Replace hardcoded -ldl with check for availability
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
28e7fd62 3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <stdio.h>
0c30c098 23#include "gdb_string.h"
14f9c5c9
AS
24#include <ctype.h>
25#include <stdarg.h>
26#include "demangle.h"
4c4b4cd2
PH
27#include "gdb_regex.h"
28#include "frame.h"
14f9c5c9
AS
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "expression.h"
33#include "parser-defs.h"
34#include "language.h"
35#include "c-lang.h"
36#include "inferior.h"
37#include "symfile.h"
38#include "objfiles.h"
39#include "breakpoint.h"
40#include "gdbcore.h"
4c4b4cd2
PH
41#include "hashtab.h"
42#include "gdb_obstack.h"
14f9c5c9 43#include "ada-lang.h"
4c4b4cd2
PH
44#include "completer.h"
45#include "gdb_stat.h"
46#ifdef UI_OUT
14f9c5c9 47#include "ui-out.h"
4c4b4cd2 48#endif
fe898f56 49#include "block.h"
04714b91 50#include "infcall.h"
de4f826b 51#include "dictionary.h"
60250e8b 52#include "exceptions.h"
f7f9143b
JB
53#include "annotate.h"
54#include "valprint.h"
9bbc9174 55#include "source.h"
0259addd 56#include "observer.h"
2ba95b9b 57#include "vec.h"
692465f1 58#include "stack.h"
fa864999 59#include "gdb_vecs.h"
79d43c61 60#include "typeprint.h"
14f9c5c9 61
ccefe4c4 62#include "psymtab.h"
40bc484c 63#include "value.h"
956a9fb9 64#include "mi/mi-common.h"
9ac4176b 65#include "arch-utils.h"
28010a5d 66#include "exceptions.h"
0fcd72ba 67#include "cli/cli-utils.h"
ccefe4c4 68
4c4b4cd2 69/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 70 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
71 Copied from valarith.c. */
72
73#ifndef TRUNCATION_TOWARDS_ZERO
74#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75#endif
76
d2e4a39e 77static struct type *desc_base_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct type *desc_bounds_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_bounds (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 86
556bdfd4 87static struct type *desc_data_target_type (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_data (struct value *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 92
d2e4a39e 93static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 94
d2e4a39e 95static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 100
d2e4a39e 101static struct type *desc_index_type (struct type *, int);
14f9c5c9 102
d2e4a39e 103static int desc_arity (struct type *);
14f9c5c9 104
d2e4a39e 105static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 106
d2e4a39e 107static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 108
40658b94
PH
109static int full_match (const char *, const char *);
110
40bc484c 111static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 112
4c4b4cd2 113static void ada_add_block_symbols (struct obstack *,
76a01679 114 struct block *, const char *,
2570f2b7 115 domain_enum, struct objfile *, int);
14f9c5c9 116
4c4b4cd2 117static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 118
76a01679 119static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 120 struct block *);
14f9c5c9 121
4c4b4cd2
PH
122static int num_defns_collected (struct obstack *);
123
124static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 125
4c4b4cd2 126static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 127 struct type *);
14f9c5c9 128
d2e4a39e 129static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 130 struct symbol *, const struct block *);
14f9c5c9 131
d2e4a39e 132static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 133
4c4b4cd2
PH
134static char *ada_op_name (enum exp_opcode);
135
136static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 137
d2e4a39e 138static int numeric_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int integer_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int scalar_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int discrete_type_p (struct type *);
14f9c5c9 145
aeb5907d
JB
146static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 152 const struct block *);
aeb5907d 153
4c4b4cd2 154static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 155 int, int, int *);
4c4b4cd2 156
d2e4a39e 157static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 158
b4ba55a1
JB
159static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
d2e4a39e 162static int is_dynamic_field (struct type *, int);
14f9c5c9 163
10a2c479 164static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 165 const gdb_byte *,
4c4b4cd2
PH
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 169
28c85d6c 170static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 171
d2e4a39e 172static struct type *to_static_fixed_type (struct type *);
f192137b 173static struct type *static_unwrap_type (struct type *type);
14f9c5c9 174
d2e4a39e 175static struct value *unwrap_value (struct value *);
14f9c5c9 176
ad82864c 177static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 178
ad82864c 179static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 180
ad82864c
JB
181static long decode_packed_array_bitsize (struct type *);
182
183static struct value *decode_constrained_packed_array (struct value *);
184
185static int ada_is_packed_array_type (struct type *);
186
187static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 188
d2e4a39e 189static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 190 struct value **);
14f9c5c9 191
50810684 192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static struct value *get_var_value (char *, char *);
14f9c5c9 198
d2e4a39e 199static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 200
d2e4a39e 201static int equiv_types (struct type *, struct type *);
14f9c5c9 202
d2e4a39e 203static int is_name_suffix (const char *);
14f9c5c9 204
73589123
PH
205static int advance_wild_match (const char **, const char *, int);
206
207static int wild_match (const char *, const char *);
14f9c5c9 208
d2e4a39e 209static struct value *ada_coerce_ref (struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static LONGEST pos_atr (struct value *);
212
3cb382c9 213static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 214
d2e4a39e 215static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 216
4c4b4cd2
PH
217static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
14f9c5c9 219
4c4b4cd2
PH
220static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
0d5cff50 226static int find_struct_field (const char *, struct type *, int,
52ce6436 227 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
228
229static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
4c4b4cd2
PH
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
4c4b4cd2
PH
236static int ada_is_direct_array_type (struct type *);
237
72d5681a
PH
238static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
714e53ab
PH
240
241static void check_size (const struct type *);
52ce6436
PH
242
243static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
247 struct expression *,
248 int *, enum noside);
52ce6436
PH
249
250static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
852dff6c
JB
274
275static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
276\f
277
76a01679 278
4c4b4cd2 279/* Maximum-sized dynamic type. */
14f9c5c9
AS
280static unsigned int varsize_limit;
281
4c4b4cd2
PH
282/* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284static char *ada_completer_word_break_characters =
285#ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287#else
14f9c5c9 288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 289#endif
14f9c5c9 290
4c4b4cd2 291/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 292static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 293 = "__gnat_ada_main_program_name";
14f9c5c9 294
4c4b4cd2
PH
295/* Limit on the number of warnings to raise per expression evaluation. */
296static int warning_limit = 2;
297
298/* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300static int warnings_issued = 0;
301
302static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304};
305
306static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308};
309
310/* Space for allocating results of ada_lookup_symbol_list. */
311static struct obstack symbol_list_obstack;
312
e802dbe0
JB
313 /* Inferior-specific data. */
314
315/* Per-inferior data for this module. */
316
317struct ada_inferior_data
318{
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
3eecfa55
JB
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
e802dbe0
JB
329};
330
331/* Our key to this module's inferior data. */
332static const struct inferior_data *ada_inferior_data;
333
334/* A cleanup routine for our inferior data. */
335static void
336ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337{
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343}
344
345/* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353static struct ada_inferior_data *
354get_ada_inferior_data (struct inferior *inf)
355{
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366}
367
368/* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371static void
372ada_inferior_exit (struct inferior *inf)
373{
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376}
377
4c4b4cd2
PH
378 /* Utilities */
379
720d1a40 380/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 381 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407static struct type *
408ada_typedef_target_type (struct type *type)
409{
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413}
414
41d27058
JB
415/* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419static const char *
420ada_unqualified_name (const char *decoded_name)
421{
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430}
431
432/* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435static char *
436add_angle_brackets (const char *str)
437{
438 static char *result = NULL;
439
440 xfree (result);
88c15c34 441 result = xstrprintf ("<%s>", str);
41d27058
JB
442 return result;
443}
96d887e8 444
4c4b4cd2
PH
445static char *
446ada_get_gdb_completer_word_break_characters (void)
447{
448 return ada_completer_word_break_characters;
449}
450
e79af960
JB
451/* Print an array element index using the Ada syntax. */
452
453static void
454ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 455 const struct value_print_options *options)
e79af960 456{
79a45b7d 457 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
458 fprintf_filtered (stream, " => ");
459}
460
f27cf670 461/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 463 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 464
f27cf670
AS
465void *
466grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 467{
d2e4a39e
AS
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
4c4b4cd2 472 *size = min_size;
f27cf670 473 vect = xrealloc (vect, *size * element_size);
d2e4a39e 474 }
f27cf670 475 return vect;
14f9c5c9
AS
476}
477
478/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 479 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
480
481static int
ebf56fd3 482field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
483{
484 int len = strlen (target);
5b4ee69b 485
d2e4a39e 486 return
4c4b4cd2
PH
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
14f9c5c9
AS
492}
493
494
872c8b51
JB
495/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
502
503int
504ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506{
507 int fieldno;
872c8b51
JB
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
512 return fieldno;
513
514 if (!maybe_missing)
323e0a4a 515 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 516 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
517
518 return -1;
519}
520
521/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
522
523int
d2e4a39e 524ada_name_prefix_len (const char *name)
14f9c5c9
AS
525{
526 if (name == NULL)
527 return 0;
d2e4a39e 528 else
14f9c5c9 529 {
d2e4a39e 530 const char *p = strstr (name, "___");
5b4ee69b 531
14f9c5c9 532 if (p == NULL)
4c4b4cd2 533 return strlen (name);
14f9c5c9 534 else
4c4b4cd2 535 return p - name;
14f9c5c9
AS
536 }
537}
538
4c4b4cd2
PH
539/* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
14f9c5c9 542static int
d2e4a39e 543is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
544{
545 int len1, len2;
5b4ee69b 546
14f9c5c9
AS
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
4c4b4cd2 551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
552}
553
4c4b4cd2
PH
554/* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
14f9c5c9 556
d2e4a39e 557static struct value *
4c4b4cd2 558coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 559{
61ee279c 560 type = ada_check_typedef (type);
df407dfe 561 if (value_type (val) == type)
4c4b4cd2 562 return val;
d2e4a39e 563 else
14f9c5c9 564 {
4c4b4cd2
PH
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
714e53ab 569 check_size (type);
4c4b4cd2 570
41e8491f
JK
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
74bcbdf3 580 set_value_component_location (result, val);
9bbda503
AC
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
42ae5230 583 set_value_address (result, value_address (val));
2fa15f23 584 set_value_optimized_out (result, value_optimized_out (val));
14f9c5c9
AS
585 return result;
586 }
587}
588
fc1a4b47
AC
589static const gdb_byte *
590cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
591{
592 if (valaddr == NULL)
593 return NULL;
594 else
595 return valaddr + offset;
596}
597
598static CORE_ADDR
ebf56fd3 599cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
600{
601 if (address == 0)
602 return 0;
d2e4a39e 603 else
14f9c5c9
AS
604 return address + offset;
605}
606
4c4b4cd2
PH
607/* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
610 expression. */
a2249542 611
77109804
AC
612/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
a0b31db1 614static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 615
14f9c5c9 616static void
a2249542 617lim_warning (const char *format, ...)
14f9c5c9 618{
a2249542 619 va_list args;
a2249542 620
5b4ee69b 621 va_start (args, format);
4c4b4cd2
PH
622 warnings_issued += 1;
623 if (warnings_issued <= warning_limit)
a2249542
MK
624 vwarning (format, args);
625
626 va_end (args);
4c4b4cd2
PH
627}
628
714e53ab
PH
629/* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
631 GDB. */
632
633static void
634check_size (const struct type *type)
635{
636 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 637 error (_("object size is larger than varsize-limit"));
714e53ab
PH
638}
639
0963b4bd 640/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 641static LONGEST
c3e5cd34 642max_of_size (int size)
4c4b4cd2 643{
76a01679 644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 645
76a01679 646 return top_bit | (top_bit - 1);
4c4b4cd2
PH
647}
648
0963b4bd 649/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 650static LONGEST
c3e5cd34 651min_of_size (int size)
4c4b4cd2 652{
c3e5cd34 653 return -max_of_size (size) - 1;
4c4b4cd2
PH
654}
655
0963b4bd 656/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 657static ULONGEST
c3e5cd34 658umax_of_size (int size)
4c4b4cd2 659{
76a01679 660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 661
76a01679 662 return top_bit | (top_bit - 1);
4c4b4cd2
PH
663}
664
0963b4bd 665/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
666static LONGEST
667max_of_type (struct type *t)
4c4b4cd2 668{
c3e5cd34
PH
669 if (TYPE_UNSIGNED (t))
670 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
671 else
672 return max_of_size (TYPE_LENGTH (t));
673}
674
0963b4bd 675/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
676static LONGEST
677min_of_type (struct type *t)
678{
679 if (TYPE_UNSIGNED (t))
680 return 0;
681 else
682 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
683}
684
685/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
686LONGEST
687ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 688{
76a01679 689 switch (TYPE_CODE (type))
4c4b4cd2
PH
690 {
691 case TYPE_CODE_RANGE:
690cc4eb 692 return TYPE_HIGH_BOUND (type);
4c4b4cd2 693 case TYPE_CODE_ENUM:
14e75d8e 694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
695 case TYPE_CODE_BOOL:
696 return 1;
697 case TYPE_CODE_CHAR:
76a01679 698 case TYPE_CODE_INT:
690cc4eb 699 return max_of_type (type);
4c4b4cd2 700 default:
43bbcdc2 701 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
702 }
703}
704
14e75d8e 705/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
706LONGEST
707ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 708{
76a01679 709 switch (TYPE_CODE (type))
4c4b4cd2
PH
710 {
711 case TYPE_CODE_RANGE:
690cc4eb 712 return TYPE_LOW_BOUND (type);
4c4b4cd2 713 case TYPE_CODE_ENUM:
14e75d8e 714 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
715 case TYPE_CODE_BOOL:
716 return 0;
717 case TYPE_CODE_CHAR:
76a01679 718 case TYPE_CODE_INT:
690cc4eb 719 return min_of_type (type);
4c4b4cd2 720 default:
43bbcdc2 721 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
722 }
723}
724
725/* The identity on non-range types. For range types, the underlying
76a01679 726 non-range scalar type. */
4c4b4cd2
PH
727
728static struct type *
18af8284 729get_base_type (struct type *type)
4c4b4cd2
PH
730{
731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
732 {
76a01679
JB
733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
734 return type;
4c4b4cd2
PH
735 type = TYPE_TARGET_TYPE (type);
736 }
737 return type;
14f9c5c9 738}
41246937
JB
739
740/* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
744
745struct value *
746ada_get_decoded_value (struct value *value)
747{
748 struct type *type = ada_check_typedef (value_type (value));
749
750 if (ada_is_array_descriptor_type (type)
751 || (ada_is_constrained_packed_array_type (type)
752 && TYPE_CODE (type) != TYPE_CODE_PTR))
753 {
754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
755 value = ada_coerce_to_simple_array_ptr (value);
756 else
757 value = ada_coerce_to_simple_array (value);
758 }
759 else
760 value = ada_to_fixed_value (value);
761
762 return value;
763}
764
765/* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
769
770struct type *
771ada_get_decoded_type (struct type *type)
772{
773 type = to_static_fixed_type (type);
774 if (ada_is_constrained_packed_array_type (type))
775 type = ada_coerce_to_simple_array_type (type);
776 return type;
777}
778
4c4b4cd2 779\f
76a01679 780
4c4b4cd2 781 /* Language Selection */
14f9c5c9
AS
782
783/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 784 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 785
14f9c5c9 786enum language
ccefe4c4 787ada_update_initial_language (enum language lang)
14f9c5c9 788{
d2e4a39e 789 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
790 (struct objfile *) NULL) != NULL)
791 return language_ada;
14f9c5c9
AS
792
793 return lang;
794}
96d887e8
PH
795
796/* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
799
800char *
801ada_main_name (void)
802{
803 struct minimal_symbol *msym;
f9bc20b9 804 static char *main_program_name = NULL;
6c038f32 805
96d887e8
PH
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
810 in Ada. */
811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
812
813 if (msym != NULL)
814 {
f9bc20b9
JB
815 CORE_ADDR main_program_name_addr;
816 int err_code;
817
96d887e8
PH
818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819 if (main_program_name_addr == 0)
323e0a4a 820 error (_("Invalid address for Ada main program name."));
96d887e8 821
f9bc20b9
JB
822 xfree (main_program_name);
823 target_read_string (main_program_name_addr, &main_program_name,
824 1024, &err_code);
825
826 if (err_code != 0)
827 return NULL;
96d887e8
PH
828 return main_program_name;
829 }
830
831 /* The main procedure doesn't seem to be in Ada. */
832 return NULL;
833}
14f9c5c9 834\f
4c4b4cd2 835 /* Symbols */
d2e4a39e 836
4c4b4cd2
PH
837/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
838 of NULLs. */
14f9c5c9 839
d2e4a39e
AS
840const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
862 {NULL, NULL}
14f9c5c9
AS
863};
864
4c4b4cd2
PH
865/* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
867
14f9c5c9 868char *
4c4b4cd2 869ada_encode (const char *decoded)
14f9c5c9 870{
4c4b4cd2
PH
871 static char *encoding_buffer = NULL;
872 static size_t encoding_buffer_size = 0;
d2e4a39e 873 const char *p;
14f9c5c9 874 int k;
d2e4a39e 875
4c4b4cd2 876 if (decoded == NULL)
14f9c5c9
AS
877 return NULL;
878
4c4b4cd2
PH
879 GROW_VECT (encoding_buffer, encoding_buffer_size,
880 2 * strlen (decoded) + 10);
14f9c5c9
AS
881
882 k = 0;
4c4b4cd2 883 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 884 {
cdc7bb92 885 if (*p == '.')
4c4b4cd2
PH
886 {
887 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
888 k += 2;
889 }
14f9c5c9 890 else if (*p == '"')
4c4b4cd2
PH
891 {
892 const struct ada_opname_map *mapping;
893
894 for (mapping = ada_opname_table;
1265e4aa
JB
895 mapping->encoded != NULL
896 && strncmp (mapping->decoded, p,
897 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
898 ;
899 if (mapping->encoded == NULL)
323e0a4a 900 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
901 strcpy (encoding_buffer + k, mapping->encoded);
902 k += strlen (mapping->encoded);
903 break;
904 }
d2e4a39e 905 else
4c4b4cd2
PH
906 {
907 encoding_buffer[k] = *p;
908 k += 1;
909 }
14f9c5c9
AS
910 }
911
4c4b4cd2
PH
912 encoding_buffer[k] = '\0';
913 return encoding_buffer;
14f9c5c9
AS
914}
915
916/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
917 quotes, unfolded, but with the quotes stripped away. Result good
918 to next call. */
919
d2e4a39e
AS
920char *
921ada_fold_name (const char *name)
14f9c5c9 922{
d2e4a39e 923 static char *fold_buffer = NULL;
14f9c5c9
AS
924 static size_t fold_buffer_size = 0;
925
926 int len = strlen (name);
d2e4a39e 927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
928
929 if (name[0] == '\'')
930 {
d2e4a39e
AS
931 strncpy (fold_buffer, name + 1, len - 2);
932 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
933 }
934 else
935 {
936 int i;
5b4ee69b 937
14f9c5c9 938 for (i = 0; i <= len; i += 1)
4c4b4cd2 939 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
940 }
941
942 return fold_buffer;
943}
944
529cad9c
PH
945/* Return nonzero if C is either a digit or a lowercase alphabet character. */
946
947static int
948is_lower_alphanum (const char c)
949{
950 return (isdigit (c) || (isalpha (c) && islower (c)));
951}
952
c90092fe
JB
953/* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
29480c32
JB
956 . .{DIGIT}+
957 . ${DIGIT}+
958 . ___{DIGIT}+
959 . __{DIGIT}+.
c90092fe 960
29480c32
JB
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
964
965static void
966ada_remove_trailing_digits (const char *encoded, int *len)
967{
968 if (*len > 1 && isdigit (encoded[*len - 1]))
969 {
970 int i = *len - 2;
5b4ee69b 971
29480c32
JB
972 while (i > 0 && isdigit (encoded[i]))
973 i--;
974 if (i >= 0 && encoded[i] == '.')
975 *len = i;
976 else if (i >= 0 && encoded[i] == '$')
977 *len = i;
978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
979 *len = i - 2;
980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
981 *len = i - 1;
982 }
983}
984
985/* Remove the suffix introduced by the compiler for protected object
986 subprograms. */
987
988static void
989ada_remove_po_subprogram_suffix (const char *encoded, int *len)
990{
991 /* Remove trailing N. */
992
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
0963b4bd 996 the 'P' suffix. The second calls the first one after handling
29480c32
JB
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1000
1001 if (*len > 1
1002 && encoded[*len - 1] == 'N'
1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1004 *len = *len - 1;
1005}
1006
69fadcdf
JB
1007/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1008
1009static void
1010ada_remove_Xbn_suffix (const char *encoded, int *len)
1011{
1012 int i = *len - 1;
1013
1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1015 i--;
1016
1017 if (encoded[i] != 'X')
1018 return;
1019
1020 if (i == 0)
1021 return;
1022
1023 if (isalnum (encoded[i-1]))
1024 *len = i;
1025}
1026
29480c32
JB
1027/* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
14f9c5c9 1030
4c4b4cd2 1031 The resulting string is valid until the next call of ada_decode.
29480c32 1032 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1033 is returned. */
1034
1035const char *
1036ada_decode (const char *encoded)
14f9c5c9
AS
1037{
1038 int i, j;
1039 int len0;
d2e4a39e 1040 const char *p;
4c4b4cd2 1041 char *decoded;
14f9c5c9 1042 int at_start_name;
4c4b4cd2
PH
1043 static char *decoding_buffer = NULL;
1044 static size_t decoding_buffer_size = 0;
d2e4a39e 1045
29480c32
JB
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
4c4b4cd2
PH
1049 if (strncmp (encoded, "_ada_", 5) == 0)
1050 encoded += 5;
14f9c5c9 1051
29480c32
JB
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
4c4b4cd2 1055 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1056 goto Suppress;
1057
4c4b4cd2 1058 len0 = strlen (encoded);
4c4b4cd2 1059
29480c32
JB
1060 ada_remove_trailing_digits (encoded, &len0);
1061 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1062
4c4b4cd2
PH
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p = strstr (encoded, "___");
1068 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1069 {
1070 if (p[3] == 'X')
4c4b4cd2 1071 len0 = p - encoded;
14f9c5c9 1072 else
4c4b4cd2 1073 goto Suppress;
14f9c5c9 1074 }
4c4b4cd2 1075
29480c32
JB
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1079
4c4b4cd2 1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1081 len0 -= 3;
76a01679 1082
a10967fa
JB
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1085 bodies. */
1086
1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1088 len0 -= 2;
1089
29480c32
JB
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1092
4c4b4cd2 1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1094 len0 -= 1;
1095
4c4b4cd2 1096 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1097
4c4b4cd2
PH
1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099 decoded = decoding_buffer;
14f9c5c9 1100
29480c32
JB
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1102
4c4b4cd2 1103 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1104 {
4c4b4cd2
PH
1105 i = len0 - 2;
1106 while ((i >= 0 && isdigit (encoded[i]))
1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1108 i -= 1;
1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1110 len0 = i - 1;
1111 else if (encoded[i] == '$')
1112 len0 = i;
d2e4a39e 1113 }
14f9c5c9 1114
29480c32
JB
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1117
4c4b4cd2
PH
1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119 decoded[j] = encoded[i];
14f9c5c9
AS
1120
1121 at_start_name = 1;
1122 while (i < len0)
1123 {
29480c32 1124 /* Is this a symbol function? */
4c4b4cd2
PH
1125 if (at_start_name && encoded[i] == 'O')
1126 {
1127 int k;
5b4ee69b 1128
4c4b4cd2
PH
1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1130 {
1131 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1133 op_len - 1) == 0)
1134 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1135 {
1136 strcpy (decoded + j, ada_opname_table[k].decoded);
1137 at_start_name = 0;
1138 i += op_len;
1139 j += strlen (ada_opname_table[k].decoded);
1140 break;
1141 }
1142 }
1143 if (ada_opname_table[k].encoded != NULL)
1144 continue;
1145 }
14f9c5c9
AS
1146 at_start_name = 0;
1147
529cad9c
PH
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1150
4c4b4cd2
PH
1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1152 i += 2;
529cad9c 1153
29480c32
JB
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1157
1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160 && isdigit (encoded [i+4]))
1161 {
1162 int k = i + 5;
1163
1164 while (k < len0 && isdigit (encoded[k]))
1165 k++; /* Skip any extra digit. */
1166
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1170 i = k;
1171 }
1172
529cad9c
PH
1173 /* Remove _E{DIGITS}+[sb] */
1174
1175 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1176 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1180 by a 'B'.
1181
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1185
1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187 && isdigit (encoded[i+2]))
1188 {
1189 int k = i + 3;
1190
1191 while (k < len0 && isdigit (encoded[k]))
1192 k++;
1193
1194 if (k < len0
1195 && (encoded[k] == 'b' || encoded[k] == 's'))
1196 {
1197 k++;
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1201 if (k == len0
1202 || (k < len0 && encoded[k] == '_'))
1203 i = k;
1204 }
1205 }
1206
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1209
1210 if (i < len0 + 3
1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1212 {
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr = encoded + i - 1;
1217
1218 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1219 ptr--;
1220 if (ptr < encoded
1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1222 i++;
1223 }
1224
4c4b4cd2
PH
1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1226 {
29480c32
JB
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1233 package names. */
4c4b4cd2
PH
1234 do
1235 i += 1;
1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1237 if (i < len0)
1238 goto Suppress;
1239 }
cdc7bb92 1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1241 {
29480c32 1242 /* Replace '__' by '.'. */
4c4b4cd2
PH
1243 decoded[j] = '.';
1244 at_start_name = 1;
1245 i += 2;
1246 j += 1;
1247 }
14f9c5c9 1248 else
4c4b4cd2 1249 {
29480c32
JB
1250 /* It's a character part of the decoded name, so just copy it
1251 over. */
4c4b4cd2
PH
1252 decoded[j] = encoded[i];
1253 i += 1;
1254 j += 1;
1255 }
14f9c5c9 1256 }
4c4b4cd2 1257 decoded[j] = '\000';
14f9c5c9 1258
29480c32
JB
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1261
4c4b4cd2
PH
1262 for (i = 0; decoded[i] != '\0'; i += 1)
1263 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1264 goto Suppress;
1265
4c4b4cd2
PH
1266 if (strcmp (decoded, encoded) == 0)
1267 return encoded;
1268 else
1269 return decoded;
14f9c5c9
AS
1270
1271Suppress:
4c4b4cd2
PH
1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273 decoded = decoding_buffer;
1274 if (encoded[0] == '<')
1275 strcpy (decoded, encoded);
14f9c5c9 1276 else
88c15c34 1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1278 return decoded;
1279
1280}
1281
1282/* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287static struct htab *decoded_names_store;
1288
1289/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1294 GSYMBOL).
4c4b4cd2
PH
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1297 when a decoded name is cached in it. */
4c4b4cd2 1298
45e6c716 1299const char *
f85f34ed 1300ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1301{
f85f34ed
TT
1302 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1303 const char **resultp =
1304 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1305
f85f34ed 1306 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1307 {
1308 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1309 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1310
f85f34ed 1311 gsymbol->ada_mangled = 1;
5b4ee69b 1312
f85f34ed
TT
1313 if (obstack != NULL)
1314 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1315 else
76a01679 1316 {
f85f34ed
TT
1317 /* Sometimes, we can't find a corresponding objfile, in
1318 which case, we put the result on the heap. Since we only
1319 decode when needed, we hope this usually does not cause a
1320 significant memory leak (FIXME). */
1321
76a01679
JB
1322 char **slot = (char **) htab_find_slot (decoded_names_store,
1323 decoded, INSERT);
5b4ee69b 1324
76a01679
JB
1325 if (*slot == NULL)
1326 *slot = xstrdup (decoded);
1327 *resultp = *slot;
1328 }
4c4b4cd2 1329 }
14f9c5c9 1330
4c4b4cd2
PH
1331 return *resultp;
1332}
76a01679 1333
2c0b251b 1334static char *
76a01679 1335ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1336{
1337 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1338}
1339
1340/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1341 suffixes that encode debugging information or leading _ada_ on
1342 SYM_NAME (see is_name_suffix commentary for the debugging
1343 information that is ignored). If WILD, then NAME need only match a
1344 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1345 either argument is NULL. */
14f9c5c9 1346
2c0b251b 1347static int
40658b94 1348match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1349{
1350 if (sym_name == NULL || name == NULL)
1351 return 0;
1352 else if (wild)
73589123 1353 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1354 else
1355 {
1356 int len_name = strlen (name);
5b4ee69b 1357
4c4b4cd2
PH
1358 return (strncmp (sym_name, name, len_name) == 0
1359 && is_name_suffix (sym_name + len_name))
1360 || (strncmp (sym_name, "_ada_", 5) == 0
1361 && strncmp (sym_name + 5, name, len_name) == 0
1362 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1363 }
14f9c5c9 1364}
14f9c5c9 1365\f
d2e4a39e 1366
4c4b4cd2 1367 /* Arrays */
14f9c5c9 1368
28c85d6c
JB
1369/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1370 generated by the GNAT compiler to describe the index type used
1371 for each dimension of an array, check whether it follows the latest
1372 known encoding. If not, fix it up to conform to the latest encoding.
1373 Otherwise, do nothing. This function also does nothing if
1374 INDEX_DESC_TYPE is NULL.
1375
1376 The GNAT encoding used to describle the array index type evolved a bit.
1377 Initially, the information would be provided through the name of each
1378 field of the structure type only, while the type of these fields was
1379 described as unspecified and irrelevant. The debugger was then expected
1380 to perform a global type lookup using the name of that field in order
1381 to get access to the full index type description. Because these global
1382 lookups can be very expensive, the encoding was later enhanced to make
1383 the global lookup unnecessary by defining the field type as being
1384 the full index type description.
1385
1386 The purpose of this routine is to allow us to support older versions
1387 of the compiler by detecting the use of the older encoding, and by
1388 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1389 we essentially replace each field's meaningless type by the associated
1390 index subtype). */
1391
1392void
1393ada_fixup_array_indexes_type (struct type *index_desc_type)
1394{
1395 int i;
1396
1397 if (index_desc_type == NULL)
1398 return;
1399 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1400
1401 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1402 to check one field only, no need to check them all). If not, return
1403 now.
1404
1405 If our INDEX_DESC_TYPE was generated using the older encoding,
1406 the field type should be a meaningless integer type whose name
1407 is not equal to the field name. */
1408 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1409 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1410 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1411 return;
1412
1413 /* Fixup each field of INDEX_DESC_TYPE. */
1414 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1415 {
0d5cff50 1416 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1417 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1418
1419 if (raw_type)
1420 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1421 }
1422}
1423
4c4b4cd2 1424/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1425
d2e4a39e
AS
1426static char *bound_name[] = {
1427 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1428 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1429};
1430
1431/* Maximum number of array dimensions we are prepared to handle. */
1432
4c4b4cd2 1433#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1434
14f9c5c9 1435
4c4b4cd2
PH
1436/* The desc_* routines return primitive portions of array descriptors
1437 (fat pointers). */
14f9c5c9
AS
1438
1439/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1440 level of indirection, if needed. */
1441
d2e4a39e
AS
1442static struct type *
1443desc_base_type (struct type *type)
14f9c5c9
AS
1444{
1445 if (type == NULL)
1446 return NULL;
61ee279c 1447 type = ada_check_typedef (type);
720d1a40
JB
1448 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1449 type = ada_typedef_target_type (type);
1450
1265e4aa
JB
1451 if (type != NULL
1452 && (TYPE_CODE (type) == TYPE_CODE_PTR
1453 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1454 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1455 else
1456 return type;
1457}
1458
4c4b4cd2
PH
1459/* True iff TYPE indicates a "thin" array pointer type. */
1460
14f9c5c9 1461static int
d2e4a39e 1462is_thin_pntr (struct type *type)
14f9c5c9 1463{
d2e4a39e 1464 return
14f9c5c9
AS
1465 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1466 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1467}
1468
4c4b4cd2
PH
1469/* The descriptor type for thin pointer type TYPE. */
1470
d2e4a39e
AS
1471static struct type *
1472thin_descriptor_type (struct type *type)
14f9c5c9 1473{
d2e4a39e 1474 struct type *base_type = desc_base_type (type);
5b4ee69b 1475
14f9c5c9
AS
1476 if (base_type == NULL)
1477 return NULL;
1478 if (is_suffix (ada_type_name (base_type), "___XVE"))
1479 return base_type;
d2e4a39e 1480 else
14f9c5c9 1481 {
d2e4a39e 1482 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1483
14f9c5c9 1484 if (alt_type == NULL)
4c4b4cd2 1485 return base_type;
14f9c5c9 1486 else
4c4b4cd2 1487 return alt_type;
14f9c5c9
AS
1488 }
1489}
1490
4c4b4cd2
PH
1491/* A pointer to the array data for thin-pointer value VAL. */
1492
d2e4a39e
AS
1493static struct value *
1494thin_data_pntr (struct value *val)
14f9c5c9 1495{
828292f2 1496 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1497 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1498
556bdfd4
UW
1499 data_type = lookup_pointer_type (data_type);
1500
14f9c5c9 1501 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1502 return value_cast (data_type, value_copy (val));
d2e4a39e 1503 else
42ae5230 1504 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1505}
1506
4c4b4cd2
PH
1507/* True iff TYPE indicates a "thick" array pointer type. */
1508
14f9c5c9 1509static int
d2e4a39e 1510is_thick_pntr (struct type *type)
14f9c5c9
AS
1511{
1512 type = desc_base_type (type);
1513 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1514 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1515}
1516
4c4b4cd2
PH
1517/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1518 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1519
d2e4a39e
AS
1520static struct type *
1521desc_bounds_type (struct type *type)
14f9c5c9 1522{
d2e4a39e 1523 struct type *r;
14f9c5c9
AS
1524
1525 type = desc_base_type (type);
1526
1527 if (type == NULL)
1528 return NULL;
1529 else if (is_thin_pntr (type))
1530 {
1531 type = thin_descriptor_type (type);
1532 if (type == NULL)
4c4b4cd2 1533 return NULL;
14f9c5c9
AS
1534 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1535 if (r != NULL)
61ee279c 1536 return ada_check_typedef (r);
14f9c5c9
AS
1537 }
1538 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1539 {
1540 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1541 if (r != NULL)
61ee279c 1542 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1543 }
1544 return NULL;
1545}
1546
1547/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1548 one, a pointer to its bounds data. Otherwise NULL. */
1549
d2e4a39e
AS
1550static struct value *
1551desc_bounds (struct value *arr)
14f9c5c9 1552{
df407dfe 1553 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1554
d2e4a39e 1555 if (is_thin_pntr (type))
14f9c5c9 1556 {
d2e4a39e 1557 struct type *bounds_type =
4c4b4cd2 1558 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1559 LONGEST addr;
1560
4cdfadb1 1561 if (bounds_type == NULL)
323e0a4a 1562 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1563
1564 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1565 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1566 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1567 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1568 addr = value_as_long (arr);
d2e4a39e 1569 else
42ae5230 1570 addr = value_address (arr);
14f9c5c9 1571
d2e4a39e 1572 return
4c4b4cd2
PH
1573 value_from_longest (lookup_pointer_type (bounds_type),
1574 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1575 }
1576
1577 else if (is_thick_pntr (type))
05e522ef
JB
1578 {
1579 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1580 _("Bad GNAT array descriptor"));
1581 struct type *p_bounds_type = value_type (p_bounds);
1582
1583 if (p_bounds_type
1584 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1585 {
1586 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1587
1588 if (TYPE_STUB (target_type))
1589 p_bounds = value_cast (lookup_pointer_type
1590 (ada_check_typedef (target_type)),
1591 p_bounds);
1592 }
1593 else
1594 error (_("Bad GNAT array descriptor"));
1595
1596 return p_bounds;
1597 }
14f9c5c9
AS
1598 else
1599 return NULL;
1600}
1601
4c4b4cd2
PH
1602/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1603 position of the field containing the address of the bounds data. */
1604
14f9c5c9 1605static int
d2e4a39e 1606fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1607{
1608 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1609}
1610
1611/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1612 size of the field containing the address of the bounds data. */
1613
14f9c5c9 1614static int
d2e4a39e 1615fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1616{
1617 type = desc_base_type (type);
1618
d2e4a39e 1619 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1620 return TYPE_FIELD_BITSIZE (type, 1);
1621 else
61ee279c 1622 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1623}
1624
4c4b4cd2 1625/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1626 pointer to one, the type of its array data (a array-with-no-bounds type);
1627 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1628 data. */
4c4b4cd2 1629
d2e4a39e 1630static struct type *
556bdfd4 1631desc_data_target_type (struct type *type)
14f9c5c9
AS
1632{
1633 type = desc_base_type (type);
1634
4c4b4cd2 1635 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1636 if (is_thin_pntr (type))
556bdfd4 1637 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1638 else if (is_thick_pntr (type))
556bdfd4
UW
1639 {
1640 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1641
1642 if (data_type
1643 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1644 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1645 }
1646
1647 return NULL;
14f9c5c9
AS
1648}
1649
1650/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1651 its array data. */
4c4b4cd2 1652
d2e4a39e
AS
1653static struct value *
1654desc_data (struct value *arr)
14f9c5c9 1655{
df407dfe 1656 struct type *type = value_type (arr);
5b4ee69b 1657
14f9c5c9
AS
1658 if (is_thin_pntr (type))
1659 return thin_data_pntr (arr);
1660 else if (is_thick_pntr (type))
d2e4a39e 1661 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1662 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1663 else
1664 return NULL;
1665}
1666
1667
1668/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1669 position of the field containing the address of the data. */
1670
14f9c5c9 1671static int
d2e4a39e 1672fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1673{
1674 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1675}
1676
1677/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1678 size of the field containing the address of the data. */
1679
14f9c5c9 1680static int
d2e4a39e 1681fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1682{
1683 type = desc_base_type (type);
1684
1685 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1686 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1687 else
14f9c5c9
AS
1688 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1689}
1690
4c4b4cd2 1691/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1692 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1693 bound, if WHICH is 1. The first bound is I=1. */
1694
d2e4a39e
AS
1695static struct value *
1696desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1697{
d2e4a39e 1698 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1699 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1700}
1701
1702/* If BOUNDS is an array-bounds structure type, return the bit position
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
14f9c5c9 1706static int
d2e4a39e 1707desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1708{
d2e4a39e 1709 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1710}
1711
1712/* If BOUNDS is an array-bounds structure type, return the bit field size
1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1714 bound, if WHICH is 1. The first bound is I=1. */
1715
76a01679 1716static int
d2e4a39e 1717desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1718{
1719 type = desc_base_type (type);
1720
d2e4a39e
AS
1721 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1722 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1723 else
1724 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1725}
1726
1727/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1728 Ith bound (numbering from 1). Otherwise, NULL. */
1729
d2e4a39e
AS
1730static struct type *
1731desc_index_type (struct type *type, int i)
14f9c5c9
AS
1732{
1733 type = desc_base_type (type);
1734
1735 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1736 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1737 else
14f9c5c9
AS
1738 return NULL;
1739}
1740
4c4b4cd2
PH
1741/* The number of index positions in the array-bounds type TYPE.
1742 Return 0 if TYPE is NULL. */
1743
14f9c5c9 1744static int
d2e4a39e 1745desc_arity (struct type *type)
14f9c5c9
AS
1746{
1747 type = desc_base_type (type);
1748
1749 if (type != NULL)
1750 return TYPE_NFIELDS (type) / 2;
1751 return 0;
1752}
1753
4c4b4cd2
PH
1754/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1755 an array descriptor type (representing an unconstrained array
1756 type). */
1757
76a01679
JB
1758static int
1759ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1760{
1761 if (type == NULL)
1762 return 0;
61ee279c 1763 type = ada_check_typedef (type);
4c4b4cd2 1764 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1765 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1766}
1767
52ce6436 1768/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1769 * to one. */
52ce6436 1770
2c0b251b 1771static int
52ce6436
PH
1772ada_is_array_type (struct type *type)
1773{
1774 while (type != NULL
1775 && (TYPE_CODE (type) == TYPE_CODE_PTR
1776 || TYPE_CODE (type) == TYPE_CODE_REF))
1777 type = TYPE_TARGET_TYPE (type);
1778 return ada_is_direct_array_type (type);
1779}
1780
4c4b4cd2 1781/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1782
14f9c5c9 1783int
4c4b4cd2 1784ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1785{
1786 if (type == NULL)
1787 return 0;
61ee279c 1788 type = ada_check_typedef (type);
14f9c5c9 1789 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1790 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1791 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1792 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1793}
1794
4c4b4cd2
PH
1795/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1796
14f9c5c9 1797int
4c4b4cd2 1798ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1799{
556bdfd4 1800 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1801
1802 if (type == NULL)
1803 return 0;
61ee279c 1804 type = ada_check_typedef (type);
556bdfd4
UW
1805 return (data_type != NULL
1806 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1807 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1808}
1809
1810/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1811 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1812 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1813 is still needed. */
1814
14f9c5c9 1815int
ebf56fd3 1816ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1817{
d2e4a39e 1818 return
14f9c5c9
AS
1819 type != NULL
1820 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1821 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1822 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1823 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1824}
1825
1826
4c4b4cd2 1827/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1828 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1829 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1830 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1831 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1832 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1833 a descriptor. */
d2e4a39e
AS
1834struct type *
1835ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1836{
ad82864c
JB
1837 if (ada_is_constrained_packed_array_type (value_type (arr)))
1838 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1839
df407dfe
AC
1840 if (!ada_is_array_descriptor_type (value_type (arr)))
1841 return value_type (arr);
d2e4a39e
AS
1842
1843 if (!bounds)
ad82864c
JB
1844 {
1845 struct type *array_type =
1846 ada_check_typedef (desc_data_target_type (value_type (arr)));
1847
1848 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1849 TYPE_FIELD_BITSIZE (array_type, 0) =
1850 decode_packed_array_bitsize (value_type (arr));
1851
1852 return array_type;
1853 }
14f9c5c9
AS
1854 else
1855 {
d2e4a39e 1856 struct type *elt_type;
14f9c5c9 1857 int arity;
d2e4a39e 1858 struct value *descriptor;
14f9c5c9 1859
df407dfe
AC
1860 elt_type = ada_array_element_type (value_type (arr), -1);
1861 arity = ada_array_arity (value_type (arr));
14f9c5c9 1862
d2e4a39e 1863 if (elt_type == NULL || arity == 0)
df407dfe 1864 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1865
1866 descriptor = desc_bounds (arr);
d2e4a39e 1867 if (value_as_long (descriptor) == 0)
4c4b4cd2 1868 return NULL;
d2e4a39e 1869 while (arity > 0)
4c4b4cd2 1870 {
e9bb382b
UW
1871 struct type *range_type = alloc_type_copy (value_type (arr));
1872 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1873 struct value *low = desc_one_bound (descriptor, arity, 0);
1874 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1875
5b4ee69b 1876 arity -= 1;
df407dfe 1877 create_range_type (range_type, value_type (low),
529cad9c
PH
1878 longest_to_int (value_as_long (low)),
1879 longest_to_int (value_as_long (high)));
4c4b4cd2 1880 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1881
1882 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1883 {
1884 /* We need to store the element packed bitsize, as well as
1885 recompute the array size, because it was previously
1886 computed based on the unpacked element size. */
1887 LONGEST lo = value_as_long (low);
1888 LONGEST hi = value_as_long (high);
1889
1890 TYPE_FIELD_BITSIZE (elt_type, 0) =
1891 decode_packed_array_bitsize (value_type (arr));
1892 /* If the array has no element, then the size is already
1893 zero, and does not need to be recomputed. */
1894 if (lo < hi)
1895 {
1896 int array_bitsize =
1897 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1898
1899 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1900 }
1901 }
4c4b4cd2 1902 }
14f9c5c9
AS
1903
1904 return lookup_pointer_type (elt_type);
1905 }
1906}
1907
1908/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1909 Otherwise, returns either a standard GDB array with bounds set
1910 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1911 GDB array. Returns NULL if ARR is a null fat pointer. */
1912
d2e4a39e
AS
1913struct value *
1914ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1915{
df407dfe 1916 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1917 {
d2e4a39e 1918 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1919
14f9c5c9 1920 if (arrType == NULL)
4c4b4cd2 1921 return NULL;
14f9c5c9
AS
1922 return value_cast (arrType, value_copy (desc_data (arr)));
1923 }
ad82864c
JB
1924 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1926 else
1927 return arr;
1928}
1929
1930/* If ARR does not represent an array, returns ARR unchanged.
