Commit | Line | Data |
---|---|---|
6e681866 | 1 | /* Ada language support routines for GDB, the GNU debugger. |
10a2c479 | 2 | |
b811d2c2 | 3 | Copyright (C) 1992-2020 Free Software Foundation, Inc. |
14f9c5c9 | 4 | |
a9762ec7 | 5 | This file is part of GDB. |
14f9c5c9 | 6 | |
a9762ec7 JB |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
14f9c5c9 | 11 | |
a9762ec7 JB |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
14f9c5c9 | 16 | |
a9762ec7 JB |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 19 | |
96d887e8 | 20 | |
4c4b4cd2 | 21 | #include "defs.h" |
14f9c5c9 | 22 | #include <ctype.h> |
d55e5aa6 | 23 | #include "gdb_regex.h" |
4de283e4 TT |
24 | #include "frame.h" |
25 | #include "symtab.h" | |
26 | #include "gdbtypes.h" | |
14f9c5c9 | 27 | #include "gdbcmd.h" |
4de283e4 TT |
28 | #include "expression.h" |
29 | #include "parser-defs.h" | |
30 | #include "language.h" | |
31 | #include "varobj.h" | |
4de283e4 TT |
32 | #include "inferior.h" |
33 | #include "symfile.h" | |
34 | #include "objfiles.h" | |
35 | #include "breakpoint.h" | |
14f9c5c9 | 36 | #include "gdbcore.h" |
4c4b4cd2 | 37 | #include "hashtab.h" |
4de283e4 TT |
38 | #include "gdb_obstack.h" |
39 | #include "ada-lang.h" | |
40 | #include "completer.h" | |
4de283e4 TT |
41 | #include "ui-out.h" |
42 | #include "block.h" | |
04714b91 | 43 | #include "infcall.h" |
4de283e4 TT |
44 | #include "annotate.h" |
45 | #include "valprint.h" | |
d55e5aa6 | 46 | #include "source.h" |
4de283e4 | 47 | #include "observable.h" |
692465f1 | 48 | #include "stack.h" |
79d43c61 | 49 | #include "typeprint.h" |
4de283e4 | 50 | #include "namespace.h" |
7f6aba03 | 51 | #include "cli/cli-style.h" |
4de283e4 | 52 | |
40bc484c | 53 | #include "value.h" |
4de283e4 TT |
54 | #include "mi/mi-common.h" |
55 | #include "arch-utils.h" | |
56 | #include "cli/cli-utils.h" | |
268a13a5 TT |
57 | #include "gdbsupport/function-view.h" |
58 | #include "gdbsupport/byte-vector.h" | |
4de283e4 | 59 | #include <algorithm> |
ccefe4c4 | 60 | |
4c4b4cd2 | 61 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 62 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
63 | Copied from valarith.c. */ |
64 | ||
65 | #ifndef TRUNCATION_TOWARDS_ZERO | |
66 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
67 | #endif | |
68 | ||
d2e4a39e | 69 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 70 | |
d2e4a39e | 71 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 72 | |
d2e4a39e | 73 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 74 | |
d2e4a39e | 75 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 76 | |
d2e4a39e | 77 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 78 | |
556bdfd4 | 79 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 80 | |
d2e4a39e | 81 | static struct value *desc_data (struct value *); |
14f9c5c9 | 82 | |
d2e4a39e | 83 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 84 | |
d2e4a39e | 85 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 86 | |
d2e4a39e | 87 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static int desc_arity (struct type *); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 100 | |
40bc484c | 101 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 102 | |
4c4b4cd2 | 103 | static void ada_add_block_symbols (struct obstack *, |
b5ec771e PA |
104 | const struct block *, |
105 | const lookup_name_info &lookup_name, | |
106 | domain_enum, struct objfile *); | |
14f9c5c9 | 107 | |
22cee43f | 108 | static void ada_add_all_symbols (struct obstack *, const struct block *, |
b5ec771e PA |
109 | const lookup_name_info &lookup_name, |
110 | domain_enum, int, int *); | |
22cee43f | 111 | |
d12307c1 | 112 | static int is_nonfunction (struct block_symbol *, int); |
14f9c5c9 | 113 | |
76a01679 | 114 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
f0c5f9b2 | 115 | const struct block *); |
14f9c5c9 | 116 | |
4c4b4cd2 PH |
117 | static int num_defns_collected (struct obstack *); |
118 | ||
d12307c1 | 119 | static struct block_symbol *defns_collected (struct obstack *, int); |
14f9c5c9 | 120 | |
e9d9f57e | 121 | static struct value *resolve_subexp (expression_up *, int *, int, |
699bd4cf TT |
122 | struct type *, int, |
123 | innermost_block_tracker *); | |
14f9c5c9 | 124 | |
e9d9f57e | 125 | static void replace_operator_with_call (expression_up *, int, int, int, |
270140bd | 126 | struct symbol *, const struct block *); |
14f9c5c9 | 127 | |
d2e4a39e | 128 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 129 | |
a121b7c1 | 130 | static const char *ada_op_name (enum exp_opcode); |
4c4b4cd2 PH |
131 | |
132 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 133 | |
d2e4a39e | 134 | static int numeric_type_p (struct type *); |
14f9c5c9 | 135 | |
d2e4a39e | 136 | static int integer_type_p (struct type *); |
14f9c5c9 | 137 | |
d2e4a39e | 138 | static int scalar_type_p (struct type *); |
14f9c5c9 | 139 | |
d2e4a39e | 140 | static int discrete_type_p (struct type *); |
14f9c5c9 | 141 | |
a121b7c1 | 142 | static struct type *ada_lookup_struct_elt_type (struct type *, const char *, |
988f6b3d | 143 | int, int); |
4c4b4cd2 | 144 | |
d2e4a39e | 145 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 146 | |
b4ba55a1 JB |
147 | static struct type *ada_find_parallel_type_with_name (struct type *, |
148 | const char *); | |
149 | ||
d2e4a39e | 150 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 151 | |
10a2c479 | 152 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 153 | const gdb_byte *, |
4c4b4cd2 PH |
154 | CORE_ADDR, struct value *); |
155 | ||
156 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 157 | |
28c85d6c | 158 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 159 | |
d2e4a39e | 160 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 161 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 162 | |
d2e4a39e | 163 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 164 | |
ad82864c | 165 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 166 | |
ad82864c | 167 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 168 | |
ad82864c JB |
169 | static long decode_packed_array_bitsize (struct type *); |
170 | ||
171 | static struct value *decode_constrained_packed_array (struct value *); | |
172 | ||
173 | static int ada_is_packed_array_type (struct type *); | |
174 | ||
175 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 176 | |
d2e4a39e | 177 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 178 | struct value **); |
14f9c5c9 | 179 | |
4c4b4cd2 PH |
180 | static struct value *coerce_unspec_val_to_type (struct value *, |
181 | struct type *); | |
14f9c5c9 | 182 | |
d2e4a39e | 183 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 184 | |
d2e4a39e | 185 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 186 | |
d2e4a39e | 187 | static int is_name_suffix (const char *); |
14f9c5c9 | 188 | |
73589123 PH |
189 | static int advance_wild_match (const char **, const char *, int); |
190 | ||
b5ec771e | 191 | static bool wild_match (const char *name, const char *patn); |
14f9c5c9 | 192 | |
d2e4a39e | 193 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 194 | |
4c4b4cd2 PH |
195 | static LONGEST pos_atr (struct value *); |
196 | ||
3cb382c9 | 197 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 198 | |
d2e4a39e | 199 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 200 | |
4c4b4cd2 PH |
201 | static struct symbol *standard_lookup (const char *, const struct block *, |
202 | domain_enum); | |
14f9c5c9 | 203 | |
108d56a4 | 204 | static struct value *ada_search_struct_field (const char *, struct value *, int, |
4c4b4cd2 PH |
205 | struct type *); |
206 | ||
207 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
208 | struct type *); | |
209 | ||
0d5cff50 | 210 | static int find_struct_field (const char *, struct type *, int, |
52ce6436 | 211 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 | 212 | |
d12307c1 | 213 | static int ada_resolve_function (struct block_symbol *, int, |
4c4b4cd2 | 214 | struct value **, int, const char *, |
2a612529 | 215 | struct type *, int); |
4c4b4cd2 | 216 | |
4c4b4cd2 PH |
217 | static int ada_is_direct_array_type (struct type *); |
218 | ||
72d5681a PH |
219 | static void ada_language_arch_info (struct gdbarch *, |
220 | struct language_arch_info *); | |
714e53ab | 221 | |
52ce6436 PH |
222 | static struct value *ada_index_struct_field (int, struct value *, int, |
223 | struct type *); | |
224 | ||
225 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
226 | struct expression *, |
227 | int *, enum noside); | |
52ce6436 PH |
228 | |
229 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
230 | struct expression *, | |
231 | int *, LONGEST *, int *, | |
232 | int, LONGEST, LONGEST); | |
233 | ||
234 | static void aggregate_assign_positional (struct value *, struct value *, | |
235 | struct expression *, | |
236 | int *, LONGEST *, int *, int, | |
237 | LONGEST, LONGEST); | |
238 | ||
239 | ||
240 | static void aggregate_assign_others (struct value *, struct value *, | |
241 | struct expression *, | |
242 | int *, LONGEST *, int, LONGEST, LONGEST); | |
243 | ||
244 | ||
245 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
246 | ||
247 | ||
248 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
249 | int *, enum noside); | |
250 | ||
251 | static void ada_forward_operator_length (struct expression *, int, int *, | |
252 | int *); | |
852dff6c JB |
253 | |
254 | static struct type *ada_find_any_type (const char *name); | |
b5ec771e PA |
255 | |
256 | static symbol_name_matcher_ftype *ada_get_symbol_name_matcher | |
257 | (const lookup_name_info &lookup_name); | |
258 | ||
4c4b4cd2 PH |
259 | \f |
260 | ||
ee01b665 JB |
261 | /* The result of a symbol lookup to be stored in our symbol cache. */ |
262 | ||
263 | struct cache_entry | |
264 | { | |
265 | /* The name used to perform the lookup. */ | |
266 | const char *name; | |
267 | /* The namespace used during the lookup. */ | |
fe978cb0 | 268 | domain_enum domain; |
ee01b665 JB |
269 | /* The symbol returned by the lookup, or NULL if no matching symbol |
270 | was found. */ | |
271 | struct symbol *sym; | |
272 | /* The block where the symbol was found, or NULL if no matching | |
273 | symbol was found. */ | |
274 | const struct block *block; | |
275 | /* A pointer to the next entry with the same hash. */ | |
276 | struct cache_entry *next; | |
277 | }; | |
278 | ||
279 | /* The Ada symbol cache, used to store the result of Ada-mode symbol | |
280 | lookups in the course of executing the user's commands. | |
281 | ||
282 | The cache is implemented using a simple, fixed-sized hash. | |
283 | The size is fixed on the grounds that there are not likely to be | |
284 | all that many symbols looked up during any given session, regardless | |
285 | of the size of the symbol table. If we decide to go to a resizable | |
286 | table, let's just use the stuff from libiberty instead. */ | |
287 | ||
288 | #define HASH_SIZE 1009 | |
289 | ||
290 | struct ada_symbol_cache | |
291 | { | |
292 | /* An obstack used to store the entries in our cache. */ | |
293 | struct obstack cache_space; | |
294 | ||
295 | /* The root of the hash table used to implement our symbol cache. */ | |
296 | struct cache_entry *root[HASH_SIZE]; | |
297 | }; | |
298 | ||
299 | static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache); | |
76a01679 | 300 | |
4c4b4cd2 | 301 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
302 | static unsigned int varsize_limit; |
303 | ||
67cb5b2d | 304 | static const char ada_completer_word_break_characters[] = |
4c4b4cd2 PH |
305 | #ifdef VMS |
306 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
307 | #else | |
14f9c5c9 | 308 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 309 | #endif |
14f9c5c9 | 310 | |
4c4b4cd2 | 311 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 312 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 313 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 314 | |
4c4b4cd2 PH |
315 | /* Limit on the number of warnings to raise per expression evaluation. */ |
316 | static int warning_limit = 2; | |
317 | ||
318 | /* Number of warning messages issued; reset to 0 by cleanups after | |
319 | expression evaluation. */ | |
320 | static int warnings_issued = 0; | |
321 | ||
322 | static const char *known_runtime_file_name_patterns[] = { | |
323 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
324 | }; | |
325 | ||
326 | static const char *known_auxiliary_function_name_patterns[] = { | |
327 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
328 | }; | |
329 | ||
c6044dd1 JB |
330 | /* Maintenance-related settings for this module. */ |
331 | ||
332 | static struct cmd_list_element *maint_set_ada_cmdlist; | |
333 | static struct cmd_list_element *maint_show_ada_cmdlist; | |
334 | ||
335 | /* Implement the "maintenance set ada" (prefix) command. */ | |
336 | ||
337 | static void | |
981a3fb3 | 338 | maint_set_ada_cmd (const char *args, int from_tty) |
c6044dd1 | 339 | { |
635c7e8a TT |
340 | help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands, |
341 | gdb_stdout); | |
c6044dd1 JB |
342 | } |
343 | ||
344 | /* Implement the "maintenance show ada" (prefix) command. */ | |
345 | ||
346 | static void | |
981a3fb3 | 347 | maint_show_ada_cmd (const char *args, int from_tty) |
c6044dd1 JB |
348 | { |
349 | cmd_show_list (maint_show_ada_cmdlist, from_tty, ""); | |
350 | } | |
351 | ||
352 | /* The "maintenance ada set/show ignore-descriptive-type" value. */ | |
353 | ||
491144b5 | 354 | static bool ada_ignore_descriptive_types_p = false; |
c6044dd1 | 355 | |
e802dbe0 JB |
356 | /* Inferior-specific data. */ |
357 | ||
358 | /* Per-inferior data for this module. */ | |
359 | ||
360 | struct ada_inferior_data | |
361 | { | |
362 | /* The ada__tags__type_specific_data type, which is used when decoding | |
363 | tagged types. With older versions of GNAT, this type was directly | |
364 | accessible through a component ("tsd") in the object tag. But this | |
365 | is no longer the case, so we cache it for each inferior. */ | |
f37b313d | 366 | struct type *tsd_type = nullptr; |
3eecfa55 JB |
367 | |
368 | /* The exception_support_info data. This data is used to determine | |
369 | how to implement support for Ada exception catchpoints in a given | |
370 | inferior. */ | |
f37b313d | 371 | const struct exception_support_info *exception_info = nullptr; |
e802dbe0 JB |
372 | }; |
373 | ||
374 | /* Our key to this module's inferior data. */ | |
f37b313d | 375 | static const struct inferior_key<ada_inferior_data> ada_inferior_data; |
e802dbe0 JB |
376 | |
377 | /* Return our inferior data for the given inferior (INF). | |
378 | ||
379 | This function always returns a valid pointer to an allocated | |
380 | ada_inferior_data structure. If INF's inferior data has not | |
381 | been previously set, this functions creates a new one with all | |
382 | fields set to zero, sets INF's inferior to it, and then returns | |
383 | a pointer to that newly allocated ada_inferior_data. */ | |
384 | ||
385 | static struct ada_inferior_data * | |
386 | get_ada_inferior_data (struct inferior *inf) | |
387 | { | |
388 | struct ada_inferior_data *data; | |
389 | ||
f37b313d | 390 | data = ada_inferior_data.get (inf); |
e802dbe0 | 391 | if (data == NULL) |
f37b313d | 392 | data = ada_inferior_data.emplace (inf); |
e802dbe0 JB |
393 | |
394 | return data; | |
395 | } | |
396 | ||
397 | /* Perform all necessary cleanups regarding our module's inferior data | |
398 | that is required after the inferior INF just exited. */ | |
399 | ||
400 | static void | |
401 | ada_inferior_exit (struct inferior *inf) | |
402 | { | |
f37b313d | 403 | ada_inferior_data.clear (inf); |
e802dbe0 JB |
404 | } |
405 | ||
ee01b665 JB |
406 | |
407 | /* program-space-specific data. */ | |
408 | ||
409 | /* This module's per-program-space data. */ | |
410 | struct ada_pspace_data | |
411 | { | |
f37b313d TT |
412 | ~ada_pspace_data () |
413 | { | |
414 | if (sym_cache != NULL) | |
415 | ada_free_symbol_cache (sym_cache); | |
416 | } | |
417 | ||
ee01b665 | 418 | /* The Ada symbol cache. */ |
f37b313d | 419 | struct ada_symbol_cache *sym_cache = nullptr; |
ee01b665 JB |
420 | }; |
421 | ||
422 | /* Key to our per-program-space data. */ | |
f37b313d | 423 | static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle; |
ee01b665 JB |
424 | |
425 | /* Return this module's data for the given program space (PSPACE). | |
426 | If not is found, add a zero'ed one now. | |
427 | ||
428 | This function always returns a valid object. */ | |
429 | ||
430 | static struct ada_pspace_data * | |
431 | get_ada_pspace_data (struct program_space *pspace) | |
432 | { | |
433 | struct ada_pspace_data *data; | |
434 | ||
f37b313d | 435 | data = ada_pspace_data_handle.get (pspace); |
ee01b665 | 436 | if (data == NULL) |
f37b313d | 437 | data = ada_pspace_data_handle.emplace (pspace); |
ee01b665 JB |
438 | |
439 | return data; | |
440 | } | |
441 | ||
4c4b4cd2 PH |
442 | /* Utilities */ |
443 | ||
720d1a40 | 444 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 445 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
446 | |
447 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
448 | In other words, we really expect the target type of a typedef type to be | |
449 | a non-typedef type. This is particularly true for Ada units, because | |
450 | the language does not have a typedef vs not-typedef distinction. | |
451 | In that respect, the Ada compiler has been trying to eliminate as many | |
452 | typedef definitions in the debugging information, since they generally | |
453 | do not bring any extra information (we still use typedef under certain | |
454 | circumstances related mostly to the GNAT encoding). | |
455 | ||
456 | Unfortunately, we have seen situations where the debugging information | |
457 | generated by the compiler leads to such multiple typedef layers. For | |
458 | instance, consider the following example with stabs: | |
459 | ||
460 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
461 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
462 | ||
463 | This is an error in the debugging information which causes type | |
464 | pck__float_array___XUP to be defined twice, and the second time, | |
465 | it is defined as a typedef of a typedef. | |
466 | ||
467 | This is on the fringe of legality as far as debugging information is | |
468 | concerned, and certainly unexpected. But it is easy to handle these | |
469 | situations correctly, so we can afford to be lenient in this case. */ | |
470 | ||
471 | static struct type * | |
472 | ada_typedef_target_type (struct type *type) | |
473 | { | |
474 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
475 | type = TYPE_TARGET_TYPE (type); | |
476 | return type; | |
477 | } | |
478 | ||
41d27058 JB |
479 | /* Given DECODED_NAME a string holding a symbol name in its |
480 | decoded form (ie using the Ada dotted notation), returns | |
481 | its unqualified name. */ | |
482 | ||
483 | static const char * | |
484 | ada_unqualified_name (const char *decoded_name) | |
485 | { | |
2b0f535a JB |
486 | const char *result; |
487 | ||
488 | /* If the decoded name starts with '<', it means that the encoded | |
489 | name does not follow standard naming conventions, and thus that | |
490 | it is not your typical Ada symbol name. Trying to unqualify it | |
491 | is therefore pointless and possibly erroneous. */ | |
492 | if (decoded_name[0] == '<') | |
493 | return decoded_name; | |
494 | ||
495 | result = strrchr (decoded_name, '.'); | |
41d27058 JB |
496 | if (result != NULL) |
497 | result++; /* Skip the dot... */ | |
498 | else | |
499 | result = decoded_name; | |
500 | ||
501 | return result; | |
502 | } | |
503 | ||
39e7af3e | 504 | /* Return a string starting with '<', followed by STR, and '>'. */ |
41d27058 | 505 | |
39e7af3e | 506 | static std::string |
41d27058 JB |
507 | add_angle_brackets (const char *str) |
508 | { | |
39e7af3e | 509 | return string_printf ("<%s>", str); |
41d27058 | 510 | } |
96d887e8 | 511 | |
67cb5b2d | 512 | static const char * |
4c4b4cd2 PH |
513 | ada_get_gdb_completer_word_break_characters (void) |
514 | { | |
515 | return ada_completer_word_break_characters; | |
516 | } | |
517 | ||
e79af960 JB |
518 | /* Print an array element index using the Ada syntax. */ |
519 | ||
520 | static void | |
521 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 522 | const struct value_print_options *options) |
e79af960 | 523 | { |
79a45b7d | 524 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
525 | fprintf_filtered (stream, " => "); |
526 | } | |
527 | ||
e2b7af72 JB |
528 | /* la_watch_location_expression for Ada. */ |
529 | ||
de93309a | 530 | static gdb::unique_xmalloc_ptr<char> |
e2b7af72 JB |
531 | ada_watch_location_expression (struct type *type, CORE_ADDR addr) |
532 | { | |
533 | type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type))); | |
534 | std::string name = type_to_string (type); | |
535 | return gdb::unique_xmalloc_ptr<char> | |
536 | (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr))); | |
537 | } | |
538 | ||
de93309a SM |
539 | /* Assuming V points to an array of S objects, make sure that it contains at |
540 | least M objects, updating V and S as necessary. */ | |
541 | ||
542 | #define GROW_VECT(v, s, m) \ | |
543 | if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v)); | |
544 | ||
f27cf670 | 545 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 546 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 547 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 548 | |
de93309a | 549 | static void * |
f27cf670 | 550 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) |
14f9c5c9 | 551 | { |
d2e4a39e AS |
552 | if (*size < min_size) |
553 | { | |
554 | *size *= 2; | |
555 | if (*size < min_size) | |
4c4b4cd2 | 556 | *size = min_size; |
f27cf670 | 557 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 558 | } |
f27cf670 | 559 | return vect; |
14f9c5c9 AS |
560 | } |
561 | ||
562 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 563 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
564 | |
565 | static int | |
ebf56fd3 | 566 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
567 | { |
568 | int len = strlen (target); | |
5b4ee69b | 569 | |
d2e4a39e | 570 | return |
4c4b4cd2 PH |
571 | (strncmp (field_name, target, len) == 0 |
572 | && (field_name[len] == '\0' | |
61012eef | 573 | || (startswith (field_name + len, "___") |
76a01679 JB |
574 | && strcmp (field_name + strlen (field_name) - 6, |
575 | "___XVN") != 0))); | |
14f9c5c9 AS |
576 | } |
577 | ||
578 | ||
872c8b51 JB |
579 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
580 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
581 | and return its index. This function also handles fields whose name | |
582 | have ___ suffixes because the compiler sometimes alters their name | |
583 | by adding such a suffix to represent fields with certain constraints. | |
584 | If the field could not be found, return a negative number if | |
585 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
586 | |
587 | int | |
588 | ada_get_field_index (const struct type *type, const char *field_name, | |
589 | int maybe_missing) | |
590 | { | |
591 | int fieldno; | |
872c8b51 JB |
592 | struct type *struct_type = check_typedef ((struct type *) type); |
593 | ||
594 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
595 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
596 | return fieldno; |
597 | ||
598 | if (!maybe_missing) | |
323e0a4a | 599 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 600 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
601 | |
602 | return -1; | |
603 | } | |
604 | ||
605 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
606 | |
607 | int | |
d2e4a39e | 608 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
609 | { |
610 | if (name == NULL) | |
611 | return 0; | |
d2e4a39e | 612 | else |
14f9c5c9 | 613 | { |
d2e4a39e | 614 | const char *p = strstr (name, "___"); |
5b4ee69b | 615 | |
14f9c5c9 | 616 | if (p == NULL) |
4c4b4cd2 | 617 | return strlen (name); |
14f9c5c9 | 618 | else |
4c4b4cd2 | 619 | return p - name; |
14f9c5c9 AS |
620 | } |
621 | } | |
622 | ||
4c4b4cd2 PH |
623 | /* Return non-zero if SUFFIX is a suffix of STR. |
624 | Return zero if STR is null. */ | |
625 | ||
14f9c5c9 | 626 | static int |
d2e4a39e | 627 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
628 | { |
629 | int len1, len2; | |
5b4ee69b | 630 | |
14f9c5c9 AS |
631 | if (str == NULL) |
632 | return 0; | |
633 | len1 = strlen (str); | |
634 | len2 = strlen (suffix); | |
4c4b4cd2 | 635 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
636 | } |
637 | ||
4c4b4cd2 PH |
638 | /* The contents of value VAL, treated as a value of type TYPE. The |
639 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 640 | |
d2e4a39e | 641 | static struct value * |
4c4b4cd2 | 642 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 643 | { |
61ee279c | 644 | type = ada_check_typedef (type); |
df407dfe | 645 | if (value_type (val) == type) |
4c4b4cd2 | 646 | return val; |
d2e4a39e | 647 | else |
14f9c5c9 | 648 | { |
4c4b4cd2 PH |
649 | struct value *result; |
650 | ||
651 | /* Make sure that the object size is not unreasonable before | |
652 | trying to allocate some memory for it. */ | |
c1b5a1a6 | 653 | ada_ensure_varsize_limit (type); |
4c4b4cd2 | 654 | |
41e8491f JK |
655 | if (value_lazy (val) |
656 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
657 | result = allocate_value_lazy (type); | |
658 | else | |
659 | { | |
660 | result = allocate_value (type); | |
9a0dc9e3 | 661 | value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type)); |
41e8491f | 662 | } |
74bcbdf3 | 663 | set_value_component_location (result, val); |
9bbda503 AC |
664 | set_value_bitsize (result, value_bitsize (val)); |
665 | set_value_bitpos (result, value_bitpos (val)); | |
c408a94f TT |
666 | if (VALUE_LVAL (result) == lval_memory) |
667 | set_value_address (result, value_address (val)); | |
14f9c5c9 AS |
668 | return result; |
669 | } | |
670 | } | |
671 | ||
fc1a4b47 AC |
672 | static const gdb_byte * |
673 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
674 | { |
675 | if (valaddr == NULL) | |
676 | return NULL; | |
677 | else | |
678 | return valaddr + offset; | |
679 | } | |
680 | ||
681 | static CORE_ADDR | |
ebf56fd3 | 682 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
683 | { |
684 | if (address == 0) | |
685 | return 0; | |
d2e4a39e | 686 | else |
14f9c5c9 AS |
687 | return address + offset; |
688 | } | |
689 | ||
4c4b4cd2 PH |
690 | /* Issue a warning (as for the definition of warning in utils.c, but |
691 | with exactly one argument rather than ...), unless the limit on the | |
692 | number of warnings has passed during the evaluation of the current | |
693 | expression. */ | |
a2249542 | 694 | |
77109804 AC |
695 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
696 | provided by "complaint". */ | |
a0b31db1 | 697 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 698 | |
14f9c5c9 | 699 | static void |
a2249542 | 700 | lim_warning (const char *format, ...) |
14f9c5c9 | 701 | { |
a2249542 | 702 | va_list args; |
a2249542 | 703 | |
5b4ee69b | 704 | va_start (args, format); |
4c4b4cd2 PH |
705 | warnings_issued += 1; |
706 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
707 | vwarning (format, args); |
708 | ||
709 | va_end (args); | |
4c4b4cd2 PH |
710 | } |
711 | ||
714e53ab PH |
712 | /* Issue an error if the size of an object of type T is unreasonable, |
713 | i.e. if it would be a bad idea to allocate a value of this type in | |
714 | GDB. */ | |
715 | ||
c1b5a1a6 JB |
716 | void |
717 | ada_ensure_varsize_limit (const struct type *type) | |
714e53ab PH |
718 | { |
719 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 720 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
721 | } |
722 | ||
0963b4bd | 723 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 724 | static LONGEST |
c3e5cd34 | 725 | max_of_size (int size) |
4c4b4cd2 | 726 | { |
76a01679 | 727 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 728 | |
76a01679 | 729 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
730 | } |
731 | ||
0963b4bd | 732 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 733 | static LONGEST |
c3e5cd34 | 734 | min_of_size (int size) |
4c4b4cd2 | 735 | { |
c3e5cd34 | 736 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
737 | } |
738 | ||
0963b4bd | 739 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 740 | static ULONGEST |
c3e5cd34 | 741 | umax_of_size (int size) |
4c4b4cd2 | 742 | { |
76a01679 | 743 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 744 | |
76a01679 | 745 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
746 | } |
747 | ||
0963b4bd | 748 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
749 | static LONGEST |
750 | max_of_type (struct type *t) | |
4c4b4cd2 | 751 | { |
c3e5cd34 PH |
752 | if (TYPE_UNSIGNED (t)) |
753 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
754 | else | |
755 | return max_of_size (TYPE_LENGTH (t)); | |
756 | } | |
757 | ||
0963b4bd | 758 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
759 | static LONGEST |
760 | min_of_type (struct type *t) | |
761 | { | |
762 | if (TYPE_UNSIGNED (t)) | |
763 | return 0; | |
764 | else | |
765 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
766 | } |
767 | ||
768 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
769 | LONGEST |
770 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 771 | { |
c3345124 | 772 | type = resolve_dynamic_type (type, NULL, 0); |
76a01679 | 773 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
774 | { |
775 | case TYPE_CODE_RANGE: | |
690cc4eb | 776 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 777 | case TYPE_CODE_ENUM: |
14e75d8e | 778 | return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1); |
690cc4eb PH |
779 | case TYPE_CODE_BOOL: |
780 | return 1; | |
781 | case TYPE_CODE_CHAR: | |
76a01679 | 782 | case TYPE_CODE_INT: |
690cc4eb | 783 | return max_of_type (type); |
4c4b4cd2 | 784 | default: |
43bbcdc2 | 785 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
786 | } |
787 | } | |
788 | ||
14e75d8e | 789 | /* The smallest value in the domain of TYPE, a discrete type, as an integer. */ |
43bbcdc2 PH |
790 | LONGEST |
791 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 792 | { |
c3345124 | 793 | type = resolve_dynamic_type (type, NULL, 0); |
76a01679 | 794 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
795 | { |
796 | case TYPE_CODE_RANGE: | |
690cc4eb | 797 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 798 | case TYPE_CODE_ENUM: |
14e75d8e | 799 | return TYPE_FIELD_ENUMVAL (type, 0); |
690cc4eb PH |
800 | case TYPE_CODE_BOOL: |
801 | return 0; | |
802 | case TYPE_CODE_CHAR: | |
76a01679 | 803 | case TYPE_CODE_INT: |
690cc4eb | 804 | return min_of_type (type); |
4c4b4cd2 | 805 | default: |
43bbcdc2 | 806 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
807 | } |
808 | } | |
809 | ||
810 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 811 | non-range scalar type. */ |
4c4b4cd2 PH |
812 | |
813 | static struct type * | |
18af8284 | 814 | get_base_type (struct type *type) |
4c4b4cd2 PH |
815 | { |
816 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
817 | { | |
76a01679 JB |
818 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
819 | return type; | |
4c4b4cd2 PH |
820 | type = TYPE_TARGET_TYPE (type); |
821 | } | |
822 | return type; | |
14f9c5c9 | 823 | } |
41246937 JB |
824 | |
825 | /* Return a decoded version of the given VALUE. This means returning | |
826 | a value whose type is obtained by applying all the GNAT-specific | |
85102364 | 827 | encodings, making the resulting type a static but standard description |
41246937 JB |
828 | of the initial type. */ |
829 | ||
830 | struct value * | |
831 | ada_get_decoded_value (struct value *value) | |
832 | { | |
833 | struct type *type = ada_check_typedef (value_type (value)); | |
834 | ||
835 | if (ada_is_array_descriptor_type (type) | |
836 | || (ada_is_constrained_packed_array_type (type) | |
837 | && TYPE_CODE (type) != TYPE_CODE_PTR)) | |
838 | { | |
839 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */ | |
840 | value = ada_coerce_to_simple_array_ptr (value); | |
841 | else | |
842 | value = ada_coerce_to_simple_array (value); | |
843 | } | |
844 | else | |
845 | value = ada_to_fixed_value (value); | |
846 | ||
847 | return value; | |
848 | } | |
849 | ||
850 | /* Same as ada_get_decoded_value, but with the given TYPE. | |
851 | Because there is no associated actual value for this type, | |
852 | the resulting type might be a best-effort approximation in | |
853 | the case of dynamic types. */ | |
854 | ||
855 | struct type * | |
856 | ada_get_decoded_type (struct type *type) | |
857 | { | |
858 | type = to_static_fixed_type (type); | |
859 | if (ada_is_constrained_packed_array_type (type)) | |
860 | type = ada_coerce_to_simple_array_type (type); | |
861 | return type; | |
862 | } | |
863 | ||
4c4b4cd2 | 864 | \f |
76a01679 | 865 | |
4c4b4cd2 | 866 | /* Language Selection */ |
14f9c5c9 AS |
867 | |
868 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 869 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 870 | |
de93309a | 871 | static enum language |
ccefe4c4 | 872 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 873 | { |
cafb3438 | 874 | if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL) |
4c4b4cd2 | 875 | return language_ada; |
14f9c5c9 AS |
876 | |
877 | return lang; | |
878 | } | |
96d887e8 PH |
879 | |
880 | /* If the main procedure is written in Ada, then return its name. | |
881 | The result is good until the next call. Return NULL if the main | |
882 | procedure doesn't appear to be in Ada. */ | |
883 | ||
884 | char * | |
885 | ada_main_name (void) | |
886 | { | |
3b7344d5 | 887 | struct bound_minimal_symbol msym; |
e83e4e24 | 888 | static gdb::unique_xmalloc_ptr<char> main_program_name; |
6c038f32 | 889 | |
96d887e8 PH |
890 | /* For Ada, the name of the main procedure is stored in a specific |
891 | string constant, generated by the binder. Look for that symbol, | |
892 | extract its address, and then read that string. If we didn't find | |
893 | that string, then most probably the main procedure is not written | |
894 | in Ada. */ | |
895 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
896 | ||
3b7344d5 | 897 | if (msym.minsym != NULL) |
96d887e8 | 898 | { |
f9bc20b9 JB |
899 | CORE_ADDR main_program_name_addr; |
900 | int err_code; | |
901 | ||
77e371c0 | 902 | main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym); |
96d887e8 | 903 | if (main_program_name_addr == 0) |
323e0a4a | 904 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 905 | |
f9bc20b9 JB |
906 | target_read_string (main_program_name_addr, &main_program_name, |
907 | 1024, &err_code); | |
908 | ||
909 | if (err_code != 0) | |
910 | return NULL; | |
e83e4e24 | 911 | return main_program_name.get (); |
96d887e8 PH |
912 | } |
913 | ||
914 | /* The main procedure doesn't seem to be in Ada. */ | |
915 | return NULL; | |
916 | } | |
14f9c5c9 | 917 | \f |
4c4b4cd2 | 918 | /* Symbols */ |
d2e4a39e | 919 | |
4c4b4cd2 PH |
920 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
921 | of NULLs. */ | |
14f9c5c9 | 922 | |
d2e4a39e AS |
923 | const struct ada_opname_map ada_opname_table[] = { |
924 | {"Oadd", "\"+\"", BINOP_ADD}, | |
925 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
926 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
927 | {"Odivide", "\"/\"", BINOP_DIV}, | |
928 | {"Omod", "\"mod\"", BINOP_MOD}, | |
929 | {"Orem", "\"rem\"", BINOP_REM}, | |
930 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
931 | {"Olt", "\"<\"", BINOP_LESS}, | |
932 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
933 | {"Ogt", "\">\"", BINOP_GTR}, | |
934 | {"Oge", "\">=\"", BINOP_GEQ}, | |
935 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
936 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
937 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
938 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
939 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
940 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
941 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
942 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
943 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
944 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
945 | {NULL, NULL} | |
14f9c5c9 AS |
946 | }; |
947 | ||
b5ec771e PA |
948 | /* The "encoded" form of DECODED, according to GNAT conventions. The |
949 | result is valid until the next call to ada_encode. If | |
950 | THROW_ERRORS, throw an error if invalid operator name is found. | |
951 | Otherwise, return NULL in that case. */ | |
4c4b4cd2 | 952 | |
b5ec771e PA |
953 | static char * |
954 | ada_encode_1 (const char *decoded, bool throw_errors) | |
14f9c5c9 | 955 | { |
4c4b4cd2 PH |
956 | static char *encoding_buffer = NULL; |
957 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 958 | const char *p; |
14f9c5c9 | 959 | int k; |
d2e4a39e | 960 | |
4c4b4cd2 | 961 | if (decoded == NULL) |
14f9c5c9 AS |
962 | return NULL; |
963 | ||
4c4b4cd2 PH |
964 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
965 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
966 | |
967 | k = 0; | |
4c4b4cd2 | 968 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 969 | { |
cdc7bb92 | 970 | if (*p == '.') |
4c4b4cd2 PH |
971 | { |
972 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
973 | k += 2; | |
974 | } | |
14f9c5c9 | 975 | else if (*p == '"') |
4c4b4cd2 PH |
976 | { |
977 | const struct ada_opname_map *mapping; | |
978 | ||
979 | for (mapping = ada_opname_table; | |
1265e4aa | 980 | mapping->encoded != NULL |
61012eef | 981 | && !startswith (p, mapping->decoded); mapping += 1) |
4c4b4cd2 PH |
982 | ; |
983 | if (mapping->encoded == NULL) | |
b5ec771e PA |
984 | { |
985 | if (throw_errors) | |
986 | error (_("invalid Ada operator name: %s"), p); | |
987 | else | |
988 | return NULL; | |
989 | } | |
4c4b4cd2 PH |
990 | strcpy (encoding_buffer + k, mapping->encoded); |
991 | k += strlen (mapping->encoded); | |
992 | break; | |
993 | } | |
d2e4a39e | 994 | else |
4c4b4cd2 PH |
995 | { |
996 | encoding_buffer[k] = *p; | |
997 | k += 1; | |
998 | } | |
14f9c5c9 AS |
999 | } |
1000 | ||
4c4b4cd2 PH |
1001 | encoding_buffer[k] = '\0'; |
1002 | return encoding_buffer; | |
14f9c5c9 AS |
1003 | } |
1004 | ||
b5ec771e PA |
1005 | /* The "encoded" form of DECODED, according to GNAT conventions. |
1006 | The result is valid until the next call to ada_encode. */ | |
1007 | ||
1008 | char * | |
1009 | ada_encode (const char *decoded) | |
1010 | { | |
1011 | return ada_encode_1 (decoded, true); | |
1012 | } | |
1013 | ||
14f9c5c9 | 1014 | /* Return NAME folded to lower case, or, if surrounded by single |
4c4b4cd2 PH |
1015 | quotes, unfolded, but with the quotes stripped away. Result good |
1016 | to next call. */ | |
1017 | ||
de93309a | 1018 | static char * |
d2e4a39e | 1019 | ada_fold_name (const char *name) |
14f9c5c9 | 1020 | { |
d2e4a39e | 1021 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
1022 | static size_t fold_buffer_size = 0; |
1023 | ||
1024 | int len = strlen (name); | |
d2e4a39e | 1025 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
1026 | |
1027 | if (name[0] == '\'') | |
1028 | { | |
d2e4a39e AS |
1029 | strncpy (fold_buffer, name + 1, len - 2); |
1030 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
1031 | } |
1032 | else | |
1033 | { | |
1034 | int i; | |
5b4ee69b | 1035 | |
14f9c5c9 | 1036 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 1037 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
1038 | } |
1039 | ||
1040 | return fold_buffer; | |
1041 | } | |
1042 | ||
529cad9c PH |
1043 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
1044 | ||
1045 | static int | |
1046 | is_lower_alphanum (const char c) | |
1047 | { | |
1048 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
1049 | } | |
1050 | ||
c90092fe JB |
1051 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
1052 | This function saves in LEN the length of that same symbol name but | |
1053 | without either of these suffixes: | |
29480c32 JB |
1054 | . .{DIGIT}+ |
1055 | . ${DIGIT}+ | |
1056 | . ___{DIGIT}+ | |
1057 | . __{DIGIT}+. | |
c90092fe | 1058 | |
29480c32 JB |
1059 | These are suffixes introduced by the compiler for entities such as |
1060 | nested subprogram for instance, in order to avoid name clashes. | |
1061 | They do not serve any purpose for the debugger. */ | |
1062 | ||
1063 | static void | |
1064 | ada_remove_trailing_digits (const char *encoded, int *len) | |
1065 | { | |
1066 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
1067 | { | |
1068 | int i = *len - 2; | |
5b4ee69b | 1069 | |
29480c32 JB |
1070 | while (i > 0 && isdigit (encoded[i])) |
1071 | i--; | |
1072 | if (i >= 0 && encoded[i] == '.') | |
1073 | *len = i; | |
1074 | else if (i >= 0 && encoded[i] == '$') | |
1075 | *len = i; | |
61012eef | 1076 | else if (i >= 2 && startswith (encoded + i - 2, "___")) |
29480c32 | 1077 | *len = i - 2; |
61012eef | 1078 | else if (i >= 1 && startswith (encoded + i - 1, "__")) |
29480c32 JB |
1079 | *len = i - 1; |
1080 | } | |
1081 | } | |
1082 | ||
1083 | /* Remove the suffix introduced by the compiler for protected object | |
1084 | subprograms. */ | |
1085 | ||
1086 | static void | |
1087 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
1088 | { | |
1089 | /* Remove trailing N. */ | |
1090 | ||
1091 | /* Protected entry subprograms are broken into two | |
1092 | separate subprograms: The first one is unprotected, and has | |
1093 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 1094 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
1095 | the protection. Since the P subprograms are internally generated, |
1096 | we leave these names undecoded, giving the user a clue that this | |
1097 | entity is internal. */ | |
1098 | ||
1099 | if (*len > 1 | |
1100 | && encoded[*len - 1] == 'N' | |
1101 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
1102 | *len = *len - 1; | |
1103 | } | |
1104 | ||
1105 | /* If ENCODED follows the GNAT entity encoding conventions, then return | |
1106 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
f945dedf | 1107 | replaced by ENCODED. */ |
14f9c5c9 | 1108 | |
f945dedf | 1109 | std::string |
4c4b4cd2 | 1110 | ada_decode (const char *encoded) |
14f9c5c9 AS |
1111 | { |
1112 | int i, j; | |
1113 | int len0; | |
d2e4a39e | 1114 | const char *p; |
14f9c5c9 | 1115 | int at_start_name; |
f945dedf | 1116 | std::string decoded; |
d2e4a39e | 1117 | |
0d81f350 JG |
1118 | /* With function descriptors on PPC64, the value of a symbol named |
1119 | ".FN", if it exists, is the entry point of the function "FN". */ | |
1120 | if (encoded[0] == '.') | |
1121 | encoded += 1; | |
1122 | ||
29480c32 JB |
1123 | /* The name of the Ada main procedure starts with "_ada_". |
1124 | This prefix is not part of the decoded name, so skip this part | |
1125 | if we see this prefix. */ | |
61012eef | 1126 | if (startswith (encoded, "_ada_")) |
4c4b4cd2 | 1127 | encoded += 5; |
14f9c5c9 | 1128 | |
29480c32 JB |
1129 | /* If the name starts with '_', then it is not a properly encoded |
1130 | name, so do not attempt to decode it. Similarly, if the name | |
1131 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1132 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1133 | goto Suppress; |
1134 | ||
4c4b4cd2 | 1135 | len0 = strlen (encoded); |
4c4b4cd2 | 1136 | |
29480c32 JB |
1137 | ada_remove_trailing_digits (encoded, &len0); |
1138 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1139 | |
4c4b4cd2 PH |
1140 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1141 | the suffix is located before the current "end" of ENCODED. We want | |
1142 | to avoid re-matching parts of ENCODED that have previously been | |
1143 | marked as discarded (by decrementing LEN0). */ | |
1144 | p = strstr (encoded, "___"); | |
1145 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1146 | { |
1147 | if (p[3] == 'X') | |
4c4b4cd2 | 1148 | len0 = p - encoded; |
14f9c5c9 | 1149 | else |
4c4b4cd2 | 1150 | goto Suppress; |
14f9c5c9 | 1151 | } |
4c4b4cd2 | 1152 | |
29480c32 JB |
1153 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1154 | is for the body of a task, but that information does not actually | |
1155 | appear in the decoded name. */ | |
1156 | ||
61012eef | 1157 | if (len0 > 3 && startswith (encoded + len0 - 3, "TKB")) |
14f9c5c9 | 1158 | len0 -= 3; |
76a01679 | 1159 | |
a10967fa JB |
1160 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1161 | from the TKB suffix because it is used for non-anonymous task | |
1162 | bodies. */ | |
1163 | ||
61012eef | 1164 | if (len0 > 2 && startswith (encoded + len0 - 2, "TB")) |
a10967fa JB |
1165 | len0 -= 2; |
1166 | ||
29480c32 JB |
1167 | /* Remove trailing "B" suffixes. */ |
1168 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1169 | ||
61012eef | 1170 | if (len0 > 1 && startswith (encoded + len0 - 1, "B")) |
14f9c5c9 AS |
1171 | len0 -= 1; |
1172 | ||
4c4b4cd2 | 1173 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1174 | |
f945dedf | 1175 | decoded.resize (2 * len0 + 1, 'X'); |
14f9c5c9 | 1176 | |
29480c32 JB |
1177 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1178 | ||
4c4b4cd2 | 1179 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1180 | { |
4c4b4cd2 PH |
1181 | i = len0 - 2; |
1182 | while ((i >= 0 && isdigit (encoded[i])) | |
1183 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1184 | i -= 1; | |
1185 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1186 | len0 = i - 1; | |
1187 | else if (encoded[i] == '$') | |
1188 | len0 = i; | |
d2e4a39e | 1189 | } |
14f9c5c9 | 1190 | |
29480c32 JB |
1191 | /* The first few characters that are not alphabetic are not part |
1192 | of any encoding we use, so we can copy them over verbatim. */ | |
1193 | ||
4c4b4cd2 PH |
1194 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1195 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1196 | |
1197 | at_start_name = 1; | |
1198 | while (i < len0) | |
1199 | { | |
29480c32 | 1200 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1201 | if (at_start_name && encoded[i] == 'O') |
1202 | { | |
1203 | int k; | |
5b4ee69b | 1204 | |
4c4b4cd2 PH |
1205 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1206 | { | |
1207 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1208 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1209 | op_len - 1) == 0) | |
1210 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 | 1211 | { |
f945dedf | 1212 | strcpy (&decoded.front() + j, ada_opname_table[k].decoded); |
4c4b4cd2 PH |
1213 | at_start_name = 0; |
1214 | i += op_len; | |
1215 | j += strlen (ada_opname_table[k].decoded); | |
1216 | break; | |
1217 | } | |
1218 | } | |
1219 | if (ada_opname_table[k].encoded != NULL) | |
1220 | continue; | |
1221 | } | |
14f9c5c9 AS |
1222 | at_start_name = 0; |
1223 | ||
529cad9c PH |
1224 | /* Replace "TK__" with "__", which will eventually be translated |
1225 | into "." (just below). */ | |
1226 | ||
61012eef | 1227 | if (i < len0 - 4 && startswith (encoded + i, "TK__")) |
4c4b4cd2 | 1228 | i += 2; |
529cad9c | 1229 | |
29480c32 JB |
1230 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1231 | be translated into "." (just below). These are internal names | |
1232 | generated for anonymous blocks inside which our symbol is nested. */ | |
1233 | ||
1234 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1235 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1236 | && isdigit (encoded [i+4])) | |
1237 | { | |
1238 | int k = i + 5; | |
1239 | ||
1240 | while (k < len0 && isdigit (encoded[k])) | |
1241 | k++; /* Skip any extra digit. */ | |
1242 | ||
1243 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1244 | is indeed followed by "__". */ | |
1245 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1246 | i = k; | |
1247 | } | |
1248 | ||
529cad9c PH |
1249 | /* Remove _E{DIGITS}+[sb] */ |
1250 | ||
1251 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1252 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1253 | one implements the actual entry code, and has a suffix following |
1254 | the convention above; the second one implements the barrier and | |
1255 | uses the same convention as above, except that the 'E' is replaced | |
1256 | by a 'B'. | |
1257 | ||
1258 | Just as above, we do not decode the name of barrier functions | |
1259 | to give the user a clue that the code he is debugging has been | |
1260 | internally generated. */ | |
1261 | ||
1262 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1263 | && isdigit (encoded[i+2])) | |
1264 | { | |
1265 | int k = i + 3; | |
1266 | ||
1267 | while (k < len0 && isdigit (encoded[k])) | |
1268 | k++; | |
1269 | ||
1270 | if (k < len0 | |
1271 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1272 | { | |
1273 | k++; | |
1274 | /* Just as an extra precaution, make sure that if this | |
1275 | suffix is followed by anything else, it is a '_'. | |
1276 | Otherwise, we matched this sequence by accident. */ | |
1277 | if (k == len0 | |
1278 | || (k < len0 && encoded[k] == '_')) | |
1279 | i = k; | |
1280 | } | |
1281 | } | |
1282 | ||
1283 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1284 | the GNAT front-end in protected object subprograms. */ | |
1285 | ||
1286 | if (i < len0 + 3 | |
1287 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1288 | { | |
1289 | /* Backtrack a bit up until we reach either the begining of | |
1290 | the encoded name, or "__". Make sure that we only find | |
1291 | digits or lowercase characters. */ | |
1292 | const char *ptr = encoded + i - 1; | |
1293 | ||
1294 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1295 | ptr--; | |
1296 | if (ptr < encoded | |
1297 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1298 | i++; | |
1299 | } | |
1300 | ||
4c4b4cd2 PH |
1301 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1302 | { | |
29480c32 JB |
1303 | /* This is a X[bn]* sequence not separated from the previous |
1304 | part of the name with a non-alpha-numeric character (in other | |
1305 | words, immediately following an alpha-numeric character), then | |
1306 | verify that it is placed at the end of the encoded name. If | |
1307 | not, then the encoding is not valid and we should abort the | |
1308 | decoding. Otherwise, just skip it, it is used in body-nested | |
1309 | package names. */ | |
4c4b4cd2 PH |
1310 | do |
1311 | i += 1; | |
1312 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1313 | if (i < len0) | |
1314 | goto Suppress; | |
1315 | } | |
cdc7bb92 | 1316 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1317 | { |
29480c32 | 1318 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1319 | decoded[j] = '.'; |
1320 | at_start_name = 1; | |
1321 | i += 2; | |
1322 | j += 1; | |
1323 | } | |
14f9c5c9 | 1324 | else |
4c4b4cd2 | 1325 | { |
29480c32 JB |
1326 | /* It's a character part of the decoded name, so just copy it |
1327 | over. */ | |
4c4b4cd2 PH |
1328 | decoded[j] = encoded[i]; |
1329 | i += 1; | |
1330 | j += 1; | |
1331 | } | |
14f9c5c9 | 1332 | } |
f945dedf | 1333 | decoded.resize (j); |
14f9c5c9 | 1334 | |
29480c32 JB |
1335 | /* Decoded names should never contain any uppercase character. |
1336 | Double-check this, and abort the decoding if we find one. */ | |
1337 | ||
f945dedf | 1338 | for (i = 0; i < decoded.length(); ++i) |
4c4b4cd2 | 1339 | if (isupper (decoded[i]) || decoded[i] == ' ') |
14f9c5c9 AS |
1340 | goto Suppress; |
1341 | ||
f945dedf | 1342 | return decoded; |
14f9c5c9 AS |
1343 | |
1344 | Suppress: | |
4c4b4cd2 | 1345 | if (encoded[0] == '<') |
f945dedf | 1346 | decoded = encoded; |
14f9c5c9 | 1347 | else |
f945dedf | 1348 | decoded = '<' + std::string(encoded) + '>'; |
4c4b4cd2 PH |
1349 | return decoded; |
1350 | ||
1351 | } | |
1352 | ||
1353 | /* Table for keeping permanent unique copies of decoded names. Once | |
1354 | allocated, names in this table are never released. While this is a | |
1355 | storage leak, it should not be significant unless there are massive | |
1356 | changes in the set of decoded names in successive versions of a | |
1357 | symbol table loaded during a single session. */ | |
1358 | static struct htab *decoded_names_store; | |
1359 | ||
1360 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1361 | in the language-specific part of GSYMBOL, if it has not been | |
1362 | previously computed. Tries to save the decoded name in the same | |
1363 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1364 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1365 | GSYMBOL). |
4c4b4cd2 PH |
1366 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1367 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1368 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1369 | |
45e6c716 | 1370 | const char * |
f85f34ed | 1371 | ada_decode_symbol (const struct general_symbol_info *arg) |
4c4b4cd2 | 1372 | { |
f85f34ed TT |
1373 | struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg; |
1374 | const char **resultp = | |
615b3f62 | 1375 | &gsymbol->language_specific.demangled_name; |
5b4ee69b | 1376 | |
f85f34ed | 1377 | if (!gsymbol->ada_mangled) |
4c4b4cd2 | 1378 | { |
4d4eaa30 | 1379 | std::string decoded = ada_decode (gsymbol->linkage_name ()); |
f85f34ed | 1380 | struct obstack *obstack = gsymbol->language_specific.obstack; |
5b4ee69b | 1381 | |
f85f34ed | 1382 | gsymbol->ada_mangled = 1; |
5b4ee69b | 1383 | |
f85f34ed | 1384 | if (obstack != NULL) |
f945dedf | 1385 | *resultp = obstack_strdup (obstack, decoded.c_str ()); |
f85f34ed | 1386 | else |
76a01679 | 1387 | { |
f85f34ed TT |
1388 | /* Sometimes, we can't find a corresponding objfile, in |
1389 | which case, we put the result on the heap. Since we only | |
1390 | decode when needed, we hope this usually does not cause a | |
1391 | significant memory leak (FIXME). */ | |
1392 | ||
76a01679 | 1393 | char **slot = (char **) htab_find_slot (decoded_names_store, |
f945dedf | 1394 | decoded.c_str (), INSERT); |
5b4ee69b | 1395 | |
76a01679 | 1396 | if (*slot == NULL) |
f945dedf | 1397 | *slot = xstrdup (decoded.c_str ()); |
76a01679 JB |
1398 | *resultp = *slot; |
1399 | } | |
4c4b4cd2 | 1400 | } |
14f9c5c9 | 1401 | |
4c4b4cd2 PH |
1402 | return *resultp; |
1403 | } | |
76a01679 | 1404 | |
2c0b251b | 1405 | static char * |
76a01679 | 1406 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 | 1407 | { |
f945dedf | 1408 | return xstrdup (ada_decode (encoded).c_str ()); |
14f9c5c9 AS |
1409 | } |
1410 | ||
8b302db8 TT |
1411 | /* Implement la_sniff_from_mangled_name for Ada. */ |
1412 | ||
1413 | static int | |
1414 | ada_sniff_from_mangled_name (const char *mangled, char **out) | |
1415 | { | |
f945dedf | 1416 | std::string demangled = ada_decode (mangled); |
8b302db8 TT |
1417 | |
1418 | *out = NULL; | |
1419 | ||
f945dedf | 1420 | if (demangled != mangled && demangled[0] != '<') |
8b302db8 TT |
1421 | { |
1422 | /* Set the gsymbol language to Ada, but still return 0. | |
1423 | Two reasons for that: | |
1424 | ||
1425 | 1. For Ada, we prefer computing the symbol's decoded name | |
1426 | on the fly rather than pre-compute it, in order to save | |
1427 | memory (Ada projects are typically very large). | |
1428 | ||
1429 | 2. There are some areas in the definition of the GNAT | |
1430 | encoding where, with a bit of bad luck, we might be able | |
1431 | to decode a non-Ada symbol, generating an incorrect | |
1432 | demangled name (Eg: names ending with "TB" for instance | |
1433 | are identified as task bodies and so stripped from | |
1434 | the decoded name returned). | |
1435 | ||
1436 | Returning 1, here, but not setting *DEMANGLED, helps us get a | |
1437 | little bit of the best of both worlds. Because we're last, | |
1438 | we should not affect any of the other languages that were | |
1439 | able to demangle the symbol before us; we get to correctly | |
1440 | tag Ada symbols as such; and even if we incorrectly tagged a | |
1441 | non-Ada symbol, which should be rare, any routing through the | |
1442 | Ada language should be transparent (Ada tries to behave much | |
1443 | like C/C++ with non-Ada symbols). */ | |
1444 | return 1; | |
1445 | } | |
1446 | ||
1447 | return 0; | |
1448 | } | |
1449 | ||
14f9c5c9 | 1450 | \f |
d2e4a39e | 1451 | |
4c4b4cd2 | 1452 | /* Arrays */ |
14f9c5c9 | 1453 | |
28c85d6c JB |
1454 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1455 | generated by the GNAT compiler to describe the index type used | |
1456 | for each dimension of an array, check whether it follows the latest | |
1457 | known encoding. If not, fix it up to conform to the latest encoding. | |
1458 | Otherwise, do nothing. This function also does nothing if | |
1459 | INDEX_DESC_TYPE is NULL. | |
1460 | ||
85102364 | 1461 | The GNAT encoding used to describe the array index type evolved a bit. |
28c85d6c JB |
1462 | Initially, the information would be provided through the name of each |
1463 | field of the structure type only, while the type of these fields was | |
1464 | described as unspecified and irrelevant. The debugger was then expected | |
1465 | to perform a global type lookup using the name of that field in order | |
1466 | to get access to the full index type description. Because these global | |
1467 | lookups can be very expensive, the encoding was later enhanced to make | |
1468 | the global lookup unnecessary by defining the field type as being | |
1469 | the full index type description. | |
1470 | ||
1471 | The purpose of this routine is to allow us to support older versions | |
1472 | of the compiler by detecting the use of the older encoding, and by | |
1473 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1474 | we essentially replace each field's meaningless type by the associated | |
1475 | index subtype). */ | |
1476 | ||
1477 | void | |
1478 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1479 | { | |
1480 | int i; | |
1481 | ||
1482 | if (index_desc_type == NULL) | |
1483 | return; | |
1484 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1485 | ||
1486 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1487 | to check one field only, no need to check them all). If not, return | |
1488 | now. | |
1489 | ||
1490 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1491 | the field type should be a meaningless integer type whose name | |
1492 | is not equal to the field name. */ | |
1493 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1494 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1495 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1496 | return; | |
1497 | ||
1498 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1499 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1500 | { | |
0d5cff50 | 1501 | const char *name = TYPE_FIELD_NAME (index_desc_type, i); |
28c85d6c JB |
1502 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); |
1503 | ||
1504 | if (raw_type) | |
1505 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1506 | } | |
1507 | } | |
1508 | ||
4c4b4cd2 | 1509 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1510 | |
a121b7c1 | 1511 | static const char *bound_name[] = { |
d2e4a39e | 1512 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", |
14f9c5c9 AS |
1513 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1514 | }; | |
1515 | ||
1516 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1517 | ||
4c4b4cd2 | 1518 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1519 | |
14f9c5c9 | 1520 | |
4c4b4cd2 PH |
1521 | /* The desc_* routines return primitive portions of array descriptors |
1522 | (fat pointers). */ | |
14f9c5c9 AS |
1523 | |
1524 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1525 | level of indirection, if needed. */ |
1526 | ||
d2e4a39e AS |
1527 | static struct type * |
1528 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1529 | { |
1530 | if (type == NULL) | |
1531 | return NULL; | |
61ee279c | 1532 | type = ada_check_typedef (type); |
720d1a40 JB |
1533 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1534 | type = ada_typedef_target_type (type); | |
1535 | ||
1265e4aa JB |
1536 | if (type != NULL |
1537 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1538 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1539 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1540 | else |
1541 | return type; | |
1542 | } | |
1543 | ||
4c4b4cd2 PH |
1544 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1545 | ||
14f9c5c9 | 1546 | static int |
d2e4a39e | 1547 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1548 | { |
d2e4a39e | 1549 | return |
14f9c5c9 AS |
1550 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1551 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1552 | } | |
1553 | ||
4c4b4cd2 PH |
1554 | /* The descriptor type for thin pointer type TYPE. */ |
1555 | ||
d2e4a39e AS |
1556 | static struct type * |
1557 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1558 | { |
d2e4a39e | 1559 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1560 | |
14f9c5c9 AS |
1561 | if (base_type == NULL) |
1562 | return NULL; | |
1563 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1564 | return base_type; | |
d2e4a39e | 1565 | else |
14f9c5c9 | 1566 | { |
d2e4a39e | 1567 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1568 | |
14f9c5c9 | 1569 | if (alt_type == NULL) |
4c4b4cd2 | 1570 | return base_type; |
14f9c5c9 | 1571 | else |
4c4b4cd2 | 1572 | return alt_type; |
14f9c5c9 AS |
1573 | } |
1574 | } | |
1575 | ||
4c4b4cd2 PH |
1576 | /* A pointer to the array data for thin-pointer value VAL. */ |
1577 | ||
d2e4a39e AS |
1578 | static struct value * |
1579 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1580 | { |
828292f2 | 1581 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1582 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1583 | |
556bdfd4 UW |
1584 | data_type = lookup_pointer_type (data_type); |
1585 | ||
14f9c5c9 | 1586 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1587 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1588 | else |
42ae5230 | 1589 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1590 | } |
1591 | ||
4c4b4cd2 PH |
1592 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1593 | ||
14f9c5c9 | 1594 | static int |
d2e4a39e | 1595 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1596 | { |
1597 | type = desc_base_type (type); | |
1598 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1599 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1600 | } |
1601 | ||
4c4b4cd2 PH |
1602 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1603 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1604 | |
d2e4a39e AS |
1605 | static struct type * |
1606 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1607 | { |
d2e4a39e | 1608 | struct type *r; |
14f9c5c9 AS |
1609 | |
1610 | type = desc_base_type (type); | |
1611 | ||
1612 | if (type == NULL) | |
1613 | return NULL; | |
1614 | else if (is_thin_pntr (type)) | |
1615 | { | |
1616 | type = thin_descriptor_type (type); | |
1617 | if (type == NULL) | |
4c4b4cd2 | 1618 | return NULL; |
14f9c5c9 AS |
1619 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1620 | if (r != NULL) | |
61ee279c | 1621 | return ada_check_typedef (r); |
14f9c5c9 AS |
1622 | } |
1623 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1624 | { | |
1625 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1626 | if (r != NULL) | |
61ee279c | 1627 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1628 | } |
1629 | return NULL; | |
1630 | } | |
1631 | ||
1632 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1633 | one, a pointer to its bounds data. Otherwise NULL. */ |
1634 | ||
d2e4a39e AS |
1635 | static struct value * |
1636 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1637 | { |
df407dfe | 1638 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1639 | |
d2e4a39e | 1640 | if (is_thin_pntr (type)) |
14f9c5c9 | 1641 | { |
d2e4a39e | 1642 | struct type *bounds_type = |
4c4b4cd2 | 1643 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1644 | LONGEST addr; |
1645 | ||
4cdfadb1 | 1646 | if (bounds_type == NULL) |
323e0a4a | 1647 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1648 | |
1649 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1650 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1651 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1652 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1653 | addr = value_as_long (arr); |
d2e4a39e | 1654 | else |
42ae5230 | 1655 | addr = value_address (arr); |
14f9c5c9 | 1656 | |
d2e4a39e | 1657 | return |
4c4b4cd2 PH |
1658 | value_from_longest (lookup_pointer_type (bounds_type), |
1659 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1660 | } |
1661 | ||
1662 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1663 | { |
1664 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1665 | _("Bad GNAT array descriptor")); | |
1666 | struct type *p_bounds_type = value_type (p_bounds); | |
1667 | ||
1668 | if (p_bounds_type | |
1669 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1670 | { | |
1671 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1672 | ||
1673 | if (TYPE_STUB (target_type)) | |
1674 | p_bounds = value_cast (lookup_pointer_type | |
1675 | (ada_check_typedef (target_type)), | |
1676 | p_bounds); | |
1677 | } | |
1678 | else | |
1679 | error (_("Bad GNAT array descriptor")); | |
1680 | ||
1681 | return p_bounds; | |
1682 | } | |
14f9c5c9 AS |
1683 | else |
1684 | return NULL; | |
1685 | } | |
1686 | ||
4c4b4cd2 PH |
1687 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1688 | position of the field containing the address of the bounds data. */ | |
1689 | ||
14f9c5c9 | 1690 | static int |
d2e4a39e | 1691 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1692 | { |
1693 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1694 | } | |
1695 | ||
1696 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1697 | size of the field containing the address of the bounds data. */ |
1698 | ||
14f9c5c9 | 1699 | static int |
d2e4a39e | 1700 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1701 | { |
1702 | type = desc_base_type (type); | |
1703 | ||
d2e4a39e | 1704 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1705 | return TYPE_FIELD_BITSIZE (type, 1); |
1706 | else | |
61ee279c | 1707 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1708 | } |
1709 | ||
4c4b4cd2 | 1710 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1711 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1712 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1713 | data. */ | |
4c4b4cd2 | 1714 | |
d2e4a39e | 1715 | static struct type * |
556bdfd4 | 1716 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1717 | { |
1718 | type = desc_base_type (type); | |
1719 | ||
4c4b4cd2 | 1720 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1721 | if (is_thin_pntr (type)) |
556bdfd4 | 1722 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1723 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1724 | { |
1725 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1726 | ||
1727 | if (data_type | |
1728 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1729 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1730 | } |
1731 | ||
1732 | return NULL; | |
14f9c5c9 AS |
1733 | } |
1734 | ||
1735 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1736 | its array data. */ | |
4c4b4cd2 | 1737 | |
d2e4a39e AS |
1738 | static struct value * |
1739 | desc_data (struct value *arr) | |
14f9c5c9 | 1740 | { |
df407dfe | 1741 | struct type *type = value_type (arr); |
5b4ee69b | 1742 | |
14f9c5c9 AS |
1743 | if (is_thin_pntr (type)) |
1744 | return thin_data_pntr (arr); | |
1745 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1746 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1747 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1748 | else |
1749 | return NULL; | |
1750 | } | |
1751 | ||
1752 | ||
1753 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1754 | position of the field containing the address of the data. */ |
1755 | ||
14f9c5c9 | 1756 | static int |
d2e4a39e | 1757 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1758 | { |
1759 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1760 | } | |
1761 | ||
1762 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1763 | size of the field containing the address of the data. */ |
1764 | ||
14f9c5c9 | 1765 | static int |
d2e4a39e | 1766 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1767 | { |
1768 | type = desc_base_type (type); | |
1769 | ||
1770 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1771 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1772 | else |
14f9c5c9 AS |
1773 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1774 | } | |
1775 | ||
4c4b4cd2 | 1776 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1777 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1778 | bound, if WHICH is 1. The first bound is I=1. */ |
1779 | ||
d2e4a39e AS |
1780 | static struct value * |
1781 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1782 | { |
d2e4a39e | 1783 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1784 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1785 | } |
1786 | ||
1787 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1788 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1789 | bound, if WHICH is 1. The first bound is I=1. */ |
1790 | ||
14f9c5c9 | 1791 | static int |
d2e4a39e | 1792 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1793 | { |
d2e4a39e | 1794 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1795 | } |
1796 | ||
1797 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1798 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1799 | bound, if WHICH is 1. The first bound is I=1. */ |
1800 | ||
76a01679 | 1801 | static int |
d2e4a39e | 1802 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1803 | { |
1804 | type = desc_base_type (type); | |
1805 | ||
d2e4a39e AS |
1806 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1807 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1808 | else | |
1809 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1810 | } |
1811 | ||
1812 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1813 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1814 | ||
d2e4a39e AS |
1815 | static struct type * |
1816 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1817 | { |
1818 | type = desc_base_type (type); | |
1819 | ||
1820 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1821 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1822 | else | |
14f9c5c9 AS |
1823 | return NULL; |
1824 | } | |
1825 | ||
4c4b4cd2 PH |
1826 | /* The number of index positions in the array-bounds type TYPE. |
1827 | Return 0 if TYPE is NULL. */ | |
1828 | ||
14f9c5c9 | 1829 | static int |
d2e4a39e | 1830 | desc_arity (struct type *type) |
14f9c5c9 AS |
1831 | { |
1832 | type = desc_base_type (type); | |
1833 | ||
1834 | if (type != NULL) | |
1835 | return TYPE_NFIELDS (type) / 2; | |
1836 | return 0; | |
1837 | } | |
1838 | ||
4c4b4cd2 PH |
1839 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1840 | an array descriptor type (representing an unconstrained array | |
1841 | type). */ | |
1842 | ||
76a01679 JB |
1843 | static int |
1844 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1845 | { |
1846 | if (type == NULL) | |
1847 | return 0; | |
61ee279c | 1848 | type = ada_check_typedef (type); |
4c4b4cd2 | 1849 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1850 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1851 | } |
1852 | ||
52ce6436 | 1853 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1854 | * to one. */ |
52ce6436 | 1855 | |
2c0b251b | 1856 | static int |
52ce6436 PH |
1857 | ada_is_array_type (struct type *type) |
1858 | { | |
1859 | while (type != NULL | |
1860 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1861 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1862 | type = TYPE_TARGET_TYPE (type); | |
1863 | return ada_is_direct_array_type (type); | |
1864 | } | |
1865 | ||
4c4b4cd2 | 1866 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1867 | |
14f9c5c9 | 1868 | int |
4c4b4cd2 | 1869 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1870 | { |
1871 | if (type == NULL) | |
1872 | return 0; | |
61ee279c | 1873 | type = ada_check_typedef (type); |
14f9c5c9 | 1874 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1875 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1876 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1877 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1878 | } |
1879 | ||
4c4b4cd2 PH |
1880 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1881 | ||
14f9c5c9 | 1882 | int |
4c4b4cd2 | 1883 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1884 | { |
556bdfd4 | 1885 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1886 | |
1887 | if (type == NULL) | |
1888 | return 0; | |
61ee279c | 1889 | type = ada_check_typedef (type); |
