_catch_exception_unhandled:
f7f9143b
JB
12382 return (&catch_exception_unhandled_breakpoint_ops);
12383 break;
761269c8 12384 case ada_catch_assert:
f7f9143b
JB
12385 return (&catch_assert_breakpoint_ops);
12386 break;
12387 default:
12388 internal_error (__FILE__, __LINE__,
12389 _("unexpected catchpoint kind (%d)"), ex);
12390 }
12391}
12392
12393/* Return the condition that will be used to match the current exception
12394 being raised with the exception that the user wants to catch. This
12395 assumes that this condition is used when the inferior just triggered
12396 an exception catchpoint.
12397
12398 The string returned is a newly allocated string that needs to be
12399 deallocated later. */
12400
12401static char *
28010a5d 12402ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12403{
3d0b0fa3
JB
12404 int i;
12405
0963b4bd 12406 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12407 runtime units that have been compiled without debugging info; if
28010a5d 12408 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12409 exception (e.g. "constraint_error") then, during the evaluation
12410 of the condition expression, the symbol lookup on this name would
0963b4bd 12411 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12412 may then be set only on user-defined exceptions which have the
12413 same not-fully-qualified name (e.g. my_package.constraint_error).
12414
12415 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12416 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12417 exception constraint_error" is rewritten into "catch exception
12418 standard.constraint_error".
12419
12420 If an exception named contraint_error is defined in another package of
12421 the inferior program, then the only way to specify this exception as a
12422 breakpoint condition is to use its fully-qualified named:
12423 e.g. my_package.constraint_error. */
12424
12425 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12426 {
28010a5d 12427 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12428 {
12429 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12430 excep_string);
3d0b0fa3
JB
12431 }
12432 }
28010a5d 12433 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12434}
12435
12436/* Return the symtab_and_line that should be used to insert an exception
12437 catchpoint of the TYPE kind.
12438
28010a5d
PA
12439 EXCEP_STRING should contain the name of a specific exception that
12440 the catchpoint should catch, or NULL otherwise.
f7f9143b 12441
28010a5d
PA
12442 ADDR_STRING returns the name of the function where the real
12443 breakpoint that implements the catchpoints is set, depending on the
12444 type of catchpoint we need to create. */
f7f9143b
JB
12445
12446static struct symtab_and_line
761269c8 12447ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12448 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12449{
12450 const char *sym_name;
12451 struct symbol *sym;
f7f9143b 12452
0259addd
JB
12453 /* First, find out which exception support info to use. */
12454 ada_exception_support_info_sniffer ();
12455
12456 /* Then lookup the function on which we will break in order to catch
f7f9143b 12457 the Ada exceptions requested by the user. */
f7f9143b
JB
12458 sym_name = ada_exception_sym_name (ex);
12459 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12460
f17011e0
JB
12461 /* We can assume that SYM is not NULL at this stage. If the symbol
12462 did not exist, ada_exception_support_info_sniffer would have
12463 raised an exception.
f7f9143b 12464
f17011e0
JB
12465 Also, ada_exception_support_info_sniffer should have already
12466 verified that SYM is a function symbol. */
12467 gdb_assert (sym != NULL);
12468 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12469
12470 /* Set ADDR_STRING. */
f7f9143b
JB
12471 *addr_string = xstrdup (sym_name);
12472
f7f9143b 12473 /* Set OPS. */
4b9eee8c 12474 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12475
f17011e0 12476 return find_function_start_sal (sym, 1);
f7f9143b
JB
12477}
12478
b4a5b78b 12479/* Create an Ada exception catchpoint.
f7f9143b 12480
b4a5b78b 12481 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12482
2df4d1d5
JB
12483 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12484 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12485 of the exception to which this catchpoint applies. When not NULL,
12486 the string must be allocated on the heap, and its deallocation
12487 is no longer the responsibility of the caller.
12488
12489 COND_STRING, if not NULL, is the catchpoint condition. This string
12490 must be allocated on the heap, and its deallocation is no longer
12491 the responsibility of the caller.
f7f9143b 12492
b4a5b78b
JB
12493 TEMPFLAG, if nonzero, means that the underlying breakpoint
12494 should be temporary.
28010a5d 12495
b4a5b78b 12496 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12497
349774ef 12498void
28010a5d 12499create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12500 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12501 char *excep_string,
5845583d 12502 char *cond_string,
28010a5d 12503 int tempflag,
349774ef 12504 int disabled,
28010a5d
PA
12505 int from_tty)
12506{
12507 struct ada_catchpoint *c;
b4a5b78b
JB
12508 char *addr_string = NULL;
12509 const struct breakpoint_ops *ops = NULL;
12510 struct symtab_and_line sal
12511 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12512
12513 c = XNEW (struct ada_catchpoint);
12514 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12515 ops, tempflag, disabled, from_tty);
28010a5d
PA
12516 c->excep_string = excep_string;
12517 create_excep_cond_exprs (c);
5845583d
JB
12518 if (cond_string != NULL)
12519 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12520 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12521}
12522
9ac4176b
PA
12523/* Implement the "catch exception" command. */
12524
12525static void
12526catch_ada_exception_command (char *arg, int from_tty,
12527 struct cmd_list_element *command)
12528{
12529 struct gdbarch *gdbarch = get_current_arch ();
12530 int tempflag;
761269c8 12531 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12532 char *excep_string = NULL;
5845583d 12533 char *cond_string = NULL;
9ac4176b
PA
12534
12535 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12536
12537 if (!arg)
12538 arg = "";
b4a5b78b
JB
12539 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12540 &cond_string);
12541 create_ada_exception_catchpoint (gdbarch, ex_kind,
12542 excep_string, cond_string,
349774ef
JB
12543 tempflag, 1 /* enabled */,
12544 from_tty);
9ac4176b
PA
12545}
12546
b4a5b78b 12547/* Split the arguments specified in a "catch assert" command.