1931 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1932 be ARR itself if it already is in the proper form). */
1933
720d1a40 1934struct value *
d2e4a39e 1935ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1936{
df407dfe 1937 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1938 {
d2e4a39e 1939 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1940
14f9c5c9 1941 if (arrVal == NULL)
323e0a4a 1942 error (_("Bounds unavailable for null array pointer."));
529cad9c 1943 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1944 return value_ind (arrVal);
1945 }
ad82864c
JB
1946 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array (arr);
d2e4a39e 1948 else
14f9c5c9
AS
1949 return arr;
1950}
1951
1952/* If TYPE represents a GNAT array type, return it translated to an
1953 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1954 packing). For other types, is the identity. */
1955
d2e4a39e
AS
1956struct type *
1957ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1958{
ad82864c
JB
1959 if (ada_is_constrained_packed_array_type (type))
1960 return decode_constrained_packed_array_type (type);
17280b9f
UW
1961
1962 if (ada_is_array_descriptor_type (type))
556bdfd4 1963 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1964
1965 return type;
14f9c5c9
AS
1966}
1967
4c4b4cd2
PH
1968/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1969
ad82864c
JB
1970static int
1971ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1972{
1973 if (type == NULL)
1974 return 0;
4c4b4cd2 1975 type = desc_base_type (type);
61ee279c 1976 type = ada_check_typedef (type);
d2e4a39e 1977 return
14f9c5c9
AS
1978 ada_type_name (type) != NULL
1979 && strstr (ada_type_name (type), "___XP") != NULL;
1980}
1981
ad82864c
JB
1982/* Non-zero iff TYPE represents a standard GNAT constrained
1983 packed-array type. */
1984
1985int
1986ada_is_constrained_packed_array_type (struct type *type)
1987{
1988 return ada_is_packed_array_type (type)
1989 && !ada_is_array_descriptor_type (type);
1990}
1991
1992/* Non-zero iff TYPE represents an array descriptor for a
1993 unconstrained packed-array type. */
1994
1995static int
1996ada_is_unconstrained_packed_array_type (struct type *type)
1997{
1998 return ada_is_packed_array_type (type)
1999 && ada_is_array_descriptor_type (type);
2000}
2001
2002/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2003 return the size of its elements in bits. */
2004
2005static long
2006decode_packed_array_bitsize (struct type *type)
2007{
0d5cff50
DE
2008 const char *raw_name;
2009 const char *tail;
ad82864c
JB
2010 long bits;
2011
720d1a40
JB
2012 /* Access to arrays implemented as fat pointers are encoded as a typedef
2013 of the fat pointer type. We need the name of the fat pointer type
2014 to do the decoding, so strip the typedef layer. */
2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2016 type = ada_typedef_target_type (type);
2017
2018 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2019 if (!raw_name)
2020 raw_name = ada_type_name (desc_base_type (type));
2021
2022 if (!raw_name)
2023 return 0;
2024
2025 tail = strstr (raw_name, "___XP");
720d1a40 2026 gdb_assert (tail != NULL);
ad82864c
JB
2027
2028 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2029 {
2030 lim_warning
2031 (_("could not understand bit size information on packed array"));
2032 return 0;
2033 }
2034
2035 return bits;
2036}
2037
14f9c5c9
AS
2038/* Given that TYPE is a standard GDB array type with all bounds filled
2039 in, and that the element size of its ultimate scalar constituents
2040 (that is, either its elements, or, if it is an array of arrays, its
2041 elements' elements, etc.) is *ELT_BITS, return an identical type,
2042 but with the bit sizes of its elements (and those of any
2043 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2044 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2045 in bits. */
2046
d2e4a39e 2047static struct type *
ad82864c 2048constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2049{
d2e4a39e
AS
2050 struct type *new_elt_type;
2051 struct type *new_type;
99b1c762
JB
2052 struct type *index_type_desc;
2053 struct type *index_type;
14f9c5c9
AS
2054 LONGEST low_bound, high_bound;
2055
61ee279c 2056 type = ada_check_typedef (type);
14f9c5c9
AS
2057 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2058 return type;
2059
99b1c762
JB
2060 index_type_desc = ada_find_parallel_type (type, "___XA");
2061 if (index_type_desc)
2062 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2063 NULL);
2064 else
2065 index_type = TYPE_INDEX_TYPE (type);
2066
e9bb382b 2067 new_type = alloc_type_copy (type);
ad82864c
JB
2068 new_elt_type =
2069 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2070 elt_bits);
99b1c762 2071 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2072 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2073 TYPE_NAME (new_type) = ada_type_name (type);
2074
99b1c762 2075 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2076 low_bound = high_bound = 0;
2077 if (high_bound < low_bound)
2078 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2079 else
14f9c5c9
AS
2080 {
2081 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2082 TYPE_LENGTH (new_type) =
4c4b4cd2 2083 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2084 }
2085
876cecd0 2086 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2087 return new_type;
2088}
2089
ad82864c
JB
2090/* The array type encoded by TYPE, where
2091 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2092
d2e4a39e 2093static struct type *
ad82864c 2094decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2095{
0d5cff50 2096 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2097 char *name;
0d5cff50 2098 const char *tail;
d2e4a39e 2099 struct type *shadow_type;
14f9c5c9 2100 long bits;
14f9c5c9 2101
727e3d2e
JB
2102 if (!raw_name)
2103 raw_name = ada_type_name (desc_base_type (type));
2104
2105 if (!raw_name)
2106 return NULL;
2107
2108 name = (char *) alloca (strlen (raw_name) + 1);
2109 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2110 type = desc_base_type (type);
2111
14f9c5c9
AS
2112 memcpy (name, raw_name, tail - raw_name);
2113 name[tail - raw_name] = '\000';
2114
b4ba55a1
JB
2115 shadow_type = ada_find_parallel_type_with_name (type, name);
2116
2117 if (shadow_type == NULL)
14f9c5c9 2118 {
323e0a4a 2119 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2120 return NULL;
2121 }
cb249c71 2122 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2123
2124 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2125 {
0963b4bd
MS
2126 lim_warning (_("could not understand bounds "
2127 "information on packed array"));
14f9c5c9
AS
2128 return NULL;
2129 }
d2e4a39e 2130
ad82864c
JB
2131 bits = decode_packed_array_bitsize (type);
2132 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2133}
2134
ad82864c
JB
2135/* Given that ARR is a struct value *indicating a GNAT constrained packed
2136 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2137 standard GDB array type except that the BITSIZEs of the array
2138 target types are set to the number of bits in each element, and the
4c4b4cd2 2139 type length is set appropriately. */
14f9c5c9 2140
d2e4a39e 2141static struct value *
ad82864c 2142decode_constrained_packed_array (struct value *arr)
14f9c5c9 2143{
4c4b4cd2 2144 struct type *type;
14f9c5c9 2145
4c4b4cd2 2146 arr = ada_coerce_ref (arr);
284614f0
JB
2147
2148 /* If our value is a pointer, then dererence it. Make sure that
2149 this operation does not cause the target type to be fixed, as
2150 this would indirectly cause this array to be decoded. The rest
2151 of the routine assumes that the array hasn't been decoded yet,
2152 so we use the basic "value_ind" routine to perform the dereferencing,
2153 as opposed to using "ada_value_ind". */
828292f2 2154 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2155 arr = value_ind (arr);
4c4b4cd2 2156
ad82864c 2157 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2158 if (type == NULL)
2159 {
323e0a4a 2160 error (_("can't unpack array"));
14f9c5c9
AS
2161 return NULL;
2162 }
61ee279c 2163
50810684 2164 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2165 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2166 {
2167 /* This is a (right-justified) modular type representing a packed
2168 array with no wrapper. In order to interpret the value through
2169 the (left-justified) packed array type we just built, we must
2170 first left-justify it. */
2171 int bit_size, bit_pos;
2172 ULONGEST mod;
2173
df407dfe 2174 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2175 bit_size = 0;
2176 while (mod > 0)
2177 {
2178 bit_size += 1;
2179 mod >>= 1;
2180 }
df407dfe 2181 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2182 arr = ada_value_primitive_packed_val (arr, NULL,
2183 bit_pos / HOST_CHAR_BIT,
2184 bit_pos % HOST_CHAR_BIT,
2185 bit_size,
2186 type);
2187 }
2188
4c4b4cd2 2189 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2190}
2191
2192
2193/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2194 given in IND. ARR must be a simple array. */
14f9c5c9 2195
d2e4a39e
AS
2196static struct value *
2197value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2198{
2199 int i;
2200 int bits, elt_off, bit_off;
2201 long elt_total_bit_offset;
d2e4a39e
AS
2202 struct type *elt_type;
2203 struct value *v;
14f9c5c9
AS
2204
2205 bits = 0;
2206 elt_total_bit_offset = 0;
df407dfe 2207 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2208 for (i = 0; i < arity; i += 1)
14f9c5c9 2209 {
d2e4a39e 2210 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2211 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2212 error
0963b4bd
MS
2213 (_("attempt to do packed indexing of "
2214 "something other than a packed array"));
14f9c5c9 2215 else
4c4b4cd2
PH
2216 {
2217 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2218 LONGEST lowerbound, upperbound;
2219 LONGEST idx;
2220
2221 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2222 {
323e0a4a 2223 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2224 lowerbound = upperbound = 0;
2225 }
2226
3cb382c9 2227 idx = pos_atr (ind[i]);
4c4b4cd2 2228 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2229 lim_warning (_("packed array index %ld out of bounds"),
2230 (long) idx);
4c4b4cd2
PH
2231 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2232 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2233 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2234 }
14f9c5c9
AS
2235 }
2236 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2237 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2238
2239 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2240 bits, elt_type);
14f9c5c9
AS
2241 return v;
2242}
2243
4c4b4cd2 2244/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2245
2246static int
d2e4a39e 2247has_negatives (struct type *type)
14f9c5c9 2248{
d2e4a39e
AS
2249 switch (TYPE_CODE (type))
2250 {
2251 default:
2252 return 0;
2253 case TYPE_CODE_INT:
2254 return !TYPE_UNSIGNED (type);
2255 case TYPE_CODE_RANGE:
2256 return TYPE_LOW_BOUND (type) < 0;
2257 }
14f9c5c9 2258}
d2e4a39e 2259
14f9c5c9
AS
2260
2261/* Create a new value of type TYPE from the contents of OBJ starting
2262 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2263 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2264 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2265 VALADDR is ignored unless OBJ is NULL, in which case,
2266 VALADDR+OFFSET must address the start of storage containing the
2267 packed value. The value returned in this case is never an lval.
2268 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2269
d2e4a39e 2270struct value *
fc1a4b47 2271ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2272 long offset, int bit_offset, int bit_size,
4c4b4cd2 2273 struct type *type)
14f9c5c9 2274{
d2e4a39e 2275 struct value *v;
4c4b4cd2
PH
2276 int src, /* Index into the source area */
2277 targ, /* Index into the target area */
2278 srcBitsLeft, /* Number of source bits left to move */
2279 nsrc, ntarg, /* Number of source and target bytes */
2280 unusedLS, /* Number of bits in next significant
2281 byte of source that are unused */
2282 accumSize; /* Number of meaningful bits in accum */
2283 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2284 unsigned char *unpacked;
4c4b4cd2 2285 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2286 unsigned char sign;
2287 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2288 /* Transmit bytes from least to most significant; delta is the direction
2289 the indices move. */
50810684 2290 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2291
61ee279c 2292 type = ada_check_typedef (type);
14f9c5c9
AS
2293
2294 if (obj == NULL)
2295 {
2296 v = allocate_value (type);
d2e4a39e 2297 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2298 }
9214ee5f 2299 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2300 {
53ba8333 2301 v = value_at (type, value_address (obj));
d2e4a39e 2302 bytes = (unsigned char *) alloca (len);
53ba8333 2303 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2304 }
d2e4a39e 2305 else
14f9c5c9
AS
2306 {
2307 v = allocate_value (type);
0fd88904 2308 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2309 }
d2e4a39e
AS
2310
2311 if (obj != NULL)
14f9c5c9 2312 {
53ba8333 2313 long new_offset = offset;
5b4ee69b 2314
74bcbdf3 2315 set_value_component_location (v, obj);
9bbda503
AC
2316 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2317 set_value_bitsize (v, bit_size);
df407dfe 2318 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2319 {
53ba8333 2320 ++new_offset;
9bbda503 2321 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2322 }
53ba8333
JB
2323 set_value_offset (v, new_offset);
2324
2325 /* Also set the parent value. This is needed when trying to
2326 assign a new value (in inferior memory). */
2327 set_value_parent (v, obj);
14f9c5c9
AS
2328 }
2329 else
9bbda503 2330 set_value_bitsize (v, bit_size);
0fd88904 2331 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2332
2333 srcBitsLeft = bit_size;
2334 nsrc = len;
2335 ntarg = TYPE_LENGTH (type);
2336 sign = 0;
2337 if (bit_size == 0)
2338 {
2339 memset (unpacked, 0, TYPE_LENGTH (type));
2340 return v;
2341 }
50810684 2342 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2343 {
d2e4a39e 2344 src = len - 1;
1265e4aa
JB
2345 if (has_negatives (type)
2346 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2347 sign = ~0;
d2e4a39e
AS
2348
2349 unusedLS =
4c4b4cd2
PH
2350 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2351 % HOST_CHAR_BIT;
14f9c5c9
AS
2352
2353 switch (TYPE_CODE (type))
4c4b4cd2
PH
2354 {
2355 case TYPE_CODE_ARRAY:
2356 case TYPE_CODE_UNION:
2357 case TYPE_CODE_STRUCT:
2358 /* Non-scalar values must be aligned at a byte boundary... */
2359 accumSize =
2360 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2361 /* ... And are placed at the beginning (most-significant) bytes
2362 of the target. */
529cad9c 2363 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2364 ntarg = targ + 1;
4c4b4cd2
PH
2365 break;
2366 default:
2367 accumSize = 0;
2368 targ = TYPE_LENGTH (type) - 1;
2369 break;
2370 }
14f9c5c9 2371 }
d2e4a39e 2372 else
14f9c5c9
AS
2373 {
2374 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2375
2376 src = targ = 0;
2377 unusedLS = bit_offset;
2378 accumSize = 0;
2379
d2e4a39e 2380 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2381 sign = ~0;
14f9c5c9 2382 }
d2e4a39e 2383
14f9c5c9
AS
2384 accum = 0;
2385 while (nsrc > 0)
2386 {
2387 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2388 part of the value. */
d2e4a39e 2389 unsigned int unusedMSMask =
4c4b4cd2
PH
2390 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2391 1;
2392 /* Sign-extend bits for this byte. */
14f9c5c9 2393 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2394
d2e4a39e 2395 accum |=
4c4b4cd2 2396 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2397 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2398 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2399 {
2400 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2401 accumSize -= HOST_CHAR_BIT;
2402 accum >>= HOST_CHAR_BIT;
2403 ntarg -= 1;
2404 targ += delta;
2405 }
14f9c5c9
AS
2406 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2407 unusedLS = 0;
2408 nsrc -= 1;
2409 src += delta;
2410 }
2411 while (ntarg > 0)
2412 {
2413 accum |= sign << accumSize;
2414 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2415 accumSize -= HOST_CHAR_BIT;
2416 accum >>= HOST_CHAR_BIT;
2417 ntarg -= 1;
2418 targ += delta;
2419 }
2420
2421 return v;
2422}
d2e4a39e 2423
14f9c5c9
AS
2424/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2426 not overlap. */
14f9c5c9 2427static void
fc1a4b47 2428move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2429 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2430{
2431 unsigned int accum, mask;
2432 int accum_bits, chunk_size;
2433
2434 target += targ_offset / HOST_CHAR_BIT;
2435 targ_offset %= HOST_CHAR_BIT;
2436 source += src_offset / HOST_CHAR_BIT;
2437 src_offset %= HOST_CHAR_BIT;
50810684 2438 if (bits_big_endian_p)
14f9c5c9
AS
2439 {
2440 accum = (unsigned char) *source;
2441 source += 1;
2442 accum_bits = HOST_CHAR_BIT - src_offset;
2443
d2e4a39e 2444 while (n > 0)
4c4b4cd2
PH
2445 {
2446 int unused_right;
5b4ee69b 2447
4c4b4cd2
PH
2448 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2449 accum_bits += HOST_CHAR_BIT;
2450 source += 1;
2451 chunk_size = HOST_CHAR_BIT - targ_offset;
2452 if (chunk_size > n)
2453 chunk_size = n;
2454 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2455 mask = ((1 << chunk_size) - 1) << unused_right;
2456 *target =
2457 (*target & ~mask)
2458 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2459 n -= chunk_size;
2460 accum_bits -= chunk_size;
2461 target += 1;
2462 targ_offset = 0;
2463 }
14f9c5c9
AS
2464 }
2465 else
2466 {
2467 accum = (unsigned char) *source >> src_offset;
2468 source += 1;
2469 accum_bits = HOST_CHAR_BIT - src_offset;
2470
d2e4a39e 2471 while (n > 0)
4c4b4cd2
PH
2472 {
2473 accum = accum + ((unsigned char) *source << accum_bits);
2474 accum_bits += HOST_CHAR_BIT;
2475 source += 1;
2476 chunk_size = HOST_CHAR_BIT - targ_offset;
2477 if (chunk_size > n)
2478 chunk_size = n;
2479 mask = ((1 << chunk_size) - 1) << targ_offset;
2480 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2481 n -= chunk_size;
2482 accum_bits -= chunk_size;
2483 accum >>= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
14f9c5c9
AS
2487 }
2488}
2489
14f9c5c9
AS
2490/* Store the contents of FROMVAL into the location of TOVAL.
2491 Return a new value with the location of TOVAL and contents of
2492 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2493 floating-point or non-scalar types. */
14f9c5c9 2494
d2e4a39e
AS
2495static struct value *
2496ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2497{
df407dfe
AC
2498 struct type *type = value_type (toval);
2499 int bits = value_bitsize (toval);
14f9c5c9 2500
52ce6436
PH
2501 toval = ada_coerce_ref (toval);
2502 fromval = ada_coerce_ref (fromval);
2503
2504 if (ada_is_direct_array_type (value_type (toval)))
2505 toval = ada_coerce_to_simple_array (toval);
2506 if (ada_is_direct_array_type (value_type (fromval)))
2507 fromval = ada_coerce_to_simple_array (fromval);
2508
88e3b34b 2509 if (!deprecated_value_modifiable (toval))
323e0a4a 2510 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2511
d2e4a39e 2512 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2513 && bits > 0
d2e4a39e 2514 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2515 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2516 {
df407dfe
AC
2517 int len = (value_bitpos (toval)
2518 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2519 int from_size;
948f8e3d 2520 gdb_byte *buffer = alloca (len);
d2e4a39e 2521 struct value *val;
42ae5230 2522 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2523
2524 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2525 fromval = value_cast (type, fromval);
14f9c5c9 2526
52ce6436 2527 read_memory (to_addr, buffer, len);
aced2898
PH
2528 from_size = value_bitsize (fromval);
2529 if (from_size == 0)
2530 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2531 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2532 move_bits (buffer, value_bitpos (toval),
50810684 2533 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2534 else
50810684
UW
2535 move_bits (buffer, value_bitpos (toval),
2536 value_contents (fromval), 0, bits, 0);
972daa01 2537 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2538
14f9c5c9 2539 val = value_copy (toval);
0fd88904 2540 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2541 TYPE_LENGTH (type));
04624583 2542 deprecated_set_value_type (val, type);
d2e4a39e 2543
14f9c5c9
AS
2544 return val;
2545 }
2546
2547 return value_assign (toval, fromval);
2548}
2549
2550
52ce6436
PH
2551/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2552 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2553 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2554 * COMPONENT, and not the inferior's memory. The current contents
2555 * of COMPONENT are ignored. */
2556static void
2557value_assign_to_component (struct value *container, struct value *component,
2558 struct value *val)
2559{
2560 LONGEST offset_in_container =
42ae5230 2561 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2562 int bit_offset_in_container =
2563 value_bitpos (component) - value_bitpos (container);
2564 int bits;
2565
2566 val = value_cast (value_type (component), val);
2567
2568 if (value_bitsize (component) == 0)
2569 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2570 else
2571 bits = value_bitsize (component);
2572
50810684 2573 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2574 move_bits (value_contents_writeable (container) + offset_in_container,
2575 value_bitpos (container) + bit_offset_in_container,
2576 value_contents (val),
2577 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2578 bits, 1);
52ce6436
PH
2579 else
2580 move_bits (value_contents_writeable (container) + offset_in_container,
2581 value_bitpos (container) + bit_offset_in_container,
50810684 2582 value_contents (val), 0, bits, 0);
52ce6436
PH
2583}
2584
4c4b4cd2
PH
2585/* The value of the element of array ARR at the ARITY indices given in IND.
2586 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2587 thereto. */
2588
d2e4a39e
AS
2589struct value *
2590ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2591{
2592 int k;
d2e4a39e
AS
2593 struct value *elt;
2594 struct type *elt_type;
14f9c5c9
AS
2595
2596 elt = ada_coerce_to_simple_array (arr);
2597
df407dfe 2598 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2599 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2600 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2601 return value_subscript_packed (elt, arity, ind);
2602
2603 for (k = 0; k < arity; k += 1)
2604 {
2605 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2606 error (_("too many subscripts (%d expected)"), k);
2497b498 2607 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2608 }
2609 return elt;
2610}
2611
2612/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2613 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2614 IND. Does not read the entire array into memory. */
14f9c5c9 2615
2c0b251b 2616static struct value *
d2e4a39e 2617ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2618 struct value **ind)
14f9c5c9
AS
2619{
2620 int k;
2621
2622 for (k = 0; k < arity; k += 1)
2623 {
2624 LONGEST lwb, upb;
14f9c5c9
AS
2625
2626 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2627 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2628 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2629 value_copy (arr));
14f9c5c9 2630 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2631 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2632 type = TYPE_TARGET_TYPE (type);
2633 }
2634
2635 return value_ind (arr);
2636}
2637
0b5d8877 2638/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2639 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2640 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2641 per Ada rules. */
0b5d8877 2642static struct value *
f5938064
JG
2643ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2644 int low, int high)
0b5d8877 2645{
b0dd7688 2646 struct type *type0 = ada_check_typedef (type);
6c038f32 2647 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2648 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2649 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2650 struct type *index_type =
b0dd7688 2651 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2652 low, high);
6c038f32 2653 struct type *slice_type =
b0dd7688 2654 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2655
f5938064 2656 return value_at_lazy (slice_type, base);
0b5d8877
PH
2657}
2658
2659
2660static struct value *
2661ada_value_slice (struct value *array, int low, int high)
2662{
b0dd7688 2663 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2664 struct type *index_type =
0b5d8877 2665 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2666 struct type *slice_type =
0b5d8877 2667 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2668
6c038f32 2669 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2670}
2671
14f9c5c9
AS
2672/* If type is a record type in the form of a standard GNAT array
2673 descriptor, returns the number of dimensions for type. If arr is a
2674 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2675 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2676
2677int
d2e4a39e 2678ada_array_arity (struct type *type)
14f9c5c9
AS
2679{
2680 int arity;
2681
2682 if (type == NULL)
2683 return 0;
2684
2685 type = desc_base_type (type);
2686
2687 arity = 0;
d2e4a39e 2688 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2689 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2690 else
2691 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2692 {
4c4b4cd2 2693 arity += 1;
61ee279c 2694 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2695 }
d2e4a39e 2696
14f9c5c9
AS
2697 return arity;
2698}
2699
2700/* If TYPE is a record type in the form of a standard GNAT array
2701 descriptor or a simple array type, returns the element type for
2702 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2703 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2704
d2e4a39e
AS
2705struct type *
2706ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2707{
2708 type = desc_base_type (type);
2709
d2e4a39e 2710 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2711 {
2712 int k;
d2e4a39e 2713 struct type *p_array_type;
14f9c5c9 2714
556bdfd4 2715 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2716
2717 k = ada_array_arity (type);
2718 if (k == 0)
4c4b4cd2 2719 return NULL;
d2e4a39e 2720
4c4b4cd2 2721 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2722 if (nindices >= 0 && k > nindices)
4c4b4cd2 2723 k = nindices;
d2e4a39e 2724 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2725 {
61ee279c 2726 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2727 k -= 1;
2728 }
14f9c5c9
AS
2729 return p_array_type;
2730 }
2731 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2732 {
2733 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2734 {
2735 type = TYPE_TARGET_TYPE (type);
2736 nindices -= 1;
2737 }
14f9c5c9
AS
2738 return type;
2739 }
2740
2741 return NULL;
2742}
2743
4c4b4cd2 2744/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2745 Does not examine memory. Throws an error if N is invalid or TYPE
2746 is not an array type. NAME is the name of the Ada attribute being
2747 evaluated ('range, 'first, 'last, or 'length); it is used in building
2748 the error message. */
14f9c5c9 2749
1eea4ebd
UW
2750static struct type *
2751ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2752{
4c4b4cd2
PH
2753 struct type *result_type;
2754
14f9c5c9
AS
2755 type = desc_base_type (type);
2756
1eea4ebd
UW
2757 if (n < 0 || n > ada_array_arity (type))
2758 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2759
4c4b4cd2 2760 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2761 {
2762 int i;
2763
2764 for (i = 1; i < n; i += 1)
4c4b4cd2 2765 type = TYPE_TARGET_TYPE (type);
262452ec 2766 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2767 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2768 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2769 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2770 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2771 result_type = NULL;
14f9c5c9 2772 }
d2e4a39e 2773 else
1eea4ebd
UW
2774 {
2775 result_type = desc_index_type (desc_bounds_type (type), n);
2776 if (result_type == NULL)
2777 error (_("attempt to take bound of something that is not an array"));
2778 }
2779
2780 return result_type;
14f9c5c9
AS
2781}
2782
2783/* Given that arr is an array type, returns the lower bound of the
2784 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2785 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2786 array-descriptor type. It works for other arrays with bounds supplied
2787 by run-time quantities other than discriminants. */
14f9c5c9 2788
abb68b3e 2789static LONGEST
1eea4ebd 2790ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2791{
1ce677a4 2792 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2793 int i;
262452ec
JK
2794
2795 gdb_assert (which == 0 || which == 1);
14f9c5c9 2796
ad82864c
JB
2797 if (ada_is_constrained_packed_array_type (arr_type))
2798 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2799
4c4b4cd2 2800 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2801 return (LONGEST) - which;
14f9c5c9
AS
2802
2803 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2804 type = TYPE_TARGET_TYPE (arr_type);
2805 else
2806 type = arr_type;
2807
1ce677a4
UW
2808 elt_type = type;
2809 for (i = n; i > 1; i--)
2810 elt_type = TYPE_TARGET_TYPE (type);
2811
14f9c5c9 2812 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2813 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2814 if (index_type_desc != NULL)
28c85d6c
JB
2815 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2816 NULL);
262452ec 2817 else
1ce677a4 2818 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2819
43bbcdc2
PH
2820 return
2821 (LONGEST) (which == 0
2822 ? ada_discrete_type_low_bound (index_type)
2823 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2824}
2825
2826/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2827 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2828 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2829 supplied by run-time quantities other than discriminants. */
14f9c5c9 2830
1eea4ebd 2831static LONGEST
4dc81987 2832ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2833{
df407dfe 2834 struct type *arr_type = value_type (arr);
14f9c5c9 2835
ad82864c
JB
2836 if (ada_is_constrained_packed_array_type (arr_type))
2837 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2838 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2839 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2840 else
1eea4ebd 2841 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2842}
2843
2844/* Given that arr is an array value, returns the length of the
2845 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2846 supplied by run-time quantities other than discriminants.
2847 Does not work for arrays indexed by enumeration types with representation
2848 clauses at the moment. */
14f9c5c9 2849
1eea4ebd 2850static LONGEST
d2e4a39e 2851ada_array_length (struct value *arr, int n)
14f9c5c9 2852{
df407dfe 2853 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2854
ad82864c
JB
2855 if (ada_is_constrained_packed_array_type (arr_type))
2856 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2857
4c4b4cd2 2858 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2859 return (ada_array_bound_from_type (arr_type, n, 1)
2860 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2861 else
1eea4ebd
UW
2862 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2863 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2864}
2865
2866/* An empty array whose type is that of ARR_TYPE (an array type),
2867 with bounds LOW to LOW-1. */
2868
2869static struct value *
2870empty_array (struct type *arr_type, int low)
2871{
b0dd7688 2872 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2873 struct type *index_type =
b0dd7688 2874 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2875 low, low - 1);
b0dd7688 2876 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2877
0b5d8877 2878 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2879}
14f9c5c9 2880\f
d2e4a39e 2881
4c4b4cd2 2882 /* Name resolution */
14f9c5c9 2883
4c4b4cd2
PH
2884/* The "decoded" name for the user-definable Ada operator corresponding
2885 to OP. */
14f9c5c9 2886
d2e4a39e 2887static const char *
4c4b4cd2 2888ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2889{
2890 int i;
2891
4c4b4cd2 2892 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2893 {
2894 if (ada_opname_table[i].op == op)
4c4b4cd2 2895 return ada_opname_table[i].decoded;
14f9c5c9 2896 }
323e0a4a 2897 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2898}
2899
2900
4c4b4cd2
PH
2901/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2902 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2903 undefined namespace) and converts operators that are
2904 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2905 non-null, it provides a preferred result type [at the moment, only
2906 type void has any effect---causing procedures to be preferred over
2907 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2908 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2909
4c4b4cd2
PH
2910static void
2911resolve (struct expression **expp, int void_context_p)
14f9c5c9 2912{
30b15541
UW
2913 struct type *context_type = NULL;
2914 int pc = 0;
2915
2916 if (void_context_p)
2917 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2918
2919 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2920}
2921
4c4b4cd2
PH
2922/* Resolve the operator of the subexpression beginning at
2923 position *POS of *EXPP. "Resolving" consists of replacing
2924 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2925 with their resolutions, replacing built-in operators with
2926 function calls to user-defined operators, where appropriate, and,
2927 when DEPROCEDURE_P is non-zero, converting function-valued variables
2928 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2929 are as in ada_resolve, above. */
14f9c5c9 2930
d2e4a39e 2931static struct value *
4c4b4cd2 2932resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2933 struct type *context_type)
14f9c5c9
AS
2934{
2935 int pc = *pos;
2936 int i;
4c4b4cd2 2937 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2938 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2939 struct value **argvec; /* Vector of operand types (alloca'ed). */
2940 int nargs; /* Number of operands. */
52ce6436 2941 int oplen;
14f9c5c9
AS
2942
2943 argvec = NULL;
2944 nargs = 0;
2945 exp = *expp;
2946
52ce6436
PH
2947 /* Pass one: resolve operands, saving their types and updating *pos,
2948 if needed. */
14f9c5c9
AS
2949 switch (op)
2950 {
4c4b4cd2
PH
2951 case OP_FUNCALL:
2952 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2953 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2954 *pos += 7;
4c4b4cd2
PH
2955 else
2956 {
2957 *pos += 3;
2958 resolve_subexp (expp, pos, 0, NULL);
2959 }
2960 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2961 break;
2962
14f9c5c9 2963 case UNOP_ADDR:
4c4b4cd2
PH
2964 *pos += 1;
2965 resolve_subexp (expp, pos, 0, NULL);
2966 break;
2967
52ce6436
PH
2968 case UNOP_QUAL:
2969 *pos += 3;
17466c1a 2970 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2971 break;
2972
52ce6436 2973 case OP_ATR_MODULUS:
4c4b4cd2
PH
2974 case OP_ATR_SIZE:
2975 case OP_ATR_TAG:
4c4b4cd2
PH
2976 case OP_ATR_FIRST:
2977 case OP_ATR_LAST:
2978 case OP_ATR_LENGTH:
2979 case OP_ATR_POS:
2980 case OP_ATR_VAL:
4c4b4cd2
PH
2981 case OP_ATR_MIN:
2982 case OP_ATR_MAX:
52ce6436
PH
2983 case TERNOP_IN_RANGE:
2984 case BINOP_IN_BOUNDS:
2985 case UNOP_IN_RANGE:
2986 case OP_AGGREGATE:
2987 case OP_OTHERS:
2988 case OP_CHOICES:
2989 case OP_POSITIONAL:
2990 case OP_DISCRETE_RANGE:
2991 case OP_NAME:
2992 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2993 *pos += oplen;
14f9c5c9
AS
2994 break;
2995
2996 case BINOP_ASSIGN:
2997 {
4c4b4cd2
PH
2998 struct value *arg1;
2999
3000 *pos += 1;
3001 arg1 = resolve_subexp (expp, pos, 0, NULL);
3002 if (arg1 == NULL)
3003 resolve_subexp (expp, pos, 1, NULL);
3004 else
df407dfe 3005 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3006 break;
14f9c5c9
AS
3007 }
3008
4c4b4cd2 3009 case UNOP_CAST:
4c4b4cd2
PH
3010 *pos += 3;
3011 nargs = 1;
3012 break;
14f9c5c9 3013
4c4b4cd2
PH
3014 case BINOP_ADD:
3015 case BINOP_SUB:
3016 case BINOP_MUL:
3017 case BINOP_DIV:
3018 case BINOP_REM:
3019 case BINOP_MOD:
3020 case BINOP_EXP:
3021 case BINOP_CONCAT:
3022 case BINOP_LOGICAL_AND:
3023 case BINOP_LOGICAL_OR:
3024 case BINOP_BITWISE_AND:
3025 case BINOP_BITWISE_IOR:
3026 case BINOP_BITWISE_XOR:
14f9c5c9 3027
4c4b4cd2
PH
3028 case BINOP_EQUAL:
3029 case BINOP_NOTEQUAL:
3030 case BINOP_LESS:
3031 case BINOP_GTR:
3032 case BINOP_LEQ:
3033 case BINOP_GEQ:
14f9c5c9 3034
4c4b4cd2
PH
3035 case BINOP_REPEAT:
3036 case BINOP_SUBSCRIPT:
3037 case BINOP_COMMA:
40c8aaa9
JB
3038 *pos += 1;
3039 nargs = 2;
3040 break;
14f9c5c9 3041
4c4b4cd2
PH
3042 case UNOP_NEG:
3043 case UNOP_PLUS:
3044 case UNOP_LOGICAL_NOT:
3045 case UNOP_ABS:
3046 case UNOP_IND:
3047 *pos += 1;
3048 nargs = 1;
3049 break;
14f9c5c9 3050
4c4b4cd2
PH
3051 case OP_LONG:
3052 case OP_DOUBLE:
3053 case OP_VAR_VALUE:
3054 *pos += 4;
3055 break;
14f9c5c9 3056
4c4b4cd2
PH
3057 case OP_TYPE:
3058 case OP_BOOL:
3059 case OP_LAST:
4c4b4cd2
PH
3060 case OP_INTERNALVAR:
3061 *pos += 3;
3062 break;
14f9c5c9 3063
4c4b4cd2
PH
3064 case UNOP_MEMVAL:
3065 *pos += 3;
3066 nargs = 1;
3067 break;
3068
67f3407f
DJ
3069 case OP_REGISTER:
3070 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3071 break;
3072
4c4b4cd2
PH
3073 case STRUCTOP_STRUCT:
3074 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3075 nargs = 1;
3076 break;
3077
4c4b4cd2 3078 case TERNOP_SLICE:
4c4b4cd2
PH
3079 *pos += 1;
3080 nargs = 3;
3081 break;
3082
52ce6436 3083 case OP_STRING:
14f9c5c9 3084 break;
4c4b4cd2
PH
3085
3086 default:
323e0a4a 3087 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3088 }
3089
76a01679 3090 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3091 for (i = 0; i < nargs; i += 1)
3092 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3093 argvec[i] = NULL;
3094 exp = *expp;
3095
3096 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3097 switch (op)
3098 {
3099 default:
3100 break;
3101
14f9c5c9 3102 case OP_VAR_VALUE:
4c4b4cd2 3103 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3104 {
3105 struct ada_symbol_info *candidates;
3106 int n_candidates;
3107
3108 n_candidates =
3109 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3110 (exp->elts[pc + 2].symbol),
3111 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3112 &candidates);
76a01679
JB
3113
3114 if (n_candidates > 1)
3115 {
3116 /* Types tend to get re-introduced locally, so if there
3117 are any local symbols that are not types, first filter
3118 out all types. */
3119 int j;
3120 for (j = 0; j < n_candidates; j += 1)
3121 switch (SYMBOL_CLASS (candidates[j].sym))
3122 {
3123 case LOC_REGISTER:
3124 case LOC_ARG:
3125 case LOC_REF_ARG:
76a01679
JB
3126 case LOC_REGPARM_ADDR:
3127 case LOC_LOCAL:
76a01679 3128 case LOC_COMPUTED:
76a01679
JB
3129 goto FoundNonType;
3130 default:
3131 break;
3132 }
3133 FoundNonType:
3134 if (j < n_candidates)
3135 {
3136 j = 0;
3137 while (j < n_candidates)
3138 {
3139 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3140 {
3141 candidates[j] = candidates[n_candidates - 1];
3142 n_candidates -= 1;
3143 }
3144 else
3145 j += 1;
3146 }
3147 }
3148 }
3149
3150 if (n_candidates == 0)
323e0a4a 3151 error (_("No definition found for %s"),
76a01679
JB
3152 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3153 else if (n_candidates == 1)
3154 i = 0;
3155 else if (deprocedure_p
3156 && !is_nonfunction (candidates, n_candidates))
3157 {
06d5cf63
JB
3158 i = ada_resolve_function
3159 (candidates, n_candidates, NULL, 0,
3160 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3161 context_type);
76a01679 3162 if (i < 0)
323e0a4a 3163 error (_("Could not find a match for %s"),
76a01679
JB
3164 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3165 }
3166 else
3167 {
323e0a4a 3168 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3169 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3170 user_select_syms (candidates, n_candidates, 1);
3171 i = 0;
3172 }
3173
3174 exp->elts[pc + 1].block = candidates[i].block;
3175 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3176 if (innermost_block == NULL
3177 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3178 innermost_block = candidates[i].block;
3179 }
3180
3181 if (deprocedure_p
3182 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3183 == TYPE_CODE_FUNC))
3184 {
3185 replace_operator_with_call (expp, pc, 0, 0,
3186 exp->elts[pc + 2].symbol,
3187 exp->elts[pc + 1].block);
3188 exp = *expp;
3189 }
14f9c5c9
AS
3190 break;
3191
3192 case OP_FUNCALL:
3193 {
4c4b4cd2 3194 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3195 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3196 {
3197 struct ada_symbol_info *candidates;
3198 int n_candidates;
3199
3200 n_candidates =
76a01679
JB
3201 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3202 (exp->elts[pc + 5].symbol),
3203 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3204 &candidates);
4c4b4cd2
PH
3205 if (n_candidates == 1)
3206 i = 0;
3207 else
3208 {
06d5cf63
JB
3209 i = ada_resolve_function
3210 (candidates, n_candidates,
3211 argvec, nargs,
3212 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3213 context_type);
4c4b4cd2 3214 if (i < 0)
323e0a4a 3215 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3216 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3217 }
3218
3219 exp->elts[pc + 4].block = candidates[i].block;
3220 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3221 if (innermost_block == NULL
3222 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3223 innermost_block = candidates[i].block;
3224 }
14f9c5c9
AS
3225 }
3226 break;
3227 case BINOP_ADD:
3228 case BINOP_SUB:
3229 case BINOP_MUL:
3230 case BINOP_DIV:
3231 case BINOP_REM:
3232 case BINOP_MOD:
3233 case BINOP_CONCAT:
3234 case BINOP_BITWISE_AND:
3235 case BINOP_BITWISE_IOR:
3236 case BINOP_BITWISE_XOR:
3237 case BINOP_EQUAL:
3238 case BINOP_NOTEQUAL:
3239 case BINOP_LESS:
3240 case BINOP_GTR:
3241 case BINOP_LEQ:
3242 case BINOP_GEQ:
3243 case BINOP_EXP:
3244 case UNOP_NEG:
3245 case UNOP_PLUS:
3246 case UNOP_LOGICAL_NOT:
3247 case UNOP_ABS:
3248 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3249 {
3250 struct ada_symbol_info *candidates;
3251 int n_candidates;
3252
3253 n_candidates =
3254 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3255 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3256 &candidates);
4c4b4cd2 3257 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3258 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3259 if (i < 0)
3260 break;
3261
76a01679
JB
3262 replace_operator_with_call (expp, pc, nargs, 1,
3263 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3264 exp = *expp;
3265 }
14f9c5c9 3266 break;
4c4b4cd2
PH
3267
3268 case OP_TYPE:
b3dbf008 3269 case OP_REGISTER:
4c4b4cd2 3270 return NULL;
14f9c5c9
AS
3271 }
3272
3273 *pos = pc;
3274 return evaluate_subexp_type (exp, pos);
3275}
3276
3277/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3278 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3279 a non-pointer. */
14f9c5c9 3280/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3281 liberal. */
14f9c5c9
AS
3282
3283static int
4dc81987 3284ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3285{
61ee279c
PH
3286 ftype = ada_check_typedef (ftype);
3287 atype = ada_check_typedef (atype);
14f9c5c9
AS
3288
3289 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3290 ftype = TYPE_TARGET_TYPE (ftype);
3291 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3292 atype = TYPE_TARGET_TYPE (atype);
3293
d2e4a39e 3294 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3295 {
3296 default:
5b3d5b7d 3297 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3298 case TYPE_CODE_PTR:
3299 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3300 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3301 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3302 else
1265e4aa
JB
3303 return (may_deref
3304 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3305 case TYPE_CODE_INT:
3306 case TYPE_CODE_ENUM:
3307 case TYPE_CODE_RANGE:
3308 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3309 {
3310 case TYPE_CODE_INT:
3311 case TYPE_CODE_ENUM:
3312 case TYPE_CODE_RANGE:
3313 return 1;
3314 default:
3315 return 0;
3316 }
14f9c5c9
AS
3317
3318 case TYPE_CODE_ARRAY:
d2e4a39e 3319 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3320 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3321
3322 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3323 if (ada_is_array_descriptor_type (ftype))
3324 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3325 || ada_is_array_descriptor_type (atype));
14f9c5c9 3326 else
4c4b4cd2
PH
3327 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3328 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3329
3330 case TYPE_CODE_UNION:
3331 case TYPE_CODE_FLT:
3332 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3333 }
3334}
3335
3336/* Return non-zero if the formals of FUNC "sufficiently match" the
3337 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3338 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3339 argument function. */
14f9c5c9
AS
3340
3341static int
d2e4a39e 3342ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3343{
3344 int i;
d2e4a39e 3345 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3346
1265e4aa
JB
3347 if (SYMBOL_CLASS (func) == LOC_CONST
3348 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3349 return (n_actuals == 0);
3350 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3351 return 0;
3352
3353 if (TYPE_NFIELDS (func_type) != n_actuals)
3354 return 0;
3355
3356 for (i = 0; i < n_actuals; i += 1)
3357 {
4c4b4cd2 3358 if (actuals[i] == NULL)
76a01679
JB
3359 return 0;
3360 else
3361 {
5b4ee69b
MS
3362 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3363 i));
df407dfe 3364 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3365
76a01679
JB
3366 if (!ada_type_match (ftype, atype, 1))
3367 return 0;
3368 }
14f9c5c9
AS
3369 }
3370 return 1;
3371}
3372
3373/* False iff function type FUNC_TYPE definitely does not produce a value
3374 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3375 FUNC_TYPE is not a valid function type with a non-null return type
3376 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3377
3378static int
d2e4a39e 3379return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3380{
d2e4a39e 3381 struct type *return_type;
14f9c5c9
AS
3382
3383 if (func_type == NULL)
3384 return 1;
3385
4c4b4cd2 3386 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3387 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3388 else
18af8284 3389 return_type = get_base_type (func_type);
14f9c5c9
AS
3390 if (return_type == NULL)
3391 return 1;
3392
18af8284 3393 context_type = get_base_type (context_type);
14f9c5c9
AS
3394
3395 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3396 return context_type == NULL || return_type == context_type;
3397 else if (context_type == NULL)
3398 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3399 else
3400 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3401}
3402
3403
4c4b4cd2 3404/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3405 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3406 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3407 that returns that type, then eliminate matches that don't. If
3408 CONTEXT_TYPE is void and there is at least one match that does not
3409 return void, eliminate all matches that do.
3410
14f9c5c9
AS
3411 Asks the user if there is more than one match remaining. Returns -1
3412 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3413 solely for messages. May re-arrange and modify SYMS in
3414 the process; the index returned is for the modified vector. */
14f9c5c9 3415
4c4b4cd2
PH
3416static int
3417ada_resolve_function (struct ada_symbol_info syms[],
3418 int nsyms, struct value **args, int nargs,
3419 const char *name, struct type *context_type)
14f9c5c9 3420{
30b15541 3421 int fallback;
14f9c5c9 3422 int k;
4c4b4cd2 3423 int m; /* Number of hits */
14f9c5c9 3424
d2e4a39e 3425 m = 0;
30b15541
UW
3426 /* In the first pass of the loop, we only accept functions matching
3427 context_type. If none are found, we add a second pass of the loop
3428 where every function is accepted. */
3429 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3430 {
3431 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3432 {
61ee279c 3433 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3434
3435 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3436 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3437 {
3438 syms[m] = syms[k];
3439 m += 1;
3440 }
3441 }
14f9c5c9
AS
3442 }
3443
3444 if (m == 0)
3445 return -1;
3446 else if (m > 1)
3447 {
323e0a4a 3448 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3449 user_select_syms (syms, m, 1);
14f9c5c9
AS
3450 return 0;
3451 }
3452 return 0;
3453}
3454
4c4b4cd2
PH
3455/* Returns true (non-zero) iff decoded name N0 should appear before N1
3456 in a listing of choices during disambiguation (see sort_choices, below).
3457 The idea is that overloadings of a subprogram name from the
3458 same package should sort in their source order. We settle for ordering
3459 such symbols by their trailing number (__N or $N). */
3460
14f9c5c9 3461static int
0d5cff50 3462encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3463{
3464 if (N1 == NULL)
3465 return 0;
3466 else if (N0 == NULL)
3467 return 1;
3468 else
3469 {
3470 int k0, k1;
5b4ee69b 3471
d2e4a39e 3472 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3473 ;
d2e4a39e 3474 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3475 ;
d2e4a39e 3476 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3477 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3478 {
3479 int n0, n1;
5b4ee69b 3480
4c4b4cd2
PH
3481 n0 = k0;
3482 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3483 n0 -= 1;
3484 n1 = k1;
3485 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3486 n1 -= 1;
3487 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3488 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3489 }
14f9c5c9
AS
3490 return (strcmp (N0, N1) < 0);
3491 }
3492}
d2e4a39e 3493
4c4b4cd2
PH
3494/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3495 encoded names. */
3496
d2e4a39e 3497static void
4c4b4cd2 3498sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3499{
4c4b4cd2 3500 int i;
5b4ee69b 3501
d2e4a39e 3502 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3503 {
4c4b4cd2 3504 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3505 int j;
3506
d2e4a39e 3507 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3508 {
3509 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3510 SYMBOL_LINKAGE_NAME (sym.sym)))
3511 break;
3512 syms[j + 1] = syms[j];
3513 }
d2e4a39e 3514 syms[j + 1] = sym;
14f9c5c9
AS
3515 }
3516}
3517
4c4b4cd2
PH
3518/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3519 by asking the user (if necessary), returning the number selected,
3520 and setting the first elements of SYMS items. Error if no symbols
3521 selected. */
14f9c5c9
AS
3522
3523/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3524 to be re-integrated one of these days. */
14f9c5c9
AS
3525
3526int
4c4b4cd2 3527user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3528{
3529 int i;
d2e4a39e 3530 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3531 int n_chosen;
3532 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3533 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3534
3535 if (max_results < 1)
323e0a4a 3536 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3537 if (nsyms <= 1)
3538 return nsyms;
3539
717d2f5a
JB
3540 if (select_mode == multiple_symbols_cancel)
3541 error (_("\
3542canceled because the command is ambiguous\n\
3543See set/show multiple-symbol."));
3544
3545 /* If select_mode is "all", then return all possible symbols.
3546 Only do that if more than one symbol can be selected, of course.
3547 Otherwise, display the menu as usual. */
3548 if (select_mode == multiple_symbols_all && max_results > 1)
3549 return nsyms;
3550
323e0a4a 3551 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3552 if (max_results > 1)
323e0a4a 3553 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3554
4c4b4cd2 3555 sort_choices (syms, nsyms);
14f9c5c9
AS
3556
3557 for (i = 0; i < nsyms; i += 1)
3558 {
4c4b4cd2
PH
3559 if (syms[i].sym == NULL)
3560 continue;
3561
3562 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3563 {
76a01679
JB
3564 struct symtab_and_line sal =
3565 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3566
323e0a4a
AC
3567 if (sal.symtab == NULL)
3568 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3569 i + first_choice,
3570 SYMBOL_PRINT_NAME (syms[i].sym),
3571 sal.line);
3572 else
3573 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3574 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3575 symtab_to_filename_for_display (sal.symtab),
3576 sal.line);
4c4b4cd2
PH
3577 continue;
3578 }
d2e4a39e 3579 else
4c4b4cd2
PH
3580 {
3581 int is_enumeral =
3582 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3583 && SYMBOL_TYPE (syms[i].sym) != NULL
3584 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3585 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3586
3587 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3588 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3589 i + first_choice,
3590 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3591 symtab_to_filename_for_display (symtab),
3592 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3593 else if (is_enumeral
3594 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3595 {
a3f17187 3596 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3597 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3598 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3599 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3600 SYMBOL_PRINT_NAME (syms[i].sym));
3601 }
3602 else if (symtab != NULL)
3603 printf_unfiltered (is_enumeral
323e0a4a
AC
3604 ? _("[%d] %s in %s (enumeral)\n")
3605 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3606 i + first_choice,
3607 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3608 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3609 else
3610 printf_unfiltered (is_enumeral
323e0a4a
AC
3611 ? _("[%d] %s (enumeral)\n")
3612 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3613 i + first_choice,
3614 SYMBOL_PRINT_NAME (syms[i].sym));
3615 }
14f9c5c9 3616 }
d2e4a39e 3617
14f9c5c9 3618 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3619 "overload-choice");
14f9c5c9
AS
3620
3621 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3622 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3623
3624 return n_chosen;
3625}
3626
3627/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3628 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3629 order in CHOICES[0 .. N-1], and return N.