556bdfd4 UW |
1890 | return (data_type != NULL |
1891 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1892 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1893 | } |
1894 | ||
1895 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1896 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1897 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1898 | is still needed. */ |
1899 | ||
14f9c5c9 | 1900 | int |
ebf56fd3 | 1901 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1902 | { |
d2e4a39e | 1903 | return |
14f9c5c9 AS |
1904 | type != NULL |
1905 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1906 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1907 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1908 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1909 | } |
1910 | ||
1911 | ||
4c4b4cd2 | 1912 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1913 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1914 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1915 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1916 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1917 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1918 | a descriptor. */ |
de93309a SM |
1919 | |
1920 | static struct type * | |
d2e4a39e | 1921 | ada_type_of_array (struct value *arr, int bounds) |
14f9c5c9 | 1922 | { |
ad82864c JB |
1923 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1924 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1925 | |
df407dfe AC |
1926 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1927 | return value_type (arr); | |
d2e4a39e AS |
1928 | |
1929 | if (!bounds) | |
ad82864c JB |
1930 | { |
1931 | struct type *array_type = | |
1932 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1933 | ||
1934 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1935 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1936 | decode_packed_array_bitsize (value_type (arr)); | |
1937 | ||
1938 | return array_type; | |
1939 | } | |
14f9c5c9 AS |
1940 | else |
1941 | { | |
d2e4a39e | 1942 | struct type *elt_type; |
14f9c5c9 | 1943 | int arity; |
d2e4a39e | 1944 | struct value *descriptor; |
14f9c5c9 | 1945 | |
df407dfe AC |
1946 | elt_type = ada_array_element_type (value_type (arr), -1); |
1947 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1948 | |
d2e4a39e | 1949 | if (elt_type == NULL || arity == 0) |
df407dfe | 1950 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1951 | |
1952 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1953 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1954 | return NULL; |
d2e4a39e | 1955 | while (arity > 0) |
4c4b4cd2 | 1956 | { |
e9bb382b UW |
1957 | struct type *range_type = alloc_type_copy (value_type (arr)); |
1958 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
1959 | struct value *low = desc_one_bound (descriptor, arity, 0); |
1960 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 1961 | |
5b4ee69b | 1962 | arity -= 1; |
0c9c3474 SA |
1963 | create_static_range_type (range_type, value_type (low), |
1964 | longest_to_int (value_as_long (low)), | |
1965 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 1966 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1967 | |
1968 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
1969 | { |
1970 | /* We need to store the element packed bitsize, as well as | |
1971 | recompute the array size, because it was previously | |
1972 | computed based on the unpacked element size. */ | |
1973 | LONGEST lo = value_as_long (low); | |
1974 | LONGEST hi = value_as_long (high); | |
1975 | ||
1976 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
1977 | decode_packed_array_bitsize (value_type (arr)); | |
1978 | /* If the array has no element, then the size is already | |
1979 | zero, and does not need to be recomputed. */ | |
1980 | if (lo < hi) | |
1981 | { | |
1982 | int array_bitsize = | |
1983 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
1984 | ||
1985 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
1986 | } | |
1987 | } | |
4c4b4cd2 | 1988 | } |
14f9c5c9 AS |
1989 | |
1990 | return lookup_pointer_type (elt_type); | |
1991 | } | |
1992 | } | |
1993 | ||
1994 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1995 | Otherwise, returns either a standard GDB array with bounds set |
1996 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1997 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1998 | ||
d2e4a39e AS |
1999 | struct value * |
2000 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 2001 | { |
df407dfe | 2002 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2003 | { |
d2e4a39e | 2004 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 2005 | |
14f9c5c9 | 2006 | if (arrType == NULL) |
4c4b4cd2 | 2007 | return NULL; |
14f9c5c9 AS |
2008 | return value_cast (arrType, value_copy (desc_data (arr))); |
2009 | } | |
ad82864c JB |
2010 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2011 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
2012 | else |
2013 | return arr; | |
2014 | } | |
2015 | ||
2016 | /* If ARR does not represent an array, returns ARR unchanged. | |
2017 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
2018 | be ARR itself if it already is in the proper form). */ |
2019 | ||
720d1a40 | 2020 | struct value * |
d2e4a39e | 2021 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 2022 | { |
df407dfe | 2023 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2024 | { |
d2e4a39e | 2025 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 2026 | |
14f9c5c9 | 2027 | if (arrVal == NULL) |
323e0a4a | 2028 | error (_("Bounds unavailable for null array pointer.")); |
c1b5a1a6 | 2029 | ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
2030 | return value_ind (arrVal); |
2031 | } | |
ad82864c JB |
2032 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2033 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 2034 | else |
14f9c5c9 AS |
2035 | return arr; |
2036 | } | |
2037 | ||
2038 | /* If TYPE represents a GNAT array type, return it translated to an | |
2039 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
2040 | packing). For other types, is the identity. */ |
2041 | ||
d2e4a39e AS |
2042 | struct type * |
2043 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 2044 | { |
ad82864c JB |
2045 | if (ada_is_constrained_packed_array_type (type)) |
2046 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
2047 | |
2048 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 2049 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
2050 | |
2051 | return type; | |
14f9c5c9 AS |
2052 | } |
2053 | ||
4c4b4cd2 PH |
2054 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
2055 | ||
ad82864c JB |
2056 | static int |
2057 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
2058 | { |
2059 | if (type == NULL) | |
2060 | return 0; | |
4c4b4cd2 | 2061 | type = desc_base_type (type); |
61ee279c | 2062 | type = ada_check_typedef (type); |
d2e4a39e | 2063 | return |
14f9c5c9 AS |
2064 | ada_type_name (type) != NULL |
2065 | && strstr (ada_type_name (type), "___XP") != NULL; | |
2066 | } | |
2067 | ||
ad82864c JB |
2068 | /* Non-zero iff TYPE represents a standard GNAT constrained |
2069 | packed-array type. */ | |
2070 | ||
2071 | int | |
2072 | ada_is_constrained_packed_array_type (struct type *type) | |
2073 | { | |
2074 | return ada_is_packed_array_type (type) | |
2075 | && !ada_is_array_descriptor_type (type); | |
2076 | } | |
2077 | ||
2078 | /* Non-zero iff TYPE represents an array descriptor for a | |
2079 | unconstrained packed-array type. */ | |
2080 | ||
2081 | static int | |
2082 | ada_is_unconstrained_packed_array_type (struct type *type) | |
2083 | { | |
2084 | return ada_is_packed_array_type (type) | |
2085 | && ada_is_array_descriptor_type (type); | |
2086 | } | |
2087 | ||
2088 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
2089 | return the size of its elements in bits. */ | |
2090 | ||
2091 | static long | |
2092 | decode_packed_array_bitsize (struct type *type) | |
2093 | { | |
0d5cff50 DE |
2094 | const char *raw_name; |
2095 | const char *tail; | |
ad82864c JB |
2096 | long bits; |
2097 | ||
720d1a40 JB |
2098 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
2099 | of the fat pointer type. We need the name of the fat pointer type | |
2100 | to do the decoding, so strip the typedef layer. */ | |
2101 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
2102 | type = ada_typedef_target_type (type); | |
2103 | ||
2104 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
2105 | if (!raw_name) |
2106 | raw_name = ada_type_name (desc_base_type (type)); | |
2107 | ||
2108 | if (!raw_name) | |
2109 | return 0; | |
2110 | ||
2111 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 2112 | gdb_assert (tail != NULL); |
ad82864c JB |
2113 | |
2114 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
2115 | { | |
2116 | lim_warning | |
2117 | (_("could not understand bit size information on packed array")); | |
2118 | return 0; | |
2119 | } | |
2120 | ||
2121 | return bits; | |
2122 | } | |
2123 | ||
14f9c5c9 AS |
2124 | /* Given that TYPE is a standard GDB array type with all bounds filled |
2125 | in, and that the element size of its ultimate scalar constituents | |
2126 | (that is, either its elements, or, if it is an array of arrays, its | |
2127 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
2128 | but with the bit sizes of its elements (and those of any | |
2129 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 | 2130 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
4a46959e JB |
2131 | in bits. |
2132 | ||
2133 | Note that, for arrays whose index type has an XA encoding where | |
2134 | a bound references a record discriminant, getting that discriminant, | |
2135 | and therefore the actual value of that bound, is not possible | |
2136 | because none of the given parameters gives us access to the record. | |
2137 | This function assumes that it is OK in the context where it is being | |
2138 | used to return an array whose bounds are still dynamic and where | |
2139 | the length is arbitrary. */ | |
4c4b4cd2 | 2140 | |
d2e4a39e | 2141 | static struct type * |
ad82864c | 2142 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2143 | { |
d2e4a39e AS |
2144 | struct type *new_elt_type; |
2145 | struct type *new_type; | |
99b1c762 JB |
2146 | struct type *index_type_desc; |
2147 | struct type *index_type; | |
14f9c5c9 AS |
2148 | LONGEST low_bound, high_bound; |
2149 | ||
61ee279c | 2150 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2151 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2152 | return type; | |
2153 | ||
99b1c762 JB |
2154 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
2155 | if (index_type_desc) | |
2156 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0), | |
2157 | NULL); | |
2158 | else | |
2159 | index_type = TYPE_INDEX_TYPE (type); | |
2160 | ||
e9bb382b | 2161 | new_type = alloc_type_copy (type); |
ad82864c JB |
2162 | new_elt_type = |
2163 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2164 | elt_bits); | |
99b1c762 | 2165 | create_array_type (new_type, new_elt_type, index_type); |
14f9c5c9 AS |
2166 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2167 | TYPE_NAME (new_type) = ada_type_name (type); | |
2168 | ||
4a46959e JB |
2169 | if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE |
2170 | && is_dynamic_type (check_typedef (index_type))) | |
2171 | || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0) | |
14f9c5c9 AS |
2172 | low_bound = high_bound = 0; |
2173 | if (high_bound < low_bound) | |
2174 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2175 | else |
14f9c5c9 AS |
2176 | { |
2177 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2178 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2179 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2180 | } |
2181 | ||
876cecd0 | 2182 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2183 | return new_type; |
2184 | } | |
2185 | ||
ad82864c JB |
2186 | /* The array type encoded by TYPE, where |
2187 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2188 | |
d2e4a39e | 2189 | static struct type * |
ad82864c | 2190 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2191 | { |
0d5cff50 | 2192 | const char *raw_name = ada_type_name (ada_check_typedef (type)); |
727e3d2e | 2193 | char *name; |
0d5cff50 | 2194 | const char *tail; |
d2e4a39e | 2195 | struct type *shadow_type; |
14f9c5c9 | 2196 | long bits; |
14f9c5c9 | 2197 | |
727e3d2e JB |
2198 | if (!raw_name) |
2199 | raw_name = ada_type_name (desc_base_type (type)); | |
2200 | ||
2201 | if (!raw_name) | |
2202 | return NULL; | |
2203 | ||
2204 | name = (char *) alloca (strlen (raw_name) + 1); | |
2205 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2206 | type = desc_base_type (type); |
2207 | ||
14f9c5c9 AS |
2208 | memcpy (name, raw_name, tail - raw_name); |
2209 | name[tail - raw_name] = '\000'; | |
2210 | ||
b4ba55a1 JB |
2211 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2212 | ||
2213 | if (shadow_type == NULL) | |
14f9c5c9 | 2214 | { |
323e0a4a | 2215 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2216 | return NULL; |
2217 | } | |
f168693b | 2218 | shadow_type = check_typedef (shadow_type); |
14f9c5c9 AS |
2219 | |
2220 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2221 | { | |
0963b4bd MS |
2222 | lim_warning (_("could not understand bounds " |
2223 | "information on packed array")); | |
14f9c5c9 AS |
2224 | return NULL; |
2225 | } | |
d2e4a39e | 2226 | |
ad82864c JB |
2227 | bits = decode_packed_array_bitsize (type); |
2228 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2229 | } |
2230 | ||
ad82864c JB |
2231 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2232 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2233 | standard GDB array type except that the BITSIZEs of the array |
2234 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2235 | type length is set appropriately. */ |
14f9c5c9 | 2236 | |
d2e4a39e | 2237 | static struct value * |
ad82864c | 2238 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2239 | { |
4c4b4cd2 | 2240 | struct type *type; |
14f9c5c9 | 2241 | |
11aa919a PMR |
2242 | /* If our value is a pointer, then dereference it. Likewise if |
2243 | the value is a reference. Make sure that this operation does not | |
2244 | cause the target type to be fixed, as this would indirectly cause | |
2245 | this array to be decoded. The rest of the routine assumes that | |
2246 | the array hasn't been decoded yet, so we use the basic "coerce_ref" | |
2247 | and "value_ind" routines to perform the dereferencing, as opposed | |
2248 | to using "ada_coerce_ref" or "ada_value_ind". */ | |
2249 | arr = coerce_ref (arr); | |
828292f2 | 2250 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2251 | arr = value_ind (arr); |
4c4b4cd2 | 2252 | |
ad82864c | 2253 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2254 | if (type == NULL) |
2255 | { | |
323e0a4a | 2256 | error (_("can't unpack array")); |
14f9c5c9 AS |
2257 | return NULL; |
2258 | } | |
61ee279c | 2259 | |
d5a22e77 | 2260 | if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG |
32c9a795 | 2261 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2262 | { |
2263 | /* This is a (right-justified) modular type representing a packed | |
2264 | array with no wrapper. In order to interpret the value through | |
2265 | the (left-justified) packed array type we just built, we must | |
2266 | first left-justify it. */ | |
2267 | int bit_size, bit_pos; | |
2268 | ULONGEST mod; | |
2269 | ||
df407dfe | 2270 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2271 | bit_size = 0; |
2272 | while (mod > 0) | |
2273 | { | |
2274 | bit_size += 1; | |
2275 | mod >>= 1; | |
2276 | } | |
df407dfe | 2277 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2278 | arr = ada_value_primitive_packed_val (arr, NULL, |
2279 | bit_pos / HOST_CHAR_BIT, | |
2280 | bit_pos % HOST_CHAR_BIT, | |
2281 | bit_size, | |
2282 | type); | |
2283 | } | |
2284 | ||
4c4b4cd2 | 2285 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2286 | } |
2287 | ||
2288 | ||
2289 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2290 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2291 | |
d2e4a39e AS |
2292 | static struct value * |
2293 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2294 | { |
2295 | int i; | |
2296 | int bits, elt_off, bit_off; | |
2297 | long elt_total_bit_offset; | |
d2e4a39e AS |
2298 | struct type *elt_type; |
2299 | struct value *v; | |
14f9c5c9 AS |
2300 | |
2301 | bits = 0; | |
2302 | elt_total_bit_offset = 0; | |
df407dfe | 2303 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2304 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2305 | { |
d2e4a39e | 2306 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2307 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2308 | error | |
0963b4bd MS |
2309 | (_("attempt to do packed indexing of " |
2310 | "something other than a packed array")); | |
14f9c5c9 | 2311 | else |
4c4b4cd2 PH |
2312 | { |
2313 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2314 | LONGEST lowerbound, upperbound; | |
2315 | LONGEST idx; | |
2316 | ||
2317 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2318 | { | |
323e0a4a | 2319 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2320 | lowerbound = upperbound = 0; |
2321 | } | |
2322 | ||
3cb382c9 | 2323 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2324 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2325 | lim_warning (_("packed array index %ld out of bounds"), |
2326 | (long) idx); | |
4c4b4cd2 PH |
2327 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2328 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2329 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2330 | } |
14f9c5c9 AS |
2331 | } |
2332 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2333 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2334 | |
2335 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2336 | bits, elt_type); |
14f9c5c9 AS |
2337 | return v; |
2338 | } | |
2339 | ||
4c4b4cd2 | 2340 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2341 | |
2342 | static int | |
d2e4a39e | 2343 | has_negatives (struct type *type) |
14f9c5c9 | 2344 | { |
d2e4a39e AS |
2345 | switch (TYPE_CODE (type)) |
2346 | { | |
2347 | default: | |
2348 | return 0; | |
2349 | case TYPE_CODE_INT: | |
2350 | return !TYPE_UNSIGNED (type); | |
2351 | case TYPE_CODE_RANGE: | |
4e962e74 | 2352 | return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0; |
d2e4a39e | 2353 | } |
14f9c5c9 | 2354 | } |
d2e4a39e | 2355 | |
f93fca70 | 2356 | /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET, |
5b639dea | 2357 | unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of |
f93fca70 | 2358 | the unpacked buffer. |
14f9c5c9 | 2359 | |
5b639dea JB |
2360 | The size of the unpacked buffer (UNPACKED_LEN) is expected to be large |
2361 | enough to contain at least BIT_OFFSET bits. If not, an error is raised. | |
2362 | ||
f93fca70 JB |
2363 | IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode, |
2364 | zero otherwise. | |
14f9c5c9 | 2365 | |
f93fca70 | 2366 | IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type. |
a1c95e6b | 2367 | |
f93fca70 JB |
2368 | IS_SCALAR is nonzero if the data corresponds to a signed type. */ |
2369 | ||
2370 | static void | |
2371 | ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size, | |
2372 | gdb_byte *unpacked, int unpacked_len, | |
2373 | int is_big_endian, int is_signed_type, | |
2374 | int is_scalar) | |
2375 | { | |
a1c95e6b JB |
2376 | int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; |
2377 | int src_idx; /* Index into the source area */ | |
2378 | int src_bytes_left; /* Number of source bytes left to process. */ | |
2379 | int srcBitsLeft; /* Number of source bits left to move */ | |
2380 | int unusedLS; /* Number of bits in next significant | |
2381 | byte of source that are unused */ | |
2382 | ||
a1c95e6b JB |
2383 | int unpacked_idx; /* Index into the unpacked buffer */ |
2384 | int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */ | |
2385 | ||
4c4b4cd2 | 2386 | unsigned long accum; /* Staging area for bits being transferred */ |
a1c95e6b | 2387 | int accumSize; /* Number of meaningful bits in accum */ |
14f9c5c9 | 2388 | unsigned char sign; |
a1c95e6b | 2389 | |
4c4b4cd2 PH |
2390 | /* Transmit bytes from least to most significant; delta is the direction |
2391 | the indices move. */ | |
f93fca70 | 2392 | int delta = is_big_endian ? -1 : 1; |
14f9c5c9 | 2393 | |
5b639dea JB |
2394 | /* Make sure that unpacked is large enough to receive the BIT_SIZE |
2395 | bits from SRC. .*/ | |
2396 | if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len) | |
2397 | error (_("Cannot unpack %d bits into buffer of %d bytes"), | |
2398 | bit_size, unpacked_len); | |
2399 | ||
14f9c5c9 | 2400 | srcBitsLeft = bit_size; |
086ca51f | 2401 | src_bytes_left = src_len; |
f93fca70 | 2402 | unpacked_bytes_left = unpacked_len; |
14f9c5c9 | 2403 | sign = 0; |
f93fca70 JB |
2404 | |
2405 | if (is_big_endian) | |
14f9c5c9 | 2406 | { |
086ca51f | 2407 | src_idx = src_len - 1; |
f93fca70 JB |
2408 | if (is_signed_type |
2409 | && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2410 | sign = ~0; |
d2e4a39e AS |
2411 | |
2412 | unusedLS = | |
4c4b4cd2 PH |
2413 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2414 | % HOST_CHAR_BIT; | |
14f9c5c9 | 2415 | |
f93fca70 JB |
2416 | if (is_scalar) |
2417 | { | |
2418 | accumSize = 0; | |
2419 | unpacked_idx = unpacked_len - 1; | |
2420 | } | |
2421 | else | |
2422 | { | |
4c4b4cd2 PH |
2423 | /* Non-scalar values must be aligned at a byte boundary... */ |
2424 | accumSize = | |
2425 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2426 | /* ... And are placed at the beginning (most-significant) bytes | |
2427 | of the target. */ | |
086ca51f JB |
2428 | unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
2429 | unpacked_bytes_left = unpacked_idx + 1; | |
f93fca70 | 2430 | } |
14f9c5c9 | 2431 | } |
d2e4a39e | 2432 | else |
14f9c5c9 AS |
2433 | { |
2434 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2435 | ||
086ca51f | 2436 | src_idx = unpacked_idx = 0; |
14f9c5c9 AS |
2437 | unusedLS = bit_offset; |
2438 | accumSize = 0; | |
2439 | ||
f93fca70 | 2440 | if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2441 | sign = ~0; |
14f9c5c9 | 2442 | } |
d2e4a39e | 2443 | |
14f9c5c9 | 2444 | accum = 0; |
086ca51f | 2445 | while (src_bytes_left > 0) |
14f9c5c9 AS |
2446 | { |
2447 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2448 | part of the value. */ |
d2e4a39e | 2449 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2450 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2451 | 1; | |
2452 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2453 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2454 | |
d2e4a39e | 2455 | accum |= |
086ca51f | 2456 | (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2457 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2458 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 | 2459 | { |
db297a65 | 2460 | unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT); |
4c4b4cd2 PH |
2461 | accumSize -= HOST_CHAR_BIT; |
2462 | accum >>= HOST_CHAR_BIT; | |
086ca51f JB |
2463 | unpacked_bytes_left -= 1; |
2464 | unpacked_idx += delta; | |
4c4b4cd2 | 2465 | } |
14f9c5c9 AS |
2466 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2467 | unusedLS = 0; | |
086ca51f JB |
2468 | src_bytes_left -= 1; |
2469 | src_idx += delta; | |
14f9c5c9 | 2470 | } |
086ca51f | 2471 | while (unpacked_bytes_left > 0) |
14f9c5c9 AS |
2472 | { |
2473 | accum |= sign << accumSize; | |
db297a65 | 2474 | unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT); |
14f9c5c9 | 2475 | accumSize -= HOST_CHAR_BIT; |
9cd4d857 JB |
2476 | if (accumSize < 0) |
2477 | accumSize = 0; | |
14f9c5c9 | 2478 | accum >>= HOST_CHAR_BIT; |
086ca51f JB |
2479 | unpacked_bytes_left -= 1; |
2480 | unpacked_idx += delta; | |
14f9c5c9 | 2481 | } |
f93fca70 JB |
2482 | } |
2483 | ||
2484 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2485 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2486 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
2487 | assigning through the result will set the field fetched from. | |
2488 | VALADDR is ignored unless OBJ is NULL, in which case, | |
2489 | VALADDR+OFFSET must address the start of storage containing the | |
2490 | packed value. The value returned in this case is never an lval. | |
2491 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
2492 | ||
2493 | struct value * | |
2494 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, | |
2495 | long offset, int bit_offset, int bit_size, | |
2496 | struct type *type) | |
2497 | { | |
2498 | struct value *v; | |
bfb1c796 | 2499 | const gdb_byte *src; /* First byte containing data to unpack */ |
f93fca70 | 2500 | gdb_byte *unpacked; |
220475ed | 2501 | const int is_scalar = is_scalar_type (type); |
d5a22e77 | 2502 | const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG; |
d5722aa2 | 2503 | gdb::byte_vector staging; |
f93fca70 JB |
2504 | |
2505 | type = ada_check_typedef (type); | |
2506 | ||
d0a9e810 | 2507 | if (obj == NULL) |
bfb1c796 | 2508 | src = valaddr + offset; |
d0a9e810 | 2509 | else |
bfb1c796 | 2510 | src = value_contents (obj) + offset; |
d0a9e810 JB |
2511 | |
2512 | if (is_dynamic_type (type)) | |
2513 | { | |
2514 | /* The length of TYPE might by dynamic, so we need to resolve | |
2515 | TYPE in order to know its actual size, which we then use | |
2516 | to create the contents buffer of the value we return. | |
2517 | The difficulty is that the data containing our object is | |
2518 | packed, and therefore maybe not at a byte boundary. So, what | |
2519 | we do, is unpack the data into a byte-aligned buffer, and then | |
2520 | use that buffer as our object's value for resolving the type. */ | |
d5722aa2 PA |
2521 | int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
2522 | staging.resize (staging_len); | |
d0a9e810 JB |
2523 | |
2524 | ada_unpack_from_contents (src, bit_offset, bit_size, | |
d5722aa2 | 2525 | staging.data (), staging.size (), |
d0a9e810 JB |
2526 | is_big_endian, has_negatives (type), |
2527 | is_scalar); | |
d5722aa2 | 2528 | type = resolve_dynamic_type (type, staging.data (), 0); |
0cafa88c JB |
2529 | if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT) |
2530 | { | |
2531 | /* This happens when the length of the object is dynamic, | |
2532 | and is actually smaller than the space reserved for it. | |
2533 | For instance, in an array of variant records, the bit_size | |
2534 | we're given is the array stride, which is constant and | |
2535 | normally equal to the maximum size of its element. | |
2536 | But, in reality, each element only actually spans a portion | |
2537 | of that stride. */ | |
2538 | bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT; | |
2539 | } | |
d0a9e810 JB |
2540 | } |
2541 | ||
f93fca70 JB |
2542 | if (obj == NULL) |
2543 | { | |
2544 | v = allocate_value (type); | |
bfb1c796 | 2545 | src = valaddr + offset; |
f93fca70 JB |
2546 | } |
2547 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) | |
2548 | { | |
0cafa88c | 2549 | int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; |
bfb1c796 | 2550 | gdb_byte *buf; |
0cafa88c | 2551 | |
f93fca70 | 2552 | v = value_at (type, value_address (obj) + offset); |
bfb1c796 PA |
2553 | buf = (gdb_byte *) alloca (src_len); |
2554 | read_memory (value_address (v), buf, src_len); | |
2555 | src = buf; | |
f93fca70 JB |
2556 | } |
2557 | else | |
2558 | { | |
2559 | v = allocate_value (type); | |
bfb1c796 | 2560 | src = value_contents (obj) + offset; |
f93fca70 JB |
2561 | } |
2562 | ||
2563 | if (obj != NULL) | |
2564 | { | |
2565 | long new_offset = offset; | |
2566 | ||
2567 | set_value_component_location (v, obj); | |
2568 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); | |
2569 | set_value_bitsize (v, bit_size); | |
2570 | if (value_bitpos (v) >= HOST_CHAR_BIT) | |
2571 | { | |
2572 | ++new_offset; | |
2573 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); | |
2574 | } | |
2575 | set_value_offset (v, new_offset); | |
2576 | ||
2577 | /* Also set the parent value. This is needed when trying to | |
2578 | assign a new value (in inferior memory). */ | |
2579 | set_value_parent (v, obj); | |
2580 | } | |
2581 | else | |
2582 | set_value_bitsize (v, bit_size); | |
bfb1c796 | 2583 | unpacked = value_contents_writeable (v); |
f93fca70 JB |
2584 | |
2585 | if (bit_size == 0) | |
2586 | { | |
2587 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2588 | return v; | |
2589 | } | |
2590 | ||
d5722aa2 | 2591 | if (staging.size () == TYPE_LENGTH (type)) |
f93fca70 | 2592 | { |
d0a9e810 JB |
2593 | /* Small short-cut: If we've unpacked the data into a buffer |
2594 | of the same size as TYPE's length, then we can reuse that, | |
2595 | instead of doing the unpacking again. */ | |
d5722aa2 | 2596 | memcpy (unpacked, staging.data (), staging.size ()); |
f93fca70 | 2597 | } |
d0a9e810 JB |
2598 | else |
2599 | ada_unpack_from_contents (src, bit_offset, bit_size, | |
2600 | unpacked, TYPE_LENGTH (type), | |
2601 | is_big_endian, has_negatives (type), is_scalar); | |
f93fca70 | 2602 | |
14f9c5c9 AS |
2603 | return v; |
2604 | } | |
d2e4a39e | 2605 | |
14f9c5c9 AS |
2606 | /* Store the contents of FROMVAL into the location of TOVAL. |
2607 | Return a new value with the location of TOVAL and contents of | |
2608 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2609 | floating-point or non-scalar types. */ |
14f9c5c9 | 2610 | |
d2e4a39e AS |
2611 | static struct value * |
2612 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2613 | { |
df407dfe AC |
2614 | struct type *type = value_type (toval); |
2615 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2616 | |
52ce6436 PH |
2617 | toval = ada_coerce_ref (toval); |
2618 | fromval = ada_coerce_ref (fromval); | |
2619 | ||
2620 | if (ada_is_direct_array_type (value_type (toval))) | |
2621 | toval = ada_coerce_to_simple_array (toval); | |
2622 | if (ada_is_direct_array_type (value_type (fromval))) | |
2623 | fromval = ada_coerce_to_simple_array (fromval); | |
2624 | ||
88e3b34b | 2625 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2626 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2627 | |
d2e4a39e | 2628 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2629 | && bits > 0 |
d2e4a39e | 2630 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2631 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2632 | { |
df407dfe AC |
2633 | int len = (value_bitpos (toval) |
2634 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2635 | int from_size; |
224c3ddb | 2636 | gdb_byte *buffer = (gdb_byte *) alloca (len); |
d2e4a39e | 2637 | struct value *val; |
42ae5230 | 2638 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2639 | |
2640 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2641 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2642 | |
52ce6436 | 2643 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2644 | from_size = value_bitsize (fromval); |
2645 | if (from_size == 0) | |
2646 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
d48e62f4 | 2647 | |
d5a22e77 | 2648 | const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG; |
d48e62f4 TT |
2649 | ULONGEST from_offset = 0; |
2650 | if (is_big_endian && is_scalar_type (value_type (fromval))) | |
2651 | from_offset = from_size - bits; | |
2652 | copy_bitwise (buffer, value_bitpos (toval), | |
2653 | value_contents (fromval), from_offset, | |
2654 | bits, is_big_endian); | |
972daa01 | 2655 | write_memory_with_notification (to_addr, buffer, len); |
8cebebb9 | 2656 | |
14f9c5c9 | 2657 | val = value_copy (toval); |
0fd88904 | 2658 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2659 | TYPE_LENGTH (type)); |
04624583 | 2660 | deprecated_set_value_type (val, type); |
d2e4a39e | 2661 | |
14f9c5c9 AS |
2662 | return val; |
2663 | } | |
2664 | ||
2665 | return value_assign (toval, fromval); | |
2666 | } | |
2667 | ||
2668 | ||
7c512744 JB |
2669 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2670 | CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2671 | CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2672 | COMPONENT, and not the inferior's memory. The current contents | |
2673 | of COMPONENT are ignored. | |
2674 | ||
2675 | Although not part of the initial design, this function also works | |
2676 | when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER | |
2677 | had a null address, and COMPONENT had an address which is equal to | |
2678 | its offset inside CONTAINER. */ | |
2679 | ||
52ce6436 PH |
2680 | static void |
2681 | value_assign_to_component (struct value *container, struct value *component, | |
2682 | struct value *val) | |
2683 | { | |
2684 | LONGEST offset_in_container = | |
42ae5230 | 2685 | (LONGEST) (value_address (component) - value_address (container)); |
7c512744 | 2686 | int bit_offset_in_container = |
52ce6436 PH |
2687 | value_bitpos (component) - value_bitpos (container); |
2688 | int bits; | |
7c512744 | 2689 | |
52ce6436 PH |
2690 | val = value_cast (value_type (component), val); |
2691 | ||
2692 | if (value_bitsize (component) == 0) | |
2693 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2694 | else | |
2695 | bits = value_bitsize (component); | |
2696 | ||
d5a22e77 | 2697 | if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG) |
2a62dfa9 JB |
2698 | { |
2699 | int src_offset; | |
2700 | ||
2701 | if (is_scalar_type (check_typedef (value_type (component)))) | |
2702 | src_offset | |
2703 | = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits; | |
2704 | else | |
2705 | src_offset = 0; | |
a99bc3d2 JB |
2706 | copy_bitwise (value_contents_writeable (container) + offset_in_container, |
2707 | value_bitpos (container) + bit_offset_in_container, | |
2708 | value_contents (val), src_offset, bits, 1); | |
2a62dfa9 | 2709 | } |
52ce6436 | 2710 | else |
a99bc3d2 JB |
2711 | copy_bitwise (value_contents_writeable (container) + offset_in_container, |
2712 | value_bitpos (container) + bit_offset_in_container, | |
2713 | value_contents (val), 0, bits, 0); | |
7c512744 JB |
2714 | } |
2715 | ||
736ade86 XR |
2716 | /* Determine if TYPE is an access to an unconstrained array. */ |
2717 | ||
d91e9ea8 | 2718 | bool |
736ade86 XR |
2719 | ada_is_access_to_unconstrained_array (struct type *type) |
2720 | { | |
2721 | return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
2722 | && is_thick_pntr (ada_typedef_target_type (type))); | |
2723 | } | |
2724 | ||
4c4b4cd2 PH |
2725 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2726 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2727 | thereto. */ |
2728 | ||
d2e4a39e AS |
2729 | struct value * |
2730 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2731 | { |
2732 | int k; | |
d2e4a39e AS |
2733 | struct value *elt; |
2734 | struct type *elt_type; | |
14f9c5c9 AS |
2735 | |
2736 | elt = ada_coerce_to_simple_array (arr); | |
2737 | ||
df407dfe | 2738 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2739 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2740 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2741 | return value_subscript_packed (elt, arity, ind); | |
2742 | ||
2743 | for (k = 0; k < arity; k += 1) | |
2744 | { | |
b9c50e9a XR |
2745 | struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type); |
2746 | ||
14f9c5c9 | 2747 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) |
323e0a4a | 2748 | error (_("too many subscripts (%d expected)"), k); |
b9c50e9a | 2749 | |
2497b498 | 2750 | elt = value_subscript (elt, pos_atr (ind[k])); |
b9c50e9a XR |
2751 | |
2752 | if (ada_is_access_to_unconstrained_array (saved_elt_type) | |
2753 | && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF) | |
2754 | { | |
2755 | /* The element is a typedef to an unconstrained array, | |
2756 | except that the value_subscript call stripped the | |
2757 | typedef layer. The typedef layer is GNAT's way to | |
2758 | specify that the element is, at the source level, an | |
2759 | access to the unconstrained array, rather than the | |
2760 | unconstrained array. So, we need to restore that | |
2761 | typedef layer, which we can do by forcing the element's | |
2762 | type back to its original type. Otherwise, the returned | |
2763 | value is going to be printed as the array, rather | |
2764 | than as an access. Another symptom of the same issue | |
2765 | would be that an expression trying to dereference the | |
2766 | element would also be improperly rejected. */ | |
2767 | deprecated_set_value_type (elt, saved_elt_type); | |
2768 | } | |
2769 | ||
2770 | elt_type = ada_check_typedef (value_type (elt)); | |
14f9c5c9 | 2771 | } |
b9c50e9a | 2772 | |
14f9c5c9 AS |
2773 | return elt; |
2774 | } | |
2775 | ||
deede10c JB |
2776 | /* Assuming ARR is a pointer to a GDB array, the value of the element |
2777 | of *ARR at the ARITY indices given in IND. | |
919e6dbe PMR |
2778 | Does not read the entire array into memory. |
2779 | ||
2780 | Note: Unlike what one would expect, this function is used instead of | |
2781 | ada_value_subscript for basically all non-packed array types. The reason | |
2782 | for this is that a side effect of doing our own pointer arithmetics instead | |
2783 | of relying on value_subscript is that there is no implicit typedef peeling. | |
2784 | This is important for arrays of array accesses, where it allows us to | |
2785 | preserve the fact that the array's element is an array access, where the | |
2786 | access part os encoded in a typedef layer. */ | |
14f9c5c9 | 2787 | |
2c0b251b | 2788 | static struct value * |
deede10c | 2789 | ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind) |
14f9c5c9 AS |
2790 | { |
2791 | int k; | |
919e6dbe | 2792 | struct value *array_ind = ada_value_ind (arr); |
deede10c | 2793 | struct type *type |
919e6dbe PMR |
2794 | = check_typedef (value_enclosing_type (array_ind)); |
2795 | ||
2796 | if (TYPE_CODE (type) == TYPE_CODE_ARRAY | |
2797 | && TYPE_FIELD_BITSIZE (type, 0) > 0) | |
2798 | return value_subscript_packed (array_ind, arity, ind); | |
14f9c5c9 AS |
2799 | |
2800 | for (k = 0; k < arity; k += 1) | |
2801 | { | |
2802 | LONGEST lwb, upb; | |
aa715135 | 2803 | struct value *lwb_value; |
14f9c5c9 AS |
2804 | |
2805 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2806 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2807 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2808 | value_copy (arr)); |
14f9c5c9 | 2809 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
aa715135 JG |
2810 | lwb_value = value_from_longest (value_type(ind[k]), lwb); |
2811 | arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value)); | |
14f9c5c9 AS |
2812 | type = TYPE_TARGET_TYPE (type); |
2813 | } | |
2814 | ||
2815 | return value_ind (arr); | |
2816 | } | |
2817 | ||
0b5d8877 | 2818 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
aa715135 JG |
2819 | actual type of ARRAY_PTR is ignored), returns the Ada slice of |
2820 | HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of | |
2821 | this array is LOW, as per Ada rules. */ | |
0b5d8877 | 2822 | static struct value * |
f5938064 JG |
2823 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2824 | int low, int high) | |
0b5d8877 | 2825 | { |
b0dd7688 | 2826 | struct type *type0 = ada_check_typedef (type); |
aa715135 | 2827 | struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)); |
0c9c3474 | 2828 | struct type *index_type |
aa715135 | 2829 | = create_static_range_type (NULL, base_index_type, low, high); |
9fe561ab JB |
2830 | struct type *slice_type = create_array_type_with_stride |
2831 | (NULL, TYPE_TARGET_TYPE (type0), index_type, | |
2832 | get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0), | |
2833 | TYPE_FIELD_BITSIZE (type0, 0)); | |
aa715135 JG |
2834 | int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)); |
2835 | LONGEST base_low_pos, low_pos; | |
2836 | CORE_ADDR base; | |
2837 | ||
2838 | if (!discrete_position (base_index_type, low, &low_pos) | |
2839 | || !discrete_position (base_index_type, base_low, &base_low_pos)) | |
2840 | { | |
2841 | warning (_("unable to get positions in slice, use bounds instead")); | |
2842 | low_pos = low; | |
2843 | base_low_pos = base_low; | |
2844 | } | |
5b4ee69b | 2845 | |
aa715135 JG |
2846 | base = value_as_address (array_ptr) |
2847 | + ((low_pos - base_low_pos) | |
2848 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
f5938064 | 2849 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2850 | } |
2851 | ||
2852 | ||
2853 | static struct value * | |
2854 | ada_value_slice (struct value *array, int low, int high) | |
2855 | { | |
b0dd7688 | 2856 | struct type *type = ada_check_typedef (value_type (array)); |
aa715135 | 2857 | struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
0c9c3474 SA |
2858 | struct type *index_type |
2859 | = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); | |
9fe561ab JB |
2860 | struct type *slice_type = create_array_type_with_stride |
2861 | (NULL, TYPE_TARGET_TYPE (type), index_type, | |
2862 | get_dyn_prop (DYN_PROP_BYTE_STRIDE, type), | |
2863 | TYPE_FIELD_BITSIZE (type, 0)); | |
aa715135 | 2864 | LONGEST low_pos, high_pos; |
5b4ee69b | 2865 | |
aa715135 JG |
2866 | if (!discrete_position (base_index_type, low, &low_pos) |
2867 | || !discrete_position (base_index_type, high, &high_pos)) | |
2868 | { | |
2869 | warning (_("unable to get positions in slice, use bounds instead")); | |
2870 | low_pos = low; | |
2871 | high_pos = high; | |
2872 | } | |
2873 | ||
2874 | return value_cast (slice_type, | |
2875 | value_slice (array, low, high_pos - low_pos + 1)); | |
0b5d8877 PH |
2876 | } |
2877 | ||
14f9c5c9 AS |
2878 | /* If type is a record type in the form of a standard GNAT array |
2879 | descriptor, returns the number of dimensions for type. If arr is a | |
2880 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2881 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2882 | |
2883 | int | |
d2e4a39e | 2884 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2885 | { |
2886 | int arity; | |
2887 | ||
2888 | if (type == NULL) | |
2889 | return 0; | |
2890 | ||
2891 | type = desc_base_type (type); | |
2892 | ||
2893 | arity = 0; | |
d2e4a39e | 2894 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2895 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2896 | else |
2897 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2898 | { |
4c4b4cd2 | 2899 | arity += 1; |
61ee279c | 2900 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2901 | } |
d2e4a39e | 2902 | |
14f9c5c9 AS |
2903 | return arity; |
2904 | } | |
2905 | ||
2906 | /* If TYPE is a record type in the form of a standard GNAT array | |
2907 | descriptor or a simple array type, returns the element type for | |
2908 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2909 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2910 | |
d2e4a39e AS |
2911 | struct type * |
2912 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2913 | { |
2914 | type = desc_base_type (type); | |
2915 | ||
d2e4a39e | 2916 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2917 | { |
2918 | int k; | |
d2e4a39e | 2919 | struct type *p_array_type; |
14f9c5c9 | 2920 | |
556bdfd4 | 2921 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2922 | |
2923 | k = ada_array_arity (type); | |
2924 | if (k == 0) | |
4c4b4cd2 | 2925 | return NULL; |
d2e4a39e | 2926 | |
4c4b4cd2 | 2927 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2928 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2929 | k = nindices; |
d2e4a39e | 2930 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2931 | { |
61ee279c | 2932 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2933 | k -= 1; |
2934 | } | |
14f9c5c9 AS |
2935 | return p_array_type; |
2936 | } | |
2937 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2938 | { | |
2939 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2940 | { |
2941 | type = TYPE_TARGET_TYPE (type); | |
2942 | nindices -= 1; | |
2943 | } | |
14f9c5c9 AS |
2944 | return type; |
2945 | } | |
2946 | ||
2947 | return NULL; | |
2948 | } | |
2949 | ||
4c4b4cd2 | 2950 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
2951 | Does not examine memory. Throws an error if N is invalid or TYPE |
2952 | is not an array type. NAME is the name of the Ada attribute being | |
2953 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
2954 | the error message. */ | |
14f9c5c9 | 2955 | |
1eea4ebd UW |
2956 | static struct type * |
2957 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2958 | { |
4c4b4cd2 PH |
2959 | struct type *result_type; |
2960 | ||
14f9c5c9 AS |
2961 | type = desc_base_type (type); |
2962 | ||
1eea4ebd UW |
2963 | if (n < 0 || n > ada_array_arity (type)) |
2964 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2965 | |
4c4b4cd2 | 2966 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2967 | { |
2968 | int i; | |
2969 | ||
2970 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2971 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2972 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2973 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2974 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2975 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2976 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2977 | result_type = NULL; | |
14f9c5c9 | 2978 | } |
d2e4a39e | 2979 | else |
1eea4ebd UW |
2980 | { |
2981 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2982 | if (result_type == NULL) | |
2983 | error (_("attempt to take bound of something that is not an array")); | |
2984 | } | |
2985 | ||
2986 | return result_type; | |
14f9c5c9 AS |
2987 | } |
2988 | ||
2989 | /* Given that arr is an array type, returns the lower bound of the | |
2990 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2991 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2992 | array-descriptor type. It works for other arrays with bounds supplied |
2993 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2994 | |
abb68b3e | 2995 | static LONGEST |
fb5e3d5c | 2996 | ada_array_bound_from_type (struct type *arr_type, int n, int which) |
14f9c5c9 | 2997 | { |
8a48ac95 | 2998 | struct type *type, *index_type_desc, *index_type; |
1ce677a4 | 2999 | int i; |
262452ec JK |
3000 | |
3001 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 3002 | |
ad82864c JB |
3003 | if (ada_is_constrained_packed_array_type (arr_type)) |
3004 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 3005 | |
4c4b4cd2 | 3006 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 3007 | return (LONGEST) - which; |
14f9c5c9 AS |
3008 | |
3009 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
3010 | type = TYPE_TARGET_TYPE (arr_type); | |
3011 | else | |
3012 | type = arr_type; | |
3013 | ||
bafffb51 JB |
3014 | if (TYPE_FIXED_INSTANCE (type)) |
3015 | { | |
3016 | /* The array has already been fixed, so we do not need to | |
3017 | check the parallel ___XA type again. That encoding has | |
3018 | already been applied, so ignore it now. */ | |
3019 | index_type_desc = NULL; | |
3020 | } | |
3021 | else | |
3022 | { | |
3023 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
3024 | ada_fixup_array_indexes_type (index_type_desc); | |
3025 | } | |
3026 | ||
262452ec | 3027 | if (index_type_desc != NULL) |
28c85d6c JB |
3028 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
3029 | NULL); | |
262452ec | 3030 | else |
8a48ac95 JB |
3031 | { |
3032 | struct type *elt_type = check_typedef (type); | |
3033 | ||
3034 | for (i = 1; i < n; i++) | |
3035 | elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type)); | |
3036 | ||
3037 | index_type = TYPE_INDEX_TYPE (elt_type); | |
3038 | } | |
262452ec | 3039 | |
43bbcdc2 PH |
3040 | return |
3041 | (LONGEST) (which == 0 | |
3042 | ? ada_discrete_type_low_bound (index_type) | |
3043 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
3044 | } |
3045 | ||
3046 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
3047 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
3048 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 3049 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 3050 | |
1eea4ebd | 3051 | static LONGEST |
4dc81987 | 3052 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 3053 | { |
eb479039 JB |
3054 | struct type *arr_type; |
3055 | ||
3056 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
3057 | arr = value_ind (arr); | |
3058 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 3059 | |
ad82864c JB |
3060 | if (ada_is_constrained_packed_array_type (arr_type)) |
3061 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 3062 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 3063 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 3064 | else |
1eea4ebd | 3065 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
3066 | } |
3067 | ||
3068 | /* Given that arr is an array value, returns the length of the | |
3069 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
3070 | supplied by run-time quantities other than discriminants. |
3071 | Does not work for arrays indexed by enumeration types with representation | |
3072 | clauses at the moment. */ | |
14f9c5c9 | 3073 | |
1eea4ebd | 3074 | static LONGEST |
d2e4a39e | 3075 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 3076 | { |
aa715135 JG |
3077 | struct type *arr_type, *index_type; |
3078 | int low, high; | |
eb479039 JB |
3079 | |
3080 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
3081 | arr = value_ind (arr); | |
3082 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 3083 | |
ad82864c JB |
3084 | if (ada_is_constrained_packed_array_type (arr_type)) |
3085 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 3086 | |
4c4b4cd2 | 3087 | if (ada_is_simple_array_type (arr_type)) |
aa715135 JG |
3088 | { |
3089 | low = ada_array_bound_from_type (arr_type, n, 0); | |
3090 | high = ada_array_bound_from_type (arr_type, n, 1); | |
3091 | } | |
14f9c5c9 | 3092 | else |
aa715135 JG |
3093 | { |
3094 | low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0)); | |
3095 | high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1)); | |
3096 | } | |
3097 | ||
f168693b | 3098 | arr_type = check_typedef (arr_type); |
7150d33c | 3099 | index_type = ada_index_type (arr_type, n, "length"); |
aa715135 JG |
3100 | if (index_type != NULL) |
3101 | { | |
3102 | struct type *base_type; | |
3103 | if (TYPE_CODE (index_type) == TYPE_CODE_RANGE) | |
3104 | base_type = TYPE_TARGET_TYPE (index_type); | |
3105 | else | |
3106 | base_type = index_type; | |
3107 | ||
3108 | low = pos_atr (value_from_longest (base_type, low)); | |
3109 | high = pos_atr (value_from_longest (base_type, high)); | |
3110 | } | |
3111 | return high - low + 1; | |
4c4b4cd2 PH |
3112 | } |
3113 | ||
bff8c71f TT |
3114 | /* An array whose type is that of ARR_TYPE (an array type), with |
3115 | bounds LOW to HIGH, but whose contents are unimportant. If HIGH is | |
3116 | less than LOW, then LOW-1 is used. */ | |
4c4b4cd2 PH |
3117 | |
3118 | static struct value * | |
bff8c71f | 3119 | empty_array (struct type *arr_type, int low, int high) |
4c4b4cd2 | 3120 | { |
b0dd7688 | 3121 | struct type *arr_type0 = ada_check_typedef (arr_type); |
0c9c3474 SA |
3122 | struct type *index_type |
3123 | = create_static_range_type | |
bff8c71f TT |
3124 | (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, |
3125 | high < low ? low - 1 : high); | |
b0dd7688 | 3126 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 3127 | |
0b5d8877 | 3128 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 3129 | } |
14f9c5c9 | 3130 | \f |
d2e4a39e | 3131 | |
4c4b4cd2 | 3132 | /* Name resolution */ |
14f9c5c9 | 3133 | |
4c4b4cd2 PH |
3134 | /* The "decoded" name for the user-definable Ada operator corresponding |
3135 | to OP. */ | |
14f9c5c9 | 3136 | |
d2e4a39e | 3137 | static const char * |
4c4b4cd2 | 3138 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
3139 | { |
3140 | int i; | |
3141 | ||
4c4b4cd2 | 3142 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
3143 | { |
3144 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 3145 | return ada_opname_table[i].decoded; |
14f9c5c9 | 3146 | } |
323e0a4a | 3147 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
3148 | } |
3149 | ||
de93309a SM |
3150 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3151 | in a listing of choices during disambiguation (see sort_choices, below). | |
3152 | The idea is that overloadings of a subprogram name from the | |
3153 | same package should sort in their source order. We settle for ordering | |
3154 | such symbols by their trailing number (__N or $N). */ | |
14f9c5c9 | 3155 | |
de93309a SM |
3156 | static int |
3157 | encoded_ordered_before (const char *N0, const char *N1) | |
14f9c5c9 | 3158 | { |
de93309a SM |
3159 | if (N1 == NULL) |
3160 | return 0; | |
3161 | else if (N0 == NULL) | |
3162 | return 1; | |
3163 | else | |
3164 | { | |
3165 | int k0, k1; | |
30b15541 | 3166 | |
de93309a SM |
3167 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
3168 | ; | |
3169 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) | |
3170 | ; | |
3171 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' | |
3172 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') | |
3173 | { | |
3174 | int n0, n1; | |
30b15541 | 3175 | |
de93309a SM |
3176 | n0 = k0; |
3177 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3178 | n0 -= 1; | |
3179 | n1 = k1; | |
3180 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3181 | n1 -= 1; | |
3182 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3183 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3184 | } | |
3185 | return (strcmp (N0, N1) < 0); | |
3186 | } | |
14f9c5c9 AS |
3187 | } |
3188 | ||
de93309a SM |
3189 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3190 | encoded names. */ | |
14f9c5c9 | 3191 | |
de93309a SM |
3192 | static void |
3193 | sort_choices (struct block_symbol syms[], int nsyms) | |
14f9c5c9 | 3194 | { |
14f9c5c9 | 3195 | int i; |
14f9c5c9 | 3196 | |
de93309a | 3197 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3198 | { |
de93309a SM |
3199 | struct block_symbol sym = syms[i]; |
3200 | int j; | |
3201 | ||
3202 | for (j = i - 1; j >= 0; j -= 1) | |
4c4b4cd2 | 3203 | { |
987012b8 CB |
3204 | if (encoded_ordered_before (syms[j].symbol->linkage_name (), |
3205 | sym.symbol->linkage_name ())) | |
de93309a SM |
3206 | break; |
3207 | syms[j + 1] = syms[j]; | |
4c4b4cd2 | 3208 | } |
de93309a SM |
3209 | syms[j + 1] = sym; |
3210 | } | |
3211 | } | |
14f9c5c9 | 3212 | |
de93309a SM |
3213 | /* Whether GDB should display formals and return types for functions in the |
3214 | overloads selection menu. */ | |
3215 | static bool print_signatures = true; | |
4c4b4cd2 | 3216 | |
de93309a SM |
3217 | /* Print the signature for SYM on STREAM according to the FLAGS options. For |
3218 | all but functions, the signature is just the name of the symbol. For | |
3219 | functions, this is the name of the function, the list of types for formals | |
3220 | and the return type (if any). */ | |
4c4b4cd2 | 3221 | |
de93309a SM |
3222 | static void |
3223 | ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym, | |
3224 | const struct type_print_options *flags) | |
3225 | { | |
3226 | struct type *type = SYMBOL_TYPE (sym); | |
14f9c5c9 | 3227 | |
987012b8 | 3228 | fprintf_filtered (stream, "%s", sym->print_name ()); |
de93309a SM |
3229 | if (!print_signatures |
3230 | || type == NULL | |
3231 | || TYPE_CODE (type) != TYPE_CODE_FUNC) | |
3232 | return; | |
4c4b4cd2 | 3233 | |
de93309a SM |
3234 | if (TYPE_NFIELDS (type) > 0) |
3235 | { | |
3236 | int i; | |
14f9c5c9 | 3237 | |
de93309a SM |
3238 | fprintf_filtered (stream, " ("); |
3239 | for (i = 0; i < TYPE_NFIELDS (type); ++i) | |
3240 | { | |
3241 | if (i > 0) | |
3242 | fprintf_filtered (stream, "; "); | |
3243 | ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0, | |
3244 | flags); | |
3245 | } | |
3246 | fprintf_filtered (stream, ")"); | |
3247 | } | |
3248 | if (TYPE_TARGET_TYPE (type) != NULL | |
3249 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID) | |
3250 | { | |
3251 | fprintf_filtered (stream, " return "); | |
3252 | ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags); | |
3253 | } | |
3254 | } | |
14f9c5c9 | 3255 | |
de93309a SM |
3256 | /* Read and validate a set of numeric choices from the user in the |
3257 | range 0 .. N_CHOICES-1. Place the results in increasing | |
3258 | order in CHOICES[0 .. N-1], and return N. | |
14f9c5c9 | 3259 | |
de93309a SM |
3260 | The user types choices as a sequence of numbers on one line |
3261 | separated by blanks, encoding them as follows: | |
14f9c5c9 | 3262 | |
de93309a SM |
3263 | + A choice of 0 means to cancel the selection, throwing an error. |
3264 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. | |
3265 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
14f9c5c9 | 3266 | |
de93309a | 3267 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 | 3268 | |
de93309a SM |
3269 | ANNOTATION_SUFFIX, if present, is used to annotate the input |
3270 | prompts (for use with the -f switch). */ | |
14f9c5c9 | 3271 | |
de93309a SM |
3272 | static int |
3273 | get_selections (int *choices, int n_choices, int max_results, | |
3274 | int is_all_choice, const char *annotation_suffix) | |
3275 | { | |
992a7040 | 3276 | const char *args; |
de93309a SM |
3277 | const char *prompt; |
3278 | int n_chosen; | |
3279 | int first_choice = is_all_choice ? 2 : 1; | |
14f9c5c9 | 3280 | |
de93309a SM |
3281 | prompt = getenv ("PS2"); |
3282 | if (prompt == NULL) | |
3283 | prompt = "> "; | |
4c4b4cd2 | 3284 | |
de93309a | 3285 | args = command_line_input (prompt, annotation_suffix); |
4c4b4cd2 | 3286 | |
de93309a SM |
3287 | if (args == NULL) |
3288 | error_no_arg (_("one or more choice numbers")); | |
14f9c5c9 | 3289 | |
de93309a | 3290 | n_chosen = 0; |
4c4b4cd2 | 3291 | |
de93309a SM |
3292 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3293 | order, as given in args. Choices are validated. */ | |
3294 | while (1) | |
14f9c5c9 | 3295 | { |
de93309a SM |
3296 | char *args2; |
3297 | int choice, j; | |
76a01679 | 3298 | |
de93309a SM |
3299 | args = skip_spaces (args); |
3300 | if (*args == '\0' && n_chosen == 0) | |
3301 | error_no_arg (_("one or more choice numbers")); | |
3302 | else if (*args == '\0') | |
3303 | break; | |
76a01679 | 3304 | |
de93309a SM |
3305 | choice = strtol (args, &args2, 10); |
3306 | if (args == args2 || choice < 0 | |
3307 | || choice > n_choices + first_choice - 1) | |
3308 | error (_("Argument must be choice number")); | |
3309 | args = args2; | |
76a01679 | 3310 | |
de93309a SM |
3311 | if (choice == 0) |
3312 | error (_("cancelled")); | |
76a01679 | 3313 | |
de93309a SM |
3314 | if (choice < first_choice) |
3315 | { | |
3316 | n_chosen = n_choices; | |
3317 | for (j = 0; j < n_choices; j += 1) | |
3318 | choices[j] = j; | |
3319 | break; | |
76a01679 | 3320 | } |
de93309a | 3321 | choice -= first_choice; |
76a01679 | 3322 | |
de93309a | 3323 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
76a01679 | 3324 | { |
76a01679 | 3325 | } |
4c4b4cd2 | 3326 | |
de93309a | 3327 | if (j < 0 || choice != choices[j]) |
4c4b4cd2 | 3328 | { |
de93309a | 3329 | int k; |
4c4b4cd2 | 3330 | |
de93309a SM |
3331 | for (k = n_chosen - 1; k > j; k -= 1) |
3332 | choices[k + 1] = choices[k]; | |
3333 | choices[j + 1] = choice; | |
3334 | n_chosen += 1; | |
4c4b4cd2 | 3335 | } |
14f9c5c9 AS |
3336 | } |
3337 | ||
de93309a SM |
3338 | if (n_chosen > max_results) |
3339 | error (_("Select no more than %d of the above"), max_results); | |
3340 | ||
3341 | return n_chosen; | |
14f9c5c9 AS |
3342 | } |
3343 | ||
de93309a SM |
3344 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3345 | by asking the user (if necessary), returning the number selected, | |
3346 | and setting the first elements of SYMS items. Error if no symbols | |
3347 | selected. */ | |
3348 | ||
3349 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
3350 | to be re-integrated one of these days. */ | |
14f9c5c9 AS |
3351 | |
3352 | static int | |
de93309a | 3353 | user_select_syms (struct block_symbol *syms, int nsyms, int max_results) |
14f9c5c9 | 3354 | { |
de93309a SM |
3355 | int i; |
3356 | int *chosen = XALLOCAVEC (int , nsyms); | |
3357 | int n_chosen; | |
3358 | int first_choice = (max_results == 1) ? 1 : 2; | |
3359 | const char *select_mode = multiple_symbols_select_mode (); | |
14f9c5c9 | 3360 | |
de93309a SM |
3361 | if (max_results < 1) |
3362 | error (_("Request to select 0 symbols!")); | |
3363 | if (nsyms <= 1) | |
3364 | return nsyms; | |
14f9c5c9 | 3365 | |
de93309a SM |
3366 | if (select_mode == multiple_symbols_cancel) |
3367 | error (_("\ | |
3368 | canceled because the command is ambiguous\n\ | |
3369 | See set/show multiple-symbol.")); | |
14f9c5c9 | 3370 | |
de93309a SM |
3371 | /* If select_mode is "all", then return all possible symbols. |
3372 | Only do that if more than one symbol can be selected, of course. | |
3373 | Otherwise, display the menu as usual. */ | |
3374 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3375 | return nsyms; | |
14f9c5c9 | 3376 | |
de93309a SM |
3377 | printf_filtered (_("[0] cancel\n")); |
3378 | if (max_results > 1) | |
3379 | printf_filtered (_("[1] all\n")); | |
14f9c5c9 | 3380 | |
de93309a | 3381 | sort_choices (syms, nsyms); |
14f9c5c9 | 3382 | |
de93309a SM |
3383 | for (i = 0; i < nsyms; i += 1) |
3384 | { | |
3385 | if (syms[i].symbol == NULL) | |
3386 | continue; | |
14f9c5c9 | 3387 | |
de93309a SM |
3388 | if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK) |
3389 | { | |
3390 | struct symtab_and_line sal = | |
3391 | find_function_start_sal (syms[i].symbol, 1); | |
14f9c5c9 | 3392 | |
de93309a SM |
3393 | printf_filtered ("[%d] ", i + first_choice); |
3394 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3395 | &type_print_raw_options); | |
3396 | if (sal.symtab == NULL) | |
3397 | printf_filtered (_(" at %p[<no source file available>%p]:%d\n"), | |
3398 | metadata_style.style ().ptr (), nullptr, sal.line); | |
3399 | else | |
3400 | printf_filtered | |
3401 | (_(" at %ps:%d\n"), | |
3402 | styled_string (file_name_style.style (), | |
3403 | symtab_to_filename_for_display (sal.symtab)), | |
3404 | sal.line); | |
3405 | continue; | |
3406 | } | |
76a01679 JB |
3407 | else |
3408 | { | |
de93309a SM |
3409 | int is_enumeral = |
3410 | (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST | |
3411 | && SYMBOL_TYPE (syms[i].symbol) != NULL | |
3412 | && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM); | |
3413 | struct symtab *symtab = NULL; | |
4c4b4cd2 | 3414 | |
de93309a SM |
3415 | if (SYMBOL_OBJFILE_OWNED (syms[i].symbol)) |
3416 | symtab = symbol_symtab (syms[i].symbol); | |
3417 | ||
3418 | if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL) | |
3419 | { | |
3420 | printf_filtered ("[%d] ", i + first_choice); | |
3421 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3422 | &type_print_raw_options); | |
3423 | printf_filtered (_(" at %s:%d\n"), | |
3424 | symtab_to_filename_for_display (symtab), | |
3425 | SYMBOL_LINE (syms[i].symbol)); | |
3426 | } | |
3427 | else if (is_enumeral | |
3428 | && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL) | |
3429 | { | |
3430 | printf_filtered (("[%d] "), i + first_choice); | |
3431 | ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL, | |
3432 | gdb_stdout, -1, 0, &type_print_raw_options); | |
3433 | printf_filtered (_("'(%s) (enumeral)\n"), | |
987012b8 | 3434 | syms[i].symbol->print_name ()); |
de93309a SM |
3435 | } |
3436 | else | |
3437 | { | |
3438 | printf_filtered ("[%d] ", i + first_choice); | |
3439 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3440 | &type_print_raw_options); | |
3441 | ||
3442 | if (symtab != NULL) | |
3443 | printf_filtered (is_enumeral | |
3444 | ? _(" in %s (enumeral)\n") | |
3445 | : _(" at %s:?\n"), | |
3446 | symtab_to_filename_for_display (symtab)); | |
3447 | else | |
3448 | printf_filtered (is_enumeral | |
3449 | ? _(" (enumeral)\n") | |
3450 | : _(" at ?\n")); | |
3451 | } | |
76a01679 | 3452 | } |
14f9c5c9 | 3453 | } |
14f9c5c9 | 3454 | |
de93309a SM |
3455 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
3456 | "overload-choice"); | |
14f9c5c9 | 3457 | |
de93309a SM |
3458 | for (i = 0; i < n_chosen; i += 1) |
3459 | syms[i] = syms[chosen[i]]; | |
14f9c5c9 | 3460 | |
de93309a SM |
3461 | return n_chosen; |
3462 | } | |
14f9c5c9 | 3463 | |
de93309a SM |
3464 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
3465 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
3466 | undefined namespace) and converts operators that are | |
3467 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
3468 | non-null, it provides a preferred result type [at the moment, only | |
3469 | type void has any effect---causing procedures to be preferred over | |
3470 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
3471 | return type is preferred. May change (expand) *EXP. */ | |
14f9c5c9 | 3472 | |
de93309a SM |
3473 | static void |
3474 | resolve (expression_up *expp, int void_context_p, int parse_completion, | |
3475 | innermost_block_tracker *tracker) | |
3476 | { | |
3477 | struct type *context_type = NULL; | |
3478 | int pc = 0; | |
14f9c5c9 | 3479 | |
de93309a SM |
3480 | if (void_context_p) |
3481 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
14f9c5c9 | 3482 | |
de93309a SM |
3483 | resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker); |
3484 | } | |
4c4b4cd2 | 3485 | |
de93309a SM |
3486 | /* Resolve the operator of the subexpression beginning at |
3487 | position *POS of *EXPP. "Resolving" consists of replacing | |
3488 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
3489 | with their resolutions, replacing built-in operators with | |
3490 | function calls to user-defined operators, where appropriate, and, | |
3491 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
3492 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
3493 | are as in ada_resolve, above. */ | |
14f9c5c9 | 3494 | |
de93309a SM |
3495 | static struct value * |
3496 | resolve_subexp (expression_up *expp, int *pos, int deprocedure_p, | |
3497 | struct type *context_type, int parse_completion, | |
3498 | innermost_block_tracker *tracker) | |
14f9c5c9 | 3499 | { |
de93309a SM |
3500 | int pc = *pos; |
3501 | int i; | |
3502 | struct expression *exp; /* Convenience: == *expp. */ | |
3503 | enum exp_opcode op = (*expp)->elts[pc].opcode; | |
3504 | struct value **argvec; /* Vector of operand types (alloca'ed). */ | |
3505 | int nargs; /* Number of operands. */ | |
3506 | int oplen; | |
14f9c5c9 | 3507 | |
de93309a SM |
3508 | argvec = NULL; |
3509 | nargs = 0; | |
3510 | exp = expp->get (); | |
4c4b4cd2 | 3511 | |
de93309a SM |
3512 | /* Pass one: resolve operands, saving their types and updating *pos, |
3513 | if needed. */ | |
3514 | switch (op) | |
3515 | { | |
3516 | case OP_FUNCALL: | |
3517 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
3518 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) | |
3519 | *pos += 7; | |
3520 | else | |
3521 | { | |
3522 | *pos += 3; | |
3523 | resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker); | |
4c4b4cd2 | 3524 | } |
de93309a SM |
3525 | nargs = longest_to_int (exp->elts[pc + 1].longconst); |
3526 | break; | |
14f9c5c9 | 3527 | |
de93309a SM |
3528 | case UNOP_ADDR: |
3529 | *pos += 1; | |
3530 | resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker); | |
3531 | break; | |
3532 | ||
3533 | case UNOP_QUAL: | |
3534 | *pos += 3; | |
3535 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type), | |
3536 | parse_completion, tracker); | |
3537 | break; | |
3538 | ||
3539 | case OP_ATR_MODULUS: | |
3540 | case OP_ATR_SIZE: | |
3541 | case OP_ATR_TAG: | |
3542 | case OP_ATR_FIRST: | |
3543 | case OP_ATR_LAST: | |
3544 | case OP_ATR_LENGTH: | |
3545 | case OP_ATR_POS: | |
3546 | case OP_ATR_VAL: | |
3547 | case OP_ATR_MIN: | |
3548 | case OP_ATR_MAX: | |
3549 | case TERNOP_IN_RANGE: | |
3550 | case BINOP_IN_BOUNDS: | |
3551 | case UNOP_IN_RANGE: | |
3552 | case OP_AGGREGATE: | |
3553 | case OP_OTHERS: | |
3554 | case OP_CHOICES: | |
3555 | case OP_POSITIONAL: | |
3556 | case OP_DISCRETE_RANGE: | |
3557 | case OP_NAME: | |
3558 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
3559 | *pos += oplen; | |
3560 | break; | |
3561 | ||
3562 | case BINOP_ASSIGN: | |
3563 | { | |
3564 | struct value *arg1; | |
3565 | ||
3566 | *pos += 1; | |
3567 | arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker); | |
3568 | if (arg1 == NULL) | |
3569 | resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker); | |
3570 | else | |
3571 | resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion, | |
3572 | tracker); | |
3573 | break; | |
3574 | } | |
3575 | ||
3576 | case UNOP_CAST: | |
3577 | *pos += 3; | |
3578 | nargs = 1; | |
3579 | break; | |
3580 | ||
3581 | case BINOP_ADD: | |
3582 | case BINOP_SUB: | |
3583 | case BINOP_MUL: | |
3584 | case BINOP_DIV: | |
3585 | case BINOP_REM: | |
3586 | case BINOP_MOD: | |
3587 | case BINOP_EXP: | |
3588 | case BINOP_CONCAT: | |
3589 | case BINOP_LOGICAL_AND: | |
3590 | case BINOP_LOGICAL_OR: | |
3591 | case BINOP_BITWISE_AND: | |
3592 | case BINOP_BITWISE_IOR: | |
3593 | case BINOP_BITWISE_XOR: | |
3594 | ||
3595 | case BINOP_EQUAL: | |
3596 | case BINOP_NOTEQUAL: | |
3597 | case BINOP_LESS: | |
3598 | case BINOP_GTR: | |
3599 | case BINOP_LEQ: | |
3600 | case BINOP_GEQ: | |
3601 | ||
3602 | case BINOP_REPEAT: | |
3603 | case BINOP_SUBSCRIPT: | |
3604 | case BINOP_COMMA: | |
3605 | *pos += 1; | |
3606 | nargs = 2; | |
3607 | break; | |
3608 | ||
3609 | case UNOP_NEG: | |
3610 | case UNOP_PLUS: | |
3611 | case UNOP_LOGICAL_NOT: | |
3612 | case UNOP_ABS: | |
3613 | case UNOP_IND: | |
3614 | *pos += 1; | |
3615 | nargs = 1; | |
3616 | break; | |
3617 | ||
3618 | case OP_LONG: | |
3619 | case OP_FLOAT: | |
3620 | case OP_VAR_VALUE: | |
3621 | case OP_VAR_MSYM_VALUE: | |
3622 | *pos += 4; | |
3623 | break; | |
3624 | ||
3625 | case OP_TYPE: | |
3626 | case OP_BOOL: | |
3627 | case OP_LAST: | |
3628 | case OP_INTERNALVAR: | |
3629 | *pos += 3; | |
3630 | break; | |
3631 | ||
3632 | case UNOP_MEMVAL: | |
3633 | *pos += 3; | |
3634 | nargs = 1; | |
3635 | break; | |
3636 | ||
3637 | case OP_REGISTER: | |
3638 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3639 | break; | |
3640 | ||
3641 | case STRUCTOP_STRUCT: | |
3642 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3643 | nargs = 1; | |
3644 | break; | |
3645 | ||
3646 | case TERNOP_SLICE: | |
3647 | *pos += 1; | |
3648 | nargs = 3; | |
3649 | break; | |
3650 | ||
3651 | case OP_STRING: | |
3652 | break; | |
3653 | ||
3654 | default: | |
3655 | error (_("Unexpected operator during name resolution")); | |
14f9c5c9 | 3656 | } |
14f9c5c9 | 3657 | |
de93309a SM |
3658 | argvec = XALLOCAVEC (struct value *, nargs + 1); |
3659 | for (i = 0; i < nargs; i += 1) | |
3660 | argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion, | |
3661 | tracker); | |
3662 | argvec[i] = NULL; | |
3663 | exp = expp->get (); | |
4c4b4cd2 | 3664 | |
de93309a SM |
3665 | /* Pass two: perform any resolution on principal operator. */ |
3666 | switch (op) | |
14f9c5c9 | 3667 | { |
de93309a SM |
3668 | default: |
3669 | break; | |
5b4ee69b | 3670 | |
de93309a SM |
3671 | case OP_VAR_VALUE: |
3672 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
4c4b4cd2 | 3673 | { |
de93309a SM |
3674 | std::vector<struct block_symbol> candidates; |
3675 | int n_candidates; | |
5b4ee69b | 3676 | |
de93309a | 3677 | n_candidates = |
987012b8 | 3678 | ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (), |
de93309a SM |
3679 | exp->elts[pc + 1].block, VAR_DOMAIN, |
3680 | &candidates); | |
d2e4a39e | 3681 | |
de93309a SM |
3682 | if (n_candidates > 1) |
3683 | { | |
3684 | /* Types tend to get re-introduced locally, so if there | |
3685 | are any local symbols that are not types, first filter | |
3686 | out all types. */ | |
3687 | int j; | |
3688 | for (j = 0; j < n_candidates; j += 1) | |
3689 | switch (SYMBOL_CLASS (candidates[j].symbol)) | |
3690 | { | |
3691 | case LOC_REGISTER: | |
3692 | case LOC_ARG: | |
3693 | case LOC_REF_ARG: | |
3694 | case LOC_REGPARM_ADDR: | |
3695 | case LOC_LOCAL: | |
3696 | case LOC_COMPUTED: | |
3697 | goto FoundNonType; | |
3698 | default: | |
3699 | break; | |
3700 | } | |
3701 | FoundNonType: | |
3702 | if (j < n_candidates) | |
3703 | { | |
3704 | j = 0; | |
3705 | while (j < n_candidates) | |
3706 | { | |
3707 | if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF) | |
3708 | { | |
3709 | candidates[j] = candidates[n_candidates - 1]; | |
3710 | n_candidates -= 1; | |
3711 | } | |
3712 | else | |
3713 | j += 1; | |
3714 | } | |
3715 | } | |
3716 | } | |
4c4b4cd2 | 3717 | |
de93309a SM |
3718 | if (n_candidates == 0) |
3719 | error (_("No definition found for %s"), | |
987012b8 | 3720 | exp->elts[pc + 2].symbol->print_name ()); |
de93309a SM |
3721 | else if (n_candidates == 1) |
3722 | i = 0; | |
