gdb/
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
14f9c5c9 60
ccefe4c4 61#include "psymtab.h"
40bc484c 62#include "value.h"
ccefe4c4 63
4c4b4cd2
PH
64/* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
50810684 72static void modify_general_field (struct type *, char *, LONGEST, int, int);
14f9c5c9 73
d2e4a39e 74static struct type *desc_base_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct type *desc_bounds_type (struct type *);
14f9c5c9 77
d2e4a39e 78static struct value *desc_bounds (struct value *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 81
d2e4a39e 82static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 83
556bdfd4 84static struct type *desc_data_target_type (struct type *);
14f9c5c9 85
d2e4a39e 86static struct value *desc_data (struct value *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 89
d2e4a39e 90static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 91
d2e4a39e 92static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 97
d2e4a39e 98static struct type *desc_index_type (struct type *, int);
14f9c5c9 99
d2e4a39e 100static int desc_arity (struct type *);
14f9c5c9 101
d2e4a39e 102static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 103
d2e4a39e 104static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 105
40658b94
PH
106static int full_match (const char *, const char *);
107
40bc484c 108static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 109
4c4b4cd2 110static void ada_add_block_symbols (struct obstack *,
76a01679 111 struct block *, const char *,
2570f2b7 112 domain_enum, struct objfile *, int);
14f9c5c9 113
4c4b4cd2 114static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 115
76a01679 116static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 117 struct block *);
14f9c5c9 118
4c4b4cd2
PH
119static int num_defns_collected (struct obstack *);
120
121static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 122
4c4b4cd2 123static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 124 struct type *);
14f9c5c9 125
d2e4a39e 126static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 127 struct symbol *, struct block *);
14f9c5c9 128
d2e4a39e 129static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 130
4c4b4cd2
PH
131static char *ada_op_name (enum exp_opcode);
132
133static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 134
d2e4a39e 135static int numeric_type_p (struct type *);
14f9c5c9 136
d2e4a39e 137static int integer_type_p (struct type *);
14f9c5c9 138
d2e4a39e 139static int scalar_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int discrete_type_p (struct type *);
14f9c5c9 142
aeb5907d
JB
143static enum ada_renaming_category parse_old_style_renaming (struct type *,
144 const char **,
145 int *,
146 const char **);
147
148static struct symbol *find_old_style_renaming_symbol (const char *,
149 struct block *);
150
4c4b4cd2 151static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 152 int, int, int *);
4c4b4cd2 153
d2e4a39e 154static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 155
b4ba55a1
JB
156static struct type *ada_find_parallel_type_with_name (struct type *,
157 const char *);
158
d2e4a39e 159static int is_dynamic_field (struct type *, int);
14f9c5c9 160
10a2c479 161static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 162 const gdb_byte *,
4c4b4cd2
PH
163 CORE_ADDR, struct value *);
164
165static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 166
28c85d6c 167static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 168
d2e4a39e 169static struct type *to_static_fixed_type (struct type *);
f192137b 170static struct type *static_unwrap_type (struct type *type);
14f9c5c9 171
d2e4a39e 172static struct value *unwrap_value (struct value *);
14f9c5c9 173
ad82864c 174static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 175
ad82864c 176static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 177
ad82864c
JB
178static long decode_packed_array_bitsize (struct type *);
179
180static struct value *decode_constrained_packed_array (struct value *);
181
182static int ada_is_packed_array_type (struct type *);
183
184static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 185
d2e4a39e 186static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 187 struct value **);
14f9c5c9 188
50810684 189static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 190
4c4b4cd2
PH
191static struct value *coerce_unspec_val_to_type (struct value *,
192 struct type *);
14f9c5c9 193
d2e4a39e 194static struct value *get_var_value (char *, char *);
14f9c5c9 195
d2e4a39e 196static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 197
d2e4a39e 198static int equiv_types (struct type *, struct type *);
14f9c5c9 199
d2e4a39e 200static int is_name_suffix (const char *);
14f9c5c9 201
73589123
PH
202static int advance_wild_match (const char **, const char *, int);
203
204static int wild_match (const char *, const char *);
14f9c5c9 205
d2e4a39e 206static struct value *ada_coerce_ref (struct value *);
14f9c5c9 207
4c4b4cd2
PH
208static LONGEST pos_atr (struct value *);
209
3cb382c9 210static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 211
d2e4a39e 212static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 213
4c4b4cd2
PH
214static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
14f9c5c9 216
4c4b4cd2
PH
217static struct value *ada_search_struct_field (char *, struct value *, int,
218 struct type *);
219
220static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
76a01679 223static int find_struct_field (char *, struct type *, int,
52ce6436 224 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
225
226static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
227 struct value *);
228
4c4b4cd2
PH
229static int ada_resolve_function (struct ada_symbol_info *, int,
230 struct value **, int, const char *,
231 struct type *);
232
233static struct value *ada_coerce_to_simple_array (struct value *);
234
235static int ada_is_direct_array_type (struct type *);
236
72d5681a
PH
237static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
714e53ab
PH
239
240static void check_size (const struct type *);
52ce6436
PH
241
242static struct value *ada_index_struct_field (int, struct value *, int,
243 struct type *);
244
245static struct value *assign_aggregate (struct value *, struct value *,
246 struct expression *, int *, enum noside);
247
248static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
4c4b4cd2
PH
272\f
273
76a01679 274
4c4b4cd2 275/* Maximum-sized dynamic type. */
14f9c5c9
AS
276static unsigned int varsize_limit;
277
4c4b4cd2
PH
278/* FIXME: brobecker/2003-09-17: No longer a const because it is
279 returned by a function that does not return a const char *. */
280static char *ada_completer_word_break_characters =
281#ifdef VMS
282 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
283#else
14f9c5c9 284 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 285#endif
14f9c5c9 286
4c4b4cd2 287/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 288static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 289 = "__gnat_ada_main_program_name";
14f9c5c9 290
4c4b4cd2
PH
291/* Limit on the number of warnings to raise per expression evaluation. */
292static int warning_limit = 2;
293
294/* Number of warning messages issued; reset to 0 by cleanups after
295 expression evaluation. */
296static int warnings_issued = 0;
297
298static const char *known_runtime_file_name_patterns[] = {
299 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
300};
301
302static const char *known_auxiliary_function_name_patterns[] = {
303 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
304};
305
306/* Space for allocating results of ada_lookup_symbol_list. */
307static struct obstack symbol_list_obstack;
308
e802dbe0
JB
309 /* Inferior-specific data. */
310
311/* Per-inferior data for this module. */
312
313struct ada_inferior_data
314{
315 /* The ada__tags__type_specific_data type, which is used when decoding
316 tagged types. With older versions of GNAT, this type was directly
317 accessible through a component ("tsd") in the object tag. But this
318 is no longer the case, so we cache it for each inferior. */
319 struct type *tsd_type;
320};
321
322/* Our key to this module's inferior data. */
323static const struct inferior_data *ada_inferior_data;
324
325/* A cleanup routine for our inferior data. */
326static void
327ada_inferior_data_cleanup (struct inferior *inf, void *arg)
328{
329 struct ada_inferior_data *data;
330
331 data = inferior_data (inf, ada_inferior_data);
332 if (data != NULL)
333 xfree (data);
334}
335
336/* Return our inferior data for the given inferior (INF).
337
338 This function always returns a valid pointer to an allocated
339 ada_inferior_data structure. If INF's inferior data has not
340 been previously set, this functions creates a new one with all
341 fields set to zero, sets INF's inferior to it, and then returns
342 a pointer to that newly allocated ada_inferior_data. */
343
344static struct ada_inferior_data *
345get_ada_inferior_data (struct inferior *inf)
346{
347 struct ada_inferior_data *data;
348
349 data = inferior_data (inf, ada_inferior_data);
350 if (data == NULL)
351 {
352 data = XZALLOC (struct ada_inferior_data);
353 set_inferior_data (inf, ada_inferior_data, data);
354 }
355
356 return data;
357}
358
359/* Perform all necessary cleanups regarding our module's inferior data
360 that is required after the inferior INF just exited. */
361
362static void
363ada_inferior_exit (struct inferior *inf)
364{
365 ada_inferior_data_cleanup (inf, NULL);
366 set_inferior_data (inf, ada_inferior_data, NULL);
367}
368
4c4b4cd2
PH
369 /* Utilities */
370
41d27058
JB
371/* Given DECODED_NAME a string holding a symbol name in its
372 decoded form (ie using the Ada dotted notation), returns
373 its unqualified name. */
374
375static const char *
376ada_unqualified_name (const char *decoded_name)
377{
378 const char *result = strrchr (decoded_name, '.');
379
380 if (result != NULL)
381 result++; /* Skip the dot... */
382 else
383 result = decoded_name;
384
385 return result;
386}
387
388/* Return a string starting with '<', followed by STR, and '>'.
389 The result is good until the next call. */
390
391static char *
392add_angle_brackets (const char *str)
393{
394 static char *result = NULL;
395
396 xfree (result);
88c15c34 397 result = xstrprintf ("<%s>", str);
41d27058
JB
398 return result;
399}
96d887e8 400
4c4b4cd2
PH
401static char *
402ada_get_gdb_completer_word_break_characters (void)
403{
404 return ada_completer_word_break_characters;
405}
406
e79af960
JB
407/* Print an array element index using the Ada syntax. */
408
409static void
410ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 411 const struct value_print_options *options)
e79af960 412{
79a45b7d 413 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
414 fprintf_filtered (stream, " => ");
415}
416
f27cf670 417/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 418 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 419 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 420
f27cf670
AS
421void *
422grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 423{
d2e4a39e
AS
424 if (*size < min_size)
425 {
426 *size *= 2;
427 if (*size < min_size)
4c4b4cd2 428 *size = min_size;
f27cf670 429 vect = xrealloc (vect, *size * element_size);
d2e4a39e 430 }
f27cf670 431 return vect;
14f9c5c9
AS
432}
433
434/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 435 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
436
437static int
ebf56fd3 438field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
439{
440 int len = strlen (target);
5b4ee69b 441
d2e4a39e 442 return
4c4b4cd2
PH
443 (strncmp (field_name, target, len) == 0
444 && (field_name[len] == '\0'
445 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
446 && strcmp (field_name + strlen (field_name) - 6,
447 "___XVN") != 0)));
14f9c5c9
AS
448}
449
450
872c8b51
JB
451/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
452 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
453 and return its index. This function also handles fields whose name
454 have ___ suffixes because the compiler sometimes alters their name
455 by adding such a suffix to represent fields with certain constraints.
456 If the field could not be found, return a negative number if
457 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
458
459int
460ada_get_field_index (const struct type *type, const char *field_name,
461 int maybe_missing)
462{
463 int fieldno;
872c8b51
JB
464 struct type *struct_type = check_typedef ((struct type *) type);
465
466 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
467 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
468 return fieldno;
469
470 if (!maybe_missing)
323e0a4a 471 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 472 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
473
474 return -1;
475}
476
477/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
478
479int
d2e4a39e 480ada_name_prefix_len (const char *name)
14f9c5c9
AS
481{
482 if (name == NULL)
483 return 0;
d2e4a39e 484 else
14f9c5c9 485 {
d2e4a39e 486 const char *p = strstr (name, "___");
5b4ee69b 487
14f9c5c9 488 if (p == NULL)
4c4b4cd2 489 return strlen (name);
14f9c5c9 490 else
4c4b4cd2 491 return p - name;
14f9c5c9
AS
492 }
493}
494
4c4b4cd2
PH
495/* Return non-zero if SUFFIX is a suffix of STR.
496 Return zero if STR is null. */
497
14f9c5c9 498static int
d2e4a39e 499is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
500{
501 int len1, len2;
5b4ee69b 502
14f9c5c9
AS
503 if (str == NULL)
504 return 0;
505 len1 = strlen (str);
506 len2 = strlen (suffix);
4c4b4cd2 507 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
508}
509
4c4b4cd2
PH
510/* The contents of value VAL, treated as a value of type TYPE. The
511 result is an lval in memory if VAL is. */
14f9c5c9 512
d2e4a39e 513static struct value *
4c4b4cd2 514coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 515{
61ee279c 516 type = ada_check_typedef (type);
df407dfe 517 if (value_type (val) == type)
4c4b4cd2 518 return val;
d2e4a39e 519 else
14f9c5c9 520 {
4c4b4cd2
PH
521 struct value *result;
522
523 /* Make sure that the object size is not unreasonable before
524 trying to allocate some memory for it. */
714e53ab 525 check_size (type);
4c4b4cd2
PH
526
527 result = allocate_value (type);
74bcbdf3 528 set_value_component_location (result, val);
9bbda503
AC
529 set_value_bitsize (result, value_bitsize (val));
530 set_value_bitpos (result, value_bitpos (val));
42ae5230 531 set_value_address (result, value_address (val));
d69fe07e 532 if (value_lazy (val)
df407dfe 533 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 534 set_value_lazy (result, 1);
d2e4a39e 535 else
0fd88904 536 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 537 TYPE_LENGTH (type));
14f9c5c9
AS
538 return result;
539 }
540}
541
fc1a4b47
AC
542static const gdb_byte *
543cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
544{
545 if (valaddr == NULL)
546 return NULL;
547 else
548 return valaddr + offset;
549}
550
551static CORE_ADDR
ebf56fd3 552cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
553{
554 if (address == 0)
555 return 0;
d2e4a39e 556 else
14f9c5c9
AS
557 return address + offset;
558}
559
4c4b4cd2
PH
560/* Issue a warning (as for the definition of warning in utils.c, but
561 with exactly one argument rather than ...), unless the limit on the
562 number of warnings has passed during the evaluation of the current
563 expression. */
a2249542 564
77109804
AC
565/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
566 provided by "complaint". */
a0b31db1 567static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 568
14f9c5c9 569static void
a2249542 570lim_warning (const char *format, ...)
14f9c5c9 571{
a2249542 572 va_list args;
a2249542 573
5b4ee69b 574 va_start (args, format);
4c4b4cd2
PH
575 warnings_issued += 1;
576 if (warnings_issued <= warning_limit)
a2249542
MK
577 vwarning (format, args);
578
579 va_end (args);
4c4b4cd2
PH
580}
581
714e53ab
PH
582/* Issue an error if the size of an object of type T is unreasonable,
583 i.e. if it would be a bad idea to allocate a value of this type in
584 GDB. */
585
586static void
587check_size (const struct type *type)
588{
589 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 590 error (_("object size is larger than varsize-limit"));
714e53ab
PH
591}
592
c3e5cd34 593/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 594static LONGEST
c3e5cd34 595max_of_size (int size)
4c4b4cd2 596{
76a01679 597 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 598
76a01679 599 return top_bit | (top_bit - 1);
4c4b4cd2
PH
600}
601
c3e5cd34 602/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 603static LONGEST
c3e5cd34 604min_of_size (int size)
4c4b4cd2 605{
c3e5cd34 606 return -max_of_size (size) - 1;
4c4b4cd2
PH
607}
608
c3e5cd34 609/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 610static ULONGEST
c3e5cd34 611umax_of_size (int size)
4c4b4cd2 612{
76a01679 613 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 614
76a01679 615 return top_bit | (top_bit - 1);
4c4b4cd2
PH
616}
617
c3e5cd34
PH
618/* Maximum value of integral type T, as a signed quantity. */
619static LONGEST
620max_of_type (struct type *t)
4c4b4cd2 621{
c3e5cd34
PH
622 if (TYPE_UNSIGNED (t))
623 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
624 else
625 return max_of_size (TYPE_LENGTH (t));
626}
627
628/* Minimum value of integral type T, as a signed quantity. */
629static LONGEST
630min_of_type (struct type *t)
631{
632 if (TYPE_UNSIGNED (t))
633 return 0;
634 else
635 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
636}
637
638/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
639LONGEST
640ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 641{
76a01679 642 switch (TYPE_CODE (type))
4c4b4cd2
PH
643 {
644 case TYPE_CODE_RANGE:
690cc4eb 645 return TYPE_HIGH_BOUND (type);
4c4b4cd2 646 case TYPE_CODE_ENUM:
690cc4eb
PH
647 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
648 case TYPE_CODE_BOOL:
649 return 1;
650 case TYPE_CODE_CHAR:
76a01679 651 case TYPE_CODE_INT:
690cc4eb 652 return max_of_type (type);
4c4b4cd2 653 default:
43bbcdc2 654 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
655 }
656}
657
658/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
659LONGEST
660ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 661{
76a01679 662 switch (TYPE_CODE (type))
4c4b4cd2
PH
663 {
664 case TYPE_CODE_RANGE:
690cc4eb 665 return TYPE_LOW_BOUND (type);
4c4b4cd2 666 case TYPE_CODE_ENUM:
690cc4eb
PH
667 return TYPE_FIELD_BITPOS (type, 0);
668 case TYPE_CODE_BOOL:
669 return 0;
670 case TYPE_CODE_CHAR:
76a01679 671 case TYPE_CODE_INT:
690cc4eb 672 return min_of_type (type);
4c4b4cd2 673 default:
43bbcdc2 674 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
675 }
676}
677
678/* The identity on non-range types. For range types, the underlying
76a01679 679 non-range scalar type. */
4c4b4cd2
PH
680
681static struct type *
682base_type (struct type *type)
683{
684 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
685 {
76a01679
JB
686 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
687 return type;
4c4b4cd2
PH
688 type = TYPE_TARGET_TYPE (type);
689 }
690 return type;
14f9c5c9 691}
4c4b4cd2 692\f
76a01679 693
4c4b4cd2 694 /* Language Selection */
14f9c5c9
AS
695
696/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 697 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 698
14f9c5c9 699enum language
ccefe4c4 700ada_update_initial_language (enum language lang)
14f9c5c9 701{
d2e4a39e 702 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
703 (struct objfile *) NULL) != NULL)
704 return language_ada;
14f9c5c9
AS
705
706 return lang;
707}
96d887e8
PH
708
709/* If the main procedure is written in Ada, then return its name.
710 The result is good until the next call. Return NULL if the main
711 procedure doesn't appear to be in Ada. */
712
713char *
714ada_main_name (void)
715{
716 struct minimal_symbol *msym;
f9bc20b9 717 static char *main_program_name = NULL;
6c038f32 718
96d887e8
PH
719 /* For Ada, the name of the main procedure is stored in a specific
720 string constant, generated by the binder. Look for that symbol,
721 extract its address, and then read that string. If we didn't find
722 that string, then most probably the main procedure is not written
723 in Ada. */
724 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
725
726 if (msym != NULL)
727 {
f9bc20b9
JB
728 CORE_ADDR main_program_name_addr;
729 int err_code;
730
96d887e8
PH
731 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
732 if (main_program_name_addr == 0)
323e0a4a 733 error (_("Invalid address for Ada main program name."));
96d887e8 734
f9bc20b9
JB
735 xfree (main_program_name);
736 target_read_string (main_program_name_addr, &main_program_name,
737 1024, &err_code);
738
739 if (err_code != 0)
740 return NULL;
96d887e8
PH
741 return main_program_name;
742 }
743
744 /* The main procedure doesn't seem to be in Ada. */
745 return NULL;
746}
14f9c5c9 747\f
4c4b4cd2 748 /* Symbols */
d2e4a39e 749
4c4b4cd2
PH
750/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
751 of NULLs. */
14f9c5c9 752
d2e4a39e
AS
753const struct ada_opname_map ada_opname_table[] = {
754 {"Oadd", "\"+\"", BINOP_ADD},
755 {"Osubtract", "\"-\"", BINOP_SUB},
756 {"Omultiply", "\"*\"", BINOP_MUL},
757 {"Odivide", "\"/\"", BINOP_DIV},
758 {"Omod", "\"mod\"", BINOP_MOD},
759 {"Orem", "\"rem\"", BINOP_REM},
760 {"Oexpon", "\"**\"", BINOP_EXP},
761 {"Olt", "\"<\"", BINOP_LESS},
762 {"Ole", "\"<=\"", BINOP_LEQ},
763 {"Ogt", "\">\"", BINOP_GTR},
764 {"Oge", "\">=\"", BINOP_GEQ},
765 {"Oeq", "\"=\"", BINOP_EQUAL},
766 {"One", "\"/=\"", BINOP_NOTEQUAL},
767 {"Oand", "\"and\"", BINOP_BITWISE_AND},
768 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
769 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
770 {"Oconcat", "\"&\"", BINOP_CONCAT},
771 {"Oabs", "\"abs\"", UNOP_ABS},
772 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
773 {"Oadd", "\"+\"", UNOP_PLUS},
774 {"Osubtract", "\"-\"", UNOP_NEG},
775 {NULL, NULL}
14f9c5c9
AS
776};
777
4c4b4cd2
PH
778/* The "encoded" form of DECODED, according to GNAT conventions.
779 The result is valid until the next call to ada_encode. */
780
14f9c5c9 781char *
4c4b4cd2 782ada_encode (const char *decoded)
14f9c5c9 783{
4c4b4cd2
PH
784 static char *encoding_buffer = NULL;
785 static size_t encoding_buffer_size = 0;
d2e4a39e 786 const char *p;
14f9c5c9 787 int k;
d2e4a39e 788
4c4b4cd2 789 if (decoded == NULL)
14f9c5c9
AS
790 return NULL;
791
4c4b4cd2
PH
792 GROW_VECT (encoding_buffer, encoding_buffer_size,
793 2 * strlen (decoded) + 10);
14f9c5c9
AS
794
795 k = 0;
4c4b4cd2 796 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 797 {
cdc7bb92 798 if (*p == '.')
4c4b4cd2
PH
799 {
800 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
801 k += 2;
802 }
14f9c5c9 803 else if (*p == '"')
4c4b4cd2
PH
804 {
805 const struct ada_opname_map *mapping;
806
807 for (mapping = ada_opname_table;
1265e4aa
JB
808 mapping->encoded != NULL
809 && strncmp (mapping->decoded, p,
810 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
811 ;
812 if (mapping->encoded == NULL)
323e0a4a 813 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
814 strcpy (encoding_buffer + k, mapping->encoded);
815 k += strlen (mapping->encoded);
816 break;
817 }
d2e4a39e 818 else
4c4b4cd2
PH
819 {
820 encoding_buffer[k] = *p;
821 k += 1;
822 }
14f9c5c9
AS
823 }
824
4c4b4cd2
PH
825 encoding_buffer[k] = '\0';
826 return encoding_buffer;
14f9c5c9
AS
827}
828
829/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
830 quotes, unfolded, but with the quotes stripped away. Result good
831 to next call. */
832
d2e4a39e
AS
833char *
834ada_fold_name (const char *name)
14f9c5c9 835{
d2e4a39e 836 static char *fold_buffer = NULL;
14f9c5c9
AS
837 static size_t fold_buffer_size = 0;
838
839 int len = strlen (name);
d2e4a39e 840 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
841
842 if (name[0] == '\'')
843 {
d2e4a39e
AS
844 strncpy (fold_buffer, name + 1, len - 2);
845 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
846 }
847 else
848 {
849 int i;
5b4ee69b 850
14f9c5c9 851 for (i = 0; i <= len; i += 1)
4c4b4cd2 852 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
853 }
854
855 return fold_buffer;
856}
857
529cad9c
PH
858/* Return nonzero if C is either a digit or a lowercase alphabet character. */
859
860static int
861is_lower_alphanum (const char c)
862{
863 return (isdigit (c) || (isalpha (c) && islower (c)));
864}
865
29480c32
JB
866/* Remove either of these suffixes:
867 . .{DIGIT}+
868 . ${DIGIT}+
869 . ___{DIGIT}+
870 . __{DIGIT}+.
871 These are suffixes introduced by the compiler for entities such as
872 nested subprogram for instance, in order to avoid name clashes.
873 They do not serve any purpose for the debugger. */
874
875static void
876ada_remove_trailing_digits (const char *encoded, int *len)
877{
878 if (*len > 1 && isdigit (encoded[*len - 1]))
879 {
880 int i = *len - 2;
5b4ee69b 881
29480c32
JB
882 while (i > 0 && isdigit (encoded[i]))
883 i--;
884 if (i >= 0 && encoded[i] == '.')
885 *len = i;
886 else if (i >= 0 && encoded[i] == '$')
887 *len = i;
888 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
889 *len = i - 2;
890 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
891 *len = i - 1;
892 }
893}
894
895/* Remove the suffix introduced by the compiler for protected object
896 subprograms. */
897
898static void
899ada_remove_po_subprogram_suffix (const char *encoded, int *len)
900{
901 /* Remove trailing N. */
902
903 /* Protected entry subprograms are broken into two
904 separate subprograms: The first one is unprotected, and has
905 a 'N' suffix; the second is the protected version, and has
906 the 'P' suffix. The second calls the first one after handling
907 the protection. Since the P subprograms are internally generated,
908 we leave these names undecoded, giving the user a clue that this
909 entity is internal. */
910
911 if (*len > 1
912 && encoded[*len - 1] == 'N'
913 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
914 *len = *len - 1;
915}
916
69fadcdf
JB
917/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
918
919static void
920ada_remove_Xbn_suffix (const char *encoded, int *len)
921{
922 int i = *len - 1;
923
924 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
925 i--;
926
927 if (encoded[i] != 'X')
928 return;
929
930 if (i == 0)
931 return;
932
933 if (isalnum (encoded[i-1]))
934 *len = i;
935}
936
29480c32
JB
937/* If ENCODED follows the GNAT entity encoding conventions, then return
938 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
939 replaced by ENCODED.
14f9c5c9 940
4c4b4cd2 941 The resulting string is valid until the next call of ada_decode.
29480c32 942 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
943 is returned. */
944
945const char *
946ada_decode (const char *encoded)
14f9c5c9
AS
947{
948 int i, j;
949 int len0;
d2e4a39e 950 const char *p;
4c4b4cd2 951 char *decoded;
14f9c5c9 952 int at_start_name;
4c4b4cd2
PH
953 static char *decoding_buffer = NULL;
954 static size_t decoding_buffer_size = 0;
d2e4a39e 955
29480c32
JB
956 /* The name of the Ada main procedure starts with "_ada_".
957 This prefix is not part of the decoded name, so skip this part
958 if we see this prefix. */
4c4b4cd2
PH
959 if (strncmp (encoded, "_ada_", 5) == 0)
960 encoded += 5;
14f9c5c9 961
29480c32
JB
962 /* If the name starts with '_', then it is not a properly encoded
963 name, so do not attempt to decode it. Similarly, if the name
964 starts with '<', the name should not be decoded. */
4c4b4cd2 965 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
966 goto Suppress;
967
4c4b4cd2 968 len0 = strlen (encoded);
4c4b4cd2 969
29480c32
JB
970 ada_remove_trailing_digits (encoded, &len0);
971 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 972
4c4b4cd2
PH
973 /* Remove the ___X.* suffix if present. Do not forget to verify that
974 the suffix is located before the current "end" of ENCODED. We want
975 to avoid re-matching parts of ENCODED that have previously been
976 marked as discarded (by decrementing LEN0). */
977 p = strstr (encoded, "___");
978 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
979 {
980 if (p[3] == 'X')
4c4b4cd2 981 len0 = p - encoded;
14f9c5c9 982 else
4c4b4cd2 983 goto Suppress;
14f9c5c9 984 }
4c4b4cd2 985
29480c32
JB
986 /* Remove any trailing TKB suffix. It tells us that this symbol
987 is for the body of a task, but that information does not actually
988 appear in the decoded name. */
989
4c4b4cd2 990 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 991 len0 -= 3;
76a01679 992
a10967fa
JB
993 /* Remove any trailing TB suffix. The TB suffix is slightly different
994 from the TKB suffix because it is used for non-anonymous task
995 bodies. */
996
997 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
998 len0 -= 2;
999
29480c32
JB
1000 /* Remove trailing "B" suffixes. */
1001 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1002
4c4b4cd2 1003 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1004 len0 -= 1;
1005
4c4b4cd2 1006 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1007
4c4b4cd2
PH
1008 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1009 decoded = decoding_buffer;
14f9c5c9 1010
29480c32
JB
1011 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1012
4c4b4cd2 1013 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1014 {
4c4b4cd2
PH
1015 i = len0 - 2;
1016 while ((i >= 0 && isdigit (encoded[i]))
1017 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1018 i -= 1;
1019 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1020 len0 = i - 1;
1021 else if (encoded[i] == '$')
1022 len0 = i;
d2e4a39e 1023 }
14f9c5c9 1024
29480c32
JB
1025 /* The first few characters that are not alphabetic are not part
1026 of any encoding we use, so we can copy them over verbatim. */
1027
4c4b4cd2
PH
1028 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1029 decoded[j] = encoded[i];
14f9c5c9
AS
1030
1031 at_start_name = 1;
1032 while (i < len0)
1033 {
29480c32 1034 /* Is this a symbol function? */
4c4b4cd2
PH
1035 if (at_start_name && encoded[i] == 'O')
1036 {
1037 int k;
5b4ee69b 1038
4c4b4cd2
PH
1039 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1040 {
1041 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1042 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1043 op_len - 1) == 0)
1044 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1045 {
1046 strcpy (decoded + j, ada_opname_table[k].decoded);
1047 at_start_name = 0;
1048 i += op_len;
1049 j += strlen (ada_opname_table[k].decoded);
1050 break;
1051 }
1052 }
1053 if (ada_opname_table[k].encoded != NULL)
1054 continue;
1055 }
14f9c5c9
AS
1056 at_start_name = 0;
1057
529cad9c
PH
1058 /* Replace "TK__" with "__", which will eventually be translated
1059 into "." (just below). */
1060
4c4b4cd2
PH
1061 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1062 i += 2;
529cad9c 1063
29480c32
JB
1064 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1065 be translated into "." (just below). These are internal names
1066 generated for anonymous blocks inside which our symbol is nested. */
1067
1068 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1069 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1070 && isdigit (encoded [i+4]))
1071 {
1072 int k = i + 5;
1073
1074 while (k < len0 && isdigit (encoded[k]))
1075 k++; /* Skip any extra digit. */
1076
1077 /* Double-check that the "__B_{DIGITS}+" sequence we found
1078 is indeed followed by "__". */
1079 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1080 i = k;
1081 }
1082
529cad9c
PH
1083 /* Remove _E{DIGITS}+[sb] */
1084
1085 /* Just as for protected object subprograms, there are 2 categories
1086 of subprograms created by the compiler for each entry. The first
1087 one implements the actual entry code, and has a suffix following
1088 the convention above; the second one implements the barrier and
1089 uses the same convention as above, except that the 'E' is replaced
1090 by a 'B'.
1091
1092 Just as above, we do not decode the name of barrier functions
1093 to give the user a clue that the code he is debugging has been
1094 internally generated. */
1095
1096 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1097 && isdigit (encoded[i+2]))
1098 {
1099 int k = i + 3;
1100
1101 while (k < len0 && isdigit (encoded[k]))
1102 k++;
1103
1104 if (k < len0
1105 && (encoded[k] == 'b' || encoded[k] == 's'))
1106 {
1107 k++;
1108 /* Just as an extra precaution, make sure that if this
1109 suffix is followed by anything else, it is a '_'.
1110 Otherwise, we matched this sequence by accident. */
1111 if (k == len0
1112 || (k < len0 && encoded[k] == '_'))
1113 i = k;
1114 }
1115 }
1116
1117 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1118 the GNAT front-end in protected object subprograms. */
1119
1120 if (i < len0 + 3
1121 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1122 {
1123 /* Backtrack a bit up until we reach either the begining of
1124 the encoded name, or "__". Make sure that we only find
1125 digits or lowercase characters. */
1126 const char *ptr = encoded + i - 1;
1127
1128 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1129 ptr--;
1130 if (ptr < encoded
1131 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1132 i++;
1133 }
1134
4c4b4cd2
PH
1135 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1136 {
29480c32
JB
1137 /* This is a X[bn]* sequence not separated from the previous
1138 part of the name with a non-alpha-numeric character (in other
1139 words, immediately following an alpha-numeric character), then
1140 verify that it is placed at the end of the encoded name. If
1141 not, then the encoding is not valid and we should abort the
1142 decoding. Otherwise, just skip it, it is used in body-nested
1143 package names. */
4c4b4cd2
PH
1144 do
1145 i += 1;
1146 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1147 if (i < len0)
1148 goto Suppress;
1149 }
cdc7bb92 1150 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1151 {
29480c32 1152 /* Replace '__' by '.'. */
4c4b4cd2
PH
1153 decoded[j] = '.';
1154 at_start_name = 1;
1155 i += 2;
1156 j += 1;
1157 }
14f9c5c9 1158 else
4c4b4cd2 1159 {
29480c32
JB
1160 /* It's a character part of the decoded name, so just copy it
1161 over. */
4c4b4cd2
PH
1162 decoded[j] = encoded[i];
1163 i += 1;
1164 j += 1;
1165 }
14f9c5c9 1166 }
4c4b4cd2 1167 decoded[j] = '\000';
14f9c5c9 1168
29480c32
JB
1169 /* Decoded names should never contain any uppercase character.
1170 Double-check this, and abort the decoding if we find one. */
1171
4c4b4cd2
PH
1172 for (i = 0; decoded[i] != '\0'; i += 1)
1173 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1174 goto Suppress;
1175
4c4b4cd2
PH
1176 if (strcmp (decoded, encoded) == 0)
1177 return encoded;
1178 else
1179 return decoded;
14f9c5c9
AS
1180
1181Suppress:
4c4b4cd2
PH
1182 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1183 decoded = decoding_buffer;
1184 if (encoded[0] == '<')
1185 strcpy (decoded, encoded);
14f9c5c9 1186 else
88c15c34 1187 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1188 return decoded;
1189
1190}
1191
1192/* Table for keeping permanent unique copies of decoded names. Once
1193 allocated, names in this table are never released. While this is a
1194 storage leak, it should not be significant unless there are massive
1195 changes in the set of decoded names in successive versions of a
1196 symbol table loaded during a single session. */
1197static struct htab *decoded_names_store;
1198
1199/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1200 in the language-specific part of GSYMBOL, if it has not been
1201 previously computed. Tries to save the decoded name in the same
1202 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1203 in any case, the decoded symbol has a lifetime at least that of
1204 GSYMBOL).
1205 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1206 const, but nevertheless modified to a semantically equivalent form
1207 when a decoded name is cached in it.
76a01679 1208*/
4c4b4cd2 1209
76a01679
JB
1210char *
1211ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1212{
76a01679 1213 char **resultp =
afa16725 1214 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1215
4c4b4cd2
PH
1216 if (*resultp == NULL)
1217 {
1218 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1219
714835d5 1220 if (gsymbol->obj_section != NULL)
76a01679 1221 {
714835d5 1222 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1223
714835d5
UW
1224 *resultp = obsavestring (decoded, strlen (decoded),
1225 &objf->objfile_obstack);
76a01679 1226 }
4c4b4cd2 1227 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1228 case, we put the result on the heap. Since we only decode
1229 when needed, we hope this usually does not cause a
1230 significant memory leak (FIXME). */
4c4b4cd2 1231 if (*resultp == NULL)
76a01679
JB
1232 {
1233 char **slot = (char **) htab_find_slot (decoded_names_store,
1234 decoded, INSERT);
5b4ee69b 1235
76a01679
JB
1236 if (*slot == NULL)
1237 *slot = xstrdup (decoded);
1238 *resultp = *slot;
1239 }
4c4b4cd2 1240 }
14f9c5c9 1241
4c4b4cd2
PH
1242 return *resultp;
1243}
76a01679 1244
2c0b251b 1245static char *
76a01679 1246ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1247{
1248 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1249}
1250
1251/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1252 suffixes that encode debugging information or leading _ada_ on
1253 SYM_NAME (see is_name_suffix commentary for the debugging
1254 information that is ignored). If WILD, then NAME need only match a
1255 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1256 either argument is NULL. */
14f9c5c9 1257
2c0b251b 1258static int
40658b94 1259match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1260{
1261 if (sym_name == NULL || name == NULL)
1262 return 0;
1263 else if (wild)
73589123 1264 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1265 else
1266 {
1267 int len_name = strlen (name);
5b4ee69b 1268
4c4b4cd2
PH
1269 return (strncmp (sym_name, name, len_name) == 0
1270 && is_name_suffix (sym_name + len_name))
1271 || (strncmp (sym_name, "_ada_", 5) == 0
1272 && strncmp (sym_name + 5, name, len_name) == 0
1273 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1274 }
14f9c5c9 1275}
14f9c5c9 1276\f
d2e4a39e 1277
4c4b4cd2 1278 /* Arrays */
14f9c5c9 1279
28c85d6c
JB
1280/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1281 generated by the GNAT compiler to describe the index type used
1282 for each dimension of an array, check whether it follows the latest
1283 known encoding. If not, fix it up to conform to the latest encoding.
1284 Otherwise, do nothing. This function also does nothing if
1285 INDEX_DESC_TYPE is NULL.
1286
1287 The GNAT encoding used to describle the array index type evolved a bit.
1288 Initially, the information would be provided through the name of each
1289 field of the structure type only, while the type of these fields was
1290 described as unspecified and irrelevant. The debugger was then expected
1291 to perform a global type lookup using the name of that field in order
1292 to get access to the full index type description. Because these global
1293 lookups can be very expensive, the encoding was later enhanced to make
1294 the global lookup unnecessary by defining the field type as being
1295 the full index type description.
1296
1297 The purpose of this routine is to allow us to support older versions
1298 of the compiler by detecting the use of the older encoding, and by
1299 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1300 we essentially replace each field's meaningless type by the associated
1301 index subtype). */
1302
1303void
1304ada_fixup_array_indexes_type (struct type *index_desc_type)
1305{
1306 int i;
1307
1308 if (index_desc_type == NULL)
1309 return;
1310 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1311
1312 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1313 to check one field only, no need to check them all). If not, return
1314 now.
1315
1316 If our INDEX_DESC_TYPE was generated using the older encoding,
1317 the field type should be a meaningless integer type whose name
1318 is not equal to the field name. */
1319 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1320 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1321 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1322 return;
1323
1324 /* Fixup each field of INDEX_DESC_TYPE. */
1325 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1326 {
1327 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1328 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1329
1330 if (raw_type)
1331 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1332 }
1333}
1334
4c4b4cd2 1335/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1336
d2e4a39e
AS
1337static char *bound_name[] = {
1338 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1339 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1340};
1341
1342/* Maximum number of array dimensions we are prepared to handle. */
1343
4c4b4cd2 1344#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1345
4c4b4cd2 1346/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1347
1348static void
50810684
UW
1349modify_general_field (struct type *type, char *addr,
1350 LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1351{
50810684 1352 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1353}
1354
1355
4c4b4cd2
PH
1356/* The desc_* routines return primitive portions of array descriptors
1357 (fat pointers). */
14f9c5c9
AS
1358
1359/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1360 level of indirection, if needed. */
1361
d2e4a39e
AS
1362static struct type *
1363desc_base_type (struct type *type)
14f9c5c9
AS
1364{
1365 if (type == NULL)
1366 return NULL;
61ee279c 1367 type = ada_check_typedef (type);
1265e4aa
JB
1368 if (type != NULL
1369 && (TYPE_CODE (type) == TYPE_CODE_PTR
1370 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1371 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1372 else
1373 return type;
1374}
1375
4c4b4cd2
PH
1376/* True iff TYPE indicates a "thin" array pointer type. */
1377
14f9c5c9 1378static int
d2e4a39e 1379is_thin_pntr (struct type *type)
14f9c5c9 1380{
d2e4a39e 1381 return
14f9c5c9
AS
1382 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1383 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1384}
1385
4c4b4cd2
PH
1386/* The descriptor type for thin pointer type TYPE. */
1387
d2e4a39e
AS
1388static struct type *
1389thin_descriptor_type (struct type *type)
14f9c5c9 1390{
d2e4a39e 1391 struct type *base_type = desc_base_type (type);
5b4ee69b 1392
14f9c5c9
AS
1393 if (base_type == NULL)
1394 return NULL;
1395 if (is_suffix (ada_type_name (base_type), "___XVE"))
1396 return base_type;
d2e4a39e 1397 else
14f9c5c9 1398 {
d2e4a39e 1399 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1400
14f9c5c9 1401 if (alt_type == NULL)
4c4b4cd2 1402 return base_type;
14f9c5c9 1403 else
4c4b4cd2 1404 return alt_type;
14f9c5c9
AS
1405 }
1406}
1407
4c4b4cd2
PH
1408/* A pointer to the array data for thin-pointer value VAL. */
1409
d2e4a39e
AS
1410static struct value *
1411thin_data_pntr (struct value *val)
14f9c5c9 1412{
df407dfe 1413 struct type *type = value_type (val);
556bdfd4 1414 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1415
556bdfd4
UW
1416 data_type = lookup_pointer_type (data_type);
1417
14f9c5c9 1418 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1419 return value_cast (data_type, value_copy (val));
d2e4a39e 1420 else
42ae5230 1421 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1422}
1423
4c4b4cd2
PH
1424/* True iff TYPE indicates a "thick" array pointer type. */
1425
14f9c5c9 1426static int
d2e4a39e 1427is_thick_pntr (struct type *type)
14f9c5c9
AS
1428{
1429 type = desc_base_type (type);
1430 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1431 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1432}
1433
4c4b4cd2
PH
1434/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1435 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1436
d2e4a39e
AS
1437static struct type *
1438desc_bounds_type (struct type *type)
14f9c5c9 1439{
d2e4a39e 1440 struct type *r;
14f9c5c9
AS
1441
1442 type = desc_base_type (type);
1443
1444 if (type == NULL)
1445 return NULL;
1446 else if (is_thin_pntr (type))
1447 {
1448 type = thin_descriptor_type (type);
1449 if (type == NULL)
4c4b4cd2 1450 return NULL;
14f9c5c9
AS
1451 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1452 if (r != NULL)
61ee279c 1453 return ada_check_typedef (r);
14f9c5c9
AS
1454 }
1455 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1456 {
1457 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1458 if (r != NULL)
61ee279c 1459 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1460 }
1461 return NULL;
1462}
1463
1464/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1465 one, a pointer to its bounds data. Otherwise NULL. */
1466
d2e4a39e
AS
1467static struct value *
1468desc_bounds (struct value *arr)
14f9c5c9 1469{
df407dfe 1470 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1471
d2e4a39e 1472 if (is_thin_pntr (type))
14f9c5c9 1473 {
d2e4a39e 1474 struct type *bounds_type =
4c4b4cd2 1475 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1476 LONGEST addr;
1477
4cdfadb1 1478 if (bounds_type == NULL)
323e0a4a 1479 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1480
1481 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1482 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1483 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1484 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1485 addr = value_as_long (arr);
d2e4a39e 1486 else
42ae5230 1487 addr = value_address (arr);
14f9c5c9 1488
d2e4a39e 1489 return
4c4b4cd2
PH
1490 value_from_longest (lookup_pointer_type (bounds_type),
1491 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1492 }
1493
1494 else if (is_thick_pntr (type))
05e522ef
JB
1495 {
1496 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1497 _("Bad GNAT array descriptor"));
1498 struct type *p_bounds_type = value_type (p_bounds);
1499
1500 if (p_bounds_type
1501 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1502 {
1503 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1504
1505 if (TYPE_STUB (target_type))
1506 p_bounds = value_cast (lookup_pointer_type
1507 (ada_check_typedef (target_type)),
1508 p_bounds);
1509 }
1510 else
1511 error (_("Bad GNAT array descriptor"));
1512
1513 return p_bounds;
1514 }
14f9c5c9
AS
1515 else
1516 return NULL;
1517}
1518
4c4b4cd2
PH
1519/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1520 position of the field containing the address of the bounds data. */
1521
14f9c5c9 1522static int
d2e4a39e 1523fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1524{
1525 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1526}
1527
1528/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1529 size of the field containing the address of the bounds data. */
1530
14f9c5c9 1531static int
d2e4a39e 1532fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1533{
1534 type = desc_base_type (type);
1535
d2e4a39e 1536 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1537 return TYPE_FIELD_BITSIZE (type, 1);
1538 else
61ee279c 1539 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1540}
1541
4c4b4cd2 1542/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1543 pointer to one, the type of its array data (a array-with-no-bounds type);
1544 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1545 data. */
4c4b4cd2 1546
d2e4a39e 1547static struct type *
556bdfd4 1548desc_data_target_type (struct type *type)
14f9c5c9
AS
1549{
1550 type = desc_base_type (type);
1551
4c4b4cd2 1552 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1553 if (is_thin_pntr (type))
556bdfd4 1554 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1555 else if (is_thick_pntr (type))
556bdfd4
UW
1556 {
1557 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1558
1559 if (data_type
1560 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1561 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1562 }
1563
1564 return NULL;
14f9c5c9
AS
1565}
1566
1567/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1568 its array data. */
4c4b4cd2 1569
d2e4a39e
AS
1570static struct value *
1571desc_data (struct value *arr)
14f9c5c9 1572{
df407dfe 1573 struct type *type = value_type (arr);
5b4ee69b 1574
14f9c5c9
AS
1575 if (is_thin_pntr (type))
1576 return thin_data_pntr (arr);
1577 else if (is_thick_pntr (type))
d2e4a39e 1578 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1579 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1580 else
1581 return NULL;
1582}
1583
1584
1585/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1586 position of the field containing the address of the data. */
1587
14f9c5c9 1588static int
d2e4a39e 1589fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1590{
1591 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1592}
1593
1594/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1595 size of the field containing the address of the data. */
1596
14f9c5c9 1597static int
d2e4a39e 1598fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1599{
1600 type = desc_base_type (type);
1601
1602 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1603 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1604 else
14f9c5c9
AS
1605 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1606}
1607
4c4b4cd2 1608/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1609 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1610 bound, if WHICH is 1. The first bound is I=1. */
1611
d2e4a39e
AS
1612static struct value *
1613desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1614{
d2e4a39e 1615 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1616 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1617}
1618
1619/* If BOUNDS is an array-bounds structure type, return the bit position
1620 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1621 bound, if WHICH is 1. The first bound is I=1. */
1622
14f9c5c9 1623static int
d2e4a39e 1624desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1625{
d2e4a39e 1626 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1627}
1628
1629/* If BOUNDS is an array-bounds structure type, return the bit field size
1630 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1631 bound, if WHICH is 1. The first bound is I=1. */
1632
76a01679 1633static int
d2e4a39e 1634desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1635{
1636 type = desc_base_type (type);
1637
d2e4a39e
AS
1638 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1639 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1640 else
1641 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1642}
1643
1644/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1645 Ith bound (numbering from 1). Otherwise, NULL. */
1646
d2e4a39e
AS
1647static struct type *
1648desc_index_type (struct type *type, int i)
14f9c5c9
AS
1649{
1650 type = desc_base_type (type);
1651
1652 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1653 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1654 else
14f9c5c9
AS
1655 return NULL;
1656}
1657
4c4b4cd2
PH
1658/* The number of index positions in the array-bounds type TYPE.