3630
3631 The user types choices as a sequence of numbers on one line
3632 separated by blanks, encoding them as follows:
3633
4c4b4cd2 3634 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3635 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3636 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3637
4c4b4cd2 3638 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3639
3640 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3641 prompts (for use with the -f switch). */
14f9c5c9
AS
3642
3643int
d2e4a39e 3644get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3645 int is_all_choice, char *annotation_suffix)
14f9c5c9 3646{
d2e4a39e 3647 char *args;
0bcd0149 3648 char *prompt;
14f9c5c9
AS
3649 int n_chosen;
3650 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3651
14f9c5c9
AS
3652 prompt = getenv ("PS2");
3653 if (prompt == NULL)
0bcd0149 3654 prompt = "> ";
14f9c5c9 3655
0bcd0149 3656 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3657
14f9c5c9 3658 if (args == NULL)
323e0a4a 3659 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3660
3661 n_chosen = 0;
76a01679 3662
4c4b4cd2
PH
3663 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3664 order, as given in args. Choices are validated. */
14f9c5c9
AS
3665 while (1)
3666 {
d2e4a39e 3667 char *args2;
14f9c5c9
AS
3668 int choice, j;
3669
0fcd72ba 3670 args = skip_spaces (args);
14f9c5c9 3671 if (*args == '\0' && n_chosen == 0)
323e0a4a 3672 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3673 else if (*args == '\0')
4c4b4cd2 3674 break;
14f9c5c9
AS
3675
3676 choice = strtol (args, &args2, 10);
d2e4a39e 3677 if (args == args2 || choice < 0
4c4b4cd2 3678 || choice > n_choices + first_choice - 1)
323e0a4a 3679 error (_("Argument must be choice number"));
14f9c5c9
AS
3680 args = args2;
3681
d2e4a39e 3682 if (choice == 0)
323e0a4a 3683 error (_("cancelled"));
14f9c5c9
AS
3684
3685 if (choice < first_choice)
4c4b4cd2
PH
3686 {
3687 n_chosen = n_choices;
3688 for (j = 0; j < n_choices; j += 1)
3689 choices[j] = j;
3690 break;
3691 }
14f9c5c9
AS
3692 choice -= first_choice;
3693
d2e4a39e 3694 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3695 {
3696 }
14f9c5c9
AS
3697
3698 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3699 {
3700 int k;
5b4ee69b 3701
4c4b4cd2
PH
3702 for (k = n_chosen - 1; k > j; k -= 1)
3703 choices[k + 1] = choices[k];
3704 choices[j + 1] = choice;
3705 n_chosen += 1;
3706 }
14f9c5c9
AS
3707 }
3708
3709 if (n_chosen > max_results)
323e0a4a 3710 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3711
14f9c5c9
AS
3712 return n_chosen;
3713}
3714
4c4b4cd2
PH
3715/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3716 on the function identified by SYM and BLOCK, and taking NARGS
3717 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3718
3719static void
d2e4a39e 3720replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3721 int oplen, struct symbol *sym,
270140bd 3722 const struct block *block)
14f9c5c9
AS
3723{
3724 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3725 symbol, -oplen for operator being replaced). */
d2e4a39e 3726 struct expression *newexp = (struct expression *)
8c1a34e7 3727 xzalloc (sizeof (struct expression)
4c4b4cd2 3728 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3729 struct expression *exp = *expp;
14f9c5c9
AS
3730
3731 newexp->nelts = exp->nelts + 7 - oplen;
3732 newexp->language_defn = exp->language_defn;
3489610d 3733 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3734 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3735 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3736 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3737
3738 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3739 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3740
3741 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3742 newexp->elts[pc + 4].block = block;
3743 newexp->elts[pc + 5].symbol = sym;
3744
3745 *expp = newexp;
aacb1f0a 3746 xfree (exp);
d2e4a39e 3747}
14f9c5c9
AS
3748
3749/* Type-class predicates */
3750
4c4b4cd2
PH
3751/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3752 or FLOAT). */
14f9c5c9
AS
3753
3754static int
d2e4a39e 3755numeric_type_p (struct type *type)
14f9c5c9
AS
3756{
3757 if (type == NULL)
3758 return 0;
d2e4a39e
AS
3759 else
3760 {
3761 switch (TYPE_CODE (type))
4c4b4cd2
PH
3762 {
3763 case TYPE_CODE_INT:
3764 case TYPE_CODE_FLT:
3765 return 1;
3766 case TYPE_CODE_RANGE:
3767 return (type == TYPE_TARGET_TYPE (type)
3768 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3769 default:
3770 return 0;
3771 }
d2e4a39e 3772 }
14f9c5c9
AS
3773}
3774
4c4b4cd2 3775/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3776
3777static int
d2e4a39e 3778integer_type_p (struct type *type)
14f9c5c9
AS
3779{
3780 if (type == NULL)
3781 return 0;
d2e4a39e
AS
3782 else
3783 {
3784 switch (TYPE_CODE (type))
4c4b4cd2
PH
3785 {
3786 case TYPE_CODE_INT:
3787 return 1;
3788 case TYPE_CODE_RANGE:
3789 return (type == TYPE_TARGET_TYPE (type)
3790 || integer_type_p (TYPE_TARGET_TYPE (type)));
3791 default:
3792 return 0;
3793 }
d2e4a39e 3794 }
14f9c5c9
AS
3795}
3796
4c4b4cd2 3797/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3798
3799static int
d2e4a39e 3800scalar_type_p (struct type *type)
14f9c5c9
AS
3801{
3802 if (type == NULL)
3803 return 0;
d2e4a39e
AS
3804 else
3805 {
3806 switch (TYPE_CODE (type))
4c4b4cd2
PH
3807 {
3808 case TYPE_CODE_INT:
3809 case TYPE_CODE_RANGE:
3810 case TYPE_CODE_ENUM:
3811 case TYPE_CODE_FLT:
3812 return 1;
3813 default:
3814 return 0;
3815 }
d2e4a39e 3816 }
14f9c5c9
AS
3817}
3818
4c4b4cd2 3819/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3820
3821static int
d2e4a39e 3822discrete_type_p (struct type *type)
14f9c5c9
AS
3823{
3824 if (type == NULL)
3825 return 0;
d2e4a39e
AS
3826 else
3827 {
3828 switch (TYPE_CODE (type))
4c4b4cd2
PH
3829 {
3830 case TYPE_CODE_INT:
3831 case TYPE_CODE_RANGE:
3832 case TYPE_CODE_ENUM:
872f0337 3833 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3834 return 1;
3835 default:
3836 return 0;
3837 }
d2e4a39e 3838 }
14f9c5c9
AS
3839}
3840
4c4b4cd2
PH
3841/* Returns non-zero if OP with operands in the vector ARGS could be
3842 a user-defined function. Errs on the side of pre-defined operators
3843 (i.e., result 0). */
14f9c5c9
AS
3844
3845static int
d2e4a39e 3846possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3847{
76a01679 3848 struct type *type0 =
df407dfe 3849 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3850 struct type *type1 =
df407dfe 3851 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3852
4c4b4cd2
PH
3853 if (type0 == NULL)
3854 return 0;
3855
14f9c5c9
AS
3856 switch (op)
3857 {
3858 default:
3859 return 0;
3860
3861 case BINOP_ADD:
3862 case BINOP_SUB:
3863 case BINOP_MUL:
3864 case BINOP_DIV:
d2e4a39e 3865 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3866
3867 case BINOP_REM:
3868 case BINOP_MOD:
3869 case BINOP_BITWISE_AND:
3870 case BINOP_BITWISE_IOR:
3871 case BINOP_BITWISE_XOR:
d2e4a39e 3872 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3873
3874 case BINOP_EQUAL:
3875 case BINOP_NOTEQUAL:
3876 case BINOP_LESS:
3877 case BINOP_GTR:
3878 case BINOP_LEQ:
3879 case BINOP_GEQ:
d2e4a39e 3880 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3881
3882 case BINOP_CONCAT:
ee90b9ab 3883 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3884
3885 case BINOP_EXP:
d2e4a39e 3886 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3887
3888 case UNOP_NEG:
3889 case UNOP_PLUS:
3890 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3891 case UNOP_ABS:
3892 return (!numeric_type_p (type0));
14f9c5c9
AS
3893
3894 }
3895}
3896\f
4c4b4cd2 3897 /* Renaming */
14f9c5c9 3898
aeb5907d
JB
3899/* NOTES:
3900
3901 1. In the following, we assume that a renaming type's name may
3902 have an ___XD suffix. It would be nice if this went away at some
3903 point.
3904 2. We handle both the (old) purely type-based representation of
3905 renamings and the (new) variable-based encoding. At some point,
3906 it is devoutly to be hoped that the former goes away
3907 (FIXME: hilfinger-2007-07-09).
3908 3. Subprogram renamings are not implemented, although the XRS
3909 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3910
3911/* If SYM encodes a renaming,
3912
3913 <renaming> renames <renamed entity>,
3914
3915 sets *LEN to the length of the renamed entity's name,
3916 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3917 the string describing the subcomponent selected from the renamed
0963b4bd 3918 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3919 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3920 are undefined). Otherwise, returns a value indicating the category
3921 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3922 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3923 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3924 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3925 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3926 may be NULL, in which case they are not assigned.
3927
3928 [Currently, however, GCC does not generate subprogram renamings.] */
3929
3930enum ada_renaming_category
3931ada_parse_renaming (struct symbol *sym,
3932 const char **renamed_entity, int *len,
3933 const char **renaming_expr)
3934{
3935 enum ada_renaming_category kind;
3936 const char *info;
3937 const char *suffix;
3938
3939 if (sym == NULL)
3940 return ADA_NOT_RENAMING;
3941 switch (SYMBOL_CLASS (sym))
14f9c5c9 3942 {
aeb5907d
JB
3943 default:
3944 return ADA_NOT_RENAMING;
3945 case LOC_TYPEDEF:
3946 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3947 renamed_entity, len, renaming_expr);
3948 case LOC_LOCAL:
3949 case LOC_STATIC:
3950 case LOC_COMPUTED:
3951 case LOC_OPTIMIZED_OUT:
3952 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3953 if (info == NULL)
3954 return ADA_NOT_RENAMING;
3955 switch (info[5])
3956 {
3957 case '_':
3958 kind = ADA_OBJECT_RENAMING;
3959 info += 6;
3960 break;
3961 case 'E':
3962 kind = ADA_EXCEPTION_RENAMING;
3963 info += 7;
3964 break;
3965 case 'P':
3966 kind = ADA_PACKAGE_RENAMING;
3967 info += 7;
3968 break;
3969 case 'S':
3970 kind = ADA_SUBPROGRAM_RENAMING;
3971 info += 7;
3972 break;
3973 default:
3974 return ADA_NOT_RENAMING;
3975 }
14f9c5c9 3976 }
4c4b4cd2 3977
aeb5907d
JB
3978 if (renamed_entity != NULL)
3979 *renamed_entity = info;
3980 suffix = strstr (info, "___XE");
3981 if (suffix == NULL || suffix == info)
3982 return ADA_NOT_RENAMING;
3983 if (len != NULL)
3984 *len = strlen (info) - strlen (suffix);
3985 suffix += 5;
3986 if (renaming_expr != NULL)
3987 *renaming_expr = suffix;
3988 return kind;
3989}
3990
3991/* Assuming TYPE encodes a renaming according to the old encoding in
3992 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3993 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3994 ADA_NOT_RENAMING otherwise. */
3995static enum ada_renaming_category
3996parse_old_style_renaming (struct type *type,
3997 const char **renamed_entity, int *len,
3998 const char **renaming_expr)
3999{
4000 enum ada_renaming_category kind;
4001 const char *name;
4002 const char *info;
4003 const char *suffix;
14f9c5c9 4004
aeb5907d
JB
4005 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4006 || TYPE_NFIELDS (type) != 1)
4007 return ADA_NOT_RENAMING;
14f9c5c9 4008
aeb5907d
JB
4009 name = type_name_no_tag (type);
4010 if (name == NULL)
4011 return ADA_NOT_RENAMING;
4012
4013 name = strstr (name, "___XR");
4014 if (name == NULL)
4015 return ADA_NOT_RENAMING;
4016 switch (name[5])
4017 {
4018 case '\0':
4019 case '_':
4020 kind = ADA_OBJECT_RENAMING;
4021 break;
4022 case 'E':
4023 kind = ADA_EXCEPTION_RENAMING;
4024 break;
4025 case 'P':
4026 kind = ADA_PACKAGE_RENAMING;
4027 break;
4028 case 'S':
4029 kind = ADA_SUBPROGRAM_RENAMING;
4030 break;
4031 default:
4032 return ADA_NOT_RENAMING;
4033 }
14f9c5c9 4034
aeb5907d
JB
4035 info = TYPE_FIELD_NAME (type, 0);
4036 if (info == NULL)
4037 return ADA_NOT_RENAMING;
4038 if (renamed_entity != NULL)
4039 *renamed_entity = info;
4040 suffix = strstr (info, "___XE");
4041 if (renaming_expr != NULL)
4042 *renaming_expr = suffix + 5;
4043 if (suffix == NULL || suffix == info)
4044 return ADA_NOT_RENAMING;
4045 if (len != NULL)
4046 *len = suffix - info;
4047 return kind;
a5ee536b
JB
4048}
4049
4050/* Compute the value of the given RENAMING_SYM, which is expected to
4051 be a symbol encoding a renaming expression. BLOCK is the block
4052 used to evaluate the renaming. */
52ce6436 4053
a5ee536b
JB
4054static struct value *
4055ada_read_renaming_var_value (struct symbol *renaming_sym,
4056 struct block *block)
4057{
bbc13ae3 4058 const char *sym_name;
a5ee536b
JB
4059 struct expression *expr;
4060 struct value *value;
4061 struct cleanup *old_chain = NULL;
4062
bbc13ae3 4063 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4064 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4065 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4066 value = evaluate_expression (expr);
4067
4068 do_cleanups (old_chain);
4069 return value;
4070}
14f9c5c9 4071\f
d2e4a39e 4072
4c4b4cd2 4073 /* Evaluation: Function Calls */
14f9c5c9 4074
4c4b4cd2 4075/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4076 lvalues, and otherwise has the side-effect of allocating memory
4077 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4078
d2e4a39e 4079static struct value *
40bc484c 4080ensure_lval (struct value *val)
14f9c5c9 4081{
40bc484c
JB
4082 if (VALUE_LVAL (val) == not_lval
4083 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4084 {
df407dfe 4085 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4086 const CORE_ADDR addr =
4087 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4088
40bc484c 4089 set_value_address (val, addr);
a84a8a0d 4090 VALUE_LVAL (val) = lval_memory;
40bc484c 4091 write_memory (addr, value_contents (val), len);
c3e5cd34 4092 }
14f9c5c9
AS
4093
4094 return val;
4095}
4096
4097/* Return the value ACTUAL, converted to be an appropriate value for a
4098 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4099 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4100 values not residing in memory, updating it as needed. */
14f9c5c9 4101
a93c0eb6 4102struct value *
40bc484c 4103ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4104{
df407dfe 4105 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4106 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4107 struct type *formal_target =
4108 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4109 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4110 struct type *actual_target =
4111 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4112 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4113
4c4b4cd2 4114 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4115 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4116 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4117 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4118 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4119 {
a84a8a0d 4120 struct value *result;
5b4ee69b 4121
14f9c5c9 4122 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4123 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4124 result = desc_data (actual);
14f9c5c9 4125 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4126 {
4127 if (VALUE_LVAL (actual) != lval_memory)
4128 {
4129 struct value *val;
5b4ee69b 4130
df407dfe 4131 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4132 val = allocate_value (actual_type);
990a07ab 4133 memcpy ((char *) value_contents_raw (val),
0fd88904 4134 (char *) value_contents (actual),
4c4b4cd2 4135 TYPE_LENGTH (actual_type));
40bc484c 4136 actual = ensure_lval (val);
4c4b4cd2 4137 }
a84a8a0d 4138 result = value_addr (actual);
4c4b4cd2 4139 }
a84a8a0d
JB
4140 else
4141 return actual;
b1af9e97 4142 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4143 }
4144 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4145 return ada_value_ind (actual);
4146
4147 return actual;
4148}
4149
438c98a1
JB
4150/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155static CORE_ADDR
4156value_pointer (struct value *value, struct type *type)
4157{
4158 struct gdbarch *gdbarch = get_type_arch (type);
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = alloca (len);
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4166 return addr;
4167}
4168
14f9c5c9 4169
4c4b4cd2
PH
4170/* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
14f9c5c9 4175
d2e4a39e 4176static struct value *
40bc484c 4177make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4178{
d2e4a39e
AS
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4183 int i;
d2e4a39e 4184
0963b4bd
MS
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
14f9c5c9 4187 {
19f220c3
JK
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4196 }
d2e4a39e 4197
40bc484c 4198 bounds = ensure_lval (bounds);
d2e4a39e 4199
19f220c3
JK
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 TYPE_FIELD_TYPE (desc_type, 0)),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 TYPE_FIELD_TYPE (desc_type, 1)),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4213
40bc484c 4214 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4215
4216 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220}
14f9c5c9 4221\f
963a6417 4222/* Dummy definitions for an experimental caching module that is not
0963b4bd 4223 * used in the public sources. */
96d887e8 4224
96d887e8
PH
4225static int
4226lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4227 struct symbol **sym, struct block **block)
96d887e8
PH
4228{
4229 return 0;
4230}
4231
4232static void
4233cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4234 const struct block *block)
96d887e8
PH
4235{
4236}
4c4b4cd2
PH
4237\f
4238 /* Symbol Lookup */
4239
c0431670
JB
4240/* Return nonzero if wild matching should be used when searching for
4241 all symbols matching LOOKUP_NAME.
4242
4243 LOOKUP_NAME is expected to be a symbol name after transformation
4244 for Ada lookups (see ada_name_for_lookup). */
4245
4246static int
4247should_use_wild_match (const char *lookup_name)
4248{
4249 return (strstr (lookup_name, "__") == NULL);
4250}
4251
4c4b4cd2
PH
4252/* Return the result of a standard (literal, C-like) lookup of NAME in
4253 given DOMAIN, visible from lexical block BLOCK. */
4254
4255static struct symbol *
4256standard_lookup (const char *name, const struct block *block,
4257 domain_enum domain)
4258{
acbd605d
MGD
4259 /* Initialize it just to avoid a GCC false warning. */
4260 struct symbol *sym = NULL;
4c4b4cd2 4261
2570f2b7 4262 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4263 return sym;
2570f2b7
UW
4264 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4265 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4266 return sym;
4267}
4268
4269
4270/* Non-zero iff there is at least one non-function/non-enumeral symbol
4271 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4272 since they contend in overloading in the same way. */
4273static int
4274is_nonfunction (struct ada_symbol_info syms[], int n)
4275{
4276 int i;
4277
4278 for (i = 0; i < n; i += 1)
4279 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4280 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4281 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4282 return 1;
4283
4284 return 0;
4285}
4286
4287/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4288 struct types. Otherwise, they may not. */
14f9c5c9
AS
4289
4290static int
d2e4a39e 4291equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4292{
d2e4a39e 4293 if (type0 == type1)
14f9c5c9 4294 return 1;
d2e4a39e 4295 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4296 || TYPE_CODE (type0) != TYPE_CODE (type1))
4297 return 0;
d2e4a39e 4298 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4299 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4300 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4301 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4302 return 1;
d2e4a39e 4303
14f9c5c9
AS
4304 return 0;
4305}
4306
4307/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4308 no more defined than that of SYM1. */
14f9c5c9
AS
4309
4310static int
d2e4a39e 4311lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4312{
4313 if (sym0 == sym1)
4314 return 1;
176620f1 4315 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4316 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4317 return 0;
4318
d2e4a39e 4319 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4320 {
4321 case LOC_UNDEF:
4322 return 1;
4323 case LOC_TYPEDEF:
4324 {
4c4b4cd2
PH
4325 struct type *type0 = SYMBOL_TYPE (sym0);
4326 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4327 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4328 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4329 int len0 = strlen (name0);
5b4ee69b 4330
4c4b4cd2
PH
4331 return
4332 TYPE_CODE (type0) == TYPE_CODE (type1)
4333 && (equiv_types (type0, type1)
4334 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4335 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4336 }
4337 case LOC_CONST:
4338 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4339 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4340 default:
4341 return 0;
14f9c5c9
AS
4342 }
4343}
4344
4c4b4cd2
PH
4345/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4346 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4347
4348static void
76a01679
JB
4349add_defn_to_vec (struct obstack *obstackp,
4350 struct symbol *sym,
2570f2b7 4351 struct block *block)
14f9c5c9
AS
4352{
4353 int i;
4c4b4cd2 4354 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4355
529cad9c
PH
4356 /* Do not try to complete stub types, as the debugger is probably
4357 already scanning all symbols matching a certain name at the
4358 time when this function is called. Trying to replace the stub
4359 type by its associated full type will cause us to restart a scan
4360 which may lead to an infinite recursion. Instead, the client
4361 collecting the matching symbols will end up collecting several
4362 matches, with at least one of them complete. It can then filter
4363 out the stub ones if needed. */
4364
4c4b4cd2
PH
4365 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4366 {
4367 if (lesseq_defined_than (sym, prevDefns[i].sym))
4368 return;
4369 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4370 {
4371 prevDefns[i].sym = sym;
4372 prevDefns[i].block = block;
4c4b4cd2 4373 return;
76a01679 4374 }
4c4b4cd2
PH
4375 }
4376
4377 {
4378 struct ada_symbol_info info;
4379
4380 info.sym = sym;
4381 info.block = block;
4c4b4cd2
PH
4382 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4383 }
4384}
4385
4386/* Number of ada_symbol_info structures currently collected in
4387 current vector in *OBSTACKP. */
4388
76a01679
JB
4389static int
4390num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4391{
4392 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4393}
4394
4395/* Vector of ada_symbol_info structures currently collected in current
4396 vector in *OBSTACKP. If FINISH, close off the vector and return
4397 its final address. */
4398
76a01679 4399static struct ada_symbol_info *
4c4b4cd2
PH
4400defns_collected (struct obstack *obstackp, int finish)
4401{
4402 if (finish)
4403 return obstack_finish (obstackp);
4404 else
4405 return (struct ada_symbol_info *) obstack_base (obstackp);
4406}
4407
96d887e8 4408/* Return a minimal symbol matching NAME according to Ada decoding
2e6e0353
JB
4409 rules. Returns NULL if there is no such minimal symbol. Names
4410 prefixed with "standard__" are handled specially: "standard__" is
96d887e8 4411 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4412
96d887e8
PH
4413struct minimal_symbol *
4414ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4415{
4c4b4cd2 4416 struct objfile *objfile;
96d887e8 4417 struct minimal_symbol *msymbol;
dc4024cd 4418 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4419
c0431670
JB
4420 /* Special case: If the user specifies a symbol name inside package
4421 Standard, do a non-wild matching of the symbol name without
4422 the "standard__" prefix. This was primarily introduced in order
4423 to allow the user to specifically access the standard exceptions
4424 using, for instance, Standard.Constraint_Error when Constraint_Error
4425 is ambiguous (due to the user defining its own Constraint_Error
4426 entity inside its program). */
96d887e8 4427 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4428 name += sizeof ("standard__") - 1;
4c4b4cd2 4429
96d887e8
PH
4430 ALL_MSYMBOLS (objfile, msymbol)
4431 {
dc4024cd 4432 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8
PH
4433 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4434 return msymbol;
4435 }
4c4b4cd2 4436
96d887e8
PH
4437 return NULL;
4438}
4c4b4cd2 4439
96d887e8
PH
4440/* For all subprograms that statically enclose the subprogram of the
4441 selected frame, add symbols matching identifier NAME in DOMAIN
4442 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4443 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4444 with a wildcard prefix. */
4c4b4cd2 4445
96d887e8
PH
4446static void
4447add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4448 const char *name, domain_enum namespace,
48b78332 4449 int wild_match_p)
96d887e8 4450{
96d887e8 4451}
14f9c5c9 4452
96d887e8
PH
4453/* True if TYPE is definitely an artificial type supplied to a symbol
4454 for which no debugging information was given in the symbol file. */
14f9c5c9 4455
96d887e8
PH
4456static int
4457is_nondebugging_type (struct type *type)
4458{
0d5cff50 4459 const char *name = ada_type_name (type);
5b4ee69b 4460
96d887e8
PH
4461 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4462}
4c4b4cd2 4463
8f17729f
JB
4464/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4465 that are deemed "identical" for practical purposes.
4466
4467 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4468 types and that their number of enumerals is identical (in other
4469 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4470
4471static int
4472ada_identical_enum_types_p (struct type *type1, struct type *type2)
4473{
4474 int i;
4475
4476 /* The heuristic we use here is fairly conservative. We consider
4477 that 2 enumerate types are identical if they have the same
4478 number of enumerals and that all enumerals have the same
4479 underlying value and name. */
4480
4481 /* All enums in the type should have an identical underlying value. */
4482 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4483 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4484 return 0;
4485
4486 /* All enumerals should also have the same name (modulo any numerical
4487 suffix). */
4488 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4489 {
0d5cff50
DE
4490 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4491 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4492 int len_1 = strlen (name_1);
4493 int len_2 = strlen (name_2);
4494
4495 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4496 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4497 if (len_1 != len_2
4498 || strncmp (TYPE_FIELD_NAME (type1, i),
4499 TYPE_FIELD_NAME (type2, i),
4500 len_1) != 0)
4501 return 0;
4502 }
4503
4504 return 1;
4505}
4506
4507/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4508 that are deemed "identical" for practical purposes. Sometimes,
4509 enumerals are not strictly identical, but their types are so similar
4510 that they can be considered identical.
4511
4512 For instance, consider the following code:
4513
4514 type Color is (Black, Red, Green, Blue, White);
4515 type RGB_Color is new Color range Red .. Blue;
4516
4517 Type RGB_Color is a subrange of an implicit type which is a copy
4518 of type Color. If we call that implicit type RGB_ColorB ("B" is
4519 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4520 As a result, when an expression references any of the enumeral
4521 by name (Eg. "print green"), the expression is technically
4522 ambiguous and the user should be asked to disambiguate. But
4523 doing so would only hinder the user, since it wouldn't matter
4524 what choice he makes, the outcome would always be the same.
4525 So, for practical purposes, we consider them as the same. */
4526
4527static int
4528symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4529{
4530 int i;
4531
4532 /* Before performing a thorough comparison check of each type,
4533 we perform a series of inexpensive checks. We expect that these
4534 checks will quickly fail in the vast majority of cases, and thus
4535 help prevent the unnecessary use of a more expensive comparison.
4536 Said comparison also expects us to make some of these checks
4537 (see ada_identical_enum_types_p). */
4538
4539 /* Quick check: All symbols should have an enum type. */
4540 for (i = 0; i < nsyms; i++)
4541 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4542 return 0;
4543
4544 /* Quick check: They should all have the same value. */
4545 for (i = 1; i < nsyms; i++)
4546 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4547 return 0;
4548
4549 /* Quick check: They should all have the same number of enumerals. */
4550 for (i = 1; i < nsyms; i++)
4551 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4552 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4553 return 0;
4554
4555 /* All the sanity checks passed, so we might have a set of
4556 identical enumeration types. Perform a more complete
4557 comparison of the type of each symbol. */
4558 for (i = 1; i < nsyms; i++)
4559 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4560 SYMBOL_TYPE (syms[0].sym)))
4561 return 0;
4562
4563 return 1;
4564}
4565
96d887e8
PH
4566/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4567 duplicate other symbols in the list (The only case I know of where
4568 this happens is when object files containing stabs-in-ecoff are
4569 linked with files containing ordinary ecoff debugging symbols (or no
4570 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4571 Returns the number of items in the modified list. */
4c4b4cd2 4572
96d887e8
PH
4573static int
4574remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4575{
4576 int i, j;
4c4b4cd2 4577
8f17729f
JB
4578 /* We should never be called with less than 2 symbols, as there
4579 cannot be any extra symbol in that case. But it's easy to
4580 handle, since we have nothing to do in that case. */
4581 if (nsyms < 2)
4582 return nsyms;
4583
96d887e8
PH
4584 i = 0;
4585 while (i < nsyms)
4586 {
a35ddb44 4587 int remove_p = 0;
339c13b6
JB
4588
4589 /* If two symbols have the same name and one of them is a stub type,
4590 the get rid of the stub. */
4591
4592 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4593 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4594 {
4595 for (j = 0; j < nsyms; j++)
4596 {
4597 if (j != i
4598 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4599 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4600 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4601 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4602 remove_p = 1;
339c13b6
JB
4603 }
4604 }
4605
4606 /* Two symbols with the same name, same class and same address
4607 should be identical. */
4608
4609 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4610 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4611 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4612 {
4613 for (j = 0; j < nsyms; j += 1)
4614 {
4615 if (i != j
4616 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4617 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4618 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4619 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4620 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4621 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4622 remove_p = 1;
4c4b4cd2 4623 }
4c4b4cd2 4624 }
339c13b6 4625
a35ddb44 4626 if (remove_p)
339c13b6
JB
4627 {
4628 for (j = i + 1; j < nsyms; j += 1)
4629 syms[j - 1] = syms[j];
4630 nsyms -= 1;
4631 }
4632
96d887e8 4633 i += 1;
14f9c5c9 4634 }
8f17729f
JB
4635
4636 /* If all the remaining symbols are identical enumerals, then
4637 just keep the first one and discard the rest.
4638
4639 Unlike what we did previously, we do not discard any entry
4640 unless they are ALL identical. This is because the symbol
4641 comparison is not a strict comparison, but rather a practical
4642 comparison. If all symbols are considered identical, then
4643 we can just go ahead and use the first one and discard the rest.
4644 But if we cannot reduce the list to a single element, we have
4645 to ask the user to disambiguate anyways. And if we have to
4646 present a multiple-choice menu, it's less confusing if the list
4647 isn't missing some choices that were identical and yet distinct. */
4648 if (symbols_are_identical_enums (syms, nsyms))
4649 nsyms = 1;
4650
96d887e8 4651 return nsyms;
14f9c5c9
AS
4652}
4653
96d887e8
PH
4654/* Given a type that corresponds to a renaming entity, use the type name
4655 to extract the scope (package name or function name, fully qualified,
4656 and following the GNAT encoding convention) where this renaming has been
4657 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4658
96d887e8
PH
4659static char *
4660xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4661{
96d887e8 4662 /* The renaming types adhere to the following convention:
0963b4bd 4663 <scope>__<rename>___<XR extension>.
96d887e8
PH
4664 So, to extract the scope, we search for the "___XR" extension,
4665 and then backtrack until we find the first "__". */
76a01679 4666
96d887e8
PH
4667 const char *name = type_name_no_tag (renaming_type);
4668 char *suffix = strstr (name, "___XR");
4669 char *last;
4670 int scope_len;
4671 char *scope;
14f9c5c9 4672
96d887e8
PH
4673 /* Now, backtrack a bit until we find the first "__". Start looking
4674 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4675
96d887e8
PH
4676 for (last = suffix - 3; last > name; last--)
4677 if (last[0] == '_' && last[1] == '_')
4678 break;
76a01679 4679
96d887e8 4680 /* Make a copy of scope and return it. */
14f9c5c9 4681
96d887e8
PH
4682 scope_len = last - name;
4683 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4684
96d887e8
PH
4685 strncpy (scope, name, scope_len);
4686 scope[scope_len] = '\0';
4c4b4cd2 4687
96d887e8 4688 return scope;
4c4b4cd2
PH
4689}
4690
96d887e8 4691/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4692
96d887e8
PH
4693static int
4694is_package_name (const char *name)
4c4b4cd2 4695{
96d887e8
PH
4696 /* Here, We take advantage of the fact that no symbols are generated
4697 for packages, while symbols are generated for each function.
4698 So the condition for NAME represent a package becomes equivalent
4699 to NAME not existing in our list of symbols. There is only one
4700 small complication with library-level functions (see below). */
4c4b4cd2 4701
96d887e8 4702 char *fun_name;
76a01679 4703
96d887e8
PH
4704 /* If it is a function that has not been defined at library level,
4705 then we should be able to look it up in the symbols. */
4706 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4707 return 0;
14f9c5c9 4708
96d887e8
PH
4709 /* Library-level function names start with "_ada_". See if function
4710 "_ada_" followed by NAME can be found. */
14f9c5c9 4711
96d887e8 4712 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4713 functions names cannot contain "__" in them. */
96d887e8
PH
4714 if (strstr (name, "__") != NULL)
4715 return 0;
4c4b4cd2 4716
b435e160 4717 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4718
96d887e8
PH
4719 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4720}
14f9c5c9 4721
96d887e8 4722/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4723 not visible from FUNCTION_NAME. */
14f9c5c9 4724
96d887e8 4725static int
0d5cff50 4726old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4727{
aeb5907d
JB
4728 char *scope;
4729
4730 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4731 return 0;
4732
4733 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4734
96d887e8 4735 make_cleanup (xfree, scope);
14f9c5c9 4736
96d887e8
PH
4737 /* If the rename has been defined in a package, then it is visible. */
4738 if (is_package_name (scope))
aeb5907d 4739 return 0;
14f9c5c9 4740
96d887e8
PH
4741 /* Check that the rename is in the current function scope by checking
4742 that its name starts with SCOPE. */
76a01679 4743
96d887e8
PH
4744 /* If the function name starts with "_ada_", it means that it is
4745 a library-level function. Strip this prefix before doing the
4746 comparison, as the encoding for the renaming does not contain
4747 this prefix. */
4748 if (strncmp (function_name, "_ada_", 5) == 0)
4749 function_name += 5;
f26caa11 4750
aeb5907d 4751 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4752}
4753
aeb5907d
JB
4754/* Remove entries from SYMS that corresponds to a renaming entity that
4755 is not visible from the function associated with CURRENT_BLOCK or
4756 that is superfluous due to the presence of more specific renaming
4757 information. Places surviving symbols in the initial entries of
4758 SYMS and returns the number of surviving symbols.
96d887e8
PH
4759
4760 Rationale:
aeb5907d
JB
4761 First, in cases where an object renaming is implemented as a
4762 reference variable, GNAT may produce both the actual reference
4763 variable and the renaming encoding. In this case, we discard the
4764 latter.
4765
4766 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4767 entity. Unfortunately, STABS currently does not support the definition
4768 of types that are local to a given lexical block, so all renamings types
4769 are emitted at library level. As a consequence, if an application
4770 contains two renaming entities using the same name, and a user tries to
4771 print the value of one of these entities, the result of the ada symbol
4772 lookup will also contain the wrong renaming type.
f26caa11 4773
96d887e8
PH
4774 This function partially covers for this limitation by attempting to
4775 remove from the SYMS list renaming symbols that should be visible
4776 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4777 method with the current information available. The implementation
4778 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4779
4780 - When the user tries to print a rename in a function while there
4781 is another rename entity defined in a package: Normally, the
4782 rename in the function has precedence over the rename in the
4783 package, so the latter should be removed from the list. This is
4784 currently not the case.
4785
4786 - This function will incorrectly remove valid renames if
4787 the CURRENT_BLOCK corresponds to a function which symbol name
4788 has been changed by an "Export" pragma. As a consequence,
4789 the user will be unable to print such rename entities. */
4c4b4cd2 4790
14f9c5c9 4791static int
aeb5907d
JB
4792remove_irrelevant_renamings (struct ada_symbol_info *syms,
4793 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4794{
4795 struct symbol *current_function;
0d5cff50 4796 const char *current_function_name;
4c4b4cd2 4797 int i;
aeb5907d
JB
4798 int is_new_style_renaming;
4799
4800 /* If there is both a renaming foo___XR... encoded as a variable and
4801 a simple variable foo in the same block, discard the latter.
0963b4bd 4802 First, zero out such symbols, then compress. */
aeb5907d
JB
4803 is_new_style_renaming = 0;
4804 for (i = 0; i < nsyms; i += 1)
4805 {
4806 struct symbol *sym = syms[i].sym;
270140bd 4807 const struct block *block = syms[i].block;
aeb5907d
JB
4808 const char *name;
4809 const char *suffix;
4810
4811 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4812 continue;
4813 name = SYMBOL_LINKAGE_NAME (sym);
4814 suffix = strstr (name, "___XR");
4815
4816 if (suffix != NULL)
4817 {
4818 int name_len = suffix - name;
4819 int j;
5b4ee69b 4820
aeb5907d
JB
4821 is_new_style_renaming = 1;
4822 for (j = 0; j < nsyms; j += 1)
4823 if (i != j && syms[j].sym != NULL
4824 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4825 name_len) == 0
4826 && block == syms[j].block)
4827 syms[j].sym = NULL;
4828 }
4829 }
4830 if (is_new_style_renaming)
4831 {
4832 int j, k;
4833
4834 for (j = k = 0; j < nsyms; j += 1)
4835 if (syms[j].sym != NULL)
4836 {
4837 syms[k] = syms[j];
4838 k += 1;
4839 }
4840 return k;
4841 }
4c4b4cd2
PH
4842
4843 /* Extract the function name associated to CURRENT_BLOCK.
4844 Abort if unable to do so. */
76a01679 4845
4c4b4cd2
PH
4846 if (current_block == NULL)
4847 return nsyms;
76a01679 4848
7f0df278 4849 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4850 if (current_function == NULL)
4851 return nsyms;
4852
4853 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4854 if (current_function_name == NULL)
4855 return nsyms;
4856
4857 /* Check each of the symbols, and remove it from the list if it is
4858 a type corresponding to a renaming that is out of the scope of
4859 the current block. */
4860
4861 i = 0;
4862 while (i < nsyms)
4863 {
aeb5907d
JB
4864 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4865 == ADA_OBJECT_RENAMING
4866 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4867 {
4868 int j;
5b4ee69b 4869
aeb5907d 4870 for (j = i + 1; j < nsyms; j += 1)
76a01679 4871 syms[j - 1] = syms[j];
4c4b4cd2
PH
4872 nsyms -= 1;
4873 }
4874 else
4875 i += 1;
4876 }
4877
4878 return nsyms;
4879}
4880
339c13b6
JB
4881/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4882 whose name and domain match NAME and DOMAIN respectively.
4883 If no match was found, then extend the search to "enclosing"
4884 routines (in other words, if we're inside a nested function,
4885 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
4886 If WILD_MATCH_P is nonzero, perform the naming matching in
4887 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
4888
4889 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4890
4891static void
4892ada_add_local_symbols (struct obstack *obstackp, const char *name,
4893 struct block *block, domain_enum domain,
d0a8ab18 4894 int wild_match_p)
339c13b6
JB
4895{
4896 int block_depth = 0;
4897
4898 while (block != NULL)
4899 {
4900 block_depth += 1;
d0a8ab18
JB
4901 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4902 wild_match_p);
339c13b6
JB
4903
4904 /* If we found a non-function match, assume that's the one. */
4905 if (is_nonfunction (defns_collected (obstackp, 0),
4906 num_defns_collected (obstackp)))
4907 return;
4908
4909 block = BLOCK_SUPERBLOCK (block);
4910 }
4911
4912 /* If no luck so far, try to find NAME as a local symbol in some lexically
4913 enclosing subprogram. */
4914 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 4915 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
4916}
4917
ccefe4c4 4918/* An object of this type is used as the user_data argument when
40658b94 4919 calling the map_matching_symbols method. */
ccefe4c4 4920
40658b94 4921struct match_data
ccefe4c4 4922{
40658b94 4923 struct objfile *objfile;
ccefe4c4 4924 struct obstack *obstackp;
40658b94
PH
4925 struct symbol *arg_sym;
4926 int found_sym;
ccefe4c4
TT
4927};
4928
40658b94
PH
4929/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4930 to a list of symbols. DATA0 is a pointer to a struct match_data *
4931 containing the obstack that collects the symbol list, the file that SYM
4932 must come from, a flag indicating whether a non-argument symbol has
4933 been found in the current block, and the last argument symbol
4934 passed in SYM within the current block (if any). When SYM is null,
4935 marking the end of a block, the argument symbol is added if no
4936 other has been found. */
ccefe4c4 4937
40658b94
PH
4938static int
4939aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4940{
40658b94
PH
4941 struct match_data *data = (struct match_data *) data0;
4942
4943 if (sym == NULL)
4944 {
4945 if (!data->found_sym && data->arg_sym != NULL)
4946 add_defn_to_vec (data->obstackp,
4947 fixup_symbol_section (data->arg_sym, data->objfile),
4948 block);
4949 data->found_sym = 0;
4950 data->arg_sym = NULL;
4951 }
4952 else
4953 {
4954 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4955 return 0;
4956 else if (SYMBOL_IS_ARGUMENT (sym))
4957 data->arg_sym = sym;
4958 else
4959 {
4960 data->found_sym = 1;
4961 add_defn_to_vec (data->obstackp,
4962 fixup_symbol_section (sym, data->objfile),
4963 block);
4964 }
4965 }
4966 return 0;
4967}
4968
4969/* Compare STRING1 to STRING2, with results as for strcmp.
4970 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4971 implies compare_names (STRING1, STRING2) (they may differ as to
4972 what symbols compare equal). */
5b4ee69b 4973
40658b94
PH
4974static int
4975compare_names (const char *string1, const char *string2)
4976{
4977 while (*string1 != '\0' && *string2 != '\0')
4978 {
4979 if (isspace (*string1) || isspace (*string2))
4980 return strcmp_iw_ordered (string1, string2);
4981 if (*string1 != *string2)
4982 break;
4983 string1 += 1;
4984 string2 += 1;
4985 }
4986 switch (*string1)
4987 {
4988 case '(':
4989 return strcmp_iw_ordered (string1, string2);
4990 case '_':
4991 if (*string2 == '\0')
4992 {
052874e8 4993 if (is_name_suffix (string1))
40658b94
PH
4994 return 0;
4995 else
1a1d5513 4996 return 1;
40658b94 4997 }
dbb8534f 4998 /* FALLTHROUGH */
40658b94
PH
4999 default:
5000 if (*string2 == '(')
5001 return strcmp_iw_ordered (string1, string2);
5002 else
5003 return *string1 - *string2;
5004 }
ccefe4c4
TT
5005}
5006
339c13b6
JB
5007/* Add to OBSTACKP all non-local symbols whose name and domain match
5008 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5009 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5010
5011static void
40658b94
PH
5012add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5013 domain_enum domain, int global,
5014 int is_wild_match)
339c13b6
JB
5015{
5016 struct objfile *objfile;
40658b94 5017 struct match_data data;
339c13b6 5018
6475f2fe 5019 memset (&data, 0, sizeof data);
ccefe4c4 5020 data.obstackp = obstackp;
339c13b6 5021
ccefe4c4 5022 ALL_OBJFILES (objfile)
40658b94
PH
5023 {
5024 data.objfile = objfile;
5025
5026 if (is_wild_match)
5027 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5028 aux_add_nonlocal_symbols, &data,
5029 wild_match, NULL);
5030 else
5031 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5032 aux_add_nonlocal_symbols, &data,
5033 full_match, compare_names);
5034 }
5035
5036 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5037 {
5038 ALL_OBJFILES (objfile)
5039 {
5040 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5041 strcpy (name1, "_ada_");
5042 strcpy (name1 + sizeof ("_ada_") - 1, name);
5043 data.objfile = objfile;
0963b4bd
MS
5044 objfile->sf->qf->map_matching_symbols (name1, domain,
5045 objfile, global,
5046 aux_add_nonlocal_symbols,
5047 &data,
40658b94
PH
5048 full_match, compare_names);
5049 }
5050 }
339c13b6
JB
5051}
5052
4eeaa230
DE
5053/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5054 non-zero, enclosing scope and in global scopes, returning the number of
5055 matches.
9f88c959 5056 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5057 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5058 any) in which they were found. This vector is transient---good only to
5059 the next call of ada_lookup_symbol_list.
5060
5061 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5062 symbol match within the nest of blocks whose innermost member is BLOCK0,
5063 is the one match returned (no other matches in that or
d9680e73 5064 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5065 surrounding BLOCK0, then these alone are returned.
5066
9f88c959 5067 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5068 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5069
4eeaa230
DE
5070static int
5071ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5072 domain_enum namespace,
5073 struct ada_symbol_info **results,
5074 int full_search)
14f9c5c9
AS
5075{
5076 struct symbol *sym;
14f9c5c9 5077 struct block *block;
4c4b4cd2 5078 const char *name;
82ccd55e 5079 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5080 int cacheIfUnique;
4c4b4cd2 5081 int ndefns;
14f9c5c9 5082
4c4b4cd2
PH
5083 obstack_free (&symbol_list_obstack, NULL);
5084 obstack_init (&symbol_list_obstack);
14f9c5c9 5085
14f9c5c9
AS
5086 cacheIfUnique = 0;
5087
5088 /* Search specified block and its superiors. */
5089
4c4b4cd2 5090 name = name0;
76a01679
JB
5091 block = (struct block *) block0; /* FIXME: No cast ought to be
5092 needed, but adding const will
5093 have a cascade effect. */
339c13b6
JB
5094
5095 /* Special case: If the user specifies a symbol name inside package
5096 Standard, do a non-wild matching of the symbol name without
5097 the "standard__" prefix. This was primarily introduced in order
5098 to allow the user to specifically access the standard exceptions
5099 using, for instance, Standard.Constraint_Error when Constraint_Error
5100 is ambiguous (due to the user defining its own Constraint_Error
5101 entity inside its program). */
4c4b4cd2
PH
5102 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5103 {
4c4b4cd2
PH
5104 block = NULL;
5105 name = name0 + sizeof ("standard__") - 1;
5106 }
5107
339c13b6 5108 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5109
4eeaa230
DE
5110 if (block != NULL)
5111 {
5112 if (full_search)
5113 {
5114 ada_add_local_symbols (&symbol_list_obstack, name, block,
5115 namespace, wild_match_p);
5116 }
5117 else
5118 {
5119 /* In the !full_search case we're are being called by
5120 ada_iterate_over_symbols, and we don't want to search
5121 superblocks. */
5122 ada_add_block_symbols (&symbol_list_obstack, block, name,
5123 namespace, NULL, wild_match_p);
5124 }
5125 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5126 goto done;
5127 }
d2e4a39e 5128
339c13b6
JB
5129 /* No non-global symbols found. Check our cache to see if we have
5130 already performed this search before. If we have, then return
5131 the same result. */
5132
14f9c5c9 5133 cacheIfUnique = 1;
2570f2b7 5134 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5135 {
5136 if (sym != NULL)
2570f2b7 5137 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5138 goto done;
5139 }
14f9c5c9 5140
339c13b6
JB
5141 /* Search symbols from all global blocks. */
5142
40658b94 5143 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5144 wild_match_p);
d2e4a39e 5145
4c4b4cd2 5146 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5147 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5148
4c4b4cd2 5149 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5150 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5151 wild_match_p);
14f9c5c9 5152
4c4b4cd2
PH
5153done:
5154 ndefns = num_defns_collected (&symbol_list_obstack);
5155 *results = defns_collected (&symbol_list_obstack, 1);
5156
5157 ndefns = remove_extra_symbols (*results, ndefns);
5158
2ad01556 5159 if (ndefns == 0 && full_search)
2570f2b7 5160 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5161
2ad01556 5162 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5163 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5164
aeb5907d 5165 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5166
14f9c5c9
AS
5167 return ndefns;
5168}
5169
4eeaa230
DE
5170/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5171 in global scopes, returning the number of matches, and setting *RESULTS
5172 to a vector of (SYM,BLOCK) tuples.
5173 See ada_lookup_symbol_list_worker for further details. */
5174
5175int
5176ada_lookup_symbol_list (const char *name0, const struct block *block0,
5177 domain_enum domain, struct ada_symbol_info **results)
5178{
5179 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5180}
5181
5182/* Implementation of the la_iterate_over_symbols method. */
5183
5184static void
5185ada_iterate_over_symbols (const struct block *block,
5186 const char *name, domain_enum domain,
5187 symbol_found_callback_ftype *callback,
5188 void *data)
5189{
5190 int ndefs, i;
5191 struct ada_symbol_info *results;
5192
5193 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5194 for (i = 0; i < ndefs; ++i)
5195 {
5196 if (! (*callback) (results[i].sym, data))
5197 break;
5198 }
5199}
5200
f8eba3c6
TT
5201/* If NAME is the name of an entity, return a string that should
5202 be used to look that entity up in Ada units. This string should
5203 be deallocated after use using xfree.
5204
5205 NAME can have any form that the "break" or "print" commands might
5206 recognize. In other words, it does not have to be the "natural"
5207 name, or the "encoded" name. */
5208
5209char *
5210ada_name_for_lookup (const char *name)
5211{
5212 char *canon;
5213 int nlen = strlen (name);
5214
5215 if (name[0] == '<' && name[nlen - 1] == '>')
5216 {
5217 canon = xmalloc (nlen - 1);
5218 memcpy (canon, name + 1, nlen - 2);
5219 canon[nlen - 2] = '\0';
5220 }
5221 else
5222 canon = xstrdup (ada_encode (ada_fold_name (name)));
5223 return canon;
5224}
5225
4e5c77fe
JB
5226/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5227 to 1, but choosing the first symbol found if there are multiple
5228 choices.