3723 | else if (deprocedure_p | |
3724 | && !is_nonfunction (candidates.data (), n_candidates)) | |
3725 | { | |
3726 | i = ada_resolve_function | |
3727 | (candidates.data (), n_candidates, NULL, 0, | |
987012b8 | 3728 | exp->elts[pc + 2].symbol->linkage_name (), |
de93309a SM |
3729 | context_type, parse_completion); |
3730 | if (i < 0) | |
3731 | error (_("Could not find a match for %s"), | |
987012b8 | 3732 | exp->elts[pc + 2].symbol->print_name ()); |
de93309a SM |
3733 | } |
3734 | else | |
3735 | { | |
3736 | printf_filtered (_("Multiple matches for %s\n"), | |
987012b8 | 3737 | exp->elts[pc + 2].symbol->print_name ()); |
de93309a SM |
3738 | user_select_syms (candidates.data (), n_candidates, 1); |
3739 | i = 0; | |
3740 | } | |
5b4ee69b | 3741 | |
de93309a SM |
3742 | exp->elts[pc + 1].block = candidates[i].block; |
3743 | exp->elts[pc + 2].symbol = candidates[i].symbol; | |
3744 | tracker->update (candidates[i]); | |
3745 | } | |
14f9c5c9 | 3746 | |
de93309a SM |
3747 | if (deprocedure_p |
3748 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3749 | == TYPE_CODE_FUNC)) | |
4c4b4cd2 | 3750 | { |
de93309a SM |
3751 | replace_operator_with_call (expp, pc, 0, 4, |
3752 | exp->elts[pc + 2].symbol, | |
3753 | exp->elts[pc + 1].block); | |
3754 | exp = expp->get (); | |
4c4b4cd2 | 3755 | } |
de93309a SM |
3756 | break; |
3757 | ||
3758 | case OP_FUNCALL: | |
3759 | { | |
3760 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
3761 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) | |
3762 | { | |
3763 | std::vector<struct block_symbol> candidates; | |
3764 | int n_candidates; | |
3765 | ||
3766 | n_candidates = | |
987012b8 | 3767 | ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (), |
de93309a SM |
3768 | exp->elts[pc + 4].block, VAR_DOMAIN, |
3769 | &candidates); | |
14f9c5c9 | 3770 | |
de93309a SM |
3771 | if (n_candidates == 1) |
3772 | i = 0; | |
3773 | else | |
3774 | { | |
3775 | i = ada_resolve_function | |
3776 | (candidates.data (), n_candidates, | |
3777 | argvec, nargs, | |
987012b8 | 3778 | exp->elts[pc + 5].symbol->linkage_name (), |
de93309a SM |
3779 | context_type, parse_completion); |
3780 | if (i < 0) | |
3781 | error (_("Could not find a match for %s"), | |
987012b8 | 3782 | exp->elts[pc + 5].symbol->print_name ()); |
de93309a | 3783 | } |
d72413e6 | 3784 | |
de93309a SM |
3785 | exp->elts[pc + 4].block = candidates[i].block; |
3786 | exp->elts[pc + 5].symbol = candidates[i].symbol; | |
3787 | tracker->update (candidates[i]); | |
3788 | } | |
3789 | } | |
3790 | break; | |
3791 | case BINOP_ADD: | |
3792 | case BINOP_SUB: | |
3793 | case BINOP_MUL: | |
3794 | case BINOP_DIV: | |
3795 | case BINOP_REM: | |
3796 | case BINOP_MOD: | |
3797 | case BINOP_CONCAT: | |
3798 | case BINOP_BITWISE_AND: | |
3799 | case BINOP_BITWISE_IOR: | |
3800 | case BINOP_BITWISE_XOR: | |
3801 | case BINOP_EQUAL: | |
3802 | case BINOP_NOTEQUAL: | |
3803 | case BINOP_LESS: | |
3804 | case BINOP_GTR: | |
3805 | case BINOP_LEQ: | |
3806 | case BINOP_GEQ: | |
3807 | case BINOP_EXP: | |
3808 | case UNOP_NEG: | |
3809 | case UNOP_PLUS: | |
3810 | case UNOP_LOGICAL_NOT: | |
3811 | case UNOP_ABS: | |
3812 | if (possible_user_operator_p (op, argvec)) | |
3813 | { | |
3814 | std::vector<struct block_symbol> candidates; | |
3815 | int n_candidates; | |
d72413e6 | 3816 | |
de93309a SM |
3817 | n_candidates = |
3818 | ada_lookup_symbol_list (ada_decoded_op_name (op), | |
3819 | NULL, VAR_DOMAIN, | |
3820 | &candidates); | |
d72413e6 | 3821 | |
de93309a SM |
3822 | i = ada_resolve_function (candidates.data (), n_candidates, argvec, |
3823 | nargs, ada_decoded_op_name (op), NULL, | |
3824 | parse_completion); | |
3825 | if (i < 0) | |
3826 | break; | |
d72413e6 | 3827 | |
de93309a SM |
3828 | replace_operator_with_call (expp, pc, nargs, 1, |
3829 | candidates[i].symbol, | |
3830 | candidates[i].block); | |
3831 | exp = expp->get (); | |
3832 | } | |
3833 | break; | |
d72413e6 | 3834 | |
de93309a SM |
3835 | case OP_TYPE: |
3836 | case OP_REGISTER: | |
3837 | return NULL; | |
d72413e6 | 3838 | } |
d72413e6 | 3839 | |
de93309a SM |
3840 | *pos = pc; |
3841 | if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE) | |
3842 | return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS, | |
3843 | exp->elts[pc + 1].objfile, | |
3844 | exp->elts[pc + 2].msymbol); | |
3845 | else | |
3846 | return evaluate_subexp_type (exp, pos); | |
3847 | } | |
14f9c5c9 | 3848 | |
de93309a SM |
3849 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If |
3850 | MAY_DEREF is non-zero, the formal may be a pointer and the actual | |
3851 | a non-pointer. */ | |
3852 | /* The term "match" here is rather loose. The match is heuristic and | |
3853 | liberal. */ | |
14f9c5c9 | 3854 | |
de93309a SM |
3855 | static int |
3856 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) | |
14f9c5c9 | 3857 | { |
de93309a SM |
3858 | ftype = ada_check_typedef (ftype); |
3859 | atype = ada_check_typedef (atype); | |
14f9c5c9 | 3860 | |
de93309a SM |
3861 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) |
3862 | ftype = TYPE_TARGET_TYPE (ftype); | |
3863 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3864 | atype = TYPE_TARGET_TYPE (atype); | |
14f9c5c9 | 3865 | |
de93309a | 3866 | switch (TYPE_CODE (ftype)) |
14f9c5c9 | 3867 | { |
de93309a SM |
3868 | default: |
3869 | return TYPE_CODE (ftype) == TYPE_CODE (atype); | |
3870 | case TYPE_CODE_PTR: | |
3871 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
3872 | return ada_type_match (TYPE_TARGET_TYPE (ftype), | |
3873 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3874 | else |
de93309a SM |
3875 | return (may_deref |
3876 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
3877 | case TYPE_CODE_INT: | |
3878 | case TYPE_CODE_ENUM: | |
3879 | case TYPE_CODE_RANGE: | |
3880 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 | 3881 | { |
de93309a SM |
3882 | case TYPE_CODE_INT: |
3883 | case TYPE_CODE_ENUM: | |
3884 | case TYPE_CODE_RANGE: | |
3885 | return 1; | |
3886 | default: | |
3887 | return 0; | |
4c4b4cd2 | 3888 | } |
d2e4a39e | 3889 | |
de93309a SM |
3890 | case TYPE_CODE_ARRAY: |
3891 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3892 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3893 | |
de93309a SM |
3894 | case TYPE_CODE_STRUCT: |
3895 | if (ada_is_array_descriptor_type (ftype)) | |
3896 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3897 | || ada_is_array_descriptor_type (atype)); | |
3898 | else | |
3899 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT | |
3900 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3901 | |
de93309a SM |
3902 | case TYPE_CODE_UNION: |
3903 | case TYPE_CODE_FLT: | |
3904 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3905 | } | |
14f9c5c9 AS |
3906 | } |
3907 | ||
de93309a SM |
3908 | /* Return non-zero if the formals of FUNC "sufficiently match" the |
3909 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3910 | may also be an enumeral, in which case it is treated as a 0- | |
3911 | argument function. */ | |
14f9c5c9 | 3912 | |
de93309a SM |
3913 | static int |
3914 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) | |
3915 | { | |
3916 | int i; | |
3917 | struct type *func_type = SYMBOL_TYPE (func); | |
14f9c5c9 | 3918 | |
de93309a SM |
3919 | if (SYMBOL_CLASS (func) == LOC_CONST |
3920 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
3921 | return (n_actuals == 0); | |
3922 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3923 | return 0; | |
14f9c5c9 | 3924 | |
de93309a SM |
3925 | if (TYPE_NFIELDS (func_type) != n_actuals) |
3926 | return 0; | |
14f9c5c9 | 3927 | |
de93309a SM |
3928 | for (i = 0; i < n_actuals; i += 1) |
3929 | { | |
3930 | if (actuals[i] == NULL) | |
3931 | return 0; | |
3932 | else | |
3933 | { | |
3934 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, | |
3935 | i)); | |
3936 | struct type *atype = ada_check_typedef (value_type (actuals[i])); | |
14f9c5c9 | 3937 | |
de93309a SM |
3938 | if (!ada_type_match (ftype, atype, 1)) |
3939 | return 0; | |
3940 | } | |
3941 | } | |
3942 | return 1; | |
3943 | } | |
d2e4a39e | 3944 | |
de93309a SM |
3945 | /* False iff function type FUNC_TYPE definitely does not produce a value |
3946 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3947 | FUNC_TYPE is not a valid function type with a non-null return type | |
3948 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
14f9c5c9 | 3949 | |
de93309a SM |
3950 | static int |
3951 | return_match (struct type *func_type, struct type *context_type) | |
3952 | { | |
3953 | struct type *return_type; | |
d2e4a39e | 3954 | |
de93309a SM |
3955 | if (func_type == NULL) |
3956 | return 1; | |
14f9c5c9 | 3957 | |
de93309a SM |
3958 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
3959 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); | |
3960 | else | |
3961 | return_type = get_base_type (func_type); | |
3962 | if (return_type == NULL) | |
3963 | return 1; | |
76a01679 | 3964 | |
de93309a | 3965 | context_type = get_base_type (context_type); |
14f9c5c9 | 3966 | |
de93309a SM |
3967 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) |
3968 | return context_type == NULL || return_type == context_type; | |
3969 | else if (context_type == NULL) | |
3970 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3971 | else | |
3972 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3973 | } | |
14f9c5c9 | 3974 | |
14f9c5c9 | 3975 | |
de93309a SM |
3976 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
3977 | function (if any) that matches the types of the NARGS arguments in | |
3978 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match | |
3979 | that returns that type, then eliminate matches that don't. If | |
3980 | CONTEXT_TYPE is void and there is at least one match that does not | |
3981 | return void, eliminate all matches that do. | |
14f9c5c9 | 3982 | |
de93309a SM |
3983 | Asks the user if there is more than one match remaining. Returns -1 |
3984 | if there is no such symbol or none is selected. NAME is used | |
3985 | solely for messages. May re-arrange and modify SYMS in | |
3986 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3987 | |
de93309a SM |
3988 | static int |
3989 | ada_resolve_function (struct block_symbol syms[], | |
3990 | int nsyms, struct value **args, int nargs, | |
3991 | const char *name, struct type *context_type, | |
3992 | int parse_completion) | |
3993 | { | |
3994 | int fallback; | |
3995 | int k; | |
3996 | int m; /* Number of hits */ | |
14f9c5c9 | 3997 | |
de93309a SM |
3998 | m = 0; |
3999 | /* In the first pass of the loop, we only accept functions matching | |
4000 | context_type. If none are found, we add a second pass of the loop | |
4001 | where every function is accepted. */ | |
4002 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
4003 | { | |
4004 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 4005 | { |
de93309a | 4006 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol)); |
5b4ee69b | 4007 | |
de93309a SM |
4008 | if (ada_args_match (syms[k].symbol, args, nargs) |
4009 | && (fallback || return_match (type, context_type))) | |
4010 | { | |
4011 | syms[m] = syms[k]; | |
4012 | m += 1; | |
4013 | } | |
4c4b4cd2 | 4014 | } |
14f9c5c9 AS |
4015 | } |
4016 | ||
de93309a SM |
4017 | /* If we got multiple matches, ask the user which one to use. Don't do this |
4018 | interactive thing during completion, though, as the purpose of the | |
4019 | completion is providing a list of all possible matches. Prompting the | |
4020 | user to filter it down would be completely unexpected in this case. */ | |
4021 | if (m == 0) | |
4022 | return -1; | |
4023 | else if (m > 1 && !parse_completion) | |
4024 | { | |
4025 | printf_filtered (_("Multiple matches for %s\n"), name); | |
4026 | user_select_syms (syms, m, 1); | |
4027 | return 0; | |
4028 | } | |
4029 | return 0; | |
14f9c5c9 AS |
4030 | } |
4031 | ||
4c4b4cd2 PH |
4032 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
4033 | on the function identified by SYM and BLOCK, and taking NARGS | |
4034 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
4035 | |
4036 | static void | |
e9d9f57e | 4037 | replace_operator_with_call (expression_up *expp, int pc, int nargs, |
4c4b4cd2 | 4038 | int oplen, struct symbol *sym, |
270140bd | 4039 | const struct block *block) |
14f9c5c9 AS |
4040 | { |
4041 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 4042 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 4043 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 4044 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 4045 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
e9d9f57e | 4046 | struct expression *exp = expp->get (); |
14f9c5c9 AS |
4047 | |
4048 | newexp->nelts = exp->nelts + 7 - oplen; | |
4049 | newexp->language_defn = exp->language_defn; | |
3489610d | 4050 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 4051 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 4052 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 4053 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
4054 | |
4055 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
4056 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
4057 | ||
4058 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
4059 | newexp->elts[pc + 4].block = block; | |
4060 | newexp->elts[pc + 5].symbol = sym; | |
4061 | ||
e9d9f57e | 4062 | expp->reset (newexp); |
d2e4a39e | 4063 | } |
14f9c5c9 AS |
4064 | |
4065 | /* Type-class predicates */ | |
4066 | ||
4c4b4cd2 PH |
4067 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
4068 | or FLOAT). */ | |
14f9c5c9 AS |
4069 | |
4070 | static int | |
d2e4a39e | 4071 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
4072 | { |
4073 | if (type == NULL) | |
4074 | return 0; | |
d2e4a39e AS |
4075 | else |
4076 | { | |
4077 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4078 | { |
4079 | case TYPE_CODE_INT: | |
4080 | case TYPE_CODE_FLT: | |
4081 | return 1; | |
4082 | case TYPE_CODE_RANGE: | |
4083 | return (type == TYPE_TARGET_TYPE (type) | |
4084 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
4085 | default: | |
4086 | return 0; | |
4087 | } | |
d2e4a39e | 4088 | } |
14f9c5c9 AS |
4089 | } |
4090 | ||
4c4b4cd2 | 4091 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
4092 | |
4093 | static int | |
d2e4a39e | 4094 | integer_type_p (struct type *type) |
14f9c5c9 AS |
4095 | { |
4096 | if (type == NULL) | |
4097 | return 0; | |
d2e4a39e AS |
4098 | else |
4099 | { | |
4100 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4101 | { |
4102 | case TYPE_CODE_INT: | |
4103 | return 1; | |
4104 | case TYPE_CODE_RANGE: | |
4105 | return (type == TYPE_TARGET_TYPE (type) | |
4106 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
4107 | default: | |
4108 | return 0; | |
4109 | } | |
d2e4a39e | 4110 | } |
14f9c5c9 AS |
4111 | } |
4112 | ||
4c4b4cd2 | 4113 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
4114 | |
4115 | static int | |
d2e4a39e | 4116 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
4117 | { |
4118 | if (type == NULL) | |
4119 | return 0; | |
d2e4a39e AS |
4120 | else |
4121 | { | |
4122 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4123 | { |
4124 | case TYPE_CODE_INT: | |
4125 | case TYPE_CODE_RANGE: | |
4126 | case TYPE_CODE_ENUM: | |
4127 | case TYPE_CODE_FLT: | |
4128 | return 1; | |
4129 | default: | |
4130 | return 0; | |
4131 | } | |
d2e4a39e | 4132 | } |
14f9c5c9 AS |
4133 | } |
4134 | ||
4c4b4cd2 | 4135 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
4136 | |
4137 | static int | |
d2e4a39e | 4138 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
4139 | { |
4140 | if (type == NULL) | |
4141 | return 0; | |
d2e4a39e AS |
4142 | else |
4143 | { | |
4144 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4145 | { |
4146 | case TYPE_CODE_INT: | |
4147 | case TYPE_CODE_RANGE: | |
4148 | case TYPE_CODE_ENUM: | |
872f0337 | 4149 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
4150 | return 1; |
4151 | default: | |
4152 | return 0; | |
4153 | } | |
d2e4a39e | 4154 | } |
14f9c5c9 AS |
4155 | } |
4156 | ||
4c4b4cd2 PH |
4157 | /* Returns non-zero if OP with operands in the vector ARGS could be |
4158 | a user-defined function. Errs on the side of pre-defined operators | |
4159 | (i.e., result 0). */ | |
14f9c5c9 AS |
4160 | |
4161 | static int | |
d2e4a39e | 4162 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 4163 | { |
76a01679 | 4164 | struct type *type0 = |
df407dfe | 4165 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 4166 | struct type *type1 = |
df407dfe | 4167 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 4168 | |
4c4b4cd2 PH |
4169 | if (type0 == NULL) |
4170 | return 0; | |
4171 | ||
14f9c5c9 AS |
4172 | switch (op) |
4173 | { | |
4174 | default: | |
4175 | return 0; | |
4176 | ||
4177 | case BINOP_ADD: | |
4178 | case BINOP_SUB: | |
4179 | case BINOP_MUL: | |
4180 | case BINOP_DIV: | |
d2e4a39e | 4181 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
4182 | |
4183 | case BINOP_REM: | |
4184 | case BINOP_MOD: | |
4185 | case BINOP_BITWISE_AND: | |
4186 | case BINOP_BITWISE_IOR: | |
4187 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 4188 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4189 | |
4190 | case BINOP_EQUAL: | |
4191 | case BINOP_NOTEQUAL: | |
4192 | case BINOP_LESS: | |
4193 | case BINOP_GTR: | |
4194 | case BINOP_LEQ: | |
4195 | case BINOP_GEQ: | |
d2e4a39e | 4196 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
4197 | |
4198 | case BINOP_CONCAT: | |
ee90b9ab | 4199 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
4200 | |
4201 | case BINOP_EXP: | |
d2e4a39e | 4202 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4203 | |
4204 | case UNOP_NEG: | |
4205 | case UNOP_PLUS: | |
4206 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
4207 | case UNOP_ABS: |
4208 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
4209 | |
4210 | } | |
4211 | } | |
4212 | \f | |
4c4b4cd2 | 4213 | /* Renaming */ |
14f9c5c9 | 4214 | |
aeb5907d JB |
4215 | /* NOTES: |
4216 | ||
4217 | 1. In the following, we assume that a renaming type's name may | |
4218 | have an ___XD suffix. It would be nice if this went away at some | |
4219 | point. | |
4220 | 2. We handle both the (old) purely type-based representation of | |
4221 | renamings and the (new) variable-based encoding. At some point, | |
4222 | it is devoutly to be hoped that the former goes away | |
4223 | (FIXME: hilfinger-2007-07-09). | |
4224 | 3. Subprogram renamings are not implemented, although the XRS | |
4225 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
4226 | ||
4227 | /* If SYM encodes a renaming, | |
4228 | ||
4229 | <renaming> renames <renamed entity>, | |
4230 | ||
4231 | sets *LEN to the length of the renamed entity's name, | |
4232 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
4233 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 4234 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
4235 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
4236 | are undefined). Otherwise, returns a value indicating the category | |
4237 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
4238 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
4239 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
4240 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
4241 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
4242 | may be NULL, in which case they are not assigned. | |
4243 | ||
4244 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
4245 | ||
4246 | enum ada_renaming_category | |
4247 | ada_parse_renaming (struct symbol *sym, | |
4248 | const char **renamed_entity, int *len, | |
4249 | const char **renaming_expr) | |
4250 | { | |
4251 | enum ada_renaming_category kind; | |
4252 | const char *info; | |
4253 | const char *suffix; | |
4254 | ||
4255 | if (sym == NULL) | |
4256 | return ADA_NOT_RENAMING; | |
4257 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 4258 | { |
aeb5907d JB |
4259 | default: |
4260 | return ADA_NOT_RENAMING; | |
aeb5907d JB |
4261 | case LOC_LOCAL: |
4262 | case LOC_STATIC: | |
4263 | case LOC_COMPUTED: | |
4264 | case LOC_OPTIMIZED_OUT: | |
987012b8 | 4265 | info = strstr (sym->linkage_name (), "___XR"); |
aeb5907d JB |
4266 | if (info == NULL) |
4267 | return ADA_NOT_RENAMING; | |
4268 | switch (info[5]) | |
4269 | { | |
4270 | case '_': | |
4271 | kind = ADA_OBJECT_RENAMING; | |
4272 | info += 6; | |
4273 | break; | |
4274 | case 'E': | |
4275 | kind = ADA_EXCEPTION_RENAMING; | |
4276 | info += 7; | |
4277 | break; | |
4278 | case 'P': | |
4279 | kind = ADA_PACKAGE_RENAMING; | |
4280 | info += 7; | |
4281 | break; | |
4282 | case 'S': | |
4283 | kind = ADA_SUBPROGRAM_RENAMING; | |
4284 | info += 7; | |
4285 | break; | |
4286 | default: | |
4287 | return ADA_NOT_RENAMING; | |
4288 | } | |
14f9c5c9 | 4289 | } |
4c4b4cd2 | 4290 | |
de93309a SM |
4291 | if (renamed_entity != NULL) |
4292 | *renamed_entity = info; | |
4293 | suffix = strstr (info, "___XE"); | |
4294 | if (suffix == NULL || suffix == info) | |
4295 | return ADA_NOT_RENAMING; | |
4296 | if (len != NULL) | |
4297 | *len = strlen (info) - strlen (suffix); | |
4298 | suffix += 5; | |
4299 | if (renaming_expr != NULL) | |
4300 | *renaming_expr = suffix; | |
4301 | return kind; | |
4302 | } | |
4303 | ||
4304 | /* Compute the value of the given RENAMING_SYM, which is expected to | |
4305 | be a symbol encoding a renaming expression. BLOCK is the block | |
4306 | used to evaluate the renaming. */ | |
4307 | ||
4308 | static struct value * | |
4309 | ada_read_renaming_var_value (struct symbol *renaming_sym, | |
4310 | const struct block *block) | |
4311 | { | |
4312 | const char *sym_name; | |
4313 | ||
987012b8 | 4314 | sym_name = renaming_sym->linkage_name (); |
de93309a SM |
4315 | expression_up expr = parse_exp_1 (&sym_name, 0, block, 0); |
4316 | return evaluate_expression (expr.get ()); | |
4317 | } | |
4318 | \f | |
4319 | ||
4320 | /* Evaluation: Function Calls */ | |
4321 | ||
4322 | /* Return an lvalue containing the value VAL. This is the identity on | |
4323 | lvalues, and otherwise has the side-effect of allocating memory | |
4324 | in the inferior where a copy of the value contents is copied. */ | |
4325 | ||
4326 | static struct value * | |
4327 | ensure_lval (struct value *val) | |
4328 | { | |
4329 | if (VALUE_LVAL (val) == not_lval | |
4330 | || VALUE_LVAL (val) == lval_internalvar) | |
4331 | { | |
4332 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); | |
4333 | const CORE_ADDR addr = | |
4334 | value_as_long (value_allocate_space_in_inferior (len)); | |
4335 | ||
4336 | VALUE_LVAL (val) = lval_memory; | |
4337 | set_value_address (val, addr); | |
4338 | write_memory (addr, value_contents (val), len); | |
4339 | } | |
4340 | ||
4341 | return val; | |
4342 | } | |
4343 | ||
4344 | /* Given ARG, a value of type (pointer or reference to a)* | |
4345 | structure/union, extract the component named NAME from the ultimate | |
4346 | target structure/union and return it as a value with its | |
4347 | appropriate type. | |
4348 | ||
4349 | The routine searches for NAME among all members of the structure itself | |
4350 | and (recursively) among all members of any wrapper members | |
4351 | (e.g., '_parent'). | |
4352 | ||
4353 | If NO_ERR, then simply return NULL in case of error, rather than | |
4354 | calling error. */ | |
4355 | ||
4356 | static struct value * | |
4357 | ada_value_struct_elt (struct value *arg, const char *name, int no_err) | |
4358 | { | |
4359 | struct type *t, *t1; | |
4360 | struct value *v; | |
4361 | int check_tag; | |
4362 | ||
4363 | v = NULL; | |
4364 | t1 = t = ada_check_typedef (value_type (arg)); | |
4365 | if (TYPE_CODE (t) == TYPE_CODE_REF) | |
4366 | { | |
4367 | t1 = TYPE_TARGET_TYPE (t); | |
4368 | if (t1 == NULL) | |
4369 | goto BadValue; | |
4370 | t1 = ada_check_typedef (t1); | |
4371 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) | |
4372 | { | |
4373 | arg = coerce_ref (arg); | |
4374 | t = t1; | |
4375 | } | |
4376 | } | |
4377 | ||
4378 | while (TYPE_CODE (t) == TYPE_CODE_PTR) | |
4379 | { | |
4380 | t1 = TYPE_TARGET_TYPE (t); | |
4381 | if (t1 == NULL) | |
4382 | goto BadValue; | |
4383 | t1 = ada_check_typedef (t1); | |
4384 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) | |
4385 | { | |
4386 | arg = value_ind (arg); | |
4387 | t = t1; | |
4388 | } | |
4389 | else | |
4390 | break; | |
4391 | } | |
aeb5907d | 4392 | |
de93309a SM |
4393 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
4394 | goto BadValue; | |
52ce6436 | 4395 | |
de93309a SM |
4396 | if (t1 == t) |
4397 | v = ada_search_struct_field (name, arg, 0, t); | |
4398 | else | |
4399 | { | |
4400 | int bit_offset, bit_size, byte_offset; | |
4401 | struct type *field_type; | |
4402 | CORE_ADDR address; | |
a5ee536b | 4403 | |
de93309a SM |
4404 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
4405 | address = value_address (ada_value_ind (arg)); | |
4406 | else | |
4407 | address = value_address (ada_coerce_ref (arg)); | |
d2e4a39e | 4408 | |
de93309a SM |
4409 | /* Check to see if this is a tagged type. We also need to handle |
4410 | the case where the type is a reference to a tagged type, but | |
4411 | we have to be careful to exclude pointers to tagged types. | |
4412 | The latter should be shown as usual (as a pointer), whereas | |
4413 | a reference should mostly be transparent to the user. */ | |
14f9c5c9 | 4414 | |
de93309a SM |
4415 | if (ada_is_tagged_type (t1, 0) |
4416 | || (TYPE_CODE (t1) == TYPE_CODE_REF | |
4417 | && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0))) | |
4418 | { | |
4419 | /* We first try to find the searched field in the current type. | |
4420 | If not found then let's look in the fixed type. */ | |
14f9c5c9 | 4421 | |
de93309a SM |
4422 | if (!find_struct_field (name, t1, 0, |
4423 | &field_type, &byte_offset, &bit_offset, | |
4424 | &bit_size, NULL)) | |
4425 | check_tag = 1; | |
4426 | else | |
4427 | check_tag = 0; | |
4428 | } | |
4429 | else | |
4430 | check_tag = 0; | |
c3e5cd34 | 4431 | |
de93309a SM |
4432 | /* Convert to fixed type in all cases, so that we have proper |
4433 | offsets to each field in unconstrained record types. */ | |
4434 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, | |
4435 | address, NULL, check_tag); | |
4436 | ||
4437 | if (find_struct_field (name, t1, 0, | |
4438 | &field_type, &byte_offset, &bit_offset, | |
4439 | &bit_size, NULL)) | |
4440 | { | |
4441 | if (bit_size != 0) | |
4442 | { | |
4443 | if (TYPE_CODE (t) == TYPE_CODE_REF) | |
4444 | arg = ada_coerce_ref (arg); | |
4445 | else | |
4446 | arg = ada_value_ind (arg); | |
4447 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, | |
4448 | bit_offset, bit_size, | |
4449 | field_type); | |
4450 | } | |
4451 | else | |
4452 | v = value_at_lazy (field_type, address + byte_offset); | |
4453 | } | |
c3e5cd34 | 4454 | } |
14f9c5c9 | 4455 | |
de93309a SM |
4456 | if (v != NULL || no_err) |
4457 | return v; | |
4458 | else | |
4459 | error (_("There is no member named %s."), name); | |
4460 | ||
4461 | BadValue: | |
4462 | if (no_err) | |
4463 | return NULL; | |
4464 | else | |
4465 | error (_("Attempt to extract a component of " | |
4466 | "a value that is not a record.")); | |
14f9c5c9 AS |
4467 | } |
4468 | ||
4469 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4470 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4471 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4472 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4473 | |
a93c0eb6 | 4474 | struct value * |
40bc484c | 4475 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4476 | { |
df407dfe | 4477 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4478 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4479 | struct type *formal_target = |
4480 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4481 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4482 | struct type *actual_target = |
4483 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4484 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4485 | |
4c4b4cd2 | 4486 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4487 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4488 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4489 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4490 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4491 | { |
a84a8a0d | 4492 | struct value *result; |
5b4ee69b | 4493 | |
14f9c5c9 | 4494 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4495 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4496 | result = desc_data (actual); |
cb923fcc | 4497 | else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4498 | { |
4499 | if (VALUE_LVAL (actual) != lval_memory) | |
4500 | { | |
4501 | struct value *val; | |
5b4ee69b | 4502 | |
df407dfe | 4503 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4504 | val = allocate_value (actual_type); |
990a07ab | 4505 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4506 | (char *) value_contents (actual), |
4c4b4cd2 | 4507 | TYPE_LENGTH (actual_type)); |
40bc484c | 4508 | actual = ensure_lval (val); |
4c4b4cd2 | 4509 | } |
a84a8a0d | 4510 | result = value_addr (actual); |
4c4b4cd2 | 4511 | } |
a84a8a0d JB |
4512 | else |
4513 | return actual; | |
b1af9e97 | 4514 | return value_cast_pointers (formal_type, result, 0); |
14f9c5c9 AS |
4515 | } |
4516 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4517 | return ada_value_ind (actual); | |
8344af1e JB |
4518 | else if (ada_is_aligner_type (formal_type)) |
4519 | { | |
4520 | /* We need to turn this parameter into an aligner type | |
4521 | as well. */ | |
4522 | struct value *aligner = allocate_value (formal_type); | |
4523 | struct value *component = ada_value_struct_elt (aligner, "F", 0); | |
4524 | ||
4525 | value_assign_to_component (aligner, component, actual); | |
4526 | return aligner; | |
4527 | } | |
14f9c5c9 AS |
4528 | |
4529 | return actual; | |
4530 | } | |
4531 | ||
438c98a1 JB |
4532 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4533 | type TYPE. This is usually an inefficient no-op except on some targets | |
4534 | (such as AVR) where the representation of a pointer and an address | |
4535 | differs. */ | |
4536 | ||
4537 | static CORE_ADDR | |
4538 | value_pointer (struct value *value, struct type *type) | |
4539 | { | |
4540 | struct gdbarch *gdbarch = get_type_arch (type); | |
4541 | unsigned len = TYPE_LENGTH (type); | |
224c3ddb | 4542 | gdb_byte *buf = (gdb_byte *) alloca (len); |
438c98a1 JB |
4543 | CORE_ADDR addr; |
4544 | ||
4545 | addr = value_address (value); | |
4546 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
34877895 | 4547 | addr = extract_unsigned_integer (buf, len, type_byte_order (type)); |
438c98a1 JB |
4548 | return addr; |
4549 | } | |
4550 | ||
14f9c5c9 | 4551 | |
4c4b4cd2 PH |
4552 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4553 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4554 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4555 | to-descriptor type rather than a descriptor type), a struct value * |
4556 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4557 | |
d2e4a39e | 4558 | static struct value * |
40bc484c | 4559 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4560 | { |
d2e4a39e AS |
4561 | struct type *bounds_type = desc_bounds_type (type); |
4562 | struct type *desc_type = desc_base_type (type); | |
4563 | struct value *descriptor = allocate_value (desc_type); | |
4564 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4565 | int i; |
d2e4a39e | 4566 | |
0963b4bd MS |
4567 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4568 | i > 0; i -= 1) | |
14f9c5c9 | 4569 | { |
19f220c3 JK |
4570 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4571 | ada_array_bound (arr, i, 0), | |
4572 | desc_bound_bitpos (bounds_type, i, 0), | |
4573 | desc_bound_bitsize (bounds_type, i, 0)); | |
4574 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4575 | ada_array_bound (arr, i, 1), | |
4576 | desc_bound_bitpos (bounds_type, i, 1), | |
4577 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4578 | } |
d2e4a39e | 4579 | |
40bc484c | 4580 | bounds = ensure_lval (bounds); |
d2e4a39e | 4581 | |
19f220c3 JK |
4582 | modify_field (value_type (descriptor), |
4583 | value_contents_writeable (descriptor), | |
4584 | value_pointer (ensure_lval (arr), | |
4585 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4586 | fat_pntr_data_bitpos (desc_type), | |
4587 | fat_pntr_data_bitsize (desc_type)); | |
4588 | ||
4589 | modify_field (value_type (descriptor), | |
4590 | value_contents_writeable (descriptor), | |
4591 | value_pointer (bounds, | |
4592 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4593 | fat_pntr_bounds_bitpos (desc_type), | |
4594 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4595 | |
40bc484c | 4596 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4597 | |
4598 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4599 | return value_addr (descriptor); | |
4600 | else | |
4601 | return descriptor; | |
4602 | } | |
14f9c5c9 | 4603 | \f |
3d9434b5 JB |
4604 | /* Symbol Cache Module */ |
4605 | ||
3d9434b5 | 4606 | /* Performance measurements made as of 2010-01-15 indicate that |
ee01b665 | 4607 | this cache does bring some noticeable improvements. Depending |
3d9434b5 JB |
4608 | on the type of entity being printed, the cache can make it as much |
4609 | as an order of magnitude faster than without it. | |
4610 | ||
4611 | The descriptive type DWARF extension has significantly reduced | |
4612 | the need for this cache, at least when DWARF is being used. However, | |
4613 | even in this case, some expensive name-based symbol searches are still | |
4614 | sometimes necessary - to find an XVZ variable, mostly. */ | |
4615 | ||
ee01b665 | 4616 | /* Initialize the contents of SYM_CACHE. */ |
3d9434b5 | 4617 | |
ee01b665 JB |
4618 | static void |
4619 | ada_init_symbol_cache (struct ada_symbol_cache *sym_cache) | |
4620 | { | |
4621 | obstack_init (&sym_cache->cache_space); | |
4622 | memset (sym_cache->root, '\000', sizeof (sym_cache->root)); | |
4623 | } | |
3d9434b5 | 4624 | |
ee01b665 JB |
4625 | /* Free the memory used by SYM_CACHE. */ |
4626 | ||
4627 | static void | |
4628 | ada_free_symbol_cache (struct ada_symbol_cache *sym_cache) | |
3d9434b5 | 4629 | { |
ee01b665 JB |
4630 | obstack_free (&sym_cache->cache_space, NULL); |
4631 | xfree (sym_cache); | |
4632 | } | |
3d9434b5 | 4633 | |
ee01b665 JB |
4634 | /* Return the symbol cache associated to the given program space PSPACE. |
4635 | If not allocated for this PSPACE yet, allocate and initialize one. */ | |
3d9434b5 | 4636 | |
ee01b665 JB |
4637 | static struct ada_symbol_cache * |
4638 | ada_get_symbol_cache (struct program_space *pspace) | |
4639 | { | |
4640 | struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace); | |
ee01b665 | 4641 | |
66c168ae | 4642 | if (pspace_data->sym_cache == NULL) |
ee01b665 | 4643 | { |
66c168ae JB |
4644 | pspace_data->sym_cache = XCNEW (struct ada_symbol_cache); |
4645 | ada_init_symbol_cache (pspace_data->sym_cache); | |
ee01b665 JB |
4646 | } |
4647 | ||
66c168ae | 4648 | return pspace_data->sym_cache; |
ee01b665 | 4649 | } |
3d9434b5 JB |
4650 | |
4651 | /* Clear all entries from the symbol cache. */ | |
4652 | ||
4653 | static void | |
4654 | ada_clear_symbol_cache (void) | |
4655 | { | |
ee01b665 JB |
4656 | struct ada_symbol_cache *sym_cache |
4657 | = ada_get_symbol_cache (current_program_space); | |
4658 | ||
4659 | obstack_free (&sym_cache->cache_space, NULL); | |
4660 | ada_init_symbol_cache (sym_cache); | |
3d9434b5 JB |
4661 | } |
4662 | ||
fe978cb0 | 4663 | /* Search our cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4664 | Return it if found, or NULL otherwise. */ |
4665 | ||
4666 | static struct cache_entry ** | |
fe978cb0 | 4667 | find_entry (const char *name, domain_enum domain) |
3d9434b5 | 4668 | { |
ee01b665 JB |
4669 | struct ada_symbol_cache *sym_cache |
4670 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4671 | int h = msymbol_hash (name) % HASH_SIZE; |
4672 | struct cache_entry **e; | |
4673 | ||
ee01b665 | 4674 | for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next) |
3d9434b5 | 4675 | { |
fe978cb0 | 4676 | if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0) |
3d9434b5 JB |
4677 | return e; |
4678 | } | |
4679 | return NULL; | |
4680 | } | |
4681 | ||
fe978cb0 | 4682 | /* Search the symbol cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4683 | Return 1 if found, 0 otherwise. |
4684 | ||
4685 | If an entry was found and SYM is not NULL, set *SYM to the entry's | |
4686 | SYM. Same principle for BLOCK if not NULL. */ | |
96d887e8 | 4687 | |
96d887e8 | 4688 | static int |
fe978cb0 | 4689 | lookup_cached_symbol (const char *name, domain_enum domain, |
f0c5f9b2 | 4690 | struct symbol **sym, const struct block **block) |
96d887e8 | 4691 | { |
fe978cb0 | 4692 | struct cache_entry **e = find_entry (name, domain); |
3d9434b5 JB |
4693 | |
4694 | if (e == NULL) | |
4695 | return 0; | |
4696 | if (sym != NULL) | |
4697 | *sym = (*e)->sym; | |
4698 | if (block != NULL) | |
4699 | *block = (*e)->block; | |
4700 | return 1; | |
96d887e8 PH |
4701 | } |
4702 | ||
3d9434b5 | 4703 | /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME |
fe978cb0 | 4704 | in domain DOMAIN, save this result in our symbol cache. */ |
3d9434b5 | 4705 | |
96d887e8 | 4706 | static void |
fe978cb0 | 4707 | cache_symbol (const char *name, domain_enum domain, struct symbol *sym, |
270140bd | 4708 | const struct block *block) |
96d887e8 | 4709 | { |
ee01b665 JB |
4710 | struct ada_symbol_cache *sym_cache |
4711 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4712 | int h; |
4713 | char *copy; | |
4714 | struct cache_entry *e; | |
4715 | ||
1994afbf DE |
4716 | /* Symbols for builtin types don't have a block. |
4717 | For now don't cache such symbols. */ | |
4718 | if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym)) | |
4719 | return; | |
4720 | ||
3d9434b5 JB |
4721 | /* If the symbol is a local symbol, then do not cache it, as a search |
4722 | for that symbol depends on the context. To determine whether | |
4723 | the symbol is local or not, we check the block where we found it | |
4724 | against the global and static blocks of its associated symtab. */ | |
4725 | if (sym | |
08be3fe3 | 4726 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4727 | GLOBAL_BLOCK) != block |
08be3fe3 | 4728 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4729 | STATIC_BLOCK) != block) |
3d9434b5 JB |
4730 | return; |
4731 | ||
4732 | h = msymbol_hash (name) % HASH_SIZE; | |
e39db4db | 4733 | e = XOBNEW (&sym_cache->cache_space, cache_entry); |
ee01b665 JB |
4734 | e->next = sym_cache->root[h]; |
4735 | sym_cache->root[h] = e; | |
224c3ddb SM |
4736 | e->name = copy |
4737 | = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1); | |
3d9434b5 JB |
4738 | strcpy (copy, name); |
4739 | e->sym = sym; | |
fe978cb0 | 4740 | e->domain = domain; |
3d9434b5 | 4741 | e->block = block; |
96d887e8 | 4742 | } |
4c4b4cd2 PH |
4743 | \f |
4744 | /* Symbol Lookup */ | |
4745 | ||
b5ec771e PA |
4746 | /* Return the symbol name match type that should be used used when |
4747 | searching for all symbols matching LOOKUP_NAME. | |
c0431670 JB |
4748 | |
4749 | LOOKUP_NAME is expected to be a symbol name after transformation | |
f98b2e33 | 4750 | for Ada lookups. */ |
c0431670 | 4751 | |
b5ec771e PA |
4752 | static symbol_name_match_type |
4753 | name_match_type_from_name (const char *lookup_name) | |
c0431670 | 4754 | { |
b5ec771e PA |
4755 | return (strstr (lookup_name, "__") == NULL |
4756 | ? symbol_name_match_type::WILD | |
4757 | : symbol_name_match_type::FULL); | |
c0431670 JB |
4758 | } |
4759 | ||
4c4b4cd2 PH |
4760 | /* Return the result of a standard (literal, C-like) lookup of NAME in |
4761 | given DOMAIN, visible from lexical block BLOCK. */ | |
4762 | ||
4763 | static struct symbol * | |
4764 | standard_lookup (const char *name, const struct block *block, | |
4765 | domain_enum domain) | |
4766 | { | |
acbd605d | 4767 | /* Initialize it just to avoid a GCC false warning. */ |
6640a367 | 4768 | struct block_symbol sym = {}; |
4c4b4cd2 | 4769 | |
d12307c1 PMR |
4770 | if (lookup_cached_symbol (name, domain, &sym.symbol, NULL)) |
4771 | return sym.symbol; | |
a2cd4f14 | 4772 | ada_lookup_encoded_symbol (name, block, domain, &sym); |
d12307c1 PMR |
4773 | cache_symbol (name, domain, sym.symbol, sym.block); |
4774 | return sym.symbol; | |
4c4b4cd2 PH |
4775 | } |
4776 | ||
4777 | ||
4778 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4779 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4780 | since they contend in overloading in the same way. */ | |
4781 | static int | |
d12307c1 | 4782 | is_nonfunction (struct block_symbol syms[], int n) |
4c4b4cd2 PH |
4783 | { |
4784 | int i; | |
4785 | ||
4786 | for (i = 0; i < n; i += 1) | |
d12307c1 PMR |
4787 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC |
4788 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM | |
4789 | || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST)) | |
14f9c5c9 AS |
4790 | return 1; |
4791 | ||
4792 | return 0; | |
4793 | } | |
4794 | ||
4795 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4796 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4797 | |
4798 | static int | |
d2e4a39e | 4799 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4800 | { |
d2e4a39e | 4801 | if (type0 == type1) |
14f9c5c9 | 4802 | return 1; |
d2e4a39e | 4803 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4804 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4805 | return 0; | |
d2e4a39e | 4806 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4807 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4808 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4809 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4810 | return 1; |
d2e4a39e | 4811 | |
14f9c5c9 AS |
4812 | return 0; |
4813 | } | |
4814 | ||
4815 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4816 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4817 | |
4818 | static int | |
d2e4a39e | 4819 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4820 | { |
4821 | if (sym0 == sym1) | |
4822 | return 1; | |
176620f1 | 4823 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4824 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4825 | return 0; | |
4826 | ||
d2e4a39e | 4827 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4828 | { |
4829 | case LOC_UNDEF: | |
4830 | return 1; | |
4831 | case LOC_TYPEDEF: | |
4832 | { | |
4c4b4cd2 PH |
4833 | struct type *type0 = SYMBOL_TYPE (sym0); |
4834 | struct type *type1 = SYMBOL_TYPE (sym1); | |
987012b8 CB |
4835 | const char *name0 = sym0->linkage_name (); |
4836 | const char *name1 = sym1->linkage_name (); | |
4c4b4cd2 | 4837 | int len0 = strlen (name0); |
5b4ee69b | 4838 | |
4c4b4cd2 PH |
4839 | return |
4840 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4841 | && (equiv_types (type0, type1) | |
4842 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
61012eef | 4843 | && startswith (name1 + len0, "___XV"))); |
14f9c5c9 AS |
4844 | } |
4845 | case LOC_CONST: | |
4846 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4847 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
4b610737 TT |
4848 | |
4849 | case LOC_STATIC: | |
4850 | { | |
987012b8 CB |
4851 | const char *name0 = sym0->linkage_name (); |
4852 | const char *name1 = sym1->linkage_name (); | |
4b610737 TT |
4853 | return (strcmp (name0, name1) == 0 |
4854 | && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1)); | |
4855 | } | |
4856 | ||
d2e4a39e AS |
4857 | default: |
4858 | return 0; | |
14f9c5c9 AS |
4859 | } |
4860 | } | |
4861 | ||
d12307c1 | 4862 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol |
4c4b4cd2 | 4863 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ |
14f9c5c9 AS |
4864 | |
4865 | static void | |
76a01679 JB |
4866 | add_defn_to_vec (struct obstack *obstackp, |
4867 | struct symbol *sym, | |
f0c5f9b2 | 4868 | const struct block *block) |
14f9c5c9 AS |
4869 | { |
4870 | int i; | |
d12307c1 | 4871 | struct block_symbol *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4872 | |
529cad9c PH |
4873 | /* Do not try to complete stub types, as the debugger is probably |
4874 | already scanning all symbols matching a certain name at the | |
4875 | time when this function is called. Trying to replace the stub | |
4876 | type by its associated full type will cause us to restart a scan | |
4877 | which may lead to an infinite recursion. Instead, the client | |
4878 | collecting the matching symbols will end up collecting several | |
4879 | matches, with at least one of them complete. It can then filter | |
4880 | out the stub ones if needed. */ | |
4881 | ||
4c4b4cd2 PH |
4882 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4883 | { | |
d12307c1 | 4884 | if (lesseq_defined_than (sym, prevDefns[i].symbol)) |
4c4b4cd2 | 4885 | return; |
d12307c1 | 4886 | else if (lesseq_defined_than (prevDefns[i].symbol, sym)) |
4c4b4cd2 | 4887 | { |
d12307c1 | 4888 | prevDefns[i].symbol = sym; |
4c4b4cd2 | 4889 | prevDefns[i].block = block; |
4c4b4cd2 | 4890 | return; |
76a01679 | 4891 | } |
4c4b4cd2 PH |
4892 | } |
4893 | ||
4894 | { | |
d12307c1 | 4895 | struct block_symbol info; |
4c4b4cd2 | 4896 | |
d12307c1 | 4897 | info.symbol = sym; |
4c4b4cd2 | 4898 | info.block = block; |
d12307c1 | 4899 | obstack_grow (obstackp, &info, sizeof (struct block_symbol)); |
4c4b4cd2 PH |
4900 | } |
4901 | } | |
4902 | ||
d12307c1 PMR |
4903 | /* Number of block_symbol structures currently collected in current vector in |
4904 | OBSTACKP. */ | |
4c4b4cd2 | 4905 | |
76a01679 JB |
4906 | static int |
4907 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 | 4908 | { |
d12307c1 | 4909 | return obstack_object_size (obstackp) / sizeof (struct block_symbol); |
4c4b4cd2 PH |
4910 | } |
4911 | ||
d12307c1 PMR |
4912 | /* Vector of block_symbol structures currently collected in current vector in |
4913 | OBSTACKP. If FINISH, close off the vector and return its final address. */ | |
4c4b4cd2 | 4914 | |
d12307c1 | 4915 | static struct block_symbol * |
4c4b4cd2 PH |
4916 | defns_collected (struct obstack *obstackp, int finish) |
4917 | { | |
4918 | if (finish) | |
224c3ddb | 4919 | return (struct block_symbol *) obstack_finish (obstackp); |
4c4b4cd2 | 4920 | else |
d12307c1 | 4921 | return (struct block_symbol *) obstack_base (obstackp); |
4c4b4cd2 PH |
4922 | } |
4923 | ||
7c7b6655 TT |
4924 | /* Return a bound minimal symbol matching NAME according to Ada |
4925 | decoding rules. Returns an invalid symbol if there is no such | |
4926 | minimal symbol. Names prefixed with "standard__" are handled | |
4927 | specially: "standard__" is first stripped off, and only static and | |
4928 | global symbols are searched. */ | |
4c4b4cd2 | 4929 | |
7c7b6655 | 4930 | struct bound_minimal_symbol |
96d887e8 | 4931 | ada_lookup_simple_minsym (const char *name) |
4c4b4cd2 | 4932 | { |
7c7b6655 | 4933 | struct bound_minimal_symbol result; |
4c4b4cd2 | 4934 | |
7c7b6655 TT |
4935 | memset (&result, 0, sizeof (result)); |
4936 | ||
b5ec771e PA |
4937 | symbol_name_match_type match_type = name_match_type_from_name (name); |
4938 | lookup_name_info lookup_name (name, match_type); | |
4939 | ||
4940 | symbol_name_matcher_ftype *match_name | |
4941 | = ada_get_symbol_name_matcher (lookup_name); | |
4c4b4cd2 | 4942 | |
2030c079 | 4943 | for (objfile *objfile : current_program_space->objfiles ()) |
5325b9bf | 4944 | { |
7932255d | 4945 | for (minimal_symbol *msymbol : objfile->msymbols ()) |
5325b9bf | 4946 | { |
c9d95fa3 | 4947 | if (match_name (msymbol->linkage_name (), lookup_name, NULL) |
5325b9bf TT |
4948 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
4949 | { | |
4950 | result.minsym = msymbol; | |
4951 | result.objfile = objfile; | |
4952 | break; | |
4953 | } | |
4954 | } | |
4955 | } | |
4c4b4cd2 | 4956 | |
7c7b6655 | 4957 | return result; |
96d887e8 | 4958 | } |
4c4b4cd2 | 4959 | |
96d887e8 PH |
4960 | /* For all subprograms that statically enclose the subprogram of the |
4961 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4962 | and their blocks to the list of data in OBSTACKP, as for | |
48b78332 JB |
4963 | ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME |
4964 | with a wildcard prefix. */ | |
4c4b4cd2 | 4965 | |
96d887e8 PH |
4966 | static void |
4967 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
b5ec771e PA |
4968 | const lookup_name_info &lookup_name, |
4969 | domain_enum domain) | |
96d887e8 | 4970 | { |
96d887e8 | 4971 | } |
14f9c5c9 | 4972 | |
96d887e8 PH |
4973 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4974 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4975 | |
96d887e8 PH |
4976 | static int |
4977 | is_nondebugging_type (struct type *type) | |
4978 | { | |
0d5cff50 | 4979 | const char *name = ada_type_name (type); |
5b4ee69b | 4980 | |
96d887e8 PH |
4981 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4982 | } | |
4c4b4cd2 | 4983 | |
8f17729f JB |
4984 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4985 | that are deemed "identical" for practical purposes. | |
4986 | ||
4987 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4988 | types and that their number of enumerals is identical (in other | |
4989 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4990 | ||
4991 | static int | |
4992 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
4993 | { | |
4994 | int i; | |
4995 | ||
4996 | /* The heuristic we use here is fairly conservative. We consider | |
4997 | that 2 enumerate types are identical if they have the same | |
4998 | number of enumerals and that all enumerals have the same | |
4999 | underlying value and name. */ | |
5000 | ||
5001 | /* All enums in the type should have an identical underlying value. */ | |
5002 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
14e75d8e | 5003 | if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i)) |
8f17729f JB |
5004 | return 0; |
5005 | ||
5006 | /* All enumerals should also have the same name (modulo any numerical | |
5007 | suffix). */ | |
5008 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
5009 | { | |
0d5cff50 DE |
5010 | const char *name_1 = TYPE_FIELD_NAME (type1, i); |
5011 | const char *name_2 = TYPE_FIELD_NAME (type2, i); | |
8f17729f JB |
5012 | int len_1 = strlen (name_1); |
5013 | int len_2 = strlen (name_2); | |
5014 | ||
5015 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
5016 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
5017 | if (len_1 != len_2 | |
5018 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
5019 | TYPE_FIELD_NAME (type2, i), | |
5020 | len_1) != 0) | |
5021 | return 0; | |
5022 | } | |
5023 | ||
5024 | return 1; | |
5025 | } | |
5026 | ||
5027 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
5028 | that are deemed "identical" for practical purposes. Sometimes, | |
5029 | enumerals are not strictly identical, but their types are so similar | |
5030 | that they can be considered identical. | |
5031 | ||
5032 | For instance, consider the following code: | |
5033 | ||
5034 | type Color is (Black, Red, Green, Blue, White); | |
5035 | type RGB_Color is new Color range Red .. Blue; | |
5036 | ||
5037 | Type RGB_Color is a subrange of an implicit type which is a copy | |
5038 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
5039 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
5040 | As a result, when an expression references any of the enumeral | |
5041 | by name (Eg. "print green"), the expression is technically | |
5042 | ambiguous and the user should be asked to disambiguate. But | |
5043 | doing so would only hinder the user, since it wouldn't matter | |
5044 | what choice he makes, the outcome would always be the same. | |
5045 | So, for practical purposes, we consider them as the same. */ | |
5046 | ||
5047 | static int | |
54d343a2 | 5048 | symbols_are_identical_enums (const std::vector<struct block_symbol> &syms) |
8f17729f JB |
5049 | { |
5050 | int i; | |
5051 | ||
5052 | /* Before performing a thorough comparison check of each type, | |
5053 | we perform a series of inexpensive checks. We expect that these | |
5054 | checks will quickly fail in the vast majority of cases, and thus | |
5055 | help prevent the unnecessary use of a more expensive comparison. | |
5056 | Said comparison also expects us to make some of these checks | |
5057 | (see ada_identical_enum_types_p). */ | |
5058 | ||
5059 | /* Quick check: All symbols should have an enum type. */ | |
54d343a2 | 5060 | for (i = 0; i < syms.size (); i++) |
d12307c1 | 5061 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM) |
8f17729f JB |
5062 | return 0; |
5063 | ||
5064 | /* Quick check: They should all have the same value. */ | |
54d343a2 | 5065 | for (i = 1; i < syms.size (); i++) |
d12307c1 | 5066 | if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol)) |
8f17729f JB |
5067 | return 0; |
5068 | ||
5069 | /* Quick check: They should all have the same number of enumerals. */ | |
54d343a2 | 5070 | for (i = 1; i < syms.size (); i++) |
d12307c1 PMR |
5071 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol)) |
5072 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol))) | |
8f17729f JB |
5073 | return 0; |
5074 | ||
5075 | /* All the sanity checks passed, so we might have a set of | |
5076 | identical enumeration types. Perform a more complete | |
5077 | comparison of the type of each symbol. */ | |
54d343a2 | 5078 | for (i = 1; i < syms.size (); i++) |
d12307c1 PMR |
5079 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol), |
5080 | SYMBOL_TYPE (syms[0].symbol))) | |
8f17729f JB |
5081 | return 0; |
5082 | ||
5083 | return 1; | |
5084 | } | |
5085 | ||
54d343a2 | 5086 | /* Remove any non-debugging symbols in SYMS that definitely |
96d887e8 PH |
5087 | duplicate other symbols in the list (The only case I know of where |
5088 | this happens is when object files containing stabs-in-ecoff are | |
5089 | linked with files containing ordinary ecoff debugging symbols (or no | |
5090 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
5091 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 5092 | |
96d887e8 | 5093 | static int |
54d343a2 | 5094 | remove_extra_symbols (std::vector<struct block_symbol> *syms) |
96d887e8 PH |
5095 | { |
5096 | int i, j; | |
4c4b4cd2 | 5097 | |
8f17729f JB |
5098 | /* We should never be called with less than 2 symbols, as there |
5099 | cannot be any extra symbol in that case. But it's easy to | |
5100 | handle, since we have nothing to do in that case. */ | |
54d343a2 TT |
5101 | if (syms->size () < 2) |
5102 | return syms->size (); | |
8f17729f | 5103 | |
96d887e8 | 5104 | i = 0; |
54d343a2 | 5105 | while (i < syms->size ()) |
96d887e8 | 5106 | { |
a35ddb44 | 5107 | int remove_p = 0; |
339c13b6 JB |
5108 | |
5109 | /* If two symbols have the same name and one of them is a stub type, | |
5110 | the get rid of the stub. */ | |
5111 | ||
54d343a2 | 5112 | if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol)) |
987012b8 | 5113 | && (*syms)[i].symbol->linkage_name () != NULL) |
339c13b6 | 5114 | { |
54d343a2 | 5115 | for (j = 0; j < syms->size (); j++) |
339c13b6 JB |
5116 | { |
5117 | if (j != i | |
54d343a2 | 5118 | && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol)) |
987012b8 CB |
5119 | && (*syms)[j].symbol->linkage_name () != NULL |
5120 | && strcmp ((*syms)[i].symbol->linkage_name (), | |
5121 | (*syms)[j].symbol->linkage_name ()) == 0) | |
a35ddb44 | 5122 | remove_p = 1; |
339c13b6 JB |
5123 | } |
5124 | } | |
5125 | ||
5126 | /* Two symbols with the same name, same class and same address | |
5127 | should be identical. */ | |
5128 | ||
987012b8 | 5129 | else if ((*syms)[i].symbol->linkage_name () != NULL |
54d343a2 TT |
5130 | && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC |
5131 | && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol))) | |
96d887e8 | 5132 | { |
54d343a2 | 5133 | for (j = 0; j < syms->size (); j += 1) |
96d887e8 PH |
5134 | { |
5135 | if (i != j | |
987012b8 CB |
5136 | && (*syms)[j].symbol->linkage_name () != NULL |
5137 | && strcmp ((*syms)[i].symbol->linkage_name (), | |
5138 | (*syms)[j].symbol->linkage_name ()) == 0 | |
54d343a2 TT |
5139 | && SYMBOL_CLASS ((*syms)[i].symbol) |
5140 | == SYMBOL_CLASS ((*syms)[j].symbol) | |
5141 | && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol) | |
5142 | == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol)) | |
a35ddb44 | 5143 | remove_p = 1; |
4c4b4cd2 | 5144 | } |
4c4b4cd2 | 5145 | } |
339c13b6 | 5146 | |
a35ddb44 | 5147 | if (remove_p) |
54d343a2 | 5148 | syms->erase (syms->begin () + i); |
339c13b6 | 5149 | |
96d887e8 | 5150 | i += 1; |
14f9c5c9 | 5151 | } |
8f17729f JB |
5152 | |
5153 | /* If all the remaining symbols are identical enumerals, then | |
5154 | just keep the first one and discard the rest. | |
5155 | ||
5156 | Unlike what we did previously, we do not discard any entry | |
5157 | unless they are ALL identical. This is because the symbol | |
5158 | comparison is not a strict comparison, but rather a practical | |
5159 | comparison. If all symbols are considered identical, then | |
5160 | we can just go ahead and use the first one and discard the rest. | |
5161 | But if we cannot reduce the list to a single element, we have | |
5162 | to ask the user to disambiguate anyways. And if we have to | |
5163 | present a multiple-choice menu, it's less confusing if the list | |
5164 | isn't missing some choices that were identical and yet distinct. */ | |
54d343a2 TT |
5165 | if (symbols_are_identical_enums (*syms)) |
5166 | syms->resize (1); | |
8f17729f | 5167 | |
54d343a2 | 5168 | return syms->size (); |
14f9c5c9 AS |
5169 | } |
5170 | ||
96d887e8 PH |
5171 | /* Given a type that corresponds to a renaming entity, use the type name |
5172 | to extract the scope (package name or function name, fully qualified, | |
5173 | and following the GNAT encoding convention) where this renaming has been | |
49d83361 | 5174 | defined. */ |
4c4b4cd2 | 5175 | |
49d83361 | 5176 | static std::string |
96d887e8 | 5177 | xget_renaming_scope (struct type *renaming_type) |
14f9c5c9 | 5178 | { |
96d887e8 | 5179 | /* The renaming types adhere to the following convention: |
0963b4bd | 5180 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
5181 | So, to extract the scope, we search for the "___XR" extension, |
5182 | and then backtrack until we find the first "__". */ | |
76a01679 | 5183 | |
a737d952 | 5184 | const char *name = TYPE_NAME (renaming_type); |
108d56a4 SM |
5185 | const char *suffix = strstr (name, "___XR"); |
5186 | const char *last; | |
14f9c5c9 | 5187 | |
96d887e8 PH |
5188 | /* Now, backtrack a bit until we find the first "__". Start looking |
5189 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 5190 | |
96d887e8 PH |
5191 | for (last = suffix - 3; last > name; last--) |
5192 | if (last[0] == '_' && last[1] == '_') | |
5193 | break; | |
76a01679 | 5194 | |
96d887e8 | 5195 | /* Make a copy of scope and return it. */ |
49d83361 | 5196 | return std::string (name, last); |
4c4b4cd2 PH |
5197 | } |
5198 | ||
96d887e8 | 5199 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 5200 | |
96d887e8 PH |
5201 | static int |
5202 | is_package_name (const char *name) | |
4c4b4cd2 | 5203 | { |
96d887e8 PH |
5204 | /* Here, We take advantage of the fact that no symbols are generated |
5205 | for packages, while symbols are generated for each function. | |
5206 | So the condition for NAME represent a package becomes equivalent | |
5207 | to NAME not existing in our list of symbols. There is only one | |
5208 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 5209 | |
96d887e8 PH |
5210 | /* If it is a function that has not been defined at library level, |
5211 | then we should be able to look it up in the symbols. */ | |
5212 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
5213 | return 0; | |
14f9c5c9 | 5214 | |
96d887e8 PH |
5215 | /* Library-level function names start with "_ada_". See if function |
5216 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 5217 | |
96d887e8 | 5218 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 5219 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
5220 | if (strstr (name, "__") != NULL) |
5221 | return 0; | |
4c4b4cd2 | 5222 | |
528e1572 | 5223 | std::string fun_name = string_printf ("_ada_%s", name); |
14f9c5c9 | 5224 | |
528e1572 | 5225 | return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL); |
96d887e8 | 5226 | } |
14f9c5c9 | 5227 | |
96d887e8 | 5228 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 5229 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 5230 | |
96d887e8 | 5231 | static int |
0d5cff50 | 5232 | old_renaming_is_invisible (const struct symbol *sym, const char *function_name) |
96d887e8 | 5233 | { |
aeb5907d JB |
5234 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) |
5235 | return 0; | |
5236 | ||
49d83361 | 5237 | std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym)); |
14f9c5c9 | 5238 | |
96d887e8 | 5239 | /* If the rename has been defined in a package, then it is visible. */ |
49d83361 TT |
5240 | if (is_package_name (scope.c_str ())) |
5241 | return 0; | |
14f9c5c9 | 5242 | |
96d887e8 PH |
5243 | /* Check that the rename is in the current function scope by checking |
5244 | that its name starts with SCOPE. */ | |
76a01679 | 5245 | |
96d887e8 PH |
5246 | /* If the function name starts with "_ada_", it means that it is |
5247 | a library-level function. Strip this prefix before doing the | |
5248 | comparison, as the encoding for the renaming does not contain | |
5249 | this prefix. */ | |
61012eef | 5250 | if (startswith (function_name, "_ada_")) |
96d887e8 | 5251 | function_name += 5; |
f26caa11 | 5252 | |
49d83361 | 5253 | return !startswith (function_name, scope.c_str ()); |
f26caa11 PH |
5254 | } |
5255 | ||
aeb5907d JB |
5256 | /* Remove entries from SYMS that corresponds to a renaming entity that |
5257 | is not visible from the function associated with CURRENT_BLOCK or | |
5258 | that is superfluous due to the presence of more specific renaming | |
5259 | information. Places surviving symbols in the initial entries of | |
5260 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
5261 | |
5262 | Rationale: | |
aeb5907d JB |
5263 | First, in cases where an object renaming is implemented as a |
5264 | reference variable, GNAT may produce both the actual reference | |
5265 | variable and the renaming encoding. In this case, we discard the | |
5266 | latter. | |
5267 | ||
5268 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
5269 | entity. Unfortunately, STABS currently does not support the definition |
5270 | of types that are local to a given lexical block, so all renamings types | |
5271 | are emitted at library level. As a consequence, if an application | |
5272 | contains two renaming entities using the same name, and a user tries to | |
5273 | print the value of one of these entities, the result of the ada symbol | |
5274 | lookup will also contain the wrong renaming type. | |
f26caa11 | 5275 | |
96d887e8 PH |
5276 | This function partially covers for this limitation by attempting to |
5277 | remove from the SYMS list renaming symbols that should be visible | |
5278 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
5279 | method with the current information available. The implementation | |
5280 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
5281 | ||
5282 | - When the user tries to print a rename in a function while there | |
5283 | is another rename entity defined in a package: Normally, the | |
5284 | rename in the function has precedence over the rename in the | |
5285 | package, so the latter should be removed from the list. This is | |
5286 | currently not the case. | |
5287 | ||
5288 | - This function will incorrectly remove valid renames if | |
5289 | the CURRENT_BLOCK corresponds to a function which symbol name | |
5290 | has been changed by an "Export" pragma. As a consequence, | |
5291 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 5292 | |
14f9c5c9 | 5293 | static int |
54d343a2 TT |
5294 | remove_irrelevant_renamings (std::vector<struct block_symbol> *syms, |
5295 | const struct block *current_block) | |
4c4b4cd2 PH |
5296 | { |
5297 | struct symbol *current_function; | |
0d5cff50 | 5298 | const char *current_function_name; |
4c4b4cd2 | 5299 | int i; |
aeb5907d JB |
5300 | int is_new_style_renaming; |
5301 | ||
5302 | /* If there is both a renaming foo___XR... encoded as a variable and | |
5303 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 5304 | First, zero out such symbols, then compress. */ |
aeb5907d | 5305 | is_new_style_renaming = 0; |
54d343a2 | 5306 | for (i = 0; i < syms->size (); i += 1) |
aeb5907d | 5307 | { |
54d343a2 TT |
5308 | struct symbol *sym = (*syms)[i].symbol; |
5309 | const struct block *block = (*syms)[i].block; | |
aeb5907d JB |
5310 | const char *name; |
5311 | const char *suffix; | |
5312 | ||
5313 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
5314 | continue; | |
987012b8 | 5315 | name = sym->linkage_name (); |
aeb5907d JB |
5316 | suffix = strstr (name, "___XR"); |
5317 | ||
5318 | if (suffix != NULL) | |
5319 | { | |
5320 | int name_len = suffix - name; | |
5321 | int j; | |
5b4ee69b | 5322 | |
aeb5907d | 5323 | is_new_style_renaming = 1; |
54d343a2 TT |
5324 | for (j = 0; j < syms->size (); j += 1) |
5325 | if (i != j && (*syms)[j].symbol != NULL | |
987012b8 | 5326 | && strncmp (name, (*syms)[j].symbol->linkage_name (), |
aeb5907d | 5327 | name_len) == 0 |
54d343a2 TT |
5328 | && block == (*syms)[j].block) |
5329 | (*syms)[j].symbol = NULL; | |
aeb5907d JB |
5330 | } |
5331 | } | |
5332 | if (is_new_style_renaming) | |
5333 | { | |
5334 | int j, k; | |
5335 | ||
54d343a2 TT |
5336 | for (j = k = 0; j < syms->size (); j += 1) |
5337 | if ((*syms)[j].symbol != NULL) | |
aeb5907d | 5338 | { |
54d343a2 | 5339 | (*syms)[k] = (*syms)[j]; |
aeb5907d JB |
5340 | k += 1; |
5341 | } | |
5342 | return k; | |
5343 | } | |
4c4b4cd2 PH |
5344 | |
5345 | /* Extract the function name associated to CURRENT_BLOCK. | |
5346 | Abort if unable to do so. */ | |
76a01679 | 5347 | |
4c4b4cd2 | 5348 | if (current_block == NULL) |
54d343a2 | 5349 | return syms->size (); |
76a01679 | 5350 | |
7f0df278 | 5351 | current_function = block_linkage_function (current_block); |
4c4b4cd2 | 5352 | if (current_function == NULL) |
54d343a2 | 5353 | return syms->size (); |
4c4b4cd2 | 5354 | |
987012b8 | 5355 | current_function_name = current_function->linkage_name (); |
4c4b4cd2 | 5356 | if (current_function_name == NULL) |
54d343a2 | 5357 | return syms->size (); |
4c4b4cd2 PH |
5358 | |
5359 | /* Check each of the symbols, and remove it from the list if it is | |
5360 | a type corresponding to a renaming that is out of the scope of | |
5361 | the current block. */ | |
5362 | ||
5363 | i = 0; | |
54d343a2 | 5364 | while (i < syms->size ()) |
4c4b4cd2 | 5365 | { |
54d343a2 | 5366 | if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL) |
aeb5907d | 5367 | == ADA_OBJECT_RENAMING |
54d343a2 TT |
5368 | && old_renaming_is_invisible ((*syms)[i].symbol, |
5369 | current_function_name)) | |
5370 | syms->erase (syms->begin () + i); | |
4c4b4cd2 PH |
5371 | else |
5372 | i += 1; | |
5373 | } | |
5374 | ||
54d343a2 | 5375 | return syms->size (); |
4c4b4cd2 PH |
5376 | } |
5377 | ||
339c13b6 JB |
5378 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
5379 | whose name and domain match NAME and DOMAIN respectively. | |
5380 | If no match was found, then extend the search to "enclosing" | |
5381 | routines (in other words, if we're inside a nested function, | |
5382 | search the symbols defined inside the enclosing functions). | |
d0a8ab18 JB |
5383 | If WILD_MATCH_P is nonzero, perform the naming matching in |
5384 | "wild" mode (see function "wild_match" for more info). | |
339c13b6 JB |
5385 | |
5386 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
5387 | ||
5388 | static void | |
b5ec771e PA |
5389 | ada_add_local_symbols (struct obstack *obstackp, |
5390 | const lookup_name_info &lookup_name, | |
5391 | const struct block *block, domain_enum domain) | |
339c13b6 JB |
5392 | { |
5393 | int block_depth = 0; | |
5394 | ||
5395 | while (block != NULL) | |
5396 | { | |
5397 | block_depth += 1; | |
b5ec771e | 5398 | ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL); |
339c13b6 JB |
5399 | |
5400 | /* If we found a non-function match, assume that's the one. */ | |
5401 | if (is_nonfunction (defns_collected (obstackp, 0), | |
5402 | num_defns_collected (obstackp))) | |
5403 | return; | |
5404 | ||
5405 | block = BLOCK_SUPERBLOCK (block); | |
5406 | } | |
5407 | ||
5408 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
5409 | enclosing subprogram. */ | |
5410 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
b5ec771e | 5411 | add_symbols_from_enclosing_procs (obstackp, lookup_name, domain); |
339c13b6 JB |
5412 | } |
5413 | ||
ccefe4c4 | 5414 | /* An object of this type is used as the user_data argument when |
40658b94 | 5415 | calling the map_matching_symbols method. */ |
ccefe4c4 | 5416 | |
40658b94 | 5417 | struct match_data |
ccefe4c4 | 5418 | { |
40658b94 | 5419 | struct objfile *objfile; |
ccefe4c4 | 5420 | struct obstack *obstackp; |
40658b94 PH |
5421 | struct symbol *arg_sym; |
5422 | int found_sym; | |
ccefe4c4 TT |
5423 | }; |
5424 | ||
199b4314 TT |
5425 | /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM, |
5426 | to a list of symbols. DATA is a pointer to a struct match_data * | |
40658b94 PH |
5427 | containing the obstack that collects the symbol list, the file that SYM |
5428 | must come from, a flag indicating whether a non-argument symbol has | |
5429 | been found in the current block, and the last argument symbol | |
5430 | passed in SYM within the current block (if any). When SYM is null, | |
5431 | marking the end of a block, the argument symbol is added if no | |
5432 | other has been found. */ | |
ccefe4c4 | 5433 | |
199b4314 TT |
5434 | static bool |
5435 | aux_add_nonlocal_symbols (struct block_symbol *bsym, | |
5436 | struct match_data *data) | |
ccefe4c4 | 5437 | { |
199b4314 TT |
5438 | const struct block *block = bsym->block; |
5439 | struct symbol *sym = bsym->symbol; | |
5440 | ||
40658b94 PH |
5441 | if (sym == NULL) |
5442 | { | |
5443 | if (!data->found_sym && data->arg_sym != NULL) | |
5444 | add_defn_to_vec (data->obstackp, | |
5445 | fixup_symbol_section (data->arg_sym, data->objfile), | |
5446 | block); | |
5447 | data->found_sym = 0; | |
5448 | data->arg_sym = NULL; | |
5449 | } | |
5450 | else | |
5451 | { | |
5452 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
199b4314 | 5453 | return true; |
40658b94 PH |
5454 | else if (SYMBOL_IS_ARGUMENT (sym)) |
5455 | data->arg_sym = sym; | |
5456 | else | |
5457 | { | |
5458 | data->found_sym = 1; | |
5459 | add_defn_to_vec (data->obstackp, | |
5460 | fixup_symbol_section (sym, data->objfile), | |
5461 | block); | |
5462 | } | |
5463 | } | |
199b4314 | 5464 | return true; |
40658b94 PH |
5465 | } |
5466 | ||
b5ec771e PA |
5467 | /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are |
5468 | targeted by renamings matching LOOKUP_NAME in BLOCK. Add these | |
5469 | symbols to OBSTACKP. Return whether we found such symbols. */ | |
22cee43f PMR |
5470 | |
5471 | static int | |
5472 | ada_add_block_renamings (struct obstack *obstackp, | |
5473 | const struct block *block, | |
b5ec771e PA |
5474 | const lookup_name_info &lookup_name, |
5475 | domain_enum domain) | |
22cee43f PMR |
5476 | { |
5477 | struct using_direct *renaming; | |
5478 | int defns_mark = num_defns_collected (obstackp); | |
5479 | ||
b5ec771e PA |
5480 | symbol_name_matcher_ftype *name_match |
5481 | = ada_get_symbol_name_matcher (lookup_name); | |
5482 | ||
22cee43f PMR |
5483 | for (renaming = block_using (block); |
5484 | renaming != NULL; | |
5485 | renaming = renaming->next) | |
5486 | { | |
5487 | const char *r_name; | |
22cee43f PMR |
5488 | |
5489 | /* Avoid infinite recursions: skip this renaming if we are actually | |
5490 | already traversing it. | |
5491 | ||
5492 | Currently, symbol lookup in Ada don't use the namespace machinery from | |
5493 | C++/Fortran support: skip namespace imports that use them. */ | |
5494 | if (renaming->searched | |
5495 | || (renaming->import_src != NULL | |
5496 | && renaming->import_src[0] != '\0') | |
5497 | || (renaming->import_dest != NULL | |
5498 | && renaming->import_dest[0] != '\0')) | |
5499 | continue; | |
5500 | renaming->searched = 1; | |
5501 | ||
5502 | /* TODO: here, we perform another name-based symbol lookup, which can | |
5503 | pull its own multiple overloads. In theory, we should be able to do | |
5504 | better in this case since, in DWARF, DW_AT_import is a DIE reference, | |
5505 | not a simple name. But in order to do this, we would need to enhance | |
5506 | the DWARF reader to associate a symbol to this renaming, instead of a | |
5507 | name. So, for now, we do something simpler: re-use the C++/Fortran | |
5508 | namespace machinery. */ | |