1659 Return 0 if TYPE is NULL. */
1660
14f9c5c9 1661static int
d2e4a39e 1662desc_arity (struct type *type)
14f9c5c9
AS
1663{
1664 type = desc_base_type (type);
1665
1666 if (type != NULL)
1667 return TYPE_NFIELDS (type) / 2;
1668 return 0;
1669}
1670
4c4b4cd2
PH
1671/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1672 an array descriptor type (representing an unconstrained array
1673 type). */
1674
76a01679
JB
1675static int
1676ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1677{
1678 if (type == NULL)
1679 return 0;
61ee279c 1680 type = ada_check_typedef (type);
4c4b4cd2 1681 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1682 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1683}
1684
52ce6436
PH
1685/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1686 * to one. */
1687
2c0b251b 1688static int
52ce6436
PH
1689ada_is_array_type (struct type *type)
1690{
1691 while (type != NULL
1692 && (TYPE_CODE (type) == TYPE_CODE_PTR
1693 || TYPE_CODE (type) == TYPE_CODE_REF))
1694 type = TYPE_TARGET_TYPE (type);
1695 return ada_is_direct_array_type (type);
1696}
1697
4c4b4cd2 1698/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1699
14f9c5c9 1700int
4c4b4cd2 1701ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1702{
1703 if (type == NULL)
1704 return 0;
61ee279c 1705 type = ada_check_typedef (type);
14f9c5c9 1706 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1707 || (TYPE_CODE (type) == TYPE_CODE_PTR
1708 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1709}
1710
4c4b4cd2
PH
1711/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1712
14f9c5c9 1713int
4c4b4cd2 1714ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1715{
556bdfd4 1716 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1717
1718 if (type == NULL)
1719 return 0;
61ee279c 1720 type = ada_check_typedef (type);
556bdfd4
UW
1721 return (data_type != NULL
1722 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1723 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1724}
1725
1726/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1727 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1728 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1729 is still needed. */
1730
14f9c5c9 1731int
ebf56fd3 1732ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1733{
d2e4a39e 1734 return
14f9c5c9
AS
1735 type != NULL
1736 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1737 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1738 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1739 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1740}
1741
1742
4c4b4cd2 1743/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1744 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1745 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1746 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1747 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1748 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1749 a descriptor. */
d2e4a39e
AS
1750struct type *
1751ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1752{
ad82864c
JB
1753 if (ada_is_constrained_packed_array_type (value_type (arr)))
1754 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1755
df407dfe
AC
1756 if (!ada_is_array_descriptor_type (value_type (arr)))
1757 return value_type (arr);
d2e4a39e
AS
1758
1759 if (!bounds)
ad82864c
JB
1760 {
1761 struct type *array_type =
1762 ada_check_typedef (desc_data_target_type (value_type (arr)));
1763
1764 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1765 TYPE_FIELD_BITSIZE (array_type, 0) =
1766 decode_packed_array_bitsize (value_type (arr));
1767
1768 return array_type;
1769 }
14f9c5c9
AS
1770 else
1771 {
d2e4a39e 1772 struct type *elt_type;
14f9c5c9 1773 int arity;
d2e4a39e 1774 struct value *descriptor;
14f9c5c9 1775
df407dfe
AC
1776 elt_type = ada_array_element_type (value_type (arr), -1);
1777 arity = ada_array_arity (value_type (arr));
14f9c5c9 1778
d2e4a39e 1779 if (elt_type == NULL || arity == 0)
df407dfe 1780 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1781
1782 descriptor = desc_bounds (arr);
d2e4a39e 1783 if (value_as_long (descriptor) == 0)
4c4b4cd2 1784 return NULL;
d2e4a39e 1785 while (arity > 0)
4c4b4cd2 1786 {
e9bb382b
UW
1787 struct type *range_type = alloc_type_copy (value_type (arr));
1788 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1789 struct value *low = desc_one_bound (descriptor, arity, 0);
1790 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1791
5b4ee69b 1792 arity -= 1;
df407dfe 1793 create_range_type (range_type, value_type (low),
529cad9c
PH
1794 longest_to_int (value_as_long (low)),
1795 longest_to_int (value_as_long (high)));
4c4b4cd2 1796 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1797
1798 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1799 TYPE_FIELD_BITSIZE (elt_type, 0) =
1800 decode_packed_array_bitsize (value_type (arr));
4c4b4cd2 1801 }
14f9c5c9
AS
1802
1803 return lookup_pointer_type (elt_type);
1804 }
1805}
1806
1807/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1808 Otherwise, returns either a standard GDB array with bounds set
1809 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1810 GDB array. Returns NULL if ARR is a null fat pointer. */
1811
d2e4a39e
AS
1812struct value *
1813ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1814{
df407dfe 1815 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1816 {
d2e4a39e 1817 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1818
14f9c5c9 1819 if (arrType == NULL)
4c4b4cd2 1820 return NULL;
14f9c5c9
AS
1821 return value_cast (arrType, value_copy (desc_data (arr)));
1822 }
ad82864c
JB
1823 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1824 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1825 else
1826 return arr;
1827}
1828
1829/* If ARR does not represent an array, returns ARR unchanged.
1830 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1831 be ARR itself if it already is in the proper form). */
1832
1833static struct value *
d2e4a39e 1834ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1835{
df407dfe 1836 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1837 {
d2e4a39e 1838 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1839
14f9c5c9 1840 if (arrVal == NULL)
323e0a4a 1841 error (_("Bounds unavailable for null array pointer."));
529cad9c 1842 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1843 return value_ind (arrVal);
1844 }
ad82864c
JB
1845 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1846 return decode_constrained_packed_array (arr);
d2e4a39e 1847 else
14f9c5c9
AS
1848 return arr;
1849}
1850
1851/* If TYPE represents a GNAT array type, return it translated to an
1852 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1853 packing). For other types, is the identity. */
1854
d2e4a39e
AS
1855struct type *
1856ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1857{
ad82864c
JB
1858 if (ada_is_constrained_packed_array_type (type))
1859 return decode_constrained_packed_array_type (type);
17280b9f
UW
1860
1861 if (ada_is_array_descriptor_type (type))
556bdfd4 1862 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1863
1864 return type;
14f9c5c9
AS
1865}
1866
4c4b4cd2
PH
1867/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1868
ad82864c
JB
1869static int
1870ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1871{
1872 if (type == NULL)
1873 return 0;
4c4b4cd2 1874 type = desc_base_type (type);
61ee279c 1875 type = ada_check_typedef (type);
d2e4a39e 1876 return
14f9c5c9
AS
1877 ada_type_name (type) != NULL
1878 && strstr (ada_type_name (type), "___XP") != NULL;
1879}
1880
ad82864c
JB
1881/* Non-zero iff TYPE represents a standard GNAT constrained
1882 packed-array type. */
1883
1884int
1885ada_is_constrained_packed_array_type (struct type *type)
1886{
1887 return ada_is_packed_array_type (type)
1888 && !ada_is_array_descriptor_type (type);
1889}
1890
1891/* Non-zero iff TYPE represents an array descriptor for a
1892 unconstrained packed-array type. */
1893
1894static int
1895ada_is_unconstrained_packed_array_type (struct type *type)
1896{
1897 return ada_is_packed_array_type (type)
1898 && ada_is_array_descriptor_type (type);
1899}
1900
1901/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1902 return the size of its elements in bits. */
1903
1904static long
1905decode_packed_array_bitsize (struct type *type)
1906{
1907 char *raw_name = ada_type_name (ada_check_typedef (type));
1908 char *tail;
1909 long bits;
1910
1911 if (!raw_name)
1912 raw_name = ada_type_name (desc_base_type (type));
1913
1914 if (!raw_name)
1915 return 0;
1916
1917 tail = strstr (raw_name, "___XP");
1918
1919 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1920 {
1921 lim_warning
1922 (_("could not understand bit size information on packed array"));
1923 return 0;
1924 }
1925
1926 return bits;
1927}
1928
14f9c5c9
AS
1929/* Given that TYPE is a standard GDB array type with all bounds filled
1930 in, and that the element size of its ultimate scalar constituents
1931 (that is, either its elements, or, if it is an array of arrays, its
1932 elements' elements, etc.) is *ELT_BITS, return an identical type,
1933 but with the bit sizes of its elements (and those of any
1934 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1935 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1936 in bits. */
1937
d2e4a39e 1938static struct type *
ad82864c 1939constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1940{
d2e4a39e
AS
1941 struct type *new_elt_type;
1942 struct type *new_type;
14f9c5c9
AS
1943 LONGEST low_bound, high_bound;
1944
61ee279c 1945 type = ada_check_typedef (type);
14f9c5c9
AS
1946 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1947 return type;
1948
e9bb382b 1949 new_type = alloc_type_copy (type);
ad82864c
JB
1950 new_elt_type =
1951 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1952 elt_bits);
262452ec 1953 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
1954 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1955 TYPE_NAME (new_type) = ada_type_name (type);
1956
262452ec 1957 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 1958 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1959 low_bound = high_bound = 0;
1960 if (high_bound < low_bound)
1961 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1962 else
14f9c5c9
AS
1963 {
1964 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1965 TYPE_LENGTH (new_type) =
4c4b4cd2 1966 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1967 }
1968
876cecd0 1969 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
1970 return new_type;
1971}
1972
ad82864c
JB
1973/* The array type encoded by TYPE, where
1974 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 1975
d2e4a39e 1976static struct type *
ad82864c 1977decode_constrained_packed_array_type (struct type *type)
d2e4a39e 1978{
727e3d2e
JB
1979 char *raw_name = ada_type_name (ada_check_typedef (type));
1980 char *name;
1981 char *tail;
d2e4a39e 1982 struct type *shadow_type;
14f9c5c9 1983 long bits;
14f9c5c9 1984
727e3d2e
JB
1985 if (!raw_name)
1986 raw_name = ada_type_name (desc_base_type (type));
1987
1988 if (!raw_name)
1989 return NULL;
1990
1991 name = (char *) alloca (strlen (raw_name) + 1);
1992 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1993 type = desc_base_type (type);
1994
14f9c5c9
AS
1995 memcpy (name, raw_name, tail - raw_name);
1996 name[tail - raw_name] = '\000';
1997
b4ba55a1
JB
1998 shadow_type = ada_find_parallel_type_with_name (type, name);
1999
2000 if (shadow_type == NULL)
14f9c5c9 2001 {
323e0a4a 2002 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2003 return NULL;
2004 }
cb249c71 2005 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2006
2007 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2008 {
323e0a4a 2009 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
2010 return NULL;
2011 }
d2e4a39e 2012
ad82864c
JB
2013 bits = decode_packed_array_bitsize (type);
2014 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2015}
2016
ad82864c
JB
2017/* Given that ARR is a struct value *indicating a GNAT constrained packed
2018 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2019 standard GDB array type except that the BITSIZEs of the array
2020 target types are set to the number of bits in each element, and the
4c4b4cd2 2021 type length is set appropriately. */
14f9c5c9 2022
d2e4a39e 2023static struct value *
ad82864c 2024decode_constrained_packed_array (struct value *arr)
14f9c5c9 2025{
4c4b4cd2 2026 struct type *type;
14f9c5c9 2027
4c4b4cd2 2028 arr = ada_coerce_ref (arr);
284614f0
JB
2029
2030 /* If our value is a pointer, then dererence it. Make sure that
2031 this operation does not cause the target type to be fixed, as
2032 this would indirectly cause this array to be decoded. The rest
2033 of the routine assumes that the array hasn't been decoded yet,
2034 so we use the basic "value_ind" routine to perform the dereferencing,
2035 as opposed to using "ada_value_ind". */
df407dfe 2036 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
284614f0 2037 arr = value_ind (arr);
4c4b4cd2 2038
ad82864c 2039 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2040 if (type == NULL)
2041 {
323e0a4a 2042 error (_("can't unpack array"));
14f9c5c9
AS
2043 return NULL;
2044 }
61ee279c 2045
50810684 2046 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2047 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2048 {
2049 /* This is a (right-justified) modular type representing a packed
2050 array with no wrapper. In order to interpret the value through
2051 the (left-justified) packed array type we just built, we must
2052 first left-justify it. */
2053 int bit_size, bit_pos;
2054 ULONGEST mod;
2055
df407dfe 2056 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2057 bit_size = 0;
2058 while (mod > 0)
2059 {
2060 bit_size += 1;
2061 mod >>= 1;
2062 }
df407dfe 2063 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2064 arr = ada_value_primitive_packed_val (arr, NULL,
2065 bit_pos / HOST_CHAR_BIT,
2066 bit_pos % HOST_CHAR_BIT,
2067 bit_size,
2068 type);
2069 }
2070
4c4b4cd2 2071 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2072}
2073
2074
2075/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2076 given in IND. ARR must be a simple array. */
14f9c5c9 2077
d2e4a39e
AS
2078static struct value *
2079value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2080{
2081 int i;
2082 int bits, elt_off, bit_off;
2083 long elt_total_bit_offset;
d2e4a39e
AS
2084 struct type *elt_type;
2085 struct value *v;
14f9c5c9
AS
2086
2087 bits = 0;
2088 elt_total_bit_offset = 0;
df407dfe 2089 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2090 for (i = 0; i < arity; i += 1)
14f9c5c9 2091 {
d2e4a39e 2092 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2093 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2094 error
323e0a4a 2095 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 2096 else
4c4b4cd2
PH
2097 {
2098 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2099 LONGEST lowerbound, upperbound;
2100 LONGEST idx;
2101
2102 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2103 {
323e0a4a 2104 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2105 lowerbound = upperbound = 0;
2106 }
2107
3cb382c9 2108 idx = pos_atr (ind[i]);
4c4b4cd2 2109 if (idx < lowerbound || idx > upperbound)
323e0a4a 2110 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
2111 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2112 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2113 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2114 }
14f9c5c9
AS
2115 }
2116 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2117 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2118
2119 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2120 bits, elt_type);
14f9c5c9
AS
2121 return v;
2122}
2123
4c4b4cd2 2124/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2125
2126static int
d2e4a39e 2127has_negatives (struct type *type)
14f9c5c9 2128{
d2e4a39e
AS
2129 switch (TYPE_CODE (type))
2130 {
2131 default:
2132 return 0;
2133 case TYPE_CODE_INT:
2134 return !TYPE_UNSIGNED (type);
2135 case TYPE_CODE_RANGE:
2136 return TYPE_LOW_BOUND (type) < 0;
2137 }
14f9c5c9 2138}
d2e4a39e 2139
14f9c5c9
AS
2140
2141/* Create a new value of type TYPE from the contents of OBJ starting
2142 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2143 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
2144 assigning through the result will set the field fetched from.
2145 VALADDR is ignored unless OBJ is NULL, in which case,
2146 VALADDR+OFFSET must address the start of storage containing the
2147 packed value. The value returned in this case is never an lval.
2148 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2149
d2e4a39e 2150struct value *
fc1a4b47 2151ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2152 long offset, int bit_offset, int bit_size,
4c4b4cd2 2153 struct type *type)
14f9c5c9 2154{
d2e4a39e 2155 struct value *v;
4c4b4cd2
PH
2156 int src, /* Index into the source area */
2157 targ, /* Index into the target area */
2158 srcBitsLeft, /* Number of source bits left to move */
2159 nsrc, ntarg, /* Number of source and target bytes */
2160 unusedLS, /* Number of bits in next significant
2161 byte of source that are unused */
2162 accumSize; /* Number of meaningful bits in accum */
2163 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2164 unsigned char *unpacked;
4c4b4cd2 2165 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2166 unsigned char sign;
2167 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2168 /* Transmit bytes from least to most significant; delta is the direction
2169 the indices move. */
50810684 2170 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2171
61ee279c 2172 type = ada_check_typedef (type);
14f9c5c9
AS
2173
2174 if (obj == NULL)
2175 {
2176 v = allocate_value (type);
d2e4a39e 2177 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2178 }
9214ee5f 2179 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2180 {
2181 v = value_at (type,
42ae5230 2182 value_address (obj) + offset);
d2e4a39e 2183 bytes = (unsigned char *) alloca (len);
42ae5230 2184 read_memory (value_address (v), bytes, len);
14f9c5c9 2185 }
d2e4a39e 2186 else
14f9c5c9
AS
2187 {
2188 v = allocate_value (type);
0fd88904 2189 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2190 }
d2e4a39e
AS
2191
2192 if (obj != NULL)
14f9c5c9 2193 {
42ae5230 2194 CORE_ADDR new_addr;
5b4ee69b 2195
74bcbdf3 2196 set_value_component_location (v, obj);
42ae5230 2197 new_addr = value_address (obj) + offset;
9bbda503
AC
2198 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2199 set_value_bitsize (v, bit_size);
df407dfe 2200 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2201 {
42ae5230 2202 ++new_addr;
9bbda503 2203 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2204 }
42ae5230 2205 set_value_address (v, new_addr);
14f9c5c9
AS
2206 }
2207 else
9bbda503 2208 set_value_bitsize (v, bit_size);
0fd88904 2209 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2210
2211 srcBitsLeft = bit_size;
2212 nsrc = len;
2213 ntarg = TYPE_LENGTH (type);
2214 sign = 0;
2215 if (bit_size == 0)
2216 {
2217 memset (unpacked, 0, TYPE_LENGTH (type));
2218 return v;
2219 }
50810684 2220 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2221 {
d2e4a39e 2222 src = len - 1;
1265e4aa
JB
2223 if (has_negatives (type)
2224 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2225 sign = ~0;
d2e4a39e
AS
2226
2227 unusedLS =
4c4b4cd2
PH
2228 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2229 % HOST_CHAR_BIT;
14f9c5c9
AS
2230
2231 switch (TYPE_CODE (type))
4c4b4cd2
PH
2232 {
2233 case TYPE_CODE_ARRAY:
2234 case TYPE_CODE_UNION:
2235 case TYPE_CODE_STRUCT:
2236 /* Non-scalar values must be aligned at a byte boundary... */
2237 accumSize =
2238 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2239 /* ... And are placed at the beginning (most-significant) bytes
2240 of the target. */
529cad9c 2241 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2242 ntarg = targ + 1;
4c4b4cd2
PH
2243 break;
2244 default:
2245 accumSize = 0;
2246 targ = TYPE_LENGTH (type) - 1;
2247 break;
2248 }
14f9c5c9 2249 }
d2e4a39e 2250 else
14f9c5c9
AS
2251 {
2252 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2253
2254 src = targ = 0;
2255 unusedLS = bit_offset;
2256 accumSize = 0;
2257
d2e4a39e 2258 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2259 sign = ~0;
14f9c5c9 2260 }
d2e4a39e 2261
14f9c5c9
AS
2262 accum = 0;
2263 while (nsrc > 0)
2264 {
2265 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2266 part of the value. */
d2e4a39e 2267 unsigned int unusedMSMask =
4c4b4cd2
PH
2268 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2269 1;
2270 /* Sign-extend bits for this byte. */
14f9c5c9 2271 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2272
d2e4a39e 2273 accum |=
4c4b4cd2 2274 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2275 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2276 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2277 {
2278 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2279 accumSize -= HOST_CHAR_BIT;
2280 accum >>= HOST_CHAR_BIT;
2281 ntarg -= 1;
2282 targ += delta;
2283 }
14f9c5c9
AS
2284 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2285 unusedLS = 0;
2286 nsrc -= 1;
2287 src += delta;
2288 }
2289 while (ntarg > 0)
2290 {
2291 accum |= sign << accumSize;
2292 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2293 accumSize -= HOST_CHAR_BIT;
2294 accum >>= HOST_CHAR_BIT;
2295 ntarg -= 1;
2296 targ += delta;
2297 }
2298
2299 return v;
2300}
d2e4a39e 2301
14f9c5c9
AS
2302/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2303 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2304 not overlap. */
14f9c5c9 2305static void
fc1a4b47 2306move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2307 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2308{
2309 unsigned int accum, mask;
2310 int accum_bits, chunk_size;
2311
2312 target += targ_offset / HOST_CHAR_BIT;
2313 targ_offset %= HOST_CHAR_BIT;
2314 source += src_offset / HOST_CHAR_BIT;
2315 src_offset %= HOST_CHAR_BIT;
50810684 2316 if (bits_big_endian_p)
14f9c5c9
AS
2317 {
2318 accum = (unsigned char) *source;
2319 source += 1;
2320 accum_bits = HOST_CHAR_BIT - src_offset;
2321
d2e4a39e 2322 while (n > 0)
4c4b4cd2
PH
2323 {
2324 int unused_right;
5b4ee69b 2325
4c4b4cd2
PH
2326 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2327 accum_bits += HOST_CHAR_BIT;
2328 source += 1;
2329 chunk_size = HOST_CHAR_BIT - targ_offset;
2330 if (chunk_size > n)
2331 chunk_size = n;
2332 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2333 mask = ((1 << chunk_size) - 1) << unused_right;
2334 *target =
2335 (*target & ~mask)
2336 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2337 n -= chunk_size;
2338 accum_bits -= chunk_size;
2339 target += 1;
2340 targ_offset = 0;
2341 }
14f9c5c9
AS
2342 }
2343 else
2344 {
2345 accum = (unsigned char) *source >> src_offset;
2346 source += 1;
2347 accum_bits = HOST_CHAR_BIT - src_offset;
2348
d2e4a39e 2349 while (n > 0)
4c4b4cd2
PH
2350 {
2351 accum = accum + ((unsigned char) *source << accum_bits);
2352 accum_bits += HOST_CHAR_BIT;
2353 source += 1;
2354 chunk_size = HOST_CHAR_BIT - targ_offset;
2355 if (chunk_size > n)
2356 chunk_size = n;
2357 mask = ((1 << chunk_size) - 1) << targ_offset;
2358 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2359 n -= chunk_size;
2360 accum_bits -= chunk_size;
2361 accum >>= chunk_size;
2362 target += 1;
2363 targ_offset = 0;
2364 }
14f9c5c9
AS
2365 }
2366}
2367
14f9c5c9
AS
2368/* Store the contents of FROMVAL into the location of TOVAL.
2369 Return a new value with the location of TOVAL and contents of
2370 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2371 floating-point or non-scalar types. */
14f9c5c9 2372
d2e4a39e
AS
2373static struct value *
2374ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2375{
df407dfe
AC
2376 struct type *type = value_type (toval);
2377 int bits = value_bitsize (toval);
14f9c5c9 2378
52ce6436
PH
2379 toval = ada_coerce_ref (toval);
2380 fromval = ada_coerce_ref (fromval);
2381
2382 if (ada_is_direct_array_type (value_type (toval)))
2383 toval = ada_coerce_to_simple_array (toval);
2384 if (ada_is_direct_array_type (value_type (fromval)))
2385 fromval = ada_coerce_to_simple_array (fromval);
2386
88e3b34b 2387 if (!deprecated_value_modifiable (toval))
323e0a4a 2388 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2389
d2e4a39e 2390 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2391 && bits > 0
d2e4a39e 2392 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2393 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2394 {
df407dfe
AC
2395 int len = (value_bitpos (toval)
2396 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2397 int from_size;
d2e4a39e
AS
2398 char *buffer = (char *) alloca (len);
2399 struct value *val;
42ae5230 2400 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2401
2402 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2403 fromval = value_cast (type, fromval);
14f9c5c9 2404
52ce6436 2405 read_memory (to_addr, buffer, len);
aced2898
PH
2406 from_size = value_bitsize (fromval);
2407 if (from_size == 0)
2408 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2409 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2410 move_bits (buffer, value_bitpos (toval),
50810684 2411 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2412 else
50810684
UW
2413 move_bits (buffer, value_bitpos (toval),
2414 value_contents (fromval), 0, bits, 0);
52ce6436 2415 write_memory (to_addr, buffer, len);
8cebebb9
PP
2416 observer_notify_memory_changed (to_addr, len, buffer);
2417
14f9c5c9 2418 val = value_copy (toval);
0fd88904 2419 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2420 TYPE_LENGTH (type));
04624583 2421 deprecated_set_value_type (val, type);
d2e4a39e 2422
14f9c5c9
AS
2423 return val;
2424 }
2425
2426 return value_assign (toval, fromval);
2427}
2428
2429
52ce6436
PH
2430/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2431 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2432 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2433 * COMPONENT, and not the inferior's memory. The current contents
2434 * of COMPONENT are ignored. */
2435static void
2436value_assign_to_component (struct value *container, struct value *component,
2437 struct value *val)
2438{
2439 LONGEST offset_in_container =
42ae5230 2440 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2441 int bit_offset_in_container =
2442 value_bitpos (component) - value_bitpos (container);
2443 int bits;
2444
2445 val = value_cast (value_type (component), val);
2446
2447 if (value_bitsize (component) == 0)
2448 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2449 else
2450 bits = value_bitsize (component);
2451
50810684 2452 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2453 move_bits (value_contents_writeable (container) + offset_in_container,
2454 value_bitpos (container) + bit_offset_in_container,
2455 value_contents (val),
2456 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2457 bits, 1);
52ce6436
PH
2458 else
2459 move_bits (value_contents_writeable (container) + offset_in_container,
2460 value_bitpos (container) + bit_offset_in_container,
50810684 2461 value_contents (val), 0, bits, 0);
52ce6436
PH
2462}
2463
4c4b4cd2
PH
2464/* The value of the element of array ARR at the ARITY indices given in IND.
2465 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2466 thereto. */
2467
d2e4a39e
AS
2468struct value *
2469ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2470{
2471 int k;
d2e4a39e
AS
2472 struct value *elt;
2473 struct type *elt_type;
14f9c5c9
AS
2474
2475 elt = ada_coerce_to_simple_array (arr);
2476
df407dfe 2477 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2478 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2479 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2480 return value_subscript_packed (elt, arity, ind);
2481
2482 for (k = 0; k < arity; k += 1)
2483 {
2484 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2485 error (_("too many subscripts (%d expected)"), k);
2497b498 2486 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2487 }
2488 return elt;
2489}
2490
2491/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2492 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2493 IND. Does not read the entire array into memory. */
14f9c5c9 2494
2c0b251b 2495static struct value *
d2e4a39e 2496ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2497 struct value **ind)
14f9c5c9
AS
2498{
2499 int k;
2500
2501 for (k = 0; k < arity; k += 1)
2502 {
2503 LONGEST lwb, upb;
14f9c5c9
AS
2504
2505 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2506 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2507 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2508 value_copy (arr));
14f9c5c9 2509 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2510 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2511 type = TYPE_TARGET_TYPE (type);
2512 }
2513
2514 return value_ind (arr);
2515}
2516
0b5d8877 2517/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2518 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2519 elements starting at index LOW. The lower bound of this array is LOW, as
2520 per Ada rules. */
0b5d8877 2521static struct value *
f5938064
JG
2522ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2523 int low, int high)
0b5d8877 2524{
6c038f32 2525 CORE_ADDR base = value_as_address (array_ptr)
43bbcdc2 2526 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
0b5d8877 2527 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2528 struct type *index_type =
2529 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2530 low, high);
6c038f32 2531 struct type *slice_type =
0b5d8877 2532 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2533
f5938064 2534 return value_at_lazy (slice_type, base);
0b5d8877
PH
2535}
2536
2537
2538static struct value *
2539ada_value_slice (struct value *array, int low, int high)
2540{
df407dfe 2541 struct type *type = value_type (array);
6c038f32 2542 struct type *index_type =
0b5d8877 2543 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2544 struct type *slice_type =
0b5d8877 2545 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2546
6c038f32 2547 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2548}
2549
14f9c5c9
AS
2550/* If type is a record type in the form of a standard GNAT array
2551 descriptor, returns the number of dimensions for type. If arr is a
2552 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2553 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2554
2555int
d2e4a39e 2556ada_array_arity (struct type *type)
14f9c5c9
AS
2557{
2558 int arity;
2559
2560 if (type == NULL)
2561 return 0;
2562
2563 type = desc_base_type (type);
2564
2565 arity = 0;
d2e4a39e 2566 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2567 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2568 else
2569 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2570 {
4c4b4cd2 2571 arity += 1;
61ee279c 2572 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2573 }
d2e4a39e 2574
14f9c5c9
AS
2575 return arity;
2576}
2577
2578/* If TYPE is a record type in the form of a standard GNAT array
2579 descriptor or a simple array type, returns the element type for
2580 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2581 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2582
d2e4a39e
AS
2583struct type *
2584ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2585{
2586 type = desc_base_type (type);
2587
d2e4a39e 2588 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2589 {
2590 int k;
d2e4a39e 2591 struct type *p_array_type;
14f9c5c9 2592
556bdfd4 2593 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2594
2595 k = ada_array_arity (type);
2596 if (k == 0)
4c4b4cd2 2597 return NULL;
d2e4a39e 2598
4c4b4cd2 2599 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2600 if (nindices >= 0 && k > nindices)
4c4b4cd2 2601 k = nindices;
d2e4a39e 2602 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2603 {
61ee279c 2604 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2605 k -= 1;
2606 }
14f9c5c9
AS
2607 return p_array_type;
2608 }
2609 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2610 {
2611 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2612 {
2613 type = TYPE_TARGET_TYPE (type);
2614 nindices -= 1;
2615 }
14f9c5c9
AS
2616 return type;
2617 }
2618
2619 return NULL;
2620}
2621
4c4b4cd2 2622/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2623 Does not examine memory. Throws an error if N is invalid or TYPE
2624 is not an array type. NAME is the name of the Ada attribute being
2625 evaluated ('range, 'first, 'last, or 'length); it is used in building
2626 the error message. */
14f9c5c9 2627
1eea4ebd
UW
2628static struct type *
2629ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2630{
4c4b4cd2
PH
2631 struct type *result_type;
2632
14f9c5c9
AS
2633 type = desc_base_type (type);
2634
1eea4ebd
UW
2635 if (n < 0 || n > ada_array_arity (type))
2636 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2637
4c4b4cd2 2638 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2639 {
2640 int i;
2641
2642 for (i = 1; i < n; i += 1)
4c4b4cd2 2643 type = TYPE_TARGET_TYPE (type);
262452ec 2644 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2645 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2646 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2647 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2648 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2649 result_type = NULL;
14f9c5c9 2650 }
d2e4a39e 2651 else
1eea4ebd
UW
2652 {
2653 result_type = desc_index_type (desc_bounds_type (type), n);
2654 if (result_type == NULL)
2655 error (_("attempt to take bound of something that is not an array"));
2656 }
2657
2658 return result_type;
14f9c5c9
AS
2659}
2660
2661/* Given that arr is an array type, returns the lower bound of the
2662 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2663 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2664 array-descriptor type. It works for other arrays with bounds supplied
2665 by run-time quantities other than discriminants. */
14f9c5c9 2666
abb68b3e 2667static LONGEST
1eea4ebd 2668ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2669{
1ce677a4 2670 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2671 int i;
262452ec
JK
2672
2673 gdb_assert (which == 0 || which == 1);
14f9c5c9 2674
ad82864c
JB
2675 if (ada_is_constrained_packed_array_type (arr_type))
2676 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2677
4c4b4cd2 2678 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2679 return (LONGEST) - which;
14f9c5c9
AS
2680
2681 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2682 type = TYPE_TARGET_TYPE (arr_type);
2683 else
2684 type = arr_type;
2685
1ce677a4
UW
2686 elt_type = type;
2687 for (i = n; i > 1; i--)
2688 elt_type = TYPE_TARGET_TYPE (type);
2689
14f9c5c9 2690 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2691 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2692 if (index_type_desc != NULL)
28c85d6c
JB
2693 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2694 NULL);
262452ec 2695 else
1ce677a4 2696 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2697
43bbcdc2
PH
2698 return
2699 (LONGEST) (which == 0
2700 ? ada_discrete_type_low_bound (index_type)
2701 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2702}
2703
2704/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2705 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2706 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2707 supplied by run-time quantities other than discriminants. */
14f9c5c9 2708
1eea4ebd 2709static LONGEST
4dc81987 2710ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2711{
df407dfe 2712 struct type *arr_type = value_type (arr);
14f9c5c9 2713
ad82864c
JB
2714 if (ada_is_constrained_packed_array_type (arr_type))
2715 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2716 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2717 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2718 else
1eea4ebd 2719 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2720}
2721
2722/* Given that arr is an array value, returns the length of the
2723 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2724 supplied by run-time quantities other than discriminants.
2725 Does not work for arrays indexed by enumeration types with representation
2726 clauses at the moment. */
14f9c5c9 2727
1eea4ebd 2728static LONGEST
d2e4a39e 2729ada_array_length (struct value *arr, int n)
14f9c5c9 2730{
df407dfe 2731 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2732
ad82864c
JB
2733 if (ada_is_constrained_packed_array_type (arr_type))
2734 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2735
4c4b4cd2 2736 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2737 return (ada_array_bound_from_type (arr_type, n, 1)
2738 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2739 else
1eea4ebd
UW
2740 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2741 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2742}
2743
2744/* An empty array whose type is that of ARR_TYPE (an array type),
2745 with bounds LOW to LOW-1. */
2746
2747static struct value *
2748empty_array (struct type *arr_type, int low)
2749{
6c038f32 2750 struct type *index_type =
0b5d8877
PH
2751 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2752 low, low - 1);
2753 struct type *elt_type = ada_array_element_type (arr_type, 1);
5b4ee69b 2754
0b5d8877 2755 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2756}
14f9c5c9 2757\f
d2e4a39e 2758
4c4b4cd2 2759 /* Name resolution */
14f9c5c9 2760
4c4b4cd2
PH
2761/* The "decoded" name for the user-definable Ada operator corresponding
2762 to OP. */
14f9c5c9 2763
d2e4a39e 2764static const char *
4c4b4cd2 2765ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2766{
2767 int i;
2768
4c4b4cd2 2769 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2770 {
2771 if (ada_opname_table[i].op == op)
4c4b4cd2 2772 return ada_opname_table[i].decoded;
14f9c5c9 2773 }
323e0a4a 2774 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2775}
2776
2777
4c4b4cd2
PH
2778/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2779 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2780 undefined namespace) and converts operators that are
2781 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2782 non-null, it provides a preferred result type [at the moment, only
2783 type void has any effect---causing procedures to be preferred over
2784 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2785 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2786
4c4b4cd2
PH
2787static void
2788resolve (struct expression **expp, int void_context_p)
14f9c5c9 2789{
30b15541
UW
2790 struct type *context_type = NULL;
2791 int pc = 0;
2792
2793 if (void_context_p)
2794 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2795
2796 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2797}
2798
4c4b4cd2
PH
2799/* Resolve the operator of the subexpression beginning at
2800 position *POS of *EXPP. "Resolving" consists of replacing
2801 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2802 with their resolutions, replacing built-in operators with
2803 function calls to user-defined operators, where appropriate, and,
2804 when DEPROCEDURE_P is non-zero, converting function-valued variables
2805 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2806 are as in ada_resolve, above. */
14f9c5c9 2807
d2e4a39e 2808static struct value *
4c4b4cd2 2809resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2810 struct type *context_type)
14f9c5c9
AS
2811{
2812 int pc = *pos;
2813 int i;
4c4b4cd2 2814 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2815 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2816 struct value **argvec; /* Vector of operand types (alloca'ed). */
2817 int nargs; /* Number of operands. */
52ce6436 2818 int oplen;
14f9c5c9
AS
2819
2820 argvec = NULL;
2821 nargs = 0;
2822 exp = *expp;
2823
52ce6436
PH
2824 /* Pass one: resolve operands, saving their types and updating *pos,
2825 if needed. */
14f9c5c9
AS
2826 switch (op)
2827 {
4c4b4cd2
PH
2828 case OP_FUNCALL:
2829 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2830 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2831 *pos += 7;
4c4b4cd2
PH
2832 else
2833 {
2834 *pos += 3;
2835 resolve_subexp (expp, pos, 0, NULL);
2836 }
2837 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2838 break;
2839
14f9c5c9 2840 case UNOP_ADDR:
4c4b4cd2
PH
2841 *pos += 1;
2842 resolve_subexp (expp, pos, 0, NULL);
2843 break;
2844
52ce6436
PH
2845 case UNOP_QUAL:
2846 *pos += 3;
17466c1a 2847 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2848 break;
2849
52ce6436 2850 case OP_ATR_MODULUS:
4c4b4cd2
PH
2851 case OP_ATR_SIZE:
2852 case OP_ATR_TAG:
4c4b4cd2
PH
2853 case OP_ATR_FIRST:
2854 case OP_ATR_LAST:
2855 case OP_ATR_LENGTH:
2856 case OP_ATR_POS:
2857 case OP_ATR_VAL:
4c4b4cd2
PH
2858 case OP_ATR_MIN:
2859 case OP_ATR_MAX:
52ce6436
PH
2860 case TERNOP_IN_RANGE:
2861 case BINOP_IN_BOUNDS:
2862 case UNOP_IN_RANGE:
2863 case OP_AGGREGATE:
2864 case OP_OTHERS:
2865 case OP_CHOICES:
2866 case OP_POSITIONAL:
2867 case OP_DISCRETE_RANGE:
2868 case OP_NAME:
2869 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2870 *pos += oplen;
14f9c5c9
AS
2871 break;
2872
2873 case BINOP_ASSIGN:
2874 {
4c4b4cd2
PH
2875 struct value *arg1;
2876
2877 *pos += 1;
2878 arg1 = resolve_subexp (expp, pos, 0, NULL);
2879 if (arg1 == NULL)
2880 resolve_subexp (expp, pos, 1, NULL);
2881 else
df407dfe 2882 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2883 break;
14f9c5c9
AS
2884 }
2885
4c4b4cd2 2886 case UNOP_CAST:
4c4b4cd2
PH
2887 *pos += 3;
2888 nargs = 1;
2889 break;
14f9c5c9 2890
4c4b4cd2
PH
2891 case BINOP_ADD:
2892 case BINOP_SUB:
2893 case BINOP_MUL:
2894 case BINOP_DIV:
2895 case BINOP_REM:
2896 case BINOP_MOD:
2897 case BINOP_EXP:
2898 case BINOP_CONCAT:
2899 case BINOP_LOGICAL_AND:
2900 case BINOP_LOGICAL_OR:
2901 case BINOP_BITWISE_AND:
2902 case BINOP_BITWISE_IOR:
2903 case BINOP_BITWISE_XOR:
14f9c5c9 2904
4c4b4cd2
PH
2905 case BINOP_EQUAL:
2906 case BINOP_NOTEQUAL:
2907 case BINOP_LESS:
2908 case BINOP_GTR:
2909 case BINOP_LEQ:
2910 case BINOP_GEQ:
14f9c5c9 2911
4c4b4cd2
PH
2912 case BINOP_REPEAT:
2913 case BINOP_SUBSCRIPT:
2914 case BINOP_COMMA:
40c8aaa9
JB
2915 *pos += 1;
2916 nargs = 2;
2917 break;
14f9c5c9 2918
4c4b4cd2
PH
2919 case UNOP_NEG:
2920 case UNOP_PLUS:
2921 case UNOP_LOGICAL_NOT:
2922 case UNOP_ABS:
2923 case UNOP_IND:
2924 *pos += 1;
2925 nargs = 1;
2926 break;
14f9c5c9 2927
4c4b4cd2
PH
2928 case OP_LONG:
2929 case OP_DOUBLE:
2930 case OP_VAR_VALUE:
2931 *pos += 4;
2932 break;
14f9c5c9 2933
4c4b4cd2
PH
2934 case OP_TYPE:
2935 case OP_BOOL:
2936 case OP_LAST:
4c4b4cd2
PH
2937 case OP_INTERNALVAR:
2938 *pos += 3;
2939 break;
14f9c5c9 2940
4c4b4cd2
PH
2941 case UNOP_MEMVAL:
2942 *pos += 3;
2943 nargs = 1;
2944 break;
2945
67f3407f
DJ
2946 case OP_REGISTER:
2947 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2948 break;
2949
4c4b4cd2
PH
2950 case STRUCTOP_STRUCT:
2951 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2952 nargs = 1;
2953 break;
2954
4c4b4cd2 2955 case TERNOP_SLICE:
4c4b4cd2
PH
2956 *pos += 1;
2957 nargs = 3;
2958 break;
2959
52ce6436 2960 case OP_STRING:
14f9c5c9 2961 break;
4c4b4cd2
PH
2962
2963 default:
323e0a4a 2964 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2965 }
2966
76a01679 2967 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2968 for (i = 0; i < nargs; i += 1)
2969 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2970 argvec[i] = NULL;
2971 exp = *expp;
2972
2973 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2974 switch (op)
2975 {
2976 default:
2977 break;
2978
14f9c5c9 2979 case OP_VAR_VALUE:
4c4b4cd2 2980 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2981 {
2982 struct ada_symbol_info *candidates;
2983 int n_candidates;
2984
2985 n_candidates =
2986 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2987 (exp->elts[pc + 2].symbol),
2988 exp->elts[pc + 1].block, VAR_DOMAIN,
2989 &candidates);
2990
2991 if (n_candidates > 1)
2992 {
2993 /* Types tend to get re-introduced locally, so if there
2994 are any local symbols that are not types, first filter
2995 out all types. */
2996 int j;
2997 for (j = 0; j < n_candidates; j += 1)
2998 switch (SYMBOL_CLASS (candidates[j].sym))
2999 {
3000 case LOC_REGISTER:
3001 case LOC_ARG:
3002 case LOC_REF_ARG:
76a01679
JB
3003 case LOC_REGPARM_ADDR:
3004 case LOC_LOCAL:
76a01679 3005 case LOC_COMPUTED:
76a01679
JB
3006 goto FoundNonType;
3007 default:
3008 break;
3009 }
3010 FoundNonType:
3011 if (j < n_candidates)
3012 {
3013 j = 0;
3014 while (j < n_candidates)
3015 {
3016 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3017 {
3018 candidates[j] = candidates[n_candidates - 1];
3019 n_candidates -= 1;
3020 }
3021 else
3022 j += 1;
3023 }
3024 }
3025 }
3026
3027 if (n_candidates == 0)
323e0a4a 3028 error (_("No definition found for %s"),
76a01679
JB
3029 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3030 else if (n_candidates == 1)
3031 i = 0;
3032 else if (deprocedure_p
3033 && !is_nonfunction (candidates, n_candidates))
3034 {
06d5cf63
JB
3035 i = ada_resolve_function
3036 (candidates, n_candidates, NULL, 0,
3037 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3038 context_type);
76a01679 3039 if (i < 0)
323e0a4a 3040 error (_("Could not find a match for %s"),
76a01679
JB
3041 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3042 }
3043 else
3044 {
323e0a4a 3045 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3046 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3047 user_select_syms (candidates, n_candidates, 1);
3048 i = 0;
3049 }
3050
3051 exp->elts[pc + 1].block = candidates[i].block;
3052 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3053 if (innermost_block == NULL
3054 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3055 innermost_block = candidates[i].block;
3056 }
3057
3058 if (deprocedure_p
3059 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3060 == TYPE_CODE_FUNC))
3061 {
3062 replace_operator_with_call (expp, pc, 0, 0,
3063 exp->elts[pc + 2].symbol,
3064 exp->elts[pc + 1].block);
3065 exp = *expp;
3066 }
14f9c5c9
AS
3067 break;
3068
3069 case OP_FUNCALL:
3070 {
4c4b4cd2 3071 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3072 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3073 {
3074 struct ada_symbol_info *candidates;
3075 int n_candidates;
3076
3077 n_candidates =
76a01679
JB
3078 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3079 (exp->elts[pc + 5].symbol),
3080 exp->elts[pc + 4].block, VAR_DOMAIN,
3081 &candidates);
4c4b4cd2
PH
3082 if (n_candidates == 1)
3083 i = 0;
3084 else
3085 {
06d5cf63
JB
3086 i = ada_resolve_function
3087 (candidates, n_candidates,
3088 argvec, nargs,
3089 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3090 context_type);
4c4b4cd2 3091 if (i < 0)
323e0a4a 3092 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3093 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3094 }
3095
3096 exp->elts[pc + 4].block = candidates[i].block;
3097 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3098 if (innermost_block == NULL
3099 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3100 innermost_block = candidates[i].block;
3101 }
14f9c5c9
AS
3102 }
3103 break;
3104 case BINOP_ADD:
3105 case BINOP_SUB:
3106 case BINOP_MUL:
3107 case BINOP_DIV:
3108 case BINOP_REM:
3109 case BINOP_MOD:
3110 case BINOP_CONCAT:
3111 case BINOP_BITWISE_AND:
3112 case BINOP_BITWISE_IOR:
3113 case BINOP_BITWISE_XOR:
3114 case BINOP_EQUAL:
3115 case BINOP_NOTEQUAL:
3116 case BINOP_LESS:
3117 case BINOP_GTR:
3118 case BINOP_LEQ:
3119 case BINOP_GEQ:
3120 case BINOP_EXP:
3121 case UNOP_NEG:
3122 case UNOP_PLUS:
3123 case UNOP_LOGICAL_NOT:
3124 case UNOP_ABS:
3125 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3126 {
3127 struct ada_symbol_info *candidates;
3128 int n_candidates;
3129
3130 n_candidates =
3131 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3132 (struct block *) NULL, VAR_DOMAIN,
3133 &candidates);
3134 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3135 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3136 if (i < 0)
3137 break;
3138
76a01679
JB
3139 replace_operator_with_call (expp, pc, nargs, 1,
3140 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3141 exp = *expp;
3142 }
14f9c5c9 3143 break;
4c4b4cd2
PH
3144
3145 case OP_TYPE:
b3dbf008 3146 case OP_REGISTER:
4c4b4cd2 3147 return NULL;
14f9c5c9
AS
3148 }
3149
3150 *pos = pc;
3151 return evaluate_subexp_type (exp, pos);
3152}
3153
3154/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3155 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3156 a non-pointer. */
14f9c5c9 3157/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3158 liberal. */
14f9c5c9
AS
3159
3160static int
4dc81987 3161ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3162{
61ee279c
PH
3163 ftype = ada_check_typedef (ftype);
3164 atype = ada_check_typedef (atype);
14f9c5c9
AS
3165
3166 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3167 ftype = TYPE_TARGET_TYPE (ftype);
3168 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3169 atype = TYPE_TARGET_TYPE (atype);
3170
d2e4a39e 3171 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3172 {
3173 default:
5b3d5b7d 3174 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3175 case TYPE_CODE_PTR:
3176 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3177 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3178 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3179 else
1265e4aa
JB
3180 return (may_deref
3181 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3182 case TYPE_CODE_INT:
3183 case TYPE_CODE_ENUM:
3184 case TYPE_CODE_RANGE:
3185 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3186 {
3187 case TYPE_CODE_INT:
3188 case TYPE_CODE_ENUM:
3189 case TYPE_CODE_RANGE:
3190 return 1;
3191 default:
3192 return 0;
3193 }
14f9c5c9
AS
3194
3195 case TYPE_CODE_ARRAY:
d2e4a39e 3196 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3197 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3198
3199 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3200 if (ada_is_array_descriptor_type (ftype))
3201 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3202 || ada_is_array_descriptor_type (atype));
14f9c5c9 3203 else
4c4b4cd2
PH
3204 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3205 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3206
3207 case TYPE_CODE_UNION:
3208 case TYPE_CODE_FLT:
3209 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3210 }
3211}
3212
3213/* Return non-zero if the formals of FUNC "sufficiently match" the
3214 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3215 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3216 argument function. */
14f9c5c9
AS
3217
3218static int
d2e4a39e 3219ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3220{
3221 int i;
d2e4a39e 3222 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3223
1265e4aa
JB
3224 if (SYMBOL_CLASS (func) == LOC_CONST
3225 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3226 return (n_actuals == 0);
3227 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3228 return 0;
3229
3230 if (TYPE_NFIELDS (func_type) != n_actuals)
3231 return 0;
3232
3233 for (i = 0; i < n_actuals; i += 1)
3234 {
4c4b4cd2 3235 if (actuals[i] == NULL)
76a01679
JB
3236 return 0;
3237 else
3238 {
5b4ee69b
MS
3239 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3240 i));
df407dfe 3241 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3242
76a01679
JB
3243 if (!ada_type_match (ftype, atype, 1))
3244 return 0;
3245 }
14f9c5c9
AS
3246 }
3247 return 1;
3248}
3249
3250/* False iff function type FUNC_TYPE definitely does not produce a value
3251 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3252 FUNC_TYPE is not a valid function type with a non-null return type
3253 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3254
3255static int
d2e4a39e 3256return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3257{
d2e4a39e 3258 struct type *return_type;
14f9c5c9
AS
3259
3260 if (func_type == NULL)
3261 return 1;
3262
4c4b4cd2
PH
3263 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3264 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3265 else
3266 return_type = base_type (func_type);
14f9c5c9
AS
3267 if (return_type == NULL)
3268 return 1;
3269
4c4b4cd2 3270 context_type = base_type (context_type);
14f9c5c9
AS
3271
3272 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3273 return context_type == NULL || return_type == context_type;
3274 else if (context_type == NULL)
3275 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3276 else
3277 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3278}
3279
3280
4c4b4cd2 3281/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3282 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3283 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3284 that returns that type, then eliminate matches that don't. If
3285 CONTEXT_TYPE is void and there is at least one match that does not
3286 return void, eliminate all matches that do.