5229
5e2336be
JB
5230 The result is stored in *INFO, which must be non-NULL.
5231 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5232
5233void
5234ada_lookup_encoded_symbol (const char *name, const struct block *block,
5235 domain_enum namespace,
5e2336be 5236 struct ada_symbol_info *info)
14f9c5c9 5237{
4c4b4cd2 5238 struct ada_symbol_info *candidates;
14f9c5c9
AS
5239 int n_candidates;
5240
5e2336be
JB
5241 gdb_assert (info != NULL);
5242 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5243
4eeaa230 5244 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5245 if (n_candidates == 0)
4e5c77fe 5246 return;
4c4b4cd2 5247
5e2336be
JB
5248 *info = candidates[0];
5249 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5250}
aeb5907d
JB
5251
5252/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5253 scope and in global scopes, or NULL if none. NAME is folded and
5254 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5255 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5256 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5257
aeb5907d
JB
5258struct symbol *
5259ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5260 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5261{
5e2336be 5262 struct ada_symbol_info info;
4e5c77fe 5263
aeb5907d
JB
5264 if (is_a_field_of_this != NULL)
5265 *is_a_field_of_this = 0;
5266
4e5c77fe 5267 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5268 block0, namespace, &info);
5269 return info.sym;
4c4b4cd2 5270}
14f9c5c9 5271
4c4b4cd2
PH
5272static struct symbol *
5273ada_lookup_symbol_nonlocal (const char *name,
76a01679 5274 const struct block *block,
21b556f4 5275 const domain_enum domain)
4c4b4cd2 5276{
94af9270 5277 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5278}
5279
5280
4c4b4cd2
PH
5281/* True iff STR is a possible encoded suffix of a normal Ada name
5282 that is to be ignored for matching purposes. Suffixes of parallel
5283 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5284 are given by any of the regular expressions:
4c4b4cd2 5285
babe1480
JB
5286 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5287 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5288 TKB [subprogram suffix for task bodies]
babe1480 5289 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5290 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5291
5292 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5293 match is performed. This sequence is used to differentiate homonyms,
5294 is an optional part of a valid name suffix. */
4c4b4cd2 5295
14f9c5c9 5296static int
d2e4a39e 5297is_name_suffix (const char *str)
14f9c5c9
AS
5298{
5299 int k;
4c4b4cd2
PH
5300 const char *matching;
5301 const int len = strlen (str);
5302
babe1480
JB
5303 /* Skip optional leading __[0-9]+. */
5304
4c4b4cd2
PH
5305 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5306 {
babe1480
JB
5307 str += 3;
5308 while (isdigit (str[0]))
5309 str += 1;
4c4b4cd2 5310 }
babe1480
JB
5311
5312 /* [.$][0-9]+ */
4c4b4cd2 5313
babe1480 5314 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5315 {
babe1480 5316 matching = str + 1;
4c4b4cd2
PH
5317 while (isdigit (matching[0]))
5318 matching += 1;
5319 if (matching[0] == '\0')
5320 return 1;
5321 }
5322
5323 /* ___[0-9]+ */
babe1480 5324
4c4b4cd2
PH
5325 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5326 {
5327 matching = str + 3;
5328 while (isdigit (matching[0]))
5329 matching += 1;
5330 if (matching[0] == '\0')
5331 return 1;
5332 }
5333
9ac7f98e
JB
5334 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5335
5336 if (strcmp (str, "TKB") == 0)
5337 return 1;
5338
529cad9c
PH
5339#if 0
5340 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5341 with a N at the end. Unfortunately, the compiler uses the same
5342 convention for other internal types it creates. So treating
529cad9c 5343 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5344 some regressions. For instance, consider the case of an enumerated
5345 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5346 name ends with N.
5347 Having a single character like this as a suffix carrying some
0963b4bd 5348 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5349 to be something like "_N" instead. In the meantime, do not do
5350 the following check. */
5351 /* Protected Object Subprograms */
5352 if (len == 1 && str [0] == 'N')
5353 return 1;
5354#endif
5355
5356 /* _E[0-9]+[bs]$ */
5357 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5358 {
5359 matching = str + 3;
5360 while (isdigit (matching[0]))
5361 matching += 1;
5362 if ((matching[0] == 'b' || matching[0] == 's')
5363 && matching [1] == '\0')
5364 return 1;
5365 }
5366
4c4b4cd2
PH
5367 /* ??? We should not modify STR directly, as we are doing below. This
5368 is fine in this case, but may become problematic later if we find
5369 that this alternative did not work, and want to try matching
5370 another one from the begining of STR. Since we modified it, we
5371 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5372 if (str[0] == 'X')
5373 {
5374 str += 1;
d2e4a39e 5375 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5376 {
5377 if (str[0] != 'n' && str[0] != 'b')
5378 return 0;
5379 str += 1;
5380 }
14f9c5c9 5381 }
babe1480 5382
14f9c5c9
AS
5383 if (str[0] == '\000')
5384 return 1;
babe1480 5385
d2e4a39e 5386 if (str[0] == '_')
14f9c5c9
AS
5387 {
5388 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5389 return 0;
d2e4a39e 5390 if (str[2] == '_')
4c4b4cd2 5391 {
61ee279c
PH
5392 if (strcmp (str + 3, "JM") == 0)
5393 return 1;
5394 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5395 the LJM suffix in favor of the JM one. But we will
5396 still accept LJM as a valid suffix for a reasonable
5397 amount of time, just to allow ourselves to debug programs
5398 compiled using an older version of GNAT. */
4c4b4cd2
PH
5399 if (strcmp (str + 3, "LJM") == 0)
5400 return 1;
5401 if (str[3] != 'X')
5402 return 0;
1265e4aa
JB
5403 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5404 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5405 return 1;
5406 if (str[4] == 'R' && str[5] != 'T')
5407 return 1;
5408 return 0;
5409 }
5410 if (!isdigit (str[2]))
5411 return 0;
5412 for (k = 3; str[k] != '\0'; k += 1)
5413 if (!isdigit (str[k]) && str[k] != '_')
5414 return 0;
14f9c5c9
AS
5415 return 1;
5416 }
4c4b4cd2 5417 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5418 {
4c4b4cd2
PH
5419 for (k = 2; str[k] != '\0'; k += 1)
5420 if (!isdigit (str[k]) && str[k] != '_')
5421 return 0;
14f9c5c9
AS
5422 return 1;
5423 }
5424 return 0;
5425}
d2e4a39e 5426
aeb5907d
JB
5427/* Return non-zero if the string starting at NAME and ending before
5428 NAME_END contains no capital letters. */
529cad9c
PH
5429
5430static int
5431is_valid_name_for_wild_match (const char *name0)
5432{
5433 const char *decoded_name = ada_decode (name0);
5434 int i;
5435
5823c3ef
JB
5436 /* If the decoded name starts with an angle bracket, it means that
5437 NAME0 does not follow the GNAT encoding format. It should then
5438 not be allowed as a possible wild match. */
5439 if (decoded_name[0] == '<')
5440 return 0;
5441
529cad9c
PH
5442 for (i=0; decoded_name[i] != '\0'; i++)
5443 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5444 return 0;
5445
5446 return 1;
5447}
5448
73589123
PH
5449/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5450 that could start a simple name. Assumes that *NAMEP points into
5451 the string beginning at NAME0. */
4c4b4cd2 5452
14f9c5c9 5453static int
73589123 5454advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5455{
73589123 5456 const char *name = *namep;
5b4ee69b 5457
5823c3ef 5458 while (1)
14f9c5c9 5459 {
aa27d0b3 5460 int t0, t1;
73589123
PH
5461
5462 t0 = *name;
5463 if (t0 == '_')
5464 {
5465 t1 = name[1];
5466 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5467 {
5468 name += 1;
5469 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5470 break;
5471 else
5472 name += 1;
5473 }
aa27d0b3
JB
5474 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5475 || name[2] == target0))
73589123
PH
5476 {
5477 name += 2;
5478 break;
5479 }
5480 else
5481 return 0;
5482 }
5483 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5484 name += 1;
5485 else
5823c3ef 5486 return 0;
73589123
PH
5487 }
5488
5489 *namep = name;
5490 return 1;
5491}
5492
5493/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5494 informational suffixes of NAME (i.e., for which is_name_suffix is
5495 true). Assumes that PATN is a lower-cased Ada simple name. */
5496
5497static int
5498wild_match (const char *name, const char *patn)
5499{
22e048c9 5500 const char *p;
73589123
PH
5501 const char *name0 = name;
5502
5503 while (1)
5504 {
5505 const char *match = name;
5506
5507 if (*name == *patn)
5508 {
5509 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5510 if (*p != *name)
5511 break;
5512 if (*p == '\0' && is_name_suffix (name))
5513 return match != name0 && !is_valid_name_for_wild_match (name0);
5514
5515 if (name[-1] == '_')
5516 name -= 1;
5517 }
5518 if (!advance_wild_match (&name, name0, *patn))
5519 return 1;
96d887e8 5520 }
96d887e8
PH
5521}
5522
40658b94
PH
5523/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5524 informational suffix. */
5525
c4d840bd
PH
5526static int
5527full_match (const char *sym_name, const char *search_name)
5528{
40658b94 5529 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5530}
5531
5532
96d887e8
PH
5533/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5534 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5535 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5536 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5537
5538static void
5539ada_add_block_symbols (struct obstack *obstackp,
76a01679 5540 struct block *block, const char *name,
96d887e8 5541 domain_enum domain, struct objfile *objfile,
2570f2b7 5542 int wild)
96d887e8 5543{
8157b174 5544 struct block_iterator iter;
96d887e8
PH
5545 int name_len = strlen (name);
5546 /* A matching argument symbol, if any. */
5547 struct symbol *arg_sym;
5548 /* Set true when we find a matching non-argument symbol. */
5549 int found_sym;
5550 struct symbol *sym;
5551
5552 arg_sym = NULL;
5553 found_sym = 0;
5554 if (wild)
5555 {
8157b174
TT
5556 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5557 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5558 {
5eeb2539
AR
5559 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5560 SYMBOL_DOMAIN (sym), domain)
73589123 5561 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5562 {
2a2d4dc3
AS
5563 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5564 continue;
5565 else if (SYMBOL_IS_ARGUMENT (sym))
5566 arg_sym = sym;
5567 else
5568 {
76a01679
JB
5569 found_sym = 1;
5570 add_defn_to_vec (obstackp,
5571 fixup_symbol_section (sym, objfile),
2570f2b7 5572 block);
76a01679
JB
5573 }
5574 }
5575 }
96d887e8
PH
5576 }
5577 else
5578 {
8157b174
TT
5579 for (sym = block_iter_match_first (block, name, full_match, &iter);
5580 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5581 {
5eeb2539
AR
5582 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5583 SYMBOL_DOMAIN (sym), domain))
76a01679 5584 {
c4d840bd
PH
5585 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5586 {
5587 if (SYMBOL_IS_ARGUMENT (sym))
5588 arg_sym = sym;
5589 else
2a2d4dc3 5590 {
c4d840bd
PH
5591 found_sym = 1;
5592 add_defn_to_vec (obstackp,
5593 fixup_symbol_section (sym, objfile),
5594 block);
2a2d4dc3 5595 }
c4d840bd 5596 }
76a01679
JB
5597 }
5598 }
96d887e8
PH
5599 }
5600
5601 if (!found_sym && arg_sym != NULL)
5602 {
76a01679
JB
5603 add_defn_to_vec (obstackp,
5604 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5605 block);
96d887e8
PH
5606 }
5607
5608 if (!wild)
5609 {
5610 arg_sym = NULL;
5611 found_sym = 0;
5612
5613 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5614 {
5eeb2539
AR
5615 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5616 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5617 {
5618 int cmp;
5619
5620 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5621 if (cmp == 0)
5622 {
5623 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5624 if (cmp == 0)
5625 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5626 name_len);
5627 }
5628
5629 if (cmp == 0
5630 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5631 {
2a2d4dc3
AS
5632 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5633 {
5634 if (SYMBOL_IS_ARGUMENT (sym))
5635 arg_sym = sym;
5636 else
5637 {
5638 found_sym = 1;
5639 add_defn_to_vec (obstackp,
5640 fixup_symbol_section (sym, objfile),
5641 block);
5642 }
5643 }
76a01679
JB
5644 }
5645 }
76a01679 5646 }
96d887e8
PH
5647
5648 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5649 They aren't parameters, right? */
5650 if (!found_sym && arg_sym != NULL)
5651 {
5652 add_defn_to_vec (obstackp,
76a01679 5653 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5654 block);
96d887e8
PH
5655 }
5656 }
5657}
5658\f
41d27058
JB
5659
5660 /* Symbol Completion */
5661
5662/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5663 name in a form that's appropriate for the completion. The result
5664 does not need to be deallocated, but is only good until the next call.
5665
5666 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5667 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5668 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5669 in its encoded form. */
5670
5671static const char *
5672symbol_completion_match (const char *sym_name,
5673 const char *text, int text_len,
6ea35997 5674 int wild_match_p, int encoded_p)
41d27058 5675{
41d27058
JB
5676 const int verbatim_match = (text[0] == '<');
5677 int match = 0;
5678
5679 if (verbatim_match)
5680 {
5681 /* Strip the leading angle bracket. */
5682 text = text + 1;
5683 text_len--;
5684 }
5685
5686 /* First, test against the fully qualified name of the symbol. */
5687
5688 if (strncmp (sym_name, text, text_len) == 0)
5689 match = 1;
5690
6ea35997 5691 if (match && !encoded_p)
41d27058
JB
5692 {
5693 /* One needed check before declaring a positive match is to verify
5694 that iff we are doing a verbatim match, the decoded version
5695 of the symbol name starts with '<'. Otherwise, this symbol name
5696 is not a suitable completion. */
5697 const char *sym_name_copy = sym_name;
5698 int has_angle_bracket;
5699
5700 sym_name = ada_decode (sym_name);
5701 has_angle_bracket = (sym_name[0] == '<');
5702 match = (has_angle_bracket == verbatim_match);
5703 sym_name = sym_name_copy;
5704 }
5705
5706 if (match && !verbatim_match)
5707 {
5708 /* When doing non-verbatim match, another check that needs to
5709 be done is to verify that the potentially matching symbol name
5710 does not include capital letters, because the ada-mode would
5711 not be able to understand these symbol names without the
5712 angle bracket notation. */
5713 const char *tmp;
5714
5715 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5716 if (*tmp != '\0')
5717 match = 0;
5718 }
5719
5720 /* Second: Try wild matching... */
5721
e701b3c0 5722 if (!match && wild_match_p)
41d27058
JB
5723 {
5724 /* Since we are doing wild matching, this means that TEXT
5725 may represent an unqualified symbol name. We therefore must
5726 also compare TEXT against the unqualified name of the symbol. */
5727 sym_name = ada_unqualified_name (ada_decode (sym_name));
5728
5729 if (strncmp (sym_name, text, text_len) == 0)
5730 match = 1;
5731 }
5732
5733 /* Finally: If we found a mach, prepare the result to return. */
5734
5735 if (!match)
5736 return NULL;
5737
5738 if (verbatim_match)
5739 sym_name = add_angle_brackets (sym_name);
5740
6ea35997 5741 if (!encoded_p)
41d27058
JB
5742 sym_name = ada_decode (sym_name);
5743
5744 return sym_name;
5745}
5746
5747/* A companion function to ada_make_symbol_completion_list().
5748 Check if SYM_NAME represents a symbol which name would be suitable
5749 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5750 it is appended at the end of the given string vector SV.
5751
5752 ORIG_TEXT is the string original string from the user command
5753 that needs to be completed. WORD is the entire command on which
5754 completion should be performed. These two parameters are used to
5755 determine which part of the symbol name should be added to the
5756 completion vector.
c0af1706 5757 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 5758 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
5759 encoded formed (in which case the completion should also be
5760 encoded). */
5761
5762static void
d6565258 5763symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5764 const char *sym_name,
5765 const char *text, int text_len,
5766 const char *orig_text, const char *word,
cb8e9b97 5767 int wild_match_p, int encoded_p)
41d27058
JB
5768{
5769 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 5770 wild_match_p, encoded_p);
41d27058
JB
5771 char *completion;
5772
5773 if (match == NULL)
5774 return;
5775
5776 /* We found a match, so add the appropriate completion to the given
5777 string vector. */
5778
5779 if (word == orig_text)
5780 {
5781 completion = xmalloc (strlen (match) + 5);
5782 strcpy (completion, match);
5783 }
5784 else if (word > orig_text)
5785 {
5786 /* Return some portion of sym_name. */
5787 completion = xmalloc (strlen (match) + 5);
5788 strcpy (completion, match + (word - orig_text));
5789 }
5790 else
5791 {
5792 /* Return some of ORIG_TEXT plus sym_name. */
5793 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5794 strncpy (completion, word, orig_text - word);
5795 completion[orig_text - word] = '\0';
5796 strcat (completion, match);
5797 }
5798
d6565258 5799 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5800}
5801
ccefe4c4 5802/* An object of this type is passed as the user_data argument to the
7b08b9eb 5803 expand_partial_symbol_names method. */
ccefe4c4
TT
5804struct add_partial_datum
5805{
5806 VEC(char_ptr) **completions;
6f937416 5807 const char *text;
ccefe4c4 5808 int text_len;
6f937416
PA
5809 const char *text0;
5810 const char *word;
ccefe4c4
TT
5811 int wild_match;
5812 int encoded;
5813};
5814
7b08b9eb
JK
5815/* A callback for expand_partial_symbol_names. */
5816static int
e078317b 5817ada_expand_partial_symbol_name (const char *name, void *user_data)
ccefe4c4
TT
5818{
5819 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5820
5821 return symbol_completion_match (name, data->text, data->text_len,
5822 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5823}
5824
49c4e619
TT
5825/* Return a list of possible symbol names completing TEXT0. WORD is
5826 the entire command on which completion is made. */
41d27058 5827
49c4e619 5828static VEC (char_ptr) *
6f937416
PA
5829ada_make_symbol_completion_list (const char *text0, const char *word,
5830 enum type_code code)
41d27058
JB
5831{
5832 char *text;
5833 int text_len;
b1ed564a
JB
5834 int wild_match_p;
5835 int encoded_p;
2ba95b9b 5836 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5837 struct symbol *sym;
5838 struct symtab *s;
41d27058
JB
5839 struct minimal_symbol *msymbol;
5840 struct objfile *objfile;
5841 struct block *b, *surrounding_static_block = 0;
5842 int i;
8157b174 5843 struct block_iterator iter;
b8fea896 5844 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 5845
2f68a895
TT
5846 gdb_assert (code == TYPE_CODE_UNDEF);
5847
41d27058
JB
5848 if (text0[0] == '<')
5849 {
5850 text = xstrdup (text0);
5851 make_cleanup (xfree, text);
5852 text_len = strlen (text);
b1ed564a
JB
5853 wild_match_p = 0;
5854 encoded_p = 1;
41d27058
JB
5855 }
5856 else
5857 {
5858 text = xstrdup (ada_encode (text0));
5859 make_cleanup (xfree, text);
5860 text_len = strlen (text);
5861 for (i = 0; i < text_len; i++)
5862 text[i] = tolower (text[i]);
5863
b1ed564a 5864 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
5865 /* If the name contains a ".", then the user is entering a fully
5866 qualified entity name, and the match must not be done in wild
5867 mode. Similarly, if the user wants to complete what looks like
5868 an encoded name, the match must not be done in wild mode. */
b1ed564a 5869 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
5870 }
5871
5872 /* First, look at the partial symtab symbols. */
41d27058 5873 {
ccefe4c4
TT
5874 struct add_partial_datum data;
5875
5876 data.completions = &completions;
5877 data.text = text;
5878 data.text_len = text_len;
5879 data.text0 = text0;
5880 data.word = word;
b1ed564a
JB
5881 data.wild_match = wild_match_p;
5882 data.encoded = encoded_p;
7b08b9eb 5883 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5884 }
5885
5886 /* At this point scan through the misc symbol vectors and add each
5887 symbol you find to the list. Eventually we want to ignore
5888 anything that isn't a text symbol (everything else will be
5889 handled by the psymtab code above). */
5890
5891 ALL_MSYMBOLS (objfile, msymbol)
5892 {
5893 QUIT;
d6565258 5894 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
5895 text, text_len, text0, word, wild_match_p,
5896 encoded_p);
41d27058
JB
5897 }
5898
5899 /* Search upwards from currently selected frame (so that we can
5900 complete on local vars. */
5901
5902 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5903 {
5904 if (!BLOCK_SUPERBLOCK (b))
5905 surrounding_static_block = b; /* For elmin of dups */
5906
5907 ALL_BLOCK_SYMBOLS (b, iter, sym)
5908 {
d6565258 5909 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5910 text, text_len, text0, word,
b1ed564a 5911 wild_match_p, encoded_p);
41d27058
JB
5912 }
5913 }
5914
5915 /* Go through the symtabs and check the externs and statics for
5916 symbols which match. */
5917
5918 ALL_SYMTABS (objfile, s)
5919 {
5920 QUIT;
5921 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5922 ALL_BLOCK_SYMBOLS (b, iter, sym)
5923 {
d6565258 5924 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5925 text, text_len, text0, word,
b1ed564a 5926 wild_match_p, encoded_p);
41d27058
JB
5927 }
5928 }
5929
5930 ALL_SYMTABS (objfile, s)
5931 {
5932 QUIT;
5933 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5934 /* Don't do this block twice. */
5935 if (b == surrounding_static_block)
5936 continue;
5937 ALL_BLOCK_SYMBOLS (b, iter, sym)
5938 {
d6565258 5939 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5940 text, text_len, text0, word,
b1ed564a 5941 wild_match_p, encoded_p);
41d27058
JB
5942 }
5943 }
5944
b8fea896 5945 do_cleanups (old_chain);
49c4e619 5946 return completions;
41d27058
JB
5947}
5948
963a6417 5949 /* Field Access */
96d887e8 5950
73fb9985
JB
5951/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5952 for tagged types. */
5953
5954static int
5955ada_is_dispatch_table_ptr_type (struct type *type)
5956{
0d5cff50 5957 const char *name;
73fb9985
JB
5958
5959 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5960 return 0;
5961
5962 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5963 if (name == NULL)
5964 return 0;
5965
5966 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5967}
5968
ac4a2da4
JG
5969/* Return non-zero if TYPE is an interface tag. */
5970
5971static int
5972ada_is_interface_tag (struct type *type)
5973{
5974 const char *name = TYPE_NAME (type);
5975
5976 if (name == NULL)
5977 return 0;
5978
5979 return (strcmp (name, "ada__tags__interface_tag") == 0);
5980}
5981
963a6417
PH
5982/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5983 to be invisible to users. */
96d887e8 5984
963a6417
PH
5985int
5986ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5987{
963a6417
PH
5988 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5989 return 1;
ffde82bf 5990
73fb9985
JB
5991 /* Check the name of that field. */
5992 {
5993 const char *name = TYPE_FIELD_NAME (type, field_num);
5994
5995 /* Anonymous field names should not be printed.
5996 brobecker/2007-02-20: I don't think this can actually happen
5997 but we don't want to print the value of annonymous fields anyway. */
5998 if (name == NULL)
5999 return 1;
6000
ffde82bf
JB
6001 /* Normally, fields whose name start with an underscore ("_")
6002 are fields that have been internally generated by the compiler,
6003 and thus should not be printed. The "_parent" field is special,
6004 however: This is a field internally generated by the compiler
6005 for tagged types, and it contains the components inherited from
6006 the parent type. This field should not be printed as is, but
6007 should not be ignored either. */
73fb9985
JB
6008 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6009 return 1;
6010 }
6011
ac4a2da4
JG
6012 /* If this is the dispatch table of a tagged type or an interface tag,
6013 then ignore. */
73fb9985 6014 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6015 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6016 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6017 return 1;
6018
6019 /* Not a special field, so it should not be ignored. */
6020 return 0;
963a6417 6021}
96d887e8 6022
963a6417 6023/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6024 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6025
963a6417
PH
6026int
6027ada_is_tagged_type (struct type *type, int refok)
6028{
6029 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6030}
96d887e8 6031
963a6417 6032/* True iff TYPE represents the type of X'Tag */
96d887e8 6033
963a6417
PH
6034int
6035ada_is_tag_type (struct type *type)
6036{
6037 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6038 return 0;
6039 else
96d887e8 6040 {
963a6417 6041 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6042
963a6417
PH
6043 return (name != NULL
6044 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6045 }
96d887e8
PH
6046}
6047
963a6417 6048/* The type of the tag on VAL. */
76a01679 6049
963a6417
PH
6050struct type *
6051ada_tag_type (struct value *val)
96d887e8 6052{
df407dfe 6053 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6054}
96d887e8 6055
b50d69b5
JG
6056/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6057 retired at Ada 05). */
6058
6059static int
6060is_ada95_tag (struct value *tag)
6061{
6062 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6063}
6064
963a6417 6065/* The value of the tag on VAL. */
96d887e8 6066
963a6417
PH
6067struct value *
6068ada_value_tag (struct value *val)
6069{
03ee6b2e 6070 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6071}
6072
963a6417
PH
6073/* The value of the tag on the object of type TYPE whose contents are
6074 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6075 ADDRESS. */
96d887e8 6076
963a6417 6077static struct value *
10a2c479 6078value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6079 const gdb_byte *valaddr,
963a6417 6080 CORE_ADDR address)
96d887e8 6081{
b5385fc0 6082 int tag_byte_offset;
963a6417 6083 struct type *tag_type;
5b4ee69b 6084
963a6417 6085 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6086 NULL, NULL, NULL))
96d887e8 6087 {
fc1a4b47 6088 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6089 ? NULL
6090 : valaddr + tag_byte_offset);
963a6417 6091 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6092
963a6417 6093 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6094 }
963a6417
PH
6095 return NULL;
6096}
96d887e8 6097
963a6417
PH
6098static struct type *
6099type_from_tag (struct value *tag)
6100{
6101 const char *type_name = ada_tag_name (tag);
5b4ee69b 6102
963a6417
PH
6103 if (type_name != NULL)
6104 return ada_find_any_type (ada_encode (type_name));
6105 return NULL;
6106}
96d887e8 6107
b50d69b5
JG
6108/* Given a value OBJ of a tagged type, return a value of this
6109 type at the base address of the object. The base address, as
6110 defined in Ada.Tags, it is the address of the primary tag of
6111 the object, and therefore where the field values of its full
6112 view can be fetched. */
6113
6114struct value *
6115ada_tag_value_at_base_address (struct value *obj)
6116{
6117 volatile struct gdb_exception e;
6118 struct value *val;
6119 LONGEST offset_to_top = 0;
6120 struct type *ptr_type, *obj_type;
6121 struct value *tag;
6122 CORE_ADDR base_address;
6123
6124 obj_type = value_type (obj);
6125
6126 /* It is the responsability of the caller to deref pointers. */
6127
6128 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6129 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6130 return obj;
6131
6132 tag = ada_value_tag (obj);
6133 if (!tag)
6134 return obj;
6135
6136 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6137
6138 if (is_ada95_tag (tag))
6139 return obj;
6140
6141 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6142 ptr_type = lookup_pointer_type (ptr_type);
6143 val = value_cast (ptr_type, tag);
6144 if (!val)
6145 return obj;
6146
6147 /* It is perfectly possible that an exception be raised while
6148 trying to determine the base address, just like for the tag;
6149 see ada_tag_name for more details. We do not print the error
6150 message for the same reason. */
6151
6152 TRY_CATCH (e, RETURN_MASK_ERROR)
6153 {
6154 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6155 }
6156
6157 if (e.reason < 0)
6158 return obj;
6159
6160 /* If offset is null, nothing to do. */
6161
6162 if (offset_to_top == 0)
6163 return obj;
6164
6165 /* -1 is a special case in Ada.Tags; however, what should be done
6166 is not quite clear from the documentation. So do nothing for
6167 now. */
6168
6169 if (offset_to_top == -1)
6170 return obj;
6171
6172 base_address = value_address (obj) - offset_to_top;
6173 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6174
6175 /* Make sure that we have a proper tag at the new address.
6176 Otherwise, offset_to_top is bogus (which can happen when
6177 the object is not initialized yet). */
6178
6179 if (!tag)
6180 return obj;
6181
6182 obj_type = type_from_tag (tag);
6183
6184 if (!obj_type)
6185 return obj;
6186
6187 return value_from_contents_and_address (obj_type, NULL, base_address);
6188}
6189
1b611343
JB
6190/* Return the "ada__tags__type_specific_data" type. */
6191
6192static struct type *
6193ada_get_tsd_type (struct inferior *inf)
963a6417 6194{
1b611343 6195 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6196
1b611343
JB
6197 if (data->tsd_type == 0)
6198 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6199 return data->tsd_type;
6200}
529cad9c 6201
1b611343
JB
6202/* Return the TSD (type-specific data) associated to the given TAG.
6203 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6204
1b611343 6205 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6206
1b611343
JB
6207static struct value *
6208ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6209{
4c4b4cd2 6210 struct value *val;
1b611343 6211 struct type *type;
5b4ee69b 6212
1b611343
JB
6213 /* First option: The TSD is simply stored as a field of our TAG.
6214 Only older versions of GNAT would use this format, but we have
6215 to test it first, because there are no visible markers for
6216 the current approach except the absence of that field. */
529cad9c 6217
1b611343
JB
6218 val = ada_value_struct_elt (tag, "tsd", 1);
6219 if (val)
6220 return val;
e802dbe0 6221
1b611343
JB
6222 /* Try the second representation for the dispatch table (in which
6223 there is no explicit 'tsd' field in the referent of the tag pointer,
6224 and instead the tsd pointer is stored just before the dispatch
6225 table. */
e802dbe0 6226
1b611343
JB
6227 type = ada_get_tsd_type (current_inferior());
6228 if (type == NULL)
6229 return NULL;
6230 type = lookup_pointer_type (lookup_pointer_type (type));
6231 val = value_cast (type, tag);
6232 if (val == NULL)
6233 return NULL;
6234 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6235}
6236
1b611343
JB
6237/* Given the TSD of a tag (type-specific data), return a string
6238 containing the name of the associated type.
6239
6240 The returned value is good until the next call. May return NULL
6241 if we are unable to determine the tag name. */
6242
6243static char *
6244ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6245{
529cad9c
PH
6246 static char name[1024];
6247 char *p;
1b611343 6248 struct value *val;
529cad9c 6249
1b611343 6250 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6251 if (val == NULL)
1b611343 6252 return NULL;
4c4b4cd2
PH
6253 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6254 for (p = name; *p != '\0'; p += 1)
6255 if (isalpha (*p))
6256 *p = tolower (*p);
1b611343 6257 return name;
4c4b4cd2
PH
6258}
6259
6260/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6261 a C string.
6262
6263 Return NULL if the TAG is not an Ada tag, or if we were unable to
6264 determine the name of that tag. The result is good until the next
6265 call. */
4c4b4cd2
PH
6266
6267const char *
6268ada_tag_name (struct value *tag)
6269{
1b611343
JB
6270 volatile struct gdb_exception e;
6271 char *name = NULL;
5b4ee69b 6272
df407dfe 6273 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6274 return NULL;
1b611343
JB
6275
6276 /* It is perfectly possible that an exception be raised while trying
6277 to determine the TAG's name, even under normal circumstances:
6278 The associated variable may be uninitialized or corrupted, for
6279 instance. We do not let any exception propagate past this point.
6280 instead we return NULL.
6281
6282 We also do not print the error message either (which often is very
6283 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6284 the caller print a more meaningful message if necessary. */
6285 TRY_CATCH (e, RETURN_MASK_ERROR)
6286 {
6287 struct value *tsd = ada_get_tsd_from_tag (tag);
6288
6289 if (tsd != NULL)
6290 name = ada_tag_name_from_tsd (tsd);
6291 }
6292
6293 return name;
4c4b4cd2
PH
6294}
6295
6296/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6297
d2e4a39e 6298struct type *
ebf56fd3 6299ada_parent_type (struct type *type)
14f9c5c9
AS
6300{
6301 int i;
6302
61ee279c 6303 type = ada_check_typedef (type);
14f9c5c9
AS
6304
6305 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6306 return NULL;
6307
6308 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6309 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6310 {
6311 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6312
6313 /* If the _parent field is a pointer, then dereference it. */
6314 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6315 parent_type = TYPE_TARGET_TYPE (parent_type);
6316 /* If there is a parallel XVS type, get the actual base type. */
6317 parent_type = ada_get_base_type (parent_type);
6318
6319 return ada_check_typedef (parent_type);
6320 }
14f9c5c9
AS
6321
6322 return NULL;
6323}
6324
4c4b4cd2
PH
6325/* True iff field number FIELD_NUM of structure type TYPE contains the
6326 parent-type (inherited) fields of a derived type. Assumes TYPE is
6327 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6328
6329int
ebf56fd3 6330ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6331{
61ee279c 6332 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6333
4c4b4cd2
PH
6334 return (name != NULL
6335 && (strncmp (name, "PARENT", 6) == 0
6336 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6337}
6338
4c4b4cd2 6339/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6340 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6341 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6342 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6343 structures. */
14f9c5c9
AS
6344
6345int
ebf56fd3 6346ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6347{
d2e4a39e 6348 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6349
d2e4a39e 6350 return (name != NULL
4c4b4cd2
PH
6351 && (strncmp (name, "PARENT", 6) == 0
6352 || strcmp (name, "REP") == 0
6353 || strncmp (name, "_parent", 7) == 0
6354 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6355}
6356
4c4b4cd2
PH
6357/* True iff field number FIELD_NUM of structure or union type TYPE
6358 is a variant wrapper. Assumes TYPE is a structure type with at least
6359 FIELD_NUM+1 fields. */
14f9c5c9
AS
6360
6361int
ebf56fd3 6362ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6363{
d2e4a39e 6364 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6365
14f9c5c9 6366 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6367 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6368 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6369 == TYPE_CODE_UNION)));
14f9c5c9
AS
6370}
6371
6372/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6373 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6374 returns the type of the controlling discriminant for the variant.
6375 May return NULL if the type could not be found. */
14f9c5c9 6376
d2e4a39e 6377struct type *
ebf56fd3 6378ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6379{
d2e4a39e 6380 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6381
7c964f07 6382 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6383}
6384
4c4b4cd2 6385/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6386 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6387 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6388
6389int
ebf56fd3 6390ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6391{
d2e4a39e 6392 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6393
14f9c5c9
AS
6394 return (name != NULL && name[0] == 'O');
6395}
6396
6397/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6398 returns the name of the discriminant controlling the variant.
6399 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6400
d2e4a39e 6401char *
ebf56fd3 6402ada_variant_discrim_name (struct type *type0)
14f9c5c9 6403{
d2e4a39e 6404 static char *result = NULL;
14f9c5c9 6405 static size_t result_len = 0;
d2e4a39e
AS
6406 struct type *type;
6407 const char *name;
6408 const char *discrim_end;
6409 const char *discrim_start;
14f9c5c9
AS
6410
6411 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6412 type = TYPE_TARGET_TYPE (type0);
6413 else
6414 type = type0;
6415
6416 name = ada_type_name (type);
6417
6418 if (name == NULL || name[0] == '\000')
6419 return "";
6420
6421 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6422 discrim_end -= 1)
6423 {
4c4b4cd2
PH
6424 if (strncmp (discrim_end, "___XVN", 6) == 0)
6425 break;
14f9c5c9
AS
6426 }
6427 if (discrim_end == name)
6428 return "";
6429
d2e4a39e 6430 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6431 discrim_start -= 1)
6432 {
d2e4a39e 6433 if (discrim_start == name + 1)
4c4b4cd2 6434 return "";
76a01679 6435 if ((discrim_start > name + 3
4c4b4cd2
PH
6436 && strncmp (discrim_start - 3, "___", 3) == 0)
6437 || discrim_start[-1] == '.')
6438 break;
14f9c5c9
AS
6439 }
6440
6441 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6442 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6443 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6444 return result;
6445}
6446
4c4b4cd2
PH
6447/* Scan STR for a subtype-encoded number, beginning at position K.
6448 Put the position of the character just past the number scanned in
6449 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6450 Return 1 if there was a valid number at the given position, and 0
6451 otherwise. A "subtype-encoded" number consists of the absolute value
6452 in decimal, followed by the letter 'm' to indicate a negative number.
6453 Assumes 0m does not occur. */
14f9c5c9
AS
6454
6455int
d2e4a39e 6456ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6457{
6458 ULONGEST RU;
6459
d2e4a39e 6460 if (!isdigit (str[k]))
14f9c5c9
AS
6461 return 0;
6462
4c4b4cd2 6463 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6464 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6465 LONGEST. */
14f9c5c9
AS
6466 RU = 0;
6467 while (isdigit (str[k]))
6468 {
d2e4a39e 6469 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6470 k += 1;
6471 }
6472
d2e4a39e 6473 if (str[k] == 'm')
14f9c5c9
AS
6474 {
6475 if (R != NULL)
4c4b4cd2 6476 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6477 k += 1;
6478 }
6479 else if (R != NULL)
6480 *R = (LONGEST) RU;
6481
4c4b4cd2 6482 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6483 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6484 number representable as a LONGEST (although either would probably work
6485 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6486 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6487
6488 if (new_k != NULL)
6489 *new_k = k;
6490 return 1;
6491}
6492
4c4b4cd2
PH
6493/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6494 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6495 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6496
d2e4a39e 6497int
ebf56fd3 6498ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6499{
d2e4a39e 6500 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6501 int p;
6502
6503 p = 0;
6504 while (1)
6505 {
d2e4a39e 6506 switch (name[p])
4c4b4cd2
PH
6507 {
6508 case '\0':
6509 return 0;
6510 case 'S':
6511 {
6512 LONGEST W;
5b4ee69b 6513
4c4b4cd2
PH
6514 if (!ada_scan_number (name, p + 1, &W, &p))
6515 return 0;
6516 if (val == W)
6517 return 1;
6518 break;
6519 }
6520 case 'R':
6521 {
6522 LONGEST L, U;
5b4ee69b 6523
4c4b4cd2
PH
6524 if (!ada_scan_number (name, p + 1, &L, &p)
6525 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6526 return 0;
6527 if (val >= L && val <= U)
6528 return 1;
6529 break;
6530 }
6531 case 'O':
6532 return 1;
6533 default:
6534 return 0;
6535 }
6536 }
6537}
6538
0963b4bd 6539/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6540
6541/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6542 ARG_TYPE, extract and return the value of one of its (non-static)
6543 fields. FIELDNO says which field. Differs from value_primitive_field
6544 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6545
4c4b4cd2 6546static struct value *
d2e4a39e 6547ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6548 struct type *arg_type)
14f9c5c9 6549{
14f9c5c9
AS
6550 struct type *type;
6551
61ee279c 6552 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6553 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6554
4c4b4cd2 6555 /* Handle packed fields. */
14f9c5c9
AS
6556
6557 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6558 {
6559 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6560 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6561
0fd88904 6562 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6563 offset + bit_pos / 8,
6564 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6565 }
6566 else
6567 return value_primitive_field (arg1, offset, fieldno, arg_type);
6568}
6569
52ce6436
PH
6570/* Find field with name NAME in object of type TYPE. If found,
6571 set the following for each argument that is non-null:
6572 - *FIELD_TYPE_P to the field's type;
6573 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6574 an object of that type;
6575 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6576 - *BIT_SIZE_P to its size in bits if the field is packed, and
6577 0 otherwise;
6578 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6579 fields up to but not including the desired field, or by the total
6580 number of fields if not found. A NULL value of NAME never
6581 matches; the function just counts visible fields in this case.
6582
0963b4bd 6583 Returns 1 if found, 0 otherwise. */
52ce6436 6584
4c4b4cd2 6585static int
0d5cff50 6586find_struct_field (const char *name, struct type *type, int offset,
76a01679 6587 struct type **field_type_p,
52ce6436
PH
6588 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6589 int *index_p)
4c4b4cd2
PH
6590{
6591 int i;
6592
61ee279c 6593 type = ada_check_typedef (type);
76a01679 6594
52ce6436
PH
6595 if (field_type_p != NULL)
6596 *field_type_p = NULL;
6597 if (byte_offset_p != NULL)
d5d6fca5 6598 *byte_offset_p = 0;
52ce6436
PH
6599 if (bit_offset_p != NULL)
6600 *bit_offset_p = 0;
6601 if (bit_size_p != NULL)
6602 *bit_size_p = 0;
6603
6604 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6605 {
6606 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6607 int fld_offset = offset + bit_pos / 8;
0d5cff50 6608 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6609
4c4b4cd2
PH
6610 if (t_field_name == NULL)
6611 continue;
6612
52ce6436 6613 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6614 {
6615 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6616
52ce6436
PH
6617 if (field_type_p != NULL)
6618 *field_type_p = TYPE_FIELD_TYPE (type, i);
6619 if (byte_offset_p != NULL)
6620 *byte_offset_p = fld_offset;
6621 if (bit_offset_p != NULL)
6622 *bit_offset_p = bit_pos % 8;
6623 if (bit_size_p != NULL)
6624 *bit_size_p = bit_size;
76a01679
JB
6625 return 1;
6626 }
4c4b4cd2
PH
6627 else if (ada_is_wrapper_field (type, i))
6628 {
52ce6436
PH
6629 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6630 field_type_p, byte_offset_p, bit_offset_p,
6631 bit_size_p, index_p))
76a01679
JB
6632 return 1;
6633 }
4c4b4cd2
PH
6634 else if (ada_is_variant_part (type, i))
6635 {
52ce6436
PH
6636 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6637 fixed type?? */
4c4b4cd2 6638 int j;
52ce6436
PH
6639 struct type *field_type
6640 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6641
52ce6436 6642 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6643 {
76a01679
JB
6644 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6645 fld_offset
6646 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6647 field_type_p, byte_offset_p,
52ce6436 6648 bit_offset_p, bit_size_p, index_p))
76a01679 6649 return 1;
4c4b4cd2
PH
6650 }
6651 }
52ce6436
PH
6652 else if (index_p != NULL)
6653 *index_p += 1;
4c4b4cd2
PH
6654 }
6655 return 0;
6656}
6657
0963b4bd 6658/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6659
52ce6436
PH
6660static int
6661num_visible_fields (struct type *type)
6662{
6663 int n;
5b4ee69b 6664
52ce6436
PH
6665 n = 0;
6666 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6667 return n;
6668}
14f9c5c9 6669
4c4b4cd2 6670/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6671 and search in it assuming it has (class) type TYPE.
6672 If found, return value, else return NULL.
6673
4c4b4cd2 6674 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6675
4c4b4cd2 6676static struct value *
d2e4a39e 6677ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6678 struct type *type)
14f9c5c9
AS
6679{
6680 int i;
14f9c5c9 6681
5b4ee69b 6682 type = ada_check_typedef (type);
52ce6436 6683 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6684 {
0d5cff50 6685 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6686
6687 if (t_field_name == NULL)
4c4b4cd2 6688 continue;
14f9c5c9
AS
6689
6690 else if (field_name_match (t_field_name, name))
4c4b4cd2 6691 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6692
6693 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6694 {
0963b4bd 6695 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6696 ada_search_struct_field (name, arg,
6697 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6698 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6699
4c4b4cd2
PH
6700 if (v != NULL)
6701 return v;
6702 }
14f9c5c9
AS
6703
6704 else if (ada_is_variant_part (type, i))
4c4b4cd2 6705 {
0963b4bd 6706 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6707 int j;
5b4ee69b
MS
6708 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6709 i));
4c4b4cd2
PH
6710 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6711
52ce6436 6712 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6713 {
0963b4bd
MS
6714 struct value *v = ada_search_struct_field /* Force line
6715 break. */
06d5cf63
JB
6716 (name, arg,
6717 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6718 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6719
4c4b4cd2
PH
6720 if (v != NULL)
6721 return v;
6722 }
6723 }
14f9c5c9
AS
6724 }
6725 return NULL;
6726}
d2e4a39e 6727
52ce6436
PH
6728static struct value *ada_index_struct_field_1 (int *, struct value *,
6729 int, struct type *);
6730
6731
6732/* Return field #INDEX in ARG, where the index is that returned by
6733 * find_struct_field through its INDEX_P argument. Adjust the address
6734 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6735 * If found, return value, else return NULL. */
52ce6436
PH
6736
6737static struct value *
6738ada_index_struct_field (int index, struct value *arg, int offset,
6739 struct type *type)
6740{
6741 return ada_index_struct_field_1 (&index, arg, offset, type);
6742}
6743
6744
6745/* Auxiliary function for ada_index_struct_field. Like
6746 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6747 * *INDEX_P. */
52ce6436
PH
6748
6749static struct value *
6750ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6751 struct type *type)
6752{
6753 int i;
6754 type = ada_check_typedef (type);
6755
6756 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6757 {
6758 if (TYPE_FIELD_NAME (type, i) == NULL)
6759 continue;
6760 else if (ada_is_wrapper_field (type, i))
6761 {
0963b4bd 6762 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6763 ada_index_struct_field_1 (index_p, arg,
6764 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6765 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6766
52ce6436
PH
6767 if (v != NULL)
6768 return v;
6769 }
6770
6771 else if (ada_is_variant_part (type, i))
6772 {
6773 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6774 find_struct_field. */
52ce6436
PH
6775 error (_("Cannot assign this kind of variant record"));
6776 }
6777 else if (*index_p == 0)
6778 return ada_value_primitive_field (arg, offset, i, type);
6779 else
6780 *index_p -= 1;
6781 }
6782 return NULL;
6783}
6784
4c4b4cd2
PH
6785/* Given ARG, a value of type (pointer or reference to a)*
6786 structure/union, extract the component named NAME from the ultimate
6787 target structure/union and return it as a value with its
f5938064 6788 appropriate type.
14f9c5c9 6789
4c4b4cd2
PH
6790 The routine searches for NAME among all members of the structure itself
6791 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6792 (e.g., '_parent').
6793
03ee6b2e
PH
6794 If NO_ERR, then simply return NULL in case of error, rather than
6795 calling error. */
14f9c5c9 6796
d2e4a39e 6797struct value *
03ee6b2e 6798ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6799{
4c4b4cd2 6800 struct type *t, *t1;
d2e4a39e 6801 struct value *v;
14f9c5c9 6802
4c4b4cd2 6803 v = NULL;
df407dfe 6804 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6805 if (TYPE_CODE (t) == TYPE_CODE_REF)
6806 {
6807 t1 = TYPE_TARGET_TYPE (t);
6808 if (t1 == NULL)
03ee6b2e 6809 goto BadValue;
61ee279c 6810 t1 = ada_check_typedef (t1);
4c4b4cd2 6811 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6812 {
994b9211 6813 arg = coerce_ref (arg);
76a01679
JB
6814 t = t1;
6815 }
4c4b4cd2 6816 }
14f9c5c9 6817
4c4b4cd2
PH
6818 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6819 {
6820 t1 = TYPE_TARGET_TYPE (t);
6821 if (t1 == NULL)
03ee6b2e 6822 goto BadValue;
61ee279c 6823 t1 = ada_check_typedef (t1);
4c4b4cd2 6824 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6825 {
6826 arg = value_ind (arg);
6827 t = t1;
6828 }
4c4b4cd2 6829 else
76a01679 6830 break;
4c4b4cd2 6831 }
14f9c5c9 6832
4c4b4cd2 6833 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6834 goto BadValue;
14f9c5c9 6835
4c4b4cd2
PH
6836 if (t1 == t)
6837 v = ada_search_struct_field (name, arg, 0, t);
6838 else
6839 {
6840 int bit_offset, bit_size, byte_offset;
6841 struct type *field_type;
6842 CORE_ADDR address;
6843
76a01679 6844 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 6845 address = value_address (ada_value_ind (arg));
4c4b4cd2 6846 else
b50d69b5 6847 address = value_address (ada_coerce_ref (arg));
14f9c5c9 6848
1ed6ede0 6849 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6850 if (find_struct_field (name, t1, 0,
6851 &field_type, &byte_offset, &bit_offset,
52ce6436 6852 &bit_size, NULL))
76a01679
JB
6853 {
6854 if (bit_size != 0)
6855 {
714e53ab
PH
6856 if (TYPE_CODE (t) == TYPE_CODE_REF)
6857 arg = ada_coerce_ref (arg);
6858 else
6859 arg = ada_value_ind (arg);
76a01679
JB
6860 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6861 bit_offset, bit_size,
6862 field_type);
6863 }
6864 else
f5938064 6865 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6866 }
6867 }
6868
03ee6b2e
PH
6869 if (v != NULL || no_err)
6870 return v;
6871 else
323e0a4a 6872 error (_("There is no member named %s."), name);
14f9c5c9 6873
03ee6b2e
PH
6874 BadValue:
6875 if (no_err)
6876 return NULL;
6877 else
0963b4bd
MS
6878 error (_("Attempt to extract a component of "
6879 "a value that is not a record."));
14f9c5c9
AS
6880}
6881
6882/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6883 If DISPP is non-null, add its byte displacement from the beginning of a
6884 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6885 work for packed fields).