5509 | r_name = (renaming->alias != NULL | |
5510 | ? renaming->alias | |
5511 | : renaming->declaration); | |
b5ec771e PA |
5512 | if (name_match (r_name, lookup_name, NULL)) |
5513 | { | |
5514 | lookup_name_info decl_lookup_name (renaming->declaration, | |
5515 | lookup_name.match_type ()); | |
5516 | ada_add_all_symbols (obstackp, block, decl_lookup_name, domain, | |
5517 | 1, NULL); | |
5518 | } | |
22cee43f PMR |
5519 | renaming->searched = 0; |
5520 | } | |
5521 | return num_defns_collected (obstackp) != defns_mark; | |
5522 | } | |
5523 | ||
db230ce3 JB |
5524 | /* Implements compare_names, but only applying the comparision using |
5525 | the given CASING. */ | |
5b4ee69b | 5526 | |
40658b94 | 5527 | static int |
db230ce3 JB |
5528 | compare_names_with_case (const char *string1, const char *string2, |
5529 | enum case_sensitivity casing) | |
40658b94 PH |
5530 | { |
5531 | while (*string1 != '\0' && *string2 != '\0') | |
5532 | { | |
db230ce3 JB |
5533 | char c1, c2; |
5534 | ||
40658b94 PH |
5535 | if (isspace (*string1) || isspace (*string2)) |
5536 | return strcmp_iw_ordered (string1, string2); | |
db230ce3 JB |
5537 | |
5538 | if (casing == case_sensitive_off) | |
5539 | { | |
5540 | c1 = tolower (*string1); | |
5541 | c2 = tolower (*string2); | |
5542 | } | |
5543 | else | |
5544 | { | |
5545 | c1 = *string1; | |
5546 | c2 = *string2; | |
5547 | } | |
5548 | if (c1 != c2) | |
40658b94 | 5549 | break; |
db230ce3 | 5550 | |
40658b94 PH |
5551 | string1 += 1; |
5552 | string2 += 1; | |
5553 | } | |
db230ce3 | 5554 | |
40658b94 PH |
5555 | switch (*string1) |
5556 | { | |
5557 | case '(': | |
5558 | return strcmp_iw_ordered (string1, string2); | |
5559 | case '_': | |
5560 | if (*string2 == '\0') | |
5561 | { | |
052874e8 | 5562 | if (is_name_suffix (string1)) |
40658b94 PH |
5563 | return 0; |
5564 | else | |
1a1d5513 | 5565 | return 1; |
40658b94 | 5566 | } |
dbb8534f | 5567 | /* FALLTHROUGH */ |
40658b94 PH |
5568 | default: |
5569 | if (*string2 == '(') | |
5570 | return strcmp_iw_ordered (string1, string2); | |
5571 | else | |
db230ce3 JB |
5572 | { |
5573 | if (casing == case_sensitive_off) | |
5574 | return tolower (*string1) - tolower (*string2); | |
5575 | else | |
5576 | return *string1 - *string2; | |
5577 | } | |
40658b94 | 5578 | } |
ccefe4c4 TT |
5579 | } |
5580 | ||
db230ce3 JB |
5581 | /* Compare STRING1 to STRING2, with results as for strcmp. |
5582 | Compatible with strcmp_iw_ordered in that... | |
5583 | ||
5584 | strcmp_iw_ordered (STRING1, STRING2) <= 0 | |
5585 | ||
5586 | ... implies... | |
5587 | ||
5588 | compare_names (STRING1, STRING2) <= 0 | |
5589 | ||
5590 | (they may differ as to what symbols compare equal). */ | |
5591 | ||
5592 | static int | |
5593 | compare_names (const char *string1, const char *string2) | |
5594 | { | |
5595 | int result; | |
5596 | ||
5597 | /* Similar to what strcmp_iw_ordered does, we need to perform | |
5598 | a case-insensitive comparison first, and only resort to | |
5599 | a second, case-sensitive, comparison if the first one was | |
5600 | not sufficient to differentiate the two strings. */ | |
5601 | ||
5602 | result = compare_names_with_case (string1, string2, case_sensitive_off); | |
5603 | if (result == 0) | |
5604 | result = compare_names_with_case (string1, string2, case_sensitive_on); | |
5605 | ||
5606 | return result; | |
5607 | } | |
5608 | ||
b5ec771e PA |
5609 | /* Convenience function to get at the Ada encoded lookup name for |
5610 | LOOKUP_NAME, as a C string. */ | |
5611 | ||
5612 | static const char * | |
5613 | ada_lookup_name (const lookup_name_info &lookup_name) | |
5614 | { | |
5615 | return lookup_name.ada ().lookup_name ().c_str (); | |
5616 | } | |
5617 | ||
339c13b6 | 5618 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
b5ec771e PA |
5619 | LOOKUP_NAME and DOMAIN respectively. The search is performed on |
5620 | GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK | |
5621 | symbols otherwise. */ | |
339c13b6 JB |
5622 | |
5623 | static void | |
b5ec771e PA |
5624 | add_nonlocal_symbols (struct obstack *obstackp, |
5625 | const lookup_name_info &lookup_name, | |
5626 | domain_enum domain, int global) | |
339c13b6 | 5627 | { |
40658b94 | 5628 | struct match_data data; |
339c13b6 | 5629 | |
6475f2fe | 5630 | memset (&data, 0, sizeof data); |
ccefe4c4 | 5631 | data.obstackp = obstackp; |
339c13b6 | 5632 | |
b5ec771e PA |
5633 | bool is_wild_match = lookup_name.ada ().wild_match_p (); |
5634 | ||
199b4314 TT |
5635 | auto callback = [&] (struct block_symbol *bsym) |
5636 | { | |
5637 | return aux_add_nonlocal_symbols (bsym, &data); | |
5638 | }; | |
5639 | ||
2030c079 | 5640 | for (objfile *objfile : current_program_space->objfiles ()) |
40658b94 PH |
5641 | { |
5642 | data.objfile = objfile; | |
5643 | ||
b054970d TT |
5644 | objfile->sf->qf->map_matching_symbols (objfile, lookup_name, |
5645 | domain, global, callback, | |
5646 | (is_wild_match | |
5647 | ? NULL : compare_names)); | |
22cee43f | 5648 | |
b669c953 | 5649 | for (compunit_symtab *cu : objfile->compunits ()) |
22cee43f PMR |
5650 | { |
5651 | const struct block *global_block | |
5652 | = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK); | |
5653 | ||
b5ec771e PA |
5654 | if (ada_add_block_renamings (obstackp, global_block, lookup_name, |
5655 | domain)) | |
22cee43f PMR |
5656 | data.found_sym = 1; |
5657 | } | |
40658b94 PH |
5658 | } |
5659 | ||
5660 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
5661 | { | |
b5ec771e | 5662 | const char *name = ada_lookup_name (lookup_name); |
b054970d TT |
5663 | lookup_name_info name1 (std::string ("<_ada_") + name + '>', |
5664 | symbol_name_match_type::FULL); | |
b5ec771e | 5665 | |
2030c079 | 5666 | for (objfile *objfile : current_program_space->objfiles ()) |
40658b94 | 5667 | { |
40658b94 | 5668 | data.objfile = objfile; |
b054970d | 5669 | objfile->sf->qf->map_matching_symbols (objfile, name1, |
199b4314 | 5670 | domain, global, callback, |
b5ec771e | 5671 | compare_names); |
40658b94 PH |
5672 | } |
5673 | } | |
339c13b6 JB |
5674 | } |
5675 | ||
b5ec771e PA |
5676 | /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if |
5677 | FULL_SEARCH is non-zero, enclosing scope and in global scopes, | |
5678 | returning the number of matches. Add these to OBSTACKP. | |
4eeaa230 | 5679 | |
22cee43f PMR |
5680 | When FULL_SEARCH is non-zero, any non-function/non-enumeral |
5681 | symbol match within the nest of blocks whose innermost member is BLOCK, | |
4c4b4cd2 | 5682 | is the one match returned (no other matches in that or |
d9680e73 | 5683 | enclosing blocks is returned). If there are any matches in or |
22cee43f | 5684 | surrounding BLOCK, then these alone are returned. |
4eeaa230 | 5685 | |
b5ec771e PA |
5686 | Names prefixed with "standard__" are handled specially: |
5687 | "standard__" is first stripped off (by the lookup_name | |
5688 | constructor), and only static and global symbols are searched. | |
14f9c5c9 | 5689 | |
22cee43f PMR |
5690 | If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had |
5691 | to lookup global symbols. */ | |
5692 | ||
5693 | static void | |
5694 | ada_add_all_symbols (struct obstack *obstackp, | |
5695 | const struct block *block, | |
b5ec771e | 5696 | const lookup_name_info &lookup_name, |
22cee43f PMR |
5697 | domain_enum domain, |
5698 | int full_search, | |
5699 | int *made_global_lookup_p) | |
14f9c5c9 AS |
5700 | { |
5701 | struct symbol *sym; | |
14f9c5c9 | 5702 | |
22cee43f PMR |
5703 | if (made_global_lookup_p) |
5704 | *made_global_lookup_p = 0; | |
339c13b6 JB |
5705 | |
5706 | /* Special case: If the user specifies a symbol name inside package | |
5707 | Standard, do a non-wild matching of the symbol name without | |
5708 | the "standard__" prefix. This was primarily introduced in order | |
5709 | to allow the user to specifically access the standard exceptions | |
5710 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5711 | is ambiguous (due to the user defining its own Constraint_Error | |
5712 | entity inside its program). */ | |
b5ec771e PA |
5713 | if (lookup_name.ada ().standard_p ()) |
5714 | block = NULL; | |
4c4b4cd2 | 5715 | |
339c13b6 | 5716 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5717 | |
4eeaa230 DE |
5718 | if (block != NULL) |
5719 | { | |
5720 | if (full_search) | |
b5ec771e | 5721 | ada_add_local_symbols (obstackp, lookup_name, block, domain); |
4eeaa230 DE |
5722 | else |
5723 | { | |
5724 | /* In the !full_search case we're are being called by | |
5725 | ada_iterate_over_symbols, and we don't want to search | |
5726 | superblocks. */ | |
b5ec771e | 5727 | ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL); |
4eeaa230 | 5728 | } |
22cee43f PMR |
5729 | if (num_defns_collected (obstackp) > 0 || !full_search) |
5730 | return; | |
4eeaa230 | 5731 | } |
d2e4a39e | 5732 | |
339c13b6 JB |
5733 | /* No non-global symbols found. Check our cache to see if we have |
5734 | already performed this search before. If we have, then return | |
5735 | the same result. */ | |
5736 | ||
b5ec771e PA |
5737 | if (lookup_cached_symbol (ada_lookup_name (lookup_name), |
5738 | domain, &sym, &block)) | |
4c4b4cd2 PH |
5739 | { |
5740 | if (sym != NULL) | |
b5ec771e | 5741 | add_defn_to_vec (obstackp, sym, block); |
22cee43f | 5742 | return; |
4c4b4cd2 | 5743 | } |
14f9c5c9 | 5744 | |
22cee43f PMR |
5745 | if (made_global_lookup_p) |
5746 | *made_global_lookup_p = 1; | |
b1eedac9 | 5747 | |
339c13b6 JB |
5748 | /* Search symbols from all global blocks. */ |
5749 | ||
b5ec771e | 5750 | add_nonlocal_symbols (obstackp, lookup_name, domain, 1); |
d2e4a39e | 5751 | |
4c4b4cd2 | 5752 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5753 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5754 | |
22cee43f | 5755 | if (num_defns_collected (obstackp) == 0) |
b5ec771e | 5756 | add_nonlocal_symbols (obstackp, lookup_name, domain, 0); |
22cee43f PMR |
5757 | } |
5758 | ||
b5ec771e PA |
5759 | /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH |
5760 | is non-zero, enclosing scope and in global scopes, returning the number of | |
22cee43f | 5761 | matches. |
54d343a2 TT |
5762 | Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols |
5763 | found and the blocks and symbol tables (if any) in which they were | |
5764 | found. | |
22cee43f PMR |
5765 | |
5766 | When full_search is non-zero, any non-function/non-enumeral | |
5767 | symbol match within the nest of blocks whose innermost member is BLOCK, | |
5768 | is the one match returned (no other matches in that or | |
5769 | enclosing blocks is returned). If there are any matches in or | |
5770 | surrounding BLOCK, then these alone are returned. | |
5771 | ||
5772 | Names prefixed with "standard__" are handled specially: "standard__" | |
5773 | is first stripped off, and only static and global symbols are searched. */ | |
5774 | ||
5775 | static int | |
b5ec771e PA |
5776 | ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name, |
5777 | const struct block *block, | |
22cee43f | 5778 | domain_enum domain, |
54d343a2 | 5779 | std::vector<struct block_symbol> *results, |
22cee43f PMR |
5780 | int full_search) |
5781 | { | |
22cee43f PMR |
5782 | int syms_from_global_search; |
5783 | int ndefns; | |
ec6a20c2 | 5784 | auto_obstack obstack; |
22cee43f | 5785 | |
ec6a20c2 | 5786 | ada_add_all_symbols (&obstack, block, lookup_name, |
b5ec771e | 5787 | domain, full_search, &syms_from_global_search); |
14f9c5c9 | 5788 | |
ec6a20c2 JB |
5789 | ndefns = num_defns_collected (&obstack); |
5790 | ||
54d343a2 TT |
5791 | struct block_symbol *base = defns_collected (&obstack, 1); |
5792 | for (int i = 0; i < ndefns; ++i) | |
5793 | results->push_back (base[i]); | |
4c4b4cd2 | 5794 | |
54d343a2 | 5795 | ndefns = remove_extra_symbols (results); |
4c4b4cd2 | 5796 | |
b1eedac9 | 5797 | if (ndefns == 0 && full_search && syms_from_global_search) |
b5ec771e | 5798 | cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL); |
14f9c5c9 | 5799 | |
b1eedac9 | 5800 | if (ndefns == 1 && full_search && syms_from_global_search) |
b5ec771e PA |
5801 | cache_symbol (ada_lookup_name (lookup_name), domain, |
5802 | (*results)[0].symbol, (*results)[0].block); | |
14f9c5c9 | 5803 | |
54d343a2 | 5804 | ndefns = remove_irrelevant_renamings (results, block); |
ec6a20c2 | 5805 | |
14f9c5c9 AS |
5806 | return ndefns; |
5807 | } | |
5808 | ||
b5ec771e | 5809 | /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and |
54d343a2 TT |
5810 | in global scopes, returning the number of matches, and filling *RESULTS |
5811 | with (SYM,BLOCK) tuples. | |
ec6a20c2 | 5812 | |
4eeaa230 DE |
5813 | See ada_lookup_symbol_list_worker for further details. */ |
5814 | ||
5815 | int | |
b5ec771e | 5816 | ada_lookup_symbol_list (const char *name, const struct block *block, |
54d343a2 TT |
5817 | domain_enum domain, |
5818 | std::vector<struct block_symbol> *results) | |
4eeaa230 | 5819 | { |
b5ec771e PA |
5820 | symbol_name_match_type name_match_type = name_match_type_from_name (name); |
5821 | lookup_name_info lookup_name (name, name_match_type); | |
5822 | ||
5823 | return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1); | |
4eeaa230 DE |
5824 | } |
5825 | ||
5826 | /* Implementation of the la_iterate_over_symbols method. */ | |
5827 | ||
6969f124 | 5828 | static bool |
14bc53a8 | 5829 | ada_iterate_over_symbols |
b5ec771e PA |
5830 | (const struct block *block, const lookup_name_info &name, |
5831 | domain_enum domain, | |
14bc53a8 | 5832 | gdb::function_view<symbol_found_callback_ftype> callback) |
4eeaa230 DE |
5833 | { |
5834 | int ndefs, i; | |
54d343a2 | 5835 | std::vector<struct block_symbol> results; |
4eeaa230 DE |
5836 | |
5837 | ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0); | |
ec6a20c2 | 5838 | |
4eeaa230 DE |
5839 | for (i = 0; i < ndefs; ++i) |
5840 | { | |
7e41c8db | 5841 | if (!callback (&results[i])) |
6969f124 | 5842 | return false; |
4eeaa230 | 5843 | } |
6969f124 TT |
5844 | |
5845 | return true; | |
4eeaa230 DE |
5846 | } |
5847 | ||
4e5c77fe JB |
5848 | /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set |
5849 | to 1, but choosing the first symbol found if there are multiple | |
5850 | choices. | |
5851 | ||
5e2336be JB |
5852 | The result is stored in *INFO, which must be non-NULL. |
5853 | If no match is found, INFO->SYM is set to NULL. */ | |
4e5c77fe JB |
5854 | |
5855 | void | |
5856 | ada_lookup_encoded_symbol (const char *name, const struct block *block, | |
fe978cb0 | 5857 | domain_enum domain, |
d12307c1 | 5858 | struct block_symbol *info) |
14f9c5c9 | 5859 | { |
b5ec771e PA |
5860 | /* Since we already have an encoded name, wrap it in '<>' to force a |
5861 | verbatim match. Otherwise, if the name happens to not look like | |
5862 | an encoded name (because it doesn't include a "__"), | |
5863 | ada_lookup_name_info would re-encode/fold it again, and that | |
5864 | would e.g., incorrectly lowercase object renaming names like | |
5865 | "R28b" -> "r28b". */ | |
5866 | std::string verbatim = std::string ("<") + name + '>'; | |
5867 | ||
5e2336be | 5868 | gdb_assert (info != NULL); |
65392b3e | 5869 | *info = ada_lookup_symbol (verbatim.c_str (), block, domain); |
4e5c77fe | 5870 | } |
aeb5907d JB |
5871 | |
5872 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5873 | scope and in global scopes, or NULL if none. NAME is folded and | |
5874 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
65392b3e | 5875 | choosing the first symbol if there are multiple choices. */ |
4e5c77fe | 5876 | |
d12307c1 | 5877 | struct block_symbol |
aeb5907d | 5878 | ada_lookup_symbol (const char *name, const struct block *block0, |
65392b3e | 5879 | domain_enum domain) |
aeb5907d | 5880 | { |
54d343a2 | 5881 | std::vector<struct block_symbol> candidates; |
f98fc17b | 5882 | int n_candidates; |
f98fc17b PA |
5883 | |
5884 | n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates); | |
f98fc17b PA |
5885 | |
5886 | if (n_candidates == 0) | |
54d343a2 | 5887 | return {}; |
f98fc17b PA |
5888 | |
5889 | block_symbol info = candidates[0]; | |
5890 | info.symbol = fixup_symbol_section (info.symbol, NULL); | |
d12307c1 | 5891 | return info; |
4c4b4cd2 | 5892 | } |
14f9c5c9 | 5893 | |
d12307c1 | 5894 | static struct block_symbol |
f606139a DE |
5895 | ada_lookup_symbol_nonlocal (const struct language_defn *langdef, |
5896 | const char *name, | |
76a01679 | 5897 | const struct block *block, |
21b556f4 | 5898 | const domain_enum domain) |
4c4b4cd2 | 5899 | { |
d12307c1 | 5900 | struct block_symbol sym; |
04dccad0 | 5901 | |
65392b3e | 5902 | sym = ada_lookup_symbol (name, block_static_block (block), domain); |
d12307c1 | 5903 | if (sym.symbol != NULL) |
04dccad0 JB |
5904 | return sym; |
5905 | ||
5906 | /* If we haven't found a match at this point, try the primitive | |
5907 | types. In other languages, this search is performed before | |
5908 | searching for global symbols in order to short-circuit that | |
5909 | global-symbol search if it happens that the name corresponds | |
5910 | to a primitive type. But we cannot do the same in Ada, because | |
5911 | it is perfectly legitimate for a program to declare a type which | |
5912 | has the same name as a standard type. If looking up a type in | |
5913 | that situation, we have traditionally ignored the primitive type | |
5914 | in favor of user-defined types. This is why, unlike most other | |
5915 | languages, we search the primitive types this late and only after | |
5916 | having searched the global symbols without success. */ | |
5917 | ||
5918 | if (domain == VAR_DOMAIN) | |
5919 | { | |
5920 | struct gdbarch *gdbarch; | |
5921 | ||
5922 | if (block == NULL) | |
5923 | gdbarch = target_gdbarch (); | |
5924 | else | |
5925 | gdbarch = block_gdbarch (block); | |
d12307c1 PMR |
5926 | sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name); |
5927 | if (sym.symbol != NULL) | |
04dccad0 JB |
5928 | return sym; |
5929 | } | |
5930 | ||
6640a367 | 5931 | return {}; |
14f9c5c9 AS |
5932 | } |
5933 | ||
5934 | ||
4c4b4cd2 PH |
5935 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5936 | that is to be ignored for matching purposes. Suffixes of parallel | |
5937 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5938 | are given by any of the regular expressions: |
4c4b4cd2 | 5939 | |
babe1480 JB |
5940 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5941 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5942 | TKB [subprogram suffix for task bodies] |
babe1480 | 5943 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5944 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5945 | |
5946 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5947 | match is performed. This sequence is used to differentiate homonyms, | |
5948 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5949 | |
14f9c5c9 | 5950 | static int |
d2e4a39e | 5951 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5952 | { |
5953 | int k; | |
4c4b4cd2 PH |
5954 | const char *matching; |
5955 | const int len = strlen (str); | |
5956 | ||
babe1480 JB |
5957 | /* Skip optional leading __[0-9]+. */ |
5958 | ||
4c4b4cd2 PH |
5959 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5960 | { | |
babe1480 JB |
5961 | str += 3; |
5962 | while (isdigit (str[0])) | |
5963 | str += 1; | |
4c4b4cd2 | 5964 | } |
babe1480 JB |
5965 | |
5966 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 5967 | |
babe1480 | 5968 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 5969 | { |
babe1480 | 5970 | matching = str + 1; |
4c4b4cd2 PH |
5971 | while (isdigit (matching[0])) |
5972 | matching += 1; | |
5973 | if (matching[0] == '\0') | |
5974 | return 1; | |
5975 | } | |
5976 | ||
5977 | /* ___[0-9]+ */ | |
babe1480 | 5978 | |
4c4b4cd2 PH |
5979 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
5980 | { | |
5981 | matching = str + 3; | |
5982 | while (isdigit (matching[0])) | |
5983 | matching += 1; | |
5984 | if (matching[0] == '\0') | |
5985 | return 1; | |
5986 | } | |
5987 | ||
9ac7f98e JB |
5988 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
5989 | ||
5990 | if (strcmp (str, "TKB") == 0) | |
5991 | return 1; | |
5992 | ||
529cad9c PH |
5993 | #if 0 |
5994 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
5995 | with a N at the end. Unfortunately, the compiler uses the same |
5996 | convention for other internal types it creates. So treating | |
529cad9c | 5997 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
5998 | some regressions. For instance, consider the case of an enumerated |
5999 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
6000 | name ends with N. |
6001 | Having a single character like this as a suffix carrying some | |
0963b4bd | 6002 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
6003 | to be something like "_N" instead. In the meantime, do not do |
6004 | the following check. */ | |
6005 | /* Protected Object Subprograms */ | |
6006 | if (len == 1 && str [0] == 'N') | |
6007 | return 1; | |
6008 | #endif | |
6009 | ||
6010 | /* _E[0-9]+[bs]$ */ | |
6011 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
6012 | { | |
6013 | matching = str + 3; | |
6014 | while (isdigit (matching[0])) | |
6015 | matching += 1; | |
6016 | if ((matching[0] == 'b' || matching[0] == 's') | |
6017 | && matching [1] == '\0') | |
6018 | return 1; | |
6019 | } | |
6020 | ||
4c4b4cd2 PH |
6021 | /* ??? We should not modify STR directly, as we are doing below. This |
6022 | is fine in this case, but may become problematic later if we find | |
6023 | that this alternative did not work, and want to try matching | |
6024 | another one from the begining of STR. Since we modified it, we | |
6025 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
6026 | if (str[0] == 'X') |
6027 | { | |
6028 | str += 1; | |
d2e4a39e | 6029 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
6030 | { |
6031 | if (str[0] != 'n' && str[0] != 'b') | |
6032 | return 0; | |
6033 | str += 1; | |
6034 | } | |
14f9c5c9 | 6035 | } |
babe1480 | 6036 | |
14f9c5c9 AS |
6037 | if (str[0] == '\000') |
6038 | return 1; | |
babe1480 | 6039 | |
d2e4a39e | 6040 | if (str[0] == '_') |
14f9c5c9 AS |
6041 | { |
6042 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 6043 | return 0; |
d2e4a39e | 6044 | if (str[2] == '_') |
4c4b4cd2 | 6045 | { |
61ee279c PH |
6046 | if (strcmp (str + 3, "JM") == 0) |
6047 | return 1; | |
6048 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
6049 | the LJM suffix in favor of the JM one. But we will | |
6050 | still accept LJM as a valid suffix for a reasonable | |
6051 | amount of time, just to allow ourselves to debug programs | |
6052 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
6053 | if (strcmp (str + 3, "LJM") == 0) |
6054 | return 1; | |
6055 | if (str[3] != 'X') | |
6056 | return 0; | |
1265e4aa JB |
6057 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
6058 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
6059 | return 1; |
6060 | if (str[4] == 'R' && str[5] != 'T') | |
6061 | return 1; | |
6062 | return 0; | |
6063 | } | |
6064 | if (!isdigit (str[2])) | |
6065 | return 0; | |
6066 | for (k = 3; str[k] != '\0'; k += 1) | |
6067 | if (!isdigit (str[k]) && str[k] != '_') | |
6068 | return 0; | |
14f9c5c9 AS |
6069 | return 1; |
6070 | } | |
4c4b4cd2 | 6071 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 6072 | { |
4c4b4cd2 PH |
6073 | for (k = 2; str[k] != '\0'; k += 1) |
6074 | if (!isdigit (str[k]) && str[k] != '_') | |
6075 | return 0; | |
14f9c5c9 AS |
6076 | return 1; |
6077 | } | |
6078 | return 0; | |
6079 | } | |
d2e4a39e | 6080 | |
aeb5907d JB |
6081 | /* Return non-zero if the string starting at NAME and ending before |
6082 | NAME_END contains no capital letters. */ | |
529cad9c PH |
6083 | |
6084 | static int | |
6085 | is_valid_name_for_wild_match (const char *name0) | |
6086 | { | |
f945dedf | 6087 | std::string decoded_name = ada_decode (name0); |
529cad9c PH |
6088 | int i; |
6089 | ||
5823c3ef JB |
6090 | /* If the decoded name starts with an angle bracket, it means that |
6091 | NAME0 does not follow the GNAT encoding format. It should then | |
6092 | not be allowed as a possible wild match. */ | |
6093 | if (decoded_name[0] == '<') | |
6094 | return 0; | |
6095 | ||
529cad9c PH |
6096 | for (i=0; decoded_name[i] != '\0'; i++) |
6097 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
6098 | return 0; | |
6099 | ||
6100 | return 1; | |
6101 | } | |
6102 | ||
73589123 PH |
6103 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
6104 | that could start a simple name. Assumes that *NAMEP points into | |
6105 | the string beginning at NAME0. */ | |
4c4b4cd2 | 6106 | |
14f9c5c9 | 6107 | static int |
73589123 | 6108 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 6109 | { |
73589123 | 6110 | const char *name = *namep; |
5b4ee69b | 6111 | |
5823c3ef | 6112 | while (1) |
14f9c5c9 | 6113 | { |
aa27d0b3 | 6114 | int t0, t1; |
73589123 PH |
6115 | |
6116 | t0 = *name; | |
6117 | if (t0 == '_') | |
6118 | { | |
6119 | t1 = name[1]; | |
6120 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
6121 | { | |
6122 | name += 1; | |
61012eef | 6123 | if (name == name0 + 5 && startswith (name0, "_ada")) |
73589123 PH |
6124 | break; |
6125 | else | |
6126 | name += 1; | |
6127 | } | |
aa27d0b3 JB |
6128 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
6129 | || name[2] == target0)) | |
73589123 PH |
6130 | { |
6131 | name += 2; | |
6132 | break; | |
6133 | } | |
6134 | else | |
6135 | return 0; | |
6136 | } | |
6137 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
6138 | name += 1; | |
6139 | else | |
5823c3ef | 6140 | return 0; |
73589123 PH |
6141 | } |
6142 | ||
6143 | *namep = name; | |
6144 | return 1; | |
6145 | } | |
6146 | ||
b5ec771e PA |
6147 | /* Return true iff NAME encodes a name of the form prefix.PATN. |
6148 | Ignores any informational suffixes of NAME (i.e., for which | |
6149 | is_name_suffix is true). Assumes that PATN is a lower-cased Ada | |
6150 | simple name. */ | |
73589123 | 6151 | |
b5ec771e | 6152 | static bool |
73589123 PH |
6153 | wild_match (const char *name, const char *patn) |
6154 | { | |
22e048c9 | 6155 | const char *p; |
73589123 PH |
6156 | const char *name0 = name; |
6157 | ||
6158 | while (1) | |
6159 | { | |
6160 | const char *match = name; | |
6161 | ||
6162 | if (*name == *patn) | |
6163 | { | |
6164 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
6165 | if (*p != *name) | |
6166 | break; | |
6167 | if (*p == '\0' && is_name_suffix (name)) | |
b5ec771e | 6168 | return match == name0 || is_valid_name_for_wild_match (name0); |
73589123 PH |
6169 | |
6170 | if (name[-1] == '_') | |
6171 | name -= 1; | |
6172 | } | |
6173 | if (!advance_wild_match (&name, name0, *patn)) | |
b5ec771e | 6174 | return false; |
96d887e8 | 6175 | } |
96d887e8 PH |
6176 | } |
6177 | ||
b5ec771e PA |
6178 | /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring |
6179 | any trailing suffixes that encode debugging information or leading | |
6180 | _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging | |
6181 | information that is ignored). */ | |
40658b94 | 6182 | |
b5ec771e | 6183 | static bool |
c4d840bd PH |
6184 | full_match (const char *sym_name, const char *search_name) |
6185 | { | |
b5ec771e PA |
6186 | size_t search_name_len = strlen (search_name); |
6187 | ||
6188 | if (strncmp (sym_name, search_name, search_name_len) == 0 | |
6189 | && is_name_suffix (sym_name + search_name_len)) | |
6190 | return true; | |
6191 | ||
6192 | if (startswith (sym_name, "_ada_") | |
6193 | && strncmp (sym_name + 5, search_name, search_name_len) == 0 | |
6194 | && is_name_suffix (sym_name + search_name_len + 5)) | |
6195 | return true; | |
c4d840bd | 6196 | |
b5ec771e PA |
6197 | return false; |
6198 | } | |
c4d840bd | 6199 | |
b5ec771e PA |
6200 | /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector |
6201 | *defn_symbols, updating the list of symbols in OBSTACKP (if | |
6202 | necessary). OBJFILE is the section containing BLOCK. */ | |
96d887e8 PH |
6203 | |
6204 | static void | |
6205 | ada_add_block_symbols (struct obstack *obstackp, | |
b5ec771e PA |
6206 | const struct block *block, |
6207 | const lookup_name_info &lookup_name, | |
6208 | domain_enum domain, struct objfile *objfile) | |
96d887e8 | 6209 | { |
8157b174 | 6210 | struct block_iterator iter; |
96d887e8 PH |
6211 | /* A matching argument symbol, if any. */ |
6212 | struct symbol *arg_sym; | |
6213 | /* Set true when we find a matching non-argument symbol. */ | |
6214 | int found_sym; | |
6215 | struct symbol *sym; | |
6216 | ||
6217 | arg_sym = NULL; | |
6218 | found_sym = 0; | |
b5ec771e PA |
6219 | for (sym = block_iter_match_first (block, lookup_name, &iter); |
6220 | sym != NULL; | |
6221 | sym = block_iter_match_next (lookup_name, &iter)) | |
96d887e8 | 6222 | { |
c1b5c1eb | 6223 | if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain)) |
b5ec771e PA |
6224 | { |
6225 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) | |
6226 | { | |
6227 | if (SYMBOL_IS_ARGUMENT (sym)) | |
6228 | arg_sym = sym; | |
6229 | else | |
6230 | { | |
6231 | found_sym = 1; | |
6232 | add_defn_to_vec (obstackp, | |
6233 | fixup_symbol_section (sym, objfile), | |
6234 | block); | |
6235 | } | |
6236 | } | |
6237 | } | |
96d887e8 PH |
6238 | } |
6239 | ||
22cee43f PMR |
6240 | /* Handle renamings. */ |
6241 | ||
b5ec771e | 6242 | if (ada_add_block_renamings (obstackp, block, lookup_name, domain)) |
22cee43f PMR |
6243 | found_sym = 1; |
6244 | ||
96d887e8 PH |
6245 | if (!found_sym && arg_sym != NULL) |
6246 | { | |
76a01679 JB |
6247 | add_defn_to_vec (obstackp, |
6248 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 6249 | block); |
96d887e8 PH |
6250 | } |
6251 | ||
b5ec771e | 6252 | if (!lookup_name.ada ().wild_match_p ()) |
96d887e8 PH |
6253 | { |
6254 | arg_sym = NULL; | |
6255 | found_sym = 0; | |
b5ec771e PA |
6256 | const std::string &ada_lookup_name = lookup_name.ada ().lookup_name (); |
6257 | const char *name = ada_lookup_name.c_str (); | |
6258 | size_t name_len = ada_lookup_name.size (); | |
96d887e8 PH |
6259 | |
6260 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 6261 | { |
c1b5c1eb | 6262 | if (symbol_matches_domain (sym->language (), |
4186eb54 | 6263 | SYMBOL_DOMAIN (sym), domain)) |
76a01679 JB |
6264 | { |
6265 | int cmp; | |
6266 | ||
987012b8 | 6267 | cmp = (int) '_' - (int) sym->linkage_name ()[0]; |
76a01679 JB |
6268 | if (cmp == 0) |
6269 | { | |
987012b8 | 6270 | cmp = !startswith (sym->linkage_name (), "_ada_"); |
76a01679 | 6271 | if (cmp == 0) |
987012b8 | 6272 | cmp = strncmp (name, sym->linkage_name () + 5, |
76a01679 JB |
6273 | name_len); |
6274 | } | |
6275 | ||
6276 | if (cmp == 0 | |
987012b8 | 6277 | && is_name_suffix (sym->linkage_name () + name_len + 5)) |
76a01679 | 6278 | { |
2a2d4dc3 AS |
6279 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
6280 | { | |
6281 | if (SYMBOL_IS_ARGUMENT (sym)) | |
6282 | arg_sym = sym; | |
6283 | else | |
6284 | { | |
6285 | found_sym = 1; | |
6286 | add_defn_to_vec (obstackp, | |
6287 | fixup_symbol_section (sym, objfile), | |
6288 | block); | |
6289 | } | |
6290 | } | |
76a01679 JB |
6291 | } |
6292 | } | |
76a01679 | 6293 | } |
96d887e8 PH |
6294 | |
6295 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
6296 | They aren't parameters, right? */ | |
6297 | if (!found_sym && arg_sym != NULL) | |
6298 | { | |
6299 | add_defn_to_vec (obstackp, | |
76a01679 | 6300 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 6301 | block); |
96d887e8 PH |
6302 | } |
6303 | } | |
6304 | } | |
6305 | \f | |
41d27058 JB |
6306 | |
6307 | /* Symbol Completion */ | |
6308 | ||
b5ec771e | 6309 | /* See symtab.h. */ |
41d27058 | 6310 | |
b5ec771e PA |
6311 | bool |
6312 | ada_lookup_name_info::matches | |
6313 | (const char *sym_name, | |
6314 | symbol_name_match_type match_type, | |
a207cff2 | 6315 | completion_match_result *comp_match_res) const |
41d27058 | 6316 | { |
b5ec771e PA |
6317 | bool match = false; |
6318 | const char *text = m_encoded_name.c_str (); | |
6319 | size_t text_len = m_encoded_name.size (); | |
41d27058 JB |
6320 | |
6321 | /* First, test against the fully qualified name of the symbol. */ | |
6322 | ||
6323 | if (strncmp (sym_name, text, text_len) == 0) | |
b5ec771e | 6324 | match = true; |
41d27058 | 6325 | |
f945dedf | 6326 | std::string decoded_name = ada_decode (sym_name); |
b5ec771e | 6327 | if (match && !m_encoded_p) |
41d27058 JB |
6328 | { |
6329 | /* One needed check before declaring a positive match is to verify | |
6330 | that iff we are doing a verbatim match, the decoded version | |
6331 | of the symbol name starts with '<'. Otherwise, this symbol name | |
6332 | is not a suitable completion. */ | |
41d27058 | 6333 | |
f945dedf | 6334 | bool has_angle_bracket = (decoded_name[0] == '<'); |
b5ec771e | 6335 | match = (has_angle_bracket == m_verbatim_p); |
41d27058 JB |
6336 | } |
6337 | ||
b5ec771e | 6338 | if (match && !m_verbatim_p) |
41d27058 JB |
6339 | { |
6340 | /* When doing non-verbatim match, another check that needs to | |
6341 | be done is to verify that the potentially matching symbol name | |
6342 | does not include capital letters, because the ada-mode would | |
6343 | not be able to understand these symbol names without the | |
6344 | angle bracket notation. */ | |
6345 | const char *tmp; | |
6346 | ||
6347 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
6348 | if (*tmp != '\0') | |
b5ec771e | 6349 | match = false; |
41d27058 JB |
6350 | } |
6351 | ||
6352 | /* Second: Try wild matching... */ | |
6353 | ||
b5ec771e | 6354 | if (!match && m_wild_match_p) |
41d27058 JB |
6355 | { |
6356 | /* Since we are doing wild matching, this means that TEXT | |
6357 | may represent an unqualified symbol name. We therefore must | |
6358 | also compare TEXT against the unqualified name of the symbol. */ | |
f945dedf | 6359 | sym_name = ada_unqualified_name (decoded_name.c_str ()); |
41d27058 JB |
6360 | |
6361 | if (strncmp (sym_name, text, text_len) == 0) | |
b5ec771e | 6362 | match = true; |
41d27058 JB |
6363 | } |
6364 | ||
b5ec771e | 6365 | /* Finally: If we found a match, prepare the result to return. */ |
41d27058 JB |
6366 | |
6367 | if (!match) | |
b5ec771e | 6368 | return false; |
41d27058 | 6369 | |
a207cff2 | 6370 | if (comp_match_res != NULL) |
b5ec771e | 6371 | { |
a207cff2 | 6372 | std::string &match_str = comp_match_res->match.storage (); |
41d27058 | 6373 | |
b5ec771e | 6374 | if (!m_encoded_p) |
a207cff2 | 6375 | match_str = ada_decode (sym_name); |
b5ec771e PA |
6376 | else |
6377 | { | |
6378 | if (m_verbatim_p) | |
6379 | match_str = add_angle_brackets (sym_name); | |
6380 | else | |
6381 | match_str = sym_name; | |
41d27058 | 6382 | |
b5ec771e | 6383 | } |
a207cff2 PA |
6384 | |
6385 | comp_match_res->set_match (match_str.c_str ()); | |
41d27058 JB |
6386 | } |
6387 | ||
b5ec771e | 6388 | return true; |
41d27058 JB |
6389 | } |
6390 | ||
b5ec771e | 6391 | /* Add the list of possible symbol names completing TEXT to TRACKER. |
eb3ff9a5 | 6392 | WORD is the entire command on which completion is made. */ |
41d27058 | 6393 | |
eb3ff9a5 PA |
6394 | static void |
6395 | ada_collect_symbol_completion_matches (completion_tracker &tracker, | |
c6756f62 | 6396 | complete_symbol_mode mode, |
b5ec771e PA |
6397 | symbol_name_match_type name_match_type, |
6398 | const char *text, const char *word, | |
eb3ff9a5 | 6399 | enum type_code code) |
41d27058 | 6400 | { |
41d27058 | 6401 | struct symbol *sym; |
3977b71f | 6402 | const struct block *b, *surrounding_static_block = 0; |
8157b174 | 6403 | struct block_iterator iter; |
41d27058 | 6404 | |
2f68a895 TT |
6405 | gdb_assert (code == TYPE_CODE_UNDEF); |
6406 | ||
1b026119 | 6407 | lookup_name_info lookup_name (text, name_match_type, true); |
41d27058 JB |
6408 | |
6409 | /* First, look at the partial symtab symbols. */ | |
14bc53a8 | 6410 | expand_symtabs_matching (NULL, |
b5ec771e PA |
6411 | lookup_name, |
6412 | NULL, | |
14bc53a8 PA |
6413 | NULL, |
6414 | ALL_DOMAIN); | |
41d27058 JB |
6415 | |
6416 | /* At this point scan through the misc symbol vectors and add each | |
6417 | symbol you find to the list. Eventually we want to ignore | |
6418 | anything that isn't a text symbol (everything else will be | |
6419 | handled by the psymtab code above). */ | |
6420 | ||
2030c079 | 6421 | for (objfile *objfile : current_program_space->objfiles ()) |
5325b9bf | 6422 | { |
7932255d | 6423 | for (minimal_symbol *msymbol : objfile->msymbols ()) |
5325b9bf TT |
6424 | { |
6425 | QUIT; | |
6426 | ||
6427 | if (completion_skip_symbol (mode, msymbol)) | |
6428 | continue; | |
6429 | ||
c1b5c1eb | 6430 | language symbol_language = msymbol->language (); |
5325b9bf TT |
6431 | |
6432 | /* Ada minimal symbols won't have their language set to Ada. If | |
6433 | we let completion_list_add_name compare using the | |
6434 | default/C-like matcher, then when completing e.g., symbols in a | |
6435 | package named "pck", we'd match internal Ada symbols like | |
6436 | "pckS", which are invalid in an Ada expression, unless you wrap | |
6437 | them in '<' '>' to request a verbatim match. | |
6438 | ||
6439 | Unfortunately, some Ada encoded names successfully demangle as | |
6440 | C++ symbols (using an old mangling scheme), such as "name__2Xn" | |
6441 | -> "Xn::name(void)" and thus some Ada minimal symbols end up | |
6442 | with the wrong language set. Paper over that issue here. */ | |
6443 | if (symbol_language == language_auto | |
6444 | || symbol_language == language_cplus) | |
6445 | symbol_language = language_ada; | |
6446 | ||
6447 | completion_list_add_name (tracker, | |
6448 | symbol_language, | |
c9d95fa3 | 6449 | msymbol->linkage_name (), |
5325b9bf TT |
6450 | lookup_name, text, word); |
6451 | } | |
6452 | } | |
41d27058 JB |
6453 | |
6454 | /* Search upwards from currently selected frame (so that we can | |
6455 | complete on local vars. */ | |
6456 | ||
6457 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
6458 | { | |
6459 | if (!BLOCK_SUPERBLOCK (b)) | |
6460 | surrounding_static_block = b; /* For elmin of dups */ | |
6461 | ||
6462 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6463 | { | |
f9d67a22 PA |
6464 | if (completion_skip_symbol (mode, sym)) |
6465 | continue; | |
6466 | ||
b5ec771e | 6467 | completion_list_add_name (tracker, |
c1b5c1eb | 6468 | sym->language (), |
987012b8 | 6469 | sym->linkage_name (), |
1b026119 | 6470 | lookup_name, text, word); |
41d27058 JB |
6471 | } |
6472 | } | |
6473 | ||
6474 | /* Go through the symtabs and check the externs and statics for | |
43f3e411 | 6475 | symbols which match. */ |
41d27058 | 6476 | |
2030c079 | 6477 | for (objfile *objfile : current_program_space->objfiles ()) |
41d27058 | 6478 | { |
b669c953 | 6479 | for (compunit_symtab *s : objfile->compunits ()) |
d8aeb77f TT |
6480 | { |
6481 | QUIT; | |
6482 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK); | |
6483 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6484 | { | |
6485 | if (completion_skip_symbol (mode, sym)) | |
6486 | continue; | |
f9d67a22 | 6487 | |
d8aeb77f | 6488 | completion_list_add_name (tracker, |
c1b5c1eb | 6489 | sym->language (), |
987012b8 | 6490 | sym->linkage_name (), |
d8aeb77f TT |
6491 | lookup_name, text, word); |
6492 | } | |
6493 | } | |
41d27058 | 6494 | } |
41d27058 | 6495 | |
2030c079 | 6496 | for (objfile *objfile : current_program_space->objfiles ()) |
d8aeb77f | 6497 | { |
b669c953 | 6498 | for (compunit_symtab *s : objfile->compunits ()) |
d8aeb77f TT |
6499 | { |
6500 | QUIT; | |
6501 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK); | |
6502 | /* Don't do this block twice. */ | |
6503 | if (b == surrounding_static_block) | |
6504 | continue; | |
6505 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6506 | { | |
6507 | if (completion_skip_symbol (mode, sym)) | |
6508 | continue; | |
f9d67a22 | 6509 | |
d8aeb77f | 6510 | completion_list_add_name (tracker, |
c1b5c1eb | 6511 | sym->language (), |
987012b8 | 6512 | sym->linkage_name (), |
d8aeb77f TT |
6513 | lookup_name, text, word); |
6514 | } | |
6515 | } | |
41d27058 | 6516 | } |
41d27058 JB |
6517 | } |
6518 | ||
963a6417 | 6519 | /* Field Access */ |
96d887e8 | 6520 | |
73fb9985 JB |
6521 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
6522 | for tagged types. */ | |
6523 | ||
6524 | static int | |
6525 | ada_is_dispatch_table_ptr_type (struct type *type) | |
6526 | { | |
0d5cff50 | 6527 | const char *name; |
73fb9985 JB |
6528 | |
6529 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
6530 | return 0; | |
6531 | ||
6532 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
6533 | if (name == NULL) | |
6534 | return 0; | |
6535 | ||
6536 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
6537 | } | |
6538 | ||
ac4a2da4 JG |
6539 | /* Return non-zero if TYPE is an interface tag. */ |
6540 | ||
6541 | static int | |
6542 | ada_is_interface_tag (struct type *type) | |
6543 | { | |
6544 | const char *name = TYPE_NAME (type); | |
6545 | ||
6546 | if (name == NULL) | |
6547 | return 0; | |
6548 | ||
6549 | return (strcmp (name, "ada__tags__interface_tag") == 0); | |
6550 | } | |
6551 | ||
963a6417 PH |
6552 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
6553 | to be invisible to users. */ | |
96d887e8 | 6554 | |
963a6417 PH |
6555 | int |
6556 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 6557 | { |
963a6417 PH |
6558 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
6559 | return 1; | |
ffde82bf | 6560 | |
73fb9985 JB |
6561 | /* Check the name of that field. */ |
6562 | { | |
6563 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
6564 | ||
6565 | /* Anonymous field names should not be printed. | |
6566 | brobecker/2007-02-20: I don't think this can actually happen | |
30baf67b | 6567 | but we don't want to print the value of anonymous fields anyway. */ |
73fb9985 JB |
6568 | if (name == NULL) |
6569 | return 1; | |
6570 | ||
ffde82bf JB |
6571 | /* Normally, fields whose name start with an underscore ("_") |
6572 | are fields that have been internally generated by the compiler, | |
6573 | and thus should not be printed. The "_parent" field is special, | |
6574 | however: This is a field internally generated by the compiler | |
6575 | for tagged types, and it contains the components inherited from | |
6576 | the parent type. This field should not be printed as is, but | |
6577 | should not be ignored either. */ | |
61012eef | 6578 | if (name[0] == '_' && !startswith (name, "_parent")) |
73fb9985 JB |
6579 | return 1; |
6580 | } | |
6581 | ||
ac4a2da4 JG |
6582 | /* If this is the dispatch table of a tagged type or an interface tag, |
6583 | then ignore. */ | |
73fb9985 | 6584 | if (ada_is_tagged_type (type, 1) |
ac4a2da4 JG |
6585 | && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)) |
6586 | || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num)))) | |
73fb9985 JB |
6587 | return 1; |
6588 | ||
6589 | /* Not a special field, so it should not be ignored. */ | |
6590 | return 0; | |
963a6417 | 6591 | } |
96d887e8 | 6592 | |
963a6417 | 6593 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 6594 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 6595 | |
963a6417 PH |
6596 | int |
6597 | ada_is_tagged_type (struct type *type, int refok) | |
6598 | { | |
988f6b3d | 6599 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL); |
963a6417 | 6600 | } |
96d887e8 | 6601 | |
963a6417 | 6602 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 6603 | |
963a6417 PH |
6604 | int |
6605 | ada_is_tag_type (struct type *type) | |
6606 | { | |
460efde1 JB |
6607 | type = ada_check_typedef (type); |
6608 | ||
963a6417 PH |
6609 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) |
6610 | return 0; | |
6611 | else | |
96d887e8 | 6612 | { |
963a6417 | 6613 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 6614 | |
963a6417 PH |
6615 | return (name != NULL |
6616 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 6617 | } |
96d887e8 PH |
6618 | } |
6619 | ||
963a6417 | 6620 | /* The type of the tag on VAL. */ |
76a01679 | 6621 | |
de93309a | 6622 | static struct type * |
963a6417 | 6623 | ada_tag_type (struct value *val) |
96d887e8 | 6624 | { |
988f6b3d | 6625 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0); |
963a6417 | 6626 | } |
96d887e8 | 6627 | |
b50d69b5 JG |
6628 | /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95, |
6629 | retired at Ada 05). */ | |
6630 | ||
6631 | static int | |
6632 | is_ada95_tag (struct value *tag) | |
6633 | { | |
6634 | return ada_value_struct_elt (tag, "tsd", 1) != NULL; | |
6635 | } | |
6636 | ||
963a6417 | 6637 | /* The value of the tag on VAL. */ |
96d887e8 | 6638 | |
de93309a | 6639 | static struct value * |
963a6417 PH |
6640 | ada_value_tag (struct value *val) |
6641 | { | |
03ee6b2e | 6642 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
6643 | } |
6644 | ||
963a6417 PH |
6645 | /* The value of the tag on the object of type TYPE whose contents are |
6646 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 6647 | ADDRESS. */ |
96d887e8 | 6648 | |
963a6417 | 6649 | static struct value * |
10a2c479 | 6650 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 6651 | const gdb_byte *valaddr, |
963a6417 | 6652 | CORE_ADDR address) |
96d887e8 | 6653 | { |
b5385fc0 | 6654 | int tag_byte_offset; |
963a6417 | 6655 | struct type *tag_type; |
5b4ee69b | 6656 | |
963a6417 | 6657 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 6658 | NULL, NULL, NULL)) |
96d887e8 | 6659 | { |
fc1a4b47 | 6660 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
6661 | ? NULL |
6662 | : valaddr + tag_byte_offset); | |
963a6417 | 6663 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 6664 | |
963a6417 | 6665 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 6666 | } |
963a6417 PH |
6667 | return NULL; |
6668 | } | |
96d887e8 | 6669 | |
963a6417 PH |
6670 | static struct type * |
6671 | type_from_tag (struct value *tag) | |
6672 | { | |
6673 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 6674 | |
963a6417 PH |
6675 | if (type_name != NULL) |
6676 | return ada_find_any_type (ada_encode (type_name)); | |
6677 | return NULL; | |
6678 | } | |
96d887e8 | 6679 | |
b50d69b5 JG |
6680 | /* Given a value OBJ of a tagged type, return a value of this |
6681 | type at the base address of the object. The base address, as | |
6682 | defined in Ada.Tags, it is the address of the primary tag of | |
6683 | the object, and therefore where the field values of its full | |
6684 | view can be fetched. */ | |
6685 | ||
6686 | struct value * | |
6687 | ada_tag_value_at_base_address (struct value *obj) | |
6688 | { | |
b50d69b5 JG |
6689 | struct value *val; |
6690 | LONGEST offset_to_top = 0; | |
6691 | struct type *ptr_type, *obj_type; | |
6692 | struct value *tag; | |
6693 | CORE_ADDR base_address; | |
6694 | ||
6695 | obj_type = value_type (obj); | |
6696 | ||
6697 | /* It is the responsability of the caller to deref pointers. */ | |
6698 | ||
6699 | if (TYPE_CODE (obj_type) == TYPE_CODE_PTR | |
6700 | || TYPE_CODE (obj_type) == TYPE_CODE_REF) | |
6701 | return obj; | |
6702 | ||
6703 | tag = ada_value_tag (obj); | |
6704 | if (!tag) | |
6705 | return obj; | |
6706 | ||
6707 | /* Base addresses only appeared with Ada 05 and multiple inheritance. */ | |
6708 | ||
6709 | if (is_ada95_tag (tag)) | |
6710 | return obj; | |
6711 | ||
08f49010 XR |
6712 | ptr_type = language_lookup_primitive_type |
6713 | (language_def (language_ada), target_gdbarch(), "storage_offset"); | |
b50d69b5 JG |
6714 | ptr_type = lookup_pointer_type (ptr_type); |
6715 | val = value_cast (ptr_type, tag); | |
6716 | if (!val) | |
6717 | return obj; | |
6718 | ||
6719 | /* It is perfectly possible that an exception be raised while | |
6720 | trying to determine the base address, just like for the tag; | |
6721 | see ada_tag_name for more details. We do not print the error | |
6722 | message for the same reason. */ | |
6723 | ||
a70b8144 | 6724 | try |
b50d69b5 JG |
6725 | { |
6726 | offset_to_top = value_as_long (value_ind (value_ptradd (val, -2))); | |
6727 | } | |
6728 | ||
230d2906 | 6729 | catch (const gdb_exception_error &e) |
492d29ea PA |
6730 | { |
6731 | return obj; | |
6732 | } | |
b50d69b5 JG |
6733 | |
6734 | /* If offset is null, nothing to do. */ | |
6735 | ||
6736 | if (offset_to_top == 0) | |
6737 | return obj; | |
6738 | ||
6739 | /* -1 is a special case in Ada.Tags; however, what should be done | |
6740 | is not quite clear from the documentation. So do nothing for | |
6741 | now. */ | |
6742 | ||
6743 | if (offset_to_top == -1) | |
6744 | return obj; | |
6745 | ||
08f49010 XR |
6746 | /* OFFSET_TO_TOP used to be a positive value to be subtracted |
6747 | from the base address. This was however incompatible with | |
6748 | C++ dispatch table: C++ uses a *negative* value to *add* | |
6749 | to the base address. Ada's convention has therefore been | |
6750 | changed in GNAT 19.0w 20171023: since then, C++ and Ada | |
6751 | use the same convention. Here, we support both cases by | |
6752 | checking the sign of OFFSET_TO_TOP. */ | |
6753 | ||
6754 | if (offset_to_top > 0) | |
6755 | offset_to_top = -offset_to_top; | |
6756 | ||
6757 | base_address = value_address (obj) + offset_to_top; | |
b50d69b5 JG |
6758 | tag = value_tag_from_contents_and_address (obj_type, NULL, base_address); |
6759 | ||
6760 | /* Make sure that we have a proper tag at the new address. | |
6761 | Otherwise, offset_to_top is bogus (which can happen when | |
6762 | the object is not initialized yet). */ | |
6763 | ||
6764 | if (!tag) | |
6765 | return obj; | |
6766 | ||
6767 | obj_type = type_from_tag (tag); | |
6768 | ||
6769 | if (!obj_type) | |
6770 | return obj; | |
6771 | ||
6772 | return value_from_contents_and_address (obj_type, NULL, base_address); | |
6773 | } | |
6774 | ||
1b611343 JB |
6775 | /* Return the "ada__tags__type_specific_data" type. */ |
6776 | ||
6777 | static struct type * | |
6778 | ada_get_tsd_type (struct inferior *inf) | |
963a6417 | 6779 | { |
1b611343 | 6780 | struct ada_inferior_data *data = get_ada_inferior_data (inf); |
4c4b4cd2 | 6781 | |
1b611343 JB |
6782 | if (data->tsd_type == 0) |
6783 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6784 | return data->tsd_type; | |
6785 | } | |
529cad9c | 6786 | |
1b611343 JB |
6787 | /* Return the TSD (type-specific data) associated to the given TAG. |
6788 | TAG is assumed to be the tag of a tagged-type entity. | |
529cad9c | 6789 | |
1b611343 | 6790 | May return NULL if we are unable to get the TSD. */ |
4c4b4cd2 | 6791 | |
1b611343 JB |
6792 | static struct value * |
6793 | ada_get_tsd_from_tag (struct value *tag) | |
4c4b4cd2 | 6794 | { |
4c4b4cd2 | 6795 | struct value *val; |
1b611343 | 6796 | struct type *type; |
5b4ee69b | 6797 | |
1b611343 JB |
6798 | /* First option: The TSD is simply stored as a field of our TAG. |
6799 | Only older versions of GNAT would use this format, but we have | |
6800 | to test it first, because there are no visible markers for | |
6801 | the current approach except the absence of that field. */ | |
529cad9c | 6802 | |
1b611343 JB |
6803 | val = ada_value_struct_elt (tag, "tsd", 1); |
6804 | if (val) | |
6805 | return val; | |
e802dbe0 | 6806 | |
1b611343 JB |
6807 | /* Try the second representation for the dispatch table (in which |
6808 | there is no explicit 'tsd' field in the referent of the tag pointer, | |
6809 | and instead the tsd pointer is stored just before the dispatch | |
6810 | table. */ | |
e802dbe0 | 6811 | |
1b611343 JB |
6812 | type = ada_get_tsd_type (current_inferior()); |
6813 | if (type == NULL) | |
6814 | return NULL; | |
6815 | type = lookup_pointer_type (lookup_pointer_type (type)); | |
6816 | val = value_cast (type, tag); | |
6817 | if (val == NULL) | |
6818 | return NULL; | |
6819 | return value_ind (value_ptradd (val, -1)); | |
e802dbe0 JB |
6820 | } |
6821 | ||
1b611343 JB |
6822 | /* Given the TSD of a tag (type-specific data), return a string |
6823 | containing the name of the associated type. | |
6824 | ||
6825 | The returned value is good until the next call. May return NULL | |
6826 | if we are unable to determine the tag name. */ | |
6827 | ||
6828 | static char * | |
6829 | ada_tag_name_from_tsd (struct value *tsd) | |
529cad9c | 6830 | { |
529cad9c PH |
6831 | static char name[1024]; |
6832 | char *p; | |
1b611343 | 6833 | struct value *val; |
529cad9c | 6834 | |
1b611343 | 6835 | val = ada_value_struct_elt (tsd, "expanded_name", 1); |
4c4b4cd2 | 6836 | if (val == NULL) |
1b611343 | 6837 | return NULL; |
4c4b4cd2 PH |
6838 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); |
6839 | for (p = name; *p != '\0'; p += 1) | |
6840 | if (isalpha (*p)) | |
6841 | *p = tolower (*p); | |
1b611343 | 6842 | return name; |
4c4b4cd2 PH |
6843 | } |
6844 | ||
6845 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
1b611343 JB |
6846 | a C string. |
6847 | ||
6848 | Return NULL if the TAG is not an Ada tag, or if we were unable to | |
6849 | determine the name of that tag. The result is good until the next | |
6850 | call. */ | |
4c4b4cd2 PH |
6851 | |
6852 | const char * | |
6853 | ada_tag_name (struct value *tag) | |
6854 | { | |
1b611343 | 6855 | char *name = NULL; |
5b4ee69b | 6856 | |
df407dfe | 6857 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6858 | return NULL; |
1b611343 JB |
6859 | |
6860 | /* It is perfectly possible that an exception be raised while trying | |
6861 | to determine the TAG's name, even under normal circumstances: | |
6862 | The associated variable may be uninitialized or corrupted, for | |
6863 | instance. We do not let any exception propagate past this point. | |
6864 | instead we return NULL. | |
6865 | ||
6866 | We also do not print the error message either (which often is very | |
6867 | low-level (Eg: "Cannot read memory at 0x[...]"), but instead let | |
6868 | the caller print a more meaningful message if necessary. */ | |
a70b8144 | 6869 | try |
1b611343 JB |
6870 | { |
6871 | struct value *tsd = ada_get_tsd_from_tag (tag); | |
6872 | ||
6873 | if (tsd != NULL) | |
6874 | name = ada_tag_name_from_tsd (tsd); | |
6875 | } | |
230d2906 | 6876 | catch (const gdb_exception_error &e) |
492d29ea PA |
6877 | { |
6878 | } | |
1b611343 JB |
6879 | |
6880 | return name; | |
4c4b4cd2 PH |
6881 | } |
6882 | ||
6883 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6884 | |
d2e4a39e | 6885 | struct type * |
ebf56fd3 | 6886 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6887 | { |
6888 | int i; | |
6889 | ||
61ee279c | 6890 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6891 | |
6892 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6893 | return NULL; | |
6894 | ||
6895 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6896 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6897 | { |
6898 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6899 | ||
6900 | /* If the _parent field is a pointer, then dereference it. */ | |
6901 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6902 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6903 | /* If there is a parallel XVS type, get the actual base type. */ | |
6904 | parent_type = ada_get_base_type (parent_type); | |
6905 | ||
6906 | return ada_check_typedef (parent_type); | |
6907 | } | |
14f9c5c9 AS |
6908 | |
6909 | return NULL; | |
6910 | } | |
6911 | ||
4c4b4cd2 PH |
6912 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
6913 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
6914 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6915 | |
6916 | int | |
ebf56fd3 | 6917 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 6918 | { |
61ee279c | 6919 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 6920 | |
4c4b4cd2 | 6921 | return (name != NULL |
61012eef GB |
6922 | && (startswith (name, "PARENT") |
6923 | || startswith (name, "_parent"))); | |
14f9c5c9 AS |
6924 | } |
6925 | ||
4c4b4cd2 | 6926 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 6927 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 6928 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 6929 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 6930 | structures. */ |
14f9c5c9 AS |
6931 | |
6932 | int | |
ebf56fd3 | 6933 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 6934 | { |
d2e4a39e | 6935 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6936 | |
dddc0e16 JB |
6937 | if (name != NULL && strcmp (name, "RETVAL") == 0) |
6938 | { | |
6939 | /* This happens in functions with "out" or "in out" parameters | |
6940 | which are passed by copy. For such functions, GNAT describes | |
6941 | the function's return type as being a struct where the return | |
6942 | value is in a field called RETVAL, and where the other "out" | |
6943 | or "in out" parameters are fields of that struct. This is not | |
6944 | a wrapper. */ | |
6945 | return 0; | |
6946 | } | |
6947 | ||
d2e4a39e | 6948 | return (name != NULL |
61012eef | 6949 | && (startswith (name, "PARENT") |
4c4b4cd2 | 6950 | || strcmp (name, "REP") == 0 |
61012eef | 6951 | || startswith (name, "_parent") |
4c4b4cd2 | 6952 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); |
14f9c5c9 AS |
6953 | } |
6954 | ||
4c4b4cd2 PH |
6955 | /* True iff field number FIELD_NUM of structure or union type TYPE |
6956 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
6957 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6958 | |
6959 | int | |
ebf56fd3 | 6960 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 6961 | { |
8ecb59f8 TT |
6962 | /* Only Ada types are eligible. */ |
6963 | if (!ADA_TYPE_P (type)) | |
6964 | return 0; | |
6965 | ||
d2e4a39e | 6966 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 6967 | |
14f9c5c9 | 6968 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 6969 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
6970 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
6971 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
6972 | } |
6973 | ||
6974 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 6975 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
6976 | returns the type of the controlling discriminant for the variant. |
6977 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 6978 | |
d2e4a39e | 6979 | struct type * |
ebf56fd3 | 6980 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 6981 | { |
a121b7c1 | 6982 | const char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 6983 | |
988f6b3d | 6984 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1); |
14f9c5c9 AS |
6985 | } |
6986 | ||
4c4b4cd2 | 6987 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 6988 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 6989 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 | 6990 | |
de93309a | 6991 | static int |
ebf56fd3 | 6992 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 6993 | { |
d2e4a39e | 6994 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6995 | |
14f9c5c9 AS |
6996 | return (name != NULL && name[0] == 'O'); |
6997 | } | |
6998 | ||
6999 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
7000 | returns the name of the discriminant controlling the variant. |
7001 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 7002 | |
a121b7c1 | 7003 | const char * |
ebf56fd3 | 7004 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 7005 | { |
d2e4a39e | 7006 | static char *result = NULL; |
14f9c5c9 | 7007 | static size_t result_len = 0; |
d2e4a39e AS |
7008 | struct type *type; |
7009 | const char *name; | |
7010 | const char *discrim_end; | |
7011 | const char *discrim_start; | |
14f9c5c9 AS |
7012 | |
7013 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
7014 | type = TYPE_TARGET_TYPE (type0); | |
7015 | else | |
7016 | type = type0; | |
7017 | ||
7018 | name = ada_type_name (type); | |
7019 | ||
7020 | if (name == NULL || name[0] == '\000') | |
7021 | return ""; | |
7022 | ||
7023 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
7024 | discrim_end -= 1) | |
7025 | { | |
61012eef | 7026 | if (startswith (discrim_end, "___XVN")) |
4c4b4cd2 | 7027 | break; |
14f9c5c9 AS |
7028 | } |
7029 | if (discrim_end == name) | |
7030 | return ""; | |
7031 | ||
d2e4a39e | 7032 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
7033 | discrim_start -= 1) |
7034 | { | |
d2e4a39e | 7035 | if (discrim_start == name + 1) |
4c4b4cd2 | 7036 | return ""; |
76a01679 | 7037 | if ((discrim_start > name + 3 |
61012eef | 7038 | && startswith (discrim_start - 3, "___")) |
4c4b4cd2 PH |
7039 | || discrim_start[-1] == '.') |
7040 | break; | |
14f9c5c9 AS |
7041 | } |
7042 | ||
7043 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
7044 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 7045 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
7046 | return result; |
7047 | } | |
7048 | ||
4c4b4cd2 PH |
7049 | /* Scan STR for a subtype-encoded number, beginning at position K. |
7050 | Put the position of the character just past the number scanned in | |
7051 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
7052 | Return 1 if there was a valid number at the given position, and 0 | |
7053 | otherwise. A "subtype-encoded" number consists of the absolute value | |
7054 | in decimal, followed by the letter 'm' to indicate a negative number. | |
7055 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
7056 | |
7057 | int | |
d2e4a39e | 7058 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
7059 | { |
7060 | ULONGEST RU; | |
7061 | ||
d2e4a39e | 7062 | if (!isdigit (str[k])) |
14f9c5c9 AS |
7063 | return 0; |
7064 | ||
4c4b4cd2 | 7065 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 7066 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 7067 | LONGEST. */ |
14f9c5c9 AS |
7068 | RU = 0; |
7069 | while (isdigit (str[k])) | |
7070 | { | |
d2e4a39e | 7071 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
7072 | k += 1; |
7073 | } | |
7074 | ||
d2e4a39e | 7075 | if (str[k] == 'm') |
14f9c5c9 AS |
7076 | { |
7077 | if (R != NULL) | |
4c4b4cd2 | 7078 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
7079 | k += 1; |
7080 | } | |
7081 | else if (R != NULL) | |
7082 | *R = (LONGEST) RU; | |
7083 | ||
4c4b4cd2 | 7084 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
7085 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
7086 | number representable as a LONGEST (although either would probably work | |
7087 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 7088 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
7089 | |
7090 | if (new_k != NULL) | |
7091 | *new_k = k; | |
7092 | return 1; | |
7093 | } | |
7094 | ||
4c4b4cd2 PH |
7095 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
7096 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
7097 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 7098 | |
de93309a | 7099 | static int |
ebf56fd3 | 7100 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 7101 | { |
d2e4a39e | 7102 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
7103 | int p; |
7104 | ||
7105 | p = 0; | |
7106 | while (1) | |
7107 | { | |
d2e4a39e | 7108 | switch (name[p]) |
4c4b4cd2 PH |
7109 | { |
7110 | case '\0': | |
7111 | return 0; | |
7112 | case 'S': | |
7113 | { | |
7114 | LONGEST W; | |
5b4ee69b | 7115 | |
4c4b4cd2 PH |
7116 | if (!ada_scan_number (name, p + 1, &W, &p)) |
7117 | return 0; | |
7118 | if (val == W) | |
7119 | return 1; | |
7120 | break; | |
7121 | } | |
7122 | case 'R': | |
7123 | { | |
7124 | LONGEST L, U; | |
5b4ee69b | 7125 | |
4c4b4cd2 PH |
7126 | if (!ada_scan_number (name, p + 1, &L, &p) |
7127 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
7128 | return 0; | |
7129 | if (val >= L && val <= U) | |
7130 | return 1; | |
7131 | break; | |
7132 | } | |
7133 | case 'O': | |
7134 | return 1; | |
7135 | default: | |
7136 | return 0; | |
7137 | } | |
7138 | } | |
7139 | } | |
7140 | ||
0963b4bd | 7141 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
7142 | |
7143 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
7144 | ARG_TYPE, extract and return the value of one of its (non-static) | |
7145 | fields. FIELDNO says which field. Differs from value_primitive_field | |
7146 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 7147 | |
4c4b4cd2 | 7148 | static struct value * |
d2e4a39e | 7149 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 7150 | struct type *arg_type) |
14f9c5c9 | 7151 | { |
14f9c5c9 AS |
7152 | struct type *type; |
7153 | ||
61ee279c | 7154 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
7155 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
7156 | ||
4504bbde TT |
7157 | /* Handle packed fields. It might be that the field is not packed |
7158 | relative to its containing structure, but the structure itself is | |
7159 | packed; in this case we must take the bit-field path. */ | |
7160 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0) | |
14f9c5c9 AS |
7161 | { |
7162 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
7163 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 7164 | |
0fd88904 | 7165 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
7166 | offset + bit_pos / 8, |
7167 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
7168 | } |
7169 | else | |
7170 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
7171 | } | |
7172 | ||
52ce6436 PH |
7173 | /* Find field with name NAME in object of type TYPE. If found, |
7174 | set the following for each argument that is non-null: | |
7175 | - *FIELD_TYPE_P to the field's type; | |
7176 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
7177 | an object of that type; | |
7178 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
7179 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
7180 | 0 otherwise; | |
7181 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
7182 | fields up to but not including the desired field, or by the total | |
7183 | number of fields if not found. A NULL value of NAME never | |
7184 | matches; the function just counts visible fields in this case. | |
7185 | ||
828d5846 XR |
7186 | Notice that we need to handle when a tagged record hierarchy |
7187 | has some components with the same name, like in this scenario: | |
7188 | ||
7189 | type Top_T is tagged record | |
7190 | N : Integer := 1; | |
7191 | U : Integer := 974; | |
7192 | A : Integer := 48; | |
7193 | end record; | |
7194 | ||
7195 | type Middle_T is new Top.Top_T with record | |
7196 | N : Character := 'a'; | |
7197 | C : Integer := 3; | |
7198 | end record; | |
7199 | ||
7200 | type Bottom_T is new Middle.Middle_T with record | |
7201 | N : Float := 4.0; | |
7202 | C : Character := '5'; | |
7203 | X : Integer := 6; | |
7204 | A : Character := 'J'; | |
7205 | end record; | |
7206 | ||
7207 | Let's say we now have a variable declared and initialized as follow: | |
7208 | ||
7209 | TC : Top_A := new Bottom_T; | |
7210 | ||
7211 | And then we use this variable to call this function | |
7212 | ||
7213 | procedure Assign (Obj: in out Top_T; TV : Integer); | |
7214 | ||
7215 | as follow: | |
7216 | ||
7217 | Assign (Top_T (B), 12); | |
7218 | ||
7219 | Now, we're in the debugger, and we're inside that procedure | |
7220 | then and we want to print the value of obj.c: | |
7221 | ||
7222 | Usually, the tagged record or one of the parent type owns the | |
7223 | component to print and there's no issue but in this particular | |
7224 | case, what does it mean to ask for Obj.C? Since the actual | |
7225 | type for object is type Bottom_T, it could mean two things: type | |
7226 | component C from the Middle_T view, but also component C from | |
7227 | Bottom_T. So in that "undefined" case, when the component is | |
7228 | not found in the non-resolved type (which includes all the | |
7229 | components of the parent type), then resolve it and see if we | |
7230 | get better luck once expanded. | |
7231 | ||
7232 | In the case of homonyms in the derived tagged type, we don't | |
7233 | guaranty anything, and pick the one that's easiest for us | |
7234 | to program. | |
7235 | ||
0963b4bd | 7236 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 7237 | |
4c4b4cd2 | 7238 | static int |
0d5cff50 | 7239 | find_struct_field (const char *name, struct type *type, int offset, |
76a01679 | 7240 | struct type **field_type_p, |
52ce6436 PH |
7241 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
7242 | int *index_p) | |
4c4b4cd2 PH |
7243 | { |
7244 | int i; | |
828d5846 | 7245 | int parent_offset = -1; |
4c4b4cd2 | 7246 | |
61ee279c | 7247 | type = ada_check_typedef (type); |
76a01679 | 7248 | |
52ce6436 PH |
7249 | if (field_type_p != NULL) |
7250 | *field_type_p = NULL; | |
7251 | if (byte_offset_p != NULL) | |
d5d6fca5 | 7252 | *byte_offset_p = 0; |
52ce6436 PH |
7253 | if (bit_offset_p != NULL) |
7254 | *bit_offset_p = 0; | |
7255 | if (bit_size_p != NULL) | |
7256 | *bit_size_p = 0; | |
7257 | ||
7258 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
7259 | { |
7260 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
7261 | int fld_offset = offset + bit_pos / 8; | |
0d5cff50 | 7262 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
76a01679 | 7263 | |
4c4b4cd2 PH |
7264 | if (t_field_name == NULL) |
7265 | continue; | |
7266 | ||
828d5846 XR |
7267 | else if (ada_is_parent_field (type, i)) |
7268 | { | |
7269 | /* This is a field pointing us to the parent type of a tagged | |
7270 | type. As hinted in this function's documentation, we give | |
7271 | preference to fields in the current record first, so what | |
7272 | we do here is just record the index of this field before | |
7273 | we skip it. If it turns out we couldn't find our field | |
7274 | in the current record, then we'll get back to it and search | |
7275 | inside it whether the field might exist in the parent. */ | |
7276 | ||
7277 | parent_offset = i; | |
7278 | continue; | |
7279 | } | |
7280 | ||
52ce6436 | 7281 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
7282 | { |
7283 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 7284 | |
52ce6436 PH |
7285 | if (field_type_p != NULL) |
7286 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
7287 | if (byte_offset_p != NULL) | |
7288 | *byte_offset_p = fld_offset; | |
7289 | if (bit_offset_p != NULL) | |
7290 | *bit_offset_p = bit_pos % 8; | |
7291 | if (bit_size_p != NULL) | |
7292 | *bit_size_p = bit_size; | |
76a01679 JB |
7293 | return 1; |
7294 | } | |
4c4b4cd2 PH |
7295 | else if (ada_is_wrapper_field (type, i)) |
7296 | { | |
52ce6436 PH |
7297 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
7298 | field_type_p, byte_offset_p, bit_offset_p, | |
7299 | bit_size_p, index_p)) | |
76a01679 JB |
7300 | return 1; |
7301 | } | |
4c4b4cd2 PH |
7302 | else if (ada_is_variant_part (type, i)) |
7303 | { | |
52ce6436 PH |
7304 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
7305 | fixed type?? */ | |
4c4b4cd2 | 7306 | int j; |
52ce6436 PH |
7307 | struct type *field_type |
7308 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 7309 | |
52ce6436 | 7310 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7311 | { |
76a01679 JB |
7312 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
7313 | fld_offset | |
7314 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7315 | field_type_p, byte_offset_p, | |
52ce6436 | 7316 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 7317 | return 1; |
4c4b4cd2 PH |
7318 | } |
7319 | } | |
52ce6436 PH |
7320 | else if (index_p != NULL) |
7321 | *index_p += 1; | |
4c4b4cd2 | 7322 | } |
828d5846 XR |
7323 | |
7324 | /* Field not found so far. If this is a tagged type which | |
7325 | has a parent, try finding that field in the parent now. */ | |
7326 | ||
7327 | if (parent_offset != -1) | |
7328 | { | |
7329 | int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset); | |
7330 | int fld_offset = offset + bit_pos / 8; | |
7331 | ||
7332 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset), | |
7333 | fld_offset, field_type_p, byte_offset_p, | |
7334 | bit_offset_p, bit_size_p, index_p)) | |
7335 | return 1; | |
7336 | } | |
7337 | ||
4c4b4cd2 PH |
7338 | return 0; |
7339 | } | |
7340 | ||
0963b4bd | 7341 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 7342 | |
52ce6436 PH |
7343 | static int |
7344 | num_visible_fields (struct type *type) | |
7345 | { | |
7346 | int n; | |
5b4ee69b | 7347 | |
52ce6436 PH |
7348 | n = 0; |
7349 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
7350 | return n; | |
7351 | } | |
14f9c5c9 | 7352 | |
4c4b4cd2 | 7353 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
7354 | and search in it assuming it has (class) type TYPE. |
7355 | If found, return value, else return NULL. | |
7356 | ||
828d5846 XR |
7357 | Searches recursively through wrapper fields (e.g., '_parent'). |
7358 | ||
7359 | In the case of homonyms in the tagged types, please refer to the | |
7360 | long explanation in find_struct_field's function documentation. */ | |
14f9c5c9 | 7361 | |
4c4b4cd2 | 7362 | static struct value * |
108d56a4 | 7363 | ada_search_struct_field (const char *name, struct value *arg, int offset, |
4c4b4cd2 | 7364 | struct type *type) |
14f9c5c9 AS |
7365 | { |
7366 | int i; | |
828d5846 | 7367 | int parent_offset = -1; |
14f9c5c9 | 7368 | |
5b4ee69b | 7369 | type = ada_check_typedef (type); |
52ce6436 | 7370 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 | 7371 | { |