3287
14f9c5c9
AS
3288 Asks the user if there is more than one match remaining. Returns -1
3289 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3290 solely for messages. May re-arrange and modify SYMS in
3291 the process; the index returned is for the modified vector. */
14f9c5c9 3292
4c4b4cd2
PH
3293static int
3294ada_resolve_function (struct ada_symbol_info syms[],
3295 int nsyms, struct value **args, int nargs,
3296 const char *name, struct type *context_type)
14f9c5c9 3297{
30b15541 3298 int fallback;
14f9c5c9 3299 int k;
4c4b4cd2 3300 int m; /* Number of hits */
14f9c5c9 3301
d2e4a39e 3302 m = 0;
30b15541
UW
3303 /* In the first pass of the loop, we only accept functions matching
3304 context_type. If none are found, we add a second pass of the loop
3305 where every function is accepted. */
3306 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3307 {
3308 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3309 {
61ee279c 3310 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3311
3312 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3313 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3314 {
3315 syms[m] = syms[k];
3316 m += 1;
3317 }
3318 }
14f9c5c9
AS
3319 }
3320
3321 if (m == 0)
3322 return -1;
3323 else if (m > 1)
3324 {
323e0a4a 3325 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3326 user_select_syms (syms, m, 1);
14f9c5c9
AS
3327 return 0;
3328 }
3329 return 0;
3330}
3331
4c4b4cd2
PH
3332/* Returns true (non-zero) iff decoded name N0 should appear before N1
3333 in a listing of choices during disambiguation (see sort_choices, below).
3334 The idea is that overloadings of a subprogram name from the
3335 same package should sort in their source order. We settle for ordering
3336 such symbols by their trailing number (__N or $N). */
3337
14f9c5c9 3338static int
4c4b4cd2 3339encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3340{
3341 if (N1 == NULL)
3342 return 0;
3343 else if (N0 == NULL)
3344 return 1;
3345 else
3346 {
3347 int k0, k1;
5b4ee69b 3348
d2e4a39e 3349 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3350 ;
d2e4a39e 3351 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3352 ;
d2e4a39e 3353 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3354 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3355 {
3356 int n0, n1;
5b4ee69b 3357
4c4b4cd2
PH
3358 n0 = k0;
3359 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3360 n0 -= 1;
3361 n1 = k1;
3362 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3363 n1 -= 1;
3364 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3365 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3366 }
14f9c5c9
AS
3367 return (strcmp (N0, N1) < 0);
3368 }
3369}
d2e4a39e 3370
4c4b4cd2
PH
3371/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3372 encoded names. */
3373
d2e4a39e 3374static void
4c4b4cd2 3375sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3376{
4c4b4cd2 3377 int i;
5b4ee69b 3378
d2e4a39e 3379 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3380 {
4c4b4cd2 3381 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3382 int j;
3383
d2e4a39e 3384 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3385 {
3386 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3387 SYMBOL_LINKAGE_NAME (sym.sym)))
3388 break;
3389 syms[j + 1] = syms[j];
3390 }
d2e4a39e 3391 syms[j + 1] = sym;
14f9c5c9
AS
3392 }
3393}
3394
4c4b4cd2
PH
3395/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3396 by asking the user (if necessary), returning the number selected,
3397 and setting the first elements of SYMS items. Error if no symbols
3398 selected. */
14f9c5c9
AS
3399
3400/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3401 to be re-integrated one of these days. */
14f9c5c9
AS
3402
3403int
4c4b4cd2 3404user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3405{
3406 int i;
d2e4a39e 3407 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3408 int n_chosen;
3409 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3410 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3411
3412 if (max_results < 1)
323e0a4a 3413 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3414 if (nsyms <= 1)
3415 return nsyms;
3416
717d2f5a
JB
3417 if (select_mode == multiple_symbols_cancel)
3418 error (_("\
3419canceled because the command is ambiguous\n\
3420See set/show multiple-symbol."));
3421
3422 /* If select_mode is "all", then return all possible symbols.
3423 Only do that if more than one symbol can be selected, of course.
3424 Otherwise, display the menu as usual. */
3425 if (select_mode == multiple_symbols_all && max_results > 1)
3426 return nsyms;
3427
323e0a4a 3428 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3429 if (max_results > 1)
323e0a4a 3430 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3431
4c4b4cd2 3432 sort_choices (syms, nsyms);
14f9c5c9
AS
3433
3434 for (i = 0; i < nsyms; i += 1)
3435 {
4c4b4cd2
PH
3436 if (syms[i].sym == NULL)
3437 continue;
3438
3439 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3440 {
76a01679
JB
3441 struct symtab_and_line sal =
3442 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3443
323e0a4a
AC
3444 if (sal.symtab == NULL)
3445 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3446 i + first_choice,
3447 SYMBOL_PRINT_NAME (syms[i].sym),
3448 sal.line);
3449 else
3450 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3451 SYMBOL_PRINT_NAME (syms[i].sym),
3452 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3453 continue;
3454 }
d2e4a39e 3455 else
4c4b4cd2
PH
3456 {
3457 int is_enumeral =
3458 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3459 && SYMBOL_TYPE (syms[i].sym) != NULL
3460 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3461 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3462
3463 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3464 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3465 i + first_choice,
3466 SYMBOL_PRINT_NAME (syms[i].sym),
3467 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3468 else if (is_enumeral
3469 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3470 {
a3f17187 3471 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3472 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3473 gdb_stdout, -1, 0);
323e0a4a 3474 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3475 SYMBOL_PRINT_NAME (syms[i].sym));
3476 }
3477 else if (symtab != NULL)
3478 printf_unfiltered (is_enumeral
323e0a4a
AC
3479 ? _("[%d] %s in %s (enumeral)\n")
3480 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3481 i + first_choice,
3482 SYMBOL_PRINT_NAME (syms[i].sym),
3483 symtab->filename);
3484 else
3485 printf_unfiltered (is_enumeral
323e0a4a
AC
3486 ? _("[%d] %s (enumeral)\n")
3487 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3488 i + first_choice,
3489 SYMBOL_PRINT_NAME (syms[i].sym));
3490 }
14f9c5c9 3491 }
d2e4a39e 3492
14f9c5c9 3493 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3494 "overload-choice");
14f9c5c9
AS
3495
3496 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3497 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3498
3499 return n_chosen;
3500}
3501
3502/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3503 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3504 order in CHOICES[0 .. N-1], and return N.
3505
3506 The user types choices as a sequence of numbers on one line
3507 separated by blanks, encoding them as follows:
3508
4c4b4cd2 3509 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3510 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3511 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3512
4c4b4cd2 3513 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3514
3515 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3516 prompts (for use with the -f switch). */
14f9c5c9
AS
3517
3518int
d2e4a39e 3519get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3520 int is_all_choice, char *annotation_suffix)
14f9c5c9 3521{
d2e4a39e 3522 char *args;
0bcd0149 3523 char *prompt;
14f9c5c9
AS
3524 int n_chosen;
3525 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3526
14f9c5c9
AS
3527 prompt = getenv ("PS2");
3528 if (prompt == NULL)
0bcd0149 3529 prompt = "> ";
14f9c5c9 3530
0bcd0149 3531 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3532
14f9c5c9 3533 if (args == NULL)
323e0a4a 3534 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3535
3536 n_chosen = 0;
76a01679 3537
4c4b4cd2
PH
3538 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3539 order, as given in args. Choices are validated. */
14f9c5c9
AS
3540 while (1)
3541 {
d2e4a39e 3542 char *args2;
14f9c5c9
AS
3543 int choice, j;
3544
3545 while (isspace (*args))
4c4b4cd2 3546 args += 1;
14f9c5c9 3547 if (*args == '\0' && n_chosen == 0)
323e0a4a 3548 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3549 else if (*args == '\0')
4c4b4cd2 3550 break;
14f9c5c9
AS
3551
3552 choice = strtol (args, &args2, 10);
d2e4a39e 3553 if (args == args2 || choice < 0
4c4b4cd2 3554 || choice > n_choices + first_choice - 1)
323e0a4a 3555 error (_("Argument must be choice number"));
14f9c5c9
AS
3556 args = args2;
3557
d2e4a39e 3558 if (choice == 0)
323e0a4a 3559 error (_("cancelled"));
14f9c5c9
AS
3560
3561 if (choice < first_choice)
4c4b4cd2
PH
3562 {
3563 n_chosen = n_choices;
3564 for (j = 0; j < n_choices; j += 1)
3565 choices[j] = j;
3566 break;
3567 }
14f9c5c9
AS
3568 choice -= first_choice;
3569
d2e4a39e 3570 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3571 {
3572 }
14f9c5c9
AS
3573
3574 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3575 {
3576 int k;
5b4ee69b 3577
4c4b4cd2
PH
3578 for (k = n_chosen - 1; k > j; k -= 1)
3579 choices[k + 1] = choices[k];
3580 choices[j + 1] = choice;
3581 n_chosen += 1;
3582 }
14f9c5c9
AS
3583 }
3584
3585 if (n_chosen > max_results)
323e0a4a 3586 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3587
14f9c5c9
AS
3588 return n_chosen;
3589}
3590
4c4b4cd2
PH
3591/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3592 on the function identified by SYM and BLOCK, and taking NARGS
3593 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3594
3595static void
d2e4a39e 3596replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3597 int oplen, struct symbol *sym,
3598 struct block *block)
14f9c5c9
AS
3599{
3600 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3601 symbol, -oplen for operator being replaced). */
d2e4a39e 3602 struct expression *newexp = (struct expression *)
14f9c5c9 3603 xmalloc (sizeof (struct expression)
4c4b4cd2 3604 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3605 struct expression *exp = *expp;
14f9c5c9
AS
3606
3607 newexp->nelts = exp->nelts + 7 - oplen;
3608 newexp->language_defn = exp->language_defn;
3609 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3610 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3611 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3612
3613 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3614 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3615
3616 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3617 newexp->elts[pc + 4].block = block;
3618 newexp->elts[pc + 5].symbol = sym;
3619
3620 *expp = newexp;
aacb1f0a 3621 xfree (exp);
d2e4a39e 3622}
14f9c5c9
AS
3623
3624/* Type-class predicates */
3625
4c4b4cd2
PH
3626/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3627 or FLOAT). */
14f9c5c9
AS
3628
3629static int
d2e4a39e 3630numeric_type_p (struct type *type)
14f9c5c9
AS
3631{
3632 if (type == NULL)
3633 return 0;
d2e4a39e
AS
3634 else
3635 {
3636 switch (TYPE_CODE (type))
4c4b4cd2
PH
3637 {
3638 case TYPE_CODE_INT:
3639 case TYPE_CODE_FLT:
3640 return 1;
3641 case TYPE_CODE_RANGE:
3642 return (type == TYPE_TARGET_TYPE (type)
3643 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3644 default:
3645 return 0;
3646 }
d2e4a39e 3647 }
14f9c5c9
AS
3648}
3649
4c4b4cd2 3650/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3651
3652static int
d2e4a39e 3653integer_type_p (struct type *type)
14f9c5c9
AS
3654{
3655 if (type == NULL)
3656 return 0;
d2e4a39e
AS
3657 else
3658 {
3659 switch (TYPE_CODE (type))
4c4b4cd2
PH
3660 {
3661 case TYPE_CODE_INT:
3662 return 1;
3663 case TYPE_CODE_RANGE:
3664 return (type == TYPE_TARGET_TYPE (type)
3665 || integer_type_p (TYPE_TARGET_TYPE (type)));
3666 default:
3667 return 0;
3668 }
d2e4a39e 3669 }
14f9c5c9
AS
3670}
3671
4c4b4cd2 3672/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3673
3674static int
d2e4a39e 3675scalar_type_p (struct type *type)
14f9c5c9
AS
3676{
3677 if (type == NULL)
3678 return 0;
d2e4a39e
AS
3679 else
3680 {
3681 switch (TYPE_CODE (type))
4c4b4cd2
PH
3682 {
3683 case TYPE_CODE_INT:
3684 case TYPE_CODE_RANGE:
3685 case TYPE_CODE_ENUM:
3686 case TYPE_CODE_FLT:
3687 return 1;
3688 default:
3689 return 0;
3690 }
d2e4a39e 3691 }
14f9c5c9
AS
3692}
3693
4c4b4cd2 3694/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3695
3696static int
d2e4a39e 3697discrete_type_p (struct type *type)
14f9c5c9
AS
3698{
3699 if (type == NULL)
3700 return 0;
d2e4a39e
AS
3701 else
3702 {
3703 switch (TYPE_CODE (type))
4c4b4cd2
PH
3704 {
3705 case TYPE_CODE_INT:
3706 case TYPE_CODE_RANGE:
3707 case TYPE_CODE_ENUM:
872f0337 3708 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3709 return 1;
3710 default:
3711 return 0;
3712 }
d2e4a39e 3713 }
14f9c5c9
AS
3714}
3715
4c4b4cd2
PH
3716/* Returns non-zero if OP with operands in the vector ARGS could be
3717 a user-defined function. Errs on the side of pre-defined operators
3718 (i.e., result 0). */
14f9c5c9
AS
3719
3720static int
d2e4a39e 3721possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3722{
76a01679 3723 struct type *type0 =
df407dfe 3724 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3725 struct type *type1 =
df407dfe 3726 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3727
4c4b4cd2
PH
3728 if (type0 == NULL)
3729 return 0;
3730
14f9c5c9
AS
3731 switch (op)
3732 {
3733 default:
3734 return 0;
3735
3736 case BINOP_ADD:
3737 case BINOP_SUB:
3738 case BINOP_MUL:
3739 case BINOP_DIV:
d2e4a39e 3740 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3741
3742 case BINOP_REM:
3743 case BINOP_MOD:
3744 case BINOP_BITWISE_AND:
3745 case BINOP_BITWISE_IOR:
3746 case BINOP_BITWISE_XOR:
d2e4a39e 3747 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3748
3749 case BINOP_EQUAL:
3750 case BINOP_NOTEQUAL:
3751 case BINOP_LESS:
3752 case BINOP_GTR:
3753 case BINOP_LEQ:
3754 case BINOP_GEQ:
d2e4a39e 3755 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3756
3757 case BINOP_CONCAT:
ee90b9ab 3758 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3759
3760 case BINOP_EXP:
d2e4a39e 3761 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3762
3763 case UNOP_NEG:
3764 case UNOP_PLUS:
3765 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3766 case UNOP_ABS:
3767 return (!numeric_type_p (type0));
14f9c5c9
AS
3768
3769 }
3770}
3771\f
4c4b4cd2 3772 /* Renaming */
14f9c5c9 3773
aeb5907d
JB
3774/* NOTES:
3775
3776 1. In the following, we assume that a renaming type's name may
3777 have an ___XD suffix. It would be nice if this went away at some
3778 point.
3779 2. We handle both the (old) purely type-based representation of
3780 renamings and the (new) variable-based encoding. At some point,
3781 it is devoutly to be hoped that the former goes away
3782 (FIXME: hilfinger-2007-07-09).
3783 3. Subprogram renamings are not implemented, although the XRS
3784 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3785
3786/* If SYM encodes a renaming,
3787
3788 <renaming> renames <renamed entity>,
3789
3790 sets *LEN to the length of the renamed entity's name,
3791 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3792 the string describing the subcomponent selected from the renamed
3793 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3794 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3795 are undefined). Otherwise, returns a value indicating the category
3796 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3797 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3798 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3799 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3800 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3801 may be NULL, in which case they are not assigned.
3802
3803 [Currently, however, GCC does not generate subprogram renamings.] */
3804
3805enum ada_renaming_category
3806ada_parse_renaming (struct symbol *sym,
3807 const char **renamed_entity, int *len,
3808 const char **renaming_expr)
3809{
3810 enum ada_renaming_category kind;
3811 const char *info;
3812 const char *suffix;
3813
3814 if (sym == NULL)
3815 return ADA_NOT_RENAMING;
3816 switch (SYMBOL_CLASS (sym))
14f9c5c9 3817 {
aeb5907d
JB
3818 default:
3819 return ADA_NOT_RENAMING;
3820 case LOC_TYPEDEF:
3821 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3822 renamed_entity, len, renaming_expr);
3823 case LOC_LOCAL:
3824 case LOC_STATIC:
3825 case LOC_COMPUTED:
3826 case LOC_OPTIMIZED_OUT:
3827 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3828 if (info == NULL)
3829 return ADA_NOT_RENAMING;
3830 switch (info[5])
3831 {
3832 case '_':
3833 kind = ADA_OBJECT_RENAMING;
3834 info += 6;
3835 break;
3836 case 'E':
3837 kind = ADA_EXCEPTION_RENAMING;
3838 info += 7;
3839 break;
3840 case 'P':
3841 kind = ADA_PACKAGE_RENAMING;
3842 info += 7;
3843 break;
3844 case 'S':
3845 kind = ADA_SUBPROGRAM_RENAMING;
3846 info += 7;
3847 break;
3848 default:
3849 return ADA_NOT_RENAMING;
3850 }
14f9c5c9 3851 }
4c4b4cd2 3852
aeb5907d
JB
3853 if (renamed_entity != NULL)
3854 *renamed_entity = info;
3855 suffix = strstr (info, "___XE");
3856 if (suffix == NULL || suffix == info)
3857 return ADA_NOT_RENAMING;
3858 if (len != NULL)
3859 *len = strlen (info) - strlen (suffix);
3860 suffix += 5;
3861 if (renaming_expr != NULL)
3862 *renaming_expr = suffix;
3863 return kind;
3864}
3865
3866/* Assuming TYPE encodes a renaming according to the old encoding in
3867 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3868 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3869 ADA_NOT_RENAMING otherwise. */
3870static enum ada_renaming_category
3871parse_old_style_renaming (struct type *type,
3872 const char **renamed_entity, int *len,
3873 const char **renaming_expr)
3874{
3875 enum ada_renaming_category kind;
3876 const char *name;
3877 const char *info;
3878 const char *suffix;
14f9c5c9 3879
aeb5907d
JB
3880 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3881 || TYPE_NFIELDS (type) != 1)
3882 return ADA_NOT_RENAMING;
14f9c5c9 3883
aeb5907d
JB
3884 name = type_name_no_tag (type);
3885 if (name == NULL)
3886 return ADA_NOT_RENAMING;
3887
3888 name = strstr (name, "___XR");
3889 if (name == NULL)
3890 return ADA_NOT_RENAMING;
3891 switch (name[5])
3892 {
3893 case '\0':
3894 case '_':
3895 kind = ADA_OBJECT_RENAMING;
3896 break;
3897 case 'E':
3898 kind = ADA_EXCEPTION_RENAMING;
3899 break;
3900 case 'P':
3901 kind = ADA_PACKAGE_RENAMING;
3902 break;
3903 case 'S':
3904 kind = ADA_SUBPROGRAM_RENAMING;
3905 break;
3906 default:
3907 return ADA_NOT_RENAMING;
3908 }
14f9c5c9 3909
aeb5907d
JB
3910 info = TYPE_FIELD_NAME (type, 0);
3911 if (info == NULL)
3912 return ADA_NOT_RENAMING;
3913 if (renamed_entity != NULL)
3914 *renamed_entity = info;
3915 suffix = strstr (info, "___XE");
3916 if (renaming_expr != NULL)
3917 *renaming_expr = suffix + 5;
3918 if (suffix == NULL || suffix == info)
3919 return ADA_NOT_RENAMING;
3920 if (len != NULL)
3921 *len = suffix - info;
3922 return kind;
3923}
52ce6436 3924
14f9c5c9 3925\f
d2e4a39e 3926
4c4b4cd2 3927 /* Evaluation: Function Calls */
14f9c5c9 3928
4c4b4cd2 3929/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
3930 lvalues, and otherwise has the side-effect of allocating memory
3931 in the inferior where a copy of the value contents is copied. */
14f9c5c9 3932
d2e4a39e 3933static struct value *
40bc484c 3934ensure_lval (struct value *val)
14f9c5c9 3935{
40bc484c
JB
3936 if (VALUE_LVAL (val) == not_lval
3937 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 3938 {
df407dfe 3939 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
3940 const CORE_ADDR addr =
3941 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 3942
40bc484c 3943 set_value_address (val, addr);
a84a8a0d 3944 VALUE_LVAL (val) = lval_memory;
40bc484c 3945 write_memory (addr, value_contents (val), len);
c3e5cd34 3946 }
14f9c5c9
AS
3947
3948 return val;
3949}
3950
3951/* Return the value ACTUAL, converted to be an appropriate value for a
3952 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3953 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3954 values not residing in memory, updating it as needed. */
14f9c5c9 3955
a93c0eb6 3956struct value *
40bc484c 3957ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 3958{
df407dfe 3959 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3960 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3961 struct type *formal_target =
3962 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3963 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3964 struct type *actual_target =
3965 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3966 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3967
4c4b4cd2 3968 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 3969 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 3970 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
3971 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3972 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3973 {
a84a8a0d 3974 struct value *result;
5b4ee69b 3975
14f9c5c9 3976 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3977 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3978 result = desc_data (actual);
14f9c5c9 3979 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3980 {
3981 if (VALUE_LVAL (actual) != lval_memory)
3982 {
3983 struct value *val;
5b4ee69b 3984
df407dfe 3985 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3986 val = allocate_value (actual_type);
990a07ab 3987 memcpy ((char *) value_contents_raw (val),
0fd88904 3988 (char *) value_contents (actual),
4c4b4cd2 3989 TYPE_LENGTH (actual_type));
40bc484c 3990 actual = ensure_lval (val);
4c4b4cd2 3991 }
a84a8a0d 3992 result = value_addr (actual);
4c4b4cd2 3993 }
a84a8a0d
JB
3994 else
3995 return actual;
3996 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3997 }
3998 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3999 return ada_value_ind (actual);
4000
4001 return actual;
4002}
4003
438c98a1
JB
4004/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4005 type TYPE. This is usually an inefficient no-op except on some targets
4006 (such as AVR) where the representation of a pointer and an address
4007 differs. */
4008
4009static CORE_ADDR
4010value_pointer (struct value *value, struct type *type)
4011{
4012 struct gdbarch *gdbarch = get_type_arch (type);
4013 unsigned len = TYPE_LENGTH (type);
4014 gdb_byte *buf = alloca (len);
4015 CORE_ADDR addr;
4016
4017 addr = value_address (value);
4018 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4019 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4020 return addr;
4021}
4022
14f9c5c9 4023
4c4b4cd2
PH
4024/* Push a descriptor of type TYPE for array value ARR on the stack at
4025 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4026 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4027 to-descriptor type rather than a descriptor type), a struct value *
4028 representing a pointer to this descriptor. */
14f9c5c9 4029
d2e4a39e 4030static struct value *
40bc484c 4031make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4032{
d2e4a39e
AS
4033 struct type *bounds_type = desc_bounds_type (type);
4034 struct type *desc_type = desc_base_type (type);
4035 struct value *descriptor = allocate_value (desc_type);
4036 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4037 int i;
d2e4a39e 4038
df407dfe 4039 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 4040 {
50810684
UW
4041 modify_general_field (value_type (bounds),
4042 value_contents_writeable (bounds),
1eea4ebd 4043 ada_array_bound (arr, i, 0),
4c4b4cd2
PH
4044 desc_bound_bitpos (bounds_type, i, 0),
4045 desc_bound_bitsize (bounds_type, i, 0));
50810684
UW
4046 modify_general_field (value_type (bounds),
4047 value_contents_writeable (bounds),
1eea4ebd 4048 ada_array_bound (arr, i, 1),
4c4b4cd2
PH
4049 desc_bound_bitpos (bounds_type, i, 1),
4050 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4051 }
d2e4a39e 4052
40bc484c 4053 bounds = ensure_lval (bounds);
d2e4a39e 4054
50810684
UW
4055 modify_general_field (value_type (descriptor),
4056 value_contents_writeable (descriptor),
40bc484c 4057 value_pointer (ensure_lval (arr),
438c98a1 4058 TYPE_FIELD_TYPE (desc_type, 0)),
76a01679
JB
4059 fat_pntr_data_bitpos (desc_type),
4060 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 4061
50810684
UW
4062 modify_general_field (value_type (descriptor),
4063 value_contents_writeable (descriptor),
438c98a1
JB
4064 value_pointer (bounds,
4065 TYPE_FIELD_TYPE (desc_type, 1)),
4c4b4cd2
PH
4066 fat_pntr_bounds_bitpos (desc_type),
4067 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4068
40bc484c 4069 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4070
4071 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4072 return value_addr (descriptor);
4073 else
4074 return descriptor;
4075}
14f9c5c9 4076\f
963a6417
PH
4077/* Dummy definitions for an experimental caching module that is not
4078 * used in the public sources. */
96d887e8 4079
96d887e8
PH
4080static int
4081lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4082 struct symbol **sym, struct block **block)
96d887e8
PH
4083{
4084 return 0;
4085}
4086
4087static void
4088cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 4089 struct block *block)
96d887e8
PH
4090{
4091}
4c4b4cd2
PH
4092\f
4093 /* Symbol Lookup */
4094
4095/* Return the result of a standard (literal, C-like) lookup of NAME in
4096 given DOMAIN, visible from lexical block BLOCK. */
4097
4098static struct symbol *
4099standard_lookup (const char *name, const struct block *block,
4100 domain_enum domain)
4101{
4102 struct symbol *sym;
4c4b4cd2 4103
2570f2b7 4104 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4105 return sym;
2570f2b7
UW
4106 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4107 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4108 return sym;
4109}
4110
4111
4112/* Non-zero iff there is at least one non-function/non-enumeral symbol
4113 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4114 since they contend in overloading in the same way. */
4115static int
4116is_nonfunction (struct ada_symbol_info syms[], int n)
4117{
4118 int i;
4119
4120 for (i = 0; i < n; i += 1)
4121 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4122 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4123 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4124 return 1;
4125
4126 return 0;
4127}
4128
4129/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4130 struct types. Otherwise, they may not. */
14f9c5c9
AS
4131
4132static int
d2e4a39e 4133equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4134{
d2e4a39e 4135 if (type0 == type1)
14f9c5c9 4136 return 1;
d2e4a39e 4137 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4138 || TYPE_CODE (type0) != TYPE_CODE (type1))
4139 return 0;
d2e4a39e 4140 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4141 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4142 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4143 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4144 return 1;
d2e4a39e 4145
14f9c5c9
AS
4146 return 0;
4147}
4148
4149/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4150 no more defined than that of SYM1. */
14f9c5c9
AS
4151
4152static int
d2e4a39e 4153lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4154{
4155 if (sym0 == sym1)
4156 return 1;
176620f1 4157 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4158 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4159 return 0;
4160
d2e4a39e 4161 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4162 {
4163 case LOC_UNDEF:
4164 return 1;
4165 case LOC_TYPEDEF:
4166 {
4c4b4cd2
PH
4167 struct type *type0 = SYMBOL_TYPE (sym0);
4168 struct type *type1 = SYMBOL_TYPE (sym1);
4169 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4170 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4171 int len0 = strlen (name0);
5b4ee69b 4172
4c4b4cd2
PH
4173 return
4174 TYPE_CODE (type0) == TYPE_CODE (type1)
4175 && (equiv_types (type0, type1)
4176 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4177 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4178 }
4179 case LOC_CONST:
4180 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4181 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4182 default:
4183 return 0;
14f9c5c9
AS
4184 }
4185}
4186
4c4b4cd2
PH
4187/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4188 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4189
4190static void
76a01679
JB
4191add_defn_to_vec (struct obstack *obstackp,
4192 struct symbol *sym,
2570f2b7 4193 struct block *block)
14f9c5c9
AS
4194{
4195 int i;
4c4b4cd2 4196 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4197
529cad9c
PH
4198 /* Do not try to complete stub types, as the debugger is probably
4199 already scanning all symbols matching a certain name at the
4200 time when this function is called. Trying to replace the stub
4201 type by its associated full type will cause us to restart a scan
4202 which may lead to an infinite recursion. Instead, the client
4203 collecting the matching symbols will end up collecting several
4204 matches, with at least one of them complete. It can then filter
4205 out the stub ones if needed. */
4206
4c4b4cd2
PH
4207 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4208 {
4209 if (lesseq_defined_than (sym, prevDefns[i].sym))
4210 return;
4211 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4212 {
4213 prevDefns[i].sym = sym;
4214 prevDefns[i].block = block;
4c4b4cd2 4215 return;
76a01679 4216 }
4c4b4cd2
PH
4217 }
4218
4219 {
4220 struct ada_symbol_info info;
4221
4222 info.sym = sym;
4223 info.block = block;
4c4b4cd2
PH
4224 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4225 }
4226}
4227
4228/* Number of ada_symbol_info structures currently collected in
4229 current vector in *OBSTACKP. */
4230
76a01679
JB
4231static int
4232num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4233{
4234 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4235}
4236
4237/* Vector of ada_symbol_info structures currently collected in current
4238 vector in *OBSTACKP. If FINISH, close off the vector and return
4239 its final address. */
4240
76a01679 4241static struct ada_symbol_info *
4c4b4cd2
PH
4242defns_collected (struct obstack *obstackp, int finish)
4243{
4244 if (finish)
4245 return obstack_finish (obstackp);
4246 else
4247 return (struct ada_symbol_info *) obstack_base (obstackp);
4248}
4249
96d887e8
PH
4250/* Return a minimal symbol matching NAME according to Ada decoding
4251 rules. Returns NULL if there is no such minimal symbol. Names
4252 prefixed with "standard__" are handled specially: "standard__" is
4253 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4254
96d887e8
PH
4255struct minimal_symbol *
4256ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4257{
4c4b4cd2 4258 struct objfile *objfile;
96d887e8
PH
4259 struct minimal_symbol *msymbol;
4260 int wild_match;
4c4b4cd2 4261
96d887e8 4262 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4263 {
96d887e8 4264 name += sizeof ("standard__") - 1;
4c4b4cd2 4265 wild_match = 0;
4c4b4cd2
PH
4266 }
4267 else
96d887e8 4268 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4269
96d887e8
PH
4270 ALL_MSYMBOLS (objfile, msymbol)
4271 {
40658b94 4272 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
96d887e8
PH
4273 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4274 return msymbol;
4275 }
4c4b4cd2 4276
96d887e8
PH
4277 return NULL;
4278}
4c4b4cd2 4279
96d887e8
PH
4280/* For all subprograms that statically enclose the subprogram of the
4281 selected frame, add symbols matching identifier NAME in DOMAIN
4282 and their blocks to the list of data in OBSTACKP, as for
4283 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4284 wildcard prefix. */
4c4b4cd2 4285
96d887e8
PH
4286static void
4287add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4288 const char *name, domain_enum namespace,
96d887e8
PH
4289 int wild_match)
4290{
96d887e8 4291}
14f9c5c9 4292
96d887e8
PH
4293/* True if TYPE is definitely an artificial type supplied to a symbol
4294 for which no debugging information was given in the symbol file. */
14f9c5c9 4295
96d887e8
PH
4296static int
4297is_nondebugging_type (struct type *type)
4298{
4299 char *name = ada_type_name (type);
5b4ee69b 4300
96d887e8
PH
4301 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4302}
4c4b4cd2 4303
96d887e8
PH
4304/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4305 duplicate other symbols in the list (The only case I know of where
4306 this happens is when object files containing stabs-in-ecoff are
4307 linked with files containing ordinary ecoff debugging symbols (or no
4308 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4309 Returns the number of items in the modified list. */
4c4b4cd2 4310
96d887e8
PH
4311static int
4312remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4313{
4314 int i, j;
4c4b4cd2 4315
96d887e8
PH
4316 i = 0;
4317 while (i < nsyms)
4318 {
339c13b6
JB
4319 int remove = 0;
4320
4321 /* If two symbols have the same name and one of them is a stub type,
4322 the get rid of the stub. */
4323
4324 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4325 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4326 {
4327 for (j = 0; j < nsyms; j++)
4328 {
4329 if (j != i
4330 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4331 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4332 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4333 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4334 remove = 1;
4335 }
4336 }
4337
4338 /* Two symbols with the same name, same class and same address
4339 should be identical. */
4340
4341 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4342 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4343 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4344 {
4345 for (j = 0; j < nsyms; j += 1)
4346 {
4347 if (i != j
4348 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4349 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4350 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4351 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4352 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4353 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4354 remove = 1;
4c4b4cd2 4355 }
4c4b4cd2 4356 }
339c13b6
JB
4357
4358 if (remove)
4359 {
4360 for (j = i + 1; j < nsyms; j += 1)
4361 syms[j - 1] = syms[j];
4362 nsyms -= 1;
4363 }
4364
96d887e8 4365 i += 1;
14f9c5c9 4366 }
96d887e8 4367 return nsyms;
14f9c5c9
AS
4368}
4369
96d887e8
PH
4370/* Given a type that corresponds to a renaming entity, use the type name
4371 to extract the scope (package name or function name, fully qualified,
4372 and following the GNAT encoding convention) where this renaming has been
4373 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4374
96d887e8
PH
4375static char *
4376xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4377{
96d887e8
PH
4378 /* The renaming types adhere to the following convention:
4379 <scope>__<rename>___<XR extension>.
4380 So, to extract the scope, we search for the "___XR" extension,
4381 and then backtrack until we find the first "__". */
76a01679 4382
96d887e8
PH
4383 const char *name = type_name_no_tag (renaming_type);
4384 char *suffix = strstr (name, "___XR");
4385 char *last;
4386 int scope_len;
4387 char *scope;
14f9c5c9 4388
96d887e8
PH
4389 /* Now, backtrack a bit until we find the first "__". Start looking
4390 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4391
96d887e8
PH
4392 for (last = suffix - 3; last > name; last--)
4393 if (last[0] == '_' && last[1] == '_')
4394 break;
76a01679 4395
96d887e8 4396 /* Make a copy of scope and return it. */
14f9c5c9 4397
96d887e8
PH
4398 scope_len = last - name;
4399 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4400
96d887e8
PH
4401 strncpy (scope, name, scope_len);
4402 scope[scope_len] = '\0';
4c4b4cd2 4403
96d887e8 4404 return scope;
4c4b4cd2
PH
4405}
4406
96d887e8 4407/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4408
96d887e8
PH
4409static int
4410is_package_name (const char *name)
4c4b4cd2 4411{
96d887e8
PH
4412 /* Here, We take advantage of the fact that no symbols are generated
4413 for packages, while symbols are generated for each function.
4414 So the condition for NAME represent a package becomes equivalent
4415 to NAME not existing in our list of symbols. There is only one
4416 small complication with library-level functions (see below). */
4c4b4cd2 4417
96d887e8 4418 char *fun_name;
76a01679 4419
96d887e8
PH
4420 /* If it is a function that has not been defined at library level,
4421 then we should be able to look it up in the symbols. */
4422 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4423 return 0;
14f9c5c9 4424
96d887e8
PH
4425 /* Library-level function names start with "_ada_". See if function
4426 "_ada_" followed by NAME can be found. */
14f9c5c9 4427
96d887e8 4428 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4429 functions names cannot contain "__" in them. */
96d887e8
PH
4430 if (strstr (name, "__") != NULL)
4431 return 0;
4c4b4cd2 4432
b435e160 4433 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4434
96d887e8
PH
4435 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4436}
14f9c5c9 4437
96d887e8 4438/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4439 not visible from FUNCTION_NAME. */
14f9c5c9 4440
96d887e8 4441static int
aeb5907d 4442old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4443{
aeb5907d
JB
4444 char *scope;
4445
4446 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4447 return 0;
4448
4449 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4450
96d887e8 4451 make_cleanup (xfree, scope);
14f9c5c9 4452
96d887e8
PH
4453 /* If the rename has been defined in a package, then it is visible. */
4454 if (is_package_name (scope))
aeb5907d 4455 return 0;
14f9c5c9 4456
96d887e8
PH
4457 /* Check that the rename is in the current function scope by checking
4458 that its name starts with SCOPE. */
76a01679 4459
96d887e8
PH
4460 /* If the function name starts with "_ada_", it means that it is
4461 a library-level function. Strip this prefix before doing the
4462 comparison, as the encoding for the renaming does not contain
4463 this prefix. */
4464 if (strncmp (function_name, "_ada_", 5) == 0)
4465 function_name += 5;
f26caa11 4466
aeb5907d 4467 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4468}
4469
aeb5907d
JB
4470/* Remove entries from SYMS that corresponds to a renaming entity that
4471 is not visible from the function associated with CURRENT_BLOCK or
4472 that is superfluous due to the presence of more specific renaming
4473 information. Places surviving symbols in the initial entries of
4474 SYMS and returns the number of surviving symbols.
96d887e8
PH
4475
4476 Rationale:
aeb5907d
JB
4477 First, in cases where an object renaming is implemented as a
4478 reference variable, GNAT may produce both the actual reference
4479 variable and the renaming encoding. In this case, we discard the
4480 latter.
4481
4482 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4483 entity. Unfortunately, STABS currently does not support the definition
4484 of types that are local to a given lexical block, so all renamings types
4485 are emitted at library level. As a consequence, if an application
4486 contains two renaming entities using the same name, and a user tries to
4487 print the value of one of these entities, the result of the ada symbol
4488 lookup will also contain the wrong renaming type.
f26caa11 4489
96d887e8
PH
4490 This function partially covers for this limitation by attempting to
4491 remove from the SYMS list renaming symbols that should be visible
4492 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4493 method with the current information available. The implementation
4494 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4495
4496 - When the user tries to print a rename in a function while there
4497 is another rename entity defined in a package: Normally, the
4498 rename in the function has precedence over the rename in the
4499 package, so the latter should be removed from the list. This is
4500 currently not the case.
4501
4502 - This function will incorrectly remove valid renames if
4503 the CURRENT_BLOCK corresponds to a function which symbol name
4504 has been changed by an "Export" pragma. As a consequence,
4505 the user will be unable to print such rename entities. */
4c4b4cd2 4506
14f9c5c9 4507static int
aeb5907d
JB
4508remove_irrelevant_renamings (struct ada_symbol_info *syms,
4509 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4510{
4511 struct symbol *current_function;
4512 char *current_function_name;
4513 int i;
aeb5907d
JB
4514 int is_new_style_renaming;
4515
4516 /* If there is both a renaming foo___XR... encoded as a variable and
4517 a simple variable foo in the same block, discard the latter.
4518 First, zero out such symbols, then compress. */
4519 is_new_style_renaming = 0;
4520 for (i = 0; i < nsyms; i += 1)
4521 {
4522 struct symbol *sym = syms[i].sym;
4523 struct block *block = syms[i].block;
4524 const char *name;
4525 const char *suffix;
4526
4527 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4528 continue;
4529 name = SYMBOL_LINKAGE_NAME (sym);
4530 suffix = strstr (name, "___XR");
4531
4532 if (suffix != NULL)
4533 {
4534 int name_len = suffix - name;
4535 int j;
5b4ee69b 4536
aeb5907d
JB
4537 is_new_style_renaming = 1;
4538 for (j = 0; j < nsyms; j += 1)
4539 if (i != j && syms[j].sym != NULL
4540 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4541 name_len) == 0
4542 && block == syms[j].block)
4543 syms[j].sym = NULL;
4544 }
4545 }
4546 if (is_new_style_renaming)
4547 {
4548 int j, k;
4549
4550 for (j = k = 0; j < nsyms; j += 1)
4551 if (syms[j].sym != NULL)
4552 {
4553 syms[k] = syms[j];
4554 k += 1;
4555 }
4556 return k;
4557 }
4c4b4cd2
PH
4558
4559 /* Extract the function name associated to CURRENT_BLOCK.