6886
6887 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6888 followed by "___".
14f9c5c9 6889
0963b4bd 6890 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6891 be a (pointer or reference)+ to a struct or union, and the
6892 ultimate target type will be searched.
14f9c5c9
AS
6893
6894 Looks recursively into variant clauses and parent types.
6895
4c4b4cd2
PH
6896 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6897 TYPE is not a type of the right kind. */
14f9c5c9 6898
4c4b4cd2 6899static struct type *
76a01679
JB
6900ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6901 int noerr, int *dispp)
14f9c5c9
AS
6902{
6903 int i;
6904
6905 if (name == NULL)
6906 goto BadName;
6907
76a01679 6908 if (refok && type != NULL)
4c4b4cd2
PH
6909 while (1)
6910 {
61ee279c 6911 type = ada_check_typedef (type);
76a01679
JB
6912 if (TYPE_CODE (type) != TYPE_CODE_PTR
6913 && TYPE_CODE (type) != TYPE_CODE_REF)
6914 break;
6915 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6916 }
14f9c5c9 6917
76a01679 6918 if (type == NULL
1265e4aa
JB
6919 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6920 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6921 {
4c4b4cd2 6922 if (noerr)
76a01679 6923 return NULL;
4c4b4cd2 6924 else
76a01679
JB
6925 {
6926 target_terminal_ours ();
6927 gdb_flush (gdb_stdout);
323e0a4a
AC
6928 if (type == NULL)
6929 error (_("Type (null) is not a structure or union type"));
6930 else
6931 {
6932 /* XXX: type_sprint */
6933 fprintf_unfiltered (gdb_stderr, _("Type "));
6934 type_print (type, "", gdb_stderr, -1);
6935 error (_(" is not a structure or union type"));
6936 }
76a01679 6937 }
14f9c5c9
AS
6938 }
6939
6940 type = to_static_fixed_type (type);
6941
6942 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6943 {
0d5cff50 6944 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6945 struct type *t;
6946 int disp;
d2e4a39e 6947
14f9c5c9 6948 if (t_field_name == NULL)
4c4b4cd2 6949 continue;
14f9c5c9
AS
6950
6951 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6952 {
6953 if (dispp != NULL)
6954 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6955 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6956 }
14f9c5c9
AS
6957
6958 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6959 {
6960 disp = 0;
6961 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6962 0, 1, &disp);
6963 if (t != NULL)
6964 {
6965 if (dispp != NULL)
6966 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6967 return t;
6968 }
6969 }
14f9c5c9
AS
6970
6971 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6972 {
6973 int j;
5b4ee69b
MS
6974 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6975 i));
4c4b4cd2
PH
6976
6977 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6978 {
b1f33ddd
JB
6979 /* FIXME pnh 2008/01/26: We check for a field that is
6980 NOT wrapped in a struct, since the compiler sometimes
6981 generates these for unchecked variant types. Revisit
0963b4bd 6982 if the compiler changes this practice. */
0d5cff50 6983 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6984 disp = 0;
b1f33ddd
JB
6985 if (v_field_name != NULL
6986 && field_name_match (v_field_name, name))
6987 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6988 else
0963b4bd
MS
6989 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6990 j),
b1f33ddd
JB
6991 name, 0, 1, &disp);
6992
4c4b4cd2
PH
6993 if (t != NULL)
6994 {
6995 if (dispp != NULL)
6996 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6997 return t;
6998 }
6999 }
7000 }
14f9c5c9
AS
7001
7002 }
7003
7004BadName:
d2e4a39e 7005 if (!noerr)
14f9c5c9
AS
7006 {
7007 target_terminal_ours ();
7008 gdb_flush (gdb_stdout);
323e0a4a
AC
7009 if (name == NULL)
7010 {
7011 /* XXX: type_sprint */
7012 fprintf_unfiltered (gdb_stderr, _("Type "));
7013 type_print (type, "", gdb_stderr, -1);
7014 error (_(" has no component named <null>"));
7015 }
7016 else
7017 {
7018 /* XXX: type_sprint */
7019 fprintf_unfiltered (gdb_stderr, _("Type "));
7020 type_print (type, "", gdb_stderr, -1);
7021 error (_(" has no component named %s"), name);
7022 }
14f9c5c9
AS
7023 }
7024
7025 return NULL;
7026}
7027
b1f33ddd
JB
7028/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7029 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7030 represents an unchecked union (that is, the variant part of a
0963b4bd 7031 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7032
7033static int
7034is_unchecked_variant (struct type *var_type, struct type *outer_type)
7035{
7036 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7037
b1f33ddd
JB
7038 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7039 == NULL);
7040}
7041
7042
14f9c5c9
AS
7043/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7044 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7045 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7046 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7047
d2e4a39e 7048int
ebf56fd3 7049ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7050 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7051{
7052 int others_clause;
7053 int i;
d2e4a39e 7054 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7055 struct value *outer;
7056 struct value *discrim;
14f9c5c9
AS
7057 LONGEST discrim_val;
7058
0c281816
JB
7059 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7060 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7061 if (discrim == NULL)
14f9c5c9 7062 return -1;
0c281816 7063 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7064
7065 others_clause = -1;
7066 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7067 {
7068 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7069 others_clause = i;
14f9c5c9 7070 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7071 return i;
14f9c5c9
AS
7072 }
7073
7074 return others_clause;
7075}
d2e4a39e 7076\f
14f9c5c9
AS
7077
7078
4c4b4cd2 7079 /* Dynamic-Sized Records */
14f9c5c9
AS
7080
7081/* Strategy: The type ostensibly attached to a value with dynamic size
7082 (i.e., a size that is not statically recorded in the debugging
7083 data) does not accurately reflect the size or layout of the value.
7084 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7085 conventional types that are constructed on the fly. */
14f9c5c9
AS
7086
7087/* There is a subtle and tricky problem here. In general, we cannot
7088 determine the size of dynamic records without its data. However,
7089 the 'struct value' data structure, which GDB uses to represent
7090 quantities in the inferior process (the target), requires the size
7091 of the type at the time of its allocation in order to reserve space
7092 for GDB's internal copy of the data. That's why the
7093 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7094 rather than struct value*s.
14f9c5c9
AS
7095
7096 However, GDB's internal history variables ($1, $2, etc.) are
7097 struct value*s containing internal copies of the data that are not, in
7098 general, the same as the data at their corresponding addresses in
7099 the target. Fortunately, the types we give to these values are all
7100 conventional, fixed-size types (as per the strategy described
7101 above), so that we don't usually have to perform the
7102 'to_fixed_xxx_type' conversions to look at their values.
7103 Unfortunately, there is one exception: if one of the internal
7104 history variables is an array whose elements are unconstrained
7105 records, then we will need to create distinct fixed types for each
7106 element selected. */
7107
7108/* The upshot of all of this is that many routines take a (type, host
7109 address, target address) triple as arguments to represent a value.
7110 The host address, if non-null, is supposed to contain an internal
7111 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7112 target at the target address. */
14f9c5c9
AS
7113
7114/* Assuming that VAL0 represents a pointer value, the result of
7115 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7116 dynamic-sized types. */
14f9c5c9 7117
d2e4a39e
AS
7118struct value *
7119ada_value_ind (struct value *val0)
14f9c5c9 7120{
c48db5ca 7121 struct value *val = value_ind (val0);
5b4ee69b 7122
b50d69b5
JG
7123 if (ada_is_tagged_type (value_type (val), 0))
7124 val = ada_tag_value_at_base_address (val);
7125
4c4b4cd2 7126 return ada_to_fixed_value (val);
14f9c5c9
AS
7127}
7128
7129/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7130 qualifiers on VAL0. */
7131
d2e4a39e
AS
7132static struct value *
7133ada_coerce_ref (struct value *val0)
7134{
df407dfe 7135 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7136 {
7137 struct value *val = val0;
5b4ee69b 7138
994b9211 7139 val = coerce_ref (val);
b50d69b5
JG
7140
7141 if (ada_is_tagged_type (value_type (val), 0))
7142 val = ada_tag_value_at_base_address (val);
7143
4c4b4cd2 7144 return ada_to_fixed_value (val);
d2e4a39e
AS
7145 }
7146 else
14f9c5c9
AS
7147 return val0;
7148}
7149
7150/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7151 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7152
7153static unsigned int
ebf56fd3 7154align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7155{
7156 return (off + alignment - 1) & ~(alignment - 1);
7157}
7158
4c4b4cd2 7159/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7160
7161static unsigned int
ebf56fd3 7162field_alignment (struct type *type, int f)
14f9c5c9 7163{
d2e4a39e 7164 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7165 int len;
14f9c5c9
AS
7166 int align_offset;
7167
64a1bf19
JB
7168 /* The field name should never be null, unless the debugging information
7169 is somehow malformed. In this case, we assume the field does not
7170 require any alignment. */
7171 if (name == NULL)
7172 return 1;
7173
7174 len = strlen (name);
7175
4c4b4cd2
PH
7176 if (!isdigit (name[len - 1]))
7177 return 1;
14f9c5c9 7178
d2e4a39e 7179 if (isdigit (name[len - 2]))
14f9c5c9
AS
7180 align_offset = len - 2;
7181 else
7182 align_offset = len - 1;
7183
4c4b4cd2 7184 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7185 return TARGET_CHAR_BIT;
7186
4c4b4cd2
PH
7187 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7188}
7189
852dff6c 7190/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7191
852dff6c
JB
7192static struct symbol *
7193ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7194{
7195 struct symbol *sym;
7196
7197 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7198 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7199 return sym;
7200
7201 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7202 return sym;
14f9c5c9
AS
7203}
7204
dddfab26
UW
7205/* Find a type named NAME. Ignores ambiguity. This routine will look
7206 solely for types defined by debug info, it will not search the GDB
7207 primitive types. */
4c4b4cd2 7208
852dff6c 7209static struct type *
ebf56fd3 7210ada_find_any_type (const char *name)
14f9c5c9 7211{
852dff6c 7212 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7213
14f9c5c9 7214 if (sym != NULL)
dddfab26 7215 return SYMBOL_TYPE (sym);
14f9c5c9 7216
dddfab26 7217 return NULL;
14f9c5c9
AS
7218}
7219
739593e0
JB
7220/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7221 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7222 symbol, in which case it is returned. Otherwise, this looks for
7223 symbols whose name is that of NAME_SYM suffixed with "___XR".
7224 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7225
7226struct symbol *
270140bd 7227ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7228{
739593e0 7229 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7230 struct symbol *sym;
7231
739593e0
JB
7232 if (strstr (name, "___XR") != NULL)
7233 return name_sym;
7234
aeb5907d
JB
7235 sym = find_old_style_renaming_symbol (name, block);
7236
7237 if (sym != NULL)
7238 return sym;
7239
0963b4bd 7240 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7241 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7242 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7243 return sym;
7244 else
7245 return NULL;
7246}
7247
7248static struct symbol *
270140bd 7249find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7250{
7f0df278 7251 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7252 char *rename;
7253
7254 if (function_sym != NULL)
7255 {
7256 /* If the symbol is defined inside a function, NAME is not fully
7257 qualified. This means we need to prepend the function name
7258 as well as adding the ``___XR'' suffix to build the name of
7259 the associated renaming symbol. */
0d5cff50 7260 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7261 /* Function names sometimes contain suffixes used
7262 for instance to qualify nested subprograms. When building
7263 the XR type name, we need to make sure that this suffix is
7264 not included. So do not include any suffix in the function
7265 name length below. */
69fadcdf 7266 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7267 const int rename_len = function_name_len + 2 /* "__" */
7268 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7269
529cad9c 7270 /* Strip the suffix if necessary. */
69fadcdf
JB
7271 ada_remove_trailing_digits (function_name, &function_name_len);
7272 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7273 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7274
4c4b4cd2
PH
7275 /* Library-level functions are a special case, as GNAT adds
7276 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7277 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7278 have this prefix, so we need to skip this prefix if present. */
7279 if (function_name_len > 5 /* "_ada_" */
7280 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7281 {
7282 function_name += 5;
7283 function_name_len -= 5;
7284 }
4c4b4cd2
PH
7285
7286 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7287 strncpy (rename, function_name, function_name_len);
7288 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7289 "__%s___XR", name);
4c4b4cd2
PH
7290 }
7291 else
7292 {
7293 const int rename_len = strlen (name) + 6;
5b4ee69b 7294
4c4b4cd2 7295 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7296 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7297 }
7298
852dff6c 7299 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7300}
7301
14f9c5c9 7302/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7303 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7304 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7305 otherwise return 0. */
7306
14f9c5c9 7307int
d2e4a39e 7308ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7309{
7310 if (type1 == NULL)
7311 return 1;
7312 else if (type0 == NULL)
7313 return 0;
7314 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7315 return 1;
7316 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7317 return 0;
4c4b4cd2
PH
7318 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7319 return 1;
ad82864c 7320 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7321 return 1;
4c4b4cd2
PH
7322 else if (ada_is_array_descriptor_type (type0)
7323 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7324 return 1;
aeb5907d
JB
7325 else
7326 {
7327 const char *type0_name = type_name_no_tag (type0);
7328 const char *type1_name = type_name_no_tag (type1);
7329
7330 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7331 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7332 return 1;
7333 }
14f9c5c9
AS
7334 return 0;
7335}
7336
7337/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7338 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7339
0d5cff50 7340const char *
d2e4a39e 7341ada_type_name (struct type *type)
14f9c5c9 7342{
d2e4a39e 7343 if (type == NULL)
14f9c5c9
AS
7344 return NULL;
7345 else if (TYPE_NAME (type) != NULL)
7346 return TYPE_NAME (type);
7347 else
7348 return TYPE_TAG_NAME (type);
7349}
7350
b4ba55a1
JB
7351/* Search the list of "descriptive" types associated to TYPE for a type
7352 whose name is NAME. */
7353
7354static struct type *
7355find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7356{
7357 struct type *result;
7358
7359 /* If there no descriptive-type info, then there is no parallel type
7360 to be found. */
7361 if (!HAVE_GNAT_AUX_INFO (type))
7362 return NULL;
7363
7364 result = TYPE_DESCRIPTIVE_TYPE (type);
7365 while (result != NULL)
7366 {
0d5cff50 7367 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7368
7369 if (result_name == NULL)
7370 {
7371 warning (_("unexpected null name on descriptive type"));
7372 return NULL;
7373 }
7374
7375 /* If the names match, stop. */
7376 if (strcmp (result_name, name) == 0)
7377 break;
7378
7379 /* Otherwise, look at the next item on the list, if any. */
7380 if (HAVE_GNAT_AUX_INFO (result))
7381 result = TYPE_DESCRIPTIVE_TYPE (result);
7382 else
7383 result = NULL;
7384 }
7385
7386 /* If we didn't find a match, see whether this is a packed array. With
7387 older compilers, the descriptive type information is either absent or
7388 irrelevant when it comes to packed arrays so the above lookup fails.
7389 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7390 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7391 return ada_find_any_type (name);
7392
7393 return result;
7394}
7395
7396/* Find a parallel type to TYPE with the specified NAME, using the
7397 descriptive type taken from the debugging information, if available,
7398 and otherwise using the (slower) name-based method. */
7399
7400static struct type *
7401ada_find_parallel_type_with_name (struct type *type, const char *name)
7402{
7403 struct type *result = NULL;
7404
7405 if (HAVE_GNAT_AUX_INFO (type))
7406 result = find_parallel_type_by_descriptive_type (type, name);
7407 else
7408 result = ada_find_any_type (name);
7409
7410 return result;
7411}
7412
7413/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7414 SUFFIX to the name of TYPE. */
14f9c5c9 7415
d2e4a39e 7416struct type *
ebf56fd3 7417ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7418{
0d5cff50
DE
7419 char *name;
7420 const char *typename = ada_type_name (type);
14f9c5c9 7421 int len;
d2e4a39e 7422
14f9c5c9
AS
7423 if (typename == NULL)
7424 return NULL;
7425
7426 len = strlen (typename);
7427
b4ba55a1 7428 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7429
7430 strcpy (name, typename);
7431 strcpy (name + len, suffix);
7432
b4ba55a1 7433 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7434}
7435
14f9c5c9 7436/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7437 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7438
d2e4a39e
AS
7439static struct type *
7440dynamic_template_type (struct type *type)
14f9c5c9 7441{
61ee279c 7442 type = ada_check_typedef (type);
14f9c5c9
AS
7443
7444 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7445 || ada_type_name (type) == NULL)
14f9c5c9 7446 return NULL;
d2e4a39e 7447 else
14f9c5c9
AS
7448 {
7449 int len = strlen (ada_type_name (type));
5b4ee69b 7450
4c4b4cd2
PH
7451 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7452 return type;
14f9c5c9 7453 else
4c4b4cd2 7454 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7455 }
7456}
7457
7458/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7459 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7460
d2e4a39e
AS
7461static int
7462is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7463{
7464 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7465
d2e4a39e 7466 return name != NULL
14f9c5c9
AS
7467 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7468 && strstr (name, "___XVL") != NULL;
7469}
7470
4c4b4cd2
PH
7471/* The index of the variant field of TYPE, or -1 if TYPE does not
7472 represent a variant record type. */
14f9c5c9 7473
d2e4a39e 7474static int
4c4b4cd2 7475variant_field_index (struct type *type)
14f9c5c9
AS
7476{
7477 int f;
7478
4c4b4cd2
PH
7479 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7480 return -1;
7481
7482 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7483 {
7484 if (ada_is_variant_part (type, f))
7485 return f;
7486 }
7487 return -1;
14f9c5c9
AS
7488}
7489
4c4b4cd2
PH
7490/* A record type with no fields. */
7491
d2e4a39e 7492static struct type *
e9bb382b 7493empty_record (struct type *template)
14f9c5c9 7494{
e9bb382b 7495 struct type *type = alloc_type_copy (template);
5b4ee69b 7496
14f9c5c9
AS
7497 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7498 TYPE_NFIELDS (type) = 0;
7499 TYPE_FIELDS (type) = NULL;
b1f33ddd 7500 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7501 TYPE_NAME (type) = "<empty>";
7502 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7503 TYPE_LENGTH (type) = 0;
7504 return type;
7505}
7506
7507/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7508 the value of type TYPE at VALADDR or ADDRESS (see comments at
7509 the beginning of this section) VAL according to GNAT conventions.
7510 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7511 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7512 an outer-level type (i.e., as opposed to a branch of a variant.) A
7513 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7514 of the variant.
14f9c5c9 7515
4c4b4cd2
PH
7516 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7517 length are not statically known are discarded. As a consequence,
7518 VALADDR, ADDRESS and DVAL0 are ignored.
7519
7520 NOTE: Limitations: For now, we assume that dynamic fields and
7521 variants occupy whole numbers of bytes. However, they need not be
7522 byte-aligned. */
7523
7524struct type *
10a2c479 7525ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7526 const gdb_byte *valaddr,
4c4b4cd2
PH
7527 CORE_ADDR address, struct value *dval0,
7528 int keep_dynamic_fields)
14f9c5c9 7529{
d2e4a39e
AS
7530 struct value *mark = value_mark ();
7531 struct value *dval;
7532 struct type *rtype;
14f9c5c9 7533 int nfields, bit_len;
4c4b4cd2 7534 int variant_field;
14f9c5c9 7535 long off;
d94e4f4f 7536 int fld_bit_len;
14f9c5c9
AS
7537 int f;
7538
4c4b4cd2
PH
7539 /* Compute the number of fields in this record type that are going
7540 to be processed: unless keep_dynamic_fields, this includes only
7541 fields whose position and length are static will be processed. */
7542 if (keep_dynamic_fields)
7543 nfields = TYPE_NFIELDS (type);
7544 else
7545 {
7546 nfields = 0;
76a01679 7547 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7548 && !ada_is_variant_part (type, nfields)
7549 && !is_dynamic_field (type, nfields))
7550 nfields++;
7551 }
7552
e9bb382b 7553 rtype = alloc_type_copy (type);
14f9c5c9
AS
7554 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7555 INIT_CPLUS_SPECIFIC (rtype);
7556 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7557 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7558 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7559 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7560 TYPE_NAME (rtype) = ada_type_name (type);
7561 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7562 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7563
d2e4a39e
AS
7564 off = 0;
7565 bit_len = 0;
4c4b4cd2
PH
7566 variant_field = -1;
7567
14f9c5c9
AS
7568 for (f = 0; f < nfields; f += 1)
7569 {
6c038f32
PH
7570 off = align_value (off, field_alignment (type, f))
7571 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7572 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7573 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7574
d2e4a39e 7575 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7576 {
7577 variant_field = f;
d94e4f4f 7578 fld_bit_len = 0;
4c4b4cd2 7579 }
14f9c5c9 7580 else if (is_dynamic_field (type, f))
4c4b4cd2 7581 {
284614f0
JB
7582 const gdb_byte *field_valaddr = valaddr;
7583 CORE_ADDR field_address = address;
7584 struct type *field_type =
7585 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7586
4c4b4cd2 7587 if (dval0 == NULL)
b5304971
JG
7588 {
7589 /* rtype's length is computed based on the run-time
7590 value of discriminants. If the discriminants are not
7591 initialized, the type size may be completely bogus and
0963b4bd 7592 GDB may fail to allocate a value for it. So check the
b5304971
JG
7593 size first before creating the value. */
7594 check_size (rtype);
7595 dval = value_from_contents_and_address (rtype, valaddr, address);
7596 }
4c4b4cd2
PH
7597 else
7598 dval = dval0;
7599
284614f0
JB
7600 /* If the type referenced by this field is an aligner type, we need
7601 to unwrap that aligner type, because its size might not be set.
7602 Keeping the aligner type would cause us to compute the wrong
7603 size for this field, impacting the offset of the all the fields
7604 that follow this one. */
7605 if (ada_is_aligner_type (field_type))
7606 {
7607 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7608
7609 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7610 field_address = cond_offset_target (field_address, field_offset);
7611 field_type = ada_aligned_type (field_type);
7612 }
7613
7614 field_valaddr = cond_offset_host (field_valaddr,
7615 off / TARGET_CHAR_BIT);
7616 field_address = cond_offset_target (field_address,
7617 off / TARGET_CHAR_BIT);
7618
7619 /* Get the fixed type of the field. Note that, in this case,
7620 we do not want to get the real type out of the tag: if
7621 the current field is the parent part of a tagged record,
7622 we will get the tag of the object. Clearly wrong: the real
7623 type of the parent is not the real type of the child. We
7624 would end up in an infinite loop. */
7625 field_type = ada_get_base_type (field_type);
7626 field_type = ada_to_fixed_type (field_type, field_valaddr,
7627 field_address, dval, 0);
27f2a97b
JB
7628 /* If the field size is already larger than the maximum
7629 object size, then the record itself will necessarily
7630 be larger than the maximum object size. We need to make
7631 this check now, because the size might be so ridiculously
7632 large (due to an uninitialized variable in the inferior)
7633 that it would cause an overflow when adding it to the
7634 record size. */
7635 check_size (field_type);
284614f0
JB
7636
7637 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7638 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7639 /* The multiplication can potentially overflow. But because
7640 the field length has been size-checked just above, and
7641 assuming that the maximum size is a reasonable value,
7642 an overflow should not happen in practice. So rather than
7643 adding overflow recovery code to this already complex code,
7644 we just assume that it's not going to happen. */
d94e4f4f 7645 fld_bit_len =
4c4b4cd2
PH
7646 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7647 }
14f9c5c9 7648 else
4c4b4cd2 7649 {
5ded5331
JB
7650 /* Note: If this field's type is a typedef, it is important
7651 to preserve the typedef layer.
7652
7653 Otherwise, we might be transforming a typedef to a fat
7654 pointer (encoding a pointer to an unconstrained array),
7655 into a basic fat pointer (encoding an unconstrained
7656 array). As both types are implemented using the same
7657 structure, the typedef is the only clue which allows us
7658 to distinguish between the two options. Stripping it
7659 would prevent us from printing this field appropriately. */
7660 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7661 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7662 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7663 fld_bit_len =
4c4b4cd2
PH
7664 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7665 else
5ded5331
JB
7666 {
7667 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7668
7669 /* We need to be careful of typedefs when computing
7670 the length of our field. If this is a typedef,
7671 get the length of the target type, not the length
7672 of the typedef. */
7673 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7674 field_type = ada_typedef_target_type (field_type);
7675
7676 fld_bit_len =
7677 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7678 }
4c4b4cd2 7679 }
14f9c5c9 7680 if (off + fld_bit_len > bit_len)
4c4b4cd2 7681 bit_len = off + fld_bit_len;
d94e4f4f 7682 off += fld_bit_len;
4c4b4cd2
PH
7683 TYPE_LENGTH (rtype) =
7684 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7685 }
4c4b4cd2
PH
7686
7687 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7688 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7689 the record. This can happen in the presence of representation
7690 clauses. */
7691 if (variant_field >= 0)
7692 {
7693 struct type *branch_type;
7694
7695 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7696
7697 if (dval0 == NULL)
7698 dval = value_from_contents_and_address (rtype, valaddr, address);
7699 else
7700 dval = dval0;
7701
7702 branch_type =
7703 to_fixed_variant_branch_type
7704 (TYPE_FIELD_TYPE (type, variant_field),
7705 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7706 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7707 if (branch_type == NULL)
7708 {
7709 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7710 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7711 TYPE_NFIELDS (rtype) -= 1;
7712 }
7713 else
7714 {
7715 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7716 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7717 fld_bit_len =
7718 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7719 TARGET_CHAR_BIT;
7720 if (off + fld_bit_len > bit_len)
7721 bit_len = off + fld_bit_len;
7722 TYPE_LENGTH (rtype) =
7723 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7724 }
7725 }
7726
714e53ab
PH
7727 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7728 should contain the alignment of that record, which should be a strictly
7729 positive value. If null or negative, then something is wrong, most
7730 probably in the debug info. In that case, we don't round up the size
0963b4bd 7731 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7732 the current RTYPE length might be good enough for our purposes. */
7733 if (TYPE_LENGTH (type) <= 0)
7734 {
323e0a4a
AC
7735 if (TYPE_NAME (rtype))
7736 warning (_("Invalid type size for `%s' detected: %d."),
7737 TYPE_NAME (rtype), TYPE_LENGTH (type));
7738 else
7739 warning (_("Invalid type size for <unnamed> detected: %d."),
7740 TYPE_LENGTH (type));
714e53ab
PH
7741 }
7742 else
7743 {
7744 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7745 TYPE_LENGTH (type));
7746 }
14f9c5c9
AS
7747
7748 value_free_to_mark (mark);
d2e4a39e 7749 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7750 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7751 return rtype;
7752}
7753
4c4b4cd2
PH
7754/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7755 of 1. */
14f9c5c9 7756
d2e4a39e 7757static struct type *
fc1a4b47 7758template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7759 CORE_ADDR address, struct value *dval0)
7760{
7761 return ada_template_to_fixed_record_type_1 (type, valaddr,
7762 address, dval0, 1);
7763}
7764
7765/* An ordinary record type in which ___XVL-convention fields and
7766 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7767 static approximations, containing all possible fields. Uses
7768 no runtime values. Useless for use in values, but that's OK,
7769 since the results are used only for type determinations. Works on both
7770 structs and unions. Representation note: to save space, we memorize
7771 the result of this function in the TYPE_TARGET_TYPE of the
7772 template type. */
7773
7774static struct type *
7775template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7776{
7777 struct type *type;
7778 int nfields;
7779 int f;
7780
4c4b4cd2
PH
7781 if (TYPE_TARGET_TYPE (type0) != NULL)
7782 return TYPE_TARGET_TYPE (type0);
7783
7784 nfields = TYPE_NFIELDS (type0);
7785 type = type0;
14f9c5c9
AS
7786
7787 for (f = 0; f < nfields; f += 1)
7788 {
61ee279c 7789 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7790 struct type *new_type;
14f9c5c9 7791
4c4b4cd2
PH
7792 if (is_dynamic_field (type0, f))
7793 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7794 else
f192137b 7795 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7796 if (type == type0 && new_type != field_type)
7797 {
e9bb382b 7798 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7799 TYPE_CODE (type) = TYPE_CODE (type0);
7800 INIT_CPLUS_SPECIFIC (type);
7801 TYPE_NFIELDS (type) = nfields;
7802 TYPE_FIELDS (type) = (struct field *)
7803 TYPE_ALLOC (type, nfields * sizeof (struct field));
7804 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7805 sizeof (struct field) * nfields);
7806 TYPE_NAME (type) = ada_type_name (type0);
7807 TYPE_TAG_NAME (type) = NULL;
876cecd0 7808 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7809 TYPE_LENGTH (type) = 0;
7810 }
7811 TYPE_FIELD_TYPE (type, f) = new_type;
7812 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7813 }
14f9c5c9
AS
7814 return type;
7815}
7816
4c4b4cd2 7817/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7818 whose address in memory is ADDRESS, returns a revision of TYPE,
7819 which should be a non-dynamic-sized record, in which the variant
7820 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7821 for discriminant values in DVAL0, which can be NULL if the record
7822 contains the necessary discriminant values. */
7823
d2e4a39e 7824static struct type *
fc1a4b47 7825to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7826 CORE_ADDR address, struct value *dval0)
14f9c5c9 7827{
d2e4a39e 7828 struct value *mark = value_mark ();
4c4b4cd2 7829 struct value *dval;
d2e4a39e 7830 struct type *rtype;
14f9c5c9
AS
7831 struct type *branch_type;
7832 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7833 int variant_field = variant_field_index (type);
14f9c5c9 7834
4c4b4cd2 7835 if (variant_field == -1)
14f9c5c9
AS
7836 return type;
7837
4c4b4cd2
PH
7838 if (dval0 == NULL)
7839 dval = value_from_contents_and_address (type, valaddr, address);
7840 else
7841 dval = dval0;
7842
e9bb382b 7843 rtype = alloc_type_copy (type);
14f9c5c9 7844 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7845 INIT_CPLUS_SPECIFIC (rtype);
7846 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7847 TYPE_FIELDS (rtype) =
7848 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7849 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7850 sizeof (struct field) * nfields);
14f9c5c9
AS
7851 TYPE_NAME (rtype) = ada_type_name (type);
7852 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7853 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7854 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7855
4c4b4cd2
PH
7856 branch_type = to_fixed_variant_branch_type
7857 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7858 cond_offset_host (valaddr,
4c4b4cd2
PH
7859 TYPE_FIELD_BITPOS (type, variant_field)
7860 / TARGET_CHAR_BIT),
d2e4a39e 7861 cond_offset_target (address,
4c4b4cd2
PH
7862 TYPE_FIELD_BITPOS (type, variant_field)
7863 / TARGET_CHAR_BIT), dval);
d2e4a39e 7864 if (branch_type == NULL)
14f9c5c9 7865 {
4c4b4cd2 7866 int f;
5b4ee69b 7867
4c4b4cd2
PH
7868 for (f = variant_field + 1; f < nfields; f += 1)
7869 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7870 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7871 }
7872 else
7873 {
4c4b4cd2
PH
7874 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7875 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7876 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7877 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7878 }
4c4b4cd2 7879 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7880
4c4b4cd2 7881 value_free_to_mark (mark);
14f9c5c9
AS
7882 return rtype;
7883}
7884
7885/* An ordinary record type (with fixed-length fields) that describes
7886 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7887 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7888 should be in DVAL, a record value; it may be NULL if the object
7889 at ADDR itself contains any necessary discriminant values.
7890 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7891 values from the record are needed. Except in the case that DVAL,
7892 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7893 unchecked) is replaced by a particular branch of the variant.
7894
7895 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7896 is questionable and may be removed. It can arise during the
7897 processing of an unconstrained-array-of-record type where all the
7898 variant branches have exactly the same size. This is because in
7899 such cases, the compiler does not bother to use the XVS convention
7900 when encoding the record. I am currently dubious of this
7901 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7902
d2e4a39e 7903static struct type *
fc1a4b47 7904to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7905 CORE_ADDR address, struct value *dval)
14f9c5c9 7906{
d2e4a39e 7907 struct type *templ_type;
14f9c5c9 7908
876cecd0 7909 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7910 return type0;
7911
d2e4a39e 7912 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7913
7914 if (templ_type != NULL)
7915 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7916 else if (variant_field_index (type0) >= 0)
7917 {
7918 if (dval == NULL && valaddr == NULL && address == 0)
7919 return type0;
7920 return to_record_with_fixed_variant_part (type0, valaddr, address,
7921 dval);
7922 }
14f9c5c9
AS
7923 else
7924 {
876cecd0 7925 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7926 return type0;
7927 }
7928
7929}
7930
7931/* An ordinary record type (with fixed-length fields) that describes
7932 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7933 union type. Any necessary discriminants' values should be in DVAL,
7934 a record value. That is, this routine selects the appropriate
7935 branch of the union at ADDR according to the discriminant value
b1f33ddd 7936 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7937 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7938
d2e4a39e 7939static struct type *
fc1a4b47 7940to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7941 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7942{
7943 int which;
d2e4a39e
AS
7944 struct type *templ_type;
7945 struct type *var_type;
14f9c5c9
AS
7946
7947 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7948 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7949 else
14f9c5c9
AS
7950 var_type = var_type0;
7951
7952 templ_type = ada_find_parallel_type (var_type, "___XVU");
7953
7954 if (templ_type != NULL)
7955 var_type = templ_type;
7956
b1f33ddd
JB
7957 if (is_unchecked_variant (var_type, value_type (dval)))
7958 return var_type0;
d2e4a39e
AS
7959 which =
7960 ada_which_variant_applies (var_type,
0fd88904 7961 value_type (dval), value_contents (dval));
14f9c5c9
AS
7962
7963 if (which < 0)
e9bb382b 7964 return empty_record (var_type);
14f9c5c9 7965 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7966 return to_fixed_record_type
d2e4a39e
AS
7967 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7968 valaddr, address, dval);
4c4b4cd2 7969 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7970 return
7971 to_fixed_record_type
7972 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7973 else
7974 return TYPE_FIELD_TYPE (var_type, which);
7975}
7976
7977/* Assuming that TYPE0 is an array type describing the type of a value
7978 at ADDR, and that DVAL describes a record containing any
7979 discriminants used in TYPE0, returns a type for the value that
7980 contains no dynamic components (that is, no components whose sizes
7981 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7982 true, gives an error message if the resulting type's size is over
4c4b4cd2 7983 varsize_limit. */
14f9c5c9 7984
d2e4a39e
AS
7985static struct type *
7986to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7987 int ignore_too_big)
14f9c5c9 7988{
d2e4a39e
AS
7989 struct type *index_type_desc;
7990 struct type *result;
ad82864c 7991 int constrained_packed_array_p;
14f9c5c9 7992
b0dd7688 7993 type0 = ada_check_typedef (type0);
284614f0 7994 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7995 return type0;
14f9c5c9 7996
ad82864c
JB
7997 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7998 if (constrained_packed_array_p)
7999 type0 = decode_constrained_packed_array_type (type0);
284614f0 8000
14f9c5c9 8001 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8002 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
8003 if (index_type_desc == NULL)
8004 {
61ee279c 8005 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8006
14f9c5c9 8007 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8008 depend on the contents of the array in properly constructed
8009 debugging data. */
529cad9c
PH
8010 /* Create a fixed version of the array element type.
8011 We're not providing the address of an element here,
e1d5a0d2 8012 and thus the actual object value cannot be inspected to do
529cad9c
PH
8013 the conversion. This should not be a problem, since arrays of
8014 unconstrained objects are not allowed. In particular, all
8015 the elements of an array of a tagged type should all be of
8016 the same type specified in the debugging info. No need to
8017 consult the object tag. */
1ed6ede0 8018 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8019
284614f0
JB
8020 /* Make sure we always create a new array type when dealing with
8021 packed array types, since we're going to fix-up the array
8022 type length and element bitsize a little further down. */
ad82864c 8023 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8024 result = type0;
14f9c5c9 8025 else
e9bb382b 8026 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8027 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8028 }
8029 else
8030 {
8031 int i;
8032 struct type *elt_type0;
8033
8034 elt_type0 = type0;
8035 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8036 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8037
8038 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8039 depend on the contents of the array in properly constructed
8040 debugging data. */
529cad9c
PH
8041 /* Create a fixed version of the array element type.
8042 We're not providing the address of an element here,
e1d5a0d2 8043 and thus the actual object value cannot be inspected to do
529cad9c
PH
8044 the conversion. This should not be a problem, since arrays of
8045 unconstrained objects are not allowed. In particular, all
8046 the elements of an array of a tagged type should all be of
8047 the same type specified in the debugging info. No need to
8048 consult the object tag. */
1ed6ede0
JB
8049 result =
8050 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8051
8052 elt_type0 = type0;
14f9c5c9 8053 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8054 {
8055 struct type *range_type =
28c85d6c 8056 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8057
e9bb382b 8058 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8059 result, range_type);
1ce677a4 8060 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8061 }
d2e4a39e 8062 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8063 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8064 }
8065
2e6fda7d
JB
8066 /* We want to preserve the type name. This can be useful when
8067 trying to get the type name of a value that has already been
8068 printed (for instance, if the user did "print VAR; whatis $". */
8069 TYPE_NAME (result) = TYPE_NAME (type0);
8070
ad82864c 8071 if (constrained_packed_array_p)
284614f0
JB
8072 {
8073 /* So far, the resulting type has been created as if the original
8074 type was a regular (non-packed) array type. As a result, the
8075 bitsize of the array elements needs to be set again, and the array
8076 length needs to be recomputed based on that bitsize. */
8077 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8078 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8079
8080 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8081 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8082 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8083 TYPE_LENGTH (result)++;
8084 }
8085
876cecd0 8086 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8087 return result;
d2e4a39e 8088}
14f9c5c9
AS
8089
8090
8091/* A standard type (containing no dynamically sized components)
8092 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8093 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8094 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8095 ADDRESS or in VALADDR contains these discriminants.
8096
1ed6ede0
JB
8097 If CHECK_TAG is not null, in the case of tagged types, this function
8098 attempts to locate the object's tag and use it to compute the actual
8099 type. However, when ADDRESS is null, we cannot use it to determine the
8100 location of the tag, and therefore compute the tagged type's actual type.
8101 So we return the tagged type without consulting the tag. */
529cad9c 8102
f192137b
JB
8103static struct type *
8104ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8105 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8106{
61ee279c 8107 type = ada_check_typedef (type);
d2e4a39e
AS
8108 switch (TYPE_CODE (type))
8109 {
8110 default:
14f9c5c9 8111 return type;
d2e4a39e 8112 case TYPE_CODE_STRUCT:
4c4b4cd2 8113 {
76a01679 8114 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8115 struct type *fixed_record_type =
8116 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8117
529cad9c
PH
8118 /* If STATIC_TYPE is a tagged type and we know the object's address,
8119 then we can determine its tag, and compute the object's actual
0963b4bd 8120 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8121 type (the parent part of the record may have dynamic fields
8122 and the way the location of _tag is expressed may depend on
8123 them). */
529cad9c 8124
1ed6ede0 8125 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8126 {
b50d69b5
JG
8127 struct value *tag =
8128 value_tag_from_contents_and_address
8129 (fixed_record_type,
8130 valaddr,
8131 address);
8132 struct type *real_type = type_from_tag (tag);
8133 struct value *obj =
8134 value_from_contents_and_address (fixed_record_type,
8135 valaddr,
8136 address);
76a01679 8137 if (real_type != NULL)
b50d69b5
JG
8138 return to_fixed_record_type
8139 (real_type, NULL,
8140 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8141 }
4af88198
JB
8142
8143 /* Check to see if there is a parallel ___XVZ variable.
8144 If there is, then it provides the actual size of our type. */
8145 else if (ada_type_name (fixed_record_type) != NULL)
8146 {
0d5cff50 8147 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8148 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8149 int xvz_found = 0;
8150 LONGEST size;
8151
88c15c34 8152 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8153 size = get_int_var_value (xvz_name, &xvz_found);
8154 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8155 {
8156 fixed_record_type = copy_type (fixed_record_type);
8157 TYPE_LENGTH (fixed_record_type) = size;
8158
8159 /* The FIXED_RECORD_TYPE may have be a stub. We have
8160 observed this when the debugging info is STABS, and
8161 apparently it is something that is hard to fix.
8162
8163 In practice, we don't need the actual type definition
8164 at all, because the presence of the XVZ variable allows us
8165 to assume that there must be a XVS type as well, which we
8166 should be able to use later, when we need the actual type
8167 definition.
8168
8169 In the meantime, pretend that the "fixed" type we are
8170 returning is NOT a stub, because this can cause trouble
8171 when using this type to create new types targeting it.
8172 Indeed, the associated creation routines often check
8173 whether the target type is a stub and will try to replace
0963b4bd 8174 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8175 might cause the new type to have the wrong size too.
8176 Consider the case of an array, for instance, where the size
8177 of the array is computed from the number of elements in
8178 our array multiplied by the size of its element. */
8179 TYPE_STUB (fixed_record_type) = 0;
8180 }
8181 }
1ed6ede0 8182 return fixed_record_type;
4c4b4cd2 8183 }
d2e4a39e 8184 case TYPE_CODE_ARRAY:
4c4b4cd2 8185 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8186 case TYPE_CODE_UNION:
8187 if (dval == NULL)
4c4b4cd2 8188 return type;
d2e4a39e 8189 else
4c4b4cd2 8190 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8191 }
14f9c5c9
AS
8192}
8193
f192137b
JB
8194/* The same as ada_to_fixed_type_1, except that it preserves the type
8195 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8196
8197 The typedef layer needs be preserved in order to differentiate between
8198 arrays and array pointers when both types are implemented using the same
8199 fat pointer. In the array pointer case, the pointer is encoded as
8200 a typedef of the pointer type. For instance, considering:
8201
8202 type String_Access is access String;
8203 S1 : String_Access := null;
8204
8205 To the debugger, S1 is defined as a typedef of type String. But
8206 to the user, it is a pointer. So if the user tries to print S1,
8207 we should not dereference the array, but print the array address
8208 instead.
8209
8210 If we didn't preserve the typedef layer, we would lose the fact that
8211 the type is to be presented as a pointer (needs de-reference before
8212 being printed). And we would also use the source-level type name. */
f192137b
JB
8213
8214struct type *
8215ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8216 CORE_ADDR address, struct value *dval, int check_tag)
8217
8218{
8219 struct type *fixed_type =
8220 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8221
96dbd2c1
JB
8222 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8223 then preserve the typedef layer.
8224
8225 Implementation note: We can only check the main-type portion of
8226 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8227 from TYPE now returns a type that has the same instance flags
8228 as TYPE. For instance, if TYPE is a "typedef const", and its
8229 target type is a "struct", then the typedef elimination will return
8230 a "const" version of the target type. See check_typedef for more
8231 details about how the typedef layer elimination is done.
8232
8233 brobecker/2010-11-19: It seems to me that the only case where it is
8234 useful to preserve the typedef layer is when dealing with fat pointers.
8235 Perhaps, we could add a check for that and preserve the typedef layer
8236 only in that situation. But this seems unecessary so far, probably
8237 because we call check_typedef/ada_check_typedef pretty much everywhere.
8238 */
f192137b 8239 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8240 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8241 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8242 return type;
8243
8244 return fixed_type;
8245}
8246
14f9c5c9 8247/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8248 TYPE0, but based on no runtime data. */
14f9c5c9 8249
d2e4a39e
AS
8250static struct type *
8251to_static_fixed_type (struct type *type0)
14f9c5c9 8252{
d2e4a39e 8253 struct type *type;
14f9c5c9
AS
8254
8255 if (type0 == NULL)
8256 return NULL;
8257
876cecd0 8258 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8259 return type0;
8260
61ee279c 8261 type0 = ada_check_typedef (type0);
d2e4a39e 8262
14f9c5c9
AS
8263 switch (TYPE_CODE (type0))
8264 {
8265 default:
8266 return type0;
8267 case TYPE_CODE_STRUCT:
8268 type = dynamic_template_type (type0);
d2e4a39e 8269 if (type != NULL)
4c4b4cd2
PH
8270 return template_to_static_fixed_type (type);
8271 else
8272 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8273 case TYPE_CODE_UNION:
8274 type = ada_find_parallel_type (type0, "___XVU");
8275 if (type != NULL)
4c4b4cd2
PH
8276 return template_to_static_fixed_type (type);
8277 else
8278 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8279 }
8280}
8281
4c4b4cd2
PH
8282/* A static approximation of TYPE with all type wrappers removed. */
8283
d2e4a39e
AS
8284static struct type *
8285static_unwrap_type (struct type *type)
14f9c5c9
AS
8286{
8287 if (ada_is_aligner_type (type))
8288 {
61ee279c 8289 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8290 if (ada_type_name (type1) == NULL)
4c4b4cd2 8291 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8292
8293 return static_unwrap_type (type1);
8294 }
d2e4a39e 8295 else
14f9c5c9 8296 {
d2e4a39e 8297 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8298
d2e4a39e 8299 if (raw_real_type == type)
4c4b4cd2 8300 return type;
14f9c5c9 8301 else
4c4b4cd2 8302 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8303 }
8304}
8305
8306/* In some cases, incomplete and private types require
4c4b4cd2 8307 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8308 type Foo;
8309 type FooP is access Foo;
8310 V: FooP;
8311 type Foo is array ...;
4c4b4cd2 8312 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8313 cross-references to such types, we instead substitute for FooP a
8314 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8315 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8316
8317/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8318 exists, otherwise TYPE. */
8319
d2e4a39e 8320struct type *
61ee279c 8321ada_check_typedef (struct type *type)
14f9c5c9 8322{
727e3d2e
JB
8323 if (type == NULL)
8324 return NULL;
8325
720d1a40
JB
8326 /* If our type is a typedef type of a fat pointer, then we're done.
8327 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8328 what allows us to distinguish between fat pointers that represent
8329 array types, and fat pointers that represent array access types
8330 (in both cases, the compiler implements them as fat pointers). */
8331 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8332 && is_thick_pntr (ada_typedef_target_type (type)))
8333 return type;
8334
14f9c5c9
AS
8335 CHECK_TYPEDEF (type);
8336 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8337 || !TYPE_STUB (type)
14f9c5c9
AS
8338 || TYPE_TAG_NAME (type) == NULL)
8339 return type;
d2e4a39e 8340 else
14f9c5c9 8341 {
0d5cff50 8342 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8343 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8344
05e522ef
JB
8345 if (type1 == NULL)
8346 return type;
8347
8348 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8349 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8350 types, only for the typedef-to-array types). If that's the case,
8351 strip the typedef layer. */
8352 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8353 type1 = ada_check_typedef (type1);
8354
8355 return type1;
14f9c5c9
AS
8356 }
8357}
8358
8359/* A value representing the data at VALADDR/ADDRESS as described by
8360 type TYPE0, but with a standard (static-sized) type that correctly
8361 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8362 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8363 creation of struct values]. */
14f9c5c9 8364
4c4b4cd2
PH
8365static struct value *
8366ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8367 struct value *val0)
14f9c5c9 8368{
1ed6ede0 8369 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8370
14f9c5c9
AS
8371 if (type == type0 && val0 != NULL)
8372 return val0;
d2e4a39e 8373 else
4c4b4cd2
PH
8374 return value_from_contents_and_address (type, 0, address);
8375}
8376
8377/* A value representing VAL, but with a standard (static-sized) type
8378 that correctly describes it. Does not necessarily create a new
8379 value. */
8380
0c3acc09 8381struct value *
4c4b4cd2
PH
8382ada_to_fixed_value (struct value *val)
8383{
c48db5ca
JB
8384 val = unwrap_value (val);
8385 val = ada_to_fixed_value_create (value_type (val),
8386 value_address (val),
8387 val);
8388 return val;
14f9c5c9 8389}
d2e4a39e 8390\f
14f9c5c9 8391
14f9c5c9
AS
8392/* Attributes */
8393
4c4b4cd2
PH
8394/* Table mapping attribute numbers to names.