0d5cff50 | 7372 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
7373 | |
7374 | if (t_field_name == NULL) | |
4c4b4cd2 | 7375 | continue; |
14f9c5c9 | 7376 | |
828d5846 XR |
7377 | else if (ada_is_parent_field (type, i)) |
7378 | { | |
7379 | /* This is a field pointing us to the parent type of a tagged | |
7380 | type. As hinted in this function's documentation, we give | |
7381 | preference to fields in the current record first, so what | |
7382 | we do here is just record the index of this field before | |
7383 | we skip it. If it turns out we couldn't find our field | |
7384 | in the current record, then we'll get back to it and search | |
7385 | inside it whether the field might exist in the parent. */ | |
7386 | ||
7387 | parent_offset = i; | |
7388 | continue; | |
7389 | } | |
7390 | ||
14f9c5c9 | 7391 | else if (field_name_match (t_field_name, name)) |
4c4b4cd2 | 7392 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
7393 | |
7394 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 7395 | { |
0963b4bd | 7396 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
7397 | ada_search_struct_field (name, arg, |
7398 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7399 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7400 | |
4c4b4cd2 PH |
7401 | if (v != NULL) |
7402 | return v; | |
7403 | } | |
14f9c5c9 AS |
7404 | |
7405 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 7406 | { |
0963b4bd | 7407 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 7408 | int j; |
5b4ee69b MS |
7409 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7410 | i)); | |
4c4b4cd2 PH |
7411 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
7412 | ||
52ce6436 | 7413 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7414 | { |
0963b4bd MS |
7415 | struct value *v = ada_search_struct_field /* Force line |
7416 | break. */ | |
06d5cf63 JB |
7417 | (name, arg, |
7418 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7419 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 7420 | |
4c4b4cd2 PH |
7421 | if (v != NULL) |
7422 | return v; | |
7423 | } | |
7424 | } | |
14f9c5c9 | 7425 | } |
828d5846 XR |
7426 | |
7427 | /* Field not found so far. If this is a tagged type which | |
7428 | has a parent, try finding that field in the parent now. */ | |
7429 | ||
7430 | if (parent_offset != -1) | |
7431 | { | |
7432 | struct value *v = ada_search_struct_field ( | |
7433 | name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8, | |
7434 | TYPE_FIELD_TYPE (type, parent_offset)); | |
7435 | ||
7436 | if (v != NULL) | |
7437 | return v; | |
7438 | } | |
7439 | ||
14f9c5c9 AS |
7440 | return NULL; |
7441 | } | |
d2e4a39e | 7442 | |
52ce6436 PH |
7443 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
7444 | int, struct type *); | |
7445 | ||
7446 | ||
7447 | /* Return field #INDEX in ARG, where the index is that returned by | |
7448 | * find_struct_field through its INDEX_P argument. Adjust the address | |
7449 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 7450 | * If found, return value, else return NULL. */ |
52ce6436 PH |
7451 | |
7452 | static struct value * | |
7453 | ada_index_struct_field (int index, struct value *arg, int offset, | |
7454 | struct type *type) | |
7455 | { | |
7456 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
7457 | } | |
7458 | ||
7459 | ||
7460 | /* Auxiliary function for ada_index_struct_field. Like | |
7461 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 7462 | * *INDEX_P. */ |
52ce6436 PH |
7463 | |
7464 | static struct value * | |
7465 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
7466 | struct type *type) | |
7467 | { | |
7468 | int i; | |
7469 | type = ada_check_typedef (type); | |
7470 | ||
7471 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7472 | { | |
7473 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
7474 | continue; | |
7475 | else if (ada_is_wrapper_field (type, i)) | |
7476 | { | |
0963b4bd | 7477 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
7478 | ada_index_struct_field_1 (index_p, arg, |
7479 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7480 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7481 | |
52ce6436 PH |
7482 | if (v != NULL) |
7483 | return v; | |
7484 | } | |
7485 | ||
7486 | else if (ada_is_variant_part (type, i)) | |
7487 | { | |
7488 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 7489 | find_struct_field. */ |
52ce6436 PH |
7490 | error (_("Cannot assign this kind of variant record")); |
7491 | } | |
7492 | else if (*index_p == 0) | |
7493 | return ada_value_primitive_field (arg, offset, i, type); | |
7494 | else | |
7495 | *index_p -= 1; | |
7496 | } | |
7497 | return NULL; | |
7498 | } | |
7499 | ||
3b4de39c | 7500 | /* Return a string representation of type TYPE. */ |
99bbb428 | 7501 | |
3b4de39c | 7502 | static std::string |
99bbb428 PA |
7503 | type_as_string (struct type *type) |
7504 | { | |
d7e74731 | 7505 | string_file tmp_stream; |
99bbb428 | 7506 | |
d7e74731 | 7507 | type_print (type, "", &tmp_stream, -1); |
99bbb428 | 7508 | |
d7e74731 | 7509 | return std::move (tmp_stream.string ()); |
99bbb428 PA |
7510 | } |
7511 | ||
14f9c5c9 | 7512 | /* Given a type TYPE, look up the type of the component of type named NAME. |
4c4b4cd2 PH |
7513 | If DISPP is non-null, add its byte displacement from the beginning of a |
7514 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
7515 | work for packed fields). |
7516 | ||
7517 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 7518 | followed by "___". |
14f9c5c9 | 7519 | |
0963b4bd | 7520 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
7521 | be a (pointer or reference)+ to a struct or union, and the |
7522 | ultimate target type will be searched. | |
14f9c5c9 AS |
7523 | |
7524 | Looks recursively into variant clauses and parent types. | |
7525 | ||
828d5846 XR |
7526 | In the case of homonyms in the tagged types, please refer to the |
7527 | long explanation in find_struct_field's function documentation. | |
7528 | ||
4c4b4cd2 PH |
7529 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
7530 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 7531 | |
4c4b4cd2 | 7532 | static struct type * |
a121b7c1 | 7533 | ada_lookup_struct_elt_type (struct type *type, const char *name, int refok, |
988f6b3d | 7534 | int noerr) |
14f9c5c9 AS |
7535 | { |
7536 | int i; | |
828d5846 | 7537 | int parent_offset = -1; |
14f9c5c9 AS |
7538 | |
7539 | if (name == NULL) | |
7540 | goto BadName; | |
7541 | ||
76a01679 | 7542 | if (refok && type != NULL) |
4c4b4cd2 PH |
7543 | while (1) |
7544 | { | |
61ee279c | 7545 | type = ada_check_typedef (type); |
76a01679 JB |
7546 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
7547 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
7548 | break; | |
7549 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 7550 | } |
14f9c5c9 | 7551 | |
76a01679 | 7552 | if (type == NULL |
1265e4aa JB |
7553 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
7554 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 7555 | { |
4c4b4cd2 | 7556 | if (noerr) |
76a01679 | 7557 | return NULL; |
99bbb428 | 7558 | |
3b4de39c PA |
7559 | error (_("Type %s is not a structure or union type"), |
7560 | type != NULL ? type_as_string (type).c_str () : _("(null)")); | |
14f9c5c9 AS |
7561 | } |
7562 | ||
7563 | type = to_static_fixed_type (type); | |
7564 | ||
7565 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7566 | { | |
0d5cff50 | 7567 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 | 7568 | struct type *t; |
d2e4a39e | 7569 | |
14f9c5c9 | 7570 | if (t_field_name == NULL) |
4c4b4cd2 | 7571 | continue; |
14f9c5c9 | 7572 | |
828d5846 XR |
7573 | else if (ada_is_parent_field (type, i)) |
7574 | { | |
7575 | /* This is a field pointing us to the parent type of a tagged | |
7576 | type. As hinted in this function's documentation, we give | |
7577 | preference to fields in the current record first, so what | |
7578 | we do here is just record the index of this field before | |
7579 | we skip it. If it turns out we couldn't find our field | |
7580 | in the current record, then we'll get back to it and search | |
7581 | inside it whether the field might exist in the parent. */ | |
7582 | ||
7583 | parent_offset = i; | |
7584 | continue; | |
7585 | } | |
7586 | ||
14f9c5c9 | 7587 | else if (field_name_match (t_field_name, name)) |
988f6b3d | 7588 | return TYPE_FIELD_TYPE (type, i); |
14f9c5c9 AS |
7589 | |
7590 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 7591 | { |
4c4b4cd2 | 7592 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, |
988f6b3d | 7593 | 0, 1); |
4c4b4cd2 | 7594 | if (t != NULL) |
988f6b3d | 7595 | return t; |
4c4b4cd2 | 7596 | } |
14f9c5c9 AS |
7597 | |
7598 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
7599 | { |
7600 | int j; | |
5b4ee69b MS |
7601 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7602 | i)); | |
4c4b4cd2 PH |
7603 | |
7604 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
7605 | { | |
b1f33ddd JB |
7606 | /* FIXME pnh 2008/01/26: We check for a field that is |
7607 | NOT wrapped in a struct, since the compiler sometimes | |
7608 | generates these for unchecked variant types. Revisit | |
0963b4bd | 7609 | if the compiler changes this practice. */ |
0d5cff50 | 7610 | const char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
988f6b3d | 7611 | |
b1f33ddd JB |
7612 | if (v_field_name != NULL |
7613 | && field_name_match (v_field_name, name)) | |
460efde1 | 7614 | t = TYPE_FIELD_TYPE (field_type, j); |
b1f33ddd | 7615 | else |
0963b4bd MS |
7616 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
7617 | j), | |
988f6b3d | 7618 | name, 0, 1); |
b1f33ddd | 7619 | |
4c4b4cd2 | 7620 | if (t != NULL) |
988f6b3d | 7621 | return t; |
4c4b4cd2 PH |
7622 | } |
7623 | } | |
14f9c5c9 AS |
7624 | |
7625 | } | |
7626 | ||
828d5846 XR |
7627 | /* Field not found so far. If this is a tagged type which |
7628 | has a parent, try finding that field in the parent now. */ | |
7629 | ||
7630 | if (parent_offset != -1) | |
7631 | { | |
7632 | struct type *t; | |
7633 | ||
7634 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset), | |
7635 | name, 0, 1); | |
7636 | if (t != NULL) | |
7637 | return t; | |
7638 | } | |
7639 | ||
14f9c5c9 | 7640 | BadName: |
d2e4a39e | 7641 | if (!noerr) |
14f9c5c9 | 7642 | { |
2b2798cc | 7643 | const char *name_str = name != NULL ? name : _("<null>"); |
99bbb428 PA |
7644 | |
7645 | error (_("Type %s has no component named %s"), | |
3b4de39c | 7646 | type_as_string (type).c_str (), name_str); |
14f9c5c9 AS |
7647 | } |
7648 | ||
7649 | return NULL; | |
7650 | } | |
7651 | ||
b1f33ddd JB |
7652 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7653 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
7654 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 7655 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
7656 | |
7657 | static int | |
7658 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
7659 | { | |
a121b7c1 | 7660 | const char *discrim_name = ada_variant_discrim_name (var_type); |
5b4ee69b | 7661 | |
988f6b3d | 7662 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL); |
b1f33ddd JB |
7663 | } |
7664 | ||
7665 | ||
14f9c5c9 AS |
7666 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7667 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
7668 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
7669 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 7670 | |
d2e4a39e | 7671 | int |
ebf56fd3 | 7672 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 7673 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
7674 | { |
7675 | int others_clause; | |
7676 | int i; | |
a121b7c1 | 7677 | const char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
7678 | struct value *outer; |
7679 | struct value *discrim; | |
14f9c5c9 AS |
7680 | LONGEST discrim_val; |
7681 | ||
012370f6 TT |
7682 | /* Using plain value_from_contents_and_address here causes problems |
7683 | because we will end up trying to resolve a type that is currently | |
7684 | being constructed. */ | |
7685 | outer = value_from_contents_and_address_unresolved (outer_type, | |
7686 | outer_valaddr, 0); | |
0c281816 JB |
7687 | discrim = ada_value_struct_elt (outer, discrim_name, 1); |
7688 | if (discrim == NULL) | |
14f9c5c9 | 7689 | return -1; |
0c281816 | 7690 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
7691 | |
7692 | others_clause = -1; | |
7693 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
7694 | { | |
7695 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 7696 | others_clause = i; |
14f9c5c9 | 7697 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 7698 | return i; |
14f9c5c9 AS |
7699 | } |
7700 | ||
7701 | return others_clause; | |
7702 | } | |
d2e4a39e | 7703 | \f |
14f9c5c9 AS |
7704 | |
7705 | ||
4c4b4cd2 | 7706 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
7707 | |
7708 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
7709 | (i.e., a size that is not statically recorded in the debugging | |
7710 | data) does not accurately reflect the size or layout of the value. | |
7711 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 7712 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
7713 | |
7714 | /* There is a subtle and tricky problem here. In general, we cannot | |
7715 | determine the size of dynamic records without its data. However, | |
7716 | the 'struct value' data structure, which GDB uses to represent | |
7717 | quantities in the inferior process (the target), requires the size | |
7718 | of the type at the time of its allocation in order to reserve space | |
7719 | for GDB's internal copy of the data. That's why the | |
7720 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 7721 | rather than struct value*s. |
14f9c5c9 AS |
7722 | |
7723 | However, GDB's internal history variables ($1, $2, etc.) are | |
7724 | struct value*s containing internal copies of the data that are not, in | |
7725 | general, the same as the data at their corresponding addresses in | |
7726 | the target. Fortunately, the types we give to these values are all | |
7727 | conventional, fixed-size types (as per the strategy described | |
7728 | above), so that we don't usually have to perform the | |
7729 | 'to_fixed_xxx_type' conversions to look at their values. | |
7730 | Unfortunately, there is one exception: if one of the internal | |
7731 | history variables is an array whose elements are unconstrained | |
7732 | records, then we will need to create distinct fixed types for each | |
7733 | element selected. */ | |
7734 | ||
7735 | /* The upshot of all of this is that many routines take a (type, host | |
7736 | address, target address) triple as arguments to represent a value. | |
7737 | The host address, if non-null, is supposed to contain an internal | |
7738 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 7739 | target at the target address. */ |
14f9c5c9 AS |
7740 | |
7741 | /* Assuming that VAL0 represents a pointer value, the result of | |
7742 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 7743 | dynamic-sized types. */ |
14f9c5c9 | 7744 | |
d2e4a39e AS |
7745 | struct value * |
7746 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 7747 | { |
c48db5ca | 7748 | struct value *val = value_ind (val0); |
5b4ee69b | 7749 | |
b50d69b5 JG |
7750 | if (ada_is_tagged_type (value_type (val), 0)) |
7751 | val = ada_tag_value_at_base_address (val); | |
7752 | ||
4c4b4cd2 | 7753 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
7754 | } |
7755 | ||
7756 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
7757 | qualifiers on VAL0. */ |
7758 | ||
d2e4a39e AS |
7759 | static struct value * |
7760 | ada_coerce_ref (struct value *val0) | |
7761 | { | |
df407dfe | 7762 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
7763 | { |
7764 | struct value *val = val0; | |
5b4ee69b | 7765 | |
994b9211 | 7766 | val = coerce_ref (val); |
b50d69b5 JG |
7767 | |
7768 | if (ada_is_tagged_type (value_type (val), 0)) | |
7769 | val = ada_tag_value_at_base_address (val); | |
7770 | ||
4c4b4cd2 | 7771 | return ada_to_fixed_value (val); |
d2e4a39e AS |
7772 | } |
7773 | else | |
14f9c5c9 AS |
7774 | return val0; |
7775 | } | |
7776 | ||
7777 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 7778 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
7779 | |
7780 | static unsigned int | |
ebf56fd3 | 7781 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
7782 | { |
7783 | return (off + alignment - 1) & ~(alignment - 1); | |
7784 | } | |
7785 | ||
4c4b4cd2 | 7786 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
7787 | |
7788 | static unsigned int | |
ebf56fd3 | 7789 | field_alignment (struct type *type, int f) |
14f9c5c9 | 7790 | { |
d2e4a39e | 7791 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 7792 | int len; |
14f9c5c9 AS |
7793 | int align_offset; |
7794 | ||
64a1bf19 JB |
7795 | /* The field name should never be null, unless the debugging information |
7796 | is somehow malformed. In this case, we assume the field does not | |
7797 | require any alignment. */ | |
7798 | if (name == NULL) | |
7799 | return 1; | |
7800 | ||
7801 | len = strlen (name); | |
7802 | ||
4c4b4cd2 PH |
7803 | if (!isdigit (name[len - 1])) |
7804 | return 1; | |
14f9c5c9 | 7805 | |
d2e4a39e | 7806 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
7807 | align_offset = len - 2; |
7808 | else | |
7809 | align_offset = len - 1; | |
7810 | ||
61012eef | 7811 | if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV")) |
14f9c5c9 AS |
7812 | return TARGET_CHAR_BIT; |
7813 | ||
4c4b4cd2 PH |
7814 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
7815 | } | |
7816 | ||
852dff6c | 7817 | /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */ |
4c4b4cd2 | 7818 | |
852dff6c JB |
7819 | static struct symbol * |
7820 | ada_find_any_type_symbol (const char *name) | |
4c4b4cd2 PH |
7821 | { |
7822 | struct symbol *sym; | |
7823 | ||
7824 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
4186eb54 | 7825 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) |
4c4b4cd2 PH |
7826 | return sym; |
7827 | ||
4186eb54 KS |
7828 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); |
7829 | return sym; | |
14f9c5c9 AS |
7830 | } |
7831 | ||
dddfab26 UW |
7832 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
7833 | solely for types defined by debug info, it will not search the GDB | |
7834 | primitive types. */ | |
4c4b4cd2 | 7835 | |
852dff6c | 7836 | static struct type * |
ebf56fd3 | 7837 | ada_find_any_type (const char *name) |
14f9c5c9 | 7838 | { |
852dff6c | 7839 | struct symbol *sym = ada_find_any_type_symbol (name); |
14f9c5c9 | 7840 | |
14f9c5c9 | 7841 | if (sym != NULL) |
dddfab26 | 7842 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 7843 | |
dddfab26 | 7844 | return NULL; |
14f9c5c9 AS |
7845 | } |
7846 | ||
739593e0 JB |
7847 | /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol |
7848 | associated with NAME_SYM's name. NAME_SYM may itself be a renaming | |
7849 | symbol, in which case it is returned. Otherwise, this looks for | |
7850 | symbols whose name is that of NAME_SYM suffixed with "___XR". | |
7851 | Return symbol if found, and NULL otherwise. */ | |
4c4b4cd2 | 7852 | |
c0e70c62 TT |
7853 | static bool |
7854 | ada_is_renaming_symbol (struct symbol *name_sym) | |
aeb5907d | 7855 | { |
987012b8 | 7856 | const char *name = name_sym->linkage_name (); |
c0e70c62 | 7857 | return strstr (name, "___XR") != NULL; |
4c4b4cd2 PH |
7858 | } |
7859 | ||
14f9c5c9 | 7860 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 7861 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 7862 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
7863 | otherwise return 0. */ |
7864 | ||
14f9c5c9 | 7865 | int |
d2e4a39e | 7866 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
7867 | { |
7868 | if (type1 == NULL) | |
7869 | return 1; | |
7870 | else if (type0 == NULL) | |
7871 | return 0; | |
7872 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
7873 | return 1; | |
7874 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
7875 | return 0; | |
4c4b4cd2 PH |
7876 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
7877 | return 1; | |
ad82864c | 7878 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 7879 | return 1; |
4c4b4cd2 PH |
7880 | else if (ada_is_array_descriptor_type (type0) |
7881 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 7882 | return 1; |
aeb5907d JB |
7883 | else |
7884 | { | |
a737d952 TT |
7885 | const char *type0_name = TYPE_NAME (type0); |
7886 | const char *type1_name = TYPE_NAME (type1); | |
aeb5907d JB |
7887 | |
7888 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
7889 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
7890 | return 1; | |
7891 | } | |
14f9c5c9 AS |
7892 | return 0; |
7893 | } | |
7894 | ||
e86ca25f TT |
7895 | /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is |
7896 | null. */ | |
4c4b4cd2 | 7897 | |
0d5cff50 | 7898 | const char * |
d2e4a39e | 7899 | ada_type_name (struct type *type) |
14f9c5c9 | 7900 | { |
d2e4a39e | 7901 | if (type == NULL) |
14f9c5c9 | 7902 | return NULL; |
e86ca25f | 7903 | return TYPE_NAME (type); |
14f9c5c9 AS |
7904 | } |
7905 | ||
b4ba55a1 JB |
7906 | /* Search the list of "descriptive" types associated to TYPE for a type |
7907 | whose name is NAME. */ | |
7908 | ||
7909 | static struct type * | |
7910 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
7911 | { | |
931e5bc3 | 7912 | struct type *result, *tmp; |
b4ba55a1 | 7913 | |
c6044dd1 JB |
7914 | if (ada_ignore_descriptive_types_p) |
7915 | return NULL; | |
7916 | ||
b4ba55a1 JB |
7917 | /* If there no descriptive-type info, then there is no parallel type |
7918 | to be found. */ | |
7919 | if (!HAVE_GNAT_AUX_INFO (type)) | |
7920 | return NULL; | |
7921 | ||
7922 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
7923 | while (result != NULL) | |
7924 | { | |
0d5cff50 | 7925 | const char *result_name = ada_type_name (result); |
b4ba55a1 JB |
7926 | |
7927 | if (result_name == NULL) | |
7928 | { | |
7929 | warning (_("unexpected null name on descriptive type")); | |
7930 | return NULL; | |
7931 | } | |
7932 | ||
7933 | /* If the names match, stop. */ | |
7934 | if (strcmp (result_name, name) == 0) | |
7935 | break; | |
7936 | ||
7937 | /* Otherwise, look at the next item on the list, if any. */ | |
7938 | if (HAVE_GNAT_AUX_INFO (result)) | |
931e5bc3 JG |
7939 | tmp = TYPE_DESCRIPTIVE_TYPE (result); |
7940 | else | |
7941 | tmp = NULL; | |
7942 | ||
7943 | /* If not found either, try after having resolved the typedef. */ | |
7944 | if (tmp != NULL) | |
7945 | result = tmp; | |
b4ba55a1 | 7946 | else |
931e5bc3 | 7947 | { |
f168693b | 7948 | result = check_typedef (result); |
931e5bc3 JG |
7949 | if (HAVE_GNAT_AUX_INFO (result)) |
7950 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
7951 | else | |
7952 | result = NULL; | |
7953 | } | |
b4ba55a1 JB |
7954 | } |
7955 | ||
7956 | /* If we didn't find a match, see whether this is a packed array. With | |
7957 | older compilers, the descriptive type information is either absent or | |
7958 | irrelevant when it comes to packed arrays so the above lookup fails. | |
7959 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 7960 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
7961 | return ada_find_any_type (name); |
7962 | ||
7963 | return result; | |
7964 | } | |
7965 | ||
7966 | /* Find a parallel type to TYPE with the specified NAME, using the | |
7967 | descriptive type taken from the debugging information, if available, | |
7968 | and otherwise using the (slower) name-based method. */ | |
7969 | ||
7970 | static struct type * | |
7971 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
7972 | { | |
7973 | struct type *result = NULL; | |
7974 | ||
7975 | if (HAVE_GNAT_AUX_INFO (type)) | |
7976 | result = find_parallel_type_by_descriptive_type (type, name); | |
7977 | else | |
7978 | result = ada_find_any_type (name); | |
7979 | ||
7980 | return result; | |
7981 | } | |
7982 | ||
7983 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 7984 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 7985 | |
d2e4a39e | 7986 | struct type * |
ebf56fd3 | 7987 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 7988 | { |
0d5cff50 | 7989 | char *name; |
fe978cb0 | 7990 | const char *type_name = ada_type_name (type); |
14f9c5c9 | 7991 | int len; |
d2e4a39e | 7992 | |
fe978cb0 | 7993 | if (type_name == NULL) |
14f9c5c9 AS |
7994 | return NULL; |
7995 | ||
fe978cb0 | 7996 | len = strlen (type_name); |
14f9c5c9 | 7997 | |
b4ba55a1 | 7998 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 | 7999 | |
fe978cb0 | 8000 | strcpy (name, type_name); |
14f9c5c9 AS |
8001 | strcpy (name + len, suffix); |
8002 | ||
b4ba55a1 | 8003 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
8004 | } |
8005 | ||
14f9c5c9 | 8006 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 8007 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 8008 | |
d2e4a39e AS |
8009 | static struct type * |
8010 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 8011 | { |
61ee279c | 8012 | type = ada_check_typedef (type); |
14f9c5c9 AS |
8013 | |
8014 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 8015 | || ada_type_name (type) == NULL) |
14f9c5c9 | 8016 | return NULL; |
d2e4a39e | 8017 | else |
14f9c5c9 AS |
8018 | { |
8019 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 8020 | |
4c4b4cd2 PH |
8021 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
8022 | return type; | |
14f9c5c9 | 8023 | else |
4c4b4cd2 | 8024 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
8025 | } |
8026 | } | |
8027 | ||
8028 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 8029 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 8030 | |
d2e4a39e AS |
8031 | static int |
8032 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
8033 | { |
8034 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 8035 | |
d2e4a39e | 8036 | return name != NULL |
14f9c5c9 AS |
8037 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
8038 | && strstr (name, "___XVL") != NULL; | |
8039 | } | |
8040 | ||
4c4b4cd2 PH |
8041 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
8042 | represent a variant record type. */ | |
14f9c5c9 | 8043 | |
d2e4a39e | 8044 | static int |
4c4b4cd2 | 8045 | variant_field_index (struct type *type) |
14f9c5c9 AS |
8046 | { |
8047 | int f; | |
8048 | ||
4c4b4cd2 PH |
8049 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
8050 | return -1; | |
8051 | ||
8052 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
8053 | { | |
8054 | if (ada_is_variant_part (type, f)) | |
8055 | return f; | |
8056 | } | |
8057 | return -1; | |
14f9c5c9 AS |
8058 | } |
8059 | ||
4c4b4cd2 PH |
8060 | /* A record type with no fields. */ |
8061 | ||
d2e4a39e | 8062 | static struct type * |
fe978cb0 | 8063 | empty_record (struct type *templ) |
14f9c5c9 | 8064 | { |
fe978cb0 | 8065 | struct type *type = alloc_type_copy (templ); |
5b4ee69b | 8066 | |
14f9c5c9 AS |
8067 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
8068 | TYPE_NFIELDS (type) = 0; | |
8069 | TYPE_FIELDS (type) = NULL; | |
8ecb59f8 | 8070 | INIT_NONE_SPECIFIC (type); |
14f9c5c9 | 8071 | TYPE_NAME (type) = "<empty>"; |
14f9c5c9 AS |
8072 | TYPE_LENGTH (type) = 0; |
8073 | return type; | |
8074 | } | |
8075 | ||
8076 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
8077 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
8078 | the beginning of this section) VAL according to GNAT conventions. | |
8079 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 8080 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
8081 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
8082 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 8083 | of the variant. |
14f9c5c9 | 8084 | |
4c4b4cd2 PH |
8085 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
8086 | length are not statically known are discarded. As a consequence, | |
8087 | VALADDR, ADDRESS and DVAL0 are ignored. | |
8088 | ||
8089 | NOTE: Limitations: For now, we assume that dynamic fields and | |
8090 | variants occupy whole numbers of bytes. However, they need not be | |
8091 | byte-aligned. */ | |
8092 | ||
8093 | struct type * | |
10a2c479 | 8094 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 8095 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
8096 | CORE_ADDR address, struct value *dval0, |
8097 | int keep_dynamic_fields) | |
14f9c5c9 | 8098 | { |
d2e4a39e AS |
8099 | struct value *mark = value_mark (); |
8100 | struct value *dval; | |
8101 | struct type *rtype; | |
14f9c5c9 | 8102 | int nfields, bit_len; |
4c4b4cd2 | 8103 | int variant_field; |
14f9c5c9 | 8104 | long off; |
d94e4f4f | 8105 | int fld_bit_len; |
14f9c5c9 AS |
8106 | int f; |
8107 | ||
4c4b4cd2 PH |
8108 | /* Compute the number of fields in this record type that are going |
8109 | to be processed: unless keep_dynamic_fields, this includes only | |
8110 | fields whose position and length are static will be processed. */ | |
8111 | if (keep_dynamic_fields) | |
8112 | nfields = TYPE_NFIELDS (type); | |
8113 | else | |
8114 | { | |
8115 | nfields = 0; | |
76a01679 | 8116 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
8117 | && !ada_is_variant_part (type, nfields) |
8118 | && !is_dynamic_field (type, nfields)) | |
8119 | nfields++; | |
8120 | } | |
8121 | ||
e9bb382b | 8122 | rtype = alloc_type_copy (type); |
14f9c5c9 | 8123 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
8ecb59f8 | 8124 | INIT_NONE_SPECIFIC (rtype); |
14f9c5c9 | 8125 | TYPE_NFIELDS (rtype) = nfields; |
d2e4a39e | 8126 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
8127 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
8128 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
8129 | TYPE_NAME (rtype) = ada_type_name (type); | |
876cecd0 | 8130 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 8131 | |
d2e4a39e AS |
8132 | off = 0; |
8133 | bit_len = 0; | |
4c4b4cd2 PH |
8134 | variant_field = -1; |
8135 | ||
14f9c5c9 AS |
8136 | for (f = 0; f < nfields; f += 1) |
8137 | { | |
6c038f32 PH |
8138 | off = align_value (off, field_alignment (type, f)) |
8139 | + TYPE_FIELD_BITPOS (type, f); | |
945b3a32 | 8140 | SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off); |
d2e4a39e | 8141 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 8142 | |
d2e4a39e | 8143 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
8144 | { |
8145 | variant_field = f; | |
d94e4f4f | 8146 | fld_bit_len = 0; |
4c4b4cd2 | 8147 | } |
14f9c5c9 | 8148 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 8149 | { |
284614f0 JB |
8150 | const gdb_byte *field_valaddr = valaddr; |
8151 | CORE_ADDR field_address = address; | |
8152 | struct type *field_type = | |
8153 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
8154 | ||
4c4b4cd2 | 8155 | if (dval0 == NULL) |
b5304971 JG |
8156 | { |
8157 | /* rtype's length is computed based on the run-time | |
8158 | value of discriminants. If the discriminants are not | |
8159 | initialized, the type size may be completely bogus and | |
0963b4bd | 8160 | GDB may fail to allocate a value for it. So check the |
b5304971 | 8161 | size first before creating the value. */ |
c1b5a1a6 | 8162 | ada_ensure_varsize_limit (rtype); |
012370f6 TT |
8163 | /* Using plain value_from_contents_and_address here |
8164 | causes problems because we will end up trying to | |
8165 | resolve a type that is currently being | |
8166 | constructed. */ | |
8167 | dval = value_from_contents_and_address_unresolved (rtype, | |
8168 | valaddr, | |
8169 | address); | |
9f1f738a | 8170 | rtype = value_type (dval); |
b5304971 | 8171 | } |
4c4b4cd2 PH |
8172 | else |
8173 | dval = dval0; | |
8174 | ||
284614f0 JB |
8175 | /* If the type referenced by this field is an aligner type, we need |
8176 | to unwrap that aligner type, because its size might not be set. | |
8177 | Keeping the aligner type would cause us to compute the wrong | |
8178 | size for this field, impacting the offset of the all the fields | |
8179 | that follow this one. */ | |
8180 | if (ada_is_aligner_type (field_type)) | |
8181 | { | |
8182 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
8183 | ||
8184 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
8185 | field_address = cond_offset_target (field_address, field_offset); | |
8186 | field_type = ada_aligned_type (field_type); | |
8187 | } | |
8188 | ||
8189 | field_valaddr = cond_offset_host (field_valaddr, | |
8190 | off / TARGET_CHAR_BIT); | |
8191 | field_address = cond_offset_target (field_address, | |
8192 | off / TARGET_CHAR_BIT); | |
8193 | ||
8194 | /* Get the fixed type of the field. Note that, in this case, | |
8195 | we do not want to get the real type out of the tag: if | |
8196 | the current field is the parent part of a tagged record, | |
8197 | we will get the tag of the object. Clearly wrong: the real | |
8198 | type of the parent is not the real type of the child. We | |
8199 | would end up in an infinite loop. */ | |
8200 | field_type = ada_get_base_type (field_type); | |
8201 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
8202 | field_address, dval, 0); | |
27f2a97b JB |
8203 | /* If the field size is already larger than the maximum |
8204 | object size, then the record itself will necessarily | |
8205 | be larger than the maximum object size. We need to make | |
8206 | this check now, because the size might be so ridiculously | |
8207 | large (due to an uninitialized variable in the inferior) | |
8208 | that it would cause an overflow when adding it to the | |
8209 | record size. */ | |
c1b5a1a6 | 8210 | ada_ensure_varsize_limit (field_type); |
284614f0 JB |
8211 | |
8212 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 8213 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
8214 | /* The multiplication can potentially overflow. But because |
8215 | the field length has been size-checked just above, and | |
8216 | assuming that the maximum size is a reasonable value, | |
8217 | an overflow should not happen in practice. So rather than | |
8218 | adding overflow recovery code to this already complex code, | |
8219 | we just assume that it's not going to happen. */ | |
d94e4f4f | 8220 | fld_bit_len = |
4c4b4cd2 PH |
8221 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
8222 | } | |
14f9c5c9 | 8223 | else |
4c4b4cd2 | 8224 | { |
5ded5331 JB |
8225 | /* Note: If this field's type is a typedef, it is important |
8226 | to preserve the typedef layer. | |
8227 | ||
8228 | Otherwise, we might be transforming a typedef to a fat | |
8229 | pointer (encoding a pointer to an unconstrained array), | |
8230 | into a basic fat pointer (encoding an unconstrained | |
8231 | array). As both types are implemented using the same | |
8232 | structure, the typedef is the only clue which allows us | |
8233 | to distinguish between the two options. Stripping it | |
8234 | would prevent us from printing this field appropriately. */ | |
8235 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
4c4b4cd2 PH |
8236 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
8237 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 8238 | fld_bit_len = |
4c4b4cd2 PH |
8239 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
8240 | else | |
5ded5331 JB |
8241 | { |
8242 | struct type *field_type = TYPE_FIELD_TYPE (type, f); | |
8243 | ||
8244 | /* We need to be careful of typedefs when computing | |
8245 | the length of our field. If this is a typedef, | |
8246 | get the length of the target type, not the length | |
8247 | of the typedef. */ | |
8248 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
8249 | field_type = ada_typedef_target_type (field_type); | |
8250 | ||
8251 | fld_bit_len = | |
8252 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; | |
8253 | } | |
4c4b4cd2 | 8254 | } |
14f9c5c9 | 8255 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 8256 | bit_len = off + fld_bit_len; |
d94e4f4f | 8257 | off += fld_bit_len; |
4c4b4cd2 PH |
8258 | TYPE_LENGTH (rtype) = |
8259 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 8260 | } |
4c4b4cd2 PH |
8261 | |
8262 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 8263 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
8264 | the record. This can happen in the presence of representation |
8265 | clauses. */ | |
8266 | if (variant_field >= 0) | |
8267 | { | |
8268 | struct type *branch_type; | |
8269 | ||
8270 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
8271 | ||
8272 | if (dval0 == NULL) | |
9f1f738a | 8273 | { |
012370f6 TT |
8274 | /* Using plain value_from_contents_and_address here causes |
8275 | problems because we will end up trying to resolve a type | |
8276 | that is currently being constructed. */ | |
8277 | dval = value_from_contents_and_address_unresolved (rtype, valaddr, | |
8278 | address); | |
9f1f738a SA |
8279 | rtype = value_type (dval); |
8280 | } | |
4c4b4cd2 PH |
8281 | else |
8282 | dval = dval0; | |
8283 | ||
8284 | branch_type = | |
8285 | to_fixed_variant_branch_type | |
8286 | (TYPE_FIELD_TYPE (type, variant_field), | |
8287 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
8288 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
8289 | if (branch_type == NULL) | |
8290 | { | |
8291 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
8292 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
8293 | TYPE_NFIELDS (rtype) -= 1; | |
8294 | } | |
8295 | else | |
8296 | { | |
8297 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
8298 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8299 | fld_bit_len = | |
8300 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
8301 | TARGET_CHAR_BIT; | |
8302 | if (off + fld_bit_len > bit_len) | |
8303 | bit_len = off + fld_bit_len; | |
8304 | TYPE_LENGTH (rtype) = | |
8305 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
8306 | } | |
8307 | } | |
8308 | ||
714e53ab PH |
8309 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
8310 | should contain the alignment of that record, which should be a strictly | |
8311 | positive value. If null or negative, then something is wrong, most | |
8312 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 8313 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
8314 | the current RTYPE length might be good enough for our purposes. */ |
8315 | if (TYPE_LENGTH (type) <= 0) | |
8316 | { | |
323e0a4a | 8317 | if (TYPE_NAME (rtype)) |
cc1defb1 KS |
8318 | warning (_("Invalid type size for `%s' detected: %s."), |
8319 | TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type))); | |
323e0a4a | 8320 | else |
cc1defb1 KS |
8321 | warning (_("Invalid type size for <unnamed> detected: %s."), |
8322 | pulongest (TYPE_LENGTH (type))); | |
714e53ab PH |
8323 | } |
8324 | else | |
8325 | { | |
8326 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
8327 | TYPE_LENGTH (type)); | |
8328 | } | |
14f9c5c9 AS |
8329 | |
8330 | value_free_to_mark (mark); | |
d2e4a39e | 8331 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 8332 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8333 | return rtype; |
8334 | } | |
8335 | ||
4c4b4cd2 PH |
8336 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
8337 | of 1. */ | |
14f9c5c9 | 8338 | |
d2e4a39e | 8339 | static struct type * |
fc1a4b47 | 8340 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
8341 | CORE_ADDR address, struct value *dval0) |
8342 | { | |
8343 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
8344 | address, dval0, 1); | |
8345 | } | |
8346 | ||
8347 | /* An ordinary record type in which ___XVL-convention fields and | |
8348 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
8349 | static approximations, containing all possible fields. Uses | |
8350 | no runtime values. Useless for use in values, but that's OK, | |
8351 | since the results are used only for type determinations. Works on both | |
8352 | structs and unions. Representation note: to save space, we memorize | |
8353 | the result of this function in the TYPE_TARGET_TYPE of the | |
8354 | template type. */ | |
8355 | ||
8356 | static struct type * | |
8357 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
8358 | { |
8359 | struct type *type; | |
8360 | int nfields; | |
8361 | int f; | |
8362 | ||
9e195661 PMR |
8363 | /* No need no do anything if the input type is already fixed. */ |
8364 | if (TYPE_FIXED_INSTANCE (type0)) | |
8365 | return type0; | |
8366 | ||
8367 | /* Likewise if we already have computed the static approximation. */ | |
4c4b4cd2 PH |
8368 | if (TYPE_TARGET_TYPE (type0) != NULL) |
8369 | return TYPE_TARGET_TYPE (type0); | |
8370 | ||
9e195661 | 8371 | /* Don't clone TYPE0 until we are sure we are going to need a copy. */ |
4c4b4cd2 | 8372 | type = type0; |
9e195661 PMR |
8373 | nfields = TYPE_NFIELDS (type0); |
8374 | ||
8375 | /* Whether or not we cloned TYPE0, cache the result so that we don't do | |
8376 | recompute all over next time. */ | |
8377 | TYPE_TARGET_TYPE (type0) = type; | |
14f9c5c9 AS |
8378 | |
8379 | for (f = 0; f < nfields; f += 1) | |
8380 | { | |
460efde1 | 8381 | struct type *field_type = TYPE_FIELD_TYPE (type0, f); |
4c4b4cd2 | 8382 | struct type *new_type; |
14f9c5c9 | 8383 | |
4c4b4cd2 | 8384 | if (is_dynamic_field (type0, f)) |
460efde1 JB |
8385 | { |
8386 | field_type = ada_check_typedef (field_type); | |
8387 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
8388 | } | |
14f9c5c9 | 8389 | else |
f192137b | 8390 | new_type = static_unwrap_type (field_type); |
9e195661 PMR |
8391 | |
8392 | if (new_type != field_type) | |
8393 | { | |
8394 | /* Clone TYPE0 only the first time we get a new field type. */ | |
8395 | if (type == type0) | |
8396 | { | |
8397 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); | |
8398 | TYPE_CODE (type) = TYPE_CODE (type0); | |
8ecb59f8 | 8399 | INIT_NONE_SPECIFIC (type); |
9e195661 PMR |
8400 | TYPE_NFIELDS (type) = nfields; |
8401 | TYPE_FIELDS (type) = (struct field *) | |
8402 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
8403 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
8404 | sizeof (struct field) * nfields); | |
8405 | TYPE_NAME (type) = ada_type_name (type0); | |
9e195661 PMR |
8406 | TYPE_FIXED_INSTANCE (type) = 1; |
8407 | TYPE_LENGTH (type) = 0; | |
8408 | } | |
8409 | TYPE_FIELD_TYPE (type, f) = new_type; | |
8410 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
8411 | } | |
14f9c5c9 | 8412 | } |
9e195661 | 8413 | |
14f9c5c9 AS |
8414 | return type; |
8415 | } | |
8416 | ||
4c4b4cd2 | 8417 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
8418 | whose address in memory is ADDRESS, returns a revision of TYPE, |
8419 | which should be a non-dynamic-sized record, in which the variant | |
8420 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
8421 | for discriminant values in DVAL0, which can be NULL if the record |
8422 | contains the necessary discriminant values. */ | |
8423 | ||
d2e4a39e | 8424 | static struct type * |
fc1a4b47 | 8425 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 8426 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 8427 | { |
d2e4a39e | 8428 | struct value *mark = value_mark (); |
4c4b4cd2 | 8429 | struct value *dval; |
d2e4a39e | 8430 | struct type *rtype; |
14f9c5c9 AS |
8431 | struct type *branch_type; |
8432 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 8433 | int variant_field = variant_field_index (type); |
14f9c5c9 | 8434 | |
4c4b4cd2 | 8435 | if (variant_field == -1) |
14f9c5c9 AS |
8436 | return type; |
8437 | ||
4c4b4cd2 | 8438 | if (dval0 == NULL) |
9f1f738a SA |
8439 | { |
8440 | dval = value_from_contents_and_address (type, valaddr, address); | |
8441 | type = value_type (dval); | |
8442 | } | |
4c4b4cd2 PH |
8443 | else |
8444 | dval = dval0; | |
8445 | ||
e9bb382b | 8446 | rtype = alloc_type_copy (type); |
14f9c5c9 | 8447 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
8ecb59f8 | 8448 | INIT_NONE_SPECIFIC (rtype); |
4c4b4cd2 | 8449 | TYPE_NFIELDS (rtype) = nfields; |
d2e4a39e AS |
8450 | TYPE_FIELDS (rtype) = |
8451 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
8452 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 8453 | sizeof (struct field) * nfields); |
14f9c5c9 | 8454 | TYPE_NAME (rtype) = ada_type_name (type); |
876cecd0 | 8455 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
8456 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
8457 | ||
4c4b4cd2 PH |
8458 | branch_type = to_fixed_variant_branch_type |
8459 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 8460 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
8461 | TYPE_FIELD_BITPOS (type, variant_field) |
8462 | / TARGET_CHAR_BIT), | |
d2e4a39e | 8463 | cond_offset_target (address, |
4c4b4cd2 PH |
8464 | TYPE_FIELD_BITPOS (type, variant_field) |
8465 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 8466 | if (branch_type == NULL) |
14f9c5c9 | 8467 | { |
4c4b4cd2 | 8468 | int f; |
5b4ee69b | 8469 | |
4c4b4cd2 PH |
8470 | for (f = variant_field + 1; f < nfields; f += 1) |
8471 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 8472 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
8473 | } |
8474 | else | |
8475 | { | |
4c4b4cd2 PH |
8476 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
8477 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8478 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 8479 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 8480 | } |
4c4b4cd2 | 8481 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 8482 | |
4c4b4cd2 | 8483 | value_free_to_mark (mark); |
14f9c5c9 AS |
8484 | return rtype; |
8485 | } | |
8486 | ||
8487 | /* An ordinary record type (with fixed-length fields) that describes | |
8488 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
8489 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
8490 | should be in DVAL, a record value; it may be NULL if the object |
8491 | at ADDR itself contains any necessary discriminant values. | |
8492 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
8493 | values from the record are needed. Except in the case that DVAL, | |
8494 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
8495 | unchecked) is replaced by a particular branch of the variant. | |
8496 | ||
8497 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
8498 | is questionable and may be removed. It can arise during the | |
8499 | processing of an unconstrained-array-of-record type where all the | |
8500 | variant branches have exactly the same size. This is because in | |
8501 | such cases, the compiler does not bother to use the XVS convention | |
8502 | when encoding the record. I am currently dubious of this | |
8503 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 8504 | |
d2e4a39e | 8505 | static struct type * |
fc1a4b47 | 8506 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8507 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 8508 | { |
d2e4a39e | 8509 | struct type *templ_type; |
14f9c5c9 | 8510 | |
876cecd0 | 8511 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8512 | return type0; |
8513 | ||
d2e4a39e | 8514 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
8515 | |
8516 | if (templ_type != NULL) | |
8517 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
8518 | else if (variant_field_index (type0) >= 0) |
8519 | { | |
8520 | if (dval == NULL && valaddr == NULL && address == 0) | |
8521 | return type0; | |
8522 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
8523 | dval); | |
8524 | } | |
14f9c5c9 AS |
8525 | else |
8526 | { | |
876cecd0 | 8527 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
8528 | return type0; |
8529 | } | |
8530 | ||
8531 | } | |
8532 | ||
8533 | /* An ordinary record type (with fixed-length fields) that describes | |
8534 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
8535 | union type. Any necessary discriminants' values should be in DVAL, | |
8536 | a record value. That is, this routine selects the appropriate | |
8537 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 8538 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 8539 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 8540 | |
d2e4a39e | 8541 | static struct type * |
fc1a4b47 | 8542 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8543 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
8544 | { |
8545 | int which; | |
d2e4a39e AS |
8546 | struct type *templ_type; |
8547 | struct type *var_type; | |
14f9c5c9 AS |
8548 | |
8549 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
8550 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 8551 | else |
14f9c5c9 AS |
8552 | var_type = var_type0; |
8553 | ||
8554 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
8555 | ||
8556 | if (templ_type != NULL) | |
8557 | var_type = templ_type; | |
8558 | ||
b1f33ddd JB |
8559 | if (is_unchecked_variant (var_type, value_type (dval))) |
8560 | return var_type0; | |
d2e4a39e AS |
8561 | which = |
8562 | ada_which_variant_applies (var_type, | |
0fd88904 | 8563 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
8564 | |
8565 | if (which < 0) | |
e9bb382b | 8566 | return empty_record (var_type); |
14f9c5c9 | 8567 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 8568 | return to_fixed_record_type |
d2e4a39e AS |
8569 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
8570 | valaddr, address, dval); | |
4c4b4cd2 | 8571 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
8572 | return |
8573 | to_fixed_record_type | |
8574 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
8575 | else |
8576 | return TYPE_FIELD_TYPE (var_type, which); | |
8577 | } | |
8578 | ||
8908fca5 JB |
8579 | /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if |
8580 | ENCODING_TYPE, a type following the GNAT conventions for discrete | |
8581 | type encodings, only carries redundant information. */ | |
8582 | ||
8583 | static int | |
8584 | ada_is_redundant_range_encoding (struct type *range_type, | |
8585 | struct type *encoding_type) | |
8586 | { | |
108d56a4 | 8587 | const char *bounds_str; |
8908fca5 JB |
8588 | int n; |
8589 | LONGEST lo, hi; | |
8590 | ||
8591 | gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE); | |
8592 | ||
005e2509 JB |
8593 | if (TYPE_CODE (get_base_type (range_type)) |
8594 | != TYPE_CODE (get_base_type (encoding_type))) | |
8595 | { | |
8596 | /* The compiler probably used a simple base type to describe | |
8597 | the range type instead of the range's actual base type, | |
8598 | expecting us to get the real base type from the encoding | |
8599 | anyway. In this situation, the encoding cannot be ignored | |
8600 | as redundant. */ | |
8601 | return 0; | |
8602 | } | |
8603 | ||
8908fca5 JB |
8604 | if (is_dynamic_type (range_type)) |
8605 | return 0; | |
8606 | ||
8607 | if (TYPE_NAME (encoding_type) == NULL) | |
8608 | return 0; | |
8609 | ||
8610 | bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_"); | |
8611 | if (bounds_str == NULL) | |
8612 | return 0; | |
8613 | ||
8614 | n = 8; /* Skip "___XDLU_". */ | |
8615 | if (!ada_scan_number (bounds_str, n, &lo, &n)) | |
8616 | return 0; | |
8617 | if (TYPE_LOW_BOUND (range_type) != lo) | |
8618 | return 0; | |
8619 | ||
8620 | n += 2; /* Skip the "__" separator between the two bounds. */ | |
8621 | if (!ada_scan_number (bounds_str, n, &hi, &n)) | |
8622 | return 0; | |
8623 | if (TYPE_HIGH_BOUND (range_type) != hi) | |
8624 | return 0; | |
8625 | ||
8626 | return 1; | |
8627 | } | |
8628 | ||
8629 | /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE, | |
8630 | a type following the GNAT encoding for describing array type | |
8631 | indices, only carries redundant information. */ | |
8632 | ||
8633 | static int | |
8634 | ada_is_redundant_index_type_desc (struct type *array_type, | |
8635 | struct type *desc_type) | |
8636 | { | |
8637 | struct type *this_layer = check_typedef (array_type); | |
8638 | int i; | |
8639 | ||
8640 | for (i = 0; i < TYPE_NFIELDS (desc_type); i++) | |
8641 | { | |
8642 | if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer), | |
8643 | TYPE_FIELD_TYPE (desc_type, i))) | |
8644 | return 0; | |
8645 | this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer)); | |
8646 | } | |
8647 | ||
8648 | return 1; | |
8649 | } | |
8650 | ||
14f9c5c9 AS |
8651 | /* Assuming that TYPE0 is an array type describing the type of a value |
8652 | at ADDR, and that DVAL describes a record containing any | |
8653 | discriminants used in TYPE0, returns a type for the value that | |
8654 | contains no dynamic components (that is, no components whose sizes | |
8655 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
8656 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 8657 | varsize_limit. */ |
14f9c5c9 | 8658 | |
d2e4a39e AS |
8659 | static struct type * |
8660 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 8661 | int ignore_too_big) |
14f9c5c9 | 8662 | { |
d2e4a39e AS |
8663 | struct type *index_type_desc; |
8664 | struct type *result; | |
ad82864c | 8665 | int constrained_packed_array_p; |
931e5bc3 | 8666 | static const char *xa_suffix = "___XA"; |
14f9c5c9 | 8667 | |
b0dd7688 | 8668 | type0 = ada_check_typedef (type0); |
284614f0 | 8669 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 8670 | return type0; |
14f9c5c9 | 8671 | |
ad82864c JB |
8672 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
8673 | if (constrained_packed_array_p) | |
8674 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 8675 | |
931e5bc3 JG |
8676 | index_type_desc = ada_find_parallel_type (type0, xa_suffix); |
8677 | ||
8678 | /* As mentioned in exp_dbug.ads, for non bit-packed arrays an | |
8679 | encoding suffixed with 'P' may still be generated. If so, | |
8680 | it should be used to find the XA type. */ | |
8681 | ||
8682 | if (index_type_desc == NULL) | |
8683 | { | |
1da0522e | 8684 | const char *type_name = ada_type_name (type0); |
931e5bc3 | 8685 | |
1da0522e | 8686 | if (type_name != NULL) |
931e5bc3 | 8687 | { |
1da0522e | 8688 | const int len = strlen (type_name); |
931e5bc3 JG |
8689 | char *name = (char *) alloca (len + strlen (xa_suffix)); |
8690 | ||
1da0522e | 8691 | if (type_name[len - 1] == 'P') |
931e5bc3 | 8692 | { |
1da0522e | 8693 | strcpy (name, type_name); |
931e5bc3 JG |
8694 | strcpy (name + len - 1, xa_suffix); |
8695 | index_type_desc = ada_find_parallel_type_with_name (type0, name); | |
8696 | } | |
8697 | } | |
8698 | } | |
8699 | ||
28c85d6c | 8700 | ada_fixup_array_indexes_type (index_type_desc); |
8908fca5 JB |
8701 | if (index_type_desc != NULL |
8702 | && ada_is_redundant_index_type_desc (type0, index_type_desc)) | |
8703 | { | |
8704 | /* Ignore this ___XA parallel type, as it does not bring any | |
8705 | useful information. This allows us to avoid creating fixed | |
8706 | versions of the array's index types, which would be identical | |
8707 | to the original ones. This, in turn, can also help avoid | |
8708 | the creation of fixed versions of the array itself. */ | |
8709 | index_type_desc = NULL; | |
8710 | } | |
8711 | ||
14f9c5c9 AS |
8712 | if (index_type_desc == NULL) |
8713 | { | |
61ee279c | 8714 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 8715 | |
14f9c5c9 | 8716 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
8717 | depend on the contents of the array in properly constructed |
8718 | debugging data. */ | |
529cad9c PH |
8719 | /* Create a fixed version of the array element type. |
8720 | We're not providing the address of an element here, | |
e1d5a0d2 | 8721 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8722 | the conversion. This should not be a problem, since arrays of |
8723 | unconstrained objects are not allowed. In particular, all | |
8724 | the elements of an array of a tagged type should all be of | |
8725 | the same type specified in the debugging info. No need to | |
8726 | consult the object tag. */ | |
1ed6ede0 | 8727 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 8728 | |
284614f0 JB |
8729 | /* Make sure we always create a new array type when dealing with |
8730 | packed array types, since we're going to fix-up the array | |
8731 | type length and element bitsize a little further down. */ | |
ad82864c | 8732 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 8733 | result = type0; |
14f9c5c9 | 8734 | else |
e9bb382b | 8735 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 8736 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
8737 | } |
8738 | else | |
8739 | { | |
8740 | int i; | |
8741 | struct type *elt_type0; | |
8742 | ||
8743 | elt_type0 = type0; | |
8744 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 8745 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
8746 | |
8747 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
8748 | depend on the contents of the array in properly constructed |
8749 | debugging data. */ | |
529cad9c PH |
8750 | /* Create a fixed version of the array element type. |
8751 | We're not providing the address of an element here, | |
e1d5a0d2 | 8752 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8753 | the conversion. This should not be a problem, since arrays of |
8754 | unconstrained objects are not allowed. In particular, all | |
8755 | the elements of an array of a tagged type should all be of | |
8756 | the same type specified in the debugging info. No need to | |
8757 | consult the object tag. */ | |
1ed6ede0 JB |
8758 | result = |
8759 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
8760 | |
8761 | elt_type0 = type0; | |
14f9c5c9 | 8762 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
8763 | { |
8764 | struct type *range_type = | |
28c85d6c | 8765 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 8766 | |
e9bb382b | 8767 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 8768 | result, range_type); |
1ce677a4 | 8769 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 8770 | } |
d2e4a39e | 8771 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 8772 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8773 | } |
8774 | ||
2e6fda7d JB |
8775 | /* We want to preserve the type name. This can be useful when |
8776 | trying to get the type name of a value that has already been | |
8777 | printed (for instance, if the user did "print VAR; whatis $". */ | |
8778 | TYPE_NAME (result) = TYPE_NAME (type0); | |
8779 | ||
ad82864c | 8780 | if (constrained_packed_array_p) |
284614f0 JB |
8781 | { |
8782 | /* So far, the resulting type has been created as if the original | |
8783 | type was a regular (non-packed) array type. As a result, the | |
8784 | bitsize of the array elements needs to be set again, and the array | |
8785 | length needs to be recomputed based on that bitsize. */ | |
8786 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
8787 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
8788 | ||
8789 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
8790 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
8791 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
8792 | TYPE_LENGTH (result)++; | |
8793 | } | |
8794 | ||
876cecd0 | 8795 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 8796 | return result; |
d2e4a39e | 8797 | } |
14f9c5c9 AS |
8798 | |
8799 | ||
8800 | /* A standard type (containing no dynamically sized components) | |
8801 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
8802 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 8803 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
8804 | ADDRESS or in VALADDR contains these discriminants. |
8805 | ||
1ed6ede0 JB |
8806 | If CHECK_TAG is not null, in the case of tagged types, this function |
8807 | attempts to locate the object's tag and use it to compute the actual | |
8808 | type. However, when ADDRESS is null, we cannot use it to determine the | |
8809 | location of the tag, and therefore compute the tagged type's actual type. | |
8810 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 8811 | |
f192137b JB |
8812 | static struct type * |
8813 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 8814 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 8815 | { |
61ee279c | 8816 | type = ada_check_typedef (type); |
8ecb59f8 TT |
8817 | |
8818 | /* Only un-fixed types need to be handled here. */ | |
8819 | if (!HAVE_GNAT_AUX_INFO (type)) | |
8820 | return type; | |
8821 | ||
d2e4a39e AS |
8822 | switch (TYPE_CODE (type)) |
8823 | { | |
8824 | default: | |
14f9c5c9 | 8825 | return type; |
d2e4a39e | 8826 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 8827 | { |
76a01679 | 8828 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
8829 | struct type *fixed_record_type = |
8830 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 8831 | |
529cad9c PH |
8832 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
8833 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 8834 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
8835 | type (the parent part of the record may have dynamic fields |
8836 | and the way the location of _tag is expressed may depend on | |
8837 | them). */ | |
529cad9c | 8838 | |
1ed6ede0 | 8839 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 | 8840 | { |
b50d69b5 JG |
8841 | struct value *tag = |
8842 | value_tag_from_contents_and_address | |
8843 | (fixed_record_type, | |
8844 | valaddr, | |
8845 | address); | |
8846 | struct type *real_type = type_from_tag (tag); | |
8847 | struct value *obj = | |
8848 | value_from_contents_and_address (fixed_record_type, | |
8849 | valaddr, | |
8850 | address); | |
9f1f738a | 8851 | fixed_record_type = value_type (obj); |
76a01679 | 8852 | if (real_type != NULL) |
b50d69b5 JG |
8853 | return to_fixed_record_type |
8854 | (real_type, NULL, | |
8855 | value_address (ada_tag_value_at_base_address (obj)), NULL); | |
76a01679 | 8856 | } |
4af88198 JB |
8857 | |
8858 | /* Check to see if there is a parallel ___XVZ variable. | |
8859 | If there is, then it provides the actual size of our type. */ | |
8860 | else if (ada_type_name (fixed_record_type) != NULL) | |
8861 | { | |
0d5cff50 | 8862 | const char *name = ada_type_name (fixed_record_type); |
224c3ddb SM |
8863 | char *xvz_name |
8864 | = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */); | |
eccab96d | 8865 | bool xvz_found = false; |
4af88198 JB |
8866 | LONGEST size; |
8867 | ||
88c15c34 | 8868 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
a70b8144 | 8869 | try |
eccab96d JB |
8870 | { |
8871 | xvz_found = get_int_var_value (xvz_name, size); | |
8872 | } | |
230d2906 | 8873 | catch (const gdb_exception_error &except) |
eccab96d JB |
8874 | { |
8875 | /* We found the variable, but somehow failed to read | |
8876 | its value. Rethrow the same error, but with a little | |
8877 | bit more information, to help the user understand | |
8878 | what went wrong (Eg: the variable might have been | |
8879 | optimized out). */ | |
8880 | throw_error (except.error, | |
8881 | _("unable to read value of %s (%s)"), | |
3d6e9d23 | 8882 | xvz_name, except.what ()); |
eccab96d | 8883 | } |
eccab96d JB |
8884 | |
8885 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
4af88198 JB |
8886 | { |
8887 | fixed_record_type = copy_type (fixed_record_type); | |
8888 | TYPE_LENGTH (fixed_record_type) = size; | |
8889 | ||
8890 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
8891 | observed this when the debugging info is STABS, and | |
8892 | apparently it is something that is hard to fix. | |
8893 | ||
8894 | In practice, we don't need the actual type definition | |
8895 | at all, because the presence of the XVZ variable allows us | |
8896 | to assume that there must be a XVS type as well, which we | |
8897 | should be able to use later, when we need the actual type | |
8898 | definition. | |
8899 | ||
8900 | In the meantime, pretend that the "fixed" type we are | |
8901 | returning is NOT a stub, because this can cause trouble | |
8902 | when using this type to create new types targeting it. | |
8903 | Indeed, the associated creation routines often check | |
8904 | whether the target type is a stub and will try to replace | |
0963b4bd | 8905 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
8906 | might cause the new type to have the wrong size too. |
8907 | Consider the case of an array, for instance, where the size | |
8908 | of the array is computed from the number of elements in | |
8909 | our array multiplied by the size of its element. */ | |
8910 | TYPE_STUB (fixed_record_type) = 0; | |
8911 | } | |
8912 | } | |
1ed6ede0 | 8913 | return fixed_record_type; |
4c4b4cd2 | 8914 | } |
d2e4a39e | 8915 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 8916 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
8917 | case TYPE_CODE_UNION: |
8918 | if (dval == NULL) | |
4c4b4cd2 | 8919 | return type; |
d2e4a39e | 8920 | else |
4c4b4cd2 | 8921 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 8922 | } |
14f9c5c9 AS |
8923 | } |
8924 | ||
f192137b JB |
8925 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
8926 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
8927 | |
8928 | The typedef layer needs be preserved in order to differentiate between | |
8929 | arrays and array pointers when both types are implemented using the same | |
8930 | fat pointer. In the array pointer case, the pointer is encoded as | |
8931 | a typedef of the pointer type. For instance, considering: | |
8932 | ||
8933 | type String_Access is access String; | |
8934 | S1 : String_Access := null; | |
8935 | ||
8936 | To the debugger, S1 is defined as a typedef of type String. But | |
8937 | to the user, it is a pointer. So if the user tries to print S1, | |
8938 | we should not dereference the array, but print the array address | |
8939 | instead. | |
8940 | ||
8941 | If we didn't preserve the typedef layer, we would lose the fact that | |
8942 | the type is to be presented as a pointer (needs de-reference before | |
8943 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
8944 | |
8945 | struct type * | |
8946 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
8947 | CORE_ADDR address, struct value *dval, int check_tag) | |
8948 | ||
8949 | { | |
8950 | struct type *fixed_type = | |
8951 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
8952 | ||
96dbd2c1 JB |
8953 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
8954 | then preserve the typedef layer. | |
8955 | ||
8956 | Implementation note: We can only check the main-type portion of | |
8957 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
8958 | from TYPE now returns a type that has the same instance flags | |
8959 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
8960 | target type is a "struct", then the typedef elimination will return | |
8961 | a "const" version of the target type. See check_typedef for more | |
8962 | details about how the typedef layer elimination is done. | |
8963 | ||
8964 | brobecker/2010-11-19: It seems to me that the only case where it is | |
8965 | useful to preserve the typedef layer is when dealing with fat pointers. | |
8966 | Perhaps, we could add a check for that and preserve the typedef layer | |
85102364 | 8967 | only in that situation. But this seems unnecessary so far, probably |
96dbd2c1 JB |
8968 | because we call check_typedef/ada_check_typedef pretty much everywhere. |
8969 | */ | |
f192137b | 8970 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 8971 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 8972 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
8973 | return type; |
8974 | ||
8975 | return fixed_type; | |
8976 | } | |
8977 | ||
14f9c5c9 | 8978 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 8979 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 8980 | |
d2e4a39e AS |
8981 | static struct type * |
8982 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 8983 | { |
d2e4a39e | 8984 | struct type *type; |
14f9c5c9 AS |
8985 | |
8986 | if (type0 == NULL) | |
8987 | return NULL; | |
8988 | ||
876cecd0 | 8989 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8990 | return type0; |
8991 | ||
61ee279c | 8992 | type0 = ada_check_typedef (type0); |
d2e4a39e | 8993 | |
14f9c5c9 AS |
8994 | switch (TYPE_CODE (type0)) |
8995 | { | |
8996 | default: | |
8997 | return type0; | |
8998 | case TYPE_CODE_STRUCT: | |
8999 | type = dynamic_template_type (type0); | |
d2e4a39e | 9000 | if (type != NULL) |
4c4b4cd2 PH |
9001 | return template_to_static_fixed_type (type); |
9002 | else | |
9003 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
9004 | case TYPE_CODE_UNION: |
9005 | type = ada_find_parallel_type (type0, "___XVU"); | |
9006 | if (type != NULL) | |
4c4b4cd2 PH |
9007 | return template_to_static_fixed_type (type); |
9008 | else | |
9009 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
9010 | } |
9011 | } | |
9012 | ||
4c4b4cd2 PH |
9013 | /* A static approximation of TYPE with all type wrappers removed. */ |
9014 | ||
d2e4a39e AS |
9015 | static struct type * |
9016 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
9017 | { |
9018 | if (ada_is_aligner_type (type)) | |
9019 | { | |
61ee279c | 9020 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 9021 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 9022 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
9023 | |
9024 | return static_unwrap_type (type1); | |
9025 | } | |
d2e4a39e | 9026 | else |
14f9c5c9 | 9027 | { |
d2e4a39e | 9028 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 9029 | |
d2e4a39e | 9030 | if (raw_real_type == type) |
4c4b4cd2 | 9031 | return type; |
14f9c5c9 | 9032 | else |
4c4b4cd2 | 9033 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
9034 | } |
9035 | } | |
9036 | ||
9037 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 9038 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
9039 | type Foo; |
9040 | type FooP is access Foo; | |
9041 | V: FooP; | |
9042 | type Foo is array ...; | |
4c4b4cd2 | 9043 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
9044 | cross-references to such types, we instead substitute for FooP a |
9045 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 9046 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
9047 | |
9048 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
9049 | exists, otherwise TYPE. */ |
9050 | ||
d2e4a39e | 9051 | struct type * |
61ee279c | 9052 | ada_check_typedef (struct type *type) |
14f9c5c9 | 9053 | { |
727e3d2e JB |
9054 | if (type == NULL) |
9055 | return NULL; | |
9056 | ||
736ade86 XR |
9057 | /* If our type is an access to an unconstrained array, which is encoded |
9058 | as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done. | |
720d1a40 JB |
9059 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is |
9060 | what allows us to distinguish between fat pointers that represent | |
9061 | array types, and fat pointers that represent array access types | |
9062 | (in both cases, the compiler implements them as fat pointers). */ | |
736ade86 | 9063 | if (ada_is_access_to_unconstrained_array (type)) |
720d1a40 JB |
9064 | return type; |
9065 | ||
f168693b | 9066 | type = check_typedef (type); |
14f9c5c9 | 9067 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
529cad9c | 9068 | || !TYPE_STUB (type) |
e86ca25f | 9069 | || TYPE_NAME (type) == NULL) |
14f9c5c9 | 9070 | return type; |
d2e4a39e | 9071 | else |
14f9c5c9 | 9072 | { |
e86ca25f | 9073 | const char *name = TYPE_NAME (type); |
d2e4a39e | 9074 | struct type *type1 = ada_find_any_type (name); |
5b4ee69b | 9075 | |
05e522ef JB |
9076 | if (type1 == NULL) |
9077 | return type; | |
9078 | ||
9079 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
9080 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
9081 | types, only for the typedef-to-array types). If that's the case, |
9082 | strip the typedef layer. */ | |
9083 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
9084 | type1 = ada_check_typedef (type1); | |
9085 | ||
9086 | return type1; | |
14f9c5c9 AS |
9087 | } |
9088 | } | |
9089 | ||
9090 | /* A value representing the data at VALADDR/ADDRESS as described by | |
9091 | type TYPE0, but with a standard (static-sized) type that correctly | |
9092 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
9093 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 9094 | creation of struct values]. */ |
14f9c5c9 | 9095 | |
4c4b4cd2 PH |
9096 | static struct value * |
9097 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
9098 | struct value *val0) | |
14f9c5c9 | 9099 | { |
1ed6ede0 | 9100 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 9101 | |
14f9c5c9 AS |
9102 | if (type == type0 && val0 != NULL) |
9103 | return val0; | |
cc0e770c JB |
9104 | |
9105 | if (VALUE_LVAL (val0) != lval_memory) | |
9106 | { | |
9107 | /* Our value does not live in memory; it could be a convenience | |
9108 | variable, for instance. Create a not_lval value using val0's | |
9109 | contents. */ | |
9110 | return value_from_contents (type, value_contents (val0)); | |
9111 | } | |
9112 | ||
9113 | return value_from_contents_and_address (type, 0, address); | |
4c4b4cd2 PH |
9114 | } |
9115 | ||
9116 | /* A value representing VAL, but with a standard (static-sized) type | |
9117 | that correctly describes it. Does not necessarily create a new | |
9118 | value. */ | |
9119 | ||
0c3acc09 | 9120 | struct value * |
4c4b4cd2 PH |
9121 | ada_to_fixed_value (struct value *val) |
9122 | { | |
c48db5ca | 9123 | val = unwrap_value (val); |