4560 Abort if unable to do so. */
76a01679 4561
4c4b4cd2
PH
4562 if (current_block == NULL)
4563 return nsyms;
76a01679 4564
7f0df278 4565 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4566 if (current_function == NULL)
4567 return nsyms;
4568
4569 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4570 if (current_function_name == NULL)
4571 return nsyms;
4572
4573 /* Check each of the symbols, and remove it from the list if it is
4574 a type corresponding to a renaming that is out of the scope of
4575 the current block. */
4576
4577 i = 0;
4578 while (i < nsyms)
4579 {
aeb5907d
JB
4580 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4581 == ADA_OBJECT_RENAMING
4582 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4583 {
4584 int j;
5b4ee69b 4585
aeb5907d 4586 for (j = i + 1; j < nsyms; j += 1)
76a01679 4587 syms[j - 1] = syms[j];
4c4b4cd2
PH
4588 nsyms -= 1;
4589 }
4590 else
4591 i += 1;
4592 }
4593
4594 return nsyms;
4595}
4596
339c13b6
JB
4597/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4598 whose name and domain match NAME and DOMAIN respectively.
4599 If no match was found, then extend the search to "enclosing"
4600 routines (in other words, if we're inside a nested function,
4601 search the symbols defined inside the enclosing functions).
4602
4603 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4604
4605static void
4606ada_add_local_symbols (struct obstack *obstackp, const char *name,
4607 struct block *block, domain_enum domain,
4608 int wild_match)
4609{
4610 int block_depth = 0;
4611
4612 while (block != NULL)
4613 {
4614 block_depth += 1;
4615 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4616
4617 /* If we found a non-function match, assume that's the one. */
4618 if (is_nonfunction (defns_collected (obstackp, 0),
4619 num_defns_collected (obstackp)))
4620 return;
4621
4622 block = BLOCK_SUPERBLOCK (block);
4623 }
4624
4625 /* If no luck so far, try to find NAME as a local symbol in some lexically
4626 enclosing subprogram. */
4627 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4628 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4629}
4630
ccefe4c4 4631/* An object of this type is used as the user_data argument when
40658b94 4632 calling the map_matching_symbols method. */
ccefe4c4 4633
40658b94 4634struct match_data
ccefe4c4 4635{
40658b94 4636 struct objfile *objfile;
ccefe4c4 4637 struct obstack *obstackp;
40658b94
PH
4638 struct symbol *arg_sym;
4639 int found_sym;
ccefe4c4
TT
4640};
4641
40658b94
PH
4642/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4643 to a list of symbols. DATA0 is a pointer to a struct match_data *
4644 containing the obstack that collects the symbol list, the file that SYM
4645 must come from, a flag indicating whether a non-argument symbol has
4646 been found in the current block, and the last argument symbol
4647 passed in SYM within the current block (if any). When SYM is null,
4648 marking the end of a block, the argument symbol is added if no
4649 other has been found. */
ccefe4c4 4650
40658b94
PH
4651static int
4652aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4653{
40658b94
PH
4654 struct match_data *data = (struct match_data *) data0;
4655
4656 if (sym == NULL)
4657 {
4658 if (!data->found_sym && data->arg_sym != NULL)
4659 add_defn_to_vec (data->obstackp,
4660 fixup_symbol_section (data->arg_sym, data->objfile),
4661 block);
4662 data->found_sym = 0;
4663 data->arg_sym = NULL;
4664 }
4665 else
4666 {
4667 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4668 return 0;
4669 else if (SYMBOL_IS_ARGUMENT (sym))
4670 data->arg_sym = sym;
4671 else
4672 {
4673 data->found_sym = 1;
4674 add_defn_to_vec (data->obstackp,
4675 fixup_symbol_section (sym, data->objfile),
4676 block);
4677 }
4678 }
4679 return 0;
4680}
4681
4682/* Compare STRING1 to STRING2, with results as for strcmp.
4683 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4684 implies compare_names (STRING1, STRING2) (they may differ as to
4685 what symbols compare equal). */
5b4ee69b 4686
40658b94
PH
4687static int
4688compare_names (const char *string1, const char *string2)
4689{
4690 while (*string1 != '\0' && *string2 != '\0')
4691 {
4692 if (isspace (*string1) || isspace (*string2))
4693 return strcmp_iw_ordered (string1, string2);
4694 if (*string1 != *string2)
4695 break;
4696 string1 += 1;
4697 string2 += 1;
4698 }
4699 switch (*string1)
4700 {
4701 case '(':
4702 return strcmp_iw_ordered (string1, string2);
4703 case '_':
4704 if (*string2 == '\0')
4705 {
4706 if (is_name_suffix (string2))
4707 return 0;
4708 else
4709 return -1;
4710 }
4711 default:
4712 if (*string2 == '(')
4713 return strcmp_iw_ordered (string1, string2);
4714 else
4715 return *string1 - *string2;
4716 }
ccefe4c4
TT
4717}
4718
339c13b6
JB
4719/* Add to OBSTACKP all non-local symbols whose name and domain match
4720 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4721 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4722
4723static void
40658b94
PH
4724add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4725 domain_enum domain, int global,
4726 int is_wild_match)
339c13b6
JB
4727{
4728 struct objfile *objfile;
40658b94 4729 struct match_data data;
339c13b6 4730
ccefe4c4 4731 data.obstackp = obstackp;
40658b94 4732 data.arg_sym = NULL;
339c13b6 4733
ccefe4c4 4734 ALL_OBJFILES (objfile)
40658b94
PH
4735 {
4736 data.objfile = objfile;
4737
4738 if (is_wild_match)
4739 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4740 aux_add_nonlocal_symbols, &data,
4741 wild_match, NULL);
4742 else
4743 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4744 aux_add_nonlocal_symbols, &data,
4745 full_match, compare_names);
4746 }
4747
4748 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4749 {
4750 ALL_OBJFILES (objfile)
4751 {
4752 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4753 strcpy (name1, "_ada_");
4754 strcpy (name1 + sizeof ("_ada_") - 1, name);
4755 data.objfile = objfile;
4756 objfile->sf->qf->map_matching_symbols (name1, domain, objfile, global,
4757 aux_add_nonlocal_symbols, &data,
4758 full_match, compare_names);
4759 }
4760 }
339c13b6
JB
4761}
4762
4c4b4cd2
PH
4763/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4764 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4765 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4766 indicating the symbols found and the blocks and symbol tables (if
4767 any) in which they were found. This vector are transient---good only to
4768 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4769 symbol match within the nest of blocks whose innermost member is BLOCK0,
4770 is the one match returned (no other matches in that or
4771 enclosing blocks is returned). If there are any matches in or
4772 surrounding BLOCK0, then these alone are returned. Otherwise, the
4773 search extends to global and file-scope (static) symbol tables.
4774 Names prefixed with "standard__" are handled specially: "standard__"
4775 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4776
4777int
4c4b4cd2 4778ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4779 domain_enum namespace,
4780 struct ada_symbol_info **results)
14f9c5c9
AS
4781{
4782 struct symbol *sym;
14f9c5c9 4783 struct block *block;
4c4b4cd2 4784 const char *name;
4c4b4cd2 4785 int wild_match;
14f9c5c9 4786 int cacheIfUnique;
4c4b4cd2 4787 int ndefns;
14f9c5c9 4788
4c4b4cd2
PH
4789 obstack_free (&symbol_list_obstack, NULL);
4790 obstack_init (&symbol_list_obstack);
14f9c5c9 4791
14f9c5c9
AS
4792 cacheIfUnique = 0;
4793
4794 /* Search specified block and its superiors. */
4795
4c4b4cd2
PH
4796 wild_match = (strstr (name0, "__") == NULL);
4797 name = name0;
76a01679
JB
4798 block = (struct block *) block0; /* FIXME: No cast ought to be
4799 needed, but adding const will
4800 have a cascade effect. */
339c13b6
JB
4801
4802 /* Special case: If the user specifies a symbol name inside package
4803 Standard, do a non-wild matching of the symbol name without
4804 the "standard__" prefix. This was primarily introduced in order
4805 to allow the user to specifically access the standard exceptions
4806 using, for instance, Standard.Constraint_Error when Constraint_Error
4807 is ambiguous (due to the user defining its own Constraint_Error
4808 entity inside its program). */
4c4b4cd2
PH
4809 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4810 {
4811 wild_match = 0;
4812 block = NULL;
4813 name = name0 + sizeof ("standard__") - 1;
4814 }
4815
339c13b6 4816 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4817
339c13b6
JB
4818 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4819 wild_match);
4c4b4cd2 4820 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4821 goto done;
d2e4a39e 4822
339c13b6
JB
4823 /* No non-global symbols found. Check our cache to see if we have
4824 already performed this search before. If we have, then return
4825 the same result. */
4826
14f9c5c9 4827 cacheIfUnique = 1;
2570f2b7 4828 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4829 {
4830 if (sym != NULL)
2570f2b7 4831 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4832 goto done;
4833 }
14f9c5c9 4834
339c13b6
JB
4835 /* Search symbols from all global blocks. */
4836
40658b94
PH
4837 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4838 wild_match);
d2e4a39e 4839
4c4b4cd2 4840 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4841 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4842
4c4b4cd2 4843 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94
PH
4844 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4845 wild_match);
14f9c5c9 4846
4c4b4cd2
PH
4847done:
4848 ndefns = num_defns_collected (&symbol_list_obstack);
4849 *results = defns_collected (&symbol_list_obstack, 1);
4850
4851 ndefns = remove_extra_symbols (*results, ndefns);
4852
d2e4a39e 4853 if (ndefns == 0)
2570f2b7 4854 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4855
4c4b4cd2 4856 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4857 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4858
aeb5907d 4859 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4860
14f9c5c9
AS
4861 return ndefns;
4862}
4863
d2e4a39e 4864struct symbol *
aeb5907d 4865ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4866 domain_enum namespace, struct block **block_found)
14f9c5c9 4867{
4c4b4cd2 4868 struct ada_symbol_info *candidates;
14f9c5c9
AS
4869 int n_candidates;
4870
aeb5907d 4871 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4872
4873 if (n_candidates == 0)
4874 return NULL;
4c4b4cd2 4875
aeb5907d
JB
4876 if (block_found != NULL)
4877 *block_found = candidates[0].block;
4c4b4cd2 4878
21b556f4 4879 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4880}
4881
4882/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4883 scope and in global scopes, or NULL if none. NAME is folded and
4884 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4885 choosing the first symbol if there are multiple choices.
4886 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4887 table in which the symbol was found (in both cases, these
4888 assignments occur only if the pointers are non-null). */
4889struct symbol *
4890ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4891 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4892{
4893 if (is_a_field_of_this != NULL)
4894 *is_a_field_of_this = 0;
4895
4896 return
4897 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4898 block0, namespace, NULL);
4c4b4cd2 4899}
14f9c5c9 4900
4c4b4cd2
PH
4901static struct symbol *
4902ada_lookup_symbol_nonlocal (const char *name,
76a01679 4903 const struct block *block,
21b556f4 4904 const domain_enum domain)
4c4b4cd2 4905{
94af9270 4906 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
4907}
4908
4909
4c4b4cd2
PH
4910/* True iff STR is a possible encoded suffix of a normal Ada name
4911 that is to be ignored for matching purposes. Suffixes of parallel
4912 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4913 are given by any of the regular expressions:
4c4b4cd2 4914
babe1480
JB
4915 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4916 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4917 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4918 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4919
4920 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4921 match is performed. This sequence is used to differentiate homonyms,
4922 is an optional part of a valid name suffix. */
4c4b4cd2 4923
14f9c5c9 4924static int
d2e4a39e 4925is_name_suffix (const char *str)
14f9c5c9
AS
4926{
4927 int k;
4c4b4cd2
PH
4928 const char *matching;
4929 const int len = strlen (str);
4930
babe1480
JB
4931 /* Skip optional leading __[0-9]+. */
4932
4c4b4cd2
PH
4933 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4934 {
babe1480
JB
4935 str += 3;
4936 while (isdigit (str[0]))
4937 str += 1;
4c4b4cd2 4938 }
babe1480
JB
4939
4940 /* [.$][0-9]+ */
4c4b4cd2 4941
babe1480 4942 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4943 {
babe1480 4944 matching = str + 1;
4c4b4cd2
PH
4945 while (isdigit (matching[0]))
4946 matching += 1;
4947 if (matching[0] == '\0')
4948 return 1;
4949 }
4950
4951 /* ___[0-9]+ */
babe1480 4952
4c4b4cd2
PH
4953 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4954 {
4955 matching = str + 3;
4956 while (isdigit (matching[0]))
4957 matching += 1;
4958 if (matching[0] == '\0')
4959 return 1;
4960 }
4961
529cad9c
PH
4962#if 0
4963 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4964 with a N at the end. Unfortunately, the compiler uses the same
4965 convention for other internal types it creates. So treating
4966 all entity names that end with an "N" as a name suffix causes
4967 some regressions. For instance, consider the case of an enumerated
4968 type. To support the 'Image attribute, it creates an array whose
4969 name ends with N.
4970 Having a single character like this as a suffix carrying some
4971 information is a bit risky. Perhaps we should change the encoding
4972 to be something like "_N" instead. In the meantime, do not do
4973 the following check. */
4974 /* Protected Object Subprograms */
4975 if (len == 1 && str [0] == 'N')
4976 return 1;
4977#endif
4978
4979 /* _E[0-9]+[bs]$ */
4980 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4981 {
4982 matching = str + 3;
4983 while (isdigit (matching[0]))
4984 matching += 1;
4985 if ((matching[0] == 'b' || matching[0] == 's')
4986 && matching [1] == '\0')
4987 return 1;
4988 }
4989
4c4b4cd2
PH
4990 /* ??? We should not modify STR directly, as we are doing below. This
4991 is fine in this case, but may become problematic later if we find
4992 that this alternative did not work, and want to try matching
4993 another one from the begining of STR. Since we modified it, we
4994 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4995 if (str[0] == 'X')
4996 {
4997 str += 1;
d2e4a39e 4998 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
4999 {
5000 if (str[0] != 'n' && str[0] != 'b')
5001 return 0;
5002 str += 1;
5003 }
14f9c5c9 5004 }
babe1480 5005
14f9c5c9
AS
5006 if (str[0] == '\000')
5007 return 1;
babe1480 5008
d2e4a39e 5009 if (str[0] == '_')
14f9c5c9
AS
5010 {
5011 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5012 return 0;
d2e4a39e 5013 if (str[2] == '_')
4c4b4cd2 5014 {
61ee279c
PH
5015 if (strcmp (str + 3, "JM") == 0)
5016 return 1;
5017 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5018 the LJM suffix in favor of the JM one. But we will
5019 still accept LJM as a valid suffix for a reasonable
5020 amount of time, just to allow ourselves to debug programs
5021 compiled using an older version of GNAT. */
4c4b4cd2
PH
5022 if (strcmp (str + 3, "LJM") == 0)
5023 return 1;
5024 if (str[3] != 'X')
5025 return 0;
1265e4aa
JB
5026 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5027 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5028 return 1;
5029 if (str[4] == 'R' && str[5] != 'T')
5030 return 1;
5031 return 0;
5032 }
5033 if (!isdigit (str[2]))
5034 return 0;
5035 for (k = 3; str[k] != '\0'; k += 1)
5036 if (!isdigit (str[k]) && str[k] != '_')
5037 return 0;
14f9c5c9
AS
5038 return 1;
5039 }
4c4b4cd2 5040 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5041 {
4c4b4cd2
PH
5042 for (k = 2; str[k] != '\0'; k += 1)
5043 if (!isdigit (str[k]) && str[k] != '_')
5044 return 0;
14f9c5c9
AS
5045 return 1;
5046 }
5047 return 0;
5048}
d2e4a39e 5049
aeb5907d
JB
5050/* Return non-zero if the string starting at NAME and ending before
5051 NAME_END contains no capital letters. */
529cad9c
PH
5052
5053static int
5054is_valid_name_for_wild_match (const char *name0)
5055{
5056 const char *decoded_name = ada_decode (name0);
5057 int i;
5058
5823c3ef
JB
5059 /* If the decoded name starts with an angle bracket, it means that
5060 NAME0 does not follow the GNAT encoding format. It should then
5061 not be allowed as a possible wild match. */
5062 if (decoded_name[0] == '<')
5063 return 0;
5064
529cad9c
PH
5065 for (i=0; decoded_name[i] != '\0'; i++)
5066 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5067 return 0;
5068
5069 return 1;
5070}
5071
73589123
PH
5072/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5073 that could start a simple name. Assumes that *NAMEP points into
5074 the string beginning at NAME0. */
4c4b4cd2 5075
14f9c5c9 5076static int
73589123 5077advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5078{
73589123 5079 const char *name = *namep;
5b4ee69b 5080
5823c3ef 5081 while (1)
14f9c5c9 5082 {
aa27d0b3 5083 int t0, t1;
73589123
PH
5084
5085 t0 = *name;
5086 if (t0 == '_')
5087 {
5088 t1 = name[1];
5089 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5090 {
5091 name += 1;
5092 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5093 break;
5094 else
5095 name += 1;
5096 }
aa27d0b3
JB
5097 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5098 || name[2] == target0))
73589123
PH
5099 {
5100 name += 2;
5101 break;
5102 }
5103 else
5104 return 0;
5105 }
5106 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5107 name += 1;
5108 else
5823c3ef 5109 return 0;
73589123
PH
5110 }
5111
5112 *namep = name;
5113 return 1;
5114}
5115
5116/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5117 informational suffixes of NAME (i.e., for which is_name_suffix is
5118 true). Assumes that PATN is a lower-cased Ada simple name. */
5119
5120static int
5121wild_match (const char *name, const char *patn)
5122{
5123 const char *p, *n;
5124 const char *name0 = name;
5125
5126 while (1)
5127 {
5128 const char *match = name;
5129
5130 if (*name == *patn)
5131 {
5132 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5133 if (*p != *name)
5134 break;
5135 if (*p == '\0' && is_name_suffix (name))
5136 return match != name0 && !is_valid_name_for_wild_match (name0);
5137
5138 if (name[-1] == '_')
5139 name -= 1;
5140 }
5141 if (!advance_wild_match (&name, name0, *patn))
5142 return 1;
96d887e8 5143 }
96d887e8
PH
5144}
5145
40658b94
PH
5146/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5147 informational suffix. */
5148
c4d840bd
PH
5149static int
5150full_match (const char *sym_name, const char *search_name)
5151{
40658b94 5152 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5153}
5154
5155
96d887e8
PH
5156/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5157 vector *defn_symbols, updating the list of symbols in OBSTACKP
5158 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5159 OBJFILE is the section containing BLOCK.
5160 SYMTAB is recorded with each symbol added. */
5161
5162static void
5163ada_add_block_symbols (struct obstack *obstackp,
76a01679 5164 struct block *block, const char *name,
96d887e8 5165 domain_enum domain, struct objfile *objfile,
2570f2b7 5166 int wild)
96d887e8
PH
5167{
5168 struct dict_iterator iter;
5169 int name_len = strlen (name);
5170 /* A matching argument symbol, if any. */
5171 struct symbol *arg_sym;
5172 /* Set true when we find a matching non-argument symbol. */
5173 int found_sym;
5174 struct symbol *sym;
5175
5176 arg_sym = NULL;
5177 found_sym = 0;
5178 if (wild)
5179 {
c4d840bd
PH
5180 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5181 wild_match, &iter);
5182 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
76a01679 5183 {
5eeb2539
AR
5184 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5185 SYMBOL_DOMAIN (sym), domain)
73589123 5186 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5187 {
2a2d4dc3
AS
5188 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5189 continue;
5190 else if (SYMBOL_IS_ARGUMENT (sym))
5191 arg_sym = sym;
5192 else
5193 {
76a01679
JB
5194 found_sym = 1;
5195 add_defn_to_vec (obstackp,
5196 fixup_symbol_section (sym, objfile),
2570f2b7 5197 block);
76a01679
JB
5198 }
5199 }
5200 }
96d887e8
PH
5201 }
5202 else
5203 {
c4d840bd 5204 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
40658b94 5205 full_match, &iter);
c4d840bd 5206 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
76a01679 5207 {
5eeb2539
AR
5208 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5209 SYMBOL_DOMAIN (sym), domain))
76a01679 5210 {
c4d840bd
PH
5211 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5212 {
5213 if (SYMBOL_IS_ARGUMENT (sym))
5214 arg_sym = sym;
5215 else
2a2d4dc3 5216 {
c4d840bd
PH
5217 found_sym = 1;
5218 add_defn_to_vec (obstackp,
5219 fixup_symbol_section (sym, objfile),
5220 block);
2a2d4dc3 5221 }
c4d840bd 5222 }
76a01679
JB
5223 }
5224 }
96d887e8
PH
5225 }
5226
5227 if (!found_sym && arg_sym != NULL)
5228 {
76a01679
JB
5229 add_defn_to_vec (obstackp,
5230 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5231 block);
96d887e8
PH
5232 }
5233
5234 if (!wild)
5235 {
5236 arg_sym = NULL;
5237 found_sym = 0;
5238
5239 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5240 {
5eeb2539
AR
5241 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5242 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5243 {
5244 int cmp;
5245
5246 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5247 if (cmp == 0)
5248 {
5249 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5250 if (cmp == 0)
5251 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5252 name_len);
5253 }
5254
5255 if (cmp == 0
5256 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5257 {
2a2d4dc3
AS
5258 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5259 {
5260 if (SYMBOL_IS_ARGUMENT (sym))
5261 arg_sym = sym;
5262 else
5263 {
5264 found_sym = 1;
5265 add_defn_to_vec (obstackp,
5266 fixup_symbol_section (sym, objfile),
5267 block);
5268 }
5269 }
76a01679
JB
5270 }
5271 }
76a01679 5272 }
96d887e8
PH
5273
5274 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5275 They aren't parameters, right? */
5276 if (!found_sym && arg_sym != NULL)
5277 {
5278 add_defn_to_vec (obstackp,
76a01679 5279 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5280 block);
96d887e8
PH
5281 }
5282 }
5283}
5284\f
41d27058
JB
5285
5286 /* Symbol Completion */
5287
5288/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5289 name in a form that's appropriate for the completion. The result
5290 does not need to be deallocated, but is only good until the next call.
5291
5292 TEXT_LEN is equal to the length of TEXT.
5293 Perform a wild match if WILD_MATCH is set.
5294 ENCODED should be set if TEXT represents the start of a symbol name
5295 in its encoded form. */
5296
5297static const char *
5298symbol_completion_match (const char *sym_name,
5299 const char *text, int text_len,
5300 int wild_match, int encoded)
5301{
41d27058
JB
5302 const int verbatim_match = (text[0] == '<');
5303 int match = 0;
5304
5305 if (verbatim_match)
5306 {
5307 /* Strip the leading angle bracket. */
5308 text = text + 1;
5309 text_len--;
5310 }
5311
5312 /* First, test against the fully qualified name of the symbol. */
5313
5314 if (strncmp (sym_name, text, text_len) == 0)
5315 match = 1;
5316
5317 if (match && !encoded)
5318 {
5319 /* One needed check before declaring a positive match is to verify
5320 that iff we are doing a verbatim match, the decoded version
5321 of the symbol name starts with '<'. Otherwise, this symbol name
5322 is not a suitable completion. */
5323 const char *sym_name_copy = sym_name;
5324 int has_angle_bracket;
5325
5326 sym_name = ada_decode (sym_name);
5327 has_angle_bracket = (sym_name[0] == '<');
5328 match = (has_angle_bracket == verbatim_match);
5329 sym_name = sym_name_copy;
5330 }
5331
5332 if (match && !verbatim_match)
5333 {
5334 /* When doing non-verbatim match, another check that needs to
5335 be done is to verify that the potentially matching symbol name
5336 does not include capital letters, because the ada-mode would
5337 not be able to understand these symbol names without the
5338 angle bracket notation. */
5339 const char *tmp;
5340
5341 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5342 if (*tmp != '\0')
5343 match = 0;
5344 }
5345
5346 /* Second: Try wild matching... */
5347
5348 if (!match && wild_match)
5349 {
5350 /* Since we are doing wild matching, this means that TEXT
5351 may represent an unqualified symbol name. We therefore must
5352 also compare TEXT against the unqualified name of the symbol. */
5353 sym_name = ada_unqualified_name (ada_decode (sym_name));
5354
5355 if (strncmp (sym_name, text, text_len) == 0)
5356 match = 1;
5357 }
5358
5359 /* Finally: If we found a mach, prepare the result to return. */
5360
5361 if (!match)
5362 return NULL;
5363
5364 if (verbatim_match)
5365 sym_name = add_angle_brackets (sym_name);
5366
5367 if (!encoded)
5368 sym_name = ada_decode (sym_name);
5369
5370 return sym_name;
5371}
5372
2ba95b9b
JB
5373DEF_VEC_P (char_ptr);
5374
41d27058
JB
5375/* A companion function to ada_make_symbol_completion_list().
5376 Check if SYM_NAME represents a symbol which name would be suitable
5377 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5378 it is appended at the end of the given string vector SV.
5379
5380 ORIG_TEXT is the string original string from the user command
5381 that needs to be completed. WORD is the entire command on which
5382 completion should be performed. These two parameters are used to
5383 determine which part of the symbol name should be added to the
5384 completion vector.
5385 if WILD_MATCH is set, then wild matching is performed.
5386 ENCODED should be set if TEXT represents a symbol name in its
5387 encoded formed (in which case the completion should also be
5388 encoded). */
5389
5390static void
d6565258 5391symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5392 const char *sym_name,
5393 const char *text, int text_len,
5394 const char *orig_text, const char *word,
5395 int wild_match, int encoded)
5396{
5397 const char *match = symbol_completion_match (sym_name, text, text_len,
5398 wild_match, encoded);
5399 char *completion;
5400
5401 if (match == NULL)
5402 return;
5403
5404 /* We found a match, so add the appropriate completion to the given
5405 string vector. */
5406
5407 if (word == orig_text)
5408 {
5409 completion = xmalloc (strlen (match) + 5);
5410 strcpy (completion, match);
5411 }
5412 else if (word > orig_text)
5413 {
5414 /* Return some portion of sym_name. */
5415 completion = xmalloc (strlen (match) + 5);
5416 strcpy (completion, match + (word - orig_text));
5417 }
5418 else
5419 {
5420 /* Return some of ORIG_TEXT plus sym_name. */
5421 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5422 strncpy (completion, word, orig_text - word);
5423 completion[orig_text - word] = '\0';
5424 strcat (completion, match);
5425 }
5426
d6565258 5427 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5428}
5429
ccefe4c4
TT
5430/* An object of this type is passed as the user_data argument to the
5431 map_partial_symbol_names method. */
5432struct add_partial_datum
5433{
5434 VEC(char_ptr) **completions;
5435 char *text;
5436 int text_len;
5437 char *text0;
5438 char *word;
5439 int wild_match;
5440 int encoded;
5441};
5442
5443/* A callback for map_partial_symbol_names. */
5444static void
5445ada_add_partial_symbol_completions (const char *name, void *user_data)
5446{
5447 struct add_partial_datum *data = user_data;
5b4ee69b 5448
ccefe4c4
TT
5449 symbol_completion_add (data->completions, name,
5450 data->text, data->text_len, data->text0, data->word,
5451 data->wild_match, data->encoded);
5452}
5453
41d27058
JB
5454/* Return a list of possible symbol names completing TEXT0. The list
5455 is NULL terminated. WORD is the entire command on which completion
5456 is made. */
5457
5458static char **
5459ada_make_symbol_completion_list (char *text0, char *word)
5460{
5461 char *text;
5462 int text_len;
5463 int wild_match;
5464 int encoded;
2ba95b9b 5465 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5466 struct symbol *sym;
5467 struct symtab *s;
41d27058
JB
5468 struct minimal_symbol *msymbol;
5469 struct objfile *objfile;
5470 struct block *b, *surrounding_static_block = 0;
5471 int i;
5472 struct dict_iterator iter;
5473
5474 if (text0[0] == '<')
5475 {
5476 text = xstrdup (text0);
5477 make_cleanup (xfree, text);
5478 text_len = strlen (text);
5479 wild_match = 0;
5480 encoded = 1;
5481 }
5482 else
5483 {
5484 text = xstrdup (ada_encode (text0));
5485 make_cleanup (xfree, text);
5486 text_len = strlen (text);
5487 for (i = 0; i < text_len; i++)
5488 text[i] = tolower (text[i]);
5489
5490 encoded = (strstr (text0, "__") != NULL);
5491 /* If the name contains a ".", then the user is entering a fully
5492 qualified entity name, and the match must not be done in wild
5493 mode. Similarly, if the user wants to complete what looks like
5494 an encoded name, the match must not be done in wild mode. */
5495 wild_match = (strchr (text0, '.') == NULL && !encoded);
5496 }
5497
5498 /* First, look at the partial symtab symbols. */
41d27058 5499 {
ccefe4c4
TT
5500 struct add_partial_datum data;
5501
5502 data.completions = &completions;
5503 data.text = text;
5504 data.text_len = text_len;
5505 data.text0 = text0;
5506 data.word = word;
5507 data.wild_match = wild_match;
5508 data.encoded = encoded;
5509 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
41d27058
JB
5510 }
5511
5512 /* At this point scan through the misc symbol vectors and add each
5513 symbol you find to the list. Eventually we want to ignore
5514 anything that isn't a text symbol (everything else will be
5515 handled by the psymtab code above). */
5516
5517 ALL_MSYMBOLS (objfile, msymbol)
5518 {
5519 QUIT;
d6565258 5520 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5521 text, text_len, text0, word, wild_match, encoded);
5522 }
5523
5524 /* Search upwards from currently selected frame (so that we can
5525 complete on local vars. */
5526
5527 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5528 {
5529 if (!BLOCK_SUPERBLOCK (b))
5530 surrounding_static_block = b; /* For elmin of dups */
5531
5532 ALL_BLOCK_SYMBOLS (b, iter, sym)
5533 {
d6565258 5534 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5535 text, text_len, text0, word,
5536 wild_match, encoded);
5537 }
5538 }
5539
5540 /* Go through the symtabs and check the externs and statics for
5541 symbols which match. */
5542
5543 ALL_SYMTABS (objfile, s)
5544 {
5545 QUIT;
5546 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5547 ALL_BLOCK_SYMBOLS (b, iter, sym)
5548 {
d6565258 5549 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5550 text, text_len, text0, word,
5551 wild_match, encoded);
5552 }
5553 }
5554
5555 ALL_SYMTABS (objfile, s)
5556 {
5557 QUIT;
5558 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5559 /* Don't do this block twice. */
5560 if (b == surrounding_static_block)
5561 continue;
5562 ALL_BLOCK_SYMBOLS (b, iter, sym)
5563 {
d6565258 5564 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5565 text, text_len, text0, word,
5566 wild_match, encoded);
5567 }
5568 }
5569
5570 /* Append the closing NULL entry. */
2ba95b9b 5571 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5572
2ba95b9b
JB
5573 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5574 return the copy. It's unfortunate that we have to make a copy
5575 of an array that we're about to destroy, but there is nothing much
5576 we can do about it. Fortunately, it's typically not a very large
5577 array. */
5578 {
5579 const size_t completions_size =
5580 VEC_length (char_ptr, completions) * sizeof (char *);
5581 char **result = malloc (completions_size);
5582
5583 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5584
5585 VEC_free (char_ptr, completions);
5586 return result;
5587 }
41d27058
JB
5588}
5589
963a6417 5590 /* Field Access */
96d887e8 5591
73fb9985
JB
5592/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5593 for tagged types. */
5594
5595static int
5596ada_is_dispatch_table_ptr_type (struct type *type)
5597{
5598 char *name;
5599
5600 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5601 return 0;
5602
5603 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5604 if (name == NULL)
5605 return 0;
5606
5607 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5608}
5609
963a6417
PH
5610/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5611 to be invisible to users. */
96d887e8 5612
963a6417
PH
5613int
5614ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5615{
963a6417
PH
5616 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5617 return 1;
73fb9985
JB
5618
5619 /* Check the name of that field. */
5620 {
5621 const char *name = TYPE_FIELD_NAME (type, field_num);
5622
5623 /* Anonymous field names should not be printed.
5624 brobecker/2007-02-20: I don't think this can actually happen
5625 but we don't want to print the value of annonymous fields anyway. */
5626 if (name == NULL)
5627 return 1;
5628
5629 /* A field named "_parent" is internally generated by GNAT for
5630 tagged types, and should not be printed either. */
5631 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5632 return 1;
5633 }
5634
5635 /* If this is the dispatch table of a tagged type, then ignore. */
5636 if (ada_is_tagged_type (type, 1)
5637 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5638 return 1;
5639
5640 /* Not a special field, so it should not be ignored. */
5641 return 0;
963a6417 5642}
96d887e8 5643
963a6417
PH
5644/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5645 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5646
963a6417
PH
5647int
5648ada_is_tagged_type (struct type *type, int refok)
5649{
5650 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5651}
96d887e8 5652
963a6417 5653/* True iff TYPE represents the type of X'Tag */
96d887e8 5654
963a6417
PH
5655int
5656ada_is_tag_type (struct type *type)
5657{
5658 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5659 return 0;
5660 else
96d887e8 5661 {
963a6417 5662 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 5663
963a6417
PH
5664 return (name != NULL
5665 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5666 }
96d887e8
PH
5667}
5668
963a6417 5669/* The type of the tag on VAL. */
76a01679 5670
963a6417
PH
5671struct type *
5672ada_tag_type (struct value *val)
96d887e8 5673{
df407dfe 5674 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5675}
96d887e8 5676
963a6417 5677/* The value of the tag on VAL. */
96d887e8 5678
963a6417
PH
5679struct value *
5680ada_value_tag (struct value *val)
5681{
03ee6b2e 5682 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5683}
5684
963a6417
PH
5685/* The value of the tag on the object of type TYPE whose contents are
5686 saved at VALADDR, if it is non-null, or is at memory address
5687 ADDRESS. */
96d887e8 5688
963a6417 5689static struct value *
10a2c479 5690value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5691 const gdb_byte *valaddr,
963a6417 5692 CORE_ADDR address)
96d887e8 5693{
b5385fc0 5694 int tag_byte_offset;
963a6417 5695 struct type *tag_type;
5b4ee69b 5696
963a6417 5697 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5698 NULL, NULL, NULL))
96d887e8 5699 {
fc1a4b47 5700 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5701 ? NULL
5702 : valaddr + tag_byte_offset);
963a6417 5703 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5704
963a6417 5705 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5706 }
963a6417
PH
5707 return NULL;
5708}
96d887e8 5709
963a6417
PH
5710static struct type *
5711type_from_tag (struct value *tag)
5712{
5713 const char *type_name = ada_tag_name (tag);
5b4ee69b 5714
963a6417
PH
5715 if (type_name != NULL)
5716 return ada_find_any_type (ada_encode (type_name));
5717 return NULL;
5718}
96d887e8 5719
963a6417
PH
5720struct tag_args
5721{
5722 struct value *tag;
5723 char *name;
5724};
4c4b4cd2 5725
529cad9c
PH
5726
5727static int ada_tag_name_1 (void *);
5728static int ada_tag_name_2 (struct tag_args *);
5729
4c4b4cd2
PH
5730/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5731 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5732 The value stored in ARGS->name is valid until the next call to
5733 ada_tag_name_1. */
5734
5735static int
5736ada_tag_name_1 (void *args0)
5737{
5738 struct tag_args *args = (struct tag_args *) args0;
5739 static char name[1024];
76a01679 5740 char *p;
4c4b4cd2 5741 struct value *val;
5b4ee69b 5742
4c4b4cd2 5743 args->name = NULL;
03ee6b2e 5744 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5745 if (val == NULL)
5746 return ada_tag_name_2 (args);
03ee6b2e 5747 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5748 if (val == NULL)
5749 return 0;
5750 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5751 for (p = name; *p != '\0'; p += 1)
5752 if (isalpha (*p))
5753 *p = tolower (*p);
5754 args->name = name;
5755 return 0;
5756}
5757
e802dbe0
JB
5758/* Return the "ada__tags__type_specific_data" type. */
5759
5760static struct type *
5761ada_get_tsd_type (struct inferior *inf)
5762{
5763 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5764
5765 if (data->tsd_type == 0)
5766 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5767 return data->tsd_type;
5768}
5769
529cad9c
PH
5770/* Utility function for ada_tag_name_1 that tries the second
5771 representation for the dispatch table (in which there is no
5772 explicit 'tsd' field in the referent of the tag pointer, and instead
5773 the tsd pointer is stored just before the dispatch table. */
5774
5775static int
5776ada_tag_name_2 (struct tag_args *args)
5777{
5778 struct type *info_type;
5779 static char name[1024];
5780 char *p;
5781 struct value *val, *valp;
5782
5783 args->name = NULL;
e802dbe0 5784 info_type = ada_get_tsd_type (current_inferior());
529cad9c
PH
5785 if (info_type == NULL)
5786 return 0;
5787 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5788 valp = value_cast (info_type, args->tag);
5789 if (valp == NULL)
5790 return 0;
2497b498 5791 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
5792 if (val == NULL)
5793 return 0;
03ee6b2e 5794 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5795 if (val == NULL)
5796 return 0;
5797 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5798 for (p = name; *p != '\0'; p += 1)
5799 if (isalpha (*p))
5800 *p = tolower (*p);
5801 args->name = name;
5802 return 0;
5803}
5804
5805/* The type name of the dynamic type denoted by the 'tag value TAG, as
e802dbe0 5806 a C string. */
4c4b4cd2
PH
5807
5808const char *
5809ada_tag_name (struct value *tag)
5810{
5811 struct tag_args args;
5b4ee69b 5812
df407dfe 5813 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5814 return NULL;
76a01679 5815 args.tag = tag;
4c4b4cd2
PH
5816 args.name = NULL;
5817 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5818 return args.name;
5819}
5820
5821/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5822
d2e4a39e 5823struct type *
ebf56fd3 5824ada_parent_type (struct type *type)
14f9c5c9
AS
5825{
5826 int i;
5827
61ee279c 5828 type = ada_check_typedef (type);
14f9c5c9
AS
5829
5830 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5831 return NULL;
5832
5833 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5834 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5835 {
5836 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5837
5838 /* If the _parent field is a pointer, then dereference it. */
5839 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5840 parent_type = TYPE_TARGET_TYPE (parent_type);
5841 /* If there is a parallel XVS type, get the actual base type. */
5842 parent_type = ada_get_base_type (parent_type);
5843
5844 return ada_check_typedef (parent_type);
5845 }
14f9c5c9
AS
5846
5847 return NULL;
5848}
5849
4c4b4cd2
PH
5850/* True iff field number FIELD_NUM of structure type TYPE contains the
5851 parent-type (inherited) fields of a derived type. Assumes TYPE is
5852 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5853
5854int
ebf56fd3 5855ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5856{
61ee279c 5857 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 5858
4c4b4cd2
PH
5859 return (name != NULL
5860 && (strncmp (name, "PARENT", 6) == 0
5861 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5862}
5863
4c4b4cd2 5864/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5865 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5866 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5867 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5868 structures. */
14f9c5c9
AS
5869
5870int
ebf56fd3 5871ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5872{
d2e4a39e 5873 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 5874
d2e4a39e 5875 return (name != NULL
4c4b4cd2
PH
5876 && (strncmp (name, "PARENT", 6) == 0
5877 || strcmp (name, "REP") == 0
5878 || strncmp (name, "_parent", 7) == 0
5879 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5880}
5881
4c4b4cd2
PH
5882/* True iff field number FIELD_NUM of structure or union type TYPE
5883 is a variant wrapper. Assumes TYPE is a structure type with at least
5884 FIELD_NUM+1 fields. */
14f9c5c9
AS
5885
5886int
ebf56fd3 5887ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5888{
d2e4a39e 5889 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 5890
14f9c5c9 5891 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5892 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5893 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5894 == TYPE_CODE_UNION)));
14f9c5c9
AS
5895}
5896
5897/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5898 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
5899 returns the type of the controlling discriminant for the variant.
5900 May return NULL if the type could not be found. */
14f9c5c9 5901
d2e4a39e 5902struct type *
ebf56fd3 5903ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5904{
d2e4a39e 5905 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 5906
7c964f07 5907 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
5908}
5909
4c4b4cd2 5910/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5911 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5912 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5913
5914int
ebf56fd3 5915ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5916{
d2e4a39e 5917 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 5918
14f9c5c9
AS
5919 return (name != NULL && name[0] == 'O');
5920}
5921
5922/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5923 returns the name of the discriminant controlling the variant.
5924 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5925
d2e4a39e 5926char *
ebf56fd3 5927ada_variant_discrim_name (struct type *type0)
14f9c5c9 5928{
d2e4a39e 5929 static char *result = NULL;
14f9c5c9 5930 static size_t result_len = 0;
d2e4a39e
AS
5931 struct type *type;
5932 const char *name;
5933 const char *discrim_end;
5934 const char *discrim_start;
14f9c5c9
AS
5935
5936 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5937 type = TYPE_TARGET_TYPE (type0);
5938 else
5939 type = type0;
5940
5941 name = ada_type_name (type);
5942
5943 if (name == NULL || name[0] == '\000')
5944 return "";
5945
5946 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5947 discrim_end -= 1)
5948 {
4c4b4cd2
PH
5949 if (strncmp (discrim_end, "___XVN", 6) == 0)
5950 break;
14f9c5c9
AS
5951 }
5952 if (discrim_end == name)
5953 return "";
5954
d2e4a39e 5955 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5956 discrim_start -= 1)
5957 {
d2e4a39e 5958 if (discrim_start == name + 1)
4c4b4cd2 5959 return "";
76a01679 5960 if ((discrim_start > name + 3
4c4b4cd2
PH
5961 && strncmp (discrim_start - 3, "___", 3) == 0)
5962 || discrim_start[-1] == '.')
5963 break;
14f9c5c9
AS
5964 }
5965
5966 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5967 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5968 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5969 return result;
5970}
5971
4c4b4cd2
PH
5972/* Scan STR for a subtype-encoded number, beginning at position K.
5973 Put the position of the character just past the number scanned in
5974 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5975 Return 1 if there was a valid number at the given position, and 0
5976 otherwise. A "subtype-encoded" number consists of the absolute value
5977 in decimal, followed by the letter 'm' to indicate a negative number.
5978 Assumes 0m does not occur. */
14f9c5c9
AS
5979
5980int
d2e4a39e 5981ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5982{
5983 ULONGEST RU;
5984
d2e4a39e 5985 if (!isdigit (str[k]))
14f9c5c9
AS
5986 return 0;
5987
4c4b4cd2 5988 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5989 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5990 LONGEST. */
14f9c5c9
AS
5991 RU = 0;
5992 while (isdigit (str[k]))
5993 {
d2e4a39e 5994 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5995 k += 1;
5996 }
5997
d2e4a39e 5998 if (str[k] == 'm')
14f9c5c9
AS
5999 {
6000 if (R != NULL)
4c4b4cd2 6001 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6002 k += 1;
6003 }
6004 else if (R != NULL)
6005 *R = (LONGEST) RU;
6006
4c4b4cd2 6007 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6008 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6009 number representable as a LONGEST (although either would probably work
6010 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6011 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6012
6013 if (new_k != NULL)
6014 *new_k = k;
6015 return 1;
6016}
6017
4c4b4cd2
PH
6018/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6019 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6020 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6021
d2e4a39e 6022int
ebf56fd3 6023ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6024{
d2e4a39e 6025 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6026 int p;
6027
6028 p = 0;
6029 while (1)
6030 {
d2e4a39e 6031 switch (name[p])
4c4b4cd2
PH
6032 {
6033 case '\0':
6034 return 0;
6035 case 'S':
6036 {
6037 LONGEST W;
5b4ee69b 6038
4c4b4cd2
PH
6039 if (!ada_scan_number (name, p + 1, &W, &p))
6040 return 0;
6041 if (val == W)
6042 return 1;
6043 break;
6044 }
6045 case 'R':
6046 {
6047 LONGEST L, U;
5b4ee69b 6048
4c4b4cd2
PH
6049 if (!ada_scan_number (name, p + 1, &L, &p)
6050 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6051 return 0;
6052 if (val >= L && val <= U)
6053 return 1;
6054 break;
6055 }
6056 case 'O':
6057 return 1;
6058 default:
6059 return 0;
6060 }
6061 }
6062}
6063
6064/* FIXME: Lots of redundancy below. Try to consolidate. */
6065
6066/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6067 ARG_TYPE, extract and return the value of one of its (non-static)
6068 fields. FIELDNO says which field. Differs from value_primitive_field
6069 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6070
4c4b4cd2 6071static struct value *
d2e4a39e 6072ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6073 struct type *arg_type)
14f9c5c9 6074{
14f9c5c9
AS
6075 struct type *type;
6076
61ee279c 6077 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6078 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6079
4c4b4cd2 6080 /* Handle packed fields. */
14f9c5c9
AS
6081
6082 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6083 {
6084 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6085 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6086
0fd88904 6087 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6088 offset + bit_pos / 8,
6089 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6090 }
6091 else
6092 return value_primitive_field (arg1, offset, fieldno, arg_type);
6093}
6094
52ce6436
PH
6095/* Find field with name NAME in object of type TYPE. If found,
6096 set the following for each argument that is non-null:
6097 - *FIELD_TYPE_P to the field's type;
6098 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6099 an object of that type;
6100 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6101 - *BIT_SIZE_P to its size in bits if the field is packed, and
6102 0 otherwise;
6103 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6104 fields up to but not including the desired field, or by the total
6105 number of fields if not found. A NULL value of NAME never
6106 matches; the function just counts visible fields in this case.