8395 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8396
d2e4a39e 8397static const char *attribute_names[] = {
14f9c5c9
AS
8398 "<?>",
8399
d2e4a39e 8400 "first",
14f9c5c9
AS
8401 "last",
8402 "length",
8403 "image",
14f9c5c9
AS
8404 "max",
8405 "min",
4c4b4cd2
PH
8406 "modulus",
8407 "pos",
8408 "size",
8409 "tag",
14f9c5c9 8410 "val",
14f9c5c9
AS
8411 0
8412};
8413
d2e4a39e 8414const char *
4c4b4cd2 8415ada_attribute_name (enum exp_opcode n)
14f9c5c9 8416{
4c4b4cd2
PH
8417 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8418 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8419 else
8420 return attribute_names[0];
8421}
8422
4c4b4cd2 8423/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8424
4c4b4cd2
PH
8425static LONGEST
8426pos_atr (struct value *arg)
14f9c5c9 8427{
24209737
PH
8428 struct value *val = coerce_ref (arg);
8429 struct type *type = value_type (val);
14f9c5c9 8430
d2e4a39e 8431 if (!discrete_type_p (type))
323e0a4a 8432 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8433
8434 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8435 {
8436 int i;
24209737 8437 LONGEST v = value_as_long (val);
14f9c5c9 8438
d2e4a39e 8439 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8440 {
14e75d8e 8441 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8442 return i;
8443 }
323e0a4a 8444 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8445 }
8446 else
24209737 8447 return value_as_long (val);
4c4b4cd2
PH
8448}
8449
8450static struct value *
3cb382c9 8451value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8452{
3cb382c9 8453 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8454}
8455
4c4b4cd2 8456/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8457
d2e4a39e
AS
8458static struct value *
8459value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8460{
d2e4a39e 8461 if (!discrete_type_p (type))
323e0a4a 8462 error (_("'VAL only defined on discrete types"));
df407dfe 8463 if (!integer_type_p (value_type (arg)))
323e0a4a 8464 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8465
8466 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8467 {
8468 long pos = value_as_long (arg);
5b4ee69b 8469
14f9c5c9 8470 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8471 error (_("argument to 'VAL out of range"));
14e75d8e 8472 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8473 }
8474 else
8475 return value_from_longest (type, value_as_long (arg));
8476}
14f9c5c9 8477\f
d2e4a39e 8478
4c4b4cd2 8479 /* Evaluation */
14f9c5c9 8480
4c4b4cd2
PH
8481/* True if TYPE appears to be an Ada character type.
8482 [At the moment, this is true only for Character and Wide_Character;
8483 It is a heuristic test that could stand improvement]. */
14f9c5c9 8484
d2e4a39e
AS
8485int
8486ada_is_character_type (struct type *type)
14f9c5c9 8487{
7b9f71f2
JB
8488 const char *name;
8489
8490 /* If the type code says it's a character, then assume it really is,
8491 and don't check any further. */
8492 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8493 return 1;
8494
8495 /* Otherwise, assume it's a character type iff it is a discrete type
8496 with a known character type name. */
8497 name = ada_type_name (type);
8498 return (name != NULL
8499 && (TYPE_CODE (type) == TYPE_CODE_INT
8500 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8501 && (strcmp (name, "character") == 0
8502 || strcmp (name, "wide_character") == 0
5a517ebd 8503 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8504 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8505}
8506
4c4b4cd2 8507/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8508
8509int
ebf56fd3 8510ada_is_string_type (struct type *type)
14f9c5c9 8511{
61ee279c 8512 type = ada_check_typedef (type);
d2e4a39e 8513 if (type != NULL
14f9c5c9 8514 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8515 && (ada_is_simple_array_type (type)
8516 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8517 && ada_array_arity (type) == 1)
8518 {
8519 struct type *elttype = ada_array_element_type (type, 1);
8520
8521 return ada_is_character_type (elttype);
8522 }
d2e4a39e 8523 else
14f9c5c9
AS
8524 return 0;
8525}
8526
5bf03f13
JB
8527/* The compiler sometimes provides a parallel XVS type for a given
8528 PAD type. Normally, it is safe to follow the PAD type directly,
8529 but older versions of the compiler have a bug that causes the offset
8530 of its "F" field to be wrong. Following that field in that case
8531 would lead to incorrect results, but this can be worked around
8532 by ignoring the PAD type and using the associated XVS type instead.
8533
8534 Set to True if the debugger should trust the contents of PAD types.
8535 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8536static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8537
8538/* True if TYPE is a struct type introduced by the compiler to force the
8539 alignment of a value. Such types have a single field with a
4c4b4cd2 8540 distinctive name. */
14f9c5c9
AS
8541
8542int
ebf56fd3 8543ada_is_aligner_type (struct type *type)
14f9c5c9 8544{
61ee279c 8545 type = ada_check_typedef (type);
714e53ab 8546
5bf03f13 8547 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8548 return 0;
8549
14f9c5c9 8550 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8551 && TYPE_NFIELDS (type) == 1
8552 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8553}
8554
8555/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8556 the parallel type. */
14f9c5c9 8557
d2e4a39e
AS
8558struct type *
8559ada_get_base_type (struct type *raw_type)
14f9c5c9 8560{
d2e4a39e
AS
8561 struct type *real_type_namer;
8562 struct type *raw_real_type;
14f9c5c9
AS
8563
8564 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8565 return raw_type;
8566
284614f0
JB
8567 if (ada_is_aligner_type (raw_type))
8568 /* The encoding specifies that we should always use the aligner type.
8569 So, even if this aligner type has an associated XVS type, we should
8570 simply ignore it.
8571
8572 According to the compiler gurus, an XVS type parallel to an aligner
8573 type may exist because of a stabs limitation. In stabs, aligner
8574 types are empty because the field has a variable-sized type, and
8575 thus cannot actually be used as an aligner type. As a result,
8576 we need the associated parallel XVS type to decode the type.
8577 Since the policy in the compiler is to not change the internal
8578 representation based on the debugging info format, we sometimes
8579 end up having a redundant XVS type parallel to the aligner type. */
8580 return raw_type;
8581
14f9c5c9 8582 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8583 if (real_type_namer == NULL
14f9c5c9
AS
8584 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8585 || TYPE_NFIELDS (real_type_namer) != 1)
8586 return raw_type;
8587
f80d3ff2
JB
8588 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8589 {
8590 /* This is an older encoding form where the base type needs to be
8591 looked up by name. We prefer the newer enconding because it is
8592 more efficient. */
8593 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8594 if (raw_real_type == NULL)
8595 return raw_type;
8596 else
8597 return raw_real_type;
8598 }
8599
8600 /* The field in our XVS type is a reference to the base type. */
8601 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8602}
14f9c5c9 8603
4c4b4cd2 8604/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8605
d2e4a39e
AS
8606struct type *
8607ada_aligned_type (struct type *type)
14f9c5c9
AS
8608{
8609 if (ada_is_aligner_type (type))
8610 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8611 else
8612 return ada_get_base_type (type);
8613}
8614
8615
8616/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8617 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8618
fc1a4b47
AC
8619const gdb_byte *
8620ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8621{
d2e4a39e 8622 if (ada_is_aligner_type (type))
14f9c5c9 8623 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8624 valaddr +
8625 TYPE_FIELD_BITPOS (type,
8626 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8627 else
8628 return valaddr;
8629}
8630
4c4b4cd2
PH
8631
8632
14f9c5c9 8633/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8634 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8635const char *
8636ada_enum_name (const char *name)
14f9c5c9 8637{
4c4b4cd2
PH
8638 static char *result;
8639 static size_t result_len = 0;
d2e4a39e 8640 char *tmp;
14f9c5c9 8641
4c4b4cd2
PH
8642 /* First, unqualify the enumeration name:
8643 1. Search for the last '.' character. If we find one, then skip
177b42fe 8644 all the preceding characters, the unqualified name starts
76a01679 8645 right after that dot.
4c4b4cd2 8646 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8647 translates dots into "__". Search forward for double underscores,
8648 but stop searching when we hit an overloading suffix, which is
8649 of the form "__" followed by digits. */
4c4b4cd2 8650
c3e5cd34
PH
8651 tmp = strrchr (name, '.');
8652 if (tmp != NULL)
4c4b4cd2
PH
8653 name = tmp + 1;
8654 else
14f9c5c9 8655 {
4c4b4cd2
PH
8656 while ((tmp = strstr (name, "__")) != NULL)
8657 {
8658 if (isdigit (tmp[2]))
8659 break;
8660 else
8661 name = tmp + 2;
8662 }
14f9c5c9
AS
8663 }
8664
8665 if (name[0] == 'Q')
8666 {
14f9c5c9 8667 int v;
5b4ee69b 8668
14f9c5c9 8669 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8670 {
8671 if (sscanf (name + 2, "%x", &v) != 1)
8672 return name;
8673 }
14f9c5c9 8674 else
4c4b4cd2 8675 return name;
14f9c5c9 8676
4c4b4cd2 8677 GROW_VECT (result, result_len, 16);
14f9c5c9 8678 if (isascii (v) && isprint (v))
88c15c34 8679 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8680 else if (name[1] == 'U')
88c15c34 8681 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8682 else
88c15c34 8683 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8684
8685 return result;
8686 }
d2e4a39e 8687 else
4c4b4cd2 8688 {
c3e5cd34
PH
8689 tmp = strstr (name, "__");
8690 if (tmp == NULL)
8691 tmp = strstr (name, "$");
8692 if (tmp != NULL)
4c4b4cd2
PH
8693 {
8694 GROW_VECT (result, result_len, tmp - name + 1);
8695 strncpy (result, name, tmp - name);
8696 result[tmp - name] = '\0';
8697 return result;
8698 }
8699
8700 return name;
8701 }
14f9c5c9
AS
8702}
8703
14f9c5c9
AS
8704/* Evaluate the subexpression of EXP starting at *POS as for
8705 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8706 expression. */
14f9c5c9 8707
d2e4a39e
AS
8708static struct value *
8709evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8710{
4b27a620 8711 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8712}
8713
8714/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8715 value it wraps. */
14f9c5c9 8716
d2e4a39e
AS
8717static struct value *
8718unwrap_value (struct value *val)
14f9c5c9 8719{
df407dfe 8720 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8721
14f9c5c9
AS
8722 if (ada_is_aligner_type (type))
8723 {
de4d072f 8724 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8725 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8726
14f9c5c9 8727 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8728 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8729
8730 return unwrap_value (v);
8731 }
d2e4a39e 8732 else
14f9c5c9 8733 {
d2e4a39e 8734 struct type *raw_real_type =
61ee279c 8735 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8736
5bf03f13
JB
8737 /* If there is no parallel XVS or XVE type, then the value is
8738 already unwrapped. Return it without further modification. */
8739 if ((type == raw_real_type)
8740 && ada_find_parallel_type (type, "___XVE") == NULL)
8741 return val;
14f9c5c9 8742
d2e4a39e 8743 return
4c4b4cd2
PH
8744 coerce_unspec_val_to_type
8745 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8746 value_address (val),
1ed6ede0 8747 NULL, 1));
14f9c5c9
AS
8748 }
8749}
d2e4a39e
AS
8750
8751static struct value *
8752cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8753{
8754 LONGEST val;
8755
df407dfe 8756 if (type == value_type (arg))
14f9c5c9 8757 return arg;
df407dfe 8758 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8759 val = ada_float_to_fixed (type,
df407dfe 8760 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8761 value_as_long (arg)));
d2e4a39e 8762 else
14f9c5c9 8763 {
a53b7a21 8764 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8765
14f9c5c9
AS
8766 val = ada_float_to_fixed (type, argd);
8767 }
8768
8769 return value_from_longest (type, val);
8770}
8771
d2e4a39e 8772static struct value *
a53b7a21 8773cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8774{
df407dfe 8775 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8776 value_as_long (arg));
5b4ee69b 8777
a53b7a21 8778 return value_from_double (type, val);
14f9c5c9
AS
8779}
8780
d99dcf51
JB
8781/* Given two array types T1 and T2, return nonzero iff both arrays
8782 contain the same number of elements. */
8783
8784static int
8785ada_same_array_size_p (struct type *t1, struct type *t2)
8786{
8787 LONGEST lo1, hi1, lo2, hi2;
8788
8789 /* Get the array bounds in order to verify that the size of
8790 the two arrays match. */
8791 if (!get_array_bounds (t1, &lo1, &hi1)
8792 || !get_array_bounds (t2, &lo2, &hi2))
8793 error (_("unable to determine array bounds"));
8794
8795 /* To make things easier for size comparison, normalize a bit
8796 the case of empty arrays by making sure that the difference
8797 between upper bound and lower bound is always -1. */
8798 if (lo1 > hi1)
8799 hi1 = lo1 - 1;
8800 if (lo2 > hi2)
8801 hi2 = lo2 - 1;
8802
8803 return (hi1 - lo1 == hi2 - lo2);
8804}
8805
8806/* Assuming that VAL is an array of integrals, and TYPE represents
8807 an array with the same number of elements, but with wider integral
8808 elements, return an array "casted" to TYPE. In practice, this
8809 means that the returned array is built by casting each element
8810 of the original array into TYPE's (wider) element type. */
8811
8812static struct value *
8813ada_promote_array_of_integrals (struct type *type, struct value *val)
8814{
8815 struct type *elt_type = TYPE_TARGET_TYPE (type);
8816 LONGEST lo, hi;
8817 struct value *res;
8818 LONGEST i;
8819
8820 /* Verify that both val and type are arrays of scalars, and
8821 that the size of val's elements is smaller than the size
8822 of type's element. */
8823 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8824 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8825 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8826 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8827 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8828 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8829
8830 if (!get_array_bounds (type, &lo, &hi))
8831 error (_("unable to determine array bounds"));
8832
8833 res = allocate_value (type);
8834
8835 /* Promote each array element. */
8836 for (i = 0; i < hi - lo + 1; i++)
8837 {
8838 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8839
8840 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8841 value_contents_all (elt), TYPE_LENGTH (elt_type));
8842 }
8843
8844 return res;
8845}
8846
4c4b4cd2
PH
8847/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8848 return the converted value. */
8849
d2e4a39e
AS
8850static struct value *
8851coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8852{
df407dfe 8853 struct type *type2 = value_type (val);
5b4ee69b 8854
14f9c5c9
AS
8855 if (type == type2)
8856 return val;
8857
61ee279c
PH
8858 type2 = ada_check_typedef (type2);
8859 type = ada_check_typedef (type);
14f9c5c9 8860
d2e4a39e
AS
8861 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8862 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8863 {
8864 val = ada_value_ind (val);
df407dfe 8865 type2 = value_type (val);
14f9c5c9
AS
8866 }
8867
d2e4a39e 8868 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8869 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8870 {
d99dcf51
JB
8871 if (!ada_same_array_size_p (type, type2))
8872 error (_("cannot assign arrays of different length"));
8873
8874 if (is_integral_type (TYPE_TARGET_TYPE (type))
8875 && is_integral_type (TYPE_TARGET_TYPE (type2))
8876 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8877 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8878 {
8879 /* Allow implicit promotion of the array elements to
8880 a wider type. */
8881 return ada_promote_array_of_integrals (type, val);
8882 }
8883
8884 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8885 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 8886 error (_("Incompatible types in assignment"));
04624583 8887 deprecated_set_value_type (val, type);
14f9c5c9 8888 }
d2e4a39e 8889 return val;
14f9c5c9
AS
8890}
8891
4c4b4cd2
PH
8892static struct value *
8893ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8894{
8895 struct value *val;
8896 struct type *type1, *type2;
8897 LONGEST v, v1, v2;
8898
994b9211
AC
8899 arg1 = coerce_ref (arg1);
8900 arg2 = coerce_ref (arg2);
18af8284
JB
8901 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8902 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8903
76a01679
JB
8904 if (TYPE_CODE (type1) != TYPE_CODE_INT
8905 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8906 return value_binop (arg1, arg2, op);
8907
76a01679 8908 switch (op)
4c4b4cd2
PH
8909 {
8910 case BINOP_MOD:
8911 case BINOP_DIV:
8912 case BINOP_REM:
8913 break;
8914 default:
8915 return value_binop (arg1, arg2, op);
8916 }
8917
8918 v2 = value_as_long (arg2);
8919 if (v2 == 0)
323e0a4a 8920 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8921
8922 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8923 return value_binop (arg1, arg2, op);
8924
8925 v1 = value_as_long (arg1);
8926 switch (op)
8927 {
8928 case BINOP_DIV:
8929 v = v1 / v2;
76a01679
JB
8930 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8931 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8932 break;
8933 case BINOP_REM:
8934 v = v1 % v2;
76a01679
JB
8935 if (v * v1 < 0)
8936 v -= v2;
4c4b4cd2
PH
8937 break;
8938 default:
8939 /* Should not reach this point. */
8940 v = 0;
8941 }
8942
8943 val = allocate_value (type1);
990a07ab 8944 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8945 TYPE_LENGTH (value_type (val)),
8946 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8947 return val;
8948}
8949
8950static int
8951ada_value_equal (struct value *arg1, struct value *arg2)
8952{
df407dfe
AC
8953 if (ada_is_direct_array_type (value_type (arg1))
8954 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8955 {
f58b38bf
JB
8956 /* Automatically dereference any array reference before
8957 we attempt to perform the comparison. */
8958 arg1 = ada_coerce_ref (arg1);
8959 arg2 = ada_coerce_ref (arg2);
8960
4c4b4cd2
PH
8961 arg1 = ada_coerce_to_simple_array (arg1);
8962 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8963 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8964 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8965 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8966 /* FIXME: The following works only for types whose
76a01679
JB
8967 representations use all bits (no padding or undefined bits)
8968 and do not have user-defined equality. */
8969 return
df407dfe 8970 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8971 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8972 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8973 }
8974 return value_equal (arg1, arg2);
8975}
8976
52ce6436
PH
8977/* Total number of component associations in the aggregate starting at
8978 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8979 OP_AGGREGATE. */
52ce6436
PH
8980
8981static int
8982num_component_specs (struct expression *exp, int pc)
8983{
8984 int n, m, i;
5b4ee69b 8985
52ce6436
PH
8986 m = exp->elts[pc + 1].longconst;
8987 pc += 3;
8988 n = 0;
8989 for (i = 0; i < m; i += 1)
8990 {
8991 switch (exp->elts[pc].opcode)
8992 {
8993 default:
8994 n += 1;
8995 break;
8996 case OP_CHOICES:
8997 n += exp->elts[pc + 1].longconst;
8998 break;
8999 }
9000 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9001 }
9002 return n;
9003}
9004
9005/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9006 component of LHS (a simple array or a record), updating *POS past
9007 the expression, assuming that LHS is contained in CONTAINER. Does
9008 not modify the inferior's memory, nor does it modify LHS (unless
9009 LHS == CONTAINER). */
9010
9011static void
9012assign_component (struct value *container, struct value *lhs, LONGEST index,
9013 struct expression *exp, int *pos)
9014{
9015 struct value *mark = value_mark ();
9016 struct value *elt;
5b4ee69b 9017
52ce6436
PH
9018 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9019 {
22601c15
UW
9020 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9021 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9022
52ce6436
PH
9023 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9024 }
9025 else
9026 {
9027 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9028 elt = ada_to_fixed_value (elt);
52ce6436
PH
9029 }
9030
9031 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9032 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9033 else
9034 value_assign_to_component (container, elt,
9035 ada_evaluate_subexp (NULL, exp, pos,
9036 EVAL_NORMAL));
9037
9038 value_free_to_mark (mark);
9039}
9040
9041/* Assuming that LHS represents an lvalue having a record or array
9042 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9043 of that aggregate's value to LHS, advancing *POS past the
9044 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9045 lvalue containing LHS (possibly LHS itself). Does not modify
9046 the inferior's memory, nor does it modify the contents of
0963b4bd 9047 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9048
9049static struct value *
9050assign_aggregate (struct value *container,
9051 struct value *lhs, struct expression *exp,
9052 int *pos, enum noside noside)
9053{
9054 struct type *lhs_type;
9055 int n = exp->elts[*pos+1].longconst;
9056 LONGEST low_index, high_index;
9057 int num_specs;
9058 LONGEST *indices;
9059 int max_indices, num_indices;
52ce6436 9060 int i;
52ce6436
PH
9061
9062 *pos += 3;
9063 if (noside != EVAL_NORMAL)
9064 {
52ce6436
PH
9065 for (i = 0; i < n; i += 1)
9066 ada_evaluate_subexp (NULL, exp, pos, noside);
9067 return container;
9068 }
9069
9070 container = ada_coerce_ref (container);
9071 if (ada_is_direct_array_type (value_type (container)))
9072 container = ada_coerce_to_simple_array (container);
9073 lhs = ada_coerce_ref (lhs);
9074 if (!deprecated_value_modifiable (lhs))
9075 error (_("Left operand of assignment is not a modifiable lvalue."));
9076
9077 lhs_type = value_type (lhs);
9078 if (ada_is_direct_array_type (lhs_type))
9079 {
9080 lhs = ada_coerce_to_simple_array (lhs);
9081 lhs_type = value_type (lhs);
9082 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9083 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9084 }
9085 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9086 {
9087 low_index = 0;
9088 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9089 }
9090 else
9091 error (_("Left-hand side must be array or record."));
9092
9093 num_specs = num_component_specs (exp, *pos - 3);
9094 max_indices = 4 * num_specs + 4;
9095 indices = alloca (max_indices * sizeof (indices[0]));
9096 indices[0] = indices[1] = low_index - 1;
9097 indices[2] = indices[3] = high_index + 1;
9098 num_indices = 4;
9099
9100 for (i = 0; i < n; i += 1)
9101 {
9102 switch (exp->elts[*pos].opcode)
9103 {
1fbf5ada
JB
9104 case OP_CHOICES:
9105 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9106 &num_indices, max_indices,
9107 low_index, high_index);
9108 break;
9109 case OP_POSITIONAL:
9110 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9111 &num_indices, max_indices,
9112 low_index, high_index);
1fbf5ada
JB
9113 break;
9114 case OP_OTHERS:
9115 if (i != n-1)
9116 error (_("Misplaced 'others' clause"));
9117 aggregate_assign_others (container, lhs, exp, pos, indices,
9118 num_indices, low_index, high_index);
9119 break;
9120 default:
9121 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9122 }
9123 }
9124
9125 return container;
9126}
9127
9128/* Assign into the component of LHS indexed by the OP_POSITIONAL
9129 construct at *POS, updating *POS past the construct, given that
9130 the positions are relative to lower bound LOW, where HIGH is the
9131 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9132 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9133 assign_aggregate. */
52ce6436
PH
9134static void
9135aggregate_assign_positional (struct value *container,
9136 struct value *lhs, struct expression *exp,
9137 int *pos, LONGEST *indices, int *num_indices,
9138 int max_indices, LONGEST low, LONGEST high)
9139{
9140 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9141
9142 if (ind - 1 == high)
e1d5a0d2 9143 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9144 if (ind <= high)
9145 {
9146 add_component_interval (ind, ind, indices, num_indices, max_indices);
9147 *pos += 3;
9148 assign_component (container, lhs, ind, exp, pos);
9149 }
9150 else
9151 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9152}
9153
9154/* Assign into the components of LHS indexed by the OP_CHOICES
9155 construct at *POS, updating *POS past the construct, given that
9156 the allowable indices are LOW..HIGH. Record the indices assigned
9157 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9158 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9159static void
9160aggregate_assign_from_choices (struct value *container,
9161 struct value *lhs, struct expression *exp,
9162 int *pos, LONGEST *indices, int *num_indices,
9163 int max_indices, LONGEST low, LONGEST high)
9164{
9165 int j;
9166 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9167 int choice_pos, expr_pc;
9168 int is_array = ada_is_direct_array_type (value_type (lhs));
9169
9170 choice_pos = *pos += 3;
9171
9172 for (j = 0; j < n_choices; j += 1)
9173 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9174 expr_pc = *pos;
9175 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9176
9177 for (j = 0; j < n_choices; j += 1)
9178 {
9179 LONGEST lower, upper;
9180 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9181
52ce6436
PH
9182 if (op == OP_DISCRETE_RANGE)
9183 {
9184 choice_pos += 1;
9185 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9186 EVAL_NORMAL));
9187 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9188 EVAL_NORMAL));
9189 }
9190 else if (is_array)
9191 {
9192 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9193 EVAL_NORMAL));
9194 upper = lower;
9195 }
9196 else
9197 {
9198 int ind;
0d5cff50 9199 const char *name;
5b4ee69b 9200
52ce6436
PH
9201 switch (op)
9202 {
9203 case OP_NAME:
9204 name = &exp->elts[choice_pos + 2].string;
9205 break;
9206 case OP_VAR_VALUE:
9207 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9208 break;
9209 default:
9210 error (_("Invalid record component association."));
9211 }
9212 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9213 ind = 0;
9214 if (! find_struct_field (name, value_type (lhs), 0,
9215 NULL, NULL, NULL, NULL, &ind))
9216 error (_("Unknown component name: %s."), name);
9217 lower = upper = ind;
9218 }
9219
9220 if (lower <= upper && (lower < low || upper > high))
9221 error (_("Index in component association out of bounds."));
9222
9223 add_component_interval (lower, upper, indices, num_indices,
9224 max_indices);
9225 while (lower <= upper)
9226 {
9227 int pos1;
5b4ee69b 9228
52ce6436
PH
9229 pos1 = expr_pc;
9230 assign_component (container, lhs, lower, exp, &pos1);
9231 lower += 1;
9232 }
9233 }
9234}
9235
9236/* Assign the value of the expression in the OP_OTHERS construct in
9237 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9238 have not been previously assigned. The index intervals already assigned
9239 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9240 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9241static void
9242aggregate_assign_others (struct value *container,
9243 struct value *lhs, struct expression *exp,
9244 int *pos, LONGEST *indices, int num_indices,
9245 LONGEST low, LONGEST high)
9246{
9247 int i;
5ce64950 9248 int expr_pc = *pos + 1;
52ce6436
PH
9249
9250 for (i = 0; i < num_indices - 2; i += 2)
9251 {
9252 LONGEST ind;
5b4ee69b 9253
52ce6436
PH
9254 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9255 {
5ce64950 9256 int localpos;
5b4ee69b 9257
5ce64950
MS
9258 localpos = expr_pc;
9259 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9260 }
9261 }
9262 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9263}
9264
9265/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9266 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9267 modifying *SIZE as needed. It is an error if *SIZE exceeds
9268 MAX_SIZE. The resulting intervals do not overlap. */
9269static void
9270add_component_interval (LONGEST low, LONGEST high,
9271 LONGEST* indices, int *size, int max_size)
9272{
9273 int i, j;
5b4ee69b 9274
52ce6436
PH
9275 for (i = 0; i < *size; i += 2) {
9276 if (high >= indices[i] && low <= indices[i + 1])
9277 {
9278 int kh;
5b4ee69b 9279
52ce6436
PH
9280 for (kh = i + 2; kh < *size; kh += 2)
9281 if (high < indices[kh])
9282 break;
9283 if (low < indices[i])
9284 indices[i] = low;
9285 indices[i + 1] = indices[kh - 1];
9286 if (high > indices[i + 1])
9287 indices[i + 1] = high;
9288 memcpy (indices + i + 2, indices + kh, *size - kh);
9289 *size -= kh - i - 2;
9290 return;
9291 }
9292 else if (high < indices[i])
9293 break;
9294 }
9295
9296 if (*size == max_size)
9297 error (_("Internal error: miscounted aggregate components."));
9298 *size += 2;
9299 for (j = *size-1; j >= i+2; j -= 1)
9300 indices[j] = indices[j - 2];
9301 indices[i] = low;
9302 indices[i + 1] = high;
9303}
9304
6e48bd2c
JB
9305/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9306 is different. */
9307
9308static struct value *
9309ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9310{
9311 if (type == ada_check_typedef (value_type (arg2)))
9312 return arg2;
9313
9314 if (ada_is_fixed_point_type (type))
9315 return (cast_to_fixed (type, arg2));
9316
9317 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9318 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9319
9320 return value_cast (type, arg2);
9321}
9322
284614f0
JB
9323/* Evaluating Ada expressions, and printing their result.
9324 ------------------------------------------------------
9325
21649b50
JB
9326 1. Introduction:
9327 ----------------
9328
284614f0
JB
9329 We usually evaluate an Ada expression in order to print its value.
9330 We also evaluate an expression in order to print its type, which
9331 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9332 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9333 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9334 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9335 similar.
9336
9337 Evaluating expressions is a little more complicated for Ada entities
9338 than it is for entities in languages such as C. The main reason for
9339 this is that Ada provides types whose definition might be dynamic.
9340 One example of such types is variant records. Or another example
9341 would be an array whose bounds can only be known at run time.
9342
9343 The following description is a general guide as to what should be
9344 done (and what should NOT be done) in order to evaluate an expression
9345 involving such types, and when. This does not cover how the semantic
9346 information is encoded by GNAT as this is covered separatly. For the
9347 document used as the reference for the GNAT encoding, see exp_dbug.ads
9348 in the GNAT sources.
9349
9350 Ideally, we should embed each part of this description next to its
9351 associated code. Unfortunately, the amount of code is so vast right
9352 now that it's hard to see whether the code handling a particular
9353 situation might be duplicated or not. One day, when the code is
9354 cleaned up, this guide might become redundant with the comments
9355 inserted in the code, and we might want to remove it.
9356
21649b50
JB
9357 2. ``Fixing'' an Entity, the Simple Case:
9358 -----------------------------------------
9359
284614f0
JB
9360 When evaluating Ada expressions, the tricky issue is that they may
9361 reference entities whose type contents and size are not statically
9362 known. Consider for instance a variant record:
9363
9364 type Rec (Empty : Boolean := True) is record
9365 case Empty is
9366 when True => null;
9367 when False => Value : Integer;
9368 end case;
9369 end record;
9370 Yes : Rec := (Empty => False, Value => 1);
9371 No : Rec := (empty => True);
9372
9373 The size and contents of that record depends on the value of the
9374 descriminant (Rec.Empty). At this point, neither the debugging
9375 information nor the associated type structure in GDB are able to
9376 express such dynamic types. So what the debugger does is to create
9377 "fixed" versions of the type that applies to the specific object.
9378 We also informally refer to this opperation as "fixing" an object,
9379 which means creating its associated fixed type.
9380
9381 Example: when printing the value of variable "Yes" above, its fixed
9382 type would look like this:
9383
9384 type Rec is record
9385 Empty : Boolean;
9386 Value : Integer;
9387 end record;
9388
9389 On the other hand, if we printed the value of "No", its fixed type
9390 would become:
9391
9392 type Rec is record
9393 Empty : Boolean;
9394 end record;
9395
9396 Things become a little more complicated when trying to fix an entity
9397 with a dynamic type that directly contains another dynamic type,
9398 such as an array of variant records, for instance. There are
9399 two possible cases: Arrays, and records.
9400
21649b50
JB
9401 3. ``Fixing'' Arrays:
9402 ---------------------
9403
9404 The type structure in GDB describes an array in terms of its bounds,
9405 and the type of its elements. By design, all elements in the array
9406 have the same type and we cannot represent an array of variant elements
9407 using the current type structure in GDB. When fixing an array,
9408 we cannot fix the array element, as we would potentially need one
9409 fixed type per element of the array. As a result, the best we can do
9410 when fixing an array is to produce an array whose bounds and size
9411 are correct (allowing us to read it from memory), but without having
9412 touched its element type. Fixing each element will be done later,
9413 when (if) necessary.
9414
9415 Arrays are a little simpler to handle than records, because the same
9416 amount of memory is allocated for each element of the array, even if
1b536f04 9417 the amount of space actually used by each element differs from element
21649b50 9418 to element. Consider for instance the following array of type Rec:
284614f0
JB
9419
9420 type Rec_Array is array (1 .. 2) of Rec;
9421
1b536f04
JB
9422 The actual amount of memory occupied by each element might be different
9423 from element to element, depending on the value of their discriminant.
21649b50 9424 But the amount of space reserved for each element in the array remains
1b536f04 9425 fixed regardless. So we simply need to compute that size using
21649b50
JB
9426 the debugging information available, from which we can then determine
9427 the array size (we multiply the number of elements of the array by
9428 the size of each element).
9429
9430 The simplest case is when we have an array of a constrained element
9431 type. For instance, consider the following type declarations:
9432
9433 type Bounded_String (Max_Size : Integer) is
9434 Length : Integer;
9435 Buffer : String (1 .. Max_Size);
9436 end record;
9437 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9438
9439 In this case, the compiler describes the array as an array of
9440 variable-size elements (identified by its XVS suffix) for which
9441 the size can be read in the parallel XVZ variable.
9442
9443 In the case of an array of an unconstrained element type, the compiler
9444 wraps the array element inside a private PAD type. This type should not
9445 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9446 that we also use the adjective "aligner" in our code to designate
9447 these wrapper types.
9448
1b536f04 9449 In some cases, the size allocated for each element is statically
21649b50
JB
9450 known. In that case, the PAD type already has the correct size,
9451 and the array element should remain unfixed.
9452
9453 But there are cases when this size is not statically known.
9454 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9455
9456 type Dynamic is array (1 .. Five) of Integer;
9457 type Wrapper (Has_Length : Boolean := False) is record
9458 Data : Dynamic;
9459 case Has_Length is
9460 when True => Length : Integer;
9461 when False => null;
9462 end case;
9463 end record;
9464 type Wrapper_Array is array (1 .. 2) of Wrapper;
9465
9466 Hello : Wrapper_Array := (others => (Has_Length => True,
9467 Data => (others => 17),
9468 Length => 1));
9469
9470
9471 The debugging info would describe variable Hello as being an
9472 array of a PAD type. The size of that PAD type is not statically
9473 known, but can be determined using a parallel XVZ variable.
9474 In that case, a copy of the PAD type with the correct size should
9475 be used for the fixed array.
9476
21649b50
JB
9477 3. ``Fixing'' record type objects:
9478 ----------------------------------
9479
9480 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9481 record types. In this case, in order to compute the associated
9482 fixed type, we need to determine the size and offset of each of
9483 its components. This, in turn, requires us to compute the fixed
9484 type of each of these components.
9485
9486 Consider for instance the example:
9487
9488 type Bounded_String (Max_Size : Natural) is record
9489 Str : String (1 .. Max_Size);
9490 Length : Natural;
9491 end record;
9492 My_String : Bounded_String (Max_Size => 10);
9493
9494 In that case, the position of field "Length" depends on the size
9495 of field Str, which itself depends on the value of the Max_Size
21649b50 9496 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9497 we need to fix the type of field Str. Therefore, fixing a variant
9498 record requires us to fix each of its components.
9499
9500 However, if a component does not have a dynamic size, the component
9501 should not be fixed. In particular, fields that use a PAD type
9502 should not fixed. Here is an example where this might happen
9503 (assuming type Rec above):
9504
9505 type Container (Big : Boolean) is record
9506 First : Rec;
9507 After : Integer;
9508 case Big is
9509 when True => Another : Integer;
9510 when False => null;
9511 end case;
9512 end record;
9513 My_Container : Container := (Big => False,
9514 First => (Empty => True),
9515 After => 42);
9516
9517 In that example, the compiler creates a PAD type for component First,
9518 whose size is constant, and then positions the component After just
9519 right after it. The offset of component After is therefore constant
9520 in this case.
9521
9522 The debugger computes the position of each field based on an algorithm
9523 that uses, among other things, the actual position and size of the field
21649b50
JB
9524 preceding it. Let's now imagine that the user is trying to print
9525 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9526 end up computing the offset of field After based on the size of the
9527 fixed version of field First. And since in our example First has
9528 only one actual field, the size of the fixed type is actually smaller
9529 than the amount of space allocated to that field, and thus we would
9530 compute the wrong offset of field After.
9531
21649b50
JB
9532 To make things more complicated, we need to watch out for dynamic
9533 components of variant records (identified by the ___XVL suffix in
9534 the component name). Even if the target type is a PAD type, the size
9535 of that type might not be statically known. So the PAD type needs
9536 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9537 we might end up with the wrong size for our component. This can be
9538 observed with the following type declarations:
284614f0
JB
9539
9540 type Octal is new Integer range 0 .. 7;
9541 type Octal_Array is array (Positive range <>) of Octal;
9542 pragma Pack (Octal_Array);
9543
9544 type Octal_Buffer (Size : Positive) is record
9545 Buffer : Octal_Array (1 .. Size);
9546 Length : Integer;
9547 end record;
9548
9549 In that case, Buffer is a PAD type whose size is unset and needs
9550 to be computed by fixing the unwrapped type.
9551
21649b50
JB
9552 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9553 ----------------------------------------------------------
9554
9555 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9556 thus far, be actually fixed?
9557
9558 The answer is: Only when referencing that element. For instance
9559 when selecting one component of a record, this specific component
9560 should be fixed at that point in time. Or when printing the value
9561 of a record, each component should be fixed before its value gets
9562 printed. Similarly for arrays, the element of the array should be
9563 fixed when printing each element of the array, or when extracting
9564 one element out of that array. On the other hand, fixing should
9565 not be performed on the elements when taking a slice of an array!
9566
9567 Note that one of the side-effects of miscomputing the offset and
9568 size of each field is that we end up also miscomputing the size
9569 of the containing type. This can have adverse results when computing
9570 the value of an entity. GDB fetches the value of an entity based
9571 on the size of its type, and thus a wrong size causes GDB to fetch
9572 the wrong amount of memory. In the case where the computed size is
9573 too small, GDB fetches too little data to print the value of our
9574 entiry. Results in this case as unpredicatble, as we usually read
9575 past the buffer containing the data =:-o. */
9576
9577/* Implement the evaluate_exp routine in the exp_descriptor structure
9578 for the Ada language. */
9579
52ce6436 9580static struct value *
ebf56fd3 9581ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9582 int *pos, enum noside noside)
14f9c5c9
AS
9583{
9584 enum exp_opcode op;
b5385fc0 9585 int tem;
14f9c5c9
AS
9586 int pc;
9587 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9588 struct type *type;
52ce6436 9589 int nargs, oplen;
d2e4a39e 9590 struct value **argvec;
14f9c5c9 9591
d2e4a39e
AS
9592 pc = *pos;
9593 *pos += 1;
14f9c5c9
AS
9594 op = exp->elts[pc].opcode;
9595
d2e4a39e 9596 switch (op)
14f9c5c9
AS
9597 {
9598 default:
9599 *pos -= 1;
6e48bd2c 9600 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9601
9602 if (noside == EVAL_NORMAL)
9603 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9604
9605 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9606 then we need to perform the conversion manually, because
9607 evaluate_subexp_standard doesn't do it. This conversion is
9608 necessary in Ada because the different kinds of float/fixed
9609 types in Ada have different representations.
9610
9611 Similarly, we need to perform the conversion from OP_LONG
9612 ourselves. */
9613 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9614 arg1 = ada_value_cast (expect_type, arg1, noside);
9615
9616 return arg1;
4c4b4cd2
PH
9617
9618 case OP_STRING:
9619 {
76a01679 9620 struct value *result;
5b4ee69b 9621
76a01679
JB
9622 *pos -= 1;
9623 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9624 /* The result type will have code OP_STRING, bashed there from
9625 OP_ARRAY. Bash it back. */
df407dfe
AC
9626 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9627 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9628 return result;
4c4b4cd2 9629 }
14f9c5c9
AS
9630
9631 case UNOP_CAST:
9632 (*pos) += 2;
9633 type = exp->elts[pc + 1].type;
9634 arg1 = evaluate_subexp (type, exp, pos, noside);
9635 if (noside == EVAL_SKIP)
4c4b4cd2 9636 goto nosideret;
6e48bd2c 9637 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9638 return arg1;
9639
4c4b4cd2
PH
9640 case UNOP_QUAL:
9641 (*pos) += 2;
9642 type = exp->elts[pc + 1].type;
9643 return ada_evaluate_subexp (type, exp, pos, noside);
9644
14f9c5c9
AS
9645 case BINOP_ASSIGN:
9646 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9647 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9648 {
9649 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9650 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9651 return arg1;
9652 return ada_value_assign (arg1, arg1);
9653 }
003f3813
JB
9654 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9655 except if the lhs of our assignment is a convenience variable.
9656 In the case of assigning to a convenience variable, the lhs
9657 should be exactly the result of the evaluation of the rhs. */
9658 type = value_type (arg1);
9659 if (VALUE_LVAL (arg1) == lval_internalvar)
9660 type = NULL;
9661 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9662 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9663 return arg1;
df407dfe
AC
9664 if (ada_is_fixed_point_type (value_type (arg1)))
9665 arg2 = cast_to_fixed (value_type (arg1), arg2);
9666 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9667 error
323e0a4a 9668 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9669 else
df407dfe 9670 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9671 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9672
9673 case BINOP_ADD:
9674 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9675 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9676 if (noside == EVAL_SKIP)
4c4b4cd2 9677 goto nosideret;
2ac8a782
JB
9678 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9679 return (value_from_longest
9680 (value_type (arg1),
9681 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9682 if ((ada_is_fixed_point_type (value_type (arg1))
9683 || ada_is_fixed_point_type (value_type (arg2)))
9684 && value_type (arg1) != value_type (arg2))
323e0a4a 9685 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9686 /* Do the addition, and cast the result to the type of the first
9687 argument. We cannot cast the result to a reference type, so if
9688 ARG1 is a reference type, find its underlying type. */
9689 type = value_type (arg1);
9690 while (TYPE_CODE (type) == TYPE_CODE_REF)
9691 type = TYPE_TARGET_TYPE (type);
f44316fa 9692 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9693 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9694
9695 case BINOP_SUB:
9696 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9697 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9698 if (noside == EVAL_SKIP)
4c4b4cd2 9699 goto nosideret;
2ac8a782
JB
9700 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9701 return (value_from_longest
9702 (value_type (arg1),
9703 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9704 if ((ada_is_fixed_point_type (value_type (arg1))
9705 || ada_is_fixed_point_type (value_type (arg2)))
9706 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9707 error (_("Operands of fixed-point subtraction "
9708 "must have the same type"));
b7789565
JB
9709 /* Do the substraction, and cast the result to the type of the first
9710 argument. We cannot cast the result to a reference type, so if
9711 ARG1 is a reference type, find its underlying type. */
9712 type = value_type (arg1);
9713 while (TYPE_CODE (type) == TYPE_CODE_REF)
9714 type = TYPE_TARGET_TYPE (type);
f44316fa 9715 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9716 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9717
9718 case BINOP_MUL:
9719 case BINOP_DIV:
e1578042
JB
9720 case BINOP_REM:
9721 case BINOP_MOD:
14f9c5c9
AS
9722 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9723 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9724 if (noside == EVAL_SKIP)
4c4b4cd2 9725 goto nosideret;
e1578042 9726 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9727 {
9728 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9729 return value_zero (value_type (arg1), not_lval);
9730 }
14f9c5c9 9731 else
4c4b4cd2 9732 {
a53b7a21 9733 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9734 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9735 arg1 = cast_from_fixed (type, arg1);
df407dfe 9736 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9737 arg2 = cast_from_fixed (type, arg2);
f44316fa 9738 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9739 return ada_value_binop (arg1, arg2, op);
9740 }
9741
4c4b4cd2
PH
9742 case BINOP_EQUAL:
9743 case BINOP_NOTEQUAL:
14f9c5c9 9744 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9745 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9746 if (noside == EVAL_SKIP)
76a01679 9747 goto nosideret;
4c4b4cd2 9748 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9749 tem = 0;
4c4b4cd2 9750 else
f44316fa
UW
9751 {
9752 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9753 tem = ada_value_equal (arg1, arg2);
9754 }
4c4b4cd2 9755 if (op == BINOP_NOTEQUAL)
76a01679 9756 tem = !tem;
fbb06eb1
UW
9757 type = language_bool_type (exp->language_defn, exp->gdbarch);
9758 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9759
9760 case UNOP_NEG:
9761 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9762 if (noside == EVAL_SKIP)
9763 goto nosideret;
df407dfe
AC
9764 else if (ada_is_fixed_point_type (value_type (arg1)))
9765 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9766 else
f44316fa
UW
9767 {
9768 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9769 return value_neg (arg1);
9770 }
4c4b4cd2 9771
2330c6c6
JB
9772 case BINOP_LOGICAL_AND:
9773 case BINOP_LOGICAL_OR:
9774 case UNOP_LOGICAL_NOT:
000d5124
JB
9775 {
9776 struct value *val;
9777
9778 *pos -= 1;
9779 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9780 type = language_bool_type (exp->language_defn, exp->gdbarch);
9781 return value_cast (type, val);
000d5124 9782 }
2330c6c6
JB
9783
9784 case BINOP_BITWISE_AND:
9785 case BINOP_BITWISE_IOR:
9786 case BINOP_BITWISE_XOR:
000d5124
JB
9787 {
9788 struct value *val;
9789
9790 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9791 *pos = pc;
9792 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9793
9794 return value_cast (value_type (arg1), val);
9795 }
2330c6c6 9796
14f9c5c9
AS
9797 case OP_VAR_VALUE:
9798 *pos -= 1;
6799def4 9799
14f9c5c9 9800 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9801 {
9802 *pos += 4;
9803 goto nosideret;
9804 }
9805 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9806 /* Only encountered when an unresolved symbol occurs in a
9807 context other than a function call, in which case, it is
52ce6436 9808 invalid. */
323e0a4a 9809 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9810 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9811 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9812 {
0c1f74cf 9813 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9814 /* Check to see if this is a tagged type. We also need to handle
9815 the case where the type is a reference to a tagged type, but
9816 we have to be careful to exclude pointers to tagged types.
9817 The latter should be shown as usual (as a pointer), whereas
9818 a reference should mostly be transparent to the user. */
9819 if (ada_is_tagged_type (type, 0)
9820 || (TYPE_CODE(type) == TYPE_CODE_REF
9821 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9822 {
9823 /* Tagged types are a little special in the fact that the real
9824 type is dynamic and can only be determined by inspecting the
9825 object's tag. This means that we need to get the object's
9826 value first (EVAL_NORMAL) and then extract the actual object
9827 type from its tag.
9828
9829 Note that we cannot skip the final step where we extract
9830 the object type from its tag, because the EVAL_NORMAL phase
9831 results in dynamic components being resolved into fixed ones.
9832 This can cause problems when trying to print the type
9833 description of tagged types whose parent has a dynamic size:
9834 We use the type name of the "_parent" component in order
9835 to print the name of the ancestor type in the type description.
9836 If that component had a dynamic size, the resolution into
9837 a fixed type would result in the loss of that type name,
9838 thus preventing us from printing the name of the ancestor
9839 type in the type description. */
9840 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b50d69b5
JG
9841
9842 if (TYPE_CODE (type) != TYPE_CODE_REF)
9843 {
9844 struct type *actual_type;
9845
9846 actual_type = type_from_tag (ada_value_tag (arg1));
9847 if (actual_type == NULL)
9848 /* If, for some reason, we were unable to determine
9849 the actual type from the tag, then use the static
9850 approximation that we just computed as a fallback.