d8ce9127 | 9124 | val = ada_to_fixed_value_create (value_type (val), value_address (val), val); |
c48db5ca | 9125 | return val; |
14f9c5c9 | 9126 | } |
d2e4a39e | 9127 | \f |
14f9c5c9 | 9128 | |
14f9c5c9 AS |
9129 | /* Attributes */ |
9130 | ||
4c4b4cd2 PH |
9131 | /* Table mapping attribute numbers to names. |
9132 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 9133 | |
d2e4a39e | 9134 | static const char *attribute_names[] = { |
14f9c5c9 AS |
9135 | "<?>", |
9136 | ||
d2e4a39e | 9137 | "first", |
14f9c5c9 AS |
9138 | "last", |
9139 | "length", | |
9140 | "image", | |
14f9c5c9 AS |
9141 | "max", |
9142 | "min", | |
4c4b4cd2 PH |
9143 | "modulus", |
9144 | "pos", | |
9145 | "size", | |
9146 | "tag", | |
14f9c5c9 | 9147 | "val", |
14f9c5c9 AS |
9148 | 0 |
9149 | }; | |
9150 | ||
de93309a | 9151 | static const char * |
4c4b4cd2 | 9152 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 9153 | { |
4c4b4cd2 PH |
9154 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
9155 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
9156 | else |
9157 | return attribute_names[0]; | |
9158 | } | |
9159 | ||
4c4b4cd2 | 9160 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 9161 | |
4c4b4cd2 PH |
9162 | static LONGEST |
9163 | pos_atr (struct value *arg) | |
14f9c5c9 | 9164 | { |
24209737 PH |
9165 | struct value *val = coerce_ref (arg); |
9166 | struct type *type = value_type (val); | |
aa715135 | 9167 | LONGEST result; |
14f9c5c9 | 9168 | |
d2e4a39e | 9169 | if (!discrete_type_p (type)) |
323e0a4a | 9170 | error (_("'POS only defined on discrete types")); |
14f9c5c9 | 9171 | |
aa715135 JG |
9172 | if (!discrete_position (type, value_as_long (val), &result)) |
9173 | error (_("enumeration value is invalid: can't find 'POS")); | |
14f9c5c9 | 9174 | |
aa715135 | 9175 | return result; |
4c4b4cd2 PH |
9176 | } |
9177 | ||
9178 | static struct value * | |
3cb382c9 | 9179 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 9180 | { |
3cb382c9 | 9181 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
9182 | } |
9183 | ||
4c4b4cd2 | 9184 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 9185 | |
d2e4a39e AS |
9186 | static struct value * |
9187 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 9188 | { |
d2e4a39e | 9189 | if (!discrete_type_p (type)) |
323e0a4a | 9190 | error (_("'VAL only defined on discrete types")); |
df407dfe | 9191 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 9192 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
9193 | |
9194 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
9195 | { | |
9196 | long pos = value_as_long (arg); | |
5b4ee69b | 9197 | |
14f9c5c9 | 9198 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 9199 | error (_("argument to 'VAL out of range")); |
14e75d8e | 9200 | return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos)); |
14f9c5c9 AS |
9201 | } |
9202 | else | |
9203 | return value_from_longest (type, value_as_long (arg)); | |
9204 | } | |
14f9c5c9 | 9205 | \f |
d2e4a39e | 9206 | |
4c4b4cd2 | 9207 | /* Evaluation */ |
14f9c5c9 | 9208 | |
4c4b4cd2 PH |
9209 | /* True if TYPE appears to be an Ada character type. |
9210 | [At the moment, this is true only for Character and Wide_Character; | |
9211 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 9212 | |
fc913e53 | 9213 | bool |
d2e4a39e | 9214 | ada_is_character_type (struct type *type) |
14f9c5c9 | 9215 | { |
7b9f71f2 JB |
9216 | const char *name; |
9217 | ||
9218 | /* If the type code says it's a character, then assume it really is, | |
9219 | and don't check any further. */ | |
9220 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
fc913e53 | 9221 | return true; |
7b9f71f2 JB |
9222 | |
9223 | /* Otherwise, assume it's a character type iff it is a discrete type | |
9224 | with a known character type name. */ | |
9225 | name = ada_type_name (type); | |
9226 | return (name != NULL | |
9227 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
9228 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
9229 | && (strcmp (name, "character") == 0 | |
9230 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 9231 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 9232 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
9233 | } |
9234 | ||
4c4b4cd2 | 9235 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 | 9236 | |
fc913e53 | 9237 | bool |
ebf56fd3 | 9238 | ada_is_string_type (struct type *type) |
14f9c5c9 | 9239 | { |
61ee279c | 9240 | type = ada_check_typedef (type); |
d2e4a39e | 9241 | if (type != NULL |
14f9c5c9 | 9242 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
9243 | && (ada_is_simple_array_type (type) |
9244 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
9245 | && ada_array_arity (type) == 1) |
9246 | { | |
9247 | struct type *elttype = ada_array_element_type (type, 1); | |
9248 | ||
9249 | return ada_is_character_type (elttype); | |
9250 | } | |
d2e4a39e | 9251 | else |
fc913e53 | 9252 | return false; |
14f9c5c9 AS |
9253 | } |
9254 | ||
5bf03f13 JB |
9255 | /* The compiler sometimes provides a parallel XVS type for a given |
9256 | PAD type. Normally, it is safe to follow the PAD type directly, | |
9257 | but older versions of the compiler have a bug that causes the offset | |
9258 | of its "F" field to be wrong. Following that field in that case | |
9259 | would lead to incorrect results, but this can be worked around | |
9260 | by ignoring the PAD type and using the associated XVS type instead. | |
9261 | ||
9262 | Set to True if the debugger should trust the contents of PAD types. | |
9263 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
491144b5 | 9264 | static bool trust_pad_over_xvs = true; |
14f9c5c9 AS |
9265 | |
9266 | /* True if TYPE is a struct type introduced by the compiler to force the | |
9267 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 9268 | distinctive name. */ |
14f9c5c9 AS |
9269 | |
9270 | int | |
ebf56fd3 | 9271 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 9272 | { |
61ee279c | 9273 | type = ada_check_typedef (type); |
714e53ab | 9274 | |
5bf03f13 | 9275 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
9276 | return 0; |
9277 | ||
14f9c5c9 | 9278 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
9279 | && TYPE_NFIELDS (type) == 1 |
9280 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
9281 | } |
9282 | ||
9283 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 9284 | the parallel type. */ |
14f9c5c9 | 9285 | |
d2e4a39e AS |
9286 | struct type * |
9287 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 9288 | { |
d2e4a39e AS |
9289 | struct type *real_type_namer; |
9290 | struct type *raw_real_type; | |
14f9c5c9 AS |
9291 | |
9292 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
9293 | return raw_type; | |
9294 | ||
284614f0 JB |
9295 | if (ada_is_aligner_type (raw_type)) |
9296 | /* The encoding specifies that we should always use the aligner type. | |
9297 | So, even if this aligner type has an associated XVS type, we should | |
9298 | simply ignore it. | |
9299 | ||
9300 | According to the compiler gurus, an XVS type parallel to an aligner | |
9301 | type may exist because of a stabs limitation. In stabs, aligner | |
9302 | types are empty because the field has a variable-sized type, and | |
9303 | thus cannot actually be used as an aligner type. As a result, | |
9304 | we need the associated parallel XVS type to decode the type. | |
9305 | Since the policy in the compiler is to not change the internal | |
9306 | representation based on the debugging info format, we sometimes | |
9307 | end up having a redundant XVS type parallel to the aligner type. */ | |
9308 | return raw_type; | |
9309 | ||
14f9c5c9 | 9310 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 9311 | if (real_type_namer == NULL |
14f9c5c9 AS |
9312 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
9313 | || TYPE_NFIELDS (real_type_namer) != 1) | |
9314 | return raw_type; | |
9315 | ||
f80d3ff2 JB |
9316 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
9317 | { | |
9318 | /* This is an older encoding form where the base type needs to be | |
85102364 | 9319 | looked up by name. We prefer the newer encoding because it is |
f80d3ff2 JB |
9320 | more efficient. */ |
9321 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
9322 | if (raw_real_type == NULL) | |
9323 | return raw_type; | |
9324 | else | |
9325 | return raw_real_type; | |
9326 | } | |
9327 | ||
9328 | /* The field in our XVS type is a reference to the base type. */ | |
9329 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 9330 | } |
14f9c5c9 | 9331 | |
4c4b4cd2 | 9332 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 9333 | |
d2e4a39e AS |
9334 | struct type * |
9335 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
9336 | { |
9337 | if (ada_is_aligner_type (type)) | |
9338 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
9339 | else | |
9340 | return ada_get_base_type (type); | |
9341 | } | |
9342 | ||
9343 | ||
9344 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 9345 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 9346 | |
fc1a4b47 AC |
9347 | const gdb_byte * |
9348 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 9349 | { |
d2e4a39e | 9350 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 9351 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
9352 | valaddr + |
9353 | TYPE_FIELD_BITPOS (type, | |
9354 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
9355 | else |
9356 | return valaddr; | |
9357 | } | |
9358 | ||
4c4b4cd2 PH |
9359 | |
9360 | ||
14f9c5c9 | 9361 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 9362 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
9363 | const char * |
9364 | ada_enum_name (const char *name) | |
14f9c5c9 | 9365 | { |
4c4b4cd2 PH |
9366 | static char *result; |
9367 | static size_t result_len = 0; | |
e6a959d6 | 9368 | const char *tmp; |
14f9c5c9 | 9369 | |
4c4b4cd2 PH |
9370 | /* First, unqualify the enumeration name: |
9371 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 9372 | all the preceding characters, the unqualified name starts |
76a01679 | 9373 | right after that dot. |
4c4b4cd2 | 9374 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
9375 | translates dots into "__". Search forward for double underscores, |
9376 | but stop searching when we hit an overloading suffix, which is | |
9377 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 9378 | |
c3e5cd34 PH |
9379 | tmp = strrchr (name, '.'); |
9380 | if (tmp != NULL) | |
4c4b4cd2 PH |
9381 | name = tmp + 1; |
9382 | else | |
14f9c5c9 | 9383 | { |
4c4b4cd2 PH |
9384 | while ((tmp = strstr (name, "__")) != NULL) |
9385 | { | |
9386 | if (isdigit (tmp[2])) | |
9387 | break; | |
9388 | else | |
9389 | name = tmp + 2; | |
9390 | } | |
14f9c5c9 AS |
9391 | } |
9392 | ||
9393 | if (name[0] == 'Q') | |
9394 | { | |
14f9c5c9 | 9395 | int v; |
5b4ee69b | 9396 | |
14f9c5c9 | 9397 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
9398 | { |
9399 | if (sscanf (name + 2, "%x", &v) != 1) | |
9400 | return name; | |
9401 | } | |
272560b5 TT |
9402 | else if (((name[1] >= '0' && name[1] <= '9') |
9403 | || (name[1] >= 'a' && name[1] <= 'z')) | |
9404 | && name[2] == '\0') | |
9405 | { | |
9406 | GROW_VECT (result, result_len, 4); | |
9407 | xsnprintf (result, result_len, "'%c'", name[1]); | |
9408 | return result; | |
9409 | } | |
14f9c5c9 | 9410 | else |
4c4b4cd2 | 9411 | return name; |
14f9c5c9 | 9412 | |
4c4b4cd2 | 9413 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 9414 | if (isascii (v) && isprint (v)) |
88c15c34 | 9415 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 9416 | else if (name[1] == 'U') |
88c15c34 | 9417 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 9418 | else |
88c15c34 | 9419 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
9420 | |
9421 | return result; | |
9422 | } | |
d2e4a39e | 9423 | else |
4c4b4cd2 | 9424 | { |
c3e5cd34 PH |
9425 | tmp = strstr (name, "__"); |
9426 | if (tmp == NULL) | |
9427 | tmp = strstr (name, "$"); | |
9428 | if (tmp != NULL) | |
4c4b4cd2 PH |
9429 | { |
9430 | GROW_VECT (result, result_len, tmp - name + 1); | |
9431 | strncpy (result, name, tmp - name); | |
9432 | result[tmp - name] = '\0'; | |
9433 | return result; | |
9434 | } | |
9435 | ||
9436 | return name; | |
9437 | } | |
14f9c5c9 AS |
9438 | } |
9439 | ||
14f9c5c9 AS |
9440 | /* Evaluate the subexpression of EXP starting at *POS as for |
9441 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 9442 | expression. */ |
14f9c5c9 | 9443 | |
d2e4a39e AS |
9444 | static struct value * |
9445 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 9446 | { |
4b27a620 | 9447 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
9448 | } |
9449 | ||
9450 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 9451 | value it wraps. */ |
14f9c5c9 | 9452 | |
d2e4a39e AS |
9453 | static struct value * |
9454 | unwrap_value (struct value *val) | |
14f9c5c9 | 9455 | { |
df407dfe | 9456 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 9457 | |
14f9c5c9 AS |
9458 | if (ada_is_aligner_type (type)) |
9459 | { | |
de4d072f | 9460 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 9461 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 9462 | |
14f9c5c9 | 9463 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 9464 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
9465 | |
9466 | return unwrap_value (v); | |
9467 | } | |
d2e4a39e | 9468 | else |
14f9c5c9 | 9469 | { |
d2e4a39e | 9470 | struct type *raw_real_type = |
61ee279c | 9471 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 9472 | |
5bf03f13 JB |
9473 | /* If there is no parallel XVS or XVE type, then the value is |
9474 | already unwrapped. Return it without further modification. */ | |
9475 | if ((type == raw_real_type) | |
9476 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
9477 | return val; | |
14f9c5c9 | 9478 | |
d2e4a39e | 9479 | return |
4c4b4cd2 PH |
9480 | coerce_unspec_val_to_type |
9481 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 9482 | value_address (val), |
1ed6ede0 | 9483 | NULL, 1)); |
14f9c5c9 AS |
9484 | } |
9485 | } | |
d2e4a39e AS |
9486 | |
9487 | static struct value * | |
50eff16b | 9488 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 9489 | { |
50eff16b UW |
9490 | struct value *scale = ada_scaling_factor (value_type (arg)); |
9491 | arg = value_cast (value_type (scale), arg); | |
14f9c5c9 | 9492 | |
50eff16b UW |
9493 | arg = value_binop (arg, scale, BINOP_MUL); |
9494 | return value_cast (type, arg); | |
14f9c5c9 AS |
9495 | } |
9496 | ||
d2e4a39e | 9497 | static struct value * |
50eff16b | 9498 | cast_to_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 9499 | { |
50eff16b UW |
9500 | if (type == value_type (arg)) |
9501 | return arg; | |
5b4ee69b | 9502 | |
50eff16b UW |
9503 | struct value *scale = ada_scaling_factor (type); |
9504 | if (ada_is_fixed_point_type (value_type (arg))) | |
9505 | arg = cast_from_fixed (value_type (scale), arg); | |
9506 | else | |
9507 | arg = value_cast (value_type (scale), arg); | |
9508 | ||
9509 | arg = value_binop (arg, scale, BINOP_DIV); | |
9510 | return value_cast (type, arg); | |
14f9c5c9 AS |
9511 | } |
9512 | ||
d99dcf51 JB |
9513 | /* Given two array types T1 and T2, return nonzero iff both arrays |
9514 | contain the same number of elements. */ | |
9515 | ||
9516 | static int | |
9517 | ada_same_array_size_p (struct type *t1, struct type *t2) | |
9518 | { | |
9519 | LONGEST lo1, hi1, lo2, hi2; | |
9520 | ||
9521 | /* Get the array bounds in order to verify that the size of | |
9522 | the two arrays match. */ | |
9523 | if (!get_array_bounds (t1, &lo1, &hi1) | |
9524 | || !get_array_bounds (t2, &lo2, &hi2)) | |
9525 | error (_("unable to determine array bounds")); | |
9526 | ||
9527 | /* To make things easier for size comparison, normalize a bit | |
9528 | the case of empty arrays by making sure that the difference | |
9529 | between upper bound and lower bound is always -1. */ | |
9530 | if (lo1 > hi1) | |
9531 | hi1 = lo1 - 1; | |
9532 | if (lo2 > hi2) | |
9533 | hi2 = lo2 - 1; | |
9534 | ||
9535 | return (hi1 - lo1 == hi2 - lo2); | |
9536 | } | |
9537 | ||
9538 | /* Assuming that VAL is an array of integrals, and TYPE represents | |
9539 | an array with the same number of elements, but with wider integral | |
9540 | elements, return an array "casted" to TYPE. In practice, this | |
9541 | means that the returned array is built by casting each element | |
9542 | of the original array into TYPE's (wider) element type. */ | |
9543 | ||
9544 | static struct value * | |
9545 | ada_promote_array_of_integrals (struct type *type, struct value *val) | |
9546 | { | |
9547 | struct type *elt_type = TYPE_TARGET_TYPE (type); | |
9548 | LONGEST lo, hi; | |
9549 | struct value *res; | |
9550 | LONGEST i; | |
9551 | ||
9552 | /* Verify that both val and type are arrays of scalars, and | |
9553 | that the size of val's elements is smaller than the size | |
9554 | of type's element. */ | |
9555 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY); | |
9556 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type))); | |
9557 | gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY); | |
9558 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val)))); | |
9559 | gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type)) | |
9560 | > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val)))); | |
9561 | ||
9562 | if (!get_array_bounds (type, &lo, &hi)) | |
9563 | error (_("unable to determine array bounds")); | |
9564 | ||
9565 | res = allocate_value (type); | |
9566 | ||
9567 | /* Promote each array element. */ | |
9568 | for (i = 0; i < hi - lo + 1; i++) | |
9569 | { | |
9570 | struct value *elt = value_cast (elt_type, value_subscript (val, lo + i)); | |
9571 | ||
9572 | memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)), | |
9573 | value_contents_all (elt), TYPE_LENGTH (elt_type)); | |
9574 | } | |
9575 | ||
9576 | return res; | |
9577 | } | |
9578 | ||
4c4b4cd2 PH |
9579 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
9580 | return the converted value. */ | |
9581 | ||
d2e4a39e AS |
9582 | static struct value * |
9583 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 9584 | { |
df407dfe | 9585 | struct type *type2 = value_type (val); |
5b4ee69b | 9586 | |
14f9c5c9 AS |
9587 | if (type == type2) |
9588 | return val; | |
9589 | ||
61ee279c PH |
9590 | type2 = ada_check_typedef (type2); |
9591 | type = ada_check_typedef (type); | |
14f9c5c9 | 9592 | |
d2e4a39e AS |
9593 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
9594 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
9595 | { |
9596 | val = ada_value_ind (val); | |
df407dfe | 9597 | type2 = value_type (val); |
14f9c5c9 AS |
9598 | } |
9599 | ||
d2e4a39e | 9600 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
9601 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
9602 | { | |
d99dcf51 JB |
9603 | if (!ada_same_array_size_p (type, type2)) |
9604 | error (_("cannot assign arrays of different length")); | |
9605 | ||
9606 | if (is_integral_type (TYPE_TARGET_TYPE (type)) | |
9607 | && is_integral_type (TYPE_TARGET_TYPE (type2)) | |
9608 | && TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9609 | < TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
9610 | { | |
9611 | /* Allow implicit promotion of the array elements to | |
9612 | a wider type. */ | |
9613 | return ada_promote_array_of_integrals (type, val); | |
9614 | } | |
9615 | ||
9616 | if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9617 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
323e0a4a | 9618 | error (_("Incompatible types in assignment")); |
04624583 | 9619 | deprecated_set_value_type (val, type); |
14f9c5c9 | 9620 | } |
d2e4a39e | 9621 | return val; |
14f9c5c9 AS |
9622 | } |
9623 | ||
4c4b4cd2 PH |
9624 | static struct value * |
9625 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
9626 | { | |
9627 | struct value *val; | |
9628 | struct type *type1, *type2; | |
9629 | LONGEST v, v1, v2; | |
9630 | ||
994b9211 AC |
9631 | arg1 = coerce_ref (arg1); |
9632 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
9633 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
9634 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 9635 | |
76a01679 JB |
9636 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
9637 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
9638 | return value_binop (arg1, arg2, op); |
9639 | ||
76a01679 | 9640 | switch (op) |
4c4b4cd2 PH |
9641 | { |
9642 | case BINOP_MOD: | |
9643 | case BINOP_DIV: | |
9644 | case BINOP_REM: | |
9645 | break; | |
9646 | default: | |
9647 | return value_binop (arg1, arg2, op); | |
9648 | } | |
9649 | ||
9650 | v2 = value_as_long (arg2); | |
9651 | if (v2 == 0) | |
323e0a4a | 9652 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
9653 | |
9654 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
9655 | return value_binop (arg1, arg2, op); | |
9656 | ||
9657 | v1 = value_as_long (arg1); | |
9658 | switch (op) | |
9659 | { | |
9660 | case BINOP_DIV: | |
9661 | v = v1 / v2; | |
76a01679 JB |
9662 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
9663 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
9664 | break; |
9665 | case BINOP_REM: | |
9666 | v = v1 % v2; | |
76a01679 JB |
9667 | if (v * v1 < 0) |
9668 | v -= v2; | |
4c4b4cd2 PH |
9669 | break; |
9670 | default: | |
9671 | /* Should not reach this point. */ | |
9672 | v = 0; | |
9673 | } | |
9674 | ||
9675 | val = allocate_value (type1); | |
990a07ab | 9676 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 | 9677 | TYPE_LENGTH (value_type (val)), |
34877895 | 9678 | type_byte_order (type1), v); |
4c4b4cd2 PH |
9679 | return val; |
9680 | } | |
9681 | ||
9682 | static int | |
9683 | ada_value_equal (struct value *arg1, struct value *arg2) | |
9684 | { | |
df407dfe AC |
9685 | if (ada_is_direct_array_type (value_type (arg1)) |
9686 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 9687 | { |
79e8fcaa JB |
9688 | struct type *arg1_type, *arg2_type; |
9689 | ||
f58b38bf JB |
9690 | /* Automatically dereference any array reference before |
9691 | we attempt to perform the comparison. */ | |
9692 | arg1 = ada_coerce_ref (arg1); | |
9693 | arg2 = ada_coerce_ref (arg2); | |
79e8fcaa | 9694 | |
4c4b4cd2 PH |
9695 | arg1 = ada_coerce_to_simple_array (arg1); |
9696 | arg2 = ada_coerce_to_simple_array (arg2); | |
79e8fcaa JB |
9697 | |
9698 | arg1_type = ada_check_typedef (value_type (arg1)); | |
9699 | arg2_type = ada_check_typedef (value_type (arg2)); | |
9700 | ||
9701 | if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY | |
9702 | || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 9703 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 9704 | /* FIXME: The following works only for types whose |
76a01679 JB |
9705 | representations use all bits (no padding or undefined bits) |
9706 | and do not have user-defined equality. */ | |
79e8fcaa JB |
9707 | return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type) |
9708 | && memcmp (value_contents (arg1), value_contents (arg2), | |
9709 | TYPE_LENGTH (arg1_type)) == 0); | |
4c4b4cd2 PH |
9710 | } |
9711 | return value_equal (arg1, arg2); | |
9712 | } | |
9713 | ||
52ce6436 PH |
9714 | /* Total number of component associations in the aggregate starting at |
9715 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 9716 | OP_AGGREGATE. */ |
52ce6436 PH |
9717 | |
9718 | static int | |
9719 | num_component_specs (struct expression *exp, int pc) | |
9720 | { | |
9721 | int n, m, i; | |
5b4ee69b | 9722 | |
52ce6436 PH |
9723 | m = exp->elts[pc + 1].longconst; |
9724 | pc += 3; | |
9725 | n = 0; | |
9726 | for (i = 0; i < m; i += 1) | |
9727 | { | |
9728 | switch (exp->elts[pc].opcode) | |
9729 | { | |
9730 | default: | |
9731 | n += 1; | |
9732 | break; | |
9733 | case OP_CHOICES: | |
9734 | n += exp->elts[pc + 1].longconst; | |
9735 | break; | |
9736 | } | |
9737 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
9738 | } | |
9739 | return n; | |
9740 | } | |
9741 | ||
9742 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
9743 | component of LHS (a simple array or a record), updating *POS past | |
9744 | the expression, assuming that LHS is contained in CONTAINER. Does | |
9745 | not modify the inferior's memory, nor does it modify LHS (unless | |
9746 | LHS == CONTAINER). */ | |
9747 | ||
9748 | static void | |
9749 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
9750 | struct expression *exp, int *pos) | |
9751 | { | |
9752 | struct value *mark = value_mark (); | |
9753 | struct value *elt; | |
0e2da9f0 | 9754 | struct type *lhs_type = check_typedef (value_type (lhs)); |
5b4ee69b | 9755 | |
0e2da9f0 | 9756 | if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY) |
52ce6436 | 9757 | { |
22601c15 UW |
9758 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
9759 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 9760 | |
52ce6436 PH |
9761 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
9762 | } | |
9763 | else | |
9764 | { | |
9765 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
c48db5ca | 9766 | elt = ada_to_fixed_value (elt); |
52ce6436 PH |
9767 | } |
9768 | ||
9769 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
9770 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
9771 | else | |
9772 | value_assign_to_component (container, elt, | |
9773 | ada_evaluate_subexp (NULL, exp, pos, | |
9774 | EVAL_NORMAL)); | |
9775 | ||
9776 | value_free_to_mark (mark); | |
9777 | } | |
9778 | ||
9779 | /* Assuming that LHS represents an lvalue having a record or array | |
9780 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
9781 | of that aggregate's value to LHS, advancing *POS past the | |
9782 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
9783 | lvalue containing LHS (possibly LHS itself). Does not modify | |
9784 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 9785 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
9786 | |
9787 | static struct value * | |
9788 | assign_aggregate (struct value *container, | |
9789 | struct value *lhs, struct expression *exp, | |
9790 | int *pos, enum noside noside) | |
9791 | { | |
9792 | struct type *lhs_type; | |
9793 | int n = exp->elts[*pos+1].longconst; | |
9794 | LONGEST low_index, high_index; | |
9795 | int num_specs; | |
9796 | LONGEST *indices; | |
9797 | int max_indices, num_indices; | |
52ce6436 | 9798 | int i; |
52ce6436 PH |
9799 | |
9800 | *pos += 3; | |
9801 | if (noside != EVAL_NORMAL) | |
9802 | { | |
52ce6436 PH |
9803 | for (i = 0; i < n; i += 1) |
9804 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9805 | return container; | |
9806 | } | |
9807 | ||
9808 | container = ada_coerce_ref (container); | |
9809 | if (ada_is_direct_array_type (value_type (container))) | |
9810 | container = ada_coerce_to_simple_array (container); | |
9811 | lhs = ada_coerce_ref (lhs); | |
9812 | if (!deprecated_value_modifiable (lhs)) | |
9813 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
9814 | ||
0e2da9f0 | 9815 | lhs_type = check_typedef (value_type (lhs)); |
52ce6436 PH |
9816 | if (ada_is_direct_array_type (lhs_type)) |
9817 | { | |
9818 | lhs = ada_coerce_to_simple_array (lhs); | |
0e2da9f0 | 9819 | lhs_type = check_typedef (value_type (lhs)); |
52ce6436 PH |
9820 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); |
9821 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
52ce6436 PH |
9822 | } |
9823 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
9824 | { | |
9825 | low_index = 0; | |
9826 | high_index = num_visible_fields (lhs_type) - 1; | |
52ce6436 PH |
9827 | } |
9828 | else | |
9829 | error (_("Left-hand side must be array or record.")); | |
9830 | ||
9831 | num_specs = num_component_specs (exp, *pos - 3); | |
9832 | max_indices = 4 * num_specs + 4; | |
8d749320 | 9833 | indices = XALLOCAVEC (LONGEST, max_indices); |
52ce6436 PH |
9834 | indices[0] = indices[1] = low_index - 1; |
9835 | indices[2] = indices[3] = high_index + 1; | |
9836 | num_indices = 4; | |
9837 | ||
9838 | for (i = 0; i < n; i += 1) | |
9839 | { | |
9840 | switch (exp->elts[*pos].opcode) | |
9841 | { | |
1fbf5ada JB |
9842 | case OP_CHOICES: |
9843 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
9844 | &num_indices, max_indices, | |
9845 | low_index, high_index); | |
9846 | break; | |
9847 | case OP_POSITIONAL: | |
9848 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
52ce6436 PH |
9849 | &num_indices, max_indices, |
9850 | low_index, high_index); | |
1fbf5ada JB |
9851 | break; |
9852 | case OP_OTHERS: | |
9853 | if (i != n-1) | |
9854 | error (_("Misplaced 'others' clause")); | |
9855 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
9856 | num_indices, low_index, high_index); | |
9857 | break; | |
9858 | default: | |
9859 | error (_("Internal error: bad aggregate clause")); | |
52ce6436 PH |
9860 | } |
9861 | } | |
9862 | ||
9863 | return container; | |
9864 | } | |
9865 | ||
9866 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
9867 | construct at *POS, updating *POS past the construct, given that | |
9868 | the positions are relative to lower bound LOW, where HIGH is the | |
9869 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
9870 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 9871 | assign_aggregate. */ |
52ce6436 PH |
9872 | static void |
9873 | aggregate_assign_positional (struct value *container, | |
9874 | struct value *lhs, struct expression *exp, | |
9875 | int *pos, LONGEST *indices, int *num_indices, | |
9876 | int max_indices, LONGEST low, LONGEST high) | |
9877 | { | |
9878 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
9879 | ||
9880 | if (ind - 1 == high) | |
e1d5a0d2 | 9881 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
9882 | if (ind <= high) |
9883 | { | |
9884 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
9885 | *pos += 3; | |
9886 | assign_component (container, lhs, ind, exp, pos); | |
9887 | } | |
9888 | else | |
9889 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9890 | } | |
9891 | ||
9892 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
9893 | construct at *POS, updating *POS past the construct, given that | |
9894 | the allowable indices are LOW..HIGH. Record the indices assigned | |
9895 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 9896 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9897 | static void |
9898 | aggregate_assign_from_choices (struct value *container, | |
9899 | struct value *lhs, struct expression *exp, | |
9900 | int *pos, LONGEST *indices, int *num_indices, | |
9901 | int max_indices, LONGEST low, LONGEST high) | |
9902 | { | |
9903 | int j; | |
9904 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
9905 | int choice_pos, expr_pc; | |
9906 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
9907 | ||
9908 | choice_pos = *pos += 3; | |
9909 | ||
9910 | for (j = 0; j < n_choices; j += 1) | |
9911 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9912 | expr_pc = *pos; | |
9913 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9914 | ||
9915 | for (j = 0; j < n_choices; j += 1) | |
9916 | { | |
9917 | LONGEST lower, upper; | |
9918 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 9919 | |
52ce6436 PH |
9920 | if (op == OP_DISCRETE_RANGE) |
9921 | { | |
9922 | choice_pos += 1; | |
9923 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
9924 | EVAL_NORMAL)); | |
9925 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
9926 | EVAL_NORMAL)); | |
9927 | } | |
9928 | else if (is_array) | |
9929 | { | |
9930 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
9931 | EVAL_NORMAL)); | |
9932 | upper = lower; | |
9933 | } | |
9934 | else | |
9935 | { | |
9936 | int ind; | |
0d5cff50 | 9937 | const char *name; |
5b4ee69b | 9938 | |
52ce6436 PH |
9939 | switch (op) |
9940 | { | |
9941 | case OP_NAME: | |
9942 | name = &exp->elts[choice_pos + 2].string; | |
9943 | break; | |
9944 | case OP_VAR_VALUE: | |
987012b8 | 9945 | name = exp->elts[choice_pos + 2].symbol->natural_name (); |
52ce6436 PH |
9946 | break; |
9947 | default: | |
9948 | error (_("Invalid record component association.")); | |
9949 | } | |
9950 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
9951 | ind = 0; | |
9952 | if (! find_struct_field (name, value_type (lhs), 0, | |
9953 | NULL, NULL, NULL, NULL, &ind)) | |
9954 | error (_("Unknown component name: %s."), name); | |
9955 | lower = upper = ind; | |
9956 | } | |
9957 | ||
9958 | if (lower <= upper && (lower < low || upper > high)) | |
9959 | error (_("Index in component association out of bounds.")); | |
9960 | ||
9961 | add_component_interval (lower, upper, indices, num_indices, | |
9962 | max_indices); | |
9963 | while (lower <= upper) | |
9964 | { | |
9965 | int pos1; | |
5b4ee69b | 9966 | |
52ce6436 PH |
9967 | pos1 = expr_pc; |
9968 | assign_component (container, lhs, lower, exp, &pos1); | |
9969 | lower += 1; | |
9970 | } | |
9971 | } | |
9972 | } | |
9973 | ||
9974 | /* Assign the value of the expression in the OP_OTHERS construct in | |
9975 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
9976 | have not been previously assigned. The index intervals already assigned | |
9977 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 9978 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9979 | static void |
9980 | aggregate_assign_others (struct value *container, | |
9981 | struct value *lhs, struct expression *exp, | |
9982 | int *pos, LONGEST *indices, int num_indices, | |
9983 | LONGEST low, LONGEST high) | |
9984 | { | |
9985 | int i; | |
5ce64950 | 9986 | int expr_pc = *pos + 1; |
52ce6436 PH |
9987 | |
9988 | for (i = 0; i < num_indices - 2; i += 2) | |
9989 | { | |
9990 | LONGEST ind; | |
5b4ee69b | 9991 | |
52ce6436 PH |
9992 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
9993 | { | |
5ce64950 | 9994 | int localpos; |
5b4ee69b | 9995 | |
5ce64950 MS |
9996 | localpos = expr_pc; |
9997 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
9998 | } |
9999 | } | |
10000 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
10001 | } | |
10002 | ||
10003 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
10004 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
10005 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
10006 | MAX_SIZE. The resulting intervals do not overlap. */ | |
10007 | static void | |
10008 | add_component_interval (LONGEST low, LONGEST high, | |
10009 | LONGEST* indices, int *size, int max_size) | |
10010 | { | |
10011 | int i, j; | |
5b4ee69b | 10012 | |
52ce6436 PH |
10013 | for (i = 0; i < *size; i += 2) { |
10014 | if (high >= indices[i] && low <= indices[i + 1]) | |
10015 | { | |
10016 | int kh; | |
5b4ee69b | 10017 | |
52ce6436 PH |
10018 | for (kh = i + 2; kh < *size; kh += 2) |
10019 | if (high < indices[kh]) | |
10020 | break; | |
10021 | if (low < indices[i]) | |
10022 | indices[i] = low; | |
10023 | indices[i + 1] = indices[kh - 1]; | |
10024 | if (high > indices[i + 1]) | |
10025 | indices[i + 1] = high; | |
10026 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
10027 | *size -= kh - i - 2; | |
10028 | return; | |
10029 | } | |
10030 | else if (high < indices[i]) | |
10031 | break; | |
10032 | } | |
10033 | ||
10034 | if (*size == max_size) | |
10035 | error (_("Internal error: miscounted aggregate components.")); | |
10036 | *size += 2; | |
10037 | for (j = *size-1; j >= i+2; j -= 1) | |
10038 | indices[j] = indices[j - 2]; | |
10039 | indices[i] = low; | |
10040 | indices[i + 1] = high; | |
10041 | } | |
10042 | ||
6e48bd2c JB |
10043 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
10044 | is different. */ | |
10045 | ||
10046 | static struct value * | |
b7e22850 | 10047 | ada_value_cast (struct type *type, struct value *arg2) |
6e48bd2c JB |
10048 | { |
10049 | if (type == ada_check_typedef (value_type (arg2))) | |
10050 | return arg2; | |
10051 | ||
10052 | if (ada_is_fixed_point_type (type)) | |
95f39a5b | 10053 | return cast_to_fixed (type, arg2); |
6e48bd2c JB |
10054 | |
10055 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 10056 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
10057 | |
10058 | return value_cast (type, arg2); | |
10059 | } | |
10060 | ||
284614f0 JB |
10061 | /* Evaluating Ada expressions, and printing their result. |
10062 | ------------------------------------------------------ | |
10063 | ||
21649b50 JB |
10064 | 1. Introduction: |
10065 | ---------------- | |
10066 | ||
284614f0 JB |
10067 | We usually evaluate an Ada expression in order to print its value. |
10068 | We also evaluate an expression in order to print its type, which | |
10069 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
10070 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
10071 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
10072 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
10073 | similar. | |
10074 | ||
10075 | Evaluating expressions is a little more complicated for Ada entities | |
10076 | than it is for entities in languages such as C. The main reason for | |
10077 | this is that Ada provides types whose definition might be dynamic. | |
10078 | One example of such types is variant records. Or another example | |
10079 | would be an array whose bounds can only be known at run time. | |
10080 | ||
10081 | The following description is a general guide as to what should be | |
10082 | done (and what should NOT be done) in order to evaluate an expression | |
10083 | involving such types, and when. This does not cover how the semantic | |
10084 | information is encoded by GNAT as this is covered separatly. For the | |
10085 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
10086 | in the GNAT sources. | |
10087 | ||
10088 | Ideally, we should embed each part of this description next to its | |
10089 | associated code. Unfortunately, the amount of code is so vast right | |
10090 | now that it's hard to see whether the code handling a particular | |
10091 | situation might be duplicated or not. One day, when the code is | |
10092 | cleaned up, this guide might become redundant with the comments | |
10093 | inserted in the code, and we might want to remove it. | |
10094 | ||
21649b50 JB |
10095 | 2. ``Fixing'' an Entity, the Simple Case: |
10096 | ----------------------------------------- | |
10097 | ||
284614f0 JB |
10098 | When evaluating Ada expressions, the tricky issue is that they may |
10099 | reference entities whose type contents and size are not statically | |
10100 | known. Consider for instance a variant record: | |
10101 | ||
10102 | type Rec (Empty : Boolean := True) is record | |
10103 | case Empty is | |
10104 | when True => null; | |
10105 | when False => Value : Integer; | |
10106 | end case; | |
10107 | end record; | |
10108 | Yes : Rec := (Empty => False, Value => 1); | |
10109 | No : Rec := (empty => True); | |
10110 | ||
10111 | The size and contents of that record depends on the value of the | |
10112 | descriminant (Rec.Empty). At this point, neither the debugging | |
10113 | information nor the associated type structure in GDB are able to | |
10114 | express such dynamic types. So what the debugger does is to create | |
10115 | "fixed" versions of the type that applies to the specific object. | |
30baf67b | 10116 | We also informally refer to this operation as "fixing" an object, |
284614f0 JB |
10117 | which means creating its associated fixed type. |
10118 | ||
10119 | Example: when printing the value of variable "Yes" above, its fixed | |
10120 | type would look like this: | |
10121 | ||
10122 | type Rec is record | |
10123 | Empty : Boolean; | |
10124 | Value : Integer; | |
10125 | end record; | |
10126 | ||
10127 | On the other hand, if we printed the value of "No", its fixed type | |
10128 | would become: | |
10129 | ||
10130 | type Rec is record | |
10131 | Empty : Boolean; | |
10132 | end record; | |
10133 | ||
10134 | Things become a little more complicated when trying to fix an entity | |
10135 | with a dynamic type that directly contains another dynamic type, | |
10136 | such as an array of variant records, for instance. There are | |
10137 | two possible cases: Arrays, and records. | |
10138 | ||
21649b50 JB |
10139 | 3. ``Fixing'' Arrays: |
10140 | --------------------- | |
10141 | ||
10142 | The type structure in GDB describes an array in terms of its bounds, | |
10143 | and the type of its elements. By design, all elements in the array | |
10144 | have the same type and we cannot represent an array of variant elements | |
10145 | using the current type structure in GDB. When fixing an array, | |
10146 | we cannot fix the array element, as we would potentially need one | |
10147 | fixed type per element of the array. As a result, the best we can do | |
10148 | when fixing an array is to produce an array whose bounds and size | |
10149 | are correct (allowing us to read it from memory), but without having | |
10150 | touched its element type. Fixing each element will be done later, | |
10151 | when (if) necessary. | |
10152 | ||
10153 | Arrays are a little simpler to handle than records, because the same | |
10154 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 10155 | the amount of space actually used by each element differs from element |
21649b50 | 10156 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
10157 | |
10158 | type Rec_Array is array (1 .. 2) of Rec; | |
10159 | ||
1b536f04 JB |
10160 | The actual amount of memory occupied by each element might be different |
10161 | from element to element, depending on the value of their discriminant. | |
21649b50 | 10162 | But the amount of space reserved for each element in the array remains |
1b536f04 | 10163 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
10164 | the debugging information available, from which we can then determine |
10165 | the array size (we multiply the number of elements of the array by | |
10166 | the size of each element). | |
10167 | ||
10168 | The simplest case is when we have an array of a constrained element | |
10169 | type. For instance, consider the following type declarations: | |
10170 | ||
10171 | type Bounded_String (Max_Size : Integer) is | |
10172 | Length : Integer; | |
10173 | Buffer : String (1 .. Max_Size); | |
10174 | end record; | |
10175 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
10176 | ||
10177 | In this case, the compiler describes the array as an array of | |
10178 | variable-size elements (identified by its XVS suffix) for which | |
10179 | the size can be read in the parallel XVZ variable. | |
10180 | ||
10181 | In the case of an array of an unconstrained element type, the compiler | |
10182 | wraps the array element inside a private PAD type. This type should not | |
10183 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
10184 | that we also use the adjective "aligner" in our code to designate |
10185 | these wrapper types. | |
10186 | ||
1b536f04 | 10187 | In some cases, the size allocated for each element is statically |
21649b50 JB |
10188 | known. In that case, the PAD type already has the correct size, |
10189 | and the array element should remain unfixed. | |
10190 | ||
10191 | But there are cases when this size is not statically known. | |
10192 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
10193 | |
10194 | type Dynamic is array (1 .. Five) of Integer; | |
10195 | type Wrapper (Has_Length : Boolean := False) is record | |
10196 | Data : Dynamic; | |
10197 | case Has_Length is | |
10198 | when True => Length : Integer; | |
10199 | when False => null; | |
10200 | end case; | |
10201 | end record; | |
10202 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
10203 | ||
10204 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
10205 | Data => (others => 17), | |
10206 | Length => 1)); | |
10207 | ||
10208 | ||
10209 | The debugging info would describe variable Hello as being an | |
10210 | array of a PAD type. The size of that PAD type is not statically | |
10211 | known, but can be determined using a parallel XVZ variable. | |
10212 | In that case, a copy of the PAD type with the correct size should | |
10213 | be used for the fixed array. | |
10214 | ||
21649b50 JB |
10215 | 3. ``Fixing'' record type objects: |
10216 | ---------------------------------- | |
10217 | ||
10218 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
10219 | record types. In this case, in order to compute the associated |
10220 | fixed type, we need to determine the size and offset of each of | |
10221 | its components. This, in turn, requires us to compute the fixed | |
10222 | type of each of these components. | |
10223 | ||
10224 | Consider for instance the example: | |
10225 | ||
10226 | type Bounded_String (Max_Size : Natural) is record | |
10227 | Str : String (1 .. Max_Size); | |
10228 | Length : Natural; | |
10229 | end record; | |
10230 | My_String : Bounded_String (Max_Size => 10); | |
10231 | ||
10232 | In that case, the position of field "Length" depends on the size | |
10233 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 10234 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
10235 | we need to fix the type of field Str. Therefore, fixing a variant |
10236 | record requires us to fix each of its components. | |
10237 | ||
10238 | However, if a component does not have a dynamic size, the component | |
10239 | should not be fixed. In particular, fields that use a PAD type | |
10240 | should not fixed. Here is an example where this might happen | |
10241 | (assuming type Rec above): | |
10242 | ||
10243 | type Container (Big : Boolean) is record | |
10244 | First : Rec; | |
10245 | After : Integer; | |
10246 | case Big is | |
10247 | when True => Another : Integer; | |
10248 | when False => null; | |
10249 | end case; | |
10250 | end record; | |
10251 | My_Container : Container := (Big => False, | |
10252 | First => (Empty => True), | |
10253 | After => 42); | |
10254 | ||
10255 | In that example, the compiler creates a PAD type for component First, | |
10256 | whose size is constant, and then positions the component After just | |
10257 | right after it. The offset of component After is therefore constant | |
10258 | in this case. | |
10259 | ||
10260 | The debugger computes the position of each field based on an algorithm | |
10261 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
10262 | preceding it. Let's now imagine that the user is trying to print |
10263 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
10264 | end up computing the offset of field After based on the size of the |
10265 | fixed version of field First. And since in our example First has | |
10266 | only one actual field, the size of the fixed type is actually smaller | |
10267 | than the amount of space allocated to that field, and thus we would | |
10268 | compute the wrong offset of field After. | |
10269 | ||
21649b50 JB |
10270 | To make things more complicated, we need to watch out for dynamic |
10271 | components of variant records (identified by the ___XVL suffix in | |
10272 | the component name). Even if the target type is a PAD type, the size | |
10273 | of that type might not be statically known. So the PAD type needs | |
10274 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
10275 | we might end up with the wrong size for our component. This can be | |
10276 | observed with the following type declarations: | |
284614f0 JB |
10277 | |
10278 | type Octal is new Integer range 0 .. 7; | |
10279 | type Octal_Array is array (Positive range <>) of Octal; | |
10280 | pragma Pack (Octal_Array); | |
10281 | ||
10282 | type Octal_Buffer (Size : Positive) is record | |
10283 | Buffer : Octal_Array (1 .. Size); | |
10284 | Length : Integer; | |
10285 | end record; | |
10286 | ||
10287 | In that case, Buffer is a PAD type whose size is unset and needs | |
10288 | to be computed by fixing the unwrapped type. | |
10289 | ||
21649b50 JB |
10290 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
10291 | ---------------------------------------------------------- | |
10292 | ||
10293 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
10294 | thus far, be actually fixed? |
10295 | ||
10296 | The answer is: Only when referencing that element. For instance | |
10297 | when selecting one component of a record, this specific component | |
10298 | should be fixed at that point in time. Or when printing the value | |
10299 | of a record, each component should be fixed before its value gets | |
10300 | printed. Similarly for arrays, the element of the array should be | |
10301 | fixed when printing each element of the array, or when extracting | |
10302 | one element out of that array. On the other hand, fixing should | |
10303 | not be performed on the elements when taking a slice of an array! | |
10304 | ||
31432a67 | 10305 | Note that one of the side effects of miscomputing the offset and |
284614f0 JB |
10306 | size of each field is that we end up also miscomputing the size |
10307 | of the containing type. This can have adverse results when computing | |
10308 | the value of an entity. GDB fetches the value of an entity based | |
10309 | on the size of its type, and thus a wrong size causes GDB to fetch | |
10310 | the wrong amount of memory. In the case where the computed size is | |
10311 | too small, GDB fetches too little data to print the value of our | |
31432a67 | 10312 | entity. Results in this case are unpredictable, as we usually read |
284614f0 JB |
10313 | past the buffer containing the data =:-o. */ |
10314 | ||
ced9779b JB |
10315 | /* Evaluate a subexpression of EXP, at index *POS, and return a value |
10316 | for that subexpression cast to TO_TYPE. Advance *POS over the | |
10317 | subexpression. */ | |
10318 | ||
10319 | static value * | |
10320 | ada_evaluate_subexp_for_cast (expression *exp, int *pos, | |
10321 | enum noside noside, struct type *to_type) | |
10322 | { | |
10323 | int pc = *pos; | |
10324 | ||
10325 | if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE | |
10326 | || exp->elts[pc].opcode == OP_VAR_VALUE) | |
10327 | { | |
10328 | (*pos) += 4; | |
10329 | ||
10330 | value *val; | |
10331 | if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE) | |
10332 | { | |
10333 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10334 | return value_zero (to_type, not_lval); | |
10335 | ||
10336 | val = evaluate_var_msym_value (noside, | |
10337 | exp->elts[pc + 1].objfile, | |
10338 | exp->elts[pc + 2].msymbol); | |
10339 | } | |
10340 | else | |
10341 | val = evaluate_var_value (noside, | |
10342 | exp->elts[pc + 1].block, | |
10343 | exp->elts[pc + 2].symbol); | |
10344 | ||
10345 | if (noside == EVAL_SKIP) | |
10346 | return eval_skip_value (exp); | |
10347 | ||
10348 | val = ada_value_cast (to_type, val); | |
10349 | ||
10350 | /* Follow the Ada language semantics that do not allow taking | |
10351 | an address of the result of a cast (view conversion in Ada). */ | |
10352 | if (VALUE_LVAL (val) == lval_memory) | |
10353 | { | |
10354 | if (value_lazy (val)) | |
10355 | value_fetch_lazy (val); | |
10356 | VALUE_LVAL (val) = not_lval; | |
10357 | } | |
10358 | return val; | |
10359 | } | |
10360 | ||
10361 | value *val = evaluate_subexp (to_type, exp, pos, noside); | |
10362 | if (noside == EVAL_SKIP) | |
10363 | return eval_skip_value (exp); | |
10364 | return ada_value_cast (to_type, val); | |
10365 | } | |
10366 | ||
284614f0 JB |
10367 | /* Implement the evaluate_exp routine in the exp_descriptor structure |
10368 | for the Ada language. */ | |
10369 | ||
52ce6436 | 10370 | static struct value * |
ebf56fd3 | 10371 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 10372 | int *pos, enum noside noside) |
14f9c5c9 AS |
10373 | { |
10374 | enum exp_opcode op; | |
b5385fc0 | 10375 | int tem; |
14f9c5c9 | 10376 | int pc; |
5ec18f2b | 10377 | int preeval_pos; |
14f9c5c9 AS |
10378 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; |
10379 | struct type *type; | |
52ce6436 | 10380 | int nargs, oplen; |
d2e4a39e | 10381 | struct value **argvec; |
14f9c5c9 | 10382 | |
d2e4a39e AS |
10383 | pc = *pos; |
10384 | *pos += 1; | |
14f9c5c9 AS |
10385 | op = exp->elts[pc].opcode; |
10386 | ||
d2e4a39e | 10387 | switch (op) |
14f9c5c9 AS |
10388 | { |
10389 | default: | |
10390 | *pos -= 1; | |
6e48bd2c | 10391 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
ca1f964d JG |
10392 | |
10393 | if (noside == EVAL_NORMAL) | |
10394 | arg1 = unwrap_value (arg1); | |
6e48bd2c | 10395 | |
edd079d9 | 10396 | /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided, |
6e48bd2c JB |
10397 | then we need to perform the conversion manually, because |
10398 | evaluate_subexp_standard doesn't do it. This conversion is | |
10399 | necessary in Ada because the different kinds of float/fixed | |
10400 | types in Ada have different representations. | |
10401 | ||
10402 | Similarly, we need to perform the conversion from OP_LONG | |
10403 | ourselves. */ | |
edd079d9 | 10404 | if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL) |
b7e22850 | 10405 | arg1 = ada_value_cast (expect_type, arg1); |
6e48bd2c JB |
10406 | |
10407 | return arg1; | |
4c4b4cd2 PH |
10408 | |
10409 | case OP_STRING: | |
10410 | { | |
76a01679 | 10411 | struct value *result; |
5b4ee69b | 10412 | |
76a01679 JB |
10413 | *pos -= 1; |
10414 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10415 | /* The result type will have code OP_STRING, bashed there from | |
10416 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
10417 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
10418 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 10419 | return result; |
4c4b4cd2 | 10420 | } |
14f9c5c9 AS |
10421 | |
10422 | case UNOP_CAST: | |
10423 | (*pos) += 2; | |
10424 | type = exp->elts[pc + 1].type; | |
ced9779b | 10425 | return ada_evaluate_subexp_for_cast (exp, pos, noside, type); |
14f9c5c9 | 10426 | |
4c4b4cd2 PH |
10427 | case UNOP_QUAL: |
10428 | (*pos) += 2; | |
10429 | type = exp->elts[pc + 1].type; | |
10430 | return ada_evaluate_subexp (type, exp, pos, noside); | |
10431 | ||
14f9c5c9 AS |
10432 | case BINOP_ASSIGN: |
10433 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
10434 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
10435 | { | |
10436 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
10437 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
10438 | return arg1; | |
10439 | return ada_value_assign (arg1, arg1); | |
10440 | } | |
003f3813 JB |
10441 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
10442 | except if the lhs of our assignment is a convenience variable. | |
10443 | In the case of assigning to a convenience variable, the lhs | |
10444 | should be exactly the result of the evaluation of the rhs. */ | |
10445 | type = value_type (arg1); | |
10446 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
10447 | type = NULL; | |
10448 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 10449 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 10450 | return arg1; |
f411722c TT |
10451 | if (VALUE_LVAL (arg1) == lval_internalvar) |
10452 | { | |
10453 | /* Nothing. */ | |
10454 | } | |
10455 | else if (ada_is_fixed_point_type (value_type (arg1))) | |
df407dfe AC |
10456 | arg2 = cast_to_fixed (value_type (arg1), arg2); |
10457 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 10458 | error |
323e0a4a | 10459 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 10460 | else |
df407dfe | 10461 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 10462 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
10463 | |
10464 | case BINOP_ADD: | |
10465 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10466 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10467 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10468 | goto nosideret; |
2ac8a782 JB |
10469 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10470 | return (value_from_longest | |
10471 | (value_type (arg1), | |
10472 | value_as_long (arg1) + value_as_long (arg2))); | |
c40cc657 JB |
10473 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10474 | return (value_from_longest | |
10475 | (value_type (arg2), | |
10476 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
10477 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10478 | || ada_is_fixed_point_type (value_type (arg2))) | |
10479 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 10480 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
10481 | /* Do the addition, and cast the result to the type of the first |
10482 | argument. We cannot cast the result to a reference type, so if | |
10483 | ARG1 is a reference type, find its underlying type. */ | |
10484 | type = value_type (arg1); | |
10485 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10486 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10487 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10488 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
10489 | |
10490 | case BINOP_SUB: | |
10491 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10492 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10493 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10494 | goto nosideret; |
2ac8a782 JB |
10495 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10496 | return (value_from_longest | |
10497 | (value_type (arg1), | |
10498 | value_as_long (arg1) - value_as_long (arg2))); | |
c40cc657 JB |
10499 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10500 | return (value_from_longest | |
10501 | (value_type (arg2), | |
10502 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
10503 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10504 | || ada_is_fixed_point_type (value_type (arg2))) | |
10505 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
10506 | error (_("Operands of fixed-point subtraction " |
10507 | "must have the same type")); | |
b7789565 JB |
10508 | /* Do the substraction, and cast the result to the type of the first |
10509 | argument. We cannot cast the result to a reference type, so if | |
10510 | ARG1 is a reference type, find its underlying type. */ | |
10511 | type = value_type (arg1); | |
10512 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10513 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10514 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10515 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
10516 | |
10517 | case BINOP_MUL: | |
10518 | case BINOP_DIV: | |
e1578042 JB |
10519 | case BINOP_REM: |
10520 | case BINOP_MOD: | |
14f9c5c9 AS |
10521 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10522 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10523 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10524 | goto nosideret; |
e1578042 | 10525 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
10526 | { |
10527 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10528 | return value_zero (value_type (arg1), not_lval); | |
10529 | } | |
14f9c5c9 | 10530 | else |
4c4b4cd2 | 10531 | { |
a53b7a21 | 10532 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 10533 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 10534 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 10535 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 10536 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 10537 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
10538 | return ada_value_binop (arg1, arg2, op); |
10539 | } | |
10540 | ||
4c4b4cd2 PH |
10541 | case BINOP_EQUAL: |
10542 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 10543 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 10544 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 10545 | if (noside == EVAL_SKIP) |
76a01679 | 10546 | goto nosideret; |
4c4b4cd2 | 10547 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10548 | tem = 0; |
4c4b4cd2 | 10549 | else |
f44316fa UW |
10550 | { |
10551 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10552 | tem = ada_value_equal (arg1, arg2); | |
10553 | } | |
4c4b4cd2 | 10554 | if (op == BINOP_NOTEQUAL) |
76a01679 | 10555 | tem = !tem; |
fbb06eb1 UW |
10556 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10557 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
10558 | |
10559 | case UNOP_NEG: | |
10560 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10561 | if (noside == EVAL_SKIP) | |
10562 | goto nosideret; | |
df407dfe AC |
10563 | else if (ada_is_fixed_point_type (value_type (arg1))) |
10564 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 10565 | else |
f44316fa UW |
10566 | { |
10567 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10568 | return value_neg (arg1); | |
10569 | } | |
4c4b4cd2 | 10570 | |
2330c6c6 JB |
10571 | case BINOP_LOGICAL_AND: |
10572 | case BINOP_LOGICAL_OR: | |
10573 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
10574 | { |
10575 | struct value *val; | |
10576 | ||
10577 | *pos -= 1; | |
10578 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
10579 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10580 | return value_cast (type, val); | |
000d5124 | 10581 | } |
2330c6c6 JB |
10582 | |
10583 | case BINOP_BITWISE_AND: | |
10584 | case BINOP_BITWISE_IOR: | |
10585 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
10586 | { |
10587 | struct value *val; | |
10588 | ||
10589 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
10590 | *pos = pc; | |
10591 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10592 | ||
10593 | return value_cast (value_type (arg1), val); | |
10594 | } | |
2330c6c6 | 10595 | |
14f9c5c9 AS |
10596 | case OP_VAR_VALUE: |
10597 | *pos -= 1; | |
6799def4 | 10598 | |
14f9c5c9 | 10599 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
10600 | { |
10601 | *pos += 4; | |
10602 | goto nosideret; | |
10603 | } | |
da5c522f JB |
10604 | |
10605 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
10606 | /* Only encountered when an unresolved symbol occurs in a |
10607 | context other than a function call, in which case, it is | |
52ce6436 | 10608 | invalid. */ |
323e0a4a | 10609 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
987012b8 | 10610 | exp->elts[pc + 2].symbol->print_name ()); |
da5c522f JB |
10611 | |
10612 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
4c4b4cd2 | 10613 | { |
0c1f74cf | 10614 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
10615 | /* Check to see if this is a tagged type. We also need to handle |
10616 | the case where the type is a reference to a tagged type, but | |
10617 | we have to be careful to exclude pointers to tagged types. | |
10618 | The latter should be shown as usual (as a pointer), whereas | |
10619 | a reference should mostly be transparent to the user. */ | |
10620 | if (ada_is_tagged_type (type, 0) | |
023db19c | 10621 | || (TYPE_CODE (type) == TYPE_CODE_REF |
31dbc1c5 | 10622 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) |
0d72a7c3 JB |
10623 | { |
10624 | /* Tagged types are a little special in the fact that the real | |
10625 | type is dynamic and can only be determined by inspecting the | |
10626 | object's tag. This means that we need to get the object's | |
10627 | value first (EVAL_NORMAL) and then extract the actual object | |
10628 | type from its tag. | |
10629 | ||
10630 | Note that we cannot skip the final step where we extract | |
10631 | the object type from its tag, because the EVAL_NORMAL phase | |
10632 | results in dynamic components being resolved into fixed ones. | |
10633 | This can cause problems when trying to print the type | |
10634 | description of tagged types whose parent has a dynamic size: | |
10635 | We use the type name of the "_parent" component in order | |
10636 | to print the name of the ancestor type in the type description. | |
10637 | If that component had a dynamic size, the resolution into | |
10638 | a fixed type would result in the loss of that type name, | |
10639 | thus preventing us from printing the name of the ancestor | |
10640 | type in the type description. */ | |
10641 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); | |
10642 | ||
10643 | if (TYPE_CODE (type) != TYPE_CODE_REF) | |
10644 | { | |
10645 | struct type *actual_type; | |
10646 | ||
10647 | actual_type = type_from_tag (ada_value_tag (arg1)); | |
10648 | if (actual_type == NULL) | |
10649 | /* If, for some reason, we were unable to determine | |
10650 | the actual type from the tag, then use the static | |
10651 | approximation that we just computed as a fallback. | |
10652 | This can happen if the debugging information is | |
10653 | incomplete, for instance. */ | |
10654 | actual_type = type; | |
10655 | return value_zero (actual_type, not_lval); | |
10656 | } | |
10657 | else | |
10658 | { | |
10659 | /* In the case of a ref, ada_coerce_ref takes care | |
10660 | of determining the actual type. But the evaluation | |
10661 | should return a ref as it should be valid to ask | |
10662 | for its address; so rebuild a ref after coerce. */ | |
10663 | arg1 = ada_coerce_ref (arg1); | |
a65cfae5 | 10664 | return value_ref (arg1, TYPE_CODE_REF); |
0d72a7c3 JB |
10665 | } |
10666 | } | |
0c1f74cf | 10667 | |
84754697 JB |
10668 | /* Records and unions for which GNAT encodings have been |
10669 | generated need to be statically fixed as well. | |
10670 | Otherwise, non-static fixing produces a type where | |
10671 | all dynamic properties are removed, which prevents "ptype" | |
10672 | from being able to completely describe the type. | |
10673 | For instance, a case statement in a variant record would be | |
10674 | replaced by the relevant components based on the actual | |
10675 | value of the discriminants. */ | |
10676 | if ((TYPE_CODE (type) == TYPE_CODE_STRUCT | |
10677 | && dynamic_template_type (type) != NULL) | |
10678 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
10679 | && ada_find_parallel_type (type, "___XVU") != NULL)) | |
10680 | { | |
10681 | *pos += 4; | |
10682 | return value_zero (to_static_fixed_type (type), not_lval); | |
10683 | } | |
4c4b4cd2 | 10684 | } |
da5c522f JB |
10685 | |
10686 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10687 | return ada_to_fixed_value (arg1); | |
4c4b4cd2 PH |
10688 | |
10689 | case OP_FUNCALL: | |
10690 | (*pos) += 2; | |
10691 | ||
10692 | /* Allocate arg vector, including space for the function to be | |
10693 | called in argvec[0] and a terminating NULL. */ | |
10694 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
8d749320 | 10695 | argvec = XALLOCAVEC (struct value *, nargs + 2); |
4c4b4cd2 PH |
10696 | |
10697 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 10698 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 10699 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
987012b8 | 10700 | exp->elts[pc + 5].symbol->print_name ()); |
4c4b4cd2 PH |
10701 | else |
10702 | { | |
10703 | for (tem = 0; tem <= nargs; tem += 1) | |
10704 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10705 | argvec[tem] = 0; | |
10706 | ||
10707 | if (noside == EVAL_SKIP) | |
10708 | goto nosideret; | |
10709 | } | |
10710 | ||
ad82864c JB |
10711 | if (ada_is_constrained_packed_array_type |
10712 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 10713 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
10714 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
10715 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
10716 | /* This is a packed array that has already been fixed, and | |
10717 | therefore already coerced to a simple array. Nothing further | |
10718 | to do. */ | |
10719 | ; | |
e6c2c623 PMR |
10720 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF) |
10721 | { | |
10722 | /* Make sure we dereference references so that all the code below | |
10723 | feels like it's really handling the referenced value. Wrapping | |
10724 | types (for alignment) may be there, so make sure we strip them as | |
10725 | well. */ | |
10726 | argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0])); | |
10727 | } | |
10728 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
10729 | && VALUE_LVAL (argvec[0]) == lval_memory) | |
10730 | argvec[0] = value_addr (argvec[0]); | |
4c4b4cd2 | 10731 | |
df407dfe | 10732 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
10733 | |
10734 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
10735 | them. So, if this is an array typedef (encoding use for array |
10736 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
10737 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
10738 | type = ada_typedef_target_type (type); | |
10739 | ||
4c4b4cd2 PH |
10740 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
10741 | { | |
61ee279c | 10742 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
10743 | { |
10744 | case TYPE_CODE_FUNC: | |
61ee279c | 10745 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10746 | break; |
10747 | case TYPE_CODE_ARRAY: | |
10748 | break; | |
10749 | case TYPE_CODE_STRUCT: | |
10750 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
10751 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 10752 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10753 | break; |
10754 | default: | |
323e0a4a | 10755 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 10756 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
10757 | break; |
10758 | } | |
10759 | } | |
10760 | ||
10761 | switch (TYPE_CODE (type)) | |
10762 | { | |
10763 | case TYPE_CODE_FUNC: | |
10764 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
c8ea1972 | 10765 | { |
7022349d PA |
10766 | if (TYPE_TARGET_TYPE (type) == NULL) |
10767 | error_call_unknown_return_type (NULL); | |
10768 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
c8ea1972 | 10769 | } |
e71585ff PA |
10770 | return call_function_by_hand (argvec[0], NULL, |
10771 | gdb::make_array_view (argvec + 1, | |
10772 | nargs)); | |
c8ea1972 PH |
10773 | case TYPE_CODE_INTERNAL_FUNCTION: |
10774 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10775 | /* We don't know anything about what the internal | |
10776 | function might return, but we have to return | |
10777 | something. */ | |
10778 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10779 | not_lval); | |
10780 | else | |
10781 | return call_internal_function (exp->gdbarch, exp->language_defn, | |
10782 | argvec[0], nargs, argvec + 1); | |
10783 | ||
4c4b4cd2 PH |
10784 | case TYPE_CODE_STRUCT: |
10785 | { | |
10786 | int arity; | |
10787 | ||
4c4b4cd2 PH |
10788 | arity = ada_array_arity (type); |
10789 | type = ada_array_element_type (type, nargs); | |
10790 | if (type == NULL) | |
323e0a4a | 10791 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 10792 | if (arity != nargs) |
323e0a4a | 10793 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 10794 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 10795 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10796 | return |
10797 | unwrap_value (ada_value_subscript | |
10798 | (argvec[0], nargs, argvec + 1)); | |
10799 | } | |
10800 | case TYPE_CODE_ARRAY: | |
10801 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10802 | { | |
10803 | type = ada_array_element_type (type, nargs); | |
10804 | if (type == NULL) | |
323e0a4a | 10805 | error (_("element type of array unknown")); |
4c4b4cd2 | 10806 | else |
0a07e705 | 10807 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10808 | } |
10809 | return | |
10810 | unwrap_value (ada_value_subscript | |
10811 | (ada_coerce_to_simple_array (argvec[0]), | |
10812 | nargs, argvec + 1)); | |
10813 | case TYPE_CODE_PTR: /* Pointer to array */ | |
4c4b4cd2 PH |
10814 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
10815 | { | |
deede10c | 10816 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); |
4c4b4cd2 PH |
10817 | type = ada_array_element_type (type, nargs); |
10818 | if (type == NULL) | |
323e0a4a | 10819 | error (_("element type of array unknown")); |
4c4b4cd2 | 10820 | else |
0a07e705 | 10821 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10822 | } |
10823 | return | |
deede10c JB |
10824 | unwrap_value (ada_value_ptr_subscript (argvec[0], |
10825 | nargs, argvec + 1)); | |
4c4b4cd2 PH |
10826 | |
10827 | default: | |
e1d5a0d2 PH |
10828 | error (_("Attempt to index or call something other than an " |
10829 | "array or function")); | |
4c4b4cd2 PH |
10830 | } |
10831 | ||
10832 | case TERNOP_SLICE: | |
10833 | { | |
10834 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10835 | struct value *low_bound_val = | |
10836 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
10837 | struct value *high_bound_val = |
10838 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10839 | LONGEST low_bound; | |
10840 | LONGEST high_bound; | |
5b4ee69b | 10841 | |
994b9211 AC |
10842 | low_bound_val = coerce_ref (low_bound_val); |
10843 | high_bound_val = coerce_ref (high_bound_val); | |
aa715135 JG |
10844 | low_bound = value_as_long (low_bound_val); |
10845 | high_bound = value_as_long (high_bound_val); | |
963a6417 | 10846 | |
4c4b4cd2 PH |
10847 | if (noside == EVAL_SKIP) |
10848 | goto nosideret; | |
10849 | ||
4c4b4cd2 PH |
10850 | /* If this is a reference to an aligner type, then remove all |
10851 | the aligners. */ | |
df407dfe AC |
10852 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10853 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