5845583d 12548
b4a5b78b
JB
12549 ARGS contains the command's arguments (or the empty string if
12550 no arguments were passed).
5845583d
JB
12551
12552 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12553 (the memory needs to be deallocated after use). */
5845583d 12554
b4a5b78b
JB
12555static void
12556catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12557{
5845583d 12558 args = skip_spaces (args);
f7f9143b 12559
5845583d
JB
12560 /* Check whether a condition was provided. */
12561 if (strncmp (args, "if", 2) == 0
12562 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12563 {
5845583d 12564 args += 2;
0fcd72ba 12565 args = skip_spaces (args);
5845583d
JB
12566 if (args[0] == '\0')
12567 error (_("condition missing after `if' keyword"));
12568 *cond_string = xstrdup (args);
f7f9143b
JB
12569 }
12570
5845583d
JB
12571 /* Otherwise, there should be no other argument at the end of
12572 the command. */
12573 else if (args[0] != '\0')
12574 error (_("Junk at end of arguments."));
f7f9143b
JB
12575}
12576
9ac4176b
PA
12577/* Implement the "catch assert" command. */
12578
12579static void
12580catch_assert_command (char *arg, int from_tty,
12581 struct cmd_list_element *command)
12582{
12583 struct gdbarch *gdbarch = get_current_arch ();
12584 int tempflag;
5845583d 12585 char *cond_string = NULL;
9ac4176b
PA
12586
12587 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12588
12589 if (!arg)
12590 arg = "";
b4a5b78b 12591 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12592 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12593 NULL, cond_string,
349774ef
JB
12594 tempflag, 1 /* enabled */,
12595 from_tty);
9ac4176b 12596}
778865d3
JB
12597
12598/* Return non-zero if the symbol SYM is an Ada exception object. */
12599
12600static int
12601ada_is_exception_sym (struct symbol *sym)
12602{
12603 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12604
12605 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12606 && SYMBOL_CLASS (sym) != LOC_BLOCK
12607 && SYMBOL_CLASS (sym) != LOC_CONST
12608 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12609 && type_name != NULL && strcmp (type_name, "exception") == 0);
12610}
12611
12612/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12613 Ada exception object. This matches all exceptions except the ones
12614 defined by the Ada language. */
12615
12616static int
12617ada_is_non_standard_exception_sym (struct symbol *sym)
12618{
12619 int i;
12620
12621 if (!ada_is_exception_sym (sym))
12622 return 0;
12623
12624 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12625 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12626 return 0; /* A standard exception. */
12627
12628 /* Numeric_Error is also a standard exception, so exclude it.
12629 See the STANDARD_EXC description for more details as to why
12630 this exception is not listed in that array. */
12631 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12632 return 0;
12633
12634 return 1;
12635}
12636
12637/* A helper function for qsort, comparing two struct ada_exc_info
12638 objects.
12639
12640 The comparison is determined first by exception name, and then
12641 by exception address. */
12642
12643static int
12644compare_ada_exception_info (const void *a, const void *b)
12645{
12646 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12647 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12648 int result;
12649
12650 result = strcmp (exc_a->name, exc_b->name);
12651 if (result != 0)
12652 return result;
12653
12654 if (exc_a->addr < exc_b->addr)
12655 return -1;
12656 if (exc_a->addr > exc_b->addr)
12657 return 1;
12658
12659 return 0;
12660}
12661
12662/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12663 routine, but keeping the first SKIP elements untouched.
12664
12665 All duplicates are also removed. */
12666
12667static void
12668sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12669 int skip)
12670{
12671 struct ada_exc_info *to_sort
12672 = VEC_address (ada_exc_info, *exceptions) + skip;
12673 int to_sort_len
12674 = VEC_length (ada_exc_info, *exceptions) - skip;
12675 int i, j;
12676
12677 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12678 compare_ada_exception_info);
12679
12680 for (i = 1, j = 1; i < to_sort_len; i++)
12681 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12682 to_sort[j++] = to_sort[i];
12683 to_sort_len = j;
12684 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12685}
12686
12687/* A function intended as the "name_matcher" callback in the struct
12688 quick_symbol_functions' expand_symtabs_matching method.
12689
12690 SEARCH_NAME is the symbol's search name.
12691
12692 If USER_DATA is not NULL, it is a pointer to a regext_t object
12693 used to match the symbol (by natural name). Otherwise, when USER_DATA
12694 is null, no filtering is performed, and all symbols are a positive
12695 match. */
12696
12697static int
12698ada_exc_search_name_matches (const char *search_name, void *user_data)
12699{
12700 regex_t *preg = user_data;
12701
12702 if (preg == NULL)
12703 return 1;
12704
12705 /* In Ada, the symbol "search name" is a linkage name, whereas
12706 the regular expression used to do the matching refers to
12707 the natural name. So match against the decoded name. */
12708 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12709}
12710
12711/* Add all exceptions defined by the Ada standard whose name match
12712 a regular expression.