9851 This can happen if the debugging information is
9852 incomplete, for instance. */
9853 actual_type = type;
9854 return value_zero (actual_type, not_lval);
9855 }
9856 else
9857 {
9858 /* In the case of a ref, ada_coerce_ref takes care
9859 of determining the actual type. But the evaluation
9860 should return a ref as it should be valid to ask
9861 for its address; so rebuild a ref after coerce. */
9862 arg1 = ada_coerce_ref (arg1);
9863 return value_ref (arg1);
9864 }
0c1f74cf
JB
9865 }
9866
4c4b4cd2
PH
9867 *pos += 4;
9868 return value_zero
9869 (to_static_fixed_type
9870 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9871 not_lval);
9872 }
d2e4a39e 9873 else
4c4b4cd2 9874 {
284614f0 9875 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
9876 return ada_to_fixed_value (arg1);
9877 }
9878
9879 case OP_FUNCALL:
9880 (*pos) += 2;
9881
9882 /* Allocate arg vector, including space for the function to be
9883 called in argvec[0] and a terminating NULL. */
9884 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9885 argvec =
9886 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9887
9888 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9889 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9890 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9891 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9892 else
9893 {
9894 for (tem = 0; tem <= nargs; tem += 1)
9895 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9896 argvec[tem] = 0;
9897
9898 if (noside == EVAL_SKIP)
9899 goto nosideret;
9900 }
9901
ad82864c
JB
9902 if (ada_is_constrained_packed_array_type
9903 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9904 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9905 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9906 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9907 /* This is a packed array that has already been fixed, and
9908 therefore already coerced to a simple array. Nothing further
9909 to do. */
9910 ;
df407dfe
AC
9911 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9912 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9913 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9914 argvec[0] = value_addr (argvec[0]);
9915
df407dfe 9916 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9917
9918 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9919 them. So, if this is an array typedef (encoding use for array
9920 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9921 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9922 type = ada_typedef_target_type (type);
9923
4c4b4cd2
PH
9924 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9925 {
61ee279c 9926 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9927 {
9928 case TYPE_CODE_FUNC:
61ee279c 9929 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9930 break;
9931 case TYPE_CODE_ARRAY:
9932 break;
9933 case TYPE_CODE_STRUCT:
9934 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9935 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9936 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9937 break;
9938 default:
323e0a4a 9939 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9940 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9941 break;
9942 }
9943 }
9944
9945 switch (TYPE_CODE (type))
9946 {
9947 case TYPE_CODE_FUNC:
9948 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
9949 {
9950 struct type *rtype = TYPE_TARGET_TYPE (type);
9951
9952 if (TYPE_GNU_IFUNC (type))
9953 return allocate_value (TYPE_TARGET_TYPE (rtype));
9954 return allocate_value (rtype);
9955 }
4c4b4cd2 9956 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
9957 case TYPE_CODE_INTERNAL_FUNCTION:
9958 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9959 /* We don't know anything about what the internal
9960 function might return, but we have to return
9961 something. */
9962 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9963 not_lval);
9964 else
9965 return call_internal_function (exp->gdbarch, exp->language_defn,
9966 argvec[0], nargs, argvec + 1);
9967
4c4b4cd2
PH
9968 case TYPE_CODE_STRUCT:
9969 {
9970 int arity;
9971
4c4b4cd2
PH
9972 arity = ada_array_arity (type);
9973 type = ada_array_element_type (type, nargs);
9974 if (type == NULL)
323e0a4a 9975 error (_("cannot subscript or call a record"));
4c4b4cd2 9976 if (arity != nargs)
323e0a4a 9977 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9978 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9979 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9980 return
9981 unwrap_value (ada_value_subscript
9982 (argvec[0], nargs, argvec + 1));
9983 }
9984 case TYPE_CODE_ARRAY:
9985 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9986 {
9987 type = ada_array_element_type (type, nargs);
9988 if (type == NULL)
323e0a4a 9989 error (_("element type of array unknown"));
4c4b4cd2 9990 else
0a07e705 9991 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9992 }
9993 return
9994 unwrap_value (ada_value_subscript
9995 (ada_coerce_to_simple_array (argvec[0]),
9996 nargs, argvec + 1));
9997 case TYPE_CODE_PTR: /* Pointer to array */
9998 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9999 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10000 {
10001 type = ada_array_element_type (type, nargs);
10002 if (type == NULL)
323e0a4a 10003 error (_("element type of array unknown"));
4c4b4cd2 10004 else
0a07e705 10005 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10006 }
10007 return
10008 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10009 nargs, argvec + 1));
10010
10011 default:
e1d5a0d2
PH
10012 error (_("Attempt to index or call something other than an "
10013 "array or function"));
4c4b4cd2
PH
10014 }
10015
10016 case TERNOP_SLICE:
10017 {
10018 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10019 struct value *low_bound_val =
10020 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10021 struct value *high_bound_val =
10022 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10023 LONGEST low_bound;
10024 LONGEST high_bound;
5b4ee69b 10025
994b9211
AC
10026 low_bound_val = coerce_ref (low_bound_val);
10027 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10028 low_bound = pos_atr (low_bound_val);
10029 high_bound = pos_atr (high_bound_val);
963a6417 10030
4c4b4cd2
PH
10031 if (noside == EVAL_SKIP)
10032 goto nosideret;
10033
4c4b4cd2
PH
10034 /* If this is a reference to an aligner type, then remove all
10035 the aligners. */
df407dfe
AC
10036 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10037 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10038 TYPE_TARGET_TYPE (value_type (array)) =
10039 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10040
ad82864c 10041 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10042 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10043
10044 /* If this is a reference to an array or an array lvalue,
10045 convert to a pointer. */
df407dfe
AC
10046 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10047 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10048 && VALUE_LVAL (array) == lval_memory))
10049 array = value_addr (array);
10050
1265e4aa 10051 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10052 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10053 (value_type (array))))
0b5d8877 10054 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10055
10056 array = ada_coerce_to_simple_array_ptr (array);
10057
714e53ab
PH
10058 /* If we have more than one level of pointer indirection,
10059 dereference the value until we get only one level. */
df407dfe
AC
10060 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10061 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10062 == TYPE_CODE_PTR))
10063 array = value_ind (array);
10064
10065 /* Make sure we really do have an array type before going further,
10066 to avoid a SEGV when trying to get the index type or the target
10067 type later down the road if the debug info generated by
10068 the compiler is incorrect or incomplete. */
df407dfe 10069 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10070 error (_("cannot take slice of non-array"));
714e53ab 10071
828292f2
JB
10072 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10073 == TYPE_CODE_PTR)
4c4b4cd2 10074 {
828292f2
JB
10075 struct type *type0 = ada_check_typedef (value_type (array));
10076
0b5d8877 10077 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10078 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10079 else
10080 {
10081 struct type *arr_type0 =
828292f2 10082 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10083
f5938064
JG
10084 return ada_value_slice_from_ptr (array, arr_type0,
10085 longest_to_int (low_bound),
10086 longest_to_int (high_bound));
4c4b4cd2
PH
10087 }
10088 }
10089 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10090 return array;
10091 else if (high_bound < low_bound)
df407dfe 10092 return empty_array (value_type (array), low_bound);
4c4b4cd2 10093 else
529cad9c
PH
10094 return ada_value_slice (array, longest_to_int (low_bound),
10095 longest_to_int (high_bound));
4c4b4cd2 10096 }
14f9c5c9 10097
4c4b4cd2
PH
10098 case UNOP_IN_RANGE:
10099 (*pos) += 2;
10100 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10101 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10102
14f9c5c9 10103 if (noside == EVAL_SKIP)
4c4b4cd2 10104 goto nosideret;
14f9c5c9 10105
4c4b4cd2
PH
10106 switch (TYPE_CODE (type))
10107 {
10108 default:
e1d5a0d2
PH
10109 lim_warning (_("Membership test incompletely implemented; "
10110 "always returns true"));
fbb06eb1
UW
10111 type = language_bool_type (exp->language_defn, exp->gdbarch);
10112 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10113
10114 case TYPE_CODE_RANGE:
030b4912
UW
10115 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10116 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10117 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10118 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10119 type = language_bool_type (exp->language_defn, exp->gdbarch);
10120 return
10121 value_from_longest (type,
4c4b4cd2
PH
10122 (value_less (arg1, arg3)
10123 || value_equal (arg1, arg3))
10124 && (value_less (arg2, arg1)
10125 || value_equal (arg2, arg1)));
10126 }
10127
10128 case BINOP_IN_BOUNDS:
14f9c5c9 10129 (*pos) += 2;
4c4b4cd2
PH
10130 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10131 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10132
4c4b4cd2
PH
10133 if (noside == EVAL_SKIP)
10134 goto nosideret;
14f9c5c9 10135
4c4b4cd2 10136 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10137 {
10138 type = language_bool_type (exp->language_defn, exp->gdbarch);
10139 return value_zero (type, not_lval);
10140 }
14f9c5c9 10141
4c4b4cd2 10142 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10143
1eea4ebd
UW
10144 type = ada_index_type (value_type (arg2), tem, "range");
10145 if (!type)
10146 type = value_type (arg1);
14f9c5c9 10147
1eea4ebd
UW
10148 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10149 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10150
f44316fa
UW
10151 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10152 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10153 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10154 return
fbb06eb1 10155 value_from_longest (type,
4c4b4cd2
PH
10156 (value_less (arg1, arg3)
10157 || value_equal (arg1, arg3))
10158 && (value_less (arg2, arg1)
10159 || value_equal (arg2, arg1)));
10160
10161 case TERNOP_IN_RANGE:
10162 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10163 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10164 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10165
10166 if (noside == EVAL_SKIP)
10167 goto nosideret;
10168
f44316fa
UW
10169 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10170 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10171 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10172 return
fbb06eb1 10173 value_from_longest (type,
4c4b4cd2
PH
10174 (value_less (arg1, arg3)
10175 || value_equal (arg1, arg3))
10176 && (value_less (arg2, arg1)
10177 || value_equal (arg2, arg1)));
10178
10179 case OP_ATR_FIRST:
10180 case OP_ATR_LAST:
10181 case OP_ATR_LENGTH:
10182 {
76a01679 10183 struct type *type_arg;
5b4ee69b 10184
76a01679
JB
10185 if (exp->elts[*pos].opcode == OP_TYPE)
10186 {
10187 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10188 arg1 = NULL;
5bc23cb3 10189 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10190 }
10191 else
10192 {
10193 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10194 type_arg = NULL;
10195 }
10196
10197 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10198 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10199 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10200 *pos += 4;
10201
10202 if (noside == EVAL_SKIP)
10203 goto nosideret;
10204
10205 if (type_arg == NULL)
10206 {
10207 arg1 = ada_coerce_ref (arg1);
10208
ad82864c 10209 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10210 arg1 = ada_coerce_to_simple_array (arg1);
10211
1eea4ebd
UW
10212 type = ada_index_type (value_type (arg1), tem,
10213 ada_attribute_name (op));
10214 if (type == NULL)
10215 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
10216
10217 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10218 return allocate_value (type);
76a01679
JB
10219
10220 switch (op)
10221 {
10222 default: /* Should never happen. */
323e0a4a 10223 error (_("unexpected attribute encountered"));
76a01679 10224 case OP_ATR_FIRST:
1eea4ebd
UW
10225 return value_from_longest
10226 (type, ada_array_bound (arg1, tem, 0));
76a01679 10227 case OP_ATR_LAST:
1eea4ebd
UW
10228 return value_from_longest
10229 (type, ada_array_bound (arg1, tem, 1));
76a01679 10230 case OP_ATR_LENGTH:
1eea4ebd
UW
10231 return value_from_longest
10232 (type, ada_array_length (arg1, tem));
76a01679
JB
10233 }
10234 }
10235 else if (discrete_type_p (type_arg))
10236 {
10237 struct type *range_type;
0d5cff50 10238 const char *name = ada_type_name (type_arg);
5b4ee69b 10239
76a01679
JB
10240 range_type = NULL;
10241 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10242 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10243 if (range_type == NULL)
10244 range_type = type_arg;
10245 switch (op)
10246 {
10247 default:
323e0a4a 10248 error (_("unexpected attribute encountered"));
76a01679 10249 case OP_ATR_FIRST:
690cc4eb 10250 return value_from_longest
43bbcdc2 10251 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10252 case OP_ATR_LAST:
690cc4eb 10253 return value_from_longest
43bbcdc2 10254 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10255 case OP_ATR_LENGTH:
323e0a4a 10256 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10257 }
10258 }
10259 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10260 error (_("unimplemented type attribute"));
76a01679
JB
10261 else
10262 {
10263 LONGEST low, high;
10264
ad82864c
JB
10265 if (ada_is_constrained_packed_array_type (type_arg))
10266 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10267
1eea4ebd 10268 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 10269 if (type == NULL)
1eea4ebd
UW
10270 type = builtin_type (exp->gdbarch)->builtin_int;
10271
76a01679
JB
10272 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10273 return allocate_value (type);
10274
10275 switch (op)
10276 {
10277 default:
323e0a4a 10278 error (_("unexpected attribute encountered"));
76a01679 10279 case OP_ATR_FIRST:
1eea4ebd 10280 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10281 return value_from_longest (type, low);
10282 case OP_ATR_LAST:
1eea4ebd 10283 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10284 return value_from_longest (type, high);
10285 case OP_ATR_LENGTH:
1eea4ebd
UW
10286 low = ada_array_bound_from_type (type_arg, tem, 0);
10287 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10288 return value_from_longest (type, high - low + 1);
10289 }
10290 }
14f9c5c9
AS
10291 }
10292
4c4b4cd2
PH
10293 case OP_ATR_TAG:
10294 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10295 if (noside == EVAL_SKIP)
76a01679 10296 goto nosideret;
4c4b4cd2
PH
10297
10298 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10299 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10300
10301 return ada_value_tag (arg1);
10302
10303 case OP_ATR_MIN:
10304 case OP_ATR_MAX:
10305 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10306 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10307 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10308 if (noside == EVAL_SKIP)
76a01679 10309 goto nosideret;
d2e4a39e 10310 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10311 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10312 else
f44316fa
UW
10313 {
10314 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10315 return value_binop (arg1, arg2,
10316 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10317 }
14f9c5c9 10318
4c4b4cd2
PH
10319 case OP_ATR_MODULUS:
10320 {
31dedfee 10321 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10322
5b4ee69b 10323 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10324 if (noside == EVAL_SKIP)
10325 goto nosideret;
4c4b4cd2 10326
76a01679 10327 if (!ada_is_modular_type (type_arg))
323e0a4a 10328 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10329
76a01679
JB
10330 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10331 ada_modulus (type_arg));
4c4b4cd2
PH
10332 }
10333
10334
10335 case OP_ATR_POS:
10336 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10337 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10338 if (noside == EVAL_SKIP)
76a01679 10339 goto nosideret;
3cb382c9
UW
10340 type = builtin_type (exp->gdbarch)->builtin_int;
10341 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10342 return value_zero (type, not_lval);
14f9c5c9 10343 else
3cb382c9 10344 return value_pos_atr (type, arg1);
14f9c5c9 10345
4c4b4cd2
PH
10346 case OP_ATR_SIZE:
10347 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10348 type = value_type (arg1);
10349
10350 /* If the argument is a reference, then dereference its type, since
10351 the user is really asking for the size of the actual object,
10352 not the size of the pointer. */
10353 if (TYPE_CODE (type) == TYPE_CODE_REF)
10354 type = TYPE_TARGET_TYPE (type);
10355
4c4b4cd2 10356 if (noside == EVAL_SKIP)
76a01679 10357 goto nosideret;
4c4b4cd2 10358 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10359 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10360 else
22601c15 10361 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10362 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10363
10364 case OP_ATR_VAL:
10365 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10366 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10367 type = exp->elts[pc + 2].type;
14f9c5c9 10368 if (noside == EVAL_SKIP)
76a01679 10369 goto nosideret;
4c4b4cd2 10370 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10371 return value_zero (type, not_lval);
4c4b4cd2 10372 else
76a01679 10373 return value_val_atr (type, arg1);
4c4b4cd2
PH
10374
10375 case BINOP_EXP:
10376 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10377 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10378 if (noside == EVAL_SKIP)
10379 goto nosideret;
10380 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10381 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10382 else
f44316fa
UW
10383 {
10384 /* For integer exponentiation operations,
10385 only promote the first argument. */
10386 if (is_integral_type (value_type (arg2)))
10387 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10388 else
10389 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10390
10391 return value_binop (arg1, arg2, op);
10392 }
4c4b4cd2
PH
10393
10394 case UNOP_PLUS:
10395 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10396 if (noside == EVAL_SKIP)
10397 goto nosideret;
10398 else
10399 return arg1;
10400
10401 case UNOP_ABS:
10402 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10403 if (noside == EVAL_SKIP)
10404 goto nosideret;
f44316fa 10405 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10406 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10407 return value_neg (arg1);
14f9c5c9 10408 else
4c4b4cd2 10409 return arg1;
14f9c5c9
AS
10410
10411 case UNOP_IND:
6b0d7253 10412 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10413 if (noside == EVAL_SKIP)
4c4b4cd2 10414 goto nosideret;
df407dfe 10415 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10416 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10417 {
10418 if (ada_is_array_descriptor_type (type))
10419 /* GDB allows dereferencing GNAT array descriptors. */
10420 {
10421 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10422
4c4b4cd2 10423 if (arrType == NULL)
323e0a4a 10424 error (_("Attempt to dereference null array pointer."));
00a4c844 10425 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10426 }
10427 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10428 || TYPE_CODE (type) == TYPE_CODE_REF
10429 /* In C you can dereference an array to get the 1st elt. */
10430 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10431 {
10432 type = to_static_fixed_type
10433 (ada_aligned_type
10434 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10435 check_size (type);
10436 return value_zero (type, lval_memory);
10437 }
4c4b4cd2 10438 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10439 {
10440 /* GDB allows dereferencing an int. */
10441 if (expect_type == NULL)
10442 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10443 lval_memory);
10444 else
10445 {
10446 expect_type =
10447 to_static_fixed_type (ada_aligned_type (expect_type));
10448 return value_zero (expect_type, lval_memory);
10449 }
10450 }
4c4b4cd2 10451 else
323e0a4a 10452 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10453 }
0963b4bd 10454 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10455 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10456
96967637
JB
10457 if (TYPE_CODE (type) == TYPE_CODE_INT)
10458 /* GDB allows dereferencing an int. If we were given
10459 the expect_type, then use that as the target type.
10460 Otherwise, assume that the target type is an int. */
10461 {
10462 if (expect_type != NULL)
10463 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10464 arg1));
10465 else
10466 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10467 (CORE_ADDR) value_as_address (arg1));
10468 }
6b0d7253 10469
4c4b4cd2
PH
10470 if (ada_is_array_descriptor_type (type))
10471 /* GDB allows dereferencing GNAT array descriptors. */
10472 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10473 else
4c4b4cd2 10474 return ada_value_ind (arg1);
14f9c5c9
AS
10475
10476 case STRUCTOP_STRUCT:
10477 tem = longest_to_int (exp->elts[pc + 1].longconst);
10478 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10479 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10480 if (noside == EVAL_SKIP)
4c4b4cd2 10481 goto nosideret;
14f9c5c9 10482 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10483 {
df407dfe 10484 struct type *type1 = value_type (arg1);
5b4ee69b 10485
76a01679
JB
10486 if (ada_is_tagged_type (type1, 1))
10487 {
10488 type = ada_lookup_struct_elt_type (type1,
10489 &exp->elts[pc + 2].string,
10490 1, 1, NULL);
10491 if (type == NULL)
10492 /* In this case, we assume that the field COULD exist
10493 in some extension of the type. Return an object of
10494 "type" void, which will match any formal
0963b4bd 10495 (see ada_type_match). */
30b15541
UW
10496 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10497 lval_memory);
76a01679
JB
10498 }
10499 else
10500 type =
10501 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10502 0, NULL);
10503
10504 return value_zero (ada_aligned_type (type), lval_memory);
10505 }
14f9c5c9 10506 else
284614f0
JB
10507 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10508 arg1 = unwrap_value (arg1);
10509 return ada_to_fixed_value (arg1);
10510
14f9c5c9 10511 case OP_TYPE:
4c4b4cd2
PH
10512 /* The value is not supposed to be used. This is here to make it
10513 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10514 (*pos) += 2;
10515 if (noside == EVAL_SKIP)
4c4b4cd2 10516 goto nosideret;
14f9c5c9 10517 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10518 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10519 else
323e0a4a 10520 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10521
10522 case OP_AGGREGATE:
10523 case OP_CHOICES:
10524 case OP_OTHERS:
10525 case OP_DISCRETE_RANGE:
10526 case OP_POSITIONAL:
10527 case OP_NAME:
10528 if (noside == EVAL_NORMAL)
10529 switch (op)
10530 {
10531 case OP_NAME:
10532 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10533 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10534 case OP_AGGREGATE:
10535 error (_("Aggregates only allowed on the right of an assignment"));
10536 default:
0963b4bd
MS
10537 internal_error (__FILE__, __LINE__,
10538 _("aggregate apparently mangled"));
52ce6436
PH
10539 }
10540
10541 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10542 *pos += oplen - 1;
10543 for (tem = 0; tem < nargs; tem += 1)
10544 ada_evaluate_subexp (NULL, exp, pos, noside);
10545 goto nosideret;
14f9c5c9
AS
10546 }
10547
10548nosideret:
22601c15 10549 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10550}
14f9c5c9 10551\f
d2e4a39e 10552
4c4b4cd2 10553 /* Fixed point */
14f9c5c9
AS
10554
10555/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10556 type name that encodes the 'small and 'delta information.
4c4b4cd2 10557 Otherwise, return NULL. */
14f9c5c9 10558
d2e4a39e 10559static const char *
ebf56fd3 10560fixed_type_info (struct type *type)
14f9c5c9 10561{
d2e4a39e 10562 const char *name = ada_type_name (type);
14f9c5c9
AS
10563 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10564
d2e4a39e
AS
10565 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10566 {
14f9c5c9 10567 const char *tail = strstr (name, "___XF_");
5b4ee69b 10568
14f9c5c9 10569 if (tail == NULL)
4c4b4cd2 10570 return NULL;
d2e4a39e 10571 else
4c4b4cd2 10572 return tail + 5;
14f9c5c9
AS
10573 }
10574 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10575 return fixed_type_info (TYPE_TARGET_TYPE (type));
10576 else
10577 return NULL;
10578}
10579
4c4b4cd2 10580/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10581
10582int
ebf56fd3 10583ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10584{
10585 return fixed_type_info (type) != NULL;
10586}
10587
4c4b4cd2
PH
10588/* Return non-zero iff TYPE represents a System.Address type. */
10589
10590int
10591ada_is_system_address_type (struct type *type)
10592{
10593 return (TYPE_NAME (type)
10594 && strcmp (TYPE_NAME (type), "system__address") == 0);
10595}
10596
14f9c5c9
AS
10597/* Assuming that TYPE is the representation of an Ada fixed-point
10598 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10599 delta cannot be determined. */
14f9c5c9
AS
10600
10601DOUBLEST
ebf56fd3 10602ada_delta (struct type *type)
14f9c5c9
AS
10603{
10604 const char *encoding = fixed_type_info (type);
facc390f 10605 DOUBLEST num, den;
14f9c5c9 10606
facc390f
JB
10607 /* Strictly speaking, num and den are encoded as integer. However,
10608 they may not fit into a long, and they will have to be converted
10609 to DOUBLEST anyway. So scan them as DOUBLEST. */
10610 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10611 &num, &den) < 2)
14f9c5c9 10612 return -1.0;
d2e4a39e 10613 else
facc390f 10614 return num / den;
14f9c5c9
AS
10615}
10616
10617/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10618 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10619
10620static DOUBLEST
ebf56fd3 10621scaling_factor (struct type *type)
14f9c5c9
AS
10622{
10623 const char *encoding = fixed_type_info (type);
facc390f 10624 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10625 int n;
d2e4a39e 10626
facc390f
JB
10627 /* Strictly speaking, num's and den's are encoded as integer. However,
10628 they may not fit into a long, and they will have to be converted
10629 to DOUBLEST anyway. So scan them as DOUBLEST. */
10630 n = sscanf (encoding,
10631 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10632 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10633 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10634
10635 if (n < 2)
10636 return 1.0;
10637 else if (n == 4)
facc390f 10638 return num1 / den1;
d2e4a39e 10639 else
facc390f 10640 return num0 / den0;
14f9c5c9
AS
10641}
10642
10643
10644/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10645 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10646
10647DOUBLEST
ebf56fd3 10648ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10649{
d2e4a39e 10650 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10651}
10652
4c4b4cd2
PH
10653/* The representation of a fixed-point value of type TYPE
10654 corresponding to the value X. */
14f9c5c9
AS
10655
10656LONGEST
ebf56fd3 10657ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10658{
10659 return (LONGEST) (x / scaling_factor (type) + 0.5);
10660}
10661
14f9c5c9 10662\f
d2e4a39e 10663
4c4b4cd2 10664 /* Range types */
14f9c5c9
AS
10665
10666/* Scan STR beginning at position K for a discriminant name, and
10667 return the value of that discriminant field of DVAL in *PX. If
10668 PNEW_K is not null, put the position of the character beyond the
10669 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10670 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10671
10672static int
07d8f827 10673scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10674 int *pnew_k)
14f9c5c9
AS
10675{
10676 static char *bound_buffer = NULL;
10677 static size_t bound_buffer_len = 0;
10678 char *bound;
10679 char *pend;
d2e4a39e 10680 struct value *bound_val;
14f9c5c9
AS
10681
10682 if (dval == NULL || str == NULL || str[k] == '\0')
10683 return 0;
10684
d2e4a39e 10685 pend = strstr (str + k, "__");
14f9c5c9
AS
10686 if (pend == NULL)
10687 {
d2e4a39e 10688 bound = str + k;
14f9c5c9
AS
10689 k += strlen (bound);
10690 }
d2e4a39e 10691 else
14f9c5c9 10692 {
d2e4a39e 10693 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10694 bound = bound_buffer;
d2e4a39e
AS
10695 strncpy (bound_buffer, str + k, pend - (str + k));
10696 bound[pend - (str + k)] = '\0';
10697 k = pend - str;
14f9c5c9 10698 }
d2e4a39e 10699
df407dfe 10700 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10701 if (bound_val == NULL)
10702 return 0;
10703
10704 *px = value_as_long (bound_val);
10705 if (pnew_k != NULL)
10706 *pnew_k = k;
10707 return 1;
10708}
10709
10710/* Value of variable named NAME in the current environment. If
10711 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10712 otherwise causes an error with message ERR_MSG. */
10713
d2e4a39e
AS
10714static struct value *
10715get_var_value (char *name, char *err_msg)
14f9c5c9 10716{
4c4b4cd2 10717 struct ada_symbol_info *syms;
14f9c5c9
AS
10718 int nsyms;
10719
4c4b4cd2 10720 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 10721 &syms);
14f9c5c9
AS
10722
10723 if (nsyms != 1)
10724 {
10725 if (err_msg == NULL)
4c4b4cd2 10726 return 0;
14f9c5c9 10727 else
8a3fe4f8 10728 error (("%s"), err_msg);
14f9c5c9
AS
10729 }
10730
4c4b4cd2 10731 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10732}
d2e4a39e 10733
14f9c5c9 10734/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10735 no such variable found, returns 0, and sets *FLAG to 0. If
10736 successful, sets *FLAG to 1. */
10737
14f9c5c9 10738LONGEST
4c4b4cd2 10739get_int_var_value (char *name, int *flag)
14f9c5c9 10740{
4c4b4cd2 10741 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10742
14f9c5c9
AS
10743 if (var_val == 0)
10744 {
10745 if (flag != NULL)
4c4b4cd2 10746 *flag = 0;
14f9c5c9
AS
10747 return 0;
10748 }
10749 else
10750 {
10751 if (flag != NULL)
4c4b4cd2 10752 *flag = 1;
14f9c5c9
AS
10753 return value_as_long (var_val);
10754 }
10755}
d2e4a39e 10756
14f9c5c9
AS
10757
10758/* Return a range type whose base type is that of the range type named
10759 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10760 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10761 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10762 corresponding range type from debug information; fall back to using it
10763 if symbol lookup fails. If a new type must be created, allocate it
10764 like ORIG_TYPE was. The bounds information, in general, is encoded
10765 in NAME, the base type given in the named range type. */
14f9c5c9 10766
d2e4a39e 10767static struct type *
28c85d6c 10768to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10769{
0d5cff50 10770 const char *name;
14f9c5c9 10771 struct type *base_type;
d2e4a39e 10772 char *subtype_info;
14f9c5c9 10773
28c85d6c
JB
10774 gdb_assert (raw_type != NULL);
10775 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10776
1ce677a4 10777 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10778 base_type = TYPE_TARGET_TYPE (raw_type);
10779 else
10780 base_type = raw_type;
10781
28c85d6c 10782 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10783 subtype_info = strstr (name, "___XD");
10784 if (subtype_info == NULL)
690cc4eb 10785 {
43bbcdc2
PH
10786 LONGEST L = ada_discrete_type_low_bound (raw_type);
10787 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10788
690cc4eb
PH
10789 if (L < INT_MIN || U > INT_MAX)
10790 return raw_type;
10791 else
28c85d6c 10792 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10793 ada_discrete_type_low_bound (raw_type),
10794 ada_discrete_type_high_bound (raw_type));
690cc4eb 10795 }
14f9c5c9
AS
10796 else
10797 {
10798 static char *name_buf = NULL;
10799 static size_t name_len = 0;
10800 int prefix_len = subtype_info - name;
10801 LONGEST L, U;
10802 struct type *type;
10803 char *bounds_str;
10804 int n;
10805
10806 GROW_VECT (name_buf, name_len, prefix_len + 5);
10807 strncpy (name_buf, name, prefix_len);
10808 name_buf[prefix_len] = '\0';
10809
10810 subtype_info += 5;
10811 bounds_str = strchr (subtype_info, '_');
10812 n = 1;
10813
d2e4a39e 10814 if (*subtype_info == 'L')
4c4b4cd2
PH
10815 {
10816 if (!ada_scan_number (bounds_str, n, &L, &n)
10817 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10818 return raw_type;
10819 if (bounds_str[n] == '_')
10820 n += 2;
0963b4bd 10821 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10822 n += 1;
10823 subtype_info += 1;
10824 }
d2e4a39e 10825 else
4c4b4cd2
PH
10826 {
10827 int ok;
5b4ee69b 10828
4c4b4cd2
PH
10829 strcpy (name_buf + prefix_len, "___L");
10830 L = get_int_var_value (name_buf, &ok);
10831 if (!ok)
10832 {
323e0a4a 10833 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10834 L = 1;
10835 }
10836 }
14f9c5c9 10837
d2e4a39e 10838 if (*subtype_info == 'U')
4c4b4cd2
PH
10839 {
10840 if (!ada_scan_number (bounds_str, n, &U, &n)
10841 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10842 return raw_type;
10843 }
d2e4a39e 10844 else
4c4b4cd2
PH
10845 {
10846 int ok;
5b4ee69b 10847
4c4b4cd2
PH
10848 strcpy (name_buf + prefix_len, "___U");
10849 U = get_int_var_value (name_buf, &ok);
10850 if (!ok)
10851 {
323e0a4a 10852 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10853 U = L;
10854 }
10855 }
14f9c5c9 10856
28c85d6c 10857 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10858 TYPE_NAME (type) = name;
14f9c5c9
AS
10859 return type;
10860 }
10861}
10862
4c4b4cd2
PH
10863/* True iff NAME is the name of a range type. */
10864
14f9c5c9 10865int
d2e4a39e 10866ada_is_range_type_name (const char *name)
14f9c5c9
AS
10867{
10868 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10869}
14f9c5c9 10870\f
d2e4a39e 10871
4c4b4cd2
PH
10872 /* Modular types */
10873
10874/* True iff TYPE is an Ada modular type. */
14f9c5c9 10875
14f9c5c9 10876int
d2e4a39e 10877ada_is_modular_type (struct type *type)
14f9c5c9 10878{
18af8284 10879 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10880
10881 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10882 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10883 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10884}
10885
4c4b4cd2
PH
10886/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10887
61ee279c 10888ULONGEST
0056e4d5 10889ada_modulus (struct type *type)
14f9c5c9 10890{
43bbcdc2 10891 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10892}
d2e4a39e 10893\f
f7f9143b
JB
10894
10895/* Ada exception catchpoint support:
10896 ---------------------------------
10897
10898 We support 3 kinds of exception catchpoints:
10899 . catchpoints on Ada exceptions
10900 . catchpoints on unhandled Ada exceptions
10901 . catchpoints on failed assertions
10902
10903 Exceptions raised during failed assertions, or unhandled exceptions
10904 could perfectly be caught with the general catchpoint on Ada exceptions.
10905 However, we can easily differentiate these two special cases, and having
10906 the option to distinguish these two cases from the rest can be useful
10907 to zero-in on certain situations.
10908
10909 Exception catchpoints are a specialized form of breakpoint,
10910 since they rely on inserting breakpoints inside known routines
10911 of the GNAT runtime. The implementation therefore uses a standard
10912 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10913 of breakpoint_ops.
10914
0259addd
JB
10915 Support in the runtime for exception catchpoints have been changed
10916 a few times already, and these changes affect the implementation
10917 of these catchpoints. In order to be able to support several
10918 variants of the runtime, we use a sniffer that will determine
28010a5d 10919 the runtime variant used by the program being debugged. */
f7f9143b
JB
10920
10921/* The different types of catchpoints that we introduced for catching
10922 Ada exceptions. */
10923
10924enum exception_catchpoint_kind
10925{
10926 ex_catch_exception,
10927 ex_catch_exception_unhandled,
10928 ex_catch_assert
10929};
10930
3d0b0fa3
JB
10931/* Ada's standard exceptions. */
10932
10933static char *standard_exc[] = {
10934 "constraint_error",
10935 "program_error",
10936 "storage_error",
10937 "tasking_error"
10938};
10939
0259addd
JB
10940typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10941
10942/* A structure that describes how to support exception catchpoints
10943 for a given executable. */
10944
10945struct exception_support_info
10946{
10947 /* The name of the symbol to break on in order to insert
10948 a catchpoint on exceptions. */
10949 const char *catch_exception_sym;
10950
10951 /* The name of the symbol to break on in order to insert
10952 a catchpoint on unhandled exceptions. */
10953 const char *catch_exception_unhandled_sym;
10954
10955 /* The name of the symbol to break on in order to insert
10956 a catchpoint on failed assertions. */
10957 const char *catch_assert_sym;
10958
10959 /* Assuming that the inferior just triggered an unhandled exception
10960 catchpoint, this function is responsible for returning the address
10961 in inferior memory where the name of that exception is stored.
10962 Return zero if the address could not be computed. */
10963 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10964};
10965
10966static CORE_ADDR ada_unhandled_exception_name_addr (void);
10967static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10968
10969/* The following exception support info structure describes how to
10970 implement exception catchpoints with the latest version of the
10971 Ada runtime (as of 2007-03-06). */
10972
10973static const struct exception_support_info default_exception_support_info =
10974{
10975 "__gnat_debug_raise_exception", /* catch_exception_sym */
10976 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10977 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10978 ada_unhandled_exception_name_addr
10979};
10980
10981/* The following exception support info structure describes how to
10982 implement exception catchpoints with a slightly older version
10983 of the Ada runtime. */
10984
10985static const struct exception_support_info exception_support_info_fallback =
10986{
10987 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10988 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10989 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10990 ada_unhandled_exception_name_addr_from_raise
10991};
10992
f17011e0
JB
10993/* Return nonzero if we can detect the exception support routines
10994 described in EINFO.
10995
10996 This function errors out if an abnormal situation is detected
10997 (for instance, if we find the exception support routines, but
10998 that support is found to be incomplete). */
10999
11000static int
11001ada_has_this_exception_support (const struct exception_support_info *einfo)
11002{
11003 struct symbol *sym;
11004
11005 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11006 that should be compiled with debugging information. As a result, we
11007 expect to find that symbol in the symtabs. */
11008
11009 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11010 if (sym == NULL)
a6af7abe
JB
11011 {
11012 /* Perhaps we did not find our symbol because the Ada runtime was
11013 compiled without debugging info, or simply stripped of it.
11014 It happens on some GNU/Linux distributions for instance, where
11015 users have to install a separate debug package in order to get
11016 the runtime's debugging info. In that situation, let the user
11017 know why we cannot insert an Ada exception catchpoint.
11018
11019 Note: Just for the purpose of inserting our Ada exception
11020 catchpoint, we could rely purely on the associated minimal symbol.
11021 But we would be operating in degraded mode anyway, since we are
11022 still lacking the debugging info needed later on to extract
11023 the name of the exception being raised (this name is printed in
11024 the catchpoint message, and is also used when trying to catch
11025 a specific exception). We do not handle this case for now. */
11026 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11027 error (_("Your Ada runtime appears to be missing some debugging "
11028 "information.\nCannot insert Ada exception catchpoint "
11029 "in this configuration."));
11030
11031 return 0;
11032 }
f17011e0
JB
11033
11034 /* Make sure that the symbol we found corresponds to a function. */
11035
11036 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11037 error (_("Symbol \"%s\" is not a function (class = %d)"),
11038 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11039
11040 return 1;
11041}
11042
0259addd
JB
11043/* Inspect the Ada runtime and determine which exception info structure
11044 should be used to provide support for exception catchpoints.
11045
3eecfa55
JB
11046 This function will always set the per-inferior exception_info,
11047 or raise an error. */
0259addd
JB
11048
11049static void
11050ada_exception_support_info_sniffer (void)
11051{
3eecfa55 11052 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11053
11054 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11055 if (data->exception_info != NULL)
0259addd
JB
11056 return;
11057
11058 /* Check the latest (default) exception support info. */
f17011e0 11059 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11060 {
3eecfa55 11061 data->exception_info = &default_exception_support_info;
0259addd
JB
11062 return;
11063 }
11064
11065 /* Try our fallback exception suport info. */
f17011e0 11066 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11067 {
3eecfa55 11068 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11069 return;
11070 }
11071
11072 /* Sometimes, it is normal for us to not be able to find the routine
11073 we are looking for. This happens when the program is linked with
11074 the shared version of the GNAT runtime, and the program has not been
11075 started yet. Inform the user of these two possible causes if
11076 applicable. */
11077
ccefe4c4 11078 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11079 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11080
11081 /* If the symbol does not exist, then check that the program is
11082 already started, to make sure that shared libraries have been
11083 loaded. If it is not started, this may mean that the symbol is
11084 in a shared library. */
11085
11086 if (ptid_get_pid (inferior_ptid) == 0)
11087 error (_("Unable to insert catchpoint. Try to start the program first."));
11088
11089 /* At this point, we know that we are debugging an Ada program and
11090 that the inferior has been started, but we still are not able to
0963b4bd 11091 find the run-time symbols. That can mean that we are in
0259addd
JB
11092 configurable run time mode, or that a-except as been optimized
11093 out by the linker... In any case, at this point it is not worth
11094 supporting this feature. */
11095
7dda8cff 11096 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11097}
11098
f7f9143b
JB
11099/* True iff FRAME is very likely to be that of a function that is
11100 part of the runtime system. This is all very heuristic, but is
11101 intended to be used as advice as to what frames are uninteresting
11102 to most users. */
11103
11104static int
11105is_known_support_routine (struct frame_info *frame)
11106{
4ed6b5be 11107 struct symtab_and_line sal;
0d5cff50 11108 const char *func_name;
692465f1 11109 enum language func_lang;
f7f9143b 11110 int i;
f35a17b5 11111 const char *fullname;
f7f9143b 11112
4ed6b5be
JB
11113 /* If this code does not have any debugging information (no symtab),
11114 This cannot be any user code. */
f7f9143b 11115
4ed6b5be 11116 find_frame_sal (frame, &sal);
f7f9143b
JB
11117 if (sal.symtab == NULL)
11118 return 1;
11119
4ed6b5be
JB
11120 /* If there is a symtab, but the associated source file cannot be
11121 located, then assume this is not user code: Selecting a frame
11122 for which we cannot display the code would not be very helpful
11123 for the user. This should also take care of case such as VxWorks
11124 where the kernel has some debugging info provided for a few units. */
f7f9143b 11125
f35a17b5
JK
11126 fullname = symtab_to_fullname (sal.symtab);
11127 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11128 return 1;
11129
4ed6b5be
JB
11130 /* Check the unit filename againt the Ada runtime file naming.
11131 We also check the name of the objfile against the name of some
11132 known system libraries that sometimes come with debugging info
11133 too. */
11134
f7f9143b
JB
11135 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11136 {
11137 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11138 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11139 return 1;
4ed6b5be
JB
11140 if (sal.symtab->objfile != NULL
11141 && re_exec (sal.symtab->objfile->name))
11142 return 1;
f7f9143b
JB
11143 }
11144
4ed6b5be 11145 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11146
e9e07ba6 11147 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11148 if (func_name == NULL)
11149 return 1;
11150
11151 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11152 {
11153 re_comp (known_auxiliary_function_name_patterns[i]);
11154 if (re_exec (func_name))
11155 return 1;
11156 }
11157
11158 return 0;
11159}
11160
11161/* Find the first frame that contains debugging information and that is not
11162 part of the Ada run-time, starting from FI and moving upward. */
11163
0ef643c8 11164void
f7f9143b
JB
11165ada_find_printable_frame (struct frame_info *fi)
11166{
11167 for (; fi != NULL; fi = get_prev_frame (fi))
11168 {
11169 if (!is_known_support_routine (fi))
11170 {
11171 select_frame (fi);
11172 break;
11173 }
11174 }
11175
11176}
11177
11178/* Assuming that the inferior just triggered an unhandled exception
11179 catchpoint, return the address in inferior memory where the name
11180 of the exception is stored.
11181
11182 Return zero if the address could not be computed. */
11183
11184static CORE_ADDR
11185ada_unhandled_exception_name_addr (void)
0259addd
JB
11186{
11187 return parse_and_eval_address ("e.full_name");
11188}
11189
11190/* Same as ada_unhandled_exception_name_addr, except that this function
11191 should be used when the inferior uses an older version of the runtime,
11192 where the exception name needs to be extracted from a specific frame
11193 several frames up in the callstack. */
11194
11195static CORE_ADDR
11196ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11197{
11198 int frame_level;
11199 struct frame_info *fi;
3eecfa55 11200 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11201
11202 /* To determine the name of this exception, we need to select
11203 the frame corresponding to RAISE_SYM_NAME. This frame is
11204 at least 3 levels up, so we simply skip the first 3 frames
11205 without checking the name of their associated function. */
11206 fi = get_current_frame ();
11207 for (frame_level = 0; frame_level < 3; frame_level += 1)
11208 if (fi != NULL)
11209 fi = get_prev_frame (fi);
11210
11211 while (fi != NULL)
11212 {
0d5cff50 11213 const char *func_name;
692465f1
JB
11214 enum language func_lang;
11215
e9e07ba6 11216 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 11217 if (func_name != NULL
3eecfa55 11218 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
f7f9143b
JB
11219 break; /* We found the frame we were looking for... */
11220 fi = get_prev_frame (fi);
11221 }
11222
11223 if (fi == NULL)
11224 return 0;
11225
11226 select_frame (fi);
11227 return parse_and_eval_address ("id.full_name");
11228}
11229
11230/* Assuming the inferior just triggered an Ada exception catchpoint
11231 (of any type), return the address in inferior memory where the name
11232 of the exception is stored, if applicable.
11233
11234 Return zero if the address could not be computed, or if not relevant. */
11235
11236static CORE_ADDR
11237ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11238 struct breakpoint *b)
11239{
3eecfa55
JB
11240 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11241
f7f9143b
JB
11242 switch (ex)
11243 {
11244 case ex_catch_exception:
11245 return (parse_and_eval_address ("e.full_name"));
11246 break;
11247
11248 case ex_catch_exception_unhandled:
3eecfa55 11249 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11250 break;
11251
11252 case ex_catch_assert:
11253 return 0; /* Exception name is not relevant in this case. */
11254 break;
11255
11256 default:
11257 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11258 break;
11259 }
11260
11261 return 0; /* Should never be reached. */
11262}
11263
11264/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11265 any error that ada_exception_name_addr_1 might cause to be thrown.
11266 When an error is intercepted, a warning with the error message is printed,
11267 and zero is returned. */
11268
11269static CORE_ADDR
11270ada_exception_name_addr (enum exception_catchpoint_kind ex,
11271 struct breakpoint *b)
11272{
bfd189b1 11273 volatile struct gdb_exception e;
f7f9143b
JB
11274 CORE_ADDR result = 0;
11275
11276 TRY_CATCH (e, RETURN_MASK_ERROR)
11277 {
11278 result = ada_exception_name_addr_1 (ex, b);
11279 }
11280
11281 if (e.reason < 0)
11282 {
11283 warning (_("failed to get exception name: %s"), e.message);
11284 return 0;
11285 }
11286
11287 return result;
11288}
11289
28010a5d
PA
11290static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11291 char *, char **,
c0a91b2b 11292 const struct breakpoint_ops **);
28010a5d
PA
11293static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11294
11295/* Ada catchpoints.
11296
11297 In the case of catchpoints on Ada exceptions, the catchpoint will
11298 stop the target on every exception the program throws. When a user
11299 specifies the name of a specific exception, we translate this
11300 request into a condition expression (in text form), and then parse
11301 it into an expression stored in each of the catchpoint's locations.
11302 We then use this condition to check whether the exception that was
11303 raised is the one the user is interested in. If not, then the
11304 target is resumed again. We store the name of the requested
11305 exception, in order to be able to re-set the condition expression
11306 when symbols change. */
11307
11308/* An instance of this type is used to represent an Ada catchpoint
11309 breakpoint location. It includes a "struct bp_location" as a kind
11310 of base class; users downcast to "struct bp_location *" when
11311 needed. */
11312
11313struct ada_catchpoint_location
11314{
11315 /* The base class. */
11316 struct bp_location base;
11317
11318 /* The condition that checks whether the exception that was raised
11319 is the specific exception the user specified on catchpoint
11320 creation. */
11321 struct expression *excep_cond_expr;
11322};
11323
11324/* Implement the DTOR method in the bp_location_ops structure for all
11325 Ada exception catchpoint kinds. */
11326
11327static void
11328ada_catchpoint_location_dtor (struct bp_location *bl)
11329{
11330 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11331
11332 xfree (al->excep_cond_expr);
11333}
11334
11335/* The vtable to be used in Ada catchpoint locations. */
11336
11337static const struct bp_location_ops ada_catchpoint_location_ops =
11338{
11339 ada_catchpoint_location_dtor
11340};
11341
11342/* An instance of this type is used to represent an Ada catchpoint.