10854 | TYPE_TARGET_TYPE (value_type (array)) = | |
10855 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 10856 | |
ad82864c | 10857 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 10858 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
10859 | |
10860 | /* If this is a reference to an array or an array lvalue, | |
10861 | convert to a pointer. */ | |
df407dfe AC |
10862 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10863 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
10864 | && VALUE_LVAL (array) == lval_memory)) |
10865 | array = value_addr (array); | |
10866 | ||
1265e4aa | 10867 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 10868 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 10869 | (value_type (array)))) |
bff8c71f TT |
10870 | return empty_array (ada_type_of_array (array, 0), low_bound, |
10871 | high_bound); | |
4c4b4cd2 PH |
10872 | |
10873 | array = ada_coerce_to_simple_array_ptr (array); | |
10874 | ||
714e53ab PH |
10875 | /* If we have more than one level of pointer indirection, |
10876 | dereference the value until we get only one level. */ | |
df407dfe AC |
10877 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
10878 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
10879 | == TYPE_CODE_PTR)) |
10880 | array = value_ind (array); | |
10881 | ||
10882 | /* Make sure we really do have an array type before going further, | |
10883 | to avoid a SEGV when trying to get the index type or the target | |
10884 | type later down the road if the debug info generated by | |
10885 | the compiler is incorrect or incomplete. */ | |
df407dfe | 10886 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 10887 | error (_("cannot take slice of non-array")); |
714e53ab | 10888 | |
828292f2 JB |
10889 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
10890 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 10891 | { |
828292f2 JB |
10892 | struct type *type0 = ada_check_typedef (value_type (array)); |
10893 | ||
0b5d8877 | 10894 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
bff8c71f | 10895 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound); |
4c4b4cd2 PH |
10896 | else |
10897 | { | |
10898 | struct type *arr_type0 = | |
828292f2 | 10899 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 10900 | |
f5938064 JG |
10901 | return ada_value_slice_from_ptr (array, arr_type0, |
10902 | longest_to_int (low_bound), | |
10903 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
10904 | } |
10905 | } | |
10906 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10907 | return array; | |
10908 | else if (high_bound < low_bound) | |
bff8c71f | 10909 | return empty_array (value_type (array), low_bound, high_bound); |
4c4b4cd2 | 10910 | else |
529cad9c PH |
10911 | return ada_value_slice (array, longest_to_int (low_bound), |
10912 | longest_to_int (high_bound)); | |
4c4b4cd2 | 10913 | } |
14f9c5c9 | 10914 | |
4c4b4cd2 PH |
10915 | case UNOP_IN_RANGE: |
10916 | (*pos) += 2; | |
10917 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 10918 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 10919 | |
14f9c5c9 | 10920 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10921 | goto nosideret; |
14f9c5c9 | 10922 | |
4c4b4cd2 PH |
10923 | switch (TYPE_CODE (type)) |
10924 | { | |
10925 | default: | |
e1d5a0d2 PH |
10926 | lim_warning (_("Membership test incompletely implemented; " |
10927 | "always returns true")); | |
fbb06eb1 UW |
10928 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10929 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
10930 | |
10931 | case TYPE_CODE_RANGE: | |
030b4912 UW |
10932 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
10933 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
10934 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10935 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
10936 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10937 | return | |
10938 | value_from_longest (type, | |
4c4b4cd2 PH |
10939 | (value_less (arg1, arg3) |
10940 | || value_equal (arg1, arg3)) | |
10941 | && (value_less (arg2, arg1) | |
10942 | || value_equal (arg2, arg1))); | |
10943 | } | |
10944 | ||
10945 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 10946 | (*pos) += 2; |
4c4b4cd2 PH |
10947 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10948 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 10949 | |
4c4b4cd2 PH |
10950 | if (noside == EVAL_SKIP) |
10951 | goto nosideret; | |
14f9c5c9 | 10952 | |
4c4b4cd2 | 10953 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
10954 | { |
10955 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
10956 | return value_zero (type, not_lval); | |
10957 | } | |
14f9c5c9 | 10958 | |
4c4b4cd2 | 10959 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 10960 | |
1eea4ebd UW |
10961 | type = ada_index_type (value_type (arg2), tem, "range"); |
10962 | if (!type) | |
10963 | type = value_type (arg1); | |
14f9c5c9 | 10964 | |
1eea4ebd UW |
10965 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
10966 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 10967 | |
f44316fa UW |
10968 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10969 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10970 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10971 | return |
fbb06eb1 | 10972 | value_from_longest (type, |
4c4b4cd2 PH |
10973 | (value_less (arg1, arg3) |
10974 | || value_equal (arg1, arg3)) | |
10975 | && (value_less (arg2, arg1) | |
10976 | || value_equal (arg2, arg1))); | |
10977 | ||
10978 | case TERNOP_IN_RANGE: | |
10979 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10980 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10981 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10982 | ||
10983 | if (noside == EVAL_SKIP) | |
10984 | goto nosideret; | |
10985 | ||
f44316fa UW |
10986 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10987 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10988 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10989 | return |
fbb06eb1 | 10990 | value_from_longest (type, |
4c4b4cd2 PH |
10991 | (value_less (arg1, arg3) |
10992 | || value_equal (arg1, arg3)) | |
10993 | && (value_less (arg2, arg1) | |
10994 | || value_equal (arg2, arg1))); | |
10995 | ||
10996 | case OP_ATR_FIRST: | |
10997 | case OP_ATR_LAST: | |
10998 | case OP_ATR_LENGTH: | |
10999 | { | |
76a01679 | 11000 | struct type *type_arg; |
5b4ee69b | 11001 | |
76a01679 JB |
11002 | if (exp->elts[*pos].opcode == OP_TYPE) |
11003 | { | |
11004 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
11005 | arg1 = NULL; | |
5bc23cb3 | 11006 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
11007 | } |
11008 | else | |
11009 | { | |
11010 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11011 | type_arg = NULL; | |
11012 | } | |
11013 | ||
11014 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 11015 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
11016 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
11017 | *pos += 4; | |
11018 | ||
11019 | if (noside == EVAL_SKIP) | |
11020 | goto nosideret; | |
680e1bee TT |
11021 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
11022 | { | |
11023 | if (type_arg == NULL) | |
11024 | type_arg = value_type (arg1); | |
76a01679 | 11025 | |
680e1bee TT |
11026 | if (ada_is_constrained_packed_array_type (type_arg)) |
11027 | type_arg = decode_constrained_packed_array_type (type_arg); | |
11028 | ||
11029 | if (!discrete_type_p (type_arg)) | |
11030 | { | |
11031 | switch (op) | |
11032 | { | |
11033 | default: /* Should never happen. */ | |
11034 | error (_("unexpected attribute encountered")); | |
11035 | case OP_ATR_FIRST: | |
11036 | case OP_ATR_LAST: | |
11037 | type_arg = ada_index_type (type_arg, tem, | |
11038 | ada_attribute_name (op)); | |
11039 | break; | |
11040 | case OP_ATR_LENGTH: | |
11041 | type_arg = builtin_type (exp->gdbarch)->builtin_int; | |
11042 | break; | |
11043 | } | |
11044 | } | |
11045 | ||
11046 | return value_zero (type_arg, not_lval); | |
11047 | } | |
11048 | else if (type_arg == NULL) | |
76a01679 JB |
11049 | { |
11050 | arg1 = ada_coerce_ref (arg1); | |
11051 | ||
ad82864c | 11052 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
11053 | arg1 = ada_coerce_to_simple_array (arg1); |
11054 | ||
aa4fb036 | 11055 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 11056 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
11057 | else |
11058 | { | |
11059 | type = ada_index_type (value_type (arg1), tem, | |
11060 | ada_attribute_name (op)); | |
11061 | if (type == NULL) | |
11062 | type = builtin_type (exp->gdbarch)->builtin_int; | |
11063 | } | |
76a01679 | 11064 | |
76a01679 JB |
11065 | switch (op) |
11066 | { | |
11067 | default: /* Should never happen. */ | |
323e0a4a | 11068 | error (_("unexpected attribute encountered")); |
76a01679 | 11069 | case OP_ATR_FIRST: |
1eea4ebd UW |
11070 | return value_from_longest |
11071 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 11072 | case OP_ATR_LAST: |
1eea4ebd UW |
11073 | return value_from_longest |
11074 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 11075 | case OP_ATR_LENGTH: |
1eea4ebd UW |
11076 | return value_from_longest |
11077 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
11078 | } |
11079 | } | |
11080 | else if (discrete_type_p (type_arg)) | |
11081 | { | |
11082 | struct type *range_type; | |
0d5cff50 | 11083 | const char *name = ada_type_name (type_arg); |
5b4ee69b | 11084 | |
76a01679 JB |
11085 | range_type = NULL; |
11086 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 11087 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
11088 | if (range_type == NULL) |
11089 | range_type = type_arg; | |
11090 | switch (op) | |
11091 | { | |
11092 | default: | |
323e0a4a | 11093 | error (_("unexpected attribute encountered")); |
76a01679 | 11094 | case OP_ATR_FIRST: |
690cc4eb | 11095 | return value_from_longest |
43bbcdc2 | 11096 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 11097 | case OP_ATR_LAST: |
690cc4eb | 11098 | return value_from_longest |
43bbcdc2 | 11099 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 11100 | case OP_ATR_LENGTH: |
323e0a4a | 11101 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
11102 | } |
11103 | } | |
11104 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 11105 | error (_("unimplemented type attribute")); |
76a01679 JB |
11106 | else |
11107 | { | |
11108 | LONGEST low, high; | |
11109 | ||
ad82864c JB |
11110 | if (ada_is_constrained_packed_array_type (type_arg)) |
11111 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 11112 | |
aa4fb036 | 11113 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 11114 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
11115 | else |
11116 | { | |
11117 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); | |
11118 | if (type == NULL) | |
11119 | type = builtin_type (exp->gdbarch)->builtin_int; | |
11120 | } | |
1eea4ebd | 11121 | |
76a01679 JB |
11122 | switch (op) |
11123 | { | |
11124 | default: | |
323e0a4a | 11125 | error (_("unexpected attribute encountered")); |
76a01679 | 11126 | case OP_ATR_FIRST: |
1eea4ebd | 11127 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
11128 | return value_from_longest (type, low); |
11129 | case OP_ATR_LAST: | |
1eea4ebd | 11130 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
11131 | return value_from_longest (type, high); |
11132 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
11133 | low = ada_array_bound_from_type (type_arg, tem, 0); |
11134 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
11135 | return value_from_longest (type, high - low + 1); |
11136 | } | |
11137 | } | |
14f9c5c9 AS |
11138 | } |
11139 | ||
4c4b4cd2 PH |
11140 | case OP_ATR_TAG: |
11141 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11142 | if (noside == EVAL_SKIP) | |
76a01679 | 11143 | goto nosideret; |
4c4b4cd2 PH |
11144 | |
11145 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 11146 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
11147 | |
11148 | return ada_value_tag (arg1); | |
11149 | ||
11150 | case OP_ATR_MIN: | |
11151 | case OP_ATR_MAX: | |
11152 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
11153 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11154 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11155 | if (noside == EVAL_SKIP) | |
76a01679 | 11156 | goto nosideret; |
d2e4a39e | 11157 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 11158 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 11159 | else |
f44316fa UW |
11160 | { |
11161 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
11162 | return value_binop (arg1, arg2, | |
11163 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
11164 | } | |
14f9c5c9 | 11165 | |
4c4b4cd2 PH |
11166 | case OP_ATR_MODULUS: |
11167 | { | |
31dedfee | 11168 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 11169 | |
5b4ee69b | 11170 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
11171 | if (noside == EVAL_SKIP) |
11172 | goto nosideret; | |
4c4b4cd2 | 11173 | |
76a01679 | 11174 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 11175 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 11176 | |
76a01679 JB |
11177 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
11178 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
11179 | } |
11180 | ||
11181 | ||
11182 | case OP_ATR_POS: | |
11183 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
11184 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11185 | if (noside == EVAL_SKIP) | |
76a01679 | 11186 | goto nosideret; |
3cb382c9 UW |
11187 | type = builtin_type (exp->gdbarch)->builtin_int; |
11188 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
11189 | return value_zero (type, not_lval); | |
14f9c5c9 | 11190 | else |
3cb382c9 | 11191 | return value_pos_atr (type, arg1); |
14f9c5c9 | 11192 | |
4c4b4cd2 PH |
11193 | case OP_ATR_SIZE: |
11194 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
11195 | type = value_type (arg1); |
11196 | ||
11197 | /* If the argument is a reference, then dereference its type, since | |
11198 | the user is really asking for the size of the actual object, | |
11199 | not the size of the pointer. */ | |
11200 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
11201 | type = TYPE_TARGET_TYPE (type); | |
11202 | ||
4c4b4cd2 | 11203 | if (noside == EVAL_SKIP) |
76a01679 | 11204 | goto nosideret; |
4c4b4cd2 | 11205 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 11206 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 11207 | else |
22601c15 | 11208 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 11209 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
11210 | |
11211 | case OP_ATR_VAL: | |
11212 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 11213 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 11214 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 11215 | if (noside == EVAL_SKIP) |
76a01679 | 11216 | goto nosideret; |
4c4b4cd2 | 11217 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 11218 | return value_zero (type, not_lval); |
4c4b4cd2 | 11219 | else |
76a01679 | 11220 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
11221 | |
11222 | case BINOP_EXP: | |
11223 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11224 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11225 | if (noside == EVAL_SKIP) | |
11226 | goto nosideret; | |
11227 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 11228 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 11229 | else |
f44316fa UW |
11230 | { |
11231 | /* For integer exponentiation operations, | |
11232 | only promote the first argument. */ | |
11233 | if (is_integral_type (value_type (arg2))) | |
11234 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
11235 | else | |
11236 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
11237 | ||
11238 | return value_binop (arg1, arg2, op); | |
11239 | } | |
4c4b4cd2 PH |
11240 | |
11241 | case UNOP_PLUS: | |
11242 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11243 | if (noside == EVAL_SKIP) | |
11244 | goto nosideret; | |
11245 | else | |
11246 | return arg1; | |
11247 | ||
11248 | case UNOP_ABS: | |
11249 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11250 | if (noside == EVAL_SKIP) | |
11251 | goto nosideret; | |
f44316fa | 11252 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 11253 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 11254 | return value_neg (arg1); |
14f9c5c9 | 11255 | else |
4c4b4cd2 | 11256 | return arg1; |
14f9c5c9 AS |
11257 | |
11258 | case UNOP_IND: | |
5ec18f2b | 11259 | preeval_pos = *pos; |
6b0d7253 | 11260 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 11261 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 11262 | goto nosideret; |
df407dfe | 11263 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 11264 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
11265 | { |
11266 | if (ada_is_array_descriptor_type (type)) | |
11267 | /* GDB allows dereferencing GNAT array descriptors. */ | |
11268 | { | |
11269 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 11270 | |
4c4b4cd2 | 11271 | if (arrType == NULL) |
323e0a4a | 11272 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 11273 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
11274 | } |
11275 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
11276 | || TYPE_CODE (type) == TYPE_CODE_REF | |
11277 | /* In C you can dereference an array to get the 1st elt. */ | |
11278 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab | 11279 | { |
5ec18f2b JG |
11280 | /* As mentioned in the OP_VAR_VALUE case, tagged types can |
11281 | only be determined by inspecting the object's tag. | |
11282 | This means that we need to evaluate completely the | |
11283 | expression in order to get its type. */ | |
11284 | ||
023db19c JB |
11285 | if ((TYPE_CODE (type) == TYPE_CODE_REF |
11286 | || TYPE_CODE (type) == TYPE_CODE_PTR) | |
5ec18f2b JG |
11287 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)) |
11288 | { | |
11289 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
11290 | EVAL_NORMAL); | |
11291 | type = value_type (ada_value_ind (arg1)); | |
11292 | } | |
11293 | else | |
11294 | { | |
11295 | type = to_static_fixed_type | |
11296 | (ada_aligned_type | |
11297 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
11298 | } | |
c1b5a1a6 | 11299 | ada_ensure_varsize_limit (type); |
714e53ab PH |
11300 | return value_zero (type, lval_memory); |
11301 | } | |
4c4b4cd2 | 11302 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
11303 | { |
11304 | /* GDB allows dereferencing an int. */ | |
11305 | if (expect_type == NULL) | |
11306 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
11307 | lval_memory); | |
11308 | else | |
11309 | { | |
11310 | expect_type = | |
11311 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
11312 | return value_zero (expect_type, lval_memory); | |
11313 | } | |
11314 | } | |
4c4b4cd2 | 11315 | else |
323e0a4a | 11316 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 11317 | } |
0963b4bd | 11318 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 11319 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 11320 | |
96967637 JB |
11321 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
11322 | /* GDB allows dereferencing an int. If we were given | |
11323 | the expect_type, then use that as the target type. | |
11324 | Otherwise, assume that the target type is an int. */ | |
11325 | { | |
11326 | if (expect_type != NULL) | |
11327 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
11328 | arg1)); | |
11329 | else | |
11330 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
11331 | (CORE_ADDR) value_as_address (arg1)); | |
11332 | } | |
6b0d7253 | 11333 | |
4c4b4cd2 PH |
11334 | if (ada_is_array_descriptor_type (type)) |
11335 | /* GDB allows dereferencing GNAT array descriptors. */ | |
11336 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 11337 | else |
4c4b4cd2 | 11338 | return ada_value_ind (arg1); |
14f9c5c9 AS |
11339 | |
11340 | case STRUCTOP_STRUCT: | |
11341 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
11342 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
5ec18f2b | 11343 | preeval_pos = *pos; |
14f9c5c9 AS |
11344 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11345 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 11346 | goto nosideret; |
14f9c5c9 | 11347 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 11348 | { |
df407dfe | 11349 | struct type *type1 = value_type (arg1); |
5b4ee69b | 11350 | |
76a01679 JB |
11351 | if (ada_is_tagged_type (type1, 1)) |
11352 | { | |
11353 | type = ada_lookup_struct_elt_type (type1, | |
11354 | &exp->elts[pc + 2].string, | |
988f6b3d | 11355 | 1, 1); |
5ec18f2b JG |
11356 | |
11357 | /* If the field is not found, check if it exists in the | |
11358 | extension of this object's type. This means that we | |
11359 | need to evaluate completely the expression. */ | |
11360 | ||
76a01679 | 11361 | if (type == NULL) |
5ec18f2b JG |
11362 | { |
11363 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
11364 | EVAL_NORMAL); | |
11365 | arg1 = ada_value_struct_elt (arg1, | |
11366 | &exp->elts[pc + 2].string, | |
11367 | 0); | |
11368 | arg1 = unwrap_value (arg1); | |
11369 | type = value_type (ada_to_fixed_value (arg1)); | |
11370 | } | |
76a01679 JB |
11371 | } |
11372 | else | |
11373 | type = | |
11374 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
988f6b3d | 11375 | 0); |
76a01679 JB |
11376 | |
11377 | return value_zero (ada_aligned_type (type), lval_memory); | |
11378 | } | |
14f9c5c9 | 11379 | else |
a579cd9a MW |
11380 | { |
11381 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); | |
11382 | arg1 = unwrap_value (arg1); | |
11383 | return ada_to_fixed_value (arg1); | |
11384 | } | |
284614f0 | 11385 | |
14f9c5c9 | 11386 | case OP_TYPE: |
4c4b4cd2 PH |
11387 | /* The value is not supposed to be used. This is here to make it |
11388 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
11389 | (*pos) += 2; |
11390 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 11391 | goto nosideret; |
14f9c5c9 | 11392 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 11393 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 11394 | else |
323e0a4a | 11395 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
11396 | |
11397 | case OP_AGGREGATE: | |
11398 | case OP_CHOICES: | |
11399 | case OP_OTHERS: | |
11400 | case OP_DISCRETE_RANGE: | |
11401 | case OP_POSITIONAL: | |
11402 | case OP_NAME: | |
11403 | if (noside == EVAL_NORMAL) | |
11404 | switch (op) | |
11405 | { | |
11406 | case OP_NAME: | |
11407 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 11408 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
11409 | case OP_AGGREGATE: |
11410 | error (_("Aggregates only allowed on the right of an assignment")); | |
11411 | default: | |
0963b4bd MS |
11412 | internal_error (__FILE__, __LINE__, |
11413 | _("aggregate apparently mangled")); | |
52ce6436 PH |
11414 | } |
11415 | ||
11416 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
11417 | *pos += oplen - 1; | |
11418 | for (tem = 0; tem < nargs; tem += 1) | |
11419 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
11420 | goto nosideret; | |
14f9c5c9 AS |
11421 | } |
11422 | ||
11423 | nosideret: | |
ced9779b | 11424 | return eval_skip_value (exp); |
14f9c5c9 | 11425 | } |
14f9c5c9 | 11426 | \f |
d2e4a39e | 11427 | |
4c4b4cd2 | 11428 | /* Fixed point */ |
14f9c5c9 AS |
11429 | |
11430 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
11431 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 11432 | Otherwise, return NULL. */ |
14f9c5c9 | 11433 | |
d2e4a39e | 11434 | static const char * |
ebf56fd3 | 11435 | fixed_type_info (struct type *type) |
14f9c5c9 | 11436 | { |
d2e4a39e | 11437 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
11438 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
11439 | ||
d2e4a39e AS |
11440 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
11441 | { | |
14f9c5c9 | 11442 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 11443 | |
14f9c5c9 | 11444 | if (tail == NULL) |
4c4b4cd2 | 11445 | return NULL; |
d2e4a39e | 11446 | else |
4c4b4cd2 | 11447 | return tail + 5; |
14f9c5c9 AS |
11448 | } |
11449 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
11450 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
11451 | else | |
11452 | return NULL; | |
11453 | } | |
11454 | ||
4c4b4cd2 | 11455 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
11456 | |
11457 | int | |
ebf56fd3 | 11458 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
11459 | { |
11460 | return fixed_type_info (type) != NULL; | |
11461 | } | |
11462 | ||
4c4b4cd2 PH |
11463 | /* Return non-zero iff TYPE represents a System.Address type. */ |
11464 | ||
11465 | int | |
11466 | ada_is_system_address_type (struct type *type) | |
11467 | { | |
11468 | return (TYPE_NAME (type) | |
11469 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
11470 | } | |
11471 | ||
14f9c5c9 | 11472 | /* Assuming that TYPE is the representation of an Ada fixed-point |
50eff16b UW |
11473 | type, return the target floating-point type to be used to represent |
11474 | of this type during internal computation. */ | |
11475 | ||
11476 | static struct type * | |
11477 | ada_scaling_type (struct type *type) | |
11478 | { | |
11479 | return builtin_type (get_type_arch (type))->builtin_long_double; | |
11480 | } | |
11481 | ||
11482 | /* Assuming that TYPE is the representation of an Ada fixed-point | |
11483 | type, return its delta, or NULL if the type is malformed and the | |
4c4b4cd2 | 11484 | delta cannot be determined. */ |
14f9c5c9 | 11485 | |
50eff16b | 11486 | struct value * |
ebf56fd3 | 11487 | ada_delta (struct type *type) |
14f9c5c9 AS |
11488 | { |
11489 | const char *encoding = fixed_type_info (type); | |
50eff16b UW |
11490 | struct type *scale_type = ada_scaling_type (type); |
11491 | ||
11492 | long long num, den; | |
11493 | ||
11494 | if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2) | |
11495 | return nullptr; | |
d2e4a39e | 11496 | else |
50eff16b UW |
11497 | return value_binop (value_from_longest (scale_type, num), |
11498 | value_from_longest (scale_type, den), BINOP_DIV); | |
14f9c5c9 AS |
11499 | } |
11500 | ||
11501 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 11502 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 | 11503 | |
50eff16b UW |
11504 | struct value * |
11505 | ada_scaling_factor (struct type *type) | |
14f9c5c9 AS |
11506 | { |
11507 | const char *encoding = fixed_type_info (type); | |
50eff16b UW |
11508 | struct type *scale_type = ada_scaling_type (type); |
11509 | ||
11510 | long long num0, den0, num1, den1; | |
14f9c5c9 | 11511 | int n; |
d2e4a39e | 11512 | |
50eff16b | 11513 | n = sscanf (encoding, "_%lld_%lld_%lld_%lld", |
facc390f | 11514 | &num0, &den0, &num1, &den1); |
14f9c5c9 AS |
11515 | |
11516 | if (n < 2) | |
50eff16b | 11517 | return value_from_longest (scale_type, 1); |
14f9c5c9 | 11518 | else if (n == 4) |
50eff16b UW |
11519 | return value_binop (value_from_longest (scale_type, num1), |
11520 | value_from_longest (scale_type, den1), BINOP_DIV); | |
d2e4a39e | 11521 | else |
50eff16b UW |
11522 | return value_binop (value_from_longest (scale_type, num0), |
11523 | value_from_longest (scale_type, den0), BINOP_DIV); | |
14f9c5c9 AS |
11524 | } |
11525 | ||
14f9c5c9 | 11526 | \f |
d2e4a39e | 11527 | |
4c4b4cd2 | 11528 | /* Range types */ |
14f9c5c9 AS |
11529 | |
11530 | /* Scan STR beginning at position K for a discriminant name, and | |
11531 | return the value of that discriminant field of DVAL in *PX. If | |
11532 | PNEW_K is not null, put the position of the character beyond the | |
11533 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 11534 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
11535 | |
11536 | static int | |
108d56a4 | 11537 | scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 11538 | int *pnew_k) |
14f9c5c9 AS |
11539 | { |
11540 | static char *bound_buffer = NULL; | |
11541 | static size_t bound_buffer_len = 0; | |
5da1a4d3 | 11542 | const char *pstart, *pend, *bound; |
d2e4a39e | 11543 | struct value *bound_val; |
14f9c5c9 AS |
11544 | |
11545 | if (dval == NULL || str == NULL || str[k] == '\0') | |
11546 | return 0; | |
11547 | ||
5da1a4d3 SM |
11548 | pstart = str + k; |
11549 | pend = strstr (pstart, "__"); | |
14f9c5c9 AS |
11550 | if (pend == NULL) |
11551 | { | |
5da1a4d3 | 11552 | bound = pstart; |
14f9c5c9 AS |
11553 | k += strlen (bound); |
11554 | } | |
d2e4a39e | 11555 | else |
14f9c5c9 | 11556 | { |
5da1a4d3 SM |
11557 | int len = pend - pstart; |
11558 | ||
11559 | /* Strip __ and beyond. */ | |
11560 | GROW_VECT (bound_buffer, bound_buffer_len, len + 1); | |
11561 | strncpy (bound_buffer, pstart, len); | |
11562 | bound_buffer[len] = '\0'; | |
11563 | ||
14f9c5c9 | 11564 | bound = bound_buffer; |
d2e4a39e | 11565 | k = pend - str; |
14f9c5c9 | 11566 | } |
d2e4a39e | 11567 | |
df407dfe | 11568 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
11569 | if (bound_val == NULL) |
11570 | return 0; | |
11571 | ||
11572 | *px = value_as_long (bound_val); | |
11573 | if (pnew_k != NULL) | |
11574 | *pnew_k = k; | |
11575 | return 1; | |
11576 | } | |
11577 | ||
11578 | /* Value of variable named NAME in the current environment. If | |
11579 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
11580 | otherwise causes an error with message ERR_MSG. */ |
11581 | ||
d2e4a39e | 11582 | static struct value * |
edb0c9cb | 11583 | get_var_value (const char *name, const char *err_msg) |
14f9c5c9 | 11584 | { |
b5ec771e | 11585 | lookup_name_info lookup_name (name, symbol_name_match_type::FULL); |
14f9c5c9 | 11586 | |
54d343a2 | 11587 | std::vector<struct block_symbol> syms; |
b5ec771e PA |
11588 | int nsyms = ada_lookup_symbol_list_worker (lookup_name, |
11589 | get_selected_block (0), | |
11590 | VAR_DOMAIN, &syms, 1); | |
14f9c5c9 AS |
11591 | |
11592 | if (nsyms != 1) | |
11593 | { | |
11594 | if (err_msg == NULL) | |
4c4b4cd2 | 11595 | return 0; |
14f9c5c9 | 11596 | else |
8a3fe4f8 | 11597 | error (("%s"), err_msg); |
14f9c5c9 AS |
11598 | } |
11599 | ||
54d343a2 | 11600 | return value_of_variable (syms[0].symbol, syms[0].block); |
14f9c5c9 | 11601 | } |
d2e4a39e | 11602 | |
edb0c9cb PA |
11603 | /* Value of integer variable named NAME in the current environment. |
11604 | If no such variable is found, returns false. Otherwise, sets VALUE | |
11605 | to the variable's value and returns true. */ | |
4c4b4cd2 | 11606 | |
edb0c9cb PA |
11607 | bool |
11608 | get_int_var_value (const char *name, LONGEST &value) | |
14f9c5c9 | 11609 | { |
4c4b4cd2 | 11610 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 11611 | |
14f9c5c9 | 11612 | if (var_val == 0) |
edb0c9cb PA |
11613 | return false; |
11614 | ||
11615 | value = value_as_long (var_val); | |
11616 | return true; | |
14f9c5c9 | 11617 | } |
d2e4a39e | 11618 | |
14f9c5c9 AS |
11619 | |
11620 | /* Return a range type whose base type is that of the range type named | |
11621 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 11622 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
11623 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
11624 | corresponding range type from debug information; fall back to using it | |
11625 | if symbol lookup fails. If a new type must be created, allocate it | |
11626 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
11627 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 11628 | |
d2e4a39e | 11629 | static struct type * |
28c85d6c | 11630 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 11631 | { |
0d5cff50 | 11632 | const char *name; |
14f9c5c9 | 11633 | struct type *base_type; |
108d56a4 | 11634 | const char *subtype_info; |
14f9c5c9 | 11635 | |
28c85d6c JB |
11636 | gdb_assert (raw_type != NULL); |
11637 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 11638 | |
1ce677a4 | 11639 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
11640 | base_type = TYPE_TARGET_TYPE (raw_type); |
11641 | else | |
11642 | base_type = raw_type; | |
11643 | ||
28c85d6c | 11644 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
11645 | subtype_info = strstr (name, "___XD"); |
11646 | if (subtype_info == NULL) | |
690cc4eb | 11647 | { |
43bbcdc2 PH |
11648 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
11649 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 11650 | |
690cc4eb PH |
11651 | if (L < INT_MIN || U > INT_MAX) |
11652 | return raw_type; | |
11653 | else | |
0c9c3474 SA |
11654 | return create_static_range_type (alloc_type_copy (raw_type), raw_type, |
11655 | L, U); | |
690cc4eb | 11656 | } |
14f9c5c9 AS |
11657 | else |
11658 | { | |
11659 | static char *name_buf = NULL; | |
11660 | static size_t name_len = 0; | |
11661 | int prefix_len = subtype_info - name; | |
11662 | LONGEST L, U; | |
11663 | struct type *type; | |
108d56a4 | 11664 | const char *bounds_str; |
14f9c5c9 AS |
11665 | int n; |
11666 | ||
11667 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
11668 | strncpy (name_buf, name, prefix_len); | |
11669 | name_buf[prefix_len] = '\0'; | |
11670 | ||
11671 | subtype_info += 5; | |
11672 | bounds_str = strchr (subtype_info, '_'); | |
11673 | n = 1; | |
11674 | ||
d2e4a39e | 11675 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
11676 | { |
11677 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
11678 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
11679 | return raw_type; | |
11680 | if (bounds_str[n] == '_') | |
11681 | n += 2; | |
0963b4bd | 11682 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
11683 | n += 1; |
11684 | subtype_info += 1; | |
11685 | } | |
d2e4a39e | 11686 | else |
4c4b4cd2 | 11687 | { |
4c4b4cd2 | 11688 | strcpy (name_buf + prefix_len, "___L"); |
edb0c9cb | 11689 | if (!get_int_var_value (name_buf, L)) |
4c4b4cd2 | 11690 | { |
323e0a4a | 11691 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
11692 | L = 1; |
11693 | } | |
11694 | } | |
14f9c5c9 | 11695 | |
d2e4a39e | 11696 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
11697 | { |
11698 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
11699 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
11700 | return raw_type; | |
11701 | } | |
d2e4a39e | 11702 | else |
4c4b4cd2 | 11703 | { |
4c4b4cd2 | 11704 | strcpy (name_buf + prefix_len, "___U"); |
edb0c9cb | 11705 | if (!get_int_var_value (name_buf, U)) |
4c4b4cd2 | 11706 | { |
323e0a4a | 11707 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
11708 | U = L; |
11709 | } | |
11710 | } | |
14f9c5c9 | 11711 | |
0c9c3474 SA |
11712 | type = create_static_range_type (alloc_type_copy (raw_type), |
11713 | base_type, L, U); | |
f5a91472 JB |
11714 | /* create_static_range_type alters the resulting type's length |
11715 | to match the size of the base_type, which is not what we want. | |
11716 | Set it back to the original range type's length. */ | |
11717 | TYPE_LENGTH (type) = TYPE_LENGTH (raw_type); | |
d2e4a39e | 11718 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
11719 | return type; |
11720 | } | |
11721 | } | |
11722 | ||
4c4b4cd2 PH |
11723 | /* True iff NAME is the name of a range type. */ |
11724 | ||
14f9c5c9 | 11725 | int |
d2e4a39e | 11726 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
11727 | { |
11728 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 11729 | } |
14f9c5c9 | 11730 | \f |
d2e4a39e | 11731 | |
4c4b4cd2 PH |
11732 | /* Modular types */ |
11733 | ||
11734 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 11735 | |
14f9c5c9 | 11736 | int |
d2e4a39e | 11737 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 11738 | { |
18af8284 | 11739 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
11740 | |
11741 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 11742 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 11743 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
11744 | } |
11745 | ||
4c4b4cd2 PH |
11746 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
11747 | ||
61ee279c | 11748 | ULONGEST |
0056e4d5 | 11749 | ada_modulus (struct type *type) |
14f9c5c9 | 11750 | { |
43bbcdc2 | 11751 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 11752 | } |
d2e4a39e | 11753 | \f |
f7f9143b JB |
11754 | |
11755 | /* Ada exception catchpoint support: | |
11756 | --------------------------------- | |
11757 | ||
11758 | We support 3 kinds of exception catchpoints: | |
11759 | . catchpoints on Ada exceptions | |
11760 | . catchpoints on unhandled Ada exceptions | |
11761 | . catchpoints on failed assertions | |
11762 | ||
11763 | Exceptions raised during failed assertions, or unhandled exceptions | |
11764 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
11765 | However, we can easily differentiate these two special cases, and having | |
11766 | the option to distinguish these two cases from the rest can be useful | |
11767 | to zero-in on certain situations. | |
11768 | ||
11769 | Exception catchpoints are a specialized form of breakpoint, | |
11770 | since they rely on inserting breakpoints inside known routines | |
11771 | of the GNAT runtime. The implementation therefore uses a standard | |
11772 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
11773 | of breakpoint_ops. | |
11774 | ||
0259addd JB |
11775 | Support in the runtime for exception catchpoints have been changed |
11776 | a few times already, and these changes affect the implementation | |
11777 | of these catchpoints. In order to be able to support several | |
11778 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 11779 | the runtime variant used by the program being debugged. */ |
f7f9143b | 11780 | |
82eacd52 JB |
11781 | /* Ada's standard exceptions. |
11782 | ||
11783 | The Ada 83 standard also defined Numeric_Error. But there so many | |
11784 | situations where it was unclear from the Ada 83 Reference Manual | |
11785 | (RM) whether Constraint_Error or Numeric_Error should be raised, | |
11786 | that the ARG (Ada Rapporteur Group) eventually issued a Binding | |
11787 | Interpretation saying that anytime the RM says that Numeric_Error | |
11788 | should be raised, the implementation may raise Constraint_Error. | |
11789 | Ada 95 went one step further and pretty much removed Numeric_Error | |
11790 | from the list of standard exceptions (it made it a renaming of | |
11791 | Constraint_Error, to help preserve compatibility when compiling | |
11792 | an Ada83 compiler). As such, we do not include Numeric_Error from | |
11793 | this list of standard exceptions. */ | |
3d0b0fa3 | 11794 | |
a121b7c1 | 11795 | static const char *standard_exc[] = { |
3d0b0fa3 JB |
11796 | "constraint_error", |
11797 | "program_error", | |
11798 | "storage_error", | |
11799 | "tasking_error" | |
11800 | }; | |
11801 | ||
0259addd JB |
11802 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
11803 | ||
11804 | /* A structure that describes how to support exception catchpoints | |
11805 | for a given executable. */ | |
11806 | ||
11807 | struct exception_support_info | |
11808 | { | |
11809 | /* The name of the symbol to break on in order to insert | |
11810 | a catchpoint on exceptions. */ | |
11811 | const char *catch_exception_sym; | |
11812 | ||
11813 | /* The name of the symbol to break on in order to insert | |
11814 | a catchpoint on unhandled exceptions. */ | |
11815 | const char *catch_exception_unhandled_sym; | |
11816 | ||
11817 | /* The name of the symbol to break on in order to insert | |
11818 | a catchpoint on failed assertions. */ | |
11819 | const char *catch_assert_sym; | |
11820 | ||
9f757bf7 XR |
11821 | /* The name of the symbol to break on in order to insert |
11822 | a catchpoint on exception handling. */ | |
11823 | const char *catch_handlers_sym; | |
11824 | ||
0259addd JB |
11825 | /* Assuming that the inferior just triggered an unhandled exception |
11826 | catchpoint, this function is responsible for returning the address | |
11827 | in inferior memory where the name of that exception is stored. | |
11828 | Return zero if the address could not be computed. */ | |
11829 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
11830 | }; | |
11831 | ||
11832 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
11833 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
11834 | ||
11835 | /* The following exception support info structure describes how to | |
11836 | implement exception catchpoints with the latest version of the | |
ca683e3a | 11837 | Ada runtime (as of 2019-08-??). */ |
0259addd JB |
11838 | |
11839 | static const struct exception_support_info default_exception_support_info = | |
ca683e3a AO |
11840 | { |
11841 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
11842 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11843 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
11844 | "__gnat_begin_handler_v1", /* catch_handlers_sym */ | |
11845 | ada_unhandled_exception_name_addr | |
11846 | }; | |
11847 | ||
11848 | /* The following exception support info structure describes how to | |
11849 | implement exception catchpoints with an earlier version of the | |
11850 | Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */ | |
11851 | ||
11852 | static const struct exception_support_info exception_support_info_v0 = | |
0259addd JB |
11853 | { |
11854 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
11855 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11856 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
9f757bf7 | 11857 | "__gnat_begin_handler", /* catch_handlers_sym */ |
0259addd JB |
11858 | ada_unhandled_exception_name_addr |
11859 | }; | |
11860 | ||
11861 | /* The following exception support info structure describes how to | |
11862 | implement exception catchpoints with a slightly older version | |
11863 | of the Ada runtime. */ | |
11864 | ||
11865 | static const struct exception_support_info exception_support_info_fallback = | |
11866 | { | |
11867 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
11868 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11869 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
9f757bf7 | 11870 | "__gnat_begin_handler", /* catch_handlers_sym */ |
0259addd JB |
11871 | ada_unhandled_exception_name_addr_from_raise |
11872 | }; | |
11873 | ||
f17011e0 JB |
11874 | /* Return nonzero if we can detect the exception support routines |
11875 | described in EINFO. | |
11876 | ||
11877 | This function errors out if an abnormal situation is detected | |
11878 | (for instance, if we find the exception support routines, but | |
11879 | that support is found to be incomplete). */ | |
11880 | ||
11881 | static int | |
11882 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
11883 | { | |
11884 | struct symbol *sym; | |
11885 | ||
11886 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
11887 | that should be compiled with debugging information. As a result, we | |
11888 | expect to find that symbol in the symtabs. */ | |
11889 | ||
11890 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
11891 | if (sym == NULL) | |
a6af7abe JB |
11892 | { |
11893 | /* Perhaps we did not find our symbol because the Ada runtime was | |
11894 | compiled without debugging info, or simply stripped of it. | |
11895 | It happens on some GNU/Linux distributions for instance, where | |
11896 | users have to install a separate debug package in order to get | |
11897 | the runtime's debugging info. In that situation, let the user | |
11898 | know why we cannot insert an Ada exception catchpoint. | |
11899 | ||
11900 | Note: Just for the purpose of inserting our Ada exception | |
11901 | catchpoint, we could rely purely on the associated minimal symbol. | |
11902 | But we would be operating in degraded mode anyway, since we are | |
11903 | still lacking the debugging info needed later on to extract | |
11904 | the name of the exception being raised (this name is printed in | |
11905 | the catchpoint message, and is also used when trying to catch | |
11906 | a specific exception). We do not handle this case for now. */ | |
3b7344d5 | 11907 | struct bound_minimal_symbol msym |
1c8e84b0 JB |
11908 | = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL); |
11909 | ||
3b7344d5 | 11910 | if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline) |
a6af7abe JB |
11911 | error (_("Your Ada runtime appears to be missing some debugging " |
11912 | "information.\nCannot insert Ada exception catchpoint " | |
11913 | "in this configuration.")); | |
11914 | ||
11915 | return 0; | |
11916 | } | |
f17011e0 JB |
11917 | |
11918 | /* Make sure that the symbol we found corresponds to a function. */ | |
11919 | ||
11920 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
ca683e3a AO |
11921 | { |
11922 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
987012b8 | 11923 | sym->linkage_name (), SYMBOL_CLASS (sym)); |
ca683e3a AO |
11924 | return 0; |
11925 | } | |
11926 | ||
11927 | sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN); | |
11928 | if (sym == NULL) | |
11929 | { | |
11930 | struct bound_minimal_symbol msym | |
11931 | = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL); | |
11932 | ||
11933 | if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline) | |
11934 | error (_("Your Ada runtime appears to be missing some debugging " | |
11935 | "information.\nCannot insert Ada exception catchpoint " | |
11936 | "in this configuration.")); | |
11937 | ||
11938 | return 0; | |
11939 | } | |
11940 | ||
11941 | /* Make sure that the symbol we found corresponds to a function. */ | |
11942 | ||
11943 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
11944 | { | |
11945 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
987012b8 | 11946 | sym->linkage_name (), SYMBOL_CLASS (sym)); |
ca683e3a AO |
11947 | return 0; |
11948 | } | |
f17011e0 JB |
11949 | |
11950 | return 1; | |
11951 | } | |
11952 | ||
0259addd JB |
11953 | /* Inspect the Ada runtime and determine which exception info structure |
11954 | should be used to provide support for exception catchpoints. | |
11955 | ||
3eecfa55 JB |
11956 | This function will always set the per-inferior exception_info, |
11957 | or raise an error. */ | |
0259addd JB |
11958 | |
11959 | static void | |
11960 | ada_exception_support_info_sniffer (void) | |
11961 | { | |
3eecfa55 | 11962 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
11963 | |
11964 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 11965 | if (data->exception_info != NULL) |
0259addd JB |
11966 | return; |
11967 | ||
11968 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 11969 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 11970 | { |
3eecfa55 | 11971 | data->exception_info = &default_exception_support_info; |
0259addd JB |
11972 | return; |
11973 | } | |
11974 | ||
ca683e3a AO |
11975 | /* Try the v0 exception suport info. */ |
11976 | if (ada_has_this_exception_support (&exception_support_info_v0)) | |
11977 | { | |
11978 | data->exception_info = &exception_support_info_v0; | |
11979 | return; | |
11980 | } | |
11981 | ||
0259addd | 11982 | /* Try our fallback exception suport info. */ |
f17011e0 | 11983 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 11984 | { |
3eecfa55 | 11985 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
11986 | return; |
11987 | } | |
11988 | ||
11989 | /* Sometimes, it is normal for us to not be able to find the routine | |
11990 | we are looking for. This happens when the program is linked with | |
11991 | the shared version of the GNAT runtime, and the program has not been | |
11992 | started yet. Inform the user of these two possible causes if | |
11993 | applicable. */ | |
11994 | ||
ccefe4c4 | 11995 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
11996 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
11997 | ||
11998 | /* If the symbol does not exist, then check that the program is | |
11999 | already started, to make sure that shared libraries have been | |
12000 | loaded. If it is not started, this may mean that the symbol is | |
12001 | in a shared library. */ | |
12002 | ||
e99b03dc | 12003 | if (inferior_ptid.pid () == 0) |
0259addd JB |
12004 | error (_("Unable to insert catchpoint. Try to start the program first.")); |
12005 | ||
12006 | /* At this point, we know that we are debugging an Ada program and | |
12007 | that the inferior has been started, but we still are not able to | |
0963b4bd | 12008 | find the run-time symbols. That can mean that we are in |
0259addd JB |
12009 | configurable run time mode, or that a-except as been optimized |
12010 | out by the linker... In any case, at this point it is not worth | |
12011 | supporting this feature. */ | |
12012 | ||
7dda8cff | 12013 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
12014 | } |
12015 | ||
f7f9143b JB |
12016 | /* True iff FRAME is very likely to be that of a function that is |
12017 | part of the runtime system. This is all very heuristic, but is | |
12018 | intended to be used as advice as to what frames are uninteresting | |
12019 | to most users. */ | |
12020 | ||
12021 | static int | |
12022 | is_known_support_routine (struct frame_info *frame) | |
12023 | { | |
692465f1 | 12024 | enum language func_lang; |
f7f9143b | 12025 | int i; |
f35a17b5 | 12026 | const char *fullname; |
f7f9143b | 12027 | |
4ed6b5be JB |
12028 | /* If this code does not have any debugging information (no symtab), |
12029 | This cannot be any user code. */ | |
f7f9143b | 12030 | |
51abb421 | 12031 | symtab_and_line sal = find_frame_sal (frame); |
f7f9143b JB |
12032 | if (sal.symtab == NULL) |
12033 | return 1; | |
12034 | ||
4ed6b5be JB |
12035 | /* If there is a symtab, but the associated source file cannot be |
12036 | located, then assume this is not user code: Selecting a frame | |
12037 | for which we cannot display the code would not be very helpful | |
12038 | for the user. This should also take care of case such as VxWorks | |
12039 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 12040 | |
f35a17b5 JK |
12041 | fullname = symtab_to_fullname (sal.symtab); |
12042 | if (access (fullname, R_OK) != 0) | |
f7f9143b JB |
12043 | return 1; |
12044 | ||
85102364 | 12045 | /* Check the unit filename against the Ada runtime file naming. |
4ed6b5be JB |
12046 | We also check the name of the objfile against the name of some |
12047 | known system libraries that sometimes come with debugging info | |
12048 | too. */ | |
12049 | ||
f7f9143b JB |
12050 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
12051 | { | |
12052 | re_comp (known_runtime_file_name_patterns[i]); | |
f69c91ad | 12053 | if (re_exec (lbasename (sal.symtab->filename))) |
f7f9143b | 12054 | return 1; |
eb822aa6 DE |
12055 | if (SYMTAB_OBJFILE (sal.symtab) != NULL |
12056 | && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab)))) | |
4ed6b5be | 12057 | return 1; |
f7f9143b JB |
12058 | } |
12059 | ||
4ed6b5be | 12060 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 12061 | |
c6dc63a1 TT |
12062 | gdb::unique_xmalloc_ptr<char> func_name |
12063 | = find_frame_funname (frame, &func_lang, NULL); | |
f7f9143b JB |
12064 | if (func_name == NULL) |
12065 | return 1; | |
12066 | ||
12067 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
12068 | { | |
12069 | re_comp (known_auxiliary_function_name_patterns[i]); | |
c6dc63a1 TT |
12070 | if (re_exec (func_name.get ())) |
12071 | return 1; | |
f7f9143b JB |
12072 | } |
12073 | ||
12074 | return 0; | |
12075 | } | |
12076 | ||
12077 | /* Find the first frame that contains debugging information and that is not | |
12078 | part of the Ada run-time, starting from FI and moving upward. */ | |
12079 | ||
0ef643c8 | 12080 | void |
f7f9143b JB |
12081 | ada_find_printable_frame (struct frame_info *fi) |
12082 | { | |
12083 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
12084 | { | |
12085 | if (!is_known_support_routine (fi)) | |
12086 | { | |
12087 | select_frame (fi); | |
12088 | break; | |
12089 | } | |
12090 | } | |
12091 | ||
12092 | } | |
12093 | ||
12094 | /* Assuming that the inferior just triggered an unhandled exception | |
12095 | catchpoint, return the address in inferior memory where the name | |
12096 | of the exception is stored. | |
12097 | ||
12098 | Return zero if the address could not be computed. */ | |
12099 | ||
12100 | static CORE_ADDR | |
12101 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
12102 | { |
12103 | return parse_and_eval_address ("e.full_name"); | |
12104 | } | |
12105 | ||
12106 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
12107 | should be used when the inferior uses an older version of the runtime, | |
12108 | where the exception name needs to be extracted from a specific frame | |
12109 | several frames up in the callstack. */ | |
12110 | ||
12111 | static CORE_ADDR | |
12112 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
12113 | { |
12114 | int frame_level; | |
12115 | struct frame_info *fi; | |
3eecfa55 | 12116 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
f7f9143b JB |
12117 | |
12118 | /* To determine the name of this exception, we need to select | |
12119 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
12120 | at least 3 levels up, so we simply skip the first 3 frames | |
12121 | without checking the name of their associated function. */ | |
12122 | fi = get_current_frame (); | |
12123 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
12124 | if (fi != NULL) | |
12125 | fi = get_prev_frame (fi); | |
12126 | ||
12127 | while (fi != NULL) | |
12128 | { | |
692465f1 JB |
12129 | enum language func_lang; |
12130 | ||
c6dc63a1 TT |
12131 | gdb::unique_xmalloc_ptr<char> func_name |
12132 | = find_frame_funname (fi, &func_lang, NULL); | |
55b87a52 KS |
12133 | if (func_name != NULL) |
12134 | { | |
c6dc63a1 | 12135 | if (strcmp (func_name.get (), |
55b87a52 KS |
12136 | data->exception_info->catch_exception_sym) == 0) |
12137 | break; /* We found the frame we were looking for... */ | |
55b87a52 | 12138 | } |
fb44b1a7 | 12139 | fi = get_prev_frame (fi); |
f7f9143b JB |
12140 | } |
12141 | ||
12142 | if (fi == NULL) | |
12143 | return 0; | |
12144 | ||
12145 | select_frame (fi); | |
12146 | return parse_and_eval_address ("id.full_name"); | |
12147 | } | |
12148 | ||
12149 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
12150 | (of any type), return the address in inferior memory where the name | |
12151 | of the exception is stored, if applicable. | |
12152 | ||
45db7c09 PA |
12153 | Assumes the selected frame is the current frame. |
12154 | ||
f7f9143b JB |
12155 | Return zero if the address could not be computed, or if not relevant. */ |
12156 | ||
12157 | static CORE_ADDR | |
761269c8 | 12158 | ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12159 | struct breakpoint *b) |
12160 | { | |
3eecfa55 JB |
12161 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
12162 | ||
f7f9143b JB |
12163 | switch (ex) |
12164 | { | |
761269c8 | 12165 | case ada_catch_exception: |
f7f9143b JB |
12166 | return (parse_and_eval_address ("e.full_name")); |
12167 | break; | |
12168 | ||
761269c8 | 12169 | case ada_catch_exception_unhandled: |
3eecfa55 | 12170 | return data->exception_info->unhandled_exception_name_addr (); |
f7f9143b | 12171 | break; |
9f757bf7 XR |
12172 | |
12173 | case ada_catch_handlers: | |
12174 | return 0; /* The runtimes does not provide access to the exception | |
12175 | name. */ | |
12176 | break; | |
12177 | ||
761269c8 | 12178 | case ada_catch_assert: |
f7f9143b JB |
12179 | return 0; /* Exception name is not relevant in this case. */ |
12180 | break; | |
12181 | ||
12182 | default: | |
12183 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12184 | break; | |
12185 | } | |
12186 | ||
12187 | return 0; /* Should never be reached. */ | |
12188 | } | |
12189 | ||
e547c119 JB |
12190 | /* Assuming the inferior is stopped at an exception catchpoint, |
12191 | return the message which was associated to the exception, if | |
12192 | available. Return NULL if the message could not be retrieved. | |
12193 | ||
e547c119 JB |
12194 | Note: The exception message can be associated to an exception |
12195 | either through the use of the Raise_Exception function, or | |
12196 | more simply (Ada 2005 and later), via: | |
12197 | ||
12198 | raise Exception_Name with "exception message"; | |
12199 | ||
12200 | */ | |
12201 | ||
6f46ac85 | 12202 | static gdb::unique_xmalloc_ptr<char> |
e547c119 JB |
12203 | ada_exception_message_1 (void) |
12204 | { | |
12205 | struct value *e_msg_val; | |
e547c119 | 12206 | int e_msg_len; |
e547c119 JB |
12207 | |
12208 | /* For runtimes that support this feature, the exception message | |
12209 | is passed as an unbounded string argument called "message". */ | |
12210 | e_msg_val = parse_and_eval ("message"); | |
12211 | if (e_msg_val == NULL) | |
12212 | return NULL; /* Exception message not supported. */ | |
12213 | ||
12214 | e_msg_val = ada_coerce_to_simple_array (e_msg_val); | |
12215 | gdb_assert (e_msg_val != NULL); | |
12216 | e_msg_len = TYPE_LENGTH (value_type (e_msg_val)); | |
12217 | ||
12218 | /* If the message string is empty, then treat it as if there was | |
12219 | no exception message. */ | |
12220 | if (e_msg_len <= 0) | |
12221 | return NULL; | |
12222 | ||
6f46ac85 TT |
12223 | gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1)); |
12224 | read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1); | |
12225 | e_msg.get ()[e_msg_len] = '\0'; | |
e547c119 | 12226 | |
e547c119 JB |
12227 | return e_msg; |
12228 | } | |
12229 | ||
12230 | /* Same as ada_exception_message_1, except that all exceptions are | |
12231 | contained here (returning NULL instead). */ | |
12232 | ||
6f46ac85 | 12233 | static gdb::unique_xmalloc_ptr<char> |
e547c119 JB |
12234 | ada_exception_message (void) |
12235 | { | |
6f46ac85 | 12236 | gdb::unique_xmalloc_ptr<char> e_msg; |
e547c119 | 12237 | |
a70b8144 | 12238 | try |
e547c119 JB |
12239 | { |
12240 | e_msg = ada_exception_message_1 (); | |
12241 | } | |
230d2906 | 12242 | catch (const gdb_exception_error &e) |
e547c119 | 12243 | { |
6f46ac85 | 12244 | e_msg.reset (nullptr); |
e547c119 | 12245 | } |
e547c119 JB |
12246 | |
12247 | return e_msg; | |
12248 | } | |
12249 | ||
f7f9143b JB |
12250 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains |
12251 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
12252 | When an error is intercepted, a warning with the error message is printed, | |
12253 | and zero is returned. */ | |
12254 | ||
12255 | static CORE_ADDR | |
761269c8 | 12256 | ada_exception_name_addr (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12257 | struct breakpoint *b) |
12258 | { | |
f7f9143b JB |
12259 | CORE_ADDR result = 0; |
12260 | ||
a70b8144 | 12261 | try |
f7f9143b JB |
12262 | { |
12263 | result = ada_exception_name_addr_1 (ex, b); | |
12264 | } | |
12265 | ||
230d2906 | 12266 | catch (const gdb_exception_error &e) |
f7f9143b | 12267 | { |
3d6e9d23 | 12268 | warning (_("failed to get exception name: %s"), e.what ()); |
f7f9143b JB |
12269 | return 0; |
12270 | } | |
12271 | ||
12272 | return result; | |
12273 | } | |
12274 | ||
cb7de75e | 12275 | static std::string ada_exception_catchpoint_cond_string |
9f757bf7 XR |
12276 | (const char *excep_string, |
12277 | enum ada_exception_catchpoint_kind ex); | |
28010a5d PA |
12278 | |
12279 | /* Ada catchpoints. | |
12280 | ||
12281 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
12282 | stop the target on every exception the program throws. When a user | |
12283 | specifies the name of a specific exception, we translate this | |
12284 | request into a condition expression (in text form), and then parse | |
12285 | it into an expression stored in each of the catchpoint's locations. | |
12286 | We then use this condition to check whether the exception that was | |
12287 | raised is the one the user is interested in. If not, then the | |
12288 | target is resumed again. We store the name of the requested | |
12289 | exception, in order to be able to re-set the condition expression | |
12290 | when symbols change. */ | |
12291 | ||
12292 | /* An instance of this type is used to represent an Ada catchpoint | |
5625a286 | 12293 | breakpoint location. */ |
28010a5d | 12294 | |
5625a286 | 12295 | class ada_catchpoint_location : public bp_location |
28010a5d | 12296 | { |
5625a286 | 12297 | public: |
5f486660 | 12298 | ada_catchpoint_location (breakpoint *owner) |
f06f1252 | 12299 | : bp_location (owner, bp_loc_software_breakpoint) |
5625a286 | 12300 | {} |
28010a5d PA |
12301 | |
12302 | /* The condition that checks whether the exception that was raised | |
12303 | is the specific exception the user specified on catchpoint | |
12304 | creation. */ | |
4d01a485 | 12305 | expression_up excep_cond_expr; |
28010a5d PA |
12306 | }; |
12307 | ||
c1fc2657 | 12308 | /* An instance of this type is used to represent an Ada catchpoint. */ |
28010a5d | 12309 | |
c1fc2657 | 12310 | struct ada_catchpoint : public breakpoint |
28010a5d | 12311 | { |
37f6a7f4 TT |
12312 | explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind) |
12313 | : m_kind (kind) | |
12314 | { | |
12315 | } | |
12316 | ||
28010a5d | 12317 | /* The name of the specific exception the user specified. */ |
bc18fbb5 | 12318 | std::string excep_string; |
37f6a7f4 TT |
12319 | |
12320 | /* What kind of catchpoint this is. */ | |
12321 | enum ada_exception_catchpoint_kind m_kind; | |
28010a5d PA |
12322 | }; |
12323 | ||
12324 | /* Parse the exception condition string in the context of each of the | |
12325 | catchpoint's locations, and store them for later evaluation. */ | |
12326 | ||
12327 | static void | |
9f757bf7 XR |
12328 | create_excep_cond_exprs (struct ada_catchpoint *c, |
12329 | enum ada_exception_catchpoint_kind ex) | |
28010a5d | 12330 | { |
fccf9de1 TT |
12331 | struct bp_location *bl; |
12332 | ||
28010a5d | 12333 | /* Nothing to do if there's no specific exception to catch. */ |
bc18fbb5 | 12334 | if (c->excep_string.empty ()) |
28010a5d PA |
12335 | return; |
12336 | ||
12337 | /* Same if there are no locations... */ | |
c1fc2657 | 12338 | if (c->loc == NULL) |
28010a5d PA |
12339 | return; |
12340 | ||
fccf9de1 TT |
12341 | /* Compute the condition expression in text form, from the specific |
12342 | expection we want to catch. */ | |
12343 | std::string cond_string | |
12344 | = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex); | |
28010a5d | 12345 | |
fccf9de1 TT |
12346 | /* Iterate over all the catchpoint's locations, and parse an |
12347 | expression for each. */ | |
12348 | for (bl = c->loc; bl != NULL; bl = bl->next) | |
28010a5d PA |
12349 | { |
12350 | struct ada_catchpoint_location *ada_loc | |
fccf9de1 | 12351 | = (struct ada_catchpoint_location *) bl; |
4d01a485 | 12352 | expression_up exp; |
28010a5d | 12353 | |
fccf9de1 | 12354 | if (!bl->shlib_disabled) |
28010a5d | 12355 | { |
bbc13ae3 | 12356 | const char *s; |
28010a5d | 12357 | |
cb7de75e | 12358 | s = cond_string.c_str (); |
a70b8144 | 12359 | try |
28010a5d | 12360 | { |
fccf9de1 TT |
12361 | exp = parse_exp_1 (&s, bl->address, |
12362 | block_for_pc (bl->address), | |
036e657b | 12363 | 0); |
28010a5d | 12364 | } |
230d2906 | 12365 | catch (const gdb_exception_error &e) |
849f2b52 JB |
12366 | { |
12367 | warning (_("failed to reevaluate internal exception condition " | |
12368 | "for catchpoint %d: %s"), | |
3d6e9d23 | 12369 | c->number, e.what ()); |
849f2b52 | 12370 | } |
28010a5d PA |
12371 | } |
12372 | ||
b22e99fd | 12373 | ada_loc->excep_cond_expr = std::move (exp); |
28010a5d | 12374 | } |
28010a5d PA |
12375 | } |
12376 | ||
28010a5d PA |
12377 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops |
12378 | structure for all exception catchpoint kinds. */ | |
12379 | ||
12380 | static struct bp_location * | |
37f6a7f4 | 12381 | allocate_location_exception (struct breakpoint *self) |
28010a5d | 12382 | { |
5f486660 | 12383 | return new ada_catchpoint_location (self); |
28010a5d PA |
12384 | } |
12385 | ||
12386 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
12387 | exception catchpoint kinds. */ | |
12388 | ||
12389 | static void | |
37f6a7f4 | 12390 | re_set_exception (struct breakpoint *b) |
28010a5d PA |
12391 | { |
12392 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
12393 | ||
12394 | /* Call the base class's method. This updates the catchpoint's | |
12395 | locations. */ | |
2060206e | 12396 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
12397 | |
12398 | /* Reparse the exception conditional expressions. One for each | |
12399 | location. */ | |
37f6a7f4 | 12400 | create_excep_cond_exprs (c, c->m_kind); |
28010a5d PA |
12401 | } |
12402 | ||
12403 | /* Returns true if we should stop for this breakpoint hit. If the | |
12404 | user specified a specific exception, we only want to cause a stop | |
12405 | if the program thrown that exception. */ | |
12406 | ||
12407 | static int | |
12408 | should_stop_exception (const struct bp_location *bl) | |
12409 | { | |
12410 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
12411 | const struct ada_catchpoint_location *ada_loc | |
12412 | = (const struct ada_catchpoint_location *) bl; | |
28010a5d PA |
12413 | int stop; |
12414 | ||
37f6a7f4 TT |
12415 | struct internalvar *var = lookup_internalvar ("_ada_exception"); |
12416 | if (c->m_kind == ada_catch_assert) | |
12417 | clear_internalvar (var); | |
12418 | else | |
12419 | { | |
12420 | try | |
12421 | { | |
12422 | const char *expr; | |
12423 | ||
12424 | if (c->m_kind == ada_catch_handlers) | |
12425 | expr = ("GNAT_GCC_exception_Access(gcc_exception)" | |
12426 | ".all.occurrence.id"); | |
12427 | else | |
12428 | expr = "e"; | |
12429 | ||
12430 | struct value *exc = parse_and_eval (expr); | |
12431 | set_internalvar (var, exc); | |
12432 | } | |
12433 | catch (const gdb_exception_error &ex) | |
12434 | { | |
12435 | clear_internalvar (var); | |
12436 | } | |
12437 | } | |
12438 | ||
28010a5d | 12439 | /* With no specific exception, should always stop. */ |
bc18fbb5 | 12440 | if (c->excep_string.empty ()) |
28010a5d PA |
12441 | return 1; |
12442 | ||
12443 | if (ada_loc->excep_cond_expr == NULL) | |
12444 | { | |
12445 | /* We will have a NULL expression if back when we were creating | |
12446 | the expressions, this location's had failed to parse. */ | |
12447 | return 1; | |
12448 | } | |
12449 | ||
12450 | stop = 1; | |
a70b8144 | 12451 | try |
28010a5d PA |
12452 | { |
12453 | struct value *mark; | |
12454 | ||
12455 | mark = value_mark (); | |
4d01a485 | 12456 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ())); |
28010a5d PA |
12457 | value_free_to_mark (mark); |
12458 | } | |
230d2906 | 12459 | catch (const gdb_exception &ex) |
492d29ea PA |
12460 | { |
12461 | exception_fprintf (gdb_stderr, ex, | |
12462 | _("Error in testing exception condition:\n")); | |
12463 | } | |
492d29ea | 12464 | |
28010a5d PA |
12465 | return stop; |
12466 | } | |
12467 | ||
12468 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
12469 | for all exception catchpoint kinds. */ | |
12470 | ||
12471 | static void | |
37f6a7f4 | 12472 | check_status_exception (bpstat bs) |
28010a5d PA |
12473 | { |
12474 | bs->stop = should_stop_exception (bs->bp_location_at); | |
12475 | } | |
12476 | ||
f7f9143b JB |
12477 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
12478 | for all exception catchpoint kinds. */ | |
12479 | ||
12480 | static enum print_stop_action | |
37f6a7f4 | 12481 | print_it_exception (bpstat bs) |
f7f9143b | 12482 | { |
79a45e25 | 12483 | struct ui_out *uiout = current_uiout; |
348d480f PA |
12484 | struct breakpoint *b = bs->breakpoint_at; |
12485 | ||
956a9fb9 | 12486 | annotate_catchpoint (b->number); |
f7f9143b | 12487 | |
112e8700 | 12488 | if (uiout->is_mi_like_p ()) |
f7f9143b | 12489 | { |
112e8700 | 12490 | uiout->field_string ("reason", |
956a9fb9 | 12491 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); |
112e8700 | 12492 | uiout->field_string ("disp", bpdisp_text (b->disposition)); |
f7f9143b JB |
12493 | } |
12494 | ||
112e8700 SM |
12495 | uiout->text (b->disposition == disp_del |
12496 | ? "\nTemporary catchpoint " : "\nCatchpoint "); | |
381befee | 12497 | uiout->field_signed ("bkptno", b->number); |
112e8700 | 12498 | uiout->text (", "); |
f7f9143b | 12499 | |
45db7c09 PA |
12500 | /* ada_exception_name_addr relies on the selected frame being the |
12501 | current frame. Need to do this here because this function may be | |
12502 | called more than once when printing a stop, and below, we'll | |
12503 | select the first frame past the Ada run-time (see | |
12504 | ada_find_printable_frame). */ | |
12505 | select_frame (get_current_frame ()); | |
12506 | ||
37f6a7f4 TT |
12507 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
12508 | switch (c->m_kind) | |
f7f9143b | 12509 | { |
761269c8 JB |
12510 | case ada_catch_exception: |
12511 | case ada_catch_exception_unhandled: | |
9f757bf7 | 12512 | case ada_catch_handlers: |
956a9fb9 | 12513 | { |
37f6a7f4 | 12514 | const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b); |
956a9fb9 JB |
12515 | char exception_name[256]; |
12516 | ||
12517 | if (addr != 0) | |
12518 | { | |
c714b426 PA |
12519 | read_memory (addr, (gdb_byte *) exception_name, |
12520 | sizeof (exception_name) - 1); | |
956a9fb9 JB |
12521 | exception_name [sizeof (exception_name) - 1] = '\0'; |
12522 | } | |
12523 | else | |
12524 | { | |
12525 | /* For some reason, we were unable to read the exception | |
12526 | name. This could happen if the Runtime was compiled | |
12527 | without debugging info, for instance. In that case, | |
12528 | just replace the exception name by the generic string | |
12529 | "exception" - it will read as "an exception" in the | |
12530 | notification we are about to print. */ | |
967cff16 | 12531 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
12532 | } |
12533 | /* In the case of unhandled exception breakpoints, we print | |
12534 | the exception name as "unhandled EXCEPTION_NAME", to make | |
12535 | it clearer to the user which kind of catchpoint just got | |
12536 | hit. We used ui_out_text to make sure that this extra | |
12537 | info does not pollute the exception name in the MI case. */ | |
37f6a7f4 | 12538 | if (c->m_kind == ada_catch_exception_unhandled) |
112e8700 SM |
12539 | uiout->text ("unhandled "); |
12540 | uiout->field_string ("exception-name", exception_name); | |
956a9fb9 JB |
12541 | } |
12542 | break; | |
761269c8 | 12543 | case ada_catch_assert: |
956a9fb9 JB |
12544 | /* In this case, the name of the exception is not really |
12545 | important. Just print "failed assertion" to make it clearer | |
12546 | that his program just hit an assertion-failure catchpoint. | |
12547 | We used ui_out_text because this info does not belong in | |
12548 | the MI output. */ | |
112e8700 | 12549 | uiout->text ("failed assertion"); |
956a9fb9 | 12550 | break; |
f7f9143b | 12551 | } |
e547c119 | 12552 | |
6f46ac85 | 12553 | gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message (); |
e547c119 JB |
12554 | if (exception_message != NULL) |
12555 | { | |
e547c119 | 12556 | uiout->text (" ("); |
6f46ac85 | 12557 | uiout->field_string ("exception-message", exception_message.get ()); |
e547c119 | 12558 | uiout->text (")"); |
e547c119 JB |
12559 | } |
12560 | ||
112e8700 | 12561 | uiout->text (" at "); |
956a9fb9 | 12562 | ada_find_printable_frame (get_current_frame ()); |
f7f9143b JB |
12563 | |
12564 | return PRINT_SRC_AND_LOC; | |
12565 | } | |
12566 | ||
12567 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
12568 | for all exception catchpoint kinds. */ | |
12569 | ||
12570 | static void | |
37f6a7f4 | 12571 | print_one_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12572 | { |
79a45e25 | 12573 | struct ui_out *uiout = current_uiout; |
28010a5d | 12574 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
12575 | struct value_print_options opts; |
12576 | ||
12577 | get_user_print_options (&opts); | |
f06f1252 | 12578 | |
79a45b7d | 12579 | if (opts.addressprint) |
f06f1252 | 12580 | uiout->field_skip ("addr"); |
f7f9143b JB |
12581 | |
12582 | annotate_field (5); | |
37f6a7f4 | 12583 | switch (c->m_kind) |
f7f9143b | 12584 | { |
761269c8 | 12585 | case ada_catch_exception: |
bc18fbb5 | 12586 | if (!c->excep_string.empty ()) |
f7f9143b | 12587 | { |
bc18fbb5 TT |
12588 | std::string msg = string_printf (_("`%s' Ada exception"), |
12589 | c->excep_string.c_str ()); | |
28010a5d | 12590 | |
112e8700 | 12591 | uiout->field_string ("what", msg); |
f7f9143b JB |
12592 | } |
12593 | else | |
112e8700 | 12594 | uiout->field_string ("what", "all Ada exceptions"); |
f7f9143b JB |
12595 | |
12596 | break; | |
12597 | ||
761269c8 | 12598 | case ada_catch_exception_unhandled: |
112e8700 | 12599 | uiout->field_string ("what", "unhandled Ada exceptions"); |
f7f9143b JB |
12600 | break; |
12601 | ||
9f757bf7 | 12602 | case ada_catch_handlers: |
bc18fbb5 | 12603 | if (!c->excep_string.empty ()) |
9f757bf7 XR |
12604 | { |
12605 | uiout->field_fmt ("what", | |
12606 | _("`%s' Ada exception handlers"), | |
bc18fbb5 | 12607 | c->excep_string.c_str ()); |
9f757bf7 XR |
12608 | } |
12609 | else | |