12713
12714 If PREG is not NULL, then this regexp_t object is used to
12715 perform the symbol name matching. Otherwise, no name-based
12716 filtering is performed.
12717
12718 EXCEPTIONS is a vector of exceptions to which matching exceptions
12719 gets pushed. */
12720
12721static void
12722ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12723{
12724 int i;
12725
12726 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12727 {
12728 if (preg == NULL
12729 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12730 {
12731 struct bound_minimal_symbol msymbol
12732 = ada_lookup_simple_minsym (standard_exc[i]);
12733
12734 if (msymbol.minsym != NULL)
12735 {
12736 struct ada_exc_info info
77e371c0 12737 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
12738
12739 VEC_safe_push (ada_exc_info, *exceptions, &info);
12740 }
12741 }
12742 }
12743}
12744
12745/* Add all Ada exceptions defined locally and accessible from the given
12746 FRAME.
12747
12748 If PREG is not NULL, then this regexp_t object is used to
12749 perform the symbol name matching. Otherwise, no name-based
12750 filtering is performed.
12751
12752 EXCEPTIONS is a vector of exceptions to which matching exceptions
12753 gets pushed. */
12754
12755static void
12756ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12757 VEC(ada_exc_info) **exceptions)
12758{
3977b71f 12759 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12760
12761 while (block != 0)
12762 {
12763 struct block_iterator iter;
12764 struct symbol *sym;
12765
12766 ALL_BLOCK_SYMBOLS (block, iter, sym)
12767 {
12768 switch (SYMBOL_CLASS (sym))
12769 {
12770 case LOC_TYPEDEF:
12771 case LOC_BLOCK:
12772 case LOC_CONST:
12773 break;
12774 default:
12775 if (ada_is_exception_sym (sym))
12776 {
12777 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12778 SYMBOL_VALUE_ADDRESS (sym)};
12779
12780 VEC_safe_push (ada_exc_info, *exceptions, &info);
12781 }
12782 }
12783 }
12784 if (BLOCK_FUNCTION (block) != NULL)
12785 break;
12786 block = BLOCK_SUPERBLOCK (block);
12787 }
12788}
12789
12790/* Add all exceptions defined globally whose name name match
12791 a regular expression, excluding standard exceptions.
12792
12793 The reason we exclude standard exceptions is that they need
12794 to be handled separately: Standard exceptions are defined inside
12795 a runtime unit which is normally not compiled with debugging info,
12796 and thus usually do not show up in our symbol search. However,
12797 if the unit was in fact built with debugging info, we need to
12798 exclude them because they would duplicate the entry we found
12799 during the special loop that specifically searches for those
12800 standard exceptions.
12801
12802 If PREG is not NULL, then this regexp_t object is used to
12803 perform the symbol name matching. Otherwise, no name-based
12804 filtering is performed.
12805
12806 EXCEPTIONS is a vector of exceptions to which matching exceptions
12807 gets pushed. */
12808
12809static void
12810ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12811{
12812 struct objfile *objfile;
12813 struct symtab *s;
12814
bb4142cf
DE
12815 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12816 VARIABLES_DOMAIN, preg);
778865d3
JB
12817
12818 ALL_PRIMARY_SYMTABS (objfile, s)
12819 {
346d1dfe 12820 const struct blockvector *bv = BLOCKVECTOR (s);
778865d3
JB
12821 int i;
12822
12823 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12824 {
12825 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12826 struct block_iterator iter;
12827 struct symbol *sym;
12828
12829 ALL_BLOCK_SYMBOLS (b, iter, sym)
12830 if (ada_is_non_standard_exception_sym (sym)
12831 && (preg == NULL
12832 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12833 0, NULL, 0) == 0))
12834 {
12835 struct ada_exc_info info
12836 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12837
12838 VEC_safe_push (ada_exc_info, *exceptions, &info);
12839 }
12840 }
12841 }
12842}
12843
12844/* Implements ada_exceptions_list with the regular expression passed
12845 as a regex_t, rather than a string.
12846
12847 If not NULL, PREG is used to filter out exceptions whose names
12848 do not match. Otherwise, all exceptions are listed. */
12849
12850static VEC(ada_exc_info) *
12851ada_exceptions_list_1 (regex_t *preg)
12852{
12853 VEC(ada_exc_info) *result = NULL;
12854 struct cleanup *old_chain
12855 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12856 int prev_len;
12857
12858 /* First, list the known standard exceptions. These exceptions
12859 need to be handled separately, as they are usually defined in
12860 runtime units that have been compiled without debugging info. */
12861
12862 ada_add_standard_exceptions (preg, &result);
12863
12864 /* Next, find all exceptions whose scope is local and accessible
12865 from the currently selected frame. */
12866
12867 if (has_stack_frames ())
12868 {
12869 prev_len = VEC_length (ada_exc_info, result);
12870 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12871 &result);
12872 if (VEC_length (ada_exc_info, result) > prev_len)
12873 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12874 }
12875
12876 /* Add all exceptions whose scope is global. */
12877
12878 prev_len = VEC_length (ada_exc_info, result);
12879 ada_add_global_exceptions (preg, &result);
12880 if (VEC_length (ada_exc_info, result) > prev_len)
12881 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12882
12883 discard_cleanups (old_chain);
12884 return result;
12885}
12886
12887/* Return a vector of ada_exc_info.
12888
12889 If REGEXP is NULL, all exceptions are included in the result.
12890 Otherwise, it should contain a valid regular expression,
12891 and only the exceptions whose names match that regular expression
12892 are included in the result.