11343 It includes a "struct breakpoint" as a kind of base class; users
11344 downcast to "struct breakpoint *" when needed. */
11345
11346struct ada_catchpoint
11347{
11348 /* The base class. */
11349 struct breakpoint base;
11350
11351 /* The name of the specific exception the user specified. */
11352 char *excep_string;
11353};
11354
11355/* Parse the exception condition string in the context of each of the
11356 catchpoint's locations, and store them for later evaluation. */
11357
11358static void
11359create_excep_cond_exprs (struct ada_catchpoint *c)
11360{
11361 struct cleanup *old_chain;
11362 struct bp_location *bl;
11363 char *cond_string;
11364
11365 /* Nothing to do if there's no specific exception to catch. */
11366 if (c->excep_string == NULL)
11367 return;
11368
11369 /* Same if there are no locations... */
11370 if (c->base.loc == NULL)
11371 return;
11372
11373 /* Compute the condition expression in text form, from the specific
11374 expection we want to catch. */
11375 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11376 old_chain = make_cleanup (xfree, cond_string);
11377
11378 /* Iterate over all the catchpoint's locations, and parse an
11379 expression for each. */
11380 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11381 {
11382 struct ada_catchpoint_location *ada_loc
11383 = (struct ada_catchpoint_location *) bl;
11384 struct expression *exp = NULL;
11385
11386 if (!bl->shlib_disabled)
11387 {
11388 volatile struct gdb_exception e;
bbc13ae3 11389 const char *s;
28010a5d
PA
11390
11391 s = cond_string;
11392 TRY_CATCH (e, RETURN_MASK_ERROR)
11393 {
1bb9788d
TT
11394 exp = parse_exp_1 (&s, bl->address,
11395 block_for_pc (bl->address), 0);
28010a5d
PA
11396 }
11397 if (e.reason < 0)
11398 warning (_("failed to reevaluate internal exception condition "
11399 "for catchpoint %d: %s"),
11400 c->base.number, e.message);
11401 }
11402
11403 ada_loc->excep_cond_expr = exp;
11404 }
11405
11406 do_cleanups (old_chain);
11407}
11408
11409/* Implement the DTOR method in the breakpoint_ops structure for all
11410 exception catchpoint kinds. */
11411
11412static void
11413dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11414{
11415 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11416
11417 xfree (c->excep_string);
348d480f 11418
2060206e 11419 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11420}
11421
11422/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11423 structure for all exception catchpoint kinds. */
11424
11425static struct bp_location *
11426allocate_location_exception (enum exception_catchpoint_kind ex,
11427 struct breakpoint *self)
11428{
11429 struct ada_catchpoint_location *loc;
11430
11431 loc = XNEW (struct ada_catchpoint_location);
11432 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11433 loc->excep_cond_expr = NULL;
11434 return &loc->base;
11435}
11436
11437/* Implement the RE_SET method in the breakpoint_ops structure for all
11438 exception catchpoint kinds. */
11439
11440static void
11441re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11442{
11443 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11444
11445 /* Call the base class's method. This updates the catchpoint's
11446 locations. */
2060206e 11447 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11448
11449 /* Reparse the exception conditional expressions. One for each
11450 location. */
11451 create_excep_cond_exprs (c);
11452}
11453
11454/* Returns true if we should stop for this breakpoint hit. If the
11455 user specified a specific exception, we only want to cause a stop
11456 if the program thrown that exception. */
11457
11458static int
11459should_stop_exception (const struct bp_location *bl)
11460{
11461 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11462 const struct ada_catchpoint_location *ada_loc
11463 = (const struct ada_catchpoint_location *) bl;
11464 volatile struct gdb_exception ex;
11465 int stop;
11466
11467 /* With no specific exception, should always stop. */
11468 if (c->excep_string == NULL)
11469 return 1;
11470
11471 if (ada_loc->excep_cond_expr == NULL)
11472 {
11473 /* We will have a NULL expression if back when we were creating
11474 the expressions, this location's had failed to parse. */
11475 return 1;
11476 }
11477
11478 stop = 1;
11479 TRY_CATCH (ex, RETURN_MASK_ALL)
11480 {
11481 struct value *mark;
11482
11483 mark = value_mark ();
11484 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11485 value_free_to_mark (mark);
11486 }
11487 if (ex.reason < 0)
11488 exception_fprintf (gdb_stderr, ex,
11489 _("Error in testing exception condition:\n"));
11490 return stop;
11491}
11492
11493/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11494 for all exception catchpoint kinds. */
11495
11496static void
11497check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11498{
11499 bs->stop = should_stop_exception (bs->bp_location_at);
11500}
11501
f7f9143b
JB
11502/* Implement the PRINT_IT method in the breakpoint_ops structure
11503 for all exception catchpoint kinds. */
11504
11505static enum print_stop_action
348d480f 11506print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11507{
79a45e25 11508 struct ui_out *uiout = current_uiout;
348d480f
PA
11509 struct breakpoint *b = bs->breakpoint_at;
11510
956a9fb9 11511 annotate_catchpoint (b->number);
f7f9143b 11512
956a9fb9 11513 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11514 {
956a9fb9
JB
11515 ui_out_field_string (uiout, "reason",
11516 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11517 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11518 }
11519
00eb2c4a
JB
11520 ui_out_text (uiout,
11521 b->disposition == disp_del ? "\nTemporary catchpoint "
11522 : "\nCatchpoint ");
956a9fb9
JB
11523 ui_out_field_int (uiout, "bkptno", b->number);
11524 ui_out_text (uiout, ", ");
f7f9143b 11525
f7f9143b
JB
11526 switch (ex)
11527 {
11528 case ex_catch_exception:
f7f9143b 11529 case ex_catch_exception_unhandled:
956a9fb9
JB
11530 {
11531 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11532 char exception_name[256];
11533
11534 if (addr != 0)
11535 {
c714b426
PA
11536 read_memory (addr, (gdb_byte *) exception_name,
11537 sizeof (exception_name) - 1);
956a9fb9
JB
11538 exception_name [sizeof (exception_name) - 1] = '\0';
11539 }
11540 else
11541 {
11542 /* For some reason, we were unable to read the exception
11543 name. This could happen if the Runtime was compiled
11544 without debugging info, for instance. In that case,
11545 just replace the exception name by the generic string
11546 "exception" - it will read as "an exception" in the
11547 notification we are about to print. */
967cff16 11548 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11549 }
11550 /* In the case of unhandled exception breakpoints, we print
11551 the exception name as "unhandled EXCEPTION_NAME", to make
11552 it clearer to the user which kind of catchpoint just got
11553 hit. We used ui_out_text to make sure that this extra
11554 info does not pollute the exception name in the MI case. */
11555 if (ex == ex_catch_exception_unhandled)
11556 ui_out_text (uiout, "unhandled ");
11557 ui_out_field_string (uiout, "exception-name", exception_name);
11558 }
11559 break;
f7f9143b 11560 case ex_catch_assert:
956a9fb9
JB
11561 /* In this case, the name of the exception is not really
11562 important. Just print "failed assertion" to make it clearer
11563 that his program just hit an assertion-failure catchpoint.
11564 We used ui_out_text because this info does not belong in
11565 the MI output. */
11566 ui_out_text (uiout, "failed assertion");
11567 break;
f7f9143b 11568 }
956a9fb9
JB
11569 ui_out_text (uiout, " at ");
11570 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11571
11572 return PRINT_SRC_AND_LOC;
11573}
11574
11575/* Implement the PRINT_ONE method in the breakpoint_ops structure
11576 for all exception catchpoint kinds. */
11577
11578static void
11579print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11580 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11581{
79a45e25 11582 struct ui_out *uiout = current_uiout;
28010a5d 11583 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11584 struct value_print_options opts;
11585
11586 get_user_print_options (&opts);
11587 if (opts.addressprint)
f7f9143b
JB
11588 {
11589 annotate_field (4);
5af949e3 11590 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11591 }
11592
11593 annotate_field (5);
a6d9a66e 11594 *last_loc = b->loc;
f7f9143b
JB
11595 switch (ex)
11596 {
11597 case ex_catch_exception:
28010a5d 11598 if (c->excep_string != NULL)
f7f9143b 11599 {
28010a5d
PA
11600 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11601
f7f9143b
JB
11602 ui_out_field_string (uiout, "what", msg);
11603 xfree (msg);
11604 }
11605 else
11606 ui_out_field_string (uiout, "what", "all Ada exceptions");
11607
11608 break;
11609
11610 case ex_catch_exception_unhandled:
11611 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11612 break;
11613
11614 case ex_catch_assert:
11615 ui_out_field_string (uiout, "what", "failed Ada assertions");
11616 break;
11617
11618 default:
11619 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11620 break;
11621 }
11622}
11623
11624/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11625 for all exception catchpoint kinds. */
11626
11627static void
11628print_mention_exception (enum exception_catchpoint_kind ex,
11629 struct breakpoint *b)
11630{
28010a5d 11631 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11632 struct ui_out *uiout = current_uiout;
28010a5d 11633
00eb2c4a
JB
11634 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11635 : _("Catchpoint "));
11636 ui_out_field_int (uiout, "bkptno", b->number);
11637 ui_out_text (uiout, ": ");
11638
f7f9143b
JB
11639 switch (ex)
11640 {
11641 case ex_catch_exception:
28010a5d 11642 if (c->excep_string != NULL)
00eb2c4a
JB
11643 {
11644 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11645 struct cleanup *old_chain = make_cleanup (xfree, info);
11646
11647 ui_out_text (uiout, info);
11648 do_cleanups (old_chain);
11649 }
f7f9143b 11650 else
00eb2c4a 11651 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11652 break;
11653
11654 case ex_catch_exception_unhandled:
00eb2c4a 11655 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11656 break;
11657
11658 case ex_catch_assert:
00eb2c4a 11659 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11660 break;
11661
11662 default:
11663 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11664 break;
11665 }
11666}
11667
6149aea9
PA
11668/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11669 for all exception catchpoint kinds. */
11670
11671static void
11672print_recreate_exception (enum exception_catchpoint_kind ex,
11673 struct breakpoint *b, struct ui_file *fp)
11674{
28010a5d
PA
11675 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11676
6149aea9
PA
11677 switch (ex)
11678 {
11679 case ex_catch_exception:
11680 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11681 if (c->excep_string != NULL)
11682 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11683 break;
11684
11685 case ex_catch_exception_unhandled:
78076abc 11686 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11687 break;
11688
11689 case ex_catch_assert:
11690 fprintf_filtered (fp, "catch assert");
11691 break;
11692
11693 default:
11694 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11695 }
d9b3f62e 11696 print_recreate_thread (b, fp);
6149aea9
PA
11697}
11698
f7f9143b
JB
11699/* Virtual table for "catch exception" breakpoints. */
11700
28010a5d
PA
11701static void
11702dtor_catch_exception (struct breakpoint *b)
11703{
11704 dtor_exception (ex_catch_exception, b);
11705}
11706
11707static struct bp_location *
11708allocate_location_catch_exception (struct breakpoint *self)
11709{
11710 return allocate_location_exception (ex_catch_exception, self);
11711}
11712
11713static void
11714re_set_catch_exception (struct breakpoint *b)
11715{
11716 re_set_exception (ex_catch_exception, b);
11717}
11718
11719static void
11720check_status_catch_exception (bpstat bs)
11721{
11722 check_status_exception (ex_catch_exception, bs);
11723}
11724
f7f9143b 11725static enum print_stop_action
348d480f 11726print_it_catch_exception (bpstat bs)
f7f9143b 11727{
348d480f 11728 return print_it_exception (ex_catch_exception, bs);
f7f9143b
JB
11729}
11730
11731static void
a6d9a66e 11732print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11733{
a6d9a66e 11734 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11735}
11736
11737static void
11738print_mention_catch_exception (struct breakpoint *b)
11739{
11740 print_mention_exception (ex_catch_exception, b);
11741}
11742
6149aea9
PA
11743static void
11744print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11745{
11746 print_recreate_exception (ex_catch_exception, b, fp);
11747}
11748
2060206e 11749static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11750
11751/* Virtual table for "catch exception unhandled" breakpoints. */
11752
28010a5d
PA
11753static void
11754dtor_catch_exception_unhandled (struct breakpoint *b)
11755{
11756 dtor_exception (ex_catch_exception_unhandled, b);
11757}
11758
11759static struct bp_location *
11760allocate_location_catch_exception_unhandled (struct breakpoint *self)
11761{
11762 return allocate_location_exception (ex_catch_exception_unhandled, self);
11763}
11764
11765static void
11766re_set_catch_exception_unhandled (struct breakpoint *b)
11767{
11768 re_set_exception (ex_catch_exception_unhandled, b);
11769}
11770
11771static void
11772check_status_catch_exception_unhandled (bpstat bs)
11773{
11774 check_status_exception (ex_catch_exception_unhandled, bs);
11775}
11776
f7f9143b 11777static enum print_stop_action
348d480f 11778print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11779{
348d480f 11780 return print_it_exception (ex_catch_exception_unhandled, bs);
f7f9143b
JB
11781}
11782
11783static void
a6d9a66e
UW
11784print_one_catch_exception_unhandled (struct breakpoint *b,
11785 struct bp_location **last_loc)
f7f9143b 11786{
a6d9a66e 11787 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11788}
11789
11790static void
11791print_mention_catch_exception_unhandled (struct breakpoint *b)
11792{
11793 print_mention_exception (ex_catch_exception_unhandled, b);
11794}
11795
6149aea9
PA
11796static void
11797print_recreate_catch_exception_unhandled (struct breakpoint *b,
11798 struct ui_file *fp)
11799{
11800 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11801}
11802
2060206e 11803static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11804
11805/* Virtual table for "catch assert" breakpoints. */
11806
28010a5d
PA
11807static void
11808dtor_catch_assert (struct breakpoint *b)
11809{
11810 dtor_exception (ex_catch_assert, b);
11811}
11812
11813static struct bp_location *
11814allocate_location_catch_assert (struct breakpoint *self)
11815{
11816 return allocate_location_exception (ex_catch_assert, self);
11817}
11818
11819static void
11820re_set_catch_assert (struct breakpoint *b)
11821{
843e694d 11822 re_set_exception (ex_catch_assert, b);
28010a5d
PA
11823}
11824
11825static void
11826check_status_catch_assert (bpstat bs)
11827{
11828 check_status_exception (ex_catch_assert, bs);
11829}
11830
f7f9143b 11831static enum print_stop_action
348d480f 11832print_it_catch_assert (bpstat bs)
f7f9143b 11833{
348d480f 11834 return print_it_exception (ex_catch_assert, bs);
f7f9143b
JB
11835}
11836
11837static void
a6d9a66e 11838print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11839{
a6d9a66e 11840 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11841}
11842
11843static void
11844print_mention_catch_assert (struct breakpoint *b)
11845{
11846 print_mention_exception (ex_catch_assert, b);
11847}
11848
6149aea9
PA
11849static void
11850print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11851{
11852 print_recreate_exception (ex_catch_assert, b, fp);
11853}
11854
2060206e 11855static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11856
f7f9143b
JB
11857/* Return a newly allocated copy of the first space-separated token
11858 in ARGSP, and then adjust ARGSP to point immediately after that
11859 token.
11860
11861 Return NULL if ARGPS does not contain any more tokens. */
11862
11863static char *
11864ada_get_next_arg (char **argsp)
11865{
11866 char *args = *argsp;
11867 char *end;
11868 char *result;
11869
0fcd72ba 11870 args = skip_spaces (args);
f7f9143b
JB
11871 if (args[0] == '\0')
11872 return NULL; /* No more arguments. */
11873
11874 /* Find the end of the current argument. */
11875
0fcd72ba 11876 end = skip_to_space (args);
f7f9143b
JB
11877
11878 /* Adjust ARGSP to point to the start of the next argument. */
11879
11880 *argsp = end;
11881
11882 /* Make a copy of the current argument and return it. */
11883
11884 result = xmalloc (end - args + 1);
11885 strncpy (result, args, end - args);
11886 result[end - args] = '\0';
11887
11888 return result;
11889}
11890
11891/* Split the arguments specified in a "catch exception" command.
11892 Set EX to the appropriate catchpoint type.
28010a5d 11893 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
11894 specified by the user.
11895 If a condition is found at the end of the arguments, the condition
11896 expression is stored in COND_STRING (memory must be deallocated
11897 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
11898
11899static void
11900catch_ada_exception_command_split (char *args,
11901 enum exception_catchpoint_kind *ex,
5845583d
JB
11902 char **excep_string,
11903 char **cond_string)
f7f9143b
JB
11904{
11905 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11906 char *exception_name;
5845583d 11907 char *cond = NULL;
f7f9143b
JB
11908
11909 exception_name = ada_get_next_arg (&args);
5845583d
JB
11910 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11911 {
11912 /* This is not an exception name; this is the start of a condition
11913 expression for a catchpoint on all exceptions. So, "un-get"
11914 this token, and set exception_name to NULL. */
11915 xfree (exception_name);
11916 exception_name = NULL;
11917 args -= 2;
11918 }
f7f9143b
JB
11919 make_cleanup (xfree, exception_name);
11920
5845583d 11921 /* Check to see if we have a condition. */
f7f9143b 11922
0fcd72ba 11923 args = skip_spaces (args);
5845583d
JB
11924 if (strncmp (args, "if", 2) == 0
11925 && (isspace (args[2]) || args[2] == '\0'))
11926 {
11927 args += 2;
11928 args = skip_spaces (args);
11929
11930 if (args[0] == '\0')
11931 error (_("Condition missing after `if' keyword"));
11932 cond = xstrdup (args);
11933 make_cleanup (xfree, cond);
11934
11935 args += strlen (args);
11936 }
11937
11938 /* Check that we do not have any more arguments. Anything else
11939 is unexpected. */
f7f9143b
JB
11940
11941 if (args[0] != '\0')
11942 error (_("Junk at end of expression"));
11943
11944 discard_cleanups (old_chain);
11945
11946 if (exception_name == NULL)
11947 {
11948 /* Catch all exceptions. */
11949 *ex = ex_catch_exception;
28010a5d 11950 *excep_string = NULL;
f7f9143b
JB
11951 }
11952 else if (strcmp (exception_name, "unhandled") == 0)
11953 {
11954 /* Catch unhandled exceptions. */
11955 *ex = ex_catch_exception_unhandled;
28010a5d 11956 *excep_string = NULL;
f7f9143b
JB
11957 }
11958 else
11959 {
11960 /* Catch a specific exception. */
11961 *ex = ex_catch_exception;
28010a5d 11962 *excep_string = exception_name;
f7f9143b 11963 }
5845583d 11964 *cond_string = cond;
f7f9143b
JB
11965}
11966
11967/* Return the name of the symbol on which we should break in order to
11968 implement a catchpoint of the EX kind. */
11969
11970static const char *
11971ada_exception_sym_name (enum exception_catchpoint_kind ex)
11972{
3eecfa55
JB
11973 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11974
11975 gdb_assert (data->exception_info != NULL);
0259addd 11976
f7f9143b
JB
11977 switch (ex)
11978 {
11979 case ex_catch_exception:
3eecfa55 11980 return (data->exception_info->catch_exception_sym);
f7f9143b
JB
11981 break;
11982 case ex_catch_exception_unhandled:
3eecfa55 11983 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11984 break;
11985 case ex_catch_assert:
3eecfa55 11986 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
11987 break;
11988 default:
11989 internal_error (__FILE__, __LINE__,
11990 _("unexpected catchpoint kind (%d)"), ex);
11991 }
11992}
11993
11994/* Return the breakpoint ops "virtual table" used for catchpoints
11995 of the EX kind. */
11996
c0a91b2b 11997static const struct breakpoint_ops *
4b9eee8c 11998ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11999{
12000 switch (ex)
12001 {
12002 case ex_catch_exception:
12003 return (&catch_exception_breakpoint_ops);
12004 break;
12005 case ex_catch_exception_unhandled:
12006 return (&catch_exception_unhandled_breakpoint_ops);
12007 break;
12008 case ex_catch_assert:
12009 return (&catch_assert_breakpoint_ops);
12010 break;
12011 default:
12012 internal_error (__FILE__, __LINE__,
12013 _("unexpected catchpoint kind (%d)"), ex);
12014 }
12015}
12016
12017/* Return the condition that will be used to match the current exception
12018 being raised with the exception that the user wants to catch. This
12019 assumes that this condition is used when the inferior just triggered
12020 an exception catchpoint.
12021
12022 The string returned is a newly allocated string that needs to be
12023 deallocated later. */
12024
12025static char *
28010a5d 12026ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12027{
3d0b0fa3
JB
12028 int i;
12029
0963b4bd 12030 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12031 runtime units that have been compiled without debugging info; if
28010a5d 12032 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12033 exception (e.g. "constraint_error") then, during the evaluation
12034 of the condition expression, the symbol lookup on this name would
0963b4bd 12035 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12036 may then be set only on user-defined exceptions which have the
12037 same not-fully-qualified name (e.g. my_package.constraint_error).
12038
12039 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12040 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12041 exception constraint_error" is rewritten into "catch exception
12042 standard.constraint_error".
12043
12044 If an exception named contraint_error is defined in another package of
12045 the inferior program, then the only way to specify this exception as a
12046 breakpoint condition is to use its fully-qualified named:
12047 e.g. my_package.constraint_error. */
12048
12049 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12050 {
28010a5d 12051 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12052 {
12053 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12054 excep_string);
3d0b0fa3
JB
12055 }
12056 }
28010a5d 12057 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12058}
12059
12060/* Return the symtab_and_line that should be used to insert an exception
12061 catchpoint of the TYPE kind.
12062
28010a5d
PA
12063 EXCEP_STRING should contain the name of a specific exception that
12064 the catchpoint should catch, or NULL otherwise.
f7f9143b 12065
28010a5d
PA
12066 ADDR_STRING returns the name of the function where the real
12067 breakpoint that implements the catchpoints is set, depending on the
12068 type of catchpoint we need to create. */
f7f9143b
JB
12069
12070static struct symtab_and_line
28010a5d 12071ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12072 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12073{
12074 const char *sym_name;
12075 struct symbol *sym;
f7f9143b 12076
0259addd
JB
12077 /* First, find out which exception support info to use. */
12078 ada_exception_support_info_sniffer ();
12079
12080 /* Then lookup the function on which we will break in order to catch
f7f9143b 12081 the Ada exceptions requested by the user. */
f7f9143b
JB
12082 sym_name = ada_exception_sym_name (ex);
12083 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12084
f17011e0
JB
12085 /* We can assume that SYM is not NULL at this stage. If the symbol
12086 did not exist, ada_exception_support_info_sniffer would have
12087 raised an exception.
f7f9143b 12088
f17011e0
JB
12089 Also, ada_exception_support_info_sniffer should have already
12090 verified that SYM is a function symbol. */
12091 gdb_assert (sym != NULL);
12092 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12093
12094 /* Set ADDR_STRING. */
f7f9143b
JB
12095 *addr_string = xstrdup (sym_name);
12096
f7f9143b 12097 /* Set OPS. */
4b9eee8c 12098 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12099
f17011e0 12100 return find_function_start_sal (sym, 1);
f7f9143b
JB
12101}
12102
12103/* Parse the arguments (ARGS) of the "catch exception" command.
12104
f7f9143b
JB
12105 If the user asked the catchpoint to catch only a specific
12106 exception, then save the exception name in ADDR_STRING.
12107
5845583d
JB
12108 If the user provided a condition, then set COND_STRING to
12109 that condition expression (the memory must be deallocated
12110 after use). Otherwise, set COND_STRING to NULL.
12111
f7f9143b
JB
12112 See ada_exception_sal for a description of all the remaining
12113 function arguments of this function. */
12114
9ac4176b 12115static struct symtab_and_line
f7f9143b 12116ada_decode_exception_location (char *args, char **addr_string,
28010a5d 12117 char **excep_string,
5845583d 12118 char **cond_string,
c0a91b2b 12119 const struct breakpoint_ops **ops)
f7f9143b
JB
12120{
12121 enum exception_catchpoint_kind ex;
12122
5845583d 12123 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
28010a5d
PA
12124 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12125}
12126
12127/* Create an Ada exception catchpoint. */
12128
12129static void
12130create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12131 struct symtab_and_line sal,
12132 char *addr_string,
12133 char *excep_string,
5845583d 12134 char *cond_string,
c0a91b2b 12135 const struct breakpoint_ops *ops,
28010a5d
PA
12136 int tempflag,
12137 int from_tty)
12138{
12139 struct ada_catchpoint *c;
12140
12141 c = XNEW (struct ada_catchpoint);
12142 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12143 ops, tempflag, from_tty);
12144 c->excep_string = excep_string;
12145 create_excep_cond_exprs (c);
5845583d
JB
12146 if (cond_string != NULL)
12147 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12148 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12149}
12150
9ac4176b
PA
12151/* Implement the "catch exception" command. */
12152
12153static void
12154catch_ada_exception_command (char *arg, int from_tty,
12155 struct cmd_list_element *command)
12156{
12157 struct gdbarch *gdbarch = get_current_arch ();
12158 int tempflag;
12159 struct symtab_and_line sal;
12160 char *addr_string = NULL;
28010a5d 12161 char *excep_string = NULL;
5845583d 12162 char *cond_string = NULL;
c0a91b2b 12163 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
12164
12165 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12166
12167 if (!arg)
12168 arg = "";
5845583d
JB
12169 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12170 &cond_string, &ops);
28010a5d 12171 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
12172 excep_string, cond_string, ops,
12173 tempflag, from_tty);
9ac4176b
PA
12174}
12175
5845583d
JB
12176/* Assuming that ARGS contains the arguments of a "catch assert"
12177 command, parse those arguments and return a symtab_and_line object
12178 for a failed assertion catchpoint.
12179
12180 Set ADDR_STRING to the name of the function where the real
12181 breakpoint that implements the catchpoint is set.
12182
12183 If ARGS contains a condition, set COND_STRING to that condition
12184 (the memory needs to be deallocated after use). Otherwise, set
12185 COND_STRING to NULL. */
12186
9ac4176b 12187static struct symtab_and_line
f7f9143b 12188ada_decode_assert_location (char *args, char **addr_string,
5845583d 12189 char **cond_string,
c0a91b2b 12190 const struct breakpoint_ops **ops)
f7f9143b 12191{
5845583d 12192 args = skip_spaces (args);
f7f9143b 12193
5845583d
JB
12194 /* Check whether a condition was provided. */
12195 if (strncmp (args, "if", 2) == 0
12196 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12197 {
5845583d 12198 args += 2;
0fcd72ba 12199 args = skip_spaces (args);
5845583d
JB
12200 if (args[0] == '\0')
12201 error (_("condition missing after `if' keyword"));
12202 *cond_string = xstrdup (args);
f7f9143b
JB
12203 }
12204
5845583d
JB
12205 /* Otherwise, there should be no other argument at the end of
12206 the command. */
12207 else if (args[0] != '\0')
12208 error (_("Junk at end of arguments."));
12209
28010a5d 12210 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
12211}
12212
9ac4176b
PA
12213/* Implement the "catch assert" command. */
12214
12215static void
12216catch_assert_command (char *arg, int from_tty,
12217 struct cmd_list_element *command)
12218{
12219 struct gdbarch *gdbarch = get_current_arch ();
12220 int tempflag;
12221 struct symtab_and_line sal;
12222 char *addr_string = NULL;
5845583d 12223 char *cond_string = NULL;
c0a91b2b 12224 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
12225
12226 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12227
12228 if (!arg)
12229 arg = "";
5845583d 12230 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
28010a5d 12231 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
12232 NULL, cond_string, ops, tempflag,
12233 from_tty);
9ac4176b 12234}
4c4b4cd2
PH
12235 /* Operators */
12236/* Information about operators given special treatment in functions
12237 below. */
12238/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12239
12240#define ADA_OPERATORS \
12241 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12242 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12243 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12244 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12245 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12246 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12247 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12248 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12249 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12250 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12251 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12252 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12253 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12254 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12255 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12256 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12257 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12258 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12259 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12260
12261static void
554794dc
SDJ
12262ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12263 int *argsp)
4c4b4cd2
PH
12264{
12265 switch (exp->elts[pc - 1].opcode)
12266 {
76a01679 12267 default:
4c4b4cd2
PH
12268 operator_length_standard (exp, pc, oplenp, argsp);
12269 break;
12270
12271#define OP_DEFN(op, len, args, binop) \
12272 case op: *oplenp = len; *argsp = args; break;
12273 ADA_OPERATORS;
12274#undef OP_DEFN
52ce6436
PH
12275
12276 case OP_AGGREGATE:
12277 *oplenp = 3;
12278 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12279 break;
12280
12281 case OP_CHOICES:
12282 *oplenp = 3;
12283 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12284 break;
4c4b4cd2
PH
12285 }
12286}
12287
c0201579
JK
12288/* Implementation of the exp_descriptor method operator_check. */
12289
12290static int
12291ada_operator_check (struct expression *exp, int pos,
12292 int (*objfile_func) (struct objfile *objfile, void *data),
12293 void *data)
12294{
12295 const union exp_element *const elts = exp->elts;
12296 struct type *type = NULL;
12297
12298 switch (elts[pos].opcode)
12299 {
12300 case UNOP_IN_RANGE:
12301 case UNOP_QUAL:
12302 type = elts[pos + 1].type;
12303 break;
12304
12305 default:
12306 return operator_check_standard (exp, pos, objfile_func, data);
12307 }
12308
12309 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12310
12311 if (type && TYPE_OBJFILE (type)
12312 && (*objfile_func) (TYPE_OBJFILE (type), data))
12313 return 1;
12314
12315 return 0;
12316}
12317
4c4b4cd2
PH
12318static char *
12319ada_op_name (enum exp_opcode opcode)
12320{
12321 switch (opcode)
12322 {
76a01679 12323 default:
4c4b4cd2 12324 return op_name_standard (opcode);
52ce6436 12325
4c4b4cd2
PH
12326#define OP_DEFN(op, len, args, binop) case op: return #op;
12327 ADA_OPERATORS;
12328#undef OP_DEFN
52ce6436
PH
12329
12330 case OP_AGGREGATE:
12331 return "OP_AGGREGATE";
12332 case OP_CHOICES:
12333 return "OP_CHOICES";
12334 case OP_NAME:
12335 return "OP_NAME";
4c4b4cd2
PH
12336 }
12337}
12338
12339/* As for operator_length, but assumes PC is pointing at the first
12340 element of the operator, and gives meaningful results only for the
52ce6436 12341 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
12342
12343static void
76a01679
JB
12344ada_forward_operator_length (struct expression *exp, int pc,
12345 int *oplenp, int *argsp)
4c4b4cd2 12346{
76a01679 12347 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
12348 {
12349 default:
12350 *oplenp = *argsp = 0;
12351 break;
52ce6436 12352
4c4b4cd2
PH
12353#define OP_DEFN(op, len, args, binop) \
12354 case op: *oplenp = len; *argsp = args; break;
12355 ADA_OPERATORS;
12356#undef OP_DEFN
52ce6436
PH
12357
12358 case OP_AGGREGATE:
12359 *oplenp = 3;
12360 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12361 break;
12362
12363 case OP_CHOICES:
12364 *oplenp = 3;
12365 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12366 break;
12367
12368 case OP_STRING:
12369 case OP_NAME:
12370 {
12371 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 12372
52ce6436
PH
12373 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12374 *argsp = 0;
12375 break;
12376 }
4c4b4cd2
PH
12377 }
12378}
12379
12380static int
12381ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12382{
12383 enum exp_opcode op = exp->elts[elt].opcode;
12384 int oplen, nargs;
12385 int pc = elt;
12386 int i;
76a01679 12387
4c4b4cd2
PH
12388 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12389
76a01679 12390 switch (op)
4c4b4cd2 12391 {
76a01679 12392 /* Ada attributes ('Foo). */
4c4b4cd2
PH
12393 case OP_ATR_FIRST:
12394 case OP_ATR_LAST:
12395 case OP_ATR_LENGTH:
12396 case OP_ATR_IMAGE:
12397 case OP_ATR_MAX:
12398 case OP_ATR_MIN:
12399 case OP_ATR_MODULUS:
12400 case OP_ATR_POS:
12401 case OP_ATR_SIZE:
12402 case OP_ATR_TAG:
12403 case OP_ATR_VAL:
12404 break;
12405
12406 case UNOP_IN_RANGE:
12407 case UNOP_QUAL:
323e0a4a
AC
12408 /* XXX: gdb_sprint_host_address, type_sprint */
12409 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12410 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12411 fprintf_filtered (stream, " (");
12412 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12413 fprintf_filtered (stream, ")");
12414 break;
12415 case BINOP_IN_BOUNDS:
52ce6436
PH
12416 fprintf_filtered (stream, " (%d)",
12417 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12418 break;
12419 case TERNOP_IN_RANGE:
12420 break;
12421
52ce6436
PH
12422 case OP_AGGREGATE:
12423 case OP_OTHERS:
12424 case OP_DISCRETE_RANGE:
12425 case OP_POSITIONAL:
12426 case OP_CHOICES:
12427 break;
12428
12429 case OP_NAME:
12430 case OP_STRING:
12431 {
12432 char *name = &exp->elts[elt + 2].string;
12433 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12434
52ce6436
PH
12435 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12436 break;
12437 }
12438
4c4b4cd2
PH
12439 default:
12440 return dump_subexp_body_standard (exp, stream, elt);
12441 }
12442
12443 elt += oplen;
12444 for (i = 0; i < nargs; i += 1)
12445 elt = dump_subexp (exp, stream, elt);
12446
12447 return elt;
12448}
12449
12450/* The Ada extension of print_subexp (q.v.). */
12451
76a01679
JB
12452static void
12453ada_print_subexp (struct expression *exp, int *pos,
12454 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12455{
52ce6436 12456 int oplen, nargs, i;
4c4b4cd2
PH
12457 int pc = *pos;
12458 enum exp_opcode op = exp->elts[pc].opcode;
12459
12460 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12461
52ce6436 12462 *pos += oplen;
4c4b4cd2
PH
12463 switch (op)
12464 {
12465 default:
52ce6436 12466 *pos -= oplen;
4c4b4cd2
PH
12467 print_subexp_standard (exp, pos, stream, prec);
12468 return;
12469
12470 case OP_VAR_VALUE:
4c4b4cd2
PH
12471 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12472 return;
12473
12474 case BINOP_IN_BOUNDS:
323e0a4a 12475 /* XXX: sprint_subexp */
4c4b4cd2 12476 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12477 fputs_filtered (" in ", stream);
4c4b4cd2 12478 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12479 fputs_filtered ("'range", stream);
4c4b4cd2 12480 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12481 fprintf_filtered (stream, "(%ld)",
12482 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12483 return;
12484
12485 case TERNOP_IN_RANGE:
4c4b4cd2 12486 if (prec >= PREC_EQUAL)
76a01679 12487 fputs_filtered ("(", stream);
323e0a4a 12488 /* XXX: sprint_subexp */
4c4b4cd2 12489 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12490 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12491 print_subexp (exp, pos, stream, PREC_EQUAL);
12492 fputs_filtered (" .. ", stream);
12493 print_subexp (exp, pos, stream, PREC_EQUAL);
12494 if (prec >= PREC_EQUAL)
76a01679
JB
12495 fputs_filtered (")", stream);
12496 return;
4c4b4cd2
PH
12497
12498 case OP_ATR_FIRST:
12499 case OP_ATR_LAST:
12500 case OP_ATR_LENGTH:
12501 case OP_ATR_IMAGE:
12502 case OP_ATR_MAX:
12503 case OP_ATR_MIN:
12504 case OP_ATR_MODULUS:
12505 case OP_ATR_POS:
12506 case OP_ATR_SIZE:
12507 case OP_ATR_TAG:
12508 case OP_ATR_VAL:
4c4b4cd2 12509 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12510 {
12511 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
12512 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12513 &type_print_raw_options);
76a01679
JB
12514 *pos += 3;
12515 }
4c4b4cd2 12516 else
76a01679 12517 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12518 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12519 if (nargs > 1)
76a01679
JB
12520 {
12521 int tem;
5b4ee69b 12522
76a01679
JB
12523 for (tem = 1; tem < nargs; tem += 1)
12524 {
12525 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12526 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12527 }
12528 fputs_filtered (")", stream);
12529 }
4c4b4cd2 12530 return;
14f9c5c9 12531
4c4b4cd2 12532 case UNOP_QUAL:
4c4b4cd2
PH
12533 type_print (exp->elts[pc + 1].type, "", stream, 0);
12534 fputs_filtered ("'(", stream);
12535 print_subexp (exp, pos, stream, PREC_PREFIX);
12536 fputs_filtered (")", stream);
12537 return;
14f9c5c9 12538
4c4b4cd2 12539 case UNOP_IN_RANGE:
323e0a4a 12540 /* XXX: sprint_subexp */
4c4b4cd2 12541 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12542 fputs_filtered (" in ", stream);
79d43c61
TT
12543 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12544 &type_print_raw_options);
4c4b4cd2 12545 return;
52ce6436
PH
12546
12547 case OP_DISCRETE_RANGE:
12548 print_subexp (exp, pos, stream, PREC_SUFFIX);
12549 fputs_filtered ("..", stream);
12550 print_subexp (exp, pos, stream, PREC_SUFFIX);
12551 return;
12552
12553 case OP_OTHERS:
12554 fputs_filtered ("others => ", stream);
12555 print_subexp (exp, pos, stream, PREC_SUFFIX);
12556 return;
12557
12558 case OP_CHOICES:
12559 for (i = 0; i < nargs-1; i += 1)
12560 {
12561 if (i > 0)
12562 fputs_filtered ("|", stream);
12563 print_subexp (exp, pos, stream, PREC_SUFFIX);
12564 }
12565 fputs_filtered (" => ", stream);
12566 print_subexp (exp, pos, stream, PREC_SUFFIX);
12567 return;
12568
12569 case OP_POSITIONAL:
12570 print_subexp (exp, pos, stream, PREC_SUFFIX);
12571 return;
12572
12573 case OP_AGGREGATE:
12574 fputs_filtered ("(", stream);
12575 for (i = 0; i < nargs; i += 1)
12576 {
12577 if (i > 0)
12578 fputs_filtered (", ", stream);
12579 print_subexp (exp, pos, stream, PREC_SUFFIX);
12580 }
12581 fputs_filtered (")", stream);
12582 return;
4c4b4cd2
PH
12583 }
12584}
14f9c5c9
AS
12585
12586/* Table mapping opcodes into strings for printing operators
12587 and precedences of the operators. */
12588
d2e4a39e
AS
12589static const struct op_print ada_op_print_tab[] = {
12590 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12591 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12592 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12593 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12594 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12595 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12596 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12597 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12598 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12599 {">=", BINOP_GEQ, PREC_ORDER, 0},
12600 {">", BINOP_GTR, PREC_ORDER, 0},
12601 {"<", BINOP_LESS, PREC_ORDER, 0},
12602 {">>", BINOP_RSH, PREC_SHIFT, 0},
12603 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12604 {"+", BINOP_ADD, PREC_ADD, 0},
12605 {"-", BINOP_SUB, PREC_ADD, 0},
12606 {"&", BINOP_CONCAT, PREC_ADD, 0},
12607 {"*", BINOP_MUL, PREC_MUL, 0},
12608 {"/", BINOP_DIV, PREC_MUL, 0},
12609 {"rem", BINOP_REM, PREC_MUL, 0},
12610 {"mod", BINOP_MOD, PREC_MUL, 0},
12611 {"**", BINOP_EXP, PREC_REPEAT, 0},
12612 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12613 {"-", UNOP_NEG, PREC_PREFIX, 0},
12614 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12615 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12616 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12617 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12618 {".all", UNOP_IND, PREC_SUFFIX, 1},
12619 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12620 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12621 {NULL, 0, 0, 0}
14f9c5c9
AS
12622};
12623\f
72d5681a
PH
12624enum ada_primitive_types {
12625 ada_primitive_type_int,
12626 ada_primitive_type_long,
12627 ada_primitive_type_short,
12628 ada_primitive_type_char,
12629 ada_primitive_type_float,
12630 ada_primitive_type_double,
12631 ada_primitive_type_void,
12632 ada_primitive_type_long_long,
12633 ada_primitive_type_long_double,
12634 ada_primitive_type_natural,
12635 ada_primitive_type_positive,
12636 ada_primitive_type_system_address,
12637 nr_ada_primitive_types
12638};
6c038f32
PH
12639
12640static void
d4a9a881 12641ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12642 struct language_arch_info *lai)
12643{
d4a9a881 12644 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12645
72d5681a 12646 lai->primitive_type_vector
d4a9a881 12647 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12648 struct type *);
e9bb382b
UW
12649
12650 lai->primitive_type_vector [ada_primitive_type_int]
12651 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12652 0, "integer");
12653 lai->primitive_type_vector [ada_primitive_type_long]
12654 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12655 0, "long_integer");
12656 lai->primitive_type_vector [ada_primitive_type_short]
12657 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12658 0, "short_integer");
12659 lai->string_char_type
12660 = lai->primitive_type_vector [ada_primitive_type_char]
12661 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12662 lai->primitive_type_vector [ada_primitive_type_float]
12663 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12664 "float", NULL);
12665 lai->primitive_type_vector [ada_primitive_type_double]
12666 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12667 "long_float", NULL);
12668 lai->primitive_type_vector [ada_primitive_type_long_long]
12669 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12670 0, "long_long_integer");
12671 lai->primitive_type_vector [ada_primitive_type_long_double]
12672 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12673 "long_long_float", NULL);
12674 lai->primitive_type_vector [ada_primitive_type_natural]
12675 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12676 0, "natural");
12677 lai->primitive_type_vector [ada_primitive_type_positive]
12678 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12679 0, "positive");
12680 lai->primitive_type_vector [ada_primitive_type_void]
12681 = builtin->builtin_void;
12682
12683 lai->primitive_type_vector [ada_primitive_type_system_address]
12684 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12685 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12686 = "system__address";
fbb06eb1 12687
47e729a8 12688 lai->bool_type_symbol = NULL;
fbb06eb1 12689 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12690}
6c038f32
PH
12691\f
12692 /* Language vector */
12693
12694/* Not really used, but needed in the ada_language_defn. */
12695
12696static void
6c7a06a3 12697emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12698{
6c7a06a3 12699 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12700}
12701
12702static int
12703parse (void)
12704{
12705 warnings_issued = 0;
12706 return ada_parse ();
12707}
12708
12709static const struct exp_descriptor ada_exp_descriptor = {
12710 ada_print_subexp,
12711 ada_operator_length,
c0201579 12712 ada_operator_check,
6c038f32
PH
12713 ada_op_name,
12714 ada_dump_subexp_body,
12715 ada_evaluate_subexp
12716};
12717
1a119f36 12718/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
12719 for Ada. */
12720
1a119f36
JB
12721static symbol_name_cmp_ftype
12722ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
12723{
12724 if (should_use_wild_match (lookup_name))
12725 return wild_match;
12726 else
12727 return compare_names;
12728}
12729
a5ee536b
JB
12730/* Implement the "la_read_var_value" language_defn method for Ada. */
12731
12732static struct value *
12733ada_read_var_value (struct symbol *var, struct frame_info *frame)
12734{
12735 struct block *frame_block = NULL;
12736 struct symbol *renaming_sym = NULL;
12737
12738 /* The only case where default_read_var_value is not sufficient
12739 is when VAR is a renaming... */
12740 if (frame)
12741 frame_block = get_frame_block (frame, NULL);
12742 if (frame_block)
12743 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12744 if (renaming_sym != NULL)
12745 return ada_read_renaming_var_value (renaming_sym, frame_block);
12746
12747 /* This is a typical case where we expect the default_read_var_value
12748 function to work. */
12749 return default_read_var_value (var, frame);
12750}
12751
6c038f32
PH
12752const struct language_defn ada_language_defn = {
12753 "ada", /* Language name */
12754 language_ada,
6c038f32 12755 range_check_off,
6c038f32
PH
12756 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12757 that's not quite what this means. */
6c038f32 12758 array_row_major,
9a044a89 12759 macro_expansion_no,
6c038f32
PH
12760 &ada_exp_descriptor,
12761 parse,
12762 ada_error,
12763 resolve,
12764 ada_printchar, /* Print a character constant */
12765 ada_printstr, /* Function to print string constant */
12766 emit_char, /* Function to print single char (not used) */
6c038f32 12767 ada_print_type, /* Print a type using appropriate syntax */
be942545 12768 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12769 ada_val_print, /* Print a value using appropriate syntax */
12770 ada_value_print, /* Print a top-level value */
a5ee536b 12771 ada_read_var_value, /* la_read_var_value */
6c038f32 12772 NULL, /* Language specific skip_trampoline */
2b2d9e11 12773 NULL, /* name_of_this */
6c038f32
PH
12774 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12775 basic_lookup_transparent_type, /* lookup_transparent_type */
12776 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12777 NULL, /* Language specific
12778 class_name_from_physname */
6c038f32
PH
12779 ada_op_print_tab, /* expression operators for printing */
12780 0, /* c-style arrays */
12781 1, /* String lower bound */
6c038f32 12782 ada_get_gdb_completer_word_break_characters,
41d27058 12783 ada_make_symbol_completion_list,
72d5681a 12784 ada_language_arch_info,
e79af960 12785 ada_print_array_index,
41f1b697 12786 default_pass_by_reference,
ae6a3a4c 12787 c_get_string,
1a119f36 12788 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 12789 ada_iterate_over_symbols,
6c038f32
PH
12790 LANG_MAGIC
12791};
12792
2c0b251b
PA
12793/* Provide a prototype to silence -Wmissing-prototypes. */
12794extern initialize_file_ftype _initialize_ada_language;
12795
5bf03f13
JB
12796/* Command-list for the "set/show ada" prefix command. */
12797static struct cmd_list_element *set_ada_list;
12798static struct cmd_list_element *show_ada_list;
12799
12800/* Implement the "set ada" prefix command. */
12801
12802static void
12803set_ada_command (char *arg, int from_tty)
12804{
12805 printf_unfiltered (_(\
12806"\"set ada\" must be followed by the name of a setting.\n"));
12807 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12808}
12809
12810/* Implement the "show ada" prefix command. */
12811
12812static void
12813show_ada_command (char *args, int from_tty)
12814{
12815 cmd_show_list (show_ada_list, from_tty, "");
12816}
12817
2060206e
PA
12818static void
12819initialize_ada_catchpoint_ops (void)
12820{
12821 struct breakpoint_ops *ops;
12822
12823 initialize_breakpoint_ops ();
12824
12825 ops = &catch_exception_breakpoint_ops;
12826 *ops = bkpt_breakpoint_ops;
12827 ops->dtor = dtor_catch_exception;
12828 ops->allocate_location = allocate_location_catch_exception;
12829 ops->re_set = re_set_catch_exception;
12830 ops->check_status = check_status_catch_exception;
12831 ops->print_it = print_it_catch_exception;
12832 ops->print_one = print_one_catch_exception;
12833 ops->print_mention = print_mention_catch_exception;
12834 ops->print_recreate = print_recreate_catch_exception;
12835
12836 ops = &catch_exception_unhandled_breakpoint_ops;
12837 *ops = bkpt_breakpoint_ops;
12838 ops->dtor = dtor_catch_exception_unhandled;
12839 ops->allocate_location = allocate_location_catch_exception_unhandled;
12840 ops->re_set = re_set_catch_exception_unhandled;
12841 ops->check_status = check_status_catch_exception_unhandled;
12842 ops->print_it = print_it_catch_exception_unhandled;
12843 ops->print_one = print_one_catch_exception_unhandled;
12844 ops->print_mention = print_mention_catch_exception_unhandled;
12845 ops->print_recreate = print_recreate_catch_exception_unhandled;
12846
12847 ops = &catch_assert_breakpoint_ops;
12848 *ops = bkpt_breakpoint_ops;
12849 ops->dtor = dtor_catch_assert;
12850 ops->allocate_location = allocate_location_catch_assert;
12851 ops->re_set = re_set_catch_assert;
12852 ops->check_status = check_status_catch_assert;
12853 ops->print_it = print_it_catch_assert;
12854 ops->print_one = print_one_catch_assert;
12855 ops->print_mention = print_mention_catch_assert;
12856 ops->print_recreate = print_recreate_catch_assert;
12857}
12858
d2e4a39e 12859void
6c038f32 12860_initialize_ada_language (void)
14f9c5c9 12861{
6c038f32
PH
12862 add_language (&ada_language_defn);
12863
2060206e
PA
12864 initialize_ada_catchpoint_ops ();
12865
5bf03f13
JB
12866 add_prefix_cmd ("ada", no_class, set_ada_command,
12867 _("Prefix command for changing Ada-specfic settings"),
12868 &set_ada_list, "set ada ", 0, &setlist);
12869
12870 add_prefix_cmd ("ada", no_class, show_ada_command,
12871 _("Generic command for showing Ada-specific settings."),
12872 &show_ada_list, "show ada ", 0, &showlist);
12873
12874 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12875 &trust_pad_over_xvs, _("\
12876Enable or disable an optimization trusting PAD types over XVS types"), _("\
12877Show whether an optimization trusting PAD types over XVS types is activated"),
12878 _("\
12879This is related to the encoding used by the GNAT compiler. The debugger\n\
12880should normally trust the contents of PAD types, but certain older versions\n\
12881of GNAT have a bug that sometimes causes the information in the PAD type\n\
12882to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12883work around this bug. It is always safe to turn this option \"off\", but\n\
12884this incurs a slight performance penalty, so it is recommended to NOT change\n\
12885this option to \"off\" unless necessary."),
12886 NULL, NULL, &set_ada_list, &show_ada_list);
12887
9ac4176b
PA
12888 add_catch_command ("exception", _("\
12889Catch Ada exceptions, when raised.\n\
12890With an argument, catch only exceptions with the given name."),
12891 catch_ada_exception_command,
12892 NULL,
12893 CATCH_PERMANENT,
12894 CATCH_TEMPORARY);
12895 add_catch_command ("assert", _("\
12896Catch failed Ada assertions, when raised.\n\
12897With an argument, catch only exceptions with the given name."),
12898 catch_assert_command,
12899 NULL,
12900 CATCH_PERMANENT,
12901 CATCH_TEMPORARY);
12902
6c038f32 12903 varsize_limit = 65536;
6c038f32
PH
12904
12905 obstack_init (&symbol_list_obstack);
12906
12907 decoded_names_store = htab_create_alloc
12908 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12909 NULL, xcalloc, xfree);
6b69afc4 12910
e802dbe0
JB
12911 /* Setup per-inferior data. */
12912 observer_attach_inferior_exit (ada_inferior_exit);
12913 ada_inferior_data
8e260fc0 12914 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14f9c5c9 12915}
This page took 1.73754 seconds and 4 git commands to generate.