6107
6108 Returns 1 if found, 0 otherwise. */
6109
4c4b4cd2 6110static int
76a01679
JB
6111find_struct_field (char *name, struct type *type, int offset,
6112 struct type **field_type_p,
52ce6436
PH
6113 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6114 int *index_p)
4c4b4cd2
PH
6115{
6116 int i;
6117
61ee279c 6118 type = ada_check_typedef (type);
76a01679 6119
52ce6436
PH
6120 if (field_type_p != NULL)
6121 *field_type_p = NULL;
6122 if (byte_offset_p != NULL)
d5d6fca5 6123 *byte_offset_p = 0;
52ce6436
PH
6124 if (bit_offset_p != NULL)
6125 *bit_offset_p = 0;
6126 if (bit_size_p != NULL)
6127 *bit_size_p = 0;
6128
6129 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6130 {
6131 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6132 int fld_offset = offset + bit_pos / 8;
6133 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6134
4c4b4cd2
PH
6135 if (t_field_name == NULL)
6136 continue;
6137
52ce6436 6138 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6139 {
6140 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6141
52ce6436
PH
6142 if (field_type_p != NULL)
6143 *field_type_p = TYPE_FIELD_TYPE (type, i);
6144 if (byte_offset_p != NULL)
6145 *byte_offset_p = fld_offset;
6146 if (bit_offset_p != NULL)
6147 *bit_offset_p = bit_pos % 8;
6148 if (bit_size_p != NULL)
6149 *bit_size_p = bit_size;
76a01679
JB
6150 return 1;
6151 }
4c4b4cd2
PH
6152 else if (ada_is_wrapper_field (type, i))
6153 {
52ce6436
PH
6154 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6155 field_type_p, byte_offset_p, bit_offset_p,
6156 bit_size_p, index_p))
76a01679
JB
6157 return 1;
6158 }
4c4b4cd2
PH
6159 else if (ada_is_variant_part (type, i))
6160 {
52ce6436
PH
6161 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6162 fixed type?? */
4c4b4cd2 6163 int j;
52ce6436
PH
6164 struct type *field_type
6165 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6166
52ce6436 6167 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6168 {
76a01679
JB
6169 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6170 fld_offset
6171 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6172 field_type_p, byte_offset_p,
52ce6436 6173 bit_offset_p, bit_size_p, index_p))
76a01679 6174 return 1;
4c4b4cd2
PH
6175 }
6176 }
52ce6436
PH
6177 else if (index_p != NULL)
6178 *index_p += 1;
4c4b4cd2
PH
6179 }
6180 return 0;
6181}
6182
52ce6436 6183/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6184
52ce6436
PH
6185static int
6186num_visible_fields (struct type *type)
6187{
6188 int n;
5b4ee69b 6189
52ce6436
PH
6190 n = 0;
6191 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6192 return n;
6193}
14f9c5c9 6194
4c4b4cd2 6195/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6196 and search in it assuming it has (class) type TYPE.
6197 If found, return value, else return NULL.
6198
4c4b4cd2 6199 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6200
4c4b4cd2 6201static struct value *
d2e4a39e 6202ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6203 struct type *type)
14f9c5c9
AS
6204{
6205 int i;
14f9c5c9 6206
5b4ee69b 6207 type = ada_check_typedef (type);
52ce6436 6208 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6209 {
6210 char *t_field_name = TYPE_FIELD_NAME (type, i);
6211
6212 if (t_field_name == NULL)
4c4b4cd2 6213 continue;
14f9c5c9
AS
6214
6215 else if (field_name_match (t_field_name, name))
4c4b4cd2 6216 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6217
6218 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6219 {
06d5cf63
JB
6220 struct value *v = /* Do not let indent join lines here. */
6221 ada_search_struct_field (name, arg,
6222 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6223 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6224
4c4b4cd2
PH
6225 if (v != NULL)
6226 return v;
6227 }
14f9c5c9
AS
6228
6229 else if (ada_is_variant_part (type, i))
4c4b4cd2 6230 {
52ce6436 6231 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6232 int j;
5b4ee69b
MS
6233 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6234 i));
4c4b4cd2
PH
6235 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6236
52ce6436 6237 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6238 {
06d5cf63
JB
6239 struct value *v = ada_search_struct_field /* Force line break. */
6240 (name, arg,
6241 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6242 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6243
4c4b4cd2
PH
6244 if (v != NULL)
6245 return v;
6246 }
6247 }
14f9c5c9
AS
6248 }
6249 return NULL;
6250}
d2e4a39e 6251
52ce6436
PH
6252static struct value *ada_index_struct_field_1 (int *, struct value *,
6253 int, struct type *);
6254
6255
6256/* Return field #INDEX in ARG, where the index is that returned by
6257 * find_struct_field through its INDEX_P argument. Adjust the address
6258 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6259 * If found, return value, else return NULL. */
6260
6261static struct value *
6262ada_index_struct_field (int index, struct value *arg, int offset,
6263 struct type *type)
6264{
6265 return ada_index_struct_field_1 (&index, arg, offset, type);
6266}
6267
6268
6269/* Auxiliary function for ada_index_struct_field. Like
6270 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6271 * *INDEX_P. */
6272
6273static struct value *
6274ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6275 struct type *type)
6276{
6277 int i;
6278 type = ada_check_typedef (type);
6279
6280 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6281 {
6282 if (TYPE_FIELD_NAME (type, i) == NULL)
6283 continue;
6284 else if (ada_is_wrapper_field (type, i))
6285 {
6286 struct value *v = /* Do not let indent join lines here. */
6287 ada_index_struct_field_1 (index_p, arg,
6288 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6289 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6290
52ce6436
PH
6291 if (v != NULL)
6292 return v;
6293 }
6294
6295 else if (ada_is_variant_part (type, i))
6296 {
6297 /* PNH: Do we ever get here? See ada_search_struct_field,
6298 find_struct_field. */
6299 error (_("Cannot assign this kind of variant record"));
6300 }
6301 else if (*index_p == 0)
6302 return ada_value_primitive_field (arg, offset, i, type);
6303 else
6304 *index_p -= 1;
6305 }
6306 return NULL;
6307}
6308
4c4b4cd2
PH
6309/* Given ARG, a value of type (pointer or reference to a)*
6310 structure/union, extract the component named NAME from the ultimate
6311 target structure/union and return it as a value with its
f5938064 6312 appropriate type.
14f9c5c9 6313
4c4b4cd2
PH
6314 The routine searches for NAME among all members of the structure itself
6315 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6316 (e.g., '_parent').
6317
03ee6b2e
PH
6318 If NO_ERR, then simply return NULL in case of error, rather than
6319 calling error. */
14f9c5c9 6320
d2e4a39e 6321struct value *
03ee6b2e 6322ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6323{
4c4b4cd2 6324 struct type *t, *t1;
d2e4a39e 6325 struct value *v;
14f9c5c9 6326
4c4b4cd2 6327 v = NULL;
df407dfe 6328 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6329 if (TYPE_CODE (t) == TYPE_CODE_REF)
6330 {
6331 t1 = TYPE_TARGET_TYPE (t);
6332 if (t1 == NULL)
03ee6b2e 6333 goto BadValue;
61ee279c 6334 t1 = ada_check_typedef (t1);
4c4b4cd2 6335 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6336 {
994b9211 6337 arg = coerce_ref (arg);
76a01679
JB
6338 t = t1;
6339 }
4c4b4cd2 6340 }
14f9c5c9 6341
4c4b4cd2
PH
6342 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6343 {
6344 t1 = TYPE_TARGET_TYPE (t);
6345 if (t1 == NULL)
03ee6b2e 6346 goto BadValue;
61ee279c 6347 t1 = ada_check_typedef (t1);
4c4b4cd2 6348 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6349 {
6350 arg = value_ind (arg);
6351 t = t1;
6352 }
4c4b4cd2 6353 else
76a01679 6354 break;
4c4b4cd2 6355 }
14f9c5c9 6356
4c4b4cd2 6357 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6358 goto BadValue;
14f9c5c9 6359
4c4b4cd2
PH
6360 if (t1 == t)
6361 v = ada_search_struct_field (name, arg, 0, t);
6362 else
6363 {
6364 int bit_offset, bit_size, byte_offset;
6365 struct type *field_type;
6366 CORE_ADDR address;
6367
76a01679
JB
6368 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6369 address = value_as_address (arg);
4c4b4cd2 6370 else
0fd88904 6371 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6372
1ed6ede0 6373 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6374 if (find_struct_field (name, t1, 0,
6375 &field_type, &byte_offset, &bit_offset,
52ce6436 6376 &bit_size, NULL))
76a01679
JB
6377 {
6378 if (bit_size != 0)
6379 {
714e53ab
PH
6380 if (TYPE_CODE (t) == TYPE_CODE_REF)
6381 arg = ada_coerce_ref (arg);
6382 else
6383 arg = ada_value_ind (arg);
76a01679
JB
6384 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6385 bit_offset, bit_size,
6386 field_type);
6387 }
6388 else
f5938064 6389 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6390 }
6391 }
6392
03ee6b2e
PH
6393 if (v != NULL || no_err)
6394 return v;
6395 else
323e0a4a 6396 error (_("There is no member named %s."), name);
14f9c5c9 6397
03ee6b2e
PH
6398 BadValue:
6399 if (no_err)
6400 return NULL;
6401 else
6402 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6403}
6404
6405/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6406 If DISPP is non-null, add its byte displacement from the beginning of a
6407 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6408 work for packed fields).
6409
6410 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6411 followed by "___".
14f9c5c9 6412
4c4b4cd2
PH
6413 TYPE can be either a struct or union. If REFOK, TYPE may also
6414 be a (pointer or reference)+ to a struct or union, and the
6415 ultimate target type will be searched.
14f9c5c9
AS
6416
6417 Looks recursively into variant clauses and parent types.
6418
4c4b4cd2
PH
6419 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6420 TYPE is not a type of the right kind. */
14f9c5c9 6421
4c4b4cd2 6422static struct type *
76a01679
JB
6423ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6424 int noerr, int *dispp)
14f9c5c9
AS
6425{
6426 int i;
6427
6428 if (name == NULL)
6429 goto BadName;
6430
76a01679 6431 if (refok && type != NULL)
4c4b4cd2
PH
6432 while (1)
6433 {
61ee279c 6434 type = ada_check_typedef (type);
76a01679
JB
6435 if (TYPE_CODE (type) != TYPE_CODE_PTR
6436 && TYPE_CODE (type) != TYPE_CODE_REF)
6437 break;
6438 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6439 }
14f9c5c9 6440
76a01679 6441 if (type == NULL
1265e4aa
JB
6442 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6443 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6444 {
4c4b4cd2 6445 if (noerr)
76a01679 6446 return NULL;
4c4b4cd2 6447 else
76a01679
JB
6448 {
6449 target_terminal_ours ();
6450 gdb_flush (gdb_stdout);
323e0a4a
AC
6451 if (type == NULL)
6452 error (_("Type (null) is not a structure or union type"));
6453 else
6454 {
6455 /* XXX: type_sprint */
6456 fprintf_unfiltered (gdb_stderr, _("Type "));
6457 type_print (type, "", gdb_stderr, -1);
6458 error (_(" is not a structure or union type"));
6459 }
76a01679 6460 }
14f9c5c9
AS
6461 }
6462
6463 type = to_static_fixed_type (type);
6464
6465 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6466 {
6467 char *t_field_name = TYPE_FIELD_NAME (type, i);
6468 struct type *t;
6469 int disp;
d2e4a39e 6470
14f9c5c9 6471 if (t_field_name == NULL)
4c4b4cd2 6472 continue;
14f9c5c9
AS
6473
6474 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6475 {
6476 if (dispp != NULL)
6477 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6478 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6479 }
14f9c5c9
AS
6480
6481 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6482 {
6483 disp = 0;
6484 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6485 0, 1, &disp);
6486 if (t != NULL)
6487 {
6488 if (dispp != NULL)
6489 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6490 return t;
6491 }
6492 }
14f9c5c9
AS
6493
6494 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6495 {
6496 int j;
5b4ee69b
MS
6497 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6498 i));
4c4b4cd2
PH
6499
6500 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6501 {
b1f33ddd
JB
6502 /* FIXME pnh 2008/01/26: We check for a field that is
6503 NOT wrapped in a struct, since the compiler sometimes
6504 generates these for unchecked variant types. Revisit
6505 if the compiler changes this practice. */
6506 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6507 disp = 0;
b1f33ddd
JB
6508 if (v_field_name != NULL
6509 && field_name_match (v_field_name, name))
6510 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6511 else
6512 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6513 name, 0, 1, &disp);
6514
4c4b4cd2
PH
6515 if (t != NULL)
6516 {
6517 if (dispp != NULL)
6518 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6519 return t;
6520 }
6521 }
6522 }
14f9c5c9
AS
6523
6524 }
6525
6526BadName:
d2e4a39e 6527 if (!noerr)
14f9c5c9
AS
6528 {
6529 target_terminal_ours ();
6530 gdb_flush (gdb_stdout);
323e0a4a
AC
6531 if (name == NULL)
6532 {
6533 /* XXX: type_sprint */
6534 fprintf_unfiltered (gdb_stderr, _("Type "));
6535 type_print (type, "", gdb_stderr, -1);
6536 error (_(" has no component named <null>"));
6537 }
6538 else
6539 {
6540 /* XXX: type_sprint */
6541 fprintf_unfiltered (gdb_stderr, _("Type "));
6542 type_print (type, "", gdb_stderr, -1);
6543 error (_(" has no component named %s"), name);
6544 }
14f9c5c9
AS
6545 }
6546
6547 return NULL;
6548}
6549
b1f33ddd
JB
6550/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6551 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6552 represents an unchecked union (that is, the variant part of a
6553 record that is named in an Unchecked_Union pragma). */
6554
6555static int
6556is_unchecked_variant (struct type *var_type, struct type *outer_type)
6557{
6558 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 6559
b1f33ddd
JB
6560 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6561 == NULL);
6562}
6563
6564
14f9c5c9
AS
6565/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6566 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6567 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6568 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6569
d2e4a39e 6570int
ebf56fd3 6571ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6572 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6573{
6574 int others_clause;
6575 int i;
d2e4a39e 6576 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6577 struct value *outer;
6578 struct value *discrim;
14f9c5c9
AS
6579 LONGEST discrim_val;
6580
0c281816
JB
6581 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6582 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6583 if (discrim == NULL)
14f9c5c9 6584 return -1;
0c281816 6585 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6586
6587 others_clause = -1;
6588 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6589 {
6590 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6591 others_clause = i;
14f9c5c9 6592 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6593 return i;
14f9c5c9
AS
6594 }
6595
6596 return others_clause;
6597}
d2e4a39e 6598\f
14f9c5c9
AS
6599
6600
4c4b4cd2 6601 /* Dynamic-Sized Records */
14f9c5c9
AS
6602
6603/* Strategy: The type ostensibly attached to a value with dynamic size
6604 (i.e., a size that is not statically recorded in the debugging
6605 data) does not accurately reflect the size or layout of the value.
6606 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6607 conventional types that are constructed on the fly. */
14f9c5c9
AS
6608
6609/* There is a subtle and tricky problem here. In general, we cannot
6610 determine the size of dynamic records without its data. However,
6611 the 'struct value' data structure, which GDB uses to represent
6612 quantities in the inferior process (the target), requires the size
6613 of the type at the time of its allocation in order to reserve space
6614 for GDB's internal copy of the data. That's why the
6615 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6616 rather than struct value*s.
14f9c5c9
AS
6617
6618 However, GDB's internal history variables ($1, $2, etc.) are
6619 struct value*s containing internal copies of the data that are not, in
6620 general, the same as the data at their corresponding addresses in
6621 the target. Fortunately, the types we give to these values are all
6622 conventional, fixed-size types (as per the strategy described
6623 above), so that we don't usually have to perform the
6624 'to_fixed_xxx_type' conversions to look at their values.
6625 Unfortunately, there is one exception: if one of the internal
6626 history variables is an array whose elements are unconstrained
6627 records, then we will need to create distinct fixed types for each
6628 element selected. */
6629
6630/* The upshot of all of this is that many routines take a (type, host
6631 address, target address) triple as arguments to represent a value.
6632 The host address, if non-null, is supposed to contain an internal
6633 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6634 target at the target address. */
14f9c5c9
AS
6635
6636/* Assuming that VAL0 represents a pointer value, the result of
6637 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6638 dynamic-sized types. */
14f9c5c9 6639
d2e4a39e
AS
6640struct value *
6641ada_value_ind (struct value *val0)
14f9c5c9 6642{
d2e4a39e 6643 struct value *val = unwrap_value (value_ind (val0));
5b4ee69b 6644
4c4b4cd2 6645 return ada_to_fixed_value (val);
14f9c5c9
AS
6646}
6647
6648/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6649 qualifiers on VAL0. */
6650
d2e4a39e
AS
6651static struct value *
6652ada_coerce_ref (struct value *val0)
6653{
df407dfe 6654 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6655 {
6656 struct value *val = val0;
5b4ee69b 6657
994b9211 6658 val = coerce_ref (val);
d2e4a39e 6659 val = unwrap_value (val);
4c4b4cd2 6660 return ada_to_fixed_value (val);
d2e4a39e
AS
6661 }
6662 else
14f9c5c9
AS
6663 return val0;
6664}
6665
6666/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6667 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6668
6669static unsigned int
ebf56fd3 6670align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6671{
6672 return (off + alignment - 1) & ~(alignment - 1);
6673}
6674
4c4b4cd2 6675/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6676
6677static unsigned int
ebf56fd3 6678field_alignment (struct type *type, int f)
14f9c5c9 6679{
d2e4a39e 6680 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6681 int len;
14f9c5c9
AS
6682 int align_offset;
6683
64a1bf19
JB
6684 /* The field name should never be null, unless the debugging information
6685 is somehow malformed. In this case, we assume the field does not
6686 require any alignment. */
6687 if (name == NULL)
6688 return 1;
6689
6690 len = strlen (name);
6691
4c4b4cd2
PH
6692 if (!isdigit (name[len - 1]))
6693 return 1;
14f9c5c9 6694
d2e4a39e 6695 if (isdigit (name[len - 2]))
14f9c5c9
AS
6696 align_offset = len - 2;
6697 else
6698 align_offset = len - 1;
6699
4c4b4cd2 6700 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6701 return TARGET_CHAR_BIT;
6702
4c4b4cd2
PH
6703 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6704}
6705
6706/* Find a symbol named NAME. Ignores ambiguity. */
6707
6708struct symbol *
6709ada_find_any_symbol (const char *name)
6710{
6711 struct symbol *sym;
6712
6713 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6714 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6715 return sym;
6716
6717 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6718 return sym;
14f9c5c9
AS
6719}
6720
dddfab26
UW
6721/* Find a type named NAME. Ignores ambiguity. This routine will look
6722 solely for types defined by debug info, it will not search the GDB
6723 primitive types. */
4c4b4cd2 6724
d2e4a39e 6725struct type *
ebf56fd3 6726ada_find_any_type (const char *name)
14f9c5c9 6727{
4c4b4cd2 6728 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6729
14f9c5c9 6730 if (sym != NULL)
dddfab26 6731 return SYMBOL_TYPE (sym);
14f9c5c9 6732
dddfab26 6733 return NULL;
14f9c5c9
AS
6734}
6735
aeb5907d
JB
6736/* Given NAME and an associated BLOCK, search all symbols for
6737 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6738 associated to NAME. Return this symbol if found, return
6739 NULL otherwise. */
6740
6741struct symbol *
6742ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6743{
6744 struct symbol *sym;
6745
6746 sym = find_old_style_renaming_symbol (name, block);
6747
6748 if (sym != NULL)
6749 return sym;
6750
6751 /* Not right yet. FIXME pnh 7/20/2007. */
6752 sym = ada_find_any_symbol (name);
6753 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6754 return sym;
6755 else
6756 return NULL;
6757}
6758
6759static struct symbol *
6760find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6761{
7f0df278 6762 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6763 char *rename;
6764
6765 if (function_sym != NULL)
6766 {
6767 /* If the symbol is defined inside a function, NAME is not fully
6768 qualified. This means we need to prepend the function name
6769 as well as adding the ``___XR'' suffix to build the name of
6770 the associated renaming symbol. */
6771 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6772 /* Function names sometimes contain suffixes used
6773 for instance to qualify nested subprograms. When building
6774 the XR type name, we need to make sure that this suffix is
6775 not included. So do not include any suffix in the function
6776 name length below. */
69fadcdf 6777 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6778 const int rename_len = function_name_len + 2 /* "__" */
6779 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6780
529cad9c 6781 /* Strip the suffix if necessary. */
69fadcdf
JB
6782 ada_remove_trailing_digits (function_name, &function_name_len);
6783 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6784 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 6785
4c4b4cd2
PH
6786 /* Library-level functions are a special case, as GNAT adds
6787 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6788 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6789 have this prefix, so we need to skip this prefix if present. */
6790 if (function_name_len > 5 /* "_ada_" */
6791 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
6792 {
6793 function_name += 5;
6794 function_name_len -= 5;
6795 }
4c4b4cd2
PH
6796
6797 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
6798 strncpy (rename, function_name, function_name_len);
6799 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6800 "__%s___XR", name);
4c4b4cd2
PH
6801 }
6802 else
6803 {
6804 const int rename_len = strlen (name) + 6;
5b4ee69b 6805
4c4b4cd2 6806 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 6807 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
6808 }
6809
6810 return ada_find_any_symbol (rename);
6811}
6812
14f9c5c9 6813/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6814 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6815 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6816 otherwise return 0. */
6817
14f9c5c9 6818int
d2e4a39e 6819ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6820{
6821 if (type1 == NULL)
6822 return 1;
6823 else if (type0 == NULL)
6824 return 0;
6825 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6826 return 1;
6827 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6828 return 0;
4c4b4cd2
PH
6829 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6830 return 1;
ad82864c 6831 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 6832 return 1;
4c4b4cd2
PH
6833 else if (ada_is_array_descriptor_type (type0)
6834 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6835 return 1;
aeb5907d
JB
6836 else
6837 {
6838 const char *type0_name = type_name_no_tag (type0);
6839 const char *type1_name = type_name_no_tag (type1);
6840
6841 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6842 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6843 return 1;
6844 }
14f9c5c9
AS
6845 return 0;
6846}
6847
6848/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6849 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6850
d2e4a39e
AS
6851char *
6852ada_type_name (struct type *type)
14f9c5c9 6853{
d2e4a39e 6854 if (type == NULL)
14f9c5c9
AS
6855 return NULL;
6856 else if (TYPE_NAME (type) != NULL)
6857 return TYPE_NAME (type);
6858 else
6859 return TYPE_TAG_NAME (type);
6860}
6861
b4ba55a1
JB
6862/* Search the list of "descriptive" types associated to TYPE for a type
6863 whose name is NAME. */
6864
6865static struct type *
6866find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6867{
6868 struct type *result;
6869
6870 /* If there no descriptive-type info, then there is no parallel type
6871 to be found. */
6872 if (!HAVE_GNAT_AUX_INFO (type))
6873 return NULL;
6874
6875 result = TYPE_DESCRIPTIVE_TYPE (type);
6876 while (result != NULL)
6877 {
6878 char *result_name = ada_type_name (result);
6879
6880 if (result_name == NULL)
6881 {
6882 warning (_("unexpected null name on descriptive type"));
6883 return NULL;
6884 }
6885
6886 /* If the names match, stop. */
6887 if (strcmp (result_name, name) == 0)
6888 break;
6889
6890 /* Otherwise, look at the next item on the list, if any. */
6891 if (HAVE_GNAT_AUX_INFO (result))
6892 result = TYPE_DESCRIPTIVE_TYPE (result);
6893 else
6894 result = NULL;
6895 }
6896
6897 /* If we didn't find a match, see whether this is a packed array. With
6898 older compilers, the descriptive type information is either absent or
6899 irrelevant when it comes to packed arrays so the above lookup fails.
6900 Fall back to using a parallel lookup by name in this case. */
12ab9e09 6901 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
6902 return ada_find_any_type (name);
6903
6904 return result;
6905}
6906
6907/* Find a parallel type to TYPE with the specified NAME, using the
6908 descriptive type taken from the debugging information, if available,
6909 and otherwise using the (slower) name-based method. */
6910
6911static struct type *
6912ada_find_parallel_type_with_name (struct type *type, const char *name)
6913{
6914 struct type *result = NULL;
6915
6916 if (HAVE_GNAT_AUX_INFO (type))
6917 result = find_parallel_type_by_descriptive_type (type, name);
6918 else
6919 result = ada_find_any_type (name);
6920
6921 return result;
6922}
6923
6924/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 6925 SUFFIX to the name of TYPE. */
14f9c5c9 6926
d2e4a39e 6927struct type *
ebf56fd3 6928ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6929{
b4ba55a1 6930 char *name, *typename = ada_type_name (type);
14f9c5c9 6931 int len;
d2e4a39e 6932
14f9c5c9
AS
6933 if (typename == NULL)
6934 return NULL;
6935
6936 len = strlen (typename);
6937
b4ba55a1 6938 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
6939
6940 strcpy (name, typename);
6941 strcpy (name + len, suffix);
6942
b4ba55a1 6943 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
6944}
6945
14f9c5c9 6946/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6947 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6948
d2e4a39e
AS
6949static struct type *
6950dynamic_template_type (struct type *type)
14f9c5c9 6951{
61ee279c 6952 type = ada_check_typedef (type);
14f9c5c9
AS
6953
6954 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6955 || ada_type_name (type) == NULL)
14f9c5c9 6956 return NULL;
d2e4a39e 6957 else
14f9c5c9
AS
6958 {
6959 int len = strlen (ada_type_name (type));
5b4ee69b 6960
4c4b4cd2
PH
6961 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6962 return type;
14f9c5c9 6963 else
4c4b4cd2 6964 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6965 }
6966}
6967
6968/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6969 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6970
d2e4a39e
AS
6971static int
6972is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6973{
6974 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 6975
d2e4a39e 6976 return name != NULL
14f9c5c9
AS
6977 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6978 && strstr (name, "___XVL") != NULL;
6979}
6980
4c4b4cd2
PH
6981/* The index of the variant field of TYPE, or -1 if TYPE does not
6982 represent a variant record type. */
14f9c5c9 6983
d2e4a39e 6984static int
4c4b4cd2 6985variant_field_index (struct type *type)
14f9c5c9
AS
6986{
6987 int f;
6988
4c4b4cd2
PH
6989 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6990 return -1;
6991
6992 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6993 {
6994 if (ada_is_variant_part (type, f))
6995 return f;
6996 }
6997 return -1;
14f9c5c9
AS
6998}
6999
4c4b4cd2
PH
7000/* A record type with no fields. */
7001
d2e4a39e 7002static struct type *
e9bb382b 7003empty_record (struct type *template)
14f9c5c9 7004{
e9bb382b 7005 struct type *type = alloc_type_copy (template);
5b4ee69b 7006
14f9c5c9
AS
7007 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7008 TYPE_NFIELDS (type) = 0;
7009 TYPE_FIELDS (type) = NULL;
b1f33ddd 7010 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7011 TYPE_NAME (type) = "<empty>";
7012 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7013 TYPE_LENGTH (type) = 0;
7014 return type;
7015}
7016
7017/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7018 the value of type TYPE at VALADDR or ADDRESS (see comments at
7019 the beginning of this section) VAL according to GNAT conventions.
7020 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7021 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7022 an outer-level type (i.e., as opposed to a branch of a variant.) A
7023 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7024 of the variant.
14f9c5c9 7025
4c4b4cd2
PH
7026 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7027 length are not statically known are discarded. As a consequence,
7028 VALADDR, ADDRESS and DVAL0 are ignored.
7029
7030 NOTE: Limitations: For now, we assume that dynamic fields and
7031 variants occupy whole numbers of bytes. However, they need not be
7032 byte-aligned. */
7033
7034struct type *
10a2c479 7035ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7036 const gdb_byte *valaddr,
4c4b4cd2
PH
7037 CORE_ADDR address, struct value *dval0,
7038 int keep_dynamic_fields)
14f9c5c9 7039{
d2e4a39e
AS
7040 struct value *mark = value_mark ();
7041 struct value *dval;
7042 struct type *rtype;
14f9c5c9 7043 int nfields, bit_len;
4c4b4cd2 7044 int variant_field;
14f9c5c9 7045 long off;
4c4b4cd2 7046 int fld_bit_len, bit_incr;
14f9c5c9
AS
7047 int f;
7048
4c4b4cd2
PH
7049 /* Compute the number of fields in this record type that are going
7050 to be processed: unless keep_dynamic_fields, this includes only
7051 fields whose position and length are static will be processed. */
7052 if (keep_dynamic_fields)
7053 nfields = TYPE_NFIELDS (type);
7054 else
7055 {
7056 nfields = 0;
76a01679 7057 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7058 && !ada_is_variant_part (type, nfields)
7059 && !is_dynamic_field (type, nfields))
7060 nfields++;
7061 }
7062
e9bb382b 7063 rtype = alloc_type_copy (type);
14f9c5c9
AS
7064 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7065 INIT_CPLUS_SPECIFIC (rtype);
7066 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7067 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7068 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7069 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7070 TYPE_NAME (rtype) = ada_type_name (type);
7071 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7072 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7073
d2e4a39e
AS
7074 off = 0;
7075 bit_len = 0;
4c4b4cd2
PH
7076 variant_field = -1;
7077
14f9c5c9
AS
7078 for (f = 0; f < nfields; f += 1)
7079 {
6c038f32
PH
7080 off = align_value (off, field_alignment (type, f))
7081 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 7082 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 7083 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7084
d2e4a39e 7085 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7086 {
7087 variant_field = f;
7088 fld_bit_len = bit_incr = 0;
7089 }
14f9c5c9 7090 else if (is_dynamic_field (type, f))
4c4b4cd2 7091 {
284614f0
JB
7092 const gdb_byte *field_valaddr = valaddr;
7093 CORE_ADDR field_address = address;
7094 struct type *field_type =
7095 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7096
4c4b4cd2 7097 if (dval0 == NULL)
b5304971
JG
7098 {
7099 /* rtype's length is computed based on the run-time
7100 value of discriminants. If the discriminants are not
7101 initialized, the type size may be completely bogus and
7102 GDB may fail to allocate a value for it. So check the
7103 size first before creating the value. */
7104 check_size (rtype);
7105 dval = value_from_contents_and_address (rtype, valaddr, address);
7106 }
4c4b4cd2
PH
7107 else
7108 dval = dval0;
7109
284614f0
JB
7110 /* If the type referenced by this field is an aligner type, we need
7111 to unwrap that aligner type, because its size might not be set.
7112 Keeping the aligner type would cause us to compute the wrong
7113 size for this field, impacting the offset of the all the fields
7114 that follow this one. */
7115 if (ada_is_aligner_type (field_type))
7116 {
7117 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7118
7119 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7120 field_address = cond_offset_target (field_address, field_offset);
7121 field_type = ada_aligned_type (field_type);
7122 }
7123
7124 field_valaddr = cond_offset_host (field_valaddr,
7125 off / TARGET_CHAR_BIT);
7126 field_address = cond_offset_target (field_address,
7127 off / TARGET_CHAR_BIT);
7128
7129 /* Get the fixed type of the field. Note that, in this case,
7130 we do not want to get the real type out of the tag: if
7131 the current field is the parent part of a tagged record,
7132 we will get the tag of the object. Clearly wrong: the real
7133 type of the parent is not the real type of the child. We
7134 would end up in an infinite loop. */
7135 field_type = ada_get_base_type (field_type);
7136 field_type = ada_to_fixed_type (field_type, field_valaddr,
7137 field_address, dval, 0);
7138
7139 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
7140 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7141 bit_incr = fld_bit_len =
7142 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7143 }
14f9c5c9 7144 else
4c4b4cd2 7145 {
9f0dec2d
JB
7146 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7147
7148 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
7149 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7150 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7151 bit_incr = fld_bit_len =
7152 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7153 else
7154 bit_incr = fld_bit_len =
9f0dec2d 7155 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 7156 }
14f9c5c9 7157 if (off + fld_bit_len > bit_len)
4c4b4cd2 7158 bit_len = off + fld_bit_len;
14f9c5c9 7159 off += bit_incr;
4c4b4cd2
PH
7160 TYPE_LENGTH (rtype) =
7161 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7162 }
4c4b4cd2
PH
7163
7164 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7165 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7166 the record. This can happen in the presence of representation
7167 clauses. */
7168 if (variant_field >= 0)
7169 {
7170 struct type *branch_type;
7171
7172 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7173
7174 if (dval0 == NULL)
7175 dval = value_from_contents_and_address (rtype, valaddr, address);
7176 else
7177 dval = dval0;
7178
7179 branch_type =
7180 to_fixed_variant_branch_type
7181 (TYPE_FIELD_TYPE (type, variant_field),
7182 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7183 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7184 if (branch_type == NULL)
7185 {
7186 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7187 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7188 TYPE_NFIELDS (rtype) -= 1;
7189 }
7190 else
7191 {
7192 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7193 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7194 fld_bit_len =
7195 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7196 TARGET_CHAR_BIT;
7197 if (off + fld_bit_len > bit_len)
7198 bit_len = off + fld_bit_len;
7199 TYPE_LENGTH (rtype) =
7200 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7201 }
7202 }
7203
714e53ab
PH
7204 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7205 should contain the alignment of that record, which should be a strictly
7206 positive value. If null or negative, then something is wrong, most
7207 probably in the debug info. In that case, we don't round up the size
7208 of the resulting type. If this record is not part of another structure,
7209 the current RTYPE length might be good enough for our purposes. */
7210 if (TYPE_LENGTH (type) <= 0)
7211 {
323e0a4a
AC
7212 if (TYPE_NAME (rtype))
7213 warning (_("Invalid type size for `%s' detected: %d."),
7214 TYPE_NAME (rtype), TYPE_LENGTH (type));
7215 else
7216 warning (_("Invalid type size for <unnamed> detected: %d."),
7217 TYPE_LENGTH (type));
714e53ab
PH
7218 }
7219 else
7220 {
7221 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7222 TYPE_LENGTH (type));
7223 }
14f9c5c9
AS
7224
7225 value_free_to_mark (mark);
d2e4a39e 7226 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7227 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7228 return rtype;
7229}
7230
4c4b4cd2
PH
7231/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7232 of 1. */
14f9c5c9 7233
d2e4a39e 7234static struct type *
fc1a4b47 7235template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7236 CORE_ADDR address, struct value *dval0)
7237{
7238 return ada_template_to_fixed_record_type_1 (type, valaddr,
7239 address, dval0, 1);
7240}
7241
7242/* An ordinary record type in which ___XVL-convention fields and
7243 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7244 static approximations, containing all possible fields. Uses
7245 no runtime values. Useless for use in values, but that's OK,
7246 since the results are used only for type determinations. Works on both
7247 structs and unions. Representation note: to save space, we memorize
7248 the result of this function in the TYPE_TARGET_TYPE of the
7249 template type. */
7250
7251static struct type *
7252template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7253{
7254 struct type *type;
7255 int nfields;
7256 int f;
7257
4c4b4cd2
PH
7258 if (TYPE_TARGET_TYPE (type0) != NULL)
7259 return TYPE_TARGET_TYPE (type0);
7260
7261 nfields = TYPE_NFIELDS (type0);
7262 type = type0;
14f9c5c9
AS
7263
7264 for (f = 0; f < nfields; f += 1)
7265 {
61ee279c 7266 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7267 struct type *new_type;
14f9c5c9 7268
4c4b4cd2
PH
7269 if (is_dynamic_field (type0, f))
7270 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7271 else
f192137b 7272 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7273 if (type == type0 && new_type != field_type)
7274 {
e9bb382b 7275 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7276 TYPE_CODE (type) = TYPE_CODE (type0);
7277 INIT_CPLUS_SPECIFIC (type);
7278 TYPE_NFIELDS (type) = nfields;
7279 TYPE_FIELDS (type) = (struct field *)
7280 TYPE_ALLOC (type, nfields * sizeof (struct field));
7281 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7282 sizeof (struct field) * nfields);
7283 TYPE_NAME (type) = ada_type_name (type0);
7284 TYPE_TAG_NAME (type) = NULL;
876cecd0 7285 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7286 TYPE_LENGTH (type) = 0;
7287 }
7288 TYPE_FIELD_TYPE (type, f) = new_type;
7289 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7290 }
14f9c5c9
AS
7291 return type;
7292}
7293
4c4b4cd2 7294/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7295 whose address in memory is ADDRESS, returns a revision of TYPE,
7296 which should be a non-dynamic-sized record, in which the variant
7297 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7298 for discriminant values in DVAL0, which can be NULL if the record
7299 contains the necessary discriminant values. */
7300
d2e4a39e 7301static struct type *
fc1a4b47 7302to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7303 CORE_ADDR address, struct value *dval0)
14f9c5c9 7304{
d2e4a39e 7305 struct value *mark = value_mark ();
4c4b4cd2 7306 struct value *dval;
d2e4a39e 7307 struct type *rtype;
14f9c5c9
AS
7308 struct type *branch_type;
7309 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7310 int variant_field = variant_field_index (type);
14f9c5c9 7311
4c4b4cd2 7312 if (variant_field == -1)
14f9c5c9
AS
7313 return type;
7314
4c4b4cd2
PH
7315 if (dval0 == NULL)
7316 dval = value_from_contents_and_address (type, valaddr, address);
7317 else
7318 dval = dval0;
7319
e9bb382b 7320 rtype = alloc_type_copy (type);
14f9c5c9 7321 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7322 INIT_CPLUS_SPECIFIC (rtype);
7323 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7324 TYPE_FIELDS (rtype) =
7325 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7326 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7327 sizeof (struct field) * nfields);
14f9c5c9
AS
7328 TYPE_NAME (rtype) = ada_type_name (type);
7329 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7330 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7331 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7332
4c4b4cd2
PH
7333 branch_type = to_fixed_variant_branch_type
7334 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7335 cond_offset_host (valaddr,
4c4b4cd2
PH
7336 TYPE_FIELD_BITPOS (type, variant_field)
7337 / TARGET_CHAR_BIT),
d2e4a39e 7338 cond_offset_target (address,
4c4b4cd2
PH
7339 TYPE_FIELD_BITPOS (type, variant_field)
7340 / TARGET_CHAR_BIT), dval);
d2e4a39e 7341 if (branch_type == NULL)
14f9c5c9 7342 {
4c4b4cd2 7343 int f;
5b4ee69b 7344
4c4b4cd2
PH
7345 for (f = variant_field + 1; f < nfields; f += 1)
7346 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7347 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7348 }
7349 else
7350 {
4c4b4cd2
PH
7351 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7352 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7353 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7354 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7355 }
4c4b4cd2 7356 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7357
4c4b4cd2 7358 value_free_to_mark (mark);
14f9c5c9
AS
7359 return rtype;
7360}
7361
7362/* An ordinary record type (with fixed-length fields) that describes
7363 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7364 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7365 should be in DVAL, a record value; it may be NULL if the object
7366 at ADDR itself contains any necessary discriminant values.
7367 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7368 values from the record are needed. Except in the case that DVAL,
7369 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7370 unchecked) is replaced by a particular branch of the variant.
7371
7372 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7373 is questionable and may be removed. It can arise during the
7374 processing of an unconstrained-array-of-record type where all the
7375 variant branches have exactly the same size. This is because in
7376 such cases, the compiler does not bother to use the XVS convention
7377 when encoding the record. I am currently dubious of this
7378 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7379
d2e4a39e 7380static struct type *
fc1a4b47 7381to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7382 CORE_ADDR address, struct value *dval)
14f9c5c9 7383{
d2e4a39e 7384 struct type *templ_type;
14f9c5c9 7385
876cecd0 7386 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7387 return type0;
7388
d2e4a39e 7389 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7390
7391 if (templ_type != NULL)
7392 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7393 else if (variant_field_index (type0) >= 0)
7394 {
7395 if (dval == NULL && valaddr == NULL && address == 0)
7396 return type0;
7397 return to_record_with_fixed_variant_part (type0, valaddr, address,
7398 dval);
7399 }
14f9c5c9
AS
7400 else
7401 {
876cecd0 7402 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7403 return type0;
7404 }
7405
7406}
7407
7408/* An ordinary record type (with fixed-length fields) that describes
7409 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7410 union type. Any necessary discriminants' values should be in DVAL,
7411 a record value. That is, this routine selects the appropriate
7412 branch of the union at ADDR according to the discriminant value
b1f33ddd
JB
7413 indicated in the union's type name. Returns VAR_TYPE0 itself if
7414 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7415
d2e4a39e 7416static struct type *
fc1a4b47 7417to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7418 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7419{
7420 int which;
d2e4a39e
AS
7421 struct type *templ_type;
7422 struct type *var_type;
14f9c5c9
AS
7423
7424 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7425 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7426 else
14f9c5c9
AS
7427 var_type = var_type0;
7428
7429 templ_type = ada_find_parallel_type (var_type, "___XVU");
7430
7431 if (templ_type != NULL)
7432 var_type = templ_type;
7433
b1f33ddd
JB
7434 if (is_unchecked_variant (var_type, value_type (dval)))
7435 return var_type0;
d2e4a39e
AS
7436 which =
7437 ada_which_variant_applies (var_type,
0fd88904 7438 value_type (dval), value_contents (dval));
14f9c5c9
AS
7439
7440 if (which < 0)
e9bb382b 7441 return empty_record (var_type);
14f9c5c9 7442 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7443 return to_fixed_record_type
d2e4a39e
AS
7444 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7445 valaddr, address, dval);
4c4b4cd2 7446 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7447 return
7448 to_fixed_record_type
7449 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7450 else
7451 return TYPE_FIELD_TYPE (var_type, which);
7452}
7453
7454/* Assuming that TYPE0 is an array type describing the type of a value
7455 at ADDR, and that DVAL describes a record containing any
7456 discriminants used in TYPE0, returns a type for the value that
7457 contains no dynamic components (that is, no components whose sizes
7458 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7459 true, gives an error message if the resulting type's size is over
4c4b4cd2 7460 varsize_limit. */
14f9c5c9 7461
d2e4a39e
AS
7462static struct type *
7463to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7464 int ignore_too_big)
14f9c5c9 7465{
d2e4a39e
AS
7466 struct type *index_type_desc;
7467 struct type *result;
ad82864c 7468 int constrained_packed_array_p;
14f9c5c9 7469
284614f0 7470 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7471 return type0;
14f9c5c9 7472
ad82864c
JB
7473 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7474 if (constrained_packed_array_p)
7475 type0 = decode_constrained_packed_array_type (type0);
284614f0 7476
14f9c5c9 7477 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7478 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7479 if (index_type_desc == NULL)
7480 {
61ee279c 7481 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7482
14f9c5c9 7483 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7484 depend on the contents of the array in properly constructed
7485 debugging data. */
529cad9c
PH
7486 /* Create a fixed version of the array element type.
7487 We're not providing the address of an element here,
e1d5a0d2 7488 and thus the actual object value cannot be inspected to do
529cad9c
PH
7489 the conversion. This should not be a problem, since arrays of
7490 unconstrained objects are not allowed. In particular, all
7491 the elements of an array of a tagged type should all be of
7492 the same type specified in the debugging info. No need to
7493 consult the object tag. */
1ed6ede0 7494 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7495
284614f0
JB
7496 /* Make sure we always create a new array type when dealing with
7497 packed array types, since we're going to fix-up the array
7498 type length and element bitsize a little further down. */
ad82864c 7499 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7500 result = type0;
14f9c5c9 7501 else
e9bb382b 7502 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7503 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7504 }
7505 else
7506 {
7507 int i;
7508 struct type *elt_type0;
7509
7510 elt_type0 = type0;
7511 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7512 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7513
7514 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7515 depend on the contents of the array in properly constructed
7516 debugging data. */
529cad9c
PH
7517 /* Create a fixed version of the array element type.