12893
12894 The exceptions are sorted in the following order:
12895 - Standard exceptions (defined by the Ada language), in
12896 alphabetical order;
12897 - Exceptions only visible from the current frame, in
12898 alphabetical order;
12899 - Exceptions whose scope is global, in alphabetical order. */
12900
12901VEC(ada_exc_info) *
12902ada_exceptions_list (const char *regexp)
12903{
12904 VEC(ada_exc_info) *result = NULL;
12905 struct cleanup *old_chain = NULL;
12906 regex_t reg;
12907
12908 if (regexp != NULL)
12909 old_chain = compile_rx_or_error (&reg, regexp,
12910 _("invalid regular expression"));
12911
12912 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12913
12914 if (old_chain != NULL)
12915 do_cleanups (old_chain);
12916 return result;
12917}
12918
12919/* Implement the "info exceptions" command. */
12920
12921static void
12922info_exceptions_command (char *regexp, int from_tty)
12923{
12924 VEC(ada_exc_info) *exceptions;
12925 struct cleanup *cleanup;
12926 struct gdbarch *gdbarch = get_current_arch ();
12927 int ix;
12928 struct ada_exc_info *info;
12929
12930 exceptions = ada_exceptions_list (regexp);
12931 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12932
12933 if (regexp != NULL)
12934 printf_filtered
12935 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12936 else
12937 printf_filtered (_("All defined Ada exceptions:\n"));
12938
12939 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12940 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12941
12942 do_cleanups (cleanup);
12943}
12944
4c4b4cd2
PH
12945 /* Operators */
12946/* Information about operators given special treatment in functions
12947 below. */
12948/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12949
12950#define ADA_OPERATORS \
12951 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12952 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12953 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12954 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12955 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12956 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12957 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12958 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12959 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12960 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12961 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12962 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12963 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12964 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12965 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12966 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12967 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12968 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12969 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12970
12971static void
554794dc
SDJ
12972ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12973 int *argsp)
4c4b4cd2
PH
12974{
12975 switch (exp->elts[pc - 1].opcode)
12976 {
76a01679 12977 default:
4c4b4cd2
PH
12978 operator_length_standard (exp, pc, oplenp, argsp);
12979 break;
12980
12981#define OP_DEFN(op, len, args, binop) \
12982 case op: *oplenp = len; *argsp = args; break;
12983 ADA_OPERATORS;
12984#undef OP_DEFN
52ce6436
PH
12985
12986 case OP_AGGREGATE:
12987 *oplenp = 3;
12988 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12989 break;
12990
12991 case OP_CHOICES:
12992 *oplenp = 3;
12993 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12994 break;
4c4b4cd2
PH
12995 }
12996}
12997
c0201579
JK
12998/* Implementation of the exp_descriptor method operator_check. */
12999
13000static int
13001ada_operator_check (struct expression *exp, int pos,
13002 int (*objfile_func) (struct objfile *objfile, void *data),
13003 void *data)
13004{
13005 const union exp_element *const elts = exp->elts;
13006 struct type *type = NULL;
13007
13008 switch (elts[pos].opcode)
13009 {
13010 case UNOP_IN_RANGE:
13011 case UNOP_QUAL:
13012 type = elts[pos + 1].type;
13013 break;
13014
13015 default:
13016 return operator_check_standard (exp, pos, objfile_func, data);
13017 }
13018
13019 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13020
13021 if (type && TYPE_OBJFILE (type)
13022 && (*objfile_func) (TYPE_OBJFILE (type), data))
13023 return 1;
13024
13025 return 0;
13026}
13027
4c4b4cd2
PH
13028static char *
13029ada_op_name (enum exp_opcode opcode)
13030{
13031 switch (opcode)
13032 {
76a01679 13033 default:
4c4b4cd2 13034 return op_name_standard (opcode);
52ce6436 13035
4c4b4cd2
PH
13036#define OP_DEFN(op, len, args, binop) case op: return #op;
13037 ADA_OPERATORS;
13038#undef OP_DEFN
52ce6436
PH
13039
13040 case OP_AGGREGATE:
13041 return "OP_AGGREGATE";
13042 case OP_CHOICES:
13043 return "OP_CHOICES";
13044 case OP_NAME:
13045 return "OP_NAME";
4c4b4cd2
PH
13046 }
13047}
13048
13049/* As for operator_length, but assumes PC is pointing at the first
13050 element of the operator, and gives meaningful results only for the
52ce6436 13051 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13052
13053static void
76a01679
JB
13054ada_forward_operator_length (struct expression *exp, int pc,
13055 int *oplenp, int *argsp)
4c4b4cd2 13056{
76a01679 13057 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13058 {
13059 default:
13060 *oplenp = *argsp = 0;
13061 break;
52ce6436 13062
4c4b4cd2
PH
13063#define OP_DEFN(op, len, args, binop) \