12610 | uiout->field_string ("what", "all Ada exceptions handlers"); | |
12611 | break; | |
12612 | ||
761269c8 | 12613 | case ada_catch_assert: |
112e8700 | 12614 | uiout->field_string ("what", "failed Ada assertions"); |
f7f9143b JB |
12615 | break; |
12616 | ||
12617 | default: | |
12618 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12619 | break; | |
12620 | } | |
12621 | } | |
12622 | ||
12623 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
12624 | for all exception catchpoint kinds. */ | |
12625 | ||
12626 | static void | |
37f6a7f4 | 12627 | print_mention_exception (struct breakpoint *b) |
f7f9143b | 12628 | { |
28010a5d | 12629 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 12630 | struct ui_out *uiout = current_uiout; |
28010a5d | 12631 | |
112e8700 | 12632 | uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ") |
00eb2c4a | 12633 | : _("Catchpoint ")); |
381befee | 12634 | uiout->field_signed ("bkptno", b->number); |
112e8700 | 12635 | uiout->text (": "); |
00eb2c4a | 12636 | |
37f6a7f4 | 12637 | switch (c->m_kind) |
f7f9143b | 12638 | { |
761269c8 | 12639 | case ada_catch_exception: |
bc18fbb5 | 12640 | if (!c->excep_string.empty ()) |
00eb2c4a | 12641 | { |
862d101a | 12642 | std::string info = string_printf (_("`%s' Ada exception"), |
bc18fbb5 | 12643 | c->excep_string.c_str ()); |
862d101a | 12644 | uiout->text (info.c_str ()); |
00eb2c4a | 12645 | } |
f7f9143b | 12646 | else |
112e8700 | 12647 | uiout->text (_("all Ada exceptions")); |
f7f9143b JB |
12648 | break; |
12649 | ||
761269c8 | 12650 | case ada_catch_exception_unhandled: |
112e8700 | 12651 | uiout->text (_("unhandled Ada exceptions")); |
f7f9143b | 12652 | break; |
9f757bf7 XR |
12653 | |
12654 | case ada_catch_handlers: | |
bc18fbb5 | 12655 | if (!c->excep_string.empty ()) |
9f757bf7 XR |
12656 | { |
12657 | std::string info | |
12658 | = string_printf (_("`%s' Ada exception handlers"), | |
bc18fbb5 | 12659 | c->excep_string.c_str ()); |
9f757bf7 XR |
12660 | uiout->text (info.c_str ()); |
12661 | } | |
12662 | else | |
12663 | uiout->text (_("all Ada exceptions handlers")); | |
12664 | break; | |
12665 | ||
761269c8 | 12666 | case ada_catch_assert: |
112e8700 | 12667 | uiout->text (_("failed Ada assertions")); |
f7f9143b JB |
12668 | break; |
12669 | ||
12670 | default: | |
12671 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12672 | break; | |
12673 | } | |
12674 | } | |
12675 | ||
6149aea9 PA |
12676 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
12677 | for all exception catchpoint kinds. */ | |
12678 | ||
12679 | static void | |
37f6a7f4 | 12680 | print_recreate_exception (struct breakpoint *b, struct ui_file *fp) |
6149aea9 | 12681 | { |
28010a5d PA |
12682 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
12683 | ||
37f6a7f4 | 12684 | switch (c->m_kind) |
6149aea9 | 12685 | { |
761269c8 | 12686 | case ada_catch_exception: |
6149aea9 | 12687 | fprintf_filtered (fp, "catch exception"); |
bc18fbb5 TT |
12688 | if (!c->excep_string.empty ()) |
12689 | fprintf_filtered (fp, " %s", c->excep_string.c_str ()); | |
6149aea9 PA |
12690 | break; |
12691 | ||
761269c8 | 12692 | case ada_catch_exception_unhandled: |
78076abc | 12693 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
12694 | break; |
12695 | ||
9f757bf7 XR |
12696 | case ada_catch_handlers: |
12697 | fprintf_filtered (fp, "catch handlers"); | |
12698 | break; | |
12699 | ||
761269c8 | 12700 | case ada_catch_assert: |
6149aea9 PA |
12701 | fprintf_filtered (fp, "catch assert"); |
12702 | break; | |
12703 | ||
12704 | default: | |
12705 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12706 | } | |
d9b3f62e | 12707 | print_recreate_thread (b, fp); |
6149aea9 PA |
12708 | } |
12709 | ||
37f6a7f4 | 12710 | /* Virtual tables for various breakpoint types. */ |
2060206e | 12711 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
2060206e | 12712 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
2060206e | 12713 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
9f757bf7 XR |
12714 | static struct breakpoint_ops catch_handlers_breakpoint_ops; |
12715 | ||
f06f1252 TT |
12716 | /* See ada-lang.h. */ |
12717 | ||
12718 | bool | |
12719 | is_ada_exception_catchpoint (breakpoint *bp) | |
12720 | { | |
12721 | return (bp->ops == &catch_exception_breakpoint_ops | |
12722 | || bp->ops == &catch_exception_unhandled_breakpoint_ops | |
12723 | || bp->ops == &catch_assert_breakpoint_ops | |
12724 | || bp->ops == &catch_handlers_breakpoint_ops); | |
12725 | } | |
12726 | ||
f7f9143b JB |
12727 | /* Split the arguments specified in a "catch exception" command. |
12728 | Set EX to the appropriate catchpoint type. | |
28010a5d | 12729 | Set EXCEP_STRING to the name of the specific exception if |
5845583d | 12730 | specified by the user. |
9f757bf7 XR |
12731 | IS_CATCH_HANDLERS_CMD: True if the arguments are for a |
12732 | "catch handlers" command. False otherwise. | |
5845583d JB |
12733 | If a condition is found at the end of the arguments, the condition |
12734 | expression is stored in COND_STRING (memory must be deallocated | |
12735 | after use). Otherwise COND_STRING is set to NULL. */ | |
f7f9143b JB |
12736 | |
12737 | static void | |
a121b7c1 | 12738 | catch_ada_exception_command_split (const char *args, |
9f757bf7 | 12739 | bool is_catch_handlers_cmd, |
761269c8 | 12740 | enum ada_exception_catchpoint_kind *ex, |
bc18fbb5 TT |
12741 | std::string *excep_string, |
12742 | std::string *cond_string) | |
f7f9143b | 12743 | { |
bc18fbb5 | 12744 | std::string exception_name; |
f7f9143b | 12745 | |
bc18fbb5 TT |
12746 | exception_name = extract_arg (&args); |
12747 | if (exception_name == "if") | |
5845583d JB |
12748 | { |
12749 | /* This is not an exception name; this is the start of a condition | |
12750 | expression for a catchpoint on all exceptions. So, "un-get" | |
12751 | this token, and set exception_name to NULL. */ | |
bc18fbb5 | 12752 | exception_name.clear (); |
5845583d JB |
12753 | args -= 2; |
12754 | } | |
f7f9143b | 12755 | |
5845583d | 12756 | /* Check to see if we have a condition. */ |
f7f9143b | 12757 | |
f1735a53 | 12758 | args = skip_spaces (args); |
61012eef | 12759 | if (startswith (args, "if") |
5845583d JB |
12760 | && (isspace (args[2]) || args[2] == '\0')) |
12761 | { | |
12762 | args += 2; | |
f1735a53 | 12763 | args = skip_spaces (args); |
5845583d JB |
12764 | |
12765 | if (args[0] == '\0') | |
12766 | error (_("Condition missing after `if' keyword")); | |
bc18fbb5 | 12767 | *cond_string = args; |
5845583d JB |
12768 | |
12769 | args += strlen (args); | |
12770 | } | |
12771 | ||
12772 | /* Check that we do not have any more arguments. Anything else | |
12773 | is unexpected. */ | |
f7f9143b JB |
12774 | |
12775 | if (args[0] != '\0') | |
12776 | error (_("Junk at end of expression")); | |
12777 | ||
9f757bf7 XR |
12778 | if (is_catch_handlers_cmd) |
12779 | { | |
12780 | /* Catch handling of exceptions. */ | |
12781 | *ex = ada_catch_handlers; | |
12782 | *excep_string = exception_name; | |
12783 | } | |
bc18fbb5 | 12784 | else if (exception_name.empty ()) |
f7f9143b JB |
12785 | { |
12786 | /* Catch all exceptions. */ | |
761269c8 | 12787 | *ex = ada_catch_exception; |
bc18fbb5 | 12788 | excep_string->clear (); |
f7f9143b | 12789 | } |
bc18fbb5 | 12790 | else if (exception_name == "unhandled") |
f7f9143b JB |
12791 | { |
12792 | /* Catch unhandled exceptions. */ | |
761269c8 | 12793 | *ex = ada_catch_exception_unhandled; |
bc18fbb5 | 12794 | excep_string->clear (); |
f7f9143b JB |
12795 | } |
12796 | else | |
12797 | { | |
12798 | /* Catch a specific exception. */ | |
761269c8 | 12799 | *ex = ada_catch_exception; |
28010a5d | 12800 | *excep_string = exception_name; |
f7f9143b JB |
12801 | } |
12802 | } | |
12803 | ||
12804 | /* Return the name of the symbol on which we should break in order to | |
12805 | implement a catchpoint of the EX kind. */ | |
12806 | ||
12807 | static const char * | |
761269c8 | 12808 | ada_exception_sym_name (enum ada_exception_catchpoint_kind ex) |
f7f9143b | 12809 | { |
3eecfa55 JB |
12810 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
12811 | ||
12812 | gdb_assert (data->exception_info != NULL); | |
0259addd | 12813 | |
f7f9143b JB |
12814 | switch (ex) |
12815 | { | |
761269c8 | 12816 | case ada_catch_exception: |
3eecfa55 | 12817 | return (data->exception_info->catch_exception_sym); |
f7f9143b | 12818 | break; |
761269c8 | 12819 | case ada_catch_exception_unhandled: |
3eecfa55 | 12820 | return (data->exception_info->catch_exception_unhandled_sym); |
f7f9143b | 12821 | break; |
761269c8 | 12822 | case ada_catch_assert: |
3eecfa55 | 12823 | return (data->exception_info->catch_assert_sym); |
f7f9143b | 12824 | break; |
9f757bf7 XR |
12825 | case ada_catch_handlers: |
12826 | return (data->exception_info->catch_handlers_sym); | |
12827 | break; | |
f7f9143b JB |
12828 | default: |
12829 | internal_error (__FILE__, __LINE__, | |
12830 | _("unexpected catchpoint kind (%d)"), ex); | |
12831 | } | |
12832 | } | |
12833 | ||
12834 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
12835 | of the EX kind. */ | |
12836 | ||
c0a91b2b | 12837 | static const struct breakpoint_ops * |
761269c8 | 12838 | ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex) |
f7f9143b JB |
12839 | { |
12840 | switch (ex) | |
12841 | { | |
761269c8 | 12842 | case ada_catch_exception: |
f7f9143b JB |
12843 | return (&catch_exception_breakpoint_ops); |
12844 | break; | |
761269c8 | 12845 | case ada_catch_exception_unhandled: |
f7f9143b JB |
12846 | return (&catch_exception_unhandled_breakpoint_ops); |
12847 | break; | |
761269c8 | 12848 | case ada_catch_assert: |
f7f9143b JB |
12849 | return (&catch_assert_breakpoint_ops); |
12850 | break; | |
9f757bf7 XR |
12851 | case ada_catch_handlers: |
12852 | return (&catch_handlers_breakpoint_ops); | |
12853 | break; | |
f7f9143b JB |
12854 | default: |
12855 | internal_error (__FILE__, __LINE__, | |
12856 | _("unexpected catchpoint kind (%d)"), ex); | |
12857 | } | |
12858 | } | |
12859 | ||
12860 | /* Return the condition that will be used to match the current exception | |
12861 | being raised with the exception that the user wants to catch. This | |
12862 | assumes that this condition is used when the inferior just triggered | |
12863 | an exception catchpoint. | |
cb7de75e | 12864 | EX: the type of catchpoints used for catching Ada exceptions. */ |
f7f9143b | 12865 | |
cb7de75e | 12866 | static std::string |
9f757bf7 XR |
12867 | ada_exception_catchpoint_cond_string (const char *excep_string, |
12868 | enum ada_exception_catchpoint_kind ex) | |
f7f9143b | 12869 | { |
3d0b0fa3 | 12870 | int i; |
fccf9de1 | 12871 | bool is_standard_exc = false; |
cb7de75e | 12872 | std::string result; |
9f757bf7 XR |
12873 | |
12874 | if (ex == ada_catch_handlers) | |
12875 | { | |
12876 | /* For exception handlers catchpoints, the condition string does | |
12877 | not use the same parameter as for the other exceptions. */ | |
fccf9de1 TT |
12878 | result = ("long_integer (GNAT_GCC_exception_Access" |
12879 | "(gcc_exception).all.occurrence.id)"); | |
9f757bf7 XR |
12880 | } |
12881 | else | |
fccf9de1 | 12882 | result = "long_integer (e)"; |
3d0b0fa3 | 12883 | |
0963b4bd | 12884 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 12885 | runtime units that have been compiled without debugging info; if |
28010a5d | 12886 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
12887 | exception (e.g. "constraint_error") then, during the evaluation |
12888 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 12889 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
12890 | may then be set only on user-defined exceptions which have the |
12891 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
12892 | ||
12893 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 12894 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
12895 | exception constraint_error" is rewritten into "catch exception |
12896 | standard.constraint_error". | |
12897 | ||
85102364 | 12898 | If an exception named constraint_error is defined in another package of |
3d0b0fa3 JB |
12899 | the inferior program, then the only way to specify this exception as a |
12900 | breakpoint condition is to use its fully-qualified named: | |
fccf9de1 | 12901 | e.g. my_package.constraint_error. */ |
3d0b0fa3 JB |
12902 | |
12903 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
12904 | { | |
28010a5d | 12905 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 | 12906 | { |
fccf9de1 | 12907 | is_standard_exc = true; |
9f757bf7 | 12908 | break; |
3d0b0fa3 JB |
12909 | } |
12910 | } | |
9f757bf7 | 12911 | |
fccf9de1 TT |
12912 | result += " = "; |
12913 | ||
12914 | if (is_standard_exc) | |
12915 | string_appendf (result, "long_integer (&standard.%s)", excep_string); | |
12916 | else | |
12917 | string_appendf (result, "long_integer (&%s)", excep_string); | |
9f757bf7 | 12918 | |
9f757bf7 | 12919 | return result; |
f7f9143b JB |
12920 | } |
12921 | ||
12922 | /* Return the symtab_and_line that should be used to insert an exception | |
12923 | catchpoint of the TYPE kind. | |
12924 | ||
28010a5d PA |
12925 | ADDR_STRING returns the name of the function where the real |
12926 | breakpoint that implements the catchpoints is set, depending on the | |
12927 | type of catchpoint we need to create. */ | |
f7f9143b JB |
12928 | |
12929 | static struct symtab_and_line | |
bc18fbb5 | 12930 | ada_exception_sal (enum ada_exception_catchpoint_kind ex, |
cc12f4a8 | 12931 | std::string *addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
12932 | { |
12933 | const char *sym_name; | |
12934 | struct symbol *sym; | |
f7f9143b | 12935 | |
0259addd JB |
12936 | /* First, find out which exception support info to use. */ |
12937 | ada_exception_support_info_sniffer (); | |
12938 | ||
12939 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 12940 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
12941 | sym_name = ada_exception_sym_name (ex); |
12942 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
12943 | ||
57aff202 JB |
12944 | if (sym == NULL) |
12945 | error (_("Catchpoint symbol not found: %s"), sym_name); | |
12946 | ||
12947 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
12948 | error (_("Unable to insert catchpoint. %s is not a function."), sym_name); | |
f7f9143b JB |
12949 | |
12950 | /* Set ADDR_STRING. */ | |
cc12f4a8 | 12951 | *addr_string = sym_name; |
f7f9143b | 12952 | |
f7f9143b | 12953 | /* Set OPS. */ |
4b9eee8c | 12954 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 12955 | |
f17011e0 | 12956 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
12957 | } |
12958 | ||
b4a5b78b | 12959 | /* Create an Ada exception catchpoint. |
f7f9143b | 12960 | |
b4a5b78b | 12961 | EX_KIND is the kind of exception catchpoint to be created. |
5845583d | 12962 | |
bc18fbb5 | 12963 | If EXCEPT_STRING is empty, this catchpoint is expected to trigger |
2df4d1d5 | 12964 | for all exceptions. Otherwise, EXCEPT_STRING indicates the name |
bc18fbb5 | 12965 | of the exception to which this catchpoint applies. |
2df4d1d5 | 12966 | |
bc18fbb5 | 12967 | COND_STRING, if not empty, is the catchpoint condition. |
f7f9143b | 12968 | |
b4a5b78b JB |
12969 | TEMPFLAG, if nonzero, means that the underlying breakpoint |
12970 | should be temporary. | |
28010a5d | 12971 | |
b4a5b78b | 12972 | FROM_TTY is the usual argument passed to all commands implementations. */ |
28010a5d | 12973 | |
349774ef | 12974 | void |
28010a5d | 12975 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, |
761269c8 | 12976 | enum ada_exception_catchpoint_kind ex_kind, |
bc18fbb5 | 12977 | const std::string &excep_string, |
56ecd069 | 12978 | const std::string &cond_string, |
28010a5d | 12979 | int tempflag, |
349774ef | 12980 | int disabled, |
28010a5d PA |
12981 | int from_tty) |
12982 | { | |
cc12f4a8 | 12983 | std::string addr_string; |
b4a5b78b | 12984 | const struct breakpoint_ops *ops = NULL; |
bc18fbb5 | 12985 | struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops); |
28010a5d | 12986 | |
37f6a7f4 | 12987 | std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind)); |
cc12f4a8 | 12988 | init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (), |
349774ef | 12989 | ops, tempflag, disabled, from_tty); |
28010a5d | 12990 | c->excep_string = excep_string; |
9f757bf7 | 12991 | create_excep_cond_exprs (c.get (), ex_kind); |
56ecd069 XR |
12992 | if (!cond_string.empty ()) |
12993 | set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty); | |
b270e6f9 | 12994 | install_breakpoint (0, std::move (c), 1); |
f7f9143b JB |
12995 | } |
12996 | ||
9ac4176b PA |
12997 | /* Implement the "catch exception" command. */ |
12998 | ||
12999 | static void | |
eb4c3f4a | 13000 | catch_ada_exception_command (const char *arg_entry, int from_tty, |
9ac4176b PA |
13001 | struct cmd_list_element *command) |
13002 | { | |
a121b7c1 | 13003 | const char *arg = arg_entry; |
9ac4176b PA |
13004 | struct gdbarch *gdbarch = get_current_arch (); |
13005 | int tempflag; | |
761269c8 | 13006 | enum ada_exception_catchpoint_kind ex_kind; |
bc18fbb5 | 13007 | std::string excep_string; |
56ecd069 | 13008 | std::string cond_string; |
9ac4176b PA |
13009 | |
13010 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
13011 | ||
13012 | if (!arg) | |
13013 | arg = ""; | |
9f757bf7 | 13014 | catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string, |
bc18fbb5 | 13015 | &cond_string); |
9f757bf7 XR |
13016 | create_ada_exception_catchpoint (gdbarch, ex_kind, |
13017 | excep_string, cond_string, | |
13018 | tempflag, 1 /* enabled */, | |
13019 | from_tty); | |
13020 | } | |
13021 | ||
13022 | /* Implement the "catch handlers" command. */ | |
13023 | ||
13024 | static void | |
13025 | catch_ada_handlers_command (const char *arg_entry, int from_tty, | |
13026 | struct cmd_list_element *command) | |
13027 | { | |
13028 | const char *arg = arg_entry; | |
13029 | struct gdbarch *gdbarch = get_current_arch (); | |
13030 | int tempflag; | |
13031 | enum ada_exception_catchpoint_kind ex_kind; | |
bc18fbb5 | 13032 | std::string excep_string; |
56ecd069 | 13033 | std::string cond_string; |
9f757bf7 XR |
13034 | |
13035 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
13036 | ||
13037 | if (!arg) | |
13038 | arg = ""; | |
13039 | catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string, | |
bc18fbb5 | 13040 | &cond_string); |
b4a5b78b JB |
13041 | create_ada_exception_catchpoint (gdbarch, ex_kind, |
13042 | excep_string, cond_string, | |
349774ef JB |
13043 | tempflag, 1 /* enabled */, |
13044 | from_tty); | |
9ac4176b PA |
13045 | } |
13046 | ||
71bed2db TT |
13047 | /* Completion function for the Ada "catch" commands. */ |
13048 | ||
13049 | static void | |
13050 | catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker, | |
13051 | const char *text, const char *word) | |
13052 | { | |
13053 | std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL); | |
13054 | ||
13055 | for (const ada_exc_info &info : exceptions) | |
13056 | { | |
13057 | if (startswith (info.name, word)) | |
b02f78f9 | 13058 | tracker.add_completion (make_unique_xstrdup (info.name)); |
71bed2db TT |
13059 | } |
13060 | } | |
13061 | ||
b4a5b78b | 13062 | /* Split the arguments specified in a "catch assert" command. |
5845583d | 13063 | |
b4a5b78b JB |
13064 | ARGS contains the command's arguments (or the empty string if |
13065 | no arguments were passed). | |
5845583d JB |
13066 | |
13067 | If ARGS contains a condition, set COND_STRING to that condition | |
b4a5b78b | 13068 | (the memory needs to be deallocated after use). */ |
5845583d | 13069 | |
b4a5b78b | 13070 | static void |
56ecd069 | 13071 | catch_ada_assert_command_split (const char *args, std::string &cond_string) |
f7f9143b | 13072 | { |
f1735a53 | 13073 | args = skip_spaces (args); |
f7f9143b | 13074 | |
5845583d | 13075 | /* Check whether a condition was provided. */ |
61012eef | 13076 | if (startswith (args, "if") |
5845583d | 13077 | && (isspace (args[2]) || args[2] == '\0')) |
f7f9143b | 13078 | { |
5845583d | 13079 | args += 2; |
f1735a53 | 13080 | args = skip_spaces (args); |
5845583d JB |
13081 | if (args[0] == '\0') |
13082 | error (_("condition missing after `if' keyword")); | |
56ecd069 | 13083 | cond_string.assign (args); |
f7f9143b JB |
13084 | } |
13085 | ||
5845583d JB |
13086 | /* Otherwise, there should be no other argument at the end of |
13087 | the command. */ | |
13088 | else if (args[0] != '\0') | |
13089 | error (_("Junk at end of arguments.")); | |
f7f9143b JB |
13090 | } |
13091 | ||
9ac4176b PA |
13092 | /* Implement the "catch assert" command. */ |
13093 | ||
13094 | static void | |
eb4c3f4a | 13095 | catch_assert_command (const char *arg_entry, int from_tty, |
9ac4176b PA |
13096 | struct cmd_list_element *command) |
13097 | { | |
a121b7c1 | 13098 | const char *arg = arg_entry; |
9ac4176b PA |
13099 | struct gdbarch *gdbarch = get_current_arch (); |
13100 | int tempflag; | |
56ecd069 | 13101 | std::string cond_string; |
9ac4176b PA |
13102 | |
13103 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
13104 | ||
13105 | if (!arg) | |
13106 | arg = ""; | |
56ecd069 | 13107 | catch_ada_assert_command_split (arg, cond_string); |
761269c8 | 13108 | create_ada_exception_catchpoint (gdbarch, ada_catch_assert, |
241db429 | 13109 | "", cond_string, |
349774ef JB |
13110 | tempflag, 1 /* enabled */, |
13111 | from_tty); | |
9ac4176b | 13112 | } |
778865d3 JB |
13113 | |
13114 | /* Return non-zero if the symbol SYM is an Ada exception object. */ | |
13115 | ||
13116 | static int | |
13117 | ada_is_exception_sym (struct symbol *sym) | |
13118 | { | |
a737d952 | 13119 | const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym)); |
778865d3 JB |
13120 | |
13121 | return (SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
13122 | && SYMBOL_CLASS (sym) != LOC_BLOCK | |
13123 | && SYMBOL_CLASS (sym) != LOC_CONST | |
13124 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED | |
13125 | && type_name != NULL && strcmp (type_name, "exception") == 0); | |
13126 | } | |
13127 | ||
13128 | /* Given a global symbol SYM, return non-zero iff SYM is a non-standard | |
13129 | Ada exception object. This matches all exceptions except the ones | |
13130 | defined by the Ada language. */ | |
13131 | ||
13132 | static int | |
13133 | ada_is_non_standard_exception_sym (struct symbol *sym) | |
13134 | { | |
13135 | int i; | |
13136 | ||
13137 | if (!ada_is_exception_sym (sym)) | |
13138 | return 0; | |
13139 | ||
13140 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
987012b8 | 13141 | if (strcmp (sym->linkage_name (), standard_exc[i]) == 0) |
778865d3 JB |
13142 | return 0; /* A standard exception. */ |
13143 | ||
13144 | /* Numeric_Error is also a standard exception, so exclude it. | |
13145 | See the STANDARD_EXC description for more details as to why | |
13146 | this exception is not listed in that array. */ | |
987012b8 | 13147 | if (strcmp (sym->linkage_name (), "numeric_error") == 0) |
778865d3 JB |
13148 | return 0; |
13149 | ||
13150 | return 1; | |
13151 | } | |
13152 | ||
ab816a27 | 13153 | /* A helper function for std::sort, comparing two struct ada_exc_info |
778865d3 JB |
13154 | objects. |
13155 | ||
13156 | The comparison is determined first by exception name, and then | |
13157 | by exception address. */ | |
13158 | ||
ab816a27 | 13159 | bool |
cc536b21 | 13160 | ada_exc_info::operator< (const ada_exc_info &other) const |
778865d3 | 13161 | { |
778865d3 JB |
13162 | int result; |
13163 | ||
ab816a27 TT |
13164 | result = strcmp (name, other.name); |
13165 | if (result < 0) | |
13166 | return true; | |
13167 | if (result == 0 && addr < other.addr) | |
13168 | return true; | |
13169 | return false; | |
13170 | } | |
778865d3 | 13171 | |
ab816a27 | 13172 | bool |
cc536b21 | 13173 | ada_exc_info::operator== (const ada_exc_info &other) const |
ab816a27 TT |
13174 | { |
13175 | return addr == other.addr && strcmp (name, other.name) == 0; | |
778865d3 JB |
13176 | } |
13177 | ||
13178 | /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison | |
13179 | routine, but keeping the first SKIP elements untouched. | |
13180 | ||
13181 | All duplicates are also removed. */ | |
13182 | ||
13183 | static void | |
ab816a27 | 13184 | sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions, |
778865d3 JB |
13185 | int skip) |
13186 | { | |
ab816a27 TT |
13187 | std::sort (exceptions->begin () + skip, exceptions->end ()); |
13188 | exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()), | |
13189 | exceptions->end ()); | |
778865d3 JB |
13190 | } |
13191 | ||
778865d3 JB |
13192 | /* Add all exceptions defined by the Ada standard whose name match |
13193 | a regular expression. | |
13194 | ||
13195 | If PREG is not NULL, then this regexp_t object is used to | |
13196 | perform the symbol name matching. Otherwise, no name-based | |
13197 | filtering is performed. | |
13198 | ||
13199 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13200 | gets pushed. */ | |
13201 | ||
13202 | static void | |
2d7cc5c7 | 13203 | ada_add_standard_exceptions (compiled_regex *preg, |
ab816a27 | 13204 | std::vector<ada_exc_info> *exceptions) |
778865d3 JB |
13205 | { |
13206 | int i; | |
13207 | ||
13208 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
13209 | { | |
13210 | if (preg == NULL | |
2d7cc5c7 | 13211 | || preg->exec (standard_exc[i], 0, NULL, 0) == 0) |
778865d3 JB |
13212 | { |
13213 | struct bound_minimal_symbol msymbol | |
13214 | = ada_lookup_simple_minsym (standard_exc[i]); | |
13215 | ||
13216 | if (msymbol.minsym != NULL) | |
13217 | { | |
13218 | struct ada_exc_info info | |
77e371c0 | 13219 | = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)}; |
778865d3 | 13220 | |
ab816a27 | 13221 | exceptions->push_back (info); |
778865d3 JB |
13222 | } |
13223 | } | |
13224 | } | |
13225 | } | |
13226 | ||
13227 | /* Add all Ada exceptions defined locally and accessible from the given | |
13228 | FRAME. | |
13229 | ||
13230 | If PREG is not NULL, then this regexp_t object is used to | |
13231 | perform the symbol name matching. Otherwise, no name-based | |
13232 | filtering is performed. | |
13233 | ||
13234 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13235 | gets pushed. */ | |
13236 | ||
13237 | static void | |
2d7cc5c7 PA |
13238 | ada_add_exceptions_from_frame (compiled_regex *preg, |
13239 | struct frame_info *frame, | |
ab816a27 | 13240 | std::vector<ada_exc_info> *exceptions) |
778865d3 | 13241 | { |
3977b71f | 13242 | const struct block *block = get_frame_block (frame, 0); |
778865d3 JB |
13243 | |
13244 | while (block != 0) | |
13245 | { | |
13246 | struct block_iterator iter; | |
13247 | struct symbol *sym; | |
13248 | ||
13249 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
13250 | { | |
13251 | switch (SYMBOL_CLASS (sym)) | |
13252 | { | |
13253 | case LOC_TYPEDEF: | |
13254 | case LOC_BLOCK: | |
13255 | case LOC_CONST: | |
13256 | break; | |
13257 | default: | |
13258 | if (ada_is_exception_sym (sym)) | |
13259 | { | |
987012b8 | 13260 | struct ada_exc_info info = {sym->print_name (), |
778865d3 JB |
13261 | SYMBOL_VALUE_ADDRESS (sym)}; |
13262 | ||
ab816a27 | 13263 | exceptions->push_back (info); |
778865d3 JB |
13264 | } |
13265 | } | |
13266 | } | |
13267 | if (BLOCK_FUNCTION (block) != NULL) | |
13268 | break; | |
13269 | block = BLOCK_SUPERBLOCK (block); | |
13270 | } | |
13271 | } | |
13272 | ||
14bc53a8 PA |
13273 | /* Return true if NAME matches PREG or if PREG is NULL. */ |
13274 | ||
13275 | static bool | |
2d7cc5c7 | 13276 | name_matches_regex (const char *name, compiled_regex *preg) |
14bc53a8 PA |
13277 | { |
13278 | return (preg == NULL | |
f945dedf | 13279 | || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0); |
14bc53a8 PA |
13280 | } |
13281 | ||
778865d3 JB |
13282 | /* Add all exceptions defined globally whose name name match |
13283 | a regular expression, excluding standard exceptions. | |
13284 | ||
13285 | The reason we exclude standard exceptions is that they need | |
13286 | to be handled separately: Standard exceptions are defined inside | |
13287 | a runtime unit which is normally not compiled with debugging info, | |
13288 | and thus usually do not show up in our symbol search. However, | |
13289 | if the unit was in fact built with debugging info, we need to | |
13290 | exclude them because they would duplicate the entry we found | |
13291 | during the special loop that specifically searches for those | |
13292 | standard exceptions. | |
13293 | ||
13294 | If PREG is not NULL, then this regexp_t object is used to | |
13295 | perform the symbol name matching. Otherwise, no name-based | |
13296 | filtering is performed. | |
13297 | ||
13298 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13299 | gets pushed. */ | |
13300 | ||
13301 | static void | |
2d7cc5c7 | 13302 | ada_add_global_exceptions (compiled_regex *preg, |
ab816a27 | 13303 | std::vector<ada_exc_info> *exceptions) |
778865d3 | 13304 | { |
14bc53a8 PA |
13305 | /* In Ada, the symbol "search name" is a linkage name, whereas the |
13306 | regular expression used to do the matching refers to the natural | |
13307 | name. So match against the decoded name. */ | |
13308 | expand_symtabs_matching (NULL, | |
b5ec771e | 13309 | lookup_name_info::match_any (), |
14bc53a8 PA |
13310 | [&] (const char *search_name) |
13311 | { | |
f945dedf CB |
13312 | std::string decoded = ada_decode (search_name); |
13313 | return name_matches_regex (decoded.c_str (), preg); | |
14bc53a8 PA |
13314 | }, |
13315 | NULL, | |
13316 | VARIABLES_DOMAIN); | |
778865d3 | 13317 | |
2030c079 | 13318 | for (objfile *objfile : current_program_space->objfiles ()) |
778865d3 | 13319 | { |
b669c953 | 13320 | for (compunit_symtab *s : objfile->compunits ()) |
778865d3 | 13321 | { |
d8aeb77f TT |
13322 | const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s); |
13323 | int i; | |
778865d3 | 13324 | |
d8aeb77f TT |
13325 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) |
13326 | { | |
582942f4 | 13327 | const struct block *b = BLOCKVECTOR_BLOCK (bv, i); |
d8aeb77f TT |
13328 | struct block_iterator iter; |
13329 | struct symbol *sym; | |
778865d3 | 13330 | |
d8aeb77f TT |
13331 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
13332 | if (ada_is_non_standard_exception_sym (sym) | |
987012b8 | 13333 | && name_matches_regex (sym->natural_name (), preg)) |
d8aeb77f TT |
13334 | { |
13335 | struct ada_exc_info info | |
987012b8 | 13336 | = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)}; |
d8aeb77f TT |
13337 | |
13338 | exceptions->push_back (info); | |
13339 | } | |
13340 | } | |
778865d3 JB |
13341 | } |
13342 | } | |
13343 | } | |
13344 | ||
13345 | /* Implements ada_exceptions_list with the regular expression passed | |
13346 | as a regex_t, rather than a string. | |
13347 | ||
13348 | If not NULL, PREG is used to filter out exceptions whose names | |
13349 | do not match. Otherwise, all exceptions are listed. */ | |
13350 | ||
ab816a27 | 13351 | static std::vector<ada_exc_info> |
2d7cc5c7 | 13352 | ada_exceptions_list_1 (compiled_regex *preg) |
778865d3 | 13353 | { |
ab816a27 | 13354 | std::vector<ada_exc_info> result; |
778865d3 JB |
13355 | int prev_len; |
13356 | ||
13357 | /* First, list the known standard exceptions. These exceptions | |
13358 | need to be handled separately, as they are usually defined in | |
13359 | runtime units that have been compiled without debugging info. */ | |
13360 | ||
13361 | ada_add_standard_exceptions (preg, &result); | |
13362 | ||
13363 | /* Next, find all exceptions whose scope is local and accessible | |
13364 | from the currently selected frame. */ | |
13365 | ||
13366 | if (has_stack_frames ()) | |
13367 | { | |
ab816a27 | 13368 | prev_len = result.size (); |
778865d3 JB |
13369 | ada_add_exceptions_from_frame (preg, get_selected_frame (NULL), |
13370 | &result); | |
ab816a27 | 13371 | if (result.size () > prev_len) |
778865d3 JB |
13372 | sort_remove_dups_ada_exceptions_list (&result, prev_len); |
13373 | } | |
13374 | ||
13375 | /* Add all exceptions whose scope is global. */ | |
13376 | ||
ab816a27 | 13377 | prev_len = result.size (); |
778865d3 | 13378 | ada_add_global_exceptions (preg, &result); |
ab816a27 | 13379 | if (result.size () > prev_len) |
778865d3 JB |
13380 | sort_remove_dups_ada_exceptions_list (&result, prev_len); |
13381 | ||
778865d3 JB |
13382 | return result; |
13383 | } | |
13384 | ||
13385 | /* Return a vector of ada_exc_info. | |
13386 | ||
13387 | If REGEXP is NULL, all exceptions are included in the result. | |
13388 | Otherwise, it should contain a valid regular expression, | |
13389 | and only the exceptions whose names match that regular expression | |
13390 | are included in the result. | |
13391 | ||
13392 | The exceptions are sorted in the following order: | |
13393 | - Standard exceptions (defined by the Ada language), in | |
13394 | alphabetical order; | |
13395 | - Exceptions only visible from the current frame, in | |
13396 | alphabetical order; | |
13397 | - Exceptions whose scope is global, in alphabetical order. */ | |
13398 | ||
ab816a27 | 13399 | std::vector<ada_exc_info> |
778865d3 JB |
13400 | ada_exceptions_list (const char *regexp) |
13401 | { | |
2d7cc5c7 PA |
13402 | if (regexp == NULL) |
13403 | return ada_exceptions_list_1 (NULL); | |
778865d3 | 13404 | |
2d7cc5c7 PA |
13405 | compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression")); |
13406 | return ada_exceptions_list_1 (®); | |
778865d3 JB |
13407 | } |
13408 | ||
13409 | /* Implement the "info exceptions" command. */ | |
13410 | ||
13411 | static void | |
1d12d88f | 13412 | info_exceptions_command (const char *regexp, int from_tty) |
778865d3 | 13413 | { |
778865d3 | 13414 | struct gdbarch *gdbarch = get_current_arch (); |
778865d3 | 13415 | |
ab816a27 | 13416 | std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp); |
778865d3 JB |
13417 | |
13418 | if (regexp != NULL) | |
13419 | printf_filtered | |
13420 | (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp); | |
13421 | else | |
13422 | printf_filtered (_("All defined Ada exceptions:\n")); | |
13423 | ||
ab816a27 TT |
13424 | for (const ada_exc_info &info : exceptions) |
13425 | printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr)); | |
778865d3 JB |
13426 | } |
13427 | ||
4c4b4cd2 PH |
13428 | /* Operators */ |
13429 | /* Information about operators given special treatment in functions | |
13430 | below. */ | |
13431 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
13432 | ||
13433 | #define ADA_OPERATORS \ | |
13434 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
13435 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
13436 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
13437 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
13438 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
13439 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
13440 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
13441 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
13442 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
13443 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
13444 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
13445 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
13446 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
13447 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
13448 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
13449 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
13450 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
13451 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
13452 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
13453 | |
13454 | static void | |
554794dc SDJ |
13455 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
13456 | int *argsp) | |
4c4b4cd2 PH |
13457 | { |
13458 | switch (exp->elts[pc - 1].opcode) | |
13459 | { | |
76a01679 | 13460 | default: |
4c4b4cd2 PH |
13461 | operator_length_standard (exp, pc, oplenp, argsp); |
13462 | break; | |
13463 | ||
13464 | #define OP_DEFN(op, len, args, binop) \ | |
13465 | case op: *oplenp = len; *argsp = args; break; | |
13466 | ADA_OPERATORS; | |
13467 | #undef OP_DEFN | |
52ce6436 PH |
13468 | |
13469 | case OP_AGGREGATE: | |
13470 | *oplenp = 3; | |
13471 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
13472 | break; | |
13473 | ||
13474 | case OP_CHOICES: | |
13475 | *oplenp = 3; | |
13476 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
13477 | break; | |
4c4b4cd2 PH |
13478 | } |
13479 | } | |
13480 | ||
c0201579 JK |
13481 | /* Implementation of the exp_descriptor method operator_check. */ |
13482 | ||
13483 | static int | |
13484 | ada_operator_check (struct expression *exp, int pos, | |
13485 | int (*objfile_func) (struct objfile *objfile, void *data), | |
13486 | void *data) | |
13487 | { | |
13488 | const union exp_element *const elts = exp->elts; | |
13489 | struct type *type = NULL; | |
13490 | ||
13491 | switch (elts[pos].opcode) | |
13492 | { | |
13493 | case UNOP_IN_RANGE: | |
13494 | case UNOP_QUAL: | |
13495 | type = elts[pos + 1].type; | |
13496 | break; | |
13497 | ||
13498 | default: | |
13499 | return operator_check_standard (exp, pos, objfile_func, data); | |
13500 | } | |
13501 | ||
13502 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
13503 | ||
13504 | if (type && TYPE_OBJFILE (type) | |
13505 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
13506 | return 1; | |
13507 | ||
13508 | return 0; | |
13509 | } | |
13510 | ||
a121b7c1 | 13511 | static const char * |
4c4b4cd2 PH |
13512 | ada_op_name (enum exp_opcode opcode) |
13513 | { | |
13514 | switch (opcode) | |
13515 | { | |
76a01679 | 13516 | default: |
4c4b4cd2 | 13517 | return op_name_standard (opcode); |
52ce6436 | 13518 | |
4c4b4cd2 PH |
13519 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
13520 | ADA_OPERATORS; | |
13521 | #undef OP_DEFN | |
52ce6436 PH |
13522 | |
13523 | case OP_AGGREGATE: | |
13524 | return "OP_AGGREGATE"; | |
13525 | case OP_CHOICES: | |
13526 | return "OP_CHOICES"; | |
13527 | case OP_NAME: | |
13528 | return "OP_NAME"; | |
4c4b4cd2 PH |
13529 | } |
13530 | } | |
13531 | ||
13532 | /* As for operator_length, but assumes PC is pointing at the first | |
13533 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 13534 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
13535 | |
13536 | static void | |
76a01679 JB |
13537 | ada_forward_operator_length (struct expression *exp, int pc, |
13538 | int *oplenp, int *argsp) | |
4c4b4cd2 | 13539 | { |
76a01679 | 13540 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
13541 | { |
13542 | default: | |
13543 | *oplenp = *argsp = 0; | |
13544 | break; | |
52ce6436 | 13545 | |
4c4b4cd2 PH |
13546 | #define OP_DEFN(op, len, args, binop) \ |
13547 | case op: *oplenp = len; *argsp = args; break; | |
13548 | ADA_OPERATORS; | |
13549 | #undef OP_DEFN | |
52ce6436 PH |
13550 | |
13551 | case OP_AGGREGATE: | |
13552 | *oplenp = 3; | |
13553 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
13554 | break; | |
13555 | ||
13556 | case OP_CHOICES: | |
13557 | *oplenp = 3; | |
13558 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
13559 | break; | |
13560 | ||
13561 | case OP_STRING: | |
13562 | case OP_NAME: | |
13563 | { | |
13564 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 13565 | |
52ce6436 PH |
13566 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
13567 | *argsp = 0; | |
13568 | break; | |
13569 | } | |
4c4b4cd2 PH |
13570 | } |
13571 | } | |
13572 | ||
13573 | static int | |
13574 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
13575 | { | |
13576 | enum exp_opcode op = exp->elts[elt].opcode; | |
13577 | int oplen, nargs; | |
13578 | int pc = elt; | |
13579 | int i; | |
76a01679 | 13580 | |
4c4b4cd2 PH |
13581 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
13582 | ||
76a01679 | 13583 | switch (op) |
4c4b4cd2 | 13584 | { |
76a01679 | 13585 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
13586 | case OP_ATR_FIRST: |
13587 | case OP_ATR_LAST: | |
13588 | case OP_ATR_LENGTH: | |
13589 | case OP_ATR_IMAGE: | |
13590 | case OP_ATR_MAX: | |
13591 | case OP_ATR_MIN: | |
13592 | case OP_ATR_MODULUS: | |
13593 | case OP_ATR_POS: | |
13594 | case OP_ATR_SIZE: | |
13595 | case OP_ATR_TAG: | |
13596 | case OP_ATR_VAL: | |
13597 | break; | |
13598 | ||
13599 | case UNOP_IN_RANGE: | |
13600 | case UNOP_QUAL: | |
323e0a4a AC |
13601 | /* XXX: gdb_sprint_host_address, type_sprint */ |
13602 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
13603 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
13604 | fprintf_filtered (stream, " ("); | |
13605 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
13606 | fprintf_filtered (stream, ")"); | |
13607 | break; | |
13608 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
13609 | fprintf_filtered (stream, " (%d)", |
13610 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
13611 | break; |
13612 | case TERNOP_IN_RANGE: | |
13613 | break; | |
13614 | ||
52ce6436 PH |
13615 | case OP_AGGREGATE: |
13616 | case OP_OTHERS: | |
13617 | case OP_DISCRETE_RANGE: | |
13618 | case OP_POSITIONAL: | |
13619 | case OP_CHOICES: | |
13620 | break; | |
13621 | ||
13622 | case OP_NAME: | |
13623 | case OP_STRING: | |
13624 | { | |
13625 | char *name = &exp->elts[elt + 2].string; | |
13626 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 13627 | |
52ce6436 PH |
13628 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
13629 | break; | |
13630 | } | |
13631 | ||
4c4b4cd2 PH |
13632 | default: |
13633 | return dump_subexp_body_standard (exp, stream, elt); | |
13634 | } | |
13635 | ||
13636 | elt += oplen; | |
13637 | for (i = 0; i < nargs; i += 1) | |
13638 | elt = dump_subexp (exp, stream, elt); | |
13639 | ||
13640 | return elt; | |
13641 | } | |
13642 | ||
13643 | /* The Ada extension of print_subexp (q.v.). */ | |
13644 | ||
76a01679 JB |
13645 | static void |
13646 | ada_print_subexp (struct expression *exp, int *pos, | |
13647 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 13648 | { |
52ce6436 | 13649 | int oplen, nargs, i; |
4c4b4cd2 PH |
13650 | int pc = *pos; |
13651 | enum exp_opcode op = exp->elts[pc].opcode; | |
13652 | ||
13653 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
13654 | ||
52ce6436 | 13655 | *pos += oplen; |
4c4b4cd2 PH |
13656 | switch (op) |
13657 | { | |
13658 | default: | |
52ce6436 | 13659 | *pos -= oplen; |
4c4b4cd2 PH |
13660 | print_subexp_standard (exp, pos, stream, prec); |
13661 | return; | |
13662 | ||
13663 | case OP_VAR_VALUE: | |
987012b8 | 13664 | fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream); |
4c4b4cd2 PH |
13665 | return; |
13666 | ||
13667 | case BINOP_IN_BOUNDS: | |
323e0a4a | 13668 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13669 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13670 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 13671 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13672 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 13673 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
13674 | fprintf_filtered (stream, "(%ld)", |
13675 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
13676 | return; |
13677 | ||
13678 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 13679 | if (prec >= PREC_EQUAL) |
76a01679 | 13680 | fputs_filtered ("(", stream); |
323e0a4a | 13681 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13682 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13683 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
13684 | print_subexp (exp, pos, stream, PREC_EQUAL); |
13685 | fputs_filtered (" .. ", stream); | |
13686 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
13687 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
13688 | fputs_filtered (")", stream); |
13689 | return; | |
4c4b4cd2 PH |
13690 | |
13691 | case OP_ATR_FIRST: | |
13692 | case OP_ATR_LAST: | |
13693 | case OP_ATR_LENGTH: | |
13694 | case OP_ATR_IMAGE: | |
13695 | case OP_ATR_MAX: | |
13696 | case OP_ATR_MIN: | |
13697 | case OP_ATR_MODULUS: | |
13698 | case OP_ATR_POS: | |
13699 | case OP_ATR_SIZE: | |
13700 | case OP_ATR_TAG: | |
13701 | case OP_ATR_VAL: | |
4c4b4cd2 | 13702 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
13703 | { |
13704 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
79d43c61 TT |
13705 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0, |
13706 | &type_print_raw_options); | |
76a01679 JB |
13707 | *pos += 3; |
13708 | } | |
4c4b4cd2 | 13709 | else |
76a01679 | 13710 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
13711 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
13712 | if (nargs > 1) | |
76a01679 JB |
13713 | { |
13714 | int tem; | |
5b4ee69b | 13715 | |
76a01679 JB |
13716 | for (tem = 1; tem < nargs; tem += 1) |
13717 | { | |
13718 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
13719 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
13720 | } | |
13721 | fputs_filtered (")", stream); | |
13722 | } | |
4c4b4cd2 | 13723 | return; |
14f9c5c9 | 13724 | |
4c4b4cd2 | 13725 | case UNOP_QUAL: |
4c4b4cd2 PH |
13726 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
13727 | fputs_filtered ("'(", stream); | |
13728 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
13729 | fputs_filtered (")", stream); | |
13730 | return; | |
14f9c5c9 | 13731 | |
4c4b4cd2 | 13732 | case UNOP_IN_RANGE: |
323e0a4a | 13733 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13734 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13735 | fputs_filtered (" in ", stream); |
79d43c61 TT |
13736 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0, |
13737 | &type_print_raw_options); | |
4c4b4cd2 | 13738 | return; |
52ce6436 PH |
13739 | |
13740 | case OP_DISCRETE_RANGE: | |
13741 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13742 | fputs_filtered ("..", stream); | |
13743 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13744 | return; | |
13745 | ||
13746 | case OP_OTHERS: | |
13747 | fputs_filtered ("others => ", stream); | |
13748 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13749 | return; | |
13750 | ||
13751 | case OP_CHOICES: | |
13752 | for (i = 0; i < nargs-1; i += 1) | |
13753 | { | |
13754 | if (i > 0) | |
13755 | fputs_filtered ("|", stream); | |
13756 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13757 | } | |
13758 | fputs_filtered (" => ", stream); | |
13759 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13760 | return; | |
13761 | ||
13762 | case OP_POSITIONAL: | |
13763 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13764 | return; | |
13765 | ||
13766 | case OP_AGGREGATE: | |
13767 | fputs_filtered ("(", stream); | |
13768 | for (i = 0; i < nargs; i += 1) | |
13769 | { | |
13770 | if (i > 0) | |
13771 | fputs_filtered (", ", stream); | |
13772 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13773 | } | |
13774 | fputs_filtered (")", stream); | |
13775 | return; | |
4c4b4cd2 PH |
13776 | } |
13777 | } | |
14f9c5c9 AS |
13778 | |
13779 | /* Table mapping opcodes into strings for printing operators | |
13780 | and precedences of the operators. */ | |
13781 | ||
d2e4a39e AS |
13782 | static const struct op_print ada_op_print_tab[] = { |
13783 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
13784 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
13785 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
13786 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
13787 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
13788 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
13789 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
13790 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
13791 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
13792 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
13793 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
13794 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
13795 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
13796 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
13797 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
13798 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
13799 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
13800 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
13801 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
13802 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
13803 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
13804 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
13805 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
13806 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
13807 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
13808 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
13809 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
13810 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
13811 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
13812 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
13813 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
f486487f | 13814 | {NULL, OP_NULL, PREC_SUFFIX, 0} |
14f9c5c9 AS |
13815 | }; |
13816 | \f | |
72d5681a PH |
13817 | enum ada_primitive_types { |
13818 | ada_primitive_type_int, | |
13819 | ada_primitive_type_long, | |
13820 | ada_primitive_type_short, | |
13821 | ada_primitive_type_char, | |
13822 | ada_primitive_type_float, | |
13823 | ada_primitive_type_double, | |
13824 | ada_primitive_type_void, | |
13825 | ada_primitive_type_long_long, | |
13826 | ada_primitive_type_long_double, | |
13827 | ada_primitive_type_natural, | |
13828 | ada_primitive_type_positive, | |
13829 | ada_primitive_type_system_address, | |
08f49010 | 13830 | ada_primitive_type_storage_offset, |
72d5681a PH |
13831 | nr_ada_primitive_types |
13832 | }; | |
6c038f32 PH |
13833 | |
13834 | static void | |
d4a9a881 | 13835 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
13836 | struct language_arch_info *lai) |
13837 | { | |
d4a9a881 | 13838 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 13839 | |
72d5681a | 13840 | lai->primitive_type_vector |
d4a9a881 | 13841 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 13842 | struct type *); |
e9bb382b UW |
13843 | |
13844 | lai->primitive_type_vector [ada_primitive_type_int] | |
13845 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13846 | 0, "integer"); | |
13847 | lai->primitive_type_vector [ada_primitive_type_long] | |
13848 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
13849 | 0, "long_integer"); | |
13850 | lai->primitive_type_vector [ada_primitive_type_short] | |
13851 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
13852 | 0, "short_integer"); | |
13853 | lai->string_char_type | |
13854 | = lai->primitive_type_vector [ada_primitive_type_char] | |
cd7c1778 | 13855 | = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); |
e9bb382b UW |
13856 | lai->primitive_type_vector [ada_primitive_type_float] |
13857 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
49f190bc | 13858 | "float", gdbarch_float_format (gdbarch)); |
e9bb382b UW |
13859 | lai->primitive_type_vector [ada_primitive_type_double] |
13860 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
49f190bc | 13861 | "long_float", gdbarch_double_format (gdbarch)); |
e9bb382b UW |
13862 | lai->primitive_type_vector [ada_primitive_type_long_long] |
13863 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
13864 | 0, "long_long_integer"); | |
13865 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
5f3bceb6 | 13866 | = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch), |
49f190bc | 13867 | "long_long_float", gdbarch_long_double_format (gdbarch)); |
e9bb382b UW |
13868 | lai->primitive_type_vector [ada_primitive_type_natural] |
13869 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13870 | 0, "natural"); | |
13871 | lai->primitive_type_vector [ada_primitive_type_positive] | |
13872 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13873 | 0, "positive"); | |
13874 | lai->primitive_type_vector [ada_primitive_type_void] | |
13875 | = builtin->builtin_void; | |
13876 | ||
13877 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
77b7c781 UW |
13878 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, |
13879 | "void")); | |
72d5681a PH |
13880 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
13881 | = "system__address"; | |
fbb06eb1 | 13882 | |
08f49010 XR |
13883 | /* Create the equivalent of the System.Storage_Elements.Storage_Offset |
13884 | type. This is a signed integral type whose size is the same as | |
13885 | the size of addresses. */ | |
13886 | { | |
13887 | unsigned int addr_length = TYPE_LENGTH | |
13888 | (lai->primitive_type_vector [ada_primitive_type_system_address]); | |
13889 | ||
13890 | lai->primitive_type_vector [ada_primitive_type_storage_offset] | |
13891 | = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0, | |
13892 | "storage_offset"); | |
13893 | } | |
13894 | ||
47e729a8 | 13895 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 13896 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 13897 | } |
6c038f32 PH |
13898 | \f |
13899 | /* Language vector */ | |
13900 | ||
13901 | /* Not really used, but needed in the ada_language_defn. */ | |
13902 | ||
13903 | static void | |
6c7a06a3 | 13904 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 13905 | { |
6c7a06a3 | 13906 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
13907 | } |
13908 | ||
13909 | static int | |
410a0ff2 | 13910 | parse (struct parser_state *ps) |
6c038f32 PH |
13911 | { |
13912 | warnings_issued = 0; | |
410a0ff2 | 13913 | return ada_parse (ps); |
6c038f32 PH |
13914 | } |
13915 | ||
13916 | static const struct exp_descriptor ada_exp_descriptor = { | |
13917 | ada_print_subexp, | |
13918 | ada_operator_length, | |
c0201579 | 13919 | ada_operator_check, |
6c038f32 PH |
13920 | ada_op_name, |
13921 | ada_dump_subexp_body, | |
13922 | ada_evaluate_subexp | |
13923 | }; | |
13924 | ||
b5ec771e PA |
13925 | /* symbol_name_matcher_ftype adapter for wild_match. */ |
13926 | ||
13927 | static bool | |
13928 | do_wild_match (const char *symbol_search_name, | |
13929 | const lookup_name_info &lookup_name, | |
a207cff2 | 13930 | completion_match_result *comp_match_res) |
b5ec771e PA |
13931 | { |
13932 | return wild_match (symbol_search_name, ada_lookup_name (lookup_name)); | |
13933 | } | |
13934 | ||
13935 | /* symbol_name_matcher_ftype adapter for full_match. */ | |
13936 | ||
13937 | static bool | |
13938 | do_full_match (const char *symbol_search_name, | |
13939 | const lookup_name_info &lookup_name, | |
a207cff2 | 13940 | completion_match_result *comp_match_res) |
b5ec771e PA |
13941 | { |
13942 | return full_match (symbol_search_name, ada_lookup_name (lookup_name)); | |
13943 | } | |
13944 | ||
a2cd4f14 JB |
13945 | /* symbol_name_matcher_ftype for exact (verbatim) matches. */ |
13946 | ||
13947 | static bool | |
13948 | do_exact_match (const char *symbol_search_name, | |
13949 | const lookup_name_info &lookup_name, | |
13950 | completion_match_result *comp_match_res) | |
13951 | { | |
13952 | return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0; | |
13953 | } | |
13954 | ||
b5ec771e PA |
13955 | /* Build the Ada lookup name for LOOKUP_NAME. */ |
13956 | ||
13957 | ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name) | |
13958 | { | |
13959 | const std::string &user_name = lookup_name.name (); | |
13960 | ||
13961 | if (user_name[0] == '<') | |
13962 | { | |
13963 | if (user_name.back () == '>') | |
13964 | m_encoded_name = user_name.substr (1, user_name.size () - 2); | |
13965 | else | |
13966 | m_encoded_name = user_name.substr (1, user_name.size () - 1); | |
13967 | m_encoded_p = true; | |
13968 | m_verbatim_p = true; | |
13969 | m_wild_match_p = false; | |
13970 | m_standard_p = false; | |
13971 | } | |
13972 | else | |
13973 | { | |
13974 | m_verbatim_p = false; | |
13975 | ||
13976 | m_encoded_p = user_name.find ("__") != std::string::npos; | |
13977 | ||
13978 | if (!m_encoded_p) | |
13979 | { | |
13980 | const char *folded = ada_fold_name (user_name.c_str ()); | |
13981 | const char *encoded = ada_encode_1 (folded, false); | |
13982 | if (encoded != NULL) | |
13983 | m_encoded_name = encoded; | |
13984 | else | |
13985 | m_encoded_name = user_name; | |
13986 | } | |
13987 | else | |
13988 | m_encoded_name = user_name; | |
13989 | ||
13990 | /* Handle the 'package Standard' special case. See description | |
13991 | of m_standard_p. */ | |
13992 | if (startswith (m_encoded_name.c_str (), "standard__")) | |
13993 | { | |
13994 | m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1); | |
13995 | m_standard_p = true; | |
13996 | } | |
13997 | else | |
13998 | m_standard_p = false; | |
74ccd7f5 | 13999 | |
b5ec771e PA |
14000 | /* If the name contains a ".", then the user is entering a fully |
14001 | qualified entity name, and the match must not be done in wild | |
14002 | mode. Similarly, if the user wants to complete what looks | |
14003 | like an encoded name, the match must not be done in wild | |
14004 | mode. Also, in the standard__ special case always do | |
14005 | non-wild matching. */ | |
14006 | m_wild_match_p | |
14007 | = (lookup_name.match_type () != symbol_name_match_type::FULL | |
14008 | && !m_encoded_p | |
14009 | && !m_standard_p | |
14010 | && user_name.find ('.') == std::string::npos); | |
14011 | } | |
14012 | } | |
14013 | ||
14014 | /* symbol_name_matcher_ftype method for Ada. This only handles | |
14015 | completion mode. */ | |
14016 | ||
14017 | static bool | |
14018 | ada_symbol_name_matches (const char *symbol_search_name, | |
14019 | const lookup_name_info &lookup_name, | |
a207cff2 | 14020 | completion_match_result *comp_match_res) |
74ccd7f5 | 14021 | { |
b5ec771e PA |
14022 | return lookup_name.ada ().matches (symbol_search_name, |
14023 | lookup_name.match_type (), | |
a207cff2 | 14024 | comp_match_res); |
b5ec771e PA |
14025 | } |
14026 | ||
de63c46b PA |
14027 | /* A name matcher that matches the symbol name exactly, with |
14028 | strcmp. */ | |
14029 | ||
14030 | static bool | |
14031 | literal_symbol_name_matcher (const char *symbol_search_name, | |
14032 | const lookup_name_info &lookup_name, | |
14033 | completion_match_result *comp_match_res) | |
14034 | { | |
14035 | const std::string &name = lookup_name.name (); | |
14036 | ||
14037 | int cmp = (lookup_name.completion_mode () | |
14038 | ? strncmp (symbol_search_name, name.c_str (), name.size ()) | |
14039 | : strcmp (symbol_search_name, name.c_str ())); | |
14040 | if (cmp == 0) | |
14041 | { | |
14042 | if (comp_match_res != NULL) | |
14043 | comp_match_res->set_match (symbol_search_name); | |
14044 | return true; | |
14045 | } | |
14046 | else | |
14047 | return false; | |
14048 | } | |
14049 | ||
b5ec771e PA |
14050 | /* Implement the "la_get_symbol_name_matcher" language_defn method for |
14051 | Ada. */ | |
14052 | ||
14053 | static symbol_name_matcher_ftype * | |
14054 | ada_get_symbol_name_matcher (const lookup_name_info &lookup_name) | |
14055 | { | |
de63c46b PA |
14056 | if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME) |
14057 | return literal_symbol_name_matcher; | |
14058 | ||
b5ec771e PA |
14059 | if (lookup_name.completion_mode ()) |
14060 | return ada_symbol_name_matches; | |
74ccd7f5 | 14061 | else |
b5ec771e PA |
14062 | { |
14063 | if (lookup_name.ada ().wild_match_p ()) | |
14064 | return do_wild_match; | |
a2cd4f14 JB |
14065 | else if (lookup_name.ada ().verbatim_p ()) |
14066 | return do_exact_match; | |
b5ec771e PA |
14067 | else |
14068 | return do_full_match; | |
14069 | } | |
74ccd7f5 JB |
14070 | } |
14071 | ||
a5ee536b JB |
14072 | /* Implement the "la_read_var_value" language_defn method for Ada. */ |
14073 | ||
14074 | static struct value * | |
63e43d3a PMR |
14075 | ada_read_var_value (struct symbol *var, const struct block *var_block, |
14076 | struct frame_info *frame) | |
a5ee536b | 14077 | { |
a5ee536b JB |
14078 | /* The only case where default_read_var_value is not sufficient |
14079 | is when VAR is a renaming... */ | |
c0e70c62 TT |
14080 | if (frame != nullptr) |
14081 | { | |
14082 | const struct block *frame_block = get_frame_block (frame, NULL); | |
14083 | if (frame_block != nullptr && ada_is_renaming_symbol (var)) | |
14084 | return ada_read_renaming_var_value (var, frame_block); | |
14085 | } | |
a5ee536b JB |
14086 | |
14087 | /* This is a typical case where we expect the default_read_var_value | |
14088 | function to work. */ | |
63e43d3a | 14089 | return default_read_var_value (var, var_block, frame); |
a5ee536b JB |
14090 | } |
14091 | ||
56618e20 TT |
14092 | static const char *ada_extensions[] = |
14093 | { | |
14094 | ".adb", ".ads", ".a", ".ada", ".dg", NULL | |
14095 | }; | |
14096 | ||
47e77640 | 14097 | extern const struct language_defn ada_language_defn = { |
6c038f32 | 14098 | "ada", /* Language name */ |
6abde28f | 14099 | "Ada", |
6c038f32 | 14100 | language_ada, |
6c038f32 | 14101 | range_check_off, |
6c038f32 PH |
14102 | case_sensitive_on, /* Yes, Ada is case-insensitive, but |
14103 | that's not quite what this means. */ | |
6c038f32 | 14104 | array_row_major, |
9a044a89 | 14105 | macro_expansion_no, |
56618e20 | 14106 | ada_extensions, |
6c038f32 PH |
14107 | &ada_exp_descriptor, |
14108 | parse, | |
6c038f32 PH |
14109 | resolve, |
14110 | ada_printchar, /* Print a character constant */ | |
14111 | ada_printstr, /* Function to print string constant */ | |
14112 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 14113 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 14114 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
14115 | ada_val_print, /* Print a value using appropriate syntax */ |
14116 | ada_value_print, /* Print a top-level value */ | |
a5ee536b | 14117 | ada_read_var_value, /* la_read_var_value */ |
6c038f32 | 14118 | NULL, /* Language specific skip_trampoline */ |
2b2d9e11 | 14119 | NULL, /* name_of_this */ |
59cc4834 | 14120 | true, /* la_store_sym_names_in_linkage_form_p */ |
6c038f32 PH |
14121 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
14122 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
14123 | ada_la_decode, /* Language specific symbol demangler */ | |
8b302db8 | 14124 | ada_sniff_from_mangled_name, |
0963b4bd MS |
14125 | NULL, /* Language specific |
14126 | class_name_from_physname */ | |
6c038f32 PH |
14127 | ada_op_print_tab, /* expression operators for printing */ |
14128 | 0, /* c-style arrays */ | |
14129 | 1, /* String lower bound */ | |
6c038f32 | 14130 | ada_get_gdb_completer_word_break_characters, |
eb3ff9a5 | 14131 | ada_collect_symbol_completion_matches, |
72d5681a | 14132 | ada_language_arch_info, |
e79af960 | 14133 | ada_print_array_index, |
41f1b697 | 14134 | default_pass_by_reference, |
e2b7af72 | 14135 | ada_watch_location_expression, |
b5ec771e | 14136 | ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */ |
f8eba3c6 | 14137 | ada_iterate_over_symbols, |
5ffa0793 | 14138 | default_search_name_hash, |
a53b64ea | 14139 | &ada_varobj_ops, |
bb2ec1b3 | 14140 | NULL, |
721b08c6 | 14141 | NULL, |
4be290b2 | 14142 | ada_is_string_type, |
721b08c6 | 14143 | "(...)" /* la_struct_too_deep_ellipsis */ |
6c038f32 PH |
14144 | }; |
14145 | ||
5bf03f13 JB |
14146 | /* Command-list for the "set/show ada" prefix command. */ |
14147 | static struct cmd_list_element *set_ada_list; | |
14148 | static struct cmd_list_element *show_ada_list; | |
14149 | ||
14150 | /* Implement the "set ada" prefix command. */ | |
14151 | ||
14152 | static void | |
981a3fb3 | 14153 | set_ada_command (const char *arg, int from_tty) |
5bf03f13 JB |
14154 | { |
14155 | printf_unfiltered (_(\ | |
14156 | "\"set ada\" must be followed by the name of a setting.\n")); | |
635c7e8a | 14157 | help_list (set_ada_list, "set ada ", all_commands, gdb_stdout); |
5bf03f13 JB |
14158 | } |
14159 | ||
14160 | /* Implement the "show ada" prefix command. */ | |
14161 | ||
14162 | static void | |
981a3fb3 | 14163 | show_ada_command (const char *args, int from_tty) |
5bf03f13 JB |
14164 | { |
14165 | cmd_show_list (show_ada_list, from_tty, ""); | |
14166 | } | |
14167 | ||
2060206e PA |
14168 | static void |
14169 | initialize_ada_catchpoint_ops (void) | |
14170 | { | |
14171 | struct breakpoint_ops *ops; | |
14172 | ||
14173 | initialize_breakpoint_ops (); | |
14174 | ||
14175 | ops = &catch_exception_breakpoint_ops; | |
14176 | *ops = bkpt_breakpoint_ops; | |
37f6a7f4 TT |
14177 | ops->allocate_location = allocate_location_exception; |
14178 | ops->re_set = re_set_exception; | |
14179 | ops->check_status = check_status_exception; | |
14180 | ops->print_it = print_it_exception; | |
14181 | ops->print_one = print_one_exception; | |
14182 | ops->print_mention = print_mention_exception; | |
14183 | ops->print_recreate = print_recreate_exception; | |
2060206e PA |
14184 | |
14185 | ops = &catch_exception_unhandled_breakpoint_ops; | |
14186 | *ops = bkpt_breakpoint_ops; | |
37f6a7f4 TT |
14187 | ops->allocate_location = allocate_location_exception; |
14188 | ops->re_set = re_set_exception; | |
14189 | ops->check_status = check_status_exception; | |
14190 | ops->print_it = print_it_exception; | |
14191 | ops->print_one = print_one_exception; | |
14192 | ops->print_mention = print_mention_exception; | |
14193 | ops->print_recreate = print_recreate_exception; | |
2060206e PA |
14194 | |
14195 | ops = &catch_assert_breakpoint_ops; | |
14196 | *ops = bkpt_breakpoint_ops; | |
37f6a7f4 TT |
14197 | ops->allocate_location = allocate_location_exception; |
14198 | ops->re_set = re_set_exception; | |
14199 | ops->check_status = check_status_exception; | |
14200 | ops->print_it = print_it_exception; | |
14201 | ops->print_one = print_one_exception; | |
14202 | ops->print_mention = print_mention_exception; | |
14203 | ops->print_recreate = print_recreate_exception; | |
9f757bf7 XR |
14204 | |
14205 | ops = &catch_handlers_breakpoint_ops; | |
14206 | *ops = bkpt_breakpoint_ops; | |
37f6a7f4 TT |
14207 | ops->allocate_location = allocate_location_exception; |
14208 | ops->re_set = re_set_exception; | |
14209 | ops->check_status = check_status_exception; | |
14210 | ops->print_it = print_it_exception; | |
14211 | ops->print_one = print_one_exception; | |
14212 | ops->print_mention = print_mention_exception; | |
14213 | ops->print_recreate = print_recreate_exception; | |
2060206e PA |
14214 | } |
14215 | ||
3d9434b5 JB |
14216 | /* This module's 'new_objfile' observer. */ |
14217 | ||
14218 | static void | |
14219 | ada_new_objfile_observer (struct objfile *objfile) | |
14220 | { | |
14221 | ada_clear_symbol_cache (); | |
14222 | } | |
14223 | ||
14224 | /* This module's 'free_objfile' observer. */ | |
14225 | ||
14226 | static void | |
14227 | ada_free_objfile_observer (struct objfile *objfile) | |
14228 | { | |
14229 | ada_clear_symbol_cache (); | |
14230 | } | |
14231 | ||
6c265988 | 14232 | void _initialize_ada_language (); |
d2e4a39e | 14233 | void |
6c265988 | 14234 | _initialize_ada_language () |
14f9c5c9 | 14235 | { |
2060206e PA |
14236 | initialize_ada_catchpoint_ops (); |
14237 | ||
5bf03f13 | 14238 | add_prefix_cmd ("ada", no_class, set_ada_command, |
590042fc | 14239 | _("Prefix command for changing Ada-specific settings."), |
5bf03f13 JB |
14240 | &set_ada_list, "set ada ", 0, &setlist); |
14241 | ||
14242 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
14243 | _("Generic command for showing Ada-specific settings."), | |
14244 | &show_ada_list, "show ada ", 0, &showlist); | |
14245 | ||
14246 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
14247 | &trust_pad_over_xvs, _("\ | |
590042fc PW |
14248 | Enable or disable an optimization trusting PAD types over XVS types."), _("\ |
14249 | Show whether an optimization trusting PAD types over XVS types is activated."), | |
5bf03f13 JB |
14250 | _("\ |
14251 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
14252 | should normally trust the contents of PAD types, but certain older versions\n\ | |
14253 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
14254 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
14255 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
14256 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
14257 | this option to \"off\" unless necessary."), | |
14258 | NULL, NULL, &set_ada_list, &show_ada_list); | |
14259 | ||
d72413e6 PMR |
14260 | add_setshow_boolean_cmd ("print-signatures", class_vars, |
14261 | &print_signatures, _("\ | |
14262 | Enable or disable the output of formal and return types for functions in the \ | |
590042fc | 14263 | overloads selection menu."), _("\ |
d72413e6 | 14264 | Show whether the output of formal and return types for functions in the \ |
590042fc | 14265 | overloads selection menu is activated."), |
d72413e6 PMR |
14266 | NULL, NULL, NULL, &set_ada_list, &show_ada_list); |
14267 | ||
9ac4176b PA |
14268 | add_catch_command ("exception", _("\ |
14269 | Catch Ada exceptions, when raised.\n\ | |
9bf7038b | 14270 | Usage: catch exception [ARG] [if CONDITION]\n\ |
60a90376 JB |
14271 | Without any argument, stop when any Ada exception is raised.\n\ |
14272 | If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\ | |
14273 | being raised does not have a handler (and will therefore lead to the task's\n\ | |
14274 | termination).\n\ | |
14275 | Otherwise, the catchpoint only stops when the name of the exception being\n\ | |
9bf7038b TT |
14276 | raised is the same as ARG.\n\ |
14277 | CONDITION is a boolean expression that is evaluated to see whether the\n\ | |
14278 | exception should cause a stop."), | |
9ac4176b | 14279 | catch_ada_exception_command, |
71bed2db | 14280 | catch_ada_completer, |
9ac4176b PA |
14281 | CATCH_PERMANENT, |
14282 | CATCH_TEMPORARY); | |
9f757bf7 XR |
14283 | |
14284 | add_catch_command ("handlers", _("\ | |
14285 | Catch Ada exceptions, when handled.\n\ | |
9bf7038b TT |
14286 | Usage: catch handlers [ARG] [if CONDITION]\n\ |
14287 | Without any argument, stop when any Ada exception is handled.\n\ | |
14288 | With an argument, catch only exceptions with the given name.\n\ | |
14289 | CONDITION is a boolean expression that is evaluated to see whether the\n\ | |
14290 | exception should cause a stop."), | |
9f757bf7 | 14291 | catch_ada_handlers_command, |
71bed2db | 14292 | catch_ada_completer, |
9f757bf7 XR |
14293 | CATCH_PERMANENT, |
14294 | CATCH_TEMPORARY); | |
9ac4176b PA |
14295 | add_catch_command ("assert", _("\ |
14296 | Catch failed Ada assertions, when raised.\n\ | |
9bf7038b TT |
14297 | Usage: catch assert [if CONDITION]\n\ |
14298 | CONDITION is a boolean expression that is evaluated to see whether the\n\ | |
14299 | exception should cause a stop."), | |
9ac4176b PA |
14300 | catch_assert_command, |
14301 | NULL, | |
14302 | CATCH_PERMANENT, | |
14303 | CATCH_TEMPORARY); | |
14304 | ||
6c038f32 | 14305 | varsize_limit = 65536; |
3fcded8f JB |
14306 | add_setshow_uinteger_cmd ("varsize-limit", class_support, |
14307 | &varsize_limit, _("\ | |
14308 | Set the maximum number of bytes allowed in a variable-size object."), _("\ | |
14309 | Show the maximum number of bytes allowed in a variable-size object."), _("\ | |
14310 | Attempts to access an object whose size is not a compile-time constant\n\ | |
14311 | and exceeds this limit will cause an error."), | |
14312 | NULL, NULL, &setlist, &showlist); | |
6c038f32 | 14313 | |
778865d3 JB |
14314 | add_info ("exceptions", info_exceptions_command, |
14315 | _("\ | |
14316 | List all Ada exception names.\n\ | |
9bf7038b | 14317 | Usage: info exceptions [REGEXP]\n\ |
778865d3 JB |
14318 | If a regular expression is passed as an argument, only those matching\n\ |
14319 | the regular expression are listed.")); | |
14320 | ||
c6044dd1 JB |
14321 | add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd, |
14322 | _("Set Ada maintenance-related variables."), | |
14323 | &maint_set_ada_cmdlist, "maintenance set ada ", | |
14324 | 0/*allow-unknown*/, &maintenance_set_cmdlist); | |
14325 | ||
14326 | add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd, | |
590042fc | 14327 | _("Show Ada maintenance-related variables."), |
c6044dd1 JB |
14328 | &maint_show_ada_cmdlist, "maintenance show ada ", |
14329 | 0/*allow-unknown*/, &maintenance_show_cmdlist); | |
14330 | ||
14331 | add_setshow_boolean_cmd | |
14332 | ("ignore-descriptive-types", class_maintenance, | |
14333 | &ada_ignore_descriptive_types_p, | |
14334 | _("Set whether descriptive types generated by GNAT should be ignored."), | |
14335 | _("Show whether descriptive types generated by GNAT should be ignored."), | |
14336 | _("\ | |
14337 | When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\ | |
14338 | DWARF attribute."), | |
14339 | NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist); | |
14340 | ||
459a2e4c TT |
14341 | decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash, |
14342 | NULL, xcalloc, xfree); | |
6b69afc4 | 14343 | |
3d9434b5 | 14344 | /* The ada-lang observers. */ |
76727919 TT |
14345 | gdb::observers::new_objfile.attach (ada_new_objfile_observer); |
14346 | gdb::observers::free_objfile.attach (ada_free_objfile_observer); | |
14347 | gdb::observers::inferior_exit.attach (ada_inferior_exit); | |
14f9c5c9 | 14348 | } |