7518 We're not providing the address of an element here,
e1d5a0d2 7519 and thus the actual object value cannot be inspected to do
529cad9c
PH
7520 the conversion. This should not be a problem, since arrays of
7521 unconstrained objects are not allowed. In particular, all
7522 the elements of an array of a tagged type should all be of
7523 the same type specified in the debugging info. No need to
7524 consult the object tag. */
1ed6ede0
JB
7525 result =
7526 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7527
7528 elt_type0 = type0;
14f9c5c9 7529 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7530 {
7531 struct type *range_type =
28c85d6c 7532 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 7533
e9bb382b 7534 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7535 result, range_type);
1ce677a4 7536 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7537 }
d2e4a39e 7538 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7539 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7540 }
7541
ad82864c 7542 if (constrained_packed_array_p)
284614f0
JB
7543 {
7544 /* So far, the resulting type has been created as if the original
7545 type was a regular (non-packed) array type. As a result, the
7546 bitsize of the array elements needs to be set again, and the array
7547 length needs to be recomputed based on that bitsize. */
7548 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7549 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7550
7551 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7552 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7553 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7554 TYPE_LENGTH (result)++;
7555 }
7556
876cecd0 7557 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7558 return result;
d2e4a39e 7559}
14f9c5c9
AS
7560
7561
7562/* A standard type (containing no dynamically sized components)
7563 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7564 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7565 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7566 ADDRESS or in VALADDR contains these discriminants.
7567
1ed6ede0
JB
7568 If CHECK_TAG is not null, in the case of tagged types, this function
7569 attempts to locate the object's tag and use it to compute the actual
7570 type. However, when ADDRESS is null, we cannot use it to determine the
7571 location of the tag, and therefore compute the tagged type's actual type.
7572 So we return the tagged type without consulting the tag. */
529cad9c 7573
f192137b
JB
7574static struct type *
7575ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7576 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7577{
61ee279c 7578 type = ada_check_typedef (type);
d2e4a39e
AS
7579 switch (TYPE_CODE (type))
7580 {
7581 default:
14f9c5c9 7582 return type;
d2e4a39e 7583 case TYPE_CODE_STRUCT:
4c4b4cd2 7584 {
76a01679 7585 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7586 struct type *fixed_record_type =
7587 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 7588
529cad9c
PH
7589 /* If STATIC_TYPE is a tagged type and we know the object's address,
7590 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7591 type from there. Note that we have to use the fixed record
7592 type (the parent part of the record may have dynamic fields
7593 and the way the location of _tag is expressed may depend on
7594 them). */
529cad9c 7595
1ed6ede0 7596 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7597 {
7598 struct type *real_type =
1ed6ede0
JB
7599 type_from_tag (value_tag_from_contents_and_address
7600 (fixed_record_type,
7601 valaddr,
7602 address));
5b4ee69b 7603
76a01679 7604 if (real_type != NULL)
1ed6ede0 7605 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7606 }
4af88198
JB
7607
7608 /* Check to see if there is a parallel ___XVZ variable.
7609 If there is, then it provides the actual size of our type. */
7610 else if (ada_type_name (fixed_record_type) != NULL)
7611 {
7612 char *name = ada_type_name (fixed_record_type);
7613 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7614 int xvz_found = 0;
7615 LONGEST size;
7616
88c15c34 7617 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7618 size = get_int_var_value (xvz_name, &xvz_found);
7619 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7620 {
7621 fixed_record_type = copy_type (fixed_record_type);
7622 TYPE_LENGTH (fixed_record_type) = size;
7623
7624 /* The FIXED_RECORD_TYPE may have be a stub. We have
7625 observed this when the debugging info is STABS, and
7626 apparently it is something that is hard to fix.
7627
7628 In practice, we don't need the actual type definition
7629 at all, because the presence of the XVZ variable allows us
7630 to assume that there must be a XVS type as well, which we
7631 should be able to use later, when we need the actual type
7632 definition.
7633
7634 In the meantime, pretend that the "fixed" type we are
7635 returning is NOT a stub, because this can cause trouble
7636 when using this type to create new types targeting it.
7637 Indeed, the associated creation routines often check
7638 whether the target type is a stub and will try to replace
7639 it, thus using a type with the wrong size. This, in turn,
7640 might cause the new type to have the wrong size too.
7641 Consider the case of an array, for instance, where the size
7642 of the array is computed from the number of elements in
7643 our array multiplied by the size of its element. */
7644 TYPE_STUB (fixed_record_type) = 0;
7645 }
7646 }
1ed6ede0 7647 return fixed_record_type;
4c4b4cd2 7648 }
d2e4a39e 7649 case TYPE_CODE_ARRAY:
4c4b4cd2 7650 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7651 case TYPE_CODE_UNION:
7652 if (dval == NULL)
4c4b4cd2 7653 return type;
d2e4a39e 7654 else
4c4b4cd2 7655 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7656 }
14f9c5c9
AS
7657}
7658
f192137b
JB
7659/* The same as ada_to_fixed_type_1, except that it preserves the type
7660 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7661 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7662
7663struct type *
7664ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7665 CORE_ADDR address, struct value *dval, int check_tag)
7666
7667{
7668 struct type *fixed_type =
7669 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7670
7671 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7672 && TYPE_TARGET_TYPE (type) == fixed_type)
7673 return type;
7674
7675 return fixed_type;
7676}
7677
14f9c5c9 7678/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7679 TYPE0, but based on no runtime data. */
14f9c5c9 7680
d2e4a39e
AS
7681static struct type *
7682to_static_fixed_type (struct type *type0)
14f9c5c9 7683{
d2e4a39e 7684 struct type *type;
14f9c5c9
AS
7685
7686 if (type0 == NULL)
7687 return NULL;
7688
876cecd0 7689 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7690 return type0;
7691
61ee279c 7692 type0 = ada_check_typedef (type0);
d2e4a39e 7693
14f9c5c9
AS
7694 switch (TYPE_CODE (type0))
7695 {
7696 default:
7697 return type0;
7698 case TYPE_CODE_STRUCT:
7699 type = dynamic_template_type (type0);
d2e4a39e 7700 if (type != NULL)
4c4b4cd2
PH
7701 return template_to_static_fixed_type (type);
7702 else
7703 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7704 case TYPE_CODE_UNION:
7705 type = ada_find_parallel_type (type0, "___XVU");
7706 if (type != NULL)
4c4b4cd2
PH
7707 return template_to_static_fixed_type (type);
7708 else
7709 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7710 }
7711}
7712
4c4b4cd2
PH
7713/* A static approximation of TYPE with all type wrappers removed. */
7714
d2e4a39e
AS
7715static struct type *
7716static_unwrap_type (struct type *type)
14f9c5c9
AS
7717{
7718 if (ada_is_aligner_type (type))
7719 {
61ee279c 7720 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7721 if (ada_type_name (type1) == NULL)
4c4b4cd2 7722 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7723
7724 return static_unwrap_type (type1);
7725 }
d2e4a39e 7726 else
14f9c5c9 7727 {
d2e4a39e 7728 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 7729
d2e4a39e 7730 if (raw_real_type == type)
4c4b4cd2 7731 return type;
14f9c5c9 7732 else
4c4b4cd2 7733 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7734 }
7735}
7736
7737/* In some cases, incomplete and private types require
4c4b4cd2 7738 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7739 type Foo;
7740 type FooP is access Foo;
7741 V: FooP;
7742 type Foo is array ...;
4c4b4cd2 7743 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7744 cross-references to such types, we instead substitute for FooP a
7745 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7746 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7747
7748/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7749 exists, otherwise TYPE. */
7750
d2e4a39e 7751struct type *
61ee279c 7752ada_check_typedef (struct type *type)
14f9c5c9 7753{
727e3d2e
JB
7754 if (type == NULL)
7755 return NULL;
7756
14f9c5c9
AS
7757 CHECK_TYPEDEF (type);
7758 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7759 || !TYPE_STUB (type)
14f9c5c9
AS
7760 || TYPE_TAG_NAME (type) == NULL)
7761 return type;
d2e4a39e 7762 else
14f9c5c9 7763 {
d2e4a39e
AS
7764 char *name = TYPE_TAG_NAME (type);
7765 struct type *type1 = ada_find_any_type (name);
5b4ee69b 7766
05e522ef
JB
7767 if (type1 == NULL)
7768 return type;
7769
7770 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7771 stubs pointing to arrays, as we don't create symbols for array
7772 types, only for the typedef-to-array types). This is why
7773 we process TYPE1 with ada_check_typedef before returning
7774 the result. */
7775 return ada_check_typedef (type1);
14f9c5c9
AS
7776 }
7777}
7778
7779/* A value representing the data at VALADDR/ADDRESS as described by
7780 type TYPE0, but with a standard (static-sized) type that correctly
7781 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7782 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7783 creation of struct values]. */
14f9c5c9 7784
4c4b4cd2
PH
7785static struct value *
7786ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7787 struct value *val0)
14f9c5c9 7788{
1ed6ede0 7789 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 7790
14f9c5c9
AS
7791 if (type == type0 && val0 != NULL)
7792 return val0;
d2e4a39e 7793 else
4c4b4cd2
PH
7794 return value_from_contents_and_address (type, 0, address);
7795}
7796
7797/* A value representing VAL, but with a standard (static-sized) type
7798 that correctly describes it. Does not necessarily create a new
7799 value. */
7800
0c3acc09 7801struct value *
4c4b4cd2
PH
7802ada_to_fixed_value (struct value *val)
7803{
df407dfe 7804 return ada_to_fixed_value_create (value_type (val),
42ae5230 7805 value_address (val),
4c4b4cd2 7806 val);
14f9c5c9 7807}
d2e4a39e 7808\f
14f9c5c9 7809
14f9c5c9
AS
7810/* Attributes */
7811
4c4b4cd2
PH
7812/* Table mapping attribute numbers to names.
7813 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7814
d2e4a39e 7815static const char *attribute_names[] = {
14f9c5c9
AS
7816 "<?>",
7817
d2e4a39e 7818 "first",
14f9c5c9
AS
7819 "last",
7820 "length",
7821 "image",
14f9c5c9
AS
7822 "max",
7823 "min",
4c4b4cd2
PH
7824 "modulus",
7825 "pos",
7826 "size",
7827 "tag",
14f9c5c9 7828 "val",
14f9c5c9
AS
7829 0
7830};
7831
d2e4a39e 7832const char *
4c4b4cd2 7833ada_attribute_name (enum exp_opcode n)
14f9c5c9 7834{
4c4b4cd2
PH
7835 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7836 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7837 else
7838 return attribute_names[0];
7839}
7840
4c4b4cd2 7841/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7842
4c4b4cd2
PH
7843static LONGEST
7844pos_atr (struct value *arg)
14f9c5c9 7845{
24209737
PH
7846 struct value *val = coerce_ref (arg);
7847 struct type *type = value_type (val);
14f9c5c9 7848
d2e4a39e 7849 if (!discrete_type_p (type))
323e0a4a 7850 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7851
7852 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7853 {
7854 int i;
24209737 7855 LONGEST v = value_as_long (val);
14f9c5c9 7856
d2e4a39e 7857 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7858 {
7859 if (v == TYPE_FIELD_BITPOS (type, i))
7860 return i;
7861 }
323e0a4a 7862 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7863 }
7864 else
24209737 7865 return value_as_long (val);
4c4b4cd2
PH
7866}
7867
7868static struct value *
3cb382c9 7869value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7870{
3cb382c9 7871 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
7872}
7873
4c4b4cd2 7874/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7875
d2e4a39e
AS
7876static struct value *
7877value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7878{
d2e4a39e 7879 if (!discrete_type_p (type))
323e0a4a 7880 error (_("'VAL only defined on discrete types"));
df407dfe 7881 if (!integer_type_p (value_type (arg)))
323e0a4a 7882 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7883
7884 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7885 {
7886 long pos = value_as_long (arg);
5b4ee69b 7887
14f9c5c9 7888 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7889 error (_("argument to 'VAL out of range"));
d2e4a39e 7890 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7891 }
7892 else
7893 return value_from_longest (type, value_as_long (arg));
7894}
14f9c5c9 7895\f
d2e4a39e 7896
4c4b4cd2 7897 /* Evaluation */
14f9c5c9 7898
4c4b4cd2
PH
7899/* True if TYPE appears to be an Ada character type.
7900 [At the moment, this is true only for Character and Wide_Character;
7901 It is a heuristic test that could stand improvement]. */
14f9c5c9 7902
d2e4a39e
AS
7903int
7904ada_is_character_type (struct type *type)
14f9c5c9 7905{
7b9f71f2
JB
7906 const char *name;
7907
7908 /* If the type code says it's a character, then assume it really is,
7909 and don't check any further. */
7910 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7911 return 1;
7912
7913 /* Otherwise, assume it's a character type iff it is a discrete type
7914 with a known character type name. */
7915 name = ada_type_name (type);
7916 return (name != NULL
7917 && (TYPE_CODE (type) == TYPE_CODE_INT
7918 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7919 && (strcmp (name, "character") == 0
7920 || strcmp (name, "wide_character") == 0
5a517ebd 7921 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7922 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7923}
7924
4c4b4cd2 7925/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7926
7927int
ebf56fd3 7928ada_is_string_type (struct type *type)
14f9c5c9 7929{
61ee279c 7930 type = ada_check_typedef (type);
d2e4a39e 7931 if (type != NULL
14f9c5c9 7932 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7933 && (ada_is_simple_array_type (type)
7934 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7935 && ada_array_arity (type) == 1)
7936 {
7937 struct type *elttype = ada_array_element_type (type, 1);
7938
7939 return ada_is_character_type (elttype);
7940 }
d2e4a39e 7941 else
14f9c5c9
AS
7942 return 0;
7943}
7944
5bf03f13
JB
7945/* The compiler sometimes provides a parallel XVS type for a given
7946 PAD type. Normally, it is safe to follow the PAD type directly,
7947 but older versions of the compiler have a bug that causes the offset
7948 of its "F" field to be wrong. Following that field in that case
7949 would lead to incorrect results, but this can be worked around
7950 by ignoring the PAD type and using the associated XVS type instead.
7951
7952 Set to True if the debugger should trust the contents of PAD types.
7953 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7954static int trust_pad_over_xvs = 1;
14f9c5c9
AS
7955
7956/* True if TYPE is a struct type introduced by the compiler to force the
7957 alignment of a value. Such types have a single field with a
4c4b4cd2 7958 distinctive name. */
14f9c5c9
AS
7959
7960int
ebf56fd3 7961ada_is_aligner_type (struct type *type)
14f9c5c9 7962{
61ee279c 7963 type = ada_check_typedef (type);
714e53ab 7964
5bf03f13 7965 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
7966 return 0;
7967
14f9c5c9 7968 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7969 && TYPE_NFIELDS (type) == 1
7970 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7971}
7972
7973/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7974 the parallel type. */
14f9c5c9 7975
d2e4a39e
AS
7976struct type *
7977ada_get_base_type (struct type *raw_type)
14f9c5c9 7978{
d2e4a39e
AS
7979 struct type *real_type_namer;
7980 struct type *raw_real_type;
14f9c5c9
AS
7981
7982 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7983 return raw_type;
7984
284614f0
JB
7985 if (ada_is_aligner_type (raw_type))
7986 /* The encoding specifies that we should always use the aligner type.
7987 So, even if this aligner type has an associated XVS type, we should
7988 simply ignore it.
7989
7990 According to the compiler gurus, an XVS type parallel to an aligner
7991 type may exist because of a stabs limitation. In stabs, aligner
7992 types are empty because the field has a variable-sized type, and
7993 thus cannot actually be used as an aligner type. As a result,
7994 we need the associated parallel XVS type to decode the type.
7995 Since the policy in the compiler is to not change the internal
7996 representation based on the debugging info format, we sometimes
7997 end up having a redundant XVS type parallel to the aligner type. */
7998 return raw_type;
7999
14f9c5c9 8000 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8001 if (real_type_namer == NULL
14f9c5c9
AS
8002 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8003 || TYPE_NFIELDS (real_type_namer) != 1)
8004 return raw_type;
8005
f80d3ff2
JB
8006 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8007 {
8008 /* This is an older encoding form where the base type needs to be
8009 looked up by name. We prefer the newer enconding because it is
8010 more efficient. */
8011 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8012 if (raw_real_type == NULL)
8013 return raw_type;
8014 else
8015 return raw_real_type;
8016 }
8017
8018 /* The field in our XVS type is a reference to the base type. */
8019 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8020}
14f9c5c9 8021
4c4b4cd2 8022/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8023
d2e4a39e
AS
8024struct type *
8025ada_aligned_type (struct type *type)
14f9c5c9
AS
8026{
8027 if (ada_is_aligner_type (type))
8028 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8029 else
8030 return ada_get_base_type (type);
8031}
8032
8033
8034/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8035 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8036
fc1a4b47
AC
8037const gdb_byte *
8038ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8039{
d2e4a39e 8040 if (ada_is_aligner_type (type))
14f9c5c9 8041 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8042 valaddr +
8043 TYPE_FIELD_BITPOS (type,
8044 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8045 else
8046 return valaddr;
8047}
8048
4c4b4cd2
PH
8049
8050
14f9c5c9 8051/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8052 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8053const char *
8054ada_enum_name (const char *name)
14f9c5c9 8055{
4c4b4cd2
PH
8056 static char *result;
8057 static size_t result_len = 0;
d2e4a39e 8058 char *tmp;
14f9c5c9 8059
4c4b4cd2
PH
8060 /* First, unqualify the enumeration name:
8061 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
8062 all the preceeding characters, the unqualified name starts
8063 right after that dot.
4c4b4cd2 8064 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8065 translates dots into "__". Search forward for double underscores,
8066 but stop searching when we hit an overloading suffix, which is
8067 of the form "__" followed by digits. */
4c4b4cd2 8068
c3e5cd34
PH
8069 tmp = strrchr (name, '.');
8070 if (tmp != NULL)
4c4b4cd2
PH
8071 name = tmp + 1;
8072 else
14f9c5c9 8073 {
4c4b4cd2
PH
8074 while ((tmp = strstr (name, "__")) != NULL)
8075 {
8076 if (isdigit (tmp[2]))
8077 break;
8078 else
8079 name = tmp + 2;
8080 }
14f9c5c9
AS
8081 }
8082
8083 if (name[0] == 'Q')
8084 {
14f9c5c9 8085 int v;
5b4ee69b 8086
14f9c5c9 8087 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8088 {
8089 if (sscanf (name + 2, "%x", &v) != 1)
8090 return name;
8091 }
14f9c5c9 8092 else
4c4b4cd2 8093 return name;
14f9c5c9 8094
4c4b4cd2 8095 GROW_VECT (result, result_len, 16);
14f9c5c9 8096 if (isascii (v) && isprint (v))
88c15c34 8097 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8098 else if (name[1] == 'U')
88c15c34 8099 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8100 else
88c15c34 8101 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8102
8103 return result;
8104 }
d2e4a39e 8105 else
4c4b4cd2 8106 {
c3e5cd34
PH
8107 tmp = strstr (name, "__");
8108 if (tmp == NULL)
8109 tmp = strstr (name, "$");
8110 if (tmp != NULL)
4c4b4cd2
PH
8111 {
8112 GROW_VECT (result, result_len, tmp - name + 1);
8113 strncpy (result, name, tmp - name);
8114 result[tmp - name] = '\0';
8115 return result;
8116 }
8117
8118 return name;
8119 }
14f9c5c9
AS
8120}
8121
14f9c5c9
AS
8122/* Evaluate the subexpression of EXP starting at *POS as for
8123 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8124 expression. */
14f9c5c9 8125
d2e4a39e
AS
8126static struct value *
8127evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8128{
4b27a620 8129 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8130}
8131
8132/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8133 value it wraps. */
14f9c5c9 8134
d2e4a39e
AS
8135static struct value *
8136unwrap_value (struct value *val)
14f9c5c9 8137{
df407dfe 8138 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8139
14f9c5c9
AS
8140 if (ada_is_aligner_type (type))
8141 {
de4d072f 8142 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8143 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8144
14f9c5c9 8145 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8146 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8147
8148 return unwrap_value (v);
8149 }
d2e4a39e 8150 else
14f9c5c9 8151 {
d2e4a39e 8152 struct type *raw_real_type =
61ee279c 8153 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8154
5bf03f13
JB
8155 /* If there is no parallel XVS or XVE type, then the value is
8156 already unwrapped. Return it without further modification. */
8157 if ((type == raw_real_type)
8158 && ada_find_parallel_type (type, "___XVE") == NULL)
8159 return val;
14f9c5c9 8160
d2e4a39e 8161 return
4c4b4cd2
PH
8162 coerce_unspec_val_to_type
8163 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8164 value_address (val),
1ed6ede0 8165 NULL, 1));
14f9c5c9
AS
8166 }
8167}
d2e4a39e
AS
8168
8169static struct value *
8170cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8171{
8172 LONGEST val;
8173
df407dfe 8174 if (type == value_type (arg))
14f9c5c9 8175 return arg;
df407dfe 8176 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8177 val = ada_float_to_fixed (type,
df407dfe 8178 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8179 value_as_long (arg)));
d2e4a39e 8180 else
14f9c5c9 8181 {
a53b7a21 8182 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8183
14f9c5c9
AS
8184 val = ada_float_to_fixed (type, argd);
8185 }
8186
8187 return value_from_longest (type, val);
8188}
8189
d2e4a39e 8190static struct value *
a53b7a21 8191cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8192{
df407dfe 8193 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8194 value_as_long (arg));
5b4ee69b 8195
a53b7a21 8196 return value_from_double (type, val);
14f9c5c9
AS
8197}
8198
4c4b4cd2
PH
8199/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8200 return the converted value. */
8201
d2e4a39e
AS
8202static struct value *
8203coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8204{
df407dfe 8205 struct type *type2 = value_type (val);
5b4ee69b 8206
14f9c5c9
AS
8207 if (type == type2)
8208 return val;
8209
61ee279c
PH
8210 type2 = ada_check_typedef (type2);
8211 type = ada_check_typedef (type);
14f9c5c9 8212
d2e4a39e
AS
8213 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8214 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8215 {
8216 val = ada_value_ind (val);
df407dfe 8217 type2 = value_type (val);
14f9c5c9
AS
8218 }
8219
d2e4a39e 8220 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8221 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8222 {
8223 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
8224 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8225 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 8226 error (_("Incompatible types in assignment"));
04624583 8227 deprecated_set_value_type (val, type);
14f9c5c9 8228 }
d2e4a39e 8229 return val;
14f9c5c9
AS
8230}
8231
4c4b4cd2
PH
8232static struct value *
8233ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8234{
8235 struct value *val;
8236 struct type *type1, *type2;
8237 LONGEST v, v1, v2;
8238
994b9211
AC
8239 arg1 = coerce_ref (arg1);
8240 arg2 = coerce_ref (arg2);
df407dfe
AC
8241 type1 = base_type (ada_check_typedef (value_type (arg1)));
8242 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8243
76a01679
JB
8244 if (TYPE_CODE (type1) != TYPE_CODE_INT
8245 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8246 return value_binop (arg1, arg2, op);
8247
76a01679 8248 switch (op)
4c4b4cd2
PH
8249 {
8250 case BINOP_MOD:
8251 case BINOP_DIV:
8252 case BINOP_REM:
8253 break;
8254 default:
8255 return value_binop (arg1, arg2, op);
8256 }
8257
8258 v2 = value_as_long (arg2);
8259 if (v2 == 0)
323e0a4a 8260 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8261
8262 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8263 return value_binop (arg1, arg2, op);
8264
8265 v1 = value_as_long (arg1);
8266 switch (op)
8267 {
8268 case BINOP_DIV:
8269 v = v1 / v2;
76a01679
JB
8270 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8271 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8272 break;
8273 case BINOP_REM:
8274 v = v1 % v2;
76a01679
JB
8275 if (v * v1 < 0)
8276 v -= v2;
4c4b4cd2
PH
8277 break;
8278 default:
8279 /* Should not reach this point. */
8280 v = 0;
8281 }
8282
8283 val = allocate_value (type1);
990a07ab 8284 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8285 TYPE_LENGTH (value_type (val)),
8286 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8287 return val;
8288}
8289
8290static int
8291ada_value_equal (struct value *arg1, struct value *arg2)
8292{
df407dfe
AC
8293 if (ada_is_direct_array_type (value_type (arg1))
8294 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8295 {
f58b38bf
JB
8296 /* Automatically dereference any array reference before
8297 we attempt to perform the comparison. */
8298 arg1 = ada_coerce_ref (arg1);
8299 arg2 = ada_coerce_ref (arg2);
8300
4c4b4cd2
PH
8301 arg1 = ada_coerce_to_simple_array (arg1);
8302 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8303 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8304 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8305 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8306 /* FIXME: The following works only for types whose
76a01679
JB
8307 representations use all bits (no padding or undefined bits)
8308 and do not have user-defined equality. */
8309 return
df407dfe 8310 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8311 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8312 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8313 }
8314 return value_equal (arg1, arg2);
8315}
8316
52ce6436
PH
8317/* Total number of component associations in the aggregate starting at
8318 index PC in EXP. Assumes that index PC is the start of an
8319 OP_AGGREGATE. */
8320
8321static int
8322num_component_specs (struct expression *exp, int pc)
8323{
8324 int n, m, i;
5b4ee69b 8325
52ce6436
PH
8326 m = exp->elts[pc + 1].longconst;
8327 pc += 3;
8328 n = 0;
8329 for (i = 0; i < m; i += 1)
8330 {
8331 switch (exp->elts[pc].opcode)
8332 {
8333 default:
8334 n += 1;
8335 break;
8336 case OP_CHOICES:
8337 n += exp->elts[pc + 1].longconst;
8338 break;
8339 }
8340 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8341 }
8342 return n;
8343}
8344
8345/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8346 component of LHS (a simple array or a record), updating *POS past
8347 the expression, assuming that LHS is contained in CONTAINER. Does
8348 not modify the inferior's memory, nor does it modify LHS (unless
8349 LHS == CONTAINER). */
8350
8351static void
8352assign_component (struct value *container, struct value *lhs, LONGEST index,
8353 struct expression *exp, int *pos)
8354{
8355 struct value *mark = value_mark ();
8356 struct value *elt;
5b4ee69b 8357
52ce6436
PH
8358 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8359 {
22601c15
UW
8360 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8361 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8362
52ce6436
PH
8363 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8364 }
8365 else
8366 {
8367 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8368 elt = ada_to_fixed_value (unwrap_value (elt));
8369 }
8370
8371 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8372 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8373 else
8374 value_assign_to_component (container, elt,
8375 ada_evaluate_subexp (NULL, exp, pos,
8376 EVAL_NORMAL));
8377
8378 value_free_to_mark (mark);
8379}
8380
8381/* Assuming that LHS represents an lvalue having a record or array
8382 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8383 of that aggregate's value to LHS, advancing *POS past the
8384 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8385 lvalue containing LHS (possibly LHS itself). Does not modify
8386 the inferior's memory, nor does it modify the contents of
8387 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8388
8389static struct value *
8390assign_aggregate (struct value *container,
8391 struct value *lhs, struct expression *exp,
8392 int *pos, enum noside noside)
8393{
8394 struct type *lhs_type;
8395 int n = exp->elts[*pos+1].longconst;
8396 LONGEST low_index, high_index;
8397 int num_specs;
8398 LONGEST *indices;
8399 int max_indices, num_indices;
8400 int is_array_aggregate;
8401 int i;
52ce6436
PH
8402
8403 *pos += 3;
8404 if (noside != EVAL_NORMAL)
8405 {
8406 int i;
5b4ee69b 8407
52ce6436
PH
8408 for (i = 0; i < n; i += 1)
8409 ada_evaluate_subexp (NULL, exp, pos, noside);
8410 return container;
8411 }
8412
8413 container = ada_coerce_ref (container);
8414 if (ada_is_direct_array_type (value_type (container)))
8415 container = ada_coerce_to_simple_array (container);
8416 lhs = ada_coerce_ref (lhs);
8417 if (!deprecated_value_modifiable (lhs))
8418 error (_("Left operand of assignment is not a modifiable lvalue."));
8419
8420 lhs_type = value_type (lhs);
8421 if (ada_is_direct_array_type (lhs_type))
8422 {
8423 lhs = ada_coerce_to_simple_array (lhs);
8424 lhs_type = value_type (lhs);
8425 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8426 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8427 is_array_aggregate = 1;
8428 }
8429 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8430 {
8431 low_index = 0;
8432 high_index = num_visible_fields (lhs_type) - 1;
8433 is_array_aggregate = 0;
8434 }
8435 else
8436 error (_("Left-hand side must be array or record."));
8437
8438 num_specs = num_component_specs (exp, *pos - 3);
8439 max_indices = 4 * num_specs + 4;
8440 indices = alloca (max_indices * sizeof (indices[0]));
8441 indices[0] = indices[1] = low_index - 1;
8442 indices[2] = indices[3] = high_index + 1;
8443 num_indices = 4;
8444
8445 for (i = 0; i < n; i += 1)
8446 {
8447 switch (exp->elts[*pos].opcode)
8448 {
8449 case OP_CHOICES:
8450 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8451 &num_indices, max_indices,
8452 low_index, high_index);
8453 break;
8454 case OP_POSITIONAL:
8455 aggregate_assign_positional (container, lhs, exp, pos, indices,
8456 &num_indices, max_indices,
8457 low_index, high_index);
8458 break;
8459 case OP_OTHERS:
8460 if (i != n-1)
8461 error (_("Misplaced 'others' clause"));
8462 aggregate_assign_others (container, lhs, exp, pos, indices,
8463 num_indices, low_index, high_index);
8464 break;
8465 default:
8466 error (_("Internal error: bad aggregate clause"));
8467 }
8468 }
8469
8470 return container;
8471}
8472
8473/* Assign into the component of LHS indexed by the OP_POSITIONAL
8474 construct at *POS, updating *POS past the construct, given that
8475 the positions are relative to lower bound LOW, where HIGH is the
8476 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8477 updating *NUM_INDICES as needed. CONTAINER is as for
8478 assign_aggregate. */
8479static void
8480aggregate_assign_positional (struct value *container,
8481 struct value *lhs, struct expression *exp,
8482 int *pos, LONGEST *indices, int *num_indices,
8483 int max_indices, LONGEST low, LONGEST high)
8484{
8485 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8486
8487 if (ind - 1 == high)
e1d5a0d2 8488 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8489 if (ind <= high)
8490 {
8491 add_component_interval (ind, ind, indices, num_indices, max_indices);
8492 *pos += 3;
8493 assign_component (container, lhs, ind, exp, pos);
8494 }
8495 else
8496 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8497}
8498
8499/* Assign into the components of LHS indexed by the OP_CHOICES
8500 construct at *POS, updating *POS past the construct, given that
8501 the allowable indices are LOW..HIGH. Record the indices assigned
8502 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8503 needed. CONTAINER is as for assign_aggregate. */
8504static void
8505aggregate_assign_from_choices (struct value *container,
8506 struct value *lhs, struct expression *exp,
8507 int *pos, LONGEST *indices, int *num_indices,
8508 int max_indices, LONGEST low, LONGEST high)
8509{
8510 int j;
8511 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8512 int choice_pos, expr_pc;
8513 int is_array = ada_is_direct_array_type (value_type (lhs));
8514
8515 choice_pos = *pos += 3;
8516
8517 for (j = 0; j < n_choices; j += 1)
8518 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8519 expr_pc = *pos;
8520 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8521
8522 for (j = 0; j < n_choices; j += 1)
8523 {
8524 LONGEST lower, upper;
8525 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 8526
52ce6436
PH
8527 if (op == OP_DISCRETE_RANGE)
8528 {
8529 choice_pos += 1;
8530 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8531 EVAL_NORMAL));
8532 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8533 EVAL_NORMAL));
8534 }
8535 else if (is_array)
8536 {
8537 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8538 EVAL_NORMAL));
8539 upper = lower;
8540 }
8541 else
8542 {
8543 int ind;
8544 char *name;
5b4ee69b 8545
52ce6436
PH
8546 switch (op)
8547 {
8548 case OP_NAME:
8549 name = &exp->elts[choice_pos + 2].string;
8550 break;
8551 case OP_VAR_VALUE:
8552 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8553 break;
8554 default:
8555 error (_("Invalid record component association."));
8556 }
8557 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8558 ind = 0;
8559 if (! find_struct_field (name, value_type (lhs), 0,
8560 NULL, NULL, NULL, NULL, &ind))
8561 error (_("Unknown component name: %s."), name);
8562 lower = upper = ind;
8563 }
8564
8565 if (lower <= upper && (lower < low || upper > high))
8566 error (_("Index in component association out of bounds."));
8567
8568 add_component_interval (lower, upper, indices, num_indices,
8569 max_indices);
8570 while (lower <= upper)
8571 {
8572 int pos1;
5b4ee69b 8573
52ce6436
PH
8574 pos1 = expr_pc;
8575 assign_component (container, lhs, lower, exp, &pos1);
8576 lower += 1;
8577 }
8578 }
8579}
8580
8581/* Assign the value of the expression in the OP_OTHERS construct in
8582 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8583 have not been previously assigned. The index intervals already assigned
8584 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8585 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8586static void
8587aggregate_assign_others (struct value *container,
8588 struct value *lhs, struct expression *exp,
8589 int *pos, LONGEST *indices, int num_indices,
8590 LONGEST low, LONGEST high)
8591{
8592 int i;
8593 int expr_pc = *pos+1;
8594
8595 for (i = 0; i < num_indices - 2; i += 2)
8596 {
8597 LONGEST ind;
5b4ee69b 8598
52ce6436
PH
8599 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8600 {
8601 int pos;
5b4ee69b 8602
52ce6436
PH
8603 pos = expr_pc;
8604 assign_component (container, lhs, ind, exp, &pos);
8605 }
8606 }
8607 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8608}
8609
8610/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8611 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8612 modifying *SIZE as needed. It is an error if *SIZE exceeds
8613 MAX_SIZE. The resulting intervals do not overlap. */
8614static void
8615add_component_interval (LONGEST low, LONGEST high,
8616 LONGEST* indices, int *size, int max_size)
8617{
8618 int i, j;
5b4ee69b 8619
52ce6436
PH
8620 for (i = 0; i < *size; i += 2) {
8621 if (high >= indices[i] && low <= indices[i + 1])
8622 {
8623 int kh;
5b4ee69b 8624
52ce6436
PH
8625 for (kh = i + 2; kh < *size; kh += 2)
8626 if (high < indices[kh])
8627 break;
8628 if (low < indices[i])
8629 indices[i] = low;
8630 indices[i + 1] = indices[kh - 1];
8631 if (high > indices[i + 1])
8632 indices[i + 1] = high;
8633 memcpy (indices + i + 2, indices + kh, *size - kh);
8634 *size -= kh - i - 2;
8635 return;
8636 }
8637 else if (high < indices[i])
8638 break;
8639 }
8640
8641 if (*size == max_size)
8642 error (_("Internal error: miscounted aggregate components."));
8643 *size += 2;
8644 for (j = *size-1; j >= i+2; j -= 1)
8645 indices[j] = indices[j - 2];
8646 indices[i] = low;
8647 indices[i + 1] = high;
8648}
8649
6e48bd2c
JB
8650/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8651 is different. */
8652
8653static struct value *
8654ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8655{
8656 if (type == ada_check_typedef (value_type (arg2)))
8657 return arg2;
8658
8659 if (ada_is_fixed_point_type (type))
8660 return (cast_to_fixed (type, arg2));
8661
8662 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8663 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8664
8665 return value_cast (type, arg2);
8666}
8667
284614f0
JB
8668/* Evaluating Ada expressions, and printing their result.
8669 ------------------------------------------------------
8670
21649b50
JB
8671 1. Introduction:
8672 ----------------
8673
284614f0
JB
8674 We usually evaluate an Ada expression in order to print its value.
8675 We also evaluate an expression in order to print its type, which
8676 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8677 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8678 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8679 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8680 similar.
8681
8682 Evaluating expressions is a little more complicated for Ada entities
8683 than it is for entities in languages such as C. The main reason for
8684 this is that Ada provides types whose definition might be dynamic.
8685 One example of such types is variant records. Or another example
8686 would be an array whose bounds can only be known at run time.
8687
8688 The following description is a general guide as to what should be
8689 done (and what should NOT be done) in order to evaluate an expression
8690 involving such types, and when. This does not cover how the semantic
8691 information is encoded by GNAT as this is covered separatly. For the
8692 document used as the reference for the GNAT encoding, see exp_dbug.ads
8693 in the GNAT sources.
8694
8695 Ideally, we should embed each part of this description next to its
8696 associated code. Unfortunately, the amount of code is so vast right
8697 now that it's hard to see whether the code handling a particular
8698 situation might be duplicated or not. One day, when the code is
8699 cleaned up, this guide might become redundant with the comments
8700 inserted in the code, and we might want to remove it.
8701
21649b50
JB
8702 2. ``Fixing'' an Entity, the Simple Case:
8703 -----------------------------------------
8704
284614f0
JB
8705 When evaluating Ada expressions, the tricky issue is that they may
8706 reference entities whose type contents and size are not statically
8707 known. Consider for instance a variant record:
8708
8709 type Rec (Empty : Boolean := True) is record
8710 case Empty is
8711 when True => null;
8712 when False => Value : Integer;
8713 end case;
8714 end record;
8715 Yes : Rec := (Empty => False, Value => 1);
8716 No : Rec := (empty => True);
8717
8718 The size and contents of that record depends on the value of the
8719 descriminant (Rec.Empty). At this point, neither the debugging
8720 information nor the associated type structure in GDB are able to
8721 express such dynamic types. So what the debugger does is to create
8722 "fixed" versions of the type that applies to the specific object.
8723 We also informally refer to this opperation as "fixing" an object,
8724 which means creating its associated fixed type.
8725
8726 Example: when printing the value of variable "Yes" above, its fixed
8727 type would look like this:
8728
8729 type Rec is record
8730 Empty : Boolean;
8731 Value : Integer;
8732 end record;
8733
8734 On the other hand, if we printed the value of "No", its fixed type
8735 would become:
8736
8737 type Rec is record
8738 Empty : Boolean;
8739 end record;
8740
8741 Things become a little more complicated when trying to fix an entity
8742 with a dynamic type that directly contains another dynamic type,
8743 such as an array of variant records, for instance. There are
8744 two possible cases: Arrays, and records.
8745
21649b50
JB
8746 3. ``Fixing'' Arrays:
8747 ---------------------
8748
8749 The type structure in GDB describes an array in terms of its bounds,
8750 and the type of its elements. By design, all elements in the array
8751 have the same type and we cannot represent an array of variant elements
8752 using the current type structure in GDB. When fixing an array,
8753 we cannot fix the array element, as we would potentially need one
8754 fixed type per element of the array. As a result, the best we can do
8755 when fixing an array is to produce an array whose bounds and size
8756 are correct (allowing us to read it from memory), but without having
8757 touched its element type. Fixing each element will be done later,
8758 when (if) necessary.
8759
8760 Arrays are a little simpler to handle than records, because the same
8761 amount of memory is allocated for each element of the array, even if
1b536f04 8762 the amount of space actually used by each element differs from element
21649b50 8763 to element. Consider for instance the following array of type Rec:
284614f0
JB
8764
8765 type Rec_Array is array (1 .. 2) of Rec;
8766
1b536f04
JB
8767 The actual amount of memory occupied by each element might be different
8768 from element to element, depending on the value of their discriminant.
21649b50 8769 But the amount of space reserved for each element in the array remains
1b536f04 8770 fixed regardless. So we simply need to compute that size using
21649b50
JB
8771 the debugging information available, from which we can then determine
8772 the array size (we multiply the number of elements of the array by
8773 the size of each element).
8774
8775 The simplest case is when we have an array of a constrained element
8776 type. For instance, consider the following type declarations:
8777
8778 type Bounded_String (Max_Size : Integer) is
8779 Length : Integer;
8780 Buffer : String (1 .. Max_Size);
8781 end record;
8782 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8783
8784 In this case, the compiler describes the array as an array of
8785 variable-size elements (identified by its XVS suffix) for which
8786 the size can be read in the parallel XVZ variable.
8787
8788 In the case of an array of an unconstrained element type, the compiler
8789 wraps the array element inside a private PAD type. This type should not
8790 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
8791 that we also use the adjective "aligner" in our code to designate
8792 these wrapper types.
8793
1b536f04 8794 In some cases, the size allocated for each element is statically
21649b50
JB
8795 known. In that case, the PAD type already has the correct size,
8796 and the array element should remain unfixed.
8797
8798 But there are cases when this size is not statically known.
8799 For instance, assuming that "Five" is an integer variable:
284614f0
JB
8800
8801 type Dynamic is array (1 .. Five) of Integer;
8802 type Wrapper (Has_Length : Boolean := False) is record
8803 Data : Dynamic;
8804 case Has_Length is
8805 when True => Length : Integer;
8806 when False => null;
8807 end case;
8808 end record;
8809 type Wrapper_Array is array (1 .. 2) of Wrapper;
8810
8811 Hello : Wrapper_Array := (others => (Has_Length => True,
8812 Data => (others => 17),
8813 Length => 1));
8814
8815
8816 The debugging info would describe variable Hello as being an
8817 array of a PAD type. The size of that PAD type is not statically
8818 known, but can be determined using a parallel XVZ variable.
8819 In that case, a copy of the PAD type with the correct size should
8820 be used for the fixed array.
8821
21649b50
JB
8822 3. ``Fixing'' record type objects:
8823 ----------------------------------
8824
8825 Things are slightly different from arrays in the case of dynamic
284614f0
JB
8826 record types. In this case, in order to compute the associated
8827 fixed type, we need to determine the size and offset of each of
8828 its components. This, in turn, requires us to compute the fixed
8829 type of each of these components.
8830
8831 Consider for instance the example:
8832
8833 type Bounded_String (Max_Size : Natural) is record
8834 Str : String (1 .. Max_Size);
8835 Length : Natural;
8836 end record;
8837 My_String : Bounded_String (Max_Size => 10);
8838
8839 In that case, the position of field "Length" depends on the size
8840 of field Str, which itself depends on the value of the Max_Size
21649b50 8841 discriminant. In order to fix the type of variable My_String,
284614f0
JB
8842 we need to fix the type of field Str. Therefore, fixing a variant
8843 record requires us to fix each of its components.
8844
8845 However, if a component does not have a dynamic size, the component
8846 should not be fixed. In particular, fields that use a PAD type
8847 should not fixed. Here is an example where this might happen
8848 (assuming type Rec above):
8849
8850 type Container (Big : Boolean) is record
8851 First : Rec;
8852 After : Integer;
8853 case Big is
8854 when True => Another : Integer;
8855 when False => null;
8856 end case;
8857 end record;
8858 My_Container : Container := (Big => False,
8859 First => (Empty => True),
8860 After => 42);
8861
8862 In that example, the compiler creates a PAD type for component First,
8863 whose size is constant, and then positions the component After just
8864 right after it. The offset of component After is therefore constant
8865 in this case.
8866
8867 The debugger computes the position of each field based on an algorithm
8868 that uses, among other things, the actual position and size of the field
21649b50
JB
8869 preceding it. Let's now imagine that the user is trying to print
8870 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
8871 end up computing the offset of field After based on the size of the
8872 fixed version of field First. And since in our example First has
8873 only one actual field, the size of the fixed type is actually smaller
8874 than the amount of space allocated to that field, and thus we would
8875 compute the wrong offset of field After.
8876
21649b50
JB
8877 To make things more complicated, we need to watch out for dynamic
8878 components of variant records (identified by the ___XVL suffix in
8879 the component name). Even if the target type is a PAD type, the size
8880 of that type might not be statically known. So the PAD type needs
8881 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8882 we might end up with the wrong size for our component. This can be
8883 observed with the following type declarations:
284614f0
JB
8884
8885 type Octal is new Integer range 0 .. 7;
8886 type Octal_Array is array (Positive range <>) of Octal;
8887 pragma Pack (Octal_Array);
8888
8889 type Octal_Buffer (Size : Positive) is record
8890 Buffer : Octal_Array (1 .. Size);
8891 Length : Integer;
8892 end record;
8893
8894 In that case, Buffer is a PAD type whose size is unset and needs
8895 to be computed by fixing the unwrapped type.
8896
21649b50
JB
8897 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8898 ----------------------------------------------------------
8899
8900 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
8901 thus far, be actually fixed?
8902
8903 The answer is: Only when referencing that element. For instance
8904 when selecting one component of a record, this specific component
8905 should be fixed at that point in time. Or when printing the value
8906 of a record, each component should be fixed before its value gets
8907 printed. Similarly for arrays, the element of the array should be
8908 fixed when printing each element of the array, or when extracting
8909 one element out of that array. On the other hand, fixing should
8910 not be performed on the elements when taking a slice of an array!