13064 case op: *oplenp = len; *argsp = args; break;
13065 ADA_OPERATORS;
13066#undef OP_DEFN
52ce6436
PH
13067
13068 case OP_AGGREGATE:
13069 *oplenp = 3;
13070 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13071 break;
13072
13073 case OP_CHOICES:
13074 *oplenp = 3;
13075 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13076 break;
13077
13078 case OP_STRING:
13079 case OP_NAME:
13080 {
13081 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13082
52ce6436
PH
13083 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13084 *argsp = 0;
13085 break;
13086 }
4c4b4cd2
PH
13087 }
13088}
13089
13090static int
13091ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13092{
13093 enum exp_opcode op = exp->elts[elt].opcode;
13094 int oplen, nargs;
13095 int pc = elt;
13096 int i;
76a01679 13097
4c4b4cd2
PH
13098 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13099
76a01679 13100 switch (op)
4c4b4cd2 13101 {
76a01679 13102 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13103 case OP_ATR_FIRST:
13104 case OP_ATR_LAST:
13105 case OP_ATR_LENGTH:
13106 case OP_ATR_IMAGE:
13107 case OP_ATR_MAX:
13108 case OP_ATR_MIN:
13109 case OP_ATR_MODULUS:
13110 case OP_ATR_POS:
13111 case OP_ATR_SIZE:
13112 case OP_ATR_TAG:
13113 case OP_ATR_VAL:
13114 break;
13115
13116 case UNOP_IN_RANGE:
13117 case UNOP_QUAL:
323e0a4a
AC
13118 /* XXX: gdb_sprint_host_address, type_sprint */
13119 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13120 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13121 fprintf_filtered (stream, " (");
13122 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13123 fprintf_filtered (stream, ")");
13124 break;
13125 case BINOP_IN_BOUNDS:
52ce6436
PH
13126 fprintf_filtered (stream, " (%d)",
13127 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13128 break;
13129 case TERNOP_IN_RANGE:
13130 break;
13131
52ce6436
PH
13132 case OP_AGGREGATE:
13133 case OP_OTHERS:
13134 case OP_DISCRETE_RANGE:
13135 case OP_POSITIONAL:
13136 case OP_CHOICES:
13137 break;
13138
13139 case OP_NAME:
13140 case OP_STRING:
13141 {
13142 char *name = &exp->elts[elt + 2].string;
13143 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13144
52ce6436
PH
13145 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13146 break;
13147 }
13148
4c4b4cd2
PH
13149 default:
13150 return dump_subexp_body_standard (exp, stream, elt);
13151 }
13152
13153 elt += oplen;
13154 for (i = 0; i < nargs; i += 1)
13155 elt = dump_subexp (exp, stream, elt);
13156
13157 return elt;
13158}
13159
13160/* The Ada extension of print_subexp (q.v.). */
13161
76a01679
JB
13162static void
13163ada_print_subexp (struct expression *exp, int *pos,
13164 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13165{
52ce6436 13166 int oplen, nargs, i;
4c4b4cd2
PH
13167 int pc = *pos;
13168 enum exp_opcode op = exp->elts[pc].opcode;
13169
13170 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13171
52ce6436 13172 *pos += oplen;
4c4b4cd2
PH
13173 switch (op)
13174 {
13175 default:
52ce6436 13176 *pos -= oplen;
4c4b4cd2
PH
13177 print_subexp_standard (exp, pos, stream, prec);
13178 return;
13179
13180 case OP_VAR_VALUE:
4c4b4cd2
PH
13181 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13182 return;
13183
13184 case BINOP_IN_BOUNDS:
323e0a4a 13185 /* XXX: sprint_subexp */
4c4b4cd2 13186 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13187 fputs_filtered (" in ", stream);
4c4b4cd2 13188 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13189 fputs_filtered ("'range", stream);
4c4b4cd2 13190 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13191 fprintf_filtered (stream, "(%ld)",
13192 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13193 return;
13194
13195 case TERNOP_IN_RANGE:
4c4b4cd2 13196 if (prec >= PREC_EQUAL)
76a01679 13197 fputs_filtered ("(", stream);
323e0a4a 13198 /* XXX: sprint_subexp */
4c4b4cd2 13199 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13200 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13201 print_subexp (exp, pos, stream, PREC_EQUAL);
13202 fputs_filtered (" .. ", stream);
13203 print_subexp (exp, pos, stream, PREC_EQUAL);
13204 if (prec >= PREC_EQUAL)
76a01679
JB
13205 fputs_filtered (")", stream);
13206 return;
4c4b4cd2
PH
13207
13208 case OP_ATR_FIRST:
13209 case OP_ATR_LAST:
13210 case OP_ATR_LENGTH:
13211 case OP_ATR_IMAGE:
13212 case OP_ATR_MAX:
13213 case OP_ATR_MIN:
13214 case OP_ATR_MODULUS:
13215 case OP_ATR_POS:
13216 case OP_ATR_SIZE:
13217 case OP_ATR_TAG:
13218 case OP_ATR_VAL:
4c4b4cd2 13219 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13220 {
13221 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13222 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13223 &type_print_raw_options);
76a01679
JB
13224 *pos += 3;
13225 }
4c4b4cd2 13226 else
76a01679 13227 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13228 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13229 if (nargs > 1)
76a01679
JB
13230 {
13231 int tem;
5b4ee69b 13232
76a01679
JB
13233 for (tem = 1; tem < nargs; tem += 1)
13234 {
13235 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13236 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13237 }
13238 fputs_filtered (")", stream);
13239 }
4c4b4cd2 13240 return;
14f9c5c9 13241
4c4b4cd2 13242 case UNOP_QUAL:
4c4b4cd2
PH
13243 type_print (exp->elts[pc + 1].type, "", stream, 0);
13244 fputs_filtered ("'(", stream);
13245 print_subexp (exp, pos, stream, PREC_PREFIX);
13246 fputs_filtered (")", stream);
13247 return;
14f9c5c9 13248
4c4b4cd2 13249 case UNOP_IN_RANGE:
323e0a4a 13250 /* XXX: sprint_subexp */
4c4b4cd2 13251 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13252 fputs_filtered (" in ", stream);
79d43c61
TT
13253 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13254 &type_print_raw_options);
4c4b4cd2 13255 return;
52ce6436
PH
13256
13257 case OP_DISCRETE_RANGE:
13258 print_subexp (exp, pos, stream, PREC_SUFFIX);
13259 fputs_filtered ("..", stream);
13260 print_subexp (exp, pos, stream, PREC_SUFFIX);
13261 return;
13262
13263 case OP_OTHERS:
13264 fputs_filtered ("others => ", stream);
13265 print_subexp (exp, pos, stream, PREC_SUFFIX);
13266 return;
13267
13268 case OP_CHOICES:
13269 for (i = 0; i < nargs-1; i += 1)
13270 {
13271 if (i > 0)
13272 fputs_filtered ("|", stream);
13273 print_subexp (exp, pos, stream, PREC_SUFFIX);
13274 }
13275 fputs_filtered (" => ", stream);
13276 print_subexp (exp, pos, stream, PREC_SUFFIX);
13277 return;
13278
13279 case OP_POSITIONAL:
13280 print_subexp (exp, pos, stream, PREC_SUFFIX);
13281 return;
13282
13283 case OP_AGGREGATE:
13284 fputs_filtered ("(", stream);
13285 for (i = 0; i < nargs; i += 1)
13286 {
13287 if (i > 0)
13288 fputs_filtered (", ", stream);
13289 print_subexp (exp, pos, stream, PREC_SUFFIX);
13290 }
13291 fputs_filtered (")", stream);
13292 return;
4c4b4cd2
PH
13293 }
13294}
14f9c5c9
AS
13295
13296/* Table mapping opcodes into strings for printing operators
13297 and precedences of the operators. */
13298
d2e4a39e
AS
13299static const struct op_print ada_op_print_tab[] = {
13300 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13301 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13302 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13303 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13304 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13305 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13306 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13307 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13308 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13309 {">=", BINOP_GEQ, PREC_ORDER, 0},
13310 {">", BINOP_GTR, PREC_ORDER, 0},
13311 {"<", BINOP_LESS, PREC_ORDER, 0},
13312 {">>", BINOP_RSH, PREC_SHIFT, 0},
13313 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13314 {"+", BINOP_ADD, PREC_ADD, 0},
13315 {"-", BINOP_SUB, PREC_ADD, 0},
13316 {"&", BINOP_CONCAT, PREC_ADD, 0},
13317 {"*", BINOP_MUL, PREC_MUL, 0},
13318 {"/", BINOP_DIV, PREC_MUL, 0},
13319 {"rem", BINOP_REM, PREC_MUL, 0},
13320 {"mod", BINOP_MOD, PREC_MUL, 0},
13321 {"**", BINOP_EXP, PREC_REPEAT, 0},
13322 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13323 {"-", UNOP_NEG, PREC_PREFIX, 0},
13324 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13325 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13326 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13327 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13328 {".all", UNOP_IND, PREC_SUFFIX, 1},
13329 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13330 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 13331 {NULL, 0, 0, 0}
14f9c5c9
AS
13332};
13333\f
72d5681a
PH
13334enum ada_primitive_types {
13335 ada_primitive_type_int,
13336 ada_primitive_type_long,
13337 ada_primitive_type_short,
13338 ada_primitive_type_char,
13339 ada_primitive_type_float,
13340 ada_primitive_type_double,
13341 ada_primitive_type_void,
13342 ada_primitive_type_long_long,
13343 ada_primitive_type_long_double,
13344 ada_primitive_type_natural,
13345 ada_primitive_type_positive,
13346 ada_primitive_type_system_address,
13347 nr_ada_primitive_types
13348};
6c038f32
PH
13349
13350static void
d4a9a881 13351ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13352 struct language_arch_info *lai)
13353{
d4a9a881 13354 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13355
72d5681a 13356 lai->primitive_type_vector
d4a9a881 13357 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13358 struct type *);
e9bb382b
UW
13359
13360 lai->primitive_type_vector [ada_primitive_type_int]
13361 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13362 0, "integer");
13363 lai->primitive_type_vector [ada_primitive_type_long]
13364 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13365 0, "long_integer");
13366 lai->primitive_type_vector [ada_primitive_type_short]
13367 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13368 0, "short_integer");
13369 lai->string_char_type
13370 = lai->primitive_type_vector [ada_primitive_type_char]
13371 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13372 lai->primitive_type_vector [ada_primitive_type_float]
13373 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13374 "float", NULL);
13375 lai->primitive_type_vector [ada_primitive_type_double]
13376 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13377 "long_float", NULL);
13378 lai->primitive_type_vector [ada_primitive_type_long_long]
13379 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13380 0, "long_long_integer");
13381 lai->primitive_type_vector [ada_primitive_type_long_double]
13382 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13383 "long_long_float", NULL);
13384 lai->primitive_type_vector [ada_primitive_type_natural]
13385 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13386 0, "natural");
13387 lai->primitive_type_vector [ada_primitive_type_positive]
13388 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13389 0, "positive");
13390 lai->primitive_type_vector [ada_primitive_type_void]