8911
8912 Note that one of the side-effects of miscomputing the offset and
8913 size of each field is that we end up also miscomputing the size
8914 of the containing type. This can have adverse results when computing
8915 the value of an entity. GDB fetches the value of an entity based
8916 on the size of its type, and thus a wrong size causes GDB to fetch
8917 the wrong amount of memory. In the case where the computed size is
8918 too small, GDB fetches too little data to print the value of our
8919 entiry. Results in this case as unpredicatble, as we usually read
8920 past the buffer containing the data =:-o. */
8921
8922/* Implement the evaluate_exp routine in the exp_descriptor structure
8923 for the Ada language. */
8924
52ce6436 8925static struct value *
ebf56fd3 8926ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8927 int *pos, enum noside noside)
14f9c5c9
AS
8928{
8929 enum exp_opcode op;
b5385fc0 8930 int tem;
14f9c5c9
AS
8931 int pc;
8932 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8933 struct type *type;
52ce6436 8934 int nargs, oplen;
d2e4a39e 8935 struct value **argvec;
14f9c5c9 8936
d2e4a39e
AS
8937 pc = *pos;
8938 *pos += 1;
14f9c5c9
AS
8939 op = exp->elts[pc].opcode;
8940
d2e4a39e 8941 switch (op)
14f9c5c9
AS
8942 {
8943 default:
8944 *pos -= 1;
6e48bd2c
JB
8945 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8946 arg1 = unwrap_value (arg1);
8947
8948 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8949 then we need to perform the conversion manually, because
8950 evaluate_subexp_standard doesn't do it. This conversion is
8951 necessary in Ada because the different kinds of float/fixed
8952 types in Ada have different representations.
8953
8954 Similarly, we need to perform the conversion from OP_LONG
8955 ourselves. */
8956 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8957 arg1 = ada_value_cast (expect_type, arg1, noside);
8958
8959 return arg1;
4c4b4cd2
PH
8960
8961 case OP_STRING:
8962 {
76a01679 8963 struct value *result;
5b4ee69b 8964
76a01679
JB
8965 *pos -= 1;
8966 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8967 /* The result type will have code OP_STRING, bashed there from
8968 OP_ARRAY. Bash it back. */
df407dfe
AC
8969 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8970 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8971 return result;
4c4b4cd2 8972 }
14f9c5c9
AS
8973
8974 case UNOP_CAST:
8975 (*pos) += 2;
8976 type = exp->elts[pc + 1].type;
8977 arg1 = evaluate_subexp (type, exp, pos, noside);
8978 if (noside == EVAL_SKIP)
4c4b4cd2 8979 goto nosideret;
6e48bd2c 8980 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8981 return arg1;
8982
4c4b4cd2
PH
8983 case UNOP_QUAL:
8984 (*pos) += 2;
8985 type = exp->elts[pc + 1].type;
8986 return ada_evaluate_subexp (type, exp, pos, noside);
8987
14f9c5c9
AS
8988 case BINOP_ASSIGN:
8989 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8990 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8991 {
8992 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8993 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8994 return arg1;
8995 return ada_value_assign (arg1, arg1);
8996 }
003f3813
JB
8997 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8998 except if the lhs of our assignment is a convenience variable.
8999 In the case of assigning to a convenience variable, the lhs
9000 should be exactly the result of the evaluation of the rhs. */
9001 type = value_type (arg1);
9002 if (VALUE_LVAL (arg1) == lval_internalvar)
9003 type = NULL;
9004 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9005 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9006 return arg1;
df407dfe
AC
9007 if (ada_is_fixed_point_type (value_type (arg1)))
9008 arg2 = cast_to_fixed (value_type (arg1), arg2);
9009 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9010 error
323e0a4a 9011 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9012 else
df407dfe 9013 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9014 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9015
9016 case BINOP_ADD:
9017 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9018 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9019 if (noside == EVAL_SKIP)
4c4b4cd2 9020 goto nosideret;
2ac8a782
JB
9021 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9022 return (value_from_longest
9023 (value_type (arg1),
9024 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9025 if ((ada_is_fixed_point_type (value_type (arg1))
9026 || ada_is_fixed_point_type (value_type (arg2)))
9027 && value_type (arg1) != value_type (arg2))
323e0a4a 9028 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9029 /* Do the addition, and cast the result to the type of the first
9030 argument. We cannot cast the result to a reference type, so if
9031 ARG1 is a reference type, find its underlying type. */
9032 type = value_type (arg1);
9033 while (TYPE_CODE (type) == TYPE_CODE_REF)
9034 type = TYPE_TARGET_TYPE (type);
f44316fa 9035 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9036 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9037
9038 case BINOP_SUB:
9039 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9040 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9041 if (noside == EVAL_SKIP)
4c4b4cd2 9042 goto nosideret;
2ac8a782
JB
9043 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9044 return (value_from_longest
9045 (value_type (arg1),
9046 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9047 if ((ada_is_fixed_point_type (value_type (arg1))
9048 || ada_is_fixed_point_type (value_type (arg2)))
9049 && value_type (arg1) != value_type (arg2))
323e0a4a 9050 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
9051 /* Do the substraction, and cast the result to the type of the first
9052 argument. We cannot cast the result to a reference type, so if
9053 ARG1 is a reference type, find its underlying type. */
9054 type = value_type (arg1);
9055 while (TYPE_CODE (type) == TYPE_CODE_REF)
9056 type = TYPE_TARGET_TYPE (type);
f44316fa 9057 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9058 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9059
9060 case BINOP_MUL:
9061 case BINOP_DIV:
e1578042
JB
9062 case BINOP_REM:
9063 case BINOP_MOD:
14f9c5c9
AS
9064 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9065 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9066 if (noside == EVAL_SKIP)
4c4b4cd2 9067 goto nosideret;
e1578042 9068 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9069 {
9070 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9071 return value_zero (value_type (arg1), not_lval);
9072 }
14f9c5c9 9073 else
4c4b4cd2 9074 {
a53b7a21 9075 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9076 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9077 arg1 = cast_from_fixed (type, arg1);
df407dfe 9078 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9079 arg2 = cast_from_fixed (type, arg2);
f44316fa 9080 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9081 return ada_value_binop (arg1, arg2, op);
9082 }
9083
4c4b4cd2
PH
9084 case BINOP_EQUAL:
9085 case BINOP_NOTEQUAL:
14f9c5c9 9086 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9087 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9088 if (noside == EVAL_SKIP)
76a01679 9089 goto nosideret;
4c4b4cd2 9090 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9091 tem = 0;
4c4b4cd2 9092 else
f44316fa
UW
9093 {
9094 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9095 tem = ada_value_equal (arg1, arg2);
9096 }
4c4b4cd2 9097 if (op == BINOP_NOTEQUAL)
76a01679 9098 tem = !tem;
fbb06eb1
UW
9099 type = language_bool_type (exp->language_defn, exp->gdbarch);
9100 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9101
9102 case UNOP_NEG:
9103 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9104 if (noside == EVAL_SKIP)
9105 goto nosideret;
df407dfe
AC
9106 else if (ada_is_fixed_point_type (value_type (arg1)))
9107 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9108 else
f44316fa
UW
9109 {
9110 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9111 return value_neg (arg1);
9112 }
4c4b4cd2 9113
2330c6c6
JB
9114 case BINOP_LOGICAL_AND:
9115 case BINOP_LOGICAL_OR:
9116 case UNOP_LOGICAL_NOT:
000d5124
JB
9117 {
9118 struct value *val;
9119
9120 *pos -= 1;
9121 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9122 type = language_bool_type (exp->language_defn, exp->gdbarch);
9123 return value_cast (type, val);
000d5124 9124 }
2330c6c6
JB
9125
9126 case BINOP_BITWISE_AND:
9127 case BINOP_BITWISE_IOR:
9128 case BINOP_BITWISE_XOR:
000d5124
JB
9129 {
9130 struct value *val;
9131
9132 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9133 *pos = pc;
9134 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9135
9136 return value_cast (value_type (arg1), val);
9137 }
2330c6c6 9138
14f9c5c9
AS
9139 case OP_VAR_VALUE:
9140 *pos -= 1;
6799def4 9141
14f9c5c9 9142 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9143 {
9144 *pos += 4;
9145 goto nosideret;
9146 }
9147 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9148 /* Only encountered when an unresolved symbol occurs in a
9149 context other than a function call, in which case, it is
52ce6436 9150 invalid. */
323e0a4a 9151 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9152 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9153 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9154 {
0c1f74cf 9155 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9156 /* Check to see if this is a tagged type. We also need to handle
9157 the case where the type is a reference to a tagged type, but
9158 we have to be careful to exclude pointers to tagged types.
9159 The latter should be shown as usual (as a pointer), whereas
9160 a reference should mostly be transparent to the user. */
9161 if (ada_is_tagged_type (type, 0)
9162 || (TYPE_CODE(type) == TYPE_CODE_REF
9163 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9164 {
9165 /* Tagged types are a little special in the fact that the real
9166 type is dynamic and can only be determined by inspecting the
9167 object's tag. This means that we need to get the object's
9168 value first (EVAL_NORMAL) and then extract the actual object
9169 type from its tag.
9170
9171 Note that we cannot skip the final step where we extract
9172 the object type from its tag, because the EVAL_NORMAL phase
9173 results in dynamic components being resolved into fixed ones.
9174 This can cause problems when trying to print the type
9175 description of tagged types whose parent has a dynamic size:
9176 We use the type name of the "_parent" component in order
9177 to print the name of the ancestor type in the type description.
9178 If that component had a dynamic size, the resolution into
9179 a fixed type would result in the loss of that type name,
9180 thus preventing us from printing the name of the ancestor
9181 type in the type description. */
b79819ba
JB
9182 struct type *actual_type;
9183
0c1f74cf 9184 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
9185 actual_type = type_from_tag (ada_value_tag (arg1));
9186 if (actual_type == NULL)
9187 /* If, for some reason, we were unable to determine
9188 the actual type from the tag, then use the static
9189 approximation that we just computed as a fallback.
9190 This can happen if the debugging information is
9191 incomplete, for instance. */
9192 actual_type = type;
9193
9194 return value_zero (actual_type, not_lval);
0c1f74cf
JB
9195 }
9196
4c4b4cd2
PH
9197 *pos += 4;
9198 return value_zero
9199 (to_static_fixed_type
9200 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9201 not_lval);
9202 }
d2e4a39e 9203 else
4c4b4cd2 9204 {
284614f0
JB
9205 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9206 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
9207 return ada_to_fixed_value (arg1);
9208 }
9209
9210 case OP_FUNCALL:
9211 (*pos) += 2;
9212
9213 /* Allocate arg vector, including space for the function to be
9214 called in argvec[0] and a terminating NULL. */
9215 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9216 argvec =
9217 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9218
9219 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9220 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9221 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9222 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9223 else
9224 {
9225 for (tem = 0; tem <= nargs; tem += 1)
9226 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9227 argvec[tem] = 0;
9228
9229 if (noside == EVAL_SKIP)
9230 goto nosideret;
9231 }
9232
ad82864c
JB
9233 if (ada_is_constrained_packed_array_type
9234 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9235 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9236 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9237 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9238 /* This is a packed array that has already been fixed, and
9239 therefore already coerced to a simple array. Nothing further
9240 to do. */
9241 ;
df407dfe
AC
9242 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9243 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9244 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9245 argvec[0] = value_addr (argvec[0]);
9246
df407dfe 9247 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
9248 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9249 {
61ee279c 9250 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9251 {
9252 case TYPE_CODE_FUNC:
61ee279c 9253 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9254 break;
9255 case TYPE_CODE_ARRAY:
9256 break;
9257 case TYPE_CODE_STRUCT:
9258 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9259 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9260 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9261 break;
9262 default:
323e0a4a 9263 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9264 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9265 break;
9266 }
9267 }
9268
9269 switch (TYPE_CODE (type))
9270 {
9271 case TYPE_CODE_FUNC:
9272 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9273 return allocate_value (TYPE_TARGET_TYPE (type));
9274 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9275 case TYPE_CODE_STRUCT:
9276 {
9277 int arity;
9278
4c4b4cd2
PH
9279 arity = ada_array_arity (type);
9280 type = ada_array_element_type (type, nargs);
9281 if (type == NULL)
323e0a4a 9282 error (_("cannot subscript or call a record"));
4c4b4cd2 9283 if (arity != nargs)
323e0a4a 9284 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9285 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9286 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9287 return
9288 unwrap_value (ada_value_subscript
9289 (argvec[0], nargs, argvec + 1));
9290 }
9291 case TYPE_CODE_ARRAY:
9292 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9293 {
9294 type = ada_array_element_type (type, nargs);
9295 if (type == NULL)
323e0a4a 9296 error (_("element type of array unknown"));
4c4b4cd2 9297 else
0a07e705 9298 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9299 }
9300 return
9301 unwrap_value (ada_value_subscript
9302 (ada_coerce_to_simple_array (argvec[0]),
9303 nargs, argvec + 1));
9304 case TYPE_CODE_PTR: /* Pointer to array */
9305 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9306 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9307 {
9308 type = ada_array_element_type (type, nargs);
9309 if (type == NULL)
323e0a4a 9310 error (_("element type of array unknown"));
4c4b4cd2 9311 else
0a07e705 9312 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9313 }
9314 return
9315 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9316 nargs, argvec + 1));
9317
9318 default:
e1d5a0d2
PH
9319 error (_("Attempt to index or call something other than an "
9320 "array or function"));
4c4b4cd2
PH
9321 }
9322
9323 case TERNOP_SLICE:
9324 {
9325 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9326 struct value *low_bound_val =
9327 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9328 struct value *high_bound_val =
9329 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9330 LONGEST low_bound;
9331 LONGEST high_bound;
5b4ee69b 9332
994b9211
AC
9333 low_bound_val = coerce_ref (low_bound_val);
9334 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9335 low_bound = pos_atr (low_bound_val);
9336 high_bound = pos_atr (high_bound_val);
963a6417 9337
4c4b4cd2
PH
9338 if (noside == EVAL_SKIP)
9339 goto nosideret;
9340
4c4b4cd2
PH
9341 /* If this is a reference to an aligner type, then remove all
9342 the aligners. */
df407dfe
AC
9343 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9344 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9345 TYPE_TARGET_TYPE (value_type (array)) =
9346 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9347
ad82864c 9348 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9349 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9350
9351 /* If this is a reference to an array or an array lvalue,
9352 convert to a pointer. */
df407dfe
AC
9353 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9354 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9355 && VALUE_LVAL (array) == lval_memory))
9356 array = value_addr (array);
9357
1265e4aa 9358 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9359 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9360 (value_type (array))))
0b5d8877 9361 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9362
9363 array = ada_coerce_to_simple_array_ptr (array);
9364
714e53ab
PH
9365 /* If we have more than one level of pointer indirection,
9366 dereference the value until we get only one level. */
df407dfe
AC
9367 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9368 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9369 == TYPE_CODE_PTR))
9370 array = value_ind (array);
9371
9372 /* Make sure we really do have an array type before going further,
9373 to avoid a SEGV when trying to get the index type or the target
9374 type later down the road if the debug info generated by
9375 the compiler is incorrect or incomplete. */
df407dfe 9376 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9377 error (_("cannot take slice of non-array"));
714e53ab 9378
df407dfe 9379 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 9380 {
0b5d8877 9381 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9382 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
9383 low_bound);
9384 else
9385 {
9386 struct type *arr_type0 =
df407dfe 9387 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 9388 NULL, 1);
5b4ee69b 9389
f5938064
JG
9390 return ada_value_slice_from_ptr (array, arr_type0,
9391 longest_to_int (low_bound),
9392 longest_to_int (high_bound));
4c4b4cd2
PH
9393 }
9394 }
9395 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9396 return array;
9397 else if (high_bound < low_bound)
df407dfe 9398 return empty_array (value_type (array), low_bound);
4c4b4cd2 9399 else
529cad9c
PH
9400 return ada_value_slice (array, longest_to_int (low_bound),
9401 longest_to_int (high_bound));
4c4b4cd2 9402 }
14f9c5c9 9403
4c4b4cd2
PH
9404 case UNOP_IN_RANGE:
9405 (*pos) += 2;
9406 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9407 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9408
14f9c5c9 9409 if (noside == EVAL_SKIP)
4c4b4cd2 9410 goto nosideret;
14f9c5c9 9411
4c4b4cd2
PH
9412 switch (TYPE_CODE (type))
9413 {
9414 default:
e1d5a0d2
PH
9415 lim_warning (_("Membership test incompletely implemented; "
9416 "always returns true"));
fbb06eb1
UW
9417 type = language_bool_type (exp->language_defn, exp->gdbarch);
9418 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9419
9420 case TYPE_CODE_RANGE:
030b4912
UW
9421 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9422 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9423 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9424 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9425 type = language_bool_type (exp->language_defn, exp->gdbarch);
9426 return
9427 value_from_longest (type,
4c4b4cd2
PH
9428 (value_less (arg1, arg3)
9429 || value_equal (arg1, arg3))
9430 && (value_less (arg2, arg1)
9431 || value_equal (arg2, arg1)));
9432 }
9433
9434 case BINOP_IN_BOUNDS:
14f9c5c9 9435 (*pos) += 2;
4c4b4cd2
PH
9436 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9437 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9438
4c4b4cd2
PH
9439 if (noside == EVAL_SKIP)
9440 goto nosideret;
14f9c5c9 9441
4c4b4cd2 9442 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9443 {
9444 type = language_bool_type (exp->language_defn, exp->gdbarch);
9445 return value_zero (type, not_lval);
9446 }
14f9c5c9 9447
4c4b4cd2 9448 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9449
1eea4ebd
UW
9450 type = ada_index_type (value_type (arg2), tem, "range");
9451 if (!type)
9452 type = value_type (arg1);
14f9c5c9 9453
1eea4ebd
UW
9454 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9455 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9456
f44316fa
UW
9457 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9458 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9459 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9460 return
fbb06eb1 9461 value_from_longest (type,
4c4b4cd2
PH
9462 (value_less (arg1, arg3)
9463 || value_equal (arg1, arg3))
9464 && (value_less (arg2, arg1)
9465 || value_equal (arg2, arg1)));
9466
9467 case TERNOP_IN_RANGE:
9468 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9469 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9470 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9471
9472 if (noside == EVAL_SKIP)
9473 goto nosideret;
9474
f44316fa
UW
9475 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9476 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9477 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9478 return
fbb06eb1 9479 value_from_longest (type,
4c4b4cd2
PH
9480 (value_less (arg1, arg3)
9481 || value_equal (arg1, arg3))
9482 && (value_less (arg2, arg1)
9483 || value_equal (arg2, arg1)));
9484
9485 case OP_ATR_FIRST:
9486 case OP_ATR_LAST:
9487 case OP_ATR_LENGTH:
9488 {
76a01679 9489 struct type *type_arg;
5b4ee69b 9490
76a01679
JB
9491 if (exp->elts[*pos].opcode == OP_TYPE)
9492 {
9493 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9494 arg1 = NULL;
5bc23cb3 9495 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9496 }
9497 else
9498 {
9499 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9500 type_arg = NULL;
9501 }
9502
9503 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9504 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9505 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9506 *pos += 4;
9507
9508 if (noside == EVAL_SKIP)
9509 goto nosideret;
9510
9511 if (type_arg == NULL)
9512 {
9513 arg1 = ada_coerce_ref (arg1);
9514
ad82864c 9515 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9516 arg1 = ada_coerce_to_simple_array (arg1);
9517
1eea4ebd
UW
9518 type = ada_index_type (value_type (arg1), tem,
9519 ada_attribute_name (op));
9520 if (type == NULL)
9521 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9522
9523 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9524 return allocate_value (type);
76a01679
JB
9525
9526 switch (op)
9527 {
9528 default: /* Should never happen. */
323e0a4a 9529 error (_("unexpected attribute encountered"));
76a01679 9530 case OP_ATR_FIRST:
1eea4ebd
UW
9531 return value_from_longest
9532 (type, ada_array_bound (arg1, tem, 0));
76a01679 9533 case OP_ATR_LAST:
1eea4ebd
UW
9534 return value_from_longest
9535 (type, ada_array_bound (arg1, tem, 1));
76a01679 9536 case OP_ATR_LENGTH:
1eea4ebd
UW
9537 return value_from_longest
9538 (type, ada_array_length (arg1, tem));
76a01679
JB
9539 }
9540 }
9541 else if (discrete_type_p (type_arg))
9542 {
9543 struct type *range_type;
9544 char *name = ada_type_name (type_arg);
5b4ee69b 9545
76a01679
JB
9546 range_type = NULL;
9547 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 9548 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
9549 if (range_type == NULL)
9550 range_type = type_arg;
9551 switch (op)
9552 {
9553 default:
323e0a4a 9554 error (_("unexpected attribute encountered"));
76a01679 9555 case OP_ATR_FIRST:
690cc4eb 9556 return value_from_longest
43bbcdc2 9557 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 9558 case OP_ATR_LAST:
690cc4eb 9559 return value_from_longest
43bbcdc2 9560 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 9561 case OP_ATR_LENGTH:
323e0a4a 9562 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9563 }
9564 }
9565 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9566 error (_("unimplemented type attribute"));
76a01679
JB
9567 else
9568 {
9569 LONGEST low, high;
9570
ad82864c
JB
9571 if (ada_is_constrained_packed_array_type (type_arg))
9572 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 9573
1eea4ebd 9574 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9575 if (type == NULL)
1eea4ebd
UW
9576 type = builtin_type (exp->gdbarch)->builtin_int;
9577
76a01679
JB
9578 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9579 return allocate_value (type);
9580
9581 switch (op)
9582 {
9583 default:
323e0a4a 9584 error (_("unexpected attribute encountered"));
76a01679 9585 case OP_ATR_FIRST:
1eea4ebd 9586 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9587 return value_from_longest (type, low);
9588 case OP_ATR_LAST:
1eea4ebd 9589 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9590 return value_from_longest (type, high);
9591 case OP_ATR_LENGTH:
1eea4ebd
UW
9592 low = ada_array_bound_from_type (type_arg, tem, 0);
9593 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9594 return value_from_longest (type, high - low + 1);
9595 }
9596 }
14f9c5c9
AS
9597 }
9598
4c4b4cd2
PH
9599 case OP_ATR_TAG:
9600 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9601 if (noside == EVAL_SKIP)
76a01679 9602 goto nosideret;
4c4b4cd2
PH
9603
9604 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9605 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9606
9607 return ada_value_tag (arg1);
9608
9609 case OP_ATR_MIN:
9610 case OP_ATR_MAX:
9611 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9612 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9613 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9614 if (noside == EVAL_SKIP)
76a01679 9615 goto nosideret;
d2e4a39e 9616 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9617 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9618 else
f44316fa
UW
9619 {
9620 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9621 return value_binop (arg1, arg2,
9622 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9623 }
14f9c5c9 9624
4c4b4cd2
PH
9625 case OP_ATR_MODULUS:
9626 {
31dedfee 9627 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 9628
5b4ee69b 9629 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
9630 if (noside == EVAL_SKIP)
9631 goto nosideret;
4c4b4cd2 9632
76a01679 9633 if (!ada_is_modular_type (type_arg))
323e0a4a 9634 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9635
76a01679
JB
9636 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9637 ada_modulus (type_arg));
4c4b4cd2
PH
9638 }
9639
9640
9641 case OP_ATR_POS:
9642 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9643 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9644 if (noside == EVAL_SKIP)
76a01679 9645 goto nosideret;
3cb382c9
UW
9646 type = builtin_type (exp->gdbarch)->builtin_int;
9647 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9648 return value_zero (type, not_lval);
14f9c5c9 9649 else
3cb382c9 9650 return value_pos_atr (type, arg1);
14f9c5c9 9651
4c4b4cd2
PH
9652 case OP_ATR_SIZE:
9653 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9654 type = value_type (arg1);
9655
9656 /* If the argument is a reference, then dereference its type, since
9657 the user is really asking for the size of the actual object,
9658 not the size of the pointer. */
9659 if (TYPE_CODE (type) == TYPE_CODE_REF)
9660 type = TYPE_TARGET_TYPE (type);
9661
4c4b4cd2 9662 if (noside == EVAL_SKIP)
76a01679 9663 goto nosideret;
4c4b4cd2 9664 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 9665 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 9666 else
22601c15 9667 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 9668 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9669
9670 case OP_ATR_VAL:
9671 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9672 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9673 type = exp->elts[pc + 2].type;
14f9c5c9 9674 if (noside == EVAL_SKIP)
76a01679 9675 goto nosideret;
4c4b4cd2 9676 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9677 return value_zero (type, not_lval);
4c4b4cd2 9678 else
76a01679 9679 return value_val_atr (type, arg1);
4c4b4cd2
PH
9680
9681 case BINOP_EXP:
9682 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9683 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9684 if (noside == EVAL_SKIP)
9685 goto nosideret;
9686 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9687 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9688 else
f44316fa
UW
9689 {
9690 /* For integer exponentiation operations,
9691 only promote the first argument. */
9692 if (is_integral_type (value_type (arg2)))
9693 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9694 else
9695 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9696
9697 return value_binop (arg1, arg2, op);
9698 }
4c4b4cd2
PH
9699
9700 case UNOP_PLUS:
9701 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9702 if (noside == EVAL_SKIP)
9703 goto nosideret;
9704 else
9705 return arg1;
9706
9707 case UNOP_ABS:
9708 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9709 if (noside == EVAL_SKIP)
9710 goto nosideret;
f44316fa 9711 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9712 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9713 return value_neg (arg1);
14f9c5c9 9714 else
4c4b4cd2 9715 return arg1;
14f9c5c9
AS
9716
9717 case UNOP_IND:
6b0d7253 9718 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9719 if (noside == EVAL_SKIP)
4c4b4cd2 9720 goto nosideret;
df407dfe 9721 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9722 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9723 {
9724 if (ada_is_array_descriptor_type (type))
9725 /* GDB allows dereferencing GNAT array descriptors. */
9726 {
9727 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 9728
4c4b4cd2 9729 if (arrType == NULL)
323e0a4a 9730 error (_("Attempt to dereference null array pointer."));
00a4c844 9731 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9732 }
9733 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9734 || TYPE_CODE (type) == TYPE_CODE_REF
9735 /* In C you can dereference an array to get the 1st elt. */
9736 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9737 {
9738 type = to_static_fixed_type
9739 (ada_aligned_type
9740 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9741 check_size (type);
9742 return value_zero (type, lval_memory);
9743 }
4c4b4cd2 9744 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9745 {
9746 /* GDB allows dereferencing an int. */
9747 if (expect_type == NULL)
9748 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9749 lval_memory);
9750 else
9751 {
9752 expect_type =
9753 to_static_fixed_type (ada_aligned_type (expect_type));
9754 return value_zero (expect_type, lval_memory);
9755 }
9756 }
4c4b4cd2 9757 else
323e0a4a 9758 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9759 }
76a01679 9760 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9761 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9762
96967637
JB
9763 if (TYPE_CODE (type) == TYPE_CODE_INT)
9764 /* GDB allows dereferencing an int. If we were given
9765 the expect_type, then use that as the target type.
9766 Otherwise, assume that the target type is an int. */
9767 {
9768 if (expect_type != NULL)
9769 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9770 arg1));
9771 else
9772 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9773 (CORE_ADDR) value_as_address (arg1));
9774 }
6b0d7253 9775
4c4b4cd2
PH
9776 if (ada_is_array_descriptor_type (type))
9777 /* GDB allows dereferencing GNAT array descriptors. */
9778 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9779 else
4c4b4cd2 9780 return ada_value_ind (arg1);
14f9c5c9
AS
9781
9782 case STRUCTOP_STRUCT:
9783 tem = longest_to_int (exp->elts[pc + 1].longconst);
9784 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9785 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9786 if (noside == EVAL_SKIP)
4c4b4cd2 9787 goto nosideret;
14f9c5c9 9788 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9789 {
df407dfe 9790 struct type *type1 = value_type (arg1);
5b4ee69b 9791
76a01679
JB
9792 if (ada_is_tagged_type (type1, 1))
9793 {
9794 type = ada_lookup_struct_elt_type (type1,
9795 &exp->elts[pc + 2].string,
9796 1, 1, NULL);
9797 if (type == NULL)
9798 /* In this case, we assume that the field COULD exist
9799 in some extension of the type. Return an object of
9800 "type" void, which will match any formal
9801 (see ada_type_match). */
30b15541
UW
9802 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9803 lval_memory);
76a01679
JB
9804 }
9805 else
9806 type =
9807 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9808 0, NULL);
9809
9810 return value_zero (ada_aligned_type (type), lval_memory);
9811 }
14f9c5c9 9812 else
284614f0
JB
9813 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9814 arg1 = unwrap_value (arg1);
9815 return ada_to_fixed_value (arg1);
9816
14f9c5c9 9817 case OP_TYPE:
4c4b4cd2
PH
9818 /* The value is not supposed to be used. This is here to make it
9819 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9820 (*pos) += 2;
9821 if (noside == EVAL_SKIP)
4c4b4cd2 9822 goto nosideret;
14f9c5c9 9823 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9824 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9825 else
323e0a4a 9826 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9827
9828 case OP_AGGREGATE:
9829 case OP_CHOICES:
9830 case OP_OTHERS:
9831 case OP_DISCRETE_RANGE:
9832 case OP_POSITIONAL:
9833 case OP_NAME:
9834 if (noside == EVAL_NORMAL)
9835 switch (op)
9836 {
9837 case OP_NAME:
9838 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9839 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9840 case OP_AGGREGATE:
9841 error (_("Aggregates only allowed on the right of an assignment"));
9842 default:
e1d5a0d2 9843 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9844 }
9845
9846 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9847 *pos += oplen - 1;
9848 for (tem = 0; tem < nargs; tem += 1)
9849 ada_evaluate_subexp (NULL, exp, pos, noside);
9850 goto nosideret;
14f9c5c9
AS
9851 }
9852
9853nosideret:
22601c15 9854 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 9855}
14f9c5c9 9856\f
d2e4a39e 9857
4c4b4cd2 9858 /* Fixed point */
14f9c5c9
AS
9859
9860/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9861 type name that encodes the 'small and 'delta information.
4c4b4cd2 9862 Otherwise, return NULL. */
14f9c5c9 9863
d2e4a39e 9864static const char *
ebf56fd3 9865fixed_type_info (struct type *type)
14f9c5c9 9866{
d2e4a39e 9867 const char *name = ada_type_name (type);
14f9c5c9
AS
9868 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9869
d2e4a39e
AS
9870 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9871 {
14f9c5c9 9872 const char *tail = strstr (name, "___XF_");
5b4ee69b 9873
14f9c5c9 9874 if (tail == NULL)
4c4b4cd2 9875 return NULL;
d2e4a39e 9876 else
4c4b4cd2 9877 return tail + 5;
14f9c5c9
AS
9878 }
9879 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9880 return fixed_type_info (TYPE_TARGET_TYPE (type));
9881 else
9882 return NULL;
9883}
9884
4c4b4cd2 9885/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9886
9887int
ebf56fd3 9888ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9889{
9890 return fixed_type_info (type) != NULL;
9891}
9892
4c4b4cd2
PH
9893/* Return non-zero iff TYPE represents a System.Address type. */
9894
9895int
9896ada_is_system_address_type (struct type *type)
9897{
9898 return (TYPE_NAME (type)
9899 && strcmp (TYPE_NAME (type), "system__address") == 0);
9900}
9901
14f9c5c9
AS
9902/* Assuming that TYPE is the representation of an Ada fixed-point
9903 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9904 delta cannot be determined. */
14f9c5c9
AS
9905
9906DOUBLEST
ebf56fd3 9907ada_delta (struct type *type)
14f9c5c9
AS
9908{
9909 const char *encoding = fixed_type_info (type);
facc390f 9910 DOUBLEST num, den;
14f9c5c9 9911
facc390f
JB
9912 /* Strictly speaking, num and den are encoded as integer. However,
9913 they may not fit into a long, and they will have to be converted
9914 to DOUBLEST anyway. So scan them as DOUBLEST. */
9915 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9916 &num, &den) < 2)
14f9c5c9 9917 return -1.0;
d2e4a39e 9918 else
facc390f 9919 return num / den;
14f9c5c9
AS
9920}
9921
9922/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9923 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9924
9925static DOUBLEST
ebf56fd3 9926scaling_factor (struct type *type)
14f9c5c9
AS
9927{
9928 const char *encoding = fixed_type_info (type);
facc390f 9929 DOUBLEST num0, den0, num1, den1;
14f9c5c9 9930 int n;
d2e4a39e 9931
facc390f
JB
9932 /* Strictly speaking, num's and den's are encoded as integer. However,
9933 they may not fit into a long, and they will have to be converted
9934 to DOUBLEST anyway. So scan them as DOUBLEST. */
9935 n = sscanf (encoding,
9936 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9937 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9938 &num0, &den0, &num1, &den1);
14f9c5c9
AS
9939
9940 if (n < 2)
9941 return 1.0;
9942 else if (n == 4)
facc390f 9943 return num1 / den1;
d2e4a39e 9944 else
facc390f 9945 return num0 / den0;
14f9c5c9
AS
9946}
9947
9948
9949/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9950 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9951
9952DOUBLEST
ebf56fd3 9953ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9954{
d2e4a39e 9955 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9956}
9957
4c4b4cd2
PH
9958/* The representation of a fixed-point value of type TYPE
9959 corresponding to the value X. */
14f9c5c9
AS
9960
9961LONGEST
ebf56fd3 9962ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9963{
9964 return (LONGEST) (x / scaling_factor (type) + 0.5);
9965}
9966
14f9c5c9 9967\f
d2e4a39e 9968
4c4b4cd2 9969 /* Range types */
14f9c5c9
AS
9970
9971/* Scan STR beginning at position K for a discriminant name, and
9972 return the value of that discriminant field of DVAL in *PX. If
9973 PNEW_K is not null, put the position of the character beyond the
9974 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9975 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9976
9977static int
07d8f827 9978scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9979 int *pnew_k)
14f9c5c9
AS
9980{
9981 static char *bound_buffer = NULL;
9982 static size_t bound_buffer_len = 0;
9983 char *bound;
9984 char *pend;
d2e4a39e 9985 struct value *bound_val;
14f9c5c9
AS
9986
9987 if (dval == NULL || str == NULL || str[k] == '\0')
9988 return 0;
9989
d2e4a39e 9990 pend = strstr (str + k, "__");
14f9c5c9
AS
9991 if (pend == NULL)
9992 {
d2e4a39e 9993 bound = str + k;
14f9c5c9
AS
9994 k += strlen (bound);
9995 }
d2e4a39e 9996 else
14f9c5c9 9997 {
d2e4a39e 9998 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9999 bound = bound_buffer;
d2e4a39e
AS
10000 strncpy (bound_buffer, str + k, pend - (str + k));
10001 bound[pend - (str + k)] = '\0';
10002 k = pend - str;
14f9c5c9 10003 }
d2e4a39e 10004
df407dfe 10005 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10006 if (bound_val == NULL)
10007 return 0;
10008
10009 *px = value_as_long (bound_val);
10010 if (pnew_k != NULL)
10011 *pnew_k = k;
10012 return 1;
10013}
10014
10015/* Value of variable named NAME in the current environment. If
10016 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10017 otherwise causes an error with message ERR_MSG. */
10018
d2e4a39e
AS
10019static struct value *
10020get_var_value (char *name, char *err_msg)
14f9c5c9 10021{
4c4b4cd2 10022 struct ada_symbol_info *syms;
14f9c5c9
AS
10023 int nsyms;
10024
4c4b4cd2
PH
10025 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10026 &syms);
14f9c5c9
AS
10027
10028 if (nsyms != 1)
10029 {
10030 if (err_msg == NULL)
4c4b4cd2 10031 return 0;
14f9c5c9 10032 else
8a3fe4f8 10033 error (("%s"), err_msg);
14f9c5c9
AS
10034 }
10035
4c4b4cd2 10036 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10037}
d2e4a39e 10038
14f9c5c9 10039/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10040 no such variable found, returns 0, and sets *FLAG to 0. If
10041 successful, sets *FLAG to 1. */
10042
14f9c5c9 10043LONGEST
4c4b4cd2 10044get_int_var_value (char *name, int *flag)
14f9c5c9 10045{
4c4b4cd2 10046 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10047
14f9c5c9
AS
10048 if (var_val == 0)
10049 {
10050 if (flag != NULL)
4c4b4cd2 10051 *flag = 0;
14f9c5c9
AS
10052 return 0;
10053 }
10054 else
10055 {
10056 if (flag != NULL)
4c4b4cd2 10057 *flag = 1;
14f9c5c9
AS
10058 return value_as_long (var_val);
10059 }
10060}
d2e4a39e 10061
14f9c5c9
AS
10062
10063/* Return a range type whose base type is that of the range type named
10064 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10065 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10066 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10067 corresponding range type from debug information; fall back to using it
10068 if symbol lookup fails. If a new type must be created, allocate it
10069 like ORIG_TYPE was. The bounds information, in general, is encoded
10070 in NAME, the base type given in the named range type. */
14f9c5c9 10071
d2e4a39e 10072static struct type *
28c85d6c 10073to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10074{
28c85d6c 10075 char *name;
14f9c5c9 10076 struct type *base_type;
d2e4a39e 10077 char *subtype_info;
14f9c5c9 10078
28c85d6c
JB
10079 gdb_assert (raw_type != NULL);
10080 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10081
1ce677a4 10082 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10083 base_type = TYPE_TARGET_TYPE (raw_type);
10084 else
10085 base_type = raw_type;
10086
28c85d6c 10087 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10088 subtype_info = strstr (name, "___XD");
10089 if (subtype_info == NULL)
690cc4eb 10090 {
43bbcdc2
PH
10091 LONGEST L = ada_discrete_type_low_bound (raw_type);
10092 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10093
690cc4eb
PH
10094 if (L < INT_MIN || U > INT_MAX)
10095 return raw_type;
10096 else
28c85d6c 10097 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10098 ada_discrete_type_low_bound (raw_type),
10099 ada_discrete_type_high_bound (raw_type));
690cc4eb 10100 }
14f9c5c9
AS
10101 else
10102 {
10103 static char *name_buf = NULL;
10104 static size_t name_len = 0;
10105 int prefix_len = subtype_info - name;
10106 LONGEST L, U;
10107 struct type *type;
10108 char *bounds_str;
10109 int n;
10110
10111 GROW_VECT (name_buf, name_len, prefix_len + 5);
10112 strncpy (name_buf, name, prefix_len);
10113 name_buf[prefix_len] = '\0';
10114
10115 subtype_info += 5;
10116 bounds_str = strchr (subtype_info, '_');
10117 n = 1;
10118
d2e4a39e 10119 if (*subtype_info == 'L')
4c4b4cd2
PH
10120 {
10121 if (!ada_scan_number (bounds_str, n, &L, &n)
10122 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10123 return raw_type;
10124 if (bounds_str[n] == '_')
10125 n += 2;
10126 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10127 n += 1;
10128 subtype_info += 1;
10129 }
d2e4a39e 10130 else
4c4b4cd2
PH
10131 {
10132 int ok;
5b4ee69b 10133
4c4b4cd2
PH
10134 strcpy (name_buf + prefix_len, "___L");
10135 L = get_int_var_value (name_buf, &ok);
10136 if (!ok)
10137 {
323e0a4a 10138 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10139 L = 1;
10140 }
10141 }
14f9c5c9 10142
d2e4a39e 10143 if (*subtype_info == 'U')
4c4b4cd2
PH
10144 {
10145 if (!ada_scan_number (bounds_str, n, &U, &n)
10146 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10147 return raw_type;
10148 }
d2e4a39e 10149 else
4c4b4cd2
PH
10150 {
10151 int ok;
5b4ee69b 10152
4c4b4cd2
PH
10153 strcpy (name_buf + prefix_len, "___U");
10154 U = get_int_var_value (name_buf, &ok);
10155 if (!ok)
10156 {
323e0a4a 10157 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10158 U = L;
10159 }
10160 }
14f9c5c9 10161
28c85d6c 10162 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10163 TYPE_NAME (type) = name;
14f9c5c9
AS
10164 return type;
10165 }
10166}
10167
4c4b4cd2
PH
10168/* True iff NAME is the name of a range type. */
10169
14f9c5c9 10170int
d2e4a39e 10171ada_is_range_type_name (const char *name)
14f9c5c9
AS
10172{
10173 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10174}
14f9c5c9 10175\f
d2e4a39e 10176
4c4b4cd2
PH
10177 /* Modular types */
10178
10179/* True iff TYPE is an Ada modular type. */
14f9c5c9 10180
14f9c5c9 10181int
d2e4a39e 10182ada_is_modular_type (struct type *type)
14f9c5c9 10183{
4c4b4cd2 10184 struct type *subranged_type = base_type (type);
14f9c5c9
AS
10185
10186 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10187 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10188 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10189}
10190
0056e4d5
JB
10191/* Try to determine the lower and upper bounds of the given modular type
10192 using the type name only. Return non-zero and set L and U as the lower
10193 and upper bounds (respectively) if successful. */
10194
10195int
10196ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10197{
10198 char *name = ada_type_name (type);
10199 char *suffix;
10200 int k;
10201 LONGEST U;
10202
10203 if (name == NULL)
10204 return 0;
10205
10206 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10207 we are looking for static bounds, which means an __XDLU suffix.
10208 Moreover, we know that the lower bound of modular types is always
10209 zero, so the actual suffix should start with "__XDLU_0__", and
10210 then be followed by the upper bound value. */
10211 suffix = strstr (name, "__XDLU_0__");
10212 if (suffix == NULL)
10213 return 0;
10214 k = 10;
10215 if (!ada_scan_number (suffix, k, &U, NULL))
10216 return 0;
10217
10218 *modulus = (ULONGEST) U + 1;
10219 return 1;
10220}
10221
4c4b4cd2
PH
10222/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10223
61ee279c 10224ULONGEST
0056e4d5 10225ada_modulus (struct type *type)
14f9c5c9 10226{
43bbcdc2 10227 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10228}
d2e4a39e 10229\f
f7f9143b
JB
10230
10231/* Ada exception catchpoint support:
10232 ---------------------------------
10233
10234 We support 3 kinds of exception catchpoints:
10235 . catchpoints on Ada exceptions
10236 . catchpoints on unhandled Ada exceptions
10237 . catchpoints on failed assertions
10238
10239 Exceptions raised during failed assertions, or unhandled exceptions
10240 could perfectly be caught with the general catchpoint on Ada exceptions.
10241 However, we can easily differentiate these two special cases, and having
10242 the option to distinguish these two cases from the rest can be useful
10243 to zero-in on certain situations.
10244
10245 Exception catchpoints are a specialized form of breakpoint,
10246 since they rely on inserting breakpoints inside known routines
10247 of the GNAT runtime. The implementation therefore uses a standard
10248 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10249 of breakpoint_ops.
10250
0259addd
JB
10251 Support in the runtime for exception catchpoints have been changed
10252 a few times already, and these changes affect the implementation
10253 of these catchpoints. In order to be able to support several
10254 variants of the runtime, we use a sniffer that will determine
10255 the runtime variant used by the program being debugged.
10256
f7f9143b
JB
10257 At this time, we do not support the use of conditions on Ada exception
10258 catchpoints. The COND and COND_STRING fields are therefore set
10259 to NULL (most of the time, see below).
10260
10261 Conditions where EXP_STRING, COND, and COND_STRING are used:
10262
10263 When a user specifies the name of a specific exception in the case
10264 of catchpoints on Ada exceptions, we store the name of that exception
10265 in the EXP_STRING. We then translate this request into an actual
10266 condition stored in COND_STRING, and then parse it into an expression
10267 stored in COND. */
10268
10269/* The different types of catchpoints that we introduced for catching
10270 Ada exceptions. */
10271
10272enum exception_catchpoint_kind
10273{
10274 ex_catch_exception,
10275 ex_catch_exception_unhandled,
10276 ex_catch_assert
10277};
10278
3d0b0fa3
JB
10279/* Ada's standard exceptions. */
10280
10281static char *standard_exc[] = {
10282 "constraint_error",
10283 "program_error",
10284 "storage_error",
10285 "tasking_error"
10286};
10287
0259addd
JB
10288typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10289
10290/* A structure that describes how to support exception catchpoints
10291 for a given executable. */
10292
10293struct exception_support_info
10294{
10295 /* The name of the symbol to break on in order to insert
10296 a catchpoint on exceptions. */
10297 const char *catch_exception_sym;
10298
10299 /* The name of the symbol to break on in order to insert
10300 a catchpoint on unhandled exceptions. */
10301 const char *catch_exception_unhandled_sym;
10302
10303 /* The name of the symbol to break on in order to insert
10304 a catchpoint on failed assertions. */
10305 const char *catch_assert_sym;
10306
10307 /* Assuming that the inferior just triggered an unhandled exception
10308 catchpoint, this function is responsible for returning the address
10309 in inferior memory where the name of that exception is stored.