13391 = builtin->builtin_void;
13392
13393 lai->primitive_type_vector [ada_primitive_type_system_address]
13394 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13395 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13396 = "system__address";
fbb06eb1 13397
47e729a8 13398 lai->bool_type_symbol = NULL;
fbb06eb1 13399 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13400}
6c038f32
PH
13401\f
13402 /* Language vector */
13403
13404/* Not really used, but needed in the ada_language_defn. */
13405
13406static void
6c7a06a3 13407emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13408{
6c7a06a3 13409 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13410}
13411
13412static int
410a0ff2 13413parse (struct parser_state *ps)
6c038f32
PH
13414{
13415 warnings_issued = 0;
410a0ff2 13416 return ada_parse (ps);
6c038f32
PH
13417}
13418
13419static const struct exp_descriptor ada_exp_descriptor = {
13420 ada_print_subexp,
13421 ada_operator_length,
c0201579 13422 ada_operator_check,
6c038f32
PH
13423 ada_op_name,
13424 ada_dump_subexp_body,
13425 ada_evaluate_subexp
13426};
13427
1a119f36 13428/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13429 for Ada. */
13430
1a119f36
JB
13431static symbol_name_cmp_ftype
13432ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13433{
13434 if (should_use_wild_match (lookup_name))
13435 return wild_match;
13436 else
13437 return compare_names;
13438}
13439
a5ee536b
JB
13440/* Implement the "la_read_var_value" language_defn method for Ada. */
13441
13442static struct value *
13443ada_read_var_value (struct symbol *var, struct frame_info *frame)
13444{
3977b71f 13445 const struct block *frame_block = NULL;
a5ee536b
JB
13446 struct symbol *renaming_sym = NULL;
13447
13448 /* The only case where default_read_var_value is not sufficient
13449 is when VAR is a renaming... */
13450 if (frame)
13451 frame_block = get_frame_block (frame, NULL);
13452 if (frame_block)
13453 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13454 if (renaming_sym != NULL)
13455 return ada_read_renaming_var_value (renaming_sym, frame_block);
13456
13457 /* This is a typical case where we expect the default_read_var_value
13458 function to work. */
13459 return default_read_var_value (var, frame);
13460}
13461
6c038f32
PH
13462const struct language_defn ada_language_defn = {
13463 "ada", /* Language name */
6abde28f 13464 "Ada",
6c038f32 13465 language_ada,
6c038f32 13466 range_check_off,
6c038f32
PH
13467 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13468 that's not quite what this means. */
6c038f32 13469 array_row_major,
9a044a89 13470 macro_expansion_no,
6c038f32
PH
13471 &ada_exp_descriptor,
13472 parse,
13473 ada_error,
13474 resolve,
13475 ada_printchar, /* Print a character constant */
13476 ada_printstr, /* Function to print string constant */
13477 emit_char, /* Function to print single char (not used) */
6c038f32 13478 ada_print_type, /* Print a type using appropriate syntax */
be942545 13479 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13480 ada_val_print, /* Print a value using appropriate syntax */
13481 ada_value_print, /* Print a top-level value */
a5ee536b 13482 ada_read_var_value, /* la_read_var_value */
6c038f32 13483 NULL, /* Language specific skip_trampoline */
2b2d9e11 13484 NULL, /* name_of_this */
6c038f32
PH
13485 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13486 basic_lookup_transparent_type, /* lookup_transparent_type */
13487 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13488 NULL, /* Language specific
13489 class_name_from_physname */
6c038f32
PH
13490 ada_op_print_tab, /* expression operators for printing */
13491 0, /* c-style arrays */
13492 1, /* String lower bound */
6c038f32 13493 ada_get_gdb_completer_word_break_characters,
41d27058 13494 ada_make_symbol_completion_list,
72d5681a 13495 ada_language_arch_info,
e79af960 13496 ada_print_array_index,
41f1b697 13497 default_pass_by_reference,
ae6a3a4c 13498 c_get_string,
1a119f36 13499 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13500 ada_iterate_over_symbols,
a53b64ea 13501 &ada_varobj_ops,
6c038f32
PH
13502 LANG_MAGIC
13503};
13504
2c0b251b
PA
13505/* Provide a prototype to silence -Wmissing-prototypes. */
13506extern initialize_file_ftype _initialize_ada_language;
13507
5bf03f13
JB
13508/* Command-list for the "set/show ada" prefix command. */
13509static struct cmd_list_element *set_ada_list;
13510static struct cmd_list_element *show_ada_list;
13511
13512/* Implement the "set ada" prefix command. */
13513
13514static void
13515set_ada_command (char *arg, int from_tty)
13516{
13517 printf_unfiltered (_(\
13518"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 13519 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
13520}
13521
13522/* Implement the "show ada" prefix command. */
13523
13524static void
13525show_ada_command (char *args, int from_tty)
13526{
13527 cmd_show_list (show_ada_list, from_tty, "");
13528}
13529
2060206e
PA
13530static void
13531initialize_ada_catchpoint_ops (void)
13532{
13533 struct breakpoint_ops *ops;
13534
13535 initialize_breakpoint_ops ();
13536
13537 ops = &catch_exception_breakpoint_ops;
13538 *ops = bkpt_breakpoint_ops;
13539 ops->dtor = dtor_catch_exception;
13540 ops->allocate_location = allocate_location_catch_exception;
13541 ops->re_set = re_set_catch_exception;
13542 ops->check_status = check_status_catch_exception;
13543 ops->print_it = print_it_catch_exception;
13544 ops->print_one = print_one_catch_exception;
13545 ops->print_mention = print_mention_catch_exception;
13546 ops->print_recreate = print_recreate_catch_exception;
13547
13548 ops = &catch_exception_unhandled_breakpoint_ops;
13549 *ops = bkpt_breakpoint_ops;
13550 ops->dtor = dtor_catch_exception_unhandled;
13551 ops->allocate_location = allocate_location_catch_exception_unhandled;
13552 ops->re_set = re_set_catch_exception_unhandled;
13553 ops->check_status = check_status_catch_exception_unhandled;
13554 ops->print_it = print_it_catch_exception_unhandled;
13555 ops->print_one = print_one_catch_exception_unhandled;
13556 ops->print_mention = print_mention_catch_exception_unhandled;
13557 ops->print_recreate = print_recreate_catch_exception_unhandled;
13558
13559 ops = &catch_assert_breakpoint_ops;
13560 *ops = bkpt_breakpoint_ops;
13561 ops->dtor = dtor_catch_assert;
13562 ops->allocate_location = allocate_location_catch_assert;
13563 ops->re_set = re_set_catch_assert;
13564 ops->check_status = check_status_catch_assert;
13565 ops->print_it = print_it_catch_assert;
13566 ops->print_one = print_one_catch_assert;
13567 ops->print_mention = print_mention_catch_assert;
13568 ops->print_recreate = print_recreate_catch_assert;
13569}
13570
3d9434b5
JB
13571/* This module's 'new_objfile' observer. */
13572
13573static void
13574ada_new_objfile_observer (struct objfile *objfile)
13575{
13576 ada_clear_symbol_cache ();
13577}
13578
13579/* This module's 'free_objfile' observer. */
13580
13581static void
13582ada_free_objfile_observer (struct objfile *objfile)
13583{
13584 ada_clear_symbol_cache ();
13585}
13586
d2e4a39e 13587void
6c038f32 13588_initialize_ada_language (void)
14f9c5c9 13589{
6c038f32
PH
13590 add_language (&ada_language_defn);
13591
2060206e
PA
13592 initialize_ada_catchpoint_ops ();
13593
5bf03f13
JB
13594 add_prefix_cmd ("ada", no_class, set_ada_command,
13595 _("Prefix command for changing Ada-specfic settings"),
13596 &set_ada_list, "set ada ", 0, &setlist);
13597
13598 add_prefix_cmd ("ada", no_class, show_ada_command,
13599 _("Generic command for showing Ada-specific settings."),
13600 &show_ada_list, "show ada ", 0, &showlist);
13601
13602 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13603 &trust_pad_over_xvs, _("\
13604Enable or disable an optimization trusting PAD types over XVS types"), _("\
13605Show whether an optimization trusting PAD types over XVS types is activated"),
13606 _("\
13607This is related to the encoding used by the GNAT compiler. The debugger\n\
13608should normally trust the contents of PAD types, but certain older versions\n\
13609of GNAT have a bug that sometimes causes the information in the PAD type\n\
13610to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13611work around this bug. It is always safe to turn this option \"off\", but\n\
13612this incurs a slight performance penalty, so it is recommended to NOT change\n\
13613this option to \"off\" unless necessary."),
13614 NULL, NULL, &set_ada_list, &show_ada_list);
13615
9ac4176b
PA
13616 add_catch_command ("exception", _("\
13617Catch Ada exceptions, when raised.\n\
13618With an argument, catch only exceptions with the given name."),
13619 catch_ada_exception_command,
13620 NULL,
13621 CATCH_PERMANENT,
13622 CATCH_TEMPORARY);
13623 add_catch_command ("assert", _("\
13624Catch failed Ada assertions, when raised.\n\
13625With an argument, catch only exceptions with the given name."),
13626 catch_assert_command,
13627 NULL,
13628 CATCH_PERMANENT,
13629 CATCH_TEMPORARY);
13630
6c038f32 13631 varsize_limit = 65536;
6c038f32 13632
778865d3
JB
13633 add_info ("exceptions", info_exceptions_command,
13634 _("\
13635List all Ada exception names.\n\
13636If a regular expression is passed as an argument, only those matching\n\
13637the regular expression are listed."));
13638
c6044dd1
JB
13639 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13640 _("Set Ada maintenance-related variables."),
13641 &maint_set_ada_cmdlist, "maintenance set ada ",
13642 0/*allow-unknown*/, &maintenance_set_cmdlist);
13643
13644 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13645 _("Show Ada maintenance-related variables"),
13646 &maint_show_ada_cmdlist, "maintenance show ada ",
13647 0/*allow-unknown*/, &maintenance_show_cmdlist);
13648
13649 add_setshow_boolean_cmd
13650 ("ignore-descriptive-types", class_maintenance,
13651 &ada_ignore_descriptive_types_p,
13652 _("Set whether descriptive types generated by GNAT should be ignored."),
13653 _("Show whether descriptive types generated by GNAT should be ignored."),
13654 _("\
13655When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13656DWARF attribute."),
13657 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13658
6c038f32
PH
13659 obstack_init (&symbol_list_obstack);
13660
13661 decoded_names_store = htab_create_alloc
13662 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13663 NULL, xcalloc, xfree);
6b69afc4 13664
3d9434b5
JB
13665 /* The ada-lang observers. */
13666 observer_attach_new_objfile (ada_new_objfile_observer);
13667 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 13668 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
13669
13670 /* Setup various context-specific data. */
e802dbe0 13671 ada_inferior_data
8e260fc0 13672 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
13673 ada_pspace_data_handle
13674 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 13675}
This page took 2.076911 seconds and 4 git commands to generate.