10310 Return zero if the address could not be computed. */
10311 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10312};
10313
10314static CORE_ADDR ada_unhandled_exception_name_addr (void);
10315static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10316
10317/* The following exception support info structure describes how to
10318 implement exception catchpoints with the latest version of the
10319 Ada runtime (as of 2007-03-06). */
10320
10321static const struct exception_support_info default_exception_support_info =
10322{
10323 "__gnat_debug_raise_exception", /* catch_exception_sym */
10324 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10325 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10326 ada_unhandled_exception_name_addr
10327};
10328
10329/* The following exception support info structure describes how to
10330 implement exception catchpoints with a slightly older version
10331 of the Ada runtime. */
10332
10333static const struct exception_support_info exception_support_info_fallback =
10334{
10335 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10336 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10337 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10338 ada_unhandled_exception_name_addr_from_raise
10339};
10340
10341/* For each executable, we sniff which exception info structure to use
10342 and cache it in the following global variable. */
10343
10344static const struct exception_support_info *exception_info = NULL;
10345
10346/* Inspect the Ada runtime and determine which exception info structure
10347 should be used to provide support for exception catchpoints.
10348
10349 This function will always set exception_info, or raise an error. */
10350
10351static void
10352ada_exception_support_info_sniffer (void)
10353{
10354 struct symbol *sym;
10355
10356 /* If the exception info is already known, then no need to recompute it. */
10357 if (exception_info != NULL)
10358 return;
10359
10360 /* Check the latest (default) exception support info. */
10361 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10362 NULL, VAR_DOMAIN);
10363 if (sym != NULL)
10364 {
10365 exception_info = &default_exception_support_info;
10366 return;
10367 }
10368
10369 /* Try our fallback exception suport info. */
10370 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10371 NULL, VAR_DOMAIN);
10372 if (sym != NULL)
10373 {
10374 exception_info = &exception_support_info_fallback;
10375 return;
10376 }
10377
10378 /* Sometimes, it is normal for us to not be able to find the routine
10379 we are looking for. This happens when the program is linked with
10380 the shared version of the GNAT runtime, and the program has not been
10381 started yet. Inform the user of these two possible causes if
10382 applicable. */
10383
ccefe4c4 10384 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10385 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10386
10387 /* If the symbol does not exist, then check that the program is
10388 already started, to make sure that shared libraries have been
10389 loaded. If it is not started, this may mean that the symbol is
10390 in a shared library. */
10391
10392 if (ptid_get_pid (inferior_ptid) == 0)
10393 error (_("Unable to insert catchpoint. Try to start the program first."));
10394
10395 /* At this point, we know that we are debugging an Ada program and
10396 that the inferior has been started, but we still are not able to
10397 find the run-time symbols. That can mean that we are in
10398 configurable run time mode, or that a-except as been optimized
10399 out by the linker... In any case, at this point it is not worth
10400 supporting this feature. */
10401
10402 error (_("Cannot insert catchpoints in this configuration."));
10403}
10404
10405/* An observer of "executable_changed" events.
10406 Its role is to clear certain cached values that need to be recomputed
10407 each time a new executable is loaded by GDB. */
10408
10409static void
781b42b0 10410ada_executable_changed_observer (void)
0259addd
JB
10411{
10412 /* If the executable changed, then it is possible that the Ada runtime
10413 is different. So we need to invalidate the exception support info
10414 cache. */
10415 exception_info = NULL;
10416}
10417
f7f9143b
JB
10418/* True iff FRAME is very likely to be that of a function that is
10419 part of the runtime system. This is all very heuristic, but is
10420 intended to be used as advice as to what frames are uninteresting
10421 to most users. */
10422
10423static int
10424is_known_support_routine (struct frame_info *frame)
10425{
4ed6b5be 10426 struct symtab_and_line sal;
f7f9143b 10427 char *func_name;
692465f1 10428 enum language func_lang;
f7f9143b 10429 int i;
f7f9143b 10430
4ed6b5be
JB
10431 /* If this code does not have any debugging information (no symtab),
10432 This cannot be any user code. */
f7f9143b 10433
4ed6b5be 10434 find_frame_sal (frame, &sal);
f7f9143b
JB
10435 if (sal.symtab == NULL)
10436 return 1;
10437
4ed6b5be
JB
10438 /* If there is a symtab, but the associated source file cannot be
10439 located, then assume this is not user code: Selecting a frame
10440 for which we cannot display the code would not be very helpful
10441 for the user. This should also take care of case such as VxWorks
10442 where the kernel has some debugging info provided for a few units. */
f7f9143b 10443
9bbc9174 10444 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10445 return 1;
10446
4ed6b5be
JB
10447 /* Check the unit filename againt the Ada runtime file naming.
10448 We also check the name of the objfile against the name of some
10449 known system libraries that sometimes come with debugging info
10450 too. */
10451
f7f9143b
JB
10452 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10453 {
10454 re_comp (known_runtime_file_name_patterns[i]);
10455 if (re_exec (sal.symtab->filename))
10456 return 1;
4ed6b5be
JB
10457 if (sal.symtab->objfile != NULL
10458 && re_exec (sal.symtab->objfile->name))
10459 return 1;
f7f9143b
JB
10460 }
10461
4ed6b5be 10462 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10463
e9e07ba6 10464 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
10465 if (func_name == NULL)
10466 return 1;
10467
10468 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10469 {
10470 re_comp (known_auxiliary_function_name_patterns[i]);
10471 if (re_exec (func_name))
10472 return 1;
10473 }
10474
10475 return 0;
10476}
10477
10478/* Find the first frame that contains debugging information and that is not
10479 part of the Ada run-time, starting from FI and moving upward. */
10480
0ef643c8 10481void
f7f9143b
JB
10482ada_find_printable_frame (struct frame_info *fi)
10483{
10484 for (; fi != NULL; fi = get_prev_frame (fi))
10485 {
10486 if (!is_known_support_routine (fi))
10487 {
10488 select_frame (fi);
10489 break;
10490 }
10491 }
10492
10493}
10494
10495/* Assuming that the inferior just triggered an unhandled exception
10496 catchpoint, return the address in inferior memory where the name
10497 of the exception is stored.
10498
10499 Return zero if the address could not be computed. */
10500
10501static CORE_ADDR
10502ada_unhandled_exception_name_addr (void)
0259addd
JB
10503{
10504 return parse_and_eval_address ("e.full_name");
10505}
10506
10507/* Same as ada_unhandled_exception_name_addr, except that this function
10508 should be used when the inferior uses an older version of the runtime,
10509 where the exception name needs to be extracted from a specific frame
10510 several frames up in the callstack. */
10511
10512static CORE_ADDR
10513ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10514{
10515 int frame_level;
10516 struct frame_info *fi;
10517
10518 /* To determine the name of this exception, we need to select
10519 the frame corresponding to RAISE_SYM_NAME. This frame is
10520 at least 3 levels up, so we simply skip the first 3 frames
10521 without checking the name of their associated function. */
10522 fi = get_current_frame ();
10523 for (frame_level = 0; frame_level < 3; frame_level += 1)
10524 if (fi != NULL)
10525 fi = get_prev_frame (fi);
10526
10527 while (fi != NULL)
10528 {
692465f1
JB
10529 char *func_name;
10530 enum language func_lang;
10531
e9e07ba6 10532 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 10533 if (func_name != NULL
0259addd 10534 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10535 break; /* We found the frame we were looking for... */
10536 fi = get_prev_frame (fi);
10537 }
10538
10539 if (fi == NULL)
10540 return 0;
10541
10542 select_frame (fi);
10543 return parse_and_eval_address ("id.full_name");
10544}
10545
10546/* Assuming the inferior just triggered an Ada exception catchpoint
10547 (of any type), return the address in inferior memory where the name
10548 of the exception is stored, if applicable.
10549
10550 Return zero if the address could not be computed, or if not relevant. */
10551
10552static CORE_ADDR
10553ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10554 struct breakpoint *b)
10555{
10556 switch (ex)
10557 {
10558 case ex_catch_exception:
10559 return (parse_and_eval_address ("e.full_name"));
10560 break;
10561
10562 case ex_catch_exception_unhandled:
0259addd 10563 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10564 break;
10565
10566 case ex_catch_assert:
10567 return 0; /* Exception name is not relevant in this case. */
10568 break;
10569
10570 default:
10571 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10572 break;
10573 }
10574
10575 return 0; /* Should never be reached. */
10576}
10577
10578/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10579 any error that ada_exception_name_addr_1 might cause to be thrown.
10580 When an error is intercepted, a warning with the error message is printed,
10581 and zero is returned. */
10582
10583static CORE_ADDR
10584ada_exception_name_addr (enum exception_catchpoint_kind ex,
10585 struct breakpoint *b)
10586{
10587 struct gdb_exception e;
10588 CORE_ADDR result = 0;
10589
10590 TRY_CATCH (e, RETURN_MASK_ERROR)
10591 {
10592 result = ada_exception_name_addr_1 (ex, b);
10593 }
10594
10595 if (e.reason < 0)
10596 {
10597 warning (_("failed to get exception name: %s"), e.message);
10598 return 0;
10599 }
10600
10601 return result;
10602}
10603
10604/* Implement the PRINT_IT method in the breakpoint_ops structure
10605 for all exception catchpoint kinds. */
10606
10607static enum print_stop_action
10608print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10609{
10610 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10611 char exception_name[256];
10612
10613 if (addr != 0)
10614 {
10615 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10616 exception_name [sizeof (exception_name) - 1] = '\0';
10617 }
10618
10619 ada_find_printable_frame (get_current_frame ());
10620
10621 annotate_catchpoint (b->number);
10622 switch (ex)
10623 {
10624 case ex_catch_exception:
10625 if (addr != 0)
10626 printf_filtered (_("\nCatchpoint %d, %s at "),
10627 b->number, exception_name);
10628 else
10629 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10630 break;
10631 case ex_catch_exception_unhandled:
10632 if (addr != 0)
10633 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10634 b->number, exception_name);
10635 else
10636 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10637 b->number);
10638 break;
10639 case ex_catch_assert:
10640 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10641 b->number);
10642 break;
10643 }
10644
10645 return PRINT_SRC_AND_LOC;
10646}
10647
10648/* Implement the PRINT_ONE method in the breakpoint_ops structure
10649 for all exception catchpoint kinds. */
10650
10651static void
10652print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 10653 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10654{
79a45b7d
TT
10655 struct value_print_options opts;
10656
10657 get_user_print_options (&opts);
10658 if (opts.addressprint)
f7f9143b
JB
10659 {
10660 annotate_field (4);
5af949e3 10661 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
10662 }
10663
10664 annotate_field (5);
a6d9a66e 10665 *last_loc = b->loc;
f7f9143b
JB
10666 switch (ex)
10667 {
10668 case ex_catch_exception:
10669 if (b->exp_string != NULL)
10670 {
10671 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10672
10673 ui_out_field_string (uiout, "what", msg);
10674 xfree (msg);
10675 }
10676 else
10677 ui_out_field_string (uiout, "what", "all Ada exceptions");
10678
10679 break;
10680
10681 case ex_catch_exception_unhandled:
10682 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10683 break;
10684
10685 case ex_catch_assert:
10686 ui_out_field_string (uiout, "what", "failed Ada assertions");
10687 break;
10688
10689 default:
10690 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10691 break;
10692 }
10693}
10694
10695/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10696 for all exception catchpoint kinds. */
10697
10698static void
10699print_mention_exception (enum exception_catchpoint_kind ex,
10700 struct breakpoint *b)
10701{
10702 switch (ex)
10703 {
10704 case ex_catch_exception:
10705 if (b->exp_string != NULL)
10706 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10707 b->number, b->exp_string);
10708 else
10709 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10710
10711 break;
10712
10713 case ex_catch_exception_unhandled:
10714 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10715 b->number);
10716 break;
10717
10718 case ex_catch_assert:
10719 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10720 break;
10721
10722 default:
10723 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10724 break;
10725 }
10726}
10727
6149aea9
PA
10728/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10729 for all exception catchpoint kinds. */
10730
10731static void
10732print_recreate_exception (enum exception_catchpoint_kind ex,
10733 struct breakpoint *b, struct ui_file *fp)
10734{
10735 switch (ex)
10736 {
10737 case ex_catch_exception:
10738 fprintf_filtered (fp, "catch exception");
10739 if (b->exp_string != NULL)
10740 fprintf_filtered (fp, " %s", b->exp_string);
10741 break;
10742
10743 case ex_catch_exception_unhandled:
78076abc 10744 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
10745 break;
10746
10747 case ex_catch_assert:
10748 fprintf_filtered (fp, "catch assert");
10749 break;
10750
10751 default:
10752 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10753 }
10754}
10755
f7f9143b
JB
10756/* Virtual table for "catch exception" breakpoints. */
10757
10758static enum print_stop_action
10759print_it_catch_exception (struct breakpoint *b)
10760{
10761 return print_it_exception (ex_catch_exception, b);
10762}
10763
10764static void
a6d9a66e 10765print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10766{
a6d9a66e 10767 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
10768}
10769
10770static void
10771print_mention_catch_exception (struct breakpoint *b)
10772{
10773 print_mention_exception (ex_catch_exception, b);
10774}
10775
6149aea9
PA
10776static void
10777print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10778{
10779 print_recreate_exception (ex_catch_exception, b, fp);
10780}
10781
f7f9143b
JB
10782static struct breakpoint_ops catch_exception_breakpoint_ops =
10783{
ce78b96d
JB
10784 NULL, /* insert */
10785 NULL, /* remove */
10786 NULL, /* breakpoint_hit */
f7f9143b
JB
10787 print_it_catch_exception,
10788 print_one_catch_exception,
6149aea9
PA
10789 print_mention_catch_exception,
10790 print_recreate_catch_exception
f7f9143b
JB
10791};
10792
10793/* Virtual table for "catch exception unhandled" breakpoints. */
10794
10795static enum print_stop_action
10796print_it_catch_exception_unhandled (struct breakpoint *b)
10797{
10798 return print_it_exception (ex_catch_exception_unhandled, b);
10799}
10800
10801static void
a6d9a66e
UW
10802print_one_catch_exception_unhandled (struct breakpoint *b,
10803 struct bp_location **last_loc)
f7f9143b 10804{
a6d9a66e 10805 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
10806}
10807
10808static void
10809print_mention_catch_exception_unhandled (struct breakpoint *b)
10810{
10811 print_mention_exception (ex_catch_exception_unhandled, b);
10812}
10813
6149aea9
PA
10814static void
10815print_recreate_catch_exception_unhandled (struct breakpoint *b,
10816 struct ui_file *fp)
10817{
10818 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10819}
10820
f7f9143b 10821static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10822 NULL, /* insert */
10823 NULL, /* remove */
10824 NULL, /* breakpoint_hit */
f7f9143b
JB
10825 print_it_catch_exception_unhandled,
10826 print_one_catch_exception_unhandled,
6149aea9
PA
10827 print_mention_catch_exception_unhandled,
10828 print_recreate_catch_exception_unhandled
f7f9143b
JB
10829};
10830
10831/* Virtual table for "catch assert" breakpoints. */
10832
10833static enum print_stop_action
10834print_it_catch_assert (struct breakpoint *b)
10835{
10836 return print_it_exception (ex_catch_assert, b);
10837}
10838
10839static void
a6d9a66e 10840print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10841{
a6d9a66e 10842 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
10843}
10844
10845static void
10846print_mention_catch_assert (struct breakpoint *b)
10847{
10848 print_mention_exception (ex_catch_assert, b);
10849}
10850
6149aea9
PA
10851static void
10852print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10853{
10854 print_recreate_exception (ex_catch_assert, b, fp);
10855}
10856
f7f9143b 10857static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10858 NULL, /* insert */
10859 NULL, /* remove */
10860 NULL, /* breakpoint_hit */
f7f9143b
JB
10861 print_it_catch_assert,
10862 print_one_catch_assert,
6149aea9
PA
10863 print_mention_catch_assert,
10864 print_recreate_catch_assert
f7f9143b
JB
10865};
10866
10867/* Return non-zero if B is an Ada exception catchpoint. */
10868
10869int
10870ada_exception_catchpoint_p (struct breakpoint *b)
10871{
10872 return (b->ops == &catch_exception_breakpoint_ops
10873 || b->ops == &catch_exception_unhandled_breakpoint_ops
10874 || b->ops == &catch_assert_breakpoint_ops);
10875}
10876
f7f9143b
JB
10877/* Return a newly allocated copy of the first space-separated token
10878 in ARGSP, and then adjust ARGSP to point immediately after that
10879 token.
10880
10881 Return NULL if ARGPS does not contain any more tokens. */
10882
10883static char *
10884ada_get_next_arg (char **argsp)
10885{
10886 char *args = *argsp;
10887 char *end;
10888 char *result;
10889
10890 /* Skip any leading white space. */
10891
10892 while (isspace (*args))
10893 args++;
10894
10895 if (args[0] == '\0')
10896 return NULL; /* No more arguments. */
10897
10898 /* Find the end of the current argument. */
10899
10900 end = args;
10901 while (*end != '\0' && !isspace (*end))
10902 end++;
10903
10904 /* Adjust ARGSP to point to the start of the next argument. */
10905
10906 *argsp = end;
10907
10908 /* Make a copy of the current argument and return it. */
10909
10910 result = xmalloc (end - args + 1);
10911 strncpy (result, args, end - args);
10912 result[end - args] = '\0';
10913
10914 return result;
10915}
10916
10917/* Split the arguments specified in a "catch exception" command.
10918 Set EX to the appropriate catchpoint type.
10919 Set EXP_STRING to the name of the specific exception if
10920 specified by the user. */
10921
10922static void
10923catch_ada_exception_command_split (char *args,
10924 enum exception_catchpoint_kind *ex,
10925 char **exp_string)
10926{
10927 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10928 char *exception_name;
10929
10930 exception_name = ada_get_next_arg (&args);
10931 make_cleanup (xfree, exception_name);
10932
10933 /* Check that we do not have any more arguments. Anything else
10934 is unexpected. */
10935
10936 while (isspace (*args))
10937 args++;
10938
10939 if (args[0] != '\0')
10940 error (_("Junk at end of expression"));
10941
10942 discard_cleanups (old_chain);
10943
10944 if (exception_name == NULL)
10945 {
10946 /* Catch all exceptions. */
10947 *ex = ex_catch_exception;
10948 *exp_string = NULL;
10949 }
10950 else if (strcmp (exception_name, "unhandled") == 0)
10951 {
10952 /* Catch unhandled exceptions. */
10953 *ex = ex_catch_exception_unhandled;
10954 *exp_string = NULL;
10955 }
10956 else
10957 {
10958 /* Catch a specific exception. */
10959 *ex = ex_catch_exception;
10960 *exp_string = exception_name;
10961 }
10962}
10963
10964/* Return the name of the symbol on which we should break in order to
10965 implement a catchpoint of the EX kind. */
10966
10967static const char *
10968ada_exception_sym_name (enum exception_catchpoint_kind ex)
10969{
0259addd
JB
10970 gdb_assert (exception_info != NULL);
10971
f7f9143b
JB
10972 switch (ex)
10973 {
10974 case ex_catch_exception:
0259addd 10975 return (exception_info->catch_exception_sym);
f7f9143b
JB
10976 break;
10977 case ex_catch_exception_unhandled:
0259addd 10978 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10979 break;
10980 case ex_catch_assert:
0259addd 10981 return (exception_info->catch_assert_sym);
f7f9143b
JB
10982 break;
10983 default:
10984 internal_error (__FILE__, __LINE__,
10985 _("unexpected catchpoint kind (%d)"), ex);
10986 }
10987}
10988
10989/* Return the breakpoint ops "virtual table" used for catchpoints
10990 of the EX kind. */
10991
10992static struct breakpoint_ops *
4b9eee8c 10993ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10994{
10995 switch (ex)
10996 {
10997 case ex_catch_exception:
10998 return (&catch_exception_breakpoint_ops);
10999 break;
11000 case ex_catch_exception_unhandled:
11001 return (&catch_exception_unhandled_breakpoint_ops);
11002 break;
11003 case ex_catch_assert:
11004 return (&catch_assert_breakpoint_ops);
11005 break;
11006 default:
11007 internal_error (__FILE__, __LINE__,
11008 _("unexpected catchpoint kind (%d)"), ex);
11009 }
11010}
11011
11012/* Return the condition that will be used to match the current exception
11013 being raised with the exception that the user wants to catch. This
11014 assumes that this condition is used when the inferior just triggered
11015 an exception catchpoint.
11016
11017 The string returned is a newly allocated string that needs to be
11018 deallocated later. */
11019
11020static char *
11021ada_exception_catchpoint_cond_string (const char *exp_string)
11022{
3d0b0fa3
JB
11023 int i;
11024
11025 /* The standard exceptions are a special case. They are defined in
11026 runtime units that have been compiled without debugging info; if
11027 EXP_STRING is the not-fully-qualified name of a standard
11028 exception (e.g. "constraint_error") then, during the evaluation
11029 of the condition expression, the symbol lookup on this name would
11030 *not* return this standard exception. The catchpoint condition
11031 may then be set only on user-defined exceptions which have the
11032 same not-fully-qualified name (e.g. my_package.constraint_error).
11033
11034 To avoid this unexcepted behavior, these standard exceptions are
11035 systematically prefixed by "standard". This means that "catch
11036 exception constraint_error" is rewritten into "catch exception
11037 standard.constraint_error".
11038
11039 If an exception named contraint_error is defined in another package of
11040 the inferior program, then the only way to specify this exception as a
11041 breakpoint condition is to use its fully-qualified named:
11042 e.g. my_package.constraint_error. */
11043
11044 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11045 {
11046 if (strcmp (standard_exc [i], exp_string) == 0)
11047 {
11048 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11049 exp_string);
11050 }
11051 }
f7f9143b
JB
11052 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11053}
11054
11055/* Return the expression corresponding to COND_STRING evaluated at SAL. */
11056
11057static struct expression *
11058ada_parse_catchpoint_condition (char *cond_string,
11059 struct symtab_and_line sal)
11060{
11061 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11062}
11063
11064/* Return the symtab_and_line that should be used to insert an exception
11065 catchpoint of the TYPE kind.
11066
11067 EX_STRING should contain the name of a specific exception
11068 that the catchpoint should catch, or NULL otherwise.
11069
11070 The idea behind all the remaining parameters is that their names match
11071 the name of certain fields in the breakpoint structure that are used to
11072 handle exception catchpoints. This function returns the value to which
11073 these fields should be set, depending on the type of catchpoint we need
11074 to create.
11075
11076 If COND and COND_STRING are both non-NULL, any value they might
11077 hold will be free'ed, and then replaced by newly allocated ones.
11078 These parameters are left untouched otherwise. */
11079
11080static struct symtab_and_line
11081ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11082 char **addr_string, char **cond_string,
11083 struct expression **cond, struct breakpoint_ops **ops)
11084{
11085 const char *sym_name;
11086 struct symbol *sym;
11087 struct symtab_and_line sal;
11088
0259addd
JB
11089 /* First, find out which exception support info to use. */
11090 ada_exception_support_info_sniffer ();
11091
11092 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
11093 the Ada exceptions requested by the user. */
11094
11095 sym_name = ada_exception_sym_name (ex);
11096 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11097
11098 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11099 that should be compiled with debugging information. As a result, we
11100 expect to find that symbol in the symtabs. If we don't find it, then
11101 the target most likely does not support Ada exceptions, or we cannot
11102 insert exception breakpoints yet, because the GNAT runtime hasn't been
11103 loaded yet. */
11104
11105 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11106 in such a way that no debugging information is produced for the symbol
11107 we are looking for. In this case, we could search the minimal symbols
11108 as a fall-back mechanism. This would still be operating in degraded
11109 mode, however, as we would still be missing the debugging information
11110 that is needed in order to extract the name of the exception being
11111 raised (this name is printed in the catchpoint message, and is also
11112 used when trying to catch a specific exception). We do not handle
11113 this case for now. */
11114
11115 if (sym == NULL)
0259addd 11116 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
11117
11118 /* Make sure that the symbol we found corresponds to a function. */
11119 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11120 error (_("Symbol \"%s\" is not a function (class = %d)"),
11121 sym_name, SYMBOL_CLASS (sym));
11122
11123 sal = find_function_start_sal (sym, 1);
11124
11125 /* Set ADDR_STRING. */
11126
11127 *addr_string = xstrdup (sym_name);
11128
11129 /* Set the COND and COND_STRING (if not NULL). */
11130
11131 if (cond_string != NULL && cond != NULL)
11132 {
11133 if (*cond_string != NULL)
11134 {
11135 xfree (*cond_string);
11136 *cond_string = NULL;
11137 }
11138 if (*cond != NULL)
11139 {
11140 xfree (*cond);
11141 *cond = NULL;
11142 }
11143 if (exp_string != NULL)
11144 {
11145 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11146 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11147 }
11148 }
11149
11150 /* Set OPS. */
4b9eee8c 11151 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
11152
11153 return sal;
11154}
11155
11156/* Parse the arguments (ARGS) of the "catch exception" command.
11157
11158 Set TYPE to the appropriate exception catchpoint type.
11159 If the user asked the catchpoint to catch only a specific
11160 exception, then save the exception name in ADDR_STRING.
11161
11162 See ada_exception_sal for a description of all the remaining
11163 function arguments of this function. */
11164
11165struct symtab_and_line
11166ada_decode_exception_location (char *args, char **addr_string,
11167 char **exp_string, char **cond_string,
11168 struct expression **cond,
11169 struct breakpoint_ops **ops)
11170{
11171 enum exception_catchpoint_kind ex;
11172
11173 catch_ada_exception_command_split (args, &ex, exp_string);
11174 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11175 cond, ops);
11176}
11177
11178struct symtab_and_line
11179ada_decode_assert_location (char *args, char **addr_string,
11180 struct breakpoint_ops **ops)
11181{
11182 /* Check that no argument where provided at the end of the command. */
11183
11184 if (args != NULL)
11185 {
11186 while (isspace (*args))
11187 args++;
11188 if (*args != '\0')
11189 error (_("Junk at end of arguments."));
11190 }
11191
11192 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11193 ops);
11194}
11195
4c4b4cd2
PH
11196 /* Operators */
11197/* Information about operators given special treatment in functions
11198 below. */
11199/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11200
11201#define ADA_OPERATORS \
11202 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11203 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11204 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11205 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11206 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11207 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11208 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11209 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11210 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11211 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11212 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11213 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11214 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11215 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11216 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
11217 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11218 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11219 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11220 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
11221
11222static void
554794dc
SDJ
11223ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11224 int *argsp)
4c4b4cd2
PH
11225{
11226 switch (exp->elts[pc - 1].opcode)
11227 {
76a01679 11228 default:
4c4b4cd2
PH
11229 operator_length_standard (exp, pc, oplenp, argsp);
11230 break;
11231
11232#define OP_DEFN(op, len, args, binop) \
11233 case op: *oplenp = len; *argsp = args; break;
11234 ADA_OPERATORS;
11235#undef OP_DEFN
52ce6436
PH
11236
11237 case OP_AGGREGATE:
11238 *oplenp = 3;
11239 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11240 break;
11241
11242 case OP_CHOICES:
11243 *oplenp = 3;
11244 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11245 break;
4c4b4cd2
PH
11246 }
11247}
11248
c0201579
JK
11249/* Implementation of the exp_descriptor method operator_check. */
11250
11251static int
11252ada_operator_check (struct expression *exp, int pos,
11253 int (*objfile_func) (struct objfile *objfile, void *data),
11254 void *data)
11255{
11256 const union exp_element *const elts = exp->elts;
11257 struct type *type = NULL;
11258
11259 switch (elts[pos].opcode)
11260 {
11261 case UNOP_IN_RANGE:
11262 case UNOP_QUAL:
11263 type = elts[pos + 1].type;
11264 break;
11265
11266 default:
11267 return operator_check_standard (exp, pos, objfile_func, data);
11268 }
11269
11270 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11271
11272 if (type && TYPE_OBJFILE (type)
11273 && (*objfile_func) (TYPE_OBJFILE (type), data))
11274 return 1;
11275
11276 return 0;
11277}
11278
4c4b4cd2
PH
11279static char *
11280ada_op_name (enum exp_opcode opcode)
11281{
11282 switch (opcode)
11283 {
76a01679 11284 default:
4c4b4cd2 11285 return op_name_standard (opcode);
52ce6436 11286
4c4b4cd2
PH
11287#define OP_DEFN(op, len, args, binop) case op: return #op;
11288 ADA_OPERATORS;
11289#undef OP_DEFN
52ce6436
PH
11290
11291 case OP_AGGREGATE:
11292 return "OP_AGGREGATE";
11293 case OP_CHOICES:
11294 return "OP_CHOICES";
11295 case OP_NAME:
11296 return "OP_NAME";
4c4b4cd2
PH
11297 }
11298}
11299
11300/* As for operator_length, but assumes PC is pointing at the first
11301 element of the operator, and gives meaningful results only for the
52ce6436 11302 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
11303
11304static void
76a01679
JB
11305ada_forward_operator_length (struct expression *exp, int pc,
11306 int *oplenp, int *argsp)
4c4b4cd2 11307{
76a01679 11308 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
11309 {
11310 default:
11311 *oplenp = *argsp = 0;
11312 break;
52ce6436 11313
4c4b4cd2
PH
11314#define OP_DEFN(op, len, args, binop) \
11315 case op: *oplenp = len; *argsp = args; break;
11316 ADA_OPERATORS;
11317#undef OP_DEFN
52ce6436
PH
11318
11319 case OP_AGGREGATE:
11320 *oplenp = 3;
11321 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11322 break;
11323
11324 case OP_CHOICES:
11325 *oplenp = 3;
11326 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11327 break;
11328
11329 case OP_STRING:
11330 case OP_NAME:
11331 {
11332 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 11333
52ce6436
PH
11334 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11335 *argsp = 0;
11336 break;
11337 }
4c4b4cd2
PH
11338 }
11339}
11340
11341static int
11342ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11343{
11344 enum exp_opcode op = exp->elts[elt].opcode;
11345 int oplen, nargs;
11346 int pc = elt;
11347 int i;
76a01679 11348
4c4b4cd2
PH
11349 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11350
76a01679 11351 switch (op)
4c4b4cd2 11352 {
76a01679 11353 /* Ada attributes ('Foo). */
4c4b4cd2
PH
11354 case OP_ATR_FIRST:
11355 case OP_ATR_LAST:
11356 case OP_ATR_LENGTH:
11357 case OP_ATR_IMAGE:
11358 case OP_ATR_MAX:
11359 case OP_ATR_MIN:
11360 case OP_ATR_MODULUS:
11361 case OP_ATR_POS:
11362 case OP_ATR_SIZE:
11363 case OP_ATR_TAG:
11364 case OP_ATR_VAL:
11365 break;
11366
11367 case UNOP_IN_RANGE:
11368 case UNOP_QUAL:
323e0a4a
AC
11369 /* XXX: gdb_sprint_host_address, type_sprint */
11370 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
11371 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11372 fprintf_filtered (stream, " (");
11373 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11374 fprintf_filtered (stream, ")");
11375 break;
11376 case BINOP_IN_BOUNDS:
52ce6436
PH
11377 fprintf_filtered (stream, " (%d)",
11378 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
11379 break;
11380 case TERNOP_IN_RANGE:
11381 break;
11382
52ce6436
PH
11383 case OP_AGGREGATE:
11384 case OP_OTHERS:
11385 case OP_DISCRETE_RANGE:
11386 case OP_POSITIONAL:
11387 case OP_CHOICES:
11388 break;
11389
11390 case OP_NAME:
11391 case OP_STRING:
11392 {
11393 char *name = &exp->elts[elt + 2].string;
11394 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 11395
52ce6436
PH
11396 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11397 break;
11398 }
11399
4c4b4cd2
PH
11400 default:
11401 return dump_subexp_body_standard (exp, stream, elt);
11402 }
11403
11404 elt += oplen;
11405 for (i = 0; i < nargs; i += 1)
11406 elt = dump_subexp (exp, stream, elt);
11407
11408 return elt;
11409}
11410
11411/* The Ada extension of print_subexp (q.v.). */
11412
76a01679
JB
11413static void
11414ada_print_subexp (struct expression *exp, int *pos,
11415 struct ui_file *stream, enum precedence prec)
4c4b4cd2 11416{
52ce6436 11417 int oplen, nargs, i;
4c4b4cd2
PH
11418 int pc = *pos;
11419 enum exp_opcode op = exp->elts[pc].opcode;
11420
11421 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11422
52ce6436 11423 *pos += oplen;
4c4b4cd2
PH
11424 switch (op)
11425 {
11426 default:
52ce6436 11427 *pos -= oplen;
4c4b4cd2
PH
11428 print_subexp_standard (exp, pos, stream, prec);
11429 return;
11430
11431 case OP_VAR_VALUE:
4c4b4cd2
PH
11432 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11433 return;
11434
11435 case BINOP_IN_BOUNDS:
323e0a4a 11436 /* XXX: sprint_subexp */
4c4b4cd2 11437 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11438 fputs_filtered (" in ", stream);
4c4b4cd2 11439 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11440 fputs_filtered ("'range", stream);
4c4b4cd2 11441 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
11442 fprintf_filtered (stream, "(%ld)",
11443 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
11444 return;
11445
11446 case TERNOP_IN_RANGE:
4c4b4cd2 11447 if (prec >= PREC_EQUAL)
76a01679 11448 fputs_filtered ("(", stream);
323e0a4a 11449 /* XXX: sprint_subexp */
4c4b4cd2 11450 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11451 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11452 print_subexp (exp, pos, stream, PREC_EQUAL);
11453 fputs_filtered (" .. ", stream);
11454 print_subexp (exp, pos, stream, PREC_EQUAL);
11455 if (prec >= PREC_EQUAL)
76a01679
JB
11456 fputs_filtered (")", stream);
11457 return;
4c4b4cd2
PH
11458
11459 case OP_ATR_FIRST:
11460 case OP_ATR_LAST:
11461 case OP_ATR_LENGTH:
11462 case OP_ATR_IMAGE:
11463 case OP_ATR_MAX:
11464 case OP_ATR_MIN:
11465 case OP_ATR_MODULUS:
11466 case OP_ATR_POS:
11467 case OP_ATR_SIZE:
11468 case OP_ATR_TAG:
11469 case OP_ATR_VAL:
4c4b4cd2 11470 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
11471 {
11472 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11473 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11474 *pos += 3;
11475 }
4c4b4cd2 11476 else
76a01679 11477 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
11478 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11479 if (nargs > 1)
76a01679
JB
11480 {
11481 int tem;
5b4ee69b 11482
76a01679
JB
11483 for (tem = 1; tem < nargs; tem += 1)
11484 {
11485 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11486 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11487 }
11488 fputs_filtered (")", stream);
11489 }
4c4b4cd2 11490 return;
14f9c5c9 11491
4c4b4cd2 11492 case UNOP_QUAL:
4c4b4cd2
PH
11493 type_print (exp->elts[pc + 1].type, "", stream, 0);
11494 fputs_filtered ("'(", stream);
11495 print_subexp (exp, pos, stream, PREC_PREFIX);
11496 fputs_filtered (")", stream);
11497 return;
14f9c5c9 11498
4c4b4cd2 11499 case UNOP_IN_RANGE:
323e0a4a 11500 /* XXX: sprint_subexp */
4c4b4cd2 11501 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11502 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11503 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11504 return;
52ce6436
PH
11505
11506 case OP_DISCRETE_RANGE:
11507 print_subexp (exp, pos, stream, PREC_SUFFIX);
11508 fputs_filtered ("..", stream);
11509 print_subexp (exp, pos, stream, PREC_SUFFIX);
11510 return;
11511
11512 case OP_OTHERS:
11513 fputs_filtered ("others => ", stream);
11514 print_subexp (exp, pos, stream, PREC_SUFFIX);
11515 return;
11516
11517 case OP_CHOICES:
11518 for (i = 0; i < nargs-1; i += 1)
11519 {
11520 if (i > 0)
11521 fputs_filtered ("|", stream);
11522 print_subexp (exp, pos, stream, PREC_SUFFIX);
11523 }
11524 fputs_filtered (" => ", stream);
11525 print_subexp (exp, pos, stream, PREC_SUFFIX);
11526 return;
11527
11528 case OP_POSITIONAL:
11529 print_subexp (exp, pos, stream, PREC_SUFFIX);
11530 return;
11531
11532 case OP_AGGREGATE:
11533 fputs_filtered ("(", stream);
11534 for (i = 0; i < nargs; i += 1)
11535 {
11536 if (i > 0)
11537 fputs_filtered (", ", stream);
11538 print_subexp (exp, pos, stream, PREC_SUFFIX);
11539 }
11540 fputs_filtered (")", stream);
11541 return;
4c4b4cd2
PH
11542 }
11543}
14f9c5c9
AS
11544
11545/* Table mapping opcodes into strings for printing operators
11546 and precedences of the operators. */
11547
d2e4a39e
AS
11548static const struct op_print ada_op_print_tab[] = {
11549 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11550 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11551 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11552 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11553 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11554 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11555 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11556 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11557 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11558 {">=", BINOP_GEQ, PREC_ORDER, 0},
11559 {">", BINOP_GTR, PREC_ORDER, 0},
11560 {"<", BINOP_LESS, PREC_ORDER, 0},
11561 {">>", BINOP_RSH, PREC_SHIFT, 0},
11562 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11563 {"+", BINOP_ADD, PREC_ADD, 0},
11564 {"-", BINOP_SUB, PREC_ADD, 0},
11565 {"&", BINOP_CONCAT, PREC_ADD, 0},
11566 {"*", BINOP_MUL, PREC_MUL, 0},
11567 {"/", BINOP_DIV, PREC_MUL, 0},
11568 {"rem", BINOP_REM, PREC_MUL, 0},
11569 {"mod", BINOP_MOD, PREC_MUL, 0},
11570 {"**", BINOP_EXP, PREC_REPEAT, 0},
11571 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11572 {"-", UNOP_NEG, PREC_PREFIX, 0},
11573 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11574 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11575 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11576 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
11577 {".all", UNOP_IND, PREC_SUFFIX, 1},
11578 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11579 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 11580 {NULL, 0, 0, 0}
14f9c5c9
AS
11581};
11582\f
72d5681a
PH
11583enum ada_primitive_types {
11584 ada_primitive_type_int,
11585 ada_primitive_type_long,
11586 ada_primitive_type_short,
11587 ada_primitive_type_char,
11588 ada_primitive_type_float,
11589 ada_primitive_type_double,
11590 ada_primitive_type_void,
11591 ada_primitive_type_long_long,
11592 ada_primitive_type_long_double,
11593 ada_primitive_type_natural,
11594 ada_primitive_type_positive,
11595 ada_primitive_type_system_address,
11596 nr_ada_primitive_types
11597};
6c038f32
PH
11598
11599static void
d4a9a881 11600ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
11601 struct language_arch_info *lai)
11602{
d4a9a881 11603 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 11604
72d5681a 11605 lai->primitive_type_vector
d4a9a881 11606 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 11607 struct type *);
e9bb382b
UW
11608
11609 lai->primitive_type_vector [ada_primitive_type_int]
11610 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11611 0, "integer");
11612 lai->primitive_type_vector [ada_primitive_type_long]
11613 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11614 0, "long_integer");
11615 lai->primitive_type_vector [ada_primitive_type_short]
11616 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11617 0, "short_integer");
11618 lai->string_char_type
11619 = lai->primitive_type_vector [ada_primitive_type_char]
11620 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11621 lai->primitive_type_vector [ada_primitive_type_float]
11622 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11623 "float", NULL);
11624 lai->primitive_type_vector [ada_primitive_type_double]
11625 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11626 "long_float", NULL);
11627 lai->primitive_type_vector [ada_primitive_type_long_long]
11628 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11629 0, "long_long_integer");
11630 lai->primitive_type_vector [ada_primitive_type_long_double]
11631 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11632 "long_long_float", NULL);
11633 lai->primitive_type_vector [ada_primitive_type_natural]
11634 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11635 0, "natural");
11636 lai->primitive_type_vector [ada_primitive_type_positive]
11637 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11638 0, "positive");
11639 lai->primitive_type_vector [ada_primitive_type_void]
11640 = builtin->builtin_void;
11641
11642 lai->primitive_type_vector [ada_primitive_type_system_address]
11643 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
11644 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11645 = "system__address";
fbb06eb1 11646
47e729a8 11647 lai->bool_type_symbol = NULL;
fbb06eb1 11648 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11649}
6c038f32
PH
11650\f
11651 /* Language vector */
11652
11653/* Not really used, but needed in the ada_language_defn. */
11654
11655static void
6c7a06a3 11656emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 11657{
6c7a06a3 11658 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
11659}
11660
11661static int
11662parse (void)
11663{
11664 warnings_issued = 0;
11665 return ada_parse ();
11666}
11667
11668static const struct exp_descriptor ada_exp_descriptor = {
11669 ada_print_subexp,
11670 ada_operator_length,
c0201579 11671 ada_operator_check,
6c038f32
PH
11672 ada_op_name,
11673 ada_dump_subexp_body,
11674 ada_evaluate_subexp
11675};
11676
11677const struct language_defn ada_language_defn = {
11678 "ada", /* Language name */
11679 language_ada,
6c038f32
PH
11680 range_check_off,
11681 type_check_off,
11682 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11683 that's not quite what this means. */
6c038f32 11684 array_row_major,
9a044a89 11685 macro_expansion_no,
6c038f32
PH
11686 &ada_exp_descriptor,
11687 parse,
11688 ada_error,
11689 resolve,
11690 ada_printchar, /* Print a character constant */
11691 ada_printstr, /* Function to print string constant */
11692 emit_char, /* Function to print single char (not used) */
6c038f32 11693 ada_print_type, /* Print a type using appropriate syntax */
be942545 11694 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11695 ada_val_print, /* Print a value using appropriate syntax */
11696 ada_value_print, /* Print a top-level value */
11697 NULL, /* Language specific skip_trampoline */
2b2d9e11 11698 NULL, /* name_of_this */
6c038f32
PH
11699 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11700 basic_lookup_transparent_type, /* lookup_transparent_type */
11701 ada_la_decode, /* Language specific symbol demangler */
11702 NULL, /* Language specific class_name_from_physname */
11703 ada_op_print_tab, /* expression operators for printing */
11704 0, /* c-style arrays */
11705 1, /* String lower bound */
6c038f32 11706 ada_get_gdb_completer_word_break_characters,
41d27058 11707 ada_make_symbol_completion_list,
72d5681a 11708 ada_language_arch_info,
e79af960 11709 ada_print_array_index,
41f1b697 11710 default_pass_by_reference,
ae6a3a4c 11711 c_get_string,
6c038f32
PH
11712 LANG_MAGIC
11713};
11714
2c0b251b
PA
11715/* Provide a prototype to silence -Wmissing-prototypes. */
11716extern initialize_file_ftype _initialize_ada_language;
11717
5bf03f13
JB
11718/* Command-list for the "set/show ada" prefix command. */
11719static struct cmd_list_element *set_ada_list;
11720static struct cmd_list_element *show_ada_list;
11721
11722/* Implement the "set ada" prefix command. */
11723
11724static void
11725set_ada_command (char *arg, int from_tty)
11726{
11727 printf_unfiltered (_(\
11728"\"set ada\" must be followed by the name of a setting.\n"));
11729 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11730}
11731
11732/* Implement the "show ada" prefix command. */
11733
11734static void
11735show_ada_command (char *args, int from_tty)
11736{
11737 cmd_show_list (show_ada_list, from_tty, "");
11738}
11739
d2e4a39e 11740void
6c038f32 11741_initialize_ada_language (void)
14f9c5c9 11742{
6c038f32
PH
11743 add_language (&ada_language_defn);
11744
5bf03f13
JB
11745 add_prefix_cmd ("ada", no_class, set_ada_command,
11746 _("Prefix command for changing Ada-specfic settings"),
11747 &set_ada_list, "set ada ", 0, &setlist);
11748
11749 add_prefix_cmd ("ada", no_class, show_ada_command,
11750 _("Generic command for showing Ada-specific settings."),
11751 &show_ada_list, "show ada ", 0, &showlist);
11752
11753 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11754 &trust_pad_over_xvs, _("\
11755Enable or disable an optimization trusting PAD types over XVS types"), _("\
11756Show whether an optimization trusting PAD types over XVS types is activated"),
11757 _("\
11758This is related to the encoding used by the GNAT compiler. The debugger\n\
11759should normally trust the contents of PAD types, but certain older versions\n\
11760of GNAT have a bug that sometimes causes the information in the PAD type\n\
11761to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11762work around this bug. It is always safe to turn this option \"off\", but\n\
11763this incurs a slight performance penalty, so it is recommended to NOT change\n\
11764this option to \"off\" unless necessary."),
11765 NULL, NULL, &set_ada_list, &show_ada_list);
11766
6c038f32 11767 varsize_limit = 65536;
6c038f32
PH
11768
11769 obstack_init (&symbol_list_obstack);
11770
11771 decoded_names_store = htab_create_alloc
11772 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11773 NULL, xcalloc, xfree);
6b69afc4
JB
11774
11775 observer_attach_executable_changed (ada_executable_changed_observer);
e802dbe0
JB
11776
11777 /* Setup per-inferior data. */
11778 observer_attach_inferior_exit (ada_inferior_exit);
11779 ada_inferior_data
11780 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
14f9c5c9 11781}
This page took 1.397158 seconds and 4 git commands to